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Editorial: Therapeutic and Diagnosis
Target Discovery Based on
Metabolomics
Linsheng Liu*

Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China

Keywords: metabolomics, diagnostic target discovery, therapeutic target discovery, biomarkers, precision
medicine

Editorial on the Research Topic

Therapeutic and Diagnosis Target Discovery Based on Metabolomics

With the completion of the human genome sequencing project, the functions of gene fragments have
gradually been deciphered, ushering in the postgenome era, and many “omics” technologies have been
developed. Transcriptomics, proteomics, and metabolomics have all become research hotspots in the
medical and biological fields at this stage and have gradually been applied to every aspect of clinical
research. Metabolomics was first formally proposed at the end of the last century, and is described as a
quantitative analysis of all metabolites in an organism and a research method to determine the relative
relationship between metabolites and physiological and pathological changes. It is an integral part of
systems biology. Metabolomics facilitates the identification of biologically meaningful markers
compared with other omics sciences, such as genomics, transcriptomics or proteomics, because far
fewermetabolites are present in an organism than genes, mRNAs and proteins.Metabolomics has been
the backbone of system-wide analyses of disease and medicine owing to the critical roles of metabolites
in biological processes and the growing understanding of how the metabolome dynamically affects
biological systems. Therefore, metabolomics has been gradually applied to all aspects of clinical
research in the past decade, promoting the development of precisionmedicine, such as determining the
prognosis of diseases, monitoring adverse drug reactions, and discovering diagnostic biomarkers.

Over the past 10 years, researchers have gradually conducted an increasing number of
metabolomic studies on the pathogenesis of various diseases to identify the differentially
abundant metabolites between diseased and normal individuals and thus identify biologically
valuable diagnostic or therapeutic metabolites. These studies involve analyzing cells, animal
models of diseases, and clinical patients with the NMR and MS analytical platforms. This
research topic “Therapeutic and Diagnostic Target Discovery Based on Metabolomics” consists of
9 articles contributed by more than 71 authors in the fields of metabolic pathways of small-molecule
endogenous substances in the treatment or diagnosis of some diseases. The topic revealed the
mechanisms underlying the pharmacological interactions between metabolic targets and available
intervention strategies that provide further insights into the treatment of these diseases.

Osteoporosis is a highly occult disease with no obvious symptoms or sensitive biomarkers, and
many patients are only diagnosed after a fracture occurs. Deng et al. integrated untargeted
metabolomics, lipidomics and targeted metabolomics to screen biomarkers for osteoporosis.
Changes in metabolites in patients with osteoporosis suggested a disturbance in the bile acid
metabolism pathway and the potential of using HCA as a biomarker for the early diagnosis of
osteoporosis. As important active small-molecule compounds involved in the interaction between the
body and the gut microbiota, bile acids are also a hot spot of current research. Hu et al. documented the
effect of metformin on the gut microbiota and host metabolic profiles in STZ- and high-fat diet-
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induced type 2 diabetic rats using 16S rRNA sequencing and
untargeted and targeted metabolomics assays. More genera in
DM rats were regulated by metformin than by insulin. Several
genera, metabolites and bile acids were found to be related to
metformin and insulin treatments. Qu et al. clarified that aberrant
activation of the secondary bile acid biosynthesis pathway
increased the hydrophobicity of the bile acid pool that might
subsequently promote metabolic disturbances and disease
progression in mice subjected to chronic unpredictable mild
stress using an untargeted metabolomics method. Due to many
adverse effects of gestational diabetes mellitus, Raczkowska et al.
conducted an exhaustive assessment of multiple biomarkers for the
prediction and diagnosis of gestational glucose intolerance in two
OGTT categories (high FPG levels with normal postglucose PG
levels and normal FPG levels with high postglucose PG levels).

Lipids are also an important component of the metabolome.
Zhi et al. used UHPLC-HRMS to acquire lipid profiles from
patients with Wilson’s disease (WD) and their relatives (and a
control group) to determine characteristic lipid profiles of
patients with WD and identify potential diagnostic or
therapeutic biomarkers for WD. The findings may provide
valuable insights into identifying diagnostic and therapeutic
biomarkers for Wilson disease. Changes in amino acids are
the most common features detected in metabolomics studies.
Sun et al. presented a GC/MS-based metabolomics method to
profile the dynamic endogenous metabolic changes in the serum
of mice at different time points after partial hepatectomy. Several
amino acid and glucose metabolism pathways were dynamically
altered during liver regeneration. They also used machine
learning algorithms to identify potential metabolites that
predict liver regeneration performance. Metabolomics is often
also studied in conjunction with other omics techniques. Li et al.
evaluated the effect of mesoporous silica nanoparticles (MSNs)
on the liver using histopathology, metabolomics, proteomics and
transcriptomics. MSNs administered i.v. substantially altered the
levels of several metabolites involved in hepatic metabolism,
oxidative stress and inflammation pathways, and the changes
were more significant than those observed after oral
administration.

Arjmand et al. conducted a review focusing on a clinically
interesting issue regarding the treatment resistance of patients
with cancer and proposed the molecular docking modeling
method as a novel approach to target the metabolic pathways
in cancer stem cells. Finally, as one of the most relevant

approaches to investigate metabolic phenotypes, Emwas et al.
presented a brief review of fluxomics research conducted in
recent decades by discussing recent studies and common
analytical tools.

In conclusion, the “Therapeutic and Diagnostic Target
Discovery Based on Metabolomics” research topic highlights
the importance of developing novel targets and biomarkers for
the discovery of targets for the diagnosis and treatment of
complex diseases.
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An Integrated Metabolomic Study of
Osteoporosis: Discovery and
Quantification of Hyocholic Acids as
Candidate Markers
Dawei Deng1,2,3†, Chen Pan1†, Zeming Wu4, Yujiao Sun2,5, Chang Liu2,5, Hong Xiang2,
Peiyuan Yin2,5* and Dong Shang1,2,5*

1Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China, 2Clinical Laboratory of
Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China, 3Department of Hepato-biliary-pancreas,
Affiliated Hospital of North Sichuan Medical College, Nanchong, China, 4iPhenome biotechnology (Yun Pu Kang) Inc, Dalian,
China, 5Institute of Integrative Medicine, Dalian Medical University, Dalian, China

Osteoporosis is becoming a highly prevalent disease in a large proportion of the global
aged population. Serum metabolite markers may be important for the treatment and early
prevention of osteoporosis. Serum samples from 32 osteoporosis and 32 controls were
analyzed by untargeted metabolomics and lipidomic approaches performed on an ultra-
high performance liquid chromatography and high-resolution mass spectrometry
(UHPLC-HRMS) system. To find systemic disturbance of osteoporosis, weighted gene
correlation network analysis (WGCNA) and statistical methods were employed for data-
mining. Then, an in-depth targeted method was utilized to determine potential markers
from the family of key metabolites. As a result, 1,241 metabolites were identified from
untargeted methods and WGCNA indicated that lipids metabolism is deregulated and
glycerol phospholipids, sphingolipids, fatty acids, and bile acids (BA) are majorly affected.
As key metabolites of lipids metabolism, 66 bile acids were scanned and 49 compounds
were quantified by a targeted method. Interestingly, hyocholic acids (HCA) were found to
play essential roles during the occurrence of osteoporosis and may be potential markers.
These metabolites may be new therapeutic or diagnosis targets for the screening or
treatment of osteoporosis. Quantified measurement of potential markers also enables the
establishment of diagnostic models for the following translational research in the clinic.

Keywords: osteoporosis, lipids, bile acids, ageing, metabolomics

INTRODUCTION

Osteoporosis is a progressive systemic bone disease that is characterized by bone loss and
microstructural deterioration and results in increased bone fragility, which affects over 200
million people worldwide (Curtis et al., 2017; Compston et al., 2019). Complications of
osteoporosis such as chronic pain, fracture and disability seriously affect the quality of life of
elderly individuals. Fracture is the most serious complication, with more than 8.9 million
osteoporosis-related fractures occurring annually (Cruz-Jentoft and Sayer, 2019). As the global
population ages, osteoporosis and its complications are becoming an increasingly serious public
health burden (Sànchez-Riera et al., 2014; Tarrant and Balogh, 2020). Osteoporosis is also a highly
insidious disease. Due to the absence of obvious symptoms and sensitive biomarkers, many patients
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are diagnosed only after a fracture has occurred (Wang et al.,
2019; Fang et al., 2020). Furthermore, the first-line drugs used to
treat osteoporosis are associated with a substantial number of
complications, and the overall therapeutic effects are
unsatisfactory (Park et al., 2013; Komm et al., 2015). This
indicates that we do not fully understand osteoporosis and the
therapeutic targets required.

Metabolites are the ultimate functional products that manifest
both genetic and environmental variations, and they combine
external stimuli with intracellular signals (Peng et al., 2015).
Metabolic profiles obtained using metabolomics techniques
under different conditions are closely related to human health
(Leslie and Beyan, 2011). Osteoporosis is a metabolic bone
disease, and studies have indicated that significant changes in
endogenous metabolites modulate bone remodelling in a mouse
model of osteoporosis (Nam et al., 2018). Moreover, in the
treatment of osteoporosis, oestradiol changed 27 intracellular
metabolite levels by correcting lipid and amino acid disorders
(Liu et al., 2015). Metabolomics characterizes metabolites in
biological samples to provide information on pathway activity,
which provides a suitable approach for the study of osteoporosis.
Non-targeted metabolomics platforms aim to enlarge the
coverage of endogenous metabolites for a better understanding
metabolic pathways or screening potential biomarkers. Thus, the
challenges for untargeted metabolomics are detection, discovery
and identification of differential metabolites. Targeted
metabolomics methods focused on a limited number of
compounds and provides sensitive and precise measurement of
metabolites. The combination of the two approaches has greatly
facilitated the discovery of biomarkers and the understanding of
pathophysiological mechanisms (Xuan et al., 2020).

Changes in human serum metabolites might reflect
pathophysiological alterations caused by various diseases (Shu
et al., 2020, 19). Here, metabolic alternations in patients with
osteoporosis were analyzed by untargeted metabolomic and
lipidomic methods. To better understand the metabolic
deregulations occurred in the patients, WGCNA algorithm
and multivariate statistical methods were applied. Then
targeted metabolomics method performed on a triple
quadrupole MS was employed to obtain an in-depth
measurement of the key metabolites and their related
compounds. The quantitative results may help understanding
the metabolic pathway and the establishment of a diagnostic
panel, which enables the diagnostic and treatment applications in
the clinic.

MATERIALS AND METHODS

Reagents and Solutions
Mass spectrometry level methanol, acetonitrile, isopropanol,
formic acid and ammonium acetate were purchased from
Fisher Scientific (Fair Lawn, United States). Mass spectrometry
level ammonium bicarbonate and methyl tert-butyl ether
(MTBE) were purchased from Sigma-Aldrich (St. Louis,
United States). Ultra-pure water (18.2 mΩ cm) was used to
prepare using Milli-Q purified water system (Merck KGaA,

Darmstadt, Germany). Reference bile acid standards and
isotope internal standards were purchased from Avanti Polar
Lipids (Alabama, United States), Cayman Chemical (Ann Arbor,
United States), Cambridge Isotope Laboratories Inc. (Tewksbury,
United States), IsoSciences (Ambler, United States), Sigma-
Aldrich (St. Louis, United States) and Toronto Research
Chemicals (Toronto, Canada). For more information about
standards, please referred to Supplementary Table S1.

Participants and Criteria
From June 2020 to January 2021, serum samples were collected
from osteoporosis patients (OS group, n � 32) at the First
Affiliated Hospital of Dalian Medical University. The OS
group inclusion criteria were based on the 2014 National
Osteoporosis Foundation (NOF) clinical guidelines (Cosman
et al., 2014). The exclusion criteria included any mental or
organic diseases, cancer, metabolic or hereditary bone disease,
and hormone use in the past 6 mo. The serum samples of the
control group (Con group, n � 32) were collected from health
individuals at an admission physical examination. The age and
sex constituent ratio of the control group matched that of the OS
group, and the controls did not have any of the above-mentioned
OS group exclusion criteria. All patients signed informed consent
forms, and the project was approved by the Ethics Committee of
First Affiliated hospital of Dalian Medical University.

Serum Sample Collection and Pretreatment
Serum samples were collected from OS patients on the first
morning in a fasted state. Likewise, all Con samples were
collected at the same time point and under the same fasting
conditions as the OS samples were. All samples were immediately
stored in a −80°C freezer and thawed at 4°C before pre-treatment.
First, 150 μl of each sample was transferred to 1 ml 96-DeepWell
plates (Thermo Scientific, United States), and then, 600 μl of
methanol was added to the sample to precipitate the protein.
Next, the mixture was vortexed for 5 min for better mixing and
distribution and centrifuged at 5300 RPM for 20 min (4°C). Two
replicates of the 200 μl upper layer were transferred to 450 μl 96-
well plates (Thermo Scientific, United States); the samples were
concentrated and dried by vacuum centrifugation. The polar
metabolite extractions in these two plates were redissolved for
positive and negative ion detection with untargetedmetabolomics
analysis. The remaining upper layers of all samples were mixed
and similarly distributed at 200 μl per replicate as quality control
(QC) samples (Salem et al., 2016).

To extract lipids from serum, 120 μl methanol was added to
20 μl of sample in a 1.5 ml EP tube (Axygen, United States). Next,
the mixture was vortexed for 180 s, and 360 μl of methyl tert-
butyl ether (MTBE) and 100 μl of ultrapure water were
subsequently added to the solution. The mixture was vortexed
for 10 min, kept at room temperature for another 10 min, and
finally centrifuged at 13,000 × g for 15 min (4°C). 200 μl of lipid
extract from the upper layer was transferred to a 1.5 ml EP tube
and dried, similar to the protocol for the polar metabolite
extractions described above. The lipid extractions were then
redissolved for lipidomics analysis. QC samples of lipids were
also prepared.
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Moreover, a standard curve configuration was essential for
metabolite-targeted quantification. Therefore, we precisely
weighed the standards and adjusted the concentration to
1.0 mg ml−1 as a stock solution. An appropriate volume of
each stock solution was diluted step by step to 465 μg L−1,
232.5 μg L−1, 116.25 μg L−1, 58.125 μg L−1, 29.0625 μg L−1,
14.531 μg L−1, 7.266 μg L−1, 3.633 μg L−1, 1.816 μg L−1,
0.908 μg L−1, 0.454 μg L−1, 0.227 μg L−1 and 0.114 μg L−1 with
the extraction solution. Next, 80 μl of each sample was
transferred to 1 ml 96-DeepWell plates, and 320 μl of
methanol: acetonitrile (1:1, v:v), which included a 50 ng ml−1

bile acid isotope internal standard, was added. After 5 min of
vortexing, the mixture was centrifuged at 5300 RPM at 4°C for
20 min. The 260 μl upper layer was transferred to 450 μl 96-well
plates and dried as described above. Afterwards, the extraction
was redissolved for bile acid-targeted metabolomics analysis. The
mixture of QC samples was also distributed at 260 μl per replicate
and dried (Choucair et al., 2020).

Untargeted Metabolomic and Lipidomic
Analysis
The UHPLC-HRMS system, which was used for untargeted
metabolomics analysis, was composed of an Ultimate
3000 ultra-high performance liquid chromatograph and Q
Exactive Quadrupole-Orbitrap High-Resolution Mass
Spectrometer (Thermo Scientific, United States).

The polar metabolite extracts were separated by reversed-
phase chromatography for positive and negative ion detection.
Metabolites were separated by using an Excel 2 C18-PFP column
(3.0 μm, 2.1 × 100 mm; ACE Co., United Kingdom) for positive
detection and eluted with 0.1% formate/water as mobile phase A
and acetonitrile as mobile phase B. The linear gradient ramped
from 2% mobile phase B to 98% in 10 min. For the negative
detection mode, the mobile phases consisted of water (phase A)
and acetonitrile/methanol (phase B), both of which contained
ammonium bicarbonate buffer salt, and were employed to elute
metabolites separated on an Acquity HSS C18 column (1.8 μm,
2.1 × 100 mm; Waters Co., United States). The mobile phase
gradient was as follows: 0 min 2% phase B ramped to 100% in
10 min, and another 5 min was used for column washing and
equilibration. The flow rate, injection volume and column
temperature of both the positive and negative modes were set
at the same conditions: 0.4 ml min−1, 5 μl and 50°C.

The chromatographic separation for lipidomic was carried out
in positive ionization detection mode. An Accucore C30 core-
shell column (2.6 μm, 2.1 × 100 mm; Thermo Scientific,
United States) was utilized for lipid molecule separation at
50°C, and the lipids were eluted with 60% acetonitrile in water
(phase A) and 10% acetonitrile in isopropanol (phase B), both of
which contained 10 mM ammonium formate and 0.1% formate.
The separation gradient was optimized as follows: initial 10% B
ramping to 50% in 5 min and further increasing to 100% in
23 min. The other 7 min were used for column washing and
equilibration using a 0.3 ml min−1 flow rate.

For polar metabolite detection, the Quadrupole-Orbitrap mass
spectrometer was operated under identical ionization parameters

with a heated electrospray ionization source except ionization
voltage: sheath gas, 45 arb; aux gas, 10 arb; heater temperature,
355°C; capillary temperature, 320°C and S-Lens RF level, 55%.
The metabolomic extracts were profiled in full scan mode under
70,000 FWHM resolution with AGC 1 × 106 and 200 ms max
injection time. Data were acquired using a scan range of
70–1,000 m z−1. The lipid molecules were ionized using the
same parameters mentioned above. At a 70,000 full width half
maximum (FWHM) full scan resolution, the settings differing
from those of the polar metabolite analysis included the
300–2000 m z−1 scan range and AGC target 3 × 106.

Targeted Metabolomics Analysis
A total of 66 bile acids (Supplementary Table S2) were scanned
and quantified on a Waters Acquity UPLC (Waters Corp.,
Milford, United States) coupled with a Sciex 5500+ triple
quadrupole (QQQ) mass spectrometer (AB Sciex, Singapore).
The bile acids were chromatographically resolved on an C18-PFP
column (3 μm, 2.1 × 50 mm; ACE, United Kingdom) after 2.5 μl
aliquots of bile acid extract was injected. Water containing 2 mM
ammonium acetate was used as phase A, and acetonitrile was
used as phase B. The chromatographic gradient ramped from
17% phase B to 30% in 10 min, ramped to 55% in 3 min, rapidly
climbed to 95% in 1 min and remained for 3 min; another 5 min
was used for column washing and equilibration. The flow rate was
set at 0.4 ml min−1. The metabolites were ionized by a TurboV
heated electrospray ionization source and then detected by
scheduled multiple reaction monitoring mode. The main
parameters were optimized as follows: negative ion spray
voltage was −4.5 kV, curtain gas pressure was 35 psi, ion gas 1
and 2 pressure were 50 psi, and heater temperature was 550°C.

Date Processing
According to the recommendation of the Metabolomics
Standardization Initiative (MSI) (Sumner et al., 2007), first-
level annotation required chromatographic retention time,
primary mass spectrometry and secondary mass spectrometry
information, which was consistent with the standards. At the
second level, the polar metabolites were structurally annotated by
searching against local databases, mzCloud library (Thermo
Scientific, United States), Kyoto Encyclopedia of Genes and
Genomes (KEGG) and the Human Metabolome Database
(HMDB). On the other hand, untargeted lipid data were
processed with LipidSearch (Thermo Scientific, United States)
software, including peak picking and lipid identification. For
metabolite identification or structural annotation, accuracy of
the mass of a precursor within ±10 ppm was a prerequisite. The
AUC values were extracted as relative quantification information
of polar metabolites and lipids with TraceFinder software
(Thermo Scientific, United States). Regarding targeted bile acid
detection, internal calibration was conducted with Analyst
software and OS-MQ software (AB SCIEX, Singapore) for
quantitative analysis of bile acids.

Statistical Analysis
We used R package “pwr” for classical Power Analysis. Next,
metabolites with missing value percentages above 50% were
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excluded, and then the K-nearest algorithm (KNN sample-wise)
was employed to impute the missing values. For the purpose of
guaranteed uniqueness of metabolites and lipids, molecules
detected by multiple methods were retained only once. The
normalization of untargeted metabolomics data consisted of
three steps: sample calibration, data transformation and data
scaling. Firstly, Sample calibration was used to correct sample
reproducibility due to batch effects or systematic errors in
detection. Secondly, we performed Log transformation on
untargeted metabolomics data, which was often used to
convert data into normal distribution. Finally, UV scaling was
used to pre-process orthogonal projections to latent structures
discriminant analysis (OPLS-DA) data. For the bile acid targeted
analysis, the mass concentration of serum extraction was
transformed to the molar concentration of the original sample
based on the molecular weight and dilution factor. Multivariate
analysis, such as principal component analysis (PCA) and OPLS-
DA, was conducted with SIMCA-P software (Umetrics, Sweden).
Univariate analysis including independent samples Student’s
t-test p-value, Benjamini-Hochberg false discovery rate q-value
(p-value < 0.05, q-value < 0.2) (Oshansky et al., 2014; Park et al.,
2019; Shi et al., 2020, 16) and heatmap drawing was performed on
the MetaboAnalyst website (http://www.metaboanalyst.ca) (Xia
and Wishart, 2010b, 2010a; Chong et al., 2018). We applied the
WGCNA package in the R environment Version 4.0.3 (R Core
Team, 2020) to construct co-expression modules of highly
correlated metabolites (Langfelder and Horvath, 2008).
Moreover, receiver operating characteristic (ROC) curves and
box plots were generated with GraphPad Prism 8.0 (GraphPad
Software Inc., United States). Binary logistic regression and
biomarker model establishment were based on SPSS Statistics
26.0 software (IBM, United States). Cytoscape 3.8.0 (https://
cytoscape.org/, Cytoscape Consortium, United States) was used
for biological network construction and visualization (Shannon
et al., 2003).

RESULTS

Study Design and Clinical Characteristics
Serum samples from 32 patients with osteoporosis and 32 healthy
individuals were collected. The annotated serummetabolites were
compared and clustered by multivariate analysis, univariate
analysis and WGCNA. To clarify the results, targeted analysis
of bile acids was performed using another aliquot of the serum
samples from the same two groups. Diagnostic model was
established using the quantitative BAs’ data. The workflow of
this study was summarized in Figure 1.

No significant differences were found in the clinical
characteristics including sex, age, glucose, creatinine, and etc.
between the matched groups of Controls and OS. Detailed clinical
information is listed in Supplementary Table S3.

Untargeted metabolomics was employed to describe the
characteristics of serum metabolism among the participants. A
total of 1,241 metabolites (1,083 metabolites remaining after data
screening and cleaning) were identified. In addition, 366 polar
metabolites accounted for 33.8% of the total, and 717 lipids
accounted for 66.2%. Among them, 266 triacylglycerols (TGs)
accounted for the largest proportion (24.6%). The total ion
chromatogram (TIC) displayed the panoramic view of non-
targeted metabolomics. The extracted ion chromatogram (XIC)
provided a visual presentation of targeted bile acid detection
(Supplementary Figure S1). The coefficient of variation (CV)
distribution of QC, which indicated the reproducibility of the
detection method, is shown in Supplementary Figures S2,S3.

Metabolic Profiling of Osteoporosis
To illustrate the metabolic alterations between the two groups,
OPLS-DA of polar metabolites (Figure 2A) and lipids
(Figure 2B) were used. An overall separation can be observed
between the two groups, in both platforms. Volcano plots of polar
metabolites (Figure 2D) and lipids (Figure 2E) show the

FIGURE 1 | The design and workflow of this study.
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differences and average intensity change ratio between the two
groups. Most of the polar metabolites decreased, while the lipids
increased in the OS group. The relative contents of these
metabolites could be visualized by a heat map (Figure 2C).
The differential metabolites identified mainly included amino
acids (AAs), fatty acids (FAs), glycerophosphocholines (PCs),
glycerophosphoethanolamine (PE), TGs and BAs. Notably, the

serum contents of lysophosphocholines (LPC) in the OS group
was significantly lower than that in the Con group, which was in
contrast to the trends of other lipids, such as PE and TG. In
Figures 2F,G, 4-Hydroxyproline and FA (20:0) levels decreased
significantly in the OS group, while cyclic Melatonin and TG (18:
0/18:0/18:0) levels increased obviously in the OS group
(Supplementary Tables S4,S5).

FIGURE 2 |OPLS-DA score plots of metabolites (A) and lipids (B). In the heatmap, blue indicates lower relative intensity, and red indicates higher relative intensity
(C). The red dots of the metabolites (D) and lipids (E) in the volcano plots indicated an increase in the OS group, and the blue dots indicate a decrease. 4-Hydroxyproline
and cyclic melatonin were representative metabolites (F). FA (20:0) and TG (18:0/18:0/18:0) were representative lipids (G).
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FIGURE 3 | Soft threshold selection was based on scale-free topology R2 and mean connectivity (A). A module cluster tree was used to visualize the distribution of
metabolites in each module (B). The correlation coefficients and p-values between modules and osteoporosis (C). The MMI networks of the pink (D) and magenta (E)
modules. The correlation of MMI was based on debiased sparse partial correlation (DSPC). The heatmap of osteoporosis-related metabolites and lipids that were
differentially expressed between the OS and Con groups (F). Schematic plot of FA synthesis metabolism and the mutual transformation between subclasses of
lipids (G). Black text represents undetected metabolites, red text represents significantly enriched metabolites, and green text represents significantly depleted
metabolites when the OS group is compared with the Con group.
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Construction of Co-expression Modules by
WGCNA
To find out the interaction of the differential metabolites,
WGCNA, an innovative analysis method, was used to
construct a metabolite interaction network considering
weighted factors. According to the relative intensity data of
1,083 metabolites, the correlation between the metabolic co-
expression module and the clinical phenotype of osteoporosis
was analysed by the WGCNA software package. First, the
hierarchical clustering method was used to check the outliers,
and no outliers were found. The soft threshold was 9 (scale-free
topology R2 � 0.882, slope � −1.29, mean connectivity � 20.5);
subsequently, the merged cut height was set to 0.2 with a
minimum module size of 30. A total of 10 modules were
obtained, among which, the grey module was a group of
metabolites that could not be included in the co-expression
network construction. This module should be reduced as
much as possible for the robustness of the model. Pearson
correlation analysis was used to evaluate the correlation
between modules (Supplementary Table S6). The results
suggested that there was a significant positive correlation
among the green, red and blue modules and that there were
no significant negative correlations among modules. The
differences between the osteoporosis patients and healthy
controls were the clinical features those are concerned about.
From Figure 3C, we found that the pink (Supplementary Table
S7) and magenta (Supplementary Table S8) modules were
significantly related to the occurrence of osteoporosis. The
metabolites in pink were expressed at low levels in the OS
group, while the change trend of the metabolites in the
magenta module was the opposite.

Metabolite-Metabolite Interaction (MMI)
Network Construction
The differences between the OS group and Con group were
compared in the two modules. The pink module contained 43
metabolites, of which 25 metabolites were significantly
downregulated and none upregulated (Supplementary Figure
S4G). In addition, levels of all 45 metabolites in the magenta
module were significantly elevated (Supplementary Figure S4I).
Furthermore, metabolites with the greatest fold change (FC) ratio
between the two groups in each module were selected as
representatives. LPC (18:0/0:0) and LPC (16:0/0:0) in the pink
module decreased significantly in the OS group. In contrast, TG
(17:0/18:0/18:0) and TG (16:0/16:0/24:0) were significantly
higher in the OS group than in the Con group. To identify the
relationship between the key metabolites in each module, an
MMI network was constructed based on the internal connectivity
of the metabolites. Surprisingly, the MMI of the pink module
(Figure 3D; Supplementary Table S9) indicated that among the
various metabolites downregulated in the OS group, the highly
weighted metabolites were mainly LPC. Moreover, the MMI of
the magenta module suggested that the upregulated metabolites
in the OS group were mainly TG and PE (Figure 3E;
Supplementary Table S10).

Disorders of Lipids Pathways
Patients with osteoporosis had significant abnormal lipid
metabolism (Supplementary Table S11). As shown in Figures
3F,G, levels of PC, PE, diacylglycerols (DG), TG, ceramides (Cer)
and sphingomyelins (SM) in the serum of osteoporosis patients
were dramatically increased. The relative serum concentrations of
LPC, lysophosphatidylethanolamine (LPE), Acetylcarnitine and
FA, especially saturated FA, decreased in patients with
osteoporosis. In addition, most of the FA chains in TG and
PE were long-chain saturated FAs. The changes in different BAs
also varied between the two groups. These characteristics
indicated that dysregulation of lipid metabolism may
contribute to the occurrence of osteoporosis.

Dysregulation of BAs
To validate whether abnormal bile acid metabolism is involved in
the occurrence of osteoporosis, a targeted method was carried out
on the same batch of serum samples (Supplementary Table S12).
49 bile acids were detected from the samples. Similarly, the OPLS-
DA score plot showed a significant separation between the OS
group and the Con group (Figure 4A). The volcano plot indicated
that five BAs (or ratios) decreased and that 11 increased in
osteoporosis (Figure 4B). Furthermore, the concentrations of
16 BAs (or ratios) in each sample are shown in a heatmap
(Figure 4C).

A diagnostic panel was established based on differentially
expressed BAs using binary logistic regression. After variable
screening, the box plot of five potential BAs, glycohyocholic acid
(GHCA), dehydrocholic acid (DHCA), deoxycholic acid 3-
glucuronide (DCA-3G), ursocholic acid (UCA), and
deoxycholic acid/cholic acid (DCA/CA), showed that GHCA,
DCA-3G, and DCA/CA levels in osteoporosis patients were
significantly higher than those in healthy controls. In addition,
DHCA and UCA, which were classified as hyocholic acid species
(HCAs), were higher in healthy controls (Figure 4D). This
diagnostic panel for osteoporosis was concluded as follows:
Logit[P ] � 24.063 × GHCA − 53.524 × DHCA − 21.971×
UCA + 54.302 × DCA − 3G + 0.615 × DCA/CA − 123.056 In the
equation, P is the predicted probability of osteoporosis, and each
BA represents its serum concentration (nmol L−1). The AUC
values of the five bile acid biomarkers were as follows: GHCA,
AUC � 0.859 (0.7756–0.962); DHCA, AUC � 0.841
(0.744–0.937); DCA-3G, AUC � 0.928 (0.867–0.990); UCA,
AUC � 0.741 (0.617–0.864); and DCA/CA, AUC � 0.718
(0.591–0.844). Noticeably, performance of the diagnostic panel
in the diagnosis of osteoporosis was superior to that of each bile
acid biomarker alone (Figure 4E). Moreover, the prediction
accuracy of this diagnostic panel was 100% (Figure 4F). The
results highlighted the diagnostic potential of bile acids.

DISCUSSION

In the present study, we characterized the differences in
metabolite and lipid profiles between osteoporosis patients and
healthy volunteers using LC-MS metabolomics. WGCNA was
utilized to identify metabolites that are closely related to
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osteoporosis onset. Lipid metabolism disorders, mainly
abnormalities in fatty acid metabolism, sphingolipid
metabolism and BA metabolism, were involved in the
initiation of osteoporosis. BAs are involved in lipid digestion
and are also important signalling molecules in lipid metabolism.
The difference in BAs between osteoporosis patients and healthy
volunteers was significant, especially in HCAs. Moreover, the
AUC of the 5-metabolite panel provides a promising diagnostic
potential. These results demonstrated the role of BAs in
osteoporosis.

LPC and LPE are components molecular of membrane and
take part in signal transduction (Bai et al., 2014; Rindlisbacher
et al., 2018). These compounds are converted from PC and PE by
phospholipase A2 (PLA2), a calcium-dependent protein
(Hirabayashi et al., 2017). The levels of lyso-lipids were

decreased in patients with osteoporosis, while PC and PE
levels were increased. The results implied that PLA2 enzyme
activity is decreased due to disorders of calcium and phosphorus
metabolism, leading to a decrease in LPC, LPE and free fatty acid
(FFA) levels. Studies have shown that LPC has pro-inflammatory
activity and promotes osteoblast apoptosis (Brys et al., 2019). The
accumulation of LPC in bone tissue may lead to the decrease of
serum LPC.

Cholesterol is the precursor of vitamin D, bile acids, and
steroid hormones, all of which are important regulators of bone
metabolism (Hoppel, 2003; Hernandez et al., 2019). BAs regulate
the homeostasis of cholesterol, glucose and fat-soluble vitamins,
and play a crucial role in maintaining mineral homeostasis (Ma
and Patti, 2014; Ruiz-Gaspà et al., 2020). DCA and TCA differed
notably in bone tissues of old mice and young mice models of

FIGURE 4 | OPLS-DA plot of absolute quantitation of BAs (A). Volcano plot of absolute quantitation of BAs (B). Heatmap of selected BAs that were significantly
changed in the volcano plot (C). After analysis by binary logic regression, five BA biomarkers were visualized in the form of box plots (D). The ROC curve of the above five
biomarkers and the diagnostic panel (E). The prediction accuracy of the diagnostic panel is shown by a heatmap (F).
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osteoporosis in the literature (Nam et al., 2018). In our results,
BAs changed significantly among osteoporosis patients. However,
no significant differences in serum CA, chenodeoxycholic acid
(CDCA), DCA and lithocholic acid (LCA). Nevertheless, their
derivatives, such as DCA-3G, 23-nordesoxycholic acid (Nor-
DCA) and isolithocholic acid (iso-LCA), were significantly
different between the two groups. Further exploration of the
functions of these BAs is needed.

Interestingly, a significant deregulation of HCAs was found in
this study. HCAs are a group of 6a-hydroxylated bile acids that
account for a minimal proportion of the total BAs in humans and
mice but constitute nearly 80% of BAs in pigs (Spinelli et al.,
2016). A recent study reported that HCAs were involved in
maintaining glucose homeostasis. HCA promoted glucagon-
like peptide-1 (GLP-1) production in enteroendocrine cells by
simultaneously activating the membrane G protein-coupled

receptor TGR5 and inhibiting farnesoid X receptor (FXR) in a
dose-dependent manner, which enhanced insulin secretion and
eventually reverted to normoglycaemia (Zheng et al., 2021).
Epidemiological investigations found that patients with
diabetes have a higher risk of osteoporosis. Succinate
enhanced osteoclasts by activating succinic acid receptors in
diabetes-associated osteoporosis (Guo et al., 2017). However,
in this study, GHCA and taurohyocholic acid (THCA) levels
were significantly increased, but there was no significant
difference in blood glucose between the two groups. Therefore,
the correlations between HCAs and osteoporosis are independent
from the occurrence of diabetes.

The molecular ratio of the upstream and downstream of the
metabolic pathway is usually used to reflect the catalytic
enzymatic activity (MahmoudianDehkordi et al., 2019; Nho
et al., 2019). To investigate the mechanisms contributing to

FIGURE 5 | Dysregulation of BA metabolism in osteoporosis.
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BA alterations in osteoporosis, the ratios of three types of bile
acids were compared. The results revealed that bile acid metabolism
was converted from the classical pathway to the alternative pathway
(CA: CDCA). Since the gut microbiota is believed to be closely
connected to osteoporosis, the dysregulation of the gut flora may
alter BA levels consequently (Jones et al., 2014; Devlin and Fischbach,
2015;Wahlström et al., 2016). A significant change in secondary BAs
was found according to the ratio (DCA:CA). CA is affected by
bacterial 7A-dehydroxylase in the gut to produce DCA, which has
cytotoxic effects and can result in the destruction of the
mitochondrial membrane (Schulz et al., 2013). There
was a change in the progression of taurine conjugation of
secondary BAs in the liver (taurolithocholic acid (TLCA): LCA).
These results indicated that gut microbiota and related BA
metabolism may act as an important role in the occurrent
osteoporosis (Figure 5).

Although our study provided original insights into the
pathogenesis of osteoporosis, there were still some limitations.
First, the sample size was relatively small, and therefore, we could
not stratify the metabolites associated with disease progression
according to severity. Second, although the diagnostic model had
good diagnostic performance, it still needs to be validated in a
larger cohort. Finally, this study was a retrospective study, and the
causal relationship between differential metabolites and
osteoporosis requires further investigation.

CONCLUSION

Our integrated metabolomic strategy was demonstrated to be
practical for the screen of novel biomarkers, which highlights the
lipids and bile acids metabolism disorders in patients with
osteoporosis. Bile acids change from the classical pathway to
the alternative pathway, and HCAs are involved in the occurrence
and development of osteoporosis. The deregulation of lipids and
the BAs provides a potential basis for the diagnosis and treatment
of osteoporosis. Our study confirmed the importance of the
combination of untargeted and targeted metabolomic method
especially for the trnslational research in the clinic.
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Gas Chromatography–Mass
Spectroscopy-Based Metabolomics
Analysis Reveals Potential
Biochemical Markers for Diagnosis of
Gestational Diabetes Mellitus
Beata A. Raczkowska1, Patrycja Mojsak1, David Rojo2, Beata Telejko†,3,
Magdalena Paczkowska–Abdulsalam1, Justyna Hryniewicka3,
Anna Zielinska–Maciulewska3, Malgorzata Szelachowska3, Maria Gorska3, Coral Barbas2,
Adam Kretowski1,3 and Michal Ciborowski1*

1Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland, 2Centro de Metabolómica y Bioanálisis (CEMBIO),
Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain, 3Department of Endocrinology,
Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland

Due to many adverse effects of gestational diabetes mellitus (GDM) on the mother and
fetus, its diagnosis is crucial. The presence of GDM can be confirmed by an abnormal
fasting plasma glucose level (aFPG) and/or oral glucose tolerance test (OGTT) performed
mostly between 24 and 28 gestational week. Both aFPG and abnormal glucose tolerance
(aGT) are used to diagnose GDM. In comparison to measurement of FPG, OGTT is time-
consuming, usually inconvenient for the patient, and very often needs to be repeated.
Therefore, it is necessary to seek tests that will be helpful and convenient to diagnose
GDM. For this reason, we investigated the differences in fasting serum metabolites
between GDM women with abnGM and normal FPG (aGT-GDM group), with aFPG
and normal glucose metabolism (aFPG-GDM group) as well as pregnant women with
normal glucose tolerance (NGT) being a control group. Serummetabolites were measured
by an untargeted approach using gas chromatography–mass spectrometry (GC–MS). In
the discovery phase, fasting serum samples collected from 79 pregnant women (aFPG-
GDM, n � 24; aGT-GDM, n � 26; NGT, n � 29) between 24 and 28 weeks of gestation
(gwk) were fingerprinted. A set of metabolites (α–hydroxybutyric acid (α–HB),
β–hydroxybutyric acid (β–HB), and several fatty acids) significant in aGT-GDM vs NGT
but not significant in aFPG-GDM vs NGT comparison in the discovery phase was selected
for validation. These metabolites were quantified by a targeted GC–MS method in a
validation cohort consisted of 163 pregnant women (aFPG-GDM, n � 51; aGT-GDM, n �
44; and NGT, n � 68). Targeted analyses were also performed on the serum collected from
92 healthy women in the first trimester (8–14 gwk) who were NGT at this time, but in the
second trimester (24–28 gwk) they were diagnosed with GDM. It was found that α–HB,
β–HB, and several fatty acids were associated with aGT-GDM. A combination of α–HB,
β–HB, and myristic acid was found highly specific and sensitive for the diagnosis of GDM
manifested by aGT-GDM (AUC � 0.828) or to select women at a risk of aGT-GDM in the
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first trimester (AUC � 0.791). Our findings provide new potential markers of GDM and may
have implications for its early diagnosis.

Keywords: gestational diabetes mellitus, biomarkers, metabolomics, serum, quantitative analysis, gas
chromatography, mass spectrometry

INTRODUCTION

Gestational diabetes mellitus (GDM), the most common form of
metabolic complication in pregnancy (Tenenbaum-Gavish et al.,
2020), is defined as any degree of glucose intolerance with the
onset or first recognition during pregnancy (Sweeting et al.,
2019). GDM affects from 2 to 38% of pregnancies, depending
on the diagnostic criteria and population studied (Alesi et al.,
2021). Additionally, its prevalence worldwide is rising (Mdoe
et al., 2021). In 2017, GDM affected about 204 million women
worldwide, with a projection to increase to 308 million by 2045,
mostly in developing countries (Yahaya et al., 2020). Several
factors can impact the onset of GDM, including immune function
disorder, heredity, gene mutations, and especially the effect of
hormones (Mdoe et al., 2021). Women who had GDM have an
elevated risk to develop diabetes mellitus type 2 (T2DM) or
cardiovascular diseases, as well as obesity or hyperlipidemia in
later life (Plows et al., 2018). Consequently, the early diagnosis of
GDM could be crucial to prevent abovementioned disorders
(Buchanan et al., 2012).

Both conditions, abnormal fasting plasma glucose (aFPG) or
abnormal results of oral glucose tolerance test (OGTT), which is
an indicator of abnormal glucose tolerance (aGT), are used to
diagnose GDM. According to Smirnakis et al. (2005) and Riskin-
Mashiah et al. (2009), evaluation of fasting plasma glucose (FPG)
in the early pregnancy can be used to indicate women at risk for
GDM before the 24th week of gestation (gwk). However, recent
studies have shown that FPG in early pregnancy was a poor
predictor of GDM (Benhalima et al., 2021; Cosson et al., 2021).
On the other side, OGTT, in comparison to the single fasting
blood collection needed for an FPG measurement, is time-
consuming, inconvenient, and may induce nausea and
vomiting in some patients (Cosson et al., 2017). However, it is
still a “gold standard” for GDM diagnosis (Bogdanet et al., 2020).
Finally, even if an abnormal result for FPG is observed in early
pregnancy, the OGTT procedure very often needs to be repeated
at 24 gwk, which can be refused by some women (Cosson et al.,
2017). Consequently, markers allowing for the diagnosis of GDM
manifested solely by aGT, without performing OGTT, are
needed. Currently an OGTT screening procedure, according to
the International Association of Diabetes and Pregnancy Study
Groups (IADPSG) criteria (Gupta et al., 2015), should take place
between 24 and 28 gwk. Diagnostic or prognostic markers to
indicate GDM presence or risk of future development in the early
pregnancy are urgently needed. Early diagnosis may allow
introduction of effective prevention and care strategies, which
may ultimately reduce complications associated with GDM
(Brink et al., 2016).

Recent findings have highlighted metabolomics as a prime
candidate for evaluating potential markers for GDM (Mao et al.,

2017) because of its capacity to detect early deregulations and
disruptions in metabolism associated with different diseases
(Mojsak et al., 2021). Therefore, it can be used as a potential
tool to determine a metabolite or a set of metabolites allowing
diagnosis or prediction of GDM (Sakurai et al., 2019). According
to reviewed literature reports, several predictive biomarkers of
GDM have been suggested, e.g., specific micro-RNAs, amino
acids, fatty acids, triglycerides, phosphatidylcholines, or
carbohydrates, pyroglutamic, glutamic, phenylacetic and
pantothenic acids, xanthine or proteins such as adiponectin,
visfatin, omentin-1, fatty acid–binding protein-4, retinol-
binding protein-4, globulin, afamin, or fetuin-A (Enquobahrie
et al., 2015; Lu et al., 2016; Zhao et al., 2018; Lorenzo-Almorós
et al., 2019; Tenenbaum-Gavish et al., 2020; Tian et al., 2021).
Numerous serum or plasma metabolites such as
α–hydroxybutyric acid (α–HB) (Dudzik et al., 2017),
β–hydroxybutyric acid (β–HB) (Scholtens et al., 2014; Dudzik
et al., 2017), amino acids (Scholtens et al., 2014; Enquobahrie
et al., 2015), sugars (Enquobahrie et al., 2015), and fatty acids
(Enquobahrie et al., 2015; Dudzik et al., 2017) have shown to be
associated with this disease using various approaches such as gas
chromatography–mass spectrometry (GC–MS) (Dudzik et al.,
2017; Scholtens et al., 2014; Rahman et al., 2018; O’Neill et al.,
2018), liquid chromatography–mass spectrometry (LC–MS) (Liu
et al., 2016; Hou et al., 2018; Tian et al., 2021), and nuclear
magnetic resonance (NMR) spectroscopy (Pinto et al., 2015; Hou
et al., 2018). GC-MS is adequately sensitive to detect subtle
differences in the level of serum/plasma metabolites (Dudzik
et al., 2017) and was used in the present study.

However, until now, metabolomics studies on GDM were
focused on case-control studies, in which the case group
comprised women diagnosed with GDM (Pinto et al., 2015;
Liu et al., 2016; Hou et al., 2018). There is a lack of studies in
which GDM women were divided into separate subgroups
depending on the diagnostic scenario, i.e., women with aGT
and normal FPG (aGT-GDM group) and women with aFPG
and normal glucose tolerance (aFPG-GDM group). To the best of
our knowledge, this is the first study conducted to seek differences
in metabolic profiles between the abovementioned GDM
subgroups of patients and a control group with normal FPG
and glucose metabolism. Such an approach has the potential to
find the relevance of metabolomics in diagnosis of GDM.

MATERIALS AND METHODS

Study Group
Pregnant women (662) were screened for GDM at the
Department of Endocrinology, Diabetology, and Internal
Medicine (Medical University of Bialystok, Poland) between
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2015 and 2017. For all participants between 24 and 28 gwk,
OGTT (75 g) was performed after an overnight fast, with
blood samples collected at fasting, 1, and 2 h time points.
After clotting at room temperature, fasting serum samples
were centrifuged and then separated and frozen at –80°C until
the metabolomics assays.

Women were diagnosed with GDM if one of the following
criteria was met: fasting glucose ≥92 mg/dl, 1 h glucose ≥180 mg/
dl, or 2 h glucose ≥153 mg/dl (Metzger et al., 2010). Women were
classified as the aGT-GDM group if they met the following
criteria: fasting glucose <92 mg/dl, 1 h glucose ≥180 mg/dl,
and/or 2 h glucose ≥153 mg/dl, whilst women were classified
as the aFPG-GDM group if they met the following criteria: fasting
glucose ≥92 mg/dl, 1 h glucose <180 mg/dl, and 2 h glucose
<153 mg/dl. The control group (NGT) comprised participants
with the following criteria: fasting glucose <92 mg/dl, 1 h glucose
<180 mg/dl, and 2 h glucose <153 mg/dl. All women were
characterized by a normal (<5.7%) (Bozkurt et al., 2020)
glycated hemoglobin (HbA1c) level.

From the total number of 662 participants, 99 women were
diagnosed with GDM between 24–28 gwk; among them, 44
individuals were classified as aGT-GDM, 51 as aFPG-GDM,
and only four (excluded from this study) met the criteria to be
classified to both–GDM groups. Women from an aGT-GDM
group (n � 44) and aFPG-GDM group (n � 51) together with 68
women selected from the NGT group formed a study group (n �
163) which was also a validation cohort. From each subgroup of
the validation cohort age- and BMI-matched women were
selected for the discovery cohort. A discovery cohort
comprised 24 women with aFPG-GDM, 26 with aGT-GDM,
and 29 with NGT. Moreover, for the limited set of women
(n � 92) fasting serum samples in the first trimester
(8–14 gwk) were collected. At that period, all of the selected
subjects were characterized by the normal fasting glucose level.
However, between 24–28 gwk, some of these women were
diagnosed with aGT-GDM (n � 13), others with aFPG–GDM
(n � 12), and the rest remained NGT (n � 67). These subjects (n �
92) were included in the present study as the additional

independent validation cohort (Supplementary Table S1). A
flow chart showing classification of participants into specific
study groups is presented on Figure 1, while the detailed
anthropometric and metabolic characteristics of the groups are
listed in Table 1.

GC–MS-Based Metabolomics
Untargeted and targeted metabolomics analyses were performed
on the GC system (Agilent Technologies 7890B) consisting of an
autosampler (MultiPurpose Sampler, Gerstel, Germany) and an
accurate-mass Q-TOF (Agilent Technologies 7200) detector.
Derivative samples (1 μL) were injected into a GC column
DB5–MS (30 m length, 0.250 mm i.d., 0.25 μm film 95%
dimethyl/5% diphenylpolysiloxane) with a pre–column (10 m
J&W integrated with Agilent 122–5532G). The temperature
gradient was programmed at 60 °C (held for 1 min), with a
ramping increase rate of 10 °C/min up to 325°C (held for
10 min). The total analysis time was 37.5 min. The EI source
was operated at 70 eV. The method was RT locked at 19.663 min
(elution time of the internal standard–methyl stearate). The mass
spectrometer was operated in the scan mode over a mass range of
m/z 45–600 at a rate of 10.00 spectra/s. A detailed description of
used reagents and applied analytical conditions is available in the
Supplementary Materials File.

Extraction of serum metabolites was performed as
described previously (Mojsak et al., 2021). The
derivatization procedure was carried out in two steps. For
methoximation, 10 μL of O–methoxyamine hydrochloride
(15 mg/ml) in pyridine was added to each vial and vortexed
vigorously. The vials were incubated in darkness at room
temperature for 16 h. Then, 10 μL of BSTFA with 1% TMCS
(v/v) was added, and samples were vortexed for 5 min;
silylation was carried out for 1 h at 70°C, and finally, 100 μL
of C18:0 methyl ester (10 mg/L in heptane) was added as an
internal standard. Samples were mixed again by vortexing
gently.

The description of untargeted and targeted GC–MS data
treatment is available in the Supplementary Materials File.

FIGURE 1 | Flow chart presenting participants’ selection. Samples selected for the discovery phase are presented in blue rectangles, while those for the validation
stage, in green rectangles.
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STATISTICAL ANALYSIS

Multivariate methods such as principal component analysis
(PCA) and partial least squares–discriminant analysis
(PLS–DA) were used for data visualization. PCA and
PLS–DA models were built using SIMCA–P+ software
(13.0.3.0 Umetrics). Statistical significance of the PLS–DA
model was validated with permutation testing.

Distribution of the data was assessed by the Shapiro–Wilk test.
Student’s t–test was used for normally distributed data, whilst the
Mann–Whitney U test was used for nonparametric data.
Benjamini–Hochberg post hoc corrections were performed. The
threshold for statistical significance was 0.05. Statistical analysis
was performed by in-house built scripts for MATLAB (7.10.0.499,
MathWorks, Natick, MA, United States). Considering the criteria
of the Metabolomics Standards Initiative (Fiehn et al., 2007; Salek
et al., 2013), all statistically significant metabolites were identified
with the highest confidence level (grade 1). Discovery cohort and
both validation cohorts were analyzed independently.

Receiver operating characteristic (ROC) analysis was performed
using MedCalc ver. 18 (MedCalc Software, Ostend, Belgium). The
performance of the models was compared by applying the
nonparametric method of Delong et al. (1988). The specificity and
sensitivity were determined according to the sample class prediction
using the 7-fold cross-validation predicted values of the fittedY–predcv
(implemented in SIMCA–P+ software) for observations in the model.

RESULTS

First, we used GC–MS in an untargeted approach (metabolic
fingerprinting) to investigate the differences between aGT-GDM,

aFPG-GDM, and NGT groups in the second trimester. Metabolic
fingerprinting resulted in a total number of 96 compounds. After
data filtering, the matrix was reduced to 50 compounds. As it can
be seen in Supplementary Figure S1, quality control samples are
tightly clustered on the PCA model (panel A), whereas between-
group discrimination is displayed (panel B) on the validated
(panels C and D) PLS-DAmodel. In order to evaluate statistically
significant differences between the groups aGT-GDM vs NGT,
aFPG-GDM vs NGT, and aGT-GDM vs aFPG-GDM, the
univariate statistics was performed. The list of 31 statistically
significant metabolites is displayed in Supplementary Table S2.
Metabolites significantly discriminating study groups mainly
belong to fatty acids, hydroxy acids, and organooxygen
compounds. Only four metabolites (mannitol, cetyl alcohol,
arabitol, and p-cresol) were found significantly different in the
aFPG-GDM vs NGT comparison. Considering the comparison of
aGT-GDM and NGT groups, a great number of compounds was
represented by increased saturated fatty acids (caprylic 1.46–fold,
capric 2.5–fold, lauric 2.04–fold, myristic 1.81–fold, palmitic
1.46–fold, stearic 1.62–fold, heptadecanoic 1.82–fold, and
nonanoic 1.68–fold) and increased unsaturated fatty acids
(palmitoleic 1.6–fold, oleic 1.73–fold, and linoleic 1.81–fold) in
the aGT-GDM group. Another noticeable group of compounds
increased in the subjects with aGT-GDM compared to NGT
consisted of hydroxy acids and derivatives, with α–HB and β–HB
as the most represented (1.28–fold and 1.76–fold change,
respectively).

Fourteen of the most promising metabolites, according to the
experimental data and literature (Scholtens et al., 2014; Cobb
et al., 2015; Dudzik et al., 2017), significantly discriminating an
aGT-GDM group from the NGT group, were chosen for
quantification in both validation cohorts. Metabolites found as

TABLE 1 | Anthropometric and metabolic characteristics of the subgroups–discovery and validation cohort–second trimester (24–28 weeks of gestation).

Participants’
characteristics

Discovery cohort Validation cohort

NGT aGT-GDM aFPG-GDM NGT aGT-GDM aFPG-GDM

N 29 26 24 68 44 51
Age [years] 29 (5) 33 (6)*,a 28 (7) 28 (4) 32 (6)**,a 29 (7)
Maternal prepregnancy BMI [kg/m2] 23.4 (3.7) 23.9 (5.7) 22.4 (7.7) 22.2 (3.2) 22.8 (6.7) 23.2 (5.3)
Maternal pregnancy BMI [kg/m2] 27 (5) 26.4 (5.4) 26.2 (6.9) 25.6 (3.2) 25.65 (6.4) 26.2 (5)
BMI gain 2.7 (1.6) 2.8 (2.3) 3.4 (1.6) 2.9 (1.8) 2.6 (2.2) 2.8 (2.2)
Total cholesterol [mg/dL] 232 (81) 245.5 (72) 238.5 (54) 231 (48.5) 243 (57) 236 (62)
LDL cholesterol [mg/dL] 130.4 (71) 123 (70.1) 127.7 (48) 111.8 (53.6) 132 (39.6)* 129 (66.2)a

Triglycerides [mg/dL] 183 (68) 173 (60.8) 197.5 (105) 146.5 (55) 185 (89)* 163.5 (79.3)
HDL cholesterol [mg/dL] 73 (21.4) 72.5 (29) 68.5 (23) 90 (28) 77.5 (26.5)a 72.5 (23.8)**
HbA1c (%) 4.7 [0.4] 4.8 [0.4] 4.9 [0.5] 4.7 [0.3] 4.9 [0.3]* 4.9 [0.4]*
HbA1c (mmol/mol) 28 [4.4] 29 [4.4] 30 [5.5] 28 [3.3] 30 [3.3]* 30 [4.4]*
Fasting plasma glucose [mg/dL] 75 (8) 84 (7)*,b 94 (4.2)** 81 (5.5) 84 (6.3)*,b 94 (4)**
Glucose 1 h [mg/dL] 133 (39) 187 (16.3)**,b 138 (24) 114.5 (41.3) 184 (18.8)**,b 131 (26.5)*
Glucose 2 h [mg/dL] 109.5 [19.6] 154 [21.5]**,b 116 [22.8] 104.5 [19.4] 156.6 [22]**,b 111.5 [20.6]
Fasting insulin [μIU/mL] 10.5 (6.4) 14.3 (7.1)* 16.4 (13)* 10.9 (4.3) 13.2 (7.8)* 15.5 (10.7)**
HOMA–IR 2 (1.1) 2.9 (1.6)*,a 3.7 (3.1)** 2.2 (0.9) 2.73 (1.9)* 3.5 (2.7)**
HOMA%β 297.7 (201.5) 279.9 (112.1)a 193.6 (144.5)* 211.4 (103.6) 253.6 (109)a 169 (116.5)*
QUICKI 0.3 (0.03) 0.3 (0.02)*,a 0.3 (0.03)** 0.3 (0.02) 0.3 (0.03)*,a 0.3 (0.03)**

Data are presented as mean [SD] or median (interquartile range). Abbreviations: NGT, normal glucose tolerance; aGT–GDM, group with diagnosed GDM, based on abnormal OGTT,
aFPG–GDM–group with abnormal fasting plasma glucose, HOMA, homeostatic model assessment; IR, insulin resistance; QUICKI, quantitative insulin–sensitivity check index. Statistical
significance for NGT vs aGT-GDM, and NGT vs aFPG-GDM, comparisons: * ƿ < 0.05, ** ƿ < 0.0001. Statistical significance for aGT-GDM vs aFPG-GDM, comparison: a ƿ < 0.05,b ƿ <
0.0001. Continuous data of clinical characteristics were analyzed by Student’s t–test for normally distributed data or by the Mann–Whitney U test for the data without the normal
distribution.
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significant in the validation study for NGT vs aGT-GDM
comparison in any of validation cohorts are presented in Table 2.

We observed an increased level for all of the metabolites in the
subjects with the aGT-GDM group in comparison to NGT
individuals, which also confirms the results of fingerprinting
analysis. Interestingly, the majority of compounds (i.e., α–HB,
β–HB, myristic, lauric, palmitic, and oleic acids) were statistically
significant and shared a similar change in the concentration level
between the aGT–group and NGT in both the first and second
trimester. The only difference between the trimesters was found
for nonanoic acid and capric acid, statistically significant only in
the second or first trimester, respectively. α–HB (p � 0.00005)
and myristic acid (p � 0.000005) were found to be strongly
associated with the aGT–group. To evaluate the clinical
usefulness and predictive ability of potential biomarkers to
distinguish the aGT–group from NGT, a ROC curve analysis
was performed for all of the metabolites that passed the
validation independently as well as for the combinations of
different metabolites (Supplementary Table S3). Considering
each metabolite independently, the best predictive power to
discriminate aGT-GDM patients, characterized by fair
accuracy of the test, was found for myristic acid (Area Under
Curve, AUC � 0.787 in the second trimester and AUC � 0.759 in
the first trimester), α–HB (AUC � 0.745 in the second trimester
and AUC � 0.797 in the first trimester), and palmitic acid (AUC
� 0.754 in the second trimester and AUC � 0.745 in the first
trimester). The ROC curve and the corresponding AUC were
significantly improved when combining the selected metabolites
into different models. The combination of fatty acids myristic,
lauric, palmitic, oleic, and nonanoic (in case of the second
trimester) or capric (first trimester) acid was found to have a
good predictive ability (AUC � 0.775 in the second trimester
and AUC � 0.747 in the first trimester). Furthermore, an
addition of α–HB and β–HB to the combination of fatty
acids improved its predictive value (AUC � 0.815 in the
second trimester and AUC � 0.772 in the first trimester)
(Supplementary Table S3). However, the best diagnostic
power considering its accuracy, sensitivity, and specificity
was found for the model consisting of α–HB, β–HB, and

myristic acid (AUC � 0.828 in the second trimester and
AUC � 0.791 in the first trimester) (Figure 2).

DISCUSSION

The discussion on the most appropriate screening strategy for
GDM with OGTT at 24–28 weeks of pregnancy is ongoing
(Gupta et al., 2015). Detection in the early pregnancy of
metabolites showing subtle metabolic perturbations indicating
GDM presence or risk of development has clinical significance for
early diagnosis or prognosis (Tenenbaum-Gavish et al., 2020),
which is crucial to prevent subsequent damage in both the mother
and fetus (Brink et al., 2016). Metabolomics research can not only
propose novel diagnostic or prognostic GDM biomarkers but
may also allow monitoring of pregnancy complications for better
GDM management (Donovan et al., 2018).

Therefore, in the discovery phase of this study, we have
evaluated differences in serum metabolic profiles between the
patients with GDM diagnosed solely with aFPG or aGT in
comparison to pregnant women with NGT. Among significant
metabolites (Table 2), mainly fatty acids (palmitic, stearic, capric,
lauric, oleic, caprylic, myristic, nonanoic, heptadecanoic, and
palmitoleic acids) and both hydroxybutyric acids (α and β)
were observed. The same metabolites or metabolites from the
same classes have already been proposed by other authors as
characteristic to GDM. For instance, in the study conducted by
(Hou et al., 2018), almost a half of FFAs were elevated in GDM
patients. Dudzik et al. (2017) reported an increased level of
several fatty acids in the GDM group compared to NGT, with
stearic acid as the most represented. Enquobahrie et al. (2015)
presented the results of untargeted GC–MS analysis of serum
samples collected in the early pregnancy. Out of 17 discovered
metabolites distinguishing GDM from NGT individuals, myristic
and oleic acids were among the most abundant metabolites
within the GDM group. Despite the fact that the diagnostic
criteria used by Enquobahrie et al. (2015) were different than
in the presented study, the results for myristic acid are consistent
with ours.

TABLE 2 | Statistically significant metabolites for NGT vs aGT-GDM comparison based on the validation study results.

Metabolite 1st trimester 2nd trimester

NGT aGT-GDM aFPG-GDM NGT aGT-GDM aFPG-GDM

α-Hydroxybutyric acid [mg/L] 1.45 (0.35) 1.8 (0.45)* 1.54 (0.3) 1.26 (0.25) 1.42 (0.24)*** 1.36 (0.32)
B-Hydroxybutyric acid [mg/L] 1.28 (0.72) 1.63 (0.71)* 1.45 (0.44) 1.29 (0.46) 1.69 (1.07)** 1.47 (0.68)
Capric acid [mg/L] 0.24 (0.07) 0.32 (0.08)* 0.26 (0.07) - - -
Nonanoic acid [mg/L] - - - 0.24 (0.08) 0.27 (0.11)** 0.26 (0.11)
Lauric acid [mg/L] 0.21 (0.09) 0.28 (0.11)* 0.26 (0.08) 0.23 (0.08) 0.28 (0.11)** 0.24 (0.15)
Myristic acid [mg/L] 0.42 (0.27) 0.59 (0.13)* 0.57 (0.21) 0.47 (0.23) 0.69 (0.25)**** 0.53 (0.3)
Palmitic acid [mg/L] 13.32 (2.85) 14.75 (1.97)* 13.52 (2.67) 13.41 (2.34) 14.93 (2.7)*** 14.18 (2.36)
Oleic acid [mg/L] 38.77 (23.19) 47.7 (33.45)* 45.6 (23.73) 40.33 (16.36) 48.45 (18.15)** 39.55 (18.63)

Classification of the subgroups in the 1st trimester study group was based on the OGTT results obtained in the 2nd trimester. Data are presented as a median and interquartile range in
brackets. Statistical significance for aGT–group vs NGT, comparison: * - ƿ <0.05, ** - ƿ <0.01, *** - ƿ <0.0001, **** - ƿ <0.00001 by Mann–Whitney U test. Abbreviations: NGT, normal
glucose tolerance; aGT-GDM, group with diagnosed GDM, based on abnormal OGTT, aFPG-GDM, group with abnormal fasting plasma glucose.
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Oxidation of free fatty acids and excess acetyl-CoA
production lead to an increase in the β–HB level (Lu et al.,
2021). Increased levels of α–HB and β–HB in GDM patients in
comparison to those of NGT women were also observed by
others. In the recent study conducted by Lu et al. (2021) on the
Chinese population, an elevated level of β–HBA in the second or
third trimester was found associated with GDM. In the already
mentioned study of Dudzik et al. (2017), increased levels of
α–HB and β–HB in the GDM group as compared to NGT were
also noted. Moreover, Scholtens et al. (2014) demonstrated
broad-scale perturbations in hyperglycemic pregnant women
and compared metabolic profiles of mothers with high and

low FPG levels. Among significant metabolites, α–HB and
β–HB were noted. The study was focused largely on the
differences between high and normal fasting plasma glucose
subjects. Nevertheless, according to the clinical characteristics
presented in this report, among the individuals defined as
high–FPG, subjects with increased plasma glucose level at 1 h
or 2 h in OGTT were also present.

The elevated level of α–HB can be associated with oxidative
stress or increased insulin resistance (Meigs et al., 2007).
Oxidative stress is a result of enhanced mitochondrial
activity. To manage the resulting oxidative stress,
glutathione biosynthesis is activated, and consequently, a
demand for cysteine is increased. During the conversion of
cystathionine to cysteine, α–ketobutyric acid (α–KB) is
produced, whereas α–HB is a by–product of α–KB
formation (Dudzik et al., 2014). Another important
metabolite associated with aGT–GDM individuals is β–HB.
Besides its known role as an important ketone body, which
carries energy from the liver to peripheral tissues during
fasting or exercise, β–HB plays a significant role in cellular
processes regulation by altering the level of other regulatory
metabolites such as acetyl-CoA, succinyl-CoA, and NAD+

(Newman and Verdin, 2014). Moreover, insulin resistance is
characterized by increased lipolysis and increased fatty acid
oxidation (Bronisz et al., 2018). IR is observed in normal
pregnancy, but in the case of excessive IR and significant
β-cell dysfunction, GDM develops (Chen et al., 2019;
Kampmann et al., 2019). Increased circulating free fatty
acids (also observed in our study) have been recognized as
one of the most critical factors contributing to IR and altering
insulin secretion (Chen et al., 2019).

However, none of the abovementioned metabolomics
studies on GDM considered the differences among the
women diagnosed solely with either aGT or aFPG. These
two distinct metabolic states, but described as isolated
impaired glucose tolerance (iIGT) and isolated impaired
fasting glucose (iIFG), were previously investigated in pre-
T2DM nonpregnant individuals (Gall et al., 2010; Ferrannini
et al., 2013; Cobb et al., 2015; Cobb et al., 2016). These reports
demonstrate some consistency with the results of our study,
particularly for iIGT individuals. For instance, Gall et al. (2010)
proposed that α–HB can serve as an early biomarker of insulin
resistance and IGT in nondiabetic individuals. Its increased
level was associated with increased lipid oxidation and
oxidative stress. Furthermore, the role of α–HB in the
pathophysiology of the prediabetes state was proved by
Cobb et al. (2015; 2016). Besides the elevated concentration
of α–HB in the individuals with IGT, they also found an
increase of β–HB together with an increased free fatty acids
level, which supports the concept of using α–HB, β–HB, and
free fatty acids as biomarkers of iIGT without performing an
OGTT. As the aim of this study was to find biomarkers that
could replace OGTT, but in the case of GDM diagnosis, we
evaluated the diagnostic potential of metabolites statistically
significant for the aGT-GDM vs NGT comparison using data
obtained in the validation phase. It was confirmed that a
combination of α–HB, β–HB, and myristic acid was highly

FIGURE 2 | ROC curves analyses evaluating the clinical usefulness of
potential biomarkers to diagnose pregnant women with aGT–group from a
fasting serum sample in the second trimester. (A) Combination of α–HB,
β–HB, and myristic acid: AUC � 0.828, CI (0.745–0.892), Sensitivity �
72.7, Specificity � 79.4, p < 0.0001 (B) α–HB: AUC � 0.745, CI (0.654–0.823),
Sensitivity � 70.5, Specificity � 72, p < 0.0001.
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specific and sensitive for the diagnosis of GDM manifested by
abnormal glucose tolerance with AUC � 0.828 (Figure 2).

Samples belonging to the other validation group were collected
in the first trimester (8–14 gwk) from women with normal FPG.
However, some of these women (Figure 1) were diagnosed with
GDM between 24–28 gwk. Performed targeted analyses revealed
a similar metabolite profile in the first and the second trimester of
pregnancy, considering the change in the concentration level of
significant metabolites between aGT-GDM and NGT individuals.
Despite the fact that the number of samples from the first
trimester was limited, the comparable tendency in both time
points of pregnancy shows that α–HB, β–HB, and myristic acid
may serve as early biomarkers of later-onset GDM (AUC � 0.791,
Table S3). However, we are aware that normoglycemic women in
the first trimester did not undergo OGTT. According to the
diagnostic strategy (International Association of Diabetes and
Pregnancy Study Groups Consensus Panel et al., 2010), if the
fasting plasma glucose level at the first prenatal visit is below
92 mg/dl, women should be screened for GDM with 75 g OGTT
between 24 and 28 gwk. Therefore, because of a lack of data, we
cannot reject the possibility of the already existing aGT-GDM.
Further investigations are needed to evaluate whether the
proposed markers are strictly related to the presence of IFG or
can be considered predictive. Nevertheless, diagnosing
individuals at high risk would potentially allow the prevention
of GDM development by implementing lifestyle modifications
with adequate diet and physical activity (Tobias et al., 2011;
Zhang et al., 2016).

Based on the literature review, there are only few reports in
the literature (Ravnsborg et al., 2016; Leitner et al., 2017;
Corcoran et al., 2018; Yin et al., 2018) where the GDM
predictive metabolites found in metabolomics are subjected
to further validation. For example, Leitner et al. (2017) received
similar results for α–HBA and β–HBA as strong markers in the
prediction of GDM. This hypothesis was additionally tested by
targeted profiling of serotonin-derived metabolites, also in
urine samples, and went one step further with the
integration of plasma and urine metabolic markers to
improve the prediction accuracy of GDM in this study. Due
to this fact, the continuation of our study should be the
replication of the findings in a large cohort study and
developing methods for other matrices, which may improve
the understanding of GDM pathogenesis and may have
implications for its early diagnosis.

CONCLUSION

Our study explored differences in the serum metabolic profile in
pregnancy, firstly by untargeted, and finally by quantitative
analysis with the GC–MS technique. In the first part of the
study, we identified and confirmed a set of metabolites
representative for GDM women with abnormal glucose
tolerance but a normal FPG level (aGT-GDM group). A
combination of three metabolites (α–HB, β–HB, and myristic
acid) was found strongly associated with aGT-GDM.
Measurement of the concentrations of the proposed panel of

metabolites in the fasting serum sample has the potential to be a
useful clinical test to diagnose GDM in the second trimester of
pregnancy without the need to perform OGTT. Moreover, these
metabolites can potentially be used to identify, in the early
pregnancy, subjects with aGT-GDM or at high risk for
developing GDM manifested by abnormal glucose metabolism
in the near future. The proposed panel of metabolites can
potentially be used instead of OGTT. However, measurement
of FPG is still needed to indicate women with aFPG-GDM.
Consequently, fasting plasma glucose measurement should be
accompanied by the measurement of α–HB, β–HB, and myristic
acid in the fasting serum sample. From the perspective of
pregnant women, it will facilitate the diagnostic procedure, as
only a single fasting blood collection will be needed.
Measurement of these GDM markers can be easily performed
using a method based on chromatographic separation and MS
detection. The application of MS in clinical laboratories has
developed very well in the last decade, and this technology is
already used for such routine applications as therapeutic drug
monitoring, newborn screening, or steroid analysis (Honour
et al., 2018; Cui et al., 2020; Seger and Salzmann, 2020).
Consequently, MS combined with a separation technique can
be easily adapted to measure metabolites significant in this study.
Our work contributes to the design of novel diagnostic targets
that may facilitate precision medicine and lead to the
development of personalized diagnostics of aGT-GDM based
on the three biomarkers (α–HB, β–HB, and myristic acid).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Files; further inquiries can be directed
to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Bioethical Committee of the Medical University
of Bialystok (R–I–002/369/2014). The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

BR researched data, contributed to the study design, performed the
metabolome analysis, the data interpretation, and wrote the
manuscript. PM provided analytic and intellectual input on the
metabolome data, performed data interpretation, and wrote the
manuscript. DR contributed to the study design, metabolome
analysis, data interpretation, and manuscript revision. MP-A
contributed to data analysis. BT contributed to the study design,
patients’ recruitment, and provided an intellectual input on the
clinical data. JH and AZ-M contributed to patients’ recruitment and
sample collection. MS andMG provided an intellectual input on the
clinical data. MC provided analytic and intellectual input on the

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7702407

Raczkowska et al. Gestational Diabetes Mellitus Serum Biomarkers

23

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


metabolome data, contributed to the study design, data analysis, and
the manuscript preparation and revision. AK provided an
intellectual input on the clinical data and revised the manuscript.
CB provided analytic and intellectual input on the metabolome data
and revised the manuscript. CB, AK, and MC are the guarantors of
this work and, as such, had full access to all the data in the study and
took responsibility for the integrity of the data and the accuracy of
the data analysis.

FUNDING

This study was supported by funds from the Leading National
Research Centre in Bialystok (KNOW 2012–2017).

ACKNOWLEDGMENTS

CB and DR would like to acknowledge funding from the Spanish
Ministry of Economy and Competitiveness (CTQ
2014–55279–R). All the authors acknowledge Monika Davis,
Christopher Davis, and Katarzyna Miniewska for English
proofreading.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2021.770240/
full#supplementary-material

REFERENCES

Alesi, S., Ghelani, D., Rassie, K., andMousa, A. (2021). Metabolomic Biomarkers in
Gestational Diabetes Mellitus: A Review of the Evidence. Int. J. Mol. Sci. 22 (11),
5512. doi:10.3390/ijms22115512

Benhalima, K., Van Crombrugge, P., Moyson, C., Verhaeghe, J., Vandeginste, S.,
Verlaenen, H., et al. (2021). Women with Mild Fasting Hyperglycemia in Early
Pregnancy Have More Neonatal Intensive Care Admissions. J. Clin. Endocrinol.
Metab. 106 (2), e836–e854. doi:10.1210/clinem/dgaa831

Bogdanet, D., O’Shea, P., Lyons, C., Shafat, A., and Dunne, F. (2020). The Oral
Glucose Tolerance Test-Is it Time for a Change?-A Literature Review with an
Emphasis on Pregnancy. J. Clin. Med. 9 (11), 3451. doi:10.3390/jcm9113451

Bozkurt, L., Göbl, C. S., Leitner, K., Pacini, G., and Kautzky-Willer, A. (2020).
HbA1c during Early Pregnancy Reflects Beta-Cell Dysfunction in Women
Developing GDM. BMJ Open Diabetes Res. Care 8 (2), e001751. doi:10.1136/
bmjdrc-2020-001751

Brink, H. S., van der Lely, A. J., and van der Linden, J. (2016). The Potential Role of
Biomarkers in Predicting Gestational Diabetes. Endocr. Connect. 5 (5),
R26–R34. doi:10.1530/EC-16-0033

Bronisz, A., Ozorowski, M., and Hagner-Derengowska, M. (2018). Pregnancy
Ketonemia and Development of the Fetal Central Nervous System. Int.
J. Endocrinol. 2018, 1242901. doi:10.1155/2018/1242901

Buchanan, T. A., Xiang, A. H., and Page, K. A. (2012). Gestational Diabetes
Mellitus: Risks and Management during and after Pregnancy. Nat. Rev.
Endocrinol. 8 (11), 639–649. doi:10.1038/nrendo.2012.96

Chen, X., Stein, T. P., Steer, R. A., and Scholl, T. O. (2019). Individual Free Fatty
Acids Have Unique Associations with Inflammatory Biomarkers, Insulin
Resistance and Insulin Secretion in Healthy and Gestational Diabetic
Pregnant Women. BMJ Open Diabetes Res. Care 7 (1), e000632.
doi:10.1136/bmjdrc-2018-000632

Cobb, J., Eckhart, A., Motsinger-Reif, A., Carr, B., Groop, L., and Ferrannini, E.
(2016). α-Hydroxybutyric Acid Is a Selective Metabolite Biomarker of
Impaired Glucose Tolerance. Diabetes Care 39 (6), 988–995. doi:10.2337/
dc15-2752

Cobb, J., Eckhart, A., Perichon, R., Wulff, J., Mitchell, M., Adam, K. P., et al. (2015).
A Novel Test for IGT Utilizing Metabolite Markers of Glucose Tolerance.
J. Diabetes Sci. Technol. 9 (1), 69–76. doi:10.1177/1932296814553622

Corcoran, S. M., Achamallah, N., Loughlin, J. O., Stafford, P., Dicker, P., Malone, F.
D., et al. (2018). First Trimester Serum Biomarkers to Predict Gestational
Diabetes in a High-Risk Cohort: Striving for Clinically Useful Thresholds. Eur.
J. Obstet. Gynecol. Reprod. Biol. 222, 7–12. doi:10.1016/j.ejogrb.2017.12.051

Cosson, E., Carbillon, L., and Valensi, P. (2017). High Fasting Plasma Glucose
during Early Pregnancy: A Review about Early Gestational Diabetes
Mellitus. J. Diabetes Res. 2017, 8921712. doi:10.1155/2017/8921712

Cosson, E., Vicaut, E., Berkane, N., Cianganu, T. L., Baudry, C., Portal, J. J.,
et al. (2021). Prognosis Associated with Initial Care of Increased Fasting
Glucose in Early Pregnancy: A Retrospective Study. Diabetes Metab. 47 (3),
101197. doi:10.1016/j.diabet.2020.08.007

Cui, J. J., Wang, L. Y., Tan, Z. R., Zhou, H. H., Zhan, X., and Yin, J. Y. (2020). MASS
SPECTROMETRY-BASED PERSONALIZED DRUG THERAPY. Mass.
Spectrom. Rev. 39 (5-6), 523–552. doi:10.1002/mas.21620

DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988). Comparing the
Areas under Two orMore Correlated Receiver Operating Characteristic Curves: a
Nonparametric Approach. Biometrics 44 (3), 837–845. doi:10.2307/2531595

Donovan, B. M., Nidey, N. L., Jasper, E. A., Robinson, J. G., Bao, W., Saftlas, A. F.,
et al. (2018). First Trimester Prenatal Screening Biomarkers and Gestational
Diabetes Mellitus: A Systematic Review and Meta-Analysis. PLoS One 13 (7),
e0201319. doi:10.1371/journal.pone.0201319

Dudzik, D., Zorawski, M., Skotnicki, M., Zarzycki, W., García, A., Angulo, S., et al.
(2017). GC-MS Based Gestational Diabetes Mellitus Longitudinal Study:
Identification of 2-and 3-hydroxybutyrate as Potential Prognostic
Biomarkers. J. Pharm. Biomed. Anal. 144, 90–98. doi:10.1016/
j.jpba.2017.02.056

Dudzik, D., Zorawski, M., Skotnicki, M., Zarzycki, W., Kozlowska, G., Bibik-
Malinowska, K., et al. (2014). Metabolic Fingerprint of Gestational Diabetes
Mellitus. J. Proteomics 103, 57–71. doi:10.1016/j.jprot.2014.03.025

Enquobahrie, D. A., Denis, M., Tadesse, M. G., Gelaye, B., Ressom, H. W., and
Williams, M. A. (2015). Maternal Early Pregnancy SerumMetabolites and Risk
of Gestational Diabetes Mellitus. J. Clin. Endocrinol. Metab. 100 (11),
4348–4356. doi:10.1210/jc.2015-2862

Ferrannini, E., Natali, A., Camastra, S., Nannipieri, M., Mari, A., Adam, K. P., et al.
(2013). Early Metabolic Markers of the Development of Dysglycemia and Type
2 Diabetes and Their Physiological Significance. Diabetes 62 (5), 1730–1737.
doi:10.2337/db12-0707

Fiehn, O., Sansone, S. A., Fan, T., Goodacre, R., Griffin, J. L., Hardy, N. W., et al.
(2007). The Metabolomics Standards Initiative. Nat. Biotechnol. 25 (3),
846–848. doi:10.1007/s11306-007-0070-610.1038/nbt0807-846b

Gall, W. E., Beebe, K., Lawton, K. A., Adam, K. P., Mitchell, M. W., Nakhle, P. J.,
et al. (2010). Alpha-Hydroxybutyrate Is an Early Biomarker of Insulin
Resistance and Glucose Intolerance in a Nondiabetic Population. PLoS ONE
5 (5), e10883. doi:10.1371/journal.pone.0010883

Gupta, Y., Kalra, B., Baruah, M. P., Singla, R., and Kalra, S. (2015). Updated
Guidelines on Screening for Gestational Diabetes. Int. J. Womens Health 7,
539–550. doi:10.2147/IJWH.S82046

Honour, J. W., Conway, E., Hodkinson, R., and Lam, F. (2018). The Evolution of
Methods for Urinary Steroid Metabolomics in Clinical Investigations
Particularly in Childhood. J. Steroid Biochem. Mol. Biol. 181, 28–51.
doi:10.1016/j.jsbmb.2018.02.013

Hou, W., Meng, X., Zhao, A., Zhao, W., Pan, J., Tang, J., et al. (2018). Development
ofMultimarker DiagnosticModels fromMetabolomics Analysis for Gestational
Diabetes Mellitus (GDM). Mol. Cel Proteomics 17 (3), 431–441. doi:10.1074/
mcp.RA117.000121

International Association of Diabetes and Pregnancy Study Groups Consensus
PanelMetzger, B. E., Gabbe, S. G., Persson, B., Buchanan, T. A., Catalano, P.
A., et al. (2010). International Association of Diabetes and Pregnancy Study
Groups Recommendations on the Diagnosis and Classification of Hyperglycemia
in Pregnancy. Diabetes Care 33 (3), 676–682. doi:10.2337/dc09-1848

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7702408

Raczkowska et al. Gestational Diabetes Mellitus Serum Biomarkers

24

https://www.frontiersin.org/articles/10.3389/fphar.2021.770240/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2021.770240/full#supplementary-material
https://doi.org/10.3390/ijms22115512
https://doi.org/10.1210/clinem/dgaa831
https://doi.org/10.3390/jcm9113451
https://doi.org/10.1136/bmjdrc-2020-001751
https://doi.org/10.1136/bmjdrc-2020-001751
https://doi.org/10.1530/EC-16-0033
https://doi.org/10.1155/2018/1242901
https://doi.org/10.1038/nrendo.2012.96
https://doi.org/10.1136/bmjdrc-2018-000632
https://doi.org/10.2337/dc15-2752
https://doi.org/10.2337/dc15-2752
https://doi.org/10.1177/1932296814553622
https://doi.org/10.1016/j.ejogrb.2017.12.051
https://doi.org/10.1155/2017/8921712
https://doi.org/10.1016/j.diabet.2020.08.007
https://doi.org/10.1002/mas.21620
https://doi.org/10.2307/2531595
https://doi.org/10.1371/journal.pone.0201319
https://doi.org/10.1016/j.jpba.2017.02.056
https://doi.org/10.1016/j.jpba.2017.02.056
https://doi.org/10.1016/j.jprot.2014.03.025
https://doi.org/10.1210/jc.2015-2862
https://doi.org/10.2337/db12-0707
https://doi.org/10.1007/s11306-007-0070-610.1038/nbt0807-846b
https://doi.org/10.1371/journal.pone.0010883
https://doi.org/10.2147/IJWH.S82046
https://doi.org/10.1016/j.jsbmb.2018.02.013
https://doi.org/10.1074/mcp.RA117.000121
https://doi.org/10.1074/mcp.RA117.000121
https://doi.org/10.2337/dc09-1848
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Kampmann, U., Knorr, S., Fuglsang, J., and Ovesen, P. (2019). Determinants of
Maternal Insulin Resistance during Pregnancy: An Updated Overview.
J. Diabetes Res. 2019, 5320156. doi:10.1155/2019/5320156

Leitner, M., Fragner, L., Danner, S., Holeschofsky, N., Leitner, K., Tischler, S., et al.
(2017). Combined Metabolomic Analysis of Plasma and Urine Reveals AHBA,
Tryptophan and Serotonin Metabolism as Potential Risk Factors in Gestational
Diabetes Mellitus (GDM). Front.Mol. Biosci. 4, 84. doi:10.3389/fmolb.2017.00084

Liu, T., Li, J., Xu, F., Wang, M., Ding, S., Xu, H., et al. (2016). Comprehensive
Analysis of Serum Metabolites in Gestational Diabetes Mellitus by UPLC/
Q-TOF-MS. Anal. Bioanal. Chem. 408 (4), 1125–1135. doi:10.1007/s00216-
015-9211-3

Lorenzo-Almorós, A., Hang, T., Peiró, C., Soriano-Guillén, L., Egido, J., Tuñón, J.,
et al. (2019). Predictive and Diagnostic Biomarkers for Gestational Diabetes and
its Associated Metabolic and Cardiovascular Diseases. Cardiovasc. Diabetol. 18
(1), 140. doi:10.1186/s12933-019-0935-9

Lu, L., Koulman, A., Petry, C. J., Jenkins, B., Matthews, L., Hughes, I. A., et al.
(2016). An Unbiased Lipidomics Approach Identifies Early Second Trimester
Lipids Predictive of Maternal Glycemic Traits and Gestational Diabetes
Mellitus. Diabetes Care 39 (12), 2232–2239. doi:10.2337/dc16-0863

Lu, W., Luo, M., Fang, X., Zhang, R., Li, S., Tang, M., et al. (2021). Discovery of
Metabolic Biomarkers for Gestational Diabetes Mellitus in a Chinese
Population. Nutr. Metab. (Lond) 18 (1), 79. doi:10.1186/s12986-021-00606-8

Mao, X., Chen, X., Chen, C., Zhang, H., and Law, K. P. (2017). Metabolomics in
Gestational Diabetes. Clin. Chim. Acta 475, 116–127. doi:10.1016/j.cca.2017.10.019

Mdoe, M. B., Kibusi, S. M., Munyogwa, M. J., and Ernest, A. I. (2021). Prevalence
and Predictors of Gestational Diabetes Mellitus Among Pregnant Women
Attending Antenatal Clinic in Dodoma Region, Tanzania: an Analytical Cross-
Sectional Study. BMJ Nutr. Prev. Health 4, 69–79. doi:10.1136/bmjnph-2020-
000149

Meigs, J. B., Larson, M. G., Fox, C. S., Keaney, J. F., Vasan, R. S., and Benjamin, E. J.
(2007). Association of Oxidative Stress, Insulin Resistance, and Diabetes Risk
Phenotypes: the Framingham Offspring Study. Diabetes Care 30 (10),
2529–2535. doi:10.2337/dc07-0817

Metzger, B. E., Metzger, B. E., Gabbe, S. G., Persson, B., Buchanan, T. A., Catalano, P.
A., et al. (2010). International Association of Diabetes and Pregnancy Study
Groups Recommendations on the Diagnosis and Classification of Hyperglycemia
in Pregnancy. Diabetes Care 33 (3), 676–682. doi:10.2337/dc09-1848

Mojsak, P., Miniewska, K., Godlewski, A., Adamska-Patruno, E., Samczuk, P., Rey-
Stolle, F., et al. (2021). A Preliminary Study Showing the Impact of Genetic and
Dietary Factors on GC-MS-Based Plasma Metabolome of Patients with and
without PROX1-Genetic Predisposition to T2DM up to 5 Years Prior to
Prediabetes Appearance. Curr. Issues Mol. Biol. 43 (2), 513–528.
doi:10.3390/cimb43020039

Newman, J. C., and Verdin, E. (2014). β-Hydroxybutyrate: Much More Than a
Metabolite. Diabetes Res. Clin. Pract. 106 (2), 173–181. doi:10.1016/
j.diabres.2014.08.009

O’Neill, K., Alexander, J., Azuma, R., Xiao, R., Snyder, N. W., Mesaros, C. A., et al.
(2018). Gestational Diabetes Alters the Metabolomic Profile in 2nd Trimester
Amniotic Fluid in a Sex-Specific Manner. Int. J. Mol. Sci. 19 (9), 2696.
doi:10.3390/ijms19092696

Pinto, J., Almeida, L. M., Martins, A. S., Duarte, D., Barros, A. S., Galhano, E.,
et al. (2015). Prediction of Gestational Diabetes through NMR
Metabolomics of Maternal Blood. J. Proteome Res. 14 (6), 2696–2706.
doi:10.1021/acs.jproteome.5b00260

Plows, J. F., Stanley, J. L., Baker, P. N., Reynolds, C. M., and Vickers, M. H.
(2018). The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol.
Sci. 19 (11), 3342. doi:10.3390/ijms19113342

Rahman, M. L., Anne Feng, Y.-C., Fiehn, O., Tsai, M. Y., Tekola-Ayele, F.,
Liang, L., et al. (2018). Plasma Lipidomics and Gestational Diabetes-A
Longitudinal Study in a Multiracial Cohort. Diabetes 67 (Suppl. 1), 174.
doi:10.2337/db18-174-LB

Ravnsborg, T., Andersen, L. L., Trabjerg, N. D., Rasmussen, L. M., Jensen, D.
M., and Overgaard, M. (2016). First-trimester Multimarker Prediction of
Gestational Diabetes Mellitus Using Targeted Mass Spectrometry.
Diabetologia 59 (5), 970–979. doi:10.1007/s00125-016-3869-8

Riskin-Mashiah, S., Younes, G., Damti, A., and Auslender, R. (2009). First-
trimester Fasting Hyperglycemia and Adverse Pregnancy Outcomes.
Diabetes Care 32 (9), 1639–1643. doi:10.2337/dc09-0688

Sakurai, K., Eguchi, A., Watanabe, M., Yamamoto, M., Ishikawa, K., and Mori, C.
(2019). Exploration of Predictive Metabolic Factors for Gestational Diabetes
Mellitus in Japanese Women Using Metabolomic Analysis. J. Diabetes Investig.
10 (2), 513–520. doi:10.1111/jdi.12887

Salek, R. M., Steinbeck, C., Viant, M. R., Goodacre, R., and Dunn,W. B. (2013). The
Role of Reporting Standards for Metabolite Annotation and Identification in
Metabolomic Studies. GigaScience 2, 13. doi:10.1186/2047-217X-2-13

Scholtens, D. M., Muehlbauer, M. J., Daya, N. R., Stevens, R. D., Dyer, A. R., Lowe,
L. P., et al. (2014). Metabolomics Reveals Broad-Scale Metabolic Perturbations
in Hyperglycemic Mothers during Pregnancy. Diabetes Care 37 (1), 158–166.
doi:10.2337/dc13-0989

Seger, C., and Salzmann, L. (2020). After Another Decade: LC-MS/MS Became
Routine in Clinical Diagnostics. Clin. Biochem. 82, 2–11. doi:10.1016/
j.clinbiochem.2020.03.004

Smirnakis, K. V., Martinez, A., Blatman, K. H., Wolf, M., Ecker, J. L., and Thadhani,
R. (2005). Early Pregnancy Insulin Resistance and Subsequent Gestational
Diabetes Mellitus.Diabetes Care 28 (5), 1207–1208. doi:10.2337/diacare.28.5.1207

Sweeting, A. N., Wong, J., Appelblom, H., Ross, G. P., Kouru, H., Williams, P. F.,
et al. (2019). A Novel Early Pregnancy Risk Prediction Model for Gestational
Diabetes Mellitus. Fetal Diagn. Ther. 45 (2), 76–84. doi:10.1159/000486853

Tenenbaum-Gavish, K., Sharabi-Nov, A., Binyamin, D., Møller, H. J., Danon, D.,
Rothman, L., et al. (2020). First Trimester Biomarkers for Prediction of Gestational
Diabetes Mellitus. Placenta 101, 80–89. doi:10.1016/j.placenta.2020.08.020

Tian, M., Ma, S., You, Y., Long, S., Zhang, J., Guo, C., et al. (2021). Serum
Metabolites as an Indicator of Developing Gestational Diabetes Mellitus Later
in the Pregnancy: A Prospective Cohort of a Chinese Population. J. Diabetes
Res. 2021, 8885954. doi:10.1155/2021/8885954

Tobias, D. K., Zhang, C., van Dam, R. M., Bowers, K., and Hu, F. B. (2011). Physical
Activity before and during Pregnancy and Risk ofGestational DiabetesMellitus: A
Meta-Analysis. Diabetes Care 34 (1), 223–229. doi:10.2337/dc10-1368

Yahaya, T. O., Salisu, T., Abdulrahman, Y. B., and Umar, A. K. (2020). Update on
the Genetic and Epigenetic Etiology of Gestational Diabetes Mellitus: a Review.
Egypt. J. Med. Hum. Genet. 21 (1), 13. doi:10.1186/s43042-020-00054-8

Yin, L., Huai, Y., Zhao, C., Ding, H., Jiang, T., and Shi, Z. (2018). Early Second-
Trimester Peptidomic Identification of Serum Peptides for Potential Prediction
of Gestational Diabetes Mellitus. Cell Physiol. Biochem. 51 (3), 1264–1275.
doi:10.1159/000495538

Zhang, C., Rawal, S., and Chong, Y. S. (2016). Risk Factors for Gestational Diabetes:
Is Prevention Possible? Diabetologia 59 (7), 1385–1390. doi:10.1007/s00125-
016-3979-3

Zhao, B., Han, X., Meng, Q., and Luo, Q. (2018). Early Second Trimester Maternal
Serum Markers in the Prediction of Gestational Diabetes Mellitus. J. Diabetes
Investig. 9 (4), 967–974. doi:10.1111/jdi.12798

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Raczkowska, Mojsak, Rojo, Telejko, Paczkowska–Abdulsalam,
Hryniewicka, Zielinska–Maciulewska, Szelachowska, Gorska, Barbas, Kretowski
and Ciborowski. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7702409

Raczkowska et al. Gestational Diabetes Mellitus Serum Biomarkers

25

https://doi.org/10.1155/2019/5320156
https://doi.org/10.3389/fmolb.2017.00084
https://doi.org/10.1007/s00216-015-9211-3
https://doi.org/10.1007/s00216-015-9211-3
https://doi.org/10.1186/s12933-019-0935-9
https://doi.org/10.2337/dc16-0863
https://doi.org/10.1186/s12986-021-00606-8
https://doi.org/10.1016/j.cca.2017.10.019
https://doi.org/10.1136/bmjnph-2020-000149
https://doi.org/10.1136/bmjnph-2020-000149
https://doi.org/10.2337/dc07-0817
https://doi.org/10.2337/dc09-1848
https://doi.org/10.3390/cimb43020039
https://doi.org/10.1016/j.diabres.2014.08.009
https://doi.org/10.1016/j.diabres.2014.08.009
https://doi.org/10.3390/ijms19092696
https://doi.org/10.1021/acs.jproteome.5b00260
https://doi.org/10.3390/ijms19113342
https://doi.org/10.2337/db18-174-LB
https://doi.org/10.1007/s00125-016-3869-8
https://doi.org/10.2337/dc09-0688
https://doi.org/10.1111/jdi.12887
https://doi.org/10.1186/2047-217X-2-13
https://doi.org/10.2337/dc13-0989
https://doi.org/10.1016/j.clinbiochem.2020.03.004
https://doi.org/10.1016/j.clinbiochem.2020.03.004
https://doi.org/10.2337/diacare.28.5.1207
https://doi.org/10.1159/000486853
https://doi.org/10.1016/j.placenta.2020.08.020
https://doi.org/10.1155/2021/8885954
https://doi.org/10.2337/dc10-1368
https://doi.org/10.1186/s43042-020-00054-8
https://doi.org/10.1159/000495538
https://doi.org/10.1007/s00125-016-3979-3
https://doi.org/10.1007/s00125-016-3979-3
https://doi.org/10.1111/jdi.12798
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


HR-MS Based Untargeted Lipidomics
Reveals Characteristic Lipid
Signatures of Wilson’s Disease
Yixiao Zhi1,2†, Yujiao Sun1,3†, Yonggeng Jiao4†, Chen Pan1,5, Zeming Wu6, Chang Liu1,3,
Jie Su2, Jie Zhou2, Dong Shang1,2,5, Junqi Niu2, Rui Hua2* and Peiyuan Yin1,3*

1Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China, 2Department of
Hepatology, The First Hospital of Jilin University, Changchun, China, 3Institute of Integrative Medicine, Dalian Medical University,
Dalian, China, 4Department of Anesthesiology Jilin Province FAW General Hospital, Changchun, China, 5Department of General
Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China, 6iPhenome biotechnology Inc. Dalian (Yun Pu Kang),
Dalian, China

Background and Aims: The diagnosis of Wilson’s disease (WD) is challenging by clinical
or genetic criteria. A typical early pathological change of WD is the increased liver lipid
deposition and lowered serum triglyceride (TG). Therefore, the contents of serum lipids
may provide evidence for screening of biomarkers for WD.

Methods: 34 WD patients, 31 WD relatives, and 65 normal controls were enrolled in this
study. Serum lipidomics data was acquired by an ultra-high-performance liquid
chromatography high-resolution mass spectrometry system, and the data were
analyzed by multivariate statistical methods.

Results: Of all 510 identified lipids, there are 297 differential lipids between the WD and
controls, 378 differential lipids between the relatives and controls, and 119 differential lipids
between the patients and relatives. In WD, the abundances of most saturated TG were
increased, whereas other unsaturated lipids decreased, including phosphatidylcholine
(PC), sphingomyelin (SM), lysophosphatidylcholine (LPC), ceramide (Cer), and
phosphatidylserine (PS). We also found many serum lipid species may be used as
biomarkers for WD. The areas under the receiver operating characteristic curve (AUC)
of PS (35:0), PS (38:5), and PS (34:0) were 0.919, 0.843, and 0.907. The AUCs of TG (38:
0) and CerG1 (d42:2) were 0.948 and 0.915 and the AUCs of LPC (17:0) and LPC (15:0)
were 0.980 and 0.960, respectively. The lipid biomarker panel exhibits good diagnostic
performance for WD. The correlation networks were built among the different groups and
the potential mechanisms of differential lipids were discussed. Interestingly, similar lipid
profile ofWD is also found in their relatives, which indicated the changesmay also related to
the mutation of the ATP7B gene.

Conclusions: Lipid deregulation is another important hallmark of WD besides the
deposition of copper. Our lipidomic results provide new insights into the diagnostic
and therapeutic targets of WD.

Keywords: Wilson disease, lipidomics, biomarkers, triglyceride, metabolomic
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INTRODUCTION

Wilson’s disease (WD) is an autosomal recessive genetic disease,
which is due to a mutation of the ATP7B gene that leads to a
copper metabolism disorder (Ala et al., 2007; Członkowska et al.,
2018). WD presents most commonly between ages 5 and 35 (Xie
and Wu, 2017). Copper ions are deposited in the liver, brain,
cornea, kidneys and bone, which progressively aggravates organ
damage (Cumings, 1948; Mounajjed et al., 2013; Bandmann et al.,
2015). The most prominent clinical presentations of WD are liver
disease and cirrhosis, neurologic symptoms and psychiatric
features (Mulligan and Bronstein, 2020). Available treatments
include zinc salts and chelators, which allow for sufficient control
of symptoms. But these drugs do not cure the disease and develop
severe side effects (Ranucci et al., 2017).

The diagnosis ofWD is often delayed. There is no gold standard
because of the nonspecific clinical features (Ryan et al., 2019). The
diagnosis of the disease primarily depends on clinical
manifestations, laboratory test results, decreases in
ceruloplasmin content, increases in 24-h urine copper excretion,
liver biopsy findings (increase in liver copper content) and ATP7B
gene mutation (Steindl et al., 1997; Ferenci et al., 2019). When low
serum ceruloplasmin content was used as a screening test for WD,
its positive predictive value was only 6% (Ferenci, 2014). Twenty-
four-hour urinary copper excretion may be lower or even normal
in 16–23% of WD patients, especially in children and
asymptomatic siblings (European Association for Study of Liver,
2012). Hepatic copper content >250 μg/g dry weight is an
important indicator of WD, but liver biopsy is an invasive
procedure (Ferenci et al., 2005). Comprehensive molecular
genetic screening is expensive and difficult because of more
than 700 possible mutations (Ferenci, 2005; Mak and Lam, 2008).

Defective ATP7B function results in pathological copper
accumulation, which leads to hepatic steatosis and liver injury
in WD (Stättermayer et al., 2015). Copper accumulation
markedly alters lipid metabolism, and the lipid peroxidation
system that produces free redicals, changes enzyme activity
and inhibits mitochondrial functions. These changes have been
reported in patients and animal models (Gerosa et al., 2019). Our
clinical observations indicated that the serum TG levels in WD
patients are generally lower than that in healthy controls. The
mean TG level in WD patients was 0.85 mmol/L, whereas the
level was 1.19 mmol/L in the control group (normal level:
0.28–1.8 mmol/L). Although the TG level is within the normal
range for both groups, it remains significantly lower in WD
patients. Performing lipidomics to analyze WD metabolic
disturbance will contribute to the elucidation of WD diagnosis
and understanding of the pathogenesis of WD.

Lipidomics emerged in 2003 as an approach to study the
metabolism of the cellular lipidome and has greatly advanced in
recent years (Blanksby and Mitchell, 2010). The development of
mass spectrometry (MS) has accelerated this emerging discipline
(Han et al., 2012). Clinical lipidomics provides a powerful tool to
investigate the links between lipids and corresponding diseases,
which will play a critical role in prevention, diagnosis, and
potential therapies (Cortes et al., 2014; Zhang et al., 2018).
Although the development of disease-specific biomarkers

provides noninvasive diagnosis for various diseases, it remains
a challenge to identify and develop lipid-based and disease-
specific biomarkers (Loomba et al., 2015).

In this study, WD patients, their immediate family or relatives
and healthy subjects were enrolled. An ultra-high-performance
liquid chromatography high-resolution mass spectrometry
(UHPLC-HRMS) based method was used to acquire the
lipidomic data. We aimed to describe the metabolic
deregulations of WD and identify the characteristics of lipids
for the disease. These lipidomic findings may help to explore the
mechanisms that change in lipid molecules, which may serve as
potential diagnostic or therapeutic biomarkers for WD.

MATERIALS AND METHODS

Participants
In this study, 34WD patients (WD group) were recruited from the
Department of Hepatology at the First Hospital of Jilin University
from January 2012 to February 2019. The diagnosis of WD was
made according to the 2012 European Society for Wilson’s Disease
guidelines in this study (European Association for Study of Liver,
2012). Patients who had viral type B or C liver disease, drug-
induced liver disease, alcoholic liver disease, autoimmune liver
disease, overlap syndrome, hemochromatosis, original or
secondary malignant tumor or were pregnant or lactating were
excluded. Another group included 31 relatives, who were WD
patients’ immediate family or relatives (WDIR group). The clinical
and laboratory tests were normal in the WDIR. Sixty-five healthy
controls (HC group) were matched for age and sex. This study was
approved by the ethics committees of the First Hospital of Jilin
University (No. 2019-346). After obtaining informed consent from
patients or their legal guardians, clinical records and plasma were
tested and analyzed.

Lipid Extraction
Serum samples were collected from participants on the early
morning after an overnight fast (12 h). Then the serum samples
were immediately stored at −80°C. The serum samples were
thawed at 4°C for 60 min and an aliquot of 50 μl sample was
added into a 1.5 ml Eppendorf (EP) tube (Axygen, United States).
Then, 250 μl methanol and 750 μl methyl tert-butyl ether
(MTBE) were added to the samples, and the samples were
vortexed for 5 min. Next, 250 μl of water was added to the
mixture, and the samples were shaken using Rotational
Incubator QB-128 (Kylin-Bell, China) at 60 rpm/min for
30 min at room temperature and then kept at 4°C for 30 min
to promote separation. The samples were then centrifuged at 4°C
and 13,000 ×g for 15 min. The upper (lipid extract) phase was
quantitatively transferred to a 96-well plate, dried under reduced
pressure (Labconco, United States), and stored at −20°C. Before
analysis, the lipid extract was redissolved in 500 μl of acetonitrile/
isopropanol solution and transferred to a tube for ultra-high-
performance liquid chromatography-high-resolution mass
spectrometry (UHPLC-HRMS) detection. A pooled quality
control (QC) sample was prepared by mixing equal amounts
of all the samples.
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Untargeted Lipidomics Analysis
Liquid chromatography-mass spectrometry (LC-MS) was
performed on a UHPLC system coupled with a Q-Exactive
mass spectrometer (Thermo Scientific, United States).
Chromatographic separation was performed on an Accucore
C30 column (Thermo Scientific Inc., United States, 2.6 μm,
100 mm), with a column temperature of 50°C, a mobile phase
A (60% acetonitrile, 40% water, 10 mM ammonium formate and
0.1% formic acid) and mobile phase B (90% isopropanol +10%
acetonitrile, 10 mM ammonium formate and 0.1% formic acid), a
gradient elution (0–1 min 100% B, 1–6 min 100–50% B, 6–30 min
50–0% B, 30–38 min column washing and re-equilibration), a
flow rate of 0.3 ml·min-1, and an injection volume of 5 μl.

Ionization conditions of MS were positive ion spray (ESI+)
mode detection, spray voltage of 4000 V, sheath gas and auxiliary
gas of 45 and 10 arb, heater temperature of 350°C, capillary
temperature of 320°C, and S-Lens RF level of 50%. When the
negative ion spray (ESI-) mode was detected, the spray voltage
was adjusted to 3500 V, and the other parameters remained the
same as those for ESI + mode.

The sample analysis was carried out in two steps. First, full-
scan-data-dependent tandem MS (MS2) was performed on all
QC samples, and the obtained primary and secondary MS data
were used to identify lipid molecular structures. Then, all
samples were tested by high-resolution first-order MS full-
scan detection with positive and negative ionization
switching, and the data obtained were used to determine the
relative quantification of lipids.

MS parameters of the lipid molecular structure were full-scan
data dependent MS2 data acquisition carried out in ESI+ and ESI-
modes. The resolution ratio of the first-order MS was 70,000 full
widths at half maximum (FWHM); the mass scanning range was
300–1,400 m/z; the automatic gain control threshold target was
1×105; the maximum ion implantation time (IT) was 100 ms; the
resolution ratio of secondaryMS was 17,500 FWHM; the automatic
gain control target was 105; the maximum IT was 80ms; the
dynamic exclusion time was 5 s; the parent ion isolation window
was 1.0 Da, and the loop count was 10. The MS fragmentation
energies of the stepped normalized collision energy (NCE) of ESI+
and ESI- MS were 25% + 40 and 35%, respectively.

The parameters of full-scan analysis were as follows: ESI+ and
ESI- ionization were switched in real time; the resolution ratio of
the first-order MS was 70,000 FWHM; the mass scanning range
was 300–1,400 m/z; and the automatic gain control target was
3×106.

Data Analysis
LipidSearch software (Thermo Scientific, United States) was used
to process the ddMS2 lipidomics data collected by UPLC-HRMS,
including peak detection and lipid structure identification. The
main setting parameters were as follows: The retrieval accuracy of
primary class parent ion MS was 5 ppm, and the secondary
fragment mass spectrum was 5 mDa.

For peak integration and relative quantification of lipid
molecules, the qualitative list of lipids produced by
LipidSearch software was imported into TraceFinder software
(Thermo Scientific, United States) for peak integration. The

obtained peak area was used for analyzing lipid relative
quantification, and finally, a data matrix containing fragment
ion information was output. The missing values in the data
matrix were processed using the 80% devaluation principle.
Then, the data were imported into Metaboanalyst 4.0 online
software (https://www.metaboanalyst.ca/) and SIMCA-P 14.1
(Umetrics, Sweden) for mode discrimination analysis.
Principal component analysis (PCA), partial least squares-
discriminant analysis (PLS-DA), and orthogonal PLS-DA
(OPLS-DA) were used to construct a group-based model and
discover differentially abundant metabolites between groups. The
false discovery rate (FDR; adjusted p < 0.05) and fold change (FC;
adjusted p < 0.05) were obtained by univariate T-test and
ANOVA, and a volcano map was drawn to find differentially
abundant metabolites. The obtained differentially abundant
metabolites were uploaded to Metaboanalyst.

Normal distribution of the quantitative data was confirmed by
independent sample t-tests and was expressed as the mean ± SD.
For each independent metabolite, the receiver operating
characteristic (ROC) curve was used to calculate the area
under the curve (AUC), 95% confidence interval (95% CI),
cutoff value, sensitivity and specificity to evaluate the
predictive value of each metabolite. For the combined
indicators, logistic regression analysis and ROC curve analysis
were used to calculate the AUC and the 95% CI. In this study, a
two-sided test was used, and differences with p < 0.05 were
considered statistically significant.

RESULTS

Study Design and Data Acquisition
The flow diagram of this research design is illustrated in Figure 1.
A total of 130 serum samples (from 65 healthy controls, 34 WD
patients, and 31 WD patients’ immediate family or relatives) was
analyzed by lipidomics to reveal lipid profiles in WD, followed by
preprocessing of metabolomics data, including peak detection,
alignment, filtering and normalization and then various statistical
analyses were performed, including PCA, OPLS-DA, univariate
T-test and ANOVA. Our lipidomics profiling identified 512
lipids, of which 510 passed QC procedures and were eligible
for analysis (Table 1). 89.6% peaks had coefficients of variation
(CV) below 10% and the CV value of 98.8% of the lipids was less
than 30%, indicating that this experiment had good quantitative
accuracy. (Supplementary Figure S1).

Clinical Profiles
WD patients were at the age of 8–50, with a large age span. The
sex ratio of 1:1 conformed to the patterns of autosomal
inheritance and the epidemiological characteristics of the
disease. The most common clinical manifestations were
single-system involvement; 52% of adolescents had hepatic
involvement, whereas 28% had multisystem involvement, and
middle-aged patients had mostly multisystem involvement.
The concentration of serum ceruloplasmin (normal value:
0.2–0.5 g/L) less than 0.1 g/L is considered as strong
evidence for diagnosis of WD (Bandmann et al., 2015).
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Ceruloplasmin content was significantly reduced (less than
0.1 g/L) in most patients, but 21% of patients still had a mildly
reduced level of ceruloplasmin between 0.1 and 0.2 g/L. These
patients were distributed in the adolescent stage, and 2/3 of

them had liver-type symptoms. Serum TG levels were tested in
patients, with an average value of 0.85 mmol/L (normal value:
0.28–1.8 mmol/L). Serum TG levels in controls were tested,
with an average value of 1.19 mmol/L and generally higher
than those of the patients. A T-test was performed for the
differences between the two groups, with p < 0.05. The clinical
details of the WD patients are shown in Table 1.

Differential Lipids Analysis
SIMCA-P 14.1 software was used to model the lipidomic data of
130 serum samples. A PCA model was established for all
participants (Figure 2A). The QC samples were clustered
tightly together, and HC, WDIR, and WD could be clearly
distinguished, which showed a trend of intergroup separation
on the score plots. Given that WD is a genetic disease, the
intersection between WD and WDIR conforms to genetic
regulations. The results of the PLS-DA method showed better
separation into separate clusters (Figure 2B). Furthermore, PLS-
DAmodel validation with permutation tests (999 times) reflected
that the metabolic alteration in each score plot was reliable and
had clinical prediction significance (Supplementary Figure S2).

FIGURE 1 |Workflow of WD serum analysis. This figure depicts the design and steps of this study, beginning with sample collection for the three cohorts, followed
by untargeted lipidomic analysis, and then the various data analyses employed, including PCA, OPLS-DA, univariate T-test and ANOVA.

TABLE 1 | Baseline characteristics of subjects.

Characteristics Patient (n = 34) Control (n = 65)

Age (years) 27.5 ± 10.9 29.3 ± 11.1
Sex (male/female) 16/18 36/29
Manifestation (cerebral/hepatic/mixed) 6/16/12 —

Ceruloplasmin (g/L) 0.1 ± 0.04 —

Serum copper level (μmol/L) 5.8 ± 3.8 —

Urinary copper level (μmol/24 h) 10.1 ± 26.8 —

Acetylcholine esterase (U/L) 5048.2 ± 2360.1 —

Alanine aminotransferase (U/L) 55.8 ± 96.1 18.5 ± 11.0
Aspartate aminotransferase (U/L) 45.5 ± 47.2 21.4 ± 5.5
Gamma-glutamyl aminotransferase (U/L) 54.2 ± 43.8 20.0 ± 11.2
Alkaline phosphatase (U/L) 99.6 ± 63.7 79.3 ± 51.7
Albumin (g/L) 36.9 ± 8.1 46.6 ± 2.7
Triglyceride (mmol/L) 0.8 ± 0.4 1.2 ± 0.4

Data are presented as mean as the mean ± SD.
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A Venn diagram displayed the overlap of the differential
metabolites in WD vs HC and WDIR vs HC (Figure 2F).

Differential Lipids Between Wilson’s
Disease and Healthy Controls
We further analyzed the relationship between WD and HC. PLS-
DA was used to classify the two groups, and clear separation
between the two groups (Supplementary Figure S2). 297
differential lipids were identified (Figure 2C) which mainly
included TG, phosphatidylcholine (PC), sphingomyelin (SM),
lysophosphatidylcholine (LPC), ceramide (Cer), and
phosphatidylserine (PS). Differences in metabolites were
observed between WD and HC: 14 metabolites (Figure 3A)
were significantly increased with an absolute log2 FC ≥ 1 and
FDR<0.05 and 22 significantly downregulated (Figure 3A) with

absolute log2 FC ≤ 1 and FDR<0.05. A heat map shows the 36
significantly differentially abundant metabolites (Figure 3A). The
ultra-long-chain ceramides, phosphatidylethanolamine (PE) and
LPC were all downregulated compared with HC. PC was mainly
decreased, while TG was mainly increased. Eight TGs with saturated
fatty acids (TG(8:0/10:0/10:0), TG(12:0/12:0/14:0), TG(16:0/12:0/12:
0), TG(18:1/12:0/12:0), TG(16:0/14:0/14:0), TG(16:0/14:0/16:0),
TG(16:0/14:0/17:0), TG(16:0/16:0/16:0)) were significantly
increased (Figure 3A), and two TGs with unsaturated fatty acids
[TG(16:0/18:1/20:3), TG(18:3/18:3/18:3)] were significantly
decreased (Figures 3A, Figure 5H,I) in WD patients compared
with healthy controls. PC ismainly distributed on the outer side of the
cell membrane. In our results, the unsaturated PC (Figure 3A)
showed a downward trend. PE is mainly distributed in the inner
membrane of the cell membrane. In our results, the acyl structure of
PE (PE(16:0/18:1), PE(16:0/18:2), PE(18:0/18:1), PE(18:0/18:2),

FIGURE 2 | Overview of differential lipid profiles in three groups. (A) Principal component analysis (PCA) was used to test the samples of the WD, WDIR and HC
(R2X � 0.893, Q2 � 0.772). (B) Partial least squares discriminant analysis (PLS-DA) was used to cluster the samples of the three groups (R2X � 0.524, R2X � 0.676, Q2 �
0.506). (C) A volcano plot showing the dysregulated features between WD and HC (Student’s t-test, FDR<0.05). (D) A volcano plot for the different lipids of WDIR and
HC. (E) A volcano plot for the WD and WDIR. (F) Venn diagram displaying the number of differentially abundant metabolites that overlapped in the WD versus HC
comparison (WD vs HC), WD versus WDIR comparison (WD vs WDIR), and WDIR versus HC comparison (WDIR vs HC).
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FIGURE 3 |Metabolomic profiles differ between WD and HC. (A) Heat map of the 36 differential lipids between WD and HC. (B) Correlation network of differential
metabolites and clinical indicators in WD and HC. The connections between two nodes were established by Pearson correlation (Student’s t-test, FDR <0.05). CP �
ceruloplasmin; SCL � serum copper level; 24-h UCL � 24-h urinal copper level; ALT � alanine transaminase; AST � aspartate transaminase; GGT �
γ-glutamyltransferase; ALP � alkaline phosphatase; AchE � acetylcholine esterase; ALB � albumin. (C) Lipid subclass correlation network of differentially abundant
metabolites in WD and HC. (D) Lipid molecular species correlation network of differentially abundant metabolites in WD and HC.
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FIGURE 4 |Metabolomic profiles differ betweenWDIR vs HC andWD vsWDIR. (A)Heat map of the 37 differential metabolites betweenWDIR and HC. (B) Relative
concentration of differential metabolites screened by LASSO in WDIR and HC. (C) Heat map of the 6 differential metabolites between WD and WDIR. (D) Relative
concentration of differential metabolites in WD and WDIR.
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PE(18:1/18:2), PE(18:1/20:4), PE(18:0/20:5)) was increased, while the
acetal structure of PE [PE(16:0p/20:5), PE(16:0p/22:6), PE(18:1p/22:
6), PE(18:0p/20:5)] was decreased (Figures 3A,B). Reduction in
acetal PE content causes the destruction of the mitochondrial
membrane (Maeba and Ueta, 2003), increases the generation of
oxygen free radicals, causes mitochondrial dysfunction and energy
metabolism failure, and causes cell apoptosis and even focal necrosis
(Zoeller et al., 2002).

A correlation network based on the data of significantly differential
metabolites and clinical factors in WD and HC revealed a change in
the metabolic profile in WD patients (Figure 3B). Metabolites
associated with γ-glutamyltransferase (GGT) or albumin (ALB),
such as Cholesterol ester (ChE) and Cer, were mainly decreased,
and the metabolites associated with aspartate transaminase (AST) and
acetylcholine esterase (AchE), such as PC and PE, were mainly
increased. Alkaline phosphatase (ALP), alanine transaminase
(ALT), serum copper level (SCL) and ceruloplasmin had low
correlations with differentially abundant metabolites in WD vs HC.
Metabolic pathway analysis was conducted with BioPAN (Gaud et al.,
2021) to further explore the metabolite–metabolite correlation
between WD and HC (Figures 3C,D). The lipid-class active
reactions were PC→PS→PE, DG→PE→PS, DG→PC and
P-PE→P-PC. The lipid-class suppressed reaction chains were
PE→PC→DG and PC→DG (Figure 3C). The synthesis of PS (38:
5) was active, whereas decompositionwas suppressed. The synthesis of
DG (36:4) was suppressed, whereas decomposition was active
(Figure 3D). Figure 3D indicates why PS (38:5) was a significantly
increased metabolite and why DG (36:4) was a significantly decreased
metabolite, as shown in Figure 3A.

Differential Lipids Between WDIR and
Healthy Controls
To explore the metabolic differences between WDIR and the HC, a
PLS-DA model was established. As is shown in Supplementary
Figure. S2C, a clear separation was observed between WDIR and
HC. A total of 378 dysregulated metabolic features were discovered
between the two groups, including 16 significantly up-regulated
lipids and 21 significantly decreased lipids (Figure 2D). Figure 4A
shows the 37 significantly differential lipids betweenWDIR andHC.
Among the top 37 lipids, those decreased included PC and LPC. In
contrast, the top metabolites that increased were mostly TGs.
According to LASSO regression selection (Supplementary Figure
S3), there were 7 metabolites for which the levels were significantly
changed in WDIR compared to those in the controls, including PE
(18:0p/20:5), PC (14:0e/16:0), ChE (18:0), LPC (15:0), LPC (18:0),
LPC (16:1p), and CerG1(d18:1/24:1) (Figure 4B). Moreover, the
level of TG (18:0/18:0/18:0) was found to be significantly elevated in
WDpatients’ immediate family or relatives. Interestingly, LPC (15:0)
and CerG1(d18:1/24:1) were also decreased in WD patients
compared with controls.

Differential Lipids Between Wilson’s
Disease and WDIR
Then, the differences between WD and WDIR were analyzed. A
PLS-DA model was set up to show the overall metabolic

differences between the two groups. The model demonstrated
remarkable separation between WD patients and their relatives
(Supplementary Figure S2). A total of 119 dysregulated
metabolic features were identified between the two groups,
including PC, SM, PI and TG (Figure 2E). The heat map
showed that PC and PI were significantly upregulated in WD
patients (Figure 4C). The levels of 6 significantly increased
metabolites were higher in WD than in HC (Figure 4D).

Potential Lipid Biomarkers for Wilson’s
Disease
Seven important lipids were selected via least absolute shrinkage
and selection operator (LASSO) regression significantly
contributed to the diagnostic value for WD (Figures 5A–G,
Supplementary Figure S3). The ROC curve was plotted for
the 7 lipids to discriminate the WD patients and healthy
controls. Among them, the AUC of the 7 lipids was greater
than 0.8, with high sensitivity and specificity. PS (35:0) (95% CI:
0.862-0.976), PS (38:5) (95% CI: 0.763-0.922) and TG (38:0) (95%
CI: 0.905-0.990) were increased differentially abundant
metabolites (Figure 5J). CerG1(d42:2) (95% CI: 0.844-0.987),
LPC(15:0) (95% CI: 0.926-0.993), LPC (17:0) (95% CI: 0.958-
1.000) and PS (34:0) (95% CI: 0.842-0.972) were decreased
(Figure 5K). LPC (17:0) and LPC (15:0) were shown to have
the greatest chance of appearing in the biomarker panel. Binary
Logistic regression analysis was performed on the biomarker
panel and the AUC is 1.000 (Figure 5L).

DISCUSSION

WD occurs in siblings (25%) but rarely in the previous generation
(0.5%) or offspring (0.5%) because of the autosomal recessivemode of
transmission (Brunet et al., 2012). The patients’ family members may
have late onset and be asymptomatic and may have different
phenotypes even with the same genotype. Important diagnostic
indicators for WD, including ceruloplasmin, 24 h urine copper
excretion, Kayser Fleischer (KF) ring, and hepatic copper
concentration, are all limited and not appropriate for screening in
populations or newborns (Członkowska et al., 2018). Despite the
potential devastating course of WD, the time of onset is not
predictable. Thus, we aimed to identify potential lipid biomarkers
that can provide an early warning for WD onset. Early diagnosis of
WD is crucial for effective treatments that can prevent many
manifestations of WD.

At the early stages of the disease, copper accumulation in the liver
has a major effect on the dysregulation of lipid metabolism (Huster
et al., 2007). In our study, there were common changes in TG
molecules in WD patients and their relatives compared to those in
controls. There were 297 differential lipids between WD and HC, of
which TG, PC, SM, PE and LPC accounted for the majority. TG
molecules except TG (16:0/18:1/20:3) were significantly upregulated
inWDIR compared with HC. The detected TGmolecules among the
differential metabolites between WD and HC mostly had saturated
fatty acid chains. However, only a few TGs containing unsaturated
fatty acid chains were decreased in WD.
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In the human body, most of the total TG has unsaturated fatty
acid chains (Kawano and Cohen, 2013). Therefore, when testing the
total TG content in serum, the change would be consistent withmost
TGs containing unsaturated fatty acid chains showing a downward
trend. In this study, although the serum TG contents of WD
(0.85mmol/L) were at lower range of normal, there is still a
significant decrease compared with the controls (1.19mmol/L),
clearly indicative of lipid metabolism disorder with pathology in
the liver in which fat droplets are deposited (Lutsenko, 2014). The
extent of the accumulation of these saturated fatty acids in the
steatotic liver parallels the liver disease severity in nonalcoholic

steatohepatitis (Chiappini et al., 2016; Zhou et al., 2016; Chiappini
et al., 2017). We speculated that hepatic steatosis was related not only
to the amount of lipids but also to their specific composition and
proportion. The accumulated copper inWD is assumed to lead to the
development of chronic hepatitis by stimulating the production of
reactive oxygen species and accelerating the formation of harmful
hydroxyl radicals (Du et al., 2004). Unsaturated fatty acids containing
multiple double bonds play a protective role in liver by redox reaction
and reaction with free radicals (DeLany et al., 2000; Barber et al.,
2021). Animal studies suggest PUFAs could reduce hepatic TG
deposition (Sekiya et al., 2003). In our study, saturated fatty acids

FIGURE 5 | Fitting prediction of WD biomarkers. (A–G) Relative concentration of significantly differentially abundant metabolites screened by LASSO in WD and
HC. (H–I) Relative unsaturated TG concentration of significantly differentially abundant metabolites in WD and HC. (J–K) ROC curve analysis of increased metabolites in
WD and HC. (L) ROC curve analysis of the biomarker panel in WD and HC.
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were upregulated and unsaturated fatty acids were downregulated in
WD patients, resulting in a reduction of hepatoprotective effect and
WD exacerbations. Unsaturated fatty acids were upregulated in their
asymptomatic relatives. We speculated that unsaturated fatty acids
could protect the liver against lipid accumulation.

It is well-known that dietary fat, along with adipose tissue lipolysis
and hepatic de novo lipogenesis, affects hepatic lipogenesis
(Luukkonen et al., 2018). There is evidence that saturated fatty
acids derived from the diets may influence liver fat content
(Allard et al., 2008; Petersson et al., 2010). Liver TGs may be
derived from the plasma or be newly synthesized from glucose
(Kawano and Cohen, 2013). Consumption of low glycemic index
diets could improve liver lipid metabolism and disease prognosis,
since glucose promotes lipogenesis by activation of carbohydrate
response element binding protein (ChREBP) (Kawano and Cohen,
2013). Additionally, dietary (n-6) and (n-3) PUFAs are potent
inhibitors of hepatic lipogenesis (Jump, 2011). But n-3 PUFAs
cannot be synthesized by the human body and must be extracted
from exogenous food (fish oil, flax seeds, etc.). Our results implied
that the imbalance of intrahetapic lipid in WD patients could be
corrected by supplementation with unsaturated fatty acids, since
dietary PUFAs are able to regulate hepatic glycolysis and de novo
lipogenesis and to limit TG deposition in the liver (Jump, 2008; Di
Minno et al., 2012). Dietary supplementation with unsaturated fatty
acids, especially PUFAs, and consumption of low glycemic index
diets before the onset of WDmay be of for protecting liver and delay
the progression of cirrhosis. Further work is warranted to understand
the role of unsaturated fatty acids in WD pathogenesis and
therapeutics.

The result that LPCs were downregulated in bothWD patients
and WDIR compared with HC is intriguing. To date, it has been
found that LPC is decreased in drug-induced liver injury, viral
hepatitis, alcoholic hepatitis, nonalcoholic fatty liver, liver failure
and liver cirrhosis (Huang et al., 2013; Saito et al., 2014; Sherriff
et al., 2016). However, there is no report on the pathogenic
mechanisms of LPCs in WD. The mechanisms underlying LPC
lipotoxicity include lipoapoptosis triggered by c-Jun NH2-
terminal kinase (JNK) and endoplasmic reticulum (ER) stress
activation, causing mitochondrial dysfunction, and LPC impairs
hepatic mitochondrial oxidative phosphorylation, inducing
hepatocyte lipoapoptosis (Kakisaka et al., 2012; Hollie et al.,
2014). Most of these lipotoxic mechanisms overlap those of
saturated fatty acids, suggesting that LPC depletion could be a
major downstream effector of saturated fatty acid toxicity.

Our study showed that the levels of PS (35:0) and PS (38:5)
increased, whereas the levels of PS (34:0) decreased in WD patients.
PS, accounting for 13–15% of the phospholipids in the human
cerebral cortex, is an important precursor for the two major
phospholipids PE and PC (Kim et al., 2014). It has also been
found that PS can reduce oxidative stress in the brain and
stimulate neurotransmitter release (Suzuki et al., 2001; Chaung
et al., 2013). The significantly differential abundance of PS may be
associated with the neurological presentation in WD. The lack of
ATP7B-mediated hepatic efflux of copper contributes to the failure of
mitochondria to handle massive copper accumulation (Zischka and
Lichtmannegger, 2014; Polishchuk et al., 2019). Disruption of ER-
mitochondrial PS transfer is a newly reported new mechanism

involved in the development of liver disease (Hernández-Alvarez
et al., 2019). It has also been found that PS on blood cells and
endothelial cells plays an important role in the hypercoagulable state
in cirrhotic patients (Wu et al., 2016).

We found a significant decrease of ultra-long-chain ceramides and
glycosphingolipids. Ceramides containing long side chains such as
palmitic (CER 16:0) and stearic (CER 18:0) are suspected to be linked
to hepatic steatosis (Wasilewska et al., 2018). Cer-derived C22:0-24:0
ceramides are crucial for regulating hepatic function. C16:0 ceramides
is suspected to correlate with hepatosteatosis (Turpin et al., 2014).
Meanwhile, ceramide can induce hepatocyte apoptosis in WD
patients, which is an important cause of hepatocyte loss (Lang
et al., 2007; Engin, 2017). It is well known that increased and
uncontrolled death of hepatocytes results in hepatic steatosis and
cirrhosis, which are the most commonly described dysfunctions in
WD (Wooton-Kee et al., 2020). Previous studies have shown that
ceramide content decreased in the early stages of the disease and
increased when liver cell apoptosis begins to exhibit pathological
changes, such as liver cirrhosis. The reduction in Cer-mediated
mitochondrial division may product the mitochondrial fatty acid
oxidation capacity, which is almost certainly key to reducing hepatic
steatosis (Samuel and Shulman, 2019). For a potential application of
WD diagnosis, we established a biomarker panel that comprised 7
lipids (PS(35:0), PS (38:5), TG (38:0), CerG1(d42:2), LPC (17:0), LPC
(15:0), and PS (34:0)). However, there are still some limitations in our
study. Since WD is a rare disease, only 34 patients from one medical
center were enrolled in our study during 7 years of sample collection.
The diagnostic performance of the lipid biomarkers requires further
validations in a larger cohort and a multiple-center study.

CONCLUSION

Based on our lipidomics data, we found an interesting metabolic
profile of WD patients. Our results highlight lipids deregulations
with the deposition of copper. The abnormal lipid metabolism
provides possible biomarkers for the diagnosis of WD, as a
complementary of ceruloplasmin. More importantly, lipid
metabolism may also be an effective therapeutic target for
WD, which may alleviate the hepatic steatosis and liver injury
among the patients.
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Prediction of LiverWeight Recovery by
an Integrated Metabolomics and
Machine Learning Approach After 2/3
Partial Hepatectomy
Runbin Sun1,2†, Haokai Zhao1†, Shuzhen Huang1, Ran Zhang1, Zhenyao Lu1, Sijia Li 1,
Guangji Wang1*, Jiye Aa1* and Yuan Xie1*

1Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China
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Liver has an ability to regenerate itself in mammals, whereas the mechanism has not been
fully explained. Here we used a GC/MS-based metabolomic method to profile the dynamic
endogenous metabolic change in the serum of C57BL/6J mice at different times after 2/3
partial hepatectomy (PHx), and nine machine learning methods including Least Absolute
Shrinkage and Selection Operator Regression (LASSO), Partial Least Squares Regression
(PLS), Principal Components Regression (PCR), k-Nearest Neighbors (KNN), Support
Vector Machines (SVM), Random Forest (RF), eXtreme Gradient Boosting (xgbDART),
Neural Network (NNET) and Bayesian Regularized Neural Network (BRNN) were used for
regression between the liver index and metabolomic data at different stages of liver
regeneration. We found a tree-based random forest method that had the minimum
average Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the
maximum R square (R2) and is time-saving. Furthermore, variable of importance in the
project (VIP) analysis of RF method was performed andmetabolites with VIP ranked top 20
were selected as the most critical metabolites contributing to the model. Ornithine,
phenylalanine, 2-hydroxybutyric acid, lysine, etc. were chosen as the most important
metabolites which had strong correlations with the liver index. Further pathway analysis
found Arginine biosynthesis, Pantothenate and CoA biosynthesis, Galactose metabolism,
Valine, leucine and isoleucine degradation were the most influenced pathways. In
summary, several amino acid metabolic pathways and glucose metabolism pathway
were dynamically changed during liver regeneration. The RF method showed advantages
for predicting the liver index after PHx over other machine learning methods used and a
metabolic clock containing four metabolites is established to predict the liver index during
liver regeneration.
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INTRODUCTION

The liver is the largest internal solid organ (by mass) and has
various essential functions for body homeostasis, including
digestion, balancing glucose and storing glycogen, regulating
blood amino acids, carrying away wastes, detoxifying
chemicals, and metabolizing drugs. The liver has a mysterious
ability to regenerate. It is the only organ that can regenerate itself
to 100% of original weight in mammals (Miyaoka and Miyajima,
2013; Michalopoulos and Bhushan, 2020). It is known that the
liver can restore to its original weight from as little as 25% of the
original liver mass to guarantee the stability of liver weight about
body weight. Based on this feature of the liver, partial
hepatectomy (PHx) is widely used in the clinic for liver
trauma, intrahepatic gallstones, hepatic cyst, hepatic neoplasms
(both benign and malignant), and liver transplantation (Orcutt
and Anaya, 2018; O’Grady, 2000; Xia et al., 2014; Nuzzo et al.,
2008). Liver regeneration is a highly complex process. Different
types of cells and many signaling pathways are involved,
including hepatocyte proliferation, reprogramming of
extracellular matrix, inflammation, immune and metabolic
regulation, etc. (Preziosi and Monga, 2017; Michalopoulos and
Bhushan, 2020).

It is important to obtain accurate liver weight for major
hepatic resection and living donor liver transplantation.
Simply, the total liver volume can be predicted based on body
surface area and body weight (Vauthey et al., 2002). However, this
method cannot be used to measure liver volume after liver
resection. Imaging-based liver volumetric methods include
anatomical structure imaging method and functional imaging
method. Anatomical structure imaging includes computed
tomography (CT) (Ogasawara et al., 1995; Alonso-Torres
et al., 2005; Lim et al., 2014; Kim et al., 2019), magnetic
resonance imaging (MRI) (Hockings et al., 2002; Sahin et al.,
2003; Inderbitzin et al., 2004), ultrasonography (Kitajima et al.,
2008; Kasuya et al., 2011), and functional imaging including
single-photon emission computed tomography (SPECT) (De
Graaf et al., 2008; Stinauer et al., 2012; Yoshida et al., 2014).
These methods have shown reliable liver volume measurements
and have been widely utilized to evaluate postoperative liver
regeneration and assess liver function recovery (Bassignani et al.,
2001; Zamboni et al., 2008; de Graaf et al., 2010; Spira et al., 2012).
These image-based evaluation methods can achieve the liver
weight and the shape of the liver, and functional-based image
methods can further evaluate the liver function. However, these
methods have a certain degree of error and overestimate the
actual liver volume (D’Onofrio et al., 2014). There still remains an
urgent need to develop a new method to evaluate liver
regeneration and liver function after PHx.

Several non-image methods for liver volumetry have been
developed. From a systemic biology view, the microarray data of
rat liver during regeneration and the adaptive logistic regression
identified M6PR→IGF2R and MCM5→STAT1 pathways as
biomarkers for liver regeneration (Chen et al., 2016).
Metabolomics is the profile of endogenous small molecules. It
is widely used in the early detection of hepatocellular carcinoma
(Zhang et al., 2013; Safaei et al., 2016), identification of subtypes

and different stages of non-alcoholic steatohepatitis (Alonso et al.,
2017; Dong et al., 2017), investigation of hepatitis virus infection
(Du Preez and Sithebe, 2013; Huang et al., 2016; Naggie et al.,
2020), prediction of and identification of drug-induced liver
injury (Xie et al., 2019), and reveal the mode of action of
natural products in the treatment of liver disease (Beyoğlu and
Idle, 2020). The metabolomics technique is used for liver
transplantation to discover biomarkers associated with donor-
recipient matching and early allograft dysfunction (Cortes et al.,
2014; Faitot et al., 2018). Specifically, bile salt and triglyceride
levels are proposed to be early predictors of liver volume and
functional increase after liver resection (Hoekstra et al., 2012a;
Hoekstra et al., 2012b). The hepatic ratio of phosphatidylcholine
to phosphatidylethanolamine is also a survival predictor
following partial hepatectomy (Ling et al., 2012). Hyaluronic
acid is metabolized by liver sinusoid endothelial cells. Its level
can be used to evaluate functional liver reserve after liver
resection and prediction of complications associated with liver
resection (Nanashima et al., 2001; Nanashima et al., 2004). The L-
[1–13C]Methionine breath test and the production of 13CO2 are
considered valuable indicators for evaluating liver regeneration
(Ishii et al., 2001). These biomarker-based methods can predict
the regeneration of the liver as well as liver function recovery.

Several models have been proposed to characterize the process
of liver regeneration. A liver growth model based on general
growth law has been introduced to accurately predict liver
transplants’ growth (Shestopaloff and Sbalzarini, 2014).
Furchtgott et al. developed a mathematical model of rat liver
regeneration based on the interplay of cytokines and growth
factors, and Periwal et al. further transferred this model to
humans (Furchtgott et al., 2009; Periwal et al., 2014). These
studies used a single approach and are usually limited by
moderate accuracy. Machine learning is a subset of artificial
intelligence used for clinical diagnostics, prognosis prediction,
precision treatments, health monitoring, and drug discovery and
development (Vamathevan et al., 2019; Goecks et al., 2020).
Machine learning approaches have large flexibility and are free
from prior assumptions, and they are particularly suitable for
datasets with few observations and many variables, especially for
omics data. Traditional statistical methods aim to infer
relationships between variables, while machine learning
algorithms focus on making predictions as accurate as possible
even though some of them are difficult to interpret. Machine
learning disentangles the complex relationships between
numerous variables of omics studies in determining their
effect on the main outcome (Rajula et al., 2020). However,
there is no study about predicting the liver index after PHx by
integrating metabolomics and machine learning algorithms in
our knowledge. Here we use nine machine learning methods
including Least Absolute Shrinkage and Selection Operator
Regression (LASSO), Partial Least Squares Regression (PLS),
Principal Components Regression (PCR), k-Nearest Neighbors
(KNN), Support Vector Machines (SVM), Random Forest (RF),
eXtreme Gradient Boosting (xgbDART), Neural Network
(NNET), and Bayesian Regularized Neural Networks (BRNN)
to select the best regression model between the liver index and
metabolomics data from serum, discover the main metabolic
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pathways during liver regeneration, and finally establish a
prediction model with a metabolite set to predict the liver
index during liver regeneration.

MATERIALS AND METHODS

Chemicals
Methanol (chromatography grade), n-Heptane (chromatography
grade), methoxyamine, pyridine, and N-methyl-N-trimethylsilyl-
trifluoroacetamide+1% trimethylchlorosilane (MSTFA+1%
TMCS) were purchased from Merck KGaA (Darmstadt,
Germany). Stable-isotope-labeled [13C2]-myristic acid was

purchased from Cambridge Isotope Laboratories (Andover,
MA, United States).

Animal Studies
Thirty male C57BL/6J mice (5 weeks old, purchased from
Changzhou Cavens Laboratory Animal Co., Changzhou,
China) were housed under a 12 h light/12 h dark condition
(lights on at 6:00 and lights off at 18:00). All animal care and
experimental procedures protocols were approved by the Animal
Ethics Committee of China Pharmaceutical University (2018-
DMPK-12-06). All mice were fed with a standard chow diet
(AIN-93M, Trophic Animal Feed High-Tech Co., Ltd, Nantong,
China) and tap water ad libitum for 1 week to acclimate the

FIGURE 1 | (A), Flowchart of the animal experiment. Liver weight (B), Body weight (C), and liver index (D) change at different stages after 2/3 PHx. Liver function
index, alanine aminotransferase (ALT) (E), aspartate aminotransferase (AST) (F), and alkaline phosphatase (AKP) (G) were measured for the Sham group and 6, 36, 72,
and 168 h after PHx, serum glucose (H), triglyceride (I), total cholesterol (J), and total bile acids (TBA) (K) were measured. (L), PCNA expression in the livers of mice
before and after PHx.
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environment. The mice were divided into five groups (n � 6),
Sham group (Sham), 6 h after PHx group (6 h), 36 h after PHx
group (36 h), 72 h after PHx group (72 h), and 168 h after PHx
group (168 h). The mice were anesthetized with isofluorane when
doing the PHx surgery. For the Sham group, the abdominal cavity
was opened without cutting the liver and then sewed; for PHx
groups, the left lateral and median liver lobes, including gall
bladder, were resected according to the procedure in literature.
The mice were sacrificed 0 h (Sham group), 6, 36, 72 and 168 h
after PHx. At the time of sacrifice, mice were weighed and
anesthetized by avertin; the whole blood was centrifuged at
8,000 rpm for 5 min to get the serum and was stored at −80°C
for further analysis. Livers were harvested and weighed, and the
liver index was calculated (liver weight/body weight). The
proliferative cell nuclear antigen (PCNA) expression was
measured, and images were collected using an inverted
microscope (Leica DMI 3000B, Germany). A flowchart of the
animal experiment is shown in Figure 1A.

Measurement of Serum Biochemical Index
Levels of serum glucose, triglyceride, cholesterol, total bile acids
(TBA), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and alkaline phosphatase (AKP) were
measured using kits purchased from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China) according to the
manufacturer’s instructions.

Sample Preparation for GC/MS and
Compound Identification
The metabolites in serum were profiled by a GC/MS-based
metabolomics method as previously reported (A et al., 2005).
Briefly, 50 μL of serum was extracted with 200 μL of methanol
containing 5 μg/ml [13C2]-myristic acid; after oximation and
derivatization, 0.5 μL of the sample were injected into a
SHIMADZU QP2010Ultra/SE GC/MS system (Kyoto, Japan)
with an RTx-5MS fused silica capillary column (30 m ×
0.25 mm ID, J&W Scientific, United States). The raw data
acquired were processed by GCMSSolution (version 4.11). The
metabolites were identified using NIST 14 (National Institute of
Standards and Technology, Gaithersburg, MD, United States),
Wiley 9 (Wiley–VCH Verlag GmbH & Co KGaA, Weinheim,
Germany), and an in-house mass spectra library database (A
et al., 2005; Sun et al., 2019).

The Regression of Liver Index and
Metabolites by Nine Machine Learning
Methods
PCA was performed for dimension reduction using SIMCA-P
13.0 software (Umetrices, Umeå, Sweden). Nine machine
learning methods including LASSO, PLS, PCR, KNN, SVM,
RF, xgbDART, NNET, and BRNN were used for regression
between the liver index and metabolites. The code used was
shown in Supplementary Data Sheet S2. Models were evaluated
by the parameters, including the Mean Absolute Error (MAE),
the Root Mean Squared Error (RMSE), and R square (R2). All of

the machine learning methods were performed and tuned using
the “caret” package in the R project (version 3.6.3). Variable
importance in the projection (VIP) analysis was used to evaluate
metabolites’ contribution to the model.

Pathway Analysis
Metabolomics pathway analysis of the metabolites with VIP >1
was carried out using MetaboAnalyst (www.metaboanalyst.ca).
Hypergeometric test for over-representation analysis and
relative-betweenness centrality for pathway topology analysis
was selected, and Mus musculus (KEGG) library was chosen.

Selection of Metabolite Set for the
Prediction of the Liver Index
Correlation coefficients between liver index, ALT, and metabolites
at different time points were calculated. To further evaluate the RF
method’s ability to predict the liver index after 2/3 PHx, the dataset
was split into the training set and testing set (5:1). The metabolite
with themost significant VIP value, themetabolites ranked top 4, 8,
12, 20, 40, 59 and the whole dataset without one metabolite whose
VIP is 0 (Supplementary Data Sheet S1) was further used to train
the RFmodel and predict the liver index in the testing set, and their
performance was also compared. Models were evaluated by the
parameters including MAE, RMSE, and R2.

Statistical Analysis
For statistical analysis of MAE, RMSE, and R2 in each model,
Kruskal–Wallis Test followed by Wilcox test was used; for
statistical analysis of metabolites among groups, One-way ANOVA
followed by Fisher’s LSD multiple comparison test and corrected by
the Benjamini-Hochberg method to control the False Discovery Rate
(FDR) was conducted by R project (version 3.6.3). The correlation
coefficients were calculated by the “corrplot” package in the R project.
p < 0.05 was considered statistically different.

RESULTS

Regeneration of Liver After 2/3 Partial
Hepatectomy
To investigate liver regeneration progress and the associated
metabolic change after partial hepatectomy, 2/3 PHx in C57BL/
6J mice was performed and samples were collected at five time
points (Sham group, 6, 36, 72, and 168 h after PHx, the total sample
size is 30). The liver index was calculated using liver weight and
body weight. The remaining liver exhibited an elevated growth rate
in the first 3 days and returned to nearly 90% of the original weight
after 7 days (Figures 1B–D). During liver regeneration, ALT
(Figure 1E), AST (Figure 1F), and AKP (Figure 1G) all
showed a significant increase at the early stage and returned to
normal after 72 h. Serum glucose (Figure 1H) was reduced after
PHx. Serum triglyceride (Figure 1I) and total cholesterol
(Figure 1J) showed a slight decrease at 6 h after 2/3 PHx,
increased at 36 and 72 h after 2/3 PHx, and fell at the late
phase of liver regeneration. Total bile acids (TBA) (Figure 1K)
in the serum significantly increased after 2/3 PHx. PCNA staining
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on the livers of sham-operated mice and the livers of mice
following operation revealed apparent DNA replication, and
there were most positive cells at 36 h after 2/3 PHx (Figure 1L).

GC/MS Chromatograms and Overview of
the Metabolomics Data
Typical serum GC/MS chromatograms from each time point
after PHx are shown in Figure 2A. One hundred eighteen

compounds were identified, including organic acids, amino
acids, carbohydrates, purines and fatty acids, the
representative mass spectrum, and the comparison with
mass spectrum in the library were shown in Supplementary
Data Sheet S1. Unsupervised principal component analysis
(PCA) was applied to gain an overview of the metabolomics
data. From the scatter plot (Figure 2B), no outlier was found in
the PCA analysis. A clear separation between the 6 h group,
36 h group, and sham group was observed, whereas the 72 h

FIGURE 2 | (A) Typical GC/MS chromatograms of serum from Sham group and 6, 36, 72, and 168 h after PHx. (B) 3D scoress plot of principal components
analysis of mouse serum from Sham group, 6 h group, 36 h group, 72 h group, and 168 h group, respectively. Each point represents a metabolite profile of a biological
replicate.
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group and 168 h group were closer to the Sham group; this
suggested that PHx induced significant metabolic change at the
early stage and returned to normal during the liver
regeneration process.

Comparison of Machine Learning Methods
and Selection of Important Features
To select the most suitable machine learning model of the
regression between the liver index and metabolites, we
performed and compared nine machine learning methods:
LASSO, PLS, PCR, KNN, SVM, RF, xgbDART, NNET, and
BRNN. We performed 10-fold cross-validation 10 times on
the dataset, and MAE, RMSE, and R2 were calculated to
evaluate the model performance. As shown in Figures
3A–C, the tree-based methods RF method and xgbDART
method had the minimum average MAE, RMSE, and the
maximum average R2. xgbDART method is rather time-
consuming and showed no obvious superiority over the
RF method; thus, we selected the RF method for further
analysis. To choose the most important metabolites
contributing to the RF model, we performed VIP analysis
and the metabolites which ranked top 20 were selected.
Ornithine, phenylalanine, 2-aminobutanoic acid, 2-
hydroxybutyric acid, and lysine had the highest VIP
values (Figure 3D). The relative amounts of these
metabolites were shown in Figure 4A–L.

Pathway Analysis
To reveal the key pathways changed during liver regeneration, the
selected most important metabolites in serum were further
analyzed by the online tool MetaboAnalyst (http://www.
metaboanalyst.ca). The chosen metabolites were mapped to
KEGG metabolic pathways for over-representation and
pathway analyses. The pathway was considered to be
significantly related which had a p value of less than 0.05.
Arginine biosynthesis, Pantothenate and CoA biosynthesis,
Galactose metabolism, Valine, leucine and isoleucine
degradation, and beta-Alanine metabolism, etc. were the most
influenced pathways, Figure 5.

Random Forest Model With a Set of Four
Metabolites Were Selected for the
Prediction of the Liver Index After 2/3 PHx
To further validate the most important metabolites, correlation
analysis was performed and shown by heatmap in Figure 6.
Metabolites including ornithine (Figure 7A), phenylalanine
(Figure 7B), 2-aminobutanoic acid (Figure 7C), 2-
hydroxybutyric acid (Figure 7D), lysine (Figure 7E), glutamic
acid (Figure 7F), ethanolamine (Figure 7G), and threonine
(Figure 7H) all showed an apparent positive correlation with
the liver index. They showed obvious negative correlations with
ALT, Figures 7I–P. The metabolomics data were partitioned into
the training set and testing set, containing 25 samples and five

FIGURE 3 | AverageMAE (A), RMSE (B) and R2 (C) on 10 repeated 10-fold cross-validation of nine machine learning algorithms for prediction of the liver index from
metabolomics data. (D) Variable importance revealed by random forest (RF) method.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7604746

Sun et al. Liver Regeneration Prediction by Metabolomics

43

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


samples, respectively. The comparison of RF methods using a
different number of metabolites showed a significant difference in
RAE, RMSE, and R2 among other models (Figures 8A–C). Then
the models were tested on the testing set, and the regression of
actual liver index and predicted liver index were performed. The
model RF05 containing metabolites ranked top 20 had the
minimum MAE and RMSE. Considering the accuracy of
prediction with as few metabolites as possible, we selected
model RF02 with a set of 4 metabolites including ornithine,
phenylalanine, lysine, and 2-hydroxybutyric acid as the final
prediction model, and the MAE, RMSE, and R2 of the testing
set were 0.002, 0.003, and 0.948, respectively (Figure 8D). The
metabolic map of these metabolites was shown in Supplementary
Figures S1–S4.

DISCUSSION

After 2/3 PHx, the remnant liver initiates the progress of
regeneration and the liver cells would undergo the resting
state of the cell cycle (G0) to G1 transition, then S phase, and

ultimately mitosis. The progress of liver regeneration includes
initiation, progression, and termination, and each of these phases
was tightly regulated by numerous signaling pathways (Caldez
et al., 2018). To explore the metabolic change and then establish a
regression method to predict the liver index at each phase by
metabolites in the serum during liver regeneration, we select four
time points after 2/3 PHx representing different stages. The liver
index at different time points showed a typical growth curve and
indicated that these time points could represent the growth of the
remaining liver. The serum biochemical indexes representing the
liver function and staining results representing the growth of liver
cells also indicated the different phases during liver regeneration.

Machine learning has variable applications in healthcare. The
main functions of machine learning algorithms include
classification, regression, and dimensional reduction. Here we
aimed to establish a relationship between metabolites in the
serum and liver index at a different time of liver regeneration
by regression and select the potential biomarkers of liver
regeneration. We compared nine machine learning algorithms
for regression, LASSO, PLS, PCR, KNN, SVM, RF, xgbDART,
NNET, and BRNN. LASSO is a regression model originally

FIGURE 4 | The relative abundance of metabolites with the highest VIP values in the serum of mice from the Sham group and 6, 36, 72, and 168 h after PHx. The
box plot shows the relative abundance of metabolites, including ornithine (A), phenylalanine (B), 2-aminobutanoic acid (C), 2-hydroxybutyric acid (D), lysine (E), glutamic
acid (F), ethanolamine (G), threonine (H), phosphoric acid (I), glucitol (J), myo-inositol (K) and alpha-hydroxyisobutyric acid (L). Data were represented as mean ± S.D.
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formulated from the linear regression model and performed both
for variable selection and regression. PLS and PCR are methods
where multivariate data is projected into a smaller coordinate
space (dimensional reduction) before regression. SVM method
constructs hyperplanes that can be used for classification and
regression. RF and xgbDART are both tree-based models which
construct a multitude of decision trees. NNET and BRNN are
considered deep learning methods and they simulate biological

neural networks that constitute animal brains. These methods are
more complex non-linear machine learning methods applicable
for analyzing high-dimensional metabolomics data. The
comparison of MAE, RMSE, and R2 of the methods used
showed RF and xgbDART are the most accurate methods.
xgbDART is much more time-consuming than RF, whereas it
offers no significant advantage. Thus we select RF as the method
used for further optimization and analysis. From the VIP analysis

FIGURE 5 |Metabolite pathway analysis based on metabolites displayed significant variation in the serum revealed that a. Arginine biosynthesis, b. Pantothenate
and CoA biosynthesis, c. Galactose metabolism, d. Valine, leucine and isoleucine degradation, e. beta-Alanine metabolism, f. Alanine, aspartate and glutamate
metabolism, g. Glutathione metabolism, h. Phenylalanine, tyrosine and tryptophan biosynthesis, i. Glyoxylate and dicarboxylate metabolism, j. Cysteine and methionine
metabolism, k. Glycine, serine and threonine metabolism, l. D-Glutamine and D-glutamate metabolism, m. Arginine and proline metabolism were the most affected
pathways after 2/3 PHx.
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of RF, we choose different amounts of metabolites to validate the
model performance further and evaluate its prediction ability. A
metabolite set containing ornithine, phenylalanine, lysine, and 2-
hydroxybutyric acid was selected as the potential metabolite set
for predicting the liver index after 2/3 PHx.

Networks, including cytokine, growth factor, and metabolic,
are the essential circuitry required for liver regeneration (Fausto
et al., 2006). Metabolic alteration is proposed to occur
immediately after PHx. The previous gene expression data
implied that metabolic genes are suppressed during liver
regeneration, which is considered paradoxical because it
maintains metabolic homeostasis and supports regeneration
(Fausto et al., 2006). Currently, there is more understanding of
metabolic changes during liver regeneration. Glucose
metabolism, lipid metabolism, bile acid metabolism, amino
acid metabolism, and one-carbon metabolism are essential for

liver regeneration (Huang and Rudnick, 2014; Preziosi and
Monga, 2017). We also observed a significant elevation of
triglycerides and bile acids and the reduction of glucose in the
serum during liver regeneration. It has been reported that glucose
supplementation impairs liver regeneration, and preventing the
accumulation of hepatic fat also suppresses liver regeneration
(Huang and Rudnick, 2014). Dietary caloric restriction
accelerates the initiation of regenerative hepatocellular
proliferation (Cuenca et al., 2001). These studies revealed the
importance of nutrient metabolism in liver regeneration. Bile
acids are important for liver regeneration following partial
hepatectomy, the extra bile acids cause activation of bile acid
receptors including TGR5 and FXR thus preventing
hepatotoxicity and providing signals to the regenerative
process (Fan et al., 2015; van de Laarschot et al., 2016; Kong
et al., 2018). Protein synthesis and amino acid metabolism are

FIGURE 6 | The heatmap shows the correlation coefficients between the liver index and individual metabolites. Each square represents the Pearson’s correlation
coefficient between the metabolite of the row and the column. Magenta color represents a positive correlation and blue color represents a negative correlation.
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essential functions of the liver, and altered amino acid
metabolism is observed during liver regeneration. Amino acids
are not only components of protein but also work as endogenous
signaling molecules. Ornithine is an amino acid that plays a vital
role in the urea cycle. A previous study found that urea cycle
enzymes were significantly perturbated during liver regeneration,
which enhanced urea cycle capacity and increased ammonia
elimination (Meier et al., 2019). 2-hydroxybutyric acid is an

organic acid derived from alpha-ketobutyrate, and alpha-
ketobutyrate is produced by threonine and methionine
catabolism and glutathione anabolism. 2-aminobutyric acid is
a byproduct of cysteine biosynthesis from cystathionine and it
can modulate glutathione homeostasis (Irino et al., 2016).
Glutathione is a critical intracellular antioxidant and
participates in many critical cellular functions including defense
against toxins and free radicals, modulation of cell cycle, and

FIGURE 7 | The correlation coefficients between the liver index and metabolites including ornithine (A), phenylalanine (B), 2-aminobutanoic acid (C), 2-
hydroxybutyric acid (D), lysine (E), glutamic acid (F), ethanolamine (G) and threonine (H), and the correlations between ALT and metabolites including ornithine (I),
phenylalanine (J), 2-aminobutanoic acid (K), 2-hydroxybutyric acid (L), lysine (M), glutamic acid (N), ethanolamine (O), and threonine (P).
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maintenance of immune system homeostasis. Previous literature
reported that glutathione, oxidized glutathione, and cysteine levels
were doubled after PHx (Huang et al., 1998). Further study
confirmed that glutathione plays a role in hepatic NF-κB
activation in vivo and is necessary for the accurate timing of liver
regeneration (Riehle et al., 2013). Urea cycle disorder was reported to
be associated with a reduced level of glutathione, increased
superoxide radical, and diminished activity of antioxidant
mechanisms that may lead to cell damage. We found
endogenous metabolites including ornithine, 2-hydroxybutyric
acid, and 2-aminobutyric acid, the metabolites involved in the
urea cycle and glutathione metabolism, all showed significant
change during liver regeneration, and this may be associated with
the down-regulated expression of glutamine synthase enzyme and
specific activities of urea cycle metabolic pathways (Huang and
Rudnick, 2014), and the cytochrome P450 system was down-
regulated (Solangi et al., 1988). However, the precise mechanisms
behind remain to be verified by further research.

There remain some shortages in this study. Firstly, four time
points were selected to represent the initiation, progression, and
termination phase of liver regeneration. More time points
constituting a complete curve should be evaluated to establish
the mathematical model and accurately predict liver weight.
Secondly, due to the limitation of GC/MS, many metabolites
had not been measured; further use of LC-QTOF/MS is essential

to cover more metabolites. Thirdly, a mechanism study to reveal
the change of metabolic pathways should be performed. Last but
not least, although our model showed good performance in mice,
there remains a gap between animals and humans; thus, the
transformation from mouse to human should be considered for
benefit in the clinic.

CONCLUSION

In conclusion, by using a high-throughput GC/MS-based
metabolomics technology and machine learning algorithms, we
establish mathematical models of liver index and metabolites to
predict liver regeneration after 2/3 PHx and compared their
performance. We finally choose a time-saving RF method and
a set of 4 metabolites containing ornithine, phenylalanine, lysine,
and 2-hydroxybutyric acid as a metabolic clock for the accurate
prediction of liver index during liver regeneration. Glucose
metabolism and amino acid metabolism pathways, including
Arginine biosynthesis, Pantothenate and CoA biosynthesis,
Galactose metabolism, Valine, leucine, and isoleucine
degradation and beta-Alanine metabolism were the most
influenced pathways. In the future, we are planning to utilize
LC-QTOF/MS based metabolomics to cover more metabolites,
and liver regeneration under different circumstances in animals

FIGURE 8 | Average MAE (A), RMSE (B), and R2 (C) on 10 repeated 10-fold cross-validation of random forest method with a different subset of the metabolomics
data for prediction of the liverindex from the train data set. (D), the linear regression between the original liver index with the predicted liver index by the RF method in the
testing data set.
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and humans will be performed to validate our model and
transform the model into clinic.
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Lately, an increasing number of studies have investigated the relationship between
metformin and gut microbiota, suggesting that metformin exerts part of its
hypoglycemic effect through the microbes. However, its underlying mechanism
remains largely undetermined. In the present study, we investigated the effects of
metformin on gut microbiota and metabolome profiles in serum and compared it with
insulin treatment in rats with type 2 diabetesmellitus (T2DM). Diabetic rats (DM group) were
induced by a combination of streptozotocin and high-fat diet (HFD). After 7 days, DM rats
were treated with metformin (MET group) or insulin (INS group) for 3 weeks. The 16S rRNA
sequencing of the gut microbiota and non-targeted metabolomics analysis of serum were
conducted. A total of 13 bile acids (BAs) in serum were further determined and compared
among different groups. The rat model of T2DM was well established with the typical
diabetic symptoms, showing significantly increased blood glucose, AUC of OGTT, HOMA-
IR, TC, TG, LDL-C and TBA. Metformin or insulin treatment could ameliorate symptoms of
diabetes and partly recover the abnormal biochemical indicators. Compared with DM rats,
the relative abundances of 13 genera were significantly changed after metformin
treatment, while only three genera were changed after insulin treatment. The metformin
and insulin treatments also exhibited different serum metabolome profiles in T2DM rats.
Moreover, 64 differential metabolites were identified between MET and DM groups,
whereas 206 were identified between INS and DM groups. Insulin treatment showed
greater influence on amino acids, glycerophospholipids/glycerolipids, and acylcarnitine
compared with the metformin treatment, while metformin had an important impact on BAs.
Furthermore, metformin could significantly decrease the serum levels of CA, GCA, UDCA,
and GUDCA, but increase the level of TLCA in DM rats. Insulin treatment significantly
decreased the levels of CA, UDCA, and CDCA. Besides, several metabolites in serum or
microbiota were positively or negatively correlated with some bacteria. Collectively, our
findings indicated that metformin had a stronger effect on gut microbiota than insulin, while
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insulin treatment showed greater influence on serum metabolites, which provided novel
insights into the therapeutic effects of metformin on diabetes.

Keywords: type 2 diabetes, metformin, insulin, microbiota, metabolome, bile acids

INTRODUCTION

As a chronic metabolic disease with complex pathogenesis, type 2
diabetes mellitus (T2DM) refers to a spectrum of systemic
illnesses related to glucose metabolism, lipid metabolism, and
amino acid metabolism. Moreover, T2DM often has high rates of
death and disability, and it is accompanied by severe
complications. For more than 2 decades, metformin is a first-
line treatment regimen to increase insulin sensitivity in T2DM
patients although its underlying mechanisms of action remain
largely undetermined. It is believed that metformin improve
patients’ hyperglycemia by suppressing hepatic
gluconeogenesis, decreasing hepatic glucose output, elevating
glucose uptake and utilization in peripheral tissues, and
enhancing the energy metabolism in several organs, such as
muscle, fat, and liver through activating of AMP-activated
protein kinase (Kristófi and Eriksson, 2021). The
concentration of metformin in the bowel is 100–300 times
greater compared with the serum, and about 50% of its intake
is detected in the stool. The half-life of metformin is
approximately 3–4 h once orally administered, which is
significantly shorter than the duration of its hypoglycemic
effect. Besides, metformin can not decrease blood glucose
when intravenously administered. The above-mentioned
findings all indicate that metformin has key impacts on the
digestive tract.

Recently, with the advance of detection technology, it has been
found that gut microbiota plays a fundamental role in the
pathogenesis of diabetes. Accordingly, a great deal of attention
has been paid to the relationship between metformin and gut
microbiota. We have previously reviewed the literature
concerning the effects of metformin on the gut microbiota of
various species, including mice, rats, and humans with obesity or
T2DM, and the compositional changes of the gut microbiota have
been summarized. Accumulating evidence has indicated that
metformin may change the composition of gut microbiota,
through which its hypoglycemic effects are exerted (Zhang and
Hu, 2020). Nevertheless, it remains largely unknown how
metformin alters the gut microbiota.

To clarify the complex interaction between microbial
ecosystems and host, it is necessary to adopt comprehensive
analytical methods that capture the dynamic interplays among
metformin, gut microbiota and diabetes. Metabolomics can
determine alterations in absolute and/or relative contents of
hundreds to thousands of small elements in blood and tissue,
and offer valuable insights into disease diagnosis and the
mechanisms of pathogenesis and drug intervention. Several
metagenomic and metabolomic methods have been exploited
to evaluate the phenotype of diabetic individuals and to
represent decisive metabolic processes. Nevertheless, the
association between gut microbiota and metformin-regulated

metabolites remains largely unclear in the pathogenesis of
diabetes.

In our current work, 16S rRNA gene sequencing analysis was
used to assess the alterations of the gut microbiota in T2DM
rats induced by a combination of streptozotocin (STZ) and
high-fat diet (HFD). Moreover, we also evaluated the
intervention effect of metformin and insulin. Besides,
differential metabolites in serum were identified by non-
targeted and targeted metabolomics analyses. Furthermore,
the interplay between the gut microbiota and host
metabolism was investigated to unravel the mechanism of
metformin in the treatment of T2DM.

MATERIALS AND METHODS

Materials and Reagents
Methanol, acetonitrile and formic acid of HPLC-grade were
provided by Merck (Dannstadt, Germany). STZ, reference bile
acid (BA) standards, including cholic acid (CA), glycocholic acid
(GCA), deoxycholic acid (DCA), chenodeoxycholic acid
(CDCA), ursodeoxycholic acid (UDCA),
glycochenodeoxycholic acid (GCDCA), taurocholic acid
(TCA), tauroursodeoxycholic acid (TUDCA),
glycoursodeoxycholic acid (GUDCA), taurochenodeoxycholic
acid (TCDCA), taurodeoxycholic acid (TDCA), lithocholic
acid (LCA), and taurolithocholic acid (TLCA), and isotope
internal standards were supplied by Sigma-Aldrich (St. Louis,
MO, United States). Metformin (purity > 95%) was purchased
from Aladdin Reagent Co., Ltd. (China). Insulin (NovoLet®N)
was applied by Novo Nordisk Pharmaceutical Industries, Inc.
Normal and high-fat chow were obtained from TROPHIC
Animal Feed High-Tech Co., Ltd. (Nantong, China).
Deionized water was purified using a MilliQ system (Millipore
Corporation, MA, United States).

Animals
Sprague-Dawley rats (male, 110–150 g) were purchased from
Cavens Experimental Animal Co., Ltd. (Changzhou, China),
and the animals were bred in a facility under the controlled
conditions (22–24°C, relative humidity 55–60%, and a 12-h light/
dark photoperiod). The rats were given free access to water and
food and acclimatized to the animal facility for 3 days before the
experiment.

Animal Experiments
T2DM was induced by a combination of low-dose STZ via
intraperitoneal injection and HFD as previously described
(Wang et al., 2019). Briefly, the rats were divided into CON
(n � 6) and DM (n � 40) groups. The rats in the CON group
were fed on normal chow, while DM rats were fed on HFD
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containing 15% lard (w/w), 20% sucrose, 5% sesame oil, 2.5%
cholesterol, and 57.5% normal chow for 5 weeks. Following
overnight fasting, DM rats were intraperitoneally injected
with a single dose of STZ (35 mg/kg). CON rats only
received the vehicle solution. At 7 days after the
administration of STZ, the level of fasting blood glucose
(FBG) was measured. Only rats with an FBG level higher
than 11.1 mM were considered as successful DM rats and
used for the subsequent experiments. The DM rats were then
randomly divided into three groups: 1) DM group (n � 7),
continually fed with HFD; 2) MET group (n � 7), fed with HFD
and intragastrically administered with 300 mg/kg body weight
metformin once daily for 3 weeks; and 3) INS group (n � 7), fed
with HFD and subcutaneously injected with insulin (2–4 U/day)
according to glucose levels for 3 weeks. FBG and body weight
were monitored and recorded during the experiments. Animal
protocols complied with institutional guidelines for the care and
the use of laboratory animals and were authenticated by the
Ethics Committee of the Third Affiliated Hospital of Soochow
University.

Oral Glucose Tolerance Test and Sample
Collection
OGTT was conducted 3 days before the end of the animal
experiment. Briefly, 12-h fasting-adapted rats were orally
administered with glucose solution (2 g/kg). The blood glucose
levels were measured at 0, 15, 30, 60, and 120 min after the
glucose administration, the corresponding curves were plotted,
and the areas under the curve (AUCs) of OGTT were calculated.
After 9 weeks, rats were sacrificed under ether anesthesia, and
blood specimens were harvested from the abdominal aorta. The
blood samples were allowed to stand at room temperature for 2 h
and centrifuged at 3, 500 rpm for 10 min. The liver and colon
were collected. The contents of the colon were placed in sterile
Falcon tubes, followed by storage at −80°C before DNA isolation.
An automatic biochemistry analyzer (AU5800, Beckman Coulter,
United States) was adopted to analyze the serum biochemical
parameters, including fasting serum glucose (GLU), total
cholesterol (TC), triglycerides (TGs), high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-
C), total bile acid (TBA), urea, creatinine (Cr), alanine
aminotransferase (ALT), and aspartate aminotransferase
(AST). Serum insulin was measured using an
electrochemiluminescence immunoassay. The homeostasis
model of assessment for insulin resistance index (HOMA-IR)
was calculated as [fasting serum glucose (mmol/L) × fasting
serum insulin (mIU/L)]/22.5.

Histological Assessment
The liver and colon were collected, followed by fixation in 10%
buffered formaldehyde. After being rinsed with tap water, the
specimens were dehydrated in increasing concentrations of
alcohol (70% alcohol for 1 h, then 96% alcohol for 1 h three
times). The paraffin-embedded tissues were cut into 4-mm
sections using a microtome (Leica RM 2015, Germany),
followed by hematoxylin-eosin (H&E) staining. An Olympus

CX31 microscope (Olympus Hamburg, Germany) was adopted
to examine the sections.

Gut Microbiota Analysis
An E.Z.N.A. Stool DNA Kit (Omega Bio-tek, Norcross, GA,
United States) was adopted to extract microbial DNA
according to the manufacturer’s instructions. The primers
338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) were used to amplify the
V3-V4 region of the bacterial 16S ribosomal RNA gene using a
GeneAmp 9,700 thermocycler (ABI, United States) as previously
described (Hu et al., 2021). The structure of the gut microbiota
was assessed by dual-indexing amplification and sequencing on
the Illumina MiSeq platform, followed by QIIME (version 1.6.0)
bioinformatic analysis.

Raw files of Fastq format were quality-filtered by
Trimmomatic and merged by FLASH based on the criteria as
follows. The reads were truncated at any site receiving an average
quality score <20 over a 50 bp sliding window. Sequences greater
than 10 bp were amalgamated based on their overlap with no
more than 2 bp. Sequences of each sample were separated
according to barcodes (exactly matching) and primers
(allowing 2 nucleotide mismatching), while reads consisting of
ambiguous bases were discarded. A novel “greedy” algorithm that
performs chimera filtering and operational taxonomic unit
(OTU) clustering simultaneously was used to cluster OUT
with a similarity cutoff of 97% using UPARSE (version
7.1 http://drive5.com/uparse/). The RDP Classifer algorithm
(http://rdp.cme.msu.edu/) was used to analyze the taxonomy
of each 16S rRNA gene sequence against the Silva (SSU123)
16S rRNA database, and the confidence threshold was set at 70%.
Alpha diversity (ACE and Chao index, which were used to assess
the community richness) and beta diversity were calculated using
QIIME. OTUs were analyzed by unweighted UniFrac distance-
metrics analysis for each sample. Principal component analysis
(PCA) was then carried out according to the matrix-of-distance.

Non-Targeted Metabolomics Analysis
Briefly, 100 μL of serum sample was mixed with 400 μL
acetonitrile/methanol (v/v, 1:1) containing the internal
standard of L-2-chlorophenylalanine (2 μg/ml), followed by
extractions of metabolites. Subsequently, the specimens were
vortexed for 30 s, sonicated for 10 min in an ice-water bath,
incubated at −40°C for 1 h, and centrifuged at 10,000 rpm for
15 min at 4°C. Next, 425 μL of supernatant was dried at 37°C, and
the residuals were reconstituted in 200 μL of 50% acetonitrile by
sonication on ice for 10 min. The sample was then centrifuged at
12,000 rpm for 15 min at 4°C, and 75 μL of supernatant was
subjected to LC/MS/MS. Equal aliquots of the supernatants from
all of the samples were mixed, which were used as quality control
(QC) samples.

The metabolites were separated using a UHPLC system (1,290,
Agilent Technologies), which was equipped with a UPLC BEH
Amide column (2.1*100 mm, 1.7 μm, Waters) coupled to a
TripleTOF6600 (Q-TOF, AB Sciex) at Biotree Biotech Co.,
Ltd. (Shanghai, China). The mobile phase was composed of
25 mM ammonium acetate and 25 mM ammonia hydroxide in
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water (pH � 9.75) (A) and acetonitrile (B). The elution program
was conducted as follows: 0–0.5 min, 95%B; 0.5–7.0 min, 95–65%
B; 7.0–8.0 min, 65–40% B; 8.0–9.0 min, 40% B; 9.0–9.1 min,
40–95% B; 9.1–12.0 min, 95% B. The volume of injection was
1 μL (pos) or 1 μL (neg). The column temperature was
maintained at 25°C. The conditions of electrospray ionization
(ESI) source were set as follows: gas 1 at 60 psi, gas 2 at 30 psi,
curtain gas at 35 psi, source temperature as 600°C, declustering
potential at 60 V, and ion spray voltage floating (ISVF) at 5,000 V
or −4,000 V in positive or negative modes, respectively.

MS raw data (wiff) files were transformed to the mzXML
format by ProteoWizard and processed by R package XCMS
(version 3.2). Such a process included peak deconvolution,
alignment, and integration. Minfrac and cut-off values were
set as 0.5 and 0.6, respectively. An in-house MS2 database was
applied for the identification of metabolites. Subsequently,
multivariate statistical analyses were carried out using the
SIMCA-P software (version 14.1, Umetrics AB, Umea,
Sweden), including PCA and OPLS-DA. The clusters,
differences, and outliners in different groups were assessed
using PCA, and the metabolic difference between the two
groups was analyzed using the OPLS-DA. Differential
metabolites were defined as those metabolites with an adjusted
p < 0.05 and variable importance (VIP) > 1. R2 (goodness of fit
parameter) and Q2 (goodness of prediction parameter) values
were used for the quality evaluation of each model. Besides, cross-
validation and testing with 200 permutations were adopted to
avoid the over-fitting of the OPLS-DA model.

Serum Bile Acids Measurement
To a 50 μL aliquot of each serum sample, 20 μL (100 ng/ml) of
internal standard (TCA-d4, GCA-d5, CDCA-d4, DCA-d5,
GCDCA-d7, and LCA-d4) and 150 μL of acetonitrile solution
were added. The mixture was then vortexed for 30 s and
centrifuged at 16,400 rpm for 10 min. An aliquot (100 μL) of
the supernatant was diluted by 100 μL ultrapure water and then
analyzed. The levels of 13 serum BAs, including TUDCA, TCA,
GUDCA, GCA, TCDCA, TDCA, CA, UDCA, GCDCA, CDCA,
LCA, TLCA, and DCA, were determined using a validated high-
performance liquid chromatography-tandem mass spectrometry
(HPLC-MS/MS) method. The chromatographic system (Jasper™
HPLC system) consisted of a vacuum degasser, a binary pump, an
autosampler, and a Kinetex EVO C18 column (50 × 2.1 mm,
2.6 μm, Phenomenex, United States) and was operated at 40°C.
The mobile phase consisted of water containing 0.1% formic acid
and 0.5% ammonia (A) and acetonitrile (B). The gradient elution
started at 25%B, increased to 35%B (0.01–4.50 min), 50%B
(4.50–6.00 min), and 95%B (6.00–6.10 min), maintained at
95%B (6.10–7.40 min), and then restored to 25%
(7.50–9.00 min). The flow rate was fixed at 0.4 ml/min. The
injection volume was 10 μL. The AB SCIEX Triple Quad™
4500MD mass spectrometer (Applied Biosystem Sciex,
Ontario, Canada) was used for qualitative and quantitative
analysis. The mass spectrometer was operated in multiple
reaction monitoring (MRM) and negative ESI mode (−3500 V)
with the following parameters: ion source temperature, 500°C;
nebulizer gas (gas 1), nitrogen, 55 psi; turbo gas (gas 2), nitrogen,

45 psi; and curtain gas, nitrogen, 30 psi. The precursor ion and
product ion mass, declustering potentials (DP), collision energies
(CE), and retention time of each bile acid were summarized in
Supplementary Table S1.

Among these 13 BAs, primary BAs included CA and CDCA,
as well as their glycine-conjugates and taurine-conjugates, such as
GCA, GCDCA, TCA, and TCDCA, while secondary BAs
produced by deconjugation and/or dehydroxylation of primary
BAs by gut bacteria included DCA, UDCA, and LCA, as well as
their glycine-conjugates and taurine-conjugates, such as TLCA,
TDCA, GUDCA, and TUDCA.

Statistical Analysis
GraphPad Prism software v 9.0 was employed for all statistical
assays. The results were expressed as mean ± SD. The difference
between the two groups was compared using unpaired Student’s
t-test, and multiple comparisons were performed using one-way
ANOVA, followed by Dunnett’s post hoc test. The relationship
between differential metabolites and the relative abundance of the
intestinal microbiome at the genus level was evaluated by
Pearson’s correlation analysis. Corrections of p values for
multiple comparisons were controlled by FDR, and p < 0.05
was considered statistically significant.

RESULTS

T2DM Modeling
After STZ injection, diabetic symptoms were observed in most rats,
including polyuria, polydipsia, and polyphagia. The FBG levels of 21
rats were higher than 11.1 mM after 7 days, which were chosen for
the following experiment. However, because of severe diabetes, two
rats in the DM group died in the eighth and ninth weeks of the
experiments. After STZ injection (the fifth week), the levels of FBG
were remarkably increased in the DM group compared with the
CON group. Metformin and insulin treatment could reduce the
levels of FBG, and insulin exhibited higher hypoglycemic effect than
metformin during the experiment (Figure 1A). Because HFD
influenced the appetite of rats, the body weight of rats in the
DM, MET, and INS groups was significantly decreased from the
first week of the experiment. Metformin and insulin treatment could
both increase the body weight of DM rats (Figure 1B). OGTT was
performed in different groups, and the corresponding AUCwas also
analyzed (Figures 1C,D). The results of OGTT were ameliorated to
some extent in theMET and INS groups. The levels of fasting insulin
were comparable among CON, DM, MET and INS groups
(Figure 1E). HOMA-IR index was markedly greater in the DM
group compared with the CON group, implying that the islet
function of the DM group was affected. The HOMA-IR index
was remarkably decreased in the MET group and INS group
compared with the DM group, indicating that the treatment of
metformin and insulin significantly improved the insulin resistance
of diabetic rats (Figure 1F).

Histological Assessment
Histological assessments were conducted in the liver and colon of rats
from different groups (Figure 1G). The liver lobule had a clear
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structure, and the liver cells exhibited a radial distribution around the
central vein in the CON group. The structure of the liver lobule in the
DM group disappeared, and the liver cord showed disordered
arrangement, exhibiting widened hepatic sinusoids. Hepatocytes
appeared swelling, and the size was increased. Moreover, we
observed lipid droplets of different sizes in the cytoplasm with
focal steatosis in hepatocytes. In the MET group, the hepatocellular
cord showed a clear structure with normal liver sinusoids, mild
steatosis was observed in the cytoplasm of the liver cells, and lipid
droplets were decreased. The hepatocellular cord in the INS group
displayed a clear structure, and mild steatosis was observed in the
cytoplasm of the liver cells. The swelling of hepatocytes was relieved.
Compared with the CON group, DM rats showed damaged mucosal
architecture in the colon. The epitheliumwas slightly hyperplasticwith
villus atrophy. Taken together, metformin and insulin treatment
significantly improved these pathological conditions.

Biochemical Parameters
Compared with the CON group, the levels of TC, TG, and
LDL-C were significantly increased in the DM group,
indicating dyslipidemia in diabetic rats. Metformin and
insulin could suppress the levels of TC, TG, and LDL-C in
different degrees (Table 1). Compared with the CON group,
the level of TBA was markedly higher in DM rats, and both
metformin and insulin treatment could decrease the TBA
level. There was no difference in urea, Cr, ALT, and AST
among the four groups.

Effect of Metformin and Insulin on the Gut
Microbiota
A total of 1,178 012 sequences were obtained from 32 samples, and
averagely 36,812 sequences were recovered for each sample and

FIGURE 1 | Effects of metformin and insulin on (A) Blood glucose; (B) Body weight; (C) Oral glucose tolerance test (OGTT); (D) Area under the curve (AUC) of
OGTT; (E) Fasting insulin; (F)HOMA-IR index; (G)Histological structure of liver and colon (HE staining) *p < 0.05, **p < 0.01 vs. CON group. #p < 0.05, ##p < 0.01 vs. DM
group.
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used for comparative analysis. The Good’s coverage for the
observed OTUs was 99.76 ± 0.02%, and the rarefaction curves
displayed clear asymptotes (Figure 2A), together indicating a near-
complete sampling of the community. Figure 2B shows the ACE
and Chao index of four groups, and metformin significantly
decreased the ACE and Chao indexes compared with the DM
group. A total of 703 OTUs were yielded from 32 samples,
including 342 shared OTUs for four groups, and there were 40,
8, 19 and 5 special OTUs for the CON, DM,MET, and INS groups,
respectively (Figure 2C). Weighted UniFrac PCoA distances
showed separation among the CON, DM, MET, and INS
groups. Based on the PCoA analysis, different trends were
observed from the intestinal microbiota structure of the MET
and INS groups, and both of them were clearly separated from the
DM and CON groups (Figure 2D). Figure 2E shows the top six
phyla in four groups. The dominant phyla included Firmicutes and
Bacteroidetes. DM rats had a greater abundance of Firmicutes and
a lower abundance of Bacteroidetes compared with the CON
group, and thus the ratio of Bacteroidetes/Firmicutes was
significantly lower in the DM (0.31) group compared with the
CON (0.56) group (p < 0.05). Both metformin and insulin
treatment could reduce the abundance of Firmicutes and elevate
the abundance of Bacteroidetes in DM rats, and the ratio of
Bacteroidetes/Firmicutes was 0.47 and 0.89 in the MET and
INS groups, respectively. In addition, DM rats showed a
significantly higher abundance of the phyla Actinobacteria (p <
0.01) compared with the CON group.Metformin treatment further
increased such abundance, while insulin treatment decreased the
abundance of Actinobacteria (Figure 2F).

Figure 3A shows a heatmap presenting the detailed intestinal
microbiota composition (top 50) at the genus level. The relatively
predominant taxa at the genus level were Lactobacillus,
norank_f_Bacteroidales_S24-7_group,
Lachnospiraceae_NK4A136_group, andAlloprevotella. Compared
with the CON group, the abundances of Roseburia,
Christensenellaceae_R-7_group, and (Ruminococcus)
_gnavus_group were significantly increased, while the
abundances of Alloprevotella, Prevotella_1, and
Prevotellaceae_Ga6A1_group were significantly decreased in
the DM group. After metformin treatment, the composition of
intestinal microbiota changed a lot at the genus level. The
abundances of Phascolarctobacterium, Anaerotruncus,

(Eubacterium)_hallii_group, and (Ruminococcus)
_torques_group were significantly higher, while the abundances
of Lactobacillus, unclassified_f_Lachnospiraceae,
norank_f_Ruminococcaceae, unclassified_f_Ruminococcaceae,
Ruminiclostridium_6, Quinella, Oscillibacter,
Lachnospiraceae_UCG-006, and Ruminiclostridium were
significantly lower in the MET group compared with the DM
group. However, insulin treatment showed little impact on the
intestinal microbiota at the genus level. The abundance of
norank_f_Bacteroidales_S24-7_group was increased, and the
abundance of Lactobacillu and
unclassified_f_Peptostreptococcaceae was decreased in the INS
group compared with the DM group (Figure 3B).

Non-targeted Metabolomics Analysis
To further elucidate the therapeutic mechanisms of metformin and
insulin on T2DM, we assessed the serum metabolites in CON, DM,
MET, and INS groups according to metabolomics. We first applied
the PCAmodel for data interpretation to explore the general trend of
the four groups. The generalized separation of variations was
primarily conducted according to PCA, and the variations of all
groups were calculated using the OPLS-DA method based on the
VIP values. Figures 4A,B show that a superior separation existed
among the CON, DM, MET, and INS groups in both ESI+ and ESI−

modes. PCA score plots showed that significant differences were
observed between the CONgroup andDMgroup in the positive and
negative ions, indicating that the serum metabolites in T2DM rats
were remarkably altered. The PCA loading diagram showed that
metformin and insulin could affect the serum metabolic
composition of DM rats in different degrees, indicating that the
abnormal metabolism in DM rats was ameliorated after metformin
and insulin treatment.

To further identify differential metabolites and to increase the
number of representative latent biomarkers, we applied the OPLS-
DA to distinguish the two groups. A more clear separation among
different groups was achieved using the supervised OPLS-DA
model. Figures 4C,D show that there was a clearly distinction
between the CON group and DM group in ESI+ and ESI- modes
(C: R2X � 0.802, R2Y � 0.998, Q2 � 0.863; D: R2X � 0.750, R2Y �
0.996, Q2 � 0.969). Figures 4E,F, display that the MET group and
DM group were obviously separated in the ESI+ and ESI- modes
(E: R2X � 0.506, R2Y � 0.996, Q2 � 0.524; F: R2X � 0.438, R2Y �

TABLE 1 | Biochemical parameters.

Parameters CON(n = 6) DM(n = 5) MET (n = 7) INS(n = 7)

TC (mmol/L) 1.81 ± 0.42 7.92 ± 3.70** 6.64 ± 2.76** 6.05 ± 2.22**
TG (mmol/L) 1.26 ± 0.28 1.66 ± 0.07* 1.11 ± 0.25## 0.50 ± 0.17**,##
HDL-C (mmol/L) 0.86 ± 0.14 0.63 ± 0.27 0.62 ± 0.13** 0.44 ± 0.17**
LDL-C (mmol/L) 0.42 ± 0.14 5.36 ± 2.94** 4.26 ± 2.09** 3.45 ± 0.73**
TBA (μmol/L) 11.18 ± 7.19 20.22 ± 3.14* 15.84 ± 4.42# 10.29 ± 3.96##
Urea (mmol/L) 5.44 ± 0.65 5.21 ± 1.57 5.29 ± 1.75 4.67 ± 1.08
Cr (μmol/L) 51.00 ± 4.98 48.40 ± 10.97 53.43 ± 5.35 49.43 ± 5.38
ALT (U/L) 59.50 ± 18.43 65.80 ± 15.71 94.57 ± 60.44 62.71 ± 9.72
AST (U/L) 165.33 ± 21.42 154.40 ± 72.57 186.43 ± 54.46 135.14 ± 14.06*

Values were presented as means ± SD; TC, total cholesterol; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TBA, total bile acid; Cr, creatinine; ALT, alanine
aminotransferase; AST, aspartate transaminase. *p < 0.05, **p < 0.01 vs. CON group. #p < 0.05, ##p < 0.01 vs. DM group.
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0.954, Q2 � 0.318). Figures 4G,H show that the INS group and
DM group also had an obvious variation in the ESI+ and ESI-
modes (G: R2X � 0.841, R2Y � 0.997, Q2 � 0.787; H: R2X � 0.843,
R2Y � 0.997, Q2 � 0.751).

Identification of Differential Metabolites
In our current work, we adopted the supervised OPLS-DAmodel to
identify the biomarkers based on the p < 0.05 and VIP > 1. Next, we
searched the accurate mass to charge ratio (m/z) of the positive and
negative ions in the online library (http://www.hmdb.ca/) to identify
the qualified elements. In addition, the potential biomarkers were
surmised by the fragmentation behaviors of MS/MS. According to

the criteria of p < 0.05 and VIP > 1, a fewmetabolites were identified
as the latent biomarkers. Moreover, 328, 64, and 206 differential
metabolites were identified among DM/CON, MET/DM, and INS/
DM groups, respectively (Supplementary Table S2). Four types of
(amino acids, BAs, glycerophospholipids/glycerolipids, and
acylcarnitines) and 47 metabolites related to glucose metabolism
were screened and identified as potential biomarkers in the MET or
INS group (Table 2). Specifically, compared with the DM group, the
levels of L-glutamine, L-citrulline, CA, GCA, 3a,7a-
dihydroxycholanoic acid, 3a, 6b, 7b-trihydroxy-5b-cholanoic acid,
MG [0:0/18:2 (9Z, 12Z)/0:0], PE [22:6 (4Z,7Z,10Z,13Z,16Z, 19Z)/15:
0], PG [18:3 (9Z,12Z, 15Z)/22:5 (4Z,7Z,10Z,13Z, 16Z)], TG [18:0/o-

FIGURE 2 | Gut microbiota response to metformin and insulin treatment. (A) Rarefaction curves of the gut microbiota. (B) ACE and Chao index. (C) Venn (D)
weighted Unifrac PCoA of gut microbiota based on the OUT abundance (E) Relative abundance of gut microbiota in four groups at the phylum level (F) Relative
abundances of Firmicutes, Bacteroidetes and Actinobacteria in different groups. *p < 0.05, **p < 0.01 vs CON group. #p < 0.05, ##p < 0.01 vs DM group.
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FIGURE 3 | The detailed effects of metformin on the gut microbiota of diabetic rats at the genus level. (A) the relative abundances of 50 dominant genera in the gut
microbiota of four groups are presented in a heatmap. (B) Relative abundances of g_Lactobacillus, g_norank_f_Bacteroidales_S24-7_group,
g_unclassified_f_Lachnospiraceae, g_Roseburia, g_Alloprevotella, g_unclassified_f_Peptostreptococcaceae, g_Phascolarctobacterium, g_Ruminiclostridium_9,
g_norank_f_Ruminococcaceae, g_Desulfovibrio, g_Turicibacter, g_unclassified_f_Ruminococcaceae, g_Prevotella_1, g_Christensenellaceae_R-7_group,
g_Prevotellaceae_Ga6A1_group, g_Ruminiclostridium_6, g_Quinella, g_Prevotellaceae_UCG-001, g_Oscillibacter, g_Clostridium_sensu_stricto_1, g_Anaerotruncus,
g_(Eubacterium)_hallii_group, g_Lachnospiraceae_UCG-006, g_Ruminiclostridium, g_(Ruminococcus)_torques_group and g_(Ruminococcu)_gnavus_group in the gut
microbiota of four groups. *p < 0.05, **p < 0.01 vs. CON group. #p < 0.05, ##p < 0.01 vs. DM group.
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FIGURE 4 | PCA andOPLS-DA score plots in positive mode and negative mode. PCA score plot of each group in positive mode (A) and negative mode (B). OPLS-
DA score plots from CON group vs DM group in positive mode (C) and negative mode (D); MET group vs DM group in positive mode (E) and negative mode (F); INS
group vs DM group in positive mode (G) and negative mode (H).
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18:0/22:5 (7Z,10Z,13Z,16Z, 19Z)], 2-methylbutyroylcarnitine, and
3,5-tetradecadiencarnitine were significantly decreased, while the
levels of PE [22:1 (13Z)/22:2 (13Z, 16Z)], PG [16:0/18:3 (9Z,12Z,
15Z)], and TG [20:0/18:3 (9Z,12Z,15Z)/20:2n6] were significantly
increased in the MET group. More differential metabolites were
found between INS and DM groups, such as L-glutamic acid,
L-isoleucine, L-leucine, L-valine, CA, DCA, 3a,7a-
ddihydroxycholanoic acid, 3a,6b, 7b-trihydroxy-5b-cholanoic acid,
3-oxocholic acid, lysoPC [16:1 (9Z)], lysoPC(17:0), lysoPC(P-16:0),
lysoPE (24:0/0:0), PC [18:1 (11Z)/18:1 (11Z)], PC[18:1 (11Z)/18:3
(9Z,12Z, 15Z)], PC [18:4 (6Z,9Z,12Z, 15Z)/18:4 (6Z,9Z,12Z, 15Z)],
PC[20:5 (5Z,8Z,11Z,14Z, 17Z)/14:0], PE [18:4 (6Z,9Z,12Z, 15Z)/20:5
(5Z,8Z,11Z,14Z, 17Z)], PE [P-16:0/14:1 (9Z)], PE (P-16:0e/0:0), PE-

NMe2 [16:0/18:1 (9Z)], PG (16:0/16:0), PG [18:3 (6Z,9Z, 12Z)/16:1
(9Z)], PI[16:1 (9Z)/18:1 (11Z)], PI[18:1 (9Z)/18:3 (9Z,12Z, 15Z)],
PS(14:0/16:0), TG (16:1 (9Z)/18:0/20:0)(iso6),TG [18:1 (9Z)/24:0/18:
3 (6Z,9Z, 12Z)], TG (20:0/14:0/o-18:0), TG (22:0/22:0/o-18:0), 11Z-
octadecenylcarnitine, 2-hydroxymyristoylcarnitine, 2-
hydroxylauroylcarnitine, 3,5-tetradecadiencarnitine, 3-hydroxy-9-
hexadecenoylcarnitine, and trans-2-tetradecenoylcarnitine.

Serum Bile Acids
Thirteen BAs were detected in four groups, including both primary
BAs (CA, CDCA, GCA, GCDCA, TCA and TCDCA) and secondary
BAs (DCA, UDCA, LCA, TLCA, TDCA, GUDCA, and TUDCA)
(Figure 5). Compared with the CON group, the serum levels of both

TABLE 2 | The information of metabolites selected as biomarkers characterized in serum profiles and their taxonomy.

Metabolites m/z Rt DM/CON MET/DM INS/DM Taxonomy

L-Glutamic acid 148.0590 420.2050 ↑* — ↓# L-alpha-amino acids
L-Glutamine 169.0572 355.0700 ↑* ↓## — L-alpha-amino acids
L-Isoleucine 130.0860 295.5550 ↑* — ↓## L-alpha-amino acids
L-Leucine 132.1004 276.8655 ↑* — ↓## L-alpha-amino acids
L-Valine 159.1111 249.4830 ↑* — ↓## L-alpha-amino acids
L-Citrulline 176.1022 371.7170 ↑* ↓# — L-alpha-amino acids
Cholic acid 373.2724 209.8450 ↑* ↓# ↓# Bile acids and derivatives
Deoxycholic acid 391.2828 148.0540 ↑* — ↓# Bile acids and derivatives
Glycocholic acid 466.3147 234.0415 ↑** ↓# — Bile acids and derivatives
3a,7a-Dihydroxycholanoic acid 427.2578 159.4030 ↑* ↓# ↓# Bile acids and derivatives
3a,6b,7b-Trihydroxy-5b-cholanoic acid 409.2925 209.7790 ↑* ↓# ↓## Bile acids and derivatives
3-Oxocholic acid 405.2613 136.9160 ↑** — ↓## Bile acids and derivatives
LysoPC [16:1 (9Z)] 494.3207 111.2680 ↑* — ↓# Glycerophospholipids
LysoPC (17:0) 544.3123 175.0980 ↓** — ↓## Glycerophospholipids
LysoPC (P-16:0) 480.3422 167.6570 ↓** — ↓## Glycerophospholipids
LysoPE (24:0/0:0) 566.4144 168.4340 ↓* — ↓## Glycerophospholipids
MG [0:0/18:2 (9Z,12Z)/0:0] 337.2718 233.2635 — ↓## ↓## Monoacylglycerides
PC [18:1 (11Z)/18:1 (11Z)] 844.5764 123.3900 ↑* — ↓## Glycerophospholipids
PC [18:1 (11Z)/18:3 (9Z,12Z,15Z)] 782.5684 119.1020 ↑** — ↓## Glycerophospholipids
PC [18:4 (6Z, 9Z, 12Z, 15Z)/18:4 (6Z, 9Z, 12Z, 15Z)] 812.4455 39.7520 ↑* — ↓# Glycerophospholipids
PC [20:5 (5Z, 8Z, 11Z, 14Z, 17Z)/14:0] 752.5187 124.7615 ↑** — ↓## Glycerophospholipids
PE [18:4 (6Z, 9Z, 12Z, 15Z)/20:5 (5Z, 8Z, 11Z, 14Z, 17Z)] 794.9319 340.0400 ↑** — ↓# Glycerophospholipids
PE [22:1 (13Z)/22:2 (13Z, 16Z)] 417.3330 47.3170 ↑* ↑# — Glycerophospholipids
PE [22:6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/15:0] 750.5032 125.3440 ↑* ↓# — Glycerophospholipids
PE [P-16:0/14:1 (9Z)] 646.9096 338.7110 ↑** — ↓## Glycerophospholipids
PE (P-16:0e/0:0) 460.2674 36.5820 ↑* — ↓# Glycerophospholipids
PE-NMe2 [16:0/18:1 (9Z)] 745.0469 26.0570 ↑* — ↓# Glycerophospholipids
PG (16:0/16:0) 721.9525 339.4390 ↑* — ↓# Glycerophospholipids
PG [16:0/18:3 (9Z, 12Z, 15Z)] 745.5051 239.5230 — ↑## — Glycerophospholipids
PG [18:3 (6Z, 9Z, 12Z)/16:1 (9Z)] 741.9493 340.0140 ↑* — ↓# Glycerophospholipids
PG [18:3 (9Z, 12Z, 15Z)/22:5 (4Z, 7Z, 10Z, 13Z, 16Z)] 820.0494 338.6380 — ↓## ↓## Glycerophospholipids
PI[16:1 (9Z)/18:1 (11Z)] 852.5577 180.2530 ↓** — ↓# Glycerophospholipids
PI[18:1 (9Z)/18:3 (9Z,12Z,15Z)] 876.5553 176.5865 ↓* — ↓# Glycerophospholipids
PS(14:0/16:0) 730.8923 339.1120 ↑* — ↓## Glycerophospholipids
TG [14:1 (9Z)/15:0/20:4 (8Z,11Z,14Z,17Z)] 811.6628 155.8800 ↓* — ↓# Glycerolipids
TG [16:1 (9Z)/18:0/20:0] (iso6) 940.8009 344.5030 ↑* — ↓# Glycerolipids
TG [18:0/o-18:0/22:5 (7Z,10Z,13Z,16Z,19Z)] 924.5365 209.4260 — ↓# ↓# Glycerolipids
TG [18:1 (9Z)/24:0/18:3 (6Z,9Z,12Z)] 984.9234 338.6735 ↑** — ↓## Glycerolipids
TG (20:0/14:0/o-18:0) 850.4403 338.6760 ↑* — ↓# Glycerolipids
TG [20:0/18:3 (9Z,12Z,15Z)/20:2n6] 922.4837 114.7160 ↓* ↑# — Glycerolipids
TG (22:0/22:0/o-18:0) 1,103.8635 338.7090 ↑** — ↓## Glycerolipids
11Z-Octadecenylcarnitine 426.3567 152.4600 ↑* — ↓# Acylcarnitine
2-Hydroxylauroylcarnitine 360.2727 191.5340 ↑** — ↓## Acylcarnitine
2-Methylbutyroylcarnitine 246.1686 223.4530 ↓* ↓# — Acylcarnitine
3,5-Tetradecadiencarnitine 368.2777 162.5400 ↑* ↓## ↓## Acylcarnitine
3-Hydroxy-9-hexadecenoylcarnitine 414.3194 179.6235 ↑** — ↓## Acylcarnitine
Trans-2-Tetradecenoylcarnitine 370.2937 159.9770 ↑** — ↓## Acylcarnitine
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primary and secondary BAs were remarkably increased in the DM
group. In particular, serum levels of CA, GCA, GCDCA, and DCA
were significantly higher, while the levels of TUDCA and TCDCA
were lower in the DM group compared with the CON group. No
significant differences were detected in serum levels of UDCA, CDCA,
TCA, GUDCA, TDCA, LCA, and TLCA between the DM and CON
groups. Metformin treatment could significantly decrease the serum
levels of CA, GCA, UDCA, and GUDCA, while such treatment
increased the level of TLCA in DM rats. Insulin treatment also
significantly decreased the level of CA, UDCA, and CDCA.

Associations Between the Intestinal
Microbiota and Serum Metabolites
In the present study, we assessed the relationships between the
intestinal microbiota and serum differential metabolites identified
between DM and MET rats using Spearman’s correlation analysis
(Figure 6). L-glutamine and L-citrulline were positively associated
with the relative abundance of Lactobacillus (p < 0.05), and the
corresponding r values were 0.68 and 0.66, respectively. Besides,

L-citrulline also exhibited a positive correlation with the relative
abundances of Ruminiclostridium, norank_f_Ruminococcaceae,
unclassified_f_Ruminococcaceae, Quinella, Ruminiclostridium_6,
Oscillibacter, and Lachnospiraceae_UCG-006 (p < 0.05, r �
0.60–0.75), and it had a negative correlation with
Phascolarctobacteriu (p < 0.05, r � −0.70). CA, GCA, and 3a,6b,
7b-trihydroxy-5b-cholanoic acid showed significant positive
correlations with the relative abundance of Lactobacillus (p <
0.05, r � 0.61–0.69). CA, 3a,7a-dihydroxycholanoic acid and 3a,
6b, 7b-trihydroxy-5b-cholanoic acid showed negative correlations
with the relative abundances of (Ruminococcus)_torques_group,
(Eubacterium)_hallii_group, and Phascolarctobacterium. LPA (0:0/
18:2 (9Z, 12Z)), MG (0:0/18:2 (9Z, 12Z)/0:0), PG [18:3 (9Z,12Z,
15Z)/22:5 (4Z,7Z,10Z,13Z, 16Z)] and PE [22:6
(4Z,7Z,10Z,13Z,16Z, 19Z)/15:0] showed moderate-to-high
positive association with the abundance of Quinella (p < 0.05, r
� 0.60–0.87), while PE [22:1 (13Z)/22:2 (13Z, 16Z)] and PG [16:0/
18:3 (9Z,12Z, 15Z)] showed high negative correlation with
Quinella (p < 0.01, r � −0.74–0.76). Moreover, 3, 5-
tetradecadiencarnitine displayed high positive associations with

FIGURE 5 |Serum BA concentrations in rats of four groups. (A)CA, cholic acid; (B)CDCA, chenodeoxycholic acid; (C)GCA, glycocholic acid; (D) TCA, taurocholic
acid; (E) GCDCA, glycochenodeoxycholic acid; (F) TCDCA, taurochenodeoxycholic acid; (G) UDCA, ursodeoxycholic acid; (H) DCA, deoxycholic acid; (I) LCA,
lithocholic acid; (J) GUDCA, glycoursodeoxycholic acid; (K) TUDCA, Tauroursodeoxycholic acid; (L) TDCA, taurodeoxycholic acid; (M) TLCA, taurolithocholic acid; (N)
Total primary BAs; (O) Total secondary BAs. *p < 0.05, **p < 0.01 vs. CON group. # p < 0.05, ## p < 0.01 vs. DM group.
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Ruminiclostridium_6, Quinella, Oscillibacter and
Lachnospiraceae_UCG-006 (p < 0.01, r � 0.71–0.80), while they
had negative association with (Ruminococcus)_torques_group (p <
0.01, r � −0.82).

The relationships between the intestinal microbiota and serum
BAs in DM and MET rats were also assessed using Spearman’s
correlation analysis (Figure 7). CA and total primary BAs were

positively associated with the relative abundances of Quinella and
Lachnospiraceae_UCG-006 (p < 0.05), while they were negatively
associated with (Ruminococcus)_torques_group (p < 0.01, r �
0.71–0.75). TCA exhibited a negative correlation with the relative
abundances of Phascolarctobacteriu. GCA showed sigenificant
positive correlation with the relative abundance of
unclassified_f_Lachnospiraceae (p < 0.01, r � 0.72). TUDCA,

FIGURE 6 | Correlation analysis of the gut microbiome and serum metabolites. The results of Spearman’s correlation between 13 differential genera (MET vs. DM)
and 50 differential metabolites (MET vs. DM) were presented as a heatmap. *p < 0.05, **p < 0.01, ***p < 0.001 denoted statistical significance between bacterial taxa and
metabolites.
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GUDCA, and UDCA displayed positivecorrelation with the relative
abundances of several genera, such as Ruminiclostridium,
norank_f_Ruminococcaceae, unclassified_f_Ruminococcaceae,
unclassified_f_Lachnospiraceae, Oscillibacter, Ruminiclostridium_6,
Lachnospiraceae_UCG-006, and Quinella. Besides, GUDCA and
UDCA had negative correlations with the relative abundances of
(Ruminococcus)_torques_group and (Eubacterium)_hallii_group.

DISCUSSION

In the present study, we showed that both metformin and insulin
treatment reduced the blood glucose level, ameliorated the lipid
metabolism, changed the composition of gut microbiota, and
altered the serum metabolome in T2DM rats induced by the
combination of STZ and HFD. Metformin treatment for 3 weeks
partially decreased the levels of blood glucose, TC, TG, and LDL-
C in DM rats, and the effectiveness was weaker compared with
the insulin treatment. Metformin and insulin treatment altered
the gut microbiota and metabolome profiles differently,
indicating that different mechanisms were involved in the two
types of pharmacotherapy.

Firmicutes and Bacteroidetes are the two dominant phyla in
the gut microbiota, and the Bacteroidetes/Firmicutes ratio has
been previously suggested as a marker of metabolic disease.

Accumulating evidence has confirmed that diabetes and obesity
can decrease the ratio of Bacteroidetes/Firmicutes in humans
and animals (Everard and Cani, 2013; Gurung et al., 2020).
Several investigations have shown that metformin treatment
can elevate the ratio of Bacteroidetes/Firmicutes (Ryan et al.,
2020; Zhang and Hu, 2020). In the present study, we also found
that metformin and insulin both increased the ratio of
Bacteroidetes/Firmicutes. It was noticeable that the relative
abundance of phylum Actinobacteria was remarkably
different among the four groups. Diabetes elevated the
relative abundance of phylum Actinobacteria, which was
regulated oppositely by the treatment of metformin or
insulin. Metformin further increased the abundance, while
insulin decreased the relative abundance of Actinobacteria.
A study regarding the intestinal microbiome of Chinese
T2DM patients has shown that the relative abundance of
Actinobacteria in T2DM patients treated with metformin is
markedly greater compared with the untreated T2DM patients,
which is in agreement with our data (Zhang F. et al., 2019).

At the genus level, 13 genera changed significantly after
metformin treatment, while only three changed after insulin
treatment, indicating the greater influence of metformin on the
gut microbiota. Among these genera, the abundances of short-
chain fatty acid (SCFA)-producing bacteria, such as
Phascolarctobacterium, Anaerotruncus, (Eubacterium)

FIGURE 7 |Correlation analysis of the gut microbiome and serum BAs. The results of Spearman’s correlation between 13 differential genera (MET vs. DM) and BAs
(MET vs. DM) were presented as a heatmap. *p < 0.05, **p < 0.01 denoted statistical significance between bacterial taxa and BAs.
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_hallii_group, and (Ruminococcus)_torques_group were
significantly increased after metformin treatment. SCFAs can
activate intestinal gluconeogenesis and have beneficial effects on
glucose and energy homeostasis (Larsen et al., 2010). SCFAs can be
produced by certain bacteria. For example, propionic acid can be
produced by Phascolarctobacterium (Reichardt et al., 2014), and
butyric acid can be produced by Eubacterium, Roseburia, and
Faecalibacterium (Louis et al., 2004). A lot of studies have reported
that metformin regimen can elevate the abundances of SCFA-
producing bacteria in diabetic animals and patients (Lee and Ko,
2014; Shin et al., 2014; Forslund et al., 2015; De La Cuesta-Zuluaga
et al., 2017; Wu et al., 2017; Lee et al., 2018). The abundance of
Ruminococcuswas also found increased in db/db mice and C57BL/
6J mice by metformin treatment (Bornstein et al., 2017; Zhang W.
et al., 2019; Ahmadi et al., 2020). Zhang et al. have reported that
metformin treatment can increase the abundance of
Phascolarctobacterium in Wistar rats fed with HFD (Zhang
et al., 2015). We also found that the abundances of two genera
unclassified_f_Lachnospiraceae and Lachnospiraceae_UCG-006,
which belong to the family Lachnospiraceae, were decreased in
the MET group compared with the CON group. It has been
reported that the abundance of Lachnospiraceae is increased in
obese mice fed by HFD (Li et al., 2021), while it is decreased in
women with a vegetarian diet (Barrett et al., 2018). Liraglutide, a
glucagon-like peptide-1 (GLP-1) analog, significantly increases
the abundances of Lachnospiraceae_UCG-001 and
Lachnospiraceae_NK4A136_group nonalcoholic in db/db mice
with nonalcoholic fatty liver (Liu et al., 2020), suggesting that
the decrease of Lachnospiraceae is beneficial for T2DM. The
abundance of unclassified Lachnospiraceae is markedly
decreased in metformin-treated obese patients compared with
the metformin-naive obese patients (Hiel et al., 2020). Similar
results are also observed in Wistar rats fed with HFD and T2DM
Sprague-Dawley rats, showing that the abundances of
Lachnospiraceae_incertae_sedis and Lachnospiraceae NK4A136
are decreased after metformin administration (Zhang et al.,
2015; Cui et al., 2019). Ryan et al. have reported that the
abundance of Ruminococcus is decreased by metformin
treatment in C57BL/6 mice fed with HFD (Ryan et al., 2020).
We also found that the abundances of norank_f_Ruminococcaceae
and unclassified_f_Ruminococcaceae were reduced by metformin.
Elbere et al. have shown that the metformin treatment can elevate
the abundance of Oscillibacter in both healthy nondiabetic
individuals and T2DM patients (Elbere et al., 2020), which is
opposite to our results. The alteration of Lactobacillus in our
present work was also inconsistent with previous findings, in
which its abundance is increased by metformin treatment in
obese or diabetic rodents (Zhang et al., 2015; Zhang M. et al.,
2019; Cui et al., 2019).

Amino acids promote the production of endogenous glucose
as substrates of gluconeogenesis (Schutz, 2011). Insulin resistance
is associated with higher levels of branched-chain amino acids
(BCAAs), aromatic amino acids, and glutamate/glutamine (Tai
et al., 2010). Among the serum differential metabolites between
CON and DM groups, the levels of L-glutamic acid, L-glutamine,
L-citrulline, and BCAAs (L-isoleucine, L-leucine, and L-valine)
were all remarkably increased in the DM group compared with

the CON group. After metformin treatment, the serum levels of
L-glutamine and L-citrulline were decreased. It has been reported
that metformin regulates ammonia homeostasis by controlling
glutamine metabolism in the enterocyte, exerting an indirect
regulatory effect on both the uptake and degradation of
glutamine (Gil-GÓmez et al., 2018). Adam et al. have assessed
353 metabolites in fasting serum samples from T2DM patients
who are treated with metformin or without anti-diabetic
medication and found that citrulline is significantly lower in
metformin-treated T2DM patients compared with those not
receiving anti-diabetic medication. Citrulline is also confirmed
to be significantly reduced in patients receiving metformin
treatment for 7 years. Furthermore, lower citrulline levels in
plasma, skeletal muscle, and adipose tissue are validated in
mice receiving metformin (Adam et al., 2016). Moreover, the
plasma concentrations of citrulline and arginine in overweight/
obese adults with impaired fasting glucose can be decreased after
3 months of metformin plus pioglitazone regimen (Irving et al.,
2015). Besides, acute administration of metformin decreases the
concentration of plasma citrulline in non-diabetic African
Americans (Rotroff et al., 2016). Citrulline plays a prominent
role in nitric oxide biosynthesis and the urea cycle. The potential
mechanism underlying metformin’s effect on citrulline
metabolism is related to the role of metformin in cellular and
systemic nitric oxide and/or urea biosynthesis in individuals with
T2DM (Irving and Spielmann, 2016). Many studies have
confirmed that obesity and insulin resistance are associated
with elevated circulating levels of BCAAs. BCAA and related
metabolites are widely accepted as the most efficient biomarkers
of obesity, insulin resistance, and T2DM in human (Knebel et al.,
2016; Bloomgarden, 2018; White et al., 2021). In the present
study, diabetes dramatically elevated the levels of BCAAs, which
was consistent with previous studies. The change of BCAA level
was not significant between the DM and MET groups, indicating
that the metformin treatment might not affect on the BCAA
metabolism. However, after insulin treatment, the levels of all
three BCAAs, including L-isoleucine, L-leucine, and L-valine,
were significantly decreased. The difference in effect on BCAA
metabolism might be one of the distinctions in the action
mechanism between metformin and insulin.

Acylcarnitines (ACs) function as carnitine esters of fatty acids
that have entered the mitochondria. Lately, ACs are suggested as
biomarkers of insulin resistance and metabolic inflexibility in
humans (Mihalik et al., 2010; Ramos-Roman et al., 2012).
Previous studies have indicated that the fatty acid oxidation
rate exceeds the tricarboxylic acid cycle, thus resulting in the
deposition of intermediary metabolites such as ACs (Muoio and
Neufer, 2012; Schooneman et al., 2013). Makarova et al. have
reported that insulin secretion upon glucose treatment reduces
the plasma levels of long-chain acylcarnitin of normal mice by
30% (Makarova et al., 2019). We found that several ACs exhibited
significant differences between the DM and CON groups. The
serum levels of 2-methylbutyroylcarnitine, 11Z-
octadecenylcarnitine, 2-hydroxylauroylcarnitine, 3,5-
tetradecadiencarnitine, 3-hydroxy-9-hexadecenoylcarnitine and
trans-2-tetradecenoylcarnitine were higher in diabetic rats
compared with the control rats, and insulin treatment could
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decrease the levels of all these ACs. The effect of metformin on
ACs seemed weaker compared with insulin, and metformin
treatment only decreased the levels of 2-
methylbutyroylcarnitine and 3,5-tetradecadiencarnitine. Paul
et al. have also reported that metformin reduces the levels of
several ACs in metabolically dysfunctional mice (Ryan et al.,
2020).

Lipid metabolism plays a fundamental role in the pathogenesis
of diabetes. Dyslipidemia can promote the insulin resistance
process, and further aggravate T2DM. Many studies have
shown that elevated lipotoxicity, such as enhanced synthesis of
fatty acids, sphingolipids and phospholipids, is associated with
the pathogenesis of diabetes (Zhu et al., 2011; Floegel et al., 2013;
Meikle et al., 2013; Shui et al., 2013; Zhao et al., 2013; Knebel et al.,
2016; Tonks et al., 2016). It has been reported that there is a
positive correlation between T2DM ceramide, and its precursor
dihydroceramide, as well as phosphatidylethanolamine,
phosphatidylglycerol and phosphatidylinositol (Meikle et al.,
2013). TG is one of the high-risk factors for T2DM, the level
of which should be strictly controlled in T2DM patients. We
found that a lot of lipids, including PC, PE, PG, PI, PS and TG,
were all significantly higher in T2DM rats compared with the
normal rats, and insulin treatment could alleviate most of them.
Metformin has beneficial effects on improving lipid metabolism,
resulting in a reduction of chylomicrons by up to 50% in T2DM
patients (He, 2020). Controversial conclusions have been
obtained on the effects of metformin on lipid metabolism. For
instance, Safai et al. have shown that T2DM patients treated with
metformin have higher levels of five
lysophosphatidylethanolamines (LysoPEs) compared with
metformin-naïve patients (Safai et al., 2018), while Wanninger
et al. have found that the levels of PC, lysoPC, phosphatidylserine,
and sphingomyelin (derived from PC) were lower in metformin-
exposed hepatocytes (Wanninger et al., 2008). It has been
believed that metformin reduces the content of hepatic lipid
by activating AMPK, thereby ameliorating the situation in
hyperglycemia and insulin resistance (Viollet et al., 2012).
However, in our present study, metformin treatment showed a
weaker influence on this dyslipidemia, and only very few types of
lipid were reversed. It was possibly attributed to the short course
of metformin treatment, and the effect of metformin on lipid
metabolism disorders has not been shown.

As themain element of bile, BAs not only facilitate the digestion
and absorption of fat but also are involved in glycolipid and energy
metabolism. BAs are cholesterol catabolites that are mainly
synthesized in the liver, in which CA and CDCA are the two
primary BAs generated. Following hepatic synthesis, BAs are
secreted into bile as glycine or taurine conjugates. BAs are
actively reabsorbed by enterocytes in the terminal ileum to
hepatocytes, where they are taken up and reused. A small
proportion of BAs is modified by intestinal microbiota and
passively reabsorbed in the colon. Primary BAs can be
metabolized to secondary BAs by gut bacteria. In the intestine,
a part of conjugated CA and CDCA is de-conjugated by gut
bacterial bile salt hydroxylase (BSH) to form DCA and LCA. In
addition, small amounts of CDCA are converted to UDCA by gut
bacterial 7β-hydroxysteroid dehydrogenase (Ferrell and Chiang,

2019). It has been demonstrated that BAs can take part in both
glucose metabolism and energy regulation, mostly via the
activation of the farnesoid X receptor (FXR) and the G protein-
coupled BA receptor 1 (BA membrane-type receptor TGR5). A lot
of studies have shown that hepatic insulin resistance and
hyperglycemia increase BA synthesis, resulting in alterations in
BA composition. For example, it has been reported that diabetic
(db/db) mice have a larger total BA pool size than wild-type control
animals (Chen et al., 2016). The levels of postprandial TBA, CA,
CDCA,DCA andUDCAwere greater in T2DMpatients compared
with healthy controls (Sonne et al., 2016). In our current work, both
metformin and insulin could partially recover the increased TBA in
diabetic rats. Moreover, several BAs changed significantly among
different groups. For example, the levels of CA, DCA, GCA,
CDCA, 3a,7a-dihydroxycholanoic acid, 3a,6b,7b-trihydroxy-5b-
cholanoic acid and 3-oxocholic acid were higher in the DM
group compared with the CON group. The level of CA, GCA,
3a,7a-dihydroxycholanoic acid and 3a,6b,7b-trihydroxy-5b-
cholanoic acid were lower in the MET group compared with
the DM group. Besides, we further determine the levels of 13
types of BAs, including six primary BAs and seven secondary BAs,
using LC-MS/MS. Compared with the DM group, metformin and
insulin treatment could both decrease the levels of total primary
BAs and total secondary BAs. In addition, metformin could
decrease the levels of CA, GCA, UDCA, and GUDCA, while it
increased the level of TLCA. The levels of CA, CDCA and UDCA
in DM rats were decreased after insulin administration. Metformin
can ameliorate glucose metabolism by modulating the TBA level in
the serum of diabetic animals. It has been reported that metformin
treatment increases the level of BSH produced by the gut
microbiota in diabetic mice (Wu et al., 2017). Sun et al. have
shown that metformin changed the level of GUDCA by
modulating the gut microbiota (such as inhibition of
Bacteroides fragilis growth), thereby suppressing the FXR
signaling pathway to decrease blood glucose and maintain blood
glucose homeostasis. It has been hypothesized that metformin
reduces the reabsorption of BA in the distal ileum, resulting in
increased bile salt concentration within the colon, which may
explain the impacts of metformin on the colonic microbiota
(Carter et al., 2003).

Collectively, we, for the first time, evaluated the impacts of
metformin on the gut microbiota and assessed the interplay
between gut microbiota and host metabolism in T2DM rats
induced by a combination of STZ and HFD. The above-
mentioned effects of metformin were also compared with
insulin treatment to further investigate the different
therapeutic mechanisms between metformin and insulin.
Compared with insulin treatment, metformin showed greater
influences on the composition of the gut microbiota, while it had
a weaker impact on serum metabolites. The therapeutic
mechanisms of metformin on diabetic rats were likely
associated with restoration of the dysbiosis of gut microbiota
and regulation of the disorder of amino acids (L-glutamine and
L-citrulline), glycerophospholipids/glycerolipids, acylcarnitine
(3,5-tetradecadiencarnitine), and BAs. Taken together,
regulating the BA levels might be a critical mechanism
underlying the therapeutic effects of metformin on diabetes.
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Our findings provided valuable insights in to the latent
mechanism of metformin.
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Integrative Metabolomics, Proteomics
and Transcriptomics Analysis Reveals
Liver Toxicity of Mesoporous Silica
Nanoparticles
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As pharmaceutical excipients, mesoporous silica nanoparticles (MSNs) have attracted
considerable concern based on potential risks to the public. The impact of MSNs on
biochemical metabolism is poorly understood, and few studies have compared the
effects of MSNs administered via different routes. To evaluate the hepatotoxicity of
MSNs, metabolomics, proteomics and transcriptomic analyses were performed in mice
after intravenous (20 mg/kg/d) or oral ad-ministration (200 mg/kg/d) of MSNs for
10 days. Intravenous injection induced significant hepatic injury based on pathological
inspection and increased the levels of AST/ALT and the inflammatory factors IL-6, IL-1β
and TNF-a. Omics data suggested intravenous administration of MSNs perturbed the
following metabolites: succinate, hypoxanthine, GSSG, NADP+, NADPH and 6-
phosphogluconic acid. In addition, increases in GPX, SOD3, G6PD, HK, and PFK at
proteomic and transcriptomic levels suggested elevation of glycolysis and pentose
phosphate pathway, synthesis of glutathione and nucleotides, and antioxidative
pathway activity, whereas oxidative phosphorylation, TCA and mitochondrial energy
metabolism were reduced. On the other hand, oral administration of MSNs disturbed
inflammatory factors and metabolites of ribose-5-phosphate, 6-phosphogluconate,
GSSG, and NADP+ associated with the pentose phosphate pathway, glutathione
synthesis and oxidative stress albeit to a lesser extent than intravenous injection
despite the administration of a ten-fold greater dose. Overall, systematic biological
data suggested that intravenous injection of nanoparticles of pharmaceutical excipients
substantially affected hepatic metabolism function and induced oxidative stress and
inflammation, whereas oral administration exhibited milder effects compared with
intravenous injection.

Keywords: mesoporous silica nanoparticle, metabolomics, proteomics, transcriptomic, hepatotoxicity, oxidative
stress, oxidative phosphorylation, inflammation
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1 INTRODUCTION

Mesoporous silica nanoparticles (MSNs) have been widely used
in biology (Rosenholm et al., 2016) and medicine (Tang et al.,
2012) due to their high pore volume, large specific surface area,
easy surface modification, biocompatibility, and degradability
features, such as slow drug release (He et al., 2016; Song et al.,
2016). MSNs have been used in cancer treatment (Baeza et al.,
2015; Birault et al., 2020), biological diagnosis (Lee et al., 2013),
and imaging (Trewyn et al., 2007). Although MSNs exhibit some
special, ideal properties as traditional preparation excipient
materials, including both degradable or nondegradable
produces, these materials are generally considered inert and
harmless to the body. However, an increasing number of
studies have demonstrated that these tiny nanoparticles can
affect the tissues and cells of the body, causing inflammation
and histopathological changes (Liu et al., 2012; Peeters et al.,
2013; Nemmar et al., 2016; Zhang et al., 2018). Therefore, the
assessment of their safety in vivo becomes indispensable.

Nanomaterials and porous adsorption particles for
pharmacies are generally prepared as injections, oral dosage
forms or powder sprays, which enter the body through
intravenous, gavage or atomization, respectively (Fu et al.,
2013). Nanoparticles easily enter the body through injection
and impact the body (Cho et al., 2009; Zhao et al., 2012;
Nemmar et al., 2016). In addition, studies have suggested that
after orally administered nanoparticles enter the intestine, these
nanoparticles can further pass through the intestinal membrane
barrier, enter into the circulation system and subsequently tissues
and cells, and thus impact the body (He et al., 2011; Li et al., 2015;
Chen et al., 2019, 2020). Similar to the processes of solid particles
in the atmosphere and in sprays, these solid particles mainly enter
the lungs through breathing via the respiratory tract, adhere to
the oral cavity and nasal cavity, enter the gastrointestinal tract
through drinking or eating, or enter the cells in the oral mucosa of
the nasal cavity (Griese, 1999; Patton and Byron, 2007; Park et al.,
2010; Garbuzenko et al., 2014; Shin et al., 2017; Pietroiusti et al.,
2018; Rosário et al., 2021).

The liver bears the brunt as the target organ of the particles. Lu
et al. (2010), (2015) reported that intravenous injection (IV) of
silica nanoparticles showed significant capture of the particles in
the liver and induced hepatic injury. Huang et al. (2011), Li et al.
(2015) administered MSN (particle size over 100 nm)
suspensions to ICR mice at a dose of 20 mg/kg by intravenous
injection and found increased accumulation in the liver after
7 days. Moreover, oral administration (IG) of MSN suspensions
to ICR mice at a dose of 40 mg/kg and spherical MSNs yielded
high liver accumulation after 7 days. Mohamed et al. found that
acute and subacute oral administration of graphene oxide
nanoparticles induced genomic instability and mutagenicity in
the mouse liver (Mohamed et al., 2020), which are closely
involved in oxidative stress.

Despite sporadic reports on the effects of MSNs on the body,
tissues or organs, there is a lack of systematic evaluation on the
metabolism, gene and protein levels of the damage to the body,
tissues or organs under the conditions of two different dosage
forms based on different administration modes, namely injection

and oral administration. Considering that the liver is the key
primary organ responsible for systematic metabolism and the
turnover of small molecules, metabolomics combined with
transcriptomics and proteomics was used in this study to
assess the effects of intravenous and intragastric
administration of MSNs on the function of the liver and to
further clarify the effects of administration mode on the body
and system. We aim to provide insight into improved assessment
of the safety of intravenous injection or oral administration of
MSNs and further understanding of the underlyingmechanism of
hepatotoxicity.

2 MATERIALS AND METHODS

2.1 Fabrication and Characterization of
Mesoporous Silica Nanoparticles
Mesoporous silica nanoparticles were synthesized according to
our previous reports (He et al., 2014, 2017). Briefly,
N-octadecyltrimethoxysilanem (C18TMS, 95%) and tetraethyl
orthosilicate (TEOS, 98%) were mixed in 50 ml ethanol and
sonicated for 10 min. Then, the mixture was transferred into
solutions of ethanol, ammonia and deionized water with stirring
for 2 h at room temperature. The C18TMS-incorporated particles
were collected by filtration, washed with ethanol and deionized
water and dried at room temperature. Finally, the collections were
calcined at 550°C for 6 h. The morphology and structure of MSNs
were observed by scanning electron microscopy (SEM, Hitachi S-
4800) and electron microscopy (TEM, JEM-2100F). The surface
area, pore volume and pore diameter were calculated by
Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda
(BJH) methods using a Quantachrome Autosorb-1C apparatus.

2.2 Animal Administration and Sample
Collection
All animal experiments were performed in accordance with
Institutional Animal Care and Use Committee guidelines of
China Pharmaceutical University. Male ICR mice (5–7 weeks
of age, 20–25 g) were used in our experiments and were
purchased from Shanghai Xipu-Bikai Experimental Animal
Co., Ltd. All animals were kept on a 12-h light-dark cycle, fed
ad libitum and acclimated to our research environment at least
1 week before the experimental manipulation.

Thirty healthy ICR mice were randomly allocated into three
groups (n = 10 for each group): the control group, IV group and
IG group. The MSN suspension (in physiological saline solution)
at concentrations of 0.6 mg/ml and 6 mg/ml was ultrasonicated
for 20 min before experiments. The suspension was injected
through the tail vein (20 mg/kg/d) or administered by gavage
(200 mg/kg/d) every day. The treatment period was 10 days.

After fasting overnight on the tenth day, blood samples were
collected via the ocular vein, centrifuged twice at 3,000 rpm for
10 min to separate serum and stored at −80°C. After blood
collection, the mice were sacrificed immediately. The livers were
separated, rinsed in cold phosphate buffer solution, and filter paper
was used to soak up water. The hepatic lobes were split into two
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parts for GC-MS and LC-MSmetabolomics. One portion of hepatic
lobules was collected for RT–PCR, and the other portion was fixed
in 10% formalin for histopathological examination. During the
sampling process, all but blood and pathology samples were
immediately placed in dry ice and stored at −80°C.

Twenty-four healthy ICR mice were randomly allocated into
three groups (n = 8 for each group): the control group, IV group
and IG group. The previous administration procedure was
repeated. After 10 days, the mice were sacrificed, the livers
were separated, rinsed in cold phosphate buffer solution, and
filter paper was used to soak up water. The hepatic lobes were split
into two parts for proteomics and transcriptomics, and all
samples were immediately placed in dry ice and stored at −80°C.

2.3 Metabolomics Analysis
2.3.1 GC-MS Analysis
The liver samples were pretreated for GC-MS or LC-MS analysis as
reported previously (Aa et al., 2021). In brief, 900 μl methanol
solution containing [1,2-13C2] myristic acid (12.5 μg/ml) as the
internal standard (IS) was added to 20mg of liver tissue samples
(n = 8–9 for each group) in a 1.5-ml Eppendorf tube. The samples
were homogenized to precipitate the protein and extract the
metabolites. After centrifugation for 10 min at 4°C at 20000×g,
100 μl supernatant was transferred to a chromatography (GC) vial
and evaporated to dryness using an SPD2010-230 SpeedVac
Concentrator (Thermo Savant, Holbrook, United States).
Methoxyamine (30 μl) in pyridine (10 mg/μl) was added to the
dried GC vial and shaken to dissolve the metabolites for 5 min. The
methoxymation reaction proceeded for 16 h at room temperature.
Then, 30 μl of N-methyl-N-(trimethylsilyl) trifluoroacetamide
(MSTFA) with 1% TMCS was added to the trimethylsilylation
reaction for 1 h. Finally, 30 μl of heptane, including methyl
myristate (30 μg/ml), was added to each solution, and the
solution was mixed by vortexing for 30 s. GC-MS analysis was
performed using a GCMSSQP2010 (Shimadzu Corp., Tokyo,
Japan) gas chromatography system, and detailed GCMS
parameters are provided in the supporting information. The
metabolites were identified by the mass spectra and retention
index of the detected compounds with reference standards or
those available libraries: the National Institute of Standards and
Technology (NIST) library 2.0 (2012), Wiley 9 (Wiley–VCH
Verlag GmbH & Co. KGaA, Weinheim, Germany) and our
own laboratory at China Pharmaceutical University. Each peak
area was normalized based on the internal standard (IS).

2.3.2 LC-MS Analysis
1000 μl methanol-ultrapure water (9:1) containing IS
(13C-glutamine) was added to 20mg of liver tissue samples (n =
8–9 for each group) in a 1.5-ml Eppendorf tube. The samples were
homogenized to precipitate the protein and extract the metabolites.
The mixture was centrifuged for 10min at 4°C at 20000×g. After
centrifugation, 400 μl supernatant was transferred to a new
Eppendorf tube. The mixture was centrifuged for 10min at 4°C
at 20000×g again. Two hundred microliters of supernatant was
transferred to a new Eppendorf tube. Then, the process was
repeated. Finally, 100 μl supernatant was collected and added to
the chromatography (LC) vial. LC/MS analysis was performed by

LC-Q-TOF/MS (AB Sciex), and detailed LC-MS parameters are
provided in the supporting information.

Principal component analysis (PCA) and partial least squares
discriminant analysis (PLS-DA) were applied using SIMCA-P 14.1.
According to the PCA algorithm, each point of the PCA score plot
represents the summarized information of all the molecules
measured in a single sample. Thus, the distance between points
indicates the similarity of metabolic components between samples.
PLS-DA can be used to elucidate the separation between groups of
variables. MetaboAnalyst3.0 (http://www.metaboanalyst.ca/
MetaboAnalyst/) was used to perform KEGG enrichment
analysis and generate heatmaps, and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (http://www.genome.jp/kegg/ligand.
html) was used to search the related metabolic pathways based on
the differential metabolites identified.

2.4 Proteomics Analysis
The cold acetone method was used to extract the total proteins.
The mouse liver samples (n = 5 for each group) were
homogenized in SDS protein lysis buffer (8 M urea, 2% SDS,
1x Protease Inhibitor Cocktail (Roche Ltd. Basel, Switzerland)) by
vortex oscillation and passage through a high-throughput tissue
grinding machine thrice. The supernatant was collected after
centrifugation at 12000 g at 4°C for 20 min. The concentrations of
the protein extracts were determined using a BCA Protein Assay
Kit. After trypsin digestion (Promega, Madison, WI), the peptide
mixture was redissolved in 0.1% TFA and fractionated by high pH
separation using a Pierce High pH Reversed-Phase Peptide
Fractionation Kit (Product No. 84868, Thermo Fisher
Scientific, MA, United States). Finally, eight fractions were
collected and combined into six fractions; each fraction was
dried in a vacuum concentrator for the next step. Then, nano-
HPLC–MS/MS analysis was performed by online nanospray
LC–MS/MS on an Orbitrap Exploris™ 480 mass spectrometer
(Thermo Fisher Scientific, MA, United States) coupled to an
EASY-nanoLC 1200 system (Thermo Fisher Scientific, MA,
United States). Spectronaut 13 (Biognosys AG, Switzerland)
was used to process and analyze the raw DIA data. Proteins
were annotated using the GO, KEGG and COG/KOG databases
(http://www.geneontology.org) to obtain their functions. After
Student’s t test, proteins with a Q value < 0.05 and absolute AVG
log2 ratio > 0.58 were filtered as differentially expressed proteins.

2.5 Transcriptomics Analysis
Global mRNA was extracted with TRIzol from the mouse liver
samples (n = 5 for each group) of the control, IV and IG groups.
The input material for the RNA sample preparations was a total
amount of 2 μg RNA per sample. Sequencing libraries were
generated using the NEBNext® Ultra™ RNA Library Prep Kit
for Illumina® (#E7530L, NEB, United States) according to the
manufacturer’s instructions, and index codes were added to
attribute sequences to each sample. Briefly, the mRNA was
purified from total RNA by poly-T oligo-attached magnetic
beads. Fragmentation was performed using divalent cations
under elevated temperature in NEBNext First Strand Synthesis
Reaction Buffer (5X). First strand cDNA was synthesized using
random hexamer primers and RNase H. Second strand cDNA
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synthesis was subsequently performed using buffer, dNTPs, DNA
polymerase I and RNase H. The library fragment was purified
with QiaQuick PCR kits and eluted with EB buffer. Then,
terminal repair, A-tailing and adapter addition were
implemented. The target products were retrieved, and PCR
was performed. Finally, the library was completed. A Qubit®
RNA Assay Kit in Qubit® 3.0 was used to measure the RNA
concentration of the library to preliminarily quantify and then
dilute the sample to 1 ng/μl. An Agilent Bioanalyzer 2100 system
(Agilent Technologies, CA, United States) was used to assess
insert size, and a StepOnePlus™ Real-Time PCR System (valid
library concentration>10 nM) was used to qualify accurate
quantification of insert size. Clustering of the index-coded
samples was performed on a cBot cluster generation system by
HiSeq PE Cluster Kit v4-cBot-HS (Illumina) following the
manufacturer’s recommendations. After cluster generation,
150-bp paired-end reads were generated by running a double-
ended sequencing program (PE) on the HiSeq sequencing
platform. The ENSEMBL database (http://www.ensembl.org/
index.html) was used to obtain the reference genomes and the
annotation file. HiSeq was used to count each gene in each
sample. Genes with a Q value < 0.05 and absolute AVG log2
ratio > 1 were identified as significantly expressed genes.

2.6 Biochemical Analysis
Serum biochemistry analyses of alanine aminotransferase (ALT),
aspartate aminotransferase (AST), alkaline phosphatase (ALP),
albumin (ALB), blood urea nitrogen (BUN), creatinine (CREA)
and dehydrogenase (LDH) were performed by Zhongda Hospital
Southeast University (Nanjing, China) (n = 8 for each group).

2.7 Quantitative RT–PCR
Total RNA was isolated from mouse liver samples (n = 8 for each
group) using TRI Reagent (Sigma, Nanjing). The mRNA
concentrations were quantified using a NanoDrop ND-1000
spectrophotometer (Thermo Scientific, Nanjing). The diluted
mRNA (0.5 μg/μl) was reverse-transcribed according to the
manufacturer’s protocol (Takara Biomedicals, Nanjing), and
the gene expression levels were determined by SYBR-green-
based real-time-PCR (ABI ViiA 7 Real-time PCR system,
Applied Biosystems, United States). β-actin and GAPDH
mRNA levels were used for internal normalization. The
sequences of TNF-a, IL-6 and IL-1β primers used for
qRT–PCR in our study are listed in Supplementary Table S4.

2.8 Histological Analysis
Liver samples (n = 3) were fixed in formalin for 24 h. Then, the fixed
samples were embedded in paraffin and sectioned for histopathology
analyses with hematoxylin and eosin (H&E) staining.

2.9 Data Analysis and Statistical Analysis
The results are presented as the means ± standard deviation (SD).
Statistical analysis was performed by GraphPad Prism 7.0
(GraphPad, San Diego, CA, United States). Unpaired Student’s
t-test and one-way ANOVA with Tukey’s correction were used as
appropriate. A p value < 0.05 was considered statistically
significant for all data.

3 RESULTS

3.1 Physicochemical Properties of the
Mesoporous Silica Nanoparticles
Preliminary analysis of the physicochemical properties of the
mesoporous silicon nanoparticles was performed using scanning
electron microscopy (SEM), transmission electron microscopy
(TEM) and nitrogen adsorption-desorption analysis. As shown in
the SEM image in Supplementary Figure S1A, the morphology
of the MSNs was approximately spherical, and the MSNs
exhibited good monodispersity and a uniform particle
diameter at approximately 80 nm. Supplementary Figure S1B
shows that the materials have worm-like mesostructured. The
measured BET specific surface area of the MSNs was 751.193 m2/
g. The average pore size and pore volume determined by the
Barrett–Joyner–Halenda method were 2.76 nm and 0.746 cc/g,
respectively (Supplementary Figures S1C,D).

3.2 Biochemical, Histopathological and
Inflammatory Factors Indicate Hepatic
Injury due to Intravenous or Oral
Administration of Mesoporous Silica
Nanoparticles
After oral administration or intravenous injection of MSNs for
10 days, the ALT and AST levels were measured to assess hepatic
injury. As shown in Supplementary Figures S1A, S2, compared
with the control group, oral administration significantly reduced
AST, BUN and LDH activities, but these activities were within the
normal range. Intravenous injection significantly elevated ALT
activities and decreased ALP activities beyond the normal range
and downregulated BUN within the normal range. The ALB and
CREA concentrations were not changed in the IG and IV groups
compared with the control group. Moreover, the mRNA expression
of inflammatory cytokines, including IL-1β, IL-6 and TNFα, was
measured in the liver tissues of mice. All IL-1β, IL-6 and TNFα
expression levels were significantly upregulated in the IV group, and
IL-1β and IL-6 expression levels were increased in the IG group
compared with the control group (Figure 1B). In addition,
representative pathological micrographs of the liver tissue sections
are presented (Figure 1C). HE staining pathological images did not
show obvious inflammatory cells in the IG group, whereas spotty
necrosis accompanied by inflammatory cell infiltration was observed
in the IV group (red arrow). Overall, these results indicated that oral
administration of MSNs induced a proinflammatory response in the
liver and that intravenous injection of MSNs induced significant
hepatic injury in mice.

3.3 Metabolomics Reveals Metabolic
Perturbation in Mouse Liver Exposed to
Mesoporous Silica Nanoparticles
Administered via the Intravenous or Oral
Route
The metabolomics profiles of the liver samples were analyzed
based on a PCA score plot (Figure 2A). The control and IV
groups were obviously separated in the PCA score plot, and the

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 13 | Article 8353594

Li et al. Nanoparticles’ Hepatotoxicity of Pharmaceutical Excipients

73

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


control with IG groups exhibited slight separation. Additionally, a
three-component PLS-DA model was constructed (Figure 2B).
The PLS-DA score plot revealed the goodness of fit and high
predictability of the model, demonstrating good separation
between the IV group and the control group as well as the IG
group and the control group. These PCA and PLS-DA score plot
results suggested that intravenous injection with MSNs exhibited
remarkable differences and dramatic metabolic disturbances
compared to the control group or IG group.

In total, compared to the control group, 18 differentially
metabolites was involved in carbohydrate metabolism, 21
differentially was metabolites involved in amino acid and
derivative metabolism, 23 differentially metabolites was involved
in purine and pyrimidine nucleotide metabolism, 4 differentially
metabolites was associated with fatty acid and ketone bodies, 8
differentially metabolites was involved in vitamin and GSH
metabolism, and 8 differentially metabolites of others were
identified (Supplementary Table S1). Based on KEGG
enrichment pathway analysis (Figures 2C,D), the main perturbed
metabolic pathways we focused on included the tricarboxylic acid

(TCA) cycle, glycolysis, nicotinamide and glutathione metabolism,
pentose phosphate pathway (PPP), amino acid metabolism, and
purine and pyrimidine nucleotide metabolism.

3.4 Correlation Analysis of Transcriptomic
and Proteomic Data in Mouse Liver Upon
Exposure to Mesoporous Silica
Nanoparticles by Intravenous or Oral
Administration
The proteomics and transcriptomics profiles from the liver
samples in different groups (control, IV and IG) were
evaluated using PCA and PLS-DA score plots. Proteomics and
transcriptomics analyses yielded similar PCA and PLS-DA score
plots. The IV group was located far from the control group, and
the control group was not separated from the IG group in contrast
to that observed in the PCA score plot (Figures 3A,C). These
results indicated that intravenous injection with MSNs was
significantly different from the control and IG groups. It was
difficult to distinguish between the control group and IG group.

FIGURE 1 | (A) Effect of different exposure methods (IV and IG) on serum biochemistry, including ALT, AST, ALP, LDH and ALB. Light blue bars indicate the range
of values obtained from healthy ICRmice. (B) IL-1b, TNFa and IL-6mRNA expression inmouse liver. (C)Histological examination of liver from themouse of control group,
IV and IG group, red arrow: inflammation site. The data are expressed as the mean ± SD, pp < 0.05, ppp < 0.01, and pppp < 0.001 compared with the control.
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PLS-DA presented good separation between the IV group, IG
group and control group (Figures 3B,D).

A total of 8,190 proteins and 27,185 expressed genes were
identified (Supplementary Figure S3). Upon oral administration
of MSNs, 2 differentially expressed proteins and 42 differentially
expressed genes were identified compared to the control group. Of
these, 1 protein and 8 genes were upregulated, and 1 protein and 34
genes were downregulated. No overlap was noted between the
regulated proteins and genes. Under intravenous injection with
MSNs, 1,509 differentially expressed proteins and 1,376
differentially expressed genes were identified compared to the
control group. Of these, 1,609 proteins and 1,250 genes were
upregulated, and 781 proteins and 126 genes were downregulated.
In total, 175 identical upregulations and 15 downregulations were
noted between proteins and genes (Figure 3E, Supplementary Table
S2). The 2 differentially expressed proteins in the IG group compared
with the control groupwereCyp2c39 andPlin2, whereasCyp2c39 and
Plin2 genes were not differentially regulated (Supplementary Table
S3). KEGG pathway analysis was used to analyze the significant

proteins and genes noted between the IV group and control group.
Based on KEGG enrichment pathway analysis, we focused on
metabolic pathways and inflammation (Figure 3F).

3.5 Energy Metabolism and Oxidative
Phosphorylation
The mitochondrion is a very important subcellular organelle
given its role ROS and energy metabolism. Figure 4 shows
that the levels of proteins of respiratory chain complexes I, II,
III, IV and V of mitochondrion were obviously decreased and the
levels of proteins of V-type proton ATPase of lysosomes were
increased in the IV group compared with the control group.
However, the IG group exhibited no changes in mitochondrial
proteins. The mRNA expression levels of respiratory chain
complexes were not significantly altered in the IV group and
IG group compared with the control group.

Lactate levels were significantly decreased in the IV group
compared with the control group. In addition, the levels of 3-

FIGURE 2 | Effect of Mesoporous Silica Nanoparticles (MSNs) on mouse liver metabolites by different exposure methods (IV and IG) using HPLC–MS and GC–MS.
(A) Principal component analysis (PCA) scoring maps of metabolites. (B) Partial least squares discriminant analysis (PLS-DA) scoring maps of metabolites. (C) KEGG
metabolic pathway of the liver samples between the control and IV groups. (D) KEGG metabolic pathway of the liver samples between the control and IG groups.
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FIGURE 3 | Effect of Mesoporous Silica Nanoparticles (MSNs) administered by different routes (IV and IG) on mouse liver proteins and genes as determined by
proteomics and transcriptomics. (A) PCA, (B) PLS-DA of transcriptomics, (C) PCA, (D) PLS-DA of proteomics. (E) Venn diagrams depict overlapping proteomics and
transcriptomics data. The left panel shows the regulation of genes and proteins in the IG group compared with the control group. The right panel shows the regulation of
genes and proteins in the IV group compared with the control group. (F) KEGG pathway analysis revealed the top 20 pathways based on the same regulation of
proteins and genes between the control and IV groups.
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phosphoglyceric acid (3-PGA), fructose 1,6-bisphosphate
(F1,6P), aconitate, alpha-ketoglutarate (a-KG), succinate,
oxaloacetic acid, fumarate and malate were significantly
increased in the IV group, and aconitate level was significantly
increased in the IG group compared with the control group
(Figure 5A, Supplementary Figure S1). The heatmaps in
Figures 5B,D display the expression changes in the
metabolite, protein and transcript levels of carbohydrates of
the TCA cycle and glycolysis. These results showed significant
differences between the IV group and the control group. Proteins
and genes involved in energy metabolism, including hexokinase
(HK), 6-phosphofructokinase 1 (PFK) and pyruvate kinase (PK),
were upregulated (Figure 5A, Supplementary Figure S2). The
data demonstrated that intravenous injection altered TCA cycle
and glycolysis, whereas oral administration had minimal effects.

3.6 Antioxidant Pathway
The antioxidant pathway in the mouse liver was significantly
affected by oral administration or intravenous injection of MSNs.
The PPP, glutathione, NADPH biosynthesis pathways and SOD3
reduce ROS to maintain redox equilibrium. We found significant
upregulation of serine, glycine, 6-phosphogluconate, biotin,
thiamine, FAD, NAD+, NADPH, NADP+ and oxidized
glutathione and downregulation of folate in the IV group
compared with the control group. The levels of serine, glycine,
6-phosphogluconate, ribose 5-phosphate, dihydrofolic acid, FAD,
NAD+ and oxidized glutathione were significantly increased, and
NADPH and GSH/GSSG levels were downregulated in the IG
group compared with the control group (Figures 6A–D,

Supplementary Table S1). The heatmaps in Figures 6E,F
display the expression changes in the metabolite, protein and
transcript levels associated with PPP, glutathione and NADPH
metabolism. These results revealed significant differences
between the IV group and the control group. The upregulated
glutathione and NADPH metabolism proteins and genes
included CD38, glutathione peroxidase (GPX) and glutathione
S-transferase (GST) (Figures 6A–D, Supplementary Table S2).

3.7 Purine and Pyrimidine Metabolism and
Biosynthesis
A number of purine and pyrimidine nucleotides were aberrantly
altered in mice treated with MSNs orally administered or
intravenously injected via the tail vein. For instance, compared
with the control group, the levels of GMP, IMP, ITP, UDP, ATP,
ADP, dGTP, dGDP, guanine, xanthine, xanthosine, cytidine and
deoxyuridine were notably increased, and the levels of dUMP,
hypoxanthine, thymine, deoxyadenosine, GTP, inosine and
adenosine were significantly reduced in the IV group.
However, the levels of IMP, ITP, UTP, ADP, dUMP,
guanosine, inosine and hypoxanthine were significantly
increased in the IG group compared to the control group
(Figure 7D, Supplementary Table S1). The heatmaps in
Figures 7C,E display the expression changes in the metabolite,
protein and transcript levels of nucleotides and nucleosides.
These results revealed significant differences between the IV
group and the control group. Numerous proteins and genes
associated with purine and pyrimidine nucleotides were

FIGURE 4 | Effect of Mesoporous Silica Nanoparticles (MSNs) administered by different routes (IV and IG) on mitochondrial oxidative phosphorylation complexes.
Heatmaps of genes and proteins involved in respiratory chain complexes I, II, III, IV and V of mitochondria and V-type proton ATPase of lysosomes.
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upregulated: 3′,5′-cyclic-nucleotide phosphodiesterase (PDE),
adenylate kinase (AK), ribonucleoside-diphosphate reductase
subunit M2 (RRM2), adenosine triphosphatase (ENTDP2) and
uridine phosphorylase (UPP) (Figures 7A,B).

4 DISCUSSION

Our data showed that intravenous injection of MSNs caused
significant changes in parameters related to liver function,
histopathological sections, and biological system results based
on metabolomics, genomics, and proteomics. We observed
obvious injury to the liver, upregulation of inflammatory
factors of the liver and induced glycolysis, the tricarboxylic
acid cycle, and oxidative phosphorylation related to
mitochondrial energy metabolism, enhanced succinic acid and
glutathione synthesis associated with inflammation and oxidative

stress, and an abnormal PPP activity for nucleic acid synthesis.
Oral administration of MSNs also increased levels of
inflammatory factors and altered metabolomics,
transcriptomics and proteomics profiles. However, the effect
was significantly weaker than that of intravenous
administration, even though the dose was much higher than
that of intravenous injection. After intravenous injection, all the
particles directly enter the systemic circulation and are more
likely to accumulate in the liver and thus cause liver damage (Cho
et al., 2009; Geraets et al., 2014; Elgrabli et al., 2015). However,
after oral administration, most of the particles gather in the gut,
and only a small amount of these particles enter the liver via the
hepatic portal vein and then systemic circulation. We presume it
is the key reason why liver function was affected by oral particles,
but the effect was weaker than that of intravenous injection. In
support of this hypothesis, a previous study showed that liver
tissue is highly exposed to these refractory particles after

FIGURE 5 | Effect of Mesoporous Silica Nanoparticles (MSNs) on the TCA cycle in mitochondria and glycolysis based on different routes of administration (IV and
IG). (A) Schematic of glycolysis and the TCA cycle pathway. Red indicates significant upregulation, and green indicates significant downregulation. (B) Heatmap of
metabolite concentrations of glycolysis and the TCA cycle pathway. (C) Heatmaps of glycolysis and the TCA cycle pathway based on proteomics and transcriptomics.
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injection, and liver tissue is also exposed to these particles after
oral administration (Cho et al., 2009; Geraets et al., 2014; Elgrabli
et al., 2015). Consistently, a number of studies (Yu et al., 2012;
Dogra et al., 2018) have reported that the particle exposure level
in liver tissue increased significantly after oral administration of
MSNs, suggesting that oral nanoparticles can be absorbed into the
liver through the intestine and ultimately affect liver tissue.

Based on systematic biological proteomics, transcriptome and
metabolomics data, the effects of intravenous and gavage
administration on liver tissues were evaluated. We observed
that MSN administration, especially intravenous
administration, significantly affects the metabolism of small
molecules, proteins and genes in the liver. Transcriptomics
and proteomics revealed a mutual and consistent effect of
MSNs on GPX, SOD3 and G6PD genes/proteins related to
oxidative stress; HK and PFK genes/proteins related to

glycolysis; and UUP, AK and RRM2 genes/proteins related to
nucleic acid synthesis. These results suggest that liver injury is
closely related to the nucleic acid synthesis pathway, oxidative
stress, glycolysis and mitochondrial energy metabolism. The
metabolomics results showed significant changes in many
metabolites involved in metabolism, and these results are
consistent with the results of transcriptomics and proteomics
studies. For example, the perturbed metabolites GSSG, NADPH,
NADP+, succinic acid and hypoxanthine are closely related to
oxidative stress as uncovered by transcriptomic and proteomic
data. IMP, UDP, and GMP are key metabolites involved in
nucleic acid synthesis. In addition, the TCA intermediates,
F1,6P and 3-PGA are important in glycolysis/mitochondrial
energy metabolism. The integrated analysis of proteomic,
transcriptomic and metabolomics data suggested consistent
effects of MSNs on key metabolic pathways, especially the

FIGURE 6 | Effect of Mesoporous Silica Nanoparticles (MSNs) on the antioxidant pathway based on different routes of administration (IV and IG). (A–D) Schematic
of PPP, glutathione biosynthesis, SOD3 antioxidation and NADPH biosynthesis. Red indicates significant upregulation, and green indicates significant downregulation.
(E) Heatmap of metabolite concentrations of PPP, glutathione and NADPH biosynthesis. (F) Heatmaps of PPP, glutathione and NADPH biosynthesis based on
proteomics and transcriptomics.
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nucleic acid synthesis pathway, oxidative stress, and glycolysis/
mitochondrial energy metabolism in the liver.

To our surprise, transcriptions and proteins analysis
indicated inconsistent data, i.e., the expression at protein
level showed regularly consistent within each group, and
distinctly different from the other groups, while the

expression at transcription level did not. Usually, the
expression at transcription and protein levels matches well
with each other, and with the activities, for examples, the
mRNA and protein expression levels of isocitrate
dehydrogenase, succinate dehydrogenase, malate
dehydrogenase and other enzymes in the respiratory chain

FIGURE 7 | Effect of Mesoporous Silica Nanoparticles (MSNs) on purine and pyrimidine nucleotides based on different routes of administration (IV and IG). (A, B)
Schematic of purine and pyrimidine nucleotide metabolism; red indicates significant upregulation, and green indicates significant downregulation. (C) Heatmap of
concentrations of metabolites of purine and pyrimidine nucleotide metabolism. (D) Heatmaps of purine and pyrimidine nucleotide metabolism based on proteomics and
transcriptomics.
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complex protein and TCA cycle are consistent. However,
occasionally, the correlations don’t match between mRNA
expression level and protein level in microorganism and
mammalian (Gygi et al., 1999; Maier et al., 2009; Rossignol
et al., 2009; Schwanhüusser et al., 2011; Liu et al., 2016).
Although the underlying mechanism is not well understood,
data suggested that ROS and/or oxidative stress was involved in
their diverse effect on mRNA and protein expression levels. For
an example, Song et al. (2022) reported that, due to the time lag
effect in protein modification, gene transcription and
translation, the expressions of SOD and GPX subtype genes
did not change in accordance with those at protein levels. It was
presumed that the oxidative stress or altered ROS level
perturbed mRNA translation efficiency, and also affected
protein degradation rates and the folding and modification
efficiency of proteins, e.g., in mitochondria and nucleus (Tan
et al., 2017; Latonen et al., 2018; Sun et al., 2019). In this study,
we observed a significant oxidative stress in liver, indicating that
the inconsistency of expression at mRNA and protein levels was
involved in oxidative stress induced by MSNs.

Mitochondria are the primary site of cellular energy
production, and the TCA cycle is the main pathway
responsible for energy generation. The liver is not only the
material transformation center of the body but also a center
with intensive energy loading (Akram, 2014; Panieri and
Santoro, 2016). Our data showed that after MSN injection,
mitochondrial respiratory chain protein complexes I, II, III, IV
and V decreased. In addition, oxidative phosphorylation was
reduced, and circulating TCA intermediates generally
increased. These results suggest that TCA metabolism was
affected and ATP production decreased. To compensate for
the loss caused by reduced energy production, cells generally
tend to upregulate glycolysis. Therefore, the F1,6P and 3PGA
metabolites as well as HK, PFK, PK genes and proteins in the
glycolysis pathway were upregulated. On the other hand,
nanoparticles typically induce oxidative stress and
mitochondrial dysfunction (Li et al., 2016; Lim et al., 2019;
Sun et al., 2019). To alleviate mitochondrial damage, the
downregulation of the mitochondrial respiratory chain was
observed and characterized by reduced mitochondrial
respiratory chain protein complexes I, II, III, IV and V,
including TCA metabolism. Because the production of ROS
greatly contributes to oxidative stress and inflammatory factors
(Hur and Gray, 2011; Nishijima et al., 2017; Snezhkina et al.,
2020), the elevation of inflammatory factors indicates that
MSN-induced inflammation occurs independently of ROS
levels. Previous studies have shown that the accumulation of
succinic acid, an intermediate substance in the TCA cycle, can
stimulate inflammation and induce upregulation of
inflammatory factors (Tannahill et al., 2013). Metabolomics
data showed that MSNs injection led to a significant increase in
succinic acid, indicating that it is related to inflammation and
inflammatory factors (Lim et al., 2019; Mohamed et al., 2020).
Moreover, liver injury triggers the repair and regeneration of
liver cells. Therefore, metabolic pathway analysis showed an
enhanced PPP pathway in the liver, which is primarily
responsible for increased synthesis of nucleic acids for the

construction of genetic materials. Compared with
intravenous injection, intragastric administration of MSNs
did not induce abnormalities in mitochondrial function;
however, distinct changes in antioxidant pathways, such as
glutathione synthesis and PPP, and the key metabolites of
hypoxanthine and NADPH synthesis were noted. In general,
the milder effects of oral administration on metabolism and
metabolic pathways can be attributed to the reduced amount of
particles entering the liver compared with that observed with
intravenous injection.

The literature (Lu et al., 2010; Yu et al., 2012; Fu et al., 2013;
Isoda et al., 2013; Hassankhani et al., 2015; Chatterjee et al.,
2016; Abdelhalim et al., 2018; Li et al., 2018; Abdel-Latif et al.,
2021; Sun et al., 2021) and our previous studies (Lu et al., 2010;
Yu et al., 2012; Fu et al., 2013; Isoda et al., 2013; Hassankhani
et al., 2015; Chatterjee et al., 2016; Abdelhalim et al., 2018; Li
et al., 2018; Abdel-Latif et al., 2021; Sun et al., 2021) have shown
that silica particles with particle sizes of 10–1000 nm cause
significant damage to the liver, whereas particles with sizes
greater than 100 nm cause significant damage to the kidney.
To study the effect of particles on the liver, we selected MSNs
with an average particle size of 80 nm with a normal particle size
distribution. Our data showed that MSNs have a significant
impact on liver tissue morphology, cell function and
metabolism. This study focuses on nondegradable particles,
so their effects on the function and metabolism of the liver
cannot be directly extrapolated to degradable particles.
Considering that undegradable and degradable particles have
different dynamic fates in vivo, the influence of degradable
particles on tissues and organs, especially liver tissue, needs
to be further studied and clarified.

5 CONCLUSION

Intravenous injection of MSNs induced inflammation, and
significant liver toxicity was noted. Based on metabolomics,
proteomics and transcriptomics analyses, this systematic
biological study suggested perturbed mitochondrial energy
metabolism of the TCA, oxidative phosphorylation and
glycolysis and stimulated oxidative stress involved in the
synthesis of the glutathione pathway and nucleotides via the
PPP. Oral administration of MSNs did not induce distinct
hepatic injury but did stimulate inflammatory factors and
affected metabolic pathways involved in the PPP, glutathione
synthesis and oxidative stress albeit to a lesser extent than
intravenous injection, even at much higher doses. The data
suggested that intravenous injection of nanoparticles of
pharmaceutical excipients substantially affected hepatic
function and metabolism and induced oxidative stress in
the liver.
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Cancer stem cells (CSCs) are subpopulation of cells which have been demonstrated in a variety
of cancermodels and involved in cancer initiation, progression, and development. Indeed, CSCs
which seem to form a small percentage of tumor cells, display resembling characteristics to
natural stem cells such as self-renewal, survival, differentiation, proliferation, and quiescence.
Moreover, they have some characteristics that eventually can demonstrate the heterogeneity of
cancer cells and tumor progression. On the other hand, another aspect of CSCs that has been
recognized as a central concern facing cancer patients is resistance to mainstays of cancer
treatment such as chemotherapy and radiation. Owing to these details and the stated stemness
capabilities, these immature progenitors of cancerous cells can constantly persist after different
therapies and cause tumor regrowth or metastasis. Further, in both normal development and
malignancy, cellular metabolism and stemness are intricately linked and CSCs dominant
metabolic phenotype changes across tumor entities, patients, and tumor subclones. Hence,
CSCs canbe determined as one of the factors that correlate to the failure of common therapeutic
approaches in cancer treatment. In this context, researchers are searching out new alternative or
complementary therapies such as targeted methods to fight against cancer. Molecular docking
is one of the computational modeling methods that has a new promise in cancer cell targeting
through drug designing and discovering programs. In a simple definition, molecular docking
methods are used to determine the metabolic interaction between two molecules and find the
best orientation of a ligand to its molecular target with minimal free energy in the formation of a
stable complex. As a comprehensive approach, this computational drug design method can be
thought more cost-effective and time-saving compare to other conventional methods in cancer
treatment. In addition, increasing productivity and quality in pharmaceutical research can be
another advantage of this molecular modeling method. Therefore, in recent years, it can be
concluded that molecular docking can be considered as one of the novel strategies at the
forefront of the cancer battle via targeting cancer stem cell metabolic processes.
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INTRODUCTION

Cancer is considered as one of the worldwide life-threatening and
the leading causes of human mortality (Vineis and Wild, 2014;
Organization, 2020). According to the latest data released by the
International Agency for Research on Cancer (IARC) on 14
December 2020, the annual incidence of cancer in 2020
reached 19.3 million cases and 10 million deaths. Furthermore,
evidence based on the World Health Organization (WHO)
suggests that there would be 29.5 million new cancer diagnoses
and 16.4 million cancer deaths per year by 2040 (Shah et al., 2019;
Sung et al., 2021). Accordingly, given the rapid development of
oncology researches and the advancement of novel biotechnology
approaches, determining different aspects of cancer progression
can pave the way for improved cancer prognosis and treatment
alternatives (Goyal et al., 2006; Charmsaz et al., 2018; Pucci et al.,

2019). Herein, one of the challenges in the field of cancer
treatment is the heterogeneity of tumor cells, which may lead
to anti-cancer drug resistance or cancer treatment failure.
Therefore, a full understanding of tumor heterogeneity can
provide a clear picture of cancer progression and lead to the
discovery of new cancer therapy options by researchers (y Cajal
et al., 2020). Tumor heterogeneity is a condition in which tumor
cells differ in various biological aspects such as function,
differentiation, tumorigenesis, and sensitivity to anti-cancer
therapies (Prager et al., 2019). In addition, depending on the
type of heterogeneity, heterogeneous groups of tumor cells can
have the same or distinct genomic content (Prager et al., 2019). In
addition, heterogeneous populations of tumor cells can have the
same or different genome content depending on the type of
heterogeneity (Bedard et al., 2013). Hereupon, tumor
heterogeneity can be divided into three types: 1) intertumor
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heterogeneity which is related to the variation of tumor cells
among different patients, 2) intersite heterogeneity which is
referred to the variation of cells among distinct tumors within
a patient such as tumors in the primary site and tumors in the
metastatic site, and 3) intratumor heterogeneity which is linked
with heterogeneous populations of cells in a single tumor (Piraino
et al., 2019). Oncology studies were shown that the cancer stem
cells (CSCs) model is one of the models responsible for the
generation of heterogeneous populations of cells, especially
intratumor heterogeneity type (Prasetyanti and Medema, 2017;
Turnquist et al.). Moreover, it can be caused by different factors
such as genetics, epigenetics, and various micro-environmental
features (Wang et al., 2015). Indeed, CSCs are a subgroup of
cancerous tumor cells that display stemness abilities in the same
manner as normal stem cells. For instance, they can self-renew to
form the same daughter cells and give rise to differentiated
multiple lineages of cells which form tumors. Additionally, the
quiescence state is one of the distinguishing characteristics of
cancer and normal stem cells, and it can play a role in therapeutic
resistance and cancer progression (Hung et al., 2019; Lee et al.,
2020). Furthermore, CSCs can make the treatment process more
challenging because of their resistance to therapeutic approaches
such as chemo and radiation therapies. The mentioned
therapeutic resistance can be due to a variety of factors and
mechanisms, including tumor environment, epigenetic effects,
multidrug resistance proteins (MRPs) expression, various
signaling pathways, effective mechanisms in DNA damage
resistance, and the epithelial-to-mesenchymal transition (EMT)
process (Phi et al., 2018). On the other hand, the function of
metabolic pathways and processes are crucial in the growth,
proliferation and survival of CSCs. In this respect, many
investigations at the cellular and molecular level were
indicated that unique forms of metabolic processes such as
oxidative phosphorylation (OXPHOS), carbohydrate, and lipid

metabolisms are observed in CSCs (Chae and Kim, 2018; Yadav
et al., 2020). Therefore, the science of metabolomics, as well as the
understanding of alterations associated with metabolic processes,
could be useful in recognizing CSC behaviors and developing
specific therapeutic methods for various types of cancers (Gilany
et al., 2018; Rahim et al., 2018; Arjmand, 2019a, 2019b; Goodarzi
et al., 2019; Larijani et al., 2019; Tayanloo-Beik et al., 2020), as
well as the understanding of alterations associated with metabolic
processes, could be useful in recognizing CSC behaviors and
developing specific therapeutic methods for various types of
cancers (Cuyàs et al., 2017). Additionally, scientists have been
pushed to employ targeted approaches for treating cancer due to
the problems in CSCs resistance to therapeutic methods.
Molecular docking is one of the targeted approaches that play
an important role in drug discovery and pharmaceutical
researches. This computer-assisted drug design method is
based on mathematical algorithms in which the effective
biological binding-conformation between the drug and the
target molecule can be evaluated. Indeed, the mentioned drug
designing is based on the molecular structure that makes it
possible to model and predict the molecular interactions as
well as evaluate the biochemical processes (Meng et al., 2011;
Phillips et al., 2018). Hereupon, in the present study, the cellular
and molecular characteristics, signaling pathways, metabolic
processes, and drug resistance of CSCs have been reviewed.
We have also focused our discussion on molecular docking as
a novel therapeutic approach in CSCs targeting.

THE BIOLOGY OF CANCER STEM CELLS

CSCs are a subset of cancer cells or tumor-initiating cells (TICs)
that serve as stem cells and contribute to the original tumor’s
phenotypic variety (Lobo et al., 2007). They are found in variable

TABLE 1 | Most frequently applied markers for cancer stem cells isolation.

CSCs
Marker

Marker type Expression location Function Cancer Type References

CD44 Surface
marker

Leukocytes, Endothelial cells,
Hepatocytes, Mesenchymal cells

Activation of tyrosine kinase receptors by binding
to extracellular matrix, Cell migration, Distinction,
Increasing the speed of tumor cells entrance into
blood vessels in metastasis

Breast, prostate,
lung

Abbaszadegan et al. (2017); Bao
et al., (2013)

CD133 Surface
marker

Embryonic epithelial stem cell,
Hematopoietic stem cells

Organizer of the plasma membrane topology,
Conservation of plasma membrane`s lipid
structure, Development of head and neck
squamous cell carcinoma

Breast, prostate,
lung, head, neck

Abbaszadegan et al. (2017); Bao
et al. (2013); Yu and Cirillo,
(2020)

CD117 Surface
marker

Mesenchymal adult stem cells,
Cardiac adult stem cell, Ovary

Stem cell factor`s receptor, Drug target
molecules

Ovarian Jin et al. (2017)

CD90 Surface
marker

Between normal hematopoietic
stem cells and leukemic CSCs

Identifying leukemic CSCs from hematopoietic
stem cell subpopulation

Leukemia Bao et al. (2013); Kumar et al.,
(2016)

CD24 Surface
marker

Pancreatic carcinoma Identifying CSCs in pancreas cancer Pancreas Gopalan et al., (2018); Jin et al.
(2017)

ALDH1 Intracellular
marker

Normal stem cells, Malignant
stem cells, Progenitor cells

Regulator of stem cells propagation and
distinction

Breast Ajani et al., (2015);
Abbaszadegan et al., (2017)

P63 Basal cell
marker

Basal regenerative cells of many
epithelial tissues, Prostate,
Urothelial

Prostate progression, Diagnostic factor of
prostate cancer

Prostate Grisanzio and Signoretti, (2008);
Klonisch et al. (2008)

ALDH1: Aldehyde dehydrogenase isoform 1; CSCs, Cancer stem cells.
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TABLE 2 | CSCs signaling pathways characteristics.

Signaling
Pathway

Examples of
Ligands

Receptors/Co-receptors Function in
CSCs

Type of Cancer References

Wnt WNT1, WNT2 Members of the Frizzled,
LRP5and LRP6

Self-renewal Ductal breast carcinomas Dong, Ying, and
Shi, (2019);
Niehrs, (2012);
Yang L et al.
(2020)

WNT2B, WNT3 ROR1 and ROR2 Tumorigenesis Colorectal
WNT3A, WNT4 PTK7 Dedifferentiation Papillary thyroid
WNT5A, WNT5B RYK Apoptosis regulation Esophageal
WNT6, WNT7A MUSK Metastasis Colorectal
WNT7B, WNT8A, WNT8B,
WNT9A, WNT9B, WNT10A,
WNT10B, WNT11, WNT16

Proteoglycan families — —

Notch Delta-like proteins (DLL1,
DLL3, DLL4)

Notch1 Proliferation Glioblastoma Karamboulas
and Ailles,
(2013); Yang L
et al. (2020)

Jagged proteins (JAG1 and
JAG2)

Notch2 Cell survival Leukemia

— Notch3 Self-renewal Ovarian
— Notch4 Differentiation Colon
— — Migration Gastric
— — Metastasis Breast
— — Apoptosis inhibition Pancreatic
— — Cell fate specification Prostate
— — Asymmetric division Skin
— — — Non small-cell lung
— — — Liver

Hh Shh Ptch1, and to a lesser extent,
Ptch2, Cdon

Self-renewal CML Cochrane et al.,
(2015); Yang L
et al. (2020)Ihh Boc Tumor growth AML

Dhh Gas1 Differentiate into transient
amplifying cells

ALL

— — Metastasis Glioma, Multiple Myeloma
— — — Metastatic Melanoma
— — — Breast
— — — Gastric
— — — Colon
— — — Pancreatic
— — — Prostate
— — — Small Cell and
— — — Non-Small Cell
— — — Lung Cancer

NF-κB Lipopolysaccharide TLRs Inflammation Gastrointestinal Yang L et al.
(2020)IL-1β TNFR Stress responses Genitourinary

TNF-α IL-1R Cell survival Gynecological
bacterial cell components CD40 Proliferation Head
— BAFFR Tumorigenesis Neck
— LTβR Some key angiogenesis factors

and adhesion molecules
expression, Self-renewal

Breast

— — Metastasis Multiple myeloma
— — Apoptosis regulation Blood cancer

JAK-STAT ILE, PDGF-C, OSM, CXCL12,
HGF, TGF-β, EGF, Gastrin,
IGF, Mk, BDNF, NT-3, gp130

ILFR, PDGFR, OSMR,
CXCR7, c-MET, TGFR,
EGFR, GRPR, IGF1R, Notch-
1/2, TrkB, TrkC, IL-6/IL-6Rα

Tumorigenesis, Metastasis,
Chemoresistance, EMT
transition, Proliferation,
Inflammation, Survival

Prostate, Breast, Gastric,
Lung

Jin, (2020)

PI3K/AKT/
mTOR

Insulin and epithelial growth
factor

ErbB-1; HER1, HER2
(c-ErbB-2), HER3 (c-ErbB-3),
and HER4 (c-ErbB-4)
CXCR4, IGF-1R

Cell proliferation, Angiogenesis,
Metabolism, Differentiation,
Survival, Self-renewal,
Tumorigenesis

Ovarian, Cervical, Breast,
Glioblastoma, Gastric,
Pancreatic, Colorectal,
Prostate, Hepatocellular

Chen et al.
(2019);
Miricescu et al.
(2021); Xia and
Xu, (2015)

TGF/SMAD TGF-β1, 2 and 3 TGFβR1, TGFβR2 Cell proliferation, Epithelial-
mesenchymal transition,
Differentiation, Angiogenesis,
Inflammation

Liver, Breast, Gastric, Skin,
Glioblastoma, Leukemia
Colorectal

Bellomo et al.,
(2016); Liu
et al., (2018)

(Continued on following page)
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amounts in different tumors. Furthermore, evaluating cell surface
markers is the main strategy for detecting CSCs. Normal stem
cells and CSCs have many similar characteristics (Jin et al., 2017;
Khatami et al., 2019) such as 1) Self-Renewal (Lobo et al., 2007) 2)
Differentiation capacity (Mohr et al., 2015) 3) Tumorigenesis
(Zhu and Fan, 2018) 4) Capacity of developing resistance to
drugs/cytotoxic substances and radiation (Schöning et al., 2017).
Despite their similarities, there are some distinctions between
cancer and somatic stem cells. The first is the origin of these two
types of stem cells: natural somatic stem cells arise during
embryonic development and separate from each other. They
differentiate and produce a variety of mature cells, while CSCs
are differentiated from normal adult stem cells or by multiple
mutations in a single cell. The second is the ability to regenerate
itself: somatic stem cells regenerate more regular than CSCs,
although both types of cells can regenerate themselves. Finally,
the organogenesis ability of these two cells is studied: both cells
have the ability to organogenesis, but CSCs produce abnormal
tissue, whereas somatic stem cells’ organogenesis produces
normal tissue (Gjorevski et al., 2014).

Cancer Stem Cells Isolation Markers
Since, CSCs are a small part of a big heterogeneous cell population
of human cancer, isolation and division of such small human
cancer cells can be a significant step in a delicate study of various
aspects of cancer. Herein, identifying CSCsmarkers is a key factor
(Tang et al., 2007). Most of the CSCs markers originate from
human embryonic stem cells (hESCs) or adult stem cells (Jin
et al., 2017; Najafi et al., 2019). The expression of CSCs isolation
markers varies depending on a number of factors, including cell
lines, tumor histotypes, isolation methods, and survey CSCs
markers in vivo or in vitro investigations (Tirino et al., 2013).
On the one hand, CSCs markers have a beneficial therapeutic
effect on several types of cancers by targeting CSCs in order to
eliminate tumor recurrences (Jin et al., 2017; Najafi et al., 2019).
Moreover, the majority of surface markers can be harmed by
interactions between enzymes and tumor tissues, and this
destruction could be regarded a disadvantage (Abbaszadegan

et al., 2017). Some various CSCs markers with their unique
characteristics were reviewed in Table 1.

Cancer Stem Cells Signaling Pathways
In general, signaling pathways can help to precisely regulate the
biological function of both CSCs and regular stem cells.
Numerous signaling pathways such as Wnt, Notch, Hh,
nuclear factor-κB (NF-κB), Janus kinase/signal transducers and
activators of transcription (JAK-STAT), phosphoinositide 3-
kinase/AKT/mammalian target of rapamycin (PI3K/AKT/
mTOR), transforming growth factor (TGF)/SMAD, and
peroxisome proliferator-activated receptor (PPAR) are among
the intracellular factors that make a major contribution in
regulating stem cell functions. Therefore, excessive or
abnormal activity and even suppression of mentioned signal
transduction pathways can convert the normal stem cells into
cancerous. These pathways are regulated and controlled by the
function of factors such as diverse proteins, microRNAs, long
noncoding RNAs, and endogenous or exogenous factors, just as
they change the self-renewal, survival, proliferation,
differentiation, and usually tumorigenesis of CSCs (Table2).
Signaling pathways interact with one another in a large and
complicated network known as “crosstalk,”which is a crucial fact.
Subsequently, crosstalk between signaling pathways can influence
the regulation of several phenotypic features and drug resistance
in CSCs (Matsui, 2016; Yang L et al., 2020). Hereupon, a deep
understanding of the signaling processes underlying CSCs can
pave the way for small molecules and pharmacological inhibitors
to target them (Du et al., 2019).

Cancer Stem Cells Metabolic Processes
Metabolic reprogramming is one of critically important
characteristics of CSCs compared to other cancer and non-
cancer cells, which plays a pivotal role in demonstration of
cell functions such as proliferation, fate determination and the
cancer progression. In this process, the cellular energy
metabolism used by CSCs, such as different types of
hydrophobic natural compounds and organic substances

TABLE 2 | (Continued) CSCs signaling pathways characteristics.

Signaling
Pathway

Examples of
Ligands

Receptors/Co-receptors Function in
CSCs

Type of Cancer References

PPAR Lipid-derived substrates PPAR-α, PPAR-δ, PPAR-γ Proliferation, Maintenance of
sphere-formation ability,
Expression of CSC Markers

Colorectal, Ovarian,
Glioblastoma, Breast

Kuramoto et al.
(2021); Tyagi
et al., (2011)

ALL: acute lymphocytic leukemia; AML, acute myeloid leukemia; BAFFR, B cell-activating factor receptor; BDNF, Brain-derived neurotrophic factor; Boc, Brother of Cdon; CAM, cell
adhesion molecule; CDON, CAM-related downregulated by oncogenes; CML, chronic myeloid leukaemia; c-Met, Mesenchymal-epithelial transition factor; CXCL, C-X-Cmotif chemokine
ligand; CXCR, C-X-C chemokine receptor; Dhh, Desert hedgehog; DLL, Delta-like proteins; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; EMT, Epithelial-to-
mesenchymal transition; ErbB-1, Erythroblastic leukemia viral oncogene homolog 1; GAS1, Growth Arrest Specific 1; Gp130, Glycoprotein 130; GRPR, Gastrin-releasing peptide receptor
HER, human epidermal growth factor receptor; HGF, hepatocyte growth factor; IGF, Insulin-like growth factor; IGF1R, Insulin-like growth factor receptor 1; Ihh, Indian hedgehog; IL-1β,
Interleukin 1 beta; IL-1R, Interleukin-1 receptor; IL-6, Interleukin 6; IL-6Rα, Interleukin 6 receptor alpha; ILFR, leukemia inhibitory factor receptor; JAG, jagged protein; JAK-STAT, Janus
kinase/signal transducer and activator of transcription; LRP, Low-density lipoprotein receptor-related protein; LTβR, lymphotoxin beta receptor; MK, Heparin-binding growth factor
Midkine; MUSK, muscle associated receptor tyrosine kinase; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; NT-3, Neurotrophin-3; OSM, Oncostatin M; OSMR,
Oncostatin M receptor; PDGF-C, Platelet-derived growth factor C; PDGF-R, Platelet-derived growth factor receptors; PI3K/AKT/mTOR, Phosphoinositide 3-kinase/AKT/mammalian
target of rapamycin; PPAR, Peroxisome proliferator-activated receptor; Ptch, Patched; PTK7, Protein tyrosine kinase 7; ROR, Receptor tyrosine kinase-like orphan receptor; RYK, receptor
tyr kinase; SHH, sonic hedgehog; TGF-β, transforming growth factor beta; TGFβR, transforming growth factor beta receptor; TLRs, Toll-like receptors; TNF-α, tumor necrosis factor alpha;
TNFR, tumor necrosis factor receptor; TrkB, Tropomyosin receptor kinase B; TrkC, Tropomyosin receptor kinase C.
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metabolisms, adenosine triphosphate (ATP) production
pathways, etc., differs from that of other cells. In other words,
the presence of more metabolites and high-energy compounds in
CSCs suggests that they have a different metabolic profile
compared to the other. Furthermore, studies demonstrate that
oncogenic mutations, tumor suppressants, and, particularly
tumor microenvironment features, can all have a major impact
on the many components engaged in such metabolic processes.
Nevertheless, mentioned metabolic processes and the
components involved can be considered as therapeutic targets
for cancer treatment (Mukha and Dubrovska, 2020; Peixoto and
Lima, 2018; Zhu et al., 2020).

Glycolysis
CSCs such as normal cells are used glucose through glycolysis
process to gain energy and survive. The methods for glucose
metabolism in a CSC include OXPHOS and glycolytic
phosphorylation, which are selected based on the presence of
oxygen. Moreover, they play an important role in differentiation,
self-renewal and homeostasis. Generally, high glucose levels
increase the number of CSCs, while low glucose levels lower
the quantity of CSCs (Falahzadeh et al., 2019). CSCs are adaptable
cells that can cope with a wide range of situations, including low
oxygen levels, insufficient blood vessel development,
hyperoxidation, and hypoxia (Luo and Wicha, 2015). If the
CSCs are in a state of hypoxia (lack of oxygen), the proper
metabolic pathway is chosen. Herein, they enter the glycolytic
pathway, which eventually leads to the formation of lactate (Yi
et al., 2018). According to Warburg, CSCs require more energy
than other normal cells due to their high growth and
proliferation. Although the glycolytic process provides less
energy, CSCs prefer it since it is shorter (Dando et al., 2015).
Lactate produced by the glycolytic pathway has the ability to
influence CSC function and is involved in processes including
metastasis, angiogenesis, and differentiation (Tamada et al.,
2012). If the cell is in a state of hyperoxia (low oxygen), it
enters the oxidative pathway, where pyruvate created from
glucose enters the mitochondria. Then proceeds via the Krebs
cycle and OXPHOS pathway to make energy. According to
researches, the first alteration in CSC metabolism is a shift
from aerobic to anaerobic sugar metabolism, in which
oncogenes such as Akt 1 and C-Myc can regulate the
glycolytic pathway by acting on the Warburg effect (Dando
et al., 2015).

Metabolisms Related to Mitochondria
Almost every cell activity relies on the hydrolysis of energy-rich
compounds such as ATP. Hereupon, the continuous production
and replenishment of such energetic compounds are prioritized
by the cells (Dunn and Grider, 2020). Mitochondria are one of the
major organelles of cells in which contributes significantly in
energy transduction by producing energy-carrying molecules.
The mitochondria play a key role by activating the OXPHOS,
tricarboxylic acid cycle (TCA), and fatty acid oxidation (FAO) in
the cell. Additionally, biosynthetic precursors production, innate
immune activation, modulation of the reactive oxygen species
(ROS), control of calcium homeostasis, and trigger to apoptotic

process are also some of the major activities of mitochondria
within a cell (Zong et al., 2016). Owing to the mitochondria
biosynthetic and bioenergetics activities, compelling evidence
suggests that it also have a crucial impact on CSCs function
(De Francesco et al., 2018). The difference in the amount of
energy required for cancer stem cells compare to other cells can
lead to differences in the quantity of mitochondrial function in
them. Studies show that mitochondrial function can be affected
by the type of tumor heterogeneity. Evidence also points that
epigenetic and micro environmental features are among the
factors that can result in altered mitochondrial function in
CSCs (García-Heredia and Carnero, 2020). Investigations at
the cellular and molecular level imply that changes leading to
the production of cancer stem cells can increase the
mitochondrial mass (Shin and Cheong, 2019) and membrane
potential which are a reflection of electrical and biochemical
alterations in CSCs mitochondria (Zhang et al., 2015).
Furthermore, changes in mitochondrial DNA (mtDNA) can
also affect the expression of some nuclear genes during the
retrograde signaling that ultimately lead to inducing EMT
process and producing CSCs (Guha et al., 2014). Reciprocally,
many mitochondrial proteins are encoded by nuclear DNA
(nDNA). Accordingly, mutations or changes in nDNA may
eventually lead to altered mitochondrial activity in CSCs
(Guerra et al., 2017). In addition to the interaction between
mitochondria and the nucleus, disruption of some signaling
pathways can affect the role of mitochondria in tumorigenesis.
For instance, one of the major functions of PI3K/AKT/mTOR
pathway is the regulation of pre-apoptotic proteins such as B-cell
lymphoma 2 Associated X, Apoptosis Regulator (BAX) in relation
to mitochondria which ultimately leads to apoptosis through this
organelle. However, overexpression of apoptosis inhibitor genes
in CSCs causes abnormal activation of the mentioned signaling
pathway, which can lead to cancer cell proliferation, survival, and
drug resistance of cancer cells (Frasson et al., 2015; Liu et al.,
2020). Whereas the study of mitochondrial role in relation to
other parts of cell on a large scale can be challenging, it should be
narrow down the study to the major functions of mitochondria.
Therefore, to promote research in the assessment of CSCs, such
part particularly focuses on tricarboxylic acid cycle (TCA) and
electron transport-linked phosphorylation process, synthesis and
degradation of lipids, reactive oxygen species (ROS) generation
system, and alternative metabolic pathways such as amino acid
metabolism in CSCs.

Tricarboxylic Acid Cycle (TCA) and Electron
Transport-Linked Phosphorylation Process
Unlike normal cells, CSCs require metabolic adaptation in order
to supply fuel and materials for tumorigenesis purposes. Both
TCA and OXPHOS which occur alternately following aerobic
glycolysis, play an important role in the development of CSCs
features. For instance, a reduction in the amount of TCA enzymes
can be seen in some CSCs. Additionally, the TCA cycle is
associated with different processes such as FAO, glutamine
metabolism, and so on. Hence, the TCA cycle can play a key
role in the development of stemness capabilities in CSCs under
the influence of other metabolites (Yadav et al., 2020). Along with
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TCA, OXPHOS has an important role in tumorigenesis. As
already mentioned, glycolysis is the preferred energy
production process compared to the OXPHOS in many CSCs.
Although mitochondrial-related bioenergetics processes can
produce higher rates of energy-rich compounds, the glycolysis
pathway can provide the factors needed for the growth and
proliferation of CSCs more timely and rapidly. However, CSCs
in some types of cancers such as leukemia, ovarian, glioblastoma,
breast, lung, and pancreatic ductal adenocarcinoma (PDAC) do
not comply with this rule and prefer the OXPHOS pathway rather
than glycolysis (Peixoto and Lima, 2018; Snyder et al., 2018).
OXPHOS-dependent CSCs can acquire their needed energy from
the uptake and chemical changes on some metabolites such as
pyruvate, lactate, ketone bodies, and some amino acids. However,
extracellular uptake is not the only way to get the nutrients
needed by OXPHOS-dependent CSCs functions (Gentric et al.,
2017; Jagust et al., 2019a). They can also supply the required
nutrients through metabolic symbiosis with glycolysis to perform
their bioenergetics and biosynthetic processes. Interestingly, the
restriction of nutrient levels in the surrounding
microenvironment of OXPHOS-dependent CSCs has not a
huge impact on cell functions. Because in specific tumor
microenvironments, they can counteract this limitation with
their selective advantages. Therefore, this strategy can make a
significant contribution to CSCs survival (Krstic et al., 2017; Zhu
et al., 2020). Since mitochondrial-related processes have
important effects on the energy and materials supplying of
CSCs to grow and develop tumors, targeting different
components of these processes can be an efficient approach in
the treatment of various types of cancers (Jagust et al., 2019b).

Synthesis and Degradation of Lipids
Lipid, as one of the cell membrane`s basic constitutive elements,
is necessary for different cell activities, such as signaling
conduction, energy production, etc. Sterols, monoglycerides,
diacylglycerides, triglycerides, phospholipids, and glycolipids
are different components of lipid structure. additionally, most
of the lipids originated from fatty acids (Snaebjornsson et al.,
2020; Visweswaran et al., 2020). Furthermore, lipid droplets
(LDs) act as a lipid storage and in comparison with normal
cells, cancer cells have more LDs. Regarding the metabolism of
lipid, CSCs have been affected by this kind of metabolism through
different strategies such as CSCs maintaining, complying energy
desire of CSCs (Visweswaran et al., 2020), increasing CSCs
numbers (Mancini et al., 2018), and protecting CSCs from
chemotherapeutic agents-induced peroxidation (Begicevic
et al., 2019). Moreover, NANOG, sterol regulatory element-
binding transcription factor 1(SREBP1), MYC, stearoyl-CoA
desaturase (SCD), fatty acid synthase (FASN), ACVL3, CD36,
carnitine palmitoyltransferase 1 (CPT1A), and carnitine
palmitoyltransferase 1B (CPT1B) are some main modulators
for this metabolism. In this respect, there are some alterations
in lipid metabolism which lead to different outcomes, such as the
effectiveness on the capability of self-renewal, invasion,
metastasis, and drug resistance (Giacomini et al., 2020). On
the other hand, CSC biomass production, stimulation of the
Wnt/-catenin, and Hippo/YAP signaling pathways are some of

the other effects that have been linked to CSC activity and cancer
progression (Chae and Kim, 2018; Yi et al., 2018; Jagust et al.,
2019b). In this context, the altered lipid metabolism can also have
some therapeutic effects in the field of CSCs by the CSCs blockage
and lessen CSCs chemoresistance ultimately, lipid metabolism
contains different signaling pathways that conserve
undifferentiating status and the survival of CSCs. Some of
these signaling pathways are Notch signaling, Hippo cascades,
Hedgehog (Hh) signaling, and Wnt signaling (Giacomini et al.,
2020).

Reactive Oxygen Species Generation System
In addition to energy production processes, other pathways can
play vital roles in multiple aspects of the generation and
maintenance of the CSCs function. ROS production is one of
these pathways which contribute to cancer recurrence, CSCs
metastasis, and resistance to conventional therapies.
Generation of ROS can be a consequence of electron
transferring through mitochondrial membrane. In addition,
enzymes in some other organelles and even immune reactions
can play a role in the production of these oxygen species. Studies
have also shown that chemotherapy and radiotherapy can
eventually lead to increased ROS within cells (Liou and Storz,
2010; Zhou et al., 2014). In general, the antioxidant system acts as
a defense barrier against increasing ROS. Maintaining a balance
between the amount of antioxidants and ROS can play an
important role in cell stability and homeostasis. If this balance
is upset and the ROS level increases, cellular stress and eventually
cell death occurs (Poljsak et al., 2013; Kurutas, 2016). In contrast,
in the case of CSCs, the expression of antioxidants is much higher
than in ROS production and keeps the ROS levels low (Shi et al.,
2012). Hence, it can promote self-renewal, survival, and
resistance to anti-cancer treatments. According to the stated
argumentation, ROS can be an appropriate objective for
discovering targeted therapies to fight against cancer. For
instance, using approaches to increase ROS levels or
disruption of antioxidant systems within CSCs can lead to cell
aging and apoptosis. Therefore, an effective step can be taken to
treat various types of cancer by extensively and accurately
examining of ROS modulation in CSCs (Zhou et al., 2014;
Ding et al., 2015).

Amino Acid Metabolism as an Alternative Metabolic
Pathway
CSCs are flexible cells that rely on alternative fuels such as the
amino acid glutamine to maximize their growth and proliferation
under different environmental conditions (De Francesco et al.,
2018). In glucose deficiency, the growth and survival of CSCs are
highly dependent on glutamine, which enters the cell through its
specific vectors during the path of glutaminolysis and is converted
to glutamate by the enzyme mitochondrial glutaminase, thus
entering the Krebs cycle (Deshmukh et al., 2016). Glutamine, as a
source of nitrogen, plays an important role in mediating
metabolites, which eventually synthesize various substances,
including protein, lipids, and nucleotide acids (Deshmukh
et al., 2016). CSCs of various tumors, including the pancreas,
pancreas, ovaries, and lungs, are glutamine-dependent
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(Deshmukh et al., 2016). The pentose phosphate (PPP) pathway
is also used as an alternative pathway for fuel generation in CSCs.
PPP is performed in two forms: reversible (non-oxidative) and
irreversible (oxidative) (Giacomini et al., 2020), which is an
alternative pathway for glucose metabolism during the
irreversible pathway of PPP. In this pathway, glucose 6-
phosphate (G6P) is converted to ribose 5-phosphate in several
steps with the production of nicotinamide adenine dinucleotide
phosphate (NADPH), and finally essential nucleotides are
synthesized by forming ribose groups (Riganti et al., 2012;
Polat et al., 2021). However, in reversible PPP, ribose 5-
phosphate is converted to glyceride aldehyde 3 phosphate in a
series of reversible reactions and is eventually used for glycolysis
(Polat et al., 2021). Ketone bodies (acetone, acetate, 3-
hydroxybutyrate) are among the high-energy fuels used by
CSCs to grow and propagate metastases (Jagust et al., 2019b).
When there is not enough glucose in CSCs, ketone bodies are
released into the blood and converted directly to Acetyl-CoA by
the two enzymes OXCT1 and ACAT1. Then acetyl-CoA enters
the citric acid (CAC) cycle and produces more ATP in the cell
(Ozsvari et al., 2017). In addition to glutamine, lysine is another
amino acid that CSCs use to make fuel, as well as TICs, which
contain many enzymes; They perform the process of lysine
catabolism (Jagust et al., 2019b). As a result of the lysine
pathway, glutamate is synthesized and cysteine uptake is
increased in CSCs (Peixoto and Lima, 2018).

The Chemoresistance of Cancer Stem Cells
Chemoresistance is defined as a pivotal factor of defeated
chemotherapy treatment in various cancers. This factor
relapses affected agents of chemotherapy such as cell death
and tumor bulk`s size decrement. In this respect, CSCs
considerably execute the role of referred relapsing and also it
has the capability of showing resistance against
chemotherapeutics by its insensitivity (Abdullah and Chow,
2013; Zhao, 2016). Chemoresistance of CSCs leads to a high
risk of metastases, less survival speed (Nunes et al., 2018), and the
permanence of CSCs (Chuthapisith et al., 2010). Furthermore, a
comparison between normal cancer cells and CSCs revealed that,
CSCs intrinsically have a higher amount of chemotherapy
resistance than normal cancer cells (Thomas et al., 2014).
Many factors are involved in CSCs resistance occurrence,
which some of them are as detailed below:

• Tumor microenvironment (TME): One of the factors
involved in the regulation of stemness characteristics and
chemoresistance of CSCs, is the autocrine and paracrine
interactions of CSCs with the components of their
surrounding environment, which is referred to as the
TME. In recent years, the key role of TME and its
components including extracellular matrix, immune cells,
endothelial cells, cancer-associated adipocytes (CAAs), and
cancer-associated fibroblasts (CAFs) in the onset,
metastasis, recurrence, and drug resistance of cancer have
been investigated. The results of these studies show that
targeting the TME can be an effective approach in the
treatment of cancer (Gaggianesi et al., 2021).

• Epigenetics: Another major factor in the chemoresistance of
CSCs is the role of mechanisms followed epigenetic
alterations. Studies reveal that epigenetic processes such
as DNA methylation, nucleosome remodeling, histone
modification, and non-coding RNAs changes are
generally associated with the development of normal
stem cell characteristics. However, disruption in the
normal function of epigenetic factors lead to the
development of tumorigenic properties in CSCs (Toh
et al., 2017).

• Epithelial Mesenchymal Transition (EMT): EMT is a
biological phenomenon during processes such as
embryonic development, wound healing, and tissue
regeneration. However, in the case of cancer, EMT can
suppress epithelial features and convert the cell into the
mesenchymal state through signaling pathways such as
Wnt, Notch, and Hedgehog, which can lead to the
development of tumor features (Singh and Settleman, 2010).

• Multidrug resistance (MDR): High levels of MDR is another
main factor involved in the chemoresistance of CSCs that
occurs after applying long-term or high-dose treatment for
cancer patients. Generally, two mechanisms can be
considered for the effect of MDR on CSCs: 1) Preventing
the drug from reaching an effective concentration: studies
imply that the function of efflux pumps such as
P-glycoprotein (P-gp) encoded by ABCB1, transporters,
and enzymes such as cytochrome P450 and glutathione
S-transferase play significant roles in mediating drug
resistance. 2) Drug detoxification: based on studies, it has
been realized that avoiding apoptosis and activating DNA
repair mechanisms are of fundamental importance to
induce continuous growth and proliferation of CSCs.
(Cho and Kim, 2020).

• The quiescent state: Quiescence or dormancy is a survival
strategy for CSCs. In the quiescent state, cell division stops
for a while, and cells live with minimal metabolic activity,
but still retain the ability to reactivate the cell cycle (Chen
et al., 2021). In this state, both intrinsic (e.g., p53 signaling,
reactive oxygen species, hypoxia inducible factor-1a, nuclear
factor of activated T cells c1, and negative regulators of
mTOR) and non-intrinsic factors (e.g., Tie2/angiopoietin-1,
TGF-b and bone morphogenic proteins, thrombopoietin,
N-cadherin and integrins, osteopontin, and Wnt/b-catenin
signaling) are involved (Li and Bhatia, 2011). According to
studies, TME and epigenetic mechanisms have a major
contribution to the maintenance of the quiescentstate of
CSCs as well as evade immune surveillance and destruction,
and tumor relapse. Therefore, the presence and persistence
of the quiescence or dormancy state in CSCs can lead to the
survival of CSCs and cell resistance to treatments such as
chemotherapy (Chen et al., 2021).

• Self-renewal: Self-renewal is one of the noted hallmarks of
CSCs that results from a malfunction of self-renewal
pathways (SRPs). Studies indicate that Hh, Wnt, Notch,
and B-cell-specific Moloney murine leukemia virus
integration site 1 (BMI1) pathways have a crucial role in
inducing the self-renewal in CSCs. In recent years, the
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targeting of SRPs has attracted attention as an efficient
therapeutic approach in cancer treatment to reduce
cancer recurrence and chemotherapy resistance
possibility (Borah et al., 2015).

It should also be noted that according to metabolic studies,
cancer cells that have undergone chemoresistance are
metabolically altered and adapted. For example, processes such
as fatty acid oxidation, glutaminolysis activation, glycolysis
activation, lactate production, adaptive mitochondrial
reprogramming, ornithine decarboxylase, and polyamine
production, and PPP and NADPH production can be
observed in chemoresistance cancer cells (Chen et al., 2020).

MOLECULAR DOCKING STUDY; A
THERAPEUTIC APPROACH FOR
ANTI-CANCER DRUG DESIGNING
Drug Discovery is considered as a multi-process platform in
which a specific chemical compound with desired biological
activity on the drug target can be selected and eventually enter
the drug development as a candidate drug. In this platform, both
chemical compounds and biological targets are evaluated from
different aspects by using various approaches. Since both drug

discovery and development are time-consuming and cost-
intensive programs, they pose many challenges for researchers
in drug designing and discovering for various diseases such as
different types of cancer. Therefore, the use of new technologies
can pave the way discovering new drugs with high therapeutic
potential and take a big step towards disease treatment.
Compound screening assays are one of mentioned methods
that can help with hit identification, validation, lead
generation, and optimization processes, as well as evaluating
the compounds’ effects on the therapeutic target. With the
advancement of technology and the integration of
computational science with biological and pharmaceutical
studies, approaches such as virtual screening are widely
applied in drug designing and discovering programs (Reddy
et al., 2007; Hughes et al., 2011; Mohs and Greig, 2017; Cui
et al., 2020). In this context, virtual screening aims to evaluate and
filter a limited number of suitable chemical compounds from
large libraries of small molecules by using mathematical
calculations. Structure-based virtual screening (SBVS) is one of
the virtual screening methods which attempts to model and
analyze the efficient biological binding-conformation between
a ligand and a target molecule by using the molecular docking
technique (Liao et al., 2013). Molecular docking is one of the
cutting-edge computational drug designing technologies in which
the most effective and stable state form of the ligand-receptor

FIGURE 1 | Success rates of double combinations of the six relatively successful scoring functions in consensus scoring. All numbers are in percent (Wang et al.,
2003).
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complex can be predicted (Morris and Lim-Wilby, 2008). The
determination of the three-dimensional structure of the target
and ligand molecules is at the top of the entire process priority
list. Therefore, some techniques such as x-ray crystallography,
nuclear magnetic resonance (NMR) spectroscopy, cryo-electron
microscopy (cryo-EM), and homology modeling are not only
useful in determining molecular structure, but also as
complementary tools in drug development (Allen and Stokes,
2013; Kershaw et al., 2013; Sturlese et al., 2015; Lohning et al.,
2017). Molecular docking includes searching algorithms and
scoring function as two fundamental aspects of docking
programs. Searching algorithms can be defined as a process
that can lead to exploring the predominant and effective
matching docking modes of ligand to the molecular target
among the myriad configurations. Because a large number of
binding modes are actually found between a ligand and a
biological target molecule, searching algorithms not only can
consider the optimum possible orientations of the ligand with the
target but also can be an economical and time-saving solution in
the docking process (Meng et al., 2011; Salmaso andMoro, 2018).
Molecular dynamics, distance geometry methods, point
complementary methods, fragment-based methods, Mote
Carlo methods, genetic algorithms, systematic searches, and
incremental construction, are some of the examples of search
algorithms that can be used in modeling and

evaluating the binding form of a ligand molecule to the
objective receptor.

After the algorithm searching, it is time for the scoring function to
step into the docking arena to find the good pose between the ligand
and the target molecule. Scoring function refers to a process in which
putative docking modes are ranked by evaluating their binding
affinity and lowest binding energy to achieve top-ranked poses
between a ligand and a target molecule. Force field function,
Empirical scoring functions, knowledge based scoring functions,
knowledge-based potentials, machine learning based scoring
functions, comparative assessment of scoring functions, physics-
based methods, and descriptor-based scoring functions are some
of the examples of scoring function classifications in molecular
docking (Madhavilatha and Babu, 2019; Sethi et al., 2019).

Regarding scoring function, the study ofWang et al. (2003) is one
of the best examples of meticulous studies of popular scoring
functions in molecular docking. In this study, the authors
compared 11 popular scoring functions, including four scoring
functions of the LigFit module in Cerius2 (LigScore, PLP, PMF,
and LUDI), four scoring functions of the CScore module in SYBYL
(FScore, G-Score, D-Score, and ChemScore), the scoring function of
the AutoDock program, and two stand-alone scoring functions
(DrugScore and X-Score) by performing them on 100
protein−ligand complexes to scrutinize their performance and sift
the most effective and efficient methods among them. In this regard,

FIGURE 2 | Success rates of triple combinations of the six relatively successful scoring functions in consensus scoring. All numbers are in percent (R. Wang et al.,
2003).
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FIGURE 3 |Mechanism of action of drugs analyzed by molecular docking on the metabolic processes of CSCs. The ligands and targets have been investigated by
molecular docking. Nine effective drugs, including compound #25, andrographolide, mitoketoscins, emetine, cortistatin, solamargine, solasonine, tylophorine, and CIN-
RM are known to affect the biological processes and signaling pathways of CSCs. 1) Compound #25 prevents the assembly of the Skp2-SCF complex by binding to
Skp2. Hence, it inhibits two pathways including non-proteolytic K63-linked ubiquitination of Akt and ubiquitination and degradation of p27, which ultimately inhibit
the development of tumor features. 2) Andrographolide increases intrinsic apoptosis in CSCs (especially in breast cancer) by inhibiting survivin, caspase-9, and caspase-
3.3) Mitoketoscins stop the recycling of ketone bodies into Acetyl-CoA by inhibiting two proteins, including OXCT1 and ACAT1. Hence ATP production is stopped and
oxidative mitochondrial metabolism in CSCs is inhibited. 4) Emetine and 5) Cortistatin, can target CSCs by binding to sonic Hh, Smo and, gli protein. 6) Solamargine can
affect sonic hedgehog and gli proteins by its pharmacophores. 7) Solasonine and 8) Tylophorine modulate the Hh pathway by affecting gli proteins. 9) CIN-RM can lead
to upstream inhibition of the Akt pathway and reduction of CSCs markers, which decrease the expression level of transcription factors involved in self-renewal, such as
c-Myc, Nanog, Oct4, and Sox2. CIN-RM can inhibit mTOR pathway. Abbreviations: ATP, Adenosine triphosphate; CIN-RM, Hydroquinone 5-O-cinnamoyl ester of
renieramycin M; CSCs, Cancer stem cells; Hh, Hedgehog; mTOR, Mammalian target of rapamycin; Smo, smoothened (Chan et al., 2013; Hongwiangchan et al., 2021;
Jaitak, 2016; Liu et al., 2014; Madhunapantula et al., 2011; Ozsvari et al., 2017; Wanandi et al., 2020).
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after generating a set of docked conformations for each ligand by
Autodac software, each 11 scoring function was tested and
implemented on the maintained set and significant results were
obtained. In this study, the authors used root-mean-square
deviation ≤2.0 Å as a criterion for examining those scoring
functions. Based on the analysis of the mentioned criterion, it was
concluded that six scoring functions, including PLP, F-Score,
LigScore, DrugScore, LUDI, and X-Score achieved high success
rates (about 66–76%). In addition, the study implied that the
combination of some of those scoring functions and generating
the consensus scoring scheme can also increase the success rate
(about 80%) (Figures 1, 2). In addition to success rates, the authors
examined the correlation between 100 complexes’ binding scores and
experimentally determined protein-ligand binding affinities. As a
result of this experiment, X-Score, PLP, DrugScore, and G-Score
could represent correlation coefficients of more than 0.50, which
demonstrate superiority over other scoring functions. Since the best
scoring function should perform excellently in both docking and
scoring, the three scoring functions, including X-Score, DrugScore,
and PLP, can be considered the top scoring functions in molecular
docking, according to the study by Wang et al. (Wang et al., 2003).

TARGETING CANCER STEM CELLS
METABOLIC PROCESS BY MOLECULAR
DOCKING
Molecular docking is a substantial method for estimating the
interaction between macromolecules such as protein and small
molecules such as ligand. On the other hand, molecular docking
is also capable of analyzing the molecular kinds of behavioral
variability for those molecules which are located at the binding
site of a targeted protein. Also, molecular docking is a
computational approach and some docking programs are required
to carry out its many functions. Some of the most considerable
docking programs are Gold, Fred, and Flex.Moreover, they are useful
in the prevision of protein and ligand`s binding conjunction (Kumar
et al., 2013; Pagadala et al., 2017). In this respect, molecular docking is
applied in different CSCs-related pathways including metabolic
pathways and signaling pathways. Shedding light on metabolic
pathways, the activity modification which can be applied by
cancer cells, result in the production of metabolic precursors
which leads to cancer cells anabolic and energetic requirement
fulfilling. Furthermore, different metabolic pathways take a part in
tumor progression and malignant tumor alterations. Accordingly,
metabolic reprogramming is considered as one of the cancer insignias
(Jagust et al., 2019b).

Herein, there will be a few examples in the context of some
molecular docking usages in metabolic pathways such as 1)
mitoketoscins application in targeting metabolic tumor
promoters (OXCT1 and ACAT1) in both ketone re-utilization
and mitochondrial function (Ozsvari et al., 2017). 2) Survivin
protein interaction with andrographolide, which can lead to
having an influence on human breast CSCs apoptosis
(Wanandi et al., 2020). 3) S-phase kinase-associated protein-2
(Skp2) inhibition process by compound #25 which can result in
CSCs survival suppression (Chan et al., 2013).

The other molecular docking-affected pathway in CSCs is the
signaling pathway. This pathway is useful for targeted CSCs
therapies expansion (Koury et al., 2017), embryonic
evolvement, maintaining CSCs, etc. (Karamboulas and Ailles,
2013). Some molecular inhibitor agents of Wnt, Notch, Hh, and
some other signaling pathways are implying as one of the
important effects of molecular docking process on signaling
pathways (Yang Y et al., 2020).

Modulating some target proteins is a striking aspect of molecular
docking which has done by natural products. Natural products are
able to be considered on the ground ofmulti-targeting drugs. As such,
alkaloids are one of the natural products that have the strength to act
as an anticancer lead molecule in the molecular docking process of
CSCs. In this regard, Jaitak et al. provided an in-depth analysis of
multitargeting drugs as an effective strategy to fight against CSCs and
prevent disease recurrence. In this study, the authors examined the
effect of some alkaloids that have anticancer potentiality by focusing
on the Hh pathway in cancer stem cells. After selection and
preparation of target ligands and proteins, Grid parameter
selection and validation, implementation of glide docking module
of Schrö6; dinger Maestro 9.6 suite, and determination of ADME
profile for the studied alkanoid ligands, significant results were
discovered. For instance, according to the findings of this study,
emetine, and cortistatin, were able to target CSCs maintenance
feature by binding to sonic Hh, smoothened (Smo) and, gli
protein. Therefore, these two drugs can be applied as multi-
targeting drugs in a combination with cancer chemotherapy
compounds. Moreover, solamargine alkaloid could also have a
good effect on gli protein and sonic hedgehog due to its
pharmacophores. Furthermore, both solasonine and tylophorine
modulated the Hh pathway and exert anticancer effects on CSCs
by affecting only gli proteins. However, unlike other drugs,
solamargine and solasonine need to improve the properties of
ADME features (Jaitak, 2016).

In addition to alkaloids, the targeting of overexpressed CD44
surface marker in triple-negative breast cancer (TNBC) tissues can
have an anticancer effect on CSCs. Regarding targeting CD44 surface
markers, Yang et al. determined the positive role of drug carriers
including Gambogic acid (GA)-loaded, zirconium-89 (89Zr)-labeled,
chitosan (CS)-decorated multifunctional liposomes (MLPs) on
TNBC CSCs by designing two in vitro and in vivo experiments.
In this study, researchers examined 3D mammospheres and TNBC
tissues of 32 women who were diagnosed with TNBC and found that
the CD44 surfacemarker was overexpressed in the disease. Therefore,
in this study, 89Zr@CS-MLPs were constructed and predicted how
the drug carriers interact with CD44 surface markers in TNBC by
applying molecular docking and dynamics simulations methods. The
results obtained from the in vitro (examination on tumor cell lines)
and in vivo (examination on mice) experiments were implied that
89Zr@CS-MLPs has a great potentiality for TNBC-targeted therapy
as a drug carrier. Additionally, since Zr has a long half-life, it can also
be used as an ideal radiolabel for positron emission tomography
(PET) imaging of cancer.Moreover, 89Zr@CS-GA-MLPs have a high
ability to target CSCs in vivo (Yang R et al., 2020).

In 2021, Hongwiangchan et al. demonstrated that hydroquinone
5-O-cinnamoyl ester of renieramycin M (CIN-RM) can be
recognized as a fundamental approach in targeting lung CSCs
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which has been confirmed by molecular docking computational
analysis. The effect of CIN-RM is based on the reduction of CSCs
markers and upstream inhibition of the AKT pathway. As a result of
inhibition of Akt, the expression level of transcription factors
involved in self-renewal, such as c-Myc, Nanog, Oct4, and Sox2,
are decreased. It is, therefore, CSCs are suppressed and tumor
growth can be inhibited. To a lesser extent, CIN-RM also induces its
inhibitory effect on the mTOR pathway, but the inhibitory effect of
CIN-RM on the protein kinase C (PKC) signal pathway was not
significant. Another important result obtained in this study is that
CIN-RMeven has an effect on inactivating the AKTpathway related
to c-Myc regulation of lung non-stem cancer cells, which can be a
promising therapeutic approach in cancer treatment (Figure 3)
(Hongwiangchan et al., 2021).

CONCLUSION AND FUTURE
PERSPECTIVE

A comprehensive analyzing of CSCs, including signaling pathways
and metabolic activities, as well as recognizing their distinctions with
normal cells, is an essential technique in cancer targeted treatment
(Bjerkvig et al., 2005; Shyh-Chang and Ng, 2017). Major obstacles to
molecular binding as a targeted therapeutic technique include
receptor flexibility, ligand flexibility, and drug resistance, all of

which have contributed to cancer therapy failure (Meng et al.,
2011). Computational methods or computer tools, which are a
form of artificial intelligence (AI), have recently proven to be a
useful approach in a variety of domains, including structure
prediction, molecular bond modeling, and junction prediction
(Menke et al., 2021). The mentioned methods are divided into
two groups: classical and machine learning (ML), of which ML is
widely used inmolecular binding. Computational methods play a key
role in molecular binding for drug design and discovery, and results
can be analyzed cheaper and often faster than other conventional
methods (Torres et al., 2019). Eventually, with the advancement of
science and the identification of various computational methods,
computing software and hardware are still being updated, and
researchers are looking for the most accurate way to target CSCs
for cancer treatment (Phillips et al., 2018).
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GLOSSARY

IARC: international agency for research on cancer

WHO: world health organization

CSCs: cancer stem cells

MRPs: multidrug resistance proteins

EMT: epithelial-to-mesenchymal transition

OXPHOS: oxidative phosphorylation

hESCs: human embryonic stem cells

NF-κB: nuclear factor-κB

JAK-STAT: janus kinase/signal transducers and activators of transcription

PI3K/AKT/mTOR: phosphoinositide 3-kinase/AKT/mammalian target
of rapamycin

TGF: transforming growth factor

PPAR: peroxisome proliferator-activated receptor
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SREBP1: sterol regulatory element-binding transcription factor 1
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FASN: fatty acid synthase
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Gut Microbiota-Mediated Elevated
Production of Secondary Bile Acids in
Chronic Unpredictable Mild Stress
Yuchen Qu1†, Cunjin Su1†, Qinhong Zhao1, Aiming Shi 1, Fenglun Zhao1, Liuxing Tang1,
Delai Xu1, Zheng Xiang1, Yang Wang2, Yueyuan Wang1, Jie Pan1* and Yunli Yu1*

1Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China, 2College of Pharmaceutical
Science, Soochow University, Suzhou, China

A growing body of evidence suggests that gut microbiota could participate in the
progression of depression via the microbiota–gut–brain axis. However, the detailed
microbial metabolic profile changes in the progression of depression is still not fully
elucidated. In this study, a liquid chromatography coupled to mass spectrometry-
based untargeted serum high-throughput metabolomics method was first performed
to screen for potential biomarkers in a depressive-like state in a chronic unpredictable mild
stress (CUMS)-induced mouse model. Our results identified that the bile acid and energy
metabolism pathways were significantly affected in CUMS progression. The detailed bile
acid profiles were subsequently quantified in the serum, liver, and feces. The results
showed that CUMS significantly promoted the deconjugation of conjugated bile acid and
secondary bile acid biosynthesis. Furthermore, 16S rRNA gene sequencing revealed that
the increased secondary bile acid levels in the feces positively correlated with
Ruminococcaceae_UCG-010, Ruminococcus, and Clostridia_UCG-014 abundance.
Taken together, our study suggested that changes in family Ruminococcaceae
abundance following chronic stress increased biosynthesis of deoxycholic acid (DCA),
a unconjugated secondary bile acid in the intestine. Aberrant activation of secondary bile
acid biosynthesis pathway thereby increased the hydrophobicity of the bile acid pool,
which might, in turn, promoted metabolic disturbances and disease progression in
CUMS mice.

Keywords: CUMS, bile acid, gut microbiota, depression, Ruminococcaceae

INTRODUCTION

According to the World Health Organization, an estimated 3.8% of the global population has been
affected by depression and the number is still increasing worldwide (World Health Organization, 2021).
Modern psychology- and biology-related concepts revealed that depression is not only a common
psychological disorder, but also a physical disease complex involving the imbalance of neurotransmitters,
injury of neurogenesis, decline of neuroplasticity, and abnormality of neuronal circuitry (Chaudhury et al.,
2015; Liu et al., 2017). Recently, with the development of gut microbiota research, a growing body of
evidence indicates that the microbiota–gut–brain axis plays an essential role in regulating human
behavior and brain function (Foster and McVey Neufeld, 2013; Liang et al., 2018).

An important function of the gut microbiota is participating in bile acid metabolism. Bile acids are
the major constituents of the human bile synthesized from cholesterol by perivenous hepatocytes,
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playing an important role in dietary fat digestion and absorption
(Hofmann., 1999). Most bile acids undergo enterohepatic
circulation and microbial biotransformation in the intestinal
tract (Chiang and Ferrell, 2018). Cholic and chenodeoxycholic
acid are the two primary bile acids synthesized in the liver by a
series of enzymatic reactions (Russell., 2003), conjugated with
either glycine or taurine, and stored in the gallbladder (He et al.,
2003). Bile acids are then secreted into the gastrointestinal tract,
where they are subsequently deconjugated, dehydroxylated, and
oxidized in the intestinal lumen by gut microbes to generate
hydrophobic secondary bile acids: deoxycholic and lithocholic
acid (Ridlon et al., 2014).

Recent studies revealed that bile acids might serve as
intermediate messengers between the gut and the brain
(Monteiro-Cardoso et al., 2021), while the relationship
between bile acids and depression have rarely been
investigated. In this study, we constructed a chronic
unpredictable mild stress (CUMS) model to mimic depression-
like symptoms in mice. We sought to explore potential gut
microbiota-associated metabolites and the relationship between
bile acid metabolic profiles and gut microbiota altered in CUMS
progression.

MATERIALS AND METHODS

Chemicals and Reagents
Cholic acid (CA), chenodeoxycholic acid (CDCA),
ursodeoxycholic acid (UDCA), deoxycholic acid (DCA),
lithocholic acid (LCA), taurocholic acid (TCA),
taurochenodeoxycholic acid (TCDCA), tauroursodeoxycholic
acid (TUDCA), taurodeoxycholic acid (TDCA),
taurolithocholic acid (TLCA), glycocholic acid (GCA),
glycochenodeoxycholic acid (GCDCA), glycoursodeoxycholic
acid (GUDCA), glycodeoxycholic acid (GDCA), and
lithocholic acid-2,2,3,4,4-d5 (internal standard) were all
purchased from Sigma-Aldrich (St. Louis, MO, USA).
Glycolithocholic acid (GLCA) was purchased from J&K
Scientific Ltd. (Shanghai, China). HPLC-grade ammonium
formate (≥99%), ammonium acetate, methanol, and
acetonitrile were purchased from Merck KGaA (Darmstadt,
Germany). HPLC-grade formic acid (99%) was purchased
from Anaqua Chemicals Supply (Wilmington, USA).

Animals and CUMS Experiment
Seven-week-old male ICR mice were purchased from SLAC
Laboratory Animal Co., Ltd. (Shanghai, China). After their
arrival, mice were single-caged and divided into the normal
control group and the CUMS model group of 12 animals each
randomly based on their body weight and sucrose preference test
results. Mice were acclimated for 7 days in a temperature-
(23–26°C) and humidity-controlled (40–60%) room under a
12-h light/dark cycle (lights on 07:00–19:00) with free access
to food and water. During the modeling period, mice were
weighed biweekly.

CUMS progression contained a total of 8 different
stimulations including: 1) food deprivation for 24 h, 2) water

deprivation for 24 h, 3) damp sawdust for 24 h, 4) tail pinching
for 2 min, 5) restraint for 1 h, 6) cage tilting at 45° for 24 h, 7) cold
swimming for 10 min, and 8) day and night reversal for 24 h. Two
or three types of stimulations were delivered daily and randomly
to the mice in the model groups for 56 days.

Behavioral Tests and Sample Collection
Depression-related behavioral tests including the sucrose
preference test (SPT), forced swim test (FST), and tail
suspension test (TST) were performed during the experimental
period.

For the SPT, all mice were habituated to 1% sucrose solution
during the adaptation cycles. After the adaptation progression,
mice were deprived of water and food for 12 h and were provided
with free access to two tubes containing 20 ml of sucrose solution
(1% w/v) and water respectively for 5 h. The sucrose preference
rate was calculated subsequently using the following formula:
sucrose preference = volume of sucrose consumed/total volume
(water and sucrose) consumed × 100%. We performed the SPT
on day 57 to evaluate the modeling effect.

We conducted the forced swim and tail suspension tests on
days 58 and 59, respectively. During the forced swim test, the
mice were individually placed into glass cylinders (height of
40 cm, diameter of 18 cm) containing 25°C water at a depth of
15 cm for 10 min. Immobility time was measured of last 4 min
was recorded to estimate the symptom of depression. During the
tail suspension test, mice were individually suspended by their
tails for 6 min using a small piece of tape on the shelf, placed at the
height of 60 cm above the floor. The duration of immobility
during the final 4 min was recorded to measure depressive status.

On day 60, serum and feces were collected after 12 h of fasting.
Livers and intestinal contents were removed immediately after
the mice had been sacrificed. All samples were stored in a freezer
at −80°C for further processing.

Untargeted Metabolomic Analysis
Serum samples were thawed on ice and 400 µl of methanol was
subsequently added into 100 µl of serum sample in an EP tube.
The mixture was vortexed for 1 min and centrifuged at 15,000 g
for 10 min at 4°C. The supernatant was then transferred into
another EP tube and evaporated to dry with an Eppendorf
Vacufuge Concentrator 5305. The residue was resuspended in
150 ul of 80% methanol and filtered through a 0.22-µm nylon
syringe filter. For all samples, equal volumes of solutions were
mixed into quality controlled samples to evaluate instrument
analysis stability and repeatability.

The separation of the target compounds was performed on a
Waters ACQUITY UPLC HSS T3 (2.1 mm × 150 mm, 1.8 µm)
liquid chromatography column at 40°C with a ACQUITY UPLC
CSH C18 VanGuard Pre-column (2.1 mm × 5 mm, 1.7 µm) using
a Dionex Ultimate 3000 UPLC system. The mobile phase
contained 0.1% aqueous formic acid and 0.1% formic acid in
acetonitrile in positive ion mode and 5 mM ammonium formate
aqueous buffer and acetonitrile in negative ion mode. The mobile
phase flow rate was 0.25 ml/min and the injection volume was
5 µL both in the positive and negative ion modes. Supplementary
Table S1 presents the detailed gradient elution conditions. The Q
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Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific,
USA) equipped with an ESI interface was applied for mass
spectrometry analysis. The optimal parameters were as follows:
sheath gas flow rate, 30 arb; aux gas flow rate, 10 arb; capillary
temperature, 325°C; scan range: 81–1000 Da; stepped normalized
collision energy, 30 in NCE mode; spray voltage, 3.5 kV
(positive)/−2.5 kV (negative). All MS spectra were acquired
and analyzed using the Xcalibur 4.0 software (Thermo Fisher
Scientific).

Data Processing and Metabolite
Identification
Metabolomics analysis was carried out by BioNovoGene (Suzhou,
China). After the raw data files were converted into an mzXML
format by the ProteoWizard software (v3.0.8789), the freely
available XCMS software was used to perform peak
identification, filtration, alignment, and integration. The three-
dimensional data matrix, including retention time, mass to charge
ratio, and intensity, was converted into a table for further process
analysis. In order to compare the data of different magnitudes, the
peak area of the data was batch-normalized before multivariate
statistical analysis. The data were then uploaded into SIMCA-P
13.0 to perform principal component analysis (PCA) and
orthogonal partial least squares discriminant analysis (OPLS-
DA). Autoscaling was used in all the models to achieve more
scientific, reliable, and intuitive results. The variable importance
in the project values (VIP) obtained from the OPLS-DA model
and p-value from Student’s t-test were used to select the potential
metabolites in the study. Metabolites with VIP>1 and p-value <
0.05 were considered statistically significant. These potential
metabolites were subsequently subjected to pathway analysis
performed through MetaboAnalyst 5.0 (https://www.
metaboanalyst.ca/).

Bile Acid Quantification in the Serum,
Feces, and Liver
The bile acid profiles in the serum, feces, and liver were quantified
using our previously validated UPLC-Q/Orbitrap-HRMS
methods. Briefly, the bile acids in the feces and liver were
extracted with 5 vol of deionized water by Qiagen
TissueLyserII. For the feces samples, 200 uL of acetonitrile and
10 uL of 14% ammonia solution were added into 100 uL of fecal
suspensions spiked with internal standard. For the serum and
liver homogenates, 400 uL of acetonitrile was added into 100 uL
of sample spiked with internal standard. The mixture was
vortexed for 1 min and centrifuged at 20,000 g for 10 min at
4°C. The supernatant was then transferred into another EP tube
and evaporated to dry with a vacuum centrifugal concentrator.
The residue was resuspended in 100 uL of 80% methanol and
filtered through a 0.22-µm nylon syringe filter. All blank matrix
used for the calibration standard configurations and quality
control samples were prepared using the activated carbon
adsorption method.

The separation of the target compounds was performed on the
same instrument and column as described above. The mobile

phase flow rate and injection volume were 0.2 ml/min and 5 μL,
respectively, with 10 mM ammonium formate aqueous buffer (A)
and acetonitrile (B). The optimized gradient elution (0–7 min,
35–60% B; 7–8.5 min, 60–95% B; 8.5–12 min, 95% B;
12–12.3 min, 95%–35% B; 12.3–16 min, 35% B) was performed
to separate the different bile acid components. Acquisition was
performed in negative selective ion monitoring mode. All MS
spectra were acquired and analyzed using the Xcalibur 4.0
software.

16S rRNA Sequencing Analysis
Total genomic DNA from the intestinal contents (5 samples from
each of the control and model group) was extracted using the
HiPure Stool DNA Kit (Megan, Guangzhou, China) according to
the manufacturer’s protocols. The DNA concentration was
measured using the Equalbit dsDNA HS Assay Kit (Novizan,
Nanjing China). The NGS library preparation and Illumina
sequencing was performed by GENEWIZ, Inc. (Suzhou,
China). Approximately 20–30 ng of DNA was used to generate
amplicons. The V3 and V4 hypervariable microbial 16S rDNA
regions were amplified by PCR using a panel of proprietary
primers designed by GENEWIZ. A linker with an index was
then added to the end of the PCR product of 16S rDNA by PCR
for NGS sequencing. The obtained sequencing library was
subsequently purified with magnetic beads, followed by library
quality control checks using a microplate reader and agarose gel
electrophoresis. The library was then quantified to 10 nM and
PE250/FE300 paired-end sequencing was performed using an
Illumina MiSeq instrument (Illumina, San Diego, CA, USA).

Next, the forward and reverse reads were joined in pairs,
followed by filtering the sequences containing N in the splicing
results and retaining the sequences with a length beyond 200 bp.
The obtained longer sequences were used to perform sequence
clustering using VSEARCH (1.9.6) (sequence similarity was set to
97%) against the Silva_138 16SrRNA database (http://www.arb-
silva.de/). The Ribosomal Database Program classifier was used to
assign taxonomic categories to predict the community
composition at the genus levels. Sequence data associated with
this project have been deposited in the NCBI database (Accession
Number: PRJNA796629).

Statistical Analysis
All statistical analyses were performed using the GraphPad Prism
9.0 software. A two-tailed t-test was performed to compare
between the groups and statistically significant differences
were labeled with one, two, three, or four asterisks
corresponding to p < 0.05, p < 0.01, or p < 0.001, respectively.
Correlations between the gut microbiotic abundance and bile acid
profiles were estimated using Pearson’s correlation analysis.

RESULTS

Body Weight Changes and Depression-Like
Behavior Validation
The body weight of the animals was measured before and during
the treatment period. The mice in the model group gained less
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weight than control group at the end of the CUMS progression
(Figures 1A–D). In addition, significant CUMS effects were
present in the case of the sucrose consumption in SPT,
immobility time in both FST and TST compared with the
control group. The results demonstrated that a CUMS mouse
model was successfully created.

Differential Metabolite Screening in
Untargeted Metabolomic Analysis
To investigate the impact of chronic stress upon the metabolomic
profiling, untargeted metabolomic analysis was performed to
analyze the metabolite composition in the serum of mice. The
obvious separation trend from the PCA (Supplementary Figure
S1) and the OPLS-DA (Figures 2A,B) score plot indicated
metabolic differences between the groups. Our OPLS-DA
permutation test showed that the model we established was
not over-fitting (Figures 2C,D).

In order to screen out potential metabolites, we used the VIP
value of the OPLS-DA model beyond 1.0 and the p-value of the
two-tailed unpaired Student’s t-test results less than 0.05 as a
threshold to distinguish the metabolites from the model and
control groups. A total of 74 metabolites were significantly
changed during the CUMS progression. Table 1 shows the
detailed information of these metabolites. The affected
pathways mainly involved amino acid, sugar, nucleotide
metabolism, unsaturated fatty acid biosynthesis and
metabolism, vitamin synthesis and absorption, and bile acid
metabolism. Supplementary Figure S2A and Supplementary
Table S2 show the bubble chart of the KEGG pathway analysis

and the detailed information of the pathway analysis, respectively.
We found that the two main primary bile acid (chenodeoxycholic
acid and taurocholic acid) levels were significantly altered in the
model group, indicating abnormalities in bile acid synthesis or
metabolism.

Effect of CUMS on Bile Acid Composition in
the Serum
To further examine the bile acid metabolism disrupted by CUMS
progression, we quantified the detailed bile acid profiles in the
serum using our previously established method (Supplementary
Figure S3 shows the chromatographic separation of the different
components). CUMS significantly increased the level of three free
bile acids, UDCA (345%↑, p = 0.0314), CDCA (220%↑, p =
0.0152), and DCA (197%↑, p = 0.0009), whereas it significantly
reduced the level of taurine-conjugated primary bile acid TCA
(56%↓, p = 0.0452) (Figure 3A). The taurine-conjugated-to-free
bile acid ratios in the model group were significantly lower than
those in the control group (Figure 4A). In addition, the
hydrophobicity index (HI) of the circulating bile acid pool was
calculated as described previously (Heuman, 1989). We observed
that the HI in the model group was significantly higher than that
in the control group (Figure 4B).

Effect of CUMS on Bile Acid Composition in
the Liver and Feces
Next, we quantified the bile acid profiles in the liver and feces to
evaluate the effect of CUMS on bile acid biosynthesis and

FIGURE 1 | CUMS effects on body weight and depressive-like behaviors in ICR mice. (A) Body weight change. (B) Sucrose preference in the sucrose preference
test. (C) Immobility time in the forced swimming test. (D) Immobility time in the tail suspension test. *p < 0.05. **p < 0.01. ***p < 0.001. Error bar, SD.
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metabolism. CUMS significantly increased the secondary bile
acid levels in the feces and liver (Figures 3B,C). In particular, the
model group liver samples showed increased DCA (148%↑, p =
0.0198), TDCA (166%↑, p = 0.0222), and TLCA (137%↑, p =
0.0028) levels and the model group feces samples showed
increased DCA (117%↑, p = 0.0343), TDCA (304%↑, p =
0.0034), and GDCA (306%↑, p = 0.0061) levels.

Since DCA is the microbial metabolic product of TCA, we
calculated the relative TCA-to-DCA ratios in the control and
model groups to indirectly address the effects of the gut
microbiota. The TCA/DCA ratio significantly decreased in the
serum and liver of model group (Figure 5). Our results indicated
that CUMS markedly promoted intestinal secondary bile acid
formation.

Association Between the Gut Microbiotic
Abundance and Bile Acid Profiles
We identified a total of 65 bacteria in the intestinal tract from the
intestinal content samples at the genus level and summarized the
heatmap of the relative abundance in the top 30 genera
(Figure 6A). Pearson’s correlation analysis (Figure 6B)
indicated that increased secondary bile acid levels in the feces
significantly and positively correlated with three members of the
phylum Firmicutes: Ruminococcaceae_UCG-010, Ruminococcus,
and Clostridia_UCG-014. This result suggested that changes in

the secondary bile acid formation might be associated with
altered gut microbiota composition in the intestine.

DISCUSSION

In this study, we constructed a CUMS model to mimic depressive
behavior in ICR mice with adverse stress in order to explore how
depression could affect metabolism. These mice were weighed
every 2 weeks and significant body weight gain reduction could be
observed in model groups compared to the control. The SPT
results showed that 8 weeks of CUMS significantly reduced
sucrose solution consumption. The tail suspension and the
forced swim tests are the most direct and effective methods to
evaluate depressive behaviors in animals (Can et al., 2012; Slattery
and Cryan, 2012). The immobility time of the model group
during both the TST and FST significantly increased
compared with that of the control. These behavioral results
consistently supported that we successfully developed a CUMS
model in ICR mice.

Metabolomics is an important component of systems biology,
which can directly reflect the state of organisms (Fiehn, 2002).
Our PCA and OPLS-DA score plots showed significant
separation of the different groups, indicating that obvious
metabolic differences occurred during CUMS progression.
However, the pathway enrichment map revealed that the most

FIGURE 2 | Multivariate data analysis and permutation test. (A) OPLS-DA score map for positive ion mode data. (B) OPLS-DA score map for negative ion mode
data. (C) OPLS-DA permutation test for the positive ion mode data. (D) OPLS-DA permutation test for the negative ion mode data.
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impacted pathways mainly involved the energy metabolism,
extensively studied in the field of depression. Upon further
analysis of these metabolites, two primary bile acids were
significantly altered in the model group, indicating that CUMS
progression might cause bile acid metabolism disorder. In order
to clarify how CUMS could affect bile acid metabolism, we
quantified the detailed bile acid profiles in the serum, liver,
and feces by UPLC-Q/Orbitrap-HRMS.

Bile acids are a group of amphipathic steroid molecules
generated by hepatic and bacterial enzymes, playing an
important role in regulating metabolism and immune response
(Hofmann, 1999; Jia et al., 2018). Recent evidence suggests that
bile acids might also play a role in mediating
microbiota–gut–brain axis functions by interacting with their
receptors in the brain (Monteiro-Cardoso et al., 2021).
Specifically, altered bile acid profiles were associated with
cognitive impairment in Alzheimer’s and Parkinson’s disease
(MahmoudianDehkordi et al., 2019; Baloni et al., 2020; Li
et al., 2021). Bile acid administration, particularly that of
TUDCA and UDCA, contributed to neurologic symptom

improvements in animal models of Alzheimer’s, Parkinson’s,
and Huntington disease (Keene et al., 2002; Lo et al., 2013;
Cuevas et al., 2020). However, bile acid metabolism in
depression has rarely been described. There is an urgent need
to elucidate how chronic stress affects bile acid profiles.

It is well-known that a variety of bile acid subtypes are present
within the circulating bile acid pool (Yang et al., 2017). It has been
difficult to appreciate the exact contribution of each bile acid to
the whole body since each bile acid has the ability to bind and
modulate the activity of transmembrane and nuclear receptors
(Kundu et al., 2015). Different bile acid subtypes exhibit varying
degrees of hydrophobicity, determined by factors such as state of
ionization and hydroxyl group number, position, and orientation
(Heuman, 1989). Circulating bile acid profile HIs quantitatively
define the composite hydrophilic-hydrophobic balance of a
mixture of bile acids (Heuman, 1989). Since multiple
biological, physical, and chemical properties are related to the
ability of compounds to bind to or dissolve in hydrophobic
domains such as membrane, micelles, or certain receptor sites,
HI can be used to evaluate how bile acid profile alterations impact

TABLE 1 | Identification of different metabolites.

Metabolites KEGG ID Model/control Metabolites KEGG ID Model/control

S-Adenosylhomocysteine C00021 ↓ N-Acetylserotonin C00978 ↑
Pyruvic acid C00022 ↓ N-Acetyl-L-aspartic acid C01042 ↑
L-Glutamic acid C00025 ↑ 4-Hydroxyphenylpyruvic acid C01179 ↓
Oxoglutaric acid C00026 ↑ Anserine C01262 ↑
L-Aspartic acid C00049 ↑ Linoleic acid C01595 ↑
L-Arginine C00062 ↑ Kynurenic acid C01717 ↑
L-Serine C00065 ↑ Pyroglutamic acid C01879 ↑
D-Fructose C00095 ↑ 5-Methylcytosine C02376 ↑
2-Ketobutyric acid C00109 ↓ Xanthurenic acid C02470 ↑
Fumaric acid C00122 ↓ Chenodeoxycholic acid C02528 ↑
Adenine C00147 ↓ Ureidopropionic acid C02642 ↑
L-Proline C00148 ↑ N-Formyl-L-methionine C03145 ↓
5-Methylthioadenosine C00170 ↓ 3-Hydroxykynurenine C03227 ↑
L-Lactic acid C00186 ↑ 2-Oxoarginine C03771 ↓
3-Phosphoglyceric acid C00197 ↑ 2-Dehydro-3-deoxy-L-rhamnonate C03979 ↑
Thymidine C00214 ↓ D-Octopine C04137 ↑
Butyric acid C00246 ↑ 13-L-Hydroperoxylinoleic acid C04717 ↑
L-Sorbose C00247 ↓ Taurocholic acid C05122 ↓
Nicotinic acid C00253 ↓ Phenylethylamine C05332 ↑
Riboflavin C00255 ↑ beta-D-Fructose 6-phosphate C05345 ↑
Gluconic acid C00257 ↑ 5(S)-HpETE C05356 ↓
Uridine C00299 ↓ Ergothioneine C05570 ↓
Retinal C00376 ↓ 3,4-Dihydroxymandelic acid C05580 ↑
Carnosine C00386 ↑ Metanephrine C05588 ↑
cis-Aconitic acid C00417 ↑ 5-Hydroxyindoleacetic acid C05635 ↑
Prostaglandin H2 C00427 ↓ Prostaglandin G2 C05956 ↓
Saccharopine C00449 ↓ Prostaglandin J2 C05957 ↓
Nicotinamide ribotide C00455 ↓ 6-Keto-prostaglandin F1a C05961 ↑
Retinol C00473 ↓ Salidroside C06046 ↓
Cytidine C00475 ↑ Skatole C08313 ↑
Glutaric acid C00489 ↓ 13S-hydroxyoctadecadienoic acid C14762 ↑
L-Fucose C00507 ↓ 12-KETE C14807 ↑
L-Arabinonate C00545 ↑ 9(S)-HPODE C14827 ↑
5-Dehydro-4-deoxy-D-glucarate C00679 ↓ 12,13-DHOME C14829 ↑
Betaine C00719 ↑ Stearidonic acid C16300 ↓
Glucaric acid C00818 ↓ Traumatic Acid C16308 ↑
Indole-3-acetic acid C00954 ↑ (2E,4Z,7Z,8E)-Colnelenic acid C16320 ↑

Different metabolites were identified from the OPLS-DA, model based on VIP > 1 and p < 0.05, ↑ indicates upregulated metabolites. ↓indicates downregulated metabolites.
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body function (Haeusler et al., 2013). Therefore, we calculated the
circulating bile acid pool HI in the serum and observed
remarkably raised bile acid pool HI in the model group.

Apart from HI, the conjugated/free and primary/secondary
form ratios are additional characteristics of host bile acid
homeostasis. We observed that the conjugated-to-free form

FIGURE 3 | Detailed bile acid profiles in the (A) serum, (B) feces, and (C) liver. *p < 0.05. **p < 0.01. ***p < 0.001.

FIGURE 4 | Comparisons of bile acid composition in the serum. (A)
Boxplot for conjugated bile acid-to-free bile acid concentration ratio. (B)
Boxplot for bile acid hydrophobicity index.

FIGURE 5 | Comparisons of the relative TCA-to-DCA concentration
ratio. Data represent ratio values normalized to percentage of model group
and are shown as mean ± SEM.
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ratios in the serum significantly reduced in the model group. In
addition, secondary bile acid levels, especially that of DCA,
markedly increased in the model group. Since DCA is the
metabolic product of TCA, we further compared the TCA/
DCA ratio in control and model groups. Consequently, the
TCA/DCA ratios in the serum and liver significantly decreased
in the model group. These results indicated that the secondary
bile acid biosynthesis pathway had been activated during CUMS
progression, potentially explaining the increased HI in the serum.

Mitochondrial dysfunction and oxidative stress are supposed
to be involved in the pathophysiology of depression (Bansal and
Kuhad, 2016; Bhatt et al., 2020). Indeed, hydrophobic bile acid
species show cytotoxicity due to their detergent action and
oxidation effects (Perez and Briz, 2009), whereas hydrophilic
bile acids, such as TUDCA mentioned above, exert strong
cytoprotective effects by mitochondrial membrane stabilization
(Castro et al., 2004). Previous studies demonstrated that multiple
bile acids could penetrate the blood-brain barrier, although the
involved mechanisms have not yet been fully understood
(Mertens et al., 2017). Notably, free bile acids could diffuse
across phospholipid bilayers and their brain concentrations
correlate with their serum concentrations (Kamp et al., 1993;
Higashi et al., 2017). Since chronic stress can disrupt brain
homeostasis and increase the blood-brain barrier permeability
(Lee et al., 2018), free bile acids might penetrate more easily the
blood-brain barrier in the depressive state. In particular,
increased DCA level can induce apoptosis and DNA damage

(Washo-Stultz et al., 2002; Fu et al., 2019), potentially
exacerbating neuroinflammation and oxidative stress
contributing to the progression of depression pathology. In
our analyses, with CUMS progression, the increased free bile
acid levels in serum might have contributed to bile acid
composition changes in the brain. This is of particular
concern given that the increased DCA level might affect brain
physiology.

In addition to direct effects on the central nervous system
function, bile acids might also be involved in the metabolic
disorders during CUMS progression by regulating receptor
such as FXR (farnesoid X receptor) and TGR5 (Takeda G
protein-coupled receptor 5). FXR mainly functions as a bile
acid sensor in the bile acid regulation feedback and its most
potent ligand is CDCA (Liu et al., 2020). Furthermore, current
evidence suggests FXR also participates in bile acid-mediated
energy metabolism. FXR deficient mice exhibited impaired
glucose tolerance and reduced insulin sensitivity (Ma et al.,
2006). FXR activation in the intestine promotes the release of
fibroblast growth factor (FGF) 15/19, proved to serve as
important regulators to improve glucose metabolism in the
gut–brain axis by binding FGF receptors in the hypothalamus
(Liu et al., 2018). TGR5 is a G protein-coupled bile acid receptor
that mediates glucose homeostasis by producing glucagon-like
peptide 1. TGR5 is mainly activated by secondary bile acids,
including LCA, DCA, and TLCA in vivo (Liu et al., 2020). Our
serum untargeted metabolomics results revealed multiple

FIGURE 6 | Sequencing data analysis at the generic level. (A) Heat map of the top 30 genera relative abundances. (B) Relationship between fecal secondary bile
acid levels and the top 30 genera microbial relative abundances. The legends show the relative abundances and correlation values respectively. *p < 0.05. **p < 0.01.
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carbohydrate metabolism pathways were significantly enriched,
which might be associated with the bile acid metabolism disorders
in CUMS progression. Beyond that, the latest research indicated
that bile acid receptors in the brain were also directly involved in
the pathogenesis of depression. The protein and mRNA
expressions of FXR in hippocampus were significantly increased
in CUMS induced depressive rats (Chen et al., 2018), and FXR
overexpression aggravated depression-like behaviors by inhibiting
brain-derived neurotrophic factor signaling in the hippocampus
(Hu et al., 2020). Multiple types of chronic stressors significantly
reduced TGR5 expression in hippocampal CA3 pyramidal neurons
of C57BL/6J mice, whereas genetic overexpression of TGR5 or
intra-CA3 infusion of the TGR5 agonist was able to reverse
depressive-like behaviors by CA3 pyramidal neurons activation
(Wang et al., 2021). In our present study, hepatic FXR and TGR5
expressions were not significantly altered in CUMS progression
(data not shown), indicating that CUMS might exert different
effects on bile acid reporters in different tissues. Bile acid profile
and FXR and TGR5 expression in the brain will be the focus of our
further investigation to elucidate the regulation of the pathogenesis
of depression.

It is known that gut microbiota plays an essential role in the
development of depression (Sanada et al., 2020), recognized as a
possible reason for depression causing bile acid metabolism
disorder. The deconjugation of conjugated bile acids in vivo is
mainly catalyzed by bile salt hydrolase, widely expressed by
multiple common commensal genera, especially Bacteroides,
Lactobacillus, and Clostridium (Song et al., 2019; Adhikari
et al., 2020). Another microbial bile salt transformation in vivo
is to form secondary bile acids from primary bile acids by 7α-
dehydroxylation. Currently known bacteria expressing 7α-
dehydroxylase are all of the Ruminococcaceae and
Lachnospiraceae families (Stellwag and Hylemon, 1978;
Takamine and Imamura, 1995). As shown in Supplementary
Figure S4, two genera of family Ruminococcaceae,
Ruminococcaceae_UCG-010 and Ruminococcus, were
significantly positively correlated with the secondary bile acid
levels in feces, whichmight partly explain the increased secondary
bile acids in model group.

Accumulating number of studies demonstrated that
Ruminococcaceae might affect brain function and behavior.
Tran et al. found that the abundance of Ruminococcaceae
were correlated with the apolipoprotein E genotype in
healthy participants (Tran et al., 2019). Depletion of
Ruminococcaceae was proved to be closely associated with
reduced cognitive functions Alzheimer’s disease (Vogt et al.,
2017; D’Amato et al., 2020). At the genus level, the genus
Ruminococcus is well known as butyric acid-producing
bacteria which plays an important role in intestinal
inflammation (Louis and Flint, 2017; Henke et al., 2019)
(elevated butyric acid level was also observed in model group
from the serum untargeted metabolomics data). Recent research
revealed the importance of decreasing Ruminococcus for
duloxetine to reduce depressive behavior (Lukić et al., 2019),
indirectly indicating that Ruminococcus involved in the
occurrence and progression of depression. Our current
results further complement these previous study findings

demonstrating the critical role of Ruminococcaceae by
regulating bile acid metabolism in microbiota–gut–brain axis.

CONCLUSION

Our findings provide a novel perspective to elucidate the
microbiota–gut–brain crosstalk in depression. Chronic stress-
induced gut microbiota modifications, especially changes in
relative abundance of family Ruminococcaceae, contributed to
increased biosynthesis of secondary bile acid DCA in the
intestine. This gut microbiota-mediated bile acid metabolic
imbalance subsequently increased the hydrophobicity of the bile
acid pool, which might in turn promote the energy metabolism
disorder and pathophysiological changes in CUMS progression.
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Fluxomics is an innovative -omics research field that measures the rates of all intracellular
fluxes in the central metabolism of biological systems. Fluxomics gathers data from
multiple different -omics fields, portraying the whole picture of molecular interactions.
Recently, fluxomics has become one of the most relevant approaches to investigate
metabolic phenotypes. Metabolic flux using 13C-labeled molecules is increasingly used to
monitor metabolic pathways, to probe the corresponding gene-RNA and protein-
metabolite interaction networks in actual time. Thus, fluxomics reveals the functioning
of multi-molecular metabolic pathways and is increasingly applied in biotechnology and
pharmacology. Here, we describe the main fluxomics approaches and experimental
platforms. Moreover, we summarize recent fluxomic results in different biological systems.

Keywords: fluxomics, metabolomics, nuclear magnetic resonance (NMR), mass spectrometry (MS), flux,
pharmacometabolomics

INTRODUCTION

Throughout recent decades discoveries explaining the complex nature of the cell have provided the
scientific community with an immense amount of data. As more information has been revealed, the
need for classification and quantification of this data has resulted in the creation of various–omics
fields. This approach recognizes whole systems, rather than groups of separated processes (Vailati-
Riboni et al., 2017). Many types of–omics have been created, the most prominent being genomics,
transcriptomics, proteomics and metabolomics. All of these fields are part of systems biology - a
strategy used to examine the interactions, relationships and behavior between all system constituents
(Ideker et al., 2001). However, even though the fundamental–omics approaches focus only on their
system of interest (e.g. the genome for genomics, or the proteome for proteomics), their constituents
are connected. For example, the field of proteomics exists as the directional effect of transcriptomics
that is further influenced by genomics.

Given these factors, a new discipline called fluxomics emerged that connects genomics,
transcriptomics, proteomics and metabolomics. Although a new addition to the–omics family,
fluxomics studies have been steadily increasing over the past 2 decades (Figure 1). Recent
examples of fluxomics studies are shown in Supplementary Table S1. The emerging
importance of fluxomics is reflected not only by the amount of research articles published
every year but also through its potential applications in industrial biotechnology and
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pharmacology (Feng et al., 2010; Wojtowicz and Mlynarz,
2016; Hansen et al., 2017; Emwas, 2021). Several recent
studies used fluxomics as an alternative approach in the
field of drug discovery, by targeting bacterial metabolic
pathways distinct from human metabolic routes. Viral and
bacterial infection depends on the ability of pathogens to
convert nutrients into energy (e.g., ATP) (Eisenreich, 2021).
Importantly, bacteria have partially distinct metabolic
pathways compared to their human host cells (Rohmer
et al., 2011). Selective inhibition of differential mechanisms
is unlikely to have major side effects in humans. Innovative
drug therapies that reprogram the core carbon metabolism of
human infections make bacteria more susceptible to
antibiotics (Liu et al., 2019a; Stokes et al., 2019). A recent
study examined the metabolomic profile of Vibrio
alginolyticus, which is resistant to cephalosporin
antibiotics, and the role of bacterial metabolism in drug
and multidrug resistance. This was achieved by detecting
the metabolic differences of acetyl-CoA fluxes into and
through the P-cycle and fatty acid biosynthesis (Liu et al.,
2019b). These findings shed light on ceftazidime (CAZ) and
other antibiotic resistance pathways, as well as multidrug
resistance of Vibrio and other pathogens. A combined
metabolomics and fluxomics approach was used in studies
of Leishmania infantum promastigotes. The origin of the
detected alterations was analyzed with untargeted analysis
of metabolic snapshots (of treated and untreated parasites),
both resistant and responders, and by using a 13C traceability
experiment (Rojo et al., 2015). This showed a significant shift
in amino acid metabolism, and multi-target metabolic change
as a result of treatment, particularly affecting the cell redox

system, which is critical for detoxification and biosynthetic
activities (Rojo et al., 2015). Although there are costs and
current challenges associated with fluxomics approaches,
there have been studies supporting its use in models such
as Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae
or Pichia pastoris (Feng et al., 2010; Zahrl et al., 2017). These
studies provided information such as optimal fermentation
conditions, improved ethanol and riboflavin production and
better yield in protein expression (Feng et al., 2010; Zahrl
et al., 2017; Choi et al., 2018). The constant development and
improvement of analytical tools and methodologies in
fluxomics will only increase its future prevalence (Wiechert
et al., 2001; Beyß, 2019; Foguet et al., 2019; Giraudeau, 2020).

ADVANTAGES AND DISADVANTAGES OF
CHROMATOGRAPHY AND NUCLEAR
MAGNETIC RESONANCE TOOLS IN
FLUXOMICS

Similar to other -omics fields, fluxomics is a technology driven
field where recent advances in instrumentation, software and
databases have significantly contributed to development.
Different analytical tools and approaches in fluxomics have
been reviewed recently (Wiechert et al., 2007; Niittylae et al.,
2009; Klein and Heinzle, 2012; Winter and Krömer, 2013;
Niedenführ et al., 2015). Even if different analytical tools are
utilized in fluxomics/metabolomics research, nuclear
magnetic resonance (NMR) spectroscopy (Giraudeau, 2020)
and mass spectrometry (MS) (Wiechert et al., 2007; Choi and

FIGURE 1 |Number of fluxomic publications. A literature review was conducted on SciFinder (https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf)
using the keyword fluxomics.
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Antoniewicz, 2019; Babele and Young, 2020) are the most
commonly used tools in metabolomic studies.

Each applied analytical platform, either NMR or MS, has its
strength, advantages and limitations. For example, gas
chromatography-mass spectrometry (GC-MS) is commonly
used in fluxomics analyses but is only applicable for volatile
metabolites or ones that can be treated to become volatile
compounds through derivatization processes. Liquid
chromatography-mass spectrometry (LC-MS) provides potent
approaches that offer combined sensitivity and selectivity. MS
approaches such as different ionization modes (positive or
negative) or mass analyzer technology can be used to increase
the number of detected metabolites. Nevertheless,
chromatographic experiments require specific sample pre-
treatment, have limited experimental time scales, and do not
depict the 3D structure or interactions of the molecule.

Beside its exceptionally high sensitivity, mass spectrometry is
usually combined with other powerful analytical platforms,
mainly gas chromatography (GC) or liquid chromatography

(LC), bringing powerful advantages that can overcome both
peak overlaps and the low sensitivities of NMR approaches
(Kvitvang et al., 2014; Kvitvang and Bruheim, 2015; Lien et al.,
2015; Sá et al., 2017).

NMR is a non-destructive, non-selective and fast method that
has been widely used for molecular identification and structural
elucidation used with minimal sample preparation requirements
(Atiqullah et al., 2015; Alahmari et al., 2019; Dhahri et al., 2020).
While the sample is placed in a static magnetic field, it can be
recovered for future analysis using other techniques and it is
possible to obtain spectral results regarding how molecules move,
flex, react, appear/disappear, or bind with other molecules over
several time scales, providing an optimum approach for
fluxomics (Blindauer et al., 1997; Wolak et al., 2012; Nargund
et al., 2013; Davaasuren et al., 2017).

Thanks to the unique features briefly mentioned above, NMR
is one of the main analytical techniques in metabolomics, and as
such it is crucial to accurately highlight its advantages and
limitations for different metabolomics applications (Emwas

FIGURE 2 | The relationships between each of the “-omics”. Each of the arrows shows the direction in which a particular “-omic” influences another. In the case of
fluxomics, it combines all approaches, granting better understanding. Dauner describes observed flux/activity as a two component - capacity-based and kinetics-based
- regulation (Figure 3). Created with Biorender.com.
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et al., 2019). NMR spectroscopy, particularly hydrogen detection
NMR (commonly referred to as proton or 1H-NMR
spectroscopy) can be inherently quantitative, providing a
potent analytical tool for metabolomics studies (Dona et al.,
2016; Markley et al., 2017). In comparison to other analytical
platforms such as GC-MS and LC-MS (Ciborowski et al., 2012;
Guo et al., 2013; Raji et al., 2013; Liu et al., 2014), NMR does not
require extra steps for sample preparation or metabolite isolation
prior to measurement, such as chromatographic separation and/
or chemical derivatization. On the other hand, spectral overlap
and low signal sensitivity are still the main limitations of NMR
approaches, and detection of metabolites at very low
concentrations is still beyond the capability of even the most
sensitive NMR technologies (Emwas and Bjerrum, 2015).

Even if NMR spectroscopy offers indisputable advantages, low
sensitivity is still its main limitation in fluxomic research (Emwas
et al., 2013; Clendinen et al., 2014; Emwas et al., 2016; Giraudeau,
2020). Overlapping of peaks is also a major challenge in peak
assignment, limiting the number of metabolites that can be
identified by NMR spectroscopy (Emwas et al., 2018;
O’Rourke et al., 2018; Giraudeau, 2020). The sensitivity of
NMR spectroscopy has been improved significantly by
dynamic-nuclear polarization (DNP) (Ardenkjær-Larsen et al.,
2003; Emwas et al., 2008; Ludwig et al., 2010), cryo-probes, ultra-
high magnetic fields (Deborde et al., 2017; Emwas et al., 2019),
and the development of new faster methods. However, sensitivity
remains a main limitation in the field (Emwas et al., 2019;
Robertson et al., 2020; Chandra et al., 2021). For instance,
secondary metabolites (usually existing at very low
concentrations) are beyond the detection limit of NMR
spectroscopy, while for volatile molecules can be detected by

GC-MS combined with the mass spectrum and retention time
(Emwas et al., 2015; Kohlstedt and Wittmann, 2019). Thus,
integrating NMR spectroscopy with MS methods is important
to give more comprehensive analysis (Fan et al., 2014; Elbaz et al.,
2015; Emwas and Bjerrum, 2015; Sá et al., 2017; Bergès et al.,
2021).

FLUXOMICS

Fluxomics is a new metabolomics application, which is focused
on actual rates withinmetabolic networks. Since the reaction rates
(fluxes) of metabolic pathways cannot be measured directly due
to the intrinsic properties of metabolism such as dynamics, the
fluxes can be measured indirectly by the shifts in metabolite levels
(Cascante and Marin, 2008; Winter and Krömer, 2013). What
distinguishes fluxomics from other–omics is the fact that the
fluxome (total set of fluxes in metabolic network of a cell) occur as
a resultant of all other “–omes” combined (mainly the proteome
and the metabolome). While the genome, transcriptome,
proteome and metabolome focus only on their own
elements–for example the interactions between proteins in the
proteome–the fluxome captures the real and dynamic picture of
phenotypes by observing the interactions between all of the
“-omes”, therefore granting a unique synergistic insight
(Cascante and Marin, 2008; Aon and Cortassa, 2015) (Figure 2).

Capacity-based regulation is a function related strictly to gene
regulatory processes of the cell. Those processes such as enzyme
production and stability within the cell (Ei) will differ, depending
on the cell and its function in a multicellular organism. As for
kinetic regulation, it is a function of kinetic parameters of

FIGURE 3 | Observed flux/activity a of a reaction step I. Adapted with permission from (Dauner, 2010).
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enzymes catalyzing the reaction (k) (accounting also for enzyme
modifications such as phosphorylation), concentration of
substrate (S) and product (P) and effector/signaling molecules
(I). (Dauner, 2010). Those variables can be measured by using e.g.
quantitative proteomics to calculate enzyme concentration (Ei)
(Ong et al., 2003; Mann, 2006; Winter and Krömer, 2013) and
quantitative metabolomics for substrate, product and effector
concentrations (Winter and Krömer, 2013).

The type of approach used to describe the metabolic
network will depend on its nature. For example, metabolic
flux analysis (MFA) identifies the whole set of fluxes in a part of
the metabolic network of a microorganism in vivo (Wiechert
et al., 2005). Information about fluxes is obtained by assuming
an intracellular pseudo-steady state (a state, where
intracellular metabolites do not accumulate in the cell and
the balance between the consumption and production fluxes of
a metabolite is in equilibrium) and reaction stoichiometry (a
fixed configuration of the metabolic network that does not
account for cell adaptation to the environmental changes), to
estimate the balances around intracellular metabolites, by

calculating the uptake rates of substrates and secretion rates
of metabolites (Stephanopoulos et al., 1998; Provost and
Bastin, 2006; Antoniewicz, 2015). Those rates are measured
by monitoring external rate changes such as substrate
consumption (glucose uptake rate), biomass synthesis
(growth rate), energy consumption and production (CO2

evolution rate), and metabolite production. The final result
is a metabolic flux map with an estimate of the flux of each
reaction (Figure 4).

For mathematical explanation of the flux calculation, the
reader is referred to (Stephanopoulos et al., 1998; Provost and
Bastin, 2006; Shimizu and Shimizu, 2013). A variant of MFA
called dynamic metabolic flux analysis (DMFA) focuses on
describing metabolic fluxes in a metabolic non-steady state, in
which a time-series of extracellular concentration and rate
measurements are used. In this approach the experiment is
divided into a set of time intervals from which the external
rates are calculated for each time interval. Then the results are
averaged and combined to obtain a time profile of related fluxes
(Antoniewicz, 2013; Antoniewicz, 2015).

FIGURE 4 | Example of a flux map, representing a metabolic flux distribution of Chlorella cells in autotrophic cultures. The flux values are expressed in mmol/g/h.
Adapted with permission from (Shimizu and Shimizu, 2013).
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Another approach to describe a metabolic network is called
flux balance analysis (FBA).When compared toMFA, FBAworks
on a broader scale, and it enables reconstruction of a metabolic

network on the genome-scale level. These reconstructions utilize
all information about metabolic reactions in an organism and the
genes that encode each enzyme. However, this approach does not

FIGURE 5 | The basics of MFA and FBA approaches.S is the stoichiometric matrix, v is the flux vector, r is the external metabolic rates. In MFA, fluxes are calculated
by fitting extracellular rates measured experimentally. In FBA, a flux solution space is determined by assuming a biological objective, for example, maximization of growth
rate, and solving a linear optimization problem. Adapted with permission from (Antoniewicz, 2015).
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count for regulatory interactions and detailed kinetics, giving only
partial biological information of the situation of systems at steady
state. To obtain fluxes from FBA, first a reconstructed metabolic
network must be converted to a mathematical matrix. Within this

matrix, a set of constraints is imposed by mass balance equations
and reaction bounds. Then, based on the biological objective (e.g.,
biomass production), linear programming is used to determine
the sought fluxes by either maximizing or minimizing objective

FIGURE 6 | Summary of the most used techniques within fluxomic studies.

FIGURE 7 | Summary of the most used organisms within fluxomic studies.
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function while considering given constrains (Orth et al., 2010;
Antoniewicz, 2015; Aon and Cortassa, 2015). The differences
between the MFA and FBA approaches are shown in Figure 5.

Extracellular fluxes between different cells and their
environment can also be determined by using 13C-isotope
substrate followed by NMR monitoring of 13C-labeled
metabolite propagation through the metabolic intermediates in
certain metabolic pathways. 13C-labeled fluxomics is an extension
of FBA in which all the precursors (substrates) used by the cells
are 13C-enriched. Consumed substrates are later incorporated
into the metabolic pathways connected to the used substrate. The
level of incorporation will depend on intracellular fluxes that
could be measured using NMR and/or MS. The information
obtained from those experiments can be utilized to discriminate
metabolic variants (isotopic profiling), measure specific fluxes
(targeted flux analysis–TFA) and investigate the whole fluxome
(global fluxomics) (Wiechert et al., 2001; Krömer et al., 2008;
Heux et al., 2017). For example, GC-MS and NMR were
employed to monitor metabolic flux in neural stem cells
(NSCs) using labeled carbon -13C glucose. By following 13C
labeling pattern and monitoring an isotopic non-stationary
metabolic flux analysis, it was demonstrated that pyruvate
entered the tricarboxylic acid (TCA) cycle mostly through

pyruvate carboxylase (81%) (Sá et al., 2017). Another practical
example of isotope labelling is to identify isotopomers (one of the
different labeling states in which a particular metabolite can be
encountered). The isotopomer redistribution of a metabolite is
calculated based on the percentage value of each isotopomer
within the metabolite pool. The information obtained from such
an approach describes how the various isotopomers react with
each other (Wiechert et al., 2001). Isotopic labelling is not limited
only to 13C. Other elements such as 15N, 18O or 31P can also be
used to study, e.g. nitrogen metabolism and muscle energetics
(Klein and Heinzle, 2012; Nemutlu, 2015).

Isotope labelling was recently used to determine whether
pyruvate or glutamine are anaplerotic sources requiring
pyruvate carboxylase (PC) and glutaminase 1 (GLS1) activity.
Sellers et al. (Sellers et al., 2015) utilized NMR-based
metabolomics approaches to monitor the Krebs cycle of patients
with early-stage non–small-cell lung cancer (NSCLC) infused with
uniformly 13C-labeled glucose followed by tissue resection. NMR
analysis of patient cancerous tissues showed enhancement of
pyruvate carboxylase (PC) activity. Furthermore, results from
patient cancer tissues cultured in 13C6-glucose or 13C5,

15N2-
glutamine tracers provided clear evidence of selective activation
of PC over glutaminase (GLS) in NSCLC (Sellers et al., 2015).

FIGURE 8 | Summary of the commonly described pathways within fluxomic studies.
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Another prominent example of isotope labelling used for
fluxomics is work by Cocuron et. al. (Cocuron et al., 2019),
comparing the metabolism of two different maize lines - Alex and
LH59. The goal of this work was to test if a change in carbon
metabolism may increase oil content in maize kernels to help
sustain the demand for vegetable oil. Cocuron et al. labeled Alex
embryos with 13C labeled glucose and utilized NMR, GC-MS and
LC-MS/MS to measure carbon flow through the metabolic
network (13C-MFA). Alex line embryos (which accumulate
more oil when compared to LH59) increased the amount of
Glucose 6-phosphate (G6P) entering into the plastid, the aldolase
in the plastid, the export of TPs (Glyceraldehyde 3-phosphate) to
the cytosol, the glycolytic flux in the cytosol,
Phosphoenolpyruvate carboxylase (PEPC), and plastidic malic
enzyme. It was concluded that increasing the levels of plastidic
malic enzyme should enhance the fatty acid content of seeds
(Cocuron et al., 2019).

In the recent studies, Bergès et al. utilized both NMR and MS
approaches to obtain high resolution fluxotypes for huge numbers of
a strains in a library. They define fluxotype as “the particular
distribution of metabolic fluxes measured for a given strain under
given physiological conditions” (Bergès et al., 2021). The authors
studied the fluxotype of 180 different E. coli strains with deleted
y-genes. Bacteria were grown in 13C labeled glucose as a single source
of carbon while monitoringmetabolic fluxes. Deletion of two y-genes
led to a significantmodification ofmetabolic fluxes indicating the role
of the studied genes in metabolic regulation (Bergès et al., 2021).

Both NMR and MS have been frequently used to investigate
the impact of fluxomics in drug delivery and pharmacology. For
instance, the production of artemisinic acid in an engineered

E. coli strain that encodes S. cerevisiae enzymes allows the cell to
enter the mevalonate pathway and supplement endogenous
isopentenyl pyrophosphate (IPP) biosynthesis. This then
enhances the production of the antimalarial drug artemisinin.
This shift in pathways relies on the flux rate and metabolites
concentration (Ro et al., 2006).

In addition, the emergence of multi-drug resistant strains of
tuberculosis provides a need to develop additional medications for
disease treatment. The application of fluxomics to target metabolic
enzymes and genome-scale models can be used for analysis,
discovery, and as hypothesis-generating tools, which will hopefully
assist the rational drug development process. Thesemodels need to be
able to assimilate data from large datasets and analyze them. A study
in 2007 reconstructed the metabolic network of Mycobacterium
tuberculosis H37Rv (Jamshidi and Palsson, 2007). This strain can
produce many of the complex compound’s characteristic to
tuberculosis, such as mycolic acids and mycocerosates. Researchers
in this study grew this bacterium in silico on various media, analyzed
the model in the context of multiple high-throughput data sets, and
finally they analyzed the network in an ‘unbiased’ manner by
calculating Hard Coupled Reaction (HCR) sets and FBA. The
results showed growth rates comparable to experimental
observations in different media, and by considering HCR sets in
the context of known drug targets for tuberculosis treatment they
proposed new alternative, but equivalent drug targets (Jamshidi and
Palsson, 2007).

Recent articles proving the constant increase in popularity of the
fluxomic field have been collected in Supplementary Table S1. The
summary of most popular techniques, organisms and pathways
described within the studies are shown in Figures 6–8.

TABLE 1 | Examples of databases useful for fluxomic-related studies.

Database Link Brief description Ref

Central Carbon Metabolic Flux
database (CeCaFDB)

www.cecafdb.org Contains 581 cases of quantitative flux results among 36 organisms.
CeCaFDB can be used for comparison and alignment of different fluxes and
to understand how they are changed by other factors

Zhang et al. (2015)

Datanator www.datanator.info Multisource database containing information about metabolites, RNA,
proteins and reactions. Datanor will include information about fluxes in near
future, in which case it could be used for comparative analyses of
relationships between variable systems and their constituents

Roth, (2021)

BiGG Models www.bigg.ucsd.edu Contains more than 100 genome-scale metabolic network reconstructions
that provide information about biochemical reactions, metabolites and
genes related to metabolism for a specific organism

King, (2015)

The Human Metabolome database
(HMDB)

www.hmdb.ca Contains 220,945 metabolite entries (both water-soluble and lipid soluble)
with 8,610 protein sequences (enzymes/transporters) linked to them
including pathways and reactions related to the metabolite. Provides users
with data obtained by MS and NMR analyses performed on urine, blood,
and cerebrospinal fluid samples

(Wishart et al., 2007;
Wishart et al., 2018)

SABIO-RK www.sabio.h-its.org Contains information about biochemical reactions and their kinetics.
Provides the user with information about the involvement of reaction in
various pathways, modifiers of reaction enzymes involved in reactions and
measured kinetic data (including kinetic rate equations)

Wittig, (2011)

Braunschweig Enzyme database
(BRENDA)

www.brenda-
enzymes.org

The largest depository of all classified enzymes, including biochemical and
molecular information. The database includes information such as enzyme
class, reaction in which the enzyme is involved, specificity of reaction,
functional parameters of the reaction, localization of enzyme, the application
of enzymes, and ligand-related data

Chang et al. (2009)
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FLUXOMICS DATABASES

Rising interest in–omics fields (i.e., proteomics, genomics, and
metabolomics) has resulted in an increased number of recent
studies. The massive amount of data produced from these studies
must be properly managed to increase its accessibility. This has given
rise to various -omics databases such as PeptideAtlas (http://www.
peptideatlas.org/) (Deutsch et al., 2008), PRIDE (https://www.ebi.ac.
uk/pride/) (Martens et al., 2005) (proteomics related databases),
Human Metabolome database (HMDB) (www.hmdb.ca) (Wishart
et al., 2007) and METLIN (https://metlin.scripps.edu/) (Smith et al.,
2005) (metabolomics related databases).

Fluxomics still has not reached its true potential, partly due to a
lack of uniform data standards in the reconstruction of metabolic
networks (Crown andAntoniewicz, 2013) (Thiele andPalsson, 2010).
Therefore, there is an emerging need to construct new and user-
friendly databases, which not only store, but also match flux results
and create metabolic network models. Recently, novel solutions to
reach these ambitious goals have been developed and are briefly
described here.

The Central Carbon Metabolic Flux database (CeCaFDB,
available at http://www.cecafdb.org) is a novel database
published in 2014 that focus on central carbon metabolic
systems of microbes and animal cells. The database contains
581 cases of quantitative flux results among 36 organisms
including: Homo sapiens, Escherichia coli, Saccharomyces
cerevisiae and Pichia pastoris. Based on user input it can
utilize four modules (vector-based similarity, a stoichiometry-
based comparison, a topology-based similarity, and enzyme-
topology based similarity) for comparison and alignment of
different flux distributions. Additionally, this database provides
the opportunity to perform similarity calculations by utilizing
deposited data and altering genetic and environmental factors
(Zhang et al., 2015).

Datanator (https://datanator.info) is an integratedmultisource
database that contains quantitative molecular data of several
types including metabolite concentrations, RNA modifications
and half-lives, protein abundances and modifications, and
reaction rate parameters. Developed in 2020, Datanator
includes various data for 1,030 organisms integrated from over
8,000 articles. Although it does not contain flux related data yet,
the authors are planning to include it in the near future, as well as
information on RNA/protein localizations and protein half-lives.
In such case, Datanator would be a valuable source for
comparative analyses of relationships between variable
networks and systems (Roth, 2021).

BiGG Models (http://bigg.ucsd.edu) is a large-scale database
containing genome-scale metabolic network reconstructions. It
contains more than 100 genome-scale metabolic models. Those
models contain information about biochemical reactions,
metabolites and genes related to the metabolism of specific
organisms. The information provided in BIGG Models is
standardized across different models, which allows users to
browse, share and visualize the networks in a structured manner
(King, 2015).

Besides those three databases, various other databases used in
different–omics fields can be used to obtain partial information

that can be useful for studying the fluxes. Some of them are listed
in Table 1.

CONCLUSION

Matching genomic, transcriptomic, proteomic, and
metabolomic data is essential for global understanding of
biological systems. Fluxomics provides insight into actual
rates within metabolic networks, both because of both
cellular activity and environmental changes. Such
knowledge can be obtained using different approaches
including metabolic flux analysis (MFA), dynamic
metabolic flux analysis (DMFA), flux balance analysis
(FBA) or 13C-labeled metabolite monitoring. In addition to
this wide variety of approaches in fluxomics, the significant
advances in instrumentation methods such as NMR and MS,
along with new databases and software, increase the
prevalence of fluxomics studies. Nowadays, fluxomics gives
rewarding data of complexed multi-molecular interactions in
biological systems, which has never been observed before.
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