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Pseudomonas aeruginosa is one of the most common opportunistic pathogens, which
causes severe nosocomial infections because of its well-known multidrug-resistance
and hypervirulence. It is critical to curate routinely the epidemic P. aeruginosa clones
encountered in the clinic. The aim of the present study was to investigate the connection
between virulence factors and antimicrobial resistance profiles in epidemic clones.
Herein, we found that ST463 (O4), ST1212 (O11), and ST244 (O5) were prevalent in
30 isolates derived from non-cystic fibrosis patients, based on multilocus sequence
type (MLST) and serotype analysis. All isolates were multidrug-resistant (MDR) and
each was resistance to at least three classes of antibiotics in antimicrobial susceptibility
tests, which was consistent with the presence of the abundant resistance genes, such
as blaOXA−50, blaPAO, aph(3′), catB7, fosA, crpP, and blaKPC−2. Notably, all blaKPC−2

genes were located between ISKpn6-like and ISKpn8-like mobile genetic elements. In
addition, classical exotoxins encoded by exoU, exoS, and pldA were present in 43.44%
(13/40), 83.33% (25/30), and 70% (21/30) of the isolates, respectively. The expression
of phz operons encoding the typical toxin, pyocyanin, was observed in 60% of isolates
(18/30) and was quantified using triple quadrupole liquid chromatograph mass (LC/MS)
assays. Interestingly, compared with other MLST types, all ST463 isolates harbored
exoU, exoS and pldA, and produced pyocyanin ranging from 0.2 to 3.2 µg/mL. Finally,
we evaluated the potential toxicity of these isolates using hemolysis tests and Galleria
mellonella larvae infection models. The results showed that ST463 isolates were more
virulent than other isolates. In conclusion, pyocyanin-producing ST463 P. aeruginosa,
carrying diverse virulence genes, is a potential high-risk clone.

Keywords: hypervirulence, multi-drug resistance, pyocyanin, ST463, Pseudomonas aeruginosa

INTRODUCTION

Pseudomonas aeruginosa is one of the most common gram-negative pathogens and is associated
with ubiquitously acute and chronic infections, especially cystic fibrosis (Ji et al., 2013). The
worldwide spread of P. aeruginosa poses a threat to global public health (Tacconelli et al.,
2018). P. aeruginosa exhibits various mechanisms of antimicrobial resistance, including the use
of efflux pumps, biofilm formation, an impermeable outer membrane, an adaptable genome,
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antibiotic-inactivating enzymes, mobile resistance genes, and
target mutations (Curran et al., 2018; Horcajada et al., 2019;
Zhu et al., 2019). Recently, the increasing incidence of multidrug
resistance (MDR), particularly for carbapenems, has induced a
new crisis involving nosocomial P. aeruginosa infections (Curran
et al., 2018; Horna et al., 2019).

Various virulence factors have been demonstrated to
contribute to P. aeruginosa infection. For example, type III
effectors (exotoxins ExoS, ExoT, ExoY, and ExoU), type VI
effectors (PldA), adherence factors (type IV pili, flagella),
alginate, elastase, and biosurfactant rhamnolipid (Karatuna
and Yagci, 2010; Boulant et al., 2018; Luo et al., 2019) play
crucial roles in mortality (Juan et al., 2017). It should be noted
that ExoU-positive P. aeruginosa is more likely to be resistant
to multiple antibiotics, such as carbapenems, cephalosporins,
fluoroquinolones, and aminoglycosides (Hu et al., 2017),
which further exacerbates infections and increases mortality
(Horna et al., 2019). Interestingly, exoU has been reported to be
mutually exclusive with exoS, a common gene in P. aeruginosa
(Vareechon et al., 2017). Nevertheless, the coexistence of exoS
and exoU enhances antibiotic resistance in P. aeruginosa (Horna
et al., 2019). Moreover, pyocyanin, belonging to the family
of phenazines, is the key virulence factor in P. aeruginosa.
Pyocyanin is synthesized from chorismic acid through a series
of biosynthetic enzymes encoded by the phz gene cluster
(Supplementary Figure 1). Previous studies showed that
pyocyanin can not only promote the pathogenicity to host cells
by disrupting electron transport, cellular respiration, and energy
metabolism (Rada and Leto, 2013), but also modulates bacterial
physiology, such as survival, iron acquisition, biofilm formation,
and antibiotic tolerance (Chincholkar and Thomashow, 2014;
Zhu et al., 2019).

Recently, numerous epidemic P. aeruginosa strains have been
described worldwide. For instance, ST175, ST235, and ST111 are
high-risk clones with MDR profiles, among which ST235 is highly
associated with exoU (Cholley et al., 2014). Infections caused by
such strains often have a worse prognosis than infections with
other strains. The combination of MDR and virulence factors
always restricts the implementation of therapeutic options, thus
there is an urgent need to investigate resistance and virulence
characteristics to combat P. aeruginosa infections. The misuse
and overuse of antibiotics, serving as a dominant driving force
of resistance, might further shape the evolutionary trajectory of
P. aeruginosa in the clinic and the environment. To date, the
correlations between the presences of virulence factors, antibiotic
resistance, and the genotype of P. aeruginosa in non-cystic
fibrosis patients remain unclear. The present work investigated
and characterized epidemic clones in a non-outbreak situation
to shed light on the treatment options for P. aeruginosa-
associated infections.

MATERIALS AND METHODS

Bacterial Isolation
Thirty P. aeruginosa isolates were collected from 30 non-
CF patients from the Second Affiliated Hospital of Zhejiang

University School of Medicine from 2009 to 2018. The Second
Affiliated Hospital of Zhejiang University School of Medicine is a
general hospital with 3,200 beds, in which carbapenem-resistant
P. aeruginosa (CRPA) had reached to 38.9% according to recent
hospital surveillance. Thirty CRPA strains were randomly chosen
from our previously sequenced genomes based on the sample
source, isolation time, virulence factor, sequence type (ST), and
carbapenemase genes. Specifically, the isolates were collected
from sputum (n = 13), CVC (central vascular catheter, n = 3),
blood (n = 3), urine (n = 3), feces (n = 3), pus (n = 4), and one
sample with an unknown source. Detailed clinical information
is shown in Supplementary Table 1. Before the experiments,
all the isolates were re-identified using Matrix-assisted laser
desorption/ionization-time of flight mass spectrometry (Bruker
Daltonics, Billerica, MA, United States).

Antimicrobial Susceptibility Testing
All isolates were tested with 16 kinds of antimicrobials, including
aminoglycosides (amikacin, gentamicin, and tobramycin),
β-lactam combination agents (ceftazidime-avibactam,
cefoperazone-sulbactam, and piperacillin-tazobactam), cephems
(ceftazidime, cefepime), monobactam (aztreonam), carbapenems
(imipenem, meropenem), polymyxin (colistin, polymyxin B), and
fluoroquinolones (ciprofloxacin, levofloxacin, and lomefloxacin).
The minimum inhibitory concentrations (MICs) of the isolates
were determined using the classic micro-broth dilution method
following the operations in the Clinical and Laboratory Standards
Institute’s performance standards (CLSI M100-S29) (Wayne,
2019). P. aeruginosa strain ATCC 27853 was chosen as a standard
control for the antimicrobial susceptibility tests.

Extraction of Pyocyanin
P. aeruginosa isolates were cultured on Luria-Bertani (LB)
agar plates for 12 h, after which a single colony was
selected for culture in LB broth at 37◦C with 200 rpm
shaking for 16 h. After centrifugation 13,000 × g, the
supernatant was collected, extracted twice with chloroform
(5:3 v/v), and vortexed. The chloroform phase was kept
after centrifugation (5,000 × g, 10 min) and mixed with
0.2 M HCl (3:1 v/v). The red phase was collected after
centrifugation (5,000 × g, 10 min), extracted with one-
third the volume of chloroform containing NaHCO3, and
the chloroform phase (blue) was collected (El-Zawawy and
Ali, 2016). The extract was dissolved with 90% acetonitrile
for high performance liquid chromatography (HPLC)-mass
spectrometry (MS) detection. The HPLC-MS apparatus
(Shimadzu, HPLC/MS-8045, Kyoto, Japan) was equipped
with a Shim-pack GIST-HP C18 column (2.1 mm × 50 mm,
3 µm, Shimadzu) at an oven temperature of 35◦C and a
flow-rate of 0.3 mL/min. The gradient program was applied
with the mobile phase consisting of solvent A (0.1% formic
acid in acetonitrile) and solvent B (0.1% formic acid in water)
as follows: 95–70% of B for 0–5.00 min, 70–50% of B for
5.00–5.10 min, 50–30% of B for 5.10–7.10 min, 30–0% of
B for 7.10–11.10 min, held at 0% B for 11.10–13.00 min,
0–95% of B for 13.00–14.00 min, and maintained at 95%
B for 14.00–16.00 min. The positive electrospray ionization
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(ESI+) mode was chosen to analyze pyocyanin. The MS
parameters for pyocyanin are shown in Supplementary
Table 2. The MS acquisition parameters used were as follows:
gas temperature, 300◦C; drying gas, 10 L/min; heating Gas,
10 L/min; DL Temperature, 250◦C; heat block temperature,
400◦C; second pole collision gas, argon gas; and CID
gas volt, 17 kPa.

Toxicity Evaluation
P. aeruginosa isolates were incubated in brain heart infusion
(BHI) agar containing 5% sheep blood for hemolytic experiments.
Virulence genes were analyzed by using BLAST software (SRST2
Toolkit version 0.2.0; Inouye et al., 2014), and the database of
virulence genes at the NCBI. The virulence of P. aeruginosa
isolates was evaluated in vivo using the Galleria mellonella
larval infection model, and eight strains (1615, 1802, E211-2,
1608, 1617, 1104, ZR16, and 1109) were selected to analyze
their characteristics. Strains 1617 (ST1212), 1104 (ST244), ZR16
(ST463), and 1109 (ST463) are pyocyanin-producing isolates,
and 1615 (ST1076), 1608 (ST1212), 1802 (ST1212), and E211-
2 (ST274) are pyocyanin-negative isolates. PA14 was used as a
reference strain for pyocyanin expression, and its mutant 1PA
(phz genes cluster deleted) (Dietrich et al., 2013) was used as a
negative control to evaluate the contribution of pyocyanin to the
pathogenicity of P. aeruginosa. To prepare the inoculum, bacteria
were grown for 12 h at 37◦C with 200 rpm shaking, washed
in sterile phosphate-buffered saline (PBS) after centrifugation
at 3,000 × g, and then adjusted to a final concentration of
105 colony forming units (CFU)/mL using a Nephelometer
(Merieux, Nürtingen, Germany). A 10 µL aliquot of suspended
strains (103 CFU of bacteria) was injected into each larva and
incubated at 37◦C. Larvae were considered as dead if they did not
respond to touch. The survival rates of G. mellonella larvae were
recorded. The statistical analysis in this study is performed using
GraphPad Prism 8 (GraphPad Inc., La Jolla, CA, United States).
Continuous variables were described using the mean ± SD
and categorical variables as the number (percentage). T-tests
were conducted to assess the normal distribution of continuous
data, while the Chi-squared or Fisher’s exact test were used to
assess the categorical data. A P-value < 0.05 was considered
statistically significant.

DNA Extraction and Genetic Analysis
Genomic DNA of all 30 isolates was extracted using a
Wizard genomic DNA purification kit (Promega, Beijing, China)
according to the manufacturer’s instructions. The genomic
DNA was then sequenced using the Illumina HiSeq X10
platform (Illumina, San Diego, CA, United States) with the
150-bp paired-end strategy. Raw reads were trimmed and
assembled to contigs using SPAdes version 3.11.1 (Bankevich
et al., 2012). Assembled contigs were analyzed via the
Center for Genomic Epidemiology website to screen for the
presence of acquired antimicrobial resistance genes (ARGs)1

(Boolchandani et al., 2019). The multilocus sequence type

1https://cge.cbs.dtu.dk/services/ResFinder/

(MLST)2 (Larsen et al., 2012) and serotype3 (Thrane et al.,
2016) were also determined. Virulence-associated genes and
mobile genetic elements (MGEs) were collected from the NCBI
database and were identified using SRST2 Toolkit version
0.2.0. The genomes of the 27 pyocyanin-producing isolates
were obtained from the Pseudomonas Genome Database4.
The phylogenetic tree was analyzed using Parsnp in the
Harvest package based on the core genome sequences of
the eight P. aeruginosa ST463 strains (Schürch et al., 2018).
The tree was then visualized using the online tool iTOL
(Cui et al., 2020).

RESULTS

Clinical Characteristics of P. aeruginosa
Isolates
MLST and serotype analysis revealed that all the isolates
belonged to 14 MLST types: ST463 (8/30), ST244 (4/30),
ST1212 (4/30), ST1076 (3/30), ST274 (2/30), ST769 (1/30),
ST782 (1/30), ST3080 (1/30), ST235 (1/30), ST836 (1/30), ST260
(1/30), ST2438 (1/30), ST494 (1/30), and ST508 (1/30); and six
serotypes: O5 (5/30), O6 (4/30), O10 (1/30), O11 (8/30), O3
(4/30), and O4 (8/30). The most prevalent ST type was ST463
(8/30), followed by ST1212 (4/30) and ST244 (4/30). Consistent
with previous observations (Parkins et al., 2018; Horcajada
et al., 2019), P. aeruginosa ST463 strains were associated with
serotype O4, while ST244 was associated with serotype O5.
The connections between serotypes and STs in other isolates
are displayed in Supplementary Table 1. These data indicated
that the sequence diversity of P. aeruginosa clones was high
among the patients.

Antimicrobial Resistance
Among all P. aeruginosa isolates, the antimicrobial resistance
rates of ceftazidime-avibactam, cefoperazone-sulbactam,
piperacillin-tazobactam, ceftazidime, cefepime, aztreonam,
imipenem, meropenem, ciprofloxacin, levofloxacin, and
lomefloxacin were 3.33% (1/30), 96.67% (29/30), 76.67% (23/30),
66.67% (20/30), 80% (24/30), 73.33% (22/30), 90% (27/30),
86.67% (26/30), 56.67% (17/30), 70% (21/30), and 96.67%
(29/30), respectively (Table 1 and Figure 1A). Generally, there
was a high proportion of resistance against the combinations
of β-lactams because of the presence of intrinsic resistant genes
blaOXA−50 and blaPAO. Remarkably, carbapenem-resistance
genes (blaKPC−2, blaGES−1, and blaIMP−9) were identified in
60% of the isolates (18/30, comprising 16 blaKPC−2, 1 blaGES−1,
and 1 blaIMP−9) (Figure 1B). In all 16 strains, blaKPC was
flanked by ISKpn6-like and ISKpn8 mobile genetic elements
(MGEs). In addition, aminoglycoside-resistance genes [aph(3′)
or aac(3)-IId, aac(6′)-IIb] were present in all isolates. The
fluoroquinolone-resistance gene (crpP) was harbored by 63.33%
of the isolates (19/30). In addition, some MGEs, such as intl1,

2https://cge.cbs.dtu.dk/services/MLST/
3https://cge.cbs.dtu.dk/services/PAst-1.0/
4http://www.pseudomonas.com
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TABLE 1 | Antibiotic susceptibility profiles of P. aeruginosa.

Antimicrobial agents MIC range (µg/mL) MIC50 (µg/mL) MIC90 (µg/mL) Susceptible % Intermediate % Resistant %

AMK 0.5– > 64 2 >64 80.00 3.33 16.67

GM 1– > 64 2 >64 73.33 0 26.67

TOB ≤0.25– > 128 ≤0.25 >128 73.33 0 26.67

CZA ≤1/4–128/4 4/4 8/4 96.67 0 3.33

SCF 8/4– > 256/4 256/4 >256/4 0 3.33 96.67

TZP ≤8/4– > 256/4 256/4 >256/4 13.33 10 76.67

CAZ ≤4–256 64 128 26.67 6,67 66.67

FEP ≤4– > 256 256 >256 10 10 80

ATM ≤8– > 256 256 >256 13.33 13.33 73.33

IMP 4– > 256 128 >256 0 10 90

MEM 2– > 256 128 >256 10.00 3.33 86.67

CST 1–4 1 2 96.67 0 3.33

PB 1–4 1 2 96.67 3.33 0

CIP 0.125–32 4 16 36.67 6.67 56.67

LEV ≤0.5–64 8 64 10 20 70

LOM 1− > 32 32 >32 3.33 0 96.67

AMK, amikacin; GM, gentamicin; TOB, tobramycin; CZA, ceftazidime-avibactam; SCF, cefperazone-sulbactam; TZP, piperacillin-tazobactam; CAZ, ceftazidime; FEP,
cefepime; ATM, aztreonam; IMP, imipenem; MEM, meropenem; CST, colistin; PB, polymyxin B; CIP, ciprofloxacin; LEV, levofloxacin; LOM, lomefloxacin.

FIGURE 1 | Phenotypical and genetic profiles of antimicrobial resistance in P. aeruginosa isolates. (A) Antibiotic resistance profiles. Proportion of antimicrobial
resistance genes (ARGs) (B) and mobile genetic elements (MGEs) (C) in the isolates. (D) Schematic diagram of representative ARGs and MGEs in five isolates. The
blaKPC−2 genes in P. aeruginosa 1011, ZE5, and 929 are surrounded by ISKpn6-like, ISKpn8, and other MGEs (ispA, iscR). P. aeruginosa N16-2 harbors MGEs ispA,
tnp513; and P. aeruginosa 1110 harbors intl1, IS26, iscR. All strains share similar patterns.
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ispA, iscR, tnp513, and IS26 were associated with diverse ARGs
(Figures 1C,D).

Virulence Factors
To determine the toxin-producing capacity of these isolates,
we first carried out hemolysis tests, which showed that 33.33%
of the isolates (10/30) displayed β-hemolysis (Figure 2B).
Subsequently, we performed further characterization of the
virulence in these isolates based on whole-genome sequencing
analysis. The main virulence factors included mucoid related
alginate (algA), T3SS effectors (toxA, exoS, exoT, exoU, and
exoY), adherence factors (flagella, fliC, and fliA), quorum
sensing gene (lasI), Type IV pili (pilP), rhamnolipid (rhlA),
phenazine biosynthetic genes (phzA-H, phzM, and phzS), and
the T6SS effector (pldA). All strains harbored exoT, pilP, rhlA,
and algA, and 96.67% (29/30) of the strains carried exoY.
Meanwhile, the prevalence rates of other factors, such as lasI,
toxA, exoS, fliC, and fliA were 90, 80, 83.33, 73.33, and 86.67%,
respectively (Figure 2A), suggesting that such genes are probably
related to bacterial colonization and pathogenesis. Additionally,
exoU and pldA were identified in 43.33% (13/30) and 70%
(21/30) of the strains, respectively (Figure 2C). Intriguingly,
all ST463 (O4) strains possessed exotoxin genes exoU, exoS,
and pldA. Finally, 60% (18/30) of the strains produced
pyocyanin in vitro, ranging from 0.02 to 3.2 µg/mL, based
on triple quadrupole liquid chromatograph mass (LC/MS)
analysis (Supplementary Figure 2 and Supplementary
Table 2). Remarkably, all ST463 strains expressed high
levels of pyocyanin (0.2–3.2 µg/mL), with an average of
1.48 µg/mL. Therefore, we deduced that ST463 (O4) might be

a potential high-risk P. aeruginosa clone because of its high
production of pyocyanin.

To explore whether there are any relationships between
ST types and pyocyanin production in P. aeruginosa, we
collected 27 genomes of pyocyanin-positive isolates from the
Pseudomonas Genome Database (Supplementary Table 3.). We
found that there was no common ST type that produced
pyocyanin (Table 2). Taken together, these results suggested a
positive connection between pyocyanin production and ST463-
type P. aeruginosa strains.

To further evaluate the virulence potential of ST463,
particularly the contribution of pyocyanin to survival rates,
eight clinical isolates, 1615, 1802, E211-2, 1608, 1617, 1104,
ZR16, and 1109 with different pyocyanin production levels,
were used to challenge G. mellonella larvae. P. aeruginosa
PA14, with high pyocyanin production and its mutant,
P. aeruginosa 1PA, with the deletion of pyocyanin producing
phz genes (Zhu et al., 2019), were used as reference strains.
We observed that the isolates that produced high levels
of pyocyanin (P. aeruginosa 1617, 1104, ZR16, and 1109)
induced higher mortality than those without pyocyanin
production (P. aeruginosa 1615, 1802, E211-2, and 1608)
(Figure 2D). This was in agreement with the finding
that P. aeruginosa PA14 was more toxic to the larvae
than P. aeruginosa 1PA, indicating that pyocyanin plays
an important role in the pathogenicity of P. aeruginosa-
associated infections. Notably, the ST463 type isolates
(P. aeruginosa ZR16 and 1109) exhibited higher virulence
than P. aeruginosa PA14 and the other clinical isolates tested
in this study. Altogether, these findings demonstrated that

FIGURE 2 | Assessment of the potential toxicity of P. aeruginosa isolates. (A) Phylogenetic tree and characteristics of all isolates. CVC, Central Venous Catheter;
(B) Hemolysis proportion of different sampling sources. (C) The proportion of antimicrobial resistance-associated virulence factors, such as biosynthetic genes,
exoU, exoS, pldA; and pyocyanin expression. (D) Larval survival rates in the G. mellonella infection model. Each isolate was challenged with 12 larvae for 48 h, with
three biological replicates.
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P. aeruginosa ST463, with high pyocyanin production, is a
high-risk clone in patients, suggesting that more attention
should be paid to the control of the dissemination of such
clones in the clinic.

TABLE 2 | Information of pyocyanin-producing P. aeruginosa strains.

Strains MLST Source Year References

U018A 852 CF patient 2003 Cullen et al.,
2015

2192 9 CF patient 2008 Cullen et al.,
2015

39177 27 Cornea 2011 Cullen et al.,
2015

Pr335 27 Hospital
environment

1997 Cullen et al.,
2015

M10 549 Surface water 2014 Cullen et al.,
2015

AMT0023-30 1,394 CF patient 2010 Cullen et al.,
2015

IST27 Unknown CF patient 1996 Cullen et al.,
2015

89 1,822 CF patient 2009 Caldwell et al.,
2009

ID4365 560 Soil 2008 Rane et al., 2008

148 Unknown Dolphin, gastric
juice

2014 Grosso-Becerra
et al., 2014

A5803 1,567 Pneumonia
patient

2007 Cullen et al.,
2015

LMG14084 316 Water 1960–1964 Cullen et al.,
2015

39016 2,613 Cornea 2011 Cullen et al.,
2015

40 2,238 CF patient 2009 Cullen et al.,
2015

LES400 146 CF patient 2002 Cullen et al.,
2015

LESB58 146 CF patient 1998 Cullen et al.,
2015

M18 1,239 Rhizosphere 2005 Li et al., 2008

17 179 CF patient 2009 Caldwell et al.,
2009

KK1 155 CF patient 2012 Cullen et al.,
2015

57P31PA 274 COP patient 2009 Cullen et al.,
2015

679 198 Non-CF
patient, Urine

2011 Cullen et al.,
2015

C3719 Unknown CF patient 2000 Cullen et al.,
2015

DK2 386 CF patient 1973 Cullen et al.,
2015

TBCF10839 234 CF patient 2013 Cullen et al.,
2015

1709-12 111 Non-CF patient 2004 Cullen et al.,
2015

AMT0060-1 111 CF patient 2010 Cullen et al.,
2015

AMT0060-3 111 CF patient 2010 Cullen et al.,
2015

MLST, multilocus sequence type; CF, cystic fibrosis; COP, chronic obstructive
pulmonary; CVC, central venous catheter.

DISCUSSION

The increasing prevalence of chronic and hospital-acquired
infections produced by MDR or extensively drug resistant
(XDR) P. aeruginosa strains is associated with the increasing
prevalence of transferable resistance determinants, particularly
against carbapenemases and extended-spectrum β-lactamases
(ESBLs) (Oliver et al., 2015). In this study, high proportions
of antibiotic resistance (66.67–96.67% to the combinations
of β-lactams, except CZA; 86.67–90% to carbapenems,
56.67–96.67% to fluoroquinolones, 66.67–80% to cephems,
and 73.33% to monobactams) were mainly caused by the
presence of multiple resistance genes. CZA is a novel approved
combination in China in 2019, which is used to treat severe
infections associated with CRPA. CZA is inactive against
metallo-β-lactamases-producing stains, while is quite active
against KPC-producing isolates (Horcajada et al., 2019). Our
results confirmed that the blaIMP-positive isolate (N16-2)
is the only CZA-resistant strain among the P. aeruginosa
isolates tested. Given the extensive usage of CZA, CZA-
resistant KPC-producing Klebsiella pneumoniae has been
reported in different countries, caused by a point mutation
of the blaKPC−2 gene (Gaibani et al., 2019; Hemarajata and
Humphries, 2019). Therefore, it is crucial to identify the
resistance mechanism before the regimens to improve antibiotic
efficacy are considered. The widespread carbapenemases
are metallo-β-lactamases of VIM- (Verona imipenemase)
and IMP- (imipenemase) types in P. aeruginosa (Boulant
et al., 2018). Notably, there were 16 KPC-strains (KPC-2)
among the 18 carbapenemase-producing isolates in our
study, which was consistent with our previous findings
that P. aeruginosa, especially ST463, is a new carrier of
blaKPC−2 surrounded by the MGEs ISKpn6-like and ISKpn8
(Hu et al., 2015).

Epidemic outbreaks of P. aeruginosa MDR/XDR high-
risk clones within hospital environments typically belong
to ST111 (serotype O11), ST175 (serotype O4), and ST235
(serotype O12) (Horcajada et al., 2019). ST235 has been
identified worldwide as being associated with exoS−/exoU+
(Maatallah et al., 2011) and the carbapenemases VIM, IMP,
FIM, and NDM (Maatallah et al., 2011; Juan et al., 2017).
Frequently, ST175 is observed to be a producer of VIM-
2, whereas ST111 can produce KPC-2 carbapenemase (Oliver
et al., 2015). Compared with these MDR/XDR isolates,
ST244 is another large clonal complex frequently detected
globally (Oliver et al., 2015; Horcajada et al., 2019). Our
collection contained one ST235 and four ST244 isolates, while
ST463 is the most prevalent clone associated with serotype
O4. Although exoS and exoU are often mutually exclusive
(Vareechon et al., 2017), we identified the coexistence of
exoS and exoU in all eight ST463 strains. Together with
the observation that all ST463 strains produce high levels
of pyocyanin and cause high toxicity in infection models,
these results suggested that clinical ST463 P. aeruginosa
is probably a high-risk clone that might cause serious
threats to human health because of its integrated MDR and
virulence factors.
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CONCLUSION

The present study indicated that clinical P. aeruginosa poses
a potential threat to human health because of the presence of
multiple virulence factors and antibiotic resistance genes. The
results suggested that the strain ST463 most likely emerged
as a hypervirulent clone of P. aeruginosa as a result of a
unique combination of pyocyanin production and virulence
genes, including exoU+/exoS+, and pldA. Additionally, our study
proves that the utility of genome sequencing in understanding
and monitoring the epidemiology of clinically significant
nosocomial clones, which will lead to improved control strategies.
Nevertheless, the dissemination, evolution, and fitness cost of
clone ST463 remain unclear.
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Many antimicrobial resistance genes usually located on transferable plasmids are
responsible for multiple antimicrobial resistance among multidrug-resistant (MDR) Gram-
negative bacteria. The aim of this study is to characterize a carbapenemase-producing
Enterobacter hormaechei 1575 isolate from the blood sample in a tertiary hospital in
Wuhan, Hubei Province, China. Antimicrobial susceptibility test showed that 1575 was
an MDR isolate. The whole genome sequencing (WGS) and comparative genomics
were used to deeply analyze the molecular information of the 1575 and to explore
the location and structure of antibiotic resistance genes. The three key resistance
genes (blaSFO−1, blaNDM−1, and mcr-9) were verified by PCR, and the amplicons were
subsequently sequenced. Moreover, the conjugation assay was also performed to
determine the transferability of those resistance genes. Plasmid files were determined by
the S1 nuclease pulsed-field gel electrophoresis (S1-PFGE). WGS revealed that p1575-
1 plasmid was a conjugative plasmid that possessed the rare coexistence of blaSFO−1,
blaNDM−1, and mcr-9 genes and complete conjugative systems. And p1575-1 belonged
to the plasmid incompatibility group IncHI2 and multilocus sequence typing ST102.
Meanwhile, the pMLST type of p1575-1 was IncHI2-ST1. Conjugation assay proved that
the MDR p1575-1 plasmid could be transferred to other recipients. S1-PFGE confirmed
the location of plasmid with molecular weight of 342,447 bp. All these three resistant
genes were flanked by various mobile elements, indicating that the blaSFO−1, blaNDM−1,
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and mcr-9 could be transferred not only by the p1575-1 plasmid but also by these
mobile elements. Taken together, we report for the first time the coexistence of blaSFO−1,
blaNDM−1, and mcr-9 on a transferable plasmid in a MDR clinical isolate E. hormaechei,
which indicates the possibility of horizontal transfer of antibiotic resistance genes.

Keywords: Enterobacter hormaechei, plasmid, blaSFO−1, blaNDM−1, mcr-9, IncHI2, WGS, mobile elements

INTRODUCTION

Carbapenem-resistant Enterobacteriaceae (CRE) has recently
emerged as a serious threat to modern healthcare, challenging
our present antibiotic treatment strategy (Chen et al., 2014).
Moreover, the carbapenem-resistant and extended-spectrum
β-lactamase (ESBL)-producing Enterobacteriaceae are also
classified as the “priority pathogens” by the World Health
Organization in 2017 (WHO, 2017; Tacconelli et al., 2018).
Among all these Enterobacteriaceae isolates, Enterobacter
hormaechei is a notorious nosocomial pathogen contributing
to various infections, such as bacteremia, endocarditis, and
lower respiratory, urinary tract, and intra-abdominal infections
(Xu et al., 2015).

Recently, reports about the coexistence of a rare ESBL
gene blaSFO−1 and carbapenemase genes were increased (Zhou
et al., 2020). New Delhi metallo-lactamase (NDM-1), a β-lactam
hydrolase, constitutes a critical and growingly important medical
issue, since its resistance trait compromises the efficacy of almost
all lactams (except aztreonam), including carbapenems (Dortet
et al., 2014). Compared with other broad-spectrum β-lactamase,
the blaSFO−1 gene is a low-incidence antimicrobial resistance
gene and usually not subject to systematic monitoring, which
puts it at risk of being missed (Zhao et al., 2015; Zhou et al.,
2020). With the increase of infections caused by carbapenemase-
producing bacteria and the lack of novel antibiotics (Gurjar,
2015), polymyxins have become the last-resort therapies in the
treatment of infections caused by this kind of multidrug-resistant
(MDR) bacterial (Olaitan et al., 2014; Yilmaz et al., 2016).
Thus, once the strains are resistant to both carbapenems and
polymyxins, the treatment will be very tough. The first plasmid-
mediated colistin resistance gene mcr-1 was identified in China
from the plasmid of Escherichia coli and Klebsiella pneumoniae
in IncI2 (Liu et al., 2016). mcr-1 remains the main plasmid-
mediated myxobacteria resistance gene, but mcr-2 to mcr-8 has
been identified in different species in humans and animals (Wang
et al., 2018; Nang et al., 2019). mcr-9 has also been identified
in Swedish ESBL isolates, including Enterobacter cloacae, E. coli,
Klebsiella acidophilus, and Citrobacter freundii (Börjesson et al.,
2020). Of particular concern is the spread of mcr genes into CRE,
which would create strains that are potentially pan-drug resistant
(PDR). So mobile colistin-resistant genes (mcr) have become an
increasing public health concern.

It is common for the coexistence of mcr-9 with
carbapenemases, such as blaNDM−1, blaVIM−4, and blaIMP−4
(Chavda et al., 2019; Chen et al., 2020). However, in this study, we
found a clinical isolate of carbapenem-resistant E. hormaechei,
which possessed the rare coexistence of blaSFO−1, blaNDM−1,

and mcr-9 genes. And we also explored the molecular basis for
antibiotic resistance of this strain.

MATERIALS AND METHODS

Bacterial Isolation and Identification
The E. hormaechei 1575 was isolated from the blood sample
in a tertiary hospital in Wuhan, Hubei Province, China. The
cultured bacteria were stored in glycerol broth at 80◦C. And
then samples were cultured on Colombian blood Agar plate
and identified by matrix-assisted laser desorption/ionization
time of flight mass spectrometry (MALDI-TOF MS) according
to the manufacturer’s instructions and also by whole genome
sequencing (WGS) (discussed below). Escherichia coli American
Type Culture Collection (ATCC) 25922 was used as control
strains for the identification of the species.

Antimicrobial Susceptibility Testing
A total of 17 antimicrobial agents were tested, including
imipenem (Ipm), meropenem (Mer), piperacillin–tazobactam
(P/T), ceftazidime–avibactam (Caz/Avi), aztreonam (Azt),
cefoxitin (Fox), cefotaxime (Ctx), cefepime (Cpe), ceftazidime
(Caz), gentamicin (Gen), amikacin (AMK), ciprofloxacin (Cip),
sulfamethoxazole (CoSMZ), tetracycline (Te), minocycline
(Min), tigecycline (TGC), and polymyxin B (PB). The minimum
inhibitory concentrations (MICs) of antimicrobial agents for the
bacteria tested were determined using the broth microdilution
method, and the susceptibility breakpoints were interpreted
in accordance with the Clinical and Laboratory Standards
Institute (CLSI) guideline (Clinical and Laboratory Standards
Institute (CLSI), 2020), except for tigecycline and colistin, for
which we used the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) breakpoints (Clinical and
Laboratory Standards Institute (CLSI), 2020; EUCAST, 2020).
AST was repeated three times in our study. E. coli ATCC 25922
was used as a control strain for the AST.

Carbapenemase Phenotype
Confirmation Testing
The modified carbapenem inactivation test (mCIM) was
performed, according to CLSI 2020 standards [Clinical
and Laboratory Standards Institute (CLSI), 2020], to verify
carbapenemase production by the isolate. The tested strain
1575 was incubated with a meropenem disk (10 µg, OXOID,
United Kingdom) immersed in the 2 ml of TSB suspension
at 37◦C for 4 h. E. coli ATCC 25922 was used as an indicator
and with its 0.5 McFarland suspension uniformly coated on
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the Mueller Hinton Agar (MHA) plate. After the plate was
dried for 3–10 min, the meropenem disk was removed from the
suspension, and the excess medium was squeezed out. It was then
placed on the MHA plate and incubated at 37◦C for 18–24 h.

Whole Genome Sequencing and
Bioinformatics Analysis
Bacterial genomic DNA was isolated using the UltraClean
Microbial Kit (Qiagen, NW, Germany) and sequenced from a
sheared DNA library with average size of 15 kb (ranged from
10 to 20 kb) on a PacBio RSII sequencer (Pacific Biosciences,
CA, United States), as well as a paired-end library with an
average insert size of 350 bp (ranged from 150 to 600 kb) on
a HiSeq sequencer (Illumina, CA, United States). Sequencing
libraries were constructed using the NEBNext R© UltraTM II DNA
Library Prep Kit for Illumina R© (second-generation sequencing)
and the SMRTbell R© Express Template Prep Kit 2.0 kit (third-
generation sequencing) and then loaded onto NovaSeq S4
flowcell and SMRT Cell 8 M DNA sequencing chip, respectively.
The paired-end short Illumina reads were used to correct the
long PacBio reads utilizing proovread (Hackl et al., 2014), and
then the corrected PacBio reads were assembled de novo utilizing
SMARTdenovo1. Antimicrobial resistance genes were identified
by ResFinder 3.2 available at Center for Genomic Epidemiology2.
The plasmid incompatibility groups, pMLST, and multilocus
sequence typing (MLST) were identified by PlasmidFinder 2.13,
pMLST 2.04, and MLST 2.0 software5, respectively. To verify
whether the plasmid was also a conjugative plasmid, we used
the OriT Finder website6 to conduct a detailed analysis of the
conjugation module. The IS elements can be directly determined
from the known website7. We used blast8 to determine similar
plasmids by comparing their coverages and identities. The
circular representation of p1575 was generated with CGview9.
The plasmid linear graph was analyzed by Easyfig software10.

PCR Amplifications and Sequencing
The isolate was verified for the presence of blaSFO−1-positive
strains using PCR with the primers blaSFO−1-forward and
blaSFO−1-reverse. Meanwhile, the other carbapenemase genes
responsible for carbapenem resistance (blaKPC, blaVIM, blaGES,
blaIMP, blaSPM, blaOXA−23, blaOXA−48, blaSME, blaSIM, and
blaNDM) (Queenan and Bush, 2007; Nordmann et al., 2011) and
the colistin resistance gene mcr-9 were also detected by PCR. The
DNA fragments were analyzed using gel electrophoresis on 1%
agarose gels, and the amplicons were subsequently sequenced on
both strands by TSINGKE sequencing (Table 1).

1https://github.com/ruanjue/smartdenovo
2https://cge.cbs.dtu.dk/services/ResFinder/
3https://cge.cbs.dtu.dk/services/PlasmidFinder/
4https://cge.cbs.dtu.dk/services/pMLST/
5https://cge.cbs.dtu.dk/services/MLST/
6https://bioinfo-mml.sjtu.edu.cn/oriTfinder/
7https://www-is.biotoul.fr/
8https://blast.ncbi.nlm.nih.gov/Blast.cgi
9http://stothard.afns.ualberta.ca/cgview_server/
10http://mjsull.github.io/Easyfig/

Conjugation Experiment
The horizontal transferability of blaSFO−1, blaNDM−1, and mcr-9
was examined using conjugation assay. The E. hormaechei 1575
was used as donor strain, and the E. coli EC600 (rifampicin-
resistant) was used as the recipient strain. The donors and
recipients were cultured to the logarithmic phase (OD600 = 0.4–
0.6), mixed in a 1:1 ratio, centrifuged at 8,000 g for 1 min,
and resuspended them in 20 µl of Luria Bertani (LB) broth.
The resuspension was spotted on the LB plates and incubated
overnight at 37◦C. The spots were then transferred to 15-ml
centrifuge tubes and washed with 3 ml of LB broth. Subsequently,
the serial dilutions were plated onto MH agar plates containing
cefotaxime (8 µg/ml) and rifampicin (200 µg/ml). The donor
cells and recipient cells were used separately as controls to
ensure the effectiveness of the screening plate antibiotics. All
transconjugants were confirmed by PCR for the presence of
blaSFO−1, blaNDM−1, and mcr-9 genes. Transconjugants were
subjected to susceptibility assays. The conjugation frequency was
calculated as the number of transconjugants per donor cell.

S1 Pulsed-Field Gel Electrophoresis
S1 pulsed-field gel electrophoresis (S1-PFGE) was performed
to obtain plasmid profiles in donor strains, recipient strains,
and transconjugants, as described previously (Chen et al., 2011).
Briefly, the isolates were embedded in 10 g/L of Seakem
Gold gel, digested with endonuclease S1 nuclease (Takara,
Dalian, China), and subjected to pulsed-field gel electrophoresis
(parameters: 14◦C, voltage 6 V/cm, electric field angle 120◦,
conversion time 4.0–40 s, and electrophoresis 19 h). The genomic
DNA of Salmonella enterica serovar Braenderup H9812 strain
cut with XbaI was used as a control standard strain and a
molecular size marker.

Nucleotide Accession Number
The complete nucleotide sequences of the chromosome of 1575,
p1575-1, and p1575-2 were deposited as GenBank accession
numbers CP068287, CP068288, and CP068289, respectively.

RESULTS

Enterobacter hormaechei 1575 Was a
Multidrug-Resistant Strain and Produced
Carbapenemase
To clarify the antibiotic-resistant phenotype of E. hormaechei
1575, we tested the susceptibility of 17 antibiotics in this strain.
As the results showed (Table 2), E. hormaechei 1575 was resistant
to all β-lactam antibiotics (cephalosporins, carbapenems,
penicillins, and monocyclic β-lactams), aminoglycosides,
quinolones, and tetracycline. We found that 1575 was only
susceptible to tigecycline, amikacin, and polymyxin B. Notably,
for the ceftazidime–avibactam, a novel carbapenemase inhibitor,
this isolate also exhibited high-level resistance.

Since E. hormaechei 1575 was resistant to both carbapenems
and ceftazidime–avibactam, we used the mCIM assay to test
preliminary whether this isolate produces carbapenemases. The
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TABLE 1 | Primers used in this study.

Amplicon Product size (bp) Temperature (◦C) Primer (5′–3′)

Forward Reverse

blaSFO−1 796 53 TTCTGCTGTGGCTGAGTG TGATGGTCGCTACGGTTAT

mcr-9 730 50.3 TTCCCTTTGTTCTGGTTG TACTCGGTGCGATTCATA

TABLE 2 | Antimicrobial drug susceptibility profiles.

Drug class Antibiotic MIC (mg/L)/antimicrobial susceptibility

1575 S/I/R p1575-1-EC600 EC600

Carbapenems Ipm 4 R 8 ≤0.5

Mer >16 R 8 ≤0.5

β-Lactam/β-lactamase P/T >128/4 R 64/4 ≤4/4

Inhibitor complexes Caz/Avi >32/4 R >32/4 ≤0.25/4

Monocyclic β-lactam Azt >32 R 16 ≤1

Cephalosporin Fox >32 R 16 4

Ctx >64 R >64 ≤1

Cpe >16 R >16 ≤0.5

Caz >32 R >32 ≤1

Fluoroquinolones Cip 1 R 2 ≤0.25

Folate metabolic pathway CoSMZ >2/38 - >2/38 ≤0.5/9.5

Inhibitors Te >16 R >16 ≤1

Tetracyclines Min >8 - >8 ≤2

TGC 1 S ≤0.25 ≤0.25

Polymyxin B PB 2 S 2 ≤0.5

Aminoglycosides Gen >16 R >16 ≤0.5

AMK ≤2 S ≤2 ≤2

MIC, minimum inhibitory concentration; S, susceptible; R, resistant; I, intermediate; Ipm, imipenem; Mer, meropenem; P/T, piperacillin–tazobactam; Caz/Avi, ceftazidime–
avibactam; Azt, aztreonam; Fox, cefoxitin; Ctx, cefotaxime; Cpe, cefepime; Caz, ceftazidime; Cip, ciprofloxacin; CoSMZ, sulfamethoxazole; Te, tetracycline; Min,
minocycline; TGC, tigecycline; PB, polymyxin B; Gen, gentamicin; AMK, amikacin.

result showed that E. hormaechei 1575 was positive for the mCIM
assay, indicating that the isolate produced carbapenemases.
Combining this strain with resistance to ceftazidime–avibactam,
we speculated that E. hormaechei 1575 produced metallo-
carbapenemase.

Enterobacter hormaechei 1575
Co-harboring blaSFO−1, blaNDM−1, and
mcr-9 Resistance Genes
Through the resistance phenotype assays, we evaluated the
clinical treatment challenges brought by this strain. Here, we
continued to explore the associated molecular mechanism that
contributed to such phenotype.

We used WGS to deeply mine the genomic information
of the MDR bacteria. We found two plasmids in this isolate
(named p1575-1 and p1575-2); and p1575-1 (CP068288)
was larger with approximately 342,447 bp and sheltered
multiple antibiotic resistance genes, especially including β-lactam
resistance genes blaSFO−1, blaNDM−1, and colistin resistance
gene mcr-9 (Table 3). Besides, consistent with its multidrug
resistance phenotype, p1575-1 also had multiple genes mediating
resistance to quinolone (qnrS1), aminoglycosides [aac(3)-IId,
aph(3′)-Ia, and aph(6)-Id], β-lactams (blaTEM−1B and blaLAP−2),

TABLE 3 | General features, antimicrobial resistance genes, and mobile genetic
elements of plasmids p1575-1 and p1575-2.

Location Features

Size (bp) Antimicrobial resistance genes

Chromosome 4,687,233 blaACT−5, fosA

Plasmid-1 342,447 blaSFO−1, mcr-9, blaNDM−1,
blaTEM−1B, qnrS1, tet(D), bleMBL,

blaLAP−2 aac(3)-IId, aph(3′)-Ia,
aph(6)-Id, mph(A), dfrA14, dfrA19

Plasmid-2 1,699 NA

NA, not applicable.

bleomycin bleMBL, trimethoprims (dfrA14 and dfrA19), and
MLS—macrolide [mph(A)] and tetracycline [tet(D)]. p1575-
2 was a small plasmid of approximately 1,699 bp, with
no resistance genes located on. We found the antibiotic-
resistant plasmid by second-generation sequencing and further
analyzed it by third-generation sequencing. Then we applied
the PCR assay to verify these resistance genes. In addition,
MLST analysis showed that E. hormaechei 1575 belonged to
clone group ST102.
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Comparative Genomics of the Plasmid
p1575-1 Carrying blaSFO−1, blaNDM−1,
and mcr-9
We have known that the plasmid p1575-1 was the key plasmid
for the contribution of the MDR phenotype; thus, exploring the
characteristics of p1575-1 is the key to elucidating the spread of
such bacteria and the mechanism of antibiotic resistance. p1575-
1 is a 342,447-bp circular molecule with an average G + C
content of 47.93% and was predicted to encode a total of 386
coding sequences (CDSs). Through the PlasmidFinder (see text
footnote 3) and pMLST website (see text footnote 4), p1575-1
was typed as IncHI2 with Double Locus Sequence Type DLST1.
To verify whether the p1575-1 plasmid was also a conjugative
plasmid, we used the OriT Finder website (see text footnote 6) to
conduct a detailed analysis of the conjugation module. Through
the analysis, we identified the complete conjugative modules on
the plasmid p1575-1, including the origin of transfer site (oriT),
relaxase gene, gene encoding type IV coupling protein (T4CP),
and gene cluster for bacterial type IV secretion system (T4SS)
(Table 4). These results strongly suggested that p1575-1 is an
MDR plasmid that can be transferred autonomously (Figure 1).

Moreover, we obtained three plasmids from the National
Center for Biotechnology Information (NCBI) GenBank database
for comparative analysis with our target plasmids. We found
that p1575-1 had high homology with pNIHE14-1904-mcr9
(GenBank accession no. LC570845.1) from E. hormaechei, with
91% query coverage and 99.97% sequence similarity. The
other two plasmids held only 89% query coverage (pECL-90-2,
CP061746.1) and 88% query coverage (pIHI2-323, CP049189.1)
(Figure 2A). These results also suggested that these plasmids
might have evolved from a single ancestor, or one might have
evolved from the other. Finally, the pNIHE14-1904-mcr9 was
chosen as the reference plasmid for genome analysis, because of
the high query coverage and sequence similarity (Figure 2B).

TABLE 4 | Type IV secretion system components.

Type P1575-1

Location Gene/locus tag

OriT 141410–141661 -

Relaxase 143413–146559 ORF1_174

T4CP 36707–37702 ORF1_45

T4SS 36707–47032 ORF1_45ORF1_46 ORF1_47ORF1_48
ORF1_49 ORF1_50 ORF1_51
ORF1_52 ORF1_53 ORF1_54
ORF1_56

T4SS 130105–148643 ORF1_162 ORF1_166 ORF1_167
ORF1_168 ORF1_175

T4SS 287738–297020 ORF1_350 ORF1_352 ORF1_353
ORF1_355 ORF1_356

T4SS 315507–325118 ORF1_371 ORF1_372 ORF1_375
ORF1_377 ORF1_378 ORF1_379
ORF1_380

T4CP, type IV coupling protein; T4SS, type IV secretion system; ORF,
open reading frame.

The conjugative system of p1575-1 shared greater than 99%
identity to that of pNIHE14-1904-mcr9, which in turn confirmed
that the p1575-1 plasmid was a conjugative IncHI2 plasmid.
Moreover, two IS26 units were found on p1575-1. The first was
the IS26–blaSFO−1–IS26 transposable unit containing the SFO-1
ESBL gene (blaSFO−1) (Figure 3A). The other was the IS26–
blaLAP−2–qnrS1–IS26 module (Figure 3D) with two resistance
genes included (blaLAP−2 and qnrS1). Remarkably, only p1575-
1 plasmid harbored the second MDR gene IS26 unit compared
with other three IncHI2 plasmids.

Overall, these findings revealed that the p1575-1 plasmid
was an MDR conjugative plasmid, which carried three key
resistance genes (blaSFO−1, blaNDM−1, and mcr-9) and complete
conjugative systems.

p1575-1 Plasmid Could Transfer
blaSFO−1, blaNDM−1, and mcr-9 Genes
We found that the p1575-1 plasmid carried complete conjugative
systems. Hence, we applied the conjugation assay to prove
whether the MDR p1575-1 plasmid could infect other strains
autonomously by conjugation. We identified that p1575-1 was
able to be transferred to the rifampicin-resistant Escherichia coli
EC600 via conjugation, p1575-1-EC600; and the conjugation
frequency was estimated at (0.5–2) × 10−6 per donor cell.
Then S1-PFGE revealed that E. hormaechei 1575 and p1575-1-
EC600 contained the large plasmid (p1575-1) (336.5–398.4 kb)
(Figure 4), consistent with the result of WGS. Besides, another
plasmid (named p1575-2) was also found by WGS, a small
plasmid approximately 1,699 bp, with no resistance genes
on and could not be detected by S1-PFGE. Transconjugants
were subjected to susceptibility assays. The antimicrobial
susceptibility patterns are shown in Table 2. The transconjugants
showed similar antibiotic susceptibility profile to the donor
strain E. hormaechei 1575. The MICs of transconjugants were
decreased compared with those of 1575, but they were both
sensitive to tigecycline.

Mobile Genetic Elements Associated
With blaSFO−1, blaNDM−1, and mcr-9
Besides an in-depth analysis of the characteristics of MDR
plasmids, we also analyzed the mobile elements flanking the
resistant genes.

Our results showed that blaSFO−1 was located on a 7,258-
bp IS26 unit (IS26–traX-ampR-blaSFO−1-IS26) (Figure 3A).
Genetic mapping of blaSFO−1 revealed that IS26 and ampR
were upstream and downstream of blaSFO−1, respectively.
Tn3 family, Tn3 transposase DDE domain protein, and IncF
plasmid conjugative transfer pilin acetylase, traX, were located
downstream of ampR. Genetic mapping of blaNDM−1 revealed
that the insertion sequence IS3000 was interrupted by the
insertion of a truncated 1ISAba125 element. A bleomycin
resistance gene, bleMBL, and dsbD, encoded oxidoreductase
superfamily protein, were downstream of blaNDM−1 (Figure 3B).
For blaNDM−1, a high similar genetic pattern was also
observed in other plasmids, pNDM-BTR (McGann et al., 2015)
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FIGURE 1 | A conjugative plasmid p1575-1. AR (ARGs), acquired antibiotic resistance determinant genes; VF, virulence factors; ORF1-27, blaNDM−1; ORF1-39,
qnrS1; ORF1-174, Relaxase; ORF1-222, tetD; ORF1-226, blaSFO−1.

(GenBank accession number KF534788, IncN1) and pNDM1-
CBG (accession number CP046118, unpublished). In plasmid
1575-1, IS5 family transposase (IS903B) was located upstream of
mcr-9.1, whereas wbuC, IS1R, sil, mocR, IS26, and tnsDCBA were
located downstream (Figure 3C). Besides, there were many other
insertion sequences on the backbone where mcr-9 was located.
However, qseB and qseC regulatory genes were not found in
association with the mcr-9 gene.

DISCUSSION

The spread of blaNDM-1 among bacterial pathogens is of
concern not only because of resistance to carbapenems but
also because such pathogens typically are resistant to multiple
antimicrobial drug classes, which leaves few treatment choices

available (Kumarasamy et al., 2010; Moellering, 2010; Walsh,
2010). Not like the blaNDM-1, which receives widespread
attention, the blaSFO−1 gene is not included in the routine
surveillance, but it could be an effective weapon that various
gram-negative bacteria could use to resist β-lactams (Matsumoto
and Inoue, 1999); therefore, the prevalence of the coexistence
of the blaSFO−1 gene and carbapenemase genes might be
underestimated. Some studies reported the coexistence of
blaSFO−1 and blaNDM−1 β-lactamase genes and fosfomycin
resistance gene fosA3 in Escherichia coli clinical isolate (Zhao
et al., 2015) and the co-occurrence of mcr-9 and blaNDM−1 in
Enterobacter cloacae (Yuan et al., 2019; Faccone et al., 2020;
Lin et al., 2020). However, in this study, we not only found
the coexistence of mcr-9 and blaNDM−1, but also a rare gene
blaSFO−1 was detected on the same transferable plasmid. The
presence of blaSFO−1 might confer resistance to more antibiotics.
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FIGURE 2 | (A) Ring diagram representation of plasmid p1575-1. From the inside to the outside, the first circle represents the scale; the second circle represents GC
content; the third circle represents the GC skew; the fourth and sixth circles represent the COG to which each CDS belongs; the fifth circle represents the backbone;
the seventh to 10th circles represent p1575-1, pNIHE14-1904-mcr9, pECL-90-2, and pIHI2-323, respectively. GC, guanine + cytosine; blaSFO−1,
extended-spectrum β-lactamases (ESBLs); blaNDM−1, New Delhi metallo-β-lactamase-1 gene; mcr-9, colistin resistance gene; qnrs1, fluoroquinolones gene.
(B) Comparative analysis of the mcr-9-harboring plasmid characterized in this study with closely related plasmid pNIHE14-1904-mcr9. Open reading frames (ORFs)
are portrayed by arrows and are depicted in different colors based on their predicted gene functions. The genes associated with the T4SS are indicated by dark blue
arrows, while the genes involved in replication are indicated by red arrows. Resistance genes are indicated by yellow arrows, and accessory genes are indicated by
light blue and purple arrows. Orange arrows represent the skeletal gene of the plasmid, and blue shading denotes shared regions of homology among different
plasmids.

mcr is a family of genes found to promote colistin resistance
in bacteria. As we all know, polymyxin antibiotic would be a
good choice for blaNDM−1-positive strains, but we found mcr-
9 (Börjesson et al., 2020) in E. hormaechei 1575, which could
reduce the sensitivity of the strain to polymyxin and increase
its clinical menacing. Notably, the novel antibiotic ceftazidime–
avibactam was also ineffective against 1575. Tigecycline is a last-
resort antibiotic that is used to treat severe infections caused by
extensively drug-resistant bacteria (Tasina et al., 2011) and may
be used as a therapeutic drug for 1575. All these results indicated
the E. hormaechei 1575 was MDR isolates and could only choose
limited antibiotics. The presence of drug resistance genes strongly
correlated with resistant phenotypes. The E. hormaechei 1575

was confirmed to produce carbapenemase. At the same time,
two cases of MDR E. cloacae isolates had been reported to be
ST102 in China (Cao et al., 2017), and this kind of strain was
also found in our study. High attention should be given to its
subsequent epidemic.

Previous studies showed that multiple resistance transfer
of plasmids could result from rare gene capture events
mediated by different mobile genetic elements, clustering, and
combinatorial evolution of resistance genes and related mobile
elements (Partridge and Tsafnat, 2018). Through the WGS and
comparative genomics, we clarified that the key to mediating
the antibiotic resistance of this strain was the p1575-1 resistant
plasmid. The p1575-1 identified in this study was an IncHI2
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FIGURE 3 | blaSFO−1, blaNDM−1, and mcr-9 gene contigs. Genetic environments surrounding the blaNDM−1, blaSFO−1 and mcr-9 genes in plasmid p1575-1. (A) The
DNA fragments flanking the blaSFO−1 gene in plasmid p1575-1. (B) The DNA fragments flanking the blaNDM−1 gene in plasmid p1575-1. (C) The DNA fragments
flanking the mcr-9 gene in plasmid p1575-1. (D) The IS26–blaLAP−2–qnrS1–IS26 module. Colored arrows indicate open reading frames, with dark green, dark
yellow, dark blue, purple, and red arrows representing other genes, mobile and accessory elements, the individual conjugation-related genes, hypothetical proteins
and transposases, and antibiotic resistance genes, respectively.

conjugative plasmid, representing one of the most frequently
encountered plasmid types in Enterobacteriaceae (Carattoli,
2009). Notably, IncHI2 plasmids are also broad-host-range,
large (>250 kb) conjugative plasmids that mobilize metal and
drug resistance genes within gram-negative pathogens (Bertrand
et al., 2006; Novais et al., 2006; Roy Chowdhury et al., 2019).
Meanwhile, IncHI2-ST1 plasmids always contributed to the
dissemination of carbapenemase-encoding genes and are also
reported frequently to play a critical role in the evolution of
complex resistance phenotypes within disease-causing strains
of Enterobacteriaceae (Roy Chowdhury et al., 2019). Moreover,
IncHI2 plasmids contain the conjugal transfer gene regions tra1
and tra2, likely contributing to the spread of resistance in the
environment (Sherburne et al., 2000). In this study, we analyzed
the conjugative modules of the p1575-1 plasmid and evaluated
its mobility with conjugation assay. Like the classical IncHI2
plasmids, the p1575-1 plasmid held a complete conjugative
system, and the conjugation frequencies ranged from 0.5× 10−6

to 2 × 10−6 per donor cell. The IncHI2-type conjugative
plasmids harboring mcr-9 were also discovered previously, and
the conjugation frequencies of those plasmid were 10−4 (Lin
et al., 2020) or 2.03 × 10−7 (−5.42 × 10−8) (Cha et al., 2020),
which were similar to our findings. Through the analysis, we
identified the complete conjugative modules on the plasmid
p1575-1, strongly suggesting that p1575-1 could be transferred

autonomously. In addition to the conjugative plasmids, the
capture, accumulation, and dissemination of resistance genes are
largely due to the actions of mobile genetic elements, including
insertion sequences, transposons, gene cassettes, and integrons.
In this study, we found that all these three resistance genes
were flanked by several mobile elements. The blaSFO−1 was
located in an IS26 composite transposon. IS6 family elements
IS26 have played a pivotal role in the dissemination of resistance
determinants in Gram-negative bacteria; thus, blaSFO−1 held
the potential to transfer to other strains. AmpR, a class of
DNA-binding regulatory protein, belongs to the LysR family of
transcriptional regulators (Henikoff et al., 1988; Bartowsky and
Normark, 1993). AmpR is confirmed to be a transcriptional
activator in the presence of certain β-lactam antibiotics in the
culture medium and a repressor in their absence (Lindberg et al.,
1988). The presence of ampR seems to be a disadvantage for
the host strain because E. cloacae become highly resistant to
β-lactams (Matsumoto and Inoue, 1999). The movement of IS26
is originally demonstrated to occur by replicative transposition.
Moreover, the blaSFO-1 genes in previous identifications were
located on non-conjugative plasmids (Guo et al., 2012). In
our study, the conjugative blaSFO−1-blaNDM−1-mcr-9-bearing
plasmid belonged to IncHI2, which is a kind of broad-host-range
mobile plasmid and might greatly accelerate the dissemination
of the blaSFO−1 genes. Previous reports showed that the
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FIGURE 4 | S1-nuclease pulsed-field gel electrophoresis profiles. M,
Salmonella enterica serotype Braenderup strain H9812; 1,1575; 2,
p1575-1-EC600; 3, EC600.

blaNDM−1 genes in Enterobacteriaceae were usually on 50- to
200-kb plasmids belonging to IncL/M, IncHI1, IncFIIs, IncF, or
untypable (Ahmad et al., 2018). ISAba125 and Tn125 are always
associated with the blaNDM−1 gene. Upstream of the blaNDM−1
gene, a truncated insertion sequence, ISAba125, was identified,
which provides a promoter for the expression of blaNDM−1
(Carattoli et al., 2012), and the presence of ble and1tnpA genes
suggests a possible hypothesis that blaNDM−1 originates from
Acinetobacter baumannii (Poirel et al., 2012; Toleman et al.,
2012). Besides, phosphoribosylanthranilate isomerase gene trpF
was identified in the downstream sequences of the bleMBL gene
(Liu et al., 2013). In addition, qnrS1 in IS26–blaLAP−2–qnrS1–
IS26 unit (3D) was also found, consistent with our AST results.
In the IncHI2 plasmid, the mcr-9 allele always inserted an IS903B

element and an ISEsp1, encoding a cupin fold metalloprotein,
wbuC family (Yuan et al., 2019; Börjesson et al., 2020), which
was consistent with our results. Because mcr-9.1 was located
between IS903B and IS26, these flanking sequences can also
be potentially transferred to other bacteria along with mcr-
9.1. All results indicated that the resistant plasmid carried by
E. hormaechei 1575 can be spontaneously transmitted to other
strains through conjugation, which had great potential to cause
clinical epidemics. qseB and qseC regulatory genes were found in
association with the mcr-9 gene and played an important role in
mediating polymyxin resistance (Chavda et al., 2019; Kieffer et al.,
2019). The lack of two key regulators (qseB and qseC) may explain
why E. hormaechei 1575 carrying mcr-9 did not exhibit a high
resistance level to colistin (MIC, 2 µg/ml). Serious importance
needs to be taken on this phenomenon.

In this study, all the resistant genes located on the p1575-1
plasmid were found to be chimeric with multiple IS sequences
and various mobile elements, indicating that blaSFO−1, blaNDM−1,
and mcr-9 could be transferred not only by the p1575-1 plasmid
but also by these mobile genes.

CONCLUSION

In this study, we report the coexistence of blaSFO−1, blaNDM−1,
and mcr-9 encoding one transferable IncHI2 plasmid in an
E. hormaechei isolate. The co-occurrence of blaSFO−1, blaNDM−1,
and mcr-9 (as well as many associated resistance genes) caused
E. hormaechei 1575 to be highly resistant not only to carbapenems
but also to novel antibiotic ceftazidime–avibactam. At the same
time, enough attention should be given to the dissemination of
colistin resistance genes mcr-9, as polymyxin has been considered
to be the “last-resort” antibiotic to treat human infections
caused by CRE. Yet more worryingly, these genes are associated
with various mobile elements and conjugative plasmids. The
presence of multiple mobile elements indicates that horizontal
gene transfer events play a key role in the acquisition of antibiotic
resistance and the evolution of plasmids. Future studies are
necessary to evaluate the prevalence of these plasmids among
clinical isolates in China and other countries.
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Objective: The objective of the study was to investigate the antimicrobial susceptibility
and extended-spectrum beta-lactamase (ESBL) positive rates of Escherichia coli from
community-acquired urinary tract infections (CA-UTIs) in Chinese hospitals.

Materials and Methods: A total of 809 E. coli isolates from CA-UTIs in 10 hospitals
(5 tertiary and 5 secondary hospitals) from different regions in China were collected
during the period 2016–2017 according to the strict inclusion criteria. Antimicrobial
susceptibility testing was carried out by standard broth microdilution method. Isolates
were categorized as ESBL-positive, ESBL-negative, and ESBL-uncertain groups
according to the CLSI recommended phenotypic screening method. ESBL and AmpC
genes were amplified and sequenced on ESBL-positive and ESBL-uncertain isolates.

Results: The antimicrobial agents with susceptibility rates of greater than 95% included
imipenem (99.9%), colistin (99.6%), ertapenem (98.9%), amikacin (98.3%), cefmetazole
(97.9%), nitrofurantoin (96%), and fosfomycin (95.4%). However, susceptibilities
to cephalosporins (varying from 58.6% to 74.9%) and levofloxacin (48.8%) were
relatively low. In the phenotypic detection of ESBLs, ESBL-positive isolates made up
38.07% of E. coli strains isolated from CA-UTIs, while 2.97% were ESBL-uncertain.
Antimicrobial susceptibilities of imipenem, cefmetazole, colistin, ertapenem, amikacin,
and nitrofurantoin against ESBL-producing E. coli strains were greater than 90%. The
percentage of ESBL-producing strains was higher in male (53.6%) than in female
patients (35.2%) (p < 0.001). CTX-M-14 (31.8%) was the major CTX-M variant in the
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ESBL-producing E. coli, followed by CTX-M-55 (23.4%), CTX-M-15 (17.5%), and CTX-
M-27 (13.3%). The prevalence of carbapenem-resistant E. coli among CA-UTI isolates
was 0.25% (2/809).

Conclusion: Our study indicated high prevalence of ESBL in E. coli strains from
strictly defined community-acquired urinary tract infections in adults in China. Imipenem,
colistin, ertapenem, amikacin, and nitrofurantoin were the most active antimicrobials
against ESBL-positive E. coli isolates. blaCTX−M−14 is the predominant esbl gene
in ESBL-producing and ESBL-uncertain strains. Our study indicated that the use of
cephalosporins and fluoroquinolone needs to be restricted for empirical treatment of
CA-UTIs in China.

Keywords: community-acquired urinary tract infections, Escherichia coli, extended-spectrum beta-lactamase,
antibiotic resistance, empirical treatment, CTX-M

INTRODUCTION

Escherichia coli (E. coli) is a common pathogen of community-
acquired infections such as intra-abdominal infection, urinary
tract infection (UTI), and pelvic inflammatory disease. UTI is
one of the most common bacterial infectious diseases of humans.
Over 85% of community-acquired urinary tract infections (CA-
UTIs) have been attributed to E. coli infection (Espínola et al.,
2011). Increasing trend in extended-spectrum beta-lactamase
(ESBL) rates was seen among isolates from CA-UTIs in many
regions; the antimicrobial resistance surveillance program in
China showed that the proportion of ESBL-producing E. coli in
community-acquired infections ranges from 45.2 to 68.2% (Yun
et al., 2014; Fupin et al., 2017), in Canada, from 9.1 to 14.1%,
and in the United States, from 6.5% in 2010 to 16.0% in 2014
(Lob et al., 2016). In some European countries, the prevalence of
ESBL-producing E. coli isolated from CA-UTIs is currently lower
than 5% (van Driel et al., 2019; Richelsen et al., 2020; Larramendy
et al., 2021), but can reach up to 23.6% in Spanish, 38.2% in
Turkey, and 34.6% in Iran (Arana et al., 2017; Koksal et al., 2017;
Naziri et al., 2020). Most of the discrepancy in ESBL prevalence
rates between studies might be related to geographical difference.
However, the inclusion and exclusion criteria of isolates is also
an important factor, which may over- or underestimate the
ESBL rates or antimicrobial resistance in community-acquired
infections. Studying the antimicrobial resistance patterns of
E. coli in real community-acquired infections is important not
only for understanding the resistance status but also for choosing
the most appropriate empirical antimicrobial therapy for CA-
UTIs (Lob et al., 2015). The real ESBL rate and molecular
epidemiology in CA-UTIs in China is unclear.

The aim of this study was to investigate the real ESBL status
and antimicrobial susceptibility of E. coli isolates strictly collected
from CA-UTIs in China.

MATERIALS AND METHODS

Clinical Isolates
During the period 2016–2017, a total of 809 E. coli isolates
from CA-UTIs were consecutively collected from 10 hospitals

located in the following regions of China: northeastern
(121 isolates), northern (179 isolates), central (172 isolates),
western (159 isolates), and eastern (178 isolates). The specific
geographical distribution is shown in Figure 1. The 10 hospitals
included 5 tertiary hospitals (Peking Union Medical College
Hospital; Sichuan Provincial People’s Hospital; Tongji Hospital,
Tongji Medical College Huazhong University of Science and
Technology; The First Affiliated Hospital, College of Medicine,
Zhejiang University; and Shengjing Hospital of China Medical
University) and 5 secondary hospitals located in the same
provinces as the 5 tertiary hospitals (Beijing Pinggu Hospital;
Sichuan Science City Hospital; Zaoyang First People’s Hospital;
Zhuji People’s Hospital of Zhejiang Province; and Dalian
Hospital, Shengjing Hospital of China Medical University).

Isolates were strictly chosen by using the following inclusion
and exclusion criteria to ensure all cases were community-
acquired patients.

Inclusion Criteria
(1) All E. coli isolates were cultured from urines of adult
UTI patients (>18 years old) from outpatient clinic/emergency
department or admitted to a hospital in less than 48 h. (2)
Isolates were cultured from uncomplicated UTI, such as acute
cystitis, acute pyelonephritis, with evidence support of clinical
symptoms, urine routine test, and/or imaging examination. (3)
Isolates were infection-related pathogens cultured from qualified
urine specimens with bacteria quantification of > 105 CFU/ml.

Exclusion Criteria
Isolates from patients with the following conditions were
excluded; (1) patients with invasive devices (such as various
venous catheters, urethral catheters, intubations, and artificial
implants, etc.); (2) immunocompromised patients (e.g.,
patients who had received glucocorticoid, radiotherapy, and
chemotherapy within 6 months); (3) patients with a history
of surgery, hemodialysis/abdominal dialysis, hospitalization,
and community clinic/health center hospitalization within
the previous 1 year; (4) using broad-spectrum antibiotics
within 3 months prior to infection; (5) patients with chronic
urinary tract infections (previously isolated from the same

Frontiers in Microbiology | www.frontiersin.org 2 July 2021 | Volume 12 | Article 66303326

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-663033 July 1, 2021 Time: 16:14 # 3

Jia et al. High ESBL Rates in CA-UTI

FIGURE 1 | Geographical distribution of hospitals participating in the study. PU, Peking Union Medical College Hospital; PG, Beijing Pinggu Hospital; SY, Shengjing
Hospital of China Medical University; DL, Dalian Hospital; ZZ, Zhuji People’s Hospital of Zhejiang Province; ZJ, The First Affiliated Hospital College of Medical Zhejiang
University; WH, Tongji Hospital; ZY, First Peoples Hospital of Zaoyang; SC, Sichuan Provincial People’s Hospital; and MY, Sichuan Science City Hospital.

type of specimen); (6) isolates implicated in healthcare-
associated infections and recurrent UTIs (recurrences of
uncomplicated and/or complicated UTIs, with a frequency of
at least three UTIs/year or two UTIs in the last 6 months);
(7) environmental samples or cultures for infection control
purposes; and (8) duplicate isolates (the same species from
the same patient).

Antimicrobial Susceptibility Test Method
Minimum inhibitory concentration determination for all
antimicrobial agents, except fosfomycin, was performed using
the microdilution broth method as per Clinical and Laboratory
Standards Institute (CLSI) guidelines (CLSI, 2020). MICs of
fosfomycin were determined by agar dilution method (25 µg/ml
of glucose-6-phosphate was added in Mueller–Hinton agar).
Seventeen antimicrobial agents were analyzed, including
cefazolin (CZO), ceftriaxone (CRO), ceftazidime (CAZ),
cefepime (FEP), cefoperazone/sulbactam (CSL, 2:1), imipenem
(IPM), ertapenem (ETP), amikacin (AMK), levofloxacin (LVX),
cefmetazole (CMZ), trimethoprim/sulfamethoxazole (SXT,
1:19), colistin (COL), fosfomycin (FOS), cefotaxime (CTX),
cefotaxime/clavulanic acid (CTC), ceftazidime/clavulanic
acid (CCV), and nitrofurantoin (NIT). For each batch
of MIC testing, reference strains E. coli ATCC 25922
and P. aeruginosa ATCC 27853 were used as quality
control organisms.

Phenotypic Detection of
Extended-Spectrum β-Lactamases
Phenotypic identification of ESBL in E. coli was carried out
by CLSI-recommended methods (CLSI, 2020). If cefotaxime
or ceftazidime MIC of an isolate was ≥ 2 µg/ml each,
the MICs of cefotaxime + clavulanic acid (4 µg/ml) or
ceftazidime + clavulanic acid (4 µg/ml) were comparatively
determined. ESBL production was defined as a greater than
or equal to eightfold decrease in MICs for cefotaxime or
ceftazidime when tested in combination with clavulanic acid,
compared with their MICs without clavulanic acid. ESBL-
negative isolates were defined as isolates with cefotaxime
or ceftazidime MICs of ≤ 1 µg/ml. ESBL-uncertain isolates
were defined as isolates with cefotaxime or ceftazidime MICs
of ≥ 2 µg/ml, but did not exhibit a greater than or equal
to eightfold decrease in MICs for cefotaxime or ceftazidime
after a combination with clavulanic acid, compared with
their MICs alone.

Characterization of Antibiotic Resistance
Genes
The main esbl and ampC genes, including blaTEM , blaSHV ,
blaCTX−M−1 group, blaCTX−M−2 group, blaCTX−M−9 group,
blaDHA, blaCMY , and blaACT , were determined using polymerase
chain (PCR) reaction method on the strains with ESBL-
producing and ESBL-uncertain phenotype. The positive
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amplicons were sequenced and aligned by blastn web1. Primers
used in this study are listed in Table 1.

Statistical Analysis
The results of antimicrobial susceptibility testing were analyzed
by the WHONET5.6 program. Ninety-five percent confidence
intervals were calculated using the adjusted Wald method;
comparison of ESBL rates between tertiary and secondary
hospital, in demographic characteristics and clinical features, was
assessed using Chi-square test. Analyses were performed using
SPSS version 25.0 (IBM Corporation), and p-values < 0.05 were
considered statistically significant.

RESULTS

Features of the Isolates
A total of 809 E. coli isolates from community-acquired adult
urinary tract infections (CA-UTIs) were collected during the
period 2016–2017. Most infections were lower UTIs (96.8%,
783/809), which included 5 cases of urethritis and 778 cases
of cystitis. Upper UTIs accounted for 3.2% (26/809) including
eight acute pyelonephritis, four hydronephrosis, seven kidney
stones, and seven ureteral calculus. Isolates from female patients
accounted for 85% of the total isolates. The ages of patients
were as follows: 18–45 years, 31.8%; 46–65 years, 38.8%,
and ≥ 66 years, 29.4%.

In vitro Susceptibility of Escherichia coli
Isolates From Community-Acquired
Adult Urinary Tract Infections
Among the 809 E. coli isolates studied, 308 (38.07%) were ESBL-
producing strains, 477 (58.96%) were ESBL-negative, and 24
(2.97%) were ESBL-uncertain. The antimicrobial agents with

1http://blast.ncbi.nlm.nih.gov/Blast.cgi

susceptibility rates of greater than 95% included imipenem
(99.9%), colistin (99.6%), ertapenem (98.9%), amikacin (98.3%),
cefmetazole (97.9%), nitrofurantoin (96%), and fosfomycin
(95.4%). However, the susceptibility rates to cephalosporins were
relatively low, ranging from 58.6 to 74.9%. The antimicrobial
susceptibility for all isolates is summarized in Table 2.

We investigated ESBL differences between isolates from
secondary hospitals and tertiary hospitals. Overall, there was
no major difference in the proportion of ESBL-positive isolates
(37.66% in secondary hospitals vs. 38.44% in tertiary hospitals)
or ESBL-uncertain strains (3.12% in secondary hospitals vs.
2.83% in tertiary hospitals) (Figure 2). However, we found some
differences, although very small, in the distribution of ESBLs by
geographic region. Relatively higher percentages of ESBL rate
were found in the northeast (46.3%), central (43.6%), and west
(43.4%) China, compared with the sites in the north (30.2%) and
east (30.3%) of China (Figure 2).

In general, E. coli isolates collected from secondary and
tertiary hospitals showed high susceptibility rates to most
antibiotics as follows: imipenem (100% vs. 99.8%), colistin
(100% vs. 99.3%), ertapenem (99.5% vs. 98.3%), amikacin
(98.4% vs. 98.1%), cefmetazole (97.9% vs. 97.9%), fosfomycin
(95.8% vs. 95.0%), and nitrofurantoin (94% vs. 97.9%).
Furthermore, cefoperazone/sulbactam showed high activity
against strains isolated from secondary and tertiary hospitals,
with a susceptibility rate of 90.4% and 87.7%. The susceptibilities
to cephalosporins in isolates collected from tertiary hospitals
varied from 58.0 to 75.5%.

Characterization of Extended-Spectrum
Beta-Lactamase and AmpC Genes
Polymerase chain was performed on 332 ESBL-producing and
ESBL-uncertain isolates to determine the presence of EBSL
and AmpC. The results are shown in Figure 3. The major
β-lactamase family detected in the ESBL-producing E. coli
strains was CTX-M-9 group (149/308, 48.4%), followed by the

TABLE 1 | Polymerase chain reaction (PCR) primers used for detecting antibiotic resistance genes.

Target Primer sequences (5′ to 3′) Annealing temp. (◦C) Fragment size (bp) References

TEM Forward ATAAAATTCTTGAAGACGAAA 55 1,079 Yang et al., 2015

Reverse GACAGTTAGCAATGCTTAATCA

SHV Forward CCGGGTTATTCTTATTTGTCGCT 56 928 Lee et al., 2006

Reverse TAGCGTTGCCAGTGCTCG

CTX-M-1 group Forward CGTCACGCTGTTGTTAGGAA 56 823 Yang et al., 2015

Reverse ACCGTCGGTGACGATTTTAG

CTX-M-2 group Forward ATGATGACTCAGAGCATTCG 65 832 Yang et al., 2015

Reverse TCCCGACGGCTTTCCGCCTT

CTX-M-9 group Forward AAAAATGATTGAAAGGTGGT 56 1,242 Yang et al., 2015

Reverse GTGAAGAAGGTGTTGCTGAC

DHA-1 Forward CTGATGAAAAAATCGTTATC 56 1,141 Giakkoupi et al., 2006

Reverse ATTCCAGTGCACTCAAAATA

CMY Forward TGTCAACACGGTGCAAATCA 56 1,346 Armand-Lefèvre et al., 2003

Reverse AGCAACGACGGGCAAAATG

ACT-1 Forward CGAACGAATCATTATTCAGCACCG 56 1,518 Reisbig and Hanson, 2002

Reverse CGGCAATGTTTACTACACAGCG
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TABLE 2 | The antimicrobial susceptibilities of 809 Escherichia coli strains isolated from community-acquired urinary tract infection (CA-UTI) in China.

Antibiotic All isolates (n = 809) ESBL-producing and ESBL-uncertain isolates (n = 332)

%R %I %S MIC50
(µg/ml)

MIC90
(µg/ml)

MIC range
(µg/ml)

%R %I %S MIC50
(µg/ml)

MIC90
(µg/ml)

MIC range
(µg/ml)

Imipenem 0.1 99.9 0.125 0.125 0.03–16 0.3 99.7 0.12 0.25 0.03–16

Colistin 0.4 99.6 0.5 0.5 0.12–8 0.6 99.4 0.5 0.5 0.12–4

Ertapenem 0.2 0.9 98.9 0.016 0.125 0.008–32 0.6 2.1 97.3 0.03 0.25 0.008–32

Amikacin 1.2 0.5 98.3 2 4 0.25–512 3 0.6 96.4 2 8 1–512

Cefmetazole 1.4 0.7 97.9 1 4 0.06–256 2.4 1.5 96.1 1 8 0.06–256

Nitrofurantoin 1.6 2.3 96 16 32 0.5–256 2.7 4.2 93.1 16 32 4–256

Fosfomycin 3.6 1 95.4 1 16 0.25–512 8.4 1.5 90.1 2 64 0.5–512

Cefoperazone/sulbactam 3.5 7.5 89 1 32 0.06–256 8.1 18.1 73.8 16 32 0.06–256

Ceftazidime 20.4 4.7 74.9 0.25 32 0.03–64 49.7 11.4 38.9 8 64 0.12–64

Cefepime 31.5 3.5 65 0.064 64 0.016–64 76.8 8.4 14.8 64 64 0.03–64

Ceftriaxone 38.3 0.2 61.4 0.064 64 0.016–64 93.1 0.6 6.3 64 64 0.016–64

Cefotaxime 38.3 0.4 61.3 0.064 64 0.016–64 93.4 0.9 5.7 64 64 0.03–64

Cefazolin 41.4 58.6 4 32 1–32 93.1 6.9 32 32 1–32

Levofloxacin 50.2 1 48.8 2 16 0.016–64 72.3 0.6 27.1 8 16 0.016–64

Trimethoprim/sulfamethoxazole 55.6 44.4 8 8 0.25–8 68.7 31.3 8 8 0.25–8

FIGURE 2 | Incidence of extended-spectrum beta-lactamase (ESBL)-producing strains in different sites of China. ESBL (+), ESBL-positive isolates; ESBL (−),
ESBL-negative isolates; and ESBL (ND), ESBL-uncertain isolates.

CTX-M-1 group (136/308, 44.2%). The CTX-M-2 group was
not detected. blaCMY−2 was detected in one isolate. Overall, 7
blaCTX−M subtypes were detected: blaCTX−M−14 (98 isolates,
31.8%), blaCTX−M−55 (72 isolates, 23.4%), blaCTX−M−15
(54 isolates, 17.5%), blaCTX−M−27 (41 isolates, 13.3%),
blaCTX−M−65 (10 isolates, 3.2%), blaCTX−M−3 (5 isolates,
1.6%), blaCTX−M−64 (4 isolates, 1.3%), and blaCTX−M−79 (1
isolates, 0.3%). Among the blaCTX−M subtypes, two different
variants were detected in 20/332 isolates (6.0%), most of which
were blaCTX−M−14 and blaCTX−M−15 (7 isolates), blaCTX−M−14
and blaCTX−M−55 (7 isolates).

Among ESBL-uncertain isolates, blaCMY was the most
common AmpC gene (18/24, 75%), consisting of blaCMY−2
(15 isolates, including 2 isolates coexisting with blaCTX−M−14),
blaCMY−42 (2 isolates coexisted with blaCTX−M−15), and
blaCMY−34 (1 isolate). blaTEM−1 was determined in eight strains

(33.3%, 1 isolate coexisted with blaCTX−M−55). In five strains
(20.8%), no ESBL genes were determined.

In vitro Susceptibility of Escherichia coli
Strains With Different
Extended-Spectrum Beta-Lactamase
Phenotypes
Extended-spectrum beta-lactamase producing E. coli strains
exhibited susceptibility rates of over 92% to imipenem (100%),
cefmetazole (99.4%), colistin (99.4%), ertapenem (98.4%),
amikacin (97.1%), and nitrofurantoin (92.9%). The susceptibility
rates of ESBL-negative isolates against all the antimicrobial
agents were higher than 90%, except levofloxacin (63.9%)
and trimethoprim/sulfamethoxazole (53.5%). On the other
hand, ESBL-uncertain isolates showed high susceptibility rates
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to colistin (100%)], imipenem (95.8%), fosfomycin (95.8%),
and nitrofurantoin (95.8%). The susceptibility rate differences
between ESBL-producing and ESBL-negative isolates were
greater for cephalosporins (Figure 4), including cefotaxime (6.2%
vs. 100%), ceftriaxone (6.5% vs. 99.8%), cefazolin (7.1% vs.
94.5%), and cefepime (9.7% vs. 100%).

Comparison of the Antimicrobial
Susceptibility Rates of Escherichia coli
Isolates by Hospital Level, Demographic
Characteristics, and Clinical Features
We observed that gender was a significant factor influencing
antimicrobial susceptibility, with a significantly higher rate of
ESBL-producing strains in male (53.6%) than in female patients
(35.2%) (p < 0.001). Cephalosporins exhibited higher rates of
in vitro activity against E. coli strains from female than from male
patients (p < 0.05), including cefazolin, ceftazidime, ceftriaxone,
cefotaxime, cefoperazone/sulbactam, and cefepime (Figure 5 and
Table 3). There was no significant difference in antimicrobial
susceptibility and esbl genes between E. coli strains from tertiary
and secondary hospitals, between the age groups of 18 and 65
and over 65 years, or between upper and lower UTIs. The major
CTX-M variant in northeast China, west China, and central
China was CTX-M-14, followed by CTX-M-15, CTX-M-55, and
CTX-M-27. While in north China, the major variant was CTX-
M-15 (13/59, 22.03%), in east China, the secondary variant was
CTX-M-27 (12/57, 21.05%). The CTX-M genotypes included
high rates of CTX-M-14 followed by CTX-M-55, CTX-M-15,
and CTX-M-27, which was similar between isolates from tertiary
hospitals and from secondary hospitals. There existed a difference

in the distribution of CTX-M variants; CTX-M-15 had a larger
proportion than CTX-M-55 among male patients and patients
over 65 years of age (Figure 3).

Community-Acquired
Carbapenem-Resistant Strains
In this study, two strains were identified as community-
acquired carbapenem resistant. The two carbapenem-resistant
Enterobacteriaceae (CRE) strains (MYU26 and SYU04) were
resistant to almost all β-lactam antibiotics tested, with only three
antimicrobial agents exhibiting potent activity against them,
including colistin (MYU26: MIC ≤ 0.12, SYU04: MIC = 0.5),
fosfomycin (MYU26: MIC = 1, SYU04: MIC = 4), and tigecycline
(MYU26 and SYU04: MICs ≤ 0.06). MYU26 carried the
blaCTX−M−15 and blaCMY−42 genes and SYU04 carried the
blaCMY−2 gene. No carbapenemase genes were detected.

DISCUSSION

Our analysis of stringently selected E. coli isolates from CA-
UTIs, collected in China during the period 2016–2017, revealed
a relatively lower ESBL rate (38.07%) than previously reported
in 2012 (68.6%) and 2014 (59.1%) in a study from The
Study for Monitoring Antimicrobial Resistance Trends (SMART)
surveillance program (Yang et al., 2017). However, another study
in China (Zhang et al., 2019) found no significant difference in
the rates of ESBLs among E. coli isolates from HA and CA UTIs,
and the ESBL rate in that study was 48.8% among CA-UTI E. coli
isolates during the period 2016–2017, which is higher than in the
present study. In Asia, the proportion of ESBL-producing E. coli

TABLE 3 | Comparison of the antimicrobial susceptibility rates of E. coli isolates in hospital level, demographic characteristics, and clinical features.

Antibiotic Hospital level (%) Age (%) Gender (%) Infection sites (%)

Tertiary
hospital,
n = 424

Secondary
hospital,
n = 385

p-Value 18–65,
n = 571

> 65,
n = 238

p-Value Male,
n = 123

Female,
n = 686

p-Value Upper
urinary
tract,
n = 26

Lower
urinary
tract,

n = 783

p-Value

ESBL rate (%) 37.7 35.3 0.985 38 38.2 0.998 53.6 35.2 < 0.001* 26.9 38.4 0.490

Imipenem 99.8 100 1 100 99.6 0.294 100 99.9 1 100 99.9 1

Ertapenem 98.3 99.5 0.153 99.6 97.1 0.005* 98.4 99 0.488 100 98.9 1

Colistin 99.3 100 0.251 99.6 99.6 1 99.2 99.7 0.391 100 99.6 1

Amikacin 98.1 98.4 0.908 98.6 97.5 0.139 96.7 98.5 0.089 100 98.2 1

Cefmetazole 97.9 97.9 1 98.2 97.1 0.440 99.2 97.7 0.871 96.2 98 0.425

Nitrofurantoin 97.9 94 0.017* 96.3 95.4 0.767 95.1 96.2 0.297 96.2 96 0.442

Fosfomycin 95 95.8 0.818 95.3 95.8 0.564 94.3 95.6 0.198 96.2 95.4 0.273

Cefoperazone/sulbactam 87.7 90.4 0.399 90.2 86.1 0.232 78.9 90.8 0.001* 92.3 88.9 1

Ceftazidime 75.5 74.3 0.910 75 74.8 0.954 65 76.7 0.023* 76.9 74.8 0.964

Cefepime 64.4 65.7 0.862 65.3 64.3 0.281 49.6 67.8 < 0.001* 76.9 64.6 0.390

Ceftriaxone 60.6 62.3 0.302 61.5 61.3 0.770 43.9 64.6 < 0.001* 69.2 61.2 0.573

Cefotaxime 60.8 61.8 0.207 61.5 60.9 0.974 43.9 64.4 < 0.001* 69.2 61 0.587

Cefazolin 58 59.2 0.729 58.8 58 0.821 44.7 61.1 0.001* 61.5 58.5 0.756

Levofloxacin 46.9 50.9 0.330 50.8 44.1 0.105 46.3 49.3 0.374 46.2 48.9 0.323

Trimethoprim/sulfamethoxazole 45.8 42.9 0.407 43.8 45.8 0.599 46.3 44 0.634 34.6 44.7 0.309

*p < 0.05.
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FIGURE 3 | Comparison of the CTX-M gene pattern of E. coli isolates by (A) hospital category, (B,C,E) demographic characteristics, and (D) clinical features. 2
ESBL genes: CTX-M-1 coexisted with CTX-M-9 groups; other ESBL genes: genes that existed in less than 10 isolates in this study, such as CTX-M-3 (n = 5),
CTX-M-64 (n = 3), CTX-M-65 (n = 9), and CTX-M-79 (n = 1); other genes: isolates with genes except ESBL genes detected in this study.

isolates was 4.1% in patients with acute uncomplicated cystitis in
Japan (Hayami et al., 2019), with 10.8% rates in CA-UTI E. coli
isolates in Korea (Park et al., 2017). In Europe, the frequency of
ESBL-producing CA-UTI E. coli strains ranged from 2.2 to 24%
(Yılmaz et al., 2016; Chervet et al., 2018; van Driel et al., 2019).
In North America, the rates varied from 14.1% in Canada and
16.0% in the UnitedStates to 31.3% in Mexico (Lob et al., 2016;
Galindo-Méndez, 2018). The difference in the prevalence of
ESBLs among different studies may be due to population source
of the isolates.

Our results show that CTX-M-14, CTX-M-55, and CTX-M-15
are the most dominant CTX-M variants in the ESBL-producing
E. coli, followed by CTX-M-27, CTX-M-3, CTX-M-65,

CTX-M-64, and CTX-M-79. CMY-2 is the major β-lactamase
in the ESBL-uncertain E. coli. In different regions, the CTX-M
variant pattern is different. In north China, CTX-M-15 (22.03%),
CTX-M-14, and CTX-M-55 (20.34%) were distributed equally
in the ESBL-producing and uncertain (phenotype) isolates,
while in other regions, CTX-M-14 was the major variant with
over 24% rate, and the rates of CTX-M-15 and CTX-M-55
were less than 20%. In east China, CTX-M-27 (21.05%) was
the secondary variant that exceeded CTX-M-15 (19.3%) and
CTX-M-55 (17.54%). In addition, another report also shows that
CTX-M-27 has become more prevalent in East and Southeast
Asia (Chong et al., 2018). Among the isolates from lower urinary
tract infections, blaCTX−M−14 was the most common ESBL gene
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FIGURE 4 | Susceptibility rates of CA-UTI Escherichia coli strains with different ESBL phenotypes. IMP, imipenem; ETP, ertapenem; COL, colistin; AMK, amikacin;
CMZ, cefmetazole; NIT, nitrofurantoin; FOS, fosfomycin; CSL, cefoperazone/sulbactam; CAZ, ceftazidime; FEP, cefepime; CRO, ceftriaxone; CTX, cefotaxime; CZO,
cefazolin; LVX, levofloxacin; and SXT, trimethoprim/sulfamethoxazole.

FIGURE 5 | Comparison of the antimicrobial susceptibility rates of E. coli isolates by (A) hospital category, (B,C) demographic characteristics, and (D) clinical
features. IMP, imipenem; ETP, ertapenem; COL, colistin; AMK, amikacin; CMZ, cefmetazole; NIT, nitrofurantoin; FOS, fosfomycin; CSL, cefoperazone/sulbactam;
CAZ, ceftazidime; FEP, cefepime; CRO, ceftriaxone; CTX, cefotaxime; CZO, cefazolin; LVX, levofloxacin; and SXT, trimethoprim/sulfamethoxazole.

type, which was different from upper urinary tract infections (the
main gene was blaCTX−M−27), but it may not be comprehensive
since the number of isolates was extremely low in upper urinary
tract infections (n = 8).

Most of CTX-Ms, such as CTX-M-14, CTX-M-3, and
CTX-M-65, exhibit powerful activity against cefotaxime and
ceftriaxone but not ceftazidime. Some CTX-Ms, such as
CTX-M-15, CTX-M-27, CTX-M-55, and CTX-M-64, exhibit
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enhanced catalytic efficiencies against ceftazidime (Zhao and
Hu, 2013). In our study, the rate of ceftazidime-resistant
isolates (49.7%) corresponds to the rate of isolates that carried
CTX-M-15/55/27 (48.8%). In addition, among the ESBL-
producing and uncertain (phenotype) isolates, the rates of
ceftriaxone/cefotaxime/cefazolin-resistant were 93.1%, 93.4%,
and 93.1%, respectively. Although CTX-M can be inhibited by
β-lactamase inhibitors as sulbactam, clavulanate, and tazobactam,
the susceptibility rate of cefoperazone/sulbactam was only 73.8%.
Moreover, most of ESBL-uncertain isolates carried CMY-2, which
cannot be inhibited by β-lactamase inhibitors. For these isolates,
fosfomycin would be useful for the empirical treatment of acute
cystitis since it had high rates of activity, with a susceptibility
rate of over 90%.

The common antimicrobial drugs for treating acute
uncomplicated cystitis include fosfomycin, nitrofurantoin,
trimethoprim/sulfamethoxazole, and β-lactams, including
cephalexin, cefaclor, and amoxicillin/clavulanate. Besides,
β-lactams and quinolones are recommended as renal excretion-
type antibiotics for acute uncomplicated pyelonephritis (Choe
et al., 2018). However, the two old antibiotics, fosfomycin and
nitrofurantoin, which achieve high urinary concentrations and
minimal toxicity, are not often used in China (Qiao et al.,
2013), yet E. coli accounts for the majority of pathogens causing
CA-UTIs (Qiao et al., 2013; Yang et al., 2017). It is important
to understand the activity of β-lactams and quinolones
against E. coli strains to guide empirical antimicrobial therapy
decision making.

In the European Association of Urology guidelines updated
in 2020, cephalosporins are recommended for oral empirical
treatment of uncomplicated pyelonephritis and as alternative
antimicrobials for therapy in uncomplicated cystitis (Bonkat
et al., 2020). However, in the present study, cephalosporins
had poor activity against ESBL-producing E. coli strains.
Susceptibility rates of E. coli to the first-, third-, and fourth-
generation cephalosporins were lower than 80%, among which,
the susceptibility rates were 76.9% (for strains that caused
pyelonephritis) and 74.8% (for strains that caused lower urinary
tract infections) for ceftazidime, 69.2% and 61% for cefotaxime,
69.2% and 61.2% for ceftriaxone, and 76.9% and 64.6% for
cefepime, respectively, which indicate that these agents might not
be the optimum medications for empirical UTI therapies.

In the present study, the proportion of ESBL-non-producing
E. coli isolates was 73.1% in pyelonephritis and 61.6% in lower
UTIs, which is consistent with the cephalosporin susceptibility
rates. Genes that encode for ESBLs are usually found on large
plasmids accompanied by genetic determinants of resistance
against multiple classes of antibiotics, such as aminoglycosides,
sulfonamides, and fluoroquinolones (Lee et al., 2012; Bader
et al., 2017). Our study also investigated the differences in ESBL
carriage rates and cephalosporin susceptibility rates between
males and females. Significantly higher ESBL and cephalosporin
resistance rates were found in E. coli isolates from men. ESBL
rates range from 30.2% to 46.3% in different regions of China,
with northeast, central, and west China having higher rates in
E. coli. The choice of cephalosporins for treatment of UTIs should
be based on local prevalence of ESBL-producing isolate data.

Fluoroquinolones and cephalosporins are antimicrobial
agents that can be recommended for oral empirical treatment
of uncomplicated pyelonephritis. Meanwhile, ciprofloxacin,
levofloxacin, and ofloxacin are not recommended in the
treatment of uncomplicated cystitis. However, quinolone use has
been compromised by the high resistance rates to most bacterial
pathogens (Kim and Hooper, 2014), with a 50.2% resistance rate
reported in this study higher than the rates reported in patients
with acute uncomplicated cystitis in Japan (6.4%) (Yılmaz
et al., 2016). Quinolone resistance mechanisms are multiple
and complicated. Chromosomal gene mutation including gyrA,
gyrB, parC, and parE genes, reduce binding of the drug to the
enzyme–DNA complex. Furthermore, overexpression of native
efflux pumps localized in the bacterial membrane may cause
resistance to quinolones and other antimicrobials. Additionally,
plasmid-mediated quinolone resistance determinants can
encode additional antimicrobial resistances and transfer
multidrug resistance to a variety of antimicrobials, including
quinolones (Hooper and Jacoby, 2015). Through these resistance
mechanisms, the number of quinolone-resistant bacterial strains
has grown steadily over the years. A previous study reported that
S83L/D87N in gyrA and S80I in parC were the most common
topoisomerase mutations in ESBL-producing E. coli isolates
from the community (Ni et al., 2016). In addition, the majority
of UTIs in the present study were uncomplicated cystitis (96%,
778/809) for which fluoroquinolones are not recommended for
treatment. Thus, in this case, the use of fluoroquinolones for
empiric treatment of UTIs should be restricted.

Although carbapenems are not recommended as the first-
line treatment for uncomplicated cystitis and pyelonephritis
(Bonkat et al., 2020), the carbapenems exhibited high in vitro
activity against ESBL-producing E. coli in the present study,
with a susceptibility rate of 100% for imipenem and 98.4% for
ertapenem. Given the relatively high ESBL rates in CA-UTIs
in the present study, and the low susceptibility rates to beta-
lactam and fluoroquinolones, carbapenems can be considered
for empiric therapy in patients with suspected ESBL-producing
and multidrug-resistant (MDR) bacterial strains (Essack, 2000;
Paterson, 2000; Livermore et al., 2001). On the other hand, in
order to maintain the activity of carbapenems, it is necessary
to replace carbapenems by other antimicrobials once the
susceptibilities to antimicrobial agents have been confirmed.
Carbapenem-resistant E. coli (CREc) constituted 0.25% (2/809)
of the CA-UTI E. coli isolates studied, which is consistent with
previous reports. Findings from previous studies indicate an
increase in the prevalence of community-acquired CRE in Taiwan
(Lai et al., 2013; Tang et al., 2016). CA-CREs have also been
described in the southeastern part of the United States (Thaden
et al., 2014), suggesting widespread distribution of the organism
in the community, and patients infected with CA-CRE have more
urinary tract infections (Tang et al., 2016). The two patients with
CREc were both elderly and female, which is in agreement with
previous findings (Tang et al., 2016). In this study, amikacin
colistin, fosfomycin, and tigecycline exhibited potent activity
against CREs, suggesting that colistin, fosfomycin, tigecycline,
and aminoglycosides could be treatment choices for UTIs caused
by CRE (Bader et al., 2017).
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As with majority of the studies, a limitation in this study was
the lack of genomic analysis such as multilocus sequence typing
(MLST). Since all the isolates were collected from 10 different
regions in China and the number per site was no more than
100, there was a high possibility that these isolates were sporadic
and rarely clonal outbreak. From other studies, we learned that
ST131, ST69, ST95, and ST73 were the dominant sequence types
(STs) in E. coli isolated from urinary tract infections (Riley,
2014; Yamaji et al., 2018; Kot, 2019). Among multidrug-resistance
E. coli isolates associated with CA-UTIs, ST131 and ST69 were
predominant in Australia and Saudi Arabia (Alghoribi et al.,
2015; Rogers et al., 2015); however, ST648, ST224, ST38, and
ST405 also occurred in China (Cao et al., 2011, 2014).

This study also found that two of three colistin-resistant
E. coli isolates carried blaCTX−M−14 and blaTEM−1 genes but
were susceptible to carbapenems, which is consistent with a
previous study (Jiang et al., 2020). The results suggest we need
to attach great importance to the management of MDR Gram-
negative bacteria. This study showed the real ESBL rates and
genotype distribution in community-acquired UTIs through
strict selection criteria, since the strategies for treatment of
hospital- and community-acquired UTIs are different. Besides,
some UTIs might not represent genuine community acquisition
if the patients were admitted to a hospital before infection. Hence,
this strictly defined clinical epidemiological study in CA-UTIs
will help the clinicians to better understand the antimicrobial
resistance status and select empiric antimicrobial agents.

CONCLUSION

Our findings show that ESBLs are still a significant issue in
E. coli isolates from CA-UTI in China, with an average prevalence
of 38.07%. Higher rates of ESBL among the E. coli strains
were confined to the northeast, central, and west parts of
China. The choice of antimicrobial agents for the treatment
of CA-UTIs should be based on local surveillance data. Use
of fluoroquinolones for empiric treatment of UTIs should be
restricted due to high resistance rate. Carbapenems can be
used empirically for highly suspected ESBL-producing and MDR

strains. However, the occurrence of CRE in the community is a
cause for concern.
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We isolated and characterized a carbapenem-resistant Klebsiella pneumoniae (CRKP)
clinical strain from blood carrying a novel blaOXA gene, blaOXA−926, and belonging
to ST29, an uncommon CRKP type. The strain, 130002, was genome sequenced
using both short- and long-read sequencing and has a 94.9-kb self-transmissible
IncFII plasmid carrying blaKPC−2. K. pneumoniae genomes of the ST29 complex
(ST29 and its single-allele variants) were retrieved and were subjected to single
nucleotide polymorphism-based phylogenomic analysis. A total of 157 genomes
of the ST29 complex were identified. This complex is commonly associated with
extended-spectrum β-lactamase-encoding genes, in particular, blaCTX−M−15 but rarely
has carbapenemase genes. The novel plasmid-encoded β-lactamase-encoding gene
blaOXA−926 was identified on a 117.8-kb IncFIA-IncFII plasmid, which was transferrable
in the presence of the blaKPC−2-carrying plasmid. blaOXA−926 was cloned and MICs
of β-lactams in the transformants were determined using microdilution. OXA-926 has
a narrow spectrum conferring reduced susceptibility only to piperacillin, piperacillin-
tazobactam, and cephalothin. Avibactam cannot fully inhibit OXA-926. blaOXA−926 and
its variants have been seen in Klebsiella strains in Asia and Brazil. OXA-926 is the
closest in sequence identity (89.9%) to a chromosome-encoding OXA-type enzyme
of Variovorax guangxiensis. In conclusion, OXA-926 is novel plasmid-borne narrow-
spectrum β-lactamase that cannot be fully inhibited by avibactam. It is likely that
blaOXA−926 originates from a species closely related to V. guangxiensis and was
introduced into Klebsiella > 10 years ago.
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INTRODUCTION

Resistance to β-lactam agents such as penicillins, cephalosporins,
and carbapenems in the Enterobacteriaceae, one of the most
common human pathogens, is mainly due to the production
of hydrolyzing enzymes called β-lactamases. β-Lactamases can
be divided into classes A, B, C, and D based on amino acid
homology (Hall and Barlow, 2005). Class A, C, and D enzymes
are also termed serine β-lactamases as they possess a serine
at the active site, while class B enzymes require a metal ion
for activity and are therefore called metallo-β-lactamases. OXA
(oxacillinase) is a large group of class D β-lactamases with
a remarkably varied spectrum against β-lactam agents from
narrow-spectrum (hydrolyzing penicillins only, e.g., OXA-1) to
extended-spectrum (with ability to hydrolyze 3rd generation
cephalosporins, e.g., OXA-11) and carbapenemases (e.g., OXA-
23 and OXA-48) (Evans and Amyes, 2014). A number of
bacterial species, e.g., Acinetobacter baumannii and Pseudomonas
aeruginosa contain intrinsic OXA-encoding genes blaOXA in their
chromosomes, while many blaOXA genes are carried by plasmids
(Evans and Amyes, 2014). In this study, we found a blaOXA
gene encoding a novel OXA enzyme in a carbapenem-resistant
Klebsiella pneumoniae (CRKP) clinical strain and determined its
active spectrum. We also found that this strain belongs to ST29,
an uncommon CRKP type. CRKP has emerged worldwide as a
significant human health challenge (World Health Organization,
2017). The global dissemination of CRKP is mainly due to
certain high-risk clones, in particular, ST 258 (Adler et al., 2014)
and ST11 in China (Qi et al., 2011), but new CRKP lineages
are continuously emerging. We, therefore, analyzed all available
genomes of ST29 and found that this ST is commonly associated
with the carriage of extended-spectrum β-lactamase-encoding
genes rather than carbapenemases genes.

MATERIALS AND METHODS

The Study, the Strain, and Susceptibility
Testing
Strain 130002 was recovered from the blood of an ICU patient
in 2020 at West China Hospital as part of routine care. MICs
of aztreonam, ceftazidime, ceftazidime-avibactam, cefepime,
ertapenem, imipenem, meropenem, piperacillin-tazobactam, and

TABLE 1 | The allele profile of ST29 and its single-allele variants.

ST gapA infB mdh pgi phoE rpoB tonB

29 2 3 2 2 6 4 4

193 2 3 2 2 48 4 4

465 2 3 2 2 9 4 4

711 2 61 2 2 6 4 4

723 2 3 2 2 131 4 4

985 10 3 2 2 6 4 4

1161 2 3 2 2 6 4 111

1271 2 3 2 2 4 4 4

The allele differences are highlighted.

colistin were determined using the broth microdilution method
of the Clinical and Laboratory Standards Institute (CLSI) (CLSI,
2020). This study has been approved by the Ethical Committee
of West China Hospital without the requirement of an informed
consent due to the fact that no patient information is needed.

Short- and Long-Read Whole Genome
Sequencing and Analysis
Strain 130002 was subjected to whole genome sequencing
using both a HiSeq X10 sequencer (Illumina; San Diego, CA,
United States; 200×) and a MinION Sequencer (Nanopore;
Oxford, United Kingdom). Genomic DNA was prepared using
the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany). Both
short (Illumina) and long (Nanopore) reads were utilized to
generate a de novo hybrid assembly using Unicycler (Wick
et al., 2017) and Pilon (Walker et al., 2014). Sequence type
(ST) was determined by querying the multilocus sequence
typing database1, while capsule (KL) typing was performed using
Kleborate (Wyres et al., 2016). Antimicrobial resistance genes
were identified from the genome sequences using the ABRicate
program2 to query the ResFinder database3. Replicon sequence
types of IncF plasmids were determined using the pMLST4.
Plasmid comparison was performed using BRIG (Alikhan et al.,
2011) in the default settings. Insertion sequences were identified
using ISFinder5.

1http://bigsdb.pasteur.fr/klebsiella/klebsiella.html
2https://github.com/tseemann/abricate
3https://cge.cbs.dtu.dk/services/ResFinder/
4https://cge.cbs.dtu.dk/services/pMLST/
5https://www-is.biotoul.fr/

TABLE 2 | MIC (mg/L) of β-lactams for 130002 and E. coli BL21
expressing OXA-926 or not.

130002 BL21::pET28a-
OXA926

BL21::pET28a

Aztreonam >256 0.03 0.03

Ampicillin – 1 1

Ampicillin-sulbactam – 1/0.5 0.5/0.25

Piperacillin >256 32 0.5

Piperacillin-tazobactam >256/4 16/4 1/4

Piperacillin-avibactam 8/4 4/4 0.5/4

Oxacillin – 512 512

Cefazolin – 0.5 0.5

Cephalothin – 4 0.25

Cefuroxime – 0.25 0.25

Ceftriaxone – 0.03 0.03

Cefotaxime – ≤0.015 ≤0.015

Ceftazidime 32 0.06 0.06

Ceftazidime-avibactam 0.5/4 0.06/4 0.06/4

Cefepime 16 0.03 0.03

Cefoxitin – 1 1

Ertapenem >256 0.03 0.03

Imipenem 64 0.5 0.5

Meropenem 128 0.06 0.06

Colistin 1 – –
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Conjugation
Mating experiments were performed in broth and on filters
with Escherichia coli J53 AizR (an azide resistant variant
of J53) as the recipient at both 25 and 37◦C, as described
previously (Coque et al., 2002). Potential transconjugants
were selected on LB agar plates containing 16/4 mg/L of
piperacillin-tazobactam and 150 mg/L of sodium azide. The
presence of blaKPC−2 and blaOXA−926 in the transconjugants was
confirmed by PCR with primers KPC-up1/KPC-dw1 (5′-CCTA
GCTCCACCTTCAAACAA/GTGAGGGCGAAGGTTAAATG)
(Zhang et al., 2012) and OXA926-Fw/OXA926-Rev (see below),
respectively, and subsequent Sanger sequencing.

Cloning of blaOXA−926 and Function
Characterization
To determine the activity of OXA-926, the 807-bp complete
coding sequence of blaOXA−926 was amplified from strain 130002
using primers OXA926-Fw/Rev (5′-CCGGATCCATGTGCA
ATCGCATCCTCCA/CCCTCGAGTCAATGGTCGATGGCTGG
CA; restriction sites are underlined). PCR amplicons and the
vector pET-28a (Fenghbio; Changsha, China) were digested
using BamHI and XhoI (New England Biolabs, Ipswich, MA,
United States) and were then ligated to the pET-28a vector using
T4 ligase (New England Biolabs) to construct pET28a-OXA926.
The constructed plasmid was transformed into E. coli strain
BL21 by chemical, as described before (Sambrook and Russell,
2001). Potential transformants containing pET28a-OXA926
were selected on Luria–Bertani agar plates (Sigma; St. Louis,
MO, United States) containing 50 mg/L of kanamycin. Colonies
on plates were screened for blaOXA−926 by PCR using primers
OXA926-Fw/Rev and subsequent Sanger sequencing. The empty
vector pET-28a was also transformed into BL21 for control.

MICs of aztreonam, ampicillin, ampicillin-sulbactam,
piperacillin, piperacillin-tazobactam, oxacillin, cefazolin,
cephalothin, cefuroxime, ceftriaxone, cefotaxime, ceftazidime,
ceftazidime-avibactam, cefepime, cefoxitin, ertapenem,
imipenem, and meropenem for the transformant containing
pET28a-OXA926 (BL21::pET28a-OXA926) were determined as
described above. MICs of piperacillin in the presence of 4 mg/L
of avibactam were also determined based on the methods to
determine MICs of ceftazidime-avibactam (CLSI, 2020).

Protein Analysis
The secondary structure of OXA-926 β-lactamase was
predicted using the neural network based web service JPred4
(Drozdetskiy et al., 2015) with the default settings. The origin of
OXA-926 was investigated using BlastP6.

Phylogenomic Analysis of the ST29
Complex
All complete and draft genomes of K. pneumoniae belonging to
the ST29 complex including ST29 and its single-allele variants,
i.e., ST193, 465, 711, 723, 985, 1161, and 1271 (the allele profile
of these STs is shown in Table 1) were retrieved from GenBank

6https://blast.ncbi.nlm.nih.gov/blast.cgi
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including the SRA database (accessed during May 2020). The
genome sequences were mapped against the complete genome of
130002 for single nucleotide polymorphisms (SNP) calling using
Snippy v4.6.07 with the default settings. Gubbins v2.4.1 (Croucher
et al., 2015) was used for recombination filtering prior to the
phylogenomic reconstruction using RAxML v8.2.12 (Stamatakis,
2014) under the GTRGAMMA model and a 1,000-bootstrap test.
Trees were annotated and viewed in iTOL v5.7 (Letunic and Bork,
2019) and FigTree v1.4.48. As there are up to 1,048 SNPs between
the genomes of ST29 and its single-allele variants (see below),
suggesting a significant phylogenetic divergence, we, therefore,
did not include the double-allele variants of ST29 for analysis.

Retrieval of blaOXA−926-Carrying Strains
From GenBank
Draft and complete genome sequences deposited in GenBank
were screened by BlastN (see text footnote 6) for the presence of
blaOXA−926. Metadata of blaOXA−926-carrying strains including
host species and countries and year of isolation were retrieved.

7https://github.com/tseemann/snippy
8https://github.com/rambaut/figtree

RESULTS AND DISCUSSION

CRKP Strain 130002 Belongs to ST29, an
Uncommon CRKP Type
Strain 130002 was resistant to aztreonam, ceftazidime, cefepime,
ertapenem, imipenem, meropenem, and piperacillin-tazobactam
but was susceptible to ceftazidime-avibactam and was
intermediate to colistin (Table 2). The complete genome
sequence of strain 130002 was obtained by de novo hybrid
assembly of both short (Illumina) and long (Nanopore) reads
and had a 5.3-Mb circular chromosome with three plasmids
(Table 3). Strain 130002 belongs to ST29, an uncommon CRKP
type, and the KL62 capsule type.

The ST29 Complex of K. pneumoniae Is
Widely Distributed and Commonly
Associated With blaCTX−M Genes but
Rarely With Carbapenemase Genes
As ST29 is an uncommon type of CRKP, we retrieved all
genomes of K. pneumoniae belonging to the ST29 complex
including ST29 and its single-allele variants (ST193, 465, 711,
723, 985, 1161, and 1271) from GenBank. A total of 157

FIGURE 1 | Phylogenomic tree of K. pneumoniae strains of the ST29 complex. This phylogenomic tree of 130002 and 157 genomes of the ST29 complex is based
on SNP calling using Snippy v4.6.0 and filtering recombination using Gubbins v2.4.1. The phylogeny was inferred using RAxML v8.2.12 under the GTRGAMMA
model with a 1,000-bootstrap test and is annotated and viewed in iTOL v5.7 and FigTree v1.4.4. More information of the genomes is provided in Supplementary
Datasheet 1.
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genomes were identified and strains of the ST29 complex have
been identified in all continents but Antarctica (Supplementary
Datasheet 1). Most strains (57.3%, 90/157) of the ST29 complex
carried genes encoding extended-spectrum β-lactamases (ESBL),
in particular, blaCTX−M−15 (n = 69), while only four strains
had carbapenemase genes (blaKPC−2, blaKPC−3, or blaIMP−19;
Supplementary Datasheet 1). Strains of the ST29 complex were
assigned to 13 capsular types (KL2, 10, 19, 24, 28, 30, 31, 33,
54, 62, 63, 107, and 113; Figure 1), while 130002 is the only
strain of KL62. There was a maximum of 1,048 SNPs between
strains of the ST29 complex (Supplementary Datasheet 2),
suggesting that the complex is diverse in clonal background.
Strain 130002 had a range of 258–904 SNPs with other strains
of the ST29 complex (Supplementary Datasheet 2) and is most
closely related to ST29 KL54 strain 4300STDY6470438 (accession
no. ERR2397540) recovered from an unspecified human sample
in Thailand in 2016 (Figure 1).

130002 Has a blaKPC−2 and blaOXA Gene
Encoding a Novel Narrow-Spectrum
β-Lactamase OXA-926
Strain 130002 contains three β-lactamase-encoding genes
including narrow-spectrum β-lactamase gene blaSHV−187

(Tian et al., 2020) on chromosome, carbapenemase gene
blaKPC−2 on a 94.9-kb IncFII plasmid of the Y6:A-:B- type
(designated pKPC2_130002), and a novel blaOXA gene on a
117.8-kb plasmid containing both IncFIA and IncFII replicons
(designated pOXA926_130002; Table 3). pKPC2_130002
shows the closest similarity among the sequenced plasmids to
pKPC2_020019 (accession no. CP028554), an 89.7-kb Y6:A-:B-
type blaKPC−2-carrying plasmid from a Klebsiella variicola strain
recovered from a hospital of a neighboring city (Meishan, 80 km
away from Chengdu) in 2017, with a 94% coverage and 99.93%
identity (Figure 2). On pKPC2_130002 and pKPC2_020019,
blaKPC−2 is located in a non-Tn4401 element containing a
transposase-encoding tnpA gene of an unnamed transposon of
the Tn3 family at upstream and another tnpA of an unnamed
transposon of the TnAs1 family at downstream (Figure 2).
Transconjugants containing blaKPC−2 were obtained at a
frequency of 1× 10−4 (transconjugant per recipient), illustrating
that pKPC2_130002 is readily self-transmissible. The findings
above show that strain 130002 emerged as a CRKP by acquiring
a self-transmissible blaKPC−2-carrying plasmid.

The blaOXA gene encodes an OXA enzyme that shows the
closest similarity to OXA-459 with a 59.1% amino acid (aa)
identity (143/242 aa) and 90.3% coverage (242/268 aa) among all
known OXA enzymes in the Bacterial Antimicrobial Resistance

FIGURE 2 | Alignment of pKPC2_130002 with pKPC2_020019. pKPC2_130002 is a 94.9-kb IncFII plasmid of the Y6:A-:B- type and has blaKPC−2. pKPC2_130002
is the closest to pKPC2_020019 (accession no. CP028554), an 89.7-kb Y6:A-:B-type blaKPC−2-carrying plasmid from a K. variicola strain recovered in a hospital of
a neighbor city (Meishan, 80 km away from Chengdu) in 2017, with a 94% coverage and 99.93% identity. Comparing with pKPC2_130002, pKPC2_020019 lacks
several protein-encoding genes with the products being indicated. On pKPC2_130002 and pKPC2_020019, blaKPC−2 is located in a non-Tn4401 element
containing a transposase-encoding tnpA gene of an unnamed transposon of the Tn3 family at upstream and another tnpA of an unnamed transposon of the TnAs1
family at downstream. This comparison was performed using BRIG (Alikhan et al., 2011) in the default settings.
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Reference Gene Database9. OXA-459 is one of the OXA-114-
like enzymes intrinsic to Achromobacter spp. The findings above
suggest that this OXA is a novel enzyme and is assigned OXA-926
by the Pathogen Detection group of GenBank, National Center
for Biotechnology Information. OXA enzymes are very diverse in
amino acid sequences and can be assigned to various subfamilies
(Evans and Amyes, 2014; Yoon and Jeong, 2021). A ≥73.1%
amino acid identity has been recently proposed as the cutoff to
define OXA subfamilies (Yoon and Jeong, 2021) and, therefore,
OXA-926 represents a novel subfamily. The secondary structure
of OXA-926 contains seven α helixes, six β sheets, and four
310-helixes (Figure 3).

blaOXA−926 was successfully cloned into vector pET28a,
generating pET28a-OXA926. Among the β-lactams tested,
only the MICs of piperacillin, piperacillin-tazobactam, and
cephalothin for the transformant containing pET28a-OXA926
(BL21::pET28a-OXA926) were increased by ≥four-fold as
compared with those for the transformant containing pET-28a
(BL21::pET28a) (Table 2). This suggests that OXA-926 exhibits
activity against piperacillin and such activities cannot be inhibited
by tazobactam, a class A (not class D) β-lactamase inhibitor. As
avibactam is a non-β-lactam β-lactamase inhibitor able to inhibit
classes A, C, and D β-lactamases, we, therefore, determined the
MICs of piperacillin in the presence of 4 mg/L of avibactam. In
the presence of avibactam, MIC of piperacillin decreased from 32
to 4 mg/L for BL21::pET28a-OXA926 but was still 8-fold of that

9https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047

for BL21::pET28a (0.5 mg/L). This suggests that avibactam is able
to provide protection for β-lactams from the hydrolysis OXA-926
to a certain extent but cannot fully inhibit OXA-926.

pOXA926_130002 has a K4 IncFII allele and a novel IncFIA
allele closest to the FIA_10 type with a 98.7% identity (378/383
nucleotides). pOXA926_130002 was the closest, with a 56%
coverage and 97.1% identity (Figure 4), to pRHBSTW-00167_2
[accession no. CP058119; containing a K4 IncFII allele and a
FIA_10 type IncFIA allele (K4:A10:B-) plus an IncR replicon]
of Klebsiella michiganensis strain RHBSTW-00167 recovered
from freshwater in the United Kingdom in 2017. By Blast,
there is only one blaOXA−926-carrying plasmid, p15WZ-82_res
(accession no. CP032357), with a complete sequence available
in GenBank (Table 4). p15WZ-82_res was recovered from a
K. variicola clinical strain in an unspecified place in China
in 2015. This plasmid contains a K4 IncFII allele and a K
(pCAV1099-114 type) IncFIB allele but no IncFIA allele (K4:A-
:B-; pCAV1099-114 type IncFIB was not included in the IncF
pMLST scheme). pOXA926_130002 had a 53% coverage and
99.0% identity with p15WZ-82_res (Figure 4). Transconjugants
containing both blaKPC−2 and blaOXA−926 were obtained
but those containing blaOXA−926 alone were not, suggesting
that pOXA926_130002 was not self-transmissible. Nonetheless,
pOXA926_130002 was able to be transferred in the presence of
pKPC2_130002 at a frequency of 1 × 10−6 (transconjugant per
recipient). On pOXA926_130002, there are no mobile genetic
elements including insertion sequences and transposons present
in the immediate upstream and downstream of blaOXA−926.

FIGURE 3 | Secondary structure of OXA-926. The secondary structure was predicted using the neural network-based web service JPred4 (Drozdetskiy et al., 2015)
with the default settings. Secondary structure elements, α helixes, β sheets, and 310-helixes (representing by η), are indicated. β-strands are rendered as arrows, and
strict α- and β-turns are shown as TTT and TT letters, respectively.
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FIGURE 4 | Alignment of pOXA926_130002 with RHBSTW-00167_2 and
p15WZ-82_res. pOXA926_130002 is a 117.8-kb IncF plasmid and has
blaOXA−926. Plasmid replication initiation-encoding genes repA of the IncFII
replicon and repE of the IncFIA replicon and the conjugation module
containing multiple genes (traA to traX and trbB to trbI) are indicated. A gene
encoding the transpose of an IS30 family insertion sequence at upstream of
blaOXA−926 and a gene encoding a tyrosine recombinase-like integrase at
downstream are also shown. pOXA926_130002 is the closest (56% coverage
and 97.1% identity) to pRHBSTW-00167_2 (accession no. CP058119), a
223.8-kb K4:A10:B- type IncF plasmid with an additional IncR replicon of an
K. michiganensis strain recovered in United Kingdom in 2017.
pRHBSTW-00167_2 has no blaOXA−926, while p15WZ-82_res (accession no.
CP032357) is another blaOXA−926-carrying plasmid of a K. variicola clinical
strain recovered from an unspecified place in China in 2015. p15WZ-82_res
belongs to the K4:A-:B- IncF type and also contains a K (pCAV1099-114
type) IncFIB allele. pOXA926_130002 had a 53% coverage and 99.0%
identity with p15WZ-82_res.

Nonetheless, an unnamed novel insertion sequence of the
IS30 family was found 3,137 bp upstream of blaOXA−926 but
no additional insertion sequences of the IS30 family to form

a composite transposon were present on pOXA926_130002
(Figure 4). A tyrosine recombinase-like integrase-encoding gene
was present 4,984 bp downstream of blaOXA−926 (Figure 4) but
no crossover sites (recombination sites), which are required for
recombination mediated by this type of integrases are found.
No additional tyrosine recombinase-like integrase-encoding
gene was present upstream of blaOXA−926. Therefore, the
mechanism for mobilizing blaOXA−926 remains to be elucidated
and warrants further study.

blaOXA−926 May Originate From a Species
Closely Related to Variovorax
BlastP shows that OXA-926 is the closest to a chromosome-
encoding OXA-type enzyme of Variovorax guangxiensis
(accession no. WP_184634888) with a 100% coverage and 89.9%
(241/268) aa identity and is also similar to another chromosome-
encoding OXA-type enzyme of Variovorax gossypii (accession
no. WP_126469733) with a 98.9% (265/268) coverage and
85.4% (229/268) aa identity. Variovorax is a genus of the family
Comamonadaceae within the order Burkholderiales (Taxonomy
ID 34072 in NCBI). This suggests that blaOXA−926 originates
from a yet unknown species likely within the genus Variovorax.

blaOXA−926 Has Been Present in
Klebsiella for More Than 10 Years
In GenBank, blaOXA−926 was found in one plasmid of Klebsiella
variicola (GenBank accession no. CP032357) and seven Klebsiella
draft genomes, including four K. pneumoniae and three
K. variicola (Table 4). Four of the eight Klebsiella strains have
detailed information available, revealing that the strains were
recovered from China and Japan as far back as 2008. In addition,
a variant of blaOXA−926 encoding an OXA enzyme with 97.01%
(260/268) aa identity with OXA-926 was found in one Klebsiella
michiganensis from Malaysia and two K. variicola from Brazil
(Table 4). These findings suggest that blaOXA−926 has been
circulating in Klebsiella spp. for more than a decade and has
spread to multiple countries.

TABLE 4 | Genomes containing blaOXA−926 or blaOXA−926-like genes in GenBanka.

Isolate OXA Species aa identity, % Accession no. Country Collection year Host: sample type

TUM14060 OXA-926 Klebsiella pneumoniae 100 BIIN00000000 Japan 2013 Human :–

4300STDY6470463 OXA-926 Klebsiella pneumoniae 100 UFFP00000000 Thailand 2016 Human: –

4300STDY6470462 OXA-926 Klebsiella pneumoniae 100 UFFK00000000 Thailand 2016 Human: –

4300STDY6470402 OXA-926 Klebsiella pneumoniae 100 UFDU00000000 Thailand 2016 Human: –

15WZ-82 OXA-926 Klebsiella variicola 100 CP032357c China 2015 Human: –

K022 OXA-926 Klebsiella variicola 100 JACNNG000000000 China 2008 Human: –

TUM14096 OXA-926 Klebsiella variicola 100 BIJX00000000 Japan 2014 Human: –

ZKP186 OXA-926 Klebsiella variicola 100 CABWXA000000000 China 2017 Human: –

R8A OXA-926-likeb Klebsiella michiganensis 97.02 JNCH00000000 Malaysia 2013 Human: dental plaque

Kv104 OXA-926-likeb Klebsiella variicola 97.02 JAAQPW000000000 Brazil 2017 Human: blood

Kv97 OXA-926-likeb Klebsiella variicola 97.02 JAAQPV000000000 Brazil 2017 Human: urine

ablaOXA−926-like genes refer to those with ≥90% nucleotide identity with blaOXA−926.
bThe three OXA-926-like are identical in aa sequence.
c In strain 15WZ-82, blaOXA−926 is carried on a plasmid, p15WZ-82_res, containing a K4 IncFII allele and a K (pCAV1099-114) IncFIB allele but no IncFIA allele.
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CONCLUSION

We found a CRKP strain of an uncommon sequence and
capsular type. Carbapenem resistance of this strain was due to the
acquisition of a self-transmissible plasmid carrying blaKPC−2. We
also found a novel plasmid-borne narrow-spectrum β-lactamase-
encoding gene, blaOXA−926, able to confer a reduced susceptibility
to piperacillin and piperacillin-tazobactam which cannot be fully
inhibited by avibactam. It is likely that blaOXA−926 originates
from a yet unknown species within the genus Variovorax of the
order Burkholderiales.
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Carbapenem-resistant Enterobacterales (CRE) has become a major therapeutic concern
in clinical settings, and carbapenemase genes have been widely reported in various
bacteria. In Serratia marcescens, class A group carbapenemases including SME and
KPC were mostly identified. However, there are few reports of metallo-β-lactamase-
producing S. marcescens. Here, we isolated a carbapenem-resistant S. marcescens
(S378) from a patient with asymptomatic urinary tract infection which was then
identified as an IMP-4-producing S. marcescens at a tertiary hospital in Sichuan
Province in southwest of China. The species were identified using MALDI-TOF MS, and
carbapenemase-encoding genes were detected using PCR and DNA sequencing. The
results of antimicrobial susceptibility testing by broth microdilution method indicated
that the isolate S. marcescens S378 was resistant to meropenem (MIC = 32 µg/ml)
and imipenem (MIC = 64 µg/ml) and intermediate to aztreonam (MIC = 8 µg/ml). The
complete genomic sequence of S. marcescens was identified using Illumina (Illumina,
San Diego, CA, United States) short-read sequencing (150 bp paired-end reads); five
resistance genes had been identified, including blaIMP−4, blaSRT−2, aac(6′)-Ic, qnrS1,
and tet(41). Conjugation experiments indicated that the blaIMP−4-carrying plasmid
pS378P was conjugative. Complete sequence analysis of the plasmid pS378P bearing
blaIMP−4 revealed that it was a 48,780-bp IncN-type plasmid with an average GC
content of 50% and was nearly identical to pP378-IMP (99% nucleotide identity and
query coverage).

Keywords: Serratia marcescens, blaIMP−4, blaSRT−2, IncN plasmid, class 1 integron

INTRODUCTION

S. marcescens is recognized to be an important nosocomial pathogen and is usually associated
with outbreaks in neonatal wards (Mahlen, 2011; Millán-Lou et al., 2021). The infection caused
by S. marcescens can cause nosocomial infection, affecting several parts of the body, such as
the meninges, blood, and lungs, leading to a series of infections like central nervous system
infections, blood infections (including endocarditis), and nosocomial pneumonia (Mahlen, 2011;
da Silva et al., 2021). The emergence of multidrug-resistant (MDR) S. marcescens strains poses a
serious threat to public health. One important feature of S. marcescens is its intrinsic and acquired
resistance to a large number of antibiotics including ampicillin, nitrofurantoin, tetracycline,
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macrolides, cefuroxime, cephamycin, fluoroquinolone, and
colistin (Sandner-Miranda et al., 2018). The identification of
carbapenem-resistant S. marcescens in patients might pose
potential spread into the hospital environment and/or to other
patients. For example, in 2020, the outbreak of KPC-3-producing
S. marcescens among nursing institutions in the United States
made it very difficult for clinical treatment (Jimenez et al., 2020).
The spread of carbapenem-resistant S. marcescens in a hospital
environment is a worrying problem.

The metallo-β-lactamases (MBLs) can hydrolyze nearly all
β-lactams, and their activities cannot be inhibited by clinically
available β-lactamase inhibitors including avibactam, relebactam,
and vaborbactam (Wu et al., 2019; Boyd et al., 2020). IMP-type
MBLs were the earliest transferable carbapenemases reported in
Gram-negative bacteria (Watanabe et al., 1991). Until now, more
than 82 variants of blaIMP have been identified,1 blaIMP−4, as
the most reported IMP variant, has often been found in class 1
integrons and carried by multiple plasmid types like HI2, L/M,
A/C, and N for dissemination (Lai et al., 2017; Wang et al., 2018;
Roberts et al., 2020). However, unlike NDM-type MBLs, blaIMP
was not commonly detected among CRE from China (Zhang
et al., 2017; Wang et al., 2018; Han et al., 2020). According
to a longitudinal large-scale CRE Study in China from 2012 to
2016 (65 hospitals in 25 provinces were included), the common
species carrying blaIMP−4 were Enterobacter cloacae, Escherichia
coli, Klebsiella pneumoniae, and Citrobacter freundii (Wang et al.,
2018). In 2005, the first clinical isolate of blaIMP−4-positive
S. marcescens was identified in Australia (Peleg et al., 2005).
In this study, we reported a blaIMP−4 and blaSRT−2 positive
S. marcescens containing an IncN-type plasmid in China.

MATERIALS AND METHODS

Strains and Antimicrobial Susceptibility
Testing
A carbapenem-resistant S. marcescens (S378) was isolated from
a urine sample from a patient with asymptomatic urinary tract
infection at a tertiary hospital in Sichuan Province in southwest of
China. Species identification was performed using MALDI-TOF
MS (bioMérieux, France). Phenotypic and genotypic detection of
carbapenemases was performed using imipenem-EDTA double-
disk synergy test and NG-Test Carba 5, respectively. The
existence of the carbapenemase genes (KPC, NDM, OXA, IMP,
and VIM) was confirmed by PCR-based sequencing, as previously
described (Gülmez et al., 2008; Woodford et al., 2008; Feng
et al., 2016; Ferreira et al., 2020; Solgi et al., 2020; Nikibakhsh
et al., 2021). The broth microdilution method recommended
by the Clinical and Laboratory Standards Institute (CLSI) was
used as a reference for determining the minimal inhibition
concentration with quality control and interpretation of the
results according to CLSI M100-31th breakpoints for all agents
with the exception of tigecycline, polymyxin, and cefoperazone–
sulbactam (Clinical and Laboratory Standards Institute, 2021).
Cefepime–zidebactam and cefepime–tazobactam referred to

1http://www.ncbi.nlm.nih.gov/pathogens/beta-lactamase-data-resources/

criteria for cefepime in CLSI. Tigecycline MICs were interpreted
using US FDA MIC breakpoints for Enterobacterales (FDA,
2021), and polymyxin MICs were interpreted using the European
Committee for Antimicrobial Susceptibility Testing (EUCAST)
MIC breakpoints for Enterobacterales. E. coli ATCC 25922 and
Pseudomonas aeruginosa ATCC 27853 were used as controls for
testing antimicrobial susceptibility.

Conjugation and Plasmid Sequencing
A conjugation experiment was performed to explore the
transferability of the plasmid. Briefly, the blaIMP−4-positive
isolate S. marcescens S378 was used as the donor, while the E. coli
J53 (azide resistant) was used as the recipient strain. Conjugants
were selected on Mueller–Hinton (MH) agar supplemented with
azide (100 µg/ml) and ampicillin (50 µg/ml). The presence of
the blaIMP−4 gene and other resistance genes in conjugants
was confirmed by antimicrobial susceptibility, PCR, and DNA
sequencing. The plasmids of the blaIMP−4-containing conjugants
were extracted using the Qiagen Midi kit (Qiagen, Hilden,
Germany) and sequenced using Illumina NovaSeq (Illumina,
San Diego, CA, United States) short-read sequencing (150-bp
paired-end reads). The sequencing reads were trimmed with
sickle (GitHub) and de novo assembled using SPAdes 3.12.0. To
evaluate and compare the assembly results, Pilon 1.18 is used for
basic calibration. Open reading frame prediction and annotation
were done with RAST version 2.02 and BLAST3 at NCBI; the
plasmid replicon was determined using the PCR-based replicon
typing method (Carattoli et al., 2005). Plasmid comparisons were
performed using BRIG4 (Alikhan et al., 2011).

Whole-Genome Sequencing and
Bioinformatics Analysis
Genomic DNA was extracted using a Genomic DNA Isolation
Kit (Qiagen, Hilden, Germany) and sequenced using Illumina
(Illumina, San Diego, CA, United States) short-read sequencing
(150-bp paired-end reads). Sequences were de novo assembled
using SPAdes 3.12.0. Antimicrobial resistance gene analysis and
draft genome annotation were performed using BacWGSTdb.5

RESULTS

Overview of the blaIMP−4-Positive
Isolates
S. marcescens S378 was isolated from a urine specimen of a
76-year-old male patient who was admitted to the hospital for
treatment of chronic obstructive pulmonary disease. During
hospitalization, the patient was dizzy accompanied by shortness
of breath and aggravated after activity. CT showed inflammatory
changes in the lungs. The patient suffered from subarachnoid
hemorrhage and has been cured. Comorbidities of the elderly
patient included diabetes mellitus II, hypertension, acute cerebral

2https://rast.nmpdr.org
3https://blast.ncbi.nlm.nih.gov/Blast.cgi
4http://brig.sourceforge.net
5http://bacdb.cn/BacWGSTdb/analysis_single.php
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infarction, occlusion of right internal carotid artery, chronic
obstructive pulmonary disease, and asymptomatic urinary tract
infection. The interventional operation was performed for this
patient to deal with acute cerebral infarction, and on the third
day after the operation, he developed a fever and one extended-
spectrum β-lactamase-negative K. pneumoniae was isolated from
the sputum. With suspicion of pneumonia, the patient was started
administering intravenous moxalactam (1 g Q12) for 5 days and
ceftazidime (1 g Q8h) for 4 days. Subsequently, the patient’s body
temperature returned to normal and the infection was controlled.
On the 20th day, S. marcescens S378 was isolated from the
urine causing asymptomatic urinary tract infection. No antibiotic
was given for this strain because this Serratia marcescens was
considered to only colonize in the urinary tract. The patient was
recovered and discharged 26 days after admission.

The antimicrobial susceptibility profiles of S. marcescens
S378 are presented in Table 1. The isolate was susceptible to
tigecycline (MIC = 0.5 µg/ml), amikacin (MIC = 16 µg/ml),
and Trimethoprim-sulfamethoxazole (MIC ≤ 0.25 µg/L),
intermediate to aztreonam (MIC = 8 µg/ml), but resistant
to cefoperazone–sulbactam (MICs > 128 µg/ml), meropenem
(MIC = 32 µg/ml), imipenem (MIC = 64 µg/ml), ceftazidime-
avibactam (MIC≥ 32 µg/ml), levofloxacin (MIC = 2 µg/ml), and
ciprofloxacin (MIC = 1 µg/ml).

Carbapenemase-Encoding Genes and
Conjugation Experiments
PCR-based sequencing demonstrated the presence of blaIMP−4
in S. marcescens strain S378. The blaIMP−4-carrying plasmid
was successfully transferred from S. marcescens strain S378
to E. coli J53, making the conjugants resistant to ceftazidime
and ceftazidime–avibactam but intermediate to imipenem
and meropenem. Compared with the recipient E. coli J53,
the meropenem, imipenem, and ceftazidime–avibactam
MICs of conjugants increased at least 60-, 8-, and 256-fold,
respectively (Table 1).

Whole-Genome Sequencing Analysis
According to the whole-genome sequencing (WGS) analysis,
many resistance genes had been identified, including the
β-lactamase genes blaIMP−4 and blaSRT−2, the aminoglycoside
resistance genes aac(6′)-Ic, the fluoroquinolone resistance gene

qnrS1, and the tetracycline resistance gene tet(41). According
to the sequencing results of pS378P, it was a 48,780-bp
plasmid (Figure 1), belonging to the IncN type, with an
average GC content of 50%. This targeted plasmid contained 43
open reading frames (ORFs). Only two resistance genes were
identified in pS378P, blaIMP−4, and qnrS1, conferring resistance
to carbapenems and quinolones, respectively. Blast comparison
indicates that pS378P in this study shares extensive similarity
with pP378-IMP (99% nucleotide identity and query coverage),
an IncN-type blaIMP−4 carrying plasmid with the length of
51,207 bp in a carbapenem-resistant P. aeruginosa strain P378
isolated from a teaching hospital in Chongqing China in 2016
(Feng et al., 2016). Like the source of our strain, they were
all isolated from urine specimen. pP378-IMP and pS378P both
possess the conserved IncN1-type backbone regions, the tra genes
and kikA-korB for conjugal transfer, and IS1 remnant (Figure 1).
There are two major genetic differences between the backbones
of pS378P and pP378-IMP. First, pP378-IMP contains an intact
anti-restriction gene combination ccgA I, ccgAII, ccgC, and ccgD
(located around the 4.1–4.6-kb nucleotide positions of pP378-
IMP), while only ccgAI and ccgAII genes were found in pS378P.
Second, compared with the plasmid pP378-IMP, the class one
integron in pS378P is incomplete that an insertion sequence,
IS6100, was truncated (Figure 2).

DISCUSSION

According to a previous epidemiological study, the most
frequent carbapenemases found in S. marcescens species belong
to the class A group, including chromosomal location SME
type or KPC-2 (Dabos et al., 2019). blaSRT−2, an AmpC-type
β-lactamase gene, was first reported in a S. marcescens strain
in 2004. Almost all subsequent reports about it are related
to S. marcescens. Moreover, in S. marcescens, blaSRT−2 often
appears with different resistance genes, such as blaCTX−M−3,
blaTEM−1, aminoglycoside AAC (6′)-Ic, and blaKPC−2 (Wu
et al., 2004; Yu et al., 2008; Srinivasan and Rajamohan, 2019;
Quezada-Aguiluz et al., 2020). blaIMP−4 was first identified
in Acinetobacter spp. in 2001 from Hong Kong, China (Chu
et al., 2001), and had spread rapidly around the world
(Espedido et al., 2008; Lee et al., 2017, 2018; Ghaith et al.,
2018), but unlike KPC-type and NDM-type carbapenemases

TABLE 1 | Susceptibility of S. marcescens clinical isolate, conjugant and recipient to antimicrobial agents.

Strains β-Lactamase
genes

MIC (mg/l)

CZA IPM MEM CAZ FEP TZP CSL ATM AMK FPZ FPT SXT LEV CIP TGC POL

S. marcescens S378 blaIMP−4,
blaSRT−2

>32 64 32 >32 >128 >256 >128 8 16 4 >64 ≤0.25 2 1 0.5 >16

E. coli S378-C blaIMP−4 >64 2 2 >32 8 8 64 ≤1 ≤1 0.125 8 ≤0.25 1 1 0.25 0.25

E. coli J53 − 0.25 0.25 ≤0.03 0.5 ≤0.06 4 ≤1 ≤1 ≤1 0.06 ≤0.03 ≤0.25 0.125 ≤0.06 0.125 0.25

CZA, ceftazidime-avibactam; IPM, Imipenem; MEM, meropenem; CAZ, ceftazidime; FEP, cefepime; TZP, piperacillin-tazobactam; CSL, cefoperazone-sulbactam; ATM,
aztreonam; AMK, amikacin; FPZ, cefepime-zidebactam; FPT, cefepime-tazobactam; SXT, trimethoprim-sulfamethoxazole; LEV, levofloxacin; CIP, ciprofloxacin; TGC,
tigecycline; POL, polymyxin B.
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FIGURE 1 | Circular comparison between plasmid pS378P (MZ643942, in this study) and plasmid pP378-IMP (KX711879). The different colors indicated different
plasmids and are listed in the color key.

FIGURE 2 | Plasmid accessory resistance regions. The genetic environment comparison of blaIMP−4 between pP378-IMP and pS378P. Genes are denoted by
arrows and colored based on gene function classification.

among CRE (NDM-type MBL remains predominant), blaIMP−4
has not been frequently detected, especially in S. marcescens
(Xiong et al., 2016; Han et al., 2020). In 2018, the first
report of blaIMP−4- and blaVIM−2-producing S. marcescens was
published in Egypt (Ghaith et al., 2018). This is a clinical
retrospective study. A total of 40 strains of S. marcescens were
isolated from March to August 2015, of which 42.5% was
IMP-4-positive and 37.5% was VIM-2-positive. Just like the
strain in our study, they all showed resistance to meropenem
and ceftazidime. Our study demonstrates the emergence of

carbapenemase-producing S. marcescens, expressing blaIMP−4
and blaSRT−2 β-lactamase genes in China.

S. marcescens is featured by its rapid acquisition of antibiotic
resistance, mainly due to the acquisition of plasmid (Mahlen,
2011). However, comprehensive analysis for the genome
sequence carrying blaIMP−4 is rare. According to current reports,
although different types of plasmids had been detected, the
IncN type remains predominant in China, especially for the
transmission of blaIMP−4 in recent years, and this type of
plasmid usually presents a broad host range (Feng et al., 2016;

Frontiers in Microbiology | www.frontiersin.org 4 October 2021 | Volume 12 | Article 74331249

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-743312 September 27, 2021 Time: 15:53 # 5

Huang et al. blaIMP−4 and blaSRT−2 Co-producing Serratia marcescens Isolate

Wang et al., 2017; Xu et al., 2020), compared with the most
identical plasmid pP378-IMP. The strains in both studies
all harbored a conjugative blaIMP−4-carrying plasmid, which
accounts for the carbapenem resistance phenotype. In both
plasmids, the blaIMP−4 gene was found in class 1 integron,
identical to the IMP-4-carrying plasmids before (Xu et al., 2020;
Liu et al., 2021). Class 1 integrons are responsible for the
transmission of the blaIMP gene; so far, many Class 1 integrons
carrying the blaIMP−4 gene have been reported, such as In 809,
823, 1,456, 1,460, and 1,589 (Lee et al., 2017; Matsumura et al.,
2017; Wang et al., 2017; Dolejska et al., 2018). In addition to
integrons and the conjugative plasmids, the insertion sequence
also plays an important role in the transmission of resistant genes.
Previous studies about blaIMP−4-carrying plasmids emphasized
the role of the IS26 mobile element, which may play an important
role in the dissemination of IMP-4 in different plasmids (Xu et al.,
2020; Liu et al., 2021); the corresponding situation also exists in
our strains. Timely determination of the resistance mechanism
and the transmission mechanism of resistance genes is very
important for clinical anti-infective treatment and controlling the
wide spread of these multi-drug resistant bacteria.

CONCLUSION

In summary, we first identified a blaIMP−4 and blaSRT−2 co-
positive S. marcescens strain from a human urine sample in
China. The patient was accompanied by many underlying
diseases such as diabetes, emphysema, diabetic peripheral
neuropathy, and atherosclerosis, and multiple antimicrobial
substances were used in the course of treatment; since such risk
factors for MDR bacteria are commonly present in high-risk
populations, it seems justified to screen Gram-negative bacilli
for carbapenemases in these patients with high-risk factors based
on our routine antimicrobial susceptibility testing and molecular

biotechnology. Moreover, to date, S. marcescens and many other
Enterobacteriaceae bacteria that are not often reported might still
be a neglected source of undetected carbapenemase allocation.
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Danish J. Malik 2* and Daniel Walker 1*
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Bacteriocins are narrow-spectrum protein antibiotics that could potentially be used to 
engineer the human gut microbiota. However, technologies for targeted delivery of proteins 
to the lower gastrointestinal (GI) tract in preclinical animal models are currently lacking. In 
this work, we have developed methods for the microencapsulation of Escherichia coli 
targeting bacteriocins, colicin E9 and Ia, in a pH responsive formulation to allow their 
targeted delivery and controlled release in an in vivo murine model of E. coli colonization. 
Membrane emulsification was used to produce a water-in-oil emulsion with the water-
soluble polymer subsequently cross-linked to produce hydrogel microcapsules. The 
microcapsule fabrication process allowed control of the size of the drug delivery system 
and a near 100% yield of the encapsulated therapeutic cargo. pH-triggered release of 
the encapsulated colicins was achieved using a widely available pH-responsive anionic 
copolymer in combination with alginate biopolymers. In vivo experiments using a murine 
E. coli intestinal colonization model demonstrated that oral delivery of the encapsulated 
colicins resulted in a significant decrease in intestinal colonization and reduction in E. coli 
shedding in the feces of the animals. Employing controlled release drug delivery systems 
such as that described here is essential to enable delivery of new protein therapeutics or 
other biological interventions for testing within small animal models of infection. Such 
approaches may have considerable value for the future development of strategies to 
engineer the human gut microbiota, which is central to health and disease.

Keywords: antibiotic resistance, bacteriocins, drug delivery, hydrogels, membrane emulsification, microbiome 
engineering
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INTRODUCTION

The global rise in infections attributed to antibiotic-resistant 
Gram-negative bacteria poses a serious public health threat. 
Foremost among the Gram-negative pathogens are Escherichia 
coli, Klebsiella pneumoniae for which clinical isolates with extensive 
drug resistance, including to antibiotics of last resort such as 
carbapenems, are frequently encountered (Logan and Weinstein, 
2017). Together with other generally drug-resistant bacterial 
species, such as Enterococci, these bacteria can be  problematic 
in the hospital environment as they can dominate the microbiota 
of patients treated with broad spectrum antibiotics and may 
subsequently cause serious nosocomial infections (Ravi et  al., 
2019). In addition, Gram-negative bacteria are frequently present 
at elevated levels in dysbiotic microbiota associated with 
non-infectious chronic disease, where proteobacteria such as E. 
coli are generally overrepresented. For example, increased levels 
of E. coli, specifically adherent-invasive E. coli (AIEC), are associated 
with Crohn’s disease (CD), an incurable form of inflammatory 
bowel disease (Darfeuille-Michaud et al., 2004; Lloyd-Price et al., 
2019). New strategies are therefore required to target problematic 
gram-negative bacteria within the human microbiota.

Narrow-spectrum protein bacteriocins are emerging as 
promising alternative antibiotics and could be utilized to target 
specific pathogenic bacteria in the complex microbial community 
of the human microbiota, sparing the key eubiotic organisms 
(Brown et  al., 2015; McCaughey et  al., 2016; Six et  al., 2020). 
The best studied of the protein bacteriocins are the colicins, 
which specifically target E. coli and strains of other closely 
related bacterial species (Cascales et  al., 2007). The narrow 
killing spectrum of colicin-like bacteriocins is dictated by the 
numerous protein–protein interactions involved in the import 
of these 40–70 kDa toxins (Kleanthous, 2010; Behrens et  al., 
2019). Colicins, and other protein bacteriocins, deliver a single 
cytotoxic activity that either depolarizes the inner membrane, 
hydrolyses DNA or RNA in the cytoplasm or abolishes cell 
wall biosynthesis in the periplasm. Colicin E9, for example, 
is a non-specific DNase and colicin Ia forms voltage-gated 
ion-conducting channels in the cytoplasmic membrane (Pommer 
et  al., 2001; Jakes and Finkelstein, 2010).

Bacteriocins are deployed naturally by both commensal and 
pathogenic organisms to augment niche colonization through 
the displacement of closely related bacteria. Colicins have been 
shown to play a direct role in the success of pathogenic 
Salmonella competing against commensal E. coli in enteric 
blooms and were a contributory factor in the success and 
spread of Shigella sonnei in Vietnam (Holt et al., 2013; Nedialkova 
et  al., 2014). However, although these studies demonstrate that 
colicins can be  successfully deployed within the environment 
of the gastrointestinal (GI) tract when produced in situ, it has 
also been demonstrated that colicins are highly susceptible to 
degradation by the proteases deployed in the stomach and 
small intestine to digest proteins (Schulz et al., 2015). Therefore, 
to utilize purified bacteriocins as orally dosed therapeutics, 
choice of a delivery formulation that protects against proteolysis 
in the upper GI tract but allows release in the lower GI tract 
will be  essential.

In this work, we explore the potential of orally dosed colicin 
E9 and Ia to target bacteria in the lower GI tract. To protect 
colicins during transit through the upper GI tract and to enable 
controlled release of high doses of active agent in the lower 
GI tract, we  encapsulated purified colicin E9 and Ia in 
pH-responsive microcapsules. Oral dosing demonstrated that 
active encapsulated colicins can be  delivered to the lower GI 
tract in a murine E. coli colonization model.

MATERIALS AND METHODS

Bacterial Strains and Purification of 
Recombinant Colicins
For colicin overexpression, plasmids based on pET21a encoding 
the genes for the colicin E9-Im9 complex with a C-terminal 
His6-tag on the immunity protein and colicin Ia carrying a 
C-terminal His6-tag were transformed into E. coli BL21 (DE3) 
pLysS (Promega). Cells were grown in Luria–Bertani Broth 
media (LB) supplemented with ampicillin (100 μg ml−1), until 
the OD600 reached 0.6. The cultures were induced with 0.1 mM 
IPTG β-D thiogalactopyranoside (IPTG) for 20 h at 28°C to 
express colicin Ia and with 1 mM IPTG for 3 h at 37°C to 
express colicin E9. After induction, cells were harvested by 
centrifugation (5,000  rpm for 15 min) at 4°C. Cell pellets were 
re-suspended in lysis buffer (50 mM Tris, 200 mM NaCl pH 
7.5) supplemented with DNAse I  (1 μg/ml, Sigma-Aldrich), 
lysozyme (1 mg/ml, Sigma-Aldrich), and protease inhibitor tablet 
(cOmplete™, EDTA-free Protease Inhibitor Cocktail, Sigma-
Aldrich) and lysed by sonication for 15 cycles (15 s on, 45 s 
off). Cell debris was removed by centrifugation (18,000  rpm 
for 20 min at 4°C), and supernatants were filtered through 
0.22 μm syringe filters and applied to a His trap™ HP column 
(GE healthcare). The columns were washed using a modified 
lysis buffer containing 20 mM imidazole, followed by a 50 mM 
imidazole wash. Finally, the proteins were eluted with 500 mM 
imidazole. Colicins isolated by nickel affinity chromatography 
were concentrated and further purified by size exclusion 
chromatography, Superdex HiLoad 26/600 Superdex 200  pg. 
column (GE Healthcare), in 50 mM Tris-HCl 200 mM NaCl 
pH 7.5 solution. The protein concentrations were determined 
by ultraviolet absorption at 280 nm, using the extinction 
coefficient of 0.807 M−1 cm−1 for E9-Im9 and 0.855 M−1 cm−1 
for colicin Ia.

To determine colicin killing activity and for in vivo experiments 
a spontaneous streptomycin resistant mutant of the AIEC 
reference strain LF82, an ileal CD mucosa-associated isolate 
(Darfeuille-Michaud et al., 2004) was selected following treatment 
with this antibiotic and transformed with the p16Slux plasmid 
which contains the erythromycin resistance cassette (ermAM). 
This strain, E. coli LF82StrR, was grown on LB agar plates, 
or in LB broth with shaking at 37°C with the addition of 
ampicillin (100 μg ml−1) and erythromycin (500 μg ml−1). Before 
infection, bacteria from overnight cultures were diluted 1:100 in 
fresh media and grown to an OD600 of 0.65, which is equivalent 
to approximately 1 × 109 c.f.u/ml. Subsequently, cultures were 
harvested, washed and resuspended in PBS. For in vivo 
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experiments, counts of challenge dose were plated before and 
after infection to determine viable bacterial numbers.

Colicin Killing Activity Assay
Colicin killing activity was determined using a spot test. Briefly, 
aliquots (100 μl) of overnight cultured LF82StrR were transferred 
into 5 ml of soft agar (0.8% w/v); the mixture was then poured 
onto an LB agar plate (1.5% w/v) supplemented with 100 mM 
bipyridine. An aliquot (10 μl) of colicin (1 mg/ml) was spotted 
onto the soft agar layer seeded with cultured bacteria. After 
overnight incubation at 37°C, plates were visualized for colicin 
sensitivity observed as clear zones of lysis of the overlaid strains. 
To evaluate the hydrogel encapsulated colicins, 10 mg of the colicin 
E9 or Ia hydrogels were resuspended with 1 ml of PBS (pH 6.8) 
and incubated for 24 h. An aliquot (10 μl) of hydrogels was spotted 
onto the soft agar layer seeded with cultured bacteria. After 
overnight incubation at 37°C, plates were visualized for colicin 
sensitivity observed as clear zones of lysis of the overlaid strains.

Murine E. coli LF82 Colonization Model
All procedures were performed in strict accordance with the 
Animals (Scientific Procedures) Act 1986 with specific approval 
granted by the Home Office, United  Kingdom (PPL60/8797; 
P64BCA712). Food and water were provided ad libitum, and 
animals were kept at a constant room temperature of 20–22°C 
with a 12 h light/dark cycle. Eight- to ten-week-old, pathogen-free 
C57/BL6 female mice (The Jackson Laboratory, Envigo) were 
pre-treated by a single oral administration of the broad-spectrum 
antibiotic streptomycin (20 mg, intragastric per mouse) to disrupt 
normal resident bacterial flora in the gastrointestinal tract 
(Wadolkowski et  al., 1988). Before the administration of the 
LF82StrpR strain, fecal pellets were collected, plated on LB agar 
plates with streptomycin (100 μg ml−1) and erythromycin (500 μg 
ml−1) and incubated at 37°C. No colonies were detected in any 
of the streptomycin treated mice. Mice were then orally challenged 
with approx. 1 × 109  cfu of LF82StrpR or 0.1 ml PBS (control 
group) 24 h post-antibiotic treatment. LF82StrpR colonization was 
monitored by analysis of bacterial recovery on selective LB plates 
of fresh fecal material collected from individual animals.

Colonization Evaluation in Stool and 
Tissues
Fresh stool samples were collected from infected mice 1, 2, 
3, and 4 days post-LF82 challenge to determine bacterial fecal 
shedding. Fecal pellets standardized to a concentration of 100 mg 
ml−1 in PBS were homogenized and serial 10-fold dilutions 
performed. About 10 μl of diluted samples was plated on Eosin 
Methylene Blue (EMB) differential medium agar containing 
ampicillin (100 μg ml−1) and erythromycin (500 μg ml−1) and 
incubated at 37°C overnight. Ileum, caecum, and colon samples 
were collected 4 days post-infection in cold PBS at necropsy 
and homogenized using Tissue Master 125 Homogenizer (OMNI 
International). Homogenate tissues were serially diluted and 
plated on EMB agar containing ampicillin (100 μg ml−1) and 
erythromycin (500 μg ml−1). Colonies were counted after 24–48 h 
of incubation at 37°C and expressed as c.f.u. per gram of tissue.

Delivery of Colicin by Direct Injection in 
E. coli LF82 Colonized Mice
The above murine colonization model was used to assess the 
efficacy of a colicin E9/Ia in reducing LF82 levels in the lower 
GI tract after a single treatment administration of colicin by 
direct injection in the caecum. Four days after LF82 challenge, 
mice were treated with 50 μl of a combination of E9 and Ia 
(0.5 mg ml−1) or 50 μl of PBS (control group), directly injected 
into the caecum after laparotomy. Animals were maintained 
under inhalation anesthesia with isoflurane (Abbott Labs, Abbott 
Park, IL) during surgery and were allowed to fully recover. 
Three hours post-treatment, mice were killed and LF82StrpR 
colonization levels of the different regions of the GI tract 
(ileum, ceacum, and colon) and fecal content were assessed. 
For bacterial counts, tissue samples were washed thoroughly 
with PBS prior to homogenization to eliminate fecal content 
and non-adhered bacteria. For fecal samples, fecal pellets from 
the colon were homogenized.

Treatment of E. coli LF82 Colonized Mice 
With Encapsulated Colicins
C57/BL6 animals were treated as described above for the murine 
colonization model, with the addition of dextran sulfate sodium 
(DSS) which was added to drinking water at a concentration 
of 2.5% 3 days before the LF82 challenge. This concentration 
of DSS was maintained for 3 days (renewed daily) and caused 
mild symptoms of colitis which improved LF82 adherence to 
the mucosal layer. Three days after LF82StrpR challenge, mice 
were orally treated with two doses of colicins per day, delivered 
7 h apart, with 200 μl of hydrogel particles containing colicins 
E9 and Ia (0.5 mg each) or control hydrogel particles by gavage 
in a delivery buffer (sodium acetate buffer, 2% Tween 20, 50% 
glucose, pH 3.8). Animals were treated for a total of 3 days. 
On the fourth day, mice were culled by cervical dislocation 
and LF82StrR colonization levels of the different parts of the 
GI tract and fecal content were assessed as detailed above.

Measurement of Gastrointestinal Luminal 
pH
The impact of exposure of gut tissue to the low pH of the 
delivery buffer was determined ex vivo following aseptically 
extraction of the luminal contents from the small intestine, 
caecum, and colon. Tissue and luminal contents were then 
placed in 1 ml of sterile PBS, delivery buffer (200 mM sodium 
acetate buffer, 2% Tween 20, 50% glucose, pH 3.8), or sterile 
water. Organs and luminal contents were incubated, and pH 
measurements were acquired 2 h later. Data represent pH values 
(mean ± SD) in each buffer.

Chemical Reagents Used to Prepare 
Hydrogel Microcapsules With 
Encapsulated Colicins
Water-in-oil emulsion production employed a continuous (oil) 
phase composed of Miglyol 840 (Safic Alcan, Warrington, 
United  Kingdom), a propylene glycol diester of saturated plant 

54

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Carpena et al. Encapsulated Colicins for Intestinal Delivery

Frontiers in Microbiology | www.frontiersin.org 4 October 2021 | Volume 12 | Article 670535

fatty acids and Polyglycerol polyricinoleate (PGPR, Aston 
Chemicals Ltd., Aylesbury, United  Kingdom), an emulsifier 
made from glycerol and fatty acids. The aqueous dispersed 
phase contained a pH responsive polymer, Eudragit L 100-55 
(Evonik, Germany), which is an anionic copolymer based on 
ethyl acrylate and methacrylic acid. Medium viscosity alginate 
(Sigma-Aldrich, Dorset) was added to the dispersed phase. 
Sodium chloride, sodium hydroxide, and p-toluenesulfonic acid 
(pTSA) were all purchased from Fisher Scientific, Loughborough, 
United  Kingdom.

Production of Encapsulated Colicins in 
Microcapsules Using Membrane 
Emulsification
The continuous (oil) phase was produced by preparing a solution 
of miglyol and castor oil (9:1, respectively) with the addition 
of 5% PGPR to lower the interfacial tension between water 
and oil. The dispersed phase was composed of 10% (w/v) 
Eudragit polymer L100-55 dissolved in an alkaline solution, 
typically produced in 40 ml batches with 4 ml of 4 M NaOH, 
36 ml de-ionized water (dH2O), and 4 g L100-55. This solution 
was mixed with a magnetic stirring bar at room temperature 
until the solution appeared clear. Subsequently, pre-weighed 
alginate powder was added at a final concentration of 1% 
(w/v) and mixed with a magnetic stirring bar overnight or 
until completely dissolution. Immediately before the membrane 
emulsification process commenced, colicin was added (typically 
E9: 100 mg, Ia: 80 mg). The solution was mixed gently using 
a magnetic stirrer for 5 min to disperse the colicin in the 
polymer solution. Each colicin was encapsulated separately to 
allow accurate enumeration of the amount of each colicin 
administered to the animals.

Aqueous colicin containing droplets were produced as a 
water-in-oil (W/O) emulsion using a membrane emulsification 
dispersion cell LDC-1 (Micropore Technologies Ltd., Redcar, 
United Kingdom). A stainless-steel membrane was utilized with 
circular, uniformly spaced 40 μm micropore arrays. Initially, 
the membrane was coated in 1H,1H,2H,2H-
Perfluorodecyltriethoxysilane (Sigma-Aldrich, Gilingham, 
United Kingdom) resulting in a hydrophobic surface to prevent 
water droplets from spreading on the membrane surface. The 
dispersed phase was used to fill the cavity below the membrane 
using a syringe pump (Harvard Apparatus United  Kingdom, 
Kent). About 50 ml of continuous phase was added above the 
membrane into the cylindrical glass chamber. A paddle blade 
stirrer was used to create shear on the membrane surface 
using a controlled rotation rate of 250 revolution per minute 
(rpm). About 5 ml of the dispersed phase was then pumped 
upwards through the membrane at a flow rate of 25 ml h−1 
to produce a W/O emulsion in the glass chamber (Figure  1).

After the entire volume of the dispersed phase had passed 
through the membrane and into the oil phase, protonation of 
the polymer was carried out to precipitate the polymer resulting 
in formation of the microcapsules. The water-in-oil emulsion 
was added to acidified oil (Miglyol with 0.05 M pTSA and 
5% PGPR) in an excess volume. The emulsion in acidified oil 

was placed into a beaker and stirred using axial mixing at 
100 rpm for 6 h at a controlled temperature of 25°C using a 
water bath.

After the TSA step, the W/O emulsion was added to hexane. 
The amount of hexane to emulsion proportion was 50:50 (v/v) 
in a beaker. The TSA-treated microcapsules formed a precipitate 
at the bottom of the beaker. The hexane was then discarded 
and the microcapsules washed with 2% Tween-20  in deionized 
water (pH 4). The sample was gently stirrer at 60 rpm using 
a magnetic stirrer throughout this resuspension step to produce 
a well-dispersed sample and to avoid formation of aggregates. 
1 M CaCl2 was then added to the solution to cross-link the 
alginate (final working concentration 0.1 M), then mixed using 
a three-bladed impeller at 100 rpm for 1 h. The microcapsules 
were then washed three times with 2% Tween solution (pH 
4) and stored in 10 ml of this solution in a refrigerator (4°C).

Characterization of the Particle Size 
Distribution of the W/O Emulsion and the 
Final Cross-Linked Microcapsules
Throughout the encapsulation process, samples were imaged 
using a high-speed camera (Micro C100 Phantom Ametek, 
United Kingdom) which was connected to a microscope (Nikon 
Eclipse E200). A x 10 magnification lens was used to view 
each sample, and these images were captured through connection 
to a laptop and use of the Phantom Camera Control software 
(PCC 3.1). The size distribution of the droplets and microcapsules 
were measured using a Coulter LS series 130 instrument 
(Beckmann Coulter Inc). About 15 ml of miglyol +5% PGPR 
was placed into the coulter sample chamber. Typically, 100 μl 
of emulsion was added until the obscuration level measured 
was between 8 and 12%. For microcapsule particle size 
characterization, 15 ml of 2% (v/v) tween in deionized water 
(pH 4) was used as the sample diluent and 100 μl of suspended 
particles was added until the correct obscuration level was 
reached. Three repetitions of each measurement were taken 
and results averaged to produce the final size distribution 
curves (Supplementary Figure S1).

Measuring the Activity of Encapsulated 
Colicin in Eudragit L100-55 Hydrogel 
Microcapsules
To test the colicin activity of colicin encapsulated in hydrogel 
microcapsules and evaluate the release kinetics, 0.1 g of the 
hydrogels (containing either E9 or Ia) was weighed and 
exposed to 1 ml of Sorensen’s buffer, pH 5.5. Samples were 
taken over a period of 2 h by removing 10 μl of supernatant 
and serially diluting with 90 μl of sterile Sorensen’s buffer 
to measure the release kinetics of colicin from the capsules. 
The absorbance (OD280nm) was measured using a UV 
spectrophotometer. Using the extinction coefficient and quartz 
cuvette path length, the colicin concentration was enumerated 
at each time point. The viability of the colicin after release 
from the microparticles was confirmed using the double-
layer agar method, with E. coli LF82 as the indicator strain, 
and compared to colicin stocks before encapsulation. 
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This allowed assessment of colicin activity following 
encapsulation using the microcapsule production process 
and that the released colicin retained its E. coli killing 
potency. The acid stability of the colicin containing hydrogels 
was tested using the same method indicated above, with 
exposure to 0.2 M NaCl (pH 2.5) for 2 h simulating exposure 
to mouse gastric fluid before colicin release from the capsules 
in Sorensen’s buffer (pH 5.5).

Sample Preparation for the Ion Microscopy
Critical point drying (CPD) and freeze-drying methods were 
used to prepare the hydrogel samples for ion microscopy. The 
particles were freeze-dried (VirTis Wizard 2.0, SP Scientific, 
New York, United States) for 24 h at 50 Pa pressure and −20°C. 
Dried powder was applied directly on the carbon tape, which 
was attached to the sample stub. To analyze the morphology 
of the hydrogel particles, both freeze-dried and critical-point-
dried hydrogels were examined with ion microscopy. Zeiss 
Orion NanoFab (University of Jyväskylä) with He+ beam and 
acceleration voltage 35 kV, 0.20 pA current, 32 line averages, 
and 1 μs dwell time was used for He+ imaging. For cutting, 
an about 20-pA Ne+ beam with 10 kV acceleration voltage was 
used. Milling was carried out using a 45 degrees tilted angle 
by setting the reduced raster scan rectangle over the area to 
be  removed and scanning until the material disappeared. 

After cutting, the sample stage was rotated 180° and the cross 
section was imaged with a He+ beam. Flood gun charge 
compensation was used during both milling and imaging.

Statistics
Data are expressed as means and SD. Due to small sample 
sizes, nonparametric tests were used for analysis. Two-tailed 
Mann–Whitney U tests with a significance threshold of p ≤ 0.05 
were used to analyze the specific sample pairs for significant 
differences. Mice colonization data are represented using Tukey’s 
box-and-whisker plot. All statistical tests were performed with 
GraphPad Prism software, version 8.0c. All mice, including 
outliers, were included in the statistical analysis.

RESULTS

In vivo Colicin Activity After Direct 
Administration to the Lower GI Tract
Colicins have been shown to be  highly sensitive to proteolytic 
cleavage in conditions found in the stomach and small intestine 
(Schulz et  al., 2015). However, little is known about their 
stability and activity in the lower GI tract. To determine if 
colicins retain killing activity against E. coli in the environment 

FIGURE 1 | Schematic representation of the membrane emulsification process. The aqueous phase containing the dissolved colicins in the polymer formulation 
was pumped through a microporous membrane. The stainless-steel membrane had 40 μm uniform circular pores arranged in a ring format located at an optimal 
radial position where the rotating paddle stirrer provides maximum surface shear for aqueous droplet detachment. At low liquid flow rates, interfacial forces 
dominate, the drop grows before finally detaching from the membrane surface due to the surface shear caused by the dispersed phase flowing across the 
membrane surface and the droplets are carried away into the bulk continuous oil phase. The image (top left) shows the prepared microcapsules after exposure to 
TSA and alginate cross-linking.
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of the lower GI tract, a combination of colicin IA and E9 
were injected directly, during laparotomy, into the caecum of 
mice pre-colonized with the adherent-invasive E. coli strain 
LF82. This model is widely used in the study of CD and 
enables relatively stable colonization of the lower GI tract, 
including the colon and ileum, which are the major sites of 
AIEC colonization and inflammation in this condition (Darfeuille-
Michaud et  al., 2004). Colicin E9 and Ia were selected for 
testing since they show broad activity against a panel of AIEC 
and commensal strains isolated from CD patients and healthy 
controls, respectively.

After streptomycin treatment to disrupt the endogenous 
microbiota, mice were infected with LF82 and 4-days post-
infection were treated with a single dose of colicin E9/IA 
or PBS for the control group (Figure  2A). Three hours 
post-treatment mice were killed, and AIEC colony forming 
units were determined in tissue of the ileum, caecum, and 
colon and fecal content of the colon. Colicin E9/IA 
administered by direct injection resulted in significant 
reductions in LF82 levels in the ileum (1.9 log units), caecum 
(1.7 log units), colon (1.5 log units), and in the fecal content 
(1.5 log units), relative to PBS-treated controls (Figure  2B). 
Thus, a single dose of colicin E9/Ia is able to reduce E. 
coli levels in the lower GI tract. These data indicate that if 
colicins can be  formulated to protect them from the high 
levels of proteolytic activity associated with the stomach 
and small intestine, then a highly targeted killing activity 
of E. coli could be achieved through delivery of these protein 
antibiotics to the lower GI tract.

Colicin Formulation for Lower GI Tract 
Delivery
To formulate colicins for lower GI tract delivery, we attempted 
to encapsulate colicin E9 and Ia in pH-responsive hydrogel 
microcapsules consisting of a commercially available  
mixture of synthetic polymer containing ethyl acrylate and 
methacrylic acid monomers combined with seaweed derived 
alginate biopolymer (Supplementary Figure S2). This 
technique has previously been used to formulate enteric 
bacteriophages for gastrointestinal applications affording 
protection from acidic pH and enzymatic stresses. Controlled 
release relies on dissociation of carboxylic acid groups when 
the pH rises above 5 (Supplementary Figure S2). Based 
on our own measurements of pH from mouse stomach 
tissue samples (in vivo studies reported below), these  
range from pH 3.8–5.4 depending on the diluent medium 
used. In contrast, the pH of the small intestine, caecum, 
and colon tissue samples was above pH 5.5 when either 
PBS or water was used as the diluent. Using the mildly 
acidic delivery buffer (pH 3.8) as the diluent resulted in 
considerably lower measured pH values. Freeze-dried 
microparticles appeared as spheres with a smooth and 
uniform surface (Supplementary Figure S2C, left). CPD-dried 
microparticles displayed a sponge-like surface 
(Supplementary Figure S2C, right). The internal structure 
was found to be  porous with an interconnected network 
of much smaller pores.

Colicins E9 and Ia were encapsulated by membrane 
emulsification yielding small microcapsules around 100 μm 
in diameter, which when suspended in a buffer were suitable 
for delivery to mice via oral gavage using a 20 gauge gavage 
tube (Figure 1). The dispersed phase alginate concentrations 
were varied to determine the concentration with optimal 
viscosity levels for controlled production of 100 μm beads 
(Supplementary Figure S3). Initial analysis confirmed 1% 
(w/v) alginate produced approximately 100 μm microcapsules, 
whereas 0.5% (w/v) alginate produced mean diameters of 
~35 μm with high CV values of ~80%. 2% (w/v) alginate 
caused membrane fouling and reduced encapsulation efficiency. 
The size distribution of the emulsion droplets and the resulting 
cross-linked hydrogel microcapsules were similar although 
a slight shrinkage in the size of the microparticles was 
observed upon gelation (Supplementary Figure S1). The 
yield of the encapsulated colicins in the hydrogel microcapsules 
was high, with no measurable loss in activity due to the 
encapsulation process as measured following release in 
simulated intestinal fluid at pH 5.5 (Figure  3). The polymer 
L100-55 was selected due to its pH triggered dissolution at 
solution pH 5 and above. The amount of encapsulated E9 
released at pH 5.5 from the hydrogel capsules was ~80 mg/g, 
whereas that of Ia was ~70 mg/g which was almost 100% 
of the colicin added to the polymer solution for fabrication 
of the microcapsules (Figure  3). The release kinetics were 
similar for the two batches of microcapsules with 50% of 
the encapsulated colicin released in the first 30 min and 
over 90% released within 90 min of the hydrogel microcapsules 
being exposed to the pH 5.5 buffer. Exposure of the hydrogels 
to acidic buffer (pH 2.5) mimicking harsh simulated gastric 
fluid (SGF) conditions in the mouse stomach for 2 h resulted 
in a modest reduction in the activity of the encapsulated 
colicin in the microcapsules with released amounts falling 
to ~70 mg/g for E9 and ~60 mg/g for Ia. Over 90% of the 
encapsulated colicin was still released from the acid exposed 
microcapsules within 90 min. The in vitro data confirm the 
colicin was encapsulated within the alginate/Eudragit matrix. 
As the microcapsules were exposed to acidic buffer and the 
colicin retained lytic activity after capsule dissolution as the 
pH increased, this verifies the colicin resides inside of the 
microcapsule. The hydrogel capsules used for the in vivo 
experiments were not pre-exposed to SGF.

Hydrogel microcapsules were shipped in a cool box from 
Loughborough (United Kingdom) to Glasgow (United Kingdom) 
for testing in the in vivo mouse model and were immediately 
stored in the fridge upon arrival. Samples were evaluated in 
vivo within a week of manufacture. A significant reduction in 
the activity of colicin was observed during this transportation 
and storage period. Measured protein values prior to 
administration of the capsules to the animals showed around 
30 mg/g for both Ia and E9 given that 10 mg of capsules was 
dissolved in 1 ml of buffer, and this resulted in a measured 
concentration of 0.3 mg/ml (Figure  4A). The killing activity 
of the released colicins from the hydrogels was similar to that 
of free colicin and the released colicin showing activity on 
plates with clear zones indicating cell death (Figures  4B,C).
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A

B

FIGURE 2 | Direct administration of a colicin cocktail reduces levels of LF82 colonization of infected mice. An Escherichia coli LF82StrpR murine infection 
model was used to assess the efficacy of a colicin cocktail treatment directly administered to the caecum via laparotomy. Four days after LF82StrpR 
challenge, mice were treated with the administration via laparotomy of 50 μl of a combination of E9 and Ia (0.5 mg ml−1 each) or 50 μl of PBS (control group). 
(A) Experimental scheme. (B) Levels of LF82StrpR strain in both control (black, n = 10) and colicin treated (red, n = 14) groups for the different sections of the 
GI tract. Statistical analysis was carried out for each subset using a Mann–Whitney test between LF82StrpR infected and colicin-treated groups. **p < 0.002, 
***p < 0.0004.
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In vivo Colicin Activity After Repeat Dose 
Oral Administration of Colicin Containing 
Hydrogels
To determine the ability of colicin microcapsules to reduce E. 
coli levels in the lower GI tract, hydrogel microcapsules were 
administered twice daily to LF82 colonized mice beginning 
1 day after LF82 administration (Figure 5A). Mice treated with 
colicin containing microcapsules shed significantly lower amounts 
of E. coli (median cfu values) in feces compared with the 
control group, which were administered empty microcapsules, 
on all days following treatment: day 2 (0.9 log units lower), 
day 3 (1.2 log units), and day 4 (0.9 log units; Figure  5B). 
At 4-days post-LF82 administration, mice were killed and LF82 
levels in tissue samples from the lower GI tract were determined. 
Significant decreases in LF82 levels (median cfu values) were 
found in tissue samples from mice treated with colicin 
microcapsules in the ileum (2.5 log units), caecum (1.5 log 
units), and colon (1.7 log units) relative to control mice 
(Figure 5C). Interestingly, no colonies were isolated in a number 
of tissue samples and in fecal samples from day 4, indicating 
that eradication of E. coli may be  feasible on prolonged 
colicin treatment.

DISCUSSION

In this work, we  have demonstrated that colicins can 
be  successfully formulated in hydrogel microcapsules in an 
active form and that formulated colicin is able to reduce E. 
coli levels in a murine colonization model. The membrane 
emulsification process resulted in controlled fabrication of 
hydrogel capsules, which were relatively uniform in size and 
were small enough to be  administered via oral gavage to mice 
(Figure  1). The encapsulation process resulted in a high yield 
of encapsulated colicin and the process of manufacturing the 
hydrogel capsules did not affect colicin activity upon release. 
The capsules displayed pH responsive characteristics suitable 
for targeted delivery of the therapeutic cargo in response to 
changes in pH (Figure 3). The design of the particles to deliver 

a slow rate of release allowed delivery of the encapsulated 
colicin to different parts of the GI tract given the relatively 
small differences in pH values observed in the mouse lower 
GI tract (McConnell et  al., 2008). For human therapeutic 
applications, other methacrylate polymers, e.g., L100 (pH 6) 
or S100 (pH 7) could be  used to target delivery in response 
to more significant differences in pH (Vinner et  al., 2019). 
Polymers which may release encapsulated cargo based on the 
presence of virulence factors in the environment could potentially 
be  a more sophisticated targeted approach (Bean et  al., 2014).

Previous published colicin encapsulation research is limited 
to encapsulation in pectin hydrogel beads with low reported 
encapsulation efficiency of ~1%. The encapsulated beads were 
administered orally to mice, and after 6 days of treatment, 
no significant differences reported in CFU/g fecal matter 
between treated and non-treated mice (Brown, 2015). This 
may be attributed to the lack of targeted delivery and limited 
stability of colicins exposed to the gastric environmental 
conditions. Membrane emulsification process used in the 
present study has previously been used for encapsulation of 
phage biotherapeutics. Encapsulated phages were shown to 
be  released at defined pH values dependent on the type of 
pH-responsive polymer used in the formulation and phages 
shown to withstand gastric acid exposure at pH 1.5 for up 
to 2 h (Richards and Malik, 2021).

The polymers used for the microcapsule fabrication are 
routinely used in food formulations and for enteric delivery 
applications (Evonik healthcare). The polymers utilized for 
colicin encapsulation have regulatory approval for healthcare 
applications and are generally regarded as safe (GRAS) for 
human consumption by the US FDA. The safety of alginic 
acid has extensively been researched and recognized as posing 
no toxicity risks in mammals. JECFA (1993) reviewed alginate 
toxicology literature and summarized there were no toxic effects 
when tested in rats at levels up to 13,500 mg sodium alginate/
kg body weight (bw) per day (JECFA, 1993). No carcinogenic 
effects were reported at 37,500 mg sodium alginate/kg bodyweight 
per day in mice (Rychen et  al., 2017). Furthermore, Eudragit 
polymers were tested for effects on the nervous system through 

FIGURE 3 | Release kinetics of individually encapsulated colicins Ia and E9. Microcapsules exposed to simulated intestinal fluid buffer (SIF) at pH 5.5 (Left). 
Release kinetics of individually encapsulated colicins Ia and E9 in microcapsules exposed to simulated gastric fluid (SCF; pH 2.5) for 2 h followed by release in 
SIF at pH 5.5 (Right).
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nanoparticle administration to rats either orally or 
intraperitoneally. Animals were killed at timepoints up to 
3 weeks. Histological examination determined a normal 
histological picture and insignificant changes, thus concluding 
diminutive toxic effects on the brain (Abdel-Wahhab et al., 2017).

Small rodent animal models are routinely used in preclinical 
testing of drugs and vaccines due to their size and low cost. 
pH responsive drug delivery platforms rely on defined changes 
in physiological pH along the GI tract to trigger release of 

therapeutic cargo. Encapsulation of therapeutic agents may 
overcome delivery issues such as degradation of the therapeutic 
upon exposure to stomach acidity or due to enzymatic activity, 
and colicins are particularly susceptible to proteolysis-related 
degradation (Schulz et al., 2015). Polymethacrylate and cellulose-
based enteric capsules are routinely used for delivery of drugs 
or vaccines to the GI tract by dissolving only when the pH 
of the environment exceeds a threshold level. Knowledge of 
the gut pH of the mouse is critical in selecting the appropriate 

A B

C

FIGURE 4 | Killing activity of hydrogel-encapsulated colicins. (A) Levels of encapsulated protein (mg/ml) after suspension. (B) Minimum inhibitory concentration 
(MIC) and (C) inhibition of growth of E. coli LF82StrpR by colicins E9 and Ia and hydrogel-encapsulated colicin E9 and Ia. Clear zones indicate cell death. Data 
represent four different experiments (mean ± SD). Statistical analysis was carried out for each subset using a Mann–Whitney test between the control protein and the 
hydrogel particles and no significant differences were found. Hydrogel microcapsules that did not contain encapsulated colicins showed no bactericidal activity.
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polymer for formulation of microcapsules for targeted delivery 
and controlled release. The residence time of the capsules 
and the fluid content of the GI tract are other critical factors 
in targeted delivery of the therapeutic agent at the site of 
infection. The moderately acidic pH values of the stomach 
tissue samples measured in the present study were low enough 
to prevent colicin release from the microcapsules in the 
stomach. The pH of the small intestine, caecum, and colon 
tissue samples was found to be  higher than pH 5.5 albeit 
when the diluent used may have influenced the measured 
pH values. A pH above pH 5 is suitably high for dissolution 
of the fabricated L100-55/alginate hydrogel microcapsules, 
resulting in the successful release of the encapsulated colicin 
cargo in the lower GI tract in the mice. Previous studies in 
which measurement of mouse GI tract pH was performed 
indicated variability in measured pH between individual 
animals with mean values of stomach pH around pH 4, and 
pH 5 for intestinal tract tissue samples, using undiluted tissue 
contents (McConnell et al., 2008). Drug formulations are often 
given to animals by oral gavage with the dose volume 

determined by the stomach volume of the animal and typically, 
doses not exceeding 0.4 ml are recommended for studies in 
mice (Wolfensohn and Lloyd, 1994). We used 0.2 ml of buffer 
with suspended hydrogels in this study. Previous studies have 
reported that very low levels of fluid, less that 1 ml, are 
present within the mouse gastrointestinal tract (McConnell 
et  al., 2008). Noninvasive studies of GI transit times in mice 
suggest oral administered microcapsules may pass through 
into the small intestine within 1 h of ingestion, with a total 
transit time of 6 h to the colon (Padmanabhan et  al., 2013). 
The in vitro data reported here (Figure  3) showed the release 
kinetics of colicin over a 2 h period from the hydrogel 
microcapsules would be sufficient to allow encapsulated colicin 
to be  released in the lower GI tract. The low water content 
of the mouse GI tract and the relatively low intestinal pH 
may further slow the rate of release in vivo which may result 
in a significant dose of the encapsulated colicin cargo being 
released much lower in the GI tract.

Significant in vivo reduction in bacterial counts (cfu/ml) 
in all GI tract tissue samples suggests that encapsulation of 

A B

C

FIGURE 5 | Reduction in LF82 colonization of the lower gastrointestinal (GI) tract in infected mice treated with hydrogel-encapsulated colicins. An E. coli LF82 
murine infection model was used to assess the efficacy of the hydrogel encapsulated treatment using a combination of E9 and Ia. Day one post-bacterial challenge, 
mice were treated by oral administration of 200 μl of colicin E9 and Ia (dose of 0.5 mg each of E9 and Ia) containing hydrogel in a slurry with PBS or 200 μl of colicin 
free hydrogel slurry (control group). (A) Experimental scheme. (B) Tukey boxplot of fecal shedding of E. coli LF82StrpR. (C) Levels of LF82StrpR strain in both 
control (black, n = 25) and colicin treated (red, n = 25) groups for the different sections of the GI tract. Statistical analysis was carried out for each subset using a 
Mann–Whitney test between LF82StrpR infected and colicin-treated groups. ***p < 0.0004, ****p < 0.0001.
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the colicins in the microcapsules could serve as a useful strategy 
for evaluating the therapeutic potential of protein antibiotics, 
which may otherwise degrade due to exposure to the harsh 
environmental conditions in the stomach and along the GI 
tract. The capacity to administer protein antibiotics to the 
lower GI tract offers opportunities for the deployment of these 
narrow-spectrum antibiotics for re-engineering of the gut 
microbiota through selective targeting of specific bacterial 
species. This may be  particularly useful in decolonization of 
the gut microbiota of potential pathogens such as drug-resistant 
resistant Enterobacteriaceae that may be  dominant and 
cause disease.
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Supplementary Figure S1 | Particle size distributions of the water-in-oil (W/O) 
emulsion droplets and the final cross-linked hydrogel microcapsules. The 
differential volume distributions (A) and cumulative volume distributions (B) are 
shown, respectively. Droplets refer to the initial (W/O) emulsion prior to cross-
linking (gelation), whereas the particles refer to the final hydrogel microcapsules 
produced after L100 precipitation due to protonation in TSA and the alginate 
cross-linking in calcium chloride.

Supplementary Figure S2 | Mechanism of encapsulation and pH-triggered 
release action. The capsules were initially fabricated using membrane 
emulsification (A) the alginate and L100-55 polymer chains form the internal 
capsule structure. The L100-55 was protonated through incubation in 0.05 M 
TSA + Miglyol +5% (w/v) PGPR. The capsules were then cross-linked using 0.1 M 
CaCl2 as the calcium ions cross-link the alginate chains forming an eggbox-like 
structure. The polymer chains dissociate upon exposure to pH 5.5 and above 
and the colicin subsequently released. (B) L100-55 chemical structure. (C) SEM 
imaging showing Freeze-dried L100-55 microcapsules (left) and Helium Ion 
Microscopy image (right) of the internal Eudragit-Alginate matrix. A microcapsule 
having particle size about 10 μm was cut in half using a Ne+ beam and after 180° 
rotation imaged with He+. A CPD-dried microparticle was milled with the Ne+ 
beam. After 180° rotation, the cut surface was imaged with He+. Higher 
magnification image of the cross section showing internal porous matrix of the 
polymer. Schematic (A,B) created with BioRender.com.

Supplementary Figure S3 | Effect of alginate concentration on W/O emulsion 
droplet characteristics. Emulsions were produced using a membrane with 40 μm 
pores arranged as a ringed array. The dispersed phase was composed of either 
0.5, 1, or 2% (w/v) medium viscosity alginate with 10% (w/v) L100-D55 polymer 
dissolved in dH2O. The continuous phase was composed of miglyol +5% (v/v) 
PGPR. A flow rate of 25 ml/h was used along with a stirrer speed of 300 RPM. 
Emulsions were produced in 55 ml batches, 50 ml continuous phase +5 ml 
dispersed phase. (A) Mean particle diameters are displayed as columns; 
coefficient of variation values is presented as data points corresponding to the 
secondary axis. Emulsions were tested on the LS coulter immediately after 
production. (B) Optical images taken immediately after emulsion production using 
the Nikon Phantom camera and the 10x magnification lens. (i) displays the 
emulsion produced using 0.5% (w/v) alginate, (ii) 1% (w/v) alginate.
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Preponderance of blaKPC-Carrying
Carbapenem-Resistant
Enterobacterales Among Fecal
Isolates From Community Food
Handlers in Kuwait
Ola H. Moghnia, Vincent O. Rotimi and Noura A. Al-Sweih*

Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait

Carbapenem-resistant Enterobacterales (CRE) are pathogens that have been found in
several countries, with a significant public health concern. Characterizing the mode
of resistance and determining the prevailing clones are vital to the epidemiology of
CRE in our community. This study was conducted to characterize the molecular
mode of resistance and to determine the clonality of the CRE fecal isolates among
community food handlers (FHs) vs. infected control patients (ICPs) in Kuwait. Fecal
CRE isolates obtained from FHs and ICPs from September 2016 to September 2018
were analyzed for their resistance genes. Gene characterization was carried out by
polymerase chain reaction (PCR) assays and sequencing. Clonality of isolates was
established by multilocus sequence typing (MLST). Of the 681 and 95 isolates of the
family Enterobacterales isolated from FHs and ICPs, 425 (62.4%) and 16 (16.8%)
were Escherichia coli, and 18 (2.6%) and 69 (72.6%) were Klebsiella pneumoniae,
respectively. A total of 36 isolates were CRE with a prevalence of 5.3% among FH
isolates and 87 (91.6%) among the ICPs. Of these, carbapenemase genes were
detected in 22 (61.1%) and 65 (74.7%) isolates, respectively (p < 0.05). The detected
specific genes among FHs and ICPs were positive for blaKPC 19 (86.4%) and 35
(40.2%), and blaOXA 10 (45.5%) and 59 (67.8%), in addition to blaNDM 2 (9.1%) and 32
(36.8%), respectively. MLST assays of the E. coli and K. pneumoniae isolates revealed
considerable genetic diversity and polyclonality as well as demonstrated multiple known
ST types and eight novel sequence types. The study revealed a relatively high number of
CRE harboring predominantly blaKPC-mediated CRE among the community FH isolates
vs. predominant blaOXA genes among the ICPs. Those heterogeneous CRE isolates
raise concerns and mandate more efforts toward molecular surveillance. A multinational
study is recommended to monitor the spread of genes mediating CRE in the community
of Arabian Peninsula countries.

Keywords: blaKPC, carbapenem-resistant Enterobacterales, food handlers, rectal colonization, molecular
characterization
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INTRODUCTION

Carbapenems have been used as effective and drugs of choice
over the years to treat life-threatening nosocomial infections,
particularly bloodstream infections, transplant-related infections,
ventilator-associated infections, and infections in hospitalized
patients in intensive care units, in addition to infections caused by
extended-spectrum β-lactamases and AmpC-producing species
of the family Enterobacterales. With an increase in the number of
people exposed to antibiotics, the intestinal microflora remains a
selective pressure for multidrug-resistant (MDR) bacteria due to
the milieu of antibiotics consumed by patients. Enterobacterales
are inhabitants of the intestinal flora and are among the most
common human pathogens causing community and healthcare-
associated infections. They have the propensity to acquire genetic
material through horizontal gene transfer. The emergence of
carbapenem-resistant Enterobacterales (CRE) is an increasing
threat to global health. The primary mechanism of resistance
is the production of carbapenemases. In the past years, the
worldwide spread of CRE and the mechanism of resistance in
these isolates attracted much attention because of their rapid
global transmission and limited therapeutic options for the
infections caused, posing an urgent threat to the efficacy of
carbapenem antibiotics. KPC genes have spread internationally
among Gram-negative bacteria in China, Greece, Italy, Poland,
Colombia, Argentina, Brazil, and some states in the United States
but not in Kuwait (Munoz-Price et al., 2013; Stoesser et al.,
2017; Cienfuegos-Gallet et al., 2019). Other carbapenemases, such
as OXA-48, are present in Turkey and North Africa (Temkin
et al., 2014). The Indian subcontinent is endemic for NDM
variants and acts as a reservoir of these carbapenemases and other
inactivating enzymes such as KPC and OXA-181 (Nordmann
and Poirel, 2014). A few studies have been conducted in our
hospitals to determine the prevalence and burden of CRE in the
country. A report documenting cases of nosocomial acquisition
of two NDM-1 producing Klebsiella pneumoniae isolates in
Indian and indigenous Kuwaiti patients, who had no history
of travel, was published in 2012 by Jamal et al. (2012). Other
reports have highlighted the emergence of VIM-4 and NDM-1-
producing Enterobacterales in Kuwait (Jamal et al., 2013, 2015).
Food handlers (FHs) who are considered an important link in
the chain from farm to fork are at high risk of being CRE
colonized or infected. Those unrecognized workers may serve as
a reservoir for CRE transmission and play an essential role in
spreading these organisms in community as well as healthcare
settings. At the same time, FHs have an important integral part
in the community in preventing food contamination. This largely
depends on their health status and hygiene practices, which may
occur at any point in the journey from the producer to the
consumer. Studies have found that poor personal hygiene could
be a potential source of infections and may serve as a reservoir
of genes for antimicrobial resistance in organisms (Luo et al.,
2011). Early detection of carriers or colonizers facilitates the
rapid establishment of contact precautions to prevent acquiring
CRE. The emergence of CRE as a global problem was extensively
studied in healthcare settings. Delineation of genes encoding
carbapenemase production in CRE colonizing the rectum of FHs

has never been explored in community settings. Therefore, the
present study aimed to evaluate the prevalence of genes mediating
carbapenemase production in CRE isolates circulating among FH
population in the community of Kuwait.

MATERIALS AND METHODS

Study Design
This study was conducted between September 2016 and
September 2018 among FHs working catering establishments
in the community. In addition, clinically proven infected
control patients (ICPs) were admitted to four teaching hospitals,
including Mubarak Al-Kabeer (MAK), Farwaniya (FAH), Ibn-
Sina (ISH), and Al Babtain (BabH) Hospitals, and were
investigated as the control group. A descriptive analysis of
demographic characteristics and predisposing factors of a
healthy population of volunteer FHs was performed previously
(Moghnia et al., 2021a).

Bacterial Isolates
Non-duplicate 405 fecal samples and 92 rectal swabs were
collected from FHs and ICPs, respectively. Fecal samples
were prospectively self-collected by FHs in privacy, following
instructions, in a clean, dry screw-top container. Then, a
sterile cotton-wool swab with 5 ml of Amies gel transport
medium (Copan, Brescia, Italy) was dipped into the stool
specimen collected from each of the FHs. In addition, rectal
swabs were collected from ICPs. Then, swabs were immediately
inoculated on freshly prepared MacConkey agar and blood agar
plates (Oxoid, Basingstoke, Hants, United Kingdom). The plates
were incubated in an aerobic incubator (Gallenkamp, Widnes,
England) at 37◦C for 18–24 h. A pure colony of CRE isolate was
selected from each sample and cultured into a new MacConkey
agar plate to obtain pure growth, and then the plate was incubated
at 37◦C for 18–24 h.

CRE isolates were identified to the species level by the Gram-
negative identification card on VITEK 2 ID automated System
(bioMérieux, Marcy l’Etoile, France). The minimum inhibitory
concentrations (MICs) of the antibiotics tested that inhibited
90% (MIC90) and 50% (MIC50) of the isolates were determined
using both E-test (bioMérieux, Marcy l’Etoile, France) and agar
dilution methods according to the manufacturer’s instruction
as previously described (Moghnia et al., 2021b) according
to the Clinical Laboratory Standards Institute interpretative
criteria. Carbapenem resistance isolate was defined as an
Enterobacterales isolate that was non-susceptible to at least
one of the carbapenems with MIC of > 0.5 µg/ml for
ertapenem, or > 1 µg/ml for imipenem and meropenem
(CLSI [Clinical and Laboratory Standard Institute], 2018).

Indirect Carbapenemase Test
The carbapenemase production (OXA, KPC, NDM, IMP, and
VIM) of CRE isolates from FHs and infected control group was
investigated with indirect carbapenemase test MAST R©ICT (Mast
Diagnostic, France) according to the manufacturer’s instruction.
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Polymerase Chain Reaction Analysis of
Carbapenemase and Sequencing
The presence of genes encoding the carbapenemases was detected
by PCR amplification assays using previously published primers
(Sigma-Aldrich, Darmstadt, Germany) designed to detect blaKPC,
blaOXA (Poirel et al., 2011), blaNDM (Ellem et al., 2011), blaVIM,
blaIMP (Toleman et al., 2003), and blaSIM (Lee et al., 2003).
These primers as well as the PCR cycling conditions are reported
in Table 1. Sequencing of the amplicons was performed to
identify bla variants using the GeneAmp PCR system 9700 by
cycle sequencing with ABI Prism BigDye terminator V3.1 Ready
Reaction Cycle Sequencing Kit (Applied Biosystems, Foster City,
CA, United States). The sequencing results were determined
using software from the National Center for Biotechnology
Information.1

Multilocus Sequence Typing
Random selection of carbapenem-resistant Escherichia coli and
K. pneumoniae isolates harboring carbapenemases encoding
genes from FHs and ICPs were performed to understand
the clonal relatedness of these isolates. Carbapenem-resistant
E. coli (n = 13) isolates including FHs (n = 7) and ICPs
(n = 6) isolates as well as K. pneumoniae isolates (n = 14)
including FHs (n = 7) and ICPs (n = 7) isolates were assigned
to multilocus sequence typing (MLST) method as described
previously (Diancourt et al., 2005; Wirth et al., 2006). Allelic

1www.ncbi.nlm.nih.gov

profiles (obtained from the pattern of allele numbers) for seven
gene fragments of each isolate were obtained by comparing with
corresponding allele available in MLST E. coli database,2 as well as
in MLST K. pneumoniae database3 following website instruction.
The sequence type (ST) of each isolate was determined by
combining seven allelic profiles. The MLST data, based on the
allele number for the seven gene fragments for each isolate,
were used for constructing strain relatedness dendrogram by
minimum spanning trees using BioNumerics software (version
6.1; Applied Maths, Kortrijk, Belgium).

Comparative goeBURST analysis was performed to determine
the diversity of the E. coli and K. pneumoniae isolates against the
entire E. coli and K. pneumoniae database and to reveal their
relationships with all publicly available STs. STs were clustered
into clonal complexes (CCs) using the goeBURST algorithm of
the Phyloviz software.4 The goeBURST assigned each ST that
shared at least five of seven identical alleles into a single CC.

Statistical Criteria
Data were tabulated and analyzed using IBM SPSS Statistics
v.25.0 (IBM Corp., Armonk, NY, United States). Significance
was determined by Pearson’s chi-squared test (χ2) to test
associations between two categorical variable CRE isolates
expressing carbapenemase genes from FHs and ICPs and evaluate
how likely it is that there is any observed genetic difference in

2https://pubmlst.org/mlst/
3https://bigsdb.pasteur.fr/klebsiella/
4http://www.phyloviz.net/goeburst/

TABLE 1 | Primer sets used for PCR amplification of carbapenem-resistance genes and their expected amplicon size.

Gene Primer sequences Amplicon size
(bp)

PCR cycling conditions (reference)

blaKPC F: CGTCTAGTTCTGCTGTCTTG
R:CTTGTCATCCTTGTTAGGCG

798 Heat activation of polymerase at 95◦C for 15 min, then initial denaturation at
94◦C for 10 min, followed by 35 cycles of denaturation at 94◦C for 30 s,
annealing at 52◦C for 40 s, and elongation at 72◦C for 50 s, followed by a
final elongation step at 72◦C for 5 min (Poirel et al., 2011)

blaOXA F: GCGTGGTTAAGGATGAACAC
R: CATCAAGTTCAACCCAACCG

438

blaNDM F: CTTCCAACGGTTTGATCGTC
R: ATTGGCATAAGTCGCAAT CC

206 Heat activation of polymerase at 95◦C for 15 min, then initial denaturation at
95◦C for 5 min, followed by 30 cycles of denaturation at 95◦C for 2 min,
annealing at 60◦C for 1 min, and elongation at 72◦C for 1 min, followed by
a final elongation step at 72◦C for 5 min (Ellem et al., 2011)

blaIMP F: ATGAGCAAGTTATCTTAGTATTC
R: GCTGCAACGACTTGTTAG

765 Heat activation of polymerase at 95◦C for 15 min, then initial denaturation at
95◦C for 5 min, followed by 30 cycles of denaturation at 95◦C for 2 min,
annealing at 50◦C for 1 min, and elongation at 68◦C for 1 min, followed by
a final elongation step at 68◦C for 5 min (Toleman et al., 2003)

blaVIM F: TTATGGAGCAGCAACGATGT
R: CGAATG CGCAGCACCAGG

621 Heat activation of polymerase at 95◦C for 15 min, then initial denaturation at
95◦C for 5 min, followed by 30 cycles of denaturation at 95◦C for 1 min,
annealing at 59◦C for 1 min, and elongation at 68◦C for 1 min, followed by
a final elongation step at 68◦C for 5 min (Toleman et al., 2003)

blaSIM F: TACAAGGGATTC GGCATC G
R: TAATGGCCTGTTCCCATGTG

571 Heat activation of polymerase at 95◦C for 15 min, then initial denaturation at
94◦C for 5 min, followed by 25 cycles of denaturation at 94◦C for 30 s,
annealing at 52◦C for 1 min, and elongation at 68◦C for 1 min, followed by
a final elongation step at 68◦C for 5 min (Lee et al., 2003)

The direction of the primer is indicated at the end of the primer name, as follows: F, forward (5′–3′) and R, reverse (3′–3′).KPC, Klebsiella pneumoniae carbapenemase;
OXA, oxacillinase; NDM, New Delhi metallo-β-lactamase; IMP, imipenem-resistant Pseudomonas; VIM, Verona integron-encoded metallo-β-lactamase; SIM, Seoul
imipenemase.
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the species level. The threshold for statistical significance was a
p-value of < 0.05.

RESULTS

Demographic Characteristics
A total of 405 samples and 92 samples were collected from
FHs and ICPs, respectively. A total of 31 FHs and 84 ICPs
were found to be colonized with CRE. The CRE colonization
rates were 31/405 (7.6%) and 84/92 (91.3%) among FHs and
ICPs, respectively. The non-Arab ethnic group constituted
26/31 (83.8%) of the FH CRE colonizers. The Southeast
Asians represented the highest proportion among FHs, and the
nationalities were as follows: 14 (45.2%), nine (29%), one (3.2%),
two (6.5%), and five (16.1%) were Indians, Filipinos, Siri Lankans,
Bangladeshis, and Egyptians. On the other hand, the Arab ethnic
group constituted 63/84 (75%) of the ICP CRE colonizers. The
top five nationalities were Kuwaitis, 36 (43%); Egyptians, nine
(11%); Indians, six (7%); Jordanians, five (6%); Iranians, five
(6%); and others, 23 (27%).

Bacterial Isolates
Microbiological cultures yielded 681 and 95 isolates of the family
Enterobacterales recovered from FHs and ICPs, respectively.
E. coli isolates of 425 (62.4%) were the most predominant,
followed by K. pneumoniae isolates of 18 (2.6%) among
FHs, whereas the predominant isolates among ICPs were
K. pneumoniae accounting for 69 (72.6%), followed by E. coli
of 16 (16.8%). A total of 36/681 and 87/95 were CRE isolates
giving prevalence rates of 5.3 and 91.5% among FHs and ICPs,
respectively. The breakdown of the CRE isolates among CRE
colonized FHs and ICPs is shown in Table 2. E. coli isolates
represent 15 (41.7%) and 15 (17.3%) (p = 0.004) among FHs
and ICPs, respectively, in addition to K. pneumoniae isolates

TABLE 2 | Carbapenem-resistant Enterobacterales (CRE) isolates from food
handlers and infected control patients.

Bacteria Number (%) of CRE isolates p-value

FHs (N = 36) ICPs (N = 87)

Escherichia coli 15 (41.7) 15 (17.3) 0.004*

Klebsiella pneumoniae 8 (22.2) 65 (74.7) 0.001*

Enterobacter cloacae 3 (8.3) 4 (4.7) 0.41

Kluyvera spp. 2 (5.5) 0 (0)

Citrobacter freundii 1 (2.8) 1 (1.2) 0.51

Citrobacter youngae 1 (2.8) 0 (0)

Escherichia fergusonii 1 (2.8) 0 (0)

Morganella morganii 1 (2.8) 0 (0)

Pantoea spp. 1 (2.8) 1 (1.2) 0.51

Proteus vulgaris 1 (2.8) 0 (0)

Providencia rettegri 1 (2.8) 0 (0)

Serratia marcescens 1 (2.8) 1 (1.2) 0.51

FHs, food handlers; ICPs, infected control patients.
*p-value is significant.

representing 8 (22.2%) and 65 (74.7%) (p = 0.001) among FHs
and ICPs, respectively. Other isolates represent 13 (36%) and 7
(8%) (p= 0.001) among FHs and ICPs, respectively.

Indirect Carbapenemase Test
All CRE isolates were tested with MAST R© Indirect
Carbapenemase Test (ICT). Carbapenemase production
was detected in 15 (41.6%) of the FHs (n= 36) and 44 (50.5%) of
the control group (n = 87). Positive carbapenemase production
was indicated when there is a distortion of the zone around the
tip of the ICT, as shown in Figure 1.

Carbapenemase Genes
Twenty-two (61.1%) out of 36 CRE isolates were recovered from
FHs, and 65 (74.7%) out of 87 CRE isolates from ICPs harbored
one, two, or three carbapenemase-mediating genes, as shown
in Table 3. The detection of bla genes among FHs and ICPs
was as follows: 54 CRE isolates harbored single genes, and of
these, 15 (68.2%) and 39 (60%) isolates were from FHs and ICPs,
respectively. In addition to the coexistence of two genes that were
observed in 28 CRE isolates, of these, 5 (22.7%) and 23 (35.4%)
were from FHs and ICPs, respectively. Five CRE isolates were in
combination with three genes, and of these, 2 (9%) and 3 (4.6%)
were from FHs and ICPs, respectively. There are no statistical
differences between the FHs and ICPs groups.

In Table 4, the predominant CRE genes harbored by FHs
22/36 (61.1%) and ICPs 65/87 (74.7%) isolates were as follows:
the occurrence of blaOXA genes was observed in all isolates
of FHs 10/22 (45.5%) whereas 44/65 (67.7%) isolates among
ICPs (p = 0.06). The presence of blaKPC genes was detected in
19/22 (86%) and 26/65 (40%) from FHs and ICPs (p = 0.0001),
respectively. The presence of blaNDM genes was identified in
2/22 (9.1%) and 24/65 (36.9%) isolates from FHs and ICPs
(p= 0.01), respectively.

As demonstrated in Table 4, sequence analysis of
K. pneumoniae, E. coli, and other isolates harboring blaOXA,
blaKPC, and blaNDM recovered from FHs and ICPs shows the
following. Allelic variants of blaOXA as blaOXA−48 genes were
positive for 5/22 (22.7%) and 10/65 (15.3%) K. pneumoniae
isolates from FHs and ICPs, respectively. Among ICPs alone,
18/65 (27.6%) and 1/65 (1.5%) K. pneumoniae isolates carried
blaOXA−181 and blaOXA−232, respectively.

The allelic variants of E. coli isolates, 4/22 (18%) and 11/65
(17%), were harbored by blaOXA−48 genes among FHs and
ICPs, respectively. One E. coli isolate out of 65 CRE isolates
(1.5%) harbored blaOXA−181 gene among ICPs. The sequenced
variants among other isolates showed that blaOXA−48 gene was
detected in a single Citrobacter freundii isolate out of 22 CRE
isolates (4.5%) from FHs and 2/65 (3%) Enterobacter cloacae and
Serratia marcescens isolates from ICPs. In addition, blaOXA−181
was detected in an E. cloacae isolate out of 65 CRE isolates
(1.5%) from ICPs.

Eleven (57.9%) of 19 randomly selected blaKPC-positive
isolates from FHs were sequenced. blaKPC−18 genes were
harbored by 5/22 (22.7%) K. pneumoniae isolates from FHs. In
addition, 3/22 (13.6%) and 14/65 (21.5%) K. pneumoniae isolates
carried blaKPC−2 gene from FHs and ICPs, respectively, while
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FIGURE 1 | Detection of carbapenemases in carbapenem-resistant Enterobacteriaceae sample by indirect carbapenemase test (ICT). (A) Positive CRE sample: ICT
positive, showing carbapenemase production and distortion of the zone around tip 3. (B) Negative sample: ICT negative, showing no carbapenemases production
and formation of a regular, circular zone of inhibition around the indicator tip 3. CRE, carbapenem-resistant Enterobacterales.

blaKPC−29 was detected in 2/65 (3%) K. pneumoniae isolates
among ICPs only. The sequenced variants of blaKPC among E. coli
isolates showed the following: 4 (6%), 1 (1.5%), and 2 (3%) out
of 65 CRE E. coli isolates harbored blaKPC−18, blaKPC−2, and
blaKPC−20 among ICPs, respectively. However, blaKPC−29 was
harbored by 2/22 (9%) E. coli isolates among FHs only. The
sequenced variants of blaKPC among other isolates showed the
following: blaKPC−2 was harbored by 1/22 (4.5%) E. cloacae from
FHs and 3/65 (4.6%) including E. cloacae, S. marcescens, and
Pantoea isolates from ICPs.

The sequenced variants of the blaNDM among K. pneumoniae
isolates yielded blaNDM−1 gene carried by one K. pneumoniae

TABLE 3 | Prevalence of mediating carbapenem resistance genes in isolates from
food handlers and infected control patients.

Carbapenemase genes detection Number (%) of CRE isolates

FHs (N = 36) ICPs (N = 87) p-value

Total number of gene detected 22 (61.1) 65 (74.7) 0.13

Single gene 15 (68.2) 39 (60) 0.49

blaOXA 3 (20) 21 (53.8) 0.05

blaNDM 0 10 (25.7)

blaKPC 12 (80) 8 (20.5) 0.05

Dual genes 5 (22.7) 23 (35.4) 0.27

blaOXA/blaKPC 5 (100) 12 (52.2)

blaOXA/blaNDM 0 8 (34.8)

blaNDM/blaKPC 0 3 (13)

Triple genes 2 (9) 3 (4.6)

blaOXA/blaNDM/blaKPC 0.43

FHs, food handlers; ICPs, infected control patients.

isolate (4.5%) out of 22 CRE isolates from FHs and 17/65
(26%) from ICPs. Furthermore, one K. pneumoniae isolate (1.5%)
carried blaNDM−6 and blaNDM−7 out of 65 CRE isolates from
ICPs. Of the E. coli isolates that carried blaNDM genes, 1/22
(4.5%) harbored blaNDM−7 among FHs only, while blaNDM−1,
blaNDM−5, and blaNDM−6 were harbored by 3 (4.6%), 1 (1.5%),
and 1 (1.5%) E. coli isolates out of 65 CRE isolates from ICPs
alone, respectively.

Clonal Relatedness of Isolates
Clonal relationships of 27 CRE isolates that carried either
blaOXA or blaKPC or blaNDM genes from FHs and ICPs
were genotyped by MLST. Figure 2 demonstrates the selected
carbapenem-resistant E. coli isolates from FHs. Those isolates
were found to belong to seven unique STs with the following
types: ST38, ST295, ST10, ST1415, and ST1876. Those STs
were considered genotypically distinct. In addition to two
novel STs, STN1, and STN2 lineages were found for the
first time in this study. The CCs assigned E. coli isolates of
FHs into five CCs consisting of ST1876, which belongs to
CC538; ST295, CC295; ST10, CC10; ST1415, CC1415; and
ST38, CC38. Out of the six E. coli isolates analyzed among
ICPs, four known ST types were yielded—ST10276, ST405,
ST69, and ST410—besides two novel STs, STN3 and STN4.
The four E. coli ST isolates were assigned into different
CCs, as follows: ST410 to CC23; ST10276, CC405; ST405,
CC405; and ST69, CC69. According to the dendrogram, two
clones including ST type ST10276 and ST405 with similar CC
(CC405) were considered to be closely related clones with the
coexistence of blaOXA/blaKPC carbapenemase genes. Another
closely related two isolates belonged to the newly described ST
types STN3 and ST410.
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TABLE 4 | Proportion of CRE isolates expressing carbapenemase gene variants
among food handlers and infected control patients.

Number (%) of CRE isolates

Carbapenemase genes expressing carbapenemase genes

FHs ICPs p-value

Overall isolates 22 (61.1) 65 (74.7)

blaOXA (54) 10 (45.5) 44 (67.7) 0.06

blaKPC (45) 19 (86.4) 26 (40) 0.0001*

blaNDM (26) 2 (9.1) 24 (36.9) 0.01*

Klebsiella pneumoniae (52) 7 (32) 45 (69) 0.004*

blaOXA

blaOXA−48 (15) 5 (22.7) 10 (15.3) 0.006*

blaOXA−181 (18) 0 18 (27.6)

blaOXA−232 (1) 0 1 (1.5)

blaKPC

blaKPC (1) 1 (4.5) 0

blaKPC−18 (5) 5 (22.7) 0

blaKPC−2 (17) 3 (13.6) 14 (21.5) 0.4

blaKPC−29 (2) 0 2 (3)

blaKPC−20 (0) 0 0

blaNDM

blaNDM−1 (18) 1 (4.5) 17 (26) 0.06

blaNDM−5 (0) 0 0

blaNDM−6 (1) 0 1 (1.5)

blaNDM−7 (1) 0 1 (1.5)

Escherichia coli (26) 11 (50) 15 (23) 0.01*

blaOXA

blaOXA−48 (15) 4 (18) 11 (17) 0.8

blaOXA−181 (1) 0 1 (1.5)

blaOXA−232 (0) 0 0

blaKPC

blaKPC (4) 4 (18) 0

blaKPC−18 (4) 0 4 (6)

blaKPC−2 (1) 0 1 (1.5)

blaKPC−29 (2) 2 (9) 0

blaKPC−20 (2) 0 2 (3)

blaNDM

blaNDM−1 (3) 0 3 (4.6)

blaNDM−5 (1) 0 1 (1.5)

blaNDM−6 (1) 0 1 (1.5)

blaNDM−7 (1) 1 (4.5) 0

Others (9)* 4 (18) 5 (8) 0.16

blaOXA

blaOXA−48 (3) 1 (4.5) 2 (3) 0.7

blaOXA−181 (1) 0 1 (1.5)

blaOXA−232 (0) 0 0

blaKPC

blaKPC (3) 3 (13.6) 0

blaKPC−18 (0) 0 0

blaKPC−2 (4) 1 (4.5) 3 (4.6) 0.9

blaKPC−29 (0) 0 0

blaKPC−20 (0) 0 0

blaNDM

blaNDM−1 (0) 0 0

blaNDM−5 (0) 0 0

blaNDM−6 (0) 0 0

blaNDM−7 (0) 0 0

CRE, carbapenem-resistant Enterobacterales; FHs, food handlers; ICPs, infected
control patients.
*Others = Enterobacter cloacae (5), Serratia marcescens (2), Pantoea (1),
Citrobacter freundii (1), Kluyvera (1), and Escherichia fergusonii (1).

Figure 3 shows that the MLST analysis of representative
carbapenem-resistant K. pneumoniae isolates obtained from
FHs revealed seven different STs. The four known ST types
were as follows: ST461, ST268, ST25, and ST2389. In addition,
three novel combinations of alleles and thus undescribed STs
designated ST3495, ST3496, and ST3497 were assigned by
Pasteur Institute MLST database. Those STs were considered
genotypically distinct. The CCs assigned K. pneumoniae isolates
into five CCs, as follows: ST461, CC461; ST3497, CC1155;
ST268, CC268; ST25, CC65; and ST2389, CC2274. However,
K. pneumoniae isolates obtained from ICPs revealed five different
and known STs, which were as follows: ST37, ST2059, ST147,
ST1880, and ST231. In addition to one novel ST identified for
the first time in this study, submitted to the Pasteur Institute
MLST scheme and given a new designation ST4743. The analysis
of goeBURST assignedK. pneumoniae isolates into five CCs: ST37
belonged to CC37; ST2059, CC138; ST231, CC43; ST147, CC147;
and ST1880, CC147. Two identical isolates that belonged to
ST231 with CC43 were isolated from two Kuwaiti ICPs admitted
to MAK Hospital; isolates K429 and K430 co-harbored dual genes
blaOXA−232/blaKPC−2 and blaOXA−181/blaKPC−2, respectively.
Moreover, there are two related isolates ST147 and ST1880, with
similar CC (CC147) harboring in combination genes blaNDM−1
and blaKPC−2. Those isolates were isolated from Egyptian and
Kuwaiti ICPs admitted to MAK Hospital.

DISCUSSION

In this study, we described the occurrence of the CRE isolates
among FHs in our community. Unrecognized personnel working
in commercial food services colonized with CRE and unsafe
food handling could be potential sources of antimicrobial
resistance dissemination. Molecular characteristics of the CRE
isolates revealed that not all the isolates that were resistant to
the carbapenems harbored the carbapenemase-encoding genes,
demonstrated by the fact that only 61.1 and 74.7% of CRE
were positive among the FHs and ICPs isolates, respectively.
The most plausible explanation is that these negative CRE
isolates probably expressed different resistance mechanisms other
than carbapenemase-encoding genes not evaluated in this study.
One of the most important findings of this study is the high
preponderance of blaKPC, representing 86.4% of the genes
found among FHs isolates with various variants like blaKPC−18,
blaKPC−2, and blaKPC−29 for the first time in Kuwait and very
uncommon in the neighboring countries. Previously, it has been
shown that the majority of the genes described in clinical isolates
from Kuwait and Gulf Cooperation Council (GCC) region were
blaOXA and blaNDM and anecdotal reports of clinical isolates of
KPC-producing CRE. Most of the patients from whom these
carbapenemase genes were found have so far been patients
transferred from hospitals abroad (Zowawi et al., 2013, 2014;
Sonnevend et al., 2015). Encountering a large number of isolates
harboring blaKPC in the current study suggested that there might
be wide dissemination of this gene in our country. This gene
has been predominantly found in K. pneumoniae all over the
world, but in our study, it was also found in other isolates such
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FIGURE 2 | Dendrogram of Escherichia coli obtained from food handlers and infected control patients showing clonal relatedness demonstrated by cluster analysis
based on their MLST. The characteristics of the major clones generated using minimum spanning trees by BioNumerics software v6.1 (Applied Maths, Kortrijk,
Belgium) are also highlighted. Similarity in the isolates is presented in percentages using the scale bar in the upper left corner. In the Key column, E represents E. coli,
STs = sequence type; population = food handler (FH) and infected control patients; nationality; gender F = female, male = male; and carbapenemases. MLST,
multilocus sequence typing.

as E. coli, E. cloacae, S. marcescens, and Pantoea. This finding
is similar to that obtained in previous studies that documented
the presence of blaKPC genes in many clinical isolates of E. coli,
Enterobacter spp., Salmonella enterica, Proteus mirabilis, and
C. freundii (Queenan and Bush, 2007).

Other interesting findings in our study included a high
number of rectal isolates harboring blaOXA−181 gene among the
ICP population as well as the FHs. This confirms an earlier
report by Al Fadhli et al. (2020) heralding the emergence of
this gene among the family Enterobacterales colonizing the
gastrointestinal tract of patients in our hospitals, a phenomenon
hitherto confined to the Indian subcontinent (Castanheira et al.,
2011) from where it has apparently spread to other parts of the
world (Rojas et al., 2017).

Interestingly, we detected five K. pneumoniae isolates co-
producing blaNDM−1/blaOXA−181. Similarly, the presence of the
combination of OXA-181 and NDM-5-producing CRE was
reported in India in 2011 encountered in patients admitted to
hospitals (Castanheira et al., 2011). Finding this combination
in K. pneumoniae, like ours, has only been reported in two
isolates carrying both blaOXA−181 and blaNDM−1 or blaNDM−5
isolated from epidemiologically unrelated patients in Singapore
in 2013 (Balm et al., 2013). Furthermore, the occurrence of
blaOXA−181 gene in association with other carbapenemase genes

as blaKPC−2 in K. pneumoniae isolates was found in the present
study. This is the first of such findings in Kuwait, which can
be a serious concern. It should be noted that in our study, a
novel milieu of OXA48-like carbapenemase, as OXA-232, was
detected in K. pneumoniae isolates from Kuwaiti patients with
ST231. This is in line with a previous report in South India
that found blaOXA−232 variant in 35 (71%) K. pneumoniae
isolates, and ST231 was the predominant ST in 22 isolates (45%)
(Shankar et al., 2019).

According to previous reports from Kuwait, blaNDM−1
is by far the most prevalent gene mediating resistance to
carbapenems in clinical isolates of CRE (Jamal et al., 2012,
2013, 2016). In our current study, a relatively high proportion
of K. pneumoniae isolates in ICPs harbored this gene as well
as a few E. coli isolates. However, this gene was found in
only one isolate in FHs. It is conceivable that perhaps this
gene is also confined to the hospital, where it is gradually
being replaced by blaOXA−181. A few new variants of blaNDM,
blaNDM−5, blaNDM−6, and blaNDM−7, were detected in a few of
the K. pneumoniae and E. coli isolates, particularly among the
ICP group. Thus, our finding is concordant with the reports
of previous studies, which demonstrated that these variants
are present in a low level in clinical isolates in the Arabian
Peninsula (Pal et al., 2017). A spillover of this gene from the
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FIGURE 3 | Dendrogram of Klebsiella pneumoniae obtained from food handlers and infected control patients showing clonal relatedness demonstrated by cluster
analysis based on their MLST. The characteristics of the major clones generated using minimum spanning trees by BioNumerics software v6.1 (Applied Maths,
Kortrijk, Belgium) are also highlighted. Similarity in the isolates is presented in percentages using the scale bar in the upper left corner. In the Key column, K
represents K. pneumoniae, STs = sequence type; population = food handler (FH) and infected control patients; nationality; gender F = female, male = male; and
carbapenemases. MLST, multilocus sequence typing.

rectal site into clinical isolates may herald a dangerous resistance
trend in the country.

MLST of E. coli CRE isolates showed polyclonality with a
diverse set of known STs with their CCs circulating among FHs,
and two novel STs linked with KPC-producing isolates from
Bangladeshi FHs national were typed. These individuals had
a history of travel during the last 3 months and lived in the
same district in Kuwait. In this study, an isolate belonging to
ST10 type detected in Indian FHs has been related to various
diseases caused by Enteroaggregative E. coli (Chattaway et al.,
2014) in the past. In addition, ST295, detected in this study,
has also been previously described in a study in Nigeria by
Adesina et al. (2019), associating this clone to MDR extra-
intestinal pathogenic E. coli. In our study, isolates belonging
to ST10276 type obtained from a 60-year-old Pakistani female
patient admitted to MAK Hospital and ST405 isolated from a
Kuwaiti male patient admitted to ISH were closely related to
and shared the same CC405 with the coexistence of blaOXA−48
and blaKPC−18 carbapenemase genes. Other related isolates with
the novel STN3 were isolated from a Filipino male patient
and ST410 from a Somalian male patient admitted to MAK

Hospital. The international clones ST38 and ST405 harboring
triple carbapenemases blaKPC−18/blaOXA−48/blaNDM−7 genes
were isolated from the ICP group in this study. This is in line with
previous studies that reported E. coli isolates that belonged to
ST38 and ST405 were encountered in patients in 2015 in Kuwait
(Jamal et al., 2015) and Saudi Arabia (Alghoribi et al., 2015).

Carbapenem-resistant K. pneumoniae strains obtained from
the ICP group were assigned to several STs with their CCs. It
is noteworthy that there were two isolates from the ICP group
in MAK Hospital with identical STs ST231 with CC43 carrying
dual blaOXA/blaKPC genes. There were also two related isolates
with > 95% similarity, in the same hospital, that belonged to
different ST types ST147 and ST1880, sharing the same CC147
that harbored dual blaNDM/blaKPC genes. This suggested that
clonal dissemination might have occurred. Thus, different STs
appeared to carry diverse drug-resistant profiles. It is important
to note that some STs found among the rectal isolates in our study
were different from the previously described ST types, such as
ST677, ST16, ST107, ST485, ST1593, ST1592, and ST1594, among
clinical isolates circulating in Kuwait (Jamal et al., 2015). The
novel ST type ST3496 that harbored blaKPC gene was recognized
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for the first time in a Bangladeshi FH who had a history of travel
to his home country during the previous 3 months. In addition,
the novel ST4743 was recognized for the first time in a Canadian
patient who was admitted to MAK Hospital. The diversity of
clones could be related to an increasing number of expatriate
employees from diverse geographical areas working in Kuwait
coupled with their constant movement to and from other parts
of the world. The diverse genetic background of these resistant
genes is presumably related to importation from different
geographical regions, mainly from workers from South Asia.
Many of these workers work in food vending establishments,
which may explain, in part, the possible introduction of CRE
isolates harboring a variety of encoding genes into the population
over time. Therefore, it is our speculation at this time that some
clones are probably expanding among these healthy subjects
who work in the same Governorate and a large population of
clients who may carry such strains to others. Adding to that,
an increased number of Kuwait nationals travel abroad seeking
medical treatment and are often re-admitted to local hospitals
upon their return. This also creates opportunities for importing
different CRE clones from other countries, thereby expanding the
CRE population in the country’s hospitals.

A limitation of this study is that we did not investigate
all carbapenemase resistance genes and other mechanisms
of resistance.

CONCLUSION

In conclusion, the study contributes to our understanding of
the molecular epidemiology of CRE in the community of
Kuwait. Our study revealed high prevalence rates of CRE rectal
colonization among FHs and ICPs. The commonest mediating
genes were blaKPC among FH isolates and blaOXA-types
among patients’ isolates. Therefore, the emergence of KPC-
carrying Enterobacterales in the healthy human population
in the food industry is an unusual finding representing the
first of such findings in our country. These results raise
significant public health concerns in Kuwait hospitals and the
community and highlight the need for necessary vigilance
to detect community-acquired CRE isolates. Emphasis on the
importance of continuous surveillance of the CRE strains to
detect the introduction of new strains into the community
and healthcare systems to avoid a trend toward endemicity is
highly recommended. Further studies involving whole-genome
sequencing (WGS) analysis should help to unravel the other
possible mechanisms of resistance.
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The emergence of hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-
CRKP) was regarded as an emerging threat in clinical settings. Here, we investigated
the prevalence of CRKP strains among inpatients in a new hospital over 1 year since
its inception with various techniques, and carried out a WGS-based phylogenetic
study to dissect the genomic background of these isolates. The genomes of three
representative blaNDM−1-positive strains and the plasmids of four blaKPC−2-positive
strains were selected for Nanopore long-read sequencing to resolve the complicated
MDR structures. Thirty-five CRKP strains were identified from 193 K. pneumoniae
isolates, among which 30 strains (85.7%) harbored blaKPC−2, whereas the remaining
five strains (14.3%) were positive for blaNDM−1. The antimicrobial resistance profiles of
blaNDM−1-positive isolates were narrower than that of blaKPC−2-positive isolates. Five
isolates including two blaNDM−1-positive isolates and three blaKPC−2-positive strains
could successfully transfer the carbapenem resistance phenotype by conjugation. All
CRKP strains were categorized into six known multilocus sequence types, with ST11
being the most prevalent type. Phylogenetic analysis demonstrated that the clonal
spread of ST11 blaKPC−2-positive isolates and local polyclonal spread of blaNDM−1-
positive isolates have existed in the hospital. The blaNDM−1 gene was located on
IncX3, IncFIB/IncHI1B, and IncHI5-like plasmids, of which IncFIB/IncHI1B plasmid has
a novel structure. By contrast, all ST11 isolates shared the similar blaKPC−2-bearing
plasmid backbone, and 11 of them possessed pLVPK-like plasmids. In addition, in silico
virulome analysis, Galleria mellonella larvae infection assay, and siderophore secretion
revealed the hypervirulence potential of most blaKPC−2-positive strains. Given that these
isolates also had remarkable environmental adaptability, targeted measures should
be implemented to prevent the grave consequences caused by hv-CRKP strains in
nosocomial settings.
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INTRODUCTION

Klebsiella pneumoniae is an important clinical pathogen
that can cause severe hospital-acquired infections among
immunocompromised patients (Pau et al., 2015). Nowadays,
K. pneumoniae has evolved into two distinct pathotypes:
hypervirulent K. pneumoniae and classical K. pneumoniae (cKp)
(Shon et al., 2013). Both pathotypes are global challenges for
nosocomial infections (Patel et al., 2014). ClassicalK. pneumoniae
is capable of acquiring various antimicrobial resistance (AMR)
genes, resulting in the emergence of multidrug-resistant (MDR)
and extensively drug-resistant (XDR) strains (Navon-Venezia
et al., 2017). The typical representation is carbapenem-resistant
K. pneumoniae (CRKP). Hypervirulent K. pneumoniae can cause
infections, such as liver abscesses, pneumoniae, meningitis,
and endophthalmitis in healthy individuals, and the rmpA and
rmpA2 genes are associated with its pathogenicity (Shon et al.,
2013). For a long time, K. pneumoniae did not simultaneously
encode the phenotypes of MDR and hypervirulence (Yang
et al., 2020b). However, in recent years, the convergence of
carbapenem resistance and virulence in a single epidemic clone
has been reported constantly, which becomes a serious public
health issue (Chen and Kreiswirth, 2018; Wong et al., 2018a; Xie
et al., 2020). The most representative clade is ST11-CR-HvKp
detected in different regions of China (Wong et al., 2018b; Yao
et al., 2018; Xu et al., 2019). A recent study successfully traced
ST11-CR-HvKp and speculated that the stool may be a reservoir
of it (Zheng et al., 2020). These findings revealed the subsistent
dissemination of this clone among nosocomial systems.

Currently, K. pneumoniae carbapenemase (KPC) is one of
the most clinically significant carbapenemase, and its rapid
dissemination has become a public health threat globally (Chen
et al., 2014). To date, 95 KPC variants have been identified1.
The pandemic of KPC-producing K. pneumoniae is dominated
by clonal group 258, which consists of ST258 and its single-
locus variants ST11, ST340, and ST512 (Chen et al., 2014).
ST258 is the major KPC-producing K. pneumoniae sequence type
(ST) in North America, Latin America, and several countries
in Europe, whereas ST11 prevails mainly in Asia and Latin
America (Munoz-Price et al., 2013; Andrade et al., 2014). In
China, a study revealed that blaKPC−2 was presented in 71% of
109 ertapenem-resistant K. pneumoniae isolates in a teaching
hospital in Shanghai, and it was often detected along with
CTX-M type ESBL enzymes (Chen et al., 2011). Besides, a
retrospective observational study (2008–2018) of clinical CRKP
isolates found the main CRKP ST was ST11, and blaKPC−2 was
the most prevalent variant in Zhejiang, China (Hu et al., 2020).
In addition, the blaNDM-positive K. pneumoniae is another target
for nosocomial infection control, which colonized in hospitals
of China with high incidence (Qin et al., 2014). Therefore, it
is necessary to recognize the dissemination characteristics and
molecular features of CRKP. As the most prevalent area of
CRKP, the detection rate of CRKP in Henan province reached
32.8% in 2019 according to China Antimicrobial Surveillance

1http://www.bldb.eu/BLDB.php?prot=A#KPC

Network 2019 annual report2. Nevertheless, the epidemiological
investigation of CRKP in newly established hospitals is still
limited. To systematically study, the prevalence and transmission
of CRKP in new hospitals are of guiding significance to evaluate
the development trend of CRKP; hence, we aim to investigate
the prevalence and genomic characterization of CRKP in a newly
established hospital in China and further explore the underlying
risk factors, viability, virulence, antibiotic resistance profiles and
molecular characteristics of CRKP.

MATERIALS AND METHODS

Research Design
During March 2018–August 2019, seven kinds of samples
including blood, ascitic fluid, sputum, bronchoalveolar fluid,
wound secretion, urine, and ductus venosus of inpatients were
collected from either public wards or intensive care units (ICUs)
in a newly established hospital in Henan, China. The hospital that
specializes in the treatment of cardiovascular diseases is a 1,000-
bed tertiary hospital with 132 ICU beds and 34 public wards.
Besides, the present study was approved by the Research Ethics
Committee of Henan Provincial People’s Hospital.

Bacterial Isolation and Identification
Collected samples were subjected to standard bacterial isolation
procedure. The samples were streaked directly onto 5% sheep
blood agar plate. Colonies of different morphologies were
selected to perform subsequent purification and stocked at
−80◦C. The detection of carbapenemase-encoding genes was
conducted by multiplex polymerase chain reaction (PCR) (Poirel
et al., 2011; Supplementary Table 1), and laboratory-stored
strains carrying the corresponding carbapenemase-encoding
genes were used as the positive control. Species identification of
the strains and subsequent antimicrobial susceptibility testing
were conducted by BD Phoenix100 (Becton, Dickinson and
Company, Franklin Lakes, NJ, United States) and verified by
disk diffusion method. The minimum inhibitory concentrations
of ciprofloxacin, levofloxacin, aztreonam, chloramphenicol,
ampicillin, ampicillin–sulbactam, piperacillin, piperacillin–
tazobactam, amoxicillin–clavulanic acid, gentamicin, amikacin,
cefazolin, ceftazidime, cefotaxime, cefepime, meropenem,
imipenem, trimethoprim-sulfamethoxazole, and tetracycline
were interpreted based on the standard of the Clinical
and Laboratory Standards Institute [CLSI] (2018) except
tigecycline and polymyxin B, which followed the criteria of
European Committee on Antimicrobial Susceptibility Testing
(version 11.0)3. Escherichia coli ATCC25922 was used as the
quality control strain.

Characterization of STs, Capsular Types,
Virulence Genes, and Virulence
Phenotype
To preliminarily distinguish the STs and capsular types
and confirm the presence of the virulence-associated genes

2http://www.carss.cn/Report/Details?aId=770
3https://eucast.org/clinical_breakpoints/
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including rmpA, rmpA2, iroN, and iutA, multiplex PCR analysis
was performed as previously mentioned (Yu et al., 2018;
Supplementary Table 1), and laboratory-stored strains carrying
the corresponding genes were used as the positive control.
Furthermore, the hypervirulence phenotype of K. pneumoniae
was evaluated using string test and Galleria mellonella larvae
infection assay. For string test, all isolates were inoculated onto
5% sheep blood agar and incubated at 37◦C, and the cutoff
criterion for positive was the viscous string longer than 5 mm
(Shon et al., 2013). For G. mellonella larvae infection assay,
larvae of approximately 300 mg were stored in a special box at
4◦C until being used. Overnight cultures of K. pneumoniae were
washed and adjusted to 106 colony-forming units (CFU)/mL
using phosphate-buffered saline (PBS). Ten larvae in each group
were challenged with 10 µL of diluents, with ST11 clinical cKP
HS11286 derivate YZ6 (Xie et al., 2018) used as the negative
control. Infected larvae were incubated in sterilized Petri dishes
at 37◦C for 72 h, and survival rate was recorded every 24 h. All
experiments were repeated in triplicate.

Filter Mating Assay
Transferability of carbapenem resistance phenotype was
determined using conjugation assay with a filter mating
method. Thirty-five CRKPs were used as donor strains, and
K. pneumoniae YZ6 Hygr was served as the recipient strain.
Transconjugants were selected on LB agar plates supplemented
with hygromycin (200 mg/L) and meropenem (2 mg/L). The
transconjugants harboring carbapenemase encoding genes were
confirmed by PCR and antimicrobial susceptibility testing.

Growth Curves
To investigate the fitness of CRKP isolates, growth curves of
seventeen strains including 15 CRKP isolates in this study, YZ6
and ATCC700603 in LB broth were conducted according to
standardized protocols using three technical replicates and three
biological replicates. Klebsiella pneumoniae ATCC700603 and
YZ6 were regarded as control strains (Schaufler et al., 2016).
Growth rates were calculated as follows: µ = (ln(CFU/mL t1) –
ln(CFU/mL t0))/t1 – t0.

Siderophore Secretion
We qualitatively detected siderophore secretion of CRKP
isolates as previously described (Schwyn and Neilands, 1987).
A single colony was transplanted into MKB solid medium
for iron starvation treatment. After incubation for 24 h at
37◦C, the bacterial suspension was adjusted to an OD600
of 0.6 by normal saline, and then 5 µL of suspension was
placed on agar plates containing chrome azurol S-iron(III)-
hexadecyltrimethylammonium bromide and incubated
overnight at 37◦C. The orange secretory ring around the colony
indicated the production of siderophore. Klebsiella pneumoniae
ATCC700603 and YZ6 were considered as control strains, and
the experiment was repeated three times for each strain.

Biofilm Formation
Biofilm formation assays were conducted as previously
mentioned (Ma et al., 2020). Overnight cultures of tested

isolates were adjusted to a cell density equivalent to a 0.5
McFarland standard. Two hundred microliters of culture per well
were transferred to a 96-well plate. After incubation at 37◦C for
2 days, cultures were discarded, and wells were washed twice with
200 µL PBS. The biofilms were fixed in methanol for 10 min.
Subsequently, wells were stained with 1% crystal violet solution
for 10 min and rinsed with PBS until colorless. Finally, biofilms
were dissolved in 100 µL of 30% formic acid for 30 min, and
biofilm formation was quantified by measuring the absorbance at
OD590. Klebsiella pneumoniae ATCC700603 and YZ6 were used
as control strains.

Human Serum Resistance
We evaluated the ability of human serum resistance as previously
described (Heiden et al., 2020). Briefly, 5 µL of overnight culture
was added to 495 µL LB fresh medium and incubated for 1.5 h at
37◦C. Inoculum was resuspended with 1 mL of sterile 1 × PBS.
Thirty microliters was mixed in triplicates with 270 µL 50%
human serum in 96-well plates. Meanwhile, 30-µL mixture was
sucked out from each well, serially diluted, placed on LB agar, and
counted the next day. After incubation for 4 h at 37◦C, 30 µL of
mixture was subjected to the same procedure. Finally, the number
of colonies of 0- and 4-h time points was compared to evaluate
the survival ability of CRKP isolates in human serum. Klebsiella
pneumoniae ATCC700603 and YZ6 were used as control strains.

Desiccation Resilience
Desiccation resilience assays were carried out according to
previously methods (Heiden et al., 2020) with minor modified.
Briefly, a single colony was cultured in LB broth until bacterial
cells reached an OD600 value of 0.6–0.8. One hundred microliters
of inoculum was serially diluted, plated on LB agar plates, and
counted the next day. Meanwhile, another 100-µL inoculum
was transferred to 96-well plates. Then, the plates were laid
flat in a glass sterile dryer supplemented with desiccant and
placed in a 37◦C incubator. After 6 days of drying, 100 µL/well
fresh LB broth was readded in 96-well plates; the prepared
96-well plates were cultured with 200-rpm shaking at 37◦C
for 3 h. At this point, 100 µL was collected, and the same
procedure was performed to count the number of colonies.
Klebsiella pneumoniae ATCC700603 and YZ6 were used as
control strains.

Statistical Analysis
The data were presented using GraphPad Prism 8.3.0. After
ensuring that the data were non–normally distributed, the non-
parametric Kruskal–Wallis test was utilized to perform multiple
comparisons among different groups. Bonferroni adjustment was
applied; the corrected p < 0.1 was considered significant.

Genome Extraction and
High-Throughput Sequencing
Genomic DNA of the 35 CRKP strains was extracted using the
TIANamp bacterial DNA kit (TianGen, Beijing, China). The
plasmids of four ST11 blaKPC−2-positive strains, which were
selected based on virulence test (C13, C26, C31, and C38), were
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extracted using the Qiagen plasmid midi-kit (Qiagen, Germany).
The extracted genomic DNA was evaluated by 1% agarose
gel electrophoresis and quantified by the Qubit fluorometer
and then subjected to short-read sequencing (2 × 150 bp)
with the Illumina HiSeq 2500 platform. Subsequently, genomic
DNAs of three blaNDM-positive strains (C11, C39, and C20)
from different branches and plasmids of four aforementioned
strains were sequenced with the Oxford Nanopore Technologies
MinION long-read platform with the RBK004 barcoding library
preparation kit and MinION R9.4.1 flow cells as previously
described (Wick et al., 2017; Li et al., 2018).

Bioinformatics Analysis and
Phylogenomic Tree Construction
The short-read Illumina raw sequences of CRKP were quality
filtered and assembled by SPAdes (Bankevich et al., 2012), and
contigs less than 500 bp were discarded. The clone lineages, STs,
insertion sequences, AMR determinants, and the virulence genes
of CRKP were identified using online tools4 and Kleborate tool
(Wick et al., 2018). The phylogenetic trees of the comparison
within CRKP in this study and the comparison between CRKP
in this study and other strains in GenBank were constructed
using Roary and FastTree based on SNPs of core genomes (Price
et al., 2009; Page et al., 2015), and further visualization and
modification were performed in iTOL5. Combining the formed
tree file and the gene presence and absence file, a phylogenetic
tree with a matrix describing the presence and absence of core
and accessory genes was constructed. The sequences of 35 CRKP
were compared against the classical virulence plasmid pLVPK
(GenBank accession AY378100), and representative plasmid
sequences were further plotted by GView web server6 using
pLVPK as reference sequence. The layout and output were edited
in the GView Java stand-alone application obtained from results
webpage. Genomic DNA with short-read Illumina and long-read
Nanopore data was subjected to perform de novo hybrid assembly
as described previously (Wick et al., 2017). The complete
genome sequences were annotated using RAST7 automatically
and modified manually. BRIG and Easyfig were used to generate
the genetic comparison figures (Alikhan et al., 2011).

Risk Factor Analysis
To analyze the risk factors responsible for the occurrence of
CRKP, the clinical information of CRKP-carriers was compared
to the non-carriers in terms of underwent different variables,
which included gender, age, ICU, exposure to carbapenem during
hospital stay, isolation season, and sample type. For all data,
logistic regression analysis models were used to obtain odds
ratios (ORs) and 95% confidence intervals (CIs) for analysis
of independent risk factors associated with the occurrence
of CRKP. Categorical variables were compared using χ2 test
or two-tailed Fisher exact test, with p < 0.05 considered

4https://cge.cbs.dtu.dk/services/
5http://itol.embl.de/login.cgi
6https://server.gview.ca/
7http://rast.nmpdr.org/

statistically significant. All statistical analyses were processed in
SPSS version 22.0.

Data Availability
The draft genome sequences of 32 CRKP isolates have been
deposited in the GenBank database under BioProject accession
no. PRJNA705380. The complete genome sequences of three
blaNDM−1-positive CRKP isolates obtained by hybrid assembly
have been deposited in GenBank with accession numbers C11
(pending, deposited in figshare database temporarily), C20
(CP084103-CP084106), and C39 (CP061700-CP061702). The
assembled plasmid sequences of four strains (C13, C26, C31,
and C38) were deposited in the figshare database (https://doi.
org/10.6084/m9.figshare.14199287.v5) for reference. Additional
data that support the findings of this study are available from the
corresponding authors upon reasonable request.

RESULTS

Characterization of
Carbapenem-Resistant Klebsiella
pneumoniae, Resistance Phenotypes,
and Transferability
From March 2018 to August 2019, a total of 1,413 isolates
were collected from different wards or ICUs of a newly
established hospital in Henan province, China. In these
isolates, K. pneumoniae (193, 14%) was the most prevalent
species, followed by Acinetobacter baumannii [177 (13%)],
Pseudomonas aeruginosa [158 (11%)], E. coli [116 (8%)], and
Staphylococcus aureus [92 (7%)], which were the common
nosocomial pathogens (Supplementary Table 2). Klebsiella
pneumoniae isolates were from 18 different wards or ICUs
in the hospital (Supplementary Table 3). PCR and Sanger
sequencing identified 35 [of 193 (18.1%)] carbapenemase-
producing K. pneumoniae. Among them, 30 isolates were
positive for blaKPC−2, whereas the remaining five isolates carried
blaNDM−1. All strains exhibited resistance to tested β-lactam
antibiotics meropenem, imipenem, aztreonam, ampicillin,
ampicillin–sulbactam, piperacillin, piperacillin–tazobactam,
amoxicillin–clavulanic acid, cefazolin, ceftazidime, cefotaxime,
and cefotaxime. Meanwhile, most strains were resistant to
ciprofloxacin [30/35 (85.7%)], levofloxacin [30/35 (85.7%)],
chloramphenicol [14/35 (40%)], gentamicin [33/35 (94.3%)],
amikacin [25/35 (71.4%)], trimethoprim-sulfamethoxazole
[21/35 (60%)], and tetracycline [20/35 (57.1%)], but remained
susceptible to tigecycline [34/35 (97.1%)] and polymyxin B
[35/35 (100%)] (Supplementary Table 4). To investigate the
transferability of the carbapenemase-encoding genes, 35 strains
were subjected to conjugation assay. However, only five isolates
(C11, C12, C1, C29, and C21) including two blaNDM−1-positive
strains and three blaKPC−2-positive strains could successfully
transfer the carbapenem resistance phenotype to the recipient
strain YZ6 HygR, suggesting the carbapenemase-encoding genes
of them were located on conjugative plasmids (Figure 1).

Frontiers in Microbiology | www.frontiersin.org 4 November 2021 | Volume 12 | Article 74109377

https://cge.cbs.dtu.dk/services/
http://itol.embl.de/login.cgi
https://server.gview.ca/
http://rast.nmpdr.org/
https://doi.org/10.6084/m9.figshare.14199287.v5
https://doi.org/10.6084/m9.figshare.14199287.v5
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-741093 November 9, 2021 Time: 11:30 # 5

Chen et al. Characterization of CRKP Isolates

FIGURE 1 | Phylogenetic analysis of 35 CRKP isolates and their basic characterization. blaNDM−1- and blaKPC−2-positive strains are highlighted in blue and gray
background, respectively. Circles outside the tree indicate the STs and serotypes of each strain. The isolation time and sites are shown in blue words (RM, respiratory
medicine ward; CHD, coronary heart disease ward; CCU, coronary care unit; CICU, comprehensive intensive care unit; NEP, nephrology ward; TS, thoracic surgery
ward; ACICU, adult cardiac intensive care unit; HF, heart failure ward; NEU, neurology ward; CCICU, children cardiac intensive care unit). The labels marked in red
represent the carbapenem resistance phenotype could successfully transfer by conjugation.

Risk Factors Associated With the
Emergence of Carbapenem-Resistant
Klebsiella pneumoniae
To evaluate the risk factors accounting for the emergence of
CRKP, clinical information without individual identification of
patients was compared (Supplementary Tables 5, 6). Among
35 CRKP colonization cases ranged from 3 days to 80 years
old, 66% (23/35) were male and 71.4% (25/35) were older than
50 years, suggesting CRKP tended to invade middle-aged and
elder patients. Furthermore, colonization was observed in 10
different wards or ICUs. Among them, 60% (21/35) of cases
were from ICUs. Besides, 71.4% (25/35) of patients used to
experience carbapenem treatment. Comparing with the CRKP
non-carriers, no significant differences were detected in gender,
age, isolation season, ICU patients, and sample source groups,
but the correlation was detected between carbapenem treatment

history and being CRKP positive (p = 0.009) [OR = 3.453 (95%
CI = 1.369–8.707)].

Multilocus ST Genotyping, Serotypes,
and Phylogenetic Analysis of
Carbapenem-Resistant Klebsiella
pneumoniae Isolates
Analysis of genomic characteristics revealed that the blaKPC−2-
positive isolates belonged to three known STs (ST11, ST15,
and ST2237), with ST11 being the most dominant type [24/30
(80%)]. In contrast to the blaKPC−2-positive isolates, five
blaNDM−1-positive strains exhibited diverse STs including ST37,
ST1383, and ST304. To our knowledge, ST1383 and ST304
K. pneumoniae strains were not associated with carbapenem
resistance; especially, the ST304 type has never been reported
to carry blaNDM−1. Analysis of wzi locus revealed that seven
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TABLE 1 | Summary of all carbapenem-resistant Klebsiella pneumoniae strains revealed by WGS data and virulence assay in this study.

Strains STs/capsular
types

Antimicrobial resistance genes Virulence genes String test Galleria mellonella
larvae infection

(survival rate at 72 h)

Virulence
scoreb

C13 ST11/KL64 qnrS1, aadA2, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, catA2,
dfrA14, fosA, sul2, tet(A)

Yersiniabactin, aerobactin, rmpA,
rmpA2

Negative 20% 4

C32 ST11/KL64 qnrS1, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, catA2, fosA, sul2,
tet(A)

Yersiniabactin, aerobactin, rmpA,
rmpA2

Negative —a 4

C34 ST11/KL64 qnrS1, aadA2, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, dfrA14,
fosA, sul2, tet(A)

Yersiniabactin, aerobactin, rmpA,
rmpA2

Negative — 4

C36 ST11/KL64 qnrS1, aadA2, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, dfrA14,
fosA, sul2, tet(A)

Yersiniabactin, aerobactin, rmpA,
rmpA2

Negative — 4

C24 ST11/KL64 qnrS1, aadA2, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, catA2,
dfrA14, fosA, sul2, tet(A)

Yersiniabactin, aerobactin, rmpA,
rmpA2

Negative — 4

C33 ST11/KL64 qnrS1, aadA2, blaCTX−M−65, blaKPC−2, blaSHV−11, fosA, sul2, tet(A) Yersiniabactin, aerobactin, rmpA,
rmpA2

Negative — 4

C26 ST11/KL64 qnrS1, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, catA2, dfrA14,
fosA, tet(A)

Yersiniabactin, aerobactin, rmpA2 Positive 0% 4

C5 ST11/KL64 qnrB4, aac(3)-IId, aadA2, armA, blaDHA−1, blaKPC−2, blaSHV−11, blaTEM−1B,
catA2, fosA, mph(A), mph(E), msr(E),

Yersiniabactin, aerobactin, rmpA2 Negative — 4

C19 ST11/KL64 aadA2, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, fosA Yersiniabactin, aerobactin,
Salmonchelin, rmpA, rmpA2

Negative 0% 4

C14 ST11/KL64 aadA2, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, fosA Yersiniabactin, aerobactin,
Salmonchelin, rmpA, rmpA2

Negative 0% 4

C23 ST11/KL64 aadA2, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, fosA, dfrA12,
mph(A)

Yersiniabactin, aerobactin, rmpA2 Negative — 4

C31 ST11/KL110 aadA2, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, fosA, dfrA12,
mph(A)

Yersiniabactin, aerobactin,
Salmonchelin, rmpA, rmpA2

Negative 0% 4

C16 ST11/KL10 ARR-3, oqxA, oqxB, aac(3)-IId, aac(6′)Ib, aadA16, aadA2, aph(3′)-Ia, strA, strB,
blaCTX−M−15, blaKPC−2, blaSHV−11, dfrA27, fosA, mph(A), tet(A)

Yersiniabactin Negative — 1

C10 ST11/KL25 qnrS1, oqxA, oqxB, aac(3)-IId, aadA2, rmtB, strA, strB, blaCTX−M−65, blaKPC−2,
blaSHV−11, blaTEM−1B, catA2, dfrA14, fosA, sul2, tet(A), tet(D)

Yersiniabactin Negative — 1

C8 ST11/KL47 oqxA, oqxB, aadA2, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−11, blaTEM−1B,
catA2, fosA

Yersiniabactin Negative — 1

C25 ST11/KL47 qnrB6, qnrS1, blaCTX−M−3, blaKPC−2, blaSHV−11, blaTEM−1B, dfrA14, fosA Yersiniabactin Negative — 1

C18 ST11/KL47 oqxA, oqxB, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−12, blaTEM−1B, catA2, fosA Yersiniabactin, aerobactin, rmpA2 Negative — 4

C30 ST11/KL47 oqxA, oqxB, aadA2, rmtB, blaCTX−M−65, blaKPC−2, blaSHV−11, blaTEM−1B,
catA2, fosA, mph(E)

Yersiniabactin, aerobactin, rmpA2 Negative — 4

C27 ST11/KL47 oqxA, oqxB, aac(6′)Ib, aadA2, aph(3′)-Ia, blaCTX−M−15, blaCTX−M−65, blaKPC−2,
blaOXA−1, blaSHV−11, blaTEM−1B, catA2, fosA, tet(A)

Yersiniabactin, aerobactin, rmpA2 Negative — 4

C38 ST11/KL47 oqxA, oqxB, aac(6′)Ib, rmtB, aph(3′)-Ia, blaCTX−M−15, blaCTX−M−65, blaKPC−2,
blaOXA−1, blaSHV−11, blaTEM−1B, catA2, fosA, tet(A)

Yersiniabactin, aerobactin, rmpA2 Negative 0% 4

C7 ST11/KL47 oqxA, oqxB, aac(6′)Ib, aadA2, rmtB, aph(3′)-Ia, blaCTX−M−15, blaCTX−M−65,
blaKPC−2, blaOXA−1, blaSHV−11, blaTEM−1B, fosA, tet(A)

Yersiniabactin, aerobactin, rmpA2 Negative — 4

(Continued)
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TABLE 1 | (Continued)

Strains STs/capsular
types

Antimicrobial resistance genes Virulence genes String test Galleria mellonella
larvae infection

(survival rate at 72 h)

Virulence
scoreb

C9 ST11/KL47 oqxA, oqxB, aac(6′)Ib, rmtB, aph(3′)-Ia, blaCTX−M−65, blaKPC−2, blaOXA−1,
blaSHV−11, blaTEM−1B, fosA, tet(A)

Yersiniabactin, aerobactin, rmpA2 Negative — 4

C35 ST11/KL15 oqxA, oqxB, aac(3)-IId, blaKPC−2, blaSHV−11, fosA, tet(D) Yersiniabactin Negative — 1

C4 ST11/KL62 ARR-3, oqxA, oqxB, aac(3)-IId, aadA16, strA, strB, blaCTX−M−14, blaKPC−2,
blaSHV−11, blaTEM−1B, dfrA27, fosA, mph(A), sul1, sul2, tet(D)

Yersiniabactin Negative — 1

C37 ST37/KL15 ARR-3, qnrA7, oqxA, oqxB, aac(3)-IId, blaNDM−1, blaSFO−1-like, blaSHV−11,
blaTEM−1B, blaVEB−3, dfrA27, fosA, mph(A), sul1

Yersiniabactin Negative — 1

C39 ST37/KL15 ARR-3, qnrA7, oqxA, oqxB, aac(3)-IId, blaNDM−1, blaSFO−1-like, blaSHV−11,
blaTEM−1B, blaVEB−3, dfrA27, fosA, mph(A), sul1

Yersiniabactin Negative — 1

C11 ST1383/KL110 oqxA, oqxB blaNDM−1, blaSHV−11, fosA, blaSHV−12 None Negative — 0

C12 ST1383/KL110 oqxA, oqxB blaNDM−1, blaSHV−11, fosA, blaSHV−12 None Negative — 0

C20 ST304/KL2 qnrS1, oqxA, oqxB, aac(3)-IId, aadA2, blaCTX−M−14, blaNDM−1, blaSHV−11, fosA Yersiniabactin Negative — 1

C6 ST15/KL24 qnrB4, oqxA, oqxB, aac(6′)-IIa, aadA2, armA, blaKPC−2, blaLEN15, dfrA14, fosA,
mph(E), msr(E), sul1, sul2

Yersiniabactin, aerobactin, rmpA2 Positive 0% 4

C1 ST15/KL19 oqxA, oqxB, aac(3)-IId, aac(6′)Ib, aadA2, aph(3′)-Ia, strA, strB, blaCTX−M−15,
blaDHA−1, blaKPC−2, blaOXA−1, blaSHV−28, blaTEM−1B, dfrA12, fosA, mph(A),
sul1, sul2

None Negative — 0

C29 ST15/KL19 qnrB4, oqxA, oqxB, aac(3)-IId, aac(6′)Ib, aadA2, aph(3′)-Ia, armA, blaCTX−M−15,
blaKPC−2, blaOXA−1, blaSHV−11, blaTEM−1B, catA2, fosA, mph(A), mph(E),
msr(E), sul1

Yersiniabactin, aerobactin, rmpA2 Negative 0% 4

C21 ST2237/KL19 qnrB4, oqxA, oqxB, aph(3′)-Ia, armA, blaDHA−1, blaKPC−2, blaOXA−1,
blaSHV−11, fosA, mph(E), msr(E), sul1

Yersiniabactin, aerobactin, rmpA2 Negative — 4

C17 ST2237/KL19 qnrB4, oqxA, oqxB, aac(3)-IId, aadA2, aph(3′)-Ia, armA, blaDHA−1, blaKPC−2,
blaSHV−11, dfrA12, fosA, mph(A), mph(E), msr(E), sul1

Yersiniabactin, aerobactin, rmpA2 Negative — 4

C2 ST2237/KL19 qnrB4, oqxA, oqxB, aac(3)-IId, armA, blaDHA−1, blaKPC−2, blaSHV−11, fosA,
mph(E), msr(E), sul1

Yersiniabactin, aerobactin, rmpA2 Negative — 4

aThe strain was not selected for Galleria mellonella larvae infection assay.
bVirulence score is determined by Kleborate software; virulence increases with the score.
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FIGURE 2 | Circular comparison of pC20-394 kb and four most related plasmids available in NCBI. The outmost circle shows the coding genes of pC20-394 kb.

different types (KL64, KL110, KL10, KL25, KL47, KL15, and
KL62) existed in ST11 isolates, whereas KL24 and KL19
were identified in ST15 and ST2237 isolates. In addition,
blaNDM−1-positive strains possessed three serotypes including
KL15, KL110, and KL2. Roary identified a total of 9,610
genes in pangenome, including core genes (n = 3,951), soft
core genes (n = 156), shell genes (n = 2,100), and cloud
genes (n = 3,403) (Supplementary Figures 1, 2). A maximum
likelihood phylogenetic tree demonstrated that all strains were
clustered into five clades. ST11 blaKPC−2-positive isolates were
grouped into cluster I, whereas the remaining blaKPC−2-positive
isolates including three ST15 strains and three ST2237 strains
were assigned to cluster V, suggesting the clonal expansion of
blaKPC−2-positive isolates dominated by ST11 K. pneumoniae
along with ST15 and ST2237 K. pneumoniae that existed in this
hospital. By contrast, five blaNDM positive isolates were classified
into cluster II (two ST37 strains), III (two ST1383 strains), and
IV (one ST304 strain), respectively. The diversity of multilocus
ST showed that blaNDM-carrying strains had polyclonal spread.
However, the epidemic features were distinguished between

blaKPC−2-harboring and blaNDM−1-harboring isolates, as the
blaKPC−2-harboring isolates were detected in 10 different wards
and ICUs, whereas the blaNDM−1 strains were solely concentrated
in children cardiac ICU. These findings suggested that the
clonal spread of ST11 blaKPC−2-positive isolates and local
polyclonal spread of blaNDM−1-positive isolates have existed
in this hospital (Figure 1). Furthermore, the ST11 and ST15
CRKP strains reported in other studies (Liu et al., 2012; Li
et al., 2020; Zheng et al., 2020) were also highly related to
corresponding strains in this study. These strains derived from
different hospitals in China, suggesting the CRKP involved in
this study has been widely spread among the clinical settings
(Supplementary Figure 3).

Resistome Analysis of
Carbapenem-Resistant Klebsiella
pneumoniae Isolates
Resistome analysis revealed that the blaKPC−2-positive strains
harbored more types of AMR genes than those found in
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FIGURE 3 | (A) Virulence gene distribution, string test, and virulence scores of all CRKP isolates. The distribution of virulence factors is shown in purple solid
(positive) and hollow (negative) rectangles. A tick represents positive result of string test, and the virulence score is shown by a red bar and marked with
corresponding numbers in right. (B). Virulence potential of eight CRKP strains in a G. mellonella larvae infection model. The effect of 1 × 106 CFU of each strain on
survival was assessed in G. mellonella larvae. 1Virulence score is determined by Kleborate software; virulence increases with the score.

blaNDM−1-positive strains. Moreover, blaKPC−2-positive strains
possessed almost all classes of genes conferring resistance
to aminoglycoside, quinolone, sulfonamide, fosfomycin,
tetracycline, and β-lactam, with the most prevalent being fosA,
blaTEM−1B, rmtB, aadA2, and blaCTX−M−65 genes, which
implied that blaKPC−2 had potential risks of cotransmission with
other AMR genes. However, the AMR profiles of blaNDM−1-
positive isolates were narrower than those of blaKPC−2-positive
isolates. They were resistant to β-lactam but still susceptible
to other antibiotics including ciprofloxacin, levofloxacin,
amikacin, polymyxin B, and tigecycline. Interestingly, three
blaNDM−1-positive strains carried rare ESBLs blaSFO−1-
like (with three bases mutation compared to blaSFO−1)
and blaVEB−3, which were usually excluded from routine
surveillance (Table 1).

Detailed Analysis of Novel
blaNDM−1-Bearing Plasmids From Strain
C20
Five blaNDM−1-positive strains were separated to three clades
based on phylogenetic analysis; therefore, three representative
isolates from different branches were selected (C11, C20,
and C39) for further exploration of genetic structures via
MinION Nanopore long-read sequencing. The results showed
that blaNDM−1 was located on three distinct plasmids IncX3,
IncFIB/IncHI1B, and IncHI5-like, respectively. In strain
C11, blaNDM−1 was found in typical IncX3 plasmid, which
disseminated in human or animal sources worldwide and
severed as the major vehicle of blaNDM transmission to evolve
with the generation of new NDM variants (Wu et al., 2019).
In addition to blaNDM−1, the plasmid also carried blaSHV−12.

In strain C20, blaNDM−1-bearing plasmid pC20-394 kb with
52.1% G + C content and 458 predicted ORF was 394 kb
in size and possessed IncFIB and IncHI1B replicons. Apart
from blaNDM−1, this latter plasmid harbored ESBL genes
blaCTX−M−14, blaLAP−2, and blaTEM−1B; tetracycline resistance
gene tet(A); aminoglycoside resistance genes aadA2 and
aac(3)-IId; sulfonamide resistance gene sul1; trimethoprim
resistance genes dfrA1 and dfrA12; and macrolide resistance
gene mph(A). Except blaCTX−M−14, aadA2, and dfrA12 genes,
the remaining AMR genes were in a 97-kb MDR region.
Despite that the plasmid could not transfer by conjugation, the
coselection of blaNDM−1 may occur because of the existence
of abundant AMR genes. Two integrons were found in
different positions. The common genetic structure 1ISAba125-
blaNDM−1-bleMBL-trpF-dsbC was embedded in downstream of
In183, generating the complex class I integron In183-ISCR1-
blaNDM−1 structure. Another In1248-like integron with the
genetic array intI1-dfrA12-aadA2-qacE11-sul1 was flanked
by IS26 and IS5075. BLASTn search of pC20-394 kb against
the NCBI nr database showed that less homologous sequences
were found between this plasmid and the known plasmids;
the maximum similarity was 99% identical at 58% coverage
(pAR-0161_plasmid_unnamed, CP028952) (Figure 2 and
Supplementary Figure 4). The emergence of novel blaNDM−1-
bearing MDR plasmid in ST304 K. pneumoniae C20 implied
that the novel plasmid mediated the transmission of blaNDM−1
and expanded the host ranges of blaNDM−1. Furthermore, the
detailed analysis of IncHI5-like blaNDM−1-bearing plasmid
in C39 has been reported in another study; the plasmid was
334,893 bp in length and possessed a large MDR region,
which contained abundant AMR genes and mobile elements
(Liu et al., 2021).
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FIGURE 4 | Circular comparison between the four blaKPC−2-bearing plasmids in this study and other most similar plasmids in the NCBI nr database. The plasmid
pC13_148 kb was used as the reference in the outmost ring.

Genetic Characteristics and Virulence
Phenotype of Carbapenem-Resistant
Klebsiella pneumoniae Indicate the
Emergence of blaKPC−2-Positive
Hypervirulent Klebsiella pneumoniae
A total of six classes of virulence factor analysis were conducted
among these isolates. Fewer virulence genes were possessed by
blaNDM−1-positive strains than blaKPC−2-positive isolates. In
blaNDM−1-positive strains, two isolates (C11 and C12) were not
found to carry any virulence factors, whereas the remaining
three isolates (C37, C39, and C20) harbored only one virulence
factor yersiniabactin. Correspondingly, they also obtained lower
virulence scores (Figure 3A). Analysis of the ybt locus revealed
that 32 isolates were positive for the chromosomally encoded
yersiniabactin, of which the dominant type was yersiniabactin
lineage 9 within ICEkp3 element distributed in all ST11-
blaKPC−2 strains. Twenty-two blaKPC−2-positive strains harbored
aerobactin lineage iuc1 with aerobactin ST1. Besides, three
salmochelin-producing strains, nine rmpA-positive strains, and

23 rmpA2-positive strains were also detected in blaKPC−2-
positive strains. To get further insight into virulence phenotype
of CRKP, all isolates were subjected to string test. The positive
results were observed in C6 (ST15/KL24) and C26 (ST11/KL64).
However, a negative string test could not predicate low
virulence (Russo and Marr, 2019). Therefore, eight representative
blaKPC−2-positive strains from clusters I and V, which contained
all blaKPC-carrying strains, were conducted with G. mellonella
larvae infection assay. Seven strains (C6, C14, C31, C26, C19,
C29, and C38) resulted in 0% survival at 24 h with an inoculum of
106 CFU, and the survival rate was 20% after the infection of C13
at 72 h (Figure 3B). No deaths were observed in PBS treatment
group, and the survival rate of negative control YZ6 was higher
than the experimental group.

Comparative Analysis of Plasmids in
ST11 blaKPC−2-Positive Strains
In order to gain further insights into the genetic basis of
virulence and antibiotic resistance of plasmids harbored by ST11
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FIGURE 5 | Circular comparison between the classical virulence plasmid pLVPK and the assembled plasmid contigs based on Illumina short-read data of the other
11 CRKP strains in this study.

blaKPC−2-positive isolates, plasmids of four ST11 strains (C13,
C26, C31, and C38) were sequenced by MinION Nanopore
sequencing platform. As the results showed, blaKPC−2-bearing
plasmids of C13, C26, C31, and C38 shared similar backbone.
These plasmids ranged from 99 to 148 kb and were classified
as IncFII/IncR plasmid. Among them, the largest plasmid
pC13_148 kb harbored by C13 was 148,462 bp and carried genes
related to plasmid replicon, maintenance, conjugative elements,
and AMR genes including blaKPC−2, blaCTX−M−55, blaTEM−1B,
and blaSHV−12. BLASTn analysis demonstrated that it was similar
to pSH2-85K-MDR (MH643792) and pKPC-L388 (CP029225)
from K. pneumoniae, indicating the universal prevalence of this
plasmid among K. pneumoniae (Figure 4). Besides, more detailed
analysis of the remaining blaKPC−2-bearing plasmids in ST11
strains was performed using pC13_148 kb as reference. All ST11
isolates possessed this type of plasmid, with the absence of some
specific regions. The blaKPC−2 gene was located on the same
genetic context, flanked by genes belonging to the Tn3-based
transposon family insertion sequences (ISKpn6 and ISKpn27).
Obviously, the deficiency of conjugation transfer region was
observed in the majority of plasmids, which may explain why
the blaKPC−2-bearing plasmids of most ST11 strains were non-
conjugative. However, several blaKPC−2-bearing plasmids (C33,
C32, C23, C19, and C14) with intact conjugation transfer

regions were unable to be transferred successfully; the underlying
mechanism warranted further study (Supplementary Figure 5).

Three virulence plasmids carried by C13, C26, and C31 were
aligned well with classical virulence plasmid pLVPK (GenBank
accession AY378100), a 219-kb plasmid that harbors iroBCDN,
iucABCD, rmpA, and rmpA2. Furthermore, we found the similar
plasmid structure presented in other eight ST11 strains based on
Illumina-based contigs analysis (Figure 5).

Phenotypic Assays Proved the
Carbapenem-Resistant Klebsiella
pneumoniae Isolates Had Remarkable
Environmental Adaptability
To evaluate indicators of survival in the clinical settings of
CRKP isolates in this study, according to the previous literature
(Heiden et al., 2020), the fitness, desiccant resilience, biofilm
formation, human serum resistance, and siderophore secretion
assays were performed. To facilitate the analysis of the results,
a total of 17 strains covering 15 representative CRKP isolates in
this study and two control strains were divided into five groups,
including A group (nine blaKPC−2-harboring ST11 strains), B
(three blaKPC−2-harboring ST15 or ST2237 strains), C (three
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FIGURE 6 | Results of phenotypic experiments to evaluate the fitness and viability of CRKP. Five groups with background color in pale purple (A: blaKPC−2-ST11
group), light pink (B: blaKPC−2-ST15 and ST2237 group), green (C: blaNDM−1-positive group), gray (D: standard strain ATCC700603), and yellow (E: YZ6),
respectively. (A) Growth conditions of CRKP and control isolates over 5 h. (B) Comparison of the changes of CRKP and control isolates amount during desiccation.
n.s., not significant. (C) Biofilm formation of CRKP and control isolates; the value represents the absorbance values at 590 nm. n.s., not significant. (D) Comparison
of the changes of CRKP and control isolates amount incubation in human serum for 4 h. n.s., not significant.

blaNDM−1-positive strains), D (K. pneumoniae ATCC700603),
and E (clinical cKP HS11286 derivative YZ6).

We observed no significant difference in growth rates of the
A, B, and C groups when compared to control groups. However,
it was only found that the growth rate of the C group was
significantly lower than that of group E at 2 h (p = 0.044 at 2 h)
(Supplementary Table 7), which will be worth exploring further.
Subsequently, we want to evaluate the performance of CRKP
isolates under extreme dry environment, its capacity for biofilm
formation, and the tolerance in human serum, which allowed
us to assess the viability of CRKP in clinical settings and host.
Desiccation resilience and human serum resistance experiments
showed high survival rates of CRKP isolates under drying and
human serum pressure. Comparable results were also obtained in
biofilm formation, which suggested that these CRKP isolates will
persist in this hospital for a long time, either under the clinical
pressure or in patients (Figure 6).

Nevertheless, the siderophore secretion capacity of A group
(blaKPC−2-ST11) was significantly higher than C (blaNDM−1-
positive group, p = 0.005), D (standard K. pneumoniae
ATCC700603, p = 0.002), and E (YZ6, p = 0.005), but no
significant difference was found between the A and B groups. This
might be the role of the presence of yersiniabactin, aerobactin,
and salmochelin in ST11 blaKPC−2-positive strains. However,

the decreased siderophore secretion capacity was also observed
in blaKPC−2-harboring ST15 strain C1, as it exhibited quite
smaller secretion zone in absence of those genes encoding
siderophores (Figure 7).

DISCUSSION

Our study systematically demonstrated the emergence of CRKP
in a newly established hospital. Among these CRKP strains,
we found blaKPC−2 harboring isolates with hypervirulence and
multidrug resistance phenotype spread throughout the hospital
for a long term, whereas blaNDM−1 carrying strains with novel ST
types and plasmids were detected only in children cardiac ICU.
Importantly, these isolates showed superior adaptive ability in
clinical environment and host, which was likely due to the strong
biofilm formation capacity. As a reservoir of pathogenic bacteria,
hospital is often regarded as an ideal setting to investigate the
epidemic characteristics of MDR strains (Yang et al., 2013; Wang
et al., 2019), especially K. pneumoniae (Hu et al., 2020).

We identified the risk factors responsible for the occurrence
of CRKP. Not surprisingly, it was found that exposure to
carbapenem was associated with the emergence of CRKP,
which was consistent with the previous investigations of CRKP
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FIGURE 7 | Results of siderophore secretion experiments. (A) The siderophore secretion diameters (showed in millimeters) of CRKP and control isolates. n.s., not
significant, ∗p < 0.01. (B) The siderophore secretion zone of six representative isolates on CAS agar; the orange–yellow ring around the colonies indicates the
siderophore secretion.

(Liu et al., 2019a) and carbapenem-resistant P. aeruginosa (Lee
et al., 2017; Zhang et al., 2018). Furthermore, previous study
pointed out that carbapenem use with insufficient infection
control measure might increase the risk of colistin resistance
in K. pneumoniae (Gundogdu et al., 2018). Therefore, prudent
carbapenem use is vital to reduce the production of drug-resistant
bacteria in clinical settings.

It was found that the ST11 blaKPC−2-positive K. pneumoniae
was the dominant strain in this hospital. However, the blaKPC−2-
bearing plasmids among them were unable to transfer, which
may due to the absence of the conjugation transfer genes in
most plasmids. The genetic context of blaKPC−2 shared the
core structure with ISKpn27-blaKPC−2-ISKpn6, suggesting that
these mobile elements played a key role in the dissemination
of blaKPC−2. Virulence assay revealed that most of blaKPC−2-
positive strains were associated with hypervirulence, which
could be mainly attributed to the existence of various virulence
factors. Siderophore production was an important biomarker
to distinguish hvKP and cKp (Russo et al., 2018). Generally,
salmochelin, yersiniabactin, aerobactin, and enterobactin

were regarded as typical siderophores to assist bacteria to
acquire iron ion (Bachman et al., 2011) and involved in the
virulence of Enterobacteriaceae and human infection (Schubert
et al., 2000; Lam et al., 2018). The majority of blaKPC−2-
positive K. pneumoniae encoded siderophore yersiniabactin
and aerobactin, causing the siderophore secretion to be
significantly higher than that of control groups. In addition,
some strains carried the mucoid phenotype regulators rmpA
and rmpA2, yet they were not positive for string test. It may be
attributed to the fact that the expression of hypermucoviscosity
phenotype was a fine-tuned process, which needed the mutual
assistance of multiple genes (Walker et al., 2019). Moreover,
the distribution of virulence factors in blaKPC−2 isolates
may be diverse. For example, two virulence factors rmpA2
and aerobactin, which had been detected in Illumina data
of C38 strain, were not found in the complete plasmid
sequence, manifesting that these two genes were located
on chromosome. By contrast, the pLVPK-like plasmid was
detected in 11 ST11 blaKPC−2 isolates. This plasmid harbored
a set of virulence genes, including iroBCDN, iucABCD,
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rmpA, and rmpA2, indicating that the hypervirulent phenotypes
of these strains were mediated by plasmids.

Unlike the traditional hypervirulent serotype KL1, KL2, and
KL57, the major types of blaKPC−2-positive strains in this
study were KL47 and KL64. In the early years, there were few
reports regarding KL47 and KL64 hypervirulent K. pneumoniae.
However, in recent 2 years, reports began to emerge (Liu
et al., 2019b; Xie et al., 2020; Yang et al., 2020a; Zhang et al.,
2020), and most of them were found in China. A recent
study demonstrated that ST11-KL64 and ST11-KL47 isolates
with enhanced virulence and transmissibility have emerged and
undergone local expansion in China (Zhou et al., 2020). Our
study also highlighted the potential hypervirulence of these
two serotypes; more attention should be focused on them in
further investigation.

In this study, blaNDM−1-positive CRKP occurred locally,
as they were solely detected in children cardiac ICU with
low virulence. The blaNDM−1 gene derived from pediatrics
n China were frequently reported (Ding et al., 2019; Wang
et al., 2020). Klebsiella pneumoniae was regarded as a key
trafficker of AMR genes from environmental to clinical settings,
and hundreds of mobile AMR genes have been found in
this species (Wyres and Holt, 2018). Hence, it could explain
why ST304 and ST1383 K. pneumoniae isolates were found
to harbor blaNDM in our study. Apart from IncX3 plasmid,
blaNDM was found in large MDR plasmids, including IncHI5-
like and IncFIB/IncHI1B plasmids. The characteristics of
IncFIB/IncHI1B plasmid harboring carbapenemase-encoding
genes have been described previously (Matsumura et al., 2018).
However, the structure of blaNDM−1-bearing plasmid containing
IncFIB/IncHI1B replicons in our study was novel. It was a
megaplasmid and carried the resistance determinants to heavy
metals and several conjugal transfer genes. Abundant insertion
sequences and two integrons were distributed in different
locations among accessory regions, which might drive the
formation of the novel structure of this plasmid. These findings
alert us that the surveillance of blaNDM−1 in nosocomial setting
needs to be strengthened.

There are still some drawbacks in this study. First, the sample
size was not enough to objectively elucidate the distribution of
CRKP in a large region. Second, the results of this study may not
be able to apply to other hospitals. Besides, the strategy of sample
collection should be improved in future studies; in addition
to patients, more attention should focus on the nosocomial
environment and staffs.

CONCLUSION

The data presented in this study revealed two types of CRKP
(blaKPC−2 and blaNDM−1) with distinct epidemiological features

occurring in a newly established hospital in Henan province.
Carbapenem exposure was associated with emergence of CRKP.
These strains with superior viability constitute substantial threats
in clinical settings. The clonal spread of ST11 hypervirulent
blaKPC−2-positive K. pneumoniae, the occurrence of blaNDM−1-
positiveK. pneumoniaewith novel ST type, and the dissemination
of novel carbapenemase-encoding plasmids should be included
in future surveillance priorities.
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Objectives: Carbapenemase-producing organisms (CPOs) are associated with high 
mortality rates. The recent development of β-lactamase inhibitors (BLIs) has made it 
possible to control CPO infections safely and effectively with β-lactams (BLs). This study 
aims to explicate the quantitative relationship between BLI’s β-lactamase inhibition and 
CPO’s BL susceptibility restoration, thereby providing the infectious disease society 
practical scientific grounds for regulating the use of BL/BLI in CPO infection treatment.

Methods: A diverse collection of human CPO infection isolates was challenged by three 
structurally representative BLIs available in the clinic. The resultant β-lactamase inhibition, 
BL susceptibility restoration, and their correlation were followed quantitatively for each 
isolate by coupling FIBA (fluorescence identification of β-lactamase activity) and BL 
antibiotic susceptibility testing.

Results:The β-lactamase inhibition and BL susceptibility restoration are positively 
correlated among CPOs under the treatment of BLIs. Both of them are dependent on the 
target CPO’s carbapenemase molecular identity. Of note, without sufficient β-lactamase 
inhibition, CPO’s BL susceptibility restoration is universally low across all tested 
carbapenemase molecular groups. However, a high degree of β-lactamase inhibition 
would not necessarily lead to a substantial BL susceptibility restoration in CPO probably 
due to the existence of non-β-lactamase BL resistance mechanisms.

Conclusion: BL/BLI choice and dosing should be guided by quantitative tools that can 
evaluate the inhibition across the entire β-lactamase background of the CPO upon the 
BLI administion. Furthermore, rapid molecular diagnostics for BL/BLI resistances, especially 
those sensitive to β-lactamase independent BL resistance mechanisms, should be exploited 
to prevent ineffective BL/BLI treatment.

Keywords: carbapenemase, β-lactamase inhibitor, antimicrobial stewardship, β-lactam antibiotics, carbapenem 
resistance
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INTRODUCTION

Carbapenemase-producing organisms (CPOs) are multidrug-
resistant pathogens associated with high mortality rates (13.3–
67%; Tamma et al., 2017). The recent development of β-lactamase 
inhibitors (BLIs) that could inhibit carbapenemases, the most 
potent type of β-lactamases, has made it possible to control 
CPO infections safely and effectively with β-lactam (BL) 
antibiotics (Cui et  al., 2019; El Hafi et  al., 2019; Sheu et  al., 
2019; Pogue et  al., 2020). Unfortunately, recent clinical data 
have emerged demonstrating that treatment failures and 
subsequent bacterial resistance development may occur in CPO 
treatments with BLs and novel BLIs, necessitating further 
development of guidelines on rational use of BLs and BLIs 
for CPO infections (Shields et  al., 2016; Cui et  al., 2020).

Clinically, BLIs are available together with β-lactam antibiotics 
(BLs) at fixed dosages, forming the so-called BL/BLI agents. 
The rational choice of BL/BLI for CPO infections could appear 
straightforward according to the knowledge of each BLI’s 
carbapenemase inhibitory spectrum and carbapenemase type(s) 
of the CPO. However, whether the desired anti-CPO effect of 
the chosen BL/BLI agent could be  achieved across diverse 
pathogens by a fixed BLI dosage is still of great concern for 
the infectious disease society (Spellberg and Bonomo, 2016) 
due to the large variety of CPO carbapenemase molecular 
structures and expression statuses. Moreover, many CPO 
co-produce other β-lactamases, including extended-spectrum 
β-lactamase (ESBL) and AmpC β-lactamase, both of which 
can reduce BLI activity (Ferreira et  al., 2020; Shields and Doi, 
2020). Additionally, the further complicating effects of other 
BL resistance mechanisms unrelated to β-lactamase (e.g., efflux 
pump overproduction, drug target alterations and porin 
mutations) and their influence on CPO response to BL/BLI 
agents remain unclear (Karumathil et al., 2018; Nicolas-Chanoine 
et  al., 2018; Nordmann and Poirel, 2019; Black et  al., 2020).

Our technology, fluorescence identification of β-lactamase 
activity (FIBA), has now enabled the quantification of β-lactamase 
activity in CPO regardless of their β-lactamase backgrounds 
(Sallum et  al., 2010; Erdem et  al., 2014; Khan et  al., 2014; 
Feng et  al., 2020, 2021). It uses β-lactamase enzyme-activated 
fluorophore (β-LEAF), which turns from dark to fluorescent 
when cleaved by β-lactamases, such as penicillinases, ESBL, 
AmpC β-lactamases, and carbapenemases. Therefore, the 
fluorescence increase rate (R) of β-LEAF is a direct measure 
of the activity of bacterial β-lactamases, and R is decreased 
as the β-lactamase activity is inhibited by BLIs. By coupling 
FIBA with BL susceptibility detection, this study aims to explicate 
the quantitative relationship between β-lactamase inhibition 
and BL susceptibility restoration in CPO under BLI treatment, 
thereby providing a detailed insight into the contribution of 
BLIs in CPO treatment with BLs. To this end, a diverse collection 
of human CPO infection isolates was challenged by three 
structurally representative BLIs available in the clinic (clavulanate, 
vaborbactam, and avibactam) to generate broadly applicable 
conclusions. The resultant β-lactamase inhibition, BL susceptibility 
restoration, and their quantitative correlation were investigated 
for different carbapenemase molecular groups to assist the 

future development of the current carbapenemase molecular 
type-derived BL/BLI administration guidelines for CPO  
infections.

MATERIALS AND METHODS

Bacterial Isolates, BL and BLIs
Bacterial isolates of human CPO infection were acquired from 
the CDC and FDA Antibiotic Resistance Isolate Bank. The BL 
resistance mechanisms, including the β-lactamase production, 
were identified by analyzing the whole genome sequence of 
the isolates with the Resistance Gene Identifier of the 
Comprehensive Antibiotic Resistance Database (McArthur et al., 
2013; Alcock et  al., 2020). The information of the genome 
sequences (i.e., sequence accession numbers) of the tested 
isolates was provided by the CDC and FDA Antibiotic Resistance 
Isolate Bank, and is available on the official website of this 
isolate bank. Three BLIs (clavulanate, vaborbactam, avibactam) 
and their clinically combined partner BLs (amoxicillin for 
clavulanate; meropenem for vaborbactam; ceftazidime for 
avibactam) were purchased from Sigma-Aldrich. To facilitate 
comparison, all BLIs were tested at the same concentration 
attainable in patient plasma (50 μm) (Carlier et al., 2013; Nicolau 
et  al., 2015; Lee et  al., 2019).

Quantification of β-Lactamase Inhibition
BLI’s β-lactamase inhibition was quantified by β-lactamase 
inhibition index (BI), which is defined as the ratio of β-lactamase 
activity with and without BLI. The β-lactamase activity was 
measured by FIBA as previously described (Feng et  al., 2021). 
Briefly, bacterial culture was exposed to β-lactamase enzyme-
activated fluorophore (β-LEAF), and the fluorescence increase 
rate (R), which is the direct measure of the β-lactamase activity, 
was then acquired by monitoring the β-LEAF fluorescence 
every 10 s for 10 min with an excitation wavelength of 450 nm 
and an emission wavelength of 510 nm at 37°C. Thus, BI could 
be  acquired by the equation below:

 BI R Rwithout BLI with BLI= /

BL Susceptibility Restoration
The BL susceptibility, with and without the three tested BLIs, 
was determined by measuring the minimal inhibitory 
concentration (MIC) with the broth microdilution method 
following the Clinical and Laboratory Standards Institute 
guidelines. The MIC reduction of BL due to the addition of 
BLI was defined as the BL susceptibility restoration in response 
to the tested BLI. An isolate with BL MIC reduced 4-fold 
was considered sensitized toward the tested BL by the inclusion 
of the tested BLI.

Statistical Analysis
Data analysis was performed in R (v3.6.3). BI and BL susceptibility 
restoration was compared among BLIs using Kruskal-Wallis 
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followed by post hoc pairwise Dunn testing. The quantitative 
correlation of BI with the ratio of sensitized isolates for each 
BLI was analyzed by the polynomial regression model. All 
statistical analyses were considered significant at a value of 
p < 0.05.

RESULTS

This study tested CPO infection isolates from 15 different 
species, including Pseudomonas aeruginosa, Acinetobacter 
baumannii, and 13 Enterobacteriaceae species, as shown in 
Tables 1–3. These isolates produce a range of carbapenemase 

molecular classes commonly found in clinic, including Class 
A carbapenemases (n = 43, Table  1), Class B carbapenemases 
(n = 45, Table 2), and Class D carbapenemases (n = 73, Table 3). 
Besides carbapenemases, many of the tested isolates co-produce 
non-carbapenemase β-lactamases, such as ESBL (59%) and 
AmpC β-lactamase (84%), reflecting CPO’s “complex β-lactamase 
background” encountered in clinic. In addition to β-lactamase, 
other β-lactam resistance mechanisms, such as overexpression 
of efflux pumps, inactivation of drug target, and porin mutations, 
are also found among most of the tested isolates (Tables 1–3), 
illustrating the multifactorial nature of BL resistance in CPO.

Upon the same BLI exposure, the β-lactamase inhibition, 
quantified by BI, varies widely from one isolate to another 

TABLE 1 | Class A carbapenemase-producing isolates included in this study.

Carba subtype Species

BL susceptibility (With/without BLI) Other BL resistance Mechanisms

AMX/CA MPN/VB CFZ/AV Efflux pumps
Reduced 

permeability
Target alteration

KPC C. freundii >1024/>1024 512/≤0.5 >1024/≤0.5 Y Y Y
E. cloacae >1024/1024 32/32 >1024/4 Y Y Y

>1024/>1024 256/≤0.5 >1024/≤0.5 Y Y Y
>1024/>1024 64/≤0.5 1024/≤0.5 Y Y Y
>1024/>1024 >1024/1 >1024/256 Y Y Y
>1024/>1024 64/≤0.5 1024/≤0.5 Y Y Y
>1024/>1024 64/≤0.5 512/1 – – –
>1024/>1024 128/≤0.5 >1024/2 – – –
>1024/>1024 64/≤0.5 >1024/2 – – –
>1024/>1024 256/1 >1024/2 – – –

E. coli >1024/1024 16/≤0.5 ≤0.5/≤0.5 Y Y Y
>1024/>1024 128/64 >1024/4 Y Y Y
>1024/>1024 16/≤0.5 >1024/≤0.5 Y Y Y
>1024/>1024 128/≤0.5 256/≤0.5 – – –

K. oxytoca >1024/1024 32/≤0.5 >1024/≤0.5 Y Y Y
K. ozaenae >1024/>1024 256/≤0.5 128/≤0.5 Y Y Y
K. pneumoniae >1024/>1024 1024/16 >1024/1024 Y Y Y

>1024/>1024 1024/≤0.5 256/≤0.5 Y Y Y
>1024/>1024 1024/16 >1024/8 Y Y Y
>1024/>1024 >1024/128 >1024/8 Y Y Y
>1024/>1024 1024/16 >1024/8 Y Y Y
>1024/>1024 1024/2 >1024/8 Y Y Y
>1024/>1024 >1024/64 >1024/1024 Y Y Y
>1024/>1024 >1024/32 >1024/>1024 Y Y Y
>1024/>1024 512/8 512/2 Y Y Y

>1024/4 32/8 1024/≤0.5 Y Y Y
>1024/>1024 128/≤0.5 128/≤0.5 – – –
>1024/>1024 4/≤0.5 512/≤0.5 – – –

256/256 128/≤0.5 16/≤0.5 – – –
>1024/>1024 256/4 128/2 – – –
>1024/>1024 1024/8 >1024/2 – – –
>1024/>1024 256/4 >1024/1 – – –
>1024/>1024 1024/32 >1024/1 – – –
>1024/>1024 512/16 1024/2 – – –
>1024/>1024 128/≤0.5 >1024/0.5 – – –

>1024/256 512/4 256/1 – – –
>1024/>1024 128/2 1024/1 – – –
>1024/>1024 64/1 64/≤0.5 – – –
>1024/>1024 64/≤0.5 256/≤0.5 – – –

M. morganii >1024/>1024 16/≤0.5 >1024/2 Y N Y
P. mirabilis >1024/>1024 256/128 >1024/1024 Y N Y

512/64 4/4 128/128 Y N Y

Carba, carbapenemase; β-lactams (BLs) tested include CA (clavulanate), VB (vaborbactam), AV (avibactam); Partner β-lactamase inhibitors (BLIs) tested include CA (clavulanate), 
VB (vaborbactam), AV (avibactam); −, Not available.
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within the same carbapenemase molecular group of CPO 
(Figure  1A). Despite the individual heterogeneity, each 
carbapenemase molecular group of CPO has its own superior 
BLI (s): KPC isolates have high BIs induced by avibactam/
vaborbactam and a lower BI led by clavulanate; MBL isolates 
are overall resistant to all tested BLIs (BIs <0.5); among 
OXA isolates, the most potent β-lactamase inhibition is 
induced by avibactam followed by vaborbactam 
and clavulanate.

Same to the β-lactamase inhibition, the BL susceptibility 
restoration in response to each BLI has also shown a great 

extent of individual heterogeneity in the same carbapenemase 
molecular group of CPO (Figure 1B). Significantly, a higher 
degree of β-lactamase inhibition (Figure  1A) is often 
corresponding to a bigger scale of partner BL MIC reduction 
(Figure 1B). For example, avibactam and vaborbactam, which 
lead to a stronger β-lactamase inhibition compared to 
clavulanate among KPC islates, result in a bigger decrease 
of partner BL MIC versus clavulanate among KPC isolates. 
As the most potent BLI for OXA type of CPO isolates, 
avibactam result in the highest partner BL MIC reduction 
in comparison with the other two tested BLIs among the 

TABLE 2 | Class B carbapenemase-producing isolates included in this study.

Carba subtype Species BL susceptibility (With/without BLI) Other BL resistance Mechanisms

AMX/CA MPN/VB CFZ/AV Efflux pumps Reduced 
permeability

Target alteration

IMP K. aerogenes >1024/≤0.5 32/32 1024/64 Y Y Y
K. pneumoniae >1024/>1024 128/128 >1024/>1024 Y Y Y
P. aeruginosa >1024/>1024 1024/1024 >1024/1024 Y N Y

>1024/>1024 >1024/>1024 >1024/>1024 Y N Y
NDM A. baumannii >1024/>128 512/512 >1024/>1024 Y N N

C. freundii >1024/>1024 >1024/>1024 >1024/1024 Y Y Y
E. coli >1024/>1024 >1024/>1024 >1024/>1024 Y Y Y

>1024/>1024 >1024/>1024 >1024/>1024 Y Y Y
>1024/>1024 8/≤0.5 >1024/1024 Y Y Y
>1024/>1024 512/512 >1024/≤0.5 Y Y Y
>1024/>1024 256/256 >1024/>1024 Y Y Y
>1024/>1024 1024/1024 >1024/>1024 Y Y Y
>1024/>1024 1024/1024 >1024/>1024 Y Y Y
>1024/>1024 >1024/>1024 >1024/>1024 Y Y Y
>1024/≤0.5 1024/1024 >1024/≤0.5 Y Y Y
>1024/≤0.5 >1024/>1024 >1024/≤0.5 Y Y Y

>1024/>1024 512/512 >1024/>1024 Y Y Y
K. pneumoniae >1024/512 512/512 >1024/>1024 Y Y Y

>1024/>1024 1024/1024 >1024/512 Y Y Y
>1024/>1024 256/256 >1024/>1024 Y Y Y
>1024/>1024 >1024/>1024 >1024/>1024 Y Y Y
>1024/>1024 >1024/>1024 1024/1024 Y Y Y
>1024/≤0.5 512/512 >1024/256 Y Y Y

>1024/>1024 1024/1024 >1024/>1024 Y Y Y
>1024/>1024 512/512 >1024/>1024 Y Y Y
>1024/>1024 1024/1024 >1024/>1024 Y Y Y
>1024/>1024 >1024/>1024 >1024/>1024 Y Y Y
>1024/>1024 512/512 >1024/512 Y Y Y
>1024/>1024 1024/1024 >1024/>1024 Y Y Y

M. morganii >1024/>1024 16/8 >1024/>1024 Y N Y
P. mirabilis >1024/>1024 512/512 >1024/>1024 Y N Y
P. rettgeri >1024/>1024 >1024/>1024 >1024/>1024 Y N Y
S. senftenberg >1024/>1024 1024/1024 >1024/>1024 Y Y Y

SPM P. aeruginosa >1024/>1024 >1024/>1024 >1024/>1024 Y N Y
VIM E. cloacae >1024/>1024 >1024/>1024 >1024/>1024 Y Y Y

K. pneumoniae >1024/>1024 >1024/>1024 >1024/>1024 Y Y Y
>1024/>1024 >1024/>1024 >1024/>1024 N N N
>1024/>1024 >1024/>1024 128/128 Y Y Y
>1024/>1024 >1024/>1024 >1024/>1024 Y Y Y

P. aeruginosa >1024/>1024 >1024/>1024 >1024/>1024 Y N Y
>1024/>1024 512/512 256/128 Y N Y
>1024/>1024 >1024/1024 >1024/>1024 Y N Y
>1024/>1024 512/512 >1024/64 Y N Y
>1024/>1024 256/256 64/16 Y N Y

Carba, carbapenemase; β-lactams (BLs) tested include CA (clavulanate), VB (vaborbactam), AV (avibactam); Partner β-lactamase inhibitors (BLIs) tested include CA (clavulanate), 
VB (vaborbactam), AV (avibactam).
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TABLE 3 | Class D Carbapenemase-producing isolates included in this study.

Carba Subtype Species

BL susceptibility (With/without BLI) Other BL resistance Mechanisms

AMX/CA MPN/VB CFZ/AV Efflux pumps
Reduced 

permeability
Target alteration

OXA A. baumannii >1024/>1024 256/256 128/2 Y N N
>1024/>1024 128/128 128/4 Y N N
>1024/>1024 1024/1024 >1024/>1024 Y N N
>1024/>1024 64/64 256/≤0.5 Y Y Y
>1024/>1024 >1024/>1024 >1024/2 Y N N
>1024/>1024 64/64 >1024/4 Y N N
>1024/>1024 64/64 >1024/8 Y N N
>1024/>1024 8/8 16/≤0.5 Y N N
>1024/>1024 32/16 >1024/2 Y N N
>1024/>1024 64/4 512/8 Y N N

>1024/128 512/512 >1024/>1024 Y N N
>1024/>1024 128/128 128/8 Y N N
>1024/>1024 128/128 64/8 Y N N

C. freundii >1024/>1024 >1024/>1024 >1024/1024 Y Y Y
E. cloacae >1024/8 512/512 >1024/>1024 Y Y Y

>1024/>1024 256/≤0.5 >1024/≤0.5 Y Y Y
>1024/>1024 64/≤0.5 1024/≤0.5 Y Y Y
>1024/>1024 >1024/1 >1024/256 Y Y Y
>1024/>1024 64/≤0.5 >1024/≤0.5 Y Y Y

E. coli >1024/>1024 >1024/>1024 >1024/>1024 Y Y Y
>1024/>1024 >1024/>1024 >1024/>1024 Y Y Y
>1024/1024 16/≤0.5 ≤0.5/≤0.5 Y Y Y

>1024/>1024 512/512 >1024/≤0.5 Y Y Y
>1024/>1024 256/256 >1024/>1024 Y Y Y
>1024/>1024 1024/1024 >1024/>1024 Y Y Y
>1024/>1024 1024/1024 >1024/>1024 Y Y Y

K. aerogenes >1024/≤0.5 32/32 1024/64 Y Y Y
K. ozaenae >1024/>1024 256/≤0.5 128/≤0.5 Y Y Y
K. pneumoniae >1024/>1024 64/64 >1024/≤0.5 Y Y Y

>1024/>1024 >1024/>1024 >1024/>1024 Y Y Y
>1024/512 512/512 >1024/>1024 Y Y Y

>1024/>1024 64/32 >1024/1 Y Y Y
>1024/128 4/4 >1024/256 Y Y Y

>1024/>1024 >1024/>1024 >1024/>1024 N N N
>1024/>1024 1024/1024 >1024/512 Y Y Y
>1024/>1024 1024/16 >1024/1024 Y Y Y

- - - Y Y
>1024/>1024 256/256 >1024/>1024 Y Y Y
>1024/>1024 64/64 >1024/1 Y Y Y
>1024/>1024 128/128 >1024/>1024 Y Y Y

>1024/128 256/256 >1024/512 Y Y Y
>1024/>1024 16/8 >1024/8 Y Y Y
>1024/>1024 1024/2 >1024/8 Y Y Y
>1024/>1024 >1024/32 >1024/>1024 Y Y Y
>1024/>1024 512/8 512/2 Y Y Y
>1024/>1024 >1024/>1024 >1024/>1024 Y Y Y
>1024/>1024 >1024/>1024 1024/1024 Y Y
>1024/>1024 512/16 >1024/>1024 Y Y Y
>1024/>1024 1024/32 >1024/16 Y Y Y
>1024/1024 8/2 >1024/16 Y Y Y
>1024/≤0.5 512/512 >1024/256 Y Y Y

>1024/>1024 1024/1024 >1024/>1024 Y Y Y
>1024/>1024 512/512 >1024/>1024 Y Y Y
>1024/>1024 1024/1024 >1024/>1024 Y Y Y
>1024/>1024 >1024/>1024 >1024/>1024 Y Y Y
>1024/>1024 512/512 >1024/512 Y Y Y
>1024/>1024 1024/1024 >1024/>1024 Y Y Y
>1024/>1024 64/32 ≤0.5/≤0.5 Y Y Y

M. morganii >1024/>1024 16/8 >1024/>1024 Y N Y
P. aeruginosa >1024/>1024 >1024/>1024 >1024/>1024 Y N Y

(Continued)
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A B C D

FIGURE 1 | Quantitative relationship between BLI’s β-lactamase inhibition and its partner BL’s susceptibility restoration in CPO human isolates. Distribution of 
β-lactamase inhibition (A) and the resulted partner BL susceptibility restoration (B) of three clinically representative BLIs (50 μM) in CPO human isolates containing 
KPC carbapenemase, MBL carbapenemase, OXA carbapenemase. Partner BL MIC reduction on average (C) and the ratio of sensitized isolates (BL MIC reduction 
≥4 times) (D) by the function of β-lactamase inhibition among different molecular groups of CPO human isolates. BI, β-lactamase inhibition index; NS., no significant 
difference; *, significant difference (P value of <0.05); **, significant difference (P value of <0.01); ***, significant difference (P value of <0.001).

Carba Subtype Species

BL susceptibility (With/without BLI) Other BL resistance Mechanisms

AMX/CA MPN/VB CFZ/AV Efflux pumps
Reduced 

permeability
Target alteration

>1024/>1024 >1024/>1024 >1024/>1024 Y N Y
>1024/>1024 256/16 >1024/1 Y N Y
>1024/>1024 1024/1024 >1024/1024 Y N Y
>1024/>1024 64/64 >1024/512 Y N Y
>1024/>1024 64/64 16/4 Y N Y
>1024/>1024 512/512 256/128 Y N Y
>1024/>1024 >1024/>1024 >1024/>1024 Y N Y
>1024/>1024 64/64 32/2 Y N Y
>1024/>1024 >1024/1024 >1024/>1024 Y N Y
>1024/>1024 512/512 >1024/64 Y N Y
>1024/>1024 256/256 64/16 Y N Y

P. mirabilis 512/64 4/4 128/128 Y Y Y

 
Carba, carbapenemase; β-lactams (BLs) tested include CA (clavulanate), VB (vaborbactam), AV (avibactam); Partner β-lactamase inhibitors (BLIs) tested include CA (clavulanate), 
VB (vaborbactam), AV (avibactam); −, Not available.

Table 3 | Continued.
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OXA-producing CPO. These data indicate that BLI’s 
β-lactamase inhibitory efficacy is positively correlated with 
its partner BL’s susceptibility restoration. Such correlation 
is further supported by the increase of the BL susceptibility 
restoration (Figure 1C) and the ratio of the sensitized isolates 
by the function of BI (Figure  1D) for both KPC-produing 
and OXA-producing CPOs.

It is noteworthy that the increase of β-lactamase inhibition 
of a BLI is not proportional to its partner BL’s susceptibility 
restoration, as illustrated in Figures  1C,D. Significantly, 
when BI is low (<0.5), both the BL susceptibility restoration 
(Figure  1C) and the ratio of sensitized isolates (Figure  1D) 
are universally low for all BLI/CPO groups, suggesting that, 
without sufficient BLI dosing, there is no carbapenemase 
molecular identity-dependent superiority when choosing 
among BL/BLI agents. This is especially true for MBL isolates 
which none of the tested BLIs could effectively inhibit 
(median BIs, 0.1–0.4).

Intriguingly, even in isolates with a high degree of 
BLI-induced β-lactamase inhibition (BI>0.9), 50% (3/6) of 
CPO isolates had their MICs unchanged to amoxicillin, 
50% (11/22) to ceftazidime and 35% (14/40) to meropenem. 
These isolates all carry additional BL resistance mechanisms 
besides β-lactamases, suggesting that BL resistance 
mechanisms independent of β-lactamase also play a significant 
role in the efficacy of BL/BLI to CPO. The non-proportional 
increase of the BL susceptibility by BLI’s β-lactamase 
inhibition shown in Figures  1C,D further supports 
this conclusion.

DISCUSSION

By quantifying BLI-induced β-lactamase inhibition in diverse 
CPO isolates, this study demonstrated the variation of BLI 
activity with carbapenemase molecular classes, supporting 
the carbapenemase identity derived BL/BLI treatment 
guidelines currently proposed for CPO (Pogue et  al., 2019). 
On the other hand, our data revealed the substantial BLI 
response heterogeneity from isolates within the same 
carbapenemase molecular group. Important contributors to 
this heterogeneity might include variations in carbapenemase 
subtype/expression status and the co-existence of 
non-carbapenemase β-lactamases among CPO (Bush and 
Bradford, 2020). Therefore, the choice of BL/BLI for CPO 
infection should be personalized upon the entire β-lactamase 
background, rather than the carbapenemase identity alone, 
perhaps by further exploiting genetic sequencing information 
or utilizing other quantitative β-lactamase inhibition assays 
like FIBA.

This study provides for the first time, a quantitative 
insight into the correlation between β-lactamase inhibition 
and BL activity restoration against CPOs. The positive 
correlation illustrated here supports BL/BLI agents as effective 
CPO treatments, in line with the results of several clinical 
trials recently performed (Van Duin et  al., 2018; Pogue 
et  al., 2020). Beyond this, our data demonstrate that the 

anti-CPO success of a BL/BLI depends on the completeness 
of a BLI’s β-lactamase inhibition, motivating the need to 
alter BLI dosing to suit the specific β-lactamases in the 
clinical isolate. Therefore, BLI as an independent treatment 
adjuvant merits future consideration. To select the most 
suitable BLI, the structures and the resultant β-lactamase 
inhibitory mechanisms and profiles of the available BLIs 
have to be  carefully compared in order to achieve the best 
clinical outcome. In addition, whether an BLI itself has 
antimicrobial activity besides β-lactamase inhibitory activity 
has also to be  taken in account. To quantify the percentage 
of CPOs whose BL MICs are significantly changed by the 
introduction of BLIs, a CPO was considered sensitized by 
a BLI in this study if its BL MIC was reduced no less than 
4 times after the BLI inclusion. However, it is of note that 
a reduction in the MIC by 4-fold or more may not be sufficient 
to change one CPO’s clinical susceptibility as bacteria are 
classified as susceptible (potentially treatable) or resistant 
(probably not treatable) to a particular agent based on 
whether the MIC of this agent falls below or above a 
clinical breakpoint.

Our results, in line with other findings (Sun et  al., 2017; 
Cabot et  al., 2018; Dulyayangkul et  al., 2020; Sadek et  al., 
2020; Gomis-Font et  al., 2021), suggested that substantial 
β-lactamase inhibition generated by the use of BLI may 
not significantly improve the susceptibility of CPO toward 
its partner BL due to the presence of BL resistance mechanisms 
irrelated to β-lactamase production. Thus, besides BLI 
inhibitor efficacy, BL/BLI choice should also be  customized 
based on the other relevant BL resistance mechanisms of 
CPO. However, the current molecular tests for BL resistance 
are still mainly based on the detection of the bacterial 
β-lactamase production (Evans et  al., 2019). Therefore, 
deciphering the β-lactamase-independent BL resistance 
mechanisms that significantly influence a BL/BLI’s efficacy 
to clinically significant pathogens, such as CPO, is 
urgently needed.

In summary, by quantitatively evaluating BLIs’ contribution 
to CPO treatments with BLs, this study recommends 
personalization of BL/BLI usage based on the whole resistance 
backgrounds of the specific CPO case. Specifically, BLI choice 
and dosing should be  guided by quantitative tools that can 
evaluate the inhibition across the entire β-lactamase background 
of the CPO upon BLI treatment. Furthermore, rapid molecular 
diagnostics for BLI resistances, especially those sensitive to 
non-β-lactamase resistance mechanisms, should be  exploited 
to prevent ineffective BL/BLI treatment. Though the scope of 
this study was limited to CPO, the insights acquired here are 
adaptable to all bacterial pathogens for which BL/BLI agents 
could be  effective.
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Introduction: The aim of this study was to predict and evaluate three antimicrobials
for treatment of adult bloodstream infections (BSI) with carbapenem-resistant
Enterobacterales (CRE) in China, so as to optimize the clinical dosing regimen further.

Methods: Antimicrobial susceptibility data of blood isolates were obtained from
the Blood Bacterial Resistance Investigation Collaborative Systems in China. Monte
Carlo simulation was conducted to estimate the probability target attainment
(PTA) and cumulative fraction of response (CFR) of tigecycline, polymyxin B, and
ceftazidime/avibactam against CRE.

Results: For the results of PTAs, tigecycline following administration of 50 mg every
12 h, 75 mg every 12 h, and 100 mg every 12 h achieved > 90% PTAs when minimum
inhibitory concentration (MIC) was 0.25, 0.5, and 0.5 µg/mL, respectively; polymyxin
B following administration of all tested regimens achieved > 90% PTAs when MIC
was 1 µg/mL with CRE; ceftazidime/avibactam following administration of 1.25 g every
8 h, 2.5 g every 8 h achieved > 90% PTAs when MIC was 4 µg/mL, 8 µg/mL with
CRE, respectively. As for CFR values of three antimicrobials, ceftazidime/avibactam
achieved the lowest CFR values. The highest CFR value of ceftazidime/avibactam
was 77.42%. For tigecycline and ceftazidime/avibactam, with simulated regimens daily
dosing increase, the CFR values were both increased; the highest CFR of tigecycline
values was 91.88%. For polymyxin B, the most aggressive dosage of 1.5 mg/kg every
12 h could provide the highest CFR values (82.69%) against CRE.

Frontiers in Microbiology | www.frontiersin.org 1 November 2021 | Volume 12 | Article 73881299

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.738812
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.738812
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.738812&domain=pdf&date_stamp=2021-11-25
https://www.frontiersin.org/articles/10.3389/fmicb.2021.738812/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-738812 November 20, 2021 Time: 12:19 # 2

Zou et al. Empiric Treatment of BSIs With CRE

Conclusion: This study suggested that measurement of MICs and individualized
therapy should be considered together to achieve the optimal drug exposure.
In particular, pharmacokinetic and pharmacodynamic modeling based on local
antimicrobial resistance data can provide valuable guidance for clinicians for the
administration of empirical antibiotic treatments for BSIs.

Keywords: bloodstream infections, carbapenem-resistant Enterobacteriaceae, polymyxin B,
ceftazidime/avibactam, tigecycline, Monte Carlo simulation

INTRODUCTION

Bacterial drug resistance is becoming more and more serious.
The monitoring of drug-resistant bacteria and the management
of antimicrobials have valued more attention from all over the
world. Carbapenems are the most potent β-lactam family of
antibiotics for the treatment of bacterial infections, especially
Enterobacteriaceae infections (Rahal, 2008), and are regarded
as the “last resort” in the treatment of Gram-negative bacterial
infections (El-Gamal et al., 2017). Once strains are resistant to
carbapenem, the treatment will face great difficulties.

However, in the past few decades, the isolation of carbapenem-
resistant Enterobacterales (CRE) strains has greatly increased,
which bring great difficulties and challenges in clinical treatment.
In many countries in the world, such as Europe, Asia, South
America, and North America, outbreaks caused by CRE have
been reported. CRE has become a global public health threat
now (Sievert et al., 2013). The US Centers for Disease Control
and Prevention (CDC) also lists CRE as a threat to public health
in 2015 (Centers for Disease Control and Prevention, 2013).
According to the US CDC, the incidence of CRE increased from
1.2% in 2001 to 4.2% in 2011 (Little et al., 2012). Chen et al.
(2021) reported that in a population-based study in seven states
in the United States, CRE incidence was up to 2.93 per 100,000
persons. The complex resistance mechanisms have also brought
more troubles to treatment, especially bloodstream infections
(BSIs) with CRE, which have been rapidly spreading worldwide
with a high mortality and pose a challenge to therapeutic
decision-making (Tumbarello et al., 2012; Laupland and Church,
2014; Wu et al., 2020). As the most serious type of infections
caused by CRE, BSI usually leads to a worse prognosis, longer
hospital stay, and higher mortality (Neuwirth et al., 1995;
Hussein et al., 2013). The fatality rate of patients with CRE
infections was significantly different in different studies; the
fatality rate of BSIs is 40–50% (Patel et al., 2008). According
to the reports reported in the United States, Italy, Greece,
and Spain, the mortality of CRE BSIs was 40–60% (Meatherall
et al., 2009), and the fatality rate of BSIs in the population
of neutropenia and hematological malignancies was as high
as 69% (Satlin et al., 2013). Falagas et al. (2014) reported
that their pooled analysis of the nine studies (985 patients)
showed that the death rate was higher among CRE-infected
than carbapenem-susceptible Enterobacterales (CSE)–infected
patients. CRE-infected patients had an unadjusted number
of deaths twofold higher than that for CSE-infected patients
(Falagas et al., 2014). Compared with CSE, effective anti-infective
treatment is often delayed because of the limited treatment of

infections caused by CRE (Little et al., 2012), so the mortality of
patients whose infections are caused by CRE is higher (Satlin
et al., 2016; Averbuch et al., 2017).

The treatment of CRE infections is difficult, and the
prognosis is poor; it brings great challenges to clinical treatment
and nosocomial infection control. Previous study has been
demonstrated that insufficient empirical antimicrobial therapy
is independently associated with higher mortality in CRE BSIs
(Tumbarello et al., 2012), especially in patients with inadequate
initial dosing (Zarkotou et al., 2011). Thus, early administration
of appropriate empirical antimicrobial therapy for BSIs with CRE
is particularly important. Inappropriate antimicrobial therapy
of CRE sensitive drugs may increase the selective pressure
of antibacterial and increase the waste of medical resources
(Dautzenberg et al., 2015; Lee and Lee, 2016). For critically
ill patients, combining local pathogenic characteristics, drug
sensitivity, and pharmacokinetic (PK) and pharmacodynamic
(PD) characteristics of antimicrobial can improve the success
rate of treatment.

To choose an optimal antibiotic or dosing regimen,
susceptibility results, PK/PD factors, infection site, and patient
factors (allergies or intolerances) should be considered to make
an individualized treatment (Vasoo et al., 2015; Zhu et al.,
2020). The combined use of the distributions of location-
specific minimum inhibitory concentrations (MICs), different
antibiotic regimens, and PK parameters derived from human
studies via the application of PK/PD models with Monte
Carlo simulation is a useful approach for predicting treatment
outcomes (Bradley et al., 2003).

We examined the MIC distributions of CRE isolated from
blood cultures of adults with BSIs from the Blood Bacterial
Resistance Investigation Collaborative Systems (BRICS) in
China, 2018–2019, as a basis for PK/PD modeling. We predicted
and evaluated three antimicrobials (tigecycline, polymyxin B, and
ceftazidime/avibactam) used to treat CRE-infected BSIs so as to
identify the most appropriate antibiotics and dosage regimens for
the empirical treatment of CRE-infected BSIs and to optimize the
clinical dosing regimen further.

MATERIALS AND METHODS

Antimicrobials
Three antimicrobials and eight dosage regimens were selected for
modeling, based on their common use for the treatment of CRE-
infected BSIs in China (Table 1).
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TABLE 1 | Antibiotic regimens used in the Monte Carlo simulations.

Antibiotic Dose

Tigecycline 50 mg every 12 h

75 mg every 12 h

100 mg every 12 h

Polymyxin B 1.25 mg/kg every 12 h

1.5 mg/kg every 12 h

2.5 mg/kg per day continuous infusion

Ceftazidime/avibactam 1.25 g every 8 h

2.5 g every 8 h

TABLE 2 | Pharmacokinetic parameters (means ± SDs) used in the Monte
Carlo simulations.

Antibiotic ClT (L/h) Fu (%) Vd (L) References

Tigecycline 19.2 ± 7.76 — — Rubino et al., 2010

Polymyxin B 2.5 ± 0.4 — — Thamlikitkul et al., 2016

Ceftazidime/avibactam 7.53 ± 1.28 90 18.8 ± 6.54 Bensman et al., 2017

ClT , total body clearance; fu, fraction unbound; SDs, standard deviations; Vd,
volume of distribution.

Bacterial Isolates
The data in the present study were from the National
Bloodstream Infection BRICS platform in China (50 hospitals)
for 2018 and 2019. Most of the hospitals included were the largest

hospitals in each province. Six hundred fifty-three non-duplicate
CRE species were isolated from blood cultures. Each laboratory of
the 50 hospitals identified the species using standard biochemical
methodology with an automated system (Vitec 2, bioMérieux,
France; MicroScan walkAway-96, Siemens, United States; or
Phoenix-100, BD, United States).

Minimum Inhibitory Concentration
Determination
The MICs of tigecycline, polymyxin B, and
ceftazidime/avibactam were determined by broth microdilution
method or one of the three automated systems in accordance
with the Clinical Laboratory Standards Institute (CLSI,
2019) guidelines.

PK/PD Model
All the PK data were obtained from previously published studies
of infected and/or critically ill patients who had adequate renal
function, shown in Table 2.

PD exposures were simulated as free drug (f) for
ceftazidime/avibactam and as total drug for tigecycline
and polymyxin B.

For the tigecycline and polymyxin B, PK exposures were
measured by 24-h area under the curve (AUC24)/MIC > 6.96
and AUC/MIC ≥ 50, respectively, to be predictive of the clinical

TABLE 3 | MIC distributions for antimicrobials against all CRE isolated from blood specimens in China during 2018–2019.

MIC (mg/L) No.a Percentages of isolates by MIC MIC50 MIC90 MIC range

Antibiotic 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32 64

CRE (n = 653)

Tigecycline 646 1.39 1.86 10.22 39.16 20.12 21.83 4.49 0.62 0.31 0 0 0 0.25 1 0.03–8

Polymyxin B 650 0 0 0 4.77 54.31 22.92 12.15 2.15 1.08 1.38 1.23 0 0.5 2 0.25–32

Ceftazidime/avibactam 445 0 0.22 0.22 0.67 2.02 4.72 9.66 26.74 30.79 1.8 22.02 1.12 8 16 0.06–32

MIC, minimum inhibitory concentration; CRE, carbapenem-resistant Enterobacterales; MIC50, 50% minimum inhibitory concentration; MIC90, 90% minimum inhibitory
concentration. aNo., number of isolates in which antibiotic sensitivity was tested.

TABLE 4 | MIC distributions for antimicrobials against all CRE isolated from blood specimens in China during 2018–2019.

MIC (mg/L) No.a Percentages of isolates by MIC MIC50 MIC90 MIC range

Antibiotic 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32 64

CRKP (n = 511)

Tigecycline 511 0.98 1.57 9.59 33.86 22.31 25.64 4.89 0.78 0.39 0 0 0 0.5 1 0.03–8

Polymyxin B 511 0 0 0 4.11 57.73 20.94 11.35 2.15 0.98 1.76 0.98 0 0.5 – 0.25–32

Ceftazidime/avibactam 325 0 0.31 0.31 0 1.85 5.23 12.62 34.15 37.23 0.92 7.38 0 4 16 0.06–32

CREC (n = 83)

Tigecycline 83 4.82 4.82 15.66 61.45 4.82 6.02 2.41 0 0 0 0 0 0.25 0.5 0.03–2.41

Polymyxin B 83 0 0 0 7.23 53.01 21.69 15.66 2.41 0 0 0 0 0.5 2 0.25–4

Ceftazidime/avibactam 61 0 0 0 0 3.28 3.28 1.64 6.56 24.59 6.56 54.1 0 32 32 0.5–54.1

CRE species except CRKP
and CREC (n = 59).

Tigecycline 52 0 0 8.93 55.36 23.21 8.93 3.57 0 0 0 0 0 0.25 1 0.125–2

Polymyxin B 56 0 0 0 6.67 28.33 41.67 13.33 1.67 3.33 0 5 0 1 2 0.25–32

Ceftazidime/avibactam 59 0 0 0 5.08 1.69 3.39 1.69 6.78 1.69 1.69 69.49 8.47 32 32 0.25–64

MIC, minimum inhibitory concentration; CRE, carbapenem-resistant Enterobacterales; MIC50, 50% minimum inhibitory concentration; MIC90, 90% minimum inhibitory
concentration; aNo., number of isolates in which antibiotic sensitivity was tested; CRKP, carbapenem-resistant Klebsiella pneumoniae; CREC, carbapenem-resistant
Escherichia coli.
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and microbiologic efficacy (Miglis et al., 2018; Wang et al., 2020).
The steady-state AUC from 0 to 24 h (AUC0−24 h) was calculated
according to the following equation: AUC0−24 = dose/ClT.

For ceftazidime/avibactam, PK exposures was measured by
50% fT > MIC (Wang et al., 2020), which was calculated using
the following one-compartment intravenous infusion equation
(Drusano et al., 2001). fu is the fraction of unbound drug, Vd
is the volume of distribution in liters at steady state, MIC is the
MIC, ClT is total body clearance, and DI is dosing interval.

%fT > MIC = ln(
Dose × fu
Vd × MIC

) ×
Vd
CLt
×

100
DI

Monte Carlo Simulations
A 10,000-subject Monte Carlo simulation (Oracle Crystal Ball;
version 11.1.2.4.400) was conducted for each antimicrobial

regimen. PK data in the “PK/PD Model” section were used to
determine the percentages of PK/PD target attainment (PTA) for
a range of MICs from 0.03 to 64 mg/L. The probability of PTA,
which represented the likelihood that an antimicrobial regimen
will meet or exceed the target at a specific MIC, was assessed for
each regimen. The cumulative fraction of response (CFR), which
represented the expected population PTA for a specific drug dose
and a specific population of microorganisms, was calculated for
MIC distributions using weighted summation and calculated as
follows (Drusano et al., 2001). A regimen that achieved more
than 90% CFR against a population of organisms was considered
optimal (Mouton et al., 2005).

CFR =
n∑

i = 0

PT Ai × Fi

FIGURE 1 | PTA against CRE at MICs from 0.03 to 8 mg/L for tigecycline. PTA, probability target attainment; MIC, minimum inhibitory concentration; CRE,
carbapenem-resistant Enterobacterales; CRKP, carbapenem-resistant Klebsiella pneumoniae; CREC, carbapenem-resistant Escherichia coli.
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RESULTS

The Results of Susceptibility Testing
There were 653 non-duplicate CRE species isolated from blood
cultures enrolled in our study during 2018 and 2019, including
carbapenem-resistant Klebsiella pneumoniae (CRKP) (n = 511),
carbapenem-resistant Escherichia coli (CREC) (n = 83), and other
CRE species except CRKP and CREC (n = 59).

We analyzed the MIC data for all CRE and established
discrete MIC distributions for each population based on MIC
frequencies. Tables 3, 4 show the 50% MIC (MIC50) and
90% MIC (MIC90) percentage of isolates by MIC for each
antimicrobial agent.

For tigecycline, the MIC50 and MIC90 against CRKP, which
was the strain with the highest detection rate among all CREs,
were 0.5 and 1 mg/L, whereas the value of MIC50 and MIC90
were 0.5 and 2 mg/L for polymyxin B, and 4 and 16 mg/L for
ceftazidime/avibactam.

Probability Target Attainment
Targets of AUC24/MIC > 6.96 are shown in Figure 1. Tigecycline
following administration of 50 mg every 12 h, 75 mg every 12 h,

and 100 mg every 12 h achieved > 90% PTAs when MIC was from
0.03 to 8 µg/mL.

The PTAs for polymyxin B regimens at specific MICs with
targets of AUC/MIC ≥ 50 are shown in Figure 2. Polymyxin B
following administration of 1.25 mg/kg every 12 h, 1.5 mg/kg
every 12 h, and 2.5 mg/kg per day continuous infusion
achieved > 90% PTAs when MIC was 1 µg/mL with CRE. No
regimen achieved a 90% PTA with an MIC of 2 µg/mL.

The PTAs for ceftazidime/avibactam regimens at specific
MICs with targets of 50% fT > MIC are shown in Figure 3.
Ceftazidime/avibactam following administration of 1.25 g every
8 h, 2.5 g every 8 h achieved > 90% PTAs when MIC was 4 µg/mL,
8 µg/mL with CRE. No regimen of ceftazidime/avibactam
achieved a 90% PTA with an MIC of 16 µg/mL with CRE.

Cumulative Fraction of Response
Tables 5, 6 show the CFR values for each antibiotic regimen
based on the Monte Carlo simulations against CRE. As for CFR
values of three antimicrobials, ceftazidime/avibactam achieved
the lowest CFR values; the highest CFR value was 77.42%. For
tigecycline and ceftazidime/avibactam, with simulated regimen
improvement, the CFR values were both increased; the lowest

FIGURE 2 | PTA against CRE at MICs from 0.25 to 32 mg/L for polymyxin B. PTA, probability target attainment; MIC, minimum inhibitory concentration; CRE,
carbapenem-resistant Enterobacterales; CRKP, carbapenem-resistant Klebsiella pneumoniae; CREC, carbapenem-resistant Escherichia coli.
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FIGURE 3 | PTA against CRE at MICs from 0.06 to 64 mg/L for ceftazidime/avibactam. PTA, probability target attainment; MIC, minimum inhibitory concentration;
CRE, carbapenem-resistant Enterobacterales; CRKP, carbapenem-resistant Klebsiella pneumoniae; CREC, carbapenem-resistant Escherichia coli.

CFR of tigecycline values was 73.42%. It is worth noting that
the CFR values of polymyxin B were neither very low nor very
high; the lowest CFR value of polymyxin B was 80.89%; the most
aggressive dosage of 1.5 mg/kg every 12 h provided CFR value of
82.69% against CRE.

DISCUSSION

Ceftazidime/avibactam is a novel β-lactam/β-lactamase inhibitor
combination against CRE that inactivates Ambler class A,
class C, and some class D β-lactamase–producing pathogens,
including those producing Klebsiella pneumoniae carbapenemase
and OXA-48 carbapenemases, but not metallo-β-lactamases

(Li et al., 2019), and it has improved survival in multidrug-
resistant Gram-negative bacilli infections (Shields et al., 2016,
2017; Temkin et al., 2017; Tumbarello et al., 2019; Clerici
et al., 2021). For treatment of all CRE, tigecycline, which is
a novel antimicrobial agent with in vitro activity against most
Gram-positive and Gram-negative pathogens, is mainly used for
treatment of complicated skin, soft tissue, and intra-abdominal
infections in adults (Babinchak et al., 2005; Ellis-Grosse et al.,
2005; Pankey, 2005; Bhavnani et al., 2012; Bodmann et al.,
2012). Polymyxin B is considered as the last line of defense
against drug-resistant bacteria (Li et al., 2006; Zavascki et al.,
2007; Landman et al., 2008; Yu et al., 2017; Nang et al., 2021).
Our study analyzed the CRE data of the BRICS to evaluate the
effectiveness of the three most commonly used antibacterial for
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TABLE 5 | CFR values for three antibiotics against CRE.

Antimicrobials Dosing regimens CFR (%)

Tigecycline 50 mg every 12 h 73.42

75 mg every 12 h 85.32

100 mg every 12 h 91.88

Polymyxin B 1.25 mg/kg every 12 h 81.14

1.5 mg/kg every 12 h 82.69

2.5 mg/kg per day continuous infusion 80.89

Ceftazidime/avibactam 1.25 g every 8 h 66.59

2.5 g every 8 h 77.42

CFR, cumulative fraction of response; CRE, carbapenem-resistant
Enterobacterales.

BSIs with CRE in different dosing regimens using Monte Carlo
simulations to model in vivo antibiotic pharmacodynamics, in the
hope that empirical administration will help improve the survival
rate of patients.

Ceftazidime/avibactam clinical breakpoints of susceptible
MIC ≤ 8 mg/L have been assigned to CRE by CLSI, and the
breakpoints of susceptible MIC ≤ 2 mg/L for tigecycline and
polymyxin B were assigned to CRE by the US Food and Drug
Administration and European Committee on Antimicrobial
Susceptibility Testing.

From Tables 3, 4, it could be known that 334 strains were
sensitive to ceftazidime/avibactam in CRE, with a susceptibility
rate of 75.06% (334/445), which was in line with the
literature that the susceptibility rate of ceftazidime/avibactam
was 75.0% (Zou et al., 2020), but it was higher than the
results reported in 2020 [published by the China Antimicrobial
Surveillance Network (CHINET) Study Group, the susceptibility
of ceftazidime/avibactam against CRE was 61.4%] (Han et al.,
2020); it could be attributed to the strict control of the application
of antibacterial recent years. However, our research also revealed
that the current MIC50 and MIC90 of ceftazidime/avibactam
against CRE are significantly different with the literature reported
(8 vs. 2 mg/L, 16 vs. 32 mg/L) (Han et al., 2020). This
phenomenon needs further research. We also found that the MIC
of CRE to ceftazidime/avibactam is up to 64 µg/mL, and high
MIC of CRE accounts for a high proportion; for example, the
percentage of MIC such as 32 µg/mL in other CRE species except
CRKP and CREC is as high as 69.49%. This also explains why
the CFR of ceftazidime/avibactam is low, which suggests that we
empirically apply ceftazidime/avibactam to treat BSIs caused by
other CREs and should be used cautiously.

Ceftazidime/avibactam PTA at MIC ≤ 8 and 16 mg/L ranged
from 96.01 to 100% and 79.6–79.33% with the dosage of 2.5 g
every 8 h, respectively; a similar finding has been observed in
adults with complicated intra-abdominal infections, complicated
urinary tract infections, and nosocomial pneumonia (Das et al.,
2019). PTA was lower with the dosage of 1.25 g every 8 h, but still
with high target attainment (>95%) against MICs ≤ 4 mg/ L. It
was a limitation that the study lacked the enzymes of CRE, which
reminded us that we should detect the enzymes produced by
CRE of ceftazidime/avibactam-resistant in future work, so as to
provide more targeted recommendations for clinical medication.

TABLE 6 | CFR values for three antibiotics against CRE.

Antimicrobials CRE Dosing regimens CFR (%)

Tigecycline CRKP 50 mg every 12 h 69.22

75 mg every 12 h 83.12

100 mg every 12 h 91.15

CREC 50 mg every 12 h 91.45

75 mg every 12 h 95.53

100 mg every 12 h 96.77

CRE species
except CRKP and

CREC

50 mg every 12 h 85.14

75 mg every 12 h 92.53

100 mg every 12 h 95.62

Polymyxin B CRKP 1.25 mg/kg every 12 h 82.84

1.5 mg/kg every 12 h 86

2.5 mg/kg per day
continuous infusion

82.79

CREC 1.25 mg/kg every 12 h 82.6

1.5 mg/kg every 12 h 86.05

2.5 mg/kg per day
continuous infusion

82.3

CRE species
except CRKP and

CREC

1.25 mg/kg every 12 h 77.05

1.5 mg/kg every 12 h 79.99

2.5 mg/kg per day
continuous infusion

76.31

Ceftazidime/avibactam CRKP 1.25 g every 8 h 82.48

2.5 g every 8 h 91.78

CREC 1.25 g every 8 h 67.79

2.5 g every 8 h 86.33

CRE species
except CRKP and

CREC

1.25 g every 8 h 19.63

2.5 g every 8 h 29.12

CFR, cumulative fraction of response; CRE, carbapenem-resistant
Enterobacterales; CRKP, carbapenem-resistant Klebsiella pneumoniae; CREC,
carbapenem-resistant Escherichia coli.

We also investigated that polymyxin B and tigecycline showed
excellent antibacterial activity against CRE strains; 612 strains
were sensitive to polymyxin B, with a susceptibility rate of
94.15% (612 /650); 640 strains were sensitive to tigecycline,
with a susceptibility rate of 99.07% (640/646). The findings
were consistent with the literature published by the CHINET
Study Group (the susceptibility rates were 95.8 and 98.4% for
polymyxin B and tigecycline, respectively) (Han et al., 2020). The
data in the study were from the BRICS, covering most provinces
in China, and the resistance of CRE was basically consistent with
the relevant literature about the resistance of bacteria in China. It
truly reflected the resistance of CRE in China, and it has a very
high reference value.

For treatment of all CRE, tigecycline achieved the optimal
CFRs (>90%) when tigecycline was given 100 mg every 12 h;
particularly, it can achieve the satisfactory CFR values for CREC
given any dosage regimen, which were in line with the literature
that in their response to the high-dose tigecycline (200 mg
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followed by 100 mg every 12 h), E. coli and K. pneumoniae
showed CFRs greater than 90% (Wang et al., 2020). Our study
is consistent with literature reports, when MIC was 1 µg/mL;
the PTAs of standard dosing for CRKP, CREC, and other CRE
species were 29.84, 29.86, and 28.39%, whereas the other regimen
(100 mg every 12 h) PTA was ≥ 88%.

It is worth noting that MIC has a tendency to increase, and
the highest MIC of CPKP to tigecycline had reached 8 µg/mL;
strains with MIC as high as 2 µg/mL were also found in CREC
and other CRE species. Studies have shown that when the MIC
is 1 µg/mL, the conventional dosage of tigecycline is worthy of
questions (Silvestri and van Saene, 2010), because peak serum
levels of tigecycline are low (0.63–1.4 mg/mL) after standard
dosing (100 mg followed by 50 mg every 12 h) due to its rapid
movement from the bloodstream into tissues after administration
(Yamashita et al., 2014), and another study showed that a high-
dose tigecycline regimen (200 mg followed by 100 mg every 12 h)
was a reasonable strategy for BSIs and other severe infections by
CRE (Tumbarello et al., 2018). In general, the CFRs of tigecycline
were higher, but because of a lack of exact PK/PD target in BSIs,
we still have a suspicion about the efficacy of high-dose tigecycline
regimen for use in BSIs with CRE; more prospective studies are
needed to determine the clinical benefits of high-dose tigecycline
for BSIs with CRE.

Polymyxin B PTA at MIC ≤ 1 mg/L showed excellent target
attainment (>98%) at any dosage, whereas PTAs ranged from
3.78 to 25.97% at MIC 2 mg/L. For CRKP and CREC, the
CFRs of all administration regimens of polymyxin B could reach
80% or more, and our research showed that polymyxin B could
achieve moderate results under majority of conventional dosing
regimens, whereas dosing regimens with a CFR between 80
and 90% were regarded as providing moderate probabilities of
treatment success (Bradley et al., 2003). For other CRE species,
the CFRs ranged from 76.31 to 79.99%, with no administration
regimen achieving 90%. However, it is important to note that
polymyxin poses a risk of nephrotoxicity (Vattimo M de et al.,
2016; Liu et al., 2021; Zeng et al., 2021), especially when
administered in large dosage. Data indicated that the tolerated
maximum dosage of polymyxin B is 3 mg/kg per day (Liu et al.,
2021), although the maximum dosage of polymyxin B is the most
effective of all regimens according to simulation; attention should
be paid to monitoring renal function when applied.

Monte Carlo simulation was applied in this study to predict
the efficacy of three different drug administration regimens in the
CRE BSI, without combining the host status, such as combination
medication, whether there was hypoproteinemia, and so on,
which will lead to different clinical results. In the future, more
prospective studies are still needed to evaluate the therapeutic
effects of the aforementioned dosing regimens.

CONCLUSION

Our study indicates that tigecycline and polymyxin B
regimens have high CFR value of BSIs caused by CRE;
ceftazidime/avibactam achieved the lowest CFR values
among three antimicrobials. Tigecycline regimens were
more effective against CRE than the other two antibiotics. For

tigecycline and ceftazidime/avibactam, with simulated regimen
improvement, the CFR values were both increased. We suggest
that measurement of MICs and individualized therapy should
be considered together to achieve the optimal drug exposure. In
particular, PK and PD modeling based on local antimicrobial
resistance data can provide valuable guidance for clinicians for
the administration of empirical antibiotic treatments for BSIs.
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Carbapenem-resistant Klebsiella pneumoniae (CRKP) is becoming increasingly
problematic due to the limited effectiveness of new antimicrobials or other factors
such as treatment cost. Thus, combination therapy remains a suitable treatment
option. We aimed to evaluate the in vitro bactericidal activity of various antibiotic
combinations against CRKP with different carbapenemase genotypes and sequence
types (STs). Thirty-seven CRKP with various STs and carbapenemases were exposed
to 11 antibiotic combinations (polymyxin B or tigecycline in combination with β-lactams
including aztreonam, cefepime, piperacillin/tazobactam, doripenem, meropenem, and
polymyxin B with tigecycline) in static time-kill studies (TKS) using clinically achievable
concentrations. Out of the 407 isolate-combination pairs, only 146 (35.8%) were
bactericidal (≥3 log10CFU/mL decrease from initial inoculum). Polymyxin B in
combination with doripenem, meropenem, or cefepime was the most active, each
demonstrating bactericidal activity in 27, 24, and 24 out of 37 isolates, respectively.
Tigecycline in combination with β-lactams was rarely bactericidal. Aside from the lower
frequency of bactericidal activity in the dual-carbapenemase producers, there was no
apparent difference in combination activity among the strains with other carbapenemase
types. In addition, bactericidal combinations were varied even in strains with similar STs,
carbapenemases, and other genomic characteristics. Our findings demonstrate that
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the bactericidal activity of antibiotic combinations is highly strain-specific likely owing
to the complex interplay of carbapenem-resistance mechanisms, i.e., carbapenemase
genotype alone cannot predict in vitro bactericidal activity. The availability of WGS
information can help rationalize the activity of certain combinations. Further studies
should explore the use of genomic markers with phenotypic information to predict
combination activity.

Keywords: in vitro, bactericidal, combination, carbapenemase, enterobacterales, tigecycline, polymyxin

INTRODUCTION

Klebsiella pneumoniae are common Gram-negative pathogens
that are implicated in a variety of infections including
pneumonia, bloodstream infections, and skin/soft tissue
infections. As one of the ESKAPE organisms, it possesses
the ability to acquire multiple resistance mechanisms to the
various drug classes and is a major contributor to nosocomial
infections (Rice, 2010). Resistance to carbapenems, one
of the last-line antimicrobial agents, in these bacteria has
resulted in very limited treatment options for these infections.
Although there are currently a few novel agents such as
ceftazidime/avibactam and meropenem/vaborbactam, they
are not universally active against all carbapenem-resistant
K. pneumoniae (CRKP) and are cost-prohibitive or are not
readily available in certain settings (Bush and Bradford,
2019). Treatment with antibiotic combinations is regarded
as the optimal alternative, especially in patients with high
mortality risks (Giannella et al., 2019). Multiple in vitro studies
evaluating combination therapy in CRKP infections have
been conducted with varying results (Lenhard et al., 2016).
Previously, we have shown that antibiotic combinations were
highly strain-specific in extensively drug-resistant NDM-
producing K. pneumoniae (Lim et al., 2015), while in vitro
synergy of double carbapenem combinations have been
widely demonstrated, albeit primarily in KPC-producing
K. pneumoniae (Bulik and Nicolau, 2011; Chua et al., 2015;
Oliva et al., 2016).

The management of CRKP infections is complicated by the
various mechanisms mediating carbapenem resistance which
include: (1) production of carbapenemases (e.g., KPC, metallo-
β-lactamases, OXA-48); (2) extended-spectrum β-lactamases
(ESBLs) in combination with mutations that alter porin function
or expression; and (3) overexpression of efflux pumps (Papp-
Wallace et al., 2011). Even among the carbapenemases, there
are differences in the types of substrates, the mechanisms of
hydrolysis, and the hydrolytic activities of the active substrates
(Queenan et al., 2010; Jeon et al., 2015). For instance, OXA
carbapenemases have a weaker activity against carbapenems
compared to the other carbapenemases (Queenan et al., 2010).
Along with the type of antibiotics selected for combination
therapy, this carbapenemase diversity may have implications
in the efficacy of antibiotic combination therapy (Poirel et al.,
2016). Hence, this study sought to evaluate the in vitro activity
of various antibiotic combinations against CRKP with different
carbapenemase genotypes.

MATERIALS AND METHODS

Bacterial Isolates
Thirty-seven CRKP isolates with varied carbapenemases were
tested. The majority of these isolates were selected from an
ongoing carbapenem resistance surveillance project conducted
at a 1,800-bed public healthcare hospital since 2015. The
remaining isolates were received at the hospital’s pharmacy
research laboratory for antibiotic combination testing, including
isolates from various other local hospitals (Cai B. et al.,
2016). These isolates were representative of difficult-to-treat
infections encountered which will likely require combination
therapy. They possessed highly resistant phenotypic profiles
[carbapenem minimum inhibitory concentrations (MICs) ≥ 8
mg/L] and represented various high-risk international clones
(e.g., ST11, ST17, ST14, ST20, ST147, and ST231) with
varying carbapenemases.

Genus identity was determined at the hospital’s microbiology
laboratory as part of routine investigations using VITEK
GNI+ cards (bioMérieux, Hazelwood, MO, United States).
The isolates were stored at −70◦C in MicrobankTM (Pro
Lab Diagnostics Inc., Ontario, Canada) storage vials and
sub-cultured twice on 5% blood agar plates (Thermo Fisher
Scientific Microbiology, Malaysia) for 24 h at 35◦C prior to
each experiment.

This study is exempted from review by the Singhealth
Centralized Institutional Review Board, as it is a retrospective
study involving archival bacterial isolates, which does not fall
under the Human Biomedical Research Act. No identifiable
data were collected.

Antibiotics
Aztreonam, meropenem, and polymyxin B were purchased from
Toronto Research Chemicals. Cefepime was purchased from
Kemimac(s) Pte Ltd. Piperacillin/tazobactam and tigecycline
were purchased from Sigma-Aldrich. Doripenem was obtained
from Shionogi and Co. Aliquots of stock solutions of all
antibiotics were prepared in sterile water and stored at −80◦C.
Before each experiment, the aliquots were thawed and diluted
to the desired concentrations with cation-adjusted Mueller
Hinton broth (Ca-MHB).

In vitro Susceptibility Testing
Carbapenem non-susceptibility was detected routinely at the
microbiology laboratory using either disk diffusion testing or the
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VITEK R© 2 instrument. The minimum inhibitory concentrations
(MICs) were determined in this study using customized
commercial microbroth dilution panels (Trek Diagnostics, East
Grinstead, United Kingdom). E. coli ATCC 25922 was used
as the quality control strain. MICs were interpreted according
to the Clinical and Laboratory Standards Institute (CLSI)
guidelines, except for tigecycline which was interpreted according
to the Food and Drug Administration (FDA) criteria for
tigecycline (CLSI, 2020).

Molecular Characterization
CRKPs were routinely tested for the presence of carbapenemase
genes either at the hospital’s microbiological laboratory or at the
National Public Health Laboratory using in-house polymerase
chain reaction (PCR)-based assays or the Cepheid Xpert R© Carba-
R assay on the GeneXpert R© device (Cepheid, Sunnyvale,
CA, United States).

Genomic DNA was extracted from overnight bacterial
cultures and purified with the Qiagen Blood DNeasy kit
(Qiagen Inc., Valencia, CA, United States). The genomic
DNA was then used to prepare libraries for paired-end
whole-genome sequencing using the Illumina HiSeq or MiSeq
instrument (Illumina, San Diego, CA), with a resultant
sequencing depth of at least 50-fold. Sequence types (STs) were
determined by performing a basic local alignment search tool
(BLAST) search of the assembled contigs against multilocus
sequence typing (MLST) databases1, while other antimicrobial
resistance features were characterized using the Kleborate
tool (v.2.0.4)2.

Static Time-Kill Studies
Modified TKS were performed on the isolates with the antibiotics
singly and in two-antibiotic combinations using procedures
described previously (Cai Y. et al., 2016; Cai et al., 2017) to
examine the bactericidal activity. In brief, log-phase bacterial
suspensions were diluted into 15 mL of fresh Ca-MHB to yield
an initial inoculum of approximately 5 log10CFU/mL, which
were then transferred to flat-bottomed sterile flasks containing
1 mL of antibiotic solutions and placed into a shaker water bath
at 35◦C.

A total of 11 combinations were tested—polymyxin B
or tigecycline was tested in combination with five different
β-lactams. Polymyxin B was also tested in combination with
tigecycline. The concentrations utilized in this study were
derived from clinically relevant unbound concentrations
when maximum antibiotic doses were administered
(Supplementary Table 1).

At 24 h, aliquots were obtained in duplicates from each flask.
Total viable counts were enumerated visually by plating serial
dilutions of the aliquots on Mueller-Hinton agar plates (Thermo
Fisher Scientific, Singapore). The final limit of detection was
1.3 log10CFU/mL. Bactericidal activity was defined as a 3 log10
CFU/mL decrease (99.9% kill) in the colony count from the initial
inoculum at 24 h (CLSI, 1999).

1https://pubmlst.org/databases/
2https://github.com/katholt/Kleborate

RESULTS

Isolate Characteristics
The phenotypic characteristics of the 37 isolates are presented
in Table 1. All isolates had similar β-lactam phenotypic
characteristics where there was phenotypic resistance to all
β-lactams tested. The minimum inhibitory concentrations
(MICs) to aztreonam, cefepime, and piperacillin-tazobactam
were uniformly high (≥64 mg/L). Carbapenem MICs were also
high in all isolates (8 to ≥ 32 mg/L, MIC50: ≥ 32 mg/L).
Polymyxin B and tigecycline resistance were observed in nine
(24.3%) and four (10.8%) isolates, respectively, of which one
isolate was resistant to both polymyxin B and tigecycline (EC301).

The genotypic characteristics are summarized in Figure 1
(genotypic details of individual isolates are presented in
Supplementary Table 2). A total of 14 different sequence
types (STs) were included. All except two isolates were
carbapenemase-producing. Among the various CRKP with
differing carbapenemase genotypes, the majority harbored an
extended-spectrum β-lactamase (ESBL), most commonly CTX-
M-15, together with porin alteration. Out of the nine polymyxin-
resistant isolates, MgrB mutations were detected in five of
them. Tetracycline resistance tet genes were observed in
14 isolates which included both tigecycline-susceptible and
-resistant isolates. None of the isolates harbored plasmid-
mediated resistance genes associated with polymyxin (mcr) and
tigecycline [tet(X)] resistance.

Static Time-Kill Studies Results
The activity of each antibiotic alone was limited against most
of the strains except in two isolates (EC1642 and EC2096)
where doripenem (corresponding to a high dose extended
infusion regimen) resulted in a bactericidal kill; and in three
isolates (EC1717, EC1812, and EC0172) where polymyxin B
resulted in bactericidal kill (Figure 1 and Supplementary
Table 3). Consequently, doripenem- or polymyxin-containing
combination regimens exhibited bactericidal killing against these
isolates, respectively.

Of the 407 combinations evaluated, only 146 (35.9%)
exhibited bactericidal killing at 24 h. Polymyxin with doripenem
(27/37 isolates), meropenem (24/37 isolates), cefepime (24/37
isolates), and tigecycline (20/37 isolates) were the combinations
exhibiting the highest bactericidal activities. Polymyxin B
in combinations with the various β-lactams were more
active (99/185 bactericidal activity, 53.5%) than tigecycline
combinations (27/185 bactericidal activity, 14.6%), while
polymyxin and tigecycline demonstrated bactericidal activities in
20/37 (54.0%) isolates.

Against polymyxin- and/or tigecycline-resistant isolates, only
32/121 (26.4%) combinations were bactericidal, while 114/286
(39.9%) combinations were bactericidal against isolates that
remained susceptible to both polymyxin B and tigecycline.
This indicates that combinations were less likely to be active
in resistant isolates, suggesting that polymyxin or tigecycline
resistance phenotypes could be predictive of the activity of
polymyxin and tigecycline combinations, respectively. Only
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TABLE 1 | Phenotypic characteristics (antibiotic susceptibilities) of 37 CRKP.

Strain Carbapenemase Minimum inhibitory concentrations (mg/L)

Doripenem Meropenem Polymyxin B Tigecycline

EC1642 None 8 16 ≥16 2

EC0283 None 16 16 2 2

EC0215 OXA-181 ≥32 ≥32 0.5 2

EC1717 OXA-181 ≥32 ≥32 0.5 2

EC2096 OXA-181 16 ≥32 8 ≤0.25

EC1277 OXA-181 16 ≥32 0.5 0.5

EC1824 OXA-181 ≥32 ≥32 0.5 1

EC1812 OXA-181 ≥32 ≥32 0.5 1

EC0633 OXA-232 ≥32 ≥32 1 2

EC1902 OXA-232 ≥32 ≥32 ≥16 1

EC0307 KPC-2 8 ≥32 0.5 1

EC0301 KPC-2 ≥32 ≥32 ≥16 ≥16

EC2772 KPC-2 16 ≥32 ≤0.25 ≤0.25

EC1470 KPC-2 ≥32 ≥32 ≥16 2

EC2617 KPC-2 ≥32 ≥32 0.5 8

EC0174 NDM-1 ≥32 ≥32 0.5 2

EC0044 NDM-1 ≥32 ≥32 ≤0.25 0.5

EC0466 NDM-1 ≥32 ≥32 2 4

EC0045 NDM-1 ≥32 ≥32 0.5 2

EC0177 NDM-1 ≥32 ≥32 0.5 2

EC0178 NDM-1 ≥32 ≥32 0.5 2

EC0334 NDM-1 ≥32 ≥32 2 0.5

EC1170 NDM-1 ≥32 ≥32 8 2

EC0172 NDM-1 ≥32 ≥32 0.5 ≤0.25

EC0299 IMP-1 ≥32 ≥32 1 4

EC0360 NDM-1 + OXA-181 ≥32 ≥32 0.5 2

EC0564 NDM-1 + OXA-181 ≥32 ≥32 8 1

EC0567 NDM-1 + OXA-181 ≥32 ≥32 8 1

EC0391 NDM-1 + OXA-181 ≥32 ≥32 8 1

EC1488 NDM-1 + OXA-232 ≥32 ≥32 2 2

EC1522 NDM-1 + OXA-232 ≥32 ≥32 0.5 1

EC1645 NDM-1 + OXA-232 ≥32 ≥32 0.5 2

EC1655 NDM-1 + OXA-232 ≥32 ≥32 0.5 1

EC1678 NDM-1 + OXA-232 ≥32 ≥32 0.5 1

EC1729 NDM-1 + OXA-232 ≥32 ≥32 1 1

EC1792 NDM-1 + OXA-232 ≥32 ≥32 0.5 1

EC0462 NDM-1 + OXA-232 ≥32 ≥32 0.5 1

Aztreonam and piperacillin-tazobactam minimum inhibitory concentrations are not shown here as all isolates have values ≥ 64 mg/L (resistant phenotype). Values in bold
denote polymyxin- and/or tigecycline-resistant isolates.

seven polymyxin B combinations retained bactericidal activity
against polymyxin-resistant isolates (Polymyxin B + doripenem
against EC1642, EC2096, EC1902; polymyxin B + meropenem
against EC1642; polymyxin B + cefepime against EC2096
polymyxin B + tigecycline against EC1642, EC2096). Against
tigecycline-resistant isolates, polymyxin + tigecycline was
the only tigecycline-containing combination that exhibited
bactericidal killing (EC2617 and EC0299).

Analyzing only the polymyxin B- and tigecycline-susceptible
isolates where monotherapy was not bactericidal (22 isolates),
our results did not reveal marked differences in bactericidal
activity between isolates harboring OXA-48-like, KPC-2 or

NDM-1 (Supplementary Figure 1). Polymyxin B with cefepime,
doripenem, or meropenem was bactericidal against almost all
of these isolates (except EC0283 where polymyxin + cefepime
was not bactericidal). The remaining combinations were variable
in activity. Against NDM and OXA dual producers, all
combinations were variable in activity. This was despite dual
carbapenemase-producing isolates belonging to the same ST
and harboring similar genotypic characteristics (carbapenemases,
β-lactamases, and porin genes), suggesting that STs were unlikely
to predict any specific antibiotics in combination.

Interestingly, only four combinations (polymyxin
with meropenem/doripenem or tigecycline with
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FIGURE 1 | Genotypic characteristics and bactericidal activities of the various antibiotic regimens against 37 CRKP. Only doripenem and polymyxin B
monotherapies are displayed in the figure as all other monotherapy regimens did not demonstrate bactericidal kill.

meropenem/doripenem) were bactericidal against EC0283,
which did not harbor any carbapenemase. In this study, we
included CRKP (carbapenem MICs > 8 mg/L), which were
isolates where most single antibiotic therapies including high-
dose carbapenem extended infusions will likely fail; hence it is
likely EC0283, while not a carbapenemase-producer, harbored
higher levels of CTX-M-15 and a higher degree of porin loss
to manifest the high carbapenem phenotypic resistance which
could not be overcome by combination therapies.

DISCUSSION

CRKP infections are challenging to treat due to limited
treatment options. Antibiotic combination therapy has been
explored as a viable option in several in vitro studies, but
available data are limited by the overrepresentation of KPC
producers (Zusman et al., 2013). It is well known that the
effectiveness of antibiotic combinations is not universal and
tends to be unpredictable, rendering it extremely challenging to
select an antibiotic combination regimen. Interactions observed
when antibiotics are combined can range from antagonism
to synergism rates up to 80% (Zusman et al., 2013; Lenhard
et al., 2016; Mohammadi et al., 2017; Jiang et al., 2018).
These interactions can be influenced by pathogen factors
(species, susceptibility, and resistance mechanisms), antibiotic
factors (number, classes, and concentration), and the testing
methodology (Zusman et al., 2013). As the understanding of the

mechanisms behind the bactericidal/synergistic/additive effect
of combinations remains poor, we evaluated 37 CRKP isolates
with differing carbapenemase genotypes against 11 two-antibiotic
combinations in this study.

In our study, bactericidal activity was observed with at
least one polymyxin-containing combination for the majority
of the isolates. This result corroborates other in vitro studies
where synergistic/bactericidal activity has been demonstrated
with polymyxin B-containing combinations. Synergy rates
between 30 and 59% for K. pneumoniae have been reported,
and polymyxins in combination with carbapenems have
demonstrated bactericidal activity in several in vitro studies
(Zusman et al., 2013; Lenhard et al., 2016; Scudeller et al.,
2021). The utility of polymyxin combinations has mechanistic
plausibility. In Gram-negative bacteria like K. pneumoniae,
most antibiotics enter the cell via porin channels in the outer
membrane. Polymyxins’ main mechanism of bacterial killing
has been suggested to be the disruption/destabilization of the
outer membrane (Trimble et al., 2016). There is evidence that
synergism between polymyxin and other antibiotics occurs as
a result of this membrane disruption, allowing the entry of
the partner antibiotics into the bacterial cell (Rosenthal and
Storm, 1977). However, it appears that bactericidal activity of
polymyxin combinations is primarily limited to polymyxin-
susceptible isolates in our study, unlike other reports which
established combination activity in polymyxin-resistant strains
(Jernigan et al., 2012). The difference in combination activities
observed in our isolates with frank polymyxin B resistance
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(mediated by MgrB mutations) might be related to differences in
the mechanisms mediating polymyxin resistance.

In contrast, we did not observe good results with tigecycline-
containing combinations, even in tigecycline-susceptible isolates.
Previous studies have also demonstrated variable in vitro
tigecycline activity (Pournaras et al., 2011). Antagonism has
also been reported with tigecycline and meropenem/doripenem
combinations (Bi et al., 2019). Tigecycline is a bacteriostatic
drug that exerts its activity via ribosomal binding, leading
to the prevention of protein synthesis and retardation
of cell growth (Greer, 2006). Studies have demonstrated
that tetracyclines affect cell division, leading to growth
stasis forming the basis of antagonism when paired with
bactericidal drugs such as β-lactams which are the most
potent against actively dividing cells (Ocampo et al., 2014).
This phenomenon, also known as phenotypic tolerance
(Tuomanen, 1986), might explain the lack of activity in
the tigecycline and β-lactam combinations assessed here,
whereas tigecycline when paired with polymyxin still exhibit
moderate activity (Supplementary Table 3). Contrary to our
expectation of beta-lactam activity being inhibited/antagonized
by the addition of tigecycline in tigecycline and beta-lactam
combinations, we have also noticed higher 24-h bacterial
counts of tigecycline combinations compared to tigecycline
monotherapy. The mechanisms behind this antagonism warrant
further exploration.

There was high variability in bactericidal activity of the
various combinations in our isolates, emphasizing the high
strain specificity of antibiotic combinations. It was suggested that
genotypic information could be more predictive of combination
antibiotic activities/interactions than the phenotypes alone
(Shields et al., 2015; Wistrand-Yuen et al., 2020). Knowledge
of the carbapenemase family can aid in the rationalization
of therapeutic choices since the different carbapenemases
have different substrate activities (Queenan and Bush, 2007;
Livermore et al., 2020). In this study, aside from the poor
bactericidal activity observed amongst the co-producers, we were
unable to identify a clear trend among the isolates with the
other carbapenemase types, indicating that the knowledge of
carbapenemase types alone was a poor indicator of combination
activity in our isolates.

The mechanisms of carbapenem resistance are complex and
multi-factorial. Aside from being mediated by carbapenemase
production, resistance may also result from various combinations
of β-lactamases production, porin loss/downregulation, and
efflux activity, leading to the same carbapenem resistance
phenotype (Codjoe and Donkor, 2017). The availability of WGS
results in this study shed some light on our observations. All
of our isolates harbored at least one ESBL/plasmid AmpC, in
addition to the carbapenemases which might have explained
the higher frequency of bactericidal activity in doripenem,
meropenem, and cefepime combinations since these β-lactams
are generally more stable against ESBL production. We also noted
that many of our isolates have porin mutations which may lead
to decreased porin expression. The variability in combination
effectiveness may be related to differentiation in the levels of
porin expression, which was unfortunately not quantitated in

this study. Given that the mechanism of combination antibiotic
synergism/bactericidal effect is likely due to the increased
effective entry of the antibiotic into the bacterial cell, combination
therapy may likely be more effective in strains where phenotypic
resistance is contributed to a larger extent by cell permeability
which may then be “reversed” with antibiotic combinations. In
light of this, further studies characterizing/quantitating porin
expression and efflux activity may be useful to establish if genetic
mechanisms related to cell permeability may be a better predictor
of the bactericidal activity of the combination.

The complexity of mechanisms mediating carbapenem
resistance has contributed to the difficulty in antibiotic
combination selection. However, it is unlikely that there is a
universal combination that is effective against all or even the
majority of the CRKP strains, and knowledge of the genomic
characteristics still only serves as a small step toward the
rational selection of antibiotic combinations. Given that our local
isolates tend to co-harbor ESBLs and are porin-deficient, partner
antibiotics that are ESBL-stable and have better cell penetration
profiles should be selected. In our study, polymyxin and
doripenem appear to be the most reliable combination against the
various types of CRKP. Aside from the better β-lactamase stability
of doripenem compared to the other β-lactams like cefepime,
aztreonam, and piperacillin-tazobactam, its pharmacodynamic
and safety profile of doripenem has allowed the drug to be given
at a high-dose prolonged infusion (concentration of doripenem
used in this study corresponded to a 2 g every 8-hourly dosing
regimen given as a 4-h prolonged infusion), which will likely
result in a higher probability in achieving a longer f T > MIC
(Strawbridge and Nailor, 2016). Furthermore, doripenem MICs
tended to be one to twofold lower compared to meropenem.
It was also proposed that there might be improved in vivo
efficacy compared to the other carbapenems due to a favorable
immunological profile (enhanced neutrophil killing and reduced
endotoxin release) (Hilliard et al., 2011). When taken together
with other studies supporting the positive interactions with
polymyxin-doripenem combinations (Deris et al., 2012; Jernigan
et al., 2012; Lee and Burgess, 2013), this combination may
be considered a rational choice for the treatment of CRKP
infections, especially if other potentially active agents such as
ceftazidime-avibactam are not available. Furthermore, this was
the only combination that potentially exhibited activity against
polymyxin-resistant strains.

This study is not without limitations. We utilized static
time-kill studies to evaluate bactericidal activity, which may
not correlate well with in vivo studies. The small sample
size also limits the generalization of our results to the
larger CRKP population. Ideally, further studies, including
pharmacokinetic/pharmacodynamic models, animal models, and
even clinical trials, should be conducted to verify if these in vitro
observations may be translated to clinical utility. Nevertheless,
the findings are in line and lend support to several other in vitro
studies as discussed above. We hope the results here may serve
as a proof of concept and provide a preliminary guide for
rational antibiotic combination design, aiding to narrow down
the potential combinations that will eventually be brought to
large clinical trials.
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CONCLUSION

The present study confirmed the high strain specificity
of antibiotic combinations among CRKP with various
carbapenemase genotypes. Bactericidal killing was observed
with polymyxin combinations, in particular, polymyxin B
with doripenem, against CRKP with varying carbapenemase
genotypes. However, bactericidal killing was rare against
polymyxin-resistant CRKP and those harboring more than
one carbapenemase, suggesting that more efforts need to
be directed at identifying therapeutic options for this group
of pathogens. WGS provided genomic information about
the bacterial resistome, which when taken together with
pharmacokinetic/pharmacodynamic knowledge of the various
antibiotics can guide the rational selection of combination
antibiotic therapy. This approach will improve the chances of
selecting a successful combination through identifying potential
synergistic mechanisms and avoidance of antagonism. Future
in vitro pharmacokinetic/pharmacodynamic studies should
incorporate genomic characterization to facilitate comparisons
between studies.
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The emergence of infections (and colonization) with Enterobacteriaceae-producing 
carbapenemases is a threatening public health problem. In the last decades, we watched 
an isolated case becoming a brutal outbreak, a sporadic description becoming an endemic 
problem. The present study aims to highlight the dissemination of IMP-22-producing 
Klebsiella pneumoniae in the North of Portugal, through the phenotypic and genotypic 
characterization of isolates collected from hospitalized patients (n = 5) and out-patients of 
the emergency ward of the same acute care hospital (n = 2), and isolates responsible for 
the intestinal colonization of residents in a Long-Term Care Facility (n = 4). Pulsed-field gel 
electrophoresis (PFGE) results, associated with conjugation experiments pointed to a 
pattern of both vertical and horizontal dissemination. Overall, and complementing other 
studies that give relevance to IMP-22-producing K. pneumoniae in the clinical settings, 
here we show for the first time the public health threatening breach of the hospital frontier 
of this resistance threat, toward the community.

Keywords: Klebsiella pneumoniae, antimicrobial resistance, carbapenemases, metallo-β-lactamases, nosocomial 
infections, intestinal colonization, long-term care facilities

INTRODUCTION

Antimicrobial resistance is among the major public health problems of the 21st century. In 
2015 the World Health Organization launched the “Global Action Plan on Antimicrobial 
Resistance” (giving great relevance to antibiotics) to respond to this global issue on five fronts 
(WHO, 2015). Still, each year, only in the United  States and the European Union, 50,000 
individuals die due to antibiotic therapy failure (CDC, 2019). Even considering the “last-line” 
treatment options for infections caused by resistant Enterobacteriaceae, carbapenems, we  know 
today several enzymes that can effectively hydrolyze their β-lactam ring, and consequently, 
compromise their activity (Queenan and Bush, 2007).
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Carbapenemases can be  divided into two different groups 
according to their dependency on cations for enzyme activity: 
serine/non-metallo- (zinc-independent; classes A, C, and D) 
and metallo-carbapenemases (MBLs; zinc-dependent; class B; 
Queenan and Bush, 2007). Within the latter, a versatile family 
of beta-lactamases often associated with Enterobacteriaceae, 
the VIM, IMP, and NDM types are the most relevant 
carbapenemases globally (Poirel et al., 2011; Nordmann, 2014). 
Interestingly VIM and IMP are so well settled, that they are 
considered an endemic problem in the Mediterranean basin 
(Poirel et  al., 2011; Pitout et  al., 2015). However, in Portugal, 
the occurrence of MBL-producing Enterobacteriaceae in the 
clinical settings is apparently not common; only a few sporadic 
cases were reported, including a VIM-34-producing Klebsiella 
pneumoniae (Rodrigues et  al., 2014) and a VIM-2-producing 
Klebsiella oxytoca (Conceicao et  al., 2005). In fact, recent 
studies confirmed that among carbapenemase-producing 
Enterobacteriaceae (CPE), MBL-producing bacteria only 
represent 5% in Portugal (Manageiro et  al., 2018; Gorgulho 
et  al., 2020).

IMP-22 was first described in Italy in two non-related 
environmental strains of Pseudomonas fluorescens as well as in 
one clinical isolate of Pseudomonas aeruginosa (Pellegrini et  al., 
2009). Since the first description, the same enzyme was then 
described also in a Pseudomonas spp. single clinical isolate from 
Austria (Duljasz et  al., 2009) and recently emerged in Spain, 
always in the clinics, associated first with P. aeruginosa (Viedma 
et  al., 2012) and then mainly with K. pneumoniae (Miro et  al., 
2013; Pena et al., 2014) but also with E. coli (Ortega et al., 2016).

Here, we  report and describe the successful installation of 
IMP-22-producing K. pneumoniae in a Portuguese acute care 
hospital (in the North of Portugal), due to both vertical and 
horizontal dissemination. Furthermore, we describe for the first 
time the breach of the hospital frontier, with the detection 
and characterization of an IMP-22-producing K. pneumoniae 
isolate, via the screening of intestinal colonizers of residents 
of a long-term care facility (LTCF). These results ultimately 
highlight the circulation of patients between hospital and extra-
hospital care settings as the most probable justification for the 
“dissemination of multiresistant bacteria toward the community.”

MATERIALS AND METHODS

Hospital Settings and Clinical 
Carbapenem-Resistant K. pneumoniae 
Isolates
This study was performed in the context of one of the largest 
acute care hospitals in the North of Portugal (705 beds), 
covering a population of 1.2 million people (hereafter called 
Hospital A). During a one-year study period (from March 
2011 to May 2012) K. pneumoniae clinical isolates showing 
reduced susceptibility to carbapenems (imipenem or ertapenem 
or meropenem) were identified as part of routine diagnostics 
in the hospital Clinical Pathology Service. Isolates were collected 
from both inpatients admitted to the internal medicine service 
and from patients admitted to the hospital emergency ward.

Long-Term Care Facility and Carbapenem-
Resistant K. pneumoniae Intestinal 
Colonizers
An extra-hospital healthcare institution for dependent and 
old people in the North of Portugal was studied. The LTCF 
with 54 beds has three different typologies of care: long-term 
maintenance (LTM, 22 beds), medium-term and rehabilitation 
(MTR, 22 beds), and palliative care (PC, 10 beds). The 
institution is located in the same geographic area as Hospital 
A (distance of 4 Km), and consequently, the circulation of 
patients between these two healthcare institutions occurs  
frequently.

Thirty-eight fecal samples from LTCF residents were collected 
between January and February 2012, suspended in Brain Heart 
Infusion (BHI; Oxoid, Hampshire, United Kingdom), and incubated 
overnight at 37°C. The enriched suspensions were then plated 
onto MacConkey agar plates (Oxoid, Hampshire, United Kingdom) 
supplemented with meropenem (1 mg/l). Isolates that grew in 
the selective media were re-inoculated in a new plate to exclude 
any satellite growers (maximum of four random colonies per plate).

Bacterial Identification and Antimicrobial 
Susceptibility Determination
The clinical isolates were identified using the Vitek® 2 automated 
system (bioMérieux, Marcy l’Étoile, France). Bacteria isolated 
as part of the intestinal colonization screening were identified 
using the bacterial identification biochemical galleries API® 
20E and ID®32GN (bioMérieux).

The antimicrobial susceptibility of clinical isolates was 
assessed through the determination of the minimum inhibitory 
concentration (MIC) of different antimicrobial agents, 
performed using the Vitek® 2 (bioMérieux) and/or WalkAway 
(Beckman Coulter, Brea, CA, United States) automated systems. 
The MICs detected for ampicillin, piperacillin, ticarcillin, 
amoxicillin + clavulanic acid, piperacillin + tazobactam, 
ticarcillin + clavulanic acid, cephalothin, cefuroxime, 
ceftazidime, cefotaxime, cefepime, aztreonam, imipenem, 
ertapenem, meropenem (β-lactams), gentamicin, tobramycin, 
amikacin, minocycline, ciprofloxacin, levofloxacin, pefloxacin, 
nitrofurantoin, trimethoprim + sulfamethoxazole, and 
rifampicin (non-β-lactams) were interpreted into susceptible, 
intermediate susceptible or resistant according to the clinical 
and laboratory standards institute (CLSI) guidelines (Queenan 
and Bush, 2007; Supplementary Table S1). For isolates collected 
in the LTCF intestinal colonization screening, antimicrobial 
susceptibility was determined by disk-diffusion methods; 
susceptibility to both β-lactams [ampicillin (10 μg), amoxicillin + 
clavulanic acid (20 + 10 μg), ceftazidime (30 μg), cefotaxime 
(30 μg), cefepime (30 μg), cefoxitin (30 μg), aztreonam (30 μg), 
imipenem (10 μg), ertapenem (10 μg), and meropenem (10 μg)] 
and non-β-lactam antibiotics [streptomycin (10 μg), gentamicin 
(10 μg), netilmicin (30 μg), tobramycin (10 μg), amikacin (30 μg), 
tetracycline (30 μg), nalidixic acid (30 μg), ciprofloxacin (5 μg), 
nitrofurantoin (300 μg), chloramphenicol (30 μg), tigecycline 
(15 μg), and trimethoprim + sulfamethoxazole (1.25/23.75 μg)] 
was defined according to the CLSI guidelines (CLSI, 2013) 
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or the EUCAST criteria in the case of tigecycline1 
(Supplementary Table S2).

Carbapenemases Phenotypic Screening
An initial carbapenemase production screening (MBLs) was 
performed using the double disk synergism method (DDSM)  - 
IMP (10 μg) versus IMP (10 μg) + EDTA (0,5 M), followed by 
the confirmatory MBL E-test IP/IPI [(MIC determination; IMP 
(4-256 μg/ml) versus IMP (1-364 μg/ml) + EDTA (constant level)] 
(bioMérieux, Marcy l’Étoile, France). The E-test was considered 
MBL suggestive when the MIC ratio of imipenem/imipenem 
plus EDTA was ≥8 and/or when the presence of a phantom 
zone or deformation of the inhibitory ellipse was observed. The 
modified hodge test (MHT) was performed in parallel, to screen 
for non-MBL carbapenemase production. Briefly, an imipenem 
disk (10 μg) was placed at the center of a Müeller-Hinton agar 
plate (Oxoid, Hampshire, United Kingdom), previously inoculated 
with E. coli ATCC 25922, and the clinical isolates were streaked 
heavily from the edge of the disk toward the edge of the plate. 
The MHT was considered positive when E. coli growth was 
observed within the usual inhibition zone of the imipenem disk 
(CLSI, 2013). As a final confirmatory step the biochemical Blue-
Carba test was performed as described elsewhere (Pires et al., 2013).

Characterization of Antibiotic Resistance 
Genes
Total DNA was extracted from all isolates via the boiling of 
single bacterial colony suspensions for 10 min, followed by a 
5 min centrifugation step at 15,000 rpm. The supernatant was 
then collected and stored at 4°C until further use. Relevant 
beta-lactamase [blaTEM, blaOXA, blaSHV (Dallenne et  al., 2010), 
and blaCTX-M group  1 (Machado et  al., 2005)] and carbapenemase 
[blaVIM, blaIMP, blaKPC, blaOXA-48, and blaNDM (Poirel et  al., 2011)] 
genes were screened using the primers and amplification 
conditions described in the literature (Machado et  al., 2005; 
Dallenne et al., 2010; Poirel et al., 2011; Goncalves et al., 2016; 
Teixeira et  al., 2016). Whenever relevant, amplicons were 
sequenced using the ABI-PRISM 3100 automatic genetic analyzer 
(Thermo Fischer Scientific, Waltham, MA, United  States). 
Sequence analysis and alignment were performed using the 
National Center for Biotechnology Information tool.2 As a final 
confirmation step, IMP-22 specific primers were used (Pellegrini 
et  al., 2009). A compilation of all primer sequences used in 
this study can be  found in (Goncalves et  al., 2016).

Determination of the Clonal Relationships 
via Pulsed-Field Gel Electrophoresis
The clonal relationships of the K. pneumoniae clinical isolates 
were studied via pulsed-field gel electrophoresis (PFGE), after 
total genomic DNA digestion with XbaI (Gautom, 1997). Briefly, 
carbapenem-resistant clinical isolates were cultured in brain heart 
infusion (BHI) for 24 h at 37°C, then “trapped” into 1.6% agarose 

1 http://www.eucast.org/clinicalbreakpoints/
2 http://blast.ncbi.nlm.nih.gov/Blast.cgi

plugs. A lysis step was performed at 54°C for 2 h (50 mm Tris, 
50 mm EDTA, 1% N-lauryl-sarcosine, 0.1  mg/ml proteinase K, 
pH 8.0), followed by 2–3 washing cycles, and afterward, the 
digestion overnight with 30 U of XbaI at 37°C. Total DNA digests 
were separated on 1.0% agarose gels (SeaKem Gold Agarose, 
Lonza, Basel, Switzerland) via PFGE using the CHEFF DR III 
system (Bio-Rad Laboratories, Hercules, CA, United  States) and 
the following conditions: electric field strength of 6 V/cm2 (200 V), 
14°C, and pulse time of 15 s–25 s for 16 h. After electrophoresis, 
the gels were stained with ethidium bromide (10 μg/ml) for 
30 min and watched under a UV light (Bio-Rad Laboratories). 
Data analysis was performed using the BIONUMERICS software, 
version 8.0 (bioMérieux, Marcy l’Étoile, France); the UPGMA 
algorithm based on the Dice coefficient (1.0% band tolerance; 
1.0% optimization) was applied. The PFGE profiles were defined 
on the basis of DNA banding patterns in accordance with the 
criteria defined by Tenover et  al. (1995). Isolates with a pattern 
similarity profile above ≥80% were considered identical.

Horizontal Gene Transfer Assessment
Conjugation experiments were performed to investigate the 
transfer of carbapenem resistance determinants. E. coli HB101 
(azide resistant, lactose-negative) was used as the recipient 
strain. Donor and recipient bacterial strains were individually 
grown overnight in Trypticase Soy Broth (TSB; Oxoid, Hampshire, 
United  Kingdom) and drops of donor and recipient bacterial 
suspensions were then mixed on the surface of a Müeller-
Hinton Agar plate (Oxoid) and re-incubated at 37°C for 24 h. 
The resulting bacterial growth was re-inoculated on Müeller-
Hinton medium supplemented with meropenem or ceftazidime 
(10 mg/l) and azide (100 μg/ml) and incubated for a maximum 
of 72 h at 37°C. Growing colonies on the selective medium 
were randomly chosen and inoculated in MacConkey agar 
(Oxoid) to assess lactose fermentation. Lactose non-fermenters 
were subjected to antimicrobial susceptibility determination 
and to genotypic characterization as above stated.

Ethics Statement
This research was conducted in accordance with the Declaration 
of Helsinki Ethical Principles. This study was approved by the 
Ethics Committee of Hospital de Braga, Braga, Portugal. 
Additionally, human fecal sample collection was performed in 
accordance with the Good Clinical Practice guidelines; the 
LTCF direction provided the necessary authorization to conduct 
this study. Of note, all of the study participants provided written 
informed consent.

RESULTS

Hospital K. pneumoniae Isolates: Clinical 
Context
Eight carbapenem-resistant K. pneumoniae showing reduced 
susceptibility to at least one of the carbapenems tested were 
isolated from different biological samples of seven distinct 
hospitalized patients: five inpatients of the internal medicine 
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service of Hospital A and two patients admitted to the emergency 
ward of the same hospital. The most common type of biological 
sample from which these bacteria were isolated was sputum 
(n = 5), followed by urine (n = 2) and blood (n = 1; Table  1). 
Two of the carbapenem-resistant K. pneumoniae (isolates H13 
and H50) were isolated from the same patient (patient 3) in 
different periods (December 2011 and April 2012, respectively; 
Table 1). The patients were mostly elderly (median age 74 years; 
range 36–92 years) with distinct underlying illnesses, namely 
urinary tract infection (n = 1), endocarditis (n = 1), renal 
insufficiency (n = 2), brain tumor (n = 1), nosocomial pneumonia 
(n = 1), acute pancreatitis (n = 1), respiratory insufficiency (n = 2), 
and bladder tumor (n = 1; Table  1). All of the patients had 
previous hospitalization history in Hospital A, with many of 
them spending prolonged periods at the internal medicine 
ward. Of note, patients 3, 6, and 7 received meropenem therapy 
during their hospitalization period (Table  1).

LTCF Carbapenem-Resistant 
K. pneumoniae Isolates: Contextualization
Four carbapenem-resistant K. pneumoniae isolates (10.53%, 
4/38) with reduced susceptibility to imipenem were detected 
in fecal samples of residents of a LTCF (two different typologies 
of care; LTM, n = 3; MTR, n = 1; Table  2). The four residents 
colonized with carbapenem-resistant bacteria were mostly elderly 
(median age 72.5 years; range 63–82 years), with previous history 
of stroke (n = 2), stroke associated with other pathologies 
(endocarditis and pneumonia; n = 1), and chronic renal 
insufficiency (n = 1; Table  2). Three of them had recent 
hospitalization history in Hospital A: two spent prolonged 

periods in the internal medicine ward (residents A and D) 
while the third one was admitted to the orthopedics service 
(resident B). The fourth resident (C) had hospitalization history 
in three different hospitals in the same geographic area of 
Hospital A (one hospital in Braga district and two hospitals 
in Porto district; Table  2).

Antimicrobial Susceptibility Patterns of the 
Carbapenem-Resistant K. pneumoniae 
Isolates
All clinical isolates showed reduced susceptibility to meropenem 
(MIC ≥16; R). Additionally, of the set of clinical isolates 
analyzed, six presented resistance to Ertapenem, and two to 
imipenem (three others showed an intermediate phenotype; 
Table  3). Importantly, most of the clinical isolates also showed 
resistance to expanded-spectrum cephalosporins, other β-lactams 
and β-lactam/β-lactamase inhibitor combinations; additionally 
resistance to gentamycin (n = 2), tobramycin (n = 5), ciprofloxacin 
(n = 6), norfloxacin (n = 1), pefloxacin (n = 1), trimethoprim/
sulfamethoxazole (n = 7), and tetracycline (n = 6) was also detected 
(Table  3).

The four intestinal colonization K. pneumoniae isolates also 
showed reduced susceptibility to imipenem (Table  4). Two of 
them also showed reduced susceptibility to ertapenem (isolates 
22 and 24), with only one (isolate 22) showing resistance to 
the three carbapenems tested (imipenem, ertapenem, and 
meropenem). The majority of the intestinal isolates also showed 
resistance to expanded-spectrum cephalosporins (n = 3), other 
β-lactams (n = 4), β-lactam/β-lactamase inhibitor combinations 
(n = 4) as well as to non-β-lactam antibiotics, including 

TABLE 1 | Hospital K. pneumoniae isolates: clinical context.

Patient Nr.
Date (month/
year)

Isolate ID Age/Sex
Hospital 
service

Biological 
products

Underlying 
diseases

Origina

Treated with 
meropenem 
during hospital 
admission

1 March 2011 H7 92/F
Internal 
medicine

Blood culture
Urinary tract 
infection

Domicile No

2 May 2011 H8 36/M
Internal 
medicine

Urine Endocarditis
No residence 
identified

No

3

December 2011

(1st isolate)
H13

86/M

Internal 
medicine

Urine
Renal 
insufficiency

Domicile/LTCF Yes
April 2012

(2nd isolate)
H50

Internal 
medicine

Sputum

4 December 2011 H15 77/F
Internal 
medicine

Sputum
Brain tumor and 
nosocomial 
pneumonia

Hospital B No

5 January 2012 H40 80/M
Emergency 
ward

Sputum

Acute 
pancreatitis and 
respiratory 
insufficiency

Domicile No

6 March 2012 H41 89/M
Emergency 
ward

Sputum
Renal and 
respiratory 
insufficiency

LTCF Yes

7 May 2012 H52 56/M
Internal 
medicine

Sputum Bladder tumor Hospital C Yes

F, female; M, male. aorigin of the patient before admission into Hospital A, hospitals B and C are different, but in the same geographic area of Hospital A.
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tetracycline (n = 3), trimethoprim/sulfamethoxazole (n = 3), 
nalidixic acid (n = 4), ciprofloxacin (n = 4), chloramphenicol 
(n = 2), and streptomycin (n = 1; Table  4).

Of note, all clinical and intestinal colonization K. pneumoniae 
isolates were defined as multidrug-resistant (MDR) in accordance 
with the definition proposed by Magiorakos and colleagues 
(non-susceptible to ≥1 agent in ≥3 antimicrobial categories; 
Magiorakos et  al., 2012).

Characterization of the Carbapenem 
Resistance Mechanisms
Interestingly, the production of MBL in the context of all of 
the K. pneumoniae clinical isolates was initially defined as 
negative, as per the MBL E-test IP/IPI. Additionally, the results 
of the MHT were also negative for all of the clinical isolates. 
However, contrary to these findings, the results of the Blue-
Carba test (all positive), suggested the expression of 
carbapenemases in all clinical isolates. Similarly, one of the 
intestinal colonization K. pneumoniae isolates was also determined 
as a carbapenemase producer, as per the results of the Blue-
Carba test. Of note, according to the CLSI guidelines, extended-
spectrum β-lactamase production was not detected, both in 
the clinical and intestinal colonization carbapenem-
resistant isolates.

Finally, the blaIMP-22 gene was detected via PCR followed 
by sequencing in all of the eight K. pneumoniae clinical isolates 
and in one of the carbapenem-resistant intestinal isolates, part 
of the commensal intestinal microbiota of one LTCF resident 
(isolate 22). PCR amplification was further confirmed using 
IMP-22 specific primers, supporting our sequencing results. 
No other carbapenemase genes were detected in the set of K. 
pneumoniae isolates.

Clonal Relationships of the IMP-22-
Producing K. pneumoniae Isolates
For epidemiological purposes, since many different carbapenem-
resistant isolates were isolated in a short period of time in 
Hospital A, next, we  investigated the genetic relationships of 
the eight IMP-22-producing K. pneumoniae clinical isolates 
using PFGE. Three distinct PFGE profiles (I to III) were 
revealed. Importantly, six of the clinical isolates (namely H7, 
H8, H13, H15, H40, and H41) shared the same profile (profile 
I), indicating that these isolates are genetically identical and 

have the same origin (Figure  1). The two remaining isolates, 
H52 and H50 showed two different profiles (profiles II and 
III, respectively; Figure  1). Of note, the isolates belonging to 
the single major clone (clone I) were isolated from four patients 
admitted to the medicine ward (isolates H7, H8, H13, and 
H15), and two patients admitted to the emergency ward (isolates 
H40 and H41); however, these two patients had previously 
been admitted to the same hospital. Interestingly, the two 
isolates collected from the same patient showed different PFGE 
patterns: H13, with the predominant profile I, was isolated 
during a first prolonged stay in Hospital A, while H50, with 
a unique typing pattern unrelated to profile I, was isolated 
during a second hospitalization, after a period spent in an 
LTCF in the same geographic region of Hospital A (the same 
LTCF from which the IMP-22-producing K. pneumoniae intestinal 
colonizer was isolated).

IMP-22-Producing K. pneumoniae Isolates 
of the Dominant Clone Are Effectively Able 
to Horizontally Transfer the Carbapenem 
Resistance Determinant
Since the findings in the context of the patient from which 
two isolates were collected suggest the horizontal transfer of 
blaIMP-22 (two different PFGE types), we  further performed 
conjugation experiments. Importantly, our results confirmed 
the above hypothesis; we  observed the transference not only 
of the carbapenem resistance determinant but also of resistance 
determinants to non-β-lactam antibiotics (Table 3; underlined), 
in the context of six clinical isolates (H7, H8, H13, H15, H40, 
and H41), all belonging to the single major clone. On the 
other hand, no conjugation was achieved in the context of 
the two remaining clones isolated from clinical samples, as 
well as of the carbapenem-resistant K. pneumoniae intestinal 
isolates. Importantly, the presence of the blaIMP-22 gene in all 
of the trans-conjugants obtained was confirmed via PCR 
and sequencing.

DISCUSSION

Since the widespread use of carbapenems in the clinical settings, 
carbapenem-resistant Enterobacteriaceae have been increasingly 
detected worldwide (including in Portugal), not only in hospitals, 

TABLE 2 | Extra-hospital carbapenem-resistant K. pneumoniae isolates: epidemiological contextualization.

LTCF resident code Date (month/year) Isolate ID Age/Sex LTCF typology Underlying diseases Resident origina

A February 2012 22 63/M MTR Stroke Hospital A – IM
B February 2012 34 80/F LTM Stroke Hospital A – O

C February 2012 31 65/F LTM
Stroke, endocarditis 
pneumonia

Hospitals B, C and D*

D February 2012 24 82/F LTM
Chronic renal 
insufficiency

Hospital A – IM

F, female; IM, internal medicine ward; LTM, long-term maintenance; LTCF, long-term care facility; M, male; MTR, medium-term and rehabilitation; O, orthopedics service. aorigin of 
the resident before LTCF admission.
*hospitalization, in chronological order, in three different hospitals: hospital B - Braga district; hospitals C and D, Porto district.
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but also in extra-hospital healthcare institutions, as well as in 
the environment (Logan and Weinstein, 2017). Among these 
bacteria, K. pneumoniae are formidable nosocomial pathogens 
with the potential to acquire resistance to multiple antimicrobial 
agents and consequently associated with high mortality and 
morbidity; of note, the emergence of MDR K. pneumoniae in 
extra-hospital healthcare institutions in the community, including 
LTCF, has been more and more reported (Navon-Venezia et  al., 
2017). Here, we describe for the first time not only the emergence TA
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FIGURE 1 | PFGE analysis of the IMP-22-producing K. pneumoniae clinical 
isolates. The clonal relationships between the eight K. pneumoniae clinical 
isolates were studied via pulsed-field gel electrophoresis (PFGE), after total 
genomic DNA digestion with XbaI. Cluster analysis was performed using the 
UPGMA algorithm based on the Dice coefficient (1.0% band tolerance; 1.0% 
optimization). The dendrogram obtained is shown, as are the isolated band 
patterns’ used in the cluster analysis. Additionally, a similarity matrix is also 
provided. Together with both the dendrogram and the similarity matrix, a 
similarity scale (in percentage) is provided (distance or color code, 
respectively). Additionally, in the dendrogram, the cophenetic correlation 
values are given in each node, as is the standard deviation (in grey). The 
PFGE profiles were defined on the basis of DNA banding patterns in 
accordance with the criteria defined by Tenover et al. (1995); isolates with a 
pattern similarity profile above ≥80% (represented by the dashed red line in 
the dendrogram) were considered identical.
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of IMP-22-producing K. pneumoniae in an acute care hospital 
in the North of Portugal, but also, and more importantly, the 
breach of the hospital frontier toward the community, with the 
detection of one IMP-22-producing K. pneumoniae isolate as a 
component of the fecal microbiota of a resident of an extra-
hospital health care setting (LTCF) in the same geographic area.

IMP-22 MBLs, first described associated with Pseudomonas 
spp. in different European countries are now emerging in K. 
pneumoniae in the Iberian Peninsula. In fact, the finding of 
the blaIMP-22 gene in P. fluorescens environmental strains (Pellegrini 
et  al., 2009) as well as in P. aeruginosa, K. pneumoniae, and 
E. coli (Duljasz et  al., 2009; Pellegrini et  al., 2009; Viedma 
et  al., 2012; Miro et  al., 2013; Pena et  al., 2014; Ortega et  al., 
2016) clinical isolates in different European countries suggest 
the ongoing spread of this blaMBL gene among Gram-negative 
bacteria. Importantly, our results support this notion and 
highlight the spread of this particular resistance determinant 
via both vertical and horizontal transmission, not only in the 
clinics but also in the community. Indeed, our results show 
a clonal spread of IMP-22-producing K. pneumoniae in the 
clinical settings, but also the possible plasmid-mediated spread 
of the blaIMP-22 gene in both the clinics and the community. 
These data reflect the complexity of the spread of CPE alerting 
for the need for adequate infection control practices in all 
healthcare institutions.

Different clonal outbreaks caused by carbapenem-resistant K. 
pneumoniae have been reported in particular hospitals in Portugal; 
however, most if not all of the reported outbreaks were associated 
with non-metallo-carbapenemases (including KPC-3 and OXA-48; 
(Conceicao et  al., 2005; Rodrigues et  al., 2014; Vubil et  al., 
2017; Manageiro et al., 2018; Mendes et al., 2018; Aires-de-Sousa 
et  al., 2019; Perdigao et  al., 2019; Gorgulho et  al., 2020; Guerra 
et  al., 2020; Lopes et  al., 2020). In fact, only around 5% of the 
reported CPE in Portugal are associated with metallo-
carbapenemases (Manageiro et  al., 2018; Gorgulho et  al., 2020). 
Therefore, our report of an outbreak caused by IMP-22-producing 
K. pneumoniae has epidemiological relevance, complementing 
the landscape of carbapenemase-producing bacteria in Portugal. 
Of note, the first IMP-22-producing K. pneumoniae clinical isolate 
was detected in March 2011, and since then, during one-year 
period (till May 2012) seven more isolates were found in the 
same hospital (and one more in the community). These data 
may suggest the successful installation of such resistant bacteria 
in the North of Portugal, with public health implications.

The original source and potential route of transmission 
of these IMP-22-producing K. pneumoniae isolates (clinical 

and intestinal commensal) is not known. However, our results 
suggest a common source, at least considering the IMP-22-
producing K. pneumoniae clinical isolates of the predominant 
clone. The link between most patients admitted to Hospital 
A was their stay in the medicine ward; therefore, it is not 
unreasonable to speculate that transmission occurred during 
the hospital stay. Of note, although the K. pneumoniae 
isolates from patients 5 and 6 were detected in the emergency 
ward, both patients were previously admitted for a long 
period to the medicine ward of Hospital A; after hospital 
discharge, patient 5 went home, and patient 6 went to an 
LTCF in the same geographic region (the facility where the 
IMP-22 positive intestinal colonizer strain was isolated), but 
then returned to Hospital A due to health status complications. 
Therefore, intestinal colonization of these patients with 
IMP-22-producing K. pneumoniae is a serious hypothesis 
to be  considered, after hospital discharge. Importantly, our 
results are in line with the more and more recognized notion 
that extra-hospital care institutions are a highway for the 
escape of MDR bacteria from the hospitals to the community, 
as well as for the (re)-introduction of MDR bacteria into 
hospitals (Masgala et  al., 2015; Mody et  al., 2018).

Interestingly, our results also suggest that, although most 
transmission events were clonal, some of them were horizontal 
in nature. This was particularly clear in the context of patient 
number 3, with two different isolates (detected during two 
distinct hospitalizations) showing non-related PFGE profiles. 
This, together with the fact that we  were able to obtain trans-
conjugants with all of the clinical isolates from the predominant 
clone suggest that these K. pneumoniae isolates are able to 
disseminate this particular carbapenem resistance determinant. 
Our results are, therefore, worrisome, thinking on the possibility 
of the emergence of more fit IMP-22-producing Enterobacteriaceae 
and their installation in the clinics and the community, in 
Portugal and even abroad (depending on the dissemination 
success of the bacteria).

Remarkably, MBL detection, as per the E-test IP/IPI, was 
negative in the context of all IMP-22-producing isolates, 
highlighting the need for the use of adequate phenotypic 
approaches to detect these particular carbapenem-resistant 
strains. Although according to some reports there is still “no 
gold standard CPE detection method” (Berry et  al., 2019), 
many recognize the genotypic approach (detection of 
carbapenemase-encoding genes) as the most suitable (Nordmann 
and Poirel, 2013). However, the diagnosis capacity is not 
homogeneous around the world; the COVID-19 pandemic 

TABLE 4 | Carbapenem-resistant intestinal colonization K. pneumoniae isolates: phenotypic and genotypic antimicrobial susceptibility features.

LTCF resident code Isolate ID
Resistance to 
carbapenems

Resistance to non-β-
lactam antibiotics

Blue-Carba test
Resistance 
determinants

A 22 IPM, ETP, MEM TE, CIP, T/S, S, NA Positive blaIMP-22
B 34 IPM CIP, T/S, NA, C Negative –
C 31 IPM TE, CIP, NA Negative –
D 24 IPM, ETP TE, CIP, T/S, NA, C Negative –

LTCF, long-term care facility; IPM, imipenem; ETP, ertapenem; MEM, meropenem; TE, tetracycline; CIP, ciprofloxacin; T/S, trimethoprim + sulfamethoxazole; S, streptomycin; 
NA, nalidixic acid; C, chloramphenicol; (−) negative.

124

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Gonçalves et al. IMP-22+ K. pneumoniae Breach the Hospital Frontier

Frontiers in Microbiology | www.frontiersin.org 8 December 2021 | Volume 12 | Article 777054

exposed the clear inequality-derived differences among countries 
(Giri and Rana, 2020; Millar, 2020). Therefore, phenotypic 
methods are still widely used as a primary approach to detect 
CPE. Importantly, our results highlight the need to use 
complementary (phenotypic) methods, to prevent the potential 
disregard of carbapenemase-producing strains, such as the 
IMP-22-producing K. pneumoniae isolates we  report here; 
metallo-carbapenemase producers not detected using the standard 
E-test IP/IPI method (thus inadequate for the detection of 
IMP-22-producing K. pneumoniae), but detected using the 
Blue-Carba test. Of note, if possible, the genotypic determination 
of MBL is recommended in situations of reduced susceptibility 
to carbapenems, excluding imipenem. Altogether, our results 
alert for the need for the correct detection of CPE in routine 
clinical microbiology testing, to avoid outbreak installation.

The early identification of CPE in hospitalized patients and 
the implementation of adequate infection control measures are, 
thus, extremely important to prevent the persistence and spread 
of carbapenem-resistant bacteria (Magiorakos et  al., 2017), such 
as the IMP-22-producing K. pneumoniae strains we  report in this 
study, not only in the hospital settings but also in the community. 
In fact, after hospital discharge, patients can remain colonized 
and contribute for the dissemination of these MDR K. pneumoniae 
within extra-hospital care settings, namely, LTCF, and nursing 
homes (Chen et  al., 2021). Therefore, the early identification of 
carriers and the implementation of adequate control strategies 
are essential to prevent nosocomial outbreaks. This is precisely 
what we  show in this study. The individual colonized with the 
IMP-22-producing K. pneumoniae had previous hospitalization 
history in the medicine ward of the same acute care hospital 
where the clinical isolates were detected; therefore, our results 
suggest that this individual was colonized during hospitalization 
and served as a silent vehicle transporting the IMP-22-producing 
K. pneumoniae toward the community after discharge.

This study is not without limitations. First, antibiotic 
susceptibility of clinical and community isolates was assessed 
using two different methods, MIC determination, and disc-
diffusion assays, respectively. However, for both methods, the 
CLSI/EUCAST guidelines were strictly followed. Second, the 
community isolate was not included in the analysis of clonal 
relationships. Therefore, we  do not know whether this isolate 
belongs to the major clone, to one of the two single clones, or 
if it is a different clone; all of these options are possible. Third, 
although our results clearly suggest that the single clones were 
derived from horizontal dissemination events, this must yet 
be  clearly shown. To address these limitations, we  plan, in a 
follow-up study, to perform whole-genome sequencing of the 
isolates that will allow us to determine their MLST (and the 
clonal relationships of all of the isolates) and their resistome, 
as well as to perform detailed plasmid analyses and undoubtedly 
prove the horizontal transfer of the IMP-22 resistance determinant.

Altogether, our results align with the dogma that the 
presence of patients colonized with MDR Enterobacteriaceae 
in LTCF can represent a serious risk of dissemination and 
potential infection of elderly patients in the community, 
requiring, therefore strict epidemiological attention. In the 
future, as a preventive measure of the dissemination of 

multidrug-resistant bacteria, we  suggest the active screening 
of intestinal colonization, both at hospital admission and 
hospital discharge, as well as, sporadically, in extra-hospital 
healthcare settings including LTCF and nursing homes; the 
detection of carbapenem-resistant bacteria at these stages 
will allow the implementation of rational infection control 
measures, with the potential to prevent outbreaks both in 
the clinics and the community.
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The rise and global dissemination of extensively drug-resistant (XDR) bacteria are often
related to plasmid-borne mobile antimicrobial resistance genes. Notably, isolates having
multiple plasmids are often highly resistant to almost all the antibiotics available. In
this study, we characterized an extensively drug-resistant Klebsiella pneumoniae 1678,
which exhibited high-level resistance to almost all the available antibiotics. Through
whole-genome sequencing (WGS), more than 20 resistant elements and 5 resistant
plasmids were observed. Notably, the tigecycline resistance of K. pneumoniae 1678
was not related to the plasmid-borne tetA gene but associated with the overexpression
of AcrAB and OqxAB efflux pumps, according to the susceptibility results of tetA-
transformant and the related mRNA quantification of RND efflux pumps. Except for
tigecycline resistance, three plasmids, mediating resistance to colistin, Fosfomycin,
and ceftazidime–avibactam, respectively, were focused. Detailed comparative genetic
analysis showed that all these plasmids belonged to dominated epidemic plasmids,
and harbored completed conjugation systems. Results of conjugation assay indicated
that these three plasmids not only could transfer to E. coli J53 with high conjugation
frequencies, respectively, but also could co-transfer to E. coli J53 effectively, which was
additionally confirmed by the S1-PFGE plasmids profile. Moreover, multiple insertion
sequences (IS) and transposons (Tn) were also found surrounding the vital resistant
genes, which may form several novel mechanisms involved in the resistant determinants’
mobilization. Overall, we characterized and reported the uncommon co-existence and
co-transferring of FosA3-, NDM-5, and MCR-1-encoding plasmids in a K. pneumoniae
isolate, which may increase the risk of spread of these resistant phenotypes and needing
great concern.
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INTRODUCTION

Carbapenem-resistant Klebsiella pneumoniae (CRKP) has
recently emerged as a major class of bacterial pathogens that
pose a significant threat to global public health, since it can cause
high-fatal infections, and the treatment choices are very limited
(Chen et al., 2014). The emergence of antibiotic resistance arises
the development of several new antibiotics, such as tigecycline
(Chopra, 2002) and ceftazidime–avibactam (Zhanel et al., 2013),
and the re-evaluation of old antibiotics such as Fosfomycin and
polymyxin as a potential regimen for treating such multidrug-
resistant bacteria (Doi, 2019). Tigecycline, colistin, Fosfomycin,
and ceftazidime–avibactam were considered as the most effective
agents for the CRKP infection treatments, and were even
regarded as the last “trump card” to defend against CRKP (Doi,
2019). However, clinical isolates resistant to those four antibiotics
emerged frequently (Petrosillo et al., 2019; Fang et al., 2020;
Yahav et al., 2020; Zurfluh et al., 2020; Yusuf et al., 2021). Hence,
verifying the related mechanism and demonstrating the potential
of the spread of these resistant phenotypes in clinical isolate are
urgent, which are the vital clues to solve antibiotic resistance.

The acquisition of antibiotic resistance was always associated
with mobile genetic elements (MGEs) such as conjugative
and mobilizable plasmids and transposons (Partridge et al.,
2018). In Enterobacteriaceae, Fosfomycin-modifying enzymes
are the important factors to inactivate the Fosfomycin, genes
encoding these enzymes (fosA) are frequently found on
plasmids, transposons, or within integrons (Zurfluh et al.,
2020). Lipopolysaccharide modifications are the key issues to
reduce the antibiotic effect of polymyxin. In addition to the
two-component systems (TCSs) PhoP/PhoQ, PmrA/PmrB, and
CrrA/CrrB (Mcconville et al., 2020), the plasmid-mediated
mcr genes (such as mcr-1) mediated enzymes are the most
noteworthy way to modify lipopolysaccharides, which not
only result in polymyxin resistance, but also result in the
transferring of this antibiotic resistant-phenomena worldwide
(Xiaomin et al., 2020). The tigecycline resistance is sometimes
associated with the overexpression of the efflux pumps AcrAB
and OqxAB (Bialek-Davenet et al., 2015). Meanwhile, mutations
in tetracycline resistance factors, including efflux pumps (tetA,
tetB, and tetK) (Foong et al., 2020; Xu et al., 2021) and
other plasmid-borne tigecycline resistance genes, tet(X) (Sun
et al., 2019) and tmexCD-toprJ (Hirabayashi et al., 2021), have
also been reported to contribute to K. pneumoniae resistance
to tigecycline. Although ceftazidime–avibactam (CAZ/AVI)
exhibited remarkable inhibition to KPC carbapenemase, it is not
active against Metallo-β-Lactamases (MBL)-producing bacteria,
such as blaNDM-positive isolates (Yang et al., 2020). Overall, since
almost all the antibiotic resistance could be carried by various
MGEs, once the bacteria obtain multiple resistant elements
simultaneously, they would become resistant to those antibiotic
agents, and the therapeutic options would be very limited.

The co-occurrence of multiple resistant plasmids in one isolate
often results in the resistance to almost all available antibiotics,
and also promotes the dissemination of resistance determinants.
Several studies also reported some co-existence of resistant-genes
in Enterobacteriaceae, like fosA3 and blaKPC−2 (Tang et al., 2020),

or mcr-1 and blaNDM−5 (Sun et al., 2016), these co-existences
make the strain become extensively drug-resistant to multiple
antibiotics. Notably, although there are several reports about
the co-existence of mcr-1 and blaNDM−5 in one plasmid or
two separated plasmids, most of these plasmids were harbored
by E. coli strains of animal origin or environmental origin, which
is uncommon in K. pneumoniae (Yang et al., 2016; Quan et al.,
2017; Mao et al., 2018; Wang et al., 2018, 2021; Chen et al., 2019;
Liu and Song, 2019; Han et al., 2020; Yuan et al., 2021).

In this study, our aim was to characterize an XDR
K. pneumoniae isolated from a clinical patient, which is not
only highly resistant to carbapenems, but also resistant to all
the alternative antibiotics, including tigecycline, ceftazidime–
avibactam, Fosfomycin, and polymyxin. We applied whole-
genome-sequencing (WGS) to explore the potential molecular
mechanisms mediating this multidrug-resistance, and observed
three key resistant plasmids. We also made a detailed analysis of
the plasmid-backbone and the conjugation region to evaluate the
potential movability, and applied the conjugation assay to further
determine the dissemination risk of these resistant determinants.
In addition to the plasmids, we described other related MEGs
through the genetic comparisons as well. Overall, our goal was to
report and describe a clinical multi-drug resistant K. pneumoniae
clearly, and emphasize the possible risk of these strains.

MATERIALS AND METHODS

Bacterial Strains
To explore the molecular epidemic feature of carbapenem-
resistant K. pneumoniae in China mainland, we randomly
collected 137 carbapenem-resistant K. pneumoniae isolates from
blood samples of individual patients at nine hospitals in eight
Chinese provinces, from January 2015 to December 2018. The
isolates were cultivated with LB medium. We applied WGS to
analyze the presence of resistance elements among these isolates,
and observed K. pneumoniae strain 1678 co-harboring multiple
resistance determinants including fosA3, mcr-1, and blaNDM−5,
that were uncommon in other K. pneumoniae. K. pneumoniae
strain 1678 was isolated from the blood samples of a 71-year-old
patient in 2018, in a tertiary hospital in Shanghai, China. Plasmid
transformation and conjugation were performed with Escherichia
coli TOP10 and J53 (sodium-azideR) used as recipients for
the selection of tetA-, fosA3-, blaNDM−5, or mcr-1-positive
transformants and related transconjugants, respectively.

Antimicrobial Susceptibility Test
The minimum inhibitory concentration (MIC) of the original
isolate 1678 and all the transformants and transconjugants were
determined by both broth microdilution and the polymyxin
MIC was determined by the E-test methods following the
Clinical and Laboratory Standards Institute guidelines. Briefly,
for the broth microdilution and agar dilution method, pick 1–
2 bacterial clones diluted with saline to 0.5McF, and then dilute
such bacterial suspension to 0.5 × 10−2 McF with CAMHB
broth. The cells were inoculated in prefabricated commercial
96-well antibiotic culture plates or antibiotic agars, 100 µL
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per well, and incubated overnight for 18 h at 37◦C. E-test
method using a colistin strip (concentration range, 0.016–
256 µg/ml) (bioMérieux) was performed with Mueller–Hinton
agar (MHA) (BD) plates in accordance with recommendations
of the manufacturers. Notably, the Fosfomycin MIC was tested
by the agar dilution using agar media supplemented with
25 µg/mL of glucose-6- phosphate. Escherichia coli ATCC25922
was used as a quality control strain for MIC determination.
The interpretative breakpoints were based on CLSI2021 (Clinical
and Laboratory Standards Clinical and Laboratory Standards
Institute, 2021a; Clinical and Laboratory Standards Clinical and
Laboratory Standards Institute, 2021b).

Quantitation of mRNA Expression
To explore whether the tigecycline-resistant phenotype was
related with the overexpression of AcrAB and OqxAB efflux
pumps, we applied q-RT-PCR (quantitative-real-time-PCR) to
measure the relative gene expression. All the primers were listed
in Supplementary Table 1. RNA manipulation and real-time
PCR were performed as described previously (Zheng et al.,
2018). All bacterial samples were cultured in LB medium that
did not contain any antibiotics. RNA was isolated as per the
protocol of the MiniBEST Universal RNA extraction kit (TaKaRa,
Tokyo, Japan). RNA samples for real-time PCR were pre-treated
with DNase I (TaKaRa, Tokyo, Japan). Real-time PCR was
conducted on a 7,500 system (Applied Biosystems, Foster City,
CA, United States) using SYBR Premix ExTag (Takara, Tokyo,
Japan). The expression of target genes was standardized relative
to the 16S rRNA housekeeping gene rrsE. The expression levels
of the target genes were compared with those of K. pneumoniae
ATCC 13,883 (tigecycline susceptible). The relative expression
levels of genes were calculated using the 11CT method. All
assays were performed in triplicate with three independent
RNA preparations.

Whole Genome Sequencing and
Bioinformatics Analysis
The genomic DNA of 1678 was extracted using a commercial
DNA extraction kit (Qiagen, Germany) and was sequenced
using short- and long-read massively parallel sequencing. The
paired-end short Illumina reads were used to correct the long
PacBio reads utilizing proovread, and then the corrected PacBio
reads were assembled de novo utilizing SMARTdenovo1. Resistant
plasmid replicons were identified using the PlasmidFinder
database using the minimum coverage and minimum identities of
90%2. Acquired antibiotic resistance genes were identified using
ResFinder3 with the default threshold. To determine whether
the plasmids could self-transmission, we used the oriTfinder4

to conduct a detailed analysis of the conjugation module,
including the origin of transfer site (oriT), relaxase gene, type
IV coupling protein (T4CP) gene, and the type IV secretion
system gene cluster (T4SS). The related insertion sequences (IS)

1https://github.com/ruanjue/smartdenovo
2https://cge.cbs.dtu.dk/services/PlasmidFinder/
3https://cge.cbs.dtu.dk/services/ResFinder/
4https://tool-mml.sjtu.edu.cn/oriTfinder/oriTfinder.html

and transposons (Tn) were determined through the ISFinder5.
BLAST Ring Image Generator (BRIG) was used to compare key
resistant plasmids with other representative plasmids to further
generate circular plasmid maps. Easyfig software was used to
generate comparison of gene environment surrounding the vital
resistant genes.

Transformation Assay
In order to test whether these plasmids could mediate
the corresponding resistant phenotype, we extracted and
transformed each single resistant plasmid to E. coli Top 10, and
then tested the antibiotic susceptibility of all transformants. The
plasmid extraction and transformation processes were performed
as previously described (Yin et al., 2017).

We used the phenol-chloroform extraction method to extract
the plasmids in 1678. Then, we mixed 4 µl extracted plasmids and
E. coliTop 10 competent cells together, placed it on ice for 30 min,
put it in a 42◦C water bath for 90 s, and then took it out and placed
it on ice for 2 min. After that, we used LB broth to resuscitate the
strain, and screened the transformants on appropriate antibiotic
plates. Successful transformants were determined by PCR. All
the transformants were selected in appropriate antibiotics [Amp,
100 mg/L (blaNDM−5); Fosfomycin, 16 mg/L (fosA3); colistin,
4 mg/L (mcr-1); tetracycline, 30 mg/L (tetA)].

Conjugation Assay
We applied conjugation assay (Zhou et al., 2020) to evaluate
whether these resistant plasmids could be transferred or co-
transferred from K. pneumoniae 1678 (donor isolate) to E. coli
J53 (recipient isolate). The donors and recipients were cultured
to the logarithmic phase, mixed in 1:1 ratio, centrifuged at
8,000 × g for 1 min, and then resuspended in 20 µl MgSO4
(10 mM). The resuspension was spotted on the Luria Bertani
(LB) plate and incubated at 37◦C overnight. Subsequently, the
serial dilutions were plated in media with appropriate antibiotics
[Amp, 100 mg/L (blaNDM−5); Fosfomycin, 16 mg/L (fosA3);
colistin, 4 mg/L (mcr-1); sodium azide, 100 mg/L (J53 recipient)].
The conjugation frequency was calculated as the number of
transconjugants per donor. All transconjugants were confirmed
by PCR for the presence of fosA3, blaNDM−5, and mcr-1 genes. All
the primers were listed in Supplementary Table 1.

S1-Pulsed-Field Gel Electrophoresis
Assay
The S1-pulsed-field gel electrophoresis (S1-PFGE) was
performed to further determine the existence of plasmids
in the original isolate K. pneumoniae 1678, and its transformants
and transconjugants. PFGE plugs of all these strains were
prepared and digested as previously described (Ai et al., 2021).
Briefly, the isolates were embedded in 10 g/L of Seakem Gold
gel, and digested with endonuclease S1 nuclease (Takara, Dalian,
China). PFGE analysis was performed with a CHEF mapper
system (Bio-Rad). The digested DNA fragments were separated
for 19 h at 6 V/cm, 14◦C on a 1.0% agarose gel (Bio-Rad) with

5https://www-is.biotoul.fr/
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pulse times of 4–40 s. XbaI-digested Salmonella H9812 DNA was
used as the DNA marker. The nucleic acid dye Gel-red (Yeasen,
China) was used to stain the DNA in the gels.

Nucleotide Sequence Accession
Numbers of Klebsiella pneumoniae 1678
The complete nucleotide sequences of the chromosome and
plasmids p1678-2, p1678-3, p1678-4, p1678-5, and p187–
6 were submitted to GenBank under accession numbers
CP080445, CP080446, CP080447, CP080448, CP080449, and
CP080450, respectively.

RESULTS

Klebsiella pneumoniae 1678 Was a
Typical Extensively Drug-Resistant
Isolate
In order to clarify the antibiotic-resistant phenotype of Klebsiella
pneumoniae 1678, we tested the susceptibility of 26 antibiotics in
this strain (Table 1), especially including Fosfomycin, tigecycline,
colistin, and ceftazidime–avibactam that were known for their
robust bactericidal effect against CRKP. Our results indicated the
K. pneumoniae 1678 was a representative multi-drug resistant
strain, which not only exhibited high-level resistance to all
β-lactam antibiotics and carbapenems, but was even resistant
to tigecycline, Fosfomycin, colistin, and ceftazidime–avibactam
(Table 1). These resistance profiles indicated the treatment option
for the infection caused by K. pneumoniae 1678 would be limited.

Klebsiella pneumoniae 1678
Co-harboring fosA3, blaNDM−5, and mcr-1
To further investigate the related mechanism that mediated
the extensively drug-resistant resistant (XDR) characteristic of
K. pneumoniae 1678, we used WGS to deeply describe the
genomic information of the XDR bacteria. According to the
MLST analysis, the K. pneumoniae 1678 was typed as ST485. We
found more than 20 resistant elements and 5 resistant plasmids
in this isolate (Table 2). Moreover, three key resistance genes
were focused, which played a significant role in the formation
of resistance to Fosfomycin (fosA3), carbapenems, ceftazidime–
avibactam (blaNDM−5), and colistin (mcr-1). In addition to the
molecular detection of these crucial resistant elements, we also
extracted and transformed each resistant plasmid to E. coli Top
10 (Figure 1A) and tested whether these plasmids could mediate
the corresponding resistant phenotype. Antibiotic susceptibility
results of all transformants well proved the role of the resistant
plasmids (Table 2).

Tigecycline Resistance Was Mediated by
the Overexpression of RND-Type Efflux
Transporters
The mechanisms underlying tigecycline resistance are complex.
Previous studies demonstrated the mutation of plasmid-borne
tet(A) could be an important factor causing tigecycline resistance
in K. pneumoniae. Accordingly, we compared the amino-acid

sequence of the Tet(A) protein of K. pneumoniae 1678 and the
mutated Tet(A) confirmed before (Supplementary Figure 1).
We found the Tet(A) carried by K. pneumoniae 1678 owned
the same mutated characteristic which Xu (Xu et al., 2021)
described (Supplementary Figures 1, 3). Moreover, we also
detected the mRNA expression of the tet(A) gene in the E. coli
transformants to ensure the tet(A) gene could be expressed
normally (Supplementary Figure 2). However, we could not
detect the tigecycline resistant phenotype, but only the resistant
to tetracycline in the tet(A)-transformants (Table 2), which
indicated that this mutation may not contribute to tigecycline
resistance in K. pneumoniae 1678.

In addition to the mutation of Tet(A) protein, the
overexpression of the RND-type efflux pumps AcrAB and
OqxAB has been shown to play a crucial role in tigecycline
resistance in K. pneumoniae (Bialek-Davenet et al., 2015; Li et al.,
2017). Our qRT-PCR experiments indicated that K. pneumoniae
1678 overexpressed the AcrAB–TolC pathway genes acrA/B
and tolC (>sixfold greater than the tigecycline susceptible
K. pneumoniae ATCC 13883 reference strain) (Figure 2A),
and was also observed to overexpress oqxA and oqxB (range
6.432- to 10.435-fold compared with the reference strain levels)
(Figure 2B). Moreover, the activating regulator of AcrAB (ramA)
and OqxAB (rarA) also exhibited the same expression level
(Figure 2). What is more, the mutation in RamR protein was also
analyzed, for it is the negative regulator of RamA (Zheng et al.,
2018), and we found an amino acid mutation (L44M) compared
with the reference sequence (Accension number: ADI49705.1),
but the phenotype is unproved. We assumed this may do a
potential favor for the overexpression of AcrAB. These results
showed the overexpression of RND-type efflux transporters
contributed to the tigecycline resistance of K. pneumoniae 1678.

Comparative Genomics of the Plasmids
Carrying Resistance Genes
We have confirmed that the key resistant genes were all located on
plasmids. As plasmids are often transmissible between bacteria,
and some have spread globally, we made detailed analysis of
these resistant plasmids, aiming to further clarify the resistance
mechanism and potential dissemination threats ofK. pneumoniae
1678. p1678-3 was a typical IncFII-type plasmid, harboring
a completed conjugation system, and shared 81% identity
with pFOS-HK151325, the first fosA3 plasmid from a clinical
E. coli identified in China (Figure 3A). Moreover, p1678-3 was
also highly similar to pKP32558-4 (89% identity, CP076034.1,
K. pneumoniae) and p116753-KPC (95% identity, MN891682.1,
K. pneumoniae). The genetic differences between p1678-3 and
these plasmids were most concentrated in the surrounding genes
of fosA3 gene, which may be related to the mobility insertion of
IS elements (Figure 3A).

The wide dissemination of blaNDM genes is largely mediated
by certain plasmids, particularly those of the IncX3 type, which
p1678-4 plasmid belonged to. Moreover, the genetic context of
the p1678-4 plasmid (Figure 4A) was nearly identical to that
of the human K. pneumoniae plasmid pNDM-MGR194 (2015,
IncX3, blaNDM−5, KF220657.1) previously reported in India
(Krishnaraju et al., 2015) and was also highly similar to p2B8067
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TABLE 1 | Antimicrobial drug susceptibility profiles.

Antibiotics MIC (mg/L)/antimicrobial susceptibility

Transformants Transconjugants

1678 Top10 J53 p1678–6-
TOP10
(TetA)

p1678-3
Top10

(FosA3)

p1678-4-
Top10

(NDM-5)

p1678-5-Top10
(MCR-1)

p1678-3-J53
(FosA3)

p1678-4-J53
(NDM-5)

p1678-5-J53
(MCR-1)

p1678-3 and 5-J53
(FosA3+MCR-1)

p1678-4 and
5-J53
(NDM-

5+MCR-1)

p1678-3 and 4 and
5-J53

(FosA3+NDM-
5+MCR-1)

MEM >16/R ≤0.06/S ≤0.06/S ≤0.06/S ≤0.06/S 16/R ≤0.06/S ≤0.06/S 16/R ≤0.06/S ≤0.06/S 16/R 16/R

IPM 16/R ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S 4/R ≤0.25/S ≤0.25/S 4/R ≤0.25/S ≤0.25/S 8/R 8/R

ETP >2/R ≤0.015/S ≤0.015/S ≤0.015/S ≤0.015/S >2/R ≤0.015/S ≤0.015/S >2/R ≤0.015/S ≤0.015/S >2/R >2/R

Caz/AVI >16/4/R ≤0.5/4/S ≤0.5/4/S ≤0.5/4/S ≤0.5/4/S >16/4/R ≤0.5/4/S ≤0.5/4/S >16/4/R ≤0.5/4/S ≤0.5/4/S >16/4/R >16/4/R

TGC 8/R ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S

POL 16/R 0.25/S 0.25/S 0.25/S 0.25/S 0.25/S 16/R 0.25/S 0.25/S 16/R 16/R 16/R 16/R

FOS >256/R 0.25/S 0.25/S 0.25/S >256/R 0.25/S 0.25/S >256/R 0.25/S 0.25/S >256/R 0.25/S >256/R

AMP >32/R ≤8/S ≤8/S ≤8/S >32/R >32/R ≤8/S >32/R >32/R ≤8/S >32/R >32/R >32/R

CZO >32/R ≤2/S ≤2/S ≤2/S >32/R >32/R ≤2/S >32/R >32/R ≤2/S >32/R >32/R >32/R

CAZ >128/R ≤0.25/S ≤0.25/S ≤0.25/S >128/R >128/R ≤0.25/S >128/R >128/R ≤0.25/S >128/R >128/R >128/R

FEP >16/R ≤0.5/S ≤0.5/S ≤0.5/S ≤0.5/S >16/R ≤0.5/S ≤0.5/S >16/R ≤0.5/S ≤0.5/S >16/R >16/R

CSL >64/32/R ≤16/8/S ≤16/8/S ≤16/8/S ≤16/8/S >64/32/R ≤16/8/S ≤16/8/S >64/32/R ≤16/8/S ≤16/8/S >64/32/R >64/32/R

SAM >32/16/R ≤16/4/S ≤16/4/S ≤16/4/S ≤16/4/S >32/16/R ≤16/4/S ≤16/4/S >32/16/R ≤16/4/S ≤16/4/S >32/16/R >32/16/R

FOX >32/R ≤8/S ≤8/S ≤8/S ≤8/S >32/R ≤8/S ≤8/S >32/R ≤8/S ≤8/S >32/R >32/R

CXM >16/R 8/S 8/S 8/S >16/R >16/R 8/S >16/R >16/R 8/S >16/R >16/R >16/R

CTX >64/R ≤0.12/S ≤0.12/S ≤0.12/S 64/R >64/R ≤0.12/S 64/R >64/R ≤0.12/S 64/R >64/R >64/R

TZP >128/4/R ≤16/4/S ≤16/4/S ≤16/4/S ≤16/4/S >128/4/R ≤16/4/S ≤16/4/S >128/4/R ≤16/4/S ≤16/4/S >128/4/R >128/4/R

AMC >32/16/R ≤8/4/S ≤8/4/S ≤8/4/S ≤8/4/S >32/16/R ≤8/4/S ≤8/4/S >32/16/R ≤8/4/S ≤8/4/S >32/16/R >32/16/R

LVX >8/R ≤0.12/S ≤0.12/S ≤0.12/S ≤0.12/S ≤0.12/S ≤0.12/S ≤0.12/S ≤0.12/S ≤0.12/S ≤0.12/S ≤0.12/S ≤0.12/S

MFX >2/R ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S ≤0.25/S

TCY >16/R ≤2/S ≤2/S 16/R ≤2/S ≤2/S ≤2/S ≤2/S ≤2/S ≤2/S ≤2/S ≤2/S ≤2/S

GEN 16/R ≤1/S ≤1/S ≤1/S ≤1/S ≤1/S ≤1/S ≤1/S ≤1/S ≤1/S ≤1/S ≤1/S ≤1/S

AMK ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S

ATM >16/R ≤4/S ≤4/S ≤4/S >16/R ≤4/S ≤4/S >16/R ≤4/S ≤4/S ≤4/S ≤4/S >16/R

NIT 64/I ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S ≤16/S

SXT >4/76/R ≤0.5/9.5/S ≤0.5/9.5/S ≤0.5/9.5/S ≤0.5/9.5/S ≤0.5/9.5/S ≤0.5/9.5/S ≤0.5/9.5/S ≤0.5/9.5/S ≤0.5/9.5/S ≤0.5/9.5/S ≤0.5/9.5/S ≤0.5/9.5/S

MEM, Meropenem; IPM, Imipenem; ETP, Ertapenem; Caz/AVI, ceftazidime–avibactam; TGC, Tigecycline; POL, Polymixin B; FOS, Fosfomycin; AMP, Ampicillin; CZO, Cefazolin; CAZ, Ceftazidime; FEP, Cefepime; CSL,
Cefoperazone/Sulbactam; SAM, Ampicillin/Sulbactam; FOX, Cefoxitin; CXM, Cefuroxime; CTX, Cefotaxime; TZP, Piperacillin/Tazobactam; AMC, Amoxicillin/Clavulanic acid; LVX, Levofloxacin; MFX, Moxifloxacin; TCY,
Tetracycline; GEN, Gentamicin; AMK, Amikacin; ATM, Aztreonam; NIT, Nitrofurantoin; SXT, Trimethoprim/Sulfamethoxazole.
The other resistance phenotype like LVX, MFX, GEN, NIT, or SXT resistance did not present in these transformants or transconjugants in table because these elements are located on p1678-2 plasmid, not p16783-
3(fosA3), p1678-4(blaNDM−5), p1678-5(mcr-1), and p1678-6(tetA). The bold values indicated important resistance genes and resistance phenotypes.
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TABLE 2 | General features, antimicrobial resistance genes of plasmids in
K. pneumoniae 1678.

Characteristics Results

p1678-2 p1678-3 p1678-4 p1678-5 p1678-6

Accension number CP080446 CP080447 CP080448 CP080449 CP080450

Length(bp) 90,943 76,526 46,161 33,309 24,774

GC content (%) 54 52 47 42 54

No. of ORF 116 92 59 42 29

Incompatibility group IncFIIK(IncQ1 IncFII IncX3 IncX4 IncR

Conjugal ability No Yes Yes Yes No

Resistant genes

blaOXA−1 fosA3 blaNDM−5 mcr-1 TetA

aac(3)-Iid blaCTX−M−55

aph(3′)-Ia blaTEM−141

sul2, sul1

sul2, sul1;

aac(6′)-Ib-cr

aph(3′)-Ia

aac(3)-Iid

mph(A)

aadA16

qnrB52

ARR-3

catB3

The bold values indicated important resistance genes and resistance phenotypes.

(2021, IncX3, blaNDM−7, CP070442.1). These results indicated
that no matter the variants of blaNDM, the IncX3 plasmid was a
major vehicle in mediating the dissemination of blaNDM. Similar
to the IncFII plasmids described before (Bi et al., 2018), IncX3
plasmid also could be self-transferred among Enterobacteriaceae,
supported with the results of the conjugation mode analysis of
p1678-4 plasmid (Table 2).

p1678-5 plasmid was a 33,309-bp circular molecule with
repA belonging to IncX4, harboring mcr-1 resistance element
(Figure 5A). Previous studies have demonstrated most plasmids
carrying mcr-1 are transferable, and IncX4 was dominant mcr-1-
carrying plasmid types (Xiaomin et al., 2020). According to the
genomic comparation, we found p1678-5 was almost identical
to both pQDFD216-1 (CP053212.1) plasmid identified in E. coli
and plasmid 16BU137 (MT316509.1) from K. pneumoniae.
These results showed IncX4 plasmids harboring mcr-1 could
disseminate in different species of Enterobacteriaceae, and the
completed conjugative element also can be found in p1678-
5 plasmid (Table 2). In addition, we also make a comparison
between p1678-5 and the first mcr-1 plasmid pHNSHP45
(NZ_KP347127.1, IncI2) (Liu et al., 2016), and found low identity
between two plasmids (Supplementary Figure 4).

Resistant Plasmids Could Be
High-Efficient Self-Transferred or
Co-transferred
We have known these three resistance plasmids were all
bioinformatic predicted to carry essential conjugative modules

(oriT, Relaxase, T4CP, and T4SS) and most of these types of
plasmids have proved to be movable (Partridge et al., 2018).
However, it is not common for such three plasmids to co-exist
in one K. pneumoniae, and the transferring and co-transferring
pattern was unclear. Here, we applied conjugation assay to
imitate and evaluate the dissemination ability of these three
plasmids in K. pneumoniae 1678. We found all these three
plasmids could transfer to E. coli J53 with high conjugation
frequencies (1.42 × 10−4

− 7.9 × 10−3), especially for the
mcr-1 plasmid (p1678-5) (Table 3). In addition to the self-
transferring of a single plasmid, we also observed co-transfer of
two plasmids and even three plasmids and the co-conjugation
frequencies of two plasmids only decrease 1-log compared
to a single plasmid (Table 3). Although the co-conjugation
frequencies of three plasmids was low, the potential clinical threat
could not be ignored, since the clonal spread will accelerate
the spread of these resistance genes. Moreover, the plasmid
pattern of S1-PFGE further proved the transferring profile of
the K. pneumoniae 1678 (Figure 1B), and the antibiotic MICs
of these transconjugants also confirmed the spread of resistance
phenotype of K. pneumoniae 1678 (Table 1).

Mobile Genetic Elements Associated
With fosA3, blaNDM−5, and mcr-1
The capture, accumulation, and dissemination of resistance genes
are not only due to the spread of plasmids, but also to the
actions of other MGEs, such as IS and Tn. To comprehensively
evaluate the dissemination potential of these resistance genes in
K. pneumoniae 1678, we also analyze the MGEs surrounding
them. IS26 seems to be the key element in the mobilization
of fosA3, since it not only composes a composite transposon
surrounding fosA3 in the p1678-3 plasmids, but also surrounding
the fosA3 of pFOS-HK151325 plasmid (Yang et al., 2019) (2013,
JX627737, E. coli, China), of pFOS18 plasmid (Yang et al., 2019)
(2015, KJ653815, K. pneumoniae, China), and of p06607 plasmid
(Yang et al., 2019) (2010, AB522970, first fosA3 plasmid emerged
in the world). Moreover, the same IS26-composite transposons
were also observed to frequently contain additionally a blaCTX−M
gene. Compared to the first fosA3 plasmid, there are more than 10
ORFs inserted around fosA3 in p1678-3 plasmid, with some new
IS, some elements associated with transcriptional regulation, and
other resistance elements (Figure 3B).

The genetic contexts of blaNDM share two common features.
The insertion sequence ISAba125 (intact or truncated) is always
upstream of blaNDM, while a bleomycin resistance gene, bleMBL,
is always downstream. Further downstream of bleMBL, there
are usually located trpF and dsbC genes (Figure 4B). Although
the blaNDM-1 in Acinetobacter spp. is located within ISAba125-
based composite transposon Tn125(pNDM-BJ01, JQ001791)
(Wu et al., 2019), it was always interrupted or truncated in
Enterobacteriaceae. In p1678-4, Tn125was truncated by IS5, IS26,
and IS300 (Figure 4B). These new genetic contexts in p1678-
4 may form a new mechanism involved in the mobilization of
blaNDM−5.

Similar to other mcr-1-carrying IncX4-type plasmids
(Xiaomin et al., 2020), the typical IS26-parA-mcr-1.1-pap2
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FIGURE 1 | SI-PFGE profiles of original K. pneumoniae 1678 and its transformants (A) and transconjugants (B). Lane marker was XbaI-digested DNA of Salmonella
Braenderup H9812; Lane 1678 and Lane J53 were used as positive reference and negative control, respectively; transformants: p1678-6-Top10 (tetA),
p1678-3-Top10 (fosA3), p1678-4-Top10(blaNDM−5), and p1678-5-Top10(mcr-1). Transconjugants: p1678-3-J53(fosA3), p1678-4-J53(blaNDM−5),
p1678-5-J53(mcr-1), p1678-3 and 5-J53 (fosA3 and mcr-1), p1678-4 and 5-J53 (blaNDM−5and mcr-1), and p1678-3 and 4 and 5-J53 (fosA3, blaNDM−5, and mcr-1).

FIGURE 2 | Overexpression of AcrAB and OqxAB in clinical K. pneumoniae 1678 isolate. The expression levels of AcrA/B (A), OqxA/B (B), and related
transcriptional regulators was determined by qRT-PCR. The K. pneumoniae ATCC13883 is used as the reference strain (expression = 1.0). The data represent the
mean standard deviation for three independent biological replicates. Differences between different strains, regarding related gene expression, were statistically
analyzed using a two-tailed Student’s t-test with Bonferroni correction. ****p < 0.0001.

cassette was identified in p1678-5, with pap2 gene partitional
truncated (Figure 5B). Although ISApl1 has been described as
the most common IS element adjacent to mcr-1 at one or both
ends, we did not observe it surrounding the mcr-1 gene.

DISCUSSION

Extensively drug-resistant K. pneumoniae constitutes the
major sources of nosocomial infections with extraordinary

drug resistance. The prevalent resistance plasmids are
responsible for the sudden increase in the population
of multidrug resistance among K. pneumoniae isolates
(Tzouvelekis et al., 2012; Chen et al., 2014). In this
study, we described a multi-drug resistant K. pneumoniae
1678 co-harboring three self-transmissible resistant
plasmids, which mediated the resistance for carbapenems,
Fosfomycin, colistin, and ceftazidime–avibactam. The
co-existing of these plasmids not only conferred the
multi-drug resistant phenotype to K. pneumoniae
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FIGURE 3 | Comparative analysis of pl687-3 plasmids with other reference plasmids. (A) p1678-3 (CP080447) was used as the reference plasmid to perform
genome alignment with pFOS-HK151325 (JX627737, first fosA3 plasmid from a clinical E. coli identified in China) and pFOS18 (KJ653815, first fosA3 plasmid from a
clinical K. pneumoniae identified in China). Moreover, p1678-3 was also compared with another two similar plasmids pKP32558-4 (CP076034.1, K. pneumoniae)
and p116753-KPC (MN891682.1, K. pneumoniae). The red arrows represent CDs. (B) Linear comparison of the fosA3 region. The fosA3 region was compared with
the regions extracted from pFOS-HK151325, pFOS18, and p06607 (AB522970, first fosA3 plasmid).

1678, but also held the potential threat to co-transfer
to other isolates.

Tigecycline has been considered as an effective antibiotic
against CRKP in vitro, and is also considered as one of the last-
resort antibiotics against CRKP infections (Chopra, 2002; Doi,
2019). Unfortunately, tigecycline resistance has been reported
frequently in clinics (Fang et al., 2020). In this study, we found

K. pneumoniae 1678 was resistant to tigecycline. We identified
the tet(A) gene in this isolate, and also confirmed the mutations
on Tet(A) protein (Supplementary Figure 1). Several studies had
verified the plasmid-borne mutated tet(A) gene or the synergy
of TetA and RND-type efflux transporters play an important
role in causing tigecycline resistance (Bialek-Davenet et al., 2015;
Foong et al., 2020; Xu et al., 2021). However, we found the
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TABLE 3 | Conjugation frequency of resistant plasmids identified in K. pneumoniae 1678.

Plasmid Resistance gene No. of independent determinations Conjugation frequencies

Mean Range

p1678-3 fosA3 3 2.25 × 10−4 1.97 × 10−4
− 2.75 × 10−4

p1678-4 blaNDM−5 3 1.84 × 10−4 1.42 × 10−4
− 2.37 × 10−4

p1678-5 mcr-1 3 5.41 × 10−3 2.94 × 10−3
− 7.9 × 10−3

Co-transfer of plasmids

Co-transfer of p1678-3 and p1678-5 fosA3 + mcr-1 3 1.78 × 10−5 1.29 × 10−5
− 2.77 × 10−5

Co-transfer of p1678-4 and p1678-5 blaNDM−5 + mcr-1 3 2.25 × 10−5 1.62 × 10−5
− 2.92 × 10−5

Co-transfer of p1678-3 and p1678-4 and p1678-5 fosA3 + blaNDM−5 + mcr-1 3 9.63 × 10−8 8.08 × 10−8
− 10.38 × 10−8

p1678-6 plasmid, harboring mutated tet(A) gene, could not result
in tigecycline resistance. According to the genetic comparison
of p1678-6 plasmid with other tet(A)-plasmid (tigecycline-
resistant), we found p1678-6 plasmid shared low identity with
them. Further to analyze the genetic components surrounding
tet(A) gene, we found the IS and Tn elements in p1678-6
plasmid also different. As the IS elements sometimes would
affect promoter activity (Partridge et al., 2018), we assumed the
expression discrepancy of tet(A) gene in p1687-6 plasmid with
other tigecycline-resistant-tet(A) plasmids may be accounted
for in this antibiotic-susceptibility phenomenon. Although the
Tet(A) protein did not contribute to the tigecycline resistance,
we observed the overexpression of the efflux pumps AcrAB and
OqxAB in K. pneumoniae 1678, another key factor mediating
the tigecycline resistance (Bialek-Davenet et al., 2015; Li et al.,
2017). Hence, in this study, the overexpression of RND-type
efflux pumps played a crucial role in tigecycline resistance in
K. pneumoniae 1678.

Except for resistant to tigecycline, the resistant to
Fosfomycin, colistin, carbapenems, and ceftazidime–avibactam
in K. pneumoniae 1678 were all associated with the typical
resistant plasmids. Both fosA3 and blaCTX−M−55 gene were
located on p1678-3 plasmid, a typical IncFII plasmid. Previous
studies have demonstrated that Fosfomycin-modifying enzymes
were present on plasmids belonging to the IncF, IncN, IncA/C,
IncHI2, and IncX1 family, whereas IncF was the predominant
plasmid incompatibility type (Yang et al., 2019; Zurfluh et al.,
2020). Although there existed several FosA variants, FosA3
was the most frequently found Fosfomycin-modifying enzyme
worldwide, and many studies have confirmed the dissemination
of the fosA3 gene is closely associated with that of the ESBL
gene blaCTX−M (Yang et al., 2019), which was consistent with
the findings in the p1678-3 plasmid. Our results also showed
the p1678-3 plasmid had the completed conservative 35-kb
conjugation module of IncF plasmids (Bi et al., 2018), and the
self-transmissibility of this plasmid was also confirmed through
conjugation assay. As we know, Fosfomycin was a potential
regimen for treating extensively drug-resistant bacteria especially
for carbapenemase-producing Enterobacteriaceae (CRE), once
these isolates uptake the plasmids like p1678-3, the infection
treatment would become limited.

blaNDM−5 plasmid (p1678-4) and mcr-1 plasmid (p1678-5) all
belong to IncX-type plasmid, holding a smaller size than IncF

plasmid, which sometimes makes it easier for movement. p1678-
4 plasmid belongs to IncX3 type, the major vehicle in mediating
the dissemination of blaNDM (Wu et al., 2019). Several NDM
variants have been reported, which commonly contain between
1 and 5 amino acid substitutions compared to NDM-1. Notably,
NDM-5 variant, containing the V88L substitution has repeatedly
been reported to exhibit enhanced carbapenemase activity (Wu
et al., 2019). MICs of ertapenem against strains producing NDM-
5 were 4- or 8-fold higher than those against strains producing
NDM-1 (Wu et al., 2019). Moreover, the novel antibiotic agent
ceftazidime–avibactam used alone also makes no defense against
NDM-5 carbapenemase (Yang et al., 2020). All this information
indicated that the spread and pandemic of such IncX3-type
p1678-4 plasmid could pose a huge risk to public health.

Like tigecycline, Fosfomycin, and ceftazidime–avibactam,
colistin also is a robust antibiotic against infections caused
by CRE (Doi, 2019). However, CRKP 1678 also harbored the
pandemic IncX4 mcr-1 plasmid (p1678-5), which conferred
resistance to colistin. Most plasmids carrying mcr-1 are reported
to be transferable, and IncI2 and IncX4 are dominant mcr-1-
carrying plasmid types. In previous studies, IncI2 and IncX4
plasmids harboring mcr-1 were detected in different species of
Enterobacteriaceae, owing to the high transfer rate (10−1

−10−3)
of mcr-1 plasmid (Xiaomin et al., 2020). In this study, we
also confirmed the p1678-5 plasmid could be transferred from
K. pneumoniae to E. coli in high in vitro transfer rate.

According to the related genetic analysis and in vitro high
conjugation rate, the threat of each single resistant plasmids was
verified clearly in K. pneumoniae 1678. Once clinical isolate,
especially for CRE, uptake one of these plasmids, the infection
treatment would be tougher. Previous studies had reported the
co-transfer of resistant element, but it is usually associated
with one conjugative plasmid (Costa et al., 2021; Gu et al.,
2021; Magi et al., 2021). Previous studies found the mcr-1
plasmid also could co-transfer with blaNDM plasmid to one
recipient, but these plasmids did not transfer from the same
donor like the observation in our study (Liang et al., 2021).
Notably, in this study we found the mcr-1 plasmid (p1678-
5) could be co-transferred with fosA3 plasmid (p1678-3) or
blaNDM−5 plasmid (p1678-4) in 10−5 conjugation frequency.
Moreover, we also observed these three plasmids could be
transferred together, though the transfer rate was not high,
the potential risk should be taken seriously. Furthermore, as
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FIGURE 4 | Comparative analysis of pl687-4 plasmids with other reference plasmids. (A) p1678-4 (CP080448) was used as the reference plasmid to perform
genome alignment with pNDM-MGR194 (blaNDM−5, KF220657.1), p2B8067 (blaNDM−7, CP070442.1), and pNDM-BJ01 (blaNDM−1, JQ001791). The red arrows
represent CDs. (B) Linear comparison of the blaNDM−5 region. The blaNDM−5 region was compared with the blaNDM regions extracted from pNDM-MGR194
(blaNDM−5 reference plasmid) and pNDM-BJ01 (classical blaNDM-Tn125 transposon).

the overexpression of RND-type efflux transporters (mediating
tigecycline resistance) were not rare in K. pneumoniae (Bialek-
Davenet et al., 2015), once these movable resistant plasmids
co-transmit to such isolate, like K. pneumoniae 1678 in this study,
the therapeutic option would be extremely limited. Tigecycline,
Fosfomycin, colistin, carbapenems, and ceftazidime–avibactam

are considered as the most effective antibiotics to defend XDR
isolates, the co-transferring and co-existing of these typical high-
risk plasmids would arise a huge peril to clinical treatment since
these antibiotics may all be useless.

The dissemination of resistance genes is not only via plasmids,
but also via other mobile structures like transposons and
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FIGURE 5 | Comparative analysis of pl687-5 plasmids with other reference plasmids. (A) p1678-5 (CP080449) was used as the reference plasmid to perform
genome alignment with pQDFD216-1 (CP053212.1, E. coli) and plasmid 16BU137 (MT316509.1, K. pneumoniae). The red arrows represent CDs. (B) Linear
comparison of the mcr-1 region. The mcr-1 region was compared with the mcr-1 regions extracted from pQDFD216-1 and pQDFD216-1.

insertion elements. IS26 plays a key role in the dissemination
and mobilization of fosA3. This IS26-array forms two composite
transposons and several IS26-based transposition units, and both
conformations are capable of transposition and exhibit multiple
movement modes. In addition to transposition, gene excision and
rearrangement of gene modules via homologous recombination
between IS26 scattered in the plasmid and/or genome, also drive
the evolutionary process of bacteria (Partridge et al., 2018), which

could explain the structure of multiple ORF insertions observed
in p1678-3 plasmid. The insertion sequence ISAba125 is always
upstream of blaNDM, providing the −35 region of a promoter
for the expression of blaNDM (Wu et al., 2019). In p1678-4,
the Tn125 was truncated by IS26 and IS3000, forming other
composite transposons. The mobilization of blaNDM associated
with IS26 or IS3000 transposons was also common (Wu et al.,
2019). These results indicated that although Tn125 transposon
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was interrupted, the movability of blaNDM−5 remained. Previous
studies have indicated that ISApl1 (always associated with the
IncI2 plasmid) is a highly active insertion element and a key
component required for the mobilization of the gene-cassette
containing the mcr-1 gene (Xiaomin et al., 2020). However, the
ISApl1 was absent in the p1678-5 plasmid, and in all the mcr-1-
carrying IncX4-type plasmids, ISApl1 in front of mcr-1 was lost
(Du et al., 2020). The loss of the composite transposon ISApl1
might increase the stability of the mcr gene in IncX4 plasmids,
and promote the widespread dissemination of the mcr-1 gene.

In this study, we report the coexistence and co-transferring
of FosA3-, NDM-5, and MCR-1-encoding plasmids in a
K. pneumoniae isolate. The co-occurrence of fosA3, blaNDM−5,
and mcr-1, and the overexpression of RND-type efflux pumps
caused 1678 to be highly resistant not only to commonly
used antibiotics (e.g., carbapenems, cephalosporins), but
also to Fosfomycin, colistin, ceftazidime–avibactam, and
tigecycline, which were considered as the last line for defending
XDR Gram-negative organisms. Moreover, the high rate
of transmission or co-transmission of these plasmids and
various mobile elements surrounding resistant genes greatly
increased the risk of spread of these resistant phenotypes.
The main limitation in this study is we did not apply the
conjugation assay between clinical isolates, which means we
could not evaluate the dissemination ability of plasmids more
accurately, and the K. pneumoniae 1678 did not exhibit
any hyper-virulent phenotype. However, future studies are
still necessary to evaluate the prevalence of such multi-drug
resistant isolates.
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Yahav, D., Giske, C. G., Grāmatniece, A., Abodakpi, H., Tam, V. H., and Leibovici,
L. (2020). New β-lactam-β-lactamase inhibitor combinations. Clin. Microbiol.
Rev. 34, e115–e120. doi: 10.1128/CMR.00115-20

Yang, R. S., Feng, Y., Lv, X. Y., Duan, J. H., Chen, J., Fang, L. X., et al. (2016).
Emergence of NDM-5- and MCR-1-producing Escherichia coli clones ST648
and ST156 from a single muscovy duck (cairina moschata). Antimicrob Agents
Chemother. 60, 6899–6902. doi: 10.1128/AAC.01365-16

Yang, T., Lu, P., and Tseng, S. (2019). Update on fosfomycin-modified genes in
Enterobacteriaceae. J. Microbiol. Immunol. Infect. 52, 9–21. doi: 10.1016/j.jmii.
2017.10.006

Yang, Y., Guo, Y., Yin, D., Zheng, Y., Wu, S., Zhu, D., et al. (2020). In vitro activity
of cefepime-zidebactam, ceftazidime-avibactam, and other comparators against
clinical isolates of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter
baumannii: results from china antimicrobial surveillance network (CHINET) in
2018. Antimicrob Agents Chemother. 65:e01726-20. doi: 10.1128/AAC.01726-20

Yin, D., Dong, D., Li, K., Zhang, L., Liang, J., Yang, Y., et al. (2017). Clonal
dissemination of OXA-232 carbapenemase-producing Klebsiella pneumoniae
in neonates. Antimicrob Agents Chemother. 61:e00385-17. doi: 10.1128/AAC.
00385-17

Yuan, J., Wang, X., Shi, D., Ge, Q., Song, X., Hu, W., et al. (2021). Extensive
antimicrobial resistance and plasmid-carrying resistance genes in mcr-1-
positive E. coli sampled in swine, in Guangxi. South China. BMCVet. Res. 17:86.
doi: 10.1186/s12917-021-02758-4

Yusuf, E., Bax, H. I., Verkaik, N. J., and van Westreenen, M. (2021). An update
on eight “new” antibiotics against multidrug-resistant gram-negative bacteria.
J. Clin. Med. 10:51068. doi: 10.3390/jcm10051068

Zhanel, G. G., Lawson, C. D., Adam, H., Schweizer, F., Zelenitsky, S., Lagacé-Wiens,
P. R., et al. (2013). Ceftazidime-avibactam: a novel cephalosporin/β-lactamase
inhibitor combination. Drugs 73, 159–177. doi: 10.1007/s40265-013-0013-7

Zheng, J., Lin, Z., Sun, X., Lin, W., Chen, Z., Wu, Y., et al. (2018). Overexpression
of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and
heteroresistance in clinical isolates ofKlebsiella pneumoniae. Emerging Microbes
Infect. 7, 1–11. doi: 10.1038/s41426-018-0141-y

Zhou, Y., Tang, Y., Fu, P., Tian, D., Yu, L., Huang, Y., et al. (2020). The type
I-E CRISPR-cas system influences the acquisition of bla KPC-IncF plasmid in
Klebsiella pneumonia. Emerging Microbes Infect. 9, 1011–1022. doi: 10.1080/
22221751.2020.1763209

Zurfluh, K., Treier, A., Schmitt, K., and Stephan, R. (2020). Mobile fosfomycin
resistance genes in Enterobacteriaceae-an increasing threat. Microbiologyopen
9:e1135. doi: 10.1002/mbo3.1135

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhou, Ai, Cao, Guo, Wu, Wang, Rao, Xu, Zhao, Wang and Yu.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 13 January 2022 | Volume 12 | Article 811263140

https://doi.org/10.4103/0255-0857.148373
https://doi.org/10.1089/mdr.2015.0258
https://doi.org/10.1089/mdr.2020.0212
https://doi.org/10.2147/IDR.S211746
https://doi.org/10.1016/S1473-3099(15)00424-7
https://doi.org/10.2217/fmb-2020-0246
https://doi.org/10.1080/21505594.2018.1486140
https://doi.org/10.1080/21505594.2018.1486140
https://doi.org/10.1016/j.celrep.2020.108313
https://doi.org/10.1016/j.celrep.2020.108313
https://doi.org/10.1128/CMR.00088-17
https://doi.org/10.3390/jcm8070934
https://doi.org/10.3390/jcm8070934
https://doi.org/10.1016/S1473-3099(16)30528-X
https://doi.org/10.1038/s41564-019-0496-4
https://doi.org/10.1038/nmicrobiol.2016.176
https://doi.org/10.1016/j.meegid.2020.104479
https://doi.org/10.1016/j.meegid.2020.104479
https://doi.org/10.1128/CMR.05035-11
https://doi.org/10.3389/fmicb.2021.677633
https://doi.org/10.1016/j.ijantimicag.2018.01.023
https://doi.org/10.1016/j.ijantimicag.2018.01.023
https://doi.org/10.1128/CMR.00115-18
https://doi.org/10.1080/1040841X.2020.1812510
https://doi.org/10.1080/1040841X.2020.1812510
https://doi.org/10.3389/fmicb.2021.644949
https://doi.org/10.1128/CMR.00115-20
https://doi.org/10.1128/AAC.01365-16
https://doi.org/10.1016/j.jmii.2017.10.006
https://doi.org/10.1016/j.jmii.2017.10.006
https://doi.org/10.1128/AAC.01726-20
https://doi.org/10.1128/AAC.00385-17
https://doi.org/10.1128/AAC.00385-17
https://doi.org/10.1186/s12917-021-02758-4
https://doi.org/10.3390/jcm10051068
https://doi.org/10.1007/s40265-013-0013-7
https://doi.org/10.1038/s41426-018-0141-y
https://doi.org/10.1080/22221751.2020.1763209
https://doi.org/10.1080/22221751.2020.1763209
https://doi.org/10.1002/mbo3.1135
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-765113 December 31, 2021 Time: 12:3 # 1

ORIGINAL RESEARCH
published: 06 January 2022

doi: 10.3389/fmicb.2021.765113

Edited by:
Mullika Traidej Chomnawang,

Mahidol University, Thailand

Reviewed by:
Piyatip Khuntayaporn,

Mahidol University, Thailand
Rosa Del Campo,

Ramón y Cajal Institute for Health
Research, Spain

*Correspondence:
Michel Doumith

doumithmi@ngha.med.sa
Majed F. Alghoribi

alghoribima@ngha.med.sa

Specialty section:
This article was submitted to

Antimicrobials, Resistance
and Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 26 August 2021
Accepted: 13 December 2021

Published: 06 January 2022

Citation:
Doumith M, Alhassinah S,

Alswaji A, Alzayer M, Alrashidi E,
Okdah L, Aljohani S,

NGHA AMR Surveillance Group,
Balkhy HH and Alghoribi MF (2022)

Genomic Characterization
of Carbapenem-Non-susceptible

Pseudomonas aeruginosa Clinical
Isolates From Saudi Arabia Revealed

a Global Dissemination
of GES-5-Producing ST235

and VIM-2-Producing ST233
Sub-Lineages.

Front. Microbiol. 12:765113.
doi: 10.3389/fmicb.2021.765113

Genomic Characterization of
Carbapenem-Non-susceptible
Pseudomonas aeruginosa Clinical
Isolates From Saudi Arabia Revealed
a Global Dissemination of
GES-5-Producing ST235 and
VIM-2-Producing ST233
Sub-Lineages
Michel Doumith1,2* , Sarah Alhassinah1,2, Abdulrahman Alswaji1,2, Maha Alzayer1,2,
Essa Alrashidi1,2, Liliane Okdah1,2, Sameera Aljohani1,2,3, NGHA AMR Surveillance Group,
Hanan H. Balkhy4 and Majed F. Alghoribi1,2,3*

1 Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia,
2 King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, 3 Department of Pathology and Laboratory
Medicine, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia,
4 World Health Organization, Geneva, Switzerland

Carbapenem-resistant P. aeruginosa has become a major clinical problem due to
limited treatment options. However, studies assessing the trends in the molecular
epidemiology and mechanisms of antibiotic resistance in this pathogen are lacking in
Saudi Arabia. Here, we reported the genome characterization in a global context of
carbapenem non-susceptible clinical isolates from a nationally representative survey.
The antibiotic resistance profiles of the isolates (n = 635) collected over 14 months
between March 2018 and April 2019 from different geographical regions of Saudi Arabia
showed resistance rates to relevant β-lactams, aminoglycosides and quinolones ranging
between 6.93 and 27.56%. Overall, 22.52% (143/635) of the isolates exhibited
resistance to both imipenem and meropenem that were mainly explained by porin
loss and efflux overexpression. However, 18.18% of resistant isolates harbored
genes encoding GES (69.23%), VIM (23.07%), NDM (3.85%) or OXA-48-like (3.85%)
carbapenemases. Most common GES-positive isolates produced GESs −5, −15 or
−1 and all belonged to ST235 whereas the VIM-positive isolates produced mainly
VIM-2 and belonged to ST233 or ST257. GES and VIM producers were detected at
different sampling periods and in different surveyed regions. Interestingly, a genome-
wide comparison revealed that the GES-positive ST235 and VIM-2-positive ST233
genomes sequenced in this study and those available through public databases
from various locations worldwide, constituted each a phylogenetically closely related
sub-lineage. Profiles of virulence determinants, antimicrobial resistance genes and
associated mobile elements confirmed relatedness within each of these two different
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sub-lineages. Sequence analysis located the blaGES gene in nearly all studied genomes
(95.4%) in the same integrative conjugative element that also harbored the acc(6′)-
Ib, aph(3′)-XV, aadA6, sul1, tet(G), and catB resistance genes while blaVIM−2 in most
(98.89%) ST233-positive genomes was co-located with aac(6′)-I1, dfrB-5, and aac(3′)-
Id in the same class I integron. The study findings revealed the global spread of
GES-5 ST235 and VIM-2 ST233 sub-lineages and highlighted the importance of routine
detection of rare β-lactamases.

Keywords: high-risk clones, multidrug resistance, resistome, mobile element, β-lactamase, epidemiology

INTRODUCTION

P. aeruginosa is a major cause of healthcare associated infections
and a serious public health threat due to its ability to resist
antibiotics (Gellatly and Hancock, 2013). P. aeruginosa is
genetically equipped with an outstanding intrinsic antibiotic
resistance machinery and is adept at acquiring antibiotic
resistance determinants (Lister et al., 2009; López-Causapé
et al., 2018). Resistance to carbapenems in the species is due
primarily to chromosomal modifications that inactivate or down-
regulate the carbapenem-specific OprD porin or modify the
expression levels of efflux systems and in particular the MexAB-
OprM pump (López-Causapé et al., 2018). In recent years, this
pathogen has been increasingly reported as a carrier of acquired
carbapenemases and in particular those belonging to the VIM,
IMP and GES families (Yoon and Jeong, 2021). P. aeruginosa
has a non-clonal structure, nonetheless high-risk clones including
sequence type (ST)235, ST111, ST233, ST244, ST357, ST308,
ST175, ST277, ST654, and ST298 are widespread and frequently
associated with outbreaks (Oliver et al., 2015; Miyoshi-Akiyama
et al., 2017; del Barrio-Tofiño et al., 2020; Kocsis et al.,
2021). ST235 is certainly the most relevant high-risk clone,
showing a worldwide dissemination and an association with
various β-lactamases, including GES, IMP, KPC, OXA-48, and
VIM carbapenemases (Treepong et al., 2018; del Barrio-Tofiño
et al., 2020). Other high-risk clones such as ST233, ST357, and
ST111 have been also associated with acquired carbapenemases,
notably the metallo-β-lactamase VIM, IMP, and NDM types (del
Barrio-Tofiño et al., 2020). Using whole genome sequencing,
we investigated the mechanisms of resistance to antibiotics in
P. aeruginosa clinical isolates collected as part of a nationally
representative survey from Saudi Arabia and contextualized
against a global collection. In addition to porin impairment
and overexpression of efflux, sequence analyses showed that
resistance to carbapenems was partly due to the clonal spread
of GES-5-producing ST235 and VIM-2-producing ST233 sub-
lineages. More importantly, a genome-wide comparison revealed
that these two sub-lineages were disseminated worldwide.

MATERIALS AND METHODS

Isolates and Phenotypic Characterization
P. aeruginosa isolates (n = 635) were collected between March-
2018 and April-2019 as part of an antimicrobial resistance

surveillance program that was initiated in 2018 by the Infectious
Diseases Research Department (IDRD) at the National Guard
Health Affairs (NGHA) to monitor the prevalence and trends
of resistance in a variety of clinically important pathogens.
The program involves the monthly collection of the first 10–
30 non-duplicate consecutive isolates of each surveyed bacteria
identified in the laboratories of NGHA medical cities located
in Riyadh, Jeddah, Al Madinah, Dammam and Al Ahsa. The
collection included in this study comprised 162 isolates referred
from King Abdulaziz Medical City—Riyadh (Centre—Riyadh
province, 1,500 bed facility), 275 from King Abdulaziz Medical
City—Jeddah (West—Makkah province, 750 bed), 67 from
Prince Mohammed Bin Abdul Aziz Hospital—Al Madinah
(West—Al Madinah province, 215 bed), 86 from King Abdulaziz
Hospital—Al Ahsa (East—Eastern province, 300 bed) and 45
from Imam Abdulrahman Al Faisal Hospital—Dammam (East—
Eastern Province, 100 bed). Isolates were recovered from urine
(208/635, 32.8%), respiratory (204/635, 32.1%), blood (101/635,
15.9%), wound (67/635, 10.6%) and other specimens (55/635,
8.7%); they were referred at an overall average of 45 (range
19–80) isolates per month (Table 1). Species identification and
antimicrobial susceptibility testing were determined with the
VITEK II system. Minimum inhibitory concentrations (MICs) of
colistin were confirmed using the micro-broth dilution method.
MICs were interpreted according to CLSI breakpoints.

Species Confirmation and β-Lactamase
Screening
Species identity of the isolates was confirmed with a PCR
targeting the species-specific oprL gene. Presence of genes
encoding IMP, GES, KPC, NDM, OXA-48-like, VIM, BEL, PER,
and VEB β-lactamases were screened by PCR using the primers
described in Supplementary Table 1.

Whole Genome Sequencing and
Bioinformatics
Genomic DNA from all isolates (n = 45) was extracted
with the MagnaPure compact system (Roche, Switzerland) and
prepared for sequencing with the Nextera XT DNA library
preparation kit (Illumina, United Kingdom) according to the
manufacturer’s instructions. Sequencing was performed on the
Miseq instrument using the 2 × 300 paired-end protocol. Of
these, nine isolates were further sequenced on the Oxford
Nanopore MinION using the ligation sequencing kit according to
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TABLE 1 | Resistance rates to clinically relevant antibiotics among collected isolates.

Regions Central Western Eastern

City Riyadh Jeddah Al Madinah Al Ahsa Dammam Total

Isolates 162 275 67 86 45 635

Antibiotics IMI 35.80 28.00 20.90 23.26 13.33 27.56

MEM 33.95 21.45 20.90 19.77 6.67 23.31

IMI and MEM 33.33 20.00 20.90 19.77 6.67 22.52

IMI or MEM 36.42 29.45 20.90 23.26 13.33 28.35

CAZ 19.14 13.45 11.94 12.79 6.67 14.17

FEB 10.49 6.90 8.96 11.90 4.44 8.53

PIP/TAZ 33.75 6.79 19.40 15.29 4.65 16.33

AMK 9.26 6.18 11.94 2.33 4.44 6.93

GM 10.49 7.66 13.43 2.35 4.44 8.06

TOB 10.56 7.14 15.15 0.00 0.00 7.61

CIP 19.75 16.73 20.90 10.47 4.44 16.22

CST 2.53 4.52 9.09 1.23 0.00 3.83

Breakpoints amikacin (AMK) ≥ 64 mg/L; cefepime (FEB) ≥ 32 mg/L; ceftazidime (CAZ) ≥ 32 mg/L; ciprofloxacin (CIP) ≥ 2 mg/L; colistin (COL) ≥ 4 mg/L;
piperacillin/tazobactam (PIP/TAZ) ≥ 128/4 mg/L; imipenem (IMI) and meropenem (MER) ≥ 8 mg/L; tobramycin (TOB) and gentamicin (GEN) ≥ 16 mg/L.

the manufacturer’s instructions (Oxford Nanopore Technologies,
United Kingdom). Genome assemblies using the Illumina reads
alone or in combination with the Nanopore long-reads were
generated using Unicycler 0.4.8 (Wick et al., 2017). Multilocus
sequence type (MLST) was determined in silico using the mlst-
v2.18.1 software. Genes, mutations associated with antimicrobial
resistance, and virulence factors were detected with Abricate
0.9.81 or Genefinder.2 In order to put the analysis into an
international context, all P. aeruginosa paired-end Illumina
sequenced genomes (n = 16,337) deposited before December
2020 in the NCBI sequence read archive database3 were retrieved
and the quality of corresponding reads was assessed with the
FastQC software. Relatedness of recovered genomes with read
coverage above 20x and those generated in this study was inferred
using a single nucleotide polymorphisms (SNPs)-based approach
by mapping reads against the publically available sequences of
strain PAO1 (NC_002516) or the fully closed genome of strain
ST235-MPA32 generated in this study. SNPs were first identified
with Snippy 4.4.54 to create a full core genome alignment that
was latter checked for recombination events using Gubbins 2.4.1
(Croucher et al., 2015). Filtered alignments were then used to
construct the phylogenetic trees using RaXML with the default
option of Gubbins. Phylogenetic trees were annotated using
iTOL v6 and Microreact tools (Argimón et al., 2016; Letunic
and Bork, 2021). SNP locations were determined using the
annotated genome of the reference strain PAO1 (AE004091.2).
Genome assemblies were annotated with prokka 1.14.6 and
their gene contents were compared with Roary (Page et al.,
2015). The integrative and conjugative elements (ICE) and direct
environments of carbapenemases and extended-spectrum β-
lactamases in fully closed genomes was determined manually.

1https://github.com/tseemann/abricate
2https://github.com/phe-bioinformatics/gene_finder
3https://www.ncbi.nlm.nih.gov/sra
4https://github.com/tseemann/snippy

Presence of these elements in each sequenced genome was later
determined by checking the depth of coverage of reads mapped
across the full sequence of each mobile element.

RESULTS

Isolates and Phenotypic Testing
P. aeruginosa clinical isolates were referred over a 14-month
period from five hospitals located in the eastern, western and
central regions of Saudi Arabia. Susceptibility testing showed that
143/635 (22.52%) isolates were resistant to both imipenem and
meropenem (MIC ≥ 8 mg/L) (Table 1). Otherwise, the isolates
were variably resistant to ciprofloxacin (16.22%, range 4.44–
20.90%), ceftazidime (14.17%, range 6.67–19.14%), cefepime
(8.53%, 4.44–11.90%), piperacillin/tazobactam (16.33%, range
4.65–33.75%), amikacin (6.93%, range 2.33–11.94%), gentamicin
(8.06%, range 2.35–13.43%) and tobramycin (7.61%, range 0–
15.15%) but remained highly sensitive to colistin (96.17%, range
90.91–100%) (Table 1). Resistance to carbapenems was highest in
respiratory isolates (40.69%) followed by blood (27.72%), urine
(12.02%) then wound (8.96%) swab isolates. Extensively drug-
resistant isolates, remaining only sensitive to colistin, accounted
for 3.78% (24/635) of all isolates and were predominantly
obtained from respiratory specimens (14/24, 58.33%). Regional
and individual hospital variations in susceptibility patterns and
frequencies were observed for most tested antibiotics (Table 1).
Characteristically, hospitals hosting critical patients (i.e., Jeddah
and Riyadh) experienced the highest levels of resistance across all
tested antibiotics.

Screening for β-Lactamase Genes in
Carbapenem-Resistant Isolates
PCR screening detected genes encoding GES (n = 18), VIM
(n = 6), NDM (n = 1), and OXA-48-like (n = 1) β-lactamases,
explaining resistance to imipenem and meropenem in 18.18%
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(26/143) of carbapenem-resistant isolates. Genes encoding VEB
(n = 6) and PER (n = 2) extended-spectrum β-lactamases (ESBLs)
were detected in only eight isolates, including three of the six
VIM-positive isolates. Most common GES- and VIM-positive
isolates were referred from all regions at different sampling
periods (i.e., 11 out of 14 sampling months) of the survey.

Genomic Characterization of
Carbapenem-Resistant Isolates
To further investigate the molecular mechanisms of resistance to
carbapenems, all carbapenemase and ESBL producers identified
by PCR (n = 31) and a set of randomly selected isolates exhibiting
resistance to imipenem and meropenem but with no acquired
β-lactamases (n = 14) were whole genome sequenced on the
Illumina Miseq system.

GES-Carbapenemase Positive Isolates
Sequence analyses showed that all genomes carrying genes
encoding GES type β-lactamases, including GESs -5 (n = 16),−15
(n = 1) and −1 (n = 1), belonged to ST235. The later accounted
for 5.03% (822/16,337) of all genomes retrieved from the public
databases, and of which, the majority (71.29%, 586/822) carried
genes encoding acquired carbapenemases, including IMP alone
(n = 264) or in combination with NDM (n = 1) or OXA-48-
like (n = 1), VIM alone (n = 133) or in combination with
OXA-48-like (n = 3), GES (n = 174), KPC (n = 9), and OXA-
48-like (n = 1) (Table 2). Full genome SNP-based phylogeny
against the P. aeruginosa strain PAO1 reference genome grouped
nearly all published GES-positive ST235 genomes and those
generated in this study in a distinct cluster with the exception
of three GES-20 producers which grouped apart (Figure 1). In
contrast, the two other common VIM and IMP carbapenemases
were distributed across multiple clusters suggesting that they
were acquired through multiple events. The phylogenetic tree
constructed based on SNP calls relative to the fully closed
ST235 MPA32-genome confirmed the clustering of the GES-
positive genomes in a well distinct clade (Figure 2). Clustered
GES-positive genomes originated from at least six different
countries, including Australia, China, Germany, Japan, Indonesia
and Pakistan (Figure 1). Phylogeny showed that these producers
were related to each other, with at most 120 SNPs to distinguish
between them. More specifically, the GES-positive genomes
(n = 18) from this study clustered tightly with others from
Germany (n = 26) in a distinct subgroup with at most 45 SNPs
to distinguish them from each other. GES-positive genomes
were separated from the remaining ST235 genomes by at
least 29 SNPs, of which, 14 were non-synonymous in genes
classified as transcriptional regulators, metabolic genes and
hypothetical proteins whereas four were located in the promoter
or potential regulatory regions of genes encoding the porin OprO,
global transcriptional regulator IscR or hypothetical proteins
(Supplementary Table 2). Of these, only IscR has been shown
to regulate genes involved in iron homeostasis, resistance to
oxidants and pathogenicity (Romsang et al., 2014; Saninjuk et al.,
2019). Comparison of the gene contents of ST235 genomes
identified 4,373 core and 1,086 soft-core genes that were shared

among 98.94–100% and 94.87–98.94% of genomes studied,
respectively. Other 25,228 genes were found to be present within
one to a maximum of 536 genomes (i.e., < 94.87%) thus showing
a relatively wide genetic variability in the accessory genome of this
ST. Overall there were a very limited number of genes (n = 27)
which presence or absence distinguished the GES-positive cluster
from the remaining ST235 but these mainly encoded phage or
hypothetical proteins. Only one gene showing homology to the
transcriptional repressor NrdR lacked in all GES producers but
was present in the majority of remaining ST235 genomes. The
latter, shown to regulate the ribonucleotide synthesis may grant
the adaptability to thrive in different environments (Crespo et al.,
2015). Otherwise, the presence of genomic features encoding
the virulence factors gathered in the virulence factor database
(VFDB) were comparable across all ST235 genomes. The majority
of the genes and gene clusters previously shown to be involved
in the species virulence were identified in nearly all (i.e., 98–
100%) ST235 genomes with the exception of wzz and wzy genes
that are involved in the B-band lipopolysaccharide O antigen
synthesis and the pyoverdine outer membrane receptor fpvA. In
accordance with previous studies, all ST235 genomes including
those carrying blaGES carried the ExoU toxin-encoding gene (Sato
et al., 2003; Treepong et al., 2018).

Sequence examination of the fully reconstructed genomes
of two GES-5 producers co-located the β-lactamase gene with
acc(6′)-Ib, aph(3′)-XV, aadA6, florR, sul1, tetG, and catB genes
in a type I integron that was embedded in a 95 kb integrative
conjugative elements (ICE) inserted in the chromosome
downstream the tRNA-Gly gene (Figure 3). Mapping of the
short reads to the full sequence of this element confirmed
its presence in nearly all publically available (166/174, 95.4%)
and newly sequenced (18/18, 100%) GES-positive genomes. Of
the remaining, five (5/174, 2.87%) genomes carrying blaGES−1
(n = 1) and blaGES−5 (n = 4) lacked the region located between
position ∼65.1 and ∼72.1 kb and comprising the floR and
tetG genes whereas the three genome carrying blaGES−20 (3/174,
1.73%) and clustering apart had the entire element missing
(Figure 3). One GES-negative isolate (i.e., RPA66) sequenced
in this study belonged to ST235 clustered also away, thus
confirming the relatedness of the GES-producing ST235 isolates
(Supplementary Tables 3, 4).

VIM-Carbapenemase Positive Isolates
Sequence analysis showed that the majority of VIM-positive
genomes (5/6, 83.3%) carried blaVIM−2 and belonged to ST233
(n = 3) or ST357 (n = 2). The remaining isolate (1/6, 16.7%)
harbored blaVIM−28 and belonged to ST111. Isolates carrying
blaVIM−2 were from three hospitals located in the three different
regions included in the study (Supplementary Table 3). Here
also, nearly all published ST233 genomes (90/94, 95.74%), which
originated from at least four different countries, including
Germany, Japan, Spain and United States, harbored blaVIM−2
and were highly related with at most 47 SNPs to distinguish
them from each other. Isolates from this study clustered in two
sub groups according to their geographical origins, nevertheless
with 29 SNPs to distinguish them from each other (Figure 4).
Sequence analysis located the blaVIM−2 of all newly sequenced
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FIGURE 1 | Core genome SNP-based maximum likelihood phylogeny of ST235 genomes retrieved from the public domain and those generated in this study using
the genome sequences of strain PAO1 as reference.

FIGURE 2 | Core genome SNP-based maximum likelihood phylogeny of ST235 genomes retrieved from the public domain and those generated in this study using
the MPA32 closed genome as reference. The cluster of GES-positive ST235 genomes were highlighted in a blue circle.
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TABLE 2 | Distribution of carbapenemase-encoding genes among publically
available genomes belonging to the major carbapenemase-positive STs identified
in isolates from this study.

ST β-lactamase type β-lactamase variant Nb

ST233 (n = 94) VIM VIM-2 90

None 4

ST235 (n = 822) IMP (n = 264) IMP-1 5

IMP-6 1

IMP-7 25

IMP-10 2

IMP-14 1

IMP-19 1

IMP-26 114

IMP-31 63

IMP-43 1

IMP-51 51

VIM (n = 133) VIM-1 33

VIM-2 87

VIM-4 7

VIM-13 4

VIM-24 1

VIM-27 1

GES (n = 174) GES-1 28

GES-5 142

GES-15 1

GES-20 3

KPC KPC-2 9

OXA-48-like OXA-232 1

VIM and OXA VIM-2 OXA-232 3

IMP and NDM IMP-51 NDM-1 1

IMP and OXA IMP-26 OXA-181 1

None 236

ST244 (n = 254) VIM (n = 14) VIM-2 13

VIM-6 1

IMP (n = 4) IMP-34 1

IMP-39 3

KPC KPC-2 2

OXA-48-like OXA-181 2

None 232

ST357 (n = 229) IMP (n = 46) IMP-7 42

IMP-13 2

IMP-15 1

IMP-16 1

NDM NDM-1 21

KPC KPC-2 1

OXA-48-like OXA-181 1

VIM (n = 12) VIM-2 8

VIM-5 3

VIM-18 1

None 148

ST773 (n = 23) VIM VIM-2 4

NDM NDM-1 8

None 11

ST233 isolates in a 4.4 kb class I integron comprising aac(6′)-I1,
dfrB-5, and aac(3′)-Id resistance genes (100% identity, accession
number AY943084.1), and which, in turn, was embedded in a
transposon similar to those found in published P. aeruginosa
genomes (e.g., CP056774.1 from nucleotide positions 5,258,523–
5,270,622) (Figure 5). Screening of publically available blaVIM−2-
positive ST233 genomes showed that nearly all (89/90, 98.89%)
had reads covering the entire 4.4 kb integron cassette and of
which the majority (72/90, 80%) had also reads covering more
than 95% of the entire 12 kb transposon. On the other hand, only
a handful of publically available ST357 genomes harbored the
blaVIM−2 (8/229, 3.49%) and had mainly IMP carbapenemases
(46/229, 20.09%) and in particular the IMP-7 variant (42/46,
95.45%). The blaVIM−2 of newly sequenced ST357 genomes was
detected in an integron type I mobile element embedded in a
complex transposon containing all the resistance genes identified
in this isolate (Figure 5). In contrast, the blaVIM−28 in the ST111
isolate was located on a 350 kb plasmid in a integron type I in
association with aac(6′)-I.

Other Carbapenemase-Positive Isolates
Of the remaining carbapenemase-positive isolates, one carried
blaOXA−232 and belonged to ST244 while one had blaNDM−1 and
belonged to ST773. Genome assemblies located the blaOXA−232
gene on a 6.1 kb ColKP3-type non-conjugative plasmid
similar to previously published plasmid pColKP3 (accession
number CP036323). Otherwise, the blaNDM−1 was co-located
with floR2, rmtB, sul1, and tet(G) in an ICE element of
approximately ∼117 kb that was highly similar to the clc-
like ICE recently identified in P. aeruginosa (accession number
MK497171) (Figure 3).

Molecular Mechanisms of Resistance
β-Lactams
In addition to the acquisition of carbapenemases, sequence
analysis identified alterations in the outer membrane protein
OprD leading to function loss in the majority (82.22%, 37/45)
of sequenced genomes. Porin alterations included large deletions
at the beginning or end of the coding region (n = 11) and
frameshifts produced by small insertions or deletions creating
premature translational termination at various positions (n = 26)
(Supplementary Table 4). Genes encoding the MexAB-OprM
efflux system were highly conserved across all sequenced
isolates. However, inactivation of either MexR (n = 4), NalC
(n = 1), or NalD (n = 9), previously shown to up-regulate
the expression of this efflux pump, was identified in nearly
third (14/45, 31.1%) of sequenced isolates and mainly in the
non-carbapenemase producers (9/14, 64.3%) (Supplementary
Tables 3, 4). Inactivation of these regulators was due to
various insertions, deletions, or substitutions resulting in
frameshift of the reading frame, and creating premature stop
codons (Supplementary Tables 3, 4). Overall, the acquisition
of carbapenemase genes with porin inactivation and efflux
upregulation explained resistance to imipenem and meropenem
in all sequenced genomes. Carbapenemase-producing isolates
(n = 26) were resistant to all tested non-carbapenem β-lactams
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FIGURE 3 | ICEs harboring blaNDM-1 and blaGES-5 identified in ST773 and ST235 sequenced genomes. Colors showed in red genes encoding antimicrobial and
heavy metal resistance, insertion sequences and transposon-related genes; blue, transfer and conjugative functions; yellow, other known functions and gray,
hypothetical proteins. The region carrying the floR and tetG genes missing in some genomes were shown in a white box.

FIGURE 4 | Core genome SNP-based maximum likelihood phylogeny of ST233 genomes retrieved from the public domain and those generated in this study using
the genome sequence of strain PAO1 as reference.

(i.e., piperacillin/tazobactam, cefipime, and ceftazidime) with
the exception of those producing GES-5, which remained in
majority (10/18, 55.56%) sensitive or intermediately resistant
to ceftazidime (MIC 16 mg/L) and cefepime (MIC 8–
16 mg/L). Resistance in some of these producers suggested
an overexpression of the chromosomal AmpC but none had
mutations in the coding sequences of AmpR, AmpRh1, AmpRh2,
AmpD, PBPs, and GalU or in the ampR-ampC intergenic region
to explain resistance. Of the remaining non-carbapenemase

producers (n = 20), only six were resistant to ceftazidime
(MIC ≥ 64 mg/L) and harbored GES-1 (n = 1), VEB (n = 4), or
PER (n = 1) ESBL variants (Supplementary Tables 3, 4).

Other Antibiotics
Scanning genome sequences identified alterations in GyrA
(T83I/T83A and D87Y) and ParC (S87L) in all isolates (33/45,
73.33%) showing high level of resistance to ciprofloxacin
(MIC ≥ 4 mg/L). Only three of the seven isolates exhibiting

Frontiers in Microbiology | www.frontiersin.org 7 January 2022 | Volume 12 | Article 765113147

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-765113 December 31, 2021 Time: 12:3 # 8

Doumith et al. Global Spread of Carbapenemase-Producing Pseudomonas aeruginosa Clones

FIGURE 5 | The blaVIM−2, blaVEB−9, and blaPER−1 environments in ST357 (top) and ST233 (bottom) sequenced genomes. Colors showed in red genes encoding
antimicrobial and heavy metal resistance, insertion sequences and transposon-related genes; blue, transfer and conjugative functions; yellow, other known functions
and gray, hypothetical proteins.

low levels of resistance (MIC 1–2 mg/L) carried the plasmid-
encoded ciprofloxacin resistance determinant crpP or had
the MexAB-OprM efflux pump overexpressed (Supplementary
Tables 3, 4). However, the presence of crpP was detected in
nearly half of the isolates (22/45, 48.89%) including in two
sensitive isolates (MIC≤ 0.25 mg/L). Resistance to all three tested
aminoglycosides was associated in the majority of cases (n = 18)
with the presence of the aminoglycoside-modifying enzyme
Aac(6′)-Ib-cr and overexpression of the MexXY-OprM efflux
system due to inactivation of its repressor MexZ by a deletion
of 11 nucleotides creating a translational frameshift at position
290. Presence of the acquired aac(6′)-I, aac(3′)-I, ant(2′′)-Ia, or
the 16S rRNA methyltransferase rmtB genes explained resistance
in 11 isolates while one isolate carried acc(3′)-I and had the
MexXY-OprM overexpressed due to inactivation of MexZ by a
substitution creating a premature stop codon at position 162
(Supplementary Tables 3, 4). Resistance in three isolates did
not correlate with the genomic data. Otherwise, the borderline
resistance to colistin (MIC 4 mg/L) in few isolates (n = 6) were not
associated with any mutations in the PmrA/PmrB or PhoP/PhoQ
two-component systems (Supplementary Tables 3, 4).

DISCUSSION

Susceptibility testing of P. aeruginosa clinical isolates from a large,
nationally representative collection of Saudi Arabia showed an
overall resistance rates to relevant aminoglycosides, quinolones,
and β-lactams ranging from 6.93 to 27.56%. Resistance to
either imipenem or meropenem varied greatly among recruited
hospitals (28.35%, range 13.33–36.42%) with the highest levels
of resistance observed in central region (i.e., Riyadh tertiary
hospital). Sequence analysis identified loss of porin OprD and
efflux overexpression at the origin of resistance in the majority
(i.e., 81.56%) of sequenced isolates. Of the four efflux systems
of the resistance nodulation division (RND) family, MexAB-
OprM, MexEF-OprN, MexCD-OprJ, and MexXY-OprM that are

known to contribute to antimicrobial resistance in the species,
sequence analyses suggested that overexpression of the MexAB-
OprM efflux, mainly through inactivation of its regulatory
genes, constitute the main system acting synergistically with
low outer membrane permeability to confer intrinsic multi-
drug resistance (Poole et al., 1993, 1996; Köhler et al., 1997;
Mine et al., 1999). More importantly, resistance to carbapenems
was partly (i.e., 18.18%) associated with the acquisition of
acquired carbapenemases, notably those encoding the GES and
VIM type enzymes. GES-5 producers, which all belonged to
ST235, were by far the most dominant among resistant isolates
carrying acquired carbapenemases; they were also widespread,
being identified in all regions surveyed during the study period.
A previous study suggested that the ST235 lineage emerged in
Europe but have since evolved globally and acquired locally
diverse antimicrobial resistance determinants (Abril et al.,
2019). The genome-wide sequence analysis identified a high
genomic diversity among ST235 isolates and confirmed local
acquisitions of carbapenemase-encoding genes. However, the
GES-positive ST235 genomes sequenced in this study and all
those publically available were similar and belonged to the same
phylogenetic group. Moreover, the GES-encoding genes in nearly
all these genomes (95.4%) was located in an identical ICE,
thus supporting the early acquisition of the β-lactamase gene
in this sub-lineage. The association of this ST with various β-
lactamases has been in part linked to the presence of type IV
secretion systems promoting foreign DNA capture, leading to
the insertion of genetic element as transposon, integron, or
genomic islands harboring resistance genes (Miyoshi-Akiyama
et al., 2017; Treepong et al., 2018). Gene by gene comparisons
identified only one gene showing homology to the regulator of
deoxyribonucleotide reduction NdrD that was missing in the
GES-positive genomes but present in the majority of remaining
genomes. However, the significance of the absence of this
gene need to be further investigated. Similar findings were
also observed for the VIM-2-positive ST233 isolates where
genome comparisons revealed that sequenced genomes and those
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publically available were phylogenetically similar to each other.
In contrast to ST235, nearly all ST233 genomes (90/94, 95.75%)
in the public domain carried the VIM-2-encoding gene. Here
also the environment of the β-lactamase gene, which was co-
located in the same class I integron in all genomes, supported
an ancestral acquisition and subsequent spreading, rather than
multiple acquisition events.

The molecular basis of extended-spectrum β-lactamase
(ESBL) and carbapenemase production in P. aeruginosa isolated
from Saudi Arabia was reported in a limited number of studies
but none has been based on whole-genome sequencing. Overall,
these reports indicated that VIM-type enzymes were the most
prevalent metallo-β-lactamase in isolates from the Kingdom (Al-
Agamy et al., 2009; Shaaban et al., 2018). Detection of genes
encoding the VIM-2 variant in ST233 isolates has been reported
in several countries worldwide, including in a handful of isolates
from Saudi Arabia and neighboring Bahrain and Egypt (Zafer
et al., 2015; Zowawi et al., 2018). A recent study reported the
identification of VIM-2 in isolates belonging to ST654 and GES
in ST235 isolates from one hospital located in the western region
(Al-Zahrani and Al-Ahmadi, 2021). Although VEB-like enzymes
were the most common reported ESBLs in P. aeruginosa isolates
from Saudi Arabia, few studies reported the detection of GES
encoding genes in isolates from the Kingdom (Al-Agamy et al.,
2012, 2016; Tawfik et al., 2012).

Overall, the study findings clearly showed a worldwide
dissemination of the GES-5-producing ST235 and VIM-
2-producing ST233 sub-lineages. Moreover, a recent study
reporting the spread of ST235 isolates producing GES-type
enzymes across multiple regions in Japan, confirmed the potential
of these lineages to disseminate broadly (Hishinuma et al., 2018).
The study results also emphasize the fact that the spread of strains
producing rare carbapenemases, such as GES-type enzymes,
could be underestimated because the genes encoding these β-
lactamases are outside the scope of all commercially available
assays that are mainly focused on the detection of most common
NDM, VIM, OXA-48-like, KPC and IMP carbapenemase genes,
and thus highlighting the importance of screening for these
β -lactamases.
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University School of Medicine, Yahaba, Japan

Various carbapenemases have been identified in the Enterobacteriaceae. However, the
induction and corresponding regulator genes of carbapenemase NmcA has rarely been
detected in the Enterobacter cloacae complex (ECC). The NmcA-positive isolate ECC
NR1491 was first detected in Japan in 2013. It was characterized and its induction
system elucidated by evaluating its associated regulator genes nmcR, ampD, and
ampR. The isolate was highly resistant to all β-lactams except for third generation
cephalosporins (3GC). Whole-genome analysis revealed that blaNmcA was located
on a novel 29-kb putatively mobile element called EludIMEX-1 inserted into the
chromosome. The inducibility of β-lactamase activity by various agents was evaluated.
Cefoxitin was confirmed as a strong concentration-independent β-lactamase inducer.
In contrast, carbapenems induced β-lactamase in a concentration-dependent manner.
All selected 3GC-mutants harboring substitutions on ampD (as ampR and nmcR
were unchanged) were highly resistant to 3GC. The ampD mutant strain NR3901
presented with a 700 × increase in β-lactamase activity with or without induction.
Similar upregulation was also observed for ampC and nmcA. NR1491 (pKU412) was
obtained by transforming the ampR mutant (135Asn) clone plasmid whose expression
increased by ∼100×. Like NR3901, it was highly resistant to 3GC. Overexpression of
ampC, rather than nmcA, may have accounted for the higher MIC in NR1491. The
ampR mutant repressed nmcA despite induction and it remains unclear how it stimulates
nmcA transcription via induction. Future experiments should analyze the roles of nmcR
mutant strains.

Keywords: carbapenemase, NmcA, AmpC β-lactamase, Enterobacter cloacae complex, induction, regulator
genes

INTRODUCTION

The Enterobacter cloacae complex (ECC) have become clinically significant opportunistic bacteria
and are now common nosocomial pathogens causing pneumonia, urinary tract infections,
and septicemia (Davin-Regli and Pages, 2015). Six Enterobacter species are assigned to the
ECC: E. cloacae, E. asburiae, E. hormaechei, E. kobei, E. ludwigii, and E. nimipressuralis
(Mezzatesta et al., 2012).
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Multidrug resistance (MDR) has been observed for the
last-resort carbapenems and has led to an increased global
interest in Enterobacteriaceae in general and carbapenem-
resistant ECC, in particular (Annavajhala et al., 2019). ECC
are innately resistant to penicillins, first- and second-generation
cephalosporins, and cephamycin due to the chromosomally
encoded AmpC β-lactamase genes (serine β-lactamase, Ambler
class C). AmpC β-lactamase expression is low but inducible
in response to β-lactam exposure and is closely linked
to a peptidoglycan recycling system, with the β-lactams
imipenem, cefoxitin, and clavulanic acid strong ampC inducers
(Jacoby, 2009). Regulation of AmpC β-lactamase expression is
complex and involves AmpR (a transcriptional regulator of
the LysR family), AmpD (a cytosolic amidase), and AmpG (a
transmembrane permease) (Guerin et al., 2015). AmpR usually
represses ampC in the absence of β-lactam inducers, whereas
mutations at specific sites in AmpR derepresses AmpC synthesis
and results in constitutive AmpC β-lactamase overexpression.
Asp135Asn AmpR substitution is correlated with substantial
increases in β-lactamase activity in several Gram-negative
organisms including ECC, Citrobacter freundii, and Pseudomonas
aeruginosa (Kuga et al., 2000; Caille et al., 2014; Nakano et al.,
2017). Mutations that inactivate AmpD permanently induce
and increase muropeptide concentrations in the cytoplasm
and change the conformation of AmpR so that it becomes
a transcriptional activator (Kuga et al., 2000). Specifically,
AmpR mutations require site-specific substitution to induce
AmpC β-lactamase overexpression whereas AmpD mutations
need loss-of-function point mutations (missense mutation) or
disruption of the protein carboxy terminus, nonsense mutations,
frameshifts, and truncations (Schmidtke and Hanson, 2006).
Among the ECC clinical isolates, high-level resistance to third
generation cephalosporins (3GC) is caused by constitutive ampC
overexpression mainly from ampD mutations and, more rarely,
from ampR mutations (Kaneko et al., 2005; Guerin et al., 2015).

Carbapenem resistance in ECC is conferred either through
constitutive AmpC β-lactamase overexpression combined with
defective outer membrane (porin) permeability or via the
acquisition of carbapenemase genes (Annavajhala et al., 2019),
with the latter scenario being more common. Carbapenemases
hydrolyze most β-lactams including carbapenems and are
classified as serine β-lactamases (Ambler class A; KPC type
and D; OXA-48 type) or metallo-β-lactamases (Ambler class B;
IMP type, VIM type, and NDM type) (Diene and Rolain, 2014;
Nakano et al., 2014; Ando et al., 2018). The distributions of
these enzymes differ with geographical location: the KPC type
occurs in the United States, NDM in the Indian subcontinent,
and IMP in Japan (Chavda et al., 2016; Aoki et al., 2018;
Peirano et al., 2018). Chromosomally encoded carbapenemase
NmcA (Ambler class A) has been sporadically detected in ECC
(Walther-Rasmussen and Hoiby, 2007).

NmcA was originally detected in the carbapenem-resistant
E. cloacae strain NOR-1 isolated in France in 1990 (Nordmann
et al., 1993). NmcA has occasionally been detected in E. cloacae,
E. asburiae, and E. ludwigii from Europe, North America,
and South America (Pottumarthy et al., 2003; Radice et al.,
2004; Antonelli et al., 2015; Boyd et al., 2017). A recent

study revealed that blaNmcA is associated with a novel 29-kb
putative Xer-dependent integrative mobile element (EludIMEX-
1) inserted into the ECC chromosome (Antonelli et al., 2015).
This enzyme hydrolyses different β-lactam agents except for
3GC and has particularly high hydrolytic activity against
carbapenems (Nordmann et al., 1993; Mariotte-Boyer et al.,
1996). The inducibility of NmcA is similar to AmpC β-lactamase
(Pottumarthy et al., 2003), where the LysR family transcriptional
regulator gene nmcR upstream of blaNmcA regulates nmcA
in the same manner as the ampR–ampC regulatory system
does for AmpC. Additionally, AmpD co-regulates nmcA
(Naas et al., 2001).

Here, we describe the characteristics of an nmcA-positive
ECC isolate first observed in Japan. We also elucidate the nmcA
induction system by evaluating nmcA expression in ampD and
ampR mutant strains.

MATERIALS AND METHODS

Bacterial Strains and Antimicrobial
Susceptibility Testing
The carbapenem-resistant ECC strain NR1491 was isolated from
the urine of a patient in a Japanese hospital in 2013. The
species was identified as E. cloacae by MicroScan WalkAway plus
(Beckman Coulter, Inc., Brea, CA, United States). To evaluate
the effects of ampR mutation on antimicrobial susceptibility and
β-lactamase expression, ampR clone plasmids were constructed
and used to transform NR1491. The ampR clone plasmids
(pKU411 and pKU412) used in this study were already previously
constructed (Kuga et al., 2000). An in vitro ceftazidime-resistant
mutant strain NR3901 was isolated from NR1491. Characteristics
of the bacterial strains and plasmids used in the present study are
listed in Table 1.

The minimum inhibitory concentrations (MICs) of the
various antimicrobial agents were determined for each

TABLE 1 | Bacterial strains and plasmids used in the present study.

Strain or plasmid Relevant characteristics Source or references

Strains

E. ludwigii NR1491 Clinical isolate from Japan,
resistance to carbapenems

This study

pKU411/NR1491 E. ludwigii transformed with
pKU411

This study

pKU412/NR1491 E. ludwigii transformed with
pKU412

This study

NR3901 Ceftazidime-resistant mutant of
E. ludwigii NR1491, AmpD mutant
(69delG)

This study

Plasmids

pKU411 Wild type ampR (135Asp) of
E. cloacae GN7471 cloned into
pMW218

Kuga et al., 2000

pKU412 Mutant ampR (135Asn) of
E. cloacae GN7471 cloned into
pMW218

Kuga et al., 2000
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strain by the agar dilution method according to CLSI
guidelines (CLSI, 2018).

Whole-Genome Sequencing and Analysis
The genomic DNA of NR1491 was prepared with a Qiagen
Genomic-tip 500/G kit (Qiagen, Hilden, Germany) and subjected
to whole-genome sequencing on the MiSeq X10 platform
(Illumina, San Diego, CA, United States). Reads were trimmed in
Trimmomatic and assembled to contigs with the SPAdes v. 3.8.1
genome assembler in caution mode (Bankevich et al., 2012).

Species were precisely identified based on their average
nucleotide identity (ANI) and in silico DNA–DNA
hybridization between strain NR1491 (GenBank accession
no. BKZO00000000.1), the E. cloacae type strain ATCC 13047
(GenBank accession no. MTFV00000000.1), the E. ludwigii type
strain EN-119 (GenBank accession no. JTLO00000000.1), and
the E. ludwigii type strain AOUC-8/14 (GenBank accession
no. LGIV00000000.1). Earlier studies recommended ANI of
∼95–96% as a species demarcation cutoff (Goris et al., 2007;
Chun and Rainey, 2014).

Antimicrobial resistance genes were identified in the genome
sequence with the ResFinder database1 using thresholds of 90%
identity and 60% minimum length. β-lactamase genes including
carbapenemases and extended-spectrum β-lactamases (ESBLs)
were also assessed by PCR. PCR detection of carbapenemases
(blaIMP, blaVIM, blaKPC, blaOXA−48−like, blaNDM, blaGES,
blaIMI/NmcA, and blaSME) (Poirel et al., 2011; Hong et al., 2012;
Nakano et al., 2018) and ESBLs (blaTEM, blaSHV, and blaCTX−M)
(Dallenne et al., 2010) were performed as previously described.
The sequence surrounding blaNmcA, a carbapenemase-encoding
gene, was elucidated by PCR and Sanger sequencing to close
the gaps between the contigs. Sequence alignment and analysis
were performed with BLAST2 at NCBI (National Centre for
Biotechnology Information, Bethesda, MD, United States).
Multilocus sequence typing (MLST) of the E. cloacae isolates
was performed as previously described (Miyoshi-Akiyama et al.,
2013). Sequence types were assigned at the PubMLST database.3

The presence of mobile genetic elements was investigated
using the MobileElementFinder (Johansson et al., 2021) and
INTEGRALL (Moura et al., 2009). The plasmid content was
assessed using PlasmidFinder (Carattoli et al., 2014).

Selection of Third-Generation
Cephalosporin-Resistant Mutants and
Detection of Sequence Alterations
Third-generation cephalosporin-resistant mutants were obtained
by plating ∼109 CFU mL−l late-logarithmic-phase NR1491
grown in Luria-Bertani (LB) broth and on LB agar plates
containing ceftazidime or cefotaxime at 2×, 4×, 8×, 16×,
and 32× MIC. The mutation frequencies were determined by
dividing the colony density in CFU mL−l on LB agar plates
containing the antibiotic agents by the total colony density in
CFU mL−l.
1https://cge.cbs.dtu.dk/services/ResFinder/
2https://blast.ncbi.nlm.nih.gov/Blast.cgi
3http://pubmlst.org/ecloacae/

The DNA sequences of the selected mutants were determined
by Sanger sequencing of nmcR, ampR, and ampD amplicons. The
primers used are listed in Supplementary Table 1 (Radice et al.,
2004). The nucleotides and amino acids of the selected mutants
were compared with those of E. ludwigii NR1491 and EN-119.

β-Lactamase Induction Assays
β-lactamase activity was measured in terms of the protein content
in the extract and compared among cultures in 50 mM phosphate
buffer (pH 7.0) at 30◦C by spectrophotometry as previously
described (Nakano et al., 2004). The protein concentrations
were determined by the Bradford assay (Bradford, 1976). One
unit of β-lactamase activity was defined as the amount of
β-lactamase hydrolyzing 1 µmol cephalothin in 1 min at 30◦C.
The β-lactamase induction assays were performed by subjecting
mid-logarithmic phase bacteria in Mueller-Hinton broth to
β-lactams at 1/16×, 1/8×, 1/4×, 1/2×, and 1× MICs for 2 h
(Kuga et al., 2000). The antibiotics cefpodoxime, clavulanic acid,
cefoxitin, imipenem, and meropenem were used as inducers.
The induction ratios were calculated in terms of the ratio
of β-lactamase activity mg−1 protein in induced cells to the
β-lactamase activity per mg−1 protein in uninduced cells.

Measurement of ampC and nmcA mRNA
Levels by qRT-PCR
The mRNA expression levels of ampC and nmcA with and
without induction were determined by qRT-PCR as previously
described (Nakano et al., 2017). Total RNA was extracted with
the RNeasy protect bacteria mini kit and the RNase-free DNase
set (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. The qRT-PCR was performed in a StepOnePlus
real-time PCR system (Applied Biosystems, Foster City, CA,
United States) with a Power SYBR Green RNA-to-CT 1-Step
kit (Thermo Fisher Scientific, Waltham, MA, United States)
and 100 ng total RNA in a 20-µL reaction, according to the
manufacturer’s instructions. The primers used are listed in
Supplementary Table 1 (Doumith et al., 2009). The relative
gene expression levels were calculated by the 2−MMCT method.
The mRNA of the housekeeping gene rpoB was chosen as the
endogenous reference for relative quantification. The results are
presented as the mRNA expression level compared with that of
NR1491. The experiment was performed in triplicate. The final
relative expression levels of ampC and nmcA were determined by
calculating the averages for their transcripts. The coefficient of
variation (SD/mean) among experiments was < 10%.

Nucleotide Sequence Accession
Numbers
The nucleotide sequences of the genetic regions surrounding
blaNmcA and the whole-genome DNA sequences of NR1491 were
deposited in the GenBank database under accession numbers
LC482123 and BKZO00000000.1, respectively.
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RESULTS

Identification of blaNmcA-Harboring
Enterobacter ludwigii NR1491
The draft NR1491 genome (GenBank accession no.
BKZO00000000.1) was obtained by MiSeq (Illumina, Sa,
Diego, CA, United States), and average nucleotide identity (ANI)
analysis using E. cloacae strain ATCC13047, E. ludwigii type
strain EN-119, and E. ludwigii AOUC-8/14 as reference genomes.
Their respective ANI values were 87.82, 98.96, and 98.97%.4

NR1491 was identified as E. ludwigii belonging to ST258.

Antimicrobial Susceptibility and
Resistance Genes
Antimicrobial susceptibility assays showed that E. ludwigii
NR1491 was highly resistant to cephalothin, cefmetazole,
carbapenems, and fosfomycin (> 512 µg mL−l) but susceptible to
3GC, piperacillin–tazobactam, cefepime, aztreonam, levofloxacin
(≤0.06 µg mL−l), and gentamicin (0.5 µg mL−l) (Table 2).
However, the MIC of cefotaxime increased when the agent was
combined with clavulanic acid.

Whole-genome analysis with ResFinder revealed the following
resistance-encoding genes: blaNmcA (carbapenemase), ACT-
12 (AmpC β-lactamase), and fosA2 (glutathione transferase;
fosfomycin resistance). It also disclosed that the regulator
genes nmcR and ampR were upstream of blaNmcA and ampC,
respectively. The entire nucleotide sequences of blaNmcA and
nmcR and the intercistronic region were determined by Sanger
sequencing. The sequences were identical to that of E. cloacae
NOR-1 (accession no. Z21956). PCR demonstrated that no
other acquired β-lactamase gene was harbored. The regulatory
gene sequences of blaNmcA (nmcR, ampR, and ampD) were
compared with that of the reference strains of ECC (NOR-1, EN-
119, and AOUC-8/14); there are no mutations in these genes.
Whole-genome analysis indicated that the insertion sequence (IS)
elements and an integron were not encoded on the chromosome;
the strain did not harbor a plasmid.

Genetic Environment Analysis of blaNmcA
The genetic environment of blaNmcA was determined to be a
48,089-bp nucleotide fragment characterized by whole-genome
and Sanger sequencing and deposited into GenBank under
accession no. LC482123. A BLASTn analysis showed that the
fragment was highly similar to E. ludwigii AOUC-8/14 (accession
no. KR919803) (44,766/44,874 nucleotides; 99.76% identity). The
blaNmcA was located on a novel putatively mobile 29-kb element
designated EludIMEX-1 inserted into the same chromosome
location as that in E. ludwigii AOUC-8/14. Two imperfect 29-
bp inverted repeat XerC/XerD binding sites associated with
EludIMEX were identified at the chromosome–EludIMEX-
1 junctions. The genetic regions were compared with the
corresponding regions of E. ludwigii P101 (GenBank accession
no. CP006580); the schematic representations are depicted in
Figure 1. There were highly homologous regions (> 99%

4https://www.ezbiocloud.net/tools/ani TA
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FIGURE 1 | Schematic representations and nucleotide sequences of the genetic elements surrounding EludIMEX-1 of E. ludwigii NR1491 (GenBank accession no.
LC482123) and the corresponding region of E. ludwigii P101 (GenBank accession no. CP006580). (A) Schematic representation of the genetic region of E. ludwigii
NR1491 (black arrow) and E. ludwigii P101 (blue arrow). The gray regions between the NR1491 and P101 indicate > 99% nucleotide sequence identity. Insertion of
the EludIMEX-1 element (double-headed arrow) in E. ludwigii NR1491 was observed. (B) Nucleotide sequences at the junctions of EludIMEX-1 (a part of left and
right of the junctions) of E. ludwigii NR1491 and the corresponding region of E. ludwigii P101. The XerC/XerD binding sites are boxed, the conserved regions are
boldfaced, and the consensus repeat sequences in XerC binding site of E. ludwigii NR1491 and corresponding sequences of E. ludwigii P101 are indicated using
underlined letters.

nucleotide sequence identity) and the insertion of EludIMEX-
1. blaNmcA was putatively integrated into the E. ludwigii
chromosome via a Xer-dependent recombination mechanism
mediated by EludIMEX-1, as described previously.

BLASTn analysis of NR1491 indicated that there were 10
strains of NmcA-positive ECC with > 99% nucleotide sequence
identities (Supplementary Table 2). The query coverage includes
the gene regions of the EludIMEX-1 element and the surrounding
regions with consensus repeat sequences and a binding site. The
EludIMEX-1 was integrated into the chromosome at the same
site, in these strains. The genotypes of these strains were including
ST258 (n = 2) same with NR1491, ST282 (n = 2), ST257, ST260,
ST374, ST714 (AOUC-8/14), ST748, and ST1724.

Antibiotic Inducibility of β-Lactamase
The antibiotic inducibility of β-lactamase was analyzed in
NR1491 (Figure 2). Cefpodoxime and clavulanic acid were
slightly inducer in a concentration-dependent manner. They
yielded only a maximum 3.3 × induction of the MIC. Conversely,
cefoxitin, imipenem, and meropenem were strong β-lactamase
inducers. The carbapenems imipenem and meropenem induced
β-lactamase in a concentration-dependent manner to 159× and
202×, respectively, at half their MIC. In contrast, the cefoxitin
induction rate was concentration-independent and remained
virtually unchanged (98–113 ×) across the tested concentrations
(1/16–1 × MIC).

Properties of the Selected Third
Generation Cephalosporins-Resistant
Mutants
The 3GC-resistant mutants were selected with cefotaxime
and ceftazidime at 2×, 4×, 8×, 16×, and 32× MIC. The

FIGURE 2 | Induction ratios of β-lactamase activity in response to antibiotics
on E. ludwigii NR1491. β-lactamase inducers were cefpodoxime (#),
clavulanic acid (×), cefoxitin (M), imipenem (2), and meropenem (3).
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antibiotic-resistant mutants were consistently obtained at a
mutation frequency of ∼10−6–10−7 both for cefotaxime and
ceftazidime (Table 3).

To investigate the molecular mechanism of 3GC resistance
in these mutants, 48 clones were randomly selected from each
condition. The regulator genes ampR, nmcR, and ampD were
sequenced and compared to those of the parent E. ludwigii
NR1491 and wild type EN-119 strains. Sequence data revealed
that only ampD was altered in all cases whereas neither ampR
nor nmcR was changed. Of the 48 3GC-resistant mutants, 34
had possible loss-of-function caused by missense mutations
including 18 amino acid substitutions at 16 positions in ampD
(Table 3). Premature termination of the AmpD protein was
found in 14 mutants. Seven had nonsense mutation at six
positions, five had frameshift mutations (three deletions and
two insertions), and two had missense mutations in which the
start codon (ATG) was changed to Ile (ATA) at position 1. Its
effect was transcriptional decay. These mutations were scattered
throughout the entire ampD sequence. Moreover, the nucleotide
substitutions and mutation types and locations did not differ
among selective agents and concentrations. However, certain
mutants had the same missense mutation positions. Eight were
I78N, seven were T123P, and four were S100L. These mutation
positions may have been influential to AmpD activity. These
mutants were resistant to 3GC presumably as a consequence
of loss of AmpD function via the introduction of substitution
mutations or decay of the transcript containing the premature
stop codon.

For the mutants, the MICs were determined for the selected
β-lactams (Table 3). Compared with the MICs for the parent
strain NR1491, the MICs of 3GC (cefotaxime and ceftazidime)
and aztreonam for the mutants had increased by ≥ 16 ×. Thus,
these strains were reclassified from susceptible to resistant. The
MICs of cefepime increased by only 1–4 × relative to NR1491
and were beyond the clinical resistance breakpoint. In contrast,

the MICs of the carbapenems were almost always the same as
those for NR1491.

Effects of Regulator Genes on
β-Lactamase Expression
To evaluate the effects of ampR and ampD on NR1491 drug
susceptibility, β-lactamase activity and mRNA expression of
AmpC and NmcA with and without induction were analyzed
in the ampR mutant NR1491 (pKU412) and the ampD mutant
NR3901 (Table 2). Induction was carried out with 32 µg mL−l

cefoxitin. The β-lactamase activity of NR1491 increased by
∼100 × and AmpC and NmcA were upregulated by ∼14.7× and
14.6×, respectively, in response to induction. ampC and nmcA
expression levels were equally influenced by the induction.

NR3901 bore an ampD mutant (69delG) and was isolated by
selection with 32 µg mL−l ceftazidime. The MICs of 3GC and
aztreonam increased by ≥ 64 × and they were reclassified as
highly resistant. The β-lactamase activity of NR3901 increased by
∼706.5 and ∼704.5 × with and without induction, respectively,
compared with the NR1491 basal condition. The ampC and
nmcA expression levels in NR3901 both increased by ∼700 × in
the presence and absence of induction. The ampC and nmcA
expression levels in NR1491 both increased by ∼15 × in
response to induction. Hence, ampD equally induced ampC and
nmcA expression. NR3901 was highly drug-resistant because
it acquired the ampD mutation which derepressed ampC and
nmcA expression.

NR1491 (pKU412) was obtained by transfecting the ampR
mutant (135Asn) clone plasmid pKU412 into NR1491. The MICs
of NR1491 (pKU412) were elevated as they were for NR3901. The
β-lactamase activity had increased by ∼100 × at basal condition.
ampC expression also increased by ∼100 × whereas that of
nmcA did not change. AmpR may induce AmpC β-lactamase but
does not affect nmcA expression. NR1491 (pKU412) induction

TABLE 3 | Amino acid and nucleotide changes in AmpD of ceftazidime- or cefotaxime-resistant mutants of E. ludwigii NR1491 and their antimicrobial susceptibilities.

Mutation Selective
agents (µg

mL− l)a

No. of
selected
strains

Amino acid and
nucleotide changes
detected in AmpD
(no. of strains)b

MIC range (µg mL− l)a

PIP PIP
/TAZ

CPD CTX CTX
/CLA

CAZ FPM CFX AZT IPM MER

Missense CTX (1, 2, 4,
8, 16)

CAZ (2, 4, 8,
16, 32)

36 M1I (2), N35K (2), L56P,
L56Q, T55P, H75Y,
I78N (8), I78S, G82V,
W95G, G98D, S100L
(4), L117R, E118G,
T123P (7), T137P,
G166A, D170Y

16–128 8–32 128–256 8–32 8–16 16–64 0.125–0.5 512–> 512 32–256 16–64 8–16

Non-sense CTX (1, 8, 16)
CAZ (8, 32)

7 W7*, E26*, E83*, Q86*,
Y102*(2), Q103*

128 32 256–512 16 8–16 64 0.25–0.5 512 256 16–32 8–16

Frameshift CTX (8, 16)
CAZ (4, 16,

32)

5 69delG, 129_130insT,
270_271insT, 372delC,
401_404del

128 16–32 256–512 16–32 8–16 64 0.5 512–> 512 256 32 16

aAntibiotics: PIP, piperacillin; TAZ, tazobactam; CEF, cephalothin; CPD, cefpodoxime; CTX, cefotaxime; CLA, clavulanic acid; CAZ, ceftazidime; FEP, cefepime; CFX,
cefoxitin; AZT, aztreonam; IPM, imipenem; MER, meropenem.
bNucleotide and deduced amino acid differences in AmpD were compared with E. ludwigii NR1491 and EN-119. ∗, stop codon; del, deletion; ins, insertion.
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resulted in a 1.5 × increase which suggests partial derepression.
ampC expression increased by ∼200 × after induction. However,
nmcA expression only doubled despite NR1491 expression
increasing by ∼15 ×. Plasmid pKU411 comprising the wild
type ampR (135Asp)-harboring strain NR1491 (pKU411) was
compared with the ampR mutant strain and used to verify it. The
MICs and β-lactamase activity of NR1491 (pKU411) were nearly
the same as those for NR1491.

DISCUSSION

The incidence of CPE is increasing globally. However, it has
seldom (0.34%) been detected in Japan (Ohno et al., 2017). The
most common carbapenemase genotype detected in Japan is
IMP. Here, we isolated NmcA carbapenemase-producing ECC.
NmcA carbapenemase has occasionally been reported for ECC
in Europe, North America, and South America (Radice et al.,
2004; Antonelli et al., 2015; Boyd et al., 2017). To the best of our
knowledge, this is the first reported clinical isolation of an NmcA
carbapenemase producer in Japan.

ANI revealed that NR1491 was, in fact, E. ludwigii belonging
to ST258. A previous study reported that blaNmcA was
highly associated with E. ludwigii. ST258 is a genotype of
the NmcA carbapenemase producer (Boyd et al., 2017). The
genetic environment of blaNmcA was nearly identical to that of
E. ludwigii AOUC-8/14. Thus, blaNmcA was putatively integrated
into the chromosome by EludIMEX-1 via a Xer-dependent
recombination mechanism as previously described for E. ludwigii
AOUC-8/14 (Antonelli et al., 2015). Interestingly, E. ludwigii
AOUC-8/14 was isolated from a Japanese tourist in Italy. These
strains may have been concealed in Japan and unintentionally
isolated in the present study. Comparative genome analysis
revealed that there were 10 strains including AOUC-8/14, which
have high homology regions with NR1491. These EludIMEX-1
was integrated in the chromosome at the same site as in NR1491.
The genotypes of these strains were different; the EludIMEX-1
insertion event has possibility occurred in these STs strains.

As with blaNmcA, NR1491 coexists with the regulator gene
nmcR. A β-lactamase induction assay on NR1491 showed that it
was weakly induced by clavulanic acid which was already known
to be an inhibitor of Class A β-lactamases. Thus, it is inhibitory
against NmcA β-lactamase (Mariotte-Boyer et al., 1996). On the
other hand, clavulanic acid also induces chromosomally mediated
AmpC β-lactamases in several Enterobacteriaceae (Drawz and
Bonomo, 2010). Here, clavulanic acid induced β-lactamases via
transcriptional regulator genes and not by inhibiting NmcA. The
MIC of cefotaxime was increased in combination with clavulanic
acid while imipenem and meropenem induced β-lactamase in a
concentration-dependent manner. Previous study of its kinetic
parameters show that NmcA demonstrated unusually strong
hydrolytic activity toward imipenem and meropenem (Mariotte-
Boyer et al., 1996). Therefore, NmcA producers are highly
resistant to carbapenems as their inducers are upregulated and
they are potently hydrolytic to carbapenems. Cefoxitin is a strong,
stable, dose-independent β-lactamase inducer (100 × induction).
The catalytic efficiency (kcat/Km) of cefoxitin is lower than

those of the carbapenems but its MIC is comparatively higher
(Mariotte-Boyer et al., 1996) possibly because of its high and
stable inducibility.

To elucidate the mechanism of β-lactamase induction in
NR1491, 3GC-resistant mutants were selected with cefotaxime
and ceftazidime. The mutation frequencies were 10−6–10−7 as
previously described (Naas et al., 2001). Forty-eight randomly
selected clones had variable susceptibilities to 3GC, piperacillin–
tazobactam, and aztreonam (Table 3). A DNA sequence analysis
revealed that all mutants presented with nucleotide substitutions
(frameshift, missense, or nonsense) in ampD alone. In contrast,
ampR and nmcR were unchanged. The mutants were resistant to
3GC and probably had loss of AmpD function. Premature AmpD
termination with a stop codon or frameshift induced strong 3GC
resistance. The MICs of the ampD mutant strains with missense
mutation had different 3GC resistance levels. The degree of 3GC
resistance depended on the position of the substitution at the core
residues of the active site of AmpD.

In the present study, no mutants of the transcriptional
regulator genes ampR and nmcR were obtained. We investigated
the effects of ampR in the presence of a mutant or wild
type ampR clone plasmid. AmpR is a member of the lysR
family and regulates the expression of chromosomal AmpC
β-lactamase. Nevertheless, ampR mutants cause constitutive
AmpC overproduction (75–470× increase) irrespective of
induction (Kuga et al., 2000). In the enzyme activity assay,
NR1491 (pKU412) increased β-lactamase activity by 100 × at
the basal level compared with NR1491, also upregulating ampC.
β-lactamase activity in the NR1491 strain with wild type ampR
was increased by 100 × by induction and ampC and nmcA
were each upregulated 15×. Whereas NR1491 with wild type
ampR upregulated nmcA 15×, nmcA expression in NR1491
(pKU412) only doubled. Mutant ampR may negatively regulate
nmcA expression. Putative ampR binding sequences in the
E. cloacae ampR–ampC intergenic region were highly conserved
with nmcR–blaNmcA and cross-reaction may have occurred (Naas
and Nordmann, 1994). Earlier studies suggested that ampR is a
global transcriptional regulator affecting the expression of several
genes as well as ampC (Balasubramanian et al., 2012). NmcR
was described as a positive regulator both in the absence and
especially in the presence of a β-lactam inducer. In the absence
of inducer, ampR is a negative regulator of ampC expression. In
its presence, it positively regulates ampC expression (Naas and
Nordmann, 1994). These findings suggest that even with available
induction, mutant ampR represses the expression of nmcA. We
believe this is the first study to describe the association between
ampR and nmcA expression.

NmcR mutant strain has not been identified yet; therefore,
the effect of nmcR mutations on the expression of nmcA could
not be assessed. Point mutations in nmcR may be required to
enhance its efficacy as an activator of nmcA in the same way
as mutant ampR (such as that with a change in Asp135Asn).
Alternatively, it may repress nmcA expression in the same way
as wild type ampR. In a previous study, ampR mutants were
obtained from the ampD mutant strain at a very low frequency
(Kuga et al., 2000). The ampD mutant strain NR3901 selected
nmcR mutants using ceftazidime at double and quadruple the
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MIC (128 and 256 µg mL−l). Nevertheless, no nmcR mutants
were obtained (data not shown). nmcR mutants may be selected
using ampD-mutant E. coli strains carrying blaNmcA and nmcR
cloning plasmids. NR1491 co-harbors ampC on the chromosome.
The observed differences in β-lactamase substrate specificity
may influence selection conditions, and further investigation is
needed to clarify whether nmcR mutation increases resistance
by upregulating nmcA. This study has certain limitations. The
analysis included only one strain and the conclusions were based
on the results from this strain. Therefore, further studies are
required to clarify the mechanisms of nmcR by selecting the nmcR
mutant strains using other NmcA-producing ECC or IMI (closely
related carbapenemase NmcA) producing E. coli. Moreover, the
ampR mutation in NR1491 resulted in strong 3GC resistance via
ampC overexpression. However, it remains unclear as to how
mutant ampR stimulates nmcA transcription through induction.
Future research should aim to elucidate the function of ampR.

NR3901 with an ampD mutation presented with a
700 × increase in β-lactamase activity as well as upregulated
ampC and nmcA. Consequently, the MICs of 3GC were elevated.
It indicates that ampD mutation has a similar influence on the
expression of both ampC and nmcA, suggesting that structurally
unrelated genes could be under the control of an identical
regulatory system (Naas et al., 2001). The MICs for NR3901
and NR1491 (pKU412) bearing the ampR mutant plasmid were
nearly equal. The upregulated nmcA in NR3901 had no effect
on MIC compared with NR1491 (pKU412). Moreover, the MICs
of the carbapenems for NR3901 were almost always the same as
those of the parent strain despite the ampD mutant constitutively
upregulating ampC and nmcA. High-level nmcA expression
may elevate the MICs of carbapenems; in fact, the MICs were
same as those of the parent strain. NmcA metabolism and its
associated physiology may be connected with MICs. However,
further experimentation is required to clarify this mechanism.

Here, we detected the NmcA-producing strain NR1491
in a hospital patient. Examination of MIC patterns showed
high resistance to carbapenems but susceptibility to 3GC. The
ampD mutant strains were identified among clinical isolates of
ceftazidime-resistant E. cloacae as previously reported (Kaneko
et al., 2005). Therefore, ampD-mutant NmcA producers may
occur and interfere with the clinical detection of their wild
type counterparts. We characterized NmcA producers that were
highly resistant to carbapenems and yet susceptible to cefepime,
whether they acquired the ampD mutation. In future works, it
would be informative to compare these strains with the Big Five
carbapenemases (KPC, IMP, NDM, VIM, and OXA).

CONCLUSION

In the present study, we identified the E. ludwigii isolate NR1491
in Japan that produces NmcA. The blaNmcA was located on a
novel 29-kb putatively mobile element designated EludIMEX-
1 identical in structure to that previously described in Europe.
Induction studies revealed that the ampD mutants equally
upregulated β-lactamases nmcA and ampC and were highly
resistant to 3GC. However, the observed increase in the MIC
value of 3GC was caused mainly by ampC overexpression. The
ampR mutants also upregulated ampC, however, that of nmcA
seemed to be repressed. Further research is necessary to elucidate
the functions of ampR and nmcR.
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Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics, including
penicillins, cephalosporins, and carbapenems; however, no effective inhibitors are
currently clinically available. MBLs are classified into three subclasses: B1, B2, and
B3. Although the amino acid sequences of MBLs are varied, their overall scaffold is
well conserved. In this study, we systematically studied the primary sequences and
crystal structures of all subclasses of MBLs, especially the core scaffold, the zinc-
coordinating residues in the active site, and the substrate-binding pocket. We presented
the conserved structural features of MBLs in the same subclass and the characteristics
of MBLs of each subclass. The catalytic zinc ions are bound with four loops from the
two central β-sheets in the conserved αβ/βα sandwich fold of MBLs. The three external
loops cover the zinc site(s) from the outside and simultaneously form a substrate-binding
pocket. In the overall structure, B1 and B2 MBLs are more closely related to each other
than they are to B3 MBLs. However, B1 and B3 MBLs have two zinc ions in the active
site, while B2 MBLs have one. The substrate-binding pocket is different among all three
subclasses, which is especially important for substrate specificity and drug resistance.
Thus far, various classes of β-lactam antibiotics have been developed to have modified
ring structures and substituted R groups. Currently available structures of β-lactam-
bound MBLs show that the binding of β-lactams is well conserved according to the
overall chemical structure in the substrate-binding pocket. Besides β-lactam substrates,
B1 and cross-class MBL inhibitors also have distinguished differences in the chemical
structure, which fit well to the substrate-binding pocket of MBLs within their inhibitory
spectrum. The systematic structural comparison among B1, B2, and B3 MBLs provides
in-depth insight into their substrate specificity, which will be useful for developing a
clinical inhibitor targeting MBLs.

Keywords: metallo-β-lactamase (MBL), β-lactams, metal coordination, substrate specificity, β-lactamase
inhibitor, antibiotic resistance
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INTRODUCTION

The increasing incidence of multidrug-resistant (MDR) bacteria
is a global health concern (Laxminarayan et al., 2013; Berendonk
et al., 2015; Lee et al., 2016). β-lactams constitute 60% of current
antibiotics; thus far, they have been the most applicable and
useful class of antibiotics (Ozturk et al., 2015). However, the
frequent clinical use of β-lactams has caused selective pressure,
resulting in the rapid appearance of bacterial resistance to
β-lactams. The most common mechanism of β-lactam resistance
among MDR bacteria is the production of β-lactamases, which
hydrolyze β-lactams into inactive forms (Paterson et al., 2020;
Bahr et al., 2021). The evolution and catalytic mechanisms
of various β-lactamases have been studied (Hall and Barlow,
2004; Sidjabat et al., 2018; Lee et al., 2019; Park et al., 2020;
Pedroso et al., 2020). β-lactamases can be divided into serine
β-lactamases and metallo- β-lactamases (MBLs). MBLs hydrolyze
most β-lactams, including last resort antibiotics carbapenems.
There are currently no effective and clinically available inhibitors
against MBLs (Fisher et al., 2005). MBLs are further classified
into the B1, B2, and B3 subclasses depending on their sequence,
structure, and zinc ion site(s) and have diverse substrate profile
or specificity for β-lactams (Crowder et al., 2006; Palacios et al.,
2019; Behzadi et al., 2020; Park et al., 2020).

The substrate profile of MBLs is related to the antimicrobial
susceptibility of MBL producers and is essential for the adequate
treatment of patients with MBL-producing MDR bacteria
(Lutgring et al., 2020). However, the main interest of antibiotic
resistance study has been the efficacy and effectiveness of specific
antibiotics and inhibitors on MDR bacteria in clinical use. The
previous study of the substrate profile showed that B1 and B3
MBLs have a broad substrate spectrum, and B2 MBLs degrade
only carbapenems (Bahr et al., 2021). Even in a subclass, there are
many different types of MBLs and a growing number of variants,
which also could have diverse hydrolytic activities on β-lactams;
thus far, 710 MBLs of 509 B1, 22 B2, and 179 B3 members
were reported (Naas et al., 2017). Independent research groups
have studied the substrate profile and enzyme kinetics of MBLs
with varied assay conditions. There are only limited numbers
of MBL structures available for the study of structure-function
relationships. The complexity and insufficiency of MBL data have
prohibited the systematic study of the structure-based substrate
specificity of MBLs. Herein, we compared several tens of B1, B2,
and B3 MBLs in sequence and structure and proposed structural
insights on the substrate specificity of MBLs. The specificity of
the substrate-binding pocket of MBLs was also verified by B1 and
cross-class MBL inhibitors binding to the same substrate-binding
pocket. The cross-class inhibitors showed the complementary
chemical structures to fit into the varied substrate-binding
pockets of different subclasses of MBLs. The structural insights
of MBLs will provide a valuable platform to understand the
structure-function relationships of current and newly found
putative MBLs and develop a broad-spectrum MBL inhibitor.

Scaffold of Metallo-β-Lactamases
The amino acid sequences of MBLs varied; the sequence identity
among them could be as low as 10%. Within the same subclass,

the B1, B2, and B3 MBLs had average sequence identities of
31.8, 60.2, and 33.0%, respectively (Supplementary Table 1).
Although there was low sequence conservation, the MBL
scaffold had the distinctive αβ/βα sandwich fold (Figure 1A)
and was well conserved, as indicated by an RMSD value of
1.77 Å in approximately 220 residues (Supplementary Table 2).
In the superimposed crystal structures of MBLs, there were
conserved secondary structures of 5 α-helices and 13 β-strands
as the core scaffold. The four loops of L1–4 coordinated the
catalytic zinc ion(s), and the three external loops (eLs) eL1–3
formed the substrate-binding pocket (Figure 1B). The overall
structure of the B1, B2, and B3 MBLs showed RMSD values
of 1.45 in 205 residues, 0.65 in 223 residues, and 1.51 in 231
residues, respectively, among the members of the same subclass
(Supplementary Tables 3–5).

The MBL structure can be divided into two parts at the
interface between the two β-sheets (Figure 1A). The active site
is located at the center between the two β-sheets, wherein the
zinc ions are coordinated with various residues depending on
each subclass (Figures 1B, 2; Ullah et al., 1998; Fonseca et al.,
2011b; King and Strynadka, 2011; Pedroso et al., 2020). The
zinc-coordinating residues come from the L1–4 loops protruding
from the two β-sheets. The zinc ions directly coordinate a
catalytic water molecule, which is deprotonated to a hydroxide
ion to attack the β-lactam ring of the substrate (Supplementary
Figure 1). The central L1–4 loops are surrounded by the external
loops eL1–3, which form the substrate-binding pocket and
play an important role in the substrate specificity of MBLs
(Figures 1B, 3).

Representative Metallo-β-Lactamases in
Each Subclass
Although many MBLs from the three different subclasses have
been studied in parallel, these comparisons were mainly related
to the catalytic zinc ion(s) and the sequence and structure of
the coordinating residues. There is only limited comparative
information about the structure of the core scaffold, the substrate-
binding pocket, and the relationship between drug resistance and
structure. In this study, we performed a systematic comparison
of the sequence and structure of MBLs, both with protein alone
and in complex with substrate antibiotics. First, the sequences
and structures of MBLs were compared within the same subclass.
Second, the representative MBL structures from each subclass
were compared with those from the other subclasses. Finally, the
β-lactam or inhibitor-bound B1, B2, and B3 MBL structures were
studied based on the characteristics of each subclass.

For structural comparison, 11, 2, and 8 MBLs were selected
from the B1, B2, and B3 subclasses, respectively (Figure 2
and Supplementary Figures 2–4). These MBLs included the
New Delhi metallo- β-lactamase (NDM-1) (PDB ID: 3S0Z,
Guo et al., 2011), BlaB-1 (1M2X, Garcia-Saez et al., 2003a),
VIM-2 (4NQ2, Aitha et al., 2014), DIM-1 (4ZEJ, Booth et al.,
2015), IMP-1 (5EV6, Hinchliffe et al., 2016), TMB-1 (5MMD,
Skagseth et al., 2017), SPS-1 (6CQS, Cheng et al., 2018), ECV-
1 (6T5K, Frohlich et al., 2020), MYO-1 (6T5L, Frohlich et al.,
2020), FIM-1 (6V3Q), and GIM-1 (2YNT, Borra et al., 2013)
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FIGURE 1 | The crystal structure of NDM-1, showing the representative core scaffold of MBLs. (A) The αβ/βα sandwich fold of NDM-1, which is the core scaffold of
MBLs, is shown at the top (left) and side (right). The schematic representation is shown in the middle. The central two β-sheets and the five α-helices in the main
scaffold are shown in purple and cyan, respectively. The two zinc ions are shown in gray. Certain β-strands in the second β-sheet exist as α-helices in some MBLs,
which are shown as open purple arrows in the schematic representation (middle). (B) The overall structure of NMD-1 with the zinc-coordinating central loops L1–4
and the substrate-binding pocket forming the external loops eL1–3. The schematic representation of the central and external loops with zinc ions is shown in the
middle. L3 is the N-terminal part of eL3.

in B1; CphA (1X8G, Garau et al., 2005) and SfhI (5EW0,
Hinchliffe et al., 2016) in B2; and Adelaide imipenemase (AIM-
1) (4AWZ, Leiros et al., 2012), GOB-18 (5K0W, Moran-Barrio
et al., 2016), FEZ-1 (1K07, Garcia-Saez et al., 2003b), Rm3
(5IQK, Salimraj et al., 2016), SMB-1 (3VPE, Wachino et al.,
2013), L1 (2AIO, Spencer et al., 2005), BJP-1 (5NJW, Di Pisa
et al., 2018), and LRA-12 (5AEB, Rodriguez et al., 2017) in
B3. Among them, NDM-1 in the B1 subclass (Khan et al.,
2017), CphA in the B2 subclass (Hernandez Valladares et al.,
1997), and AIM-1 in the B3 subclass (Yong et al., 2012)
were selected as the representative MBLs of each subclass
for structural comparison (Figure 3). NDM-1 is found in
the clinically important Klebsiella pneumoniae, Enterobacter
cloacae, Pseudomonas spp., and Acinetobacter baumannii, and is
mostly found in plasmids. NMD-1 hydrolyzes a wide range of
β-lactams (Khan et al., 2017) and NDM-1 producers are resistant
to imipenem, meropenem, ertapenem, gentamicin, amikacin,
tobramycin, and ciprofloxacin; meanwhile, NDM-1 producers
are susceptible to colistin and tigecycline (Kumarasamy et al.,
2010). CphA was originally found in Aeromonas hydrophila and
has a narrow substrate specificity for carbapenems (Hernandez
Valladares et al., 1997). AIM-1 was found in P. aeruginosa
and hydrolyzes a wide range of substrates, such as imipenem,

meropenem, penicillin G, piperacillin, cephalothin, cefoxitin, and
cefepime; however, it has no activity against aztreonam (Yong
et al., 2012; Selleck et al., 2016).

When we performed structural sequence alignment, the
internal sequence identity among MBLs within the same subclass
was higher than that between the MBLs of different subclasses.
NDM-1 was compared with 10 other MBLs in B1; CphA was
compared with SfhI in B2: and AIM-1 was compared with seven
other MBLs in B3 (Supplementary Table 1). The RMSD value
was 1.45 Å in approximately 205 residues when comparing
NDM-1 with the selected members in B1. The RMSD values
comparing NDM-1 for B2 and B3 MBLs were 1.42 Å in
approximately 195 residues and 2.25 Å in approximately 176
residues, respectively (Supplementary Tables 2–5). These results
show that the overall scaffold is more similar between B1 and B2
MBLs than between B3 MBLs and the other two subclasses.

B1 Subclass
Members of the B1 subclass exist in large numbers and contain
many clinically important MDLs, such as NDMs, Verona
integrin-encoded MBLs (VIMs), imipenemases (IMPs), and
German imipenemases (GIMs). In the B1 subclass, 11 MBLs,
including NDM-1 (PDB ID: 3S0Z, Guo et al., 2011), VIM-2
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FIGURE 2 | The structural sequence alignment of MBLs. The secondary structures of NDM-1, CphA, and AIM-1 are shown at the top. The labels B1, B2, and B3
show the representative member of each subclass. The numbering of secondary structures is based on the core scaffold of 13 β-strands and 5 α-helices. In some
B3 MBLs, including AIM-1, an additional α-helix (α3′) exists after α3. The first and second halves of the αβ/βα sandwich fold are divided by a dashed line between the
β7 and β8 strands. The zinc-coordinating residues of the B1, B2, and B3 subclasses are shown as diamonds and circles in cyan, green, and pink, respectively. The
four zinc-coordinating loops L1, L2, L3, and L4 are shown as thick green, red, pink, and blue lines, respectively. The three external loops eL1, eL2, and eL3 are
shown as thin black lines.

(4NQ2, Aitha et al., 2014), IMP-1 (5EV6, Hinchliffe et al.,
2016), and GIM-1 (2YNT, Borra et al., 2013), were chosen as
representative B1 MBLs (Supplementary Figure 2).

When the crystal structures of the representative B1 members
were superimposed, the RMSD values among structures were
between 1.06 and 1.76 Å in 205 residues. This finding shows
that the overall scaffold is well conserved within the B1 subclass
(Supplementary Table 3). The two central β-sheets in a core
scaffold generally consist of seven β-strands and six β-strands
in the first and second β-sheets, respectively (Figure 1A).
Even though the terminal β-strands located at the ends of
β-sheets are often changed to an α-helix or loop in certain
members, the overall scaffold is well conserved (Figure 3A). The
N-terminal sequences also varied; before the β1 strand, additional
secondary structures could exist, such as an additional α-helix or
β-strand (Supplementary Figure 5). Among the 13 β-strands,

β2 and β3 are long, and β1 is only half the length of β2. The
protruding tips of β2 and β3 of eL1 have a flexible conformation
(Raczynska et al., 2020).

The two zinc ions are coordinated with four loops in the active
site: short L1, long L2, extralong L3, and short L4 (Figure 3A).
The first zinc ion, Zn1, is coordinated with three His residues
(two from L1 and one from L2), and the second zinc ion, Zn2,
is coordinated with Asp, Cys, and His residues from L1, L3, and
L4, respectively. All six residues are strictly conserved in the
sequences of B1 MBLs; among the 11 MBLs in B1, only SPS-
1 loses one His residue in L1 (Supplementary Figure 2). All
the zinc-coordinating residues exist at the tip of the secondary
structures of the helix and strand; they are tightly wrapped in the
center with three external loops (eL1–3) from the outside. The
stable zinc-coordinating residues contain two metal ions at the
catalytic positions.
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FIGURE 3 | The zinc coordination of (A) NDM-1, (B) CphA, and (C) AIM-1 as the representative B1, B2, and B3 MBLs. The schematic representations of zinc
coordination are shown on the right. The four zinc-coordinating loops L1, L2, L3, and L4 are shown as green, red, pink, and blue lines, respectively. The three
external loops eL1, eL2, and eL3 are shown as black lines. L3 is the N-terminal part of eL3 and is shown in black. The missing Zn1 ion and Zn2-coordinating residue
from L3 are shown as red and pink dashed circles, respectively.

The three external loops eL1, eL2, and eL3, including L3,
surround the zinc binding sites and form the substrate-binding
pocket as three protruding fingers (Figure 1B). eL1 forms the
left wall with long and flexible β2 and β3 (Figure 4A). At the
bottom and right side of the pocket, eL2 provides a large hole
in the central bottom of the pocket, which allows the flexible
binding of bulky substrates. eL3 is extruded and shows a natural
curvy-loop conformation to form the entire upper lip of the
substrate-binding pocket.

B2 Subclass
B2 MBLs, existing in 3% among all known MBLs, include CphA
(Garau et al., 2005), SfhI from Serratia fonticola (Hinchliffe
et al., 2016), ImiS from Aeromonas sobria (Walsh et al., 1996),

and AsbM1 from Aeromonas sobria (Yang and Bush, 1996) and
preferentially hydrolyze carbapenems (Fonseca et al., 2011a).
Among them, only two crystal structures of CphA (PDB ID:
1X8G, Garau et al., 2005) and SfhI (5EW0, Hinchliffe et al.,
2016) were determined, and the RMSD value between them was
0.65 (Supplementary Table 4). B2 MBLs have a zinc ion in the
Zn2 site, which is coordinated with Asp, Cys, and His residues
and loses the other zinc ions at the Zn1 site (Figure 3B and
Supplementary Figure 3).

In the B2 subclass, both structures of CphA and SfhI showed
a well-conserved core scaffold of MBLs with two central β-sheets
of seven β-strands and six β-strands (Figure 3B). β2 and β3 are
shorter in the B2 subclass compared with the B1 subclass in their
lengths, and the resulting lengths of β1, β2, and β3 are similar
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FIGURE 4 | The structure of the substrate-binding pocket forming eL1–3 of each subclass. The surface representation of eL1, eL2, and eL3 of (A)
cefuroxime-bound NDM-1 (PDB ID: 3SPU), (B) biapenem-bound CphA (PDB ID: 1X8I), and (C) meropenem-bound SMB-1 (PDB ID: 5AXO) is shown at the top. The
enlarged view of the hydrolyzed β-lactams with the zinc ion(s) is shown in the middle. The zinc ion(s)-bound chemical structures of β-lactams, including the core
structures of each β-lactam group, are shown at the bottom. The substituted R groups at the four-member β-lactam ring are shaded in pink, and those at the five or
six-membered dihydropyrrole ring or dihydrothiazine ring next to the β-lactam ring are shaded in blue.

(Figure 2 and Supplementary Figure 6). The helix α3 is long and
bent in the middle, and the end of long α3 is positioned close to
eL1 (Supplementary Figure 6).

CphA lost the Zn1 ion and maintained only the Zn2 ion.
All three Zn2-coordinating residues in CphA of Asp, Cys, and
His from L1, L3, and L4, respectively, are conserved in B2
MBLs (Supplementary Figure 3). In the Zn1 site, the first His
residue among the three conserved His residues is changed to
an Asn residue with a shorter side chain, which is insufficient
to coordinate Zn1 compared to the canonical His residue
(Figure 3B). The remaining two His residues were not sufficient
to bind the Zn1 ion in CphA.

Although the overall structures of the zinc-coordinating L1–
4 loops in the active site of CphA are conserved with NMD-1,
all three external loops forming the substrate-binding pocket are
different (Figure 4B). eL1 is shorter because of the shorter β2 and
β3 and provides a shallow left boundary of the substrate-binding
pocket. eL2, consisting of long and bent helix α3, forms a solid

wall in the lower lip of the substrate-binding pocket, which could
restrain substrate binding and accordingly affect the substrate
specificity of CphA. eL3 of the upper lip of the substrate-binding
pocket is slightly shorter than that found in B1 MBLs but adopts
a similar conformation.

B3 Subclass
B3 MBLs include SMB-1 (Wachino et al., 2013), AIM-1 (Leiros
et al., 2012), L1 (Spencer et al., 2005), GOB-1 (Moran-Barrio
et al., 2016), MIM-1 (Selleck et al., 2020), SAM-1 (Selleck et al.,
2020), CSR-1 (Pedroso et al., 2020), SIE-1 (Wilson et al., 2021),
SPR-1 (Vella et al., 2013), and LRA-8 (Pedroso et al., 2017).
When the crystal structures of the eight selected B3 MBLs were
superimposed, the RMSD values among the structures were
between 0.90 and 1.73 Å, with an average value of 1.51 Å in
231 residues. These values suggest that the overall structures are
well conserved within the B3 subclass (Supplementary Table 5).
The B3 MBLs showed significant structural differences in the

Frontiers in Microbiology | www.frontiersin.org 6 January 2022 | Volume 12 | Article 752535166

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-752535 January 8, 2022 Time: 18:43 # 7

Yun et al. MBL Structure and Substrate Specificity

FIGURE 5 | The chemical structures of the four major classes of β-lactams. The left column, labeled with a red rectangle, shows the core scaffold of each type of
β-lactam. The substituted R groups at the four-member β-lactam ring are shaded in pink, and those at the five or six-membered dihydropyrrole ring or
dihydrothiazine ring next to the β-lactam ring are shaded in blue.

core scaffold compared to B1 and B2 MBLs (Figure 3C). In the
central β-sheets of the core scaffold, β1, β2, and β3 from the
first β-sheet are very short and a long N-terminal tail provides
a flexible conformation of eL1; the second β-sheet consists of
five β-strands instead of six β-strands, and the C-terminal β13 is
changed to the helix (Supplementary Figure 7). The additional
helix α3′ exists immediately after α3 and before β7. The long
N-terminal tail forming eL1 showed varied relative positions in
the different B3 MBL structures of L1, GOB-1, CSR-1, and AIM-1,
which could affect the catalytic activity (Pedroso et al., 2020).

Although two zinc ions are bound in B3 MBLs, their
coordination is different from that of B1 MBLs (Pedroso et al.,
2020). In canonical B3 MBLs, the Zn1 ion is coordinated with
three His residues like B1 MBLs. However, the Zn2 site of B3
MBLs was different from those of both B1 and B2 MBLs. The L3
of B3 MBLs was shorter than those of B1 and B2 MBLs without
the Zn2 ion coordinating Cys residue, and its conformation was
also different (Figure 4C). A compensatory His residue from
the L1 loop is additionally involved to bind the Zn2 ion from
the bottom position (Figure 3C). In the Zn1 site, the first His

residue from the L1 loop is sometimes replaced with a Gln residue
(Supplementary Figure 4). Compared to the corresponding Asn
residue of B2 MBLs, the longer Gln side chain in B3 MBLs could
be sufficient to coordinate and hold the Zn1 ion. Recently, B3
MBL variants with different zinc coordination residues in both
zinc sites were also found, which implies the active site of B3
MBLs appears to be more diverse than those of B1 and B2 MBLs
(Pedroso et al., 2020).

eL1, eL2, and eL3 of B3 MBLs were different from those of
B1 and B2 MBLs (Figure 3C). In AIM-1, eL1 includes a long
N-terminal tail loop, which exists close to the Zn2 site and forms
the left wall of the substrate-binding pocket (Figure 3C and
Supplementary Figure 7). Although the secondary structures of
eL1 are different in B1 and B3 MBLs, the superimposed positions
are similar. eL2 has the characteristic additional helix α3′, which
is close to the long α3 in B2 members but has a different
orientation (Figure 3C). The most significant change occurred in
eL3. Without a Zn2-coordinating residue from L3, eL3 stretches
straight outward from the second β-sheet, which causes eL3 to
shift to the right side and generates a large hole in the upper and
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FIGURE 6 | The chemical structures of B1 MBL inhibitors and their superimposed structures on the representative B1, B2, and B3 MBLs. The chemical structures of
(A) benzophenone, benzyl thiol, isoquinoline, disubstituted succinic acid, (B) cyclic boronate, and (C) tricyclic natural product, and their superimposed structures on
the B1, B2, and B3 MBLs of NDM-1, CphA, and AIM-1, respectively. The substrate-binding pockets of the B1, B2, and B3 MBLs are represented by red dashed
lines. The red dotted circle represents the clashed region between the superimposed cyclic boronate and the substrate-binding pocket of B2 MBL. The brown
dotted oval represents the space between the tricyclic natural product and substrate-binding pocket of B3 MBL.

left lip. Generally, B3 MBLs have the upper left open space in
the substrate-binding pocket to accommodate bulky R groups on
β-lactam substrates (Figure 4C and Supplementary Figure 7).

Comparison Among the
Metallo-β-Lactamases of the Three
Subclasses
MBLs have zinc ion(s) in the active site on the top of two central
β-sheets, and the substrate-binding pocket is formed mainly from
the external loops protruding above the canonical αβ/βα MBL
scaffold. Structural comparison among the MBLs B1 NDM-1,
B2 CphA, and B3 AIM-1 revealed the characteristic structural
features of each subclass in the core scaffold, zinc coordination,
and substrate-binding pocket.

In the active site, both the Zn1 and Zn2 sites of NDM-1 and
CphA were well superimposed (Figure 3). Although CphA does
not have the Zn1 ion, the corresponding position of the Zn1 site

was well superimposed. However, the zinc binding sites of AIM-
1 were shifted to the lower left position compared to those of
NDM-1 due to the change in the core scaffold. Within B3 MBLs,
the correlation of the metal-metal distance in the active site was
observed (Wilson et al., 2021). Interestingly, even in the shifted or
different zinc positions, the interatomic distance between the two
zinc ions was almost the same as that observed between NDM-
1 and AIM-1 (3.45 Å). The average distance in all the selected
B1 and B3 MBLs was 3.56 Å (Supplementary Table 6), which is
sufficient to bind and coordinate the catalytic water molecule to
hydrolyze the β-lactam ring of the substrates in the active site.

The shape of the substrate-binding pocket, which is mainly
formed by the core scaffold and external loops, is important for
substrate binding according to substrate specificity. Compared to
the conserved coordination geometry of zinc binding sites in each
subclass and the interatomic distance between the Zn1 and Zn2
ions, the structure of the substrate-binding pocket varies among
the three subclasses: B1 MBLs have a long eL1, short eL2, and long
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FIGURE 7 | The chemical structures of cross-class MBL inhibitors and their superimposed structures on the representative B1, B2, and B3 MBLs. The chemical
structures of (A) bisthiazolidine, (B) thiomandelic acid, (C,D) thiol-containing derivatives and their superimposed structures on the B1, B2, and B3 MBLs of NDM-1,
CphA, and AIM-1, respectively. The binding sites of the cross-class inhibitors are represented by green dashed circles. The binding sites are well conserved on top of
the zinc-binding site(s). The superimposed cross-class MBL inhibitors with small globular shapes show limited steric hindrances with the substrate-binding pockets
of the B1, B2, and B3 MBLs. In (D), iPR represents isopropyl group.

eL3; B2 MBLs have a short eL1, long eL2, and long eL3; and B3
MBLs have long eL1, long eL2, and short eL3 (Figures 3, 4).

B1 MBLs have an open space in the left and central bottom
positions in the substrate-binding pocket (Figure 4A). B2 MBLs
have a narrow open space on the left side horizontal to the Zn1
and Zn2 sites. Furthermore, the bottom is blocked by the long
eL2, forming a narrow substrate-binding pocket (Figure 4B). In
B3 MBLs, both zinc ions are extensively exposed to solutions, and
the left and upper sides of the substrate-binding pocket are wide
open (Figure 4C). Only the short eL3 provides a shallow barrier
on the upper and right sides of the substrate-binding pocket.

β-Lactam-Bound Metallo-β-Lactamases
The structures of β-lactam-bound MBLs were superimposed
to study substrate recognition in the varied substrate-binding
pockets of MBLs: the hydrolyzed product β-lactam-bound
MBL structures were used instead of substrate β-lactam-bound

MBL structures due to unavailability (Figure 4). The bound
β-lactams showed a well-conserved conformation in the active
site (Supplementary Figure 8). The cleavable C-N bond of
β-lactams was faced toward the zinc site(s) within the distance
of direct interactions, in which the β-lactam ring can be easily
attacked by a catalytic hydroxide ion bound to zinc ion(s)
(Supplementary Figures 1, 8). In the bound structures, the
existing carboxyl and carbonyl groups of the core β-lactams were
directly bound to the zinc ion(s) in the active sites of MBLs.
Accordingly, there is little space to accommodate additional
structural motifs in the β-lactam positions.

All B1, B2, and B3 MBLs have open space on the left side
between potentially flexible eL1 and eL3; B2 MBLs have a narrow
pocket, B1 MBLs have a medium-sized pocket, and B3 MBLs
have a wide-open pocket. The left side of the substrate-binding
pocket can accommodate the various R groups at the five- or
six-membered ring side of the core β-lactam scaffold with a
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carboxylate (blue shade). The bottom pocket between eL1 and
eL2 is noticeably wide only in B1 MBLs and is limited in B2 and
B3 MBLs. The bottom side of the substrate-binding pocket binds
the R groups on the β-lactam ring side (red shade) and allows
only limited structural substitutions.

Thus far, various modifications have been introduced in
the different R positions in the core β-lactam scaffold for
better efficacy in all classes of β-lactams, including penicillins,
carbapenems, cephalosporins, and monobactams (Figure 5).
Modifications, especially bulky ones, can cause steric hindrance
in the varied substrate-binding pockets in B1, B2, and B3 MBLs.
Among the five β-lactams in the six substrate-bound structures,
penicillin G and cephalosporin have an additional bulky motif
at the β-lactam ring side (red shade), and meropenem and
biapenem have one at the other five- or six-member ring side
(blue shade). This motif is bound to the open space on the
bottom (red shade) and left side (blue shade) of the substrate-
binding pocket, respectively (Figures 4, 5). The available room
on the bottom and left side of the pockets of B1, B2, and B3
MBLs is important for binding a specific β-lactam antibiotic for
substrate specificity.

Inhibitor-Bound Metallo-β-Lactamases
We selected the MBL inhibitors having the co-crystal
structure and the inhibitory mechanism of metal ion-binding
(Supplementary Table 7; Ju et al., 2018). The inhibitor-bound
MBLs were superimposed to study the inhibitory spectrum in
the varied substrate-binding pockets. The inhibitors are divided
into B1 and cross-class inhibitors, which have inhibitory activity
on B1 MBLs (Figure 6) and MBLs of more than a subclass
(Figure 7), respectively, based on limited enzyme assay results.
The B1 MBL inhibitors include benzophenone (Christopeit
et al., 2015), benzyl thiol (Cain et al., 2018), isoquinoline (Li
et al., 2017), disubstituted succinic acid (Toney et al., 2001),
cyclic boronate (Brem et al., 2016), tricyclic natural product
(Payne et al., 2002), and biphenyl tetrazole (Toney et al., 1998)
and the cross-class inhibitors, bisthiazolidine (Hinchliffe et al.,
2016), thiomandelic acid (Mollard et al., 2001; Karsisiotis et al.,
2013), and thiol-containing derivatives (Lassaux et al., 2010).
The B1 inhibitors were developed against clinically relevant B1
MBLs, and their inhibitory activities were primarily measured
on only B1 MBLs; accordingly, some B1 inhibitors might
inhibit other subclass MBLs. Among them, cyclic boronate
and tricyclic natural product have selective inhibitory activity
on B1 MBLs. Based on the proposed structural characteristics
of B1, B2, and B3 subclasses, the structure of cyclic boronate
is well fitted within the substrate-binding pocket of B1 MBL,
but the steric hindrance is shown with that of B2 MBL
(Figure 6B). The structure of the tricyclic natural product is
also well fitted in that of B1 MBL, but the loosen interaction
is shown within the wide-open substrate-binding pocket of
B3 (Figure 6C).

The cross-class MBL inhibitors show relatively smaller and
globular shapes rather than the elongated shapes of the B1
inhibitors, which fit well within the center of the substrate-
binding pocket on top of the zinc-binding site (Figure 7). The
central pocket is conserved and free from the steric hindrance

with eL1-3 within MBLs of all subclasses. Significantly, the thiol-
containing derivatives showing similarity with the thiomandelic
acid were co-crystallized with the B2 subclass CphA, which
has the narrow substrate-binding pocket. The thiol-containing
derivatives showed comparable inhibitory effects on MBLs of
all three subclasses (Supplementary Table 7). In addition to
the inhibitors co-crystallized with MBLs, potent MBL inhibitors
having trifluoromethyl ketones and alcohols, dicarboxylic acids,
thiols, sulfates, hydroxamates, tetrazoles, and sulfonamides as
scaffolds have been studied with molecular modeling and docking
methods (McGeary et al., 2014, 2017; Arjomandi et al., 2016;
Yusof et al., 2016).

DISCUSSION

The varied substrate-binding pockets of B1, B2, and B3 MBLs
makes it difficult to develop a broad-spectrum inhibitor against
all subclasses of MBLs. However, the zinc sites are relatively well
conserved in all MBLs; the relative distance between two zinc ions
is almost the same in all MBLs, except for the loss of Zn1 in the B2
subclass. Considering the conserved zinc sites and the opposingly
varied substrate-binding pockets of MBLs, the catalytic value of
kcat could be affected mainly by the catalytic hydroxide ion bound
at the zinc ion(s). The Km value for the affinity for the substrate
could be more affected by the substrate-binding pockets formed
by the external loops.

From the systematic structure analysis of all MBLs, a strategy
to develop a broad-spectrum inhibitor could involve targeting
a metal-binding inhibitor to the zinc ion(s) in the active site.
This could involve an inhibitor that had a sufficiently small
size or flexible structure to fit into the diverse substrate-
binding pockets of all subclasses of MBLs. Aspergillomarasmine
A might have a similar working mechanism, as it has a
flexible scaffold with metal chelator activity and successfully
inhibits MBLs (King et al., 2014; Mojica et al., 2021); however,
its clinical efficacy remains to be determined. Zinc ions are
abundant in living organisms. Approximately 1,600 proteins
have been proposed as zinc proteins in human, and these
proteins have catalytic and structural roles (Andreini et al.,
2006). The human zinc-binding proteins are potential off-
targets, and the resulting side effects should be considered. It
is necessary to identify the window span for inhibitors with
a high affinity for many MBLs and a low affinity for off-
targets in humans.

The structural comparison among the selected MBLs of the
three subclasses and the β-lactam-bound structures demonstrates
the conserved features and unique characteristics of each
subclass. The proposed unique characteristics of the substrate-
binding pocket in B1, B2, and B3 MBLs were further verified
with narrow and broad-spectrum MBL inhibitors. The cross-
class inhibitors are found to bind to the central substrate-binding
pocket, which is commonly available in all subclasses, with the
complementary chemical structures.

Different from traditional MBLs, there are also non-canonical
MBLs such as SPS-1 (Cheng et al., 2018) and SPM-1 (Brem et al.,
2015) that belong to the B1 and B3 subclasses, respectively. SPS-1
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has a long eL2 (Supplementary Figure 2), which showed a long
bent α3 helix forming eL2 similar to that of the B2 members
(Supplementary Figure 9A). SPM-1 showed two different open
and close conformations in the α3 (Supplementary Figure 9B).
These findings imply that despite decades of β-lactam-related
research by international groups, the current classification and
structural information of B1, B2, and B3 MBLs could be still
incomplete and limited. Even the directed evolution study of
AIM-1 showed the substrate preference relevant amino acids
are not necessarily near the catalytic center of the enzyme
(Hou et al., 2017). Cautions should be exerted when making
a conclusion related to MBLs based on the currently available
structural information.

This study systematically compared MBLs of all three
subclasses altogether in sequence, structure, and substrate
specificity. The MBL structures are scrutinized in the core
scaffold, zinc-coordination loops of L1-4, and substrate-binding
pocket-forming external loops of eL1-3 for the structure-
function relationships in terms of substrate specificity. Because
all MBLs have the common comprising moieties, the sequences
and structures of characteristic moieties could be compared
simultaneously among multiple MBLs. The multiple comparative
statistics in the sequence identities and RMSD values among
MBLs are used to verify the conservation and difference among
MBLs of the same and different subclasses. The characteristic
structural differences are used to explain the substrate specificity
of MBLs. However, the currently available structural information
of MBLs is limited. For example, there is no structure of any
unbroken substrate β-lactam-bound MBL and only hydrolyzed
product β-lactam-bound MBLs are available. There are many
MBLs and variants with uncharacterized activities on substrates
and unknown structures, making it hard to generalize the
current understandings as the canonical structural features
and substrate specificity of classified MBLs. Consequently, the
systematic comparative study of several tens of multiple MBLs
in the sequence, structure, and structure-function relationships
is still limited, but could be used as a valuable platform to
understand and predict the mechanism and substrate specificity

of existing or newly found MBLs. The structural insights
of MBLs are also valuable to develop a broad-spectrum
inhibitor against MBLs.
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INTRODUCTION

Comamonas thiooxydans is a Gram-negative, rod-shaped, glucose-non-fermentative bacteria. The
genus Comamonas is present in multiple natural environments; it has been isolated from sulfur
springs, the termite gut, and water in natural and industrial environments (Chou et al., 2007;
Narayan et al., 2010; Zhang et al., 2013; Hatayama, 2014). Although there are a few reports
describing infections caused by Comamonas spp., including intra-abdominal infections and
bacteremia (Almuzara et al., 2013; Zhou et al., 2018), C. thiooxydans has rarely been associated
with human infections in clinical settings, with only one case of urinary tract infection reported to
date (Guo et al., 2021).

Antibiotic resistance, particularly to carbapenems, is a threat to global health. Infections caused
by carbapenemase-producing Gram-negative bacteria have limited treatment options and have
high mortality (Tzouvelekis et al., 2014). Carbapenemase genes are frequently located on plasmids
and mobile genetic elements that can be transmitted between species (Ludden et al., 2017).
Recently, carbapenemase-producing Gram-negative bacteria have been reported from multiple
species (Endo et al., 2012; Bonomo et al., 2018; Suzuki et al., 2019).

In this study, we isolated carbapenem-resistant C. thiooxydans from an inpatient in a hospital in
Japan and investigated its molecular characteristics by whole-genome sequencing (WGS).

BACTERIAL ISOLATION AND ANTIMICROBIAL SUSCEPTIBILITY

Carbapenem-resistant Comamonas sp. strain NR4028 was isolated from a patient
undergoing continuous ambulatory peritoneal dialysis at Nara Medical University Hospital
in 2019. The isolate was identified as Comamonas teststeroni by matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using a Vitek
MS system (bioMérieux, Marcy-l’Étoile, France). The antimicrobial susceptibility of multiple
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antimicrobial agents was determined using the agar dilution
method (Clinical Laboratory Standards Institute, 2015),
and quality control was performed using Escherichia coli
ATCC 25922. The minimum inhibitory concentrations

FIGURE 1 | Genetic contexts of the IMP-1 encoding plasmid (pNR4028_IMP1) isolated from Comamonas thiooxydans NR4028. (A) Structural comparison of similar

plasmid replicase in Gram-negative bacterial isolates. Regions with a homology are indicated by gray color. Genetic structure inside the red square frame is indicated

in (B), (B) Genetic environment of blaIMP−1 previously reported and NR4028. Genes were grouped and colored according to their predicted functions as indicated by

the key. Arrows designate directions of transcription of genes and ORFs.

for the isolate were: ceftazidime 256 µg/ml, cefepime
64 µg/ml, imipenem 1 µg/ml, meropenem 16 µg/ml,
levofloxacin 32 µg/ml, gentamycin 256 µg/ml, and
colistin 2 µg/ml.
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WGS

Genomic DNA was extracted using QIAGEN Genomic-tip
500/G (Qiagen, Germany) and sequenced usingMiSeq (Illumina,
United States), MinION (Oxford Nanopore Technologies,
United Kingdom), and Sanger sequencing. After read trimming
and quality filtering, hybrid de novo assembly was performed
using Unicycler v0.4.9 (Wick et al., 2017). The assembled
sequences were annotated using DFAST v1.4.0 with standard
settings (Tanizawa et al., 2018). For species identification,
average nucleotide identity (ANI) analysis was performed
using C. testosteroni ATCC 11996 (GenBank accession no.
AHIL01000000), C. testosteroni TK102 (GenBank accession no.
CP006704), C. thiooxydans ZDHYF418 (GenBank accession no.
CP063057), C. thiooxydans PHE2-6 (GenBank accession no.
LKFB01000000), and C. thiooxydans DSM 17888 (GenBank
accession no. LIOM01000000) as the reference genome (https://
www.ezbiocloud.net/tools/ani). ANI values were 94.44, 92.54,
98.49, 96.66, and 96.83%, respectively. It was indicated that
NR4028 had the highest homology with C. thiooxydans
strains, and the species was determined as C. thiooxydans.
Acquired resistance genes were identified using ResFinder
version 4.1 (Bortolaia et al., 2020) on the Center for Genomic
Epidemiology (CGE) server (http://www.genomicepidemiology.
org/). Comparison of the plasmid sequence of C. thiooxydans
NR4028 was performed using BLASTn (https://blast.ncbi.nlm.
nih.gov/Blast.cgi) and visualized with Easyfig version 2.2.5.
(Sullivan et al., 2011).

The genome sequence revealed three circular contigs with
a total length of 5,620,102 bp and a G + C content of 61.2%.
The genome of C. thiooxydans NR4028 consisted of one
chromosome (5,588,008 bp; accession number AP025193)
and two plasmids (29,235 bp, named pNR4028_IMP1;
accession number AP025194, and 2,859 bp; accession number
AP025195). ResFinder version 4.1 identified three antimicrobial
resistance genes (blaIMP−1, aadA6, and sul1) on the plasmid
pNR4028_IMP1. This IMP-1-encoding plasmid structure was
different from the previously reported, and Figure 1 shows a
map of pNR4028_IMP1.

CONJUGATION ASSAY

To determine the transferability of the IMP-1 gene, we used the
filter mating method, with C. thiooxydans NR4028 as the donor
and sodium azide-resistant E. coli J53 and rifampicin-resistant
Pseudomonas aeruginosa PAO1 as the recipient, as previously
described (Nakano et al., 2004). However, we did not observe
transfer of the blaIMP−1 gene-encoding plasmid to either E. coli
J53 or to P. aeruginosa PAO1.

DISCUSSION

C. thiooxydans is prevalent in the natural environment; however,
it can also cause infection and/or colonization in human clinical

settings. C. thiooxydans producing IMP-8 has been reported
from China by Guo et al. (2021) with IMP-8 encoded by a
chromosomal gene. C. thiooxydans NR4028 possessed plasmid-
encoded IMP-1, a common carbapenemase gene in Japan, and
resistanct to meropenem.

Figure 1 indicades the comparison of the plasmid structure
of C. thiooxydans NR4028 with similar plasmid replicase genes
and the genetic environment of resistance genes in IMP-1-
encoded plasmids. The plasmid repA replicase gene that was
present in this isolate was different from that circulating in
Enterobacterales, but had high homology to those of plasmids
in non-fermenting gram-negative bacteria, including Vitreoscilla
filiformis (CP022425), Xanthomonas spp. (CP024031), and P.
aeruginosa (KR106190) (Bi et al., 2016) (Figure 1A). Therefore,
IMP-1 may spread among the less common bacterial species, as
mentioned above. We found a genetic structure of this plasmid
and genetic environment that are different from those previously
described (Wajima et al., 2020; Mori et al., 2021). IMP-type
carbapenemase genes are frequently located in class 1 integrons;
however, in this case, IS26 was located upstream of blaIMP−1

(Figure 1B). It is possible that the integrase gene was lost as a
consequence of the insertion of the IS element.

This plasmid pNR4028_IMP1 was found to have a unique
genetic structure. The IMP-1-encoding plasmid was about 30 kbp
in length and did not have a locus Tra region, which is an essential
region for conjugation. Due to the lost of the locus Tra region
in this plasmid, it is suggested that the IMP-1-encoding plasmid
could not be transferred to recipients by conjugation. However, it
is necessary to characterize this unique plasmid by conducting
transformation experiments with the plasmid or cloning the
resistance genes, including IS26 in the future.

In conclusion, to the best of our knowledge, this is the first
report of plasmid-encoded IMP-1 producingC. thiooxydans. This
plasmid has a unique structure; therefore, the dissemination of
both this species and this plasmid should be monitored.
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Enterobacterales clinical isolates are now being resistant to clinically achievable
concentrations of most commonly used antibiotics that makes treatment of hospitalized
patients very challenging. We hereby determine the molecular characteristics of
carbapenemase genes in carbapenem-resistant Enterobacterales (CRE) isolates in
Taiwan. A total of 455 CRE isolates were identified between August 2011 to July
2020. Minimum inhibitory concentrations for selected carbapenems were tested
using Vitek 2, and carbapenemase genes were determined using polymerase chain
reaction in combination with sequencing. Phenotypic detection of carbapenemase
was determined by modified carbapenem inactivation method (mCIM) and EDTA-
modified carbapenem inactivation method (eCIM) to validate our PCR screening
results. Pulsed-field gel electrophoresis (PFGE) was used to determine the clonality
of carbapenemase-producing Enterobacterales (CPE) isolates, and the transferability
of carbapenemase-carrying plasmids was determined by conjugation assays. A slight
increase in carbapenem-resistant E. coli (CREC) was observed, however, the prevalence
of carbapenem-resistant K. pneumoniae (CRKP) was steady, during 2011–2020. The
dominant species among our CRE was K. pneumoniae (270/455, 59.3%), followed by
E. coli (81/455, 17.8%), Morganella morganii (32/455, 7.0%), and Enterobacter cloacae
(25/455, 5.5%). From 2011 to 2020, the total percentage of CPE increased steadily,
accounting for 61.0% of CRE in 2020. Moreover, 122 of 455 CRE isolates (26.8%) were
CPE. Among the CPE isolates, the dominant carbapenemase gene was blaOXA−48−like

(54/122, 44.3%), and the second most common carbapenemase gene was blaKPC−2

(47/122, 38.5%). The sensitivity and specificity for mCIM to detect carbapenemase
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in the 455 isolates were both 100% in this study. The PFGE results showed that 39
carbapenemase-producing E. coli and 69 carbapenemase-producing K. pneumoniae
isolates carrying blaKPC−2 and/or blaNDM−5 could be classified into 5 and 12 clusters,
respectively. In conclusion, our results showed an increase in CPE isolates in Taiwan.
Moreover, the distribution of carbapenemase and antimicrobial susceptibility in CPE
were associated with PFGE typing.

Keywords: carbapenem-resistant Enterobacterales (CRE), KPC-2, OXA-48, NDM, pulsed-field gel electrophoresis
(PFGE), carbapenemase

INTRODUCTION

Enterobacterales are Gram-negative, facultatively anaerobic, non-
spore-forming rods, and one of the most common causes of
nosocomial infections. Successive studies have demonstrated
increasing antibiotic resistance among clinical Enterobacterales
isolates, and high proportions of Enterobacterales isolates are
now non-susceptible to clinically achievable concentrations
of most commonly used antibiotics, such as broad-spectrum
cephalosporins (Iredell et al., 2016; De Oliveira et al., 2020).
Carbapenems are considered effective antimicrobial options for
the treatment of critically ill patients with a variety of bacterial
infections due to their broadest spectrum among β-lactam
antibiotics and their relative resistance to hydrolysis by most β-
lactamases (Barry et al., 1985). However, carbapenem resistance
rates in Enterobacterales isolates have increased worldwide over
the past decade (Logan and Weinstein, 2017; Lutgring, 2019).

The presence of innate resistance mechanisms and the
acquisition of clusters of foreign resistance genes (e.g.,
plasmid, transposon, or integron) that promote survival
of Enterobacterales under antibiotic treatment and host
selection pressures are associated with the rapid emergence
of multidrug-resistant (MDR) or extensively drug-resistant
(XDR) Enterobacterales worldwide (Iredell et al., 2016; Kopotsa
et al., 2019). Reduced expression or mutations in porins,
overexpression of efflux pumps, and the presence of β-
lactamases, play a critical role in resistance to carbapenems
(Poirel et al., 2004; Iredell et al., 2016; Sugawara et al., 2016;
De Oliveira et al., 2020). The first reported plasmid-mediated
carbapenemase gene, K. pneumoniae carbapenemase (blaKPC),
was identified in K. pneumoniae in 2001 (Yigit et al., 2001) and
became the predominant carbapenemase in K. pneumoniae
(Chen L. et al., 2014; Chen et al., 2018). blaNDM is the second
most common carbapenemase found among carbapenem-
resistant Enterobacterales (CRE) in China and is more prevalent
in E. coli (Zhang et al., 2018). Therefore, the study aimed to
investigate the molecular epidemiology of CRE in a regional
hospital in Taiwan during 2011–2020.

MATERIALS AND METHODS

Identification of Carbapenem-Resistant
Enterobacterales Isolates
Enterobacterales were isolated at En Chu Kong Hospital
(ECKH), from 2011 August to 2020 July. En Chu Kong hospital,

located at Sanxia district, New Taipei city, is an approximate
500-bed capacity regional teaching hospital (include three
buildings: Fuxing building, Zhongshan building, and outpatient
department building). The ECKH provides comprehensive
medical services from fetus to the elderly, from acute trauma
to hospice care, and from precision medicine to community
health. These isolates were identified in the clinical laboratory
by colony morphology, Gram stain, biochemical tests, and the
Vitek 2 system (bioMérieux, Marcy-l’Étoile, France) according
to the manufacturer’s recommendations. Non-duplicate
27,585 E. coli and 11,582 K. pneumoniae were collected in
this study. The susceptibility of Enterobacterales isolates to
third-generation cephalosporins (ceftazidime or ceftriaxone,
30 µg/disc, BD BBLTM Sensi-DiscTM, Sparks, MD, United States)
was determined by the disk diffusion method on Mueller-Hinton
(MH) agar plates according to the Clinical and Laboratory
Standards Institute (CLSI) guidelines (M100-S30) (CLSI, 2020).
Third-generation cephalosporin-resistant isolates were also
tested for susceptibility to carbapenems, including imipenem,
ertapenem, meropenem, and doripenem (10 µg/disc, BD BBL,
United States). A total of 455 CRE isolates were identified and
stored at −80◦C in tryptic soy broth (TSB) containing 20%
glycerol (v/v) until use.

Carbapenemase Gene Detection
Bacterial genomic DNA was isolated from bacteria grown
overnight at 37◦C in 3◦ml LB broth. The bacterial culture was
centrifuged at 12,000 rpm for 1 min, and the supernatant was
removed. Crude DNA extracts were obtained by suspending
the pellet in 300 µl distilled water and boiling at 95◦C for
10min, followed by centrifugation at 12,000 rpm for 5 min.
The DNA-containing supernatant was transferred to a new
eppendorf tube, and DNA samples were stored at 4◦C until
testing. PCR amplification for detection of β-lactamase genes
(blaKPC, blaNDM, blaIMP, blaVIM, blaOXA−48, blaGES, blaIMI,
blaSME, blaSPM, blaSIM, blaDIM, and blaGIM) was performed on
a GeneExplorer Thermal Cycler (BIOER, China) with the Fast-
RunTM 2× Taq Master Mix (Protech, Taipei, Taiwan). Primers
and PCR procedures used for the detection of β-lactamase
genes have been described in previous studies (Yigit et al.,
2001; Ellington et al., 2007; Doyle et al., 2012; Mlynarcik et al.,
2016). PCR products were analyzed by electrophoresis using 1.2%
agarose gels in 0.5× Tris-borate-EDTA (TBE) buffer. Gels were
stained with ethidium bromide (EtBr), and PCR products were
visualized using UV transilluminator. Clinical K. pneumoniae
isolates carrying blaKPC, blaNDM, blaIMP, blaVIM, and blaOXA−48
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were used as PCR positive controls. The PCR products of blaGES,
blaIMI, blaSME, blaSPM, blaSIM, blaDIM, or blaGIM, with relevant
expected sizes were verified by sequencing due to the lack of
relative control strains.

Phenotypic Detection of
Carbapenemase-Producing
Enterobacterales
The modified carbapenem inactivation method (mCIM) and
EDTA-modified carbapenem inactivation method (eCIM) were
performed on CRE isolates according to the previous study to
detect the presence of carbapenemase (Sfeir et al., 2019; Tsai
et al., 2020). Briefly, a 1-µl loopful of bacteria was resuspended
in a 2-ml tube containing TSB. Another 1-µl loopful of bacteria
was resuspended in a 2-ml tube containing TSB supplemented
with EDTA at a final concentration of 5 mM. A meropenem
disk was placed in each tube, and the tubes were incubated
at 35◦C for 4 h ± 15 min. The disks were then removed
and placed onto MH agar plates freshly plated with a 0.5
McFarland suspension of a carbapenem-susceptible E. coli strain
ATCC 25922. Plates were incubated at 35◦C for 16 to 20 h,
and mCIM and eCIM results were interpreted as previously
described (Sfeir et al., 2019). In accordance with CLSI guidelines
(CLSI, 2020), K. pneumoniae ATCC BAA-1706 (carbapenemase
negative),K. pneumoniaeATCC BAA-1705 (blaKPC positive), and
K. pneumoniae ATCC BAA-2146 (blaNDM positive) were used as
internal controls for mCIM and eCIM testing. The mCIM and
eCIM tests were replicated by two independent investigators to
ensure reproducibility.

Determination of Minimum Inhibitory
Concentrations
Minimum inhibitory concentrations (MICs) for cefmetazole,
cefotaxime, ceftazidime, cefepime, imipenem, ertapenem,
meropenem, amikacin, gentamicin, ciprofloxacin, levofloxacin,
tigecycline, colistin, and trimethoprim for CPE isolates were
determined with Vitek 2 using the card AST-N322 according
to the manufacturer’s instructions. E. coli ATCC 25922 was
used as a quality control strain. Antibiotic susceptibility (except
tigecycline) was interpreted according to CLSI guidelines
(M100-S30) (Zhang et al., 2018). The results of tigecycline
susceptibility were interpreted according to the breakpoints of
the U.S. Food and Drug Administration (FDA) (≥ 8.0 µg/ml,
resistant; 4.0 µg/ml, intermediate; ≤ 2.0 µg/ml, susceptible).

Pulsed-Field Gel Electrophoresis (PFGE)
Pulsed-field gel electrophoresis was performed to determine
the clonality of CPE isolates according to a previous study
(Li et al., 2018). Briefly, PFGE of XbaI-digested genomic DNA
was performed using a CHEF Mapper XA instrument (Bio-
Rad Laboratories, Inc., Hercules, CA, United States) with the
following parameters: separation on a 1% agarose gel (Seakem
Gold agarose; FMC Bio Products) in 0.5× TBE buffer for
19 h at 14◦C with pulse times ranging from 5 to 35 s
at 6 V/cm. Gels were stained with EtBr and photographed
with UV transillumination. PFGE profiles were analyzed and

compared using the GelCompar II software, version 2.0 (Unimed
Healthcare, Inc., Houston, TX, United States). The PFGE
patterns were interpreted according to a previous study (Bando
et al., 2009) and the isolates having > 80% pattern similarity were
assigned to the same cluster.

Conjugation Experiments
The liquid mating-out assay was performed to transfer
carbapenemase genes from CPE isolates to the rifampicin- and
streptomycin-resistant E. coli C600 strain as previously described
(Kao et al., 2016). All isolates tested were sensitive to rifampicin
or streptomycin at the concentration of 256 µg/ml. Therefore,
transconjugants were selected on LB plates with 256 µg/ml
rifampicin (Sigma-Aldrich, United States) or 256 µg/ml
streptomycin (Sigma-Aldrich, United States) in combination
with 1 µg/ml meropenem. The conjugation assay was performed
in triplicate to determine the transferability of the plasmid.

Statistical Analysis
A Cochran–Armitage test was used to evaluate trends in CREC,
CRKP, CPE, CPEC, and CPKP over time. Statistical analyses were
performed using the JMP software (SAS Institute Inc., Cary, NC,
United States). A p-value < 0.05 is statistically significant.

RESULTS

Identification of Carbapenem-Resistant
Enterobacterales
The dominant species among our CRE was K. pneumoniae
(270/455, 59.4%), followed by E. coli (80/455, 17.6%), Morganella
morganii (32/455, 7.0%), and Enterobacter cloacae (25/455,
5.5%) (Table 1). Thus, 0.003% (80/27,585) E. coli and 2.323%
(270/11,582) K. pneumoniae showed resistance to carbapenem.
A slight increase in carbapenem-resistant E. coli (CREC) was
observed during 2011–2020 (p > 0.05) (Figure 1A). In contrast,
the prevalence of carbapenem-resistant K. pneumoniae (CRKP)
was steady (p > 0.05) (Figure 1B). In addition, 205 (44.9%) and
169 (37.0%) CRE strains were isolated from urine and sputum,
respectively (Table 1). CRKP was most frequently isolated from
sputum (127/270, 47.0%), followed by urine (107/270, 39.6%). In
contrast, CREC was most frequently isolated from urine (54/80,
67.5%), followed by sputum (12/80, 15.0%) (Table 1).

Distribution of Carbapenemase Genes in
Carbapenem-Resistant Enterobacterales
PCR was used to detect the presence of carbapenemase genes,
and the results showed that 122 of 455 CRE isolates (26.8%)
were CPE (Table 2). No carbapenemase genes were detected in
carbapenem-resistant Providencia rettgeri, Providencia stuartii,
and Serratia marcescens. In addition, no GES-, IMI-, SME-,
SPM-, SIM-, DIM-, and GIM-producers were identified in
our CRE isolates. Overall, the dominant carbapenemase gene
was blaOXA−48−like (54/122, 44.3%) among CPE isolates, and
the second most common carbapenemase gene was blaKPC−2
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TABLE 1 | Source of clinical specimens and bacterial species of 455 non-duplicate CRE.

Clinical specimens’ source No. of isolates

Urine Sputum Wound pus Bronchial
washing

Abscess Blood Vaginal
discharge

Ear
discharge

Catheter
tip

Body fluid Nasal

Citrobacter freundii 1 0 0 0 0 1 0 0 0 0 0 2

Citrobacter koseri 3 2 1 0 0 1 0 0 0 0 0 7

Citrobacter youngae 1 0 0 0 0 0 0 0 0 0 0 1

Enterobacter aerogenes 1 6 1 0 0 0 0 0 0 0 1 9

Enterobacter cloacae 10 9 0 1 1 3 0 0 1 0 0 25

Escherichia coli 54 12 3 3 2 5 1 0 0 0 0 80

Escherichia hermannii 0 1 0 0 0 0 0 0 0 0 0 1

Klebsiella oxytoca 1 1 0 0 0 0 0 0 0 0 0 2

Klebsiella pneumoniae 107 127 8 15 0 11 0 0 0 2 0 270

Morganella morganii 13 4 9 2 0 3 0 1 0 0 0 32

Providencia rettgeri 6 0 0 0 0 2 0 0 0 0 0 8

Providencia stuartii 6 5 1 0 0 0 0 0 0 0 0 12

Serratia marcescens 2 2 1 0 0 1 0 0 0 0 0 6

no. of isolates 205 169 24 21 3 27 1 1 1 2 1 455

(47/122, 38.5%) (Table 2). In addition, we found metallo-
carbapenemases NDM, IMP, and VIM in 23 (18 blaNDM−5,
3 blaNDM−1, and 2 blaNDM−4), 9 (9 blaIMP−8), and 4
(blaVIM−1) CPE isolates, respectively (Table 2). Importantly,
15 CPE isolates carrying more than one carbapenemase
gene were identified during 2017–2020. Seven E. coli isolates
and 3 K. pneumoniae isolates had both blaOXA−48−like and
blaKPC−2 (Table 2). Coexistence of blaKPC−2/blaNDM−5 and
blaOXA−48−like/blaNDM−5 was found in 2 and 2 carbapenem-
resistant E. coli, respectively. One Klebsiella oxytoca isolate had
both blaVIM−1 and blaNDM−1 (Table 2).

Among the CRE isolates, 39 (39/80, 48.8%) E. coli and
69 (69/270, 25.6%) K. pneumoniae isolates were CPE. The
dominant carbapenemase gene was blaOXA−48−like (20/39,
51.3%) among carbapenemase-producing E. coli (CPEC) isolates,
and the second most common carbapenemase gene was
blaNDM−5 (17/39, 43.6%). In contrast, blaKPC−2 was found
dominant among carbapenemase-producing K. pneumoniae
(CPKP) isolates (34/69, 49.3%), followed by blaOXA−48−like
(27/69, 39.1%) (Table 2).

Modified Carbapenem Inactivation
Method/EDTA-Modified Carbapenem
Inactivation Method Phenotypic
Detection of Carbapenemase Producer
It was previously reported that eCIM in combination with
the mCIM is efficient for identifying CPE (Sfeir et al., 2019).
Therefore, phenotypic detection mCIM/eCIM was performed on
our 455 CRE isolates to validate PCR results for carbapenemase
gene detection. In this study, the sensitivity and specificity
for the mCIM to detect carbapenemase in 455 CRE isolates
were both 100% which is consistent with our previous report
(Tsai et al., 2020).

Interestingly, we found that four isolates containing metallo-
carbapenemase NDM-5 and non-metallo-carbapenemases

(OXA-48 or KPC-2) showed inconsistent mCIM/eCIM results
(Table 3). E. coli isolate 488, an NDM-5 and OXA-48 producer,
showed a false-negative result in mCIM/eCIM (Table 3). In
contrast, E. coli isolate 514 with blaNDM−5 and blaOXA−48
showed a positive mCIM/eCIM result (Table 3). In addition,
E. coli 571 and 572 with blaKPC−2/blaNDM−5 also showed positive
results by mCIM/eCIM (Table 3).

Increase in Carbapenemase-Producing
E. coli and K. pneumoniae During
2011–2020
From 2011 to 2020, the total percentage of CPE increased steadily,
accounting for 61.0% of CRE in 2020 (16.7% in August 2011–
July 2012) (p < 0.0001) (Figure 1C). E. coli and K. pneumoniae
isolates were dominant in our CPE collection (Table 2), so we
aimed to further characterize the molecular epidemiology of
CPEC and CPKP isolates. Among CPEC isolates, we found a
dramatic increase in blaNDM−5 and blaKPC−2/blaOXA−48−like in
2020 (p < 0.0001) (Figure 1D). In contrast to CPEC, blaKPC−2
and blaOXA−48−like were predominant in CPKP isolates in 2020
(p < 0.0001) (Figure 1E).

Pulsed-Field Gel Electrophoresis Typing
of Carbapenemase-Producing E. coli and
K. pneumoniae
The clonality of 39 CPEC and 69 CPKP isolates carrying
carbapenemase KPC-2, NDM, and OXA-48 was further
determined by PFGE (Figure 2). The PFGE patterns of 30 E. coli
CPE isolates were assigned to five clusters based on > 80% pattern
similarity (Figure 2A). All isolates in cluster 1 (n = 3) contained
blaKPC−2, isolates in cluster 2 (n = 5) contained blaoxa−48, and
isolates in cluster 5 (n = 7) contained both blaKPC−2 and blaoxa−48
(Figure 2A). In contrast, isolates from clusters 3 (n = 12) and 4
(n = 3) contained blaNDM−5 (two isolates contained blaNDM−5
and blaKPC−2; one isolate contained blaNDM−5 and blaoxa−48)
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FIGURE 1 | Distribution of carbapenemase-producing Enterobacterales during 2011–2020. (A) Annual proportions and numbers of carbapenem-resistant E. coli
among all E. coli. (B) Annual proportions and numbers of carbapenem-resistant K. pneumoniae among all K. pneumoniae. (C) Annual proportions and numbers of
carbapenemase-producers among CRE. (D,E) Annual proportions and numbers of carbapenemase-producers among carbapenem-resistant E. coli (D) and
K. pneumoniae (E). The percentage of isolates is plotted as a line graph on the primary axis while the number of isolates is plotted as bars on the secondary axis.

(Figure 2A). Interestingly, isolates belonging to clusters 2 or 5
were resistant to gentamycin (Figure 2A). Although all 39 CPEC
were resistant to ciprofloxacin (MIC ≥ 4 µg/ml) and levofloxacin
(MIC ≥ 8 µg/ml), these isolates were sensitive to tigecycline
(MIC ≤ 0.5 µg/ml) and colistin (MIC ≤ 0.5 µg/ml) (Figure 2A).

The PFGE patterns of 69 CPKP isolates were assigned to
12 clusters based on > 80% pattern similarity (Figure 2B).
All isolates in clusters 2 (n = 3), 3 (n = 7), 4 (n = 3), 5
(n = 11), and 6 (n = 5) contained blaKPC−2, whereas isolates
in clusters 8 (n = 2), 9 (n = 6), 10 (n = 2), and 11 (n = 4)
contained blaoxa−48 (Figure 2B). Clusters 1 (n = 2) and 12
(n = 2) isolates contained blaNDM−4 and blaIMP−8, respectively
(Figure 2B). Only isolates in cluster 12 were susceptible to
both ciprofloxacin and levofloxacin (Figure 2B). In addition,
6 and 11 CPKP were resistant to colistin (MIC ≥ 4 µl/ml)

and tigecycline (MIC ≥ 8 µl/ml), respectively (Figure 2B). The
PFGE results indicate that the distribution of carbapenemase and
antimicrobial susceptibility in CPE were associated with PFGE
typing (Figure 2).

Carbapenemase Transfer and Plasmid
Analysis
A total of 37 CPEC and 53 CPKP isolates carrying carbapenemase
were further analyzed with conjugation assays to determine
whether there were horizontally spread carbapenemase-carrying
plasmids in Taiwan (18 CPE isolates showed resistance
to rifampicin were excluded in this assay). Transfer of
carbapenemase gene by conjugation to E. coliC600 was successful
in 4 NDM-5-producing CPEC (isolates 257, 462, 500, and
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TABLE 2 | The distribution of carbapenemase genes among 455 non-duplicate CRE.

Carbapenemase genes No. of
isolates

blaKPC−2 blaNDM−1 blaNDM−4 blaNDM−5 blaIMP−8 blaVIM−1 blaOXA−48−like blaKPC−2 blaNDM−5 blaKPC−2

bla

OXA−48−like

blaNDM−5

bla

OXA−48−like

blaNDM−1

blaVIM−1

Citrobacter
freundii

0 0 0 0 1 0 0 0 0 0 0 1

Citrobacter
koseri

0 0 0 0 0 0 4 0 0 0 0 4

Citrobacter
youngae

0 0 0 0 0 0 1 0 0 0 0 1

Enterobacter
aerogenes

0 1 0 0 0 1 0 0 0 0 0 2

Enterobacter
cloacae

0 0 0 0 2 0 1 0 0 0 0 3

Escherichia coli 4 0 0 13 0 0 11 2 7 2 0 39

Escherichia
hermannii

0 0 0 0 1 0 0 0 0 0 0 1

Klebsiella
oxytoca

0 0 0 0 0 0 0 0 0 0 1 1

Klebsiella
pneumoniae

31 1 2 1 5 2 24 0 3 0 0 69

Morganella
morganii

0 0 0 0 0 0 1 0 0 0 0 1

no. of isolates 35 2 2 14 9 3 42 2 10 2 1 122

TABLE 3 | Characteristics of three isolates that contained both metallo-carbapenemases and non-metallo-carbapenemases.

MIC (µ g/ml) Disc zone (mm) Phenotypic detection

Isolate Carbapenemase IPM ETP MEM IPM ETP MEM DOP mCIM eCIM mCIM eCIM

E. coli 488a blaOXA−48/blaNDM−5 ≥16 ≥8 8 6 6 6 6 6 6 + –

E. coli 514 blaOXA−48/blaNDM−5 ≥16 ≥8 ≥16 16 12 15 16 6 23 + +

E. coli 571 blaKPC−2/blaNDM−5 ≥16 ≥8 ≥16 13 9 12 14 6 20 + +

E. coli 572 blaKPC−2/blaNDM−5 8 ≥8 8 12 8 12 11 6 20 + +

aThe characteristics of isolate E. coli 488 were reported in our previous study (Tsai et al., 2020). IPM, imipenem; ETP, ertapenem; MEM, meropenem; DOP, doripenem.

505) and 1 IMP-8-producing CPKP (isolate 21). However,
all blaKPC−2- and blaOXA−48-carrying plasmids did not show
transferability.

DISCUSSION

In this study, we isolated 455 CRE isolates from a regional
teaching hospital in Taiwan (2011 August to 2020 July) and
present their characteristics. Our results showed that 122 of 455
CRE isolates were CPE (Table 2). No carbapenemase genes were
detected in our carbapenem-resistant P. rettgeri, P. stuartii, and
S. marcescens. However, we could not rule out the presence of
other carbapenemases in these isolates.

The dominant carbapenemase gene among our CPE isolates
was blaOXA−48, and the second most common carbapenemase
gene was blaKPC−2 (Table 2). Chiu et al. (2018) showed a
sharp increase in the annual prevalence rate of OXA-48-like
producers among Taiwanese CPE isolates between 2012 and 2015.
In 2017, blaOXA−48 was detected in 18.2% of CPE in Taiwan

(Jean et al., 2018). Moreover, Wu et al. (2021) reported that
the blaKPC−2 was the most common carbapenemase gene in
CRKP isolated from patients with bacteremia at a hospital in
northern Taiwan from 2013 to 2018. A 22-year (1998–2019)
observation to determine the evolution of carbapenemase genes
in K. pneumoniae in Taiwan discovered that the endemicity
has changed from blaIMP−8, blaNDM−1, and blaVIM−1 to the
most common blaKPC−2 and rapidly emerging blaOXA−48
(Lai and Yu, 2021). These results are consistent with our
finding that the distribution of blaOXA−48−like was dramatically
increased after 2018. Therefore, whether there is a circulation
of OXA-48-producing plasmids/isolates in Taiwan is worth
continually monitoring. Surprisingly, a very low conjugation rate
of carbapenemase genes-carrying plasmids was observed in this
study. Therefore, taxonomic relatedness and recipient strain used
for conjugation tests may limit the conjugation in liquid matings
(Chen Y. T. et al., 2014; Alderliesten et al., 2020).

Interestingly, the data from Surveillance of Multicentre
Antimicrobial Resistance in Taiwan (SMART) with a multicenter
collection of bacteremic isolates of E. coli (n = 423) and
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FIGURE 2 | PFGE, the origin of isolate, year, MICs of antibiotics, and carbapenemase genes in 39 E. coli (A) and 69 K. pneumoniae (B) isolates. (A) All CPEC had
the following MICs of antibiotics: ampicillin ≥ 32 µg/ml, piperacillin > 128 µg/ml, cefazolin ≥ 64 µg/ml, ciprofloxacin ≥ 4 µg/ml, levofloxacin ≥ 8 µg/ml,
tigecycline ≤ 0.5 µg/ml, and colistin ≤ 0.5 µg/ml. (B) All CPKP had MICs of the antibiotics as follows, ampicillin ≥ 32 µg/ml and cefazolin ≥ 64 µg/ml. bw, bronchial
washing; CMZ, cefmetazole; CTX, cefotaxime; CAZ, ceftazidime; CEF, cefepime; IPM, imipenem; ETP, ertapenem; MEM, meropenem; AMK, amikacin; GEN,
gentamicin; CIP, ciprofloxacin; LVX, levofloxacin; TIG, tigecycline; COL, colistin; TMP, trimethoprim.
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K. pneumoniae (n = 372) showed the carbapenem resistance
rates were 1.2% (5/423) in E. coli and 7.5% (28/372) in
K. pneumoniae (Liu et al., 2020). Moreover, carbapenemase
genes were detected in 67.8% K. pneumoniae isolates (19/28).
Among the CRKP isolates, 57.1% (16/28) harbored blaKPC
(Liu et al., 2020). However, in 2019, we found OXA-48-
like was the dominant carbapenemase in CRKP. These results
suggested the difference in the distribution of carbapenemase
genes in CRKP isolated from different specimens and regions.
Moreover, previous studies showed that most KPC-2 producers
in CRKP were ST11 (Liu et al., 2020; Wu et al., 2021).
Therefore, the ST type of OXA-48-like producing CRKP is worth
further investigating.

We also found a dramatic increase in blaNDM−5 and
blaKPC−2/blaOXA−48−like from 2018 to 2020 in CREC when
compared to the years before 2018 (Figure 1). Huang et al. (2021)
reported an increase of NDM-producing E. coli in northern
Taiwan during 2016 to 2018. Importantly, in all five blaNDM−5-
positive isolates, the blaNDM−5 gene was located in a ∼46 kb
IncX3 plasmid that were nearly identical to each other (Huang
et al., 2021). These five blaNDM−5-containing plasmids are
similar to pP785-NDM5 from China (Ho et al., 2018). These
results suggest the dissemination of a specific IncX3 blaNDM−5-
containing plasmid in Taiwan. Seven CPEC isolates having
blaKPC−2/blaOXA−48−like were collected from August 2019 to July
2020 in this study. The clonality of these seven strains remain
unclear and worth investigating to determine whether is a specific
CPEC clone outbreak in the hospital.

In addition, we found 15 CPE isolates carrying more
than one carbapenemase gene during 2017–2020 (Table 2).
Whether these carbapenemase genes were located on a single
plasmid is worth investigating. We also found that four isolates
containing metallo-carbapenemase NDM-5 and non-metallo-
carbapenemases (OXA-48 or KPC-2) showed inconsistent
mCIM/eCIM results (Table 3). These results raised the possibility
that different expression levels of carbapenemase genes were
present in these isolates, thus affecting the phenotypic detection
of mCIM/eCIM. In addition, it remains to be investigated
whether the genotypes of the carbapenemase genes in these
isolates affect their enzymatic activity.

The emergence of CRE strains that also exhibit resistance to
colistin and tigecycline has become a major clinical concern, as
these two antibiotics are used as first-line for the treatment of
CRE infections (Doi, 2019). Our results showed that all CPEC
were sensitive to colistin and tigecycline (Figure 2A), while
6 and 11 CPKP were resistant to colistin (MIC ≥ 4 µl/ml)
and tigecycline (MIC ≥ 8 µl/ml), respectively (Figure 2B). The
mechanisms responsible for colistin and tigecycline resistance of
these CPKP isolates remain to be studied. In addition, all CPKP
isolates (n = 5) in cluster 6 were resistant to colistin and 5 of
7 isolates in cluster 3 were resistant to tigecycline (Figure 2B).
The characteristics of the isolates in clusters 3 and 6 are worthy
of future study.

Hentschke et al. (2010) demonstrated the induction of AcrAB-
mediated multidrug resistance by prior treatment with multiple
antibiotics. Kanwar et al. (2018) also revealed the occurrence
of treatment-emergent colistin-resistant KPC-producing

K. pneumoniae after 8 days of colistin-based combination
therapy due to disruption of mgrB. Studies with clinical isolates
provided evidence of an association between the emergence
of colistin and tigecycline resistance in CRKP and frequent
antibiotic use (van Duin et al., 2014; Du et al., 2018; Kanwar
et al., 2018). Therefore, it is worth investigating whether the
patient received long-term antibiotics, including tigecycline
or colistin, after the diagnosis of CRKP infection, inducing
resistance in this study.

Salipante et al. (2015) reported that whole-genome sequencing
(WGS) has significantly improved resolving power for strain
typing compared to PFGE. However, the present barriers
to the universal adoption of WGS by clinical laboratories
include relatively high costs of instrumentation and a lack of
bioinformatic expertise (Salipante et al., 2015). Therefore, in
this study, we performed PFGE to determine the clonality of
39 CPEC and 69 CPKP isolates carrying carbapenemase KPC-2,
NDM, and OXA-48.

In conclusion, our longitudinal collection of isolates
showed the increase of CPE in CRE isolates in Taiwan
during 2011–2020, and the dominant carbapenemase gene
was blaOXA−48−like, followed by blaKPC−2, among our CPE
isolates. Moreover, we found the carbapenemase distribution
and antimicrobial susceptibility in CPE were associated
with PFGE typing. Although the analysis of our study was
restricted to a single hospital as opposed to population-based,
the continued epidemiological surveillance and control of
antimicrobial prescribing and consumption would reduce
the prevalence of drug-resistant organisms and the spread of
antibiotic resistance.
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To demonstrate the detailed genetic characteristics of a blaNDM−1-carrying multidrug-
resistant Aeromonas caviae strain, the complete genome of the A. caviae strain K433
was sequenced by Illumina HiSeq and Oxford nanopore platforms, and mobile genetic
elements associated with antibiotic resistance genes were analyzed by a series of
bioinformatics methods. A. caviae K433 which was determined to produce class B
carbapenemase, was resistant to most antibiotics tested except amikacin. The genome
of K433 consisted of a chromosome cK433 (6,482-kb length) and two plasmids:
pK433-qnrS (7.212-kb length) and pK433-NDM (200.855-kb length), the last being
the first investigated blaNDM-carrying plasmid from Aeromonas spp. By comparison
of the backbone and MDR regions from the plasmids studied, they involved a highly
homologous sequence structure. This study provides in-depth genetic insights into the
plasmids integrated with blaNDM-carrying genetic elements from Aeromonas spp.

Keywords: Aeromonas spp., IMEs, mobile genetic elements, blaNDM, multidrug resistance

INTRODUCTION

Aeromonas spp. was first recognized as a human pathogen in 1954 when it was isolated from a
blood sample (Parker and Shaw, 2011). In the following years, there were more confirmed cases of
Aeromonas spp. causing human infections with varying degrees of severity, mainly, gastroenteritis
(Parker and Shaw, 2011). Aeromonas spp. is ubiquitous in water, which can form biofilms, and then
colonize the water system, drinking water may be a potential source of infection. Aeromonas spp.
was mainly found in marine environments and freshwater (Figueira et al., 2011; Martino et al.,
2014), and their spread is related to contact and ingestion of contaminated water or food.

In 2018, Aeromonas spp. was investigated in a wastewater treatment plant effluent in Tokyo,
Japan, and two strains harboring the blaKPC−2 gene were detected (Sekizuka et al., 2019).
Besides KPC, Aeromonas caviae producing VIM was reported in an Israeli hospital in 2014
(Adler et al., 2014), Aeromonas hydrophila carrying GES-24 carbapenemase was discovered in
2018 from a hospitalized patient in Okinawa, Japan (Uechi et al., 2018), and A. caviae from
India was confirmed to carry OXA-181-carbapenemase (Anandan et al., 2017). Aeromonas spp.
simultaneously harboring blaCTX−M−15, blaSHV−12, blaPER−1, and blaFOX−2, was isolated from
Adriatic Sea of Croatia (Maravić et al., 2013). In the past 10 years, carbapenemase-producing
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bacteria have been isolated from non-human sources, including
the aquatic environment. The carbapenemase-producing bacteria
from the aquatic environment are particularly susceptible to
human activities. Bidirectional movement of the carbapenemase-
producing bacteria between the aquatic environment and
humans has been occurring all the time (Hammer-Dedet et al.,
2020). The fewest members of metallo-beta-lactamases B2
are composed of different species of Aeromonas, such as A.
hydrophila, Aeromonas Veronii, and Serratia Fonticola, named
CphA, ImiS, and SFH-I in the literature, respectively (Mojica
et al., 2022). Just due to the pooling of carbapenemase-producing
Aeromonas spp. from water, acquired resistance genes appear
from time-to-time in the clinic, which deserves attention.

Although the aforementioned genes involving carbapenemase
or other beta-lactamase were reported in Aeromonas spp.,
blaNDM has not been reported in A. caviae to date. Since
the blaNDM gene was first discovered in India in 2009 (Yong
et al., 2009), it has rapidly spread all over the world (Dortet
et al., 2014). Although blaNDM was originally determined in a
Klebsiella pneumoniae plasmid (Yong et al., 2009), it has also
been reported in the recent years that blaNDM has been found
in the chromosomes of Enterobacteriaceae (Girlich et al., 2015;
Shen et al., 2017; Sakamoto et al., 2018; Reynolds et al., 2019;
Kong et al., 2020). The strains carrying metallo-beta-lactamases
are capable of hydrolyzing all beta-lactam antibiotics except
aztreonam, which has raised great concerns worldwide.

In this work, we first discovered a multidrug-resistant
A. caviae strain carrying blaNDM−1. The whole genome of
the strain was sequenced and the mobile genetic elements of
the strain containing drug-resistant genes were thoroughly and
genetically studied.

MATERIALS AND METHODS

Bacterial Strain and 16S rRNA Gene
A. caviae strain K433 was isolated from a patient’s sputum
in the Taizhou Municipal Hospital affiliated with the Taizhou
University of China in 2018. EC600 (highly resistant to
rifampicin) and Escherichia coli DH5α were used as hosts
for conjugal and plasmid transfers, respectively. Strain K433
was initially identified by Vitek 2. Later, it was confirmed by
PCR amplification and sequencing of 16S rRNA with primers:
Forward, 5′-AGAGTTTGATCATGGCTCAG-3′; Reverse:
5′-GGTTACCTTGTTACGACTT-3′ (Demarta et al., 1999).
Moreover, bacterial species identification was also performed
using genome sequence-based average nucleotide identity (ANI)
analysis1 (Richter and Rosselló-Móra, 2009).

Phenotypic Assays
Detection of Class a Serine Carbapenemase and
Class B Metallo β-Lactamase
The activities of class A serine carbapenemase and class B metallo
β-lactamase could be suppressed by 3-aminophenyl boronic
acid (APB) and ethylenediamine tetra-acetic acid (EDTA)

1http://www.ezbiocloud.net/tools/ani

(Pournaras et al., 2013). We chose APB combined with EDTA
to detect the carbapenemase of strain K433 according to the
previous report (Tsakris et al., 2010).

The interpretation of the results was as follows: (1) if the
diameter of the inhibition zone of the imipenem disc with
APB solution differs from that of the single-imipenem disc by
≥5 mm, it could be judged that the tested strain produced
class A carbapenemase; (2) if the diameter of the inhibition
zone of the imipenem disc with EDTA solution differed from
that of the single-imipenem disc by ≥5 mm, it might be
that the tested strain produced class B carbapenemase; (3) If
APB + EDTA were added concurrently, the diameters of the
inhibition zone of the imipenem discs with APB+ EDTA differed
from that of the single-imipenem disc by ≥5 mm, it could
be confirmed that the tested strain simultaneously produced
class A carbapenemase + class B metallo β-lactamase; (4) if the
difference between the inhibition zone diameter of the imipenem
disc containing enzyme inhibitor and the single-imipenem disc
was less than 5 mm, it could be determined that the bacteria
did not produce class A carbapenemase or class B metallo
β-lactamase.

Antibiotic Susceptibility Test
The method used for testing bacterial resistance
was BioMérieux VITEK2, and the results were
determined in accordance with the 2020 Clinical and
Laboratory Standards Association (CLSI) guidelines
(Clinical and Laboratory Standards Institute [CLSI], 2020).

12 antibiotics, namely, cefepime, aztreonam, imipenem,
meropenem, amikacin, ciprofloxacin, levofloxacin,
tigecycline, minocycline, tigecycline/clavulanic acid, and
piperacillin/tazobactam, were tested. E. coli ATCC 25922 was
used as the quality control strain.

Conjugal Transfer and Plasmid Transfer
Bacterial plasmid DNA of strain K433 was extracted using a
plasmid extraction kit (TaKaRa, Dalian, China) in accordance
with the manufacturer’s instructions. The plasmid was
transferred in an attempt from the A. caviae K433 isolate
into EC600 and E. coli DH5a through conjugal transfer and
electroporation, respectively. For the selection of transconjugants
and/or transformants containing the blaNDM marker, 2 µg/ml
imipenem and 1,000 µg/ml rifampicin were used according to
specific circumstances.

Sequencing and Sequence Assembly
Genomic DNA was extracted from strain K433 using a Gentra
Puregene Yeast/Bact. Kit (Qiagen, Valencia, CA, United States).
Libraries were prepared separately using the TruePrepTM DNA
Library Prep Kit V2 and the SQU-LSK109 Ligation Sequencing
kit. After the preparation of the library was completed, it was
separately sequenced on an Illumina HiSeq X Ten platform
(Illumina Inc., San Diego, CA, United States) and GridION X5
platform (Oxford Nanopore, United Kingdom). To improve the
reliability of data processing, raw data from the HiSeq X Ten
platform and the GridION X5 platform were trimmed to obtain
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the high-quality clean reads (clean data) by Canu v1.8.2. The
paired-end short Illumina reads and the long Nanopore reads
were “de novo” assembled using Unicycler v0.4.5.3

Sequence Annotation and Comparison
Open reading frames and pseudogenes were predicted using
RAST2.0 (Brettin et al., 2015), BLASTP/BLASTN (Boratyn
et al., 2013), UniProtKB/Swiss-Prot (Boutet et al., 2016), and
RefSeq databases (O’Leary et al., 2016). Annotation of drug
resistance genes, mobile genetic elements, and other features
were performed using online databases, such as CARD (Liang
et al., 2017), ResFinder (Zankari et al., 2012), ISfinder (Siguier
et al., 2006), INTEGRALL (Moura et al., 2009), and the Tn
Number Registry (Roberts et al., 2008). Multiple and pairwise
sequence comparisons were performed using MUSCLE 3.8.31
(Edgar, 2004) and BLASTN. The genome map was drawn using
Inkscape 0.48.1.4

Nucleotide Sequence Accession
Numbers
Nucleotide sequence accession numbers for chromosome
K433 (ck433), plasmid K433-qnrS (pK433-qnrS), and plasmid
K433-NDM (pK433-NDM) were CP084031, OK017455, and
OK287926, respectively.

It was collected for comparative analysis between pK433-
NDM and related plasmids, including p13ZX28-272,
p13ZX28-TC-98, p13ZX36-200, pCP077202, pCP077203,
and pCP077204, which nucleotide sequence accession numbers
were MN101850, MN101852, MN101853, CP077202, CP077203,
and CP077204, respectively.

RESULTS

Antimicrobial Susceptibility Test,
Enzymatic Properties, and Transferrable
Features
Through the 16S rRNA sequence and genome sequence-based
ANI analysis, strain K433 was identified to be A. caviae
eventually. The results of the antimicrobial susceptibility tests
on strain K433 were shown in Table 1. Through detection of
enzymatic properties, the strain K433 was confirmed to harbor
only class B metallo β-lactamase. After bacterial conjugative
transfer and electroporation assays, no transconjugant or
transformant carrying pK433-NDM could be recovered despite
repeated trials.

Overview of the Genome of K433
Strain K433 carried a 6,482-kb-long chromosome cK433, a
200.855-kb-long plasmid pK433-NDM, and a 7.212-kb-long
plasmid pK433-qnrS (Supplementary Table 1). Plasmid
pK433-NDM involved the region of blaMOX−6 gene, and

2https://canu.readthedocs.io/en/latest/index.html
3https://github.com/rrwick/Unicycler
4https://inkscape.org/en

TABLE 1 | Antimicrobial drug susceptibility profiles of Aeromonas caviae K433.

Antibiotics MIC values (µg/mL) Antimicrobial susceptibility

Ceftazidime 32 R

Cefepime 16 R

Aztreonam 16 R

imipenem 8 R

Meropenem 8 R

Amikacin 4 S

Ciprofloxacin ≥4 R

Levofloxacin ≥8 R

tigecycline ≥8 R

Minocycline ≥16 R

Ticarcilin/clavulanic acid ≥128 R

Piperacillin/tazobactam ≥128 R

a 42.3-kb-long MDR region where blaNDM was inserted
(Supplementary Figure 1). Plasmid pK433-qnrS only contained
drug-resistance gene qnrS2 (Supplementary Figure 2). All
resistance genes were listed in Table 2.

Characteristics of IMEs on Chromosome
cK433
Integrative and mobilizable elements (IMEs) were extremely
closely related to the acquisition or loss of bacterial resistance
to antibiotics (Bellanger et al., 2014; Delavat et al., 2017). Three
IMEs were found on cK433, including IME1, IME2, and IME3
regions (Figure 1).

IME1, flanked by a pair of attL/attR (14 bp in length), had
a backbone (containing int) with insertion of two accessory
modules: 43.9-kb strAB–blaCTX−M−3 region and truncated
IS630-family IS element. The 43.9-kb strAB–blaCTX−M−3 region,
including In792 [gene cassette array (GCA): aac(6’)-Ib-cr–arr3],
was inserted between the orf339 and wyl gene at the left end of
the backbone region, and truncated IS630-family IS element was
inserted between the hns and orf114 gene at the right end of the
backbone region (Figure 1A). Meanwhile, the unit transposon
Tn6320 (carrying blaTEM−1 and blaCTX−M−3) was inserted into
the qacED1 gene of In792. Tn5393n was inserted between the
virD2 and lepB gene at the right end of In792, following, ISAeca7
was inserted into 1tnpA gene, which was divided into two parts
on the left end of Tn5393n, then, two identical IS6100s were
inserted between the 3′-CS and the right end of In792, forming
the current complex IME1 structure just like “Russian nesting
dolls.”

IME2 consisted of the backbone region and tetA-tetR
module which was related to tetracycline drug resistance
(Figure 1B). IME3 contained the backbone region, ISAve3
and In27 [GCA: dfrA12–gcuF–aadA2] which was truncated by
chrA-orf98 unit, IS26-mph(A)-IS6100 unit, and two intersecting
Tn4352 (Figure 1C).

Comparison of Plasmids pK433-NDM,
pCP077202, pCP077203, and pCP077204
According to the BLASTN alignments of the complete sequence
of plasmid pK433-NDM in the NCBI GenBank database, we
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TABLE 2 | Resistance genes in the strain of K433.

Sequence Resistance
locus

Resistance phenotype Nucleotide position Region
located

Chromosome K433 aac(6’)-Ib-cr Fluoroquinolone and
aminoglycoside resistance

1358857.1359456 IME1

arr3 Rifampicin resistance 1359553.1360005

blaTEM−1 β-lactam resistance 1364218.1365078

blaCTX−M−3 β-lactam resistance 1365860.1366735

sul1 Sulfonamide resistance 1368946.1369785

floR Phenicol resistance 1375626.1376840

strA Aminoglycoside resistance 1384020.1384823

strB Aminoglycoside resistance 1384823.1385659

tetA(E) Tetracycline resistance 4241253.4242470 IME2

dfrA12 Trimethoprim resistance 4646267.4646764 IME3
aadA2 Aminoglycoside resistance 4647172.4647963

qacED1 Quaternary ammonium 4648127.4648474
sul1 Sulfonamide resistance 4648468.4649307
chrA Chromate resistance 4649794.4650999

mph(A) Macrolide resistance 4654618.4655523
aphA-1 Aminoglycoside resistance 4656500.4657315

4658360.4659175
pK433-NDM blaMOX−6 β-lactam resistance 57439.58587 blaMOX−6

region
mer locus Mercuric resistance 93469.97431 MDR region

mph(A) Macrolide resistance 100351.101256
chrA Chromate resistance 104875.106080
sul1 Sulfonamide resistance 106567.107406

119294.120133
blaOXA β-lactam resistance 107877.108671

blaNDM−1 β-lactam resistance 114445.115257
bleMBL Bleomycin resistance 115261.115626
qacED1 Quaternary ammonium 120127.120474
dfrA12 Trimethoprim resistance 120981.121478
aacC2 Aminoglycoside resistance 123848.124708
tmrB Tunicamycin resistance 124721.125263

blaTEM−1 β-lactam resistance 129680.130540
pK433-qnrS qnrS2 Quinolone resistance 2300.2956 –

found that the top three plasmids ranked by coverage value
were pCP077202 (59%), pCP077203 (26%), and pCP077204
(24%), and their identities were both 100%. These three plasmids
(pCP077202, pCP077203, and pCP077204) collected from
GenBank all belonged to Aeromonas spp. in the United States
and had a close correlation with plasmid pK433-NDM. Plasmids
pCP077202, pCP077203, and pCP077204 were from the same
strain with 161.381-, 85.67-, and 80.98-kb length, respectively.
The sequence composition and structure of pK433-NDM and
pCP077203 were highly similar (>95% identity) around the first
35 kb length in the plasmid maintenance region (Figure 2).
Both plasmids pK433-NDM and pCP077202 contained the
MDR region, in which there was also a high similarity with
the composition and structure located on the MDR region
upstream and downstream of the plasmid maintenance regions
(>95% identity) (Figure 2). The comparison of MDR regions
for 42.3 kb long pK433-NDM and 40.2 kb long pCP077202
is illustrated in Figure 3. The composition and structure of
the sequence approximate 32 kb long on the left end of
plasmid maintenance regions of pK433-NDM (23111.55424)
and pCP077204 (5096.36653) were also highly similar (>95%

identity). However, no plasmid replication gene was found in
plasmid pCP077204 and pCP077202.

Comparison of MDR Regions From
Plasmids pK433-NDM, pCP077202,
pKP-14-6-NDM-1, p13ZX28-272,
p13ZX36-200, and p13ZX28-TC-98
All the aforementioned plasmids except pK433-NDM were
obtained from GenBank. pKP-14-6-NDM-1 was isolated from
K. pneumoniae and p13ZX28-272, p13ZX36-200, and p13ZX28-
TC-98 were all achieved from E. coli. The coverage and identity
of the MDR region from aforementioned plasmids were listed
in Supplementary Table 2. Compared with MDR regions from
plasmids pK433-NDM and pCP077202, it seemed that In37
[Variable region 1 (VR1) containing aacA4cr, blaOXA−1, and
catB1 and VR2 containing blaPER−1] of MDR region from
pCP077202 was replaced by In384 [VR1 containing dfrA12,
VR2 containing blaNDM−1 and bleMBL, and VR3 containing
blaOXA] of MDR region from pK433-NDM, and the remaining
regions had a high degree of identity (>95%) with MDR region
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FIGURE 1 | Mobile genetic elements associated with resistant genes on chromosome cK433. IMEs were abbreviation integrative and mobilizable elements. Three
IMEs (IME1, IME2, and IME3) were to be discovered on chromosome cK433. (A) IME1, comprising the backbone region, cas-csy module and In792; (B) IME2,
consisting of backbone region and tetA-tetR module; (C) IME3, involving the backbone region, ISAve3 and In27.

FIGURE 2 | Comparison of plasmids pK433-NDM, pCP077202, pCP077203, and pCP077204. Plasmids pCP077202, pCP077203, and pCP077204 were
obtained from GenBank, which came from Aeromonas spp. in the United States. Plasmids pCP077202, pCP077203, and pCP077204 had 161.381, 85.67, and
80.98 kb lengths, respectively. The shadow of light blue represented >95% identity.

from pK433-NDM. (Figure 3). However, the MDR region from
pK433-NDM carried the blaNDM−1 gene located in the truncated
composite transposon Tn125, while the MDR region from
pCP077202 did not, which was the significant difference between
them. Compared with MDR regions from pK433-NDM and

pK-14-6-NDM-1, both involved blaNDM gene and were highly
consistent with aaC2-tmrB region and In384 (>95% identity),
and also 1Tn21, chrA-orf98 unit and IS26-mph(A)-IS6100 unit
(>95% identity). Compared with MDR regions from pK-14-
6-NDM-1 and p13ZX28-272, the regions containing blaNDM
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FIGURE 3 | Comparison of MDR regions from plasmids pK433-NDM, pCO077202, pKP-14-6-NDM-1, p13ZX28-272, p13ZX36-200, and p13ZX28-TC-98.
pK433-NDM and pCO077202 came from Aeromonas spp. pKP-14-6-NDM-1 was isolated from Klebsiella pneumoniae, and p13ZX28-272, p13ZX36-200, and
p13ZX28-TC-98 were all achieved from Escherichia coli.

gene showed high consistency except for the insertion type of
integron (In469 from p13ZX28-272 replaced by In384 from
pK-14-6-NDM-1). Compared with p13ZX28-272, p13ZX36-
200, and p13ZX28-TC-98, MDR regions of pK-14-6-NDM-1
and p13ZX28-272 showed the highest identity (>95%) but
revealed different coverage, which was listed in Supplementary
Table 2. Interestingly, In469 and In384 in pK433-NDM, pK-
14-6-NDM-1, p13ZX28-272, p13ZX36-200, and p13ZX28-TC-
98 all contained the identical ISCR1 and 1Tn125 structure,

which suggested ISCR1 prompted the accumulation of 1Tn125
between these plasmids.

DISCUSSION

Various types of antibiotic resistance genes have been discovered
over and over again in Aeromonas spp. from nature, which
is commonly resistant to quinolone and β-lactam drugs
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(Piotrowska et al., 2017). It is very likely that Aeromonas spp.
is naturally an important repository of acquired β-lactamase
genes from wastewater or sludge, which was to be found in
plentiful genes harboring classes A, B, C, and D β-lactamase
(Piotrowska et al., 2017). However, only a tiny amount of class
B carbapenemases were found, such as AsbM1, IMP-19, VIM,
ImiS, ImiH, and CphA (Janda and Abbott, 2010; Piotrowska et al.,
2017). So far, NDM had never been reported. To our knowledge,
this is the first study involving NDM carbapenemase from an
A. caviae strain (K433), which was isolated from inpatient’s
source with multidrug-resistance in our hospital. This study not
only provided the first evidence of nosocomial infection and
colonization of an NDM-producing A. caviae, but also revealed
the strong transmission ability of NDM.

Reported firstly in 2009, NDM-1 has caused a major
public health problem because of its high resistance profile to
carbapenems and its global prevalence (Yong et al., 2009). To
date, 40 variants of NDM carbapenemases have been reported.5

The bacterial strains harboring blaNDM exhibited significantly
increased MICs for carbapenems, cephalosporins, penicillins,
ticarcilin/clavulanic acid, and piperacillin/tazobactam except for
aztreonam, just as shown in the susceptibility test of A. caviae
K433 (Table 1). Strain K433 was resistant to almost all the
antibiotics (including imipenem, meropenem, and tigecycline)
except amikacin. Among the reported mechanisms of tigecycline
resistance, the bacterial efflux pump system plays a major role.
The overexpression of characteristic efflux pumps AdeABC,
AdeFGH, and AdeIJK, together with the deletion and mutation
of the two-component regulatory systems adeR and adeS, can
lead to tigecycline resistance (Nguyen et al., 2014). In addition,
the reasons for the decreased sensitivity to tigecycline include the
inactivation of tigecycline by the modification enzyme Tet(X),
the alteration of the cell membrane permeability because of the
mutation of the plsC gene, and the decreased affinity between
tigecycline and the ribosome due to the mutation of the rpsJ
gene, etc. (Beabout et al., 2015). Recently, studies have reported
that tigecycline resistance can be transmitted in bacteria by
conjugation of plasmids carrying resistance genes (Partridge
et al., 2018). In this study, we have not detected the tet(X)
gene or other tigecycline resistance genes in strain K433. The
possible mechanisms of tigecycline resistance in K433 were
the overexpression of bacterial efflux pump system or/and the
altering of cell membrane permeability, etc.

After high-throughput sequencing, it was determined that
A. caviae K433 carried two plasmids: (pK433-NDM and pK433-
qnrS), and one 6,482-kb-long chromosome cK433, carrying
three IMEs: (IME1, IME2, and IME3) (Figure 1). IMEs
and ICEs (integrative and conjugative elements) (Botelho and
Schulenburg, 2021) are two different types of mobile genetic
elements. They are often integrated into bacterial chromosomes
to prompt the spread of resistance genes. IMEs cannot be self-
transmitted, and they move between cells with the help of
other conjugative elements that encode proteins involving in the
complete conjugation function. IMEs usually have attL, int, rlx,
oriT, and attR, but do not contain conjugative transfer genes

5http://www.bldb.eu/Enzymes.php

(Luo et al., 2021). As for other properties of chromosome cK433,
further study is needed.

It was utterly different between pK433-NDM and pK433-
qnrS. Plasmid pK433-qnrS (7212 kb in length) had only
qnrS2-repC-repA-mob gene cassettes (Supplementary Figure 2),
while plasmid pK433-NDM (200.855 kb in length) possessed
the backbone, including plasmid maintenance and replication
regions, and variable regions: 42.3-kb MDR region, blaMOX−6
region, ISAeme19 and ISAS17 (Supplementary Figure 1). We
speculated that such a length of plasmid and the complex
structure of the MDR region may result in the failures of
plasmid conjugative transfer and electroporation experiment
for pK433-NDM. There were six units or modules in the
MDR region from pK433-NDM, revealing Tn2, 1Tn21, IS26-
mph(A)-IS6100 unit, chA-orf98 unit, In384, and aaC2-tmrB
region (Figure 3). The biggest differences between the MDR
regions from pCP077202 and pK433-NDM were that In384 from
pK433-NDM replaced the position of In37 from pCP077202,
and, In37 involved 2 variable regions (VR), In384 contained
3 variable regions, then, VR2 carried 1Tn125 with blaNDM
(Figure 3). Such a complex plasmid structure would greatly
enhance the resistance to the drugs, such as carbapenems,
cephalosporins, and penicillins (Table 1). Except that the MDR
region was somewhat comparable, the backbone regions of
plasmids: pCP077202, pCP077203, and pCP077204 which came
from the same strain were more or less identified with the pK433-
NDM, but there were some repeat backbone regions between the
pCP077202, pCP077203, and pCP077204 (Figure 2). In general,
these plasmids from different Aeromonas spp. had more similar
structures and compositions despite of coming from different
countries, different times, and even different races (Figure 2).
As for the comparative analysis of the MDR regions from the
pK433-NDM, p13ZX28-272, p13ZX28TC-98, pKP14-6-NDM-1,
and p13ZX36-200, we found that the MDR regions from different
plasmids almost had the identical structure, harboring 1Tn125
with blaNDM gene. It suggested that after the In384 carrying
1Tn125 with blaNDM gene was replaced by the In469 which also
carried the 1Tn125 with blaNDM gene, it might be evolved even
more epidemic; simultaneously, we also speculated that part of
the plasmid structure and composition of A. caviae cK433 might
come from other popular plasmids, and there was a potential risk
of transmission, which must be actively prevented.

CONCLUSION

This study characterized the genome structure and constitution
of the blaNDM-carrying multidrug-resistant A. caviae strain
K433. Plasmids pK433-NDM and pK433-qnrS and chromosome
cK433 were discovered. In total, three drug-resistant-gene-
associated IMEs (IME1, IME2, and IME3) were inserted into
complex gene structures, including integrons, transposons, and
other mobile genetic modules or units, and studied in cK433.
Four plasmids: pK433-NDM, pCP077202, pCP077203, and
pCP077204 were compared with the backbone and MDR regions.
It showed a highly homologous sequence structure between
pK433-NDM and plasmids from the same strain: pCP077202,
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pCP077203, and pCP077204, in the backbone regions. It also
indicated a highly homologous sequence structure between the
MDR regions of pK433-NDM, pCP077202, pKP-14-6-NDM-1,
p13ZX28-272, p13ZX36-200, and p13ZX28-TC-98. This study
would provide a further theoretical basis for genetic evolution
for plasmids involving blaNDM-carrying genetic elements from
Aeromonas spp.
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