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Editorial on the Research Topic

Data Mining and Statistical Methods for Knowledge Discovery in Diseases Based onMultimodal
Omics

Over the last decade, advances in high-throughput omics technologies and methods have enabled
researchers to measure multiple biological data modalities simultaneously and accurately or to
integrate multi-omics data from different sources and modalities. Numerous datasets are
being rapidly generated encompassing genomics, transcriptomics, proteomics, metabolomics,
phenomics, radiomics, cutting-edge 3D spatial omics, and single-cell omics data. This
represents an unprecedented opportunity for knowledge discovery in disease biology,
including the identification of biomarkers, functional modules, causal pathways, or regulatory
networks implicated in disease, thus having also the potential to bolster current therapeutic
pipelines.

In parallel, a wide-array of statistical methods have been developed to leverage availability of
these data, from genome-wide association studies (GWAS) to transcription-wide association
studies (TWAS), methylome-wide association studies (MWAS), molecular quantitative trait loci
(molQTL) analysis, or summary-based two-sample Mendelian Randomization. However, the
ability to integrate different features of existing methods is still insufficient, limiting the power for
knowledge discovery. Thus, advances in data mining, or statistical and machine learning
techniques are urgently needed to perform cross-modal data integration and modeling. Here,
we present a Research Topic on “Data Mining and Statistical Methods for Knowledge Discovery in
Diseases Based onMultimodal Omics” to showcase studies that leverage these techniques to enable
discovery of disease-related knowledge and illuminate molecular mechanisms of complex diseases.
After rigorous peer-review, a total of 14 outstanding articles were selected for this topic collection.
Below we highlighted six of them.

Huang et al. explored the causal effects of insomnia on bipolar disorder, major depression, and
schizophrenia in the European population using a two-sample Mendelian randomization approach.
They first collected GWAS summary datasets for each trait and conducted meta-analyses for each
trait to increase statistical power. The results of Mendelian randomization were further evaluated
using extensive complementarity and sensitivity analysis. Among these psychiatric disorders, they
found insomnia is causally associated with an increased risk of major depression, with an odds ratio
estimated as 1.408 (95% confidence interval (CI): 1.210–1.640, p = 1.03E-05) in the European
population. No causal association was observed for other traits. The study provides new evidence to
support the causal effect of insomnia on major depression and adds to a better understanding of the
relationship between sleep and psychiatric disorders.
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Hamidi et al. proposed a machine learning framework to
explore miRNA biomarkers and prediction for Ovarian cancer.
miRNAs play an important role in cancer progression. In this
study, the authors first used LASSO and Elastic Net for miRNA
feature selection. They found 10 miRNA’s as potential
biomarkers by comparing the expression levels in ovarian
serum cancer samples and normal samples. Furthermore, they
used multiple machine learning classifiers, including logistic
regression, random forest, artificial neural network, XGBoost,
and decision trees for ovarian cancer prediction. Experiments
demonstrated the accuracy of their proposed model. The
performance of the proposed models was further evaluated in
external datasets.

Cerebral ischemic stroke (IS) is a complex disease caused by
multiple factors, including vascular risk, genetic, and
environmental factors. Identifying the genes associated with IS
critical for understanding the biological mechanisms underlying
the disease. Liu et al. proposed a network representation learning
(NRL)-based method to identify the disease-related genes of
cerebral IS. The proposed method includes three key
components: capturing the topological information of the PPI
network, denoising the gene feature, and optimizing a support
vector machine (SVM) classifier to identify IS-related genes. The
evaluation showed that the proposed method performs better
than existing methods on IS-related gene prediction. In addition,
the case study also shows that the proposed method can identify
IS-related genes.

Recently, single-cell RNA sequencing (scRNA-seq) technology
has been used to measure RNA levels at single-cell resolution to
study biological functions. Xu et al. proposed an imputation
method based on semi-supervised autoencoders named
AdImpute. The method applies the cost function with
imputation weights to learn the latent information in the data
to achieve a more accurate imputation. The evaluation indicates
that AdImpute is more accurate than the other four publicly
available scRNA-seq imputation methods on the simulated and
real data sets.

Yang et al. tackled the issue of systematic selection bias in
Mendelian randomization. The authors proposed a new approach
that uses control exposures based on subject-matter knowledge to
triangulate the estimated causal effects vulnerable to selection
bias. The proposed approach can be used to assess credible MR
estimates in the presence of selection bias from selection of
survivors. The authors illustrate the application of their
method by validating MR estimates through a real example
investigating the potential association of transferrin with
stroke (including ischemic and cardioembolic stroke).

Park et al. developed an innovative approach for integrative
pathway analysis that leverages genome-wide association studies
summary statistics to construct genetic metabolomic scores

(GMSs) that are then used as components of pathways in a
hierarchical model that considers the structural relationships of
SNPs, metabolites, pathways, and phenotypes. The authors
applied their method to identify pathways associated with type
2 diabetes in the Korean population.

All the contributions in this special issue have been peer-
reviewed by no less than two professional domain experts. We
believe that the final compilation includes high-quality
publications that represent significant scientific progress that
will impact the relevant research communities. On this basis,
we have launched a second edition of this Research Topic which is
currently open for submissions.
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Visualization and Analysis of Gene
Expression in Stanford Type A Aortic
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Yan-Hong Li1,2,3†‡, Ying Cao4,5,6,7†‡, Fen Liu3,8†‡, Qian Zhao1,3‡, Dilare Adi3,8‡, Qiang Huo9‡,
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and Application, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China, 5 CAS Key Laboratory
of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,
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University, Nanning, China, 8 State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases
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Affiliated Hospital of Xinjiang Medical University, Urumqi, China, 10 Xinjiang Medical University, Urumqi, China, 11 People’s
Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China

Background: Spatial transcriptomics enables gene expression events to be pinpointed

to a specific location in biological tissues. We developed a molecular approach for

low-cell and high-fiber Stanford type A aortic dissection and preliminarily explored and

visualized the heterogeneity of ascending aortic types and mapping cell-type-specific
gene expression to specific anatomical domains.

Methods: We collected aortic samples from 15 patients with Stanford type A aortic

dissection and a case of ascending aorta was randomly selected followed by 10x

Genomics and spatial transcriptomics sequencing. In data processing of normalization,

component analysis and dimensionality reduction analysis, different algorithms were
compared to establish the pipeline suitable for human aortic tissue.

Results: We identified 19,879 genes based on the count level of gene expression at

different locations and they were divided into seven groups based on gene expression

trends. Major cell that the population may contain are indicated, and we can find

different main distribution of different cell types, among which the tearing sites were

mainly macrophages and stem cells. The gene expression of these different locations
and the cell types they may contain are correlated and discussed in terms of their

involvement in immunity, regulation of oxygen homeostasis, regulation of cell structure

and basic function.

Conclusion: This approach provides a spatially resolved transcriptome− and tissue-

wide perspective of the adult human aorta and will allow the application of human fibrous
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Li et al. AAD and ST Analysis

aortic tissues without any effect on genes in different layers with low RNA expression
levels. Our findings will pave the way toward both a better understanding of Stanford
type A aortic dissection pathogenesis and heterogeneity and the implementation of more
effective personalized therapeutic approaches.

Keywords: spatial transcriptomics, aortic, Stanford type A aortic dissection, gene expression, bioinformatics

INTRODUCTION

Stanford type A aortic dissection (AAD) is the most common
thoracic aortic disease, which has a high degree of morbidity
and leads to extensive medical expenditure for survivors. It may
rapidly fatal if not diagnosed early and managed appropriately
(Guo et al., 2016). From the biomechanical viewpoint, the
mechanism of injury is based on the inability of the vascular wall
to withstand high shear stress that penetrates the intimal vessel
layer, resulting in blood flow to the intimal and medial layers or
disruption of the media layer (Yang et al., 2020). The pathological
features of aortic tissue are characterized by an enlarged and
degenerative medial layer, loss or dysfunction of vascular smooth
muscle cells (VSMCs), proteoglycan accumulation, and collagen
and elastic fiber cross-linked disorder and fragmentation (Oller
et al., 2017). The risk factors associated with the occurrence
and development of AAD include hypertension, dyslipidemia,
atherosclerosis, cigarette smoking, and male gender (Yang et al.,
2020). Although the major aortic cell types in the whole aorta
are well known (Dobnikar et al., 2018; Kalluri et al., 2019), the
heterogeneity and relative contribution of different vascular cells
in AAD are poorly understood.

Previous studies have demonstrated the reason for the tear
during aortic dissection by regular transcriptome analyses off
multiple pathways (Huang et al., 2018; Yang et al., 2018; Wang
et al., 2019). However, these studies have certain limitations in
accuracy. Based on single cell RNA sequencing (scRNA-seq), we
can only determine the average gene expression of the ruptured
tissue, and many details are lost. Identification of aortic cell-
type composition depends on anatomy, and methods such as
radiography and pathology may affect the reliability of the results.
How the cells of the intima, media, and adventitia are affected
and the role they play in the occurrence and development of the
disease need to be studied urgently using novel techniques.

Spatial transcriptomics (ST) is an approach that allows the
visualization and quantitative analysis of the transcriptome
with spatial resolution in individual tissue samples (Stahl
et al., 2016). By placing tissue sections on glass slides with
arrayed oligonucleotides containing positional barcodes, high-
quality cDNA libraries can be generated with precise positional
information for RNA sequencing. ST has been used to study
the mouse olfactory bulb (Stahl et al., 2016), breast cancer
(He et al., 2020), adult human heart tissues (Asp and Salmen,
2017), melanoma tissues (Thrane et al., 2018), prostate cancer
tissues (Berglund et al., 2018), gingival tissues (Lundmark et al.,
2018), mouse and human spinal cord tissues (Maniatis et al.,
2019), and model plant species (Giacomello et al., 2017). Asp
et al. (2019) used ST to reveal the comprehensive transcriptional
landscape of cell types populating the embryonic heart at

three developmental stages and mapped cell type-specific gene
expression to specific anatomical domains. They identified
unique gene profiles that corresponded to distinct anatomical
regions in each developmental stage using ST (Asp et al., 2019).
High-resolution spatial heterogeneity can be captured, and the
rich spatial information regarding unbiased gene expression for
cells and tissues can be retained in ST results, compared with
results of regular transcriptome analyses using bulk sequencing
or scRNA-seq (Gerlinger et al., 2012). The heterogeneity of gene
expression and spatial organization in the aorta may help identify
the underlying pathogenesis of aortic dissection. Considering
the particularity of aortic structure and cell composition, there
is still no suitable bioinformatics algorithm to analyze the ST
sequencing data of the aorta.

Here, for the first time, we provided an algorithm suitable
for aortic tissue and analyzed aortic tears simultaneously at
the tissue- and transcriptome-wide scales using the ST, which
allowed for the identification and spatial mapping of distinct
cell types, subpopulations, and cell states within heterogeneous
samples. We identified the top 20 spatially related genes and
identified major cell types, including smooth muscle cells
(SMCs), fibroblasts, endothelial cells (ECs), and infiltrated
immune cells (including macrophages, B cells, T cells, and
dendritic cells). Further analysis showed that different types
of cells showed different enrichment of signal pathways. For
example, cluster M4 was mainly composed of macrophages and
Kupffer cells, and the signaling pathways were mainly related
to immunity and apoptosis. The establishment of these profiles
is the first step toward obtaining an unbiased view of aortic
dissection and can serve as a reference for future studies on AAD.

MATERIALS AND METHODS

Ethics
AAD participants gave written informed consent, permission
for tissue analyses, and consent for the collection of relevant
clinical data before enrolling in the study as approved by
the ethics committee at the First Affiliated Hospital of
Xinjiang Medical University (Urumqi, China) (20150006-8). All
procedures were conformed to the principles outlined in the
Declaration of Helsinki.

Participants
We recruited 15 adult patients with AAD (along with their
demographic information such as age, sex, etc.) admitted to
the First Affiliated Hospital of Xinjiang Medical University
(Urumqi, China) from September 1, 2019, to July 1, 2020. The
patients were diagnosed through history, findings of physical
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examination, and imaging findings according to currently
accepted standards (Erbel et al., 2014). Patients were excluded
if they had Marfan syndrome, Ehlers Danlos syndrome, Loeys-
Dietz syndrome, Turner syndrome, congenital bi-leaflet aortic
valves, aortic aneurysm, traumatic dissection, or other connective
tissue disorders, and those aged < 18 years.

Collection and Preparation of Aortic
Tissue
The aortic sample was rapidly collected within 30 min after
excision. The specimen was rinsed at least five times in precooled
saline; then, the thrombus and redundant tissues were removed
immediately using eye scissors and sterile tweezers on a clean
Petri dish (placed on dry ice). Tissue samples were then sliced into
approximately 6 × 6 mm sections, embedded in optimal cutting
temperature compound (OCT, Sakura #4532), and frozen in
isopentane (2-methylbutane, Sigma, 270342), followed by storage
in liquid nitrogen for further use. The entire procedure was
performed within 10 min. The fresh snap-frozen dissection aortic
tissue was cryosectioned cut vertically (10 µm) using a Leica
CM1950 cryostat (Leica, 14047742459) at –10◦C. Typically, we
should ensure the reproducibility of the same type and good
quality of tissue morphology. RIN should be≥7 and RNA quality
assessment should be done before placing the tissue sections on
visium spatial slides (Supplementary Figure 1).

Preparation of Quality Control Slide
The reagent kits included visium spatial tissue optimization slides
and visium spatial gene expression slides, which were used for
tissue optimization and spatial gene expression, respectively. For
quality control experiments, poly-T20VN oligonucleotides (IDT)
were uniformly spread onto Code link-activated microscopic
glass slides according to the manufacturer’s instructions (Stahl
et al., 2016; Giacomello et al., 2017). Visium spatial tissue
optimization slides contained eight capture mRNA areas with
oligonucleotides, and each capture area was defined by an etched
frame. Each probe had poly (dT) primers to allow the production
of cDNA from polyadenylated mRNA. These probes did not
contain a spatial barcode. The visium spatial gene expression
slide had four capture areas (6.5 × 6.5 mm), each defined by
a fiducial frame (fiducial frame + capture area is 8 × 8 mm).
Every capture area contained ∼5,000 gene expression spots of
RT-primers with unique barcode sequences. Each spot had a
diameter of 50 µm (corresponding to a tissue domain). The
center-to-center distance was 100 µm.

Surface primer for spatial arrays:
5′-CTACACGACGCTCTTCCGATCT-

NNNNNNNNNNNNNNNN-NNNNNNNNNNNN-
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN-3′

Tissue Optimization (TO)
Fixation, Staining, and Imaging
The transported slides were placed on dry ice at –80◦C and
placed on a slide with tissue on a pre-warmed 37◦C thermocycler
adapter (10x genomics, 3000380). Then, the fixed tissues were
fixed using ice-cold 100% methanol (Sigma, 34860) for 30 min

and were stained with hematoxylin (Agilent, S330930-2) and
eosin Y (Sigma, HT110216) (H&E) diluted 1:9 in 0.45M pH
6.0 Tris-buffer (Fisher, BP152-500) for 7 min and 1 min at
room temperature, respectively. Between H&E staining, the glass
slides were briefly dried, and bluing buffer (Agilent, CS70230-
2) was added and washed off using RNase – and DNase – free
Milli-Q water for 2 min. Then, we incubated the slide on the
thermocycler adaptor with the thermal cycler (Thermo Fisher
Scientific, 4375786) lid open for 5 min at 37◦C and proceed to
bright field imaging using a Leica SCN 400 slide scanner.

Tissue Permeabilization and Fluorescent cDNA
Synthesis
The TO slides were placed in the slide cassette (10x genomics,
3000433) which was assembled using a slide alignment tool
(10x genomics, 3000433) and was incubated with 70 µL
permeabilization enzyme (10x genomics, 2000214). The positive
control well includes reference RNA without any tissue. The
negative control well (D2) has a tissue section not exposed to
permeabilization reagents. Permeabilization times refer to the
length of time (30, 24, 18, 12, 6, 3 min) tissue sections are exposed
to permeabilization reagent. After permeabilization, we prepared
a fluorescent reverse transcription (RT) master mix (nuclease-
free water, Ambion, AM9937; RT reagent C, 10x genomics,
2000215; template switch oligo, 10x genomics, 3000228; reducing
agent B, 10x genomics, 2000087; RT enzyme D, 10x genomics,
20000216) on ice according to manufacturer’s instructions, and
placed a thermocycler adaptor in the thermal cycler 45 min for
fluorescent cDNA synthesis.

The template switch oligo was as follows:
5′-AAGCAGTGGTATCAACGCAGAGTACATrGrGrG-3′

Tissue Removal and Slide Imaging
Tissue removal was performed using a tissue removal mix
(tissue removal buffer, 10x genomics, 2000221, tissue removal
enzyme, 10x genomics, 3000387) which was incubated in the
thermal cycler based on protocol. Then, we removed the slide
from the slide cassette and centrifuged it for 30 s in a slide
spinner. Fluorescence imaging was performed to all captures
areas together under the same fluorescence settings using a Leica
DMi8 fluorescence microscope.

Visium Spatial Gene Expression
Fixation, Staining, Imaging, Permeabilization, and RT
The sections were fixed, stained, and bright field imaging was
performed as described previously; the process of tissue removal
was skipped. Next, we added the permeabilization enzyme on
top of the tissue, which was determined by the optimization
conditions. RT mixtures used for spatial arrays (intended for
library preparation and sequencing) were different from the RT
mixtures used for the optimization of spatial arrays (intended for
library preparation and sequencing). Then, the second strand mix
was prepared (second strand reagent, 10x genomics, 2000219;
second strand primer, 10x genomics, 2000217; second Strand
enzyme, 10x genomics, 2000218) on ice and added to the
slide incubated on the thermal cycler. Subsequently, 0.08M
KOH (Sigma, 1002868722) was added to denature the second
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strand, which was then collected. To determine the number
of PCR cycles required for indexing, 1 µL of the purified
cDNA was mixed with 9 µL of qPCR mixtures (KAPA SYBR
FAST qPCR master mix, KAPA Biosystems, KK4600; cDNA
primers, 10x genomics, 2000089). Then, qPCR amplifications
were performed using a qPCR instrument (Applied Biosystems,
4471087), followed by cDNA amplification and quality control,
purification, and transfer to separate tubes. After capturing
and reverse-transcribing mRNA, we constructed a spatial gene
expression library.

The second strand primer was as follows:
5′-AAGCAGTGGTATCAACGCAGAG-3′
cDNA primers:
Forward primer: 5′-CTACACGACGCTCTTCCGATCT-3′
Reverse Primer: 5′-AAGCAGTGGTATCAACGCAGAG-3′

Spatial Library Construction and Sequencing
A spatial library was prepared with 10x genomics following
the user guide provided. First, fragmentation, end repair, and
A-tailing were performed. The obtained cDNA profile could
vary; thus, a fragmentation mix had to be prepared on ice.
The amplified-cDNA was then fragmented, ligated with the
adapter and sample index, and selected using SPRI beads
(Beckman Coulter, B23318) to an average size of 300 bp. The
quality of the libraries was evaluated at two points during
the process: first, by analyzing the fragment lengths and
library concentration after ligation cleanup, and second, by
analyzing the library amplifiability after the final cDNA synthesis
on an Agilent bioanalyzer high-sensitivity chip (Jemt et al.,
2016). The constructed library was sequenced on an Illumina
Nova 6000 platform.

Processing and Mapping of ST Raw
Reads
Paired end 150 bp sequencing was performed using Illumina’s
NOVA 6000 platform. The library was sequenced using
paired-end 150 bp paired-end reads using Illumina’s Nova
6000 platform. Following demultiplexing the Illumina
sequencer’s base call files (BCLs) for each flowcell directory
and converted BCLs files to FASTQ files using Bcl2Fastq2
Conversion Software (v2.20). Subsequently, the converted
FASTQ file was subjected to quality control, and low-
quality reads (including reads with higher N content) were
filtered out. Then, the read 1 and read 2 FASTQ files were
trimmed using Cutadapt (version 1.16). The read 1FASTQ
file was trimmed to only the linker sequence with a length
of 28 bp, and the read 2FASTQ file was only 120 bp in
length; the rest files were deleted because they did not require
subsequent analysis. To generate spatial feature counts for
a single library using automatic fiducial alignment and
tissue detection, the trimmed reads were processed with
the Space Ranger pipeline (version 1.0.0) with the following
arguments: “–sample V19N13_040_A1_20200728NC –slide
V19N13-040 –area A1 –localcores 20 –localmem 64 –image
mmexport1596289888734.jpg.”

To compare the results of automatic alignment and
manual alignment, a tissue assignment json file was

generated in Loupe Browser, and Space Ranger count was
run with “–sample V19N13_040_A1_20200728NC –slide
V19N13-040 –area A1 –localcores 20 –localmem 64 –image
mmexport1596289888734.jpg –loupe-alignment V19N13-040-
A1.json” arguments. The reference genome used in the two Space
Ranger runs was the GRCh38 v93 genome.

Selection of Methods for ST Data
Analysis
The gene-spot matrices generated after ST data processing
and Visium samples were analyzed using the Seurat package
(version 3.1.3) in R (Butler et al., 2018). To explore the
differences in normalization methods, SCTransform and log
normalization were performed separately, another covariate
was used to calculate the correlation of features that were
grouped into groups using the Group Correlation function
(settings: min.cells = 5, ngroups = 6), and the correlation
between their results and the number of UMIs was tested.
The results obtained by the normalization method with
better correlation were selected for PCA and ICA. Then,
the first 20, 30, and 50 elements analyzed by PCA and
ICA were selected for subsequent analysis. Clustering of
each spot is based on K-Nearest Neighbor algorithm. The
distance from each point to other points was calculated
first, and the shared nearest neighbor (SNN) graph was
constructed according to the distance between sample points.
Finally, the FindClusters function was used to determine
the cluster (FindNeighbors settings: reduction = “pca/ica,”
nn.method = “rann,” dims = 1:20/30/50, k.param = 20;
Find Clusters settings: resolution = 0.8, method = “matrix,”
algorithm = 1). For clustering and re-dimension-reduction
through uniform manifold approximation and projection
(UMAP) (Becht et al., 2018) and t-distributed stochastic neighbor
embedding (t-SNE) methods (van der Maaten and Geoffrey,
2008). The two methods of dimensionality reduction were
evaluated based on the clustering of spot types.

Identification of Cluster-Specific Genes
For each cluster that was identified, the differentially expressed
genes (DEGs) were determined in relation to all other spots.
A spatial cluster gene list was first generated for all genes
differentially expressed in ST clusters (average logFC > 0.25,
adjusted p-value < 0.05, and only return positive genes). The
mean expression of each gene was calculated across all spots
in the cluster to identify genes that were enriched in a specific
cluster. Each gene from one cluster was compared with the
average expression of the same gene from the spots of all other
clusters. The genes were ranked according to their expression
differences, and the DEGs with the largest changes in each cluster
were checked and visualized using heat maps.

Identification of Cell Types
Two databases have been used to identify cell types at different
levels. First, the CellMarker database (Zhang et al., 2019) was
used as a reference to classify the cell subpopulations from the
annotations of cluster-specific genes. All human cell types and
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their corresponding marker genes in the CellMarker database
were downloaded and integrated into a dataset. Then, the
cluster-specific genes in the sample performed a hypergeometric
test on the dataset with the help of the enricher function in
the clusterProfiler (version 3.12.0) (Yu et al., 2012a) (settings:
p-value Cutoff = 0.005). The different cell types annotated
for each cluster were finally determined according to their
enrichment factors and artificial corrections. Then, the count of
gene expression on each spot was compared with the Human
Cell Landscape (HCL) database using the scHCL function in
order to identify the Cell types that might be contained at
different locations of the sample (Han et al., 2020) (settings:
numbers_plot = 10).

Gene Functional Annotation
For the DEGs identified in each cluster, cluster Profiler (version
3.12.0) (Yu et al., 2012b) was used to perform Gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway annotation, which supports statistical analysis and visual
expression of the functions of genes and gene clusters. The
Cluster Profiler package provides enriched GO and enriched
KEGG functions to perform enrichment tests for gene ontology
terms and KEGG biological pathways based on hypergeometric
distribution. To reduce the false discovery rate in multiple testing,
we chose FDR-corrected p-value less than 0.05 as the threshold.

Multi-Color Immunofluorescence
Staining
The tissue was collected and prepared for the OCT-embedded
frozen tissues and 8-mm-thick serial sections were prepared for.
The confirmation of cell types was analyzed using Opal 7-Colour
Manual IHC Kit (PerkinElmer, United States) according to the
manufacturer’s protocol. In brief, antigen was retrieved by AR9
buffer (pH 6.0, PerkinElmer, United States) and boiled in the
oven for 15 min. After a pre-incubation with blocking buffer at
room temperature for 10 min, the sections were incubated at
room temperature for 1 h with mouse anti-human CD31 (Abcam
9498, United Kingdom, 1:200), rabbit anti-human CD163
(Abcam 9519, United Kingdom, 1:1000), rabbit anti-human
CALD1 (Abcam 32330, United Kingdom, 1:300), rabbit anti-
human HLA-DR (Abcam 92511, United Kingdom, 1:100), rabbit
anti-human ACTA2 (Abcam 124964, United Kingdom, 1:300),
and mouse anti-human ELN (Abcam 9519, United Kingdom,
1:100). A secondary horseradish peroxidase-conjugated antibody
(PerkinElmer, United States) were added and incubated at room
temperature for 10 min. Signal amplification was performed
using TSA working solution diluted at 1:100 in 1× amplification
diluent (PerkinElmer, United States) and incubated at room
temperature for 10 min. The other validations by multi-color IHC
were performed using the same protocols with different primary
antibodies as follows. The multispectral imaging was collected
by Mantra Quantitative Pathology Workstation (PerkinElmer,
CLS140089) at 20 × magnification and analyzed by In Form
Advanced Image Analysis Software (PerkinElmer) version 2.3.
For each section, a total of 5–10 high-power fields were taken
based on their tissue sizes.

RESULTS

Patient and Tissue Spatial Gene
Expression Information
We randomly selected one AAD patient (involving ascending
aortic) with hypertension (male, 50 years old) from the first
affiliated hospital of Xinjiang Medical University, who was
well characterized and had a typical phenotype of AAD based
on computed tomography angiography (CTA) results. The
demographic data, operative details, and microarray data of the
tissue are presented in Supplementary Table 1. Supplementary
Table 1 summarizes the data of the patient. Overall, 19,879
genes within 1,873 spot regions were analyzed in one tissue
section, yielding a mean of 181,097 reads/spot with median
gene and median unique molecular identifier (UMI) counts of
2514, respectively. The number of cells located within the tissue
domain (each spot with a diameter of 50 µm) is estimated
range from 3–10 for aortic section depending on if cells are
longitudinal- or cross-sectioned. Longitudinally oriented aortic
cells can potentially cover more than one single feature and
numerous features contain different cell types such as ECs, SMCs,
and fibroblasts. A schematic diagram of the experimental design
and data analysis is shown in Figure 1. We compared different
algorithms for the steps of normalization, component analysis,
and dimensionality reduction analysis. According to the final cell
annotation results, we evaluated the algorithm combination and
created a pipeline suitable for analysis of human aortic tissues.

Quality Control and ST Sequencing Data
Analysis in Aortic Dissection Tissue
We chose three indicators—the count of RNA, count of
genes, and percentage of mitochondrial genes (nCount_RNA,
nFeature_RNA, and percent mitochondrial)—to demonstrate
the reliability of data; the spatial UMIs and gene distribution
are shown in Figures 2A–H. Among them, some cells with
>10% mitochondrial reads were filtered, and dead cells were
removed (Ji et al., 2020; Figures 2G,H). The correlation between
UMIs and genes obtained by two different normalization
methods—SCTransform normalization and log normalization.
The box plot of genes was divided into six groups according to
their average expression levels (Figures 2I,J), which indicated
that the SCTransform normalization method was better for
fully normalizing highly expressed genes. Similarly, we applied
two widely employed component analysis methods—principal
component analysis (PCA) and independent component analysis
(ICA)—for the first dimensionality reduction analysis. The first
principal component heat maps of the top 30 genes obtained
by PCA and ICA are shown in Figures 2K,L. We observed
that only 12 genes were found to be co-expressed by the first
principal component of the two methods, indicating that PCA
and ICA provided significantly different results. The merits
and demerits of two component analysis methods cannot be
assessed at the genetic level alone. Therefore, the results of the
two component analysis methods were selected for t-SNE and
UMAP dimensionality reduction analysis. We also compared
the effect of dimension selection of component analysis on the
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FIGURE 1 | Study design for ST in aortic dissection. Tissue of aortic dissection from the patient was dissociated and embedded in OCT; a fresh thin tissue section
was obtained from cryosection, which was attached and fixed to each spot on the microarray slide; the library was sequenced and further processed to map the
expressed genes to the spatial locations at which they were expressed; establishment of data analysis methods and visualization of cell populations.

results by selecting the top 20, 30, and 50 components. Finally,
the optimal combination of the component analysis method
and the dimensionality reduction algorithm was determined
according to annotation of cell type. ICA results are shown in
Figure 2M, and the first 20, 30, and 50 principal components
were selected for t-SNE dimensionality reduction processing.
The first row is the t-SNE clustering result, and the second
row provides a visualization of the corresponding position of
the clustering result on the tissue. Dims 20, 30, and 50 were
divided into 10, 9, and 8 clusters after dimensionality reduction,
respectively. The smaller the number of components selected,
the more clusters were obtained on the spots. The results of

t-SNE dimensionality reduction analysis of PCA are shown in
Figure 2N. ICA and PCA provided the same number of clusters
when the number of dims was confirmed. However, we found
that PCA exhibited less overlap and better cluster independence
than ICA in the visualization results. Similarly, we also selected
different numbers of dims for UMAP clustering analysis of the
two component analysis methods. The results of dims 30 are
shown in Figures 2O,P. The UMAP dimensionality reduction
methods of dims 20 and dims 50 are shown in Supplementary
Figure 2. The visualization results of t-SNE may exaggerate the
differences between cell populations and ignore the potential
associations between these cell populations (Figures 2N,P).
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FIGURE 2 | Quality control and ST data analysis. (A,B) The number of nCount_RNA is range of 10,000–20,000, with the maximum not exceeding 60,000, and
spatial UMIs distribution is concentrated in the aortic of tunica media and external. (C,D) The number of genes is mostly between 1,000 and 7,500. Combined with
the distribution of UMIs data, the region with a high number of genes also had a high number of UMIs. (E,F) The percentage of mitochondria is low, between 1 and
12%. Correspondingly, the distribution of spatial UMIs in the tunica media and external is also rare. (G,H) Cells with >10% mitochondrial reads are filtered, and
display distribution of spatial UMIs. The colors from blue to red represented increasing number of expression. (I,J) Comparison of normalization methods (log and
SCTransform normalization), the SCTransform normalization is superior to Log Normalization. (K,L) Comparison of compositional analysis (PCA and ICA). (M–P)
Comparison of dimensionality reduction and clustering methods, among them, (M,O) are under the ICA condition, the distribution of t-SNE (dims 20, 30, 50) and
UMAP (dims 30); (N,P) are under the PCA condition, the distribution of t-SNE (dims 20, 30, 50) and UMAP (dims 30). Overall, PCA dims 30 combined with UMAP
dimensionality reduction cluster analysis is an appropriate method. The Clusters are labeled using different colors.

Frontiers in Genetics | www.frontiersin.org 7 June 2021 | Volume 12 | Article 69812413

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-698124 June 22, 2021 Time: 17:1 # 8

Li et al. AAD and ST Analysis

Subsequent cell type annotation results also showed that the effect
obtained by PCA dims 30 combined with UMAP dimensionality
reduction cluster analysis was more consistent with the actual cell
type distribution. The high quality of data guaranteed cell- and
gene-level downstream analysis.

Aortic Tissue ST Sequencing Identifies
Spatial Locations of Genes in the Human
Aorta
The PCA combined dimensional reduction method of UMAP
was performed and the first 30 principal components were
annotated to obtain nine clusters in three layers of the aortic
sections. We analyzed the intersection of significant genes among
different clusters and found that the number of intersection
genes were relatively small (Figure 3A). The number of genes
expression in each cluster is shown in Figure 3B. The results
showed that cluster 8 had the highest number of significant
genes, followed by cluster 2; clusters 4 and 6 had a similar
counts of significant genes, and cluster 1 had the lowest
number of significant gene (Figure 3B). The top five DEG
of these clusters, according to the detected mRNA transcript
amounts, are displayed in a heat map (Figure 3C). Genes with
significantly different expression were used for cell annotation.
Then, we displayed the top 20 genes that were spatially related
in AAD aortic tissue, as shown in Figure 3D. Among these
spatially related genes, six genes (MGP, THBS2, AQP1, ADH1B,
CFH, and CD74) were highest expressed in the intima, which
are associated with the regulation of human ECs calcification
and inflammation. DEPP1, IGFBP7, ADIRF, CLU, MT1X, and
AEBP1 were highly expressed in both the tunica intima and
media, and the proteins encoded by these genes may play a
significant role in smooth muscle cell differentiation, migration,
and apoptosis. Four genes (MT-CO2, MT-CO3, IGFBP5, and
IGFBP3) were highly expressed in both the tunica media and
adventitia, which have role in stem cell differentiation. Three
genes (IGKV1D-13, SAA1, and BGN) were highly expressed in
the adventitia, in which high levels of the proteins are associated
with inflammatory diseases. One gene (MT-ND3) was highly
expressed in the three layers of the ascending aorta; this gene may
act as a transcriptional regulator for numerous genes, including
some genes involved in cell metastasis and migration, and are
involved in cell cycle regulation.

Distribution of Cell Types at Different
Location
In order to determine cell types, we combined CellMarker and
HCL database to annotate the data and compare the obtained cell
types. All human cell types and marker genes in the CellMarker
database were downloaded as the basis for cell identification.
Cell types identified by CellMarker database are shown in
Supplementary Figure 3; the genes for each cluster are listed
in the Supplementary Table 2, and the position of cluster is
displayed in Figure 4A. We found that cluster 0 and cluster
7 cell types were very similar, and cluster 5 and cluster 8
cell types were very similar. Then, the 9 clusters were merged
into 7 clusters and renamed them as cluster intima (clusters

I1 and I2/M2), cluster media (clusters I2/M2, M1, M3, and
M4), and cluster adventitia (clusters A1 and A2) by manual
annotation. Subsequently, the gene expression count on each
spot was compared with the HCL database and the distribution
and score of possible cell types on the spot were obtained. The
major cell types (ECs, SMCs, fibroblast, and immune cells) are
shown in Figure 4B. We found ECs located in cluster I2/M2
on the tunica intima layer, SMCs, fibroblast and macrophage
located in the tunica media layer (clusters M1, M3, and M4),
and ECs, fibroblast located in clusters A1 and A2 on the tunica
adventitia layer. According to the HCL database, we identified the
cell types and calculated its number, and found the ECs, SMCs,
fibroblast, and immune cells account for a large proportion
(Figure 4C), which was consistent with the CellMarker database.
The accuracy of cell type identification was further confirmed
by multi-color immunofluorescence (Figure 4D). The function
of cell types in AAD can be inferred: cluster I1 and cluster
I2/M2 cells both displayed a high correlation with differentiation,
regeneration, and nerve conduction functions, such as progenitor
cells, astrocytes, and microglial cells, and so on. Cells from
cluster I2/M2, M1, M3, and M4 showed a high level of support
and immune function, which were located in the tear position.
Clusters M1 and M2 also contained numerous fibrous cells
and Leydig cells, which maintain the structure of the aorta.
We identified numerous types of stem cells and progenitor
cells, which were closely related to vascular remodeling in
clusters I1 and A1.

GO and KEGG Analysis of DEGs in
Spatial Expression
After confirming the cell types in the pathological state, we
next applied bioinformatics tools to determine the biological
pathways affected by type A aortic dissection. We used GO
gene annotation to identify cellular components and biological
signals that were correlated with the spatial location in each
cluster (Figure 5A). Pathway enrichment analysis was performed
using KEGG to annotate the function (Figure 5B). The GO
and KEGG function annotation results indicated that different
types of cells at different locations showed different functional
enrichment of signal pathways. For instance, cluster I1 and
cluster I2/M2 were distributed in the tunica intima, which
were involved in the regulation of oxygen levels and cellular
activity in biological process. KEGG analysis enriched several
pathways involved in the oxygen regulation of cell cycle
activities and immunity moderation in the two clusters. We
observed that the genes in cluster M1 and cluster I2/M2 in
tunica media regulated muscle contraction and extracellular
matrix activity. Similarly, pathways (vascular smooth muscle
contraction, ECM-receptor interaction) enriched by KEGG
were related to a highly specialized cell whose principal
function was contraction. Cells in cluster M3 and cluster M4
were located in the tunica media of the tear, and involved
numerous immune cells such as neutrophils, and T cells and
so on in biological process. Interestingly, KEGG also enriched
some pathways related to antigen processing and presentation,
apoptosis, and focal adhesion, which play essential roles in
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FIGURE 3 | Molecular characteristics related to spatial location in ascending aortic dissection tissue. (A) Correlation clusters of overlapping DEGs. The column
length represents the number of overlapping genes. (B) The bar chart represents the number of genes in each cluster. (C) The heat map displays the top five (by
average log [fold change]) genes in each cluster. The X-axis represents the distribution of intersection clusters; Y-axis represents the number of intersection genes.
(D) The top 20 genes of location and expression level were in each layer. Violin plots of gene expression levels show different clusters with different colors.

cell motility, cell proliferation, cell differentiation, regulation of
gene expression, and cell survival. GO analysis showed that the
genes involved in neuropathic diseases and vascular functions

were present in clusters A1 and A2. Likewise, genes involved
in several neuroregulatory pathways that contribute to neuron
degeneration, mitochondrial dysfunction, and oxidative stress
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FIGURE 4 | Cell types identification of aortic dissection tissue. (A) The spatial location distribution of cell types in each cluster. Red region represents each cluster.
(B) Major cell types by CellMarker database. (C) The major cell types and its number calculated by HCL database. (D) Verify the accuracy of cell types by multi-color
immunofluorescence.

in the tunica adventitia were observed by KEGG enrichment
analysis. In summary, the GO database screened for genes
involved in biological processes in cells, and their functions were
completely consistent with KEGG enriched pathways.

Visualized Gene Expression Patterns in
Aortic Dissection Tissue
We retrieved 30 genes related to aortic dissection, and displayed
the top 16 genes closely related to location information based on

gene expression higher than 1.5, which are shown in Figure 6.
The visual gene expression profile shows that, six genes were
highly expressed in three layers—TAGLN, ACTA2, CD44, FBN1,
MMP2, and LOX; three genes were highly expressed in the
tunica intima and media—CD68, MYH11, and MYLK; and seven
genes were highly expressed in the tunica adventitia—ADAMTS1,
ADAMTS4, CS, FKBP11, MVP, PTX3, and STAT3. The genes
closely associated with the pathogenesis of aortic dissection were
also searched (Akutsu, 2019), and the aortic dissection tissue
presents top 22 and top 21 genes of the location information
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FIGURE 5 | Analysis of GO and KEGG enrichment of clusters in ascending aortic dissection tissue. (A) Analysis of genes enriched by GO terms (biological
processes, cellular component, molecular function) (p. adjust) in each cluster. The function is reflected by z-score and up color-coded from red to blue. (B) KEGG
analysis for hallmark genes of enriched pathways in each cluster. The gradient color represents the P-value; the size of the black spots represents the gene number.

based on the gene expression higher than 1.0 in Figure 6,
respectively. We found that genes related to hypertension—
such as ACE, ANG, CAD, BMPR2, and other genes—were
also significantly expressed in ascending aortic dissection tissue
reported in the literature. Among these genes, expressed in all
three layers of the aorta were PTEN, PKD2, WNK1, CTNNB1,
ROCK2, APOE, SSB, HGS, and BMPR2. The genes expressed in
the tunica intima and media of the aorta were CP, PVR, and C3.
The genes expressed in the tunica adventitia of the aorta were
FABP4, FH, ASL, CXCR4, MVD, APOL1, SCD, CAD, and ACE.
Medical history was reviewed and showed that the patient had
hypertension upon admission. We also found that atherosclerotic
genes were expressed in the three layers of the ascending aorta:
ABCA1, LDLR, CD40, APOE, TLR2, HMGB1, CCL2, UBA1, and
ADAMTS4; genes that were highly expressed in the tunica intima
and medial were ALDH2, CD47, TIMP3, and NEXN, and genes
that were highly expressed in the tunica adventitia were CAD,
CD36, TLR4, FH, RBP4, ACE, ADAM10, and VLDLR. Combined
with the patient’s history, we found that hypertension did cause
aortic dissection, and atherosclerosis was an important risk factor
for aortic dissection, a result consistent with those of previous

studies. However, genes associated with diabetes, inflammation,
oxidative stress, and dyslipidemia were less expressed in the
aortic dissection. The genes position information of these disease-
causing factors in the aortic dissection tissue is listed in the
Supplementary Figure 4.

DISCUSSION

AAD is a severe vascular disease with high mortality and limited
therapeutic options (Nienaber and Clough, 2015). Understanding
the biological functions, networks, and interactions of the
different cell types that regulate aortic and AAD development
requires both cellular information and a spatial context (Asp
et al., 2019). Consequently, a visium spatial gene expression
solution has been proposed to the study human aortic dissection.
Here, for the first time, we provided a pipeline for aortic
tissue separation and data quality control of aortic cell types
through ST and showed that the pipeline can be applied to
human fibrous aortic tissues with low RNA expression levels
in different layers. We also preliminarily depicted a molecular
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FIGURE 6 | Expression of highly expressed genes in dissection-related pathogenic factors in aortic dissection. Aortic dissection has reported the expression of
highly expressed genes (hypertension, atherosclerosis) in dissection tissues of pathogenic factors. ST profiles of hypertension and atherosclerosis are listed.
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landscape for ascending aortic dissection of the three layers of
the aorta. Furthermore, we displayed the positional information
of genes related to pathogenic factors in the aortic tissue and
elaborated on the expression patterns of signal pathways in
different aortic cell clusters.

The most challenging issue with the visium spatial gene
expression solution is the total RNA extraction and fluorescence
capture of the ascending aorta tissue (compared with other
human tissue types) because the vascular tissue contains a low
density of cells and a large proportion of fibrous tissue, due
to which performing experiments becomes difficult. Rigorous
precautions must be taken to avoid degradation of RNA during
its dissociation, thereby impairing both RNA quality and yield.
A further complication is that in standard RNA-seq, whole
tissue biopsies are homogenized and average representations
of expression profiles within the entire sample are obtained.
Consequently, information on spatial patterns of gene expression
is lost and signals from subpopulations of cells with deviant
profiles, such as those with low-level gene expression in the tear
and dysfunctional tunica medial, are obscured. To overcome
these deficiencies, we aimed to analyze the gene expression
in different layers of human AAD tissues using a novel
ST sequencing, which allows more refined analysis of gene
expression in a tissue section. We covered 1,873 spot, detected
19,879 genes, and simultaneously associated gene expression with
specific cell types.

Besides, different computational methods were compared in
our analysis process to identify the best processing pipeline.
To our knowledge, because of the high dimensionality of
ST data, differences in gene length and genome coverage,
and experimental errors in processes such as cell lysis and
RT, the standardization of preliminary data is critical to the
interpretation of subsequent analysis results. Figures 2I,J show
the correlation between each gene and the number of UMIs.
We grouped the genes according to their mean expression
and boxplots of these correlations. Log-normalization failed to
adequately normalize the genes in the first four groups, which
indicates that technical factors continue to affect the normalized
expression estimates of highly expressed genes. On the contrary,
SCTransform normalization substantially reduces this effect. The
normalized data were analyzed by PCA and ICA. PCA assumes
that the original components are unrelated to one another and
orthogonal, and ICA assumes that the original components are
independent of one another. Both were used to identify the
cell types contained in the populations. To avoid overcrowding
among clusters and obtain the optimal cell clustering, PCA and
ICA dimension-reduction should be performed by clustering
and re-dimension-reduction analysis using t-SNE and UMAP
algorithms. Figures 2N,P show that the UMAP algorithm retains
more global structures than t-SNE, especially the continuity
between cell subsets. The specific pipeline enables the aortic
histomorphology to map the corresponding spatial location more
effectively according to the results of cell annotation.

The artery includes an abundance of multifunctional
cell populations, with each of them distinctly involved in
cardiovascular diseases, such as atherosclerosis and aortic
dissection. Visium spatial gene expression solutions cannot reach

the resolution of a single cell, which is an inevitable technical
problem. We can only classify genes according to the gene
expression pattern, and then describe the cells that may be
contained in each group according to the existing marker genes.
Therefore, two databases were used to identify the cell types and
their accuracy was verified by multi-color immunofluorescence.
We first presented an appropriate approach to visualize the
spatial transcriptional atlas of cell types. Hence, individual
transcriptomes received from each feature will provide spatial
gene expression profiles. We then identified their heterogeneity
in human ascending aortic dissection, which enabled the
analysis of various cells corresponding to specific genes, location
distribution, and functions in the tissue section. Various studies
have used scRNA-seq to delineate the heterogeneity of vascular
cells, including VSMCs (Dobnikar et al., 2018), ECs (Kalluri
et al., 2019), macrophages (Cochain et al., 2018), and aortic
adventitia cells (Gu et al., 2019) in healthy and diseased state
of arteries. The ST sequencing data were analyzed using the
combined SCTransform normalization, PCA dim 30, and UMAP
dimensionality reduction clustering method to annotate cell
types. We provided characteristic changes in the three major
vascular cell types (vascular structural correlation cells, vascular
development correlation cells, and immune cells) according to
distinct functions in seven clusters in the three aortic layers.
Consistently, both vascular resident cells, including SMCs,
fibroblasts, and ECs, and infiltrating immune cells, including
macrophages, B cells, T cells, and dendritic cells, were observed
(Hadi et al., 2018). In the tunica intima, we identified many
granulosa cells, microglial cells, and ECs, which were different
from those in healthy aorta. This is associated with inflammatory
infiltrating of the arterial intima, weakened vascular walls,
degradation of the cytoplasmic matrix, and endothelial cells
eliciting an immune response that regulates blood flow and
recruits immune cells. There is a need for complementary
research in the field to further highlight and compare the results
with those from other locations in aorta. In the tunica media, the
cell types identified were mainly SMCs and VSMCs, which have
specialized functions of maintaining a stable vascular structure.
These results are similar to those reported by Zhao et al. (2020).
Based on the characterized transcriptomic profile, immune cells
accounted for more than 80% of the total cells in the tear of tunica
media, which might have important functions in cell activation
in response to shear stress of blood pressure. Consistent with the
results in the heart, healthy large blood vessels appear to have
more endothelial cell heterogeneity, whereas mural cells exhibit
less transcriptional variability (Chavkin and Hirschi, 2020).
We also identified numerous stem cells; it is also possible that
adventitial stem cells or myofibroblasts may transdifferentiate
into a contractile phenotype and migrate into the tunica media
(Pedroza et al., 2020). Adding another layer of diversity to the
cellular landscape of tunica adventitia, gonadal endothelial cells
and neuronal cells were detected by ST sequencing despite
the rarity of resident macrophages, which attract immune
cells. The largest population of cells was of stem cells, which
control and maintain cell regeneration and play an important
role in angiogenesis and remodeling (Baron et al., 2018;
Brown et al., 2018).
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In the diseased state, these adaptive changes do not return
to baseline levels but instead initiate pathological vascular
alterations observed with AAD. We revealed that DEGs included
those related to cellular activity (AEBP1, ADIRF, and IGFBP5),
inflammation (MGP, BGN, and SAA1), and neurons (CLU, MT-
CO2, and ADH1B), as well as the genes and feature signaling
pathways for each cluster. The KEGG pathway annotation
showed that all DEGs were significantly enriched in multiple
pathways, including 15 in the tunica intima (clusters I1 and
I2/M2), 21 in the tunica media (clusters M1, I2/M2, M3, and M4),
and 20 in the tunica adventitia (clusters A1 and A2). They play
an important role in the process of VSMCs loss or dysfunction,
proteoglycan accumulation, and collagen and elastic fiber cross-
linked disorder and fragmentation. Additionally the results were
consistent with that observed for the heterogeneity of cell type
functions, which serves as a direct evidence for subsequent study.
Preliminary result demonstrating the pathways suggests that
AAD is among the complex mechanisms through which they
participate in vascular injury repair and thus is a potentially
interesting field.

There were some limitations in our study. First, as this
study contains a limited number of subjects no conclusions
about AAD disease progression can be made. More samples
are required to elaborate potential mechanism underlying the
interactions between cells and aortic dissection. Second, while
ST sequencing permits simultaneous characterization of cell type
within the aorta, this data provides a limited view of the true
functional changes in AAD pathogenesis that are undoubtedly
affected by cellular processes other locations of aorta Other
positions are required to enhance the reliability of the results,
including aortic arch, the left common carotid and the left
subclavian artery.

CONCLUSION

We provided a reliable ST sequencing data computational
method available for the scientific community to further explore
the key factors and pathways involved physiologically in the low
cell density and high fiber of the aorta. The pipeline was applied to
cell annotation and pathway enrichment analysis corresponding
to cell location and our findings may provide insights into the
function and regulation of AAD onset and progression and pave
the way for selective targeting of causative cell populations in
vascular diseases.
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Cerebral ischemic stroke (IS) is a complex disease caused by multiple factors including
vascular risk factors, genetic factors, and environment factors, which accentuates
the difficulty in discovering corresponding disease-related genes. Identifying the genes
associated with IS is critical for understanding the biological mechanism of IS, which
would be significantly beneficial to the diagnosis and clinical treatment of cerebral
IS. However, existing methods to predict IS-related genes are mainly based on the
hypothesis of guilt-by-association (GBA). These methods cannot capture the global
structure information of the whole protein–protein interaction (PPI) network. Inspired by
the success of network representation learning (NRL) in the field of network analysis,
we apply NRL to the discovery of disease-related genes and launch the framework
to identify the disease-related genes of cerebral IS. The utilized framework contains
three main parts: capturing the topological information of the PPI network with NRL,
denoising the gene feature with the participation of a stacked autoencoder (SAE),
and optimizing a support vector machine (SVM) classifier to identify IS-related genes.
Superior to the existing methods on IS-related gene prediction, our framework presents
more accurate results. The case study also shows that the proposed method can
identify IS-related genes.

Keywords: cerebral ischemic stroke, network embedding, disease gene prediction, PPI network, network
representation learning

INTRODUCTION

Cerebral ischemic stroke (IS) is the most common type of stroke, which results from a sudden
cessation of adequate amounts of cerebral blood supply through vessels (Sacco et al., 2013). As
cerebral IS appears to be a complex disorder associated with both genetic and environmental
factors, it is highly demanding to demonstrate the underlying patterns of inheritance (Matarin et al.,
2010). Some IS-associated genes have been detected, verified, and recorded in recent studies (Cheng
et al., 2014). Nevertheless, many unknown cerebral IS-associated genes still need to be discovered.
Identifying such genes will significantly contribute to a more detailed understanding of the
inherent molecular mechanism of cerebral IS, and will aid the discovery of clinical biomarkers and
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therapeutic targets. With the development of statistical and
machine learning methods in disease-gene discovery, it is
crucial to construct and implement a promising computational
algorithm for the task of effectively identifying the IS-
related genes.

In recent years, predicting disease-related genes has drawn
much attention in relative fields and many graph-based
computational methods have performed proficiency in
integrating large-scale omics data and disease phenotype
(Nguyen and Ho, 2012; Zemojtel et al., 2014; Kumar et al., 2018;
Wang T. et al., 2020; Peng et al., 2021b). It can be surmised
that the prime cost of discovering effective drug targets will be
decreased with the engagement of computational algorithms.
Under the hypothesis of guilt-by-association (GBA) that most
of the existing methods have relied on, it is practicable to
explore and even crystallize the unknown disease genes via
their connections with the known disease genes (Molet et al.,
2013). Based on the GBA hypothesis, disease-associated genes
are closely connected or share similar topological structure in the
protein–protein interaction (PPI) network. Thus, the effective
application of GBA and network-based algorithms largely
depends on correct calculation of the distance or similarity
between candidate genes and known disease genes.

Many network-based computational methods have also been
proposed in recent years (Wang et al., 2019a,b; Yang et al., 2019).
For predicting disease genes, one of the initial methods is to
simply count the number of disease-genes in the neighborhood
of a candidate gene (Oti et al., 2006). However, the direct
neighborhood counting methods fail to capture the distant
disease genes, i.e., the disease-genes not directly connecting to the
candidate gene will be ignored. In this regard, several methods
are proposed by considering the distances among genes in a
gene network. For instance, methods calculating the shortest path
length (SPL) between a candidate gene and the known disease
gene have been proposed to examine their biological relatedness.
However, Embar et al. (2016) have proved that the average SPL
of a gene set only reveals the degree distribution of the genes and
their network topology. Thus, methods relying on SPL failed to
demonstrate the functional coherence as supposed (Embar et al.,
2016). To overcome the shortage of single topological feature in
disease-gene prediction, Xu and Li (2006) proposed a method
to use multiple topological features together. They integrated
five types of local topological features, including degree, 1N
index, 2N index, average distance to disease-genes, and positive
topology coefficient, and utilized k-nearest neighbors (KNN)
as the classifier to distinguish novel disease genes (Xu and
Li, 2006). Although the above methods are proven useful, the
predicting performance is still not good enough. This is because
these methods merely consider local topological features while
ignoring the global information. The involvement of global
topological information is suggested as a way for obtaining
a more impressive gene node presentation and downstream
outcomes (Cao et al., 2014; Vuillon and Lesieur, 2015; Peng et al.,
2016, 2019).

Considering the global topology information during the
learning process is deemed to cause prohibitive computational
cost as well as low learning accuracy (Dai et al., 2020). Thus,

some studies have tried to develop cost-efficient methods to
improve the learning accuracy and explore the multidimensional
interactions between genes and proteins with random walk with
restart (Valdeolivas et al., 2017; Peng et al., 2019, 2021c). In a
recent study, inspired by the idea from random walk with restart,
we initiate further application of network representation learning
(NRL) that promotes the dimensional reduction of the gene
representation in the network and discover the disease-related
genes of cerebral IS (Peng et al., 2021a).

In this paper, we utilize the current NRL-based algorithms
to predict cerebral IS disease-related genes. Our contributions
are three-fold: (1) global topological features of nodes in the
PPI network are learned through three cutting-edge graph
embedding methods, such as DeepWalk, LINE, and Node2Vec,
and their performances are evaluated; (2) the node embeddings
are transformed into a low-dimensional space using the deep
learning model of a stacked auto-encoder; and (3) we show
the superior performance of NRL-based methods for IS gene
prediction, and novel genes associated with IS were nominated.

METHODOLOGY

We apply the NRL-based workflow, as shown in Figure 1,
to discover the disease-related genes of IS. The workflow
can be concluded into three main parts: extracting features
via node representation learning, reducing feature dimension
through a stacked autoencoder (SAE; Larochelle et al., 2014),
and classification using support vector machine (SVM; Chang
and Lin, 2011). First, we utilize three NRL-based algorithms,
Node2vec (Grover and Leskovec, 2016), DeepWalk (Perozzi et al.,
2014), and LINE (Jian et al., 2015) to collect the high-dimensional
feature representation of each gene node from PPI network
and compare those structural features captured by different
algorithms. In order to avoid the influence of high-dimensional
noise, next, we launch a SAE model to map corresponding feature
vectors into lower dimensional space. Finally, we use an SVM
classifier and convert the process of predicting disease-related
genes of IS into node classification problem.

Graph Embedding for the PPI Network
Based on the need for capturing the global features of
topological properties from the PPI network, three classic
algorithms (Node2vec, DeepWalk, and LINE) are introduced in
the following part. We learn the non-linear feature vectors for
genes in the PPI network and compare the performances of the
above algorithms.

DeepWalk serves as the first implemented NRL algorithm
and is managed to represent nodes from the PPI network as
novel latent feature vectors. At the outset, it runs the classic
stochastic process to generate multiple random paths with certain
length and this will formulate the topological structure. Then,
it can be attributed to a natural language learning process,
where the generated random paths are treated as sequences,
where nodes are considered as words. Next, the skip-gram
neuronal network model is utilized to maximize the probability
of neighbors of the nodes in the random walk sequence. In
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FIGURE 1 | The workflow of the proposed network representation learning (NRL) framework. The framework contains three main parts: Step 1, capturing the
topological information of the protein–protein interaction (PPI) network with NRL; Step 2, denoising the gene feature using a stacked autoencoder (SAE); Step 3,
training a support vector machine (SVM) classifier to predict IS-related genes.

FIGURE 2 | Illustration of Node2vec, LINE, and stacked autoencoder (SAE). (A) The biased random walk in Node2vec. (B) Illustration of first-order and second order
similarity in LINE. (C) Structure of SAE, where color represents different layer of the SAE.

the end, the weight matrix of hidden layer in the skip-gram
neuronal network is used as the low-dimensional representation
vectors. Node2vec improves DeepWalk algorithm by utilizing a
biased random walk process to generate the random paths. It sets
hyperparameters p and q to control the directions of random
walk in the manner of breadth-first search (BFS) or depth-
first search (DFS), thereby capturing local and global structural
features in the network. The function of super parameters p and
q in the random walk procedure is elucidated in Figure 2A.
Parameter p is called the return parameter, which mainly
determines the process of revisiting the nodes within random
walk. When p is relatively small, the random walk is more
inclined to revisit the nodes that have been visited. Parameter
q is called the in-out parameter, which affects the possibility of
capturing “local” or “global” nodes. When q > 1, the random
walk is inclined to BFS, and when q < 1, the random walk
is inclined to DFS. Intuitively, the in-out parameter q controls
the ratio of performing BFS or DFS. Particularly, if p and q

are both equal to 1, the Node2vec algorithm can be simply
reckoned as DeepWalk.

Large-scale Information Network Embedding (LINE) is a NRL
method based on the assumption of neighborhood similarity,
which can be used to learn the low-dimension representation of
nodes in a graph. To store network structural information, there
are two different definitions of similarity between vertices in a
graph. For example, in Figure 2B, there is a strong tie between
vertex 6 and 7, so they are two similar vertices. Even if there is
no direct correlation between vertex 5 and 6, they share many
common neighbors (vertex 1, 2, 3, and 4), which make them
the similar nodes.

The two kinds of similarity are described as first-order
proximity and second-order proximity. The first-order proximity
considers that the greater the edge weight of two vertices,
the more similar the two vertices are. Second-order proximity
considers that the more common neighbors two vertices have, the
more similar the two vertices are.
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FIGURE 3 | AUROC, AUPRC, and F1 values of node2vec, LINE, and deepwalk using features in different numbers of dimensions. The error bar shows performance
variation during the five-fold cross-validation.

The first-order proximity in a network is the local pairwise
proximity between two vertices. The first-order proximity
between u and v is equal to the weight on that edge, wuv. If no
edge is observed between u and v, their first-order proximity is
0. For each undirected edge (i, j), the joint probability between
vertex vi and vj is defined as follows:

p1
(
vi, vj

)
=

1

1+ exp (−−→u T
i ·
−→u j)

(1)

FIGURE 4 | Best performance comparison among three algorithms in the
task of IS-related gene prediction.

The empirical probability is defined as p̂1
(
i, j
)
=

wij
W , where W =∑

(i,j)∈E wij. The objective function is as follows:

O1 = d(p̂1 (·, ·) , p1 (·, ·)) (2)

The training process is to minimize the KL-divergence of
two probability distributions. After replacing d( · , · ) with KL-
divergence and omitting some constants, the loss function is:

O1 = −
∑

(i,j)∈E

wijlog p1(vi, vj) (3)

The second-order proximity between a pair of vertices (u, v) in
a network is the similarity between their neighborhood network
structures. Mathematically, let pu = (wu,1, ...,wu,|V|) denote the
first-order proximity of u with all the other vertices, then the
second-order proximity between u and v is determined by the
similarity between pu and pv. If no vertex is linked from/to both u
and v, the second-order proximity between u and v is 0. For each
directed edge (i, j), the probability of “context” vj generated by
vertex vi can be defined as:

p2
(
vj | vi

)
=

exp (−→u ′j
T
·
−→u i)∑|V|

k=1 exp (−→u ′k
T
·
−→u i)

(4)

where |V| is the number of vertices or “contexts.”−→ui is the
representation of vi when it is treated as a vertex. −→ui

′ is the
representation of vi when it is treated as a specific “context.” The
empirical distribution is p̂2( · |vi). So, the objective function is as
follows:

O2 =
∑
i∈V

λid(p̂2 (·|vi) , p2 (·|vi)) (5)
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FIGURE 5 | The model performance varies as the hyperparameters (p, q)
change in node2vec.

λi in the objective function represents the prestige of vertexi in
the network, which can be measured by the degree or estimated
through algorithms such as PageRank. The empirical distribution
p̂2( · |vi) is defined as p̂2

(
vj
∣∣ vi) = wij

di
, where wij is the weight

of the edge (i, j) and di is the out-degree of vertex i, i.e.,
di =

∑
k∈N(i) wik, where N(i) is the set of out-neighbors of vi.

After replacing d( · , · ) with KL-divergence, setting λi = di and
omitting some constants, the loss function is:

O2 = −
∑

(i,j)∈E

wijlog p2
(
vj|vi

)
(6)

The method in this paper is to train the LINE model which
preserves the first-order proximity and second-order proximity
separately and then concatenate the embeddings trained by the
two methods for each vertex.

Reducing Feature Dimensions Using a
Stacked Autoencoder
An autoencoder is an unsupervised model which is well
known for its function of extracting features and reducing
dimensionality. Aiming at minimizing the reconstruction errors
between input and output, an autoencoder consists of two main
parts, an encoder and a decoder. The hidden layer encoded
features are the final low-dimensional output that plays a vital
role in the downstream tasks. If the input node vector is x,
the reconstructed node vector can be represented as z(x) =
g(w′ · f

(
w · xb

)
b′), where f and g are active functions, w,w′are

weights, and b, b′ are biases. Hence, the objective function can
be represented as Eq. 7, where represents the parameters, and L
represents the loss function.

θ = argmin
θ

L (X,Z) (7)

The SAE is a neural network composed of a multi-layer
sparse autoencoder, which is used to boost performance of deep

TABLE 1 | Top 10 genes predicted associated with ischemic stroke.

Gene ID Gene name Gene description Score

51181 DCXR Dicarbonyl and L-xylulose reductase 0.9854

22953 P2RX2 Purinergic receptor P2X 2 0.9762

57104 PNPLA2 Patatin like phospholipase domain
containing 2

0.9723

3766 KCNJ10 Potassium inwardly rectifying channel
subfamily J member 10

0.9645

3955 LFNG LFNG O-fucosylpeptide
3-beta-N-acetylglucosaminyltransferase

0.9631

10382 TUBB4A Tubulin beta 4A class IVa 0.9543

2261 FGFR3 Fibroblast growth factor receptor 3 0.9532

84126 ATRIP ATR interacting protein 0.9451

2182 ACSL4 Acyl-CoA synthetase long chain family
member 4

0.9435

57511 COG6 Component of oligomeric Golgi complex 6 0.9410

networks, and its structure is shown in Figure 2C. In SAE, the
output of the previous layer of autoencoder is used as the input
of the next layer of autoencoder. There are three steps to train
a SAE. Firstly, a sparse autoencoder is trained on raw input and
the trained sparse autoencoder is used to transform the raw input
into a feature vector. Secondly, it uses the output of the former
layer as input for the subsequent layer and repeats this process
until the end of the training. Thirdly, after all the hidden layers
are trained, back propagation algorithm is used to minimize the
cost function and the pre-trained neural network can be fine-
tuned with a labeled training set. SAE has achieved effective
outcomes in many areas to extract feature vectors and reduce
dimensionality. Alongside this trend, we enroll the SAE model in
this proceeding for more impressive performance of predicting IS
disease-related genes.

Predicting Genes Associated With IS
Using SVM
After low-dimensional gene features are generated, the SVM
algorithm is trained to predict the disease-related genes of IS.
The process of predicting such genes is considered as a node
classification task. SVM has gained plenty of affirmations for its
stability, simplicity, and effectiveness in the way of classification
task. Therefore, SVM is engaged in our model analysis. We treat
disease-related genes of IS as positive samples, then from the PPI
network we randomly designate unlabeled genes of equivalent
size as negative samples.

We use five-fold cross validation to evaluate the performance
of the SVM classifier in the task of predicting IS disease-related
genes. During the experiments, the standard Gaussian kernel is
selected for performing the SVM classifier. Besides, we use the
grid search method to select the optimal hyper-parameters.

RESULTS

Datasets
During the experiments, we downloaded two datasets, the
disease-related genes of IS and the PPI network from public
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FIGURE 6 | Enrichment analysis of top 10 predicted IS-related genes based on GO, KEGG, and DisGeNet.

resources. The PPI network is originated from Menche et al.
(2015), including 13,460 nodes and 141,296 edges. The genes
associated with IS were downloaded from the DisGeNet
database.1 After analyzing and classifying corresponding genes
related to IS or cerebral infarction as stated, we finally obtained
1195 IS-related genes.

Impact of Feature Dimensions on
Predicting Performance
In order to explore the optimized dimension of NRL-based
algorithms for predicting the disease-related genes of IS, we

1https://www.disgenet.org/browser/0/1/1/C0026769

evaluated the performance of three NRL-based algorithms,
i.e., DeepWalk, LINE, and Node2vec, using multiple levels of
feature dimensions. Specifically, we run these NRL algorithms to
generate features vectors in different dimension-levels, including
64, 128, 256, and 512. All features will be further processed by
autoencoder to reduce noise; afterward, the autoencoder will
output features in 64 dimensions for downstream predicting
tasks. We compared their performance using five-fold cross
validation; the results are presented in Figure 3.

We used area under the ROC curve (AUROC), area under the
PR curve (AUPRC), and F1 scores to evaluate the performance
of deepwalk, LINE, and node2vec in predicting IS-related genes
using various feature dimensions. For LINE, the prediction
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FIGURE 7 | Visualization of gene interactions between predicted IS-genes and existing IS-genes.

performance drops gradually as the feature dimension increases.
For DeepWalk, the prediction performance drops from dim-64
to dim-256, while it increases when feature dimension is up to
512. For node2vec, the best performance is achieved at dim-64
and much better than the other two methods, while other feature
dimensions achieve average performance.

For intuitional comparison, we summarized the best
performance of these three algorithms as shown in Figure 4.
We can see that Node2vec with dim-64 provides the most
effective outcomes. Therefore, in the final predicting model,
we adopt node2vec to learn the graph embedding with 64
feature dimensions.

Effects of Hyper-Parameters on Ischemic
Stroke-Related Gene Prediction
As mentioned above, the computational workflow use node2vec
to capture the topological structure information from the PPI
network, followed by extracting low-dimensional features, and
predicting disease-related genes based on the SVM classifier.

It has been shown in relative researches that the hyper-
parameters used in node2vec have considerable impact on the
prediction performance. In order to explore the optimized hyper-
parameters, we performed a grid search for the hyper-parameters
of node2vec, namely p and q, to test the performance. We
randomly select parameters p ∈ {0.1, 1, 10} and q ∈ {0.1, 1, 10}.
When p is relatively small, the random walk is more inclined to
visit the nodes that have been visited. When q > 1, the random
walk is biased to BFS, and when q < 1, the random walk clings
to DFS. The standard deviation of 50% cross validation and the
results are shown in Figure 5.

From the data, when p = 0.1 and q = 10, the AUROC value
of the node2vec algorithm achieves its maximum (0.731), which
elucidates the optimized choice of hyper-parameters.

Top Genes Related to Ischemic Stroke
In order to verify the performance of the algorithm in predicting
novel genes related to IS, we use existing all-known genes related
to IS as the training set and the unknown genes as the test set.
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Then we rank the probability of final prediction. We select the top
10 genes and list their gene ID and name in Table 1.

Recent studies have shown the correlation between these
discovered genes and IS. Cui et al. (2021) utilized lentivirus
in vitro infection and in vivo administration methods to prove
that knockdown of ACSL4 alleviated brain injury after IS. Zhao
et al. (2020) performed real-time polymerase chain reaction
(PCR) to analyze the association between PNPLA2 rs1138693
(T > C) genotype and the risk of IS. Wang J.F. et al. (2020) proved
P2RX2 as an up-regulated gene in myocardial infarction using
gene ontology (GO) analysis and pathway enrichment analysis in
a comparative study of gene expression profiles rooted in acute
ischemia and infarction.

Functional Analysis of the Top Predicted
IS-Genes
We performed enrichment analysis for the top 10 IS-genes
predicted by our method based on GO, KEGG, and DisGeNet,
and the results are illustrated in the Figure 6. The most GO
biological process enriched is the glycerolipid metabolic process.
Wang et al. (2021) has proved that the glycerophospholipid
metabolism plays a role in IS. KEGG analysis revealed the
importance of potassium transport channels in IS, and this
also was demonstrated in the work of Chen et al. (2016),
where they found that potassium channels can be a potential
pharmacological target for IS to slow down cerebral edema
formation. The enrichment results from DisGeNet show that
the top 10 IS-related genes we predicted are related to language
development, intellectual disability, hearing impairment, and
motor delays, and these symptoms happen a lot in clinic
after occurring IS.

We also visualized the gene network between the top 10
predicted IS-genes and the known IS = related genes from
DisGeNet in Figure 7. We can see that the top 10 genes predicted
by our method are closely connected to the known IS-genes. The

gene with highest degree is FGFR3, and the fibroblast growth
factors have shown great therapeutic potential in treatment of IS.

CONCLUSION

It is quite crucial to discover the disease-related genes of IS
for future medical treatment and more accurate diagnosis. In
this paper, we utilize NRL methods for the task of identifying
disease-related genes and test the novel NRL-based framework
to discover IS-related genes. There are three main components
in the whole operating process: capturing the global topological
information of the PPI, utilizing a SAE to represent vectors into
low-dimensional feature space, and training an SVM classifier to
predict disease-related genes. The experimental results show that
the proposed NRL-based algorithm could achieve considerable
accuracy in predicting the genes of IS. Furthermore, the
introduced NRL-based algorithms are exploiting and stable to be
forwarded to many other fields of potential gene prediction.
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Motivation: The emergence of single-cell RNA sequencing (scRNA-seq) technology
has paved the way for measuring RNA levels at single-cell resolution to study precise
biological functions. However, the presence of a large number of missing values in
its data will affect downstream analysis. This paper presents AdImpute: an imputation
method based on semi-supervised autoencoders. The method uses another imputation
method (DrImpute is used as an example) to fill the results as imputation weights of the
autoencoder, and applies the cost function with imputation weights to learn the latent
information in the data to achieve more accurate imputation.

Results: As shown in clustering experiments with the simulated data sets and the
real data sets, AdImpute is more accurate than other four publicly available scRNA-
seq imputation methods, and minimally modifies the biologically silent genes. Overall,
AdImpute is an accurate and robust imputation method.

Keywords: scRNA-seq, missing value filling, semi-supervised learning, autoencoder, imputation method

INTRODUCTION

With the development of high-throughput sequencing technology, the emergence of single-cell
RNA sequencing (scRNA-seq) technology in genomic sequencing has become a hot topic in recent
years (Wagner et al., 2016; Kalisky et al., 2018). Compared with bulk RNA sequencing sequences,
scRNA sequences have a relatively high noise level, especially due to so-called dropouts (Vallejos
et al., 2015; Lun et al., 2016; Ziegenhain et al., 2017). Dropouts are a special type of missing values
due to low RNA input in sequencing experiments and the randomness of gene expression patterns
at the single cell level. The presence of dropouts often misleads downstream analysis, such as data
visualization, cell clustering, and differential expression analysis (Stegle et al., 2015; Bacher and
Kendziorski, 2016; Svensson et al., 2017).

Based on different principles, a variety of single cell RNA-seq data imputation methods have been
proposed (Chen and Zhou, 2018; Huang et al., 2018; Van Dijk et al., 2018; Eraslan et al., 2019; Hu
et al., 2020; Qi et al., 2021). ScImpute (Li and Li, 2018) divides genes into two groups based on
dropout probability (unreliable and reliable classification: Aj,Bj), and the dropout probability is
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estimated by a mixed model. Scientific computing estimates Aj
by processing Bj as gold standard data. In the first version, a
weighted lasso model is used to find similar cells among other
cells in Bj genes. Then use the linear regression model of the
most similar unit as the estimate of Aj. DrImpute (Gong et al.,
2018) is an integrated method, which is designed based on the
consistent clustering results of scRNA-seq data. In other words,
it performs multiple clusters and imputes based on the average
of similar cell expression. AutoImpute (Talwar et al., 2018) is a
method of imputing dropouts based on an autoencoder. It uses
over-complete autoencoders to capture the distribution of given
sparse gene expression data, and regenerates complete expression
data. DeepImpute (Zhang and Zhang, 2020) is an imputation
method based on deep neural networks. The method uses missing
layers and loss functions to learn patterns in the data to achieve
accurate imputation.

At present, machine learning methods are increasingly used
in bioinformatics, and many achievements have been made
(Peng et al., 2021a,b). We have conducted a lot of clustering
experiments on the existing imputation method. According to
the experimental results, we found that the machine learning

methods did not perform well. The analysis revealed two reasons.
One is a large number of zeros in the raw data, making it difficult
for machine learning methods to extract deep information from
the data. Instead, most of the zeros are regarded as true zeros,
that is, no padding is performed, so the data filled by the machine
learning method is more discrete. The second reason is that after
using some deep learning-based missing value filling methods
to fill in, the output data contains negative values, but the
actual gene expression values should all be non-negative values.
Based on this, we propose an imputation method AdImpute
(Figure 1) based on a semi-supervised autoencoder, which
combines ordinary imputation methods with machine learning
methods to better implement imputation.

An Autoencoder is a type of artificial neural network used
in semi-supervised learning and unsupervised learning. Its
function is to perform representation learning on the input
information by using the input information as the learning target.
A number of recent studies describe applications of autoencoders
in molecular biology.

In order to solve the problem of difficult to extract the
deep information of the data, AdImpute introduces a set

FIGURE 1 | AdImpute pipeline: the pre-processing stage of AdImpute requires screening of raw gene expression data, normalizing by library size, and pruning
through gene selection and logarithmic transformation. Afterward, AdImpute first fills the pre-processed matrix with DrImpute, and uses the result of DrImpute as an
imputation weight label. Then the label is input into the AdImpute model together with the pre-processed matrix to learn gene expression data. Finally, the missing
data value filling and the input matrix reconstruction are done.
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FIGURE 2 | Sigmoid function: f (z) = 1
1+e−z .

of data imputed by DrImpute as an imputed weight label
(DrImpute method can be replaced, this article selects the
current mainstream method, if there is a better one, you can
replace it). While using the autoencoder to impute dropouts,
AdImpute adds an imputation weight term to the cost function
and compares it with the label data. For a zero value that
may be a missing value, the larger the label data value is, the
more likely it is to be a missing value, so as to achieve semi-
supervised learning. We also give a Relu activation function to
the decoding layer to solve the situation of negative values in
the filled data.

An example is given to better understand the principle of this
method. If we compare the imputation process to an exam, then
the unsupervised machine learning method is to complete a test
paper normally, and supervised machine learning is to complete
a test paper under the premise of having a standard answer. Semi-
supervision is equivalent to finding a test paper of a student with
good grades as a reference to complete my test paper.

In reality, supervision is meaningless for imputation. Current
machine learning algorithms are all based on unsupervised.
Here, we first proposed the idea of applying semi-supervision
to imputation, and verified the superiority with the help of
clustering results.

MATERIALS AND METHODS

Autoencoder
In simple terms, the autoencoder is the process of reducing the
dimension after encoding the raw data, so as to discover the
hidden rules among the data. The autoencoder is composed of
encoder E and decoder D. The encoder first maps the input data
X to the latent space H:

H = φ(EX) (1)

FIGURE 3 | Tanh function: tanh (z) = ez
−e−z

ez+e−z .

FIGURE 4 | Relu function: relu (z) = max(0, z).

where φ is the activation function. Several commonly used
functions are shown in Figures 2–4.

In the training phase, the encoder and decoder are usually
learned by minimizing the Euclidean cost function:

arg min
D,E
||X – Dφ(EX)| |2F (2)

There are several variants of the autoencoder model: multi-
layer autoencoder and regularized autoencoder. The multi-layer
autoencoder is created by nesting the autoencoder inside another
autoencoder. Mathematically, this is expressed as:

arg min
D′ s,E′ s

||X – D1φ(D2 · · ·φDN(φ(EN · · ·φE1(X) · · · )| |2F (3)

The cost function used by the regularized autoencoder can
encourage the model to learn other features, rather than copying

Frontiers in Genetics | www.frontiersin.org 3 September 2021 | Volume 12 | Article 73967734

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-739677 September 7, 2021 Time: 11:30 # 4

Xu et al. AdImpute

FIGURE 5 | The visualization results of clustering on the simulated data sets. The six images are the clustering results of the raw data and the clustering results
imputed by scImpute, DrImpute, AutoImpute, AdImpute, and DeepImpute. And (A) is the clustering visualization results on simu1 data set; (B) is the clustering
visualization results on simu2 data set.

the input to the output. These characteristics include sparse
representation, robustness to noise or missing inputs, etc. Even if
the model capacity is large enough to learn a meaningless identity
function, the nonlinear and over-complete regular autoencoder
can still learn some useful information about the data distribution
from the data. The regularized autoencoder can be expressed as
follows:

arg min
D,E
||X – Dφ(EX)| |2F + λ<(E,D) (4)

where λ is the regularization coefficient, and the regularizer R is
a real function about E and D.

The Design and Implementation of
AdImpute
AdImpute is a missing value filling method based on semi-
supervised autoencoder. While using a complete autoencoder
to capture the distribution of the given sparse gene expression
data, AdImpute introduces the data filled by DrImpute as
the imputation weight label of the model, which makes the
regenerated complete expression data obtain higher quality.

The purpose of AdImpute is to estimate these dropouts by
looking for the full version of gene expression data. The model

of the measured value is:

R = M ◦ X (5)

where ◦ is the Hadamard product, M is a binary mask containing
1, R contains a non-zero term, and elsewhere is 0. X represents
the count matrix to be estimated.

AdImpute needs to import the data filled by DrImpute into
the model as the imputation weight label of the model, which
is recorded as F. Then the sparse gene expression matrix M◦X
is input into the autoencoder, and it is trained to learn the best
encoder and decoder functions by minimizing the cost function.
In order to prevent the overfitting of non-zero values in the count
matrix, we regularize the learned encoder and decoder matrices.
The cost function is as follows:

min
D,E
||R – Dσ (E (R))| |2O + δ ||F-Dσ (E (R))| |2O

+
λ

2
δ
(
||E| |2F + ||D| |

2
F
)

(6)

where E is the encoder matrix, D is the decoder matrix,
and λ is the regularization coefficient. In the formula (6),
δ ||F – Dσ (E (R))| |2O is the imputation weight item, F is the
imputation weight label, and δ is the weight of the imputation
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FIGURE 6 | The histogram of clustering evaluation indexes on the simulated data sets, including the clustering evaluation indexes of raw data and the clustering
evaluation indexes after imputing by scImpute, DrImpute, AutoImpute, AdImpute, and DeepImpute. And (A) is the clustering evaluation indexes on simu1 data set;
(B) is the clustering evaluation indexes on simu2 data set.

weight item. ||·| |O means that the loss is calculated only for the
non-zero counts present in the sparse expression matrix M◦X,
and σ is the Sigmoid activation function applied to the encoder
layer in the neural network.

Finally, after the training and learning encoder and decoder
matrix, the filled expression matrix is as follows:

X̃ = ψ (Dσ (E (R))) (7)

where ψ is the Relu activation function applied to the decoder
layer in the neural network.

The AdImpute model consists of a fully connected multi-layer
perceptron with three layers: input layer, hidden layer and output
layer. The model uses an imputation weight label composed of
DrImpute-filled data to improve the missing value filling effect.
The gradient is calculated by back propagation of the error, and
the gradient descent method is used for training to reach the
minimum value of the cost function (6). The RMSProp Optimizer
is used to adjust the learning rate so as to avoid falling into a local

minimum and reach the minimum of the cost function faster.
Both the encoder matrix E and the decoder matrix D are subject
to the initialization of random normal distribution. The output of
the decoder uses Relu as the activation function.

The selection of hyper-parameters is as follows:

(1) Regularization coefficient λ is used to control the
contribution of the regular term to the cost function.

(2) The weight δ of the imputation weight term is used to
control the contribution of the imputation weight term to
the cost function.

TABLE 1 | The ranking of clustering effects on the simulated data sets.

scImpute DrImpute AutoImpute AdImpute DeepImpute

simu1 3 2 5 1 4

simu2 4 2 5 1 3

1 represents the best and 5 represents the worst in the table.
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FIGURE 7 | The visualization results of clustering on the real data sets. The six images are the clustering results of the raw data and the clustering results imputed by
scImpute, DrImpute, AutoImpute, AdImpute, and DeepImpute. And (A) is the clustering visualization results on Trapnell (GSE52529) data set; (B) is the clustering
visualization results on hPSC (GSE75748) data set; (C) is the clustering visualization results on Romanov (GSE74672) data set.

(3) The size of the hidden layer (the dimension of the
potential space).

(4) The initial value of the learning rate.
(5) Threshold. The change of the cost function value in

successive iterations is less than the threshold value, which
means convergence and stops the gradient descent.

RESULTS

A good imputation method can retain most of the real available
information for the raw data. Therefore, in order to measure the
quality of the missing value filling methods, we choose cluster
analysis in the downstream analysis. We will select some data sets
and use five methods to impute the dropouts, and use the results
to perform cluster analysis.

By analyzing the results of the clustering, we estimated
the advantages and disadvantages of the dropouts imputation
methods. The cluster evaluation indicators used in this paper are
rand, ARI, FM, and Jaccard.

The Clustering Experiment on the
Simulated Data Sets
We use CIDR (Lin et al., 2017) to generate two simulated data
sets simu1 and simu2. The details of simu1 and simu2 is provided

in the section “Data availability.” We label the generated data and
mark the actual cell clustering results. After preprocessing the raw
data, we use scImpute, DrImpute, AutoImpute, AdImpute, and
DeepImpute to impute the dropouts. Based on the imputed data
results, T-SNE for dimensionality reduction and visualization
is carried out, and then K-means clustering is used. The
visualization results of clustering are shown in Figure 5.

Based on the clustering results, we calculate the cluster
evaluation indexes. The results are given by Supplementary
Table 1. In order to analyze the experimental results more
intuitively, we give a histogram of clustering evaluation indexes
in Figure 6.

Analyzing the results of the above experiments, we can find
that AdImpute has a very good performance in the clustering
experiment on the simulated data sets. The performance of
AutoImpute is not ideal, scImpute and DeepImpute are always
slightly inferior than DrImpute. In general, AdImpute performs
best on the simulated data sets. And the ranking of clustering
effects is shown in Table 1.

The Clustering Experiment on the Real
Data Sets
In the part, we select three real data sets: Trapnell (Trapnell
et al., 2014), hPSC (Chu et al., 2016), and Romanov
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FIGURE 8 | The histogram of clustering evaluation indexes on the real data sets, including the clustering evaluation indexes of raw data and the clustering evaluation
indexes after imputing by scImpute, DrImpute, AutoImpute, AdImpute, and DeepImpute. And (A) is the clustering evaluation indexes on Trapnell (GSE52529) data
set; (B) is the clustering evaluation indexes on hPSC (GSE75748) data set; (C) is the clustering evaluation indexes on Romanov (GSE74672) data set.

(Romanov et al., 2017). After preprocessing the raw data,
we use scImpute, DrImpute, AutoImpute, AdImpute, and
DeepImpute to impute the dropouts. Based on the imputed data
results, T-SNE for dimensionality reduction and visualization
is carried out, and then K-means clustering is used. The
visualization results of clustering are shown in Figure 7.

Based on the clustering results, we also calculate the cluster
evaluation indexes. The results are given by Supplementary
Table 2. In order to analyze the experimental results more
intuitively, we give a histogram of clustering evaluation indexes
in Figure 8.

Analyzing the experimental results, we can find that AdImpute
still has a good performance in the clustering experiment on
the real data sets. Despite being slightly inferior to scImpute in
Trapnell data set, the overall performance is still the best among

TABLE 2 | The ranking of clustering effects on the real data sets.

scImpute DrImpute AutoImpute AdImpute DeepImpute

Trapnell 1 4 5 2 3

hPSC 3 4 2 1 5

Romanov 4 5 2 1 3

1 represents the best and 5 represents the worst in the table.

these methods. AutoImpute and DeepImpute do not perform
well on the simulated data sets, but behave well on the real data
sets. The performance of scImpute is unstable, and DrImpute
is not ideal. Through the results on hPSC data set, we can see
that AdImpute has minimally modified the expression of real
biological silencing genes. Overall, AdImpute still performs best
on the real data sets. And the ranking of clustering effects is
shown in Table 2.

DISCUSSION

Since the scRNA-seq data suffers from dropout events that
hinder the downstream analysis of data, we propose a statistical
imputation method AdImpute to denoise the scRNA-seq data.
AdImpute aims to implement data recovery and maintain
the heterogeneity of gene expression across cells. One of the
advantages of AdImpute is that it can be incorporated into most
of the downstream analysis tools for the scRNA-seq data. In
this paper, we perform downstream analysis experiments in the
simulated datasets and real datasets, and the results show that
our method improves the raw data and outperforms the other
imputation methods.

Rand, ARI, FM, and Jaccard Index were used to measure the
clustering results of imputed data. AdImpute performs well in the
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clustering experiments of the simulated data sets and the real data
sets. In the simulated data sets, it can be seen from Figure 6 that
the clustering results of AdImpute is significantly better than that
of the other three algorithms when v = 9/10.

Because the data loss degree of real data is unknown, there may
be a large number of true zeros, which can reflect the judgment
ability of each algorithm to distinguish between missing zeros
and true zeros. The sequencing data in the third data set hPSC
has almost no zeros caused by data loss, which can better reflect
the judgment ability of the five algorithms. As can be seen
from Figure 8, in the Trapnell and Romanov data sets, the
clustering effects of the five algorithms after missing value filling
are not significantly different. After filled by scImpute, DrImpute,
AdImpute, AutoImpute, and DeepImpute, the clustering results
are improved compared with the raw data. However, from the
experimental results of hPSC data set, we can see that the effect
of AdImpute is significantly higher than the other four methods,
which shows that AdImpute algorithm has good performance in
identifying true zeros. In general, AdImpute performs best on
the real data sets.

By comprehensively analyzing the results of the simulated data
sets and the real data sets, we draw the following conclusions.
scImpute prefers to regard the identified zeros as true zeros, so
it performs well on the real data sets, but it does not perform
well on the simulated data sets. DrImpute prefers to treat the
identified zeros as the missing zeros, so it performs well in
the simulated data sets, but it does not perform well in the
real data sets. One of the limitations of DrImpute is that it
considers only cell-level correlation using a simple hot deck
approach. The performance of AutoImpute is not satisfactory
on both the simulated data sets and the real data sets, but
its effect on hPSC data set is better than that of scImpute,
DrImpute, and DeepImpute. AutoImpute behaves ideally in
retaining the most of true zeros present in the data. It is
speculated that AutoImpute has a poor judgment ability to
determine missing values, and most of the identified zeros
are considered as true zeros. DeepImpute performs ordinarily
on both the simulated data sets and the real data sets. It is
designed for the bulk-RNAseq data and is suitable for handling
large datasets. Its training and the prediction processes are

separate, and DeepImpute tends to fail when the data show large
heterogeneity and sparsity, which are two key characteristics
of scRNA-seq data. AdImpute has minimally modified the
expression of real biological silencing genes, and the filling
effect is very robust.
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Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome
(AIDS). HIV infection affects the functions and metabolism of T cells, which may
determine the fate of patients; however, the specific pathways activated in different
T-cell subtypes (CD4+ and CD8+ T cells) at different stages of infection remain unclear.
We obtained transcriptome data of five individuals each with early HIV infection, chronic
progressive HIV infection, and no HIV infection. Weighted gene co-expression network
analysis was used to evaluate changes in gene expression to determine the antiviral
response. An advanced metabolic algorithm was then applied to compare the alterations
in metabolic pathways in the two T-cell subtypes at different infection stages. We identified
23 and 20 co-expressed gene modules in CD4+ T and CD8+ T cells, respectively. CD4+

T cells from individuals in the early HIV infection stage were enriched in genes involved in
metabolic and infection-related pathways, whereas CD8+ T cells were enriched in genes
involved in cell cycle and DNA replication. Three key modules were identified in the network
common to the two cell types: NLRP1modules, RIPK1modules, and RIPK2modules. The
specific role of NLRP1 in the regulation of HIV infection in the human body remains to be
determined. Metabolic functional analysis of the two cells showed that the significantly
altered metabolic pathways after HIV infection were valine, leucine, and isoleucine
degradation; beta-alanine metabolism; and PPAR signaling pathways. In summary, we
found the core gene expression modules and different pathways activated in CD4+ and
CD8+ T cells, along with changes in their metabolic pathways during HIV infection
progression. These findings can provide an overall resource for establishing
biomarkers to facilitate early diagnosis and potential guidance for new targeted
therapeutic strategies.

Keywords: HIV infection, T cell, transcriptional modules, metabolomics, weighted gene co-expression network
analysis
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INTRODUCTION

Acquired immunodeficiency syndrome (AIDS) is caused by
human immunodeficiency virus (HIV) infection (Sepkowitz,
2001), a lentivirus belonging to the subgroup of retro-RNA
viruses. HIV infection induces changes in T lymphocyte
functions, leading to alterations in the entire immune system of
the host and disruption of homeostasis. These hallmarks of HIV
infection manifest differently based on the infection period (Weiss,
1993).

As a component of the host’s immune defence system, T cells
participate in a series of immune responses against HIV infection
(Gupta and Saxena, 2021). Both CD4+ and CD8+ T cells participate
in the host adaptive immune response against bacterial and viral
infections. In particular, CD4+ T cells can “help” the activity of other
immune cells by releasing cytokines and small protein mediators,
whereas CD8+ T cells directly kill the target cells after activation in
the human body (Hoyer et al., 2014). HIV mainly infects CD4+ T
lymphocytes. Clinically, HIV infection results in low blood CD4+

T-cell levels. In addition, CD4+ T cells directly inhibit HIV by
promoting other T cells to resist viral infection (Johnson et al.,
2015). CD8+ T cells are widely distributed on the surface of
inhibitory and cytotoxic T lymphocytes, and their kinetics differ
from those of CD4+ T cells during HIV infection (Xu et al., 2014).
However, the overall molecular mechanisms underlying the
changes and actions of CD4+ and CD8+ T cells after HIV
infection remain to be elucidated.

Moreover, changes in metabolism also represent a key to
understanding the immune response during pathogen
invasion. Metabolism plays a fundamental role in supporting
the growth, proliferation, and activation status of T cells (Palmer
et al., 2016; Masson et al., 2017). For example, CD8+ T cells
increase oxidative phosphorylation and steadily increase the
glycolysis rate, whereas CD4+ T cells reduce fatty acid
oxidation (Bantug et al., 2018). In HIV-1 infection, changes in
cell metabolism affect the susceptibility of CD4+ T cells; HIV-
infected CD4+ T cells exhibit elevated metabolic activity and
metabolic potential compared with those of HIV-exposed but
uninfected cells (Valle-Casuso et al., 2019). Detection of gene
expression changes related to metabolism could provide insight
into changes in metabolic pathway activity under HIV infection
(Lee et al., 2012).

Weighted Correlation Network Analysis (WGCNA) is a
method that can be used to analyze highly correlated gene
modules in multiple samples and discover the relationship
between the modules and specific functions (Langfelder and
Horvath, 2012). It can provide panoramic information of
T cell transcriptome modules after HIV infection. We
performed WGCNA to assess changes in gene expression
profiles in human CD4+ T cells and CD8+ T cells during
HIV-1 infection. We then focused on acute HIV infection to
explore the possible antiviral effects of the two cell types after
their interaction with HIV-1 and to identify some key pathways
and targets involved in the infection response. Ultimately, this
study can highlight the metabolic changes occurring in T cells at
different stages of HIV infection using the metabolic algorithm.
These findings can show the panoramic transcription and

metabolism modules and provide new insights for further
biomarker discovery. This research can facilitate the early
detection of HIV infection and ultimately the development of
new strategies for effective infection control.

MATERIALS AND METHODS

Data Collection
We first searched the GEO database GSE6740 and downloaded
the gene expression profiles from five individuals each with acute
HIV infection, chronic progressive HIV infection, and no HIV
infection. These data were reported and deposited to the GEO
database by Hyrcza et al. (2007).

WGCNA and Module Recognition
WGCNA is a widely used data-mining method in genomic
applications. We used the WGCNA software package in the R
environment (R Foundation for Statistical Computing, Vienna,
Austria) to construct a co-expression network of differentially
expressed genes between HIV-infected and non-infected
individuals. The algorithms were used to calculate the
correlations between the levels of differentially expressed genes
after the selection of an appropriate threshold (β), and then a
scale-free network was constructed. We used the minimum value
of β greater than 0.85 as the most suitable threshold, and then
used the topological overlap matrix (TOM) (direct correlation +
indirect correlation) between genes for hierarchical clustering to
construct a clustering tree, which contained different gene
modules represented by different colours. In this process of
module identification, we set the minimum number of genes
contained in the module to 50 (Zhang and Horvath, 2005).

Metabolic Pathway Activity Analysis
The number of metabolic genes enriched in a particular pathway
was combined with the expressional values of the genes using the
following formulas:

Eij � ∑
nj
k�1gik
nj

(1)

where Eij indicates the average expression level of the ith gene in
the jth cell type, gik indicates the expression level of the ith gene in
the kth sample, and nj indicates the number of samples in the jth
cell type;

rij � Eij

1
N∑

N
j Eij

(2)

where N indicates the number of cell types, and rij represents the
ratio of the average expression level of the ith gene in the jth cell
type to the average level of the gene in all cell types. A ratio greater
than 1 indicates that the gene expression level in the cell is higher
than the average expression level in all cells, and a ratio below 1
indicates the opposite pattern; and

Stj � ∑
mt
i�1Wi × rij
∑

mt
i�1Wi

(3)
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FIGURE 1 | Identification of the co-expressed gene modules. (A) Hierarchical clustering dendrogram of the co-expressed gene modules in CD4+ T cells. (B) The
number of genes contained in 23modules of CD4 cells. (C)Correlation coefficients of module-trait relationships in CD4+ T cells at different infection periods are indicated
by different colours. (D)Hierarchical clustering dendrogram of the co-expressed genemodules in CD8+ T cells. (E) The number of genes contained in 20modules of CD8
cells. (F) Correlation coefficients of module-trait relationships in CD8+ T cells at different infection periods are indicated by different colours.
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where stj indicates the score value of the tth pathway in the
jth cell type (the higher the score, the stronger the
significance), mt indicates the number of genes in the tth
pathway, and Wi represents the weighted value of the ith
gene (the reciprocal of the tth pathway metabolic gene)
(Xiao et al., 2019).

Functional Annotation and Protein-Protein
Interaction Network
Using clusterProfiler (an R package), we performed pathway
enrichment analysis of the differentially expressed genes with
respect to Gene Ontology terms (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways, using default
parameters. We then constructed a protein-protein
interaction network based on these data using the STRING
database in Cytoscape version 3.8.2. We also identified the
chromosomal localisation of all genes in the target pathway
by using the Ensembl and Genecards websites.

RESULTS

WGCNA Identification of Genetic Modules
In our study, the sample characteristics were divided into three
stages as follows: Healthy, HIV acute infection, and HIV
chronic infection. Then we choose the appropriate threshold
(Supplementary Figure S1). We combined the relevant traits
and modules of the sample for joint analysis to show the
correlation between modules and traits using WGCNA’s
systems biology method. Different modules were
represented by different colours. Each module contained a
set of highly connected genes, and the genes in each module
might participate in similar pathways or have the same
biological functions. These modules ranged from large to
small according to the number of genes that they contained.

The results of co-expression network analysis are shown in
Figure 1. The number of genes in the module is shown in Figures
1B,E and Supplementary Table S1. The correlation coefficient of
each module is shown in Figures 1C,F. We identified 23 co-
expressed gene modules for CD4+ T cells (Figure 1A). In terms of
the number of genes contained in the module, MEblue was the
largest module, containing 2,786 genes, whereas MEgrey was the
smallest module, containing 13 genes. From the perspective of the
correlation coefficient after infection, the module with the largest
negative correlation coefficient was MEskyblue, with a value of
−0.65; the module with the largest positive correlation coefficient
was MEorangered4, with a value of 0.77. Each module has
different functions. For example, Leukocyte transendothelial
migration and FoxO signaling pathway are enriched in the
MEskyblue.

We confirmed 20 co-expressed gene modules in CD8+ T cells
(Figure 1D). From the perspective of the number of genes
contained in the module, MEturquoise was the largest module,
containing 3,214 genes; MEgrey was the smallest module,
containing only one gene. From the perspective of the
correlation coefficient after infection, the module with the

largest negative correlation coefficient was MEdarkgrey, with a
value of −0.6; the module with the largest positive correlation
coefficient was MEbrown, with a value of 0.8. In addition, the
coefficient of the MElightgreen ranked second, reaching 0.72.
RNA transport and Viral carcinogenesis are enriched in the
MElightgreen.

Key Module-Activated Cell Processes
By calculating the correlation between the gene modules and
the phenotype matrix, the key modules were screened out (i.e.
those exhibiting higher correlations). The “salmon” module
and the “orangered4” module were selected to represent the
genes affected during early and chronic infection in CD4+

T cells, respectively, whereas the “brown” module and the
“skyblue” module were selected to represent early and chronic
infection in CD8+ T cells, respectively. We draw scatter plots
of the relationship between gene saliency and module
membership in the four modules respectively (Figure 2).
Functional annotation of the key modules showed a distinct
biological significance bias for each module (Supplementary
Table S2) for example, the “salmon”module (early infection of
CD4+ T cells) was significantly enriched in inactivation of
metabolic and infection-related pathways (Figure 2A),
whereas the “orangered4” module (chronic infection of
CD4+ cells) was most significantly enriched in the TGF-beta
signaling pathway and IL-17 signaling pathway, among others
(Figure 2B). By contrast, the cell cycle and DNA replication
were activated in the early infection CD8+ T cells (Figure 2C),
whereas the proteasome and sphingolipid metabolism were
largely activated in CD8+ T cells in the chronic infection stage
(Figure 2D).

Critical Pathways During Acute HIV
Infection
We focused on the similarities and differences in the activated
gene pathways between CD4+ and CD8+ T cells during early
infection. There were 20 special pathways among CD4 cells and
70 special pathways for CD8 cells. In total, 34 gene pathways
(Figure 3A) overlapped between the two cell types. Among
them, the top pathways mainly included the following:
metabolic pathways, human immunodeficiency virus 1
infection, NOD-like receptor signaling pathway, and cAMP
signaling pathway, among others. In addition to metabolic
pathways and HIV infection pathways, two pathways with
broad significance, NOD-like signaling pathways rank the
top among other pathways. So we further focused on the
NOD-like receptor (NLR) pathway. NLRs are type pattern
recognition receptors for the host, which can recognise the
pathogen-related molecular patterns of viruses to regulate
antiviral innate immune signaling pathways, thereby
regulating the innate antiviral immune response (Zheng,
2021). We first identified the chromosomal localisations for
all of the genes enriched in the NLR pathway (Figure 3B), as
well as the expression modules showing consistent direction of
change (down- or up-regulated) in the two cells in the context
of early and chronic infection (Figures 3C–F). The modules
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FIGURE 2 | Co-expressed gene modules that interact with other genes in different stages of HIV infection. (A) Distribution of genes in the salmon module, GO and
KEGG pathway enrichment, and key genes in the early HIV infection stage of CD4+ T cells. (B) Distribution of genes in the orange4 module, GO and KEGG pathway
enrichment, and key genes of CD4+ T cells in the chronic HIV infection stage. (C)Distribution of genes in the brownmodule, GO and KEGG pathway enrichment, and key
genes in the early HIV infection of CD8+ T cells. (D) Distribution of genes in the sky blue module, GO and KEGG pathway enrichment, and key genes in the chronic
HIV infection of CD8+ T cells.
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FIGURE 3 | Critical pathways during acute HIV infection. (A) Enrichment of pathways in CD4+ and CD8+ T cells during the early stage of HIV infection. The Venn
diagram shows a total of 34 pathways common to the two cell types, with 20 CD4+ T cell-specific pathways and 70 CD8+ T cell-specific pathways. (B) Chromosomal
localisation of all genes in the NOD-like receptor pathway. (C,D) Gene modules and co-upregulated gene modules in the NOD-like receptor pathway in CD4+ T cells
during different infection periods. (E,F) Co-upregulated and co-downregulated gene modules in CD8+ T cells during different HIV infection periods. (G–I) Protein-
protein interaction network centralised with respect to NLRP1 (G), RIPL1 (H), and RIPK2 (I).
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that were co-up-regulated in CD4 and CD8 cells after infection
included IRF9, IRF7, PLCB3, CXCL3, and TXN, among others.
The co-down-regulated modules we identified included JAK1,
PKN2, TNF, NLRP1, RIPK1, and RIPK2, among others.
Among them, three core modules were selected, including
NLR family pyrin domain containing 1 (NLRP1), receptor-
interacting serine/threonine kinase 1 (RIPK1), and RIPK2. By
constructing a protein–protein interaction network, we
identified the genes that might interact with each other in
the three modules (Figures 3G–I).

Differential activation of cell metabolism between CD4+ and
CD8+ T cells before and after HIV infection.

There are a total of 9,700 genes in our data set, and 1,352
genes related to metabolism are collected. These metabolic
genes come from metabolic pathways. We selected 296 genes
expressed by both as the most basic metabolic genes in this
study. Since CD4+ and CD8+ T cells play different roles in the
immune response, we assessed the differential activation and
characteristics of these two cell types and screened their co-

expressed metabolic genes. The cell metabolism pathways were
differentially activated before and after infection. HIV infection
also appears to disrupt the metabolic balance between these two
cell types; some metabolic pathways were activated, whereas
others remained unchanged. As shown in Figure 4, the
pathways that were significantly altered in both types of
cells in early infection included valine, leucine, and
isoleucine degradation; beta-alanine metabolism; and PPAR
signaling pathways. These three pathways also showed the
greatest change in CD4+ T cells between the early infection
and chronic infection stages. Among them, the PPAR signaling
pathway also has significant changes in pathogen infections
such as ZIKV and Neisseria meningitidis. More HIV-induced
metabolic abnormalities were detected in CD8+ T cells
compared with those occurring in CD4+ T cells. Before and
after infection, the majority of pathways were changed in CD8+

T cells, along with some pathways such as the arachidonic acid
metabolism pathway that was unchanged. In addition to the
three most significant pathways mentioned above, the oxidative

FIGURE 4 | Altered metabolic pathways during HIV infection. (A) Changes and scores of the metabolic pathways in CD4+ T cells before and after infection and
during different infection periods. (B) Changes and scores of the metabolic pathways of CD8+ T cells before and after infection and during different infection periods.
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phosphorylation, fatty acid metabolism, and lysine degradation
pathways also exhibited relatively large changes in CD8+ T cells
between the acute and chronic infection stages. Thus, changes
in these metabolic pathways may be conducive for these two
cell types to cope with HIV infection.

DISCUSSION

The primary function of CD4+ T cells after HIV infection is
related to DNA repair in response to DNA damage stimuli,
along with positive regulation of cellular processes and other
pathways, whereas CD8+ T-cell functions after infection are
mainly related to cell mitosis, signal transduction, and
transmission (Xu et al., 2014). In addition, network-based
methods have been widely used in biological data analysis
(Peng et al., 2021a; Peng et al., 2021b). Therefore, we use
WGCNA analysis to find that CD4+ T cells from individuals in
the early HIV infection stage were enriched in genes involved
in metabolic and infection-related pathways, whereas CD8+

T cells were enriched in genes involved in cell-related changes,
including the cell cycle and DNA replication. During chronic
HIV infection, CD4 cells are mainly enriched in pathways
related to immune defense, such as IL-17 signaling pathway.
CD8 cells are mainly enriched in proteasome and sphingolipid
metabolism. This finding identified many other pathways
altered in the two T-cell subtypes at different stages of HIV
infection. It also expands evidence for the field to enrich
overall understanding of HIV infection-related gene
alterations and modules. However, in chronic infection, the
two types of cells share fewer pathways. Therefore, when
screening critical pathways, we choose acute infection,
which makes it easier to find infection markers and
therapeutic targets.

In addition, few studies have focused on the systematic
characteristics of the two cells at different stages of HIV
infection or the similarities and differences between the two
cells at the same stage. We used GO annotations and
KEGG pathways to analyze the core pathways in the 2 T cell
types during early and chronic HIV infection, and then
explored key co-expression modules among them. We
identified three key down-regulation modules: NLRP1
module, RIPK1 module and RIPK2 module. The central
gene of the module represents the function of the module to
a certain extent. Among them, RIPK1 and RIPK2 are the key
mediators of cell apoptosis and death, as well as the
inflammatory pathways (Festjens et al., 2007). RIPK1 and
RIPK2 can be cleaved by HIV-1 protease, which affects
important biological processes in the body such as host
defence pathways and cell death (Wagner et al., 2015).
However, the specific role of NLRP1 in the regulation of
HIV infection in the human body remains to be
determined. NLR is a type of germline-encoded pattern
recognition receptor, which is mainly involved in the
cytosolic sensing mechanism to detect viral infections in the
body. NLRs participate in immune signaling pathways,

including inflammasomes, nuclear factor -kappa B, and type
I interferon signaling (Lupfer and Kanneganti, 2013). In terms
of viral infection, NLRs play an impor tant role in both innate
and adaptive immunity. NLRP1 was the first protein identified
to form an inflammasome and is a sensor for a variety of
pathogens, which can activate an antibacterial or antiviral
immune response (Chavarria-Smith and Vance, 2015;
Chavarria-Smith et al., 2016). RIPK family members have
also been documented to be related to NLRs. The
association of RIPK and NLRP1 in this study further
confirms their role in HIV infection, although further
experimental studies are needed to explore their actual link.
Moreover, the core genes identified in each module, and the
specific types of genes in the modules corresponding to
different infection stages and cell types could guide new
therapeutic targets of HIV infection.

Cellular immune metabolism has become one of the hottest
research topics in immunology (Medzhitov, 2015). Previous
studies also showed that HIV infection led to upregulation of
amino acid metabolism, the tricarboxylic acid cycle, and
fatty acid metabolism in human CD4+ T cells (Chan et al.,
2007; Ringrose et al., 2008; Zhang et al., 2017). In our study, we
utilised a novel algorithm to analyse differences in the
metabolic pathways of CD4+ and CD8+ T cells before and
after HIV infection. Our data demonstrate significant
changes in three pathways of oxidative phosphorylation,
fatty acid metabolism, and lysine degradation in
CD8+T cells after early HIV infection compared with those
assessed from individuals with chronic infection. The degree of
metabolism of CD8 cells after infection is much stronger than
that of CD4 cells. We have enriched the metabolic pathways of
the two cells that are significantly altered in the early stage of
HIV infection. These metabolic characteristics may be of
great significance and warrant further investigation into
identifying the mechanism of action of these two immune
cell types after HIV infection.

In this study, we used WGCNA technology and metabolic
algorithms to show a panoramic view of the core modules and
metabolic pathways associated with HIV infection, providing new
ideas and strategies for the development of HIV therapeutic
targets and early diagnosis.
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The Causal Effects of Insomnia on
Bipolar Disorder, Depression, and
Schizophrenia: A Two-Sample
Mendelian Randomization Study
Peng Huang1†, Yixin Zou1†, Xingyu Zhang2, Xiangyu Ye1, Yidi Wang1, Rongbin Yu1 and
Sheng Yang3*

1Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China,
2Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA,
United States, 3Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University,
Nanjing, China

Psychiatric disorder, including bipolar disorder (BD), major depression (MDD), and
schizophrenia (SCZ), affects millions of persons around the world. Understanding the
disease causal mechanism underlying the three diseases and identifying themodifiable risk
factors for them hold the key for the development of effective preventative and treatment
strategies. We used a two-sample Mendelian randomization method to assess the causal
effect of insomnia on the risk of BD, MDD, and SCZ in a European population. We collected
one dataset of insomnia, three of BD, one of MDD, and three of SCZ and performed a
meta-analysis for each trait, further verifying the analysis through extensive
complementarity and sensitivity analysis. Among the three psychiatric disorders, we
found that only insomnia is causally associated with MDD and that higher insomnia
increases the risk of MDD. Specifically, the odds ratio of MDD increase of insomnia is
estimated to be 1.408 [95% confidence interval (CI): 1.210–1.640, p � 1.03E-05] in the
European population. The identified causal relationship between insomnia and MDD is
robust with respect to the choice of statistical methods and is validated through extensive
sensitivity analyses that guard against various model assumption violations. Our results
provide new evidence to support the causal effect of insomnia on MDD and pave ways for
reducing the psychiatric disorder burden.

Keywords: insomnia, bipolar disorder, depression, schizophrenia, two-sample mendelian randomization,
genome-wide association study

INTRODUCTION

Insomnia disorder is predominantly characterized by dissatisfaction with sleep duration or quality
and difficulties in initiating or maintaining sleep (Morin et al., 2015; Winkelman, 2015). Most cross-
sectional and longitudinal studies have also shown that insomnia increases the risks of acute
myocardial infarction and coronary heart disease, heart failure, hypertension, diabetes, and death,
particularly when insomnia is accompanied by a short total sleep duration (<6 h per night) (Chen
et al., 2013; Morin et al., 2015; Parthasarathy et al., 2015; Grandner et al., 2016; Javaheri and Redline,
2017; Bertisch et al., 2018; Dong and Yang, 2019). Emerging evidence show that insomnia associates
to both incident and some recurrent psychiatric disorders, including major depression disorder
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(MDD), anxiety disorder, substance use problems, and
suicidality. In addition, a wide range of sociodemographic
correlates of insomnia have been identified and include
advanced age, female sex, low socioeconomic status,
unemployment, and psychological distress. Although insomnia
results from environmental factors, it is, in part, attributable to
genetic factors (Winkelman, 2015).

The generation and development of psychiatric disorders are
influenced by genetic and environmental factors (Sklar et al.,
2011; Nagel et al., 2018; Ruderfer et al., 2018; Peng et al., 2020;
Peng et al., 2021a; Peng et al., 2021b). For genetic factors, based
on genome-wide association analysis (GWAS), Purcell et al.
implicate the major histocompatibility complex, constructed a
polygenic risk score (PRS) of schizophrenia (SCZ) and verified
that the PRS also predicted bipolar disorder (BD) (Purcell et al.,
2009). For environmental factors, using a case–control study,
Palagini et al. found that insomnia played a mediating role
between early life stress and the clinical manifestations of BD,
and assessing the evolution of insomnia symptoms can provide a
basis for the characteristics and treatment strategies of BD
(Palagini et al., 2021). In addition, the result of longitudinal
epidemiological studies shows that sleep disturbances and
insomnia increase the risk of MDD after 1–3 years (Riemann
and Voderholzer, 2003; Franzen and Buysse, 2008). Studies have
also shown that up to 80% of patients with SCZ report symptoms
of insomnia (Stummer et al., 2018). Sleep disorders have been
shown to increase the risk of cognitive impairment and
recurrence in patients with schizophrenia (Stummer et al.,
2018). However, all these findings are summarized from either
observational studies or pilot randomized controlled trials and
prone to selection bias, especially unobserved confounding
factors—that is, correlation cannot be simply equal to causal
association. It is essential and urgent to further investigate the
causal association between insomnia and psychiatric disorders,
including BD, MDD, and SCZ.

Based on Mendel’s law of inheritance—that is, parental alleles
are randomly assigned to offspring—Mendelian randomization
(MR), an advanced statistical method, treats single-nucleotide
polymorphism (SNP) as an instrumental variable (IV) to adjust
the effect of confounders and identifies the causal relationship
between two traits (Davey Smith and Hemani, 2014; Paternoster
et al., 2017). Then, when we regarded SNPs both with association
to insomnia and without association to psychiatric disorders as
IVs, MR can establish the causal relationship between insomnia
and psychiatric disorders. Because genetic variants are fixed at
conception and cannot be modified subsequently, MR can
overcome a possible reverse causation. MR assumes that if
insomnia causes psychiatric disorders, SNP related to
insomnia causes psychiatric disorders through the insomnia
pathway. Emerging large-scale GWAS of insomnia and
psychiatric disorders gives us opportunities to use MR to
study the causal relationship between them (Sleiman and
Grant, 2010).

In the present study, our main aim is to investigate the causal
relationship between insomnia and three psychiatric disorders
(BD,MDD, and SCZ) in a European ancestry. To achieve the aim,
we used the summary statistics of eight datasets (including

386,533 samples of insomnia and 719,027 samples of three
psychiatric disorders) to perform a series of two-sample MR
to comprehensively elucidate the potential causal association
between insomnia and BD, MDD, and SCZ. In addition, to
ensure the validity of the results of MR, we performed three
sensitivity analyses, including heterogeneity test, pleiotropy test,
and leave-one-out (LOO) test, and reverse-direction MR analyses
(Zeng et al., 2019; Zeng and Zhou, 2019; Gormley et al., 2021).

MATERIALS AND METHODS

GWAS Meta-Analysis
We collected eight datasets of insomnia and three psychiatric
disorders from the GWAS-ATLAS (https://atlas.ctglab.nl/) (Tian
et al., 2020), including one insomnia dataset (Jansen et al., 2019),
three BD datasets (Smith et al., 2009; Hou et al., 2016; Ruderfer
et al., 2018), one MDD dataset (Howard et al., 2019), and three
SCZ datasets (Manolio et al., 2007; Ripke et al., 2013; Pardiñas
et al., 2018). The insomnia summary statistics was estimated from
the UK Biobank datasets with 386,533 individuals (Prev. � 0.283).
The MDD summary statistics was estimated from the UK
Biobank datasets with 500,199 individuals (Prev. � 0.341). The
three BD summary statistics had 34,950 individuals (Prev. � 0.
219), 2,035 individuals (Prev. � 0.492), and 41,653 individuals
(Prev. � 0.483), repectively. The three SCZ summary statistics had
32,143 individuals (Prev. � 0.430), 2,729 individuals (Prev. � 0.
495), and 105,318 individuals (Prev. � 0.386), repectively. The
three studies for BD and MDD were without any overlap
individuals. All summary statistics were estimated in the
European ancestry. Then, we filtered out SNPs 1) with INFO
<0.6, 2) withMAF <0.01, 3) with palindromic allele, and 4) whose
OR was larger or smaller than mean ±3 SD. Finally, we obtained
7,213,582, 9,018,454, 7,743,682, and 8,679,614 SNPs for the four
traits. Details of the meta-dataset and the three datasets for BD
and SCZ are shown in Table 1 and Supplementary Table S1.

Furthermore, to obtain an accurate and robust estimation for
each variant, we performed GWAS meta-analysis for each trait
using METAL (v2011-03-25) (Willer et al., 2010). To control the
population stratification, we set the option GENOMICCONTROL
to on. In addition, we used Linkage Disequilibrium SCore
regression (LDSC) (v1.0.1) to estimate both the observed and
liability observed heritability (h2) for each trait. We set the
population prevalence (--pop-prev) for the four traits to 0.300,
0.020, 0.086, and 0.010 to estimate liability heritability,
respectively (Ayuso-Mateos et al., 2001; Roth, 2007; Di Luca
et al., 2011). We also estimated the genetic correlation (Rg)
between them in the GWAS analysis results (Tylee et al., 2018).

TABLE 1 | Summary of the meta-datasets for four traits.

Trait NSNP Nsample Prev h2
O h2

L λGC Intcp

Insomnia 7,213,582 386,533 0.283 0.046 0.082 1.310 1.015
BD 9,018,454 78,638 0.366 0.405 0.286 1.421 1.080
MDD 7,743,682 500,199 0.341 0.060 0.067 1.453 1.00
SCZ 8,679,614 140,190 0.399 0.295 0.170 1.637 1.044
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IV Selection
Based on the meta-datasets, we followed the strict selection
procedure for selecting IVs in other previous MR studies
(Zeng et al., 2019; Dong et al., 2021) (Figure 1). First, we
retained 463 variants for insomnia with a P-value smaller than
5.00E-8. Second, we excluded 450 highly correlated variants with
r2 greater than 0.001 in the range of 10 Mb. In addition, following
Zeng et al. (2019), we used F statistic to test for weak IVs, and no
variant was excluded with a minimum F statistic of 39.37. Finally,
we retained a total of 13 independent candidate IVs for studying
the causal relationship between insomnia and BD, MDD, and
SCZ. The details are shown in Supplementary Table S2.

We performed three two-sample MR analyses, including
inverse variance weighted (IVW), MR-Egger, and weighted
median (WM) method, to estimate the potential causal effect
of insomnia to BD, MDD, and SCZ (Bowden et al., 2015; Bowden
et al., 2016a). Without consideration for the intercept term, IVW
regarded the reciprocal of the outcome variance as the weight.
Because of no pleiotropy assumption, IVW was biased when
pleiotropy exists (Bowden et al., 2015). Differently to IVW, MR-
Egger used an intercept term tomeasure the horizontal pleiotropy
between IVs (Bowden et al., 2016b). The weighted median
method assumed that variables that account for at least 50%
of the total IVs were valid, so the causal effects could be estimated
consistently (Bowden et al., 2016a). We also used MR-Egger

intercept to test pleiotropy (Hemani et al., 2018; Verbanck et al.,
2018; Ong and MacGregor, 2019). All the analyses are performed
by R software (v4.1.1). We specially used TwoSampleMR R
package (v0.5.6) to perform a MR analysis.

Sensitivity Analysis
Following Noyce et al. (2017), Zeng et al. (2019), and Zeng and
Zhou (2019), we performed a sensitivity analysis to evaluate the
potential violations of the model assumptions in the MR analysis:
1) heterogeneity test, 2) pleiotropic test, and 3) LOO sensitivity
test. First, heterogeneity analysis estimates heterogeneity between
IVs. If heterogeneity existed, it is hardly to direct combinations of
IVs. We used the P-value of Q statistics (PQ) < 0.05 as the
significant level. Second, we used MR-PRESSO to test pleiotropy,
resulting in serious deviations in MR (Hemani et al., 2018; Ong
and MacGregor, 2019). Finally, by gradually excluding each
variant, LOO estimated the causal effect of the remaining
variants and tested whether the difference between each causal
effect is significant. Ideally, defining no significant difference
meant a robust result (Noyce et al., 2017). The statistically
significant level was set to 0.05.

Reverse-Direction MR Analyses
We also performed reverse-direction MR to assess the potential
reverse causal effects of BD, MDD, and SCZ on insomnia.

FIGURE 1 | Flow chart for instrumental variable (IV) selection. The flow chart shows the selection process of insomnia IVs to estimate the causal effects on bipolar
disorder (BD), major depression (MDD), and schizophrenia (SCZ). First, we use p < 5.00E-8 to select index single-nucleotide polymorphisms (SNPs) to ensure that they
strongly associate with insomnia. Second, we use r2 > 0.001 in the range of 10,000 Mb to select independent index SNPs. We treat the EUR of 1000 Genome Project as
the reference panel. The first two steps are completed by PLINK. Finally, we obtain 13 IVs on BD, 10 IVs on MDD, and 13 IVs on SCZ.
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Following Savage et al. (2018) and Dong et al. (2021), we used the
same settings as the abovementioned MR analysis (p � 5.00E-8,
r2 � 0.001, and window size � 10 Mb). We obtained 36 IVs for
BD, 44 IVs for MDD, and 50 IVs for SCZ. We used these IVs of
three psychiatric disorders to perform reverse causal inferences
on insomnia to assess the potential reverse causal effects. The
reverse-direction MR analysis process is the same as previously
described.

RESULTS

Summary of GWAS Meta-Data and Genetic
Correlation
We used the meta-analysis datasets to estimate the genetic
correlation. The genetic inflation factor (λgc) of insomnia is
1.310 (LDSC intercept: 1.015), the λgc of BD is 1.421 (LDSC
intercept: 1.080), the λgc ofMDD is 1.453 (LDSC intercept: 1.000),
and the λgc of SCZ is 1.637 (LDSC intercept: 1.044). The LDSC of
the four traits are not larger than 1, which indicates that the meta-
datasets are without population stratification. Using GWAS
summary statistics to estimate SNP-based observed and
liability heritability, these are 0.046 and 0.082 for insomnia,
0.405 and 0.286 for BD, 0.060 and 0.067 for MDD, and 0.295
and 0.170 for SCZ, respectively (Table 1). We useManhattan plot
and qqplot to show the GWAS results for the four traits
(Supplementary Figure S1).

In addition, we assessed the genetic correlation between BD,
MDD, SCZ, and insomnia using cross-trait LDSC. Insomnia was
significantly genetically correlated to MDD (Rg � 0.469, p�
2.01E-70), while it was not significantly genetically correlated
to BD (Rg � 0.022, p � 0.462) and SCZ (Rg � 0.027, p � 0.276). As

expected, we defined three significant genetic correlations
between the three psychiatric disorders: genetic correlation
between BD and MDD (Rg � 0.287, p � 5.72E-26), between
BD and SCZ (Rg � 0.662, p � 5.6E-283), and between MDD and
SCZ (Rg � 0.327, p � 4.91E-42) (Figure 2).

MR Analysis
We use the 13 potential IVs of insomnia with the three psychiatric
disorders one by one. Specifically, three psychiatric disorders had
13, 10, and 13 IVs, respectively (Supplementary Table S2). Based
on different assumptions, we estimate the potential causal effect
by all four models, including IVW (fixed- and random-effects
model), MR-Egger, and WM. We use the forest plot to show the
potential causal effect of the four methods, scatter plot to show
the IV effect of insomnia and three psychiatric disorders, and
funnel plot to show the relationship between effect of MR model
and effect of each SNP (Figure 3, Supplementary Figures S2, S3,
Supplementary Tables S3–S5).

ForMDD, the estimated OR from fixed-effects IVWmethod is
1.288 (95% CI: 1.189–1.395), with p � 5.630E-11. As expected, the
result of the random-effects IVW method (OR � 1.288, 95% CI:
1.091–1.520, p � 0.003) is similar to that of the random-effects
IVW. However, the result of WM (OR � 1.076, 95% CI:
0.915–1.216, p � 0.374) and MR-Egger (OR � 0.916, 95% CI:
0.599–1.401, p � 0.696) is not similar to that of IVW (Figure 4,
Supplementary Table S4). The abovementioned results indicate
that the risk of MDD increases with the increasing level of
insomnia. We should use the result of the sensitivity analysis
to determine which one is the main result.

For BD, in terms of the fixed-effects IVW method, the
estimated OR of insomnia is 1.216 (95% CI: 0.974–1.518, p �
0.084). As expected, the result of the random-effects IVWmethod
is similar to that of the fixed-effects method, with OR � 1.216
(95% CI: 0.801–1.845) and p � 0.358. The results of WM (OR �
1.351, 95% CI: 0.948–1.917, p � 0.096) and MR-Egger (OR �
1.909, 95% CI: 0.506–7.197, p � 0.360) are similar
(Supplementary Figure S2, Supplementary Table S3).
Unfortunately, the results of all MR methods are not
significant, suggesting that there might be no potential causal
association for insomnia on BD. The specific results have to be
verified after a sensitivity analysis.

Finally, for SCZ, the estimated OR of insomnia by the fixed-
effects IVW method is 0.787 (95% CI: 0.630–0.983, p � 0.035),
while the OR from the random-effect model is 0.787 (95% CI:
0.479–1.292, p � 0.344). In addition, the results of the weighted
median method (OR � 0.604, 95% CI: 0.413–0.883, p � 0.009) and
MR-Egger (OR � 0.566, 95% CI: 0.109–2.950, p � 0.513) are
different (Supplementary Figure S3, Supplementary Table S5).
Similarly, which specific result is representative also needs to be
determined after the sensitivity analysis.

Sensitivity Analyses
Using three kinds of MRmethods, we identify the potential causal
relationship of insomnia on MDD (IVWmethod) and SCZ (only
WM method). We performed a series of sensitivity analyses to
assess whether the results obtained are robust, whether there is
potential bias (such as pleiotropy and data heterogeneity), and

FIGURE 2 | The genetic correlation of four traits using Linkage
Disequilibrium SCore regression. The heat map shows the Rg (lower triangle)
and its P-value (upper triangle). The red color shows a more positive
correlation, while the blue color shows a more negative correlation. We
use abbreviations to indicate various psychiatric disorders: BD, bipolar
disorder; MDD, major depression; SCZ, schizophrenia.
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whether there is a certain IV that seriously affects the outcome
variable.

First, we conducted a heterogeneity analysis. Based on IVW,
the PQ values of BD, MDD, and SCZ are 2.83E-5, 1.39E-5, and
2.4E-8, respectively. Following Zeng et al. (2019), we selected the
result from the random-effects model or deleted SNPs with
P-value < 1.00E-5. Because of the similarity between the fix-
and random-effects IVWmethods, we deleted SNPs with P-value
< 1.00E-5 to reduce heterogeneity. For BD, excluding rs6938026,
the heterogeneity (PQ � 0.010) is reduced. For MDD, the
heterogeneity (PQ � 0.004) is reduced after excluding
rs11693221. The heterogeneity of SCZ (PQ � 0.078) is also
reduced after excluding rs6938026 and rs370771.

In addition, we performed a series of pleiotropic tests to
further ensure the validation of MR analysis. For MDD, MR-
Egger showed that the intercept is not statistically significant (p �
0.131), which indicated that there was no horizontal pleiotropy
that existed among IVs. The MR-PRESSO outlier test suggested
that rs11693221 (RSSobs � 2.32E-3, p < 0.01) was a potential
outlier. We used the MR-PRESSO distortion test and LOO test to
test whether the causal effect changed with or without the outlier,
but their results were different (PMR-PRESSO � 0.282 and PLOO �
1.03E-05). Then, even excluding the outlier, the heterogeneity test
showed statistically significant heterogeneity (PQ � 0.004).
Therefore, we used the result from random-effects IVW
method with the outlier excluded to represent the casual effect

of insomnia on MDD (OR � 1.408, 95%CI: 1.209–1.640, p �
1.03E-05) (Figure 3 and Supplementary Table S4).

For BD, MR-Egger showed that the intercept is not statistically
significant (p � 0.496). The MR-PRESSO outlier test suggested
that rs6938026 (RSSobs � 2.89E-3, p < 0.01) and rs77960 (RSSobs �
2.28E-3, p � 0.013) were the potential outliers. However, the MR-
PRESSO distortion test and LOO test indicated that no statistical
significance could be identified when excluding the two variants
(PMR-PRESSO � 0.979, PLOO1 � 0.147, and PLOO1 � 0.622). Though
heterogeneity was reduced without the two outliers, we fail to
define a statistically significant causal effect for insomnia on BD
(Supplementary Figure S2 and Supplementary Table S3).

For SCZ, MR-Egger showed that the intercept is not
statistically significant (p � 0.689). The MR-PRESSO outlier
test indicated that four SNPs, including rs1456193, rs370771,
rs4986172, and rs6938026, were identified as potential outliers.
However, theMR-PRESSO distortion test and LOO test indicated
that no statistical significance could be identified when excluding
the two variants (PMR-PRESSO � 0.738, PLOO1 � 0.172, PLOO2 �
0.588, PLOO3 � 0.096, and PLOO4 � 0.613). Though there was no
significant heterogeneity between models with and without
outliers, we used the result from the random-effects IVW
method with the outliers excluded to represent the casual
effect of insomnia on SCZ for caution (OR � 0.752, 95%CI:
0.524–1.079, p � 0.122) (Supplementary Figure S3 and
Supplementary Table S5).

FIGURE 3 | Summary of the Mendelian randomization (MR) analysis for insomnia on major depression (MDD). (A)MR effect size of each instrumental variable (IV),
MR-Egger, and inverse variance weighted (IVW). (B) Scatter plot of causal effects of insomnia on MDD. We use vertical and horizontal black lines to show 95% CI of the
estimated effect of IVs on MDD (x-axis) and that on insomnia (y-axis), respectively. We use the blue line to show the IVW random-effects model. The potential SNP outlier
(rs11693221) is highlighted in green. (C) Funnel plot of the causal effect of insomnia on MDD. Each point represents the estimated causal effect of each IV. The
vertical dark blue line represents the causal effect estimate obtained using the MR-Egger method; the light blue line represents the causal effect estimate obtained using
the IVW method. The potential outlier (rs11693221) is highlighted in green.
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Reverse-Direction MR Analysis
Following a previous MR analysis (Hartwig et al., 2017; Dong
et al., 2021), in order to identify the potential confounding factors
that mislead the direction of causal effects, we performed reverse-
direction MR (Figure 4, Supplementary Figures S4, S5). We
found that MDD and SCZ have a significantly potential causal
association to insomnia, while a potential causal effect for BD on
insomnia is not significant. Specifically, using IVW, the estimated
OR for MDD and SCZ on insomnia is 1.273 (p � 1.097E-9) and
1.028 (p � 0.004), respectively (Figure 4 and Supplementary
Figure S4). The results indicate that the risk of BD and SCZ could
increase the risk of insomnia.

DISCUSSION

Using the summary statistics of four traits and reference LD panel
from public sources, we performed a two-sample MR analysis to

show the causal effects of insomnia on three psychiatric disorders.
We found that the causal OR of insomnia onMDD is 1.288, that the
reverse direction causal OR of MDD on insomnia is 1.230, and that
no statistical significance is defined for insomnia on BD and SCZ.
These results were based on several MR methods to guard against
potential model misspecifications and is consistent in the estimates
of causal effects, suggesting that the findings are convincing.

As we have known, many observational studies aim to
explore the associations between insomnia and BD, MDD,
and SCZ. A case–control study found that insomnia
significantly affected patients with BP with depressive
symptoms (OR � 4.17, p � 0.043), and sleep disturbances
also predicted manic symptoms (OR � 8.69, p � 0.001)
(Palagini et al., 2020). Integrating 21 observational studies for
insomnia on DP, Baglioni et al. show that the overall OR of
insomnia is 2.60 (Baglioni et al., 2011). A cross-sectional study
found that the effect size of insomnia-caused symptoms of
depression or anxiety is 3.01 (Batalla-Martín et al., 2020).

FIGURE 4 | Summary of the reverse-directional Mendelian randomization (MR) analysis for insomnia on major depression (MDD). (A) Reverse-directional MR effect
size of each instrumental variable (IV), MR-Egger, and inverse variance weighted (IVW). (B) Scatter plot of the causal effects of MDD on insomnia. We use vertical and
horizontal black lines to show 95% CI of the estimated effect of IVs on MDD (x-axis) and that on insomnia (y-axis), respectively. We use the blue line to show the IVW
random-effects model. The potential SNP outliers (rs3099439 and rs10913112) are highlighted in green. (C) Funnel plot of the causal effect of MDD on insomnia.
Each point represents the estimated causal effect of each IV. The vertical dark blue line represents the causal effect estimate obtained using the MR-Egger method; the
light blue line represents the causal effect estimate obtained using the IVW method. The potential outliers (rs3099439 and rs10913112) are highlighted in green.
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The abovementioned studies have shown that insomnia is a risk
factor to psychiatric disorders. Differently to previous studies,
the effect size from MR is directional.

The causal relationship between insomnia and BD, MDD, and
SCZ identified in the European population was estimated using the
IVs of insomnia in three different outcomes. However, we also
recognize that there is still a large amount of unexplainable diversity
in the etiology of BD, MDD, and SCZ in European populations.
Further research is needed to understand the genetic and
environmental factors behind the differences between BD, MDD,
and SCZ. Although many studies have confirmed the potential
impact of insomnia symptoms on some psychiatric disorders, as
mentioned earlier, there is no clear answer yet, and it is not clear
whether insomnia has a significant causal effect on these diseases.

Like other MR analyses, our results are not without any
drawbacks. First, MR cannot completely exclude all
confounding factors because the relationship between exposure
and outcome obtained through the observational data used inMR
analysis is not a pure relationship between exposure and outcome
(Sekula et al., 2016; Ference et al., 2019). In our research, it may be
because the sample size of BD and SCZ is relatively small
compared with insomnia, and the effect of exposure on the
results is relatively weak. The statistical power of MR analysis
for certain exposures is limited, resulting in negative results
(Pierce and Burgess, 2013). Second, we defined the
bidirectional causal association between insomnia and MDD.
This plays an important supplement to support the causal
association, such that it is hard to detangle the relationship
between them using either a cross-sectional study or a MR
analysis (Manber and Chambers, 2009; Fang et al., 2019).
Nevertheless, our study also provides help for new
developments in psychiatric disorder research and new
treatment strategies in the future (Hertenstein et al., 2019).

CONCLUSION

The result of theMR and additional analyses shows that insomnia
has a positive causal effect on MDD in the European population

and provides new evidence of the causal relationship with
insomnia on BD and SCZ in European populations.
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Developing an Embedding, Koopman
and Autoencoder
Technologies-Based Multi-Omics
Time Series Predictive Model (EKATP)
for Systems Biology research
Suran Liu1†, Yujie You1†, Zhaoqi Tong2 and Le Zhang1*

1College of Computer Science, Sichuan University, Chengdu, China, 2College of Software Engineering, Sichuan University,
Chengdu, China

It is very important for systems biologists to predict the state of the multi-omics time series
for disease occurrence and health detection. However, it is difficult to make the prediction
due to the high-dimensional, nonlinear and noisy characteristics of the multi-omics time
series data. For this reason, this study innovatively proposes an Embedding, Koopman
and Autoencoder technologies-basedmulti-omics time series predictive model (EKATP) to
predict the future state of a high-dimensional nonlinear multi-omics time series. We
evaluate this EKATP by using a genomics time series with chaotic behavior, a
proteomics time series with oscillating behavior and a metabolomics time series with
flow behavior. The computational experiments demonstrate that our proposed EKATP can
substantially improve the accuracy, robustness and generalizability to predict the future
state of a time series for multi-omics data.

Keywords: multi-omics, time series, embedding, Koopman, deep learning

INTRODUCTION

Currently, the prediction of multi-omics time series states is one of the trending areas in systems
biology research (Zhang et al., 2019a). In particular, the development of high-throughput technology
(Soon et al., 2013) has produced a large-scale time series multi-omics state (Liang and Kelemen
2017a), including genomics (Lockhart and Winzeler 2000), proteomics (Tyers and Mann, 2003),
metabolomics (Weckwerth 2003) and more. Previous studies usually employed differential equation
(Eisenhammer et al., 1991; Zhang et al., 2016; Zhang and Zhang 2017; Liu G.-D. et al., 2020) based
models to abstract and formalise multi-omics time series data (Bianconi et al., 2020). Then, it became
possible to explore the time-varying connections and predict their future state (Ji et al., 2017) by
solving these differential equations. In particular, predicting multi-omics time series states can not
only discover dynamic information for biological entities, such as genes, proteins and metabolites,
but also explore complicated biological interactions and the pathogenesis of diseases (Liang and
Kelemen, 2017b).

However, a multi-omics time series usually has high dimensions (Perez-Riverol et al., 2017),
complicated interaction relationships (Fischer 2008) and inevitable noise (Fischer 2008; Tsimring
2014). Thus, when we employ differential equations to model the multi-omics time series state, it is
hard for us to solve these equations due to their high dimensionality and nonlinear characteristics
(Bianconi et al., 2020). For these reasons, the way to predict the future state of a multi-omics time
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series by solving these complicated nonlinear differential
equations has already become challenging work.

Recently, future state prediction for a multi-omics time series has
beenwidely studied by computational biologists. For genomic studies,
we usually use a gene expression time series to develop gene
regulatory networks (Davidson and Levin 2005; Zhang et al.,
2018; Xiao et al., 2020; Zhang et al., 2020; Xiao et al., 2021;
Zhang et al., 2021a). However, since the gene regulatory network
is a complex high-dimensional nonlinear system (Zhang et al.,
2012a), it often produces chaotic phenomena (Levnajić and Tadić
2010), which not only play an important role in maintaining stable
gene expression patterns (Sevim and Rikvold 2008) but also are
closely related to the occurrence of diseases (Suzuki et al., 2016).
Usually, we employ the Lorentz system (Lorenz 1963) to describe the
chaotic phenomenon. However, it is inaccurate to predict the future
state of genomics time series with nonlinear complicated interactions
because the Lorentz system is not good at processing nonlinear
complicated interactions (Lai et al., 2018). Currently, delay
embedding theory (Sauer et al., 1991; Holmes et al., 2012) is
commonly used to transform the spatial information (complicated
interactions) into temporal information (the future state of the time
series (Chen et al., 2020)) for dimensional reduction (Gao et al., 2017;
Li et al., 2017; Xia et al., 2017; Zhang et al., 2019b; Zhang et al., 2019c;
Wu et al., 2020; You et al., 2020; Zhang et al., 2021b), whereas
Koopman theory (Koopman, 1931) can switch the nonlinear system
into a linear system to reduce computing cost. Therefore, our first
research question asks if we can develop such a time series predictive
model that integrates the Lorentz system with delay embedding and
Koopman theory to accurately predict the future state of genomics
time series with chaotic behavior.

For proteomics studies, we usually use proteomic time series
data to infer protein–protein interactions (PPIs) (Wu et al., 2009).
Currently, we employ mass spectrometry technology (Mann
et al., 2001) to obtain proteomics time series data. However,
since it is unstable to have time-course experimental data by mass
spectrometry technology, proteomics time series data are prone
to oscillating behavior (Iuchi et al., 2018). Previously, we
employed a nonlinear pendulum system (Hirsch 1974) to
describe the oscillation behavior, though it was subjected to
overfitting under a strong noise environment. Since the
conjugate form of delay embedding (Sauer et al., 1991;
Holmes et al., 2012) can ensure the reversibility of the time
series predictive model (Chen et al., 2020) and reduce the impact
of noise on prediction to a certain extent, our second research
question asks if we can develop such a time series predictive
model that can integrate a nonlinear pendulum system with delay
embedding to accurately predict the state of proteomics time
series with oscillating behavior.

For metabolomics studies, we usually use metabolic time series
data that represent the flow behavior of biological fluids (serum,
cerebrospinal fluid, etc.) to discover key metabolites in biological
fluids (Zhang et al., 2012b). A previous study (Noack et al., 2003)
always employed a nonlinear biological fluid system to describe
metabolic time series data. However, because most nonlinear
fluid flow systems have high dimensions (Lusch et al., 2018), we
not only have difficulty selecting features from high-dimensional
metabolic time series data but also impede progress because of

time-consuming computing (Wang et al., 2021). Currently, since
neural networks (Wang et al., 2014) can decrease the computing
cost (Song et al., 2017) by dimensional reduction for time series
data (Hinton and Salakhutdinov, 2006), our third research
question asks if we can develop such a time series predictive
model that integrates a nonlinear fluid flow system with a neural
network to predict the future state of the metabolomics time
series accurately and quickly with flow behaviour.

To answer the above three research questions, this study
innovatively develops an Embedding, Koopman and
Autoencoder technologies-based multi-omics time series
predictive model (EKATP) to predict the future state of the
time series for the corresponding genomics, proteomics and
metabolomics datasets. Compared with previous approaches
(Lusch et al., 2018; Azencot et al., 2020), the contributions of
the study are summarised as follows. First, we select key features
from a high-dimensional nonlinear state by integrating a neural
network with the delay embedding theory. Second, we switch the
nonlinear system with a linear system to reduce the computing
cost by the Koopman theory. Finally, we develop a neural
network and delay embedding theory-based model for
reversible mapping between a high-dimensional nonlinear
system and a low-dimensional linear system, thereby
improving the accuracy and robustness of prediction.

The rest of the manuscript is organised as follows. Related
Works mainly describes the related work for Autoencoder, delay
embedding theory and Koopman theory. Materials and Methods
introduces the architecture of the EKATP and the related
procedure. Experiments describes the computational
experiments. Finally, we conclude the study and discuss the
future work.

RELATED WORKS

Supplementary Presentation S1 details the related theory and
existing research of the Autoencoder, delay embedding theory
and Koopman theory.

MATERIALS AND METHODS

Figure 1 describes the workflow of the EKATP.

Problem and Definitions
Given a set of high-dimensional nonlinear multi-omics time
series states F � (F1, F2, . . . , FT), where T represents the total
step, the time series state at t can be described as
Ft � (f t1, f t2, . . . f tn)′, where n represents the dimension of the
time series state, “ ’”, as the transpose of a vector. Our goal is to
predict the future state of the multi-omics time series. Next, we
detail how to develop an EKATP as follows.

Autoencoding Observations
Since an EKATP is based on the Autoencoder framework, we
employ Eq. 1 to define the objective function for
Autoencoder (Lid).
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FIGURE 1 | EKATP workflow.
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Lid �
����F̂

t − Ft
����MSE

(1)

Here, F̂
t
is the reconstructed high-dimensional time series

state according to encoder (χe) and decoder (χd) of
Autoencoder (Supplementary Presentation S1). || · ||MSE

denotes the mean squared error (MSE), which presents the
expected value of the square of the difference between the
predicted value and the true value. This loss function term
enables us to construct an Autoencoder model that satisfies
χd+χe ≈ id, the identity.

Delay Embedding
According to the description in the delay embedding theory
(Supplementary Presentation S1), we employ χe of the
Autoencoder to approximate the delay embedding Φ, mapping
the high-dimensional nonlinear input time series state Ft back to
the low-dimensional time series state Yt by Eq. 2,

Yt � (yt, yt+1, ..., yt+L−1)′ � χe(F
t). (2)

where L represents the dimension of the low-dimensional
time series state. Similarly, the inverse mapping χd of
mapping χe is used to approximate the conjugate form of
delay embedding Φ, mapping the low-dimensional time
series state back to the high-dimensional time series state
by Eq. 3.

F̂
t � (f̂

t

1, f̂
t

2, . . . f̂
t

n)′ � χd(Y
t). (3)

Linearized Representation of the Koopman
Operator
Based on the Koopman theory discussed by Supplementary
Presentation S1, we construct the finite dimensional linear
matrix C (and matrix D) to compute the forward (and
backward) low-dimensional time series state. Equation 4
shows how to realize the forward prediction for low-
dimensional time series state Yt to obtain Yt+1.

Yt+1 � CYt . (4)

Equation 4 can be expanded by Eq. 5.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt+1

yt+2

yt+3

. . .
yt+L−1

yt+L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 1
a1 a2 . . . aL−1 aL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

yt+1

yt+2

. . .
yt+L−2

yt+L−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Here, ai is the estimated parameter that needs training, and
a1 ≠ 0. Equation 6 shows how to realize the backward prediction
for a low-dimensional time series state Yt to obtain Yt−1.

Yt−1 � DYt . (6)

Equation 6 can be expanded by Eq. 7.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt−1

yt

yt+1

. . .
yt+L−3

yt+L−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 . . . bL−1 bL
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

yt+1

yt+2

. . .
yt+L−2

yt+L−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Here, bi is the estimated parameter that needs training, and
bL ≠ 0. Our goal is to optimise the parameters of the linear matrix
C (and D) of Eqs 5, 7 by model training.

Forward and Backward Prediction
We make the k-steps forward prediction by Eq. 8 and backward
prediction by Eq. 9 for the state of the low-dimensional time
series Yt . After that, χd is used to map the low-dimensional
predictive time series state back to the high-dimensional
predictive time series state by Eq. 10,

Yt+k � CkYt . (8)

Yt−k � DkYt . (9)

F̂
t±k � χd(Y

t±k). (10)

where Yt+k and Yt−k represent the low-dimensional state after k
steps of forward and backward prediction, respectively. F̂

t±k

represents the predictive high-dimensional nonlinear state.
Equations 11, 12 define the loss function of forward

prediction (Lfwd) and backward prediction (Lbwd) to minimize
the difference between the high-dimensional predictive value and
true states at each step, respectively.

Lfwd � 1
k
∑

k

s�1
∣∣∣∣
∣∣∣∣F̂

t+s − Ft+s∣∣∣∣
∣∣∣∣MSE

. (11)

Lbwd � 1
k
∑

k

s�1
∣∣∣∣
∣∣∣∣F̂

t−s − Ft−s∣∣∣∣
∣∣∣∣MSE

. (12)

Equation 13 defines the loss function (Lidy) to minimize the
difference between the predictive low-dimensional state obtained by
theC andDmatrices and defines such a low-dimensional state that is
mapped from the true high-dimensional state by mapping χe.

Lidy � 1
k
∑
k

s�1
[
����Csχe(F

t)−χe(Ft+s)
����MSE

+ ����Dsχe(F
t)− χe(Ft−s)

����MSE
].

(13)

Additionally, we employ loss function (Lcon) by Eq. 14 to
train the parameters ai and bi in the matrices C and D,
respectively.

Lcon � 1
k
∑
k

s�1
[
����χd(D

sCsYt) − Ft
����MSE

+ ����χd(C
sDsYt) − Ft

����MSE
]

(14)

Parameter Estimation for the EKATP
Equation 15 optimizes the key parameters for the EKATP by
minimizing L.
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L � λidLid + λfwdLfwd + λbwdLbwd + λidyLidy + λconLcon. (15)

Here, λid, λfwd, λbwd, λidy and λcon are user-defined
hyperparameters.

EXPERIMENTS

This section evaluates the predictability of the proposed EKATP
for high-dimensional nonlinear multi-omics datasets by
comparing it with recurrent neural networks (RNNs) (Jiang
and Lai, 2019), long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997), dynamic Autoencoder (DAE) (Lusch
et al., 2018) and Koopman Autoencoder (KAE) (Azencot et al.,
2020). The detailed experimental setup is listed in
Supplementary Presentation S2. In addition, we detail the
workflow chart and list the related pseudocode in
Supplementary Figure S1; Supplementary Presentation S3.

Genomics
We usually employ the chaotic Lorentz system (Lorenz, 1963) to
describe a gene expression time series with a low-dimensional
manifold (Sauer et al., 1991) by Eq. 16,

⎧⎪⎨
⎪⎩

xt+1 � xt + h(η(yt − zt))
yt+1 � yt + h(xt(ρ − zt) − yt)
zt+1 � zt + h(xtyt − βzt)

, (16)

where η and ρ represent the Prandtl and Rayleigh numbers,
respectively. β is related to geometry, and t represents time. h
represents the level of the complicated nonlinear system. When h
is greater, the nonlinear relationship between genes becomes
more complicated.

Since gene expression time series contains considerable noise,
we employ white Gaussian noise (Li et al., 2017) to simulate the
noise by Eq. 17,

⎧⎪⎨
⎪⎩

~x � x + εx
~y � y + εy
~z � z + εz

. (17)

where ~x, ~y and ~z represent data with noise. εx, εy and εz
represent the white Gaussian noise for x, y and z by normal
distributions N(0, σ2) with a zero mean and a standard
deviation σ. The standard deviation σ is referred to as the
noise intensity.

Here, we describe how to obtain a high-dimensional gene
expression time series with a low-dimensional manifold as
follows. First, we generate the three-dimensional time series V �
(V1,V2, . . . ,VT) ∈ R3 (T is the total step), which is listed in
Supplementary Tables S1.1, S1.2, S1.3. Next, we develop a
random orthogonal transformation (Anderson et al., 1987)
matrix P ∈ R96×3. Finally, we map the state of a 3-dimensional
time series onto the state of a 96-dimensional time series by Eq.
18 to simulate a high-dimensional gene expression time series
F � (F1, F2, . . . , FT) ∈ R96 with a 3-dimensional manifold, which
is listed in Supplementary Tables S1.4, S1.5, S1.6.

F � PV . (18)

To prove the accuracy and robustness of the EKATP, we
generate a small-scale system containing T � 1,050 steps and
choose the last 50 steps to visualize the predictive power of the
EKATP.

Figure 2 shows the predictive error in the range of 50 steps
under different initial conditions and environments. Detailed
information is listed in Supplementary Tables S1.7, S1.8;
Supplementary Presentation S4.

Figures 2A,C demonstrates that the EKATP not only has less
of a predictive error than the existing methods under a clean
environment (σ�0.00) but also has a stable predictive error when
the complexity h increases from 0.003 to 0.006. In particular, with
the increase in predictive steps, the predictive error of the EKATP
increases slower than that of the existing methods.

Figures 2B,D shows that the EKATP not only has less of a
predictive error than previous methods under a noisy
environment (σ�0.01) but also has a predictive error that
slightly fluctuates when h increases from 0.003 to 0.006.
Moreover, after 25 steps, the predictive error of the EKATP
increases much slower than that of the existing methods.

Figure 2 indicates that the EKATP has greater predictive
accuracy and robustness than excitation methods in clean and
noisy environments.

To further prove the generalizability of the EKATP, we
generate a large-scale system containing T � 15,000 steps
under the condition of h � 0.003 and σ � 0.00. After that, we
randomly choose three different time periods to train and test the
model as follows, the procedure of which is detailed in
Supplementary Table S1.9.

First, since the 3-dimensional time series state and 96-
dimensional time series state are diffeomorphic (Sauer et al.,
1991), which is indicated by the data preprocessing procedure, it
implies that the mapping between these two time series is
reversible. Here, we map the 96-dimensional gene expression
predictive results onto a 3-dimensional space by orthogonal
inverse transformation (Anderson et al., 1987) to visualize the
predictive result of the EKATP.

Figures 3A,B,C demonstrates that the predictive results of the
EKATP are close to the true value for different periods of a time
series. Figure 3 shows that the EKATP can accurately predict the
gene expression time series at different periods, implying that it
has a strong generalizability, even in a very complicated nonlinear
environment.

Proteomics
We always use a nonlinear pendulum model (Hirsch, 1974) with
oscillatory behaviour to describe a proteomics time series with a
low-dimensional manifold (Sauer et al., 1991) by Eq. 19,

⎧⎪⎪⎨
⎪⎪⎩

d2θ

dt2
+ g

l
sin θ � 0

θ(t0) � h

. (19)

where l, g and t denote the length, gravity and time, respectively.
h denotes the initial value of θ, which represents the level of the
complicated nonlinear system. When h is greater, the nonlinear
relationship between proteins becomes more complicated.
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Since a considerable amount of noise exists in a protein time
series, we employ white Gaussian noise (Li et al., 2017) to describe
it by Eq. 20,

⎧⎨
⎩

~θ � θ + εθ
_̃θ � _θ + ε _θ

, (20)

where ~θ and _̃θ represent data with noise. εθ and ε _θ
represent the noise Gaussian terms for θ and _θ by normal

distributions N(0, σ2) with a zero mean and a standard
deviation σ.

Here, we describe how to obtain a high-dimensional proteomics
time series with a low-dimensional manifold. First, we generate the 2-
dimensional time series V � (V1,V2, . . . ,VT) ∈ R2, which is listed
in Supplementary Tables S2.1, S2.2. Next, we develop a random
orthogonal transformation (Anderson et al., 1987) matrix P ∈ R64×2.
Finally, we map the state of a 2-dimensional time series onto the
state of a 64-dimensional time series by Eq. 18 to simulate a

FIGURE 2 | Comparison among the RNN, LSTM, DAE, KAE and EKATP. The abscissa represents the step, and the ordinate represents the predictive error. (A)
The initial conditions are h � 0.003 and σ � 0.00. (B) The initial conditions are h � 0.003 and σ � 0.01. (C) The initial conditions are h � 0.006 and σ � 0.00. (D) The initial
conditions are h � 0.006 and σ � 0.01.

FIGURE 3 | The 50-step predictive trajectories of the EKATP are under initial conditions h � 0.003 and σ � 0.00. Grey colors represent full true data. (A) This is the
predictive situation of the first period. Yellow and green colors represent true and predictive data, respectively. (B) This is the predictive situation of the second period.
Purple and cyan colors represent true and predictive data, respectively. (C) This is the predictive situation of the third period. Blue and red colors represent true and
predictive data, respectively.
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high-dimensional proteomics time series F � (F1, F2, . . . , FT) ∈ R64

with a 2-dimensional manifold, which is listed in Supplementary
Tables S2.3, S2.4.

To prove the accuracy and robustness of the EKATP, we
generate a system containing T � 1,600 steps and choose the last
1,000 steps to visualize the predictability for the EKATP.

Figure 4 shows that the EKATP can effectively predict a
proteomic time series under clean and noisy environments within
1,000 steps, the details of which are listed in Supplementary Tables
S2.5, S2.6; Supplementary Presentation S4.

Figures 4A,B shows that the EKATP not only has less of a
predictive error under a clean environment (σ�0.00) than the
existing methods but also maintains a smaller predictive error
when h increases from 0.8 to 2.4. Moreover, the predictive error of
the EKATP increases much slower than that of the existing
methods when the predictive step increases.

Figures 4C,D demonstrates that the EKATP has less of a
predictive error under a noise environment (σ�0.03) than the

existing methods. When h increases from 0.8 to 2.4, the predictive
error of the EKATP remains stable. In particular, with the
increase in predictive steps, the predictive error of the EKATP
increases much slower than that of the existing methods.

Figures 4E,F indicates that the EKATP not only has less of a
predictive error under a noise environment (σ�0.08) than the existing
methods but also has a predictive error of the EKATP that remains
stable when h increases from 0.8 to 2.4. In particular, when the
predictive steps are long enough (after 500 steps), the predictive error
of previous methods increases much faster than that of the EKATP.

Figures 4A,C,E shows that the predictive error of the EKATP
remains stable when the noise intensity σ increases from 0 to 0.08
under complexity h � 0.8. Figures 4B,D,F shows that the
predictive error of the EKATP remains stable when the noise
intensity σ increases from 0 to 0.08 under complexity h � 2.4.

Figure 4 demonstrates that the predictive accuracy and
robustness of the EKATP outperforms the existing methods
under clean and noisy environments.

FIGURE 4 | Comparison with the RNN, LSTM, DAE, KAE and EKATP. The abscissa represents the step, and the ordinate represents the predictive error. (A) The
initial conditions are h � 0.8 and σ � 0.00. (B) The initial conditions are h � 2.4 and σ � 0.00. (C) The initial conditions are h � 0.8 and σ � 0.03. (D) The initial conditions are
h � 2.4 and σ � 0.03. (E) The initial conditions are h � 0.8 and σ � 0.08. (F) The initial conditions are h � 2.4 and σ � 0.08.
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Since Figure 4 shows that KAE has a better predictive effect
than the other existing methods, we use it to compare the
predictive performance with the EKATP by visualizing the
predictive trajectory.

Indicated by our data preprocessing procedure, since the 2-
dimensional time series state and 64-dimensional time series state
are diffeomorphic (Sauer et al., 1991), the mapping between these
two time series is reversible. Here, we map the 64-dimensional
protein time series predictive results onto a 2-dimensional space
by orthogonal inverse transformation (Anderson et al., 1987) to
visualize the predictive time series trajectory. Figure 5 shows the
predictive trajectories of the KAE and EKATP within 1,000 steps
under the initial conditions of h � 2.4 and σ � 0.03, which show
that the predictive protein time series trajectory of the EKATP
(Figure 5B) is much closer to the true trajectory than that of the
KAE (Figure 5A). Figure 5 further indicates that the predictive
accuracy and robustness of the EKATP is better than that of
the KAE.

To further prove that the EKATP has strong generalizability,
we randomly selected 20 pieces of different protein time series
data for model training and analysis. The details are listed in
Table 1; Supplementary Table S2.7.

After we employ 20 different proteomics time series datasets to
test the KAE and EKATP, Table 1 shows the predictive error of
the KAE and EKATP at 1,000 steps under different initial noise
and complexity (h) conditions, which demonstrates that the
EKATP has less of a statistically significant minimum,
maximum, average and variance of the predictive error than
the KAE under each noise and complexity (h) condition (p-value
<0.05) (Gao et al., 2017; Li et al., 2017; Gao et al., 2021). Table 1
implies that the EKATP has statistically significant predictive
power for different time series datasets.

Metabolomics
We usually employ a nonlinear biological fluid system
(Noack et al., 2003) to describe the high-dimensional
metabolic time series with a low-dimensional manifold
(Sauer et al., 1991) for the flow behavior of biological
fluids simulation by Eq. 21,

⎧⎪⎨
⎪⎩

_x � cx − ωy + Axz

_y � ωx + cy + Ayz

_z � −λ(z − x2 − y2),

(21)

where c, ω and A determine the size of the fluid. λ determines the
speed of the dynamics of z. The different initial values of x, y and
z determine the different nonlinear complexities of the
metabolomics time series. We use the initial conditions ζ1
(x�0, y � -0.01, z � 0) and ζ2 (x�0.01, y � -0.1, z � 0.5) to
generate a high-dimensional metabolomics time series with low
complexity h1 and high complexity h2, respectively.

Since the metabolomics time series contains considerable
noise, we employ white Gaussian noise (Li et al., 2017) to
describe it by Eq. 22,

⎧⎪⎨
⎪⎩

~x � x + εx
~y � y + εy
~z � z + εz

. (22)

FIGURE 5 | The prediction trajectories within 1,000 steps under the initial conditions of h � 2.4 and σ � 0.03. The abscissa represents _θ, the ordinate represents θ,
blue colours represent true data and red dots represent predictive data. (A) KAE. (B) EKATP.

TABLE 1 | Predictive error at 1,000 steps for both the KAE and EKATP.

Model h θ Predictive error p-Value

Min Max Avg Var

KAE 0.8 0.00 0.427 0.012 0.052 8.29e−03 2.60e−02
EKATP 0.8 0.00 0.001 0.006 0.003 2.18e−06

KAE 0.8 0.03 0.038 0.253 0.112 2.80e−03 2.11e−04
EKATP 0.8 0.03 0.038 0.089 0.058 1.42e−04

KAE 2.4 0.00 0.020 0.225 0.067 2.03e−03 5.79e−06
EKATP 2.4 0.00 0.003 0.010 0.005 4.20e−06

KAE 2.4 0.03 0.030 0.967 0.131 4.04e−02 2.42e−02
EKATP 2.4 0.03 0.011 0.040 0.021 5.79e−05
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where ~x, ~y and ~z represent data with noise. εx, εy and εz represent
the white Gaussian noise for x, y and z by normal distributions
N (0, σ2) with a zero mean and a standard deviation σ.

Fig. 6 Comparison of the RNN, LSTM, DAE, KAE and
EKATP. The abscissa represents the time step, and the
ordinate represents the predictive error. (A) The initial
conditions are h1 and σ � 0.000. (B) The initial conditions are
h1 and σ � 0.001. (C) The initial conditions are h2 and σ � 0.000.
(D) The initial conditions are h2 and σ � 0.001.

Here, we show how to generate a high-dimensional
metabolomics time series with a low-dimensional manifold.
First, we build up the 3-dimensional time series
V � (V1,V2, . . . ,VT) ∈ R3, which is listed in Supplementary
Tables S3.1; S3.2. Next, we develop a random orthogonal
transformation (Anderson et al., 1987) matrix P ∈ R96×3.
Finally, we map the state of the 3-dimensional time series
onto the state of the 96-dimensional time series by Eq. 18 to
simulate a high-dimensional metabolic time series F �
(F1, F2, . . . , FT) ∈ R96 with the 3-dimensional manifold, which
is listed in Supplementary Tables S3.3, S3.4.

To demonstrate the accuracy and robustness of the EKATP,
we generate a system containing T � 900 steps and choose the last
100 steps to visualize the predictive result of the EKATP. Figure 6
shows the predictive results of the metabolic time series under
different initial conditions and environments for the last 100
steps. Detailed information is listed in Supplementary Tables
S3.5, S3.6; Supplementary Presentation S4.

Figures 6A,C demonstrates that the EKATP has less of a
predictive error under a clean environment (σ�0.000) than
the existing methods. When the complexity of h increases, the
predictive error of the EKATP remains stable. With the increase
in the predictive step, the predictive error of the existing methods
increases rapidly, while the predictive error of the EKATP
remains small.

Figures 6B,D suggests that the EKATP not only has less of a
predictive error under a low noise intensity environment
(σ�0.001) than the existing methods but also has a predictive
error of the EKATP that remains stable when h increases. In
particular, when the predictive steps are long enough, the
predictive error of the EKATP increases much slower than
that of the existing methods.

Figure 6 implies that the EKATP has better predictive
accuracy and robustness than the existing methods under
clean and weakly noisy environments.

Since a metabolomics time series usually has strong noise intensity
(Mak et al., 2015), we use the EKATP to predict a high-dimensional
metabolomics time series under strong noise intensities to prove its
robustness. Because the 3-dimensional time series state and the 96-
dimensional time series state are diffeomorphic (Sauer et al., 1991), the
mapping between these two time series is reversible. Thus, after we
map the 96-dimensionalmetabolic time series predictive results onto a
3-dimensional space by orthogonal inverse transformation (Anderson
et al., 1987), Figure 7 shows the predictive time series trajectories by
the EKATP under different intensities of noise. We select the last 100

FIGURE 6 |Comparison of the RNN, LSTM, DAE, KAE and EKATP. The abscissa represents the time step, and the ordinate represents the predictive error. (A) The
initial conditions are h1 and σ � 0.000. (B) The initial conditions are h1 and σ � 0.001. (C) The initial conditions are h2 and σ � 0.000. (D) The initial conditions are h2 and σ �
0.001.
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steps to validate the predictive power of the EKATP as in the previous
setup (Supplementary Table S3.6). The results demonstrate that
although the true data become gradually messy when we increase the
noise intensity σ, the predictive time series trajectory of the EKATP is
still very close to the true data to a certain extent (Figures

7A,B,C,D,E,F), which implies that the EKATP still has a
satisfactory predictive performance when we increase the noise
intensity.

Moreover, we use Eqs 23, 24 to calculate the Pearson
correlation coefficient (PCC) (Abar et al., 2017) and the root

FIGURE 7 | The predictive trajectories of the EKATPwithin 100 steps under different intensities of noise. Cyan dots represent true data with an interval of t ∈[0:900].
Red dots represent predictive data with an interval of t ∈[800:900]. (A) σ � 0.001. (B) σ � 0.005. (C) σ � 0.010. (D) σ � 0.050. (E) σ � 0.100. (F) σ � 0.500.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 76162910

Liu et al. Multi-Omics Time Series Prediction Model

68

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


mean squared error (RMSE) (Abar et al., 2017) between
predictive and true data under different noise intensities.

Here, Vt and V̂
t
represent the true and predictive data at time

t. μ and μ̂ represent the average value for true and predictive data,
respectively. p represents the predictive step size.

PCC � ∑
t�p
t�1(V̂

t − μ̂)(Vt − μ)
������������
∑

t�p
t�1 (V̂

t − μ̂)
2

√ ������������
∑

t�p
t�1 (V

t − μ)
2

√ . (23)

RMSE �
���������������
1
p
∑

t�p
t�1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣V̂
t − Vt

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2
√

. (24)

Figure 8A shows that the PCC value of the EKATP gradually
decreases when we increase the noise intensity σ, but the overall
value is relatively high. Figure 8B indicates that with the
increase in noise intensity σ, although the RMSE value of the
EKATP gradually increases, it is still relatively small. Thus, we
conclude that the EKATP can effectively avoid noise interference
and is robust enough under a very strong noise intensity
condition.

CONCLUSION AND FUTURE WORK

To answer the three proposed questions, this study developed an
EKATP to predict the future state of a high-dimensional
nonlinear multi-omics time series. First, we select key features
from high-dimensional nonlinear multi-omics time series data.
After that, we map these key features to the low-dimensional
linear space. Next, we obtain the future state of the multi-omics
time series by learning the evolutionary relationship between
the adjacent states of the time series in the low-dimensional
linear space. Finally, we predict the future state of the high-
dimensional nonlinear multi-omics time series by mapping the
low-dimensional linear predictive state back to the high-
dimensional nonlinear space. The experimental results
demonstrate that the EKATP can greatly improve the
accuracy, robustness and generalisability to predict the future

state of a time series for genomics (Figures 2, 3), proteomics
(Figures 4, 5; Table 1) and metabolomics (Figures 6–8) datasets.

However, there are still several shortcomings to the current study.
For example, we are still unclear on the impact of embedding
dimensions from high-dimensional nonlinear space to low-
dimensional linear space on predictive accuracy and the way to use
high-performance computing to increase the efficiency of the EKATP.
Applying the EKATP to network biological datasets (Liu X. et al., 2020)
is also the direction we need to continue the study. Thus, we will
improve the EKATP from these perspectives in the distant future.
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Credible Mendelian Randomization
Studies in the Presence of Selection
Bias Using Control Exposures
Zhao Yang1, C. Mary Schooling1,2 and Man Ki Kwok1*
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Selection bias is increasingly acknowledged as a limitation of Mendelian randomization
(MR). However, few methods exist to assess this issue. We focus on two plausible causal
structures relevant to MR studies and illustrate the data-generating process underlying
selection bias via simulation studies. We conceptualize the use of control exposures to
validate MR estimates derived from selected samples by detecting potential selection bias
and reproducing the exposure–outcome association of primary interest based on subject
matter knowledge. We discuss the criteria for choosing the control exposures. We apply
the proposal in an MR study investigating the potential effect of higher transferrin with
stroke (including ischemic and cardioembolic stroke) using transferrin saturation and iron
status as control exposures. Theoretically, selection bias affects associations of genetic
instruments with the outcome in selected samples, violating the exclusion-restriction
assumption and distorting MR estimates. Our applied example showing inconsistent
effects of genetically predicted higher transferrin and higher transferrin saturation on stroke
suggests the potential selection bias. Furthermore, the expected associations of
genetically predicted higher iron status on stroke and longevity indicate no systematic
selection bias. The routine use of control exposures in MR studies provides a valuable tool
to validate estimated causal effects. Like the applied example, an antagonist, decoy, or
exposure with similar biological activity as the exposure of primary interest, which has the
same potential selection bias sources as the exposure–outcome association, is suggested
as the control exposure. An additional or a validated control exposure with a well-
established association with the outcome is also recommended to explore possible
systematic selection bias.

Keywords: causal estimates, control exposures, Mendelian randomization, reproducible, selection bias

HIGHLIGHTS

What is Already Known on this Subject?
• Mendelian randomization (MR) provides unconfounded estimates, but is particularly
vulnerable to selection bias because of the small magnitude of genetic estimates.
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• Negative controls provide helpful tools to detect residual
confounding, selection, and measurement bias in
conventional epidemiological studies but often lack
specificity in the type of bias they detect.

What this Adds to What is Known?
• Given genetics are a lifelong exposure, a key source of
selection bias in MR studies is missing people from the
same underlying birth cohorts as the original population
who die before recruitment, which may violate the
exclusion-restriction assumption and distort the MR
estimates.

• The use of control exposures that have the same potential
selection bias sources as the exposure–outcome association
of interest can detect potential selection bias and validate
MR estimates.

• The estimated exposure–outcome association is more
credible if this result is robust to potential selection bias
and reproducible by using the relevant control exposures
based on subject matter knowledge.

What is the Implication, What Should
Change Now?

• Systematic selection bias may occur particularly when the
genetic variants affect survival and the outcome of interest
or a competing risk of that outcome affects survival;
interpretation of MR estimates should be cautious.

• The routine use of control exposures could add more
credibility to MR estimates.

INTRODUCTION

Mendelian randomization (MR) uses genetic variants as a natural
experiment in observational studies to investigate potential causal
effects of modifiable risk factors on health outcomes (Davey
Smith and Ebrahim, 2003). MR is often conducted in two
homogeneous study populations, i.e., two-sample MR (Burgess
et al., 2015). MR is thought to be robust to the confounding that
often occurs in conventional observational studies due to the
random allocation of genetic endowment at conception being
used as a proxy for the exposure (Burgess et al., 2012; Davies et al.,
2018). Currently, MR is a popular approach for assessing
causality (Sekula et al., 2016). However, MR estimate rests on
stringent assumptions, as illustrated using directed acyclic graphs
(DAGs) in Figures 1A,B (Davey Smith and Ebrahim, 2003;
Lawlor et al., 2008).

• IV1 (the relevance assumption): the genetic variant is
robustly associated with the exposure of interest;

• IV2 (the independence assumption): the genetic variant is
not associated with confounders that bias the
exposure–outcome association;

• IV3 (the exclusion-restriction assumption): the genetic
variant affects the health outcome only via its effect on
the exposure.

Notably, aside from IV1 that can be empirically verified using
the F-statistic (Staiger and Stock, 1997; Bowden et al., 2016a),
IV2 and IV3 are typically harder to justify. Hence, violations of
these assumptions can occur, leading to misleading conclusions.
Of these, selection bias is increasingly acknowledged as
distorting MR estimates in the selected populations
investigated (Nitsch et al., 2006; VanderWeele et al., 2014;
Canan et al., 2017; Vansteelandt et al., 2018a; Vansteelandt
et al., 2018b; Munafò et al., 2018; Munafò and Smith, 2018;
Gkatzionis and Burgess, 2019; Smit et al., 2019; Schooling et al.,
2020) and has largely focused on bias arising from selection on
exposure (Vansteelandt et al., 2018a; Vansteelandt et al., 2018b;
Munafò et al., 2018; Gkatzionis and Burgess, 2019; Smit et al.,
2019).

Genetic studies are usually carefully designed to avoid
selecting sample on genetic make-up and phenotypes.
Generally, selection bias occurs in an MR study when the
sample in the original genome-wide association study
(GWAS) are selected conditional on survival until study
recruitment on genotype of interest in the presence of prior
death from the outcome or competing risks of the outcome
(Figure 1C), especially in the original outcome GWAS
(Schooling et al., 2020). The problem is the time lag
between genetic randomization at conception and
recruitment of participants into the GWAS. Participants
diagnosed with or dead from the outcome or a competing
risk of the outcome are not recruited into the outcome GWAS,
which attenuates or reverses MR estimates for harmful
exposures, because people who have already died of their
harmful genetic endowment and people who have died of
the outcome or a competing risk of the outcome are missing.
As such, selection bias may create a spurious genetic
variant–outcome association by opening the backdoor path
from genetic instruments to the outcome of interest, violating
the IV3 assumption.

For example, previous observational studies showed that
higher transferrin binds to circulating iron and influences iron
status, which may further cause iron-deficiency anemia and
increase the risk of stroke (Chang et al., 2013; Marniemi et al.,
2005; Gillum et al., 1996). However, a recent MR study reported
that lower iron status also appeared to protect against stroke (van
der et al., 2005; Gill et al., 2018), especially cardioembolic stroke
(Gill et al., 2018). An increasingly acknowledged explanation is
selection bias, possibly due to the presence of competing
risks [e.g., coronary artery disease (Gill et al., 2017),
hypercholesterolemia (Gill et al., 2019), chronic kidney disease
(Fishbane et al., 2009), skin infections (Gill et al., 2019), liver
disorders (e.g., hepatitis C) (Shan et al., 2005), and rheumatoid
arthritis (Yuan and Larsson, 2020)] caused by the shared
confounders (e.g., socioeconomic position, lifestyle, and health
status), affecting survival of the underlying population
(Camaschella, 2015; McLean et al., 2009), as shown in
Figure 2. For instance, people with competing risks, such as
coronary artery disease, tend to die earlier than those with stroke
inWestern settings (Kesteloot and Decramer, 2008; Menotti et al.,
2019; Diseases and Injuries, 2020). As such, people vulnerable to
these competing risks with higher iron status may die before
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study recruitment, leaving more “healthier” participants in the
study and inducing biased estimates.

Several statistical methods have been proposed to detect and
eliminate selection bias in MR studies, most of which focus on
bias arising from selection on exposure (Bareinboim and Pearl,
2012; Arnold and Ercumen, 2016; Hemani et al., 2017; Tchetgen
Tchetgen and Wirth, 2017; Vansteelandt et al., 2018a; Brumpton
et al., 2020; Zhao et al., 2020; Sanderson et al., 2021; Wang and
Han, 2021), which is generally thought to have limited effects.
However, selection on genetic endowment and outcome or
competing risk of the outcome is more pervasive (Schooling
et al., 2020) and can have larger effects. One approach that has not
been considered is the use of a “negative control,” which has been
widely used in laboratory science for decades to help detect
problems with the experimental method (Arnold and
Ercumen, 2016). In epidemiological studies, a formal approach
has been described in detail and suggested as a means of detecting
residual confounding, selection bias, and measurement bias
(Lipsitch et al., 2010; Arnold et al., 2016). Recently, negative
control outcomes, defined as sharing identical confounders with
the exposure–outcome association but not associated with the
exposure, have been proposed to detect potential population
stratification in MR studies (Sanderson et al., 2021). Other
approaches include summary data-based MR [SMR, e.g., MR
robust adjusted profile score (MR-RAPS)] (Zhao et al., 2020;

Wang and Han, 2021), two-sample MR Steiger method (Hemani
et al., 2017), and three-sample MR (Zhao et al., 2019), in which
the selection procedure of genetic instrument (e.g., winner’s
curse) is considered a form of selection bias (Wang and Han,
2021). However, such a situation is different from the scenario
where the original outcome GWAS is missing people from the

FIGURE 2 | Directed acyclic graph (DAG) illustrating the possible data-
generating process underlying selection bias in the transferrin–stroke
association due to missing people in the presence of competing risks (CRs,
e.g., coronary artery disease) caused by the shared confounder [e.g.,
socioeconomic position (SEP)] of stroke and CRs in two-sample Mendelian
randomization settings. C: the unmeasured confounder of the
transferrin–stroke association.

FIGURE 1 | Directed acyclic graph (DAG) illustrating Mendelian randomization (MR). (A) DAG illustrating an ideal scenario of an MR study. (B) DAG illustrating the
three instrumental assumptions (Davey Smith and Ebrahim, 2003)—IV1: Relevance (Burgess et al., 2015); IV2: Independence (Burgess et al., 2012); IV3: Exclusion
restriction. (C)DAG illustrating potential biased pathway with selection bias in the presence of competing risks that share substantial etiological factors with the outcome.
(D)DAG illustrating potential biased pathway with selection bias in the unrepresentative selected samples. (E)DAG illustrating anMR study using control exposures
to detect potential selection bias in the presence of competing risks. (F) DAG illustrating an MR study using control exposures to detect potential selection bias in the
unrepresentative selected samples. E1: the primary exposure of interest; E2 and E3: the control exposures; C: the confounder that associates with both the exposure and
outcome; D: the outcome; CR: the competing risks; U: the unmeasured and shared confounders of the competing risks and the outcome; GE1, GE2, and GE3: genetic
variants that are strongly associated with the exposure of primary interest and the control exposures.
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same underlying population (birth cohorts) as those included,
some of whom have already died from the instrument and some
of whom have already died from the outcome or a competing risk
of the outcome, as shown in Figures 1C,D.

In this study, as an extension of negative control outcomes, we
advance the use of control exposures to validate MR estimates
that might be susceptible to such selection bias. We focus on
plausible causal structures relevant to MR studies and illustrate
how to validate MR estimates using control exposures through a
real example investigating the potential association of transferrin
with stroke (including ischemic and cardioembolic stroke). This
association is thought to be particularly vulnerable to selection
bias, especially among older populations, because transferrin
affects survival and stroke is open to competing risk from
IHD (Schooling et al., 2020; Yang et al., 2021). We further
discuss the criteria for choosing the control exposures and the
limitations of this approach.

METHODS

Figures 1C,D show DAGs for MR with selection bias caused by
sample selection. In the presence of competing risks (Figure 1C),
the selected samples may have a lower risk of developing the
phenotype [e.g., the outcome (D)] because the GWAS is missing
people with genetic vulnerability to earlier death and people who
have died from a disease that shares causes (e.g., U) with the
phenotype. As such, the backdoor pathway directly linking GE1 to
D will be reopened in the selected samples if the instruments
affect survival, i.e., have allele frequencies that differ from the
underlying population (e.g., birth cohort). This situation violates
the IV3 assumption and distorts MR estimates, which can
attenuate or reverse the true association or create a spurious
association. The small effect sizes of genetic associations (Park
et al., 2011; Global Burden of Disease, 2020) make them
particularly vulnerable to perturbation by such bias (Schooling
et al., 2020). In the absence of competing risks (Figure 1D), the
phenotype (e.g., D) risk and instruments’ frequencies may vary
because of selecting on genetic instruments and outcome, which
generates unrecoverable selection bias.

To clearly illustrate the data-generating process underlying
selection bias due to missing people from the original birth
cohorts who formed the underlying population through death
before study recruitment, we conducted extensive simulation
studies. Details are presented in the Supplementary Material.
Briefly, we induced selection bias by selecting study participants
as survivors to study recruitment.We assumed that the survival of
the underlying population was influenced by the genetic
instruments GE1, exposure E1, outcome D, confounder C of
the exposure–outcome association, or the unmeasured
confounder U mediated by competing risks CR. We used the
relative hazard (i.e., hazard ratio) per-unit change in either GE1,
E1, C, D, or U to quantify their effects on the survival, as shown in
Supplementary Figure S1. As such, the impact of selection bias
induced by the survival status of the underlying population until
study recruitment was governed by hazard ratio of per-unit
change in either GE1, E1, C, D, or U. Then, we induced

selection bias in two-sample MR by having instruments
determining survival to recruitment and outcome of interest
affecting survival to recruitment. Details of the simulation
study are in the Supplementary Material, along with the
corresponding R scripts.

Figure 3 and Supplementary Figure S1 show the impact of
selection bias arising from selecting samples conditioning on
genetic instruments G and outcome D, with no effects of either
exposure E1 or the shared confounder U mediated by competing
risks on survival of the underlying population (i.e., birth cohort)
based on simulation studies. More details have been presented in
Supplementary Material S1. As expected, selecting samples
conditioning on genetic instruments G and outcome D of
interest induces selection bias, with its impacts varying
depending on the relative hazard of G and D on survival of
the underlying population. Given summary statistics obtained
from the original exposure and outcome GWASs, it seems not
easy to recover the true causal estimate from the observed MR
estimates in two-sampleMR settings due to the essence of missing
people before the recruitment of the original GWASs.

Validating MR Estimates by Detecting
Selection Bias and Reproducing
Associations of Interest Using Control
Exposures
To explore selection bias, we reproduce a condition that does not
involve the hypothesized causal mechanism but involves the same
potential selection bias sources in the original MR study. We
introduce an antagonist or decoy of E1 as the control exposure E2,
mimicking a natural experiment, because E2 acts as an
endogenous intervention of E1. Moreover, E2 effects on
survival would be nearly identical to E1, as depicted in Figures
1E,F, but has an opposite impact on D from E1. If such an E2
exists, then any consistent effects of E1 and E2 on D would be
mainly due to selection bias rather than study design. That is, the
consistent effects of E1 and E2 on D could indicate potential
selection bias. Otherwise, the estimated causal effects derived
from the selected samples are robust to selection bias. Moreover,
an intuitive interpretation herein is that the E1–D association is
credible and reproducible by using a relevant control exposure E2
because of the known relationship between E1 and E2.

We can extend the selection of E2 by using exposure with
similar biological activity as E1 because they are also likely to
share the same potential selection bias sources and have similar or
even the same effects on D. This idea is widely applied in
developing pharmaceutical products [Food and Drug A
(2014). Bioa, 2014; Committee for Medicinal P, 2010]. If such
an E2 exists, then any inconsistent effects of E1 and E2 on Dwould
be mainly caused by potential selection bias. Conversely,
consistent results of E1 and E2 on D would validate the
estimated effects. In other words, these estimated effects
derived from the selected samples are less likely to be affected
by selection bias. Even if selection bias exists, its impact would be
limited. It would not extend to reverse the causal direction or
distort the estimated effect far away from the truth. Notably, the
use of such kinds of control exposures does not require a null or
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well-established association between the control exposure E2
and D.

Issue of Systematic Selection Bias
However, this method might still fail to detect selection bias if
systematic selection bias exists, especially when E1 and E2 are
selected from the same GWAS. In such a case, it might distort
both the E1–D and E2–D associations similarly, such as reversing
the estimated E1–D and E2–D associations simultaneously. To
handle this situation, we introduced an additional negative (or
positive) control E3 with the same potential selection bias sources
concerning the E1–D association or identified a validated control
exposure (E2) that had a clear association with D to triangulate
the estimated effects. As such, any associations of E3/E2 with D
would indicate potentially systematic selection bias. Otherwise,
the estimated effects derived from the selected samples are likely
to be robust to selection bias and reproducible.

Choosing Control Exposures
Control exposures could be used to detect potential selection bias
and validate MR estimates. To this end, it might be necessary to

specify the criteria for choosing the control exposures E2 and/or
E3 as follows.

1) The control exposure E2 should have the same potential
selection bias sources (e.g., affecting survival in the
underlying population) as E1 on D. For example, using
antagonist, decoy, or an exposure with similar biological
activity as E2, such a criterion is approximately satisfied;

2) To explore potentially systematic selection bias, an additional
control exposure (E3) with the same potential selection bias
sources as E1 on D or a validated control exposure E2 should
have a well-established association with D.

We recommend choosing E1, E2, and/or E3 from different
GWASs to minimize potentially systematic selection bias. If such
E2 and E3 exist, then the estimated effects of E1, E2, and E3 on D
can be used to detect potential selection bias and triangulate the
causal estimates. The estimated E1–D association would be more
credible because it is robust to potential selection bias and can be
reproducible using a relevant control exposure E2 based on
subject matter knowledge.

FIGURE 3 | The impacts of selection bias (i.e., β̂E1D − βE1D) on two-sample Mendelian randomization (MR) estimates of the exposure E1–outcome D association
using the inverse-variance weighted method in terms of various relative hazards (HRs) of per-unit change in genetic instruments G (i.e., HRGS) with a fixed effect of D
(i.e., HRDS) on survival of underlying population based on simulation studies, with more details presented in SupplementaryMaterial S1. The upper panels (A, B) show
scenarios that may happen in practice. The lower panel (C) shows the impacts of selection bias on MR estimates under each scenario. R codes for reproducing
these results can be found in Supplementary Material S2.
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An Applied Example
To illustrate, we investigated the association of higher transferrin
(i.e., E1) with stroke (including ischemic and cardioembolic
stroke), with transferrin saturation as a control exposure E2
and iron status as a positive control exposure E3. We selected
transferrin saturation as the control exposure E2 because it
measures circulating iron and reflects the proportion of
transferrin occupied by iron (Wish, 2006). Biologically,
transferrin saturation is inversely associated with transferrin
but positively associated with iron status. Furthermore, iron
deficiency, reflected by lower transferrin saturation and higher
transferrin, causes anemia and reduces lifespan directly or via
competing risks [e.g., stroke (23), Figure 2] (McLean et al., 2009;
Camaschella, 2015). Consequently, the associations of transferrin
saturation and iron status with stroke are open to similar
potential selection bias as the transferrin-stroke association.
Hence, transferrin saturation and iron status are control
exposures here. As such, any consistent transferrin–stroke and
transferrin saturation–stroke associations (especially in the same
causal direction) indicate potential selection bias. In addition, any
null iron status–stroke association suggests the presence of
systematic selection bias due to its clear associations with
stroke and longevity (Gill et al., 2018; Daghlas and Gill, 2021);
particularly, the iron status-longevity association is less likely to
subject to selection bias (Andersen et al., 2012).

We selected independent (r2 < 0.01) genetic instruments
mimicking effects of transferrin (MR-base id: ieu-a-1052),
transferrin saturation (MR-base id: ieu-a-1051), and iron
status (MR-base id: ieu-a-1049) from the MR-base at a
genome-wide significance p< 5 × 10−8 (Benyamin et al., 2014).
We approximated the F statistics (i.e., the square of instrument’s
association on exposure divided by the square of its SE) to assess
the instrument strength, where higher F statistics indicate a low
risk of weak instrument bias (Bowden et al., 2016a). We excluded
the instruments with F statistics less than 10 to alleviate potential
weak instrument bias (Bowden et al., 2016a). We checked the

shared instruments for transferrin, transferrin saturation, and
iron status to explore the possibility of pleiotropic effects, but still
used them in this example as they have been used similarly in a
previous MR study (Daghlas and Gill, 2021). We further assessed
associations of higher transferrin saturation and iron status with
longevity, proxied by the heritable trait of parental lifespan from
United Kingdom Biobank and LifeGen consortium (Timmers
et al., 2019). Genetically predicted higher transferrin saturation
and higher iron status were inversely associated with longevity, as
shown in Figure 4, suggesting the similar or even the same
selection bias sources as the transferrin–outcome association
because it also appeared to affect longevity.

We applied the identified instruments to publicly available
GWAS of European descent of stroke (40,585 cases and 406,111
controls), ischemic stroke (34,217 cases and 406,111 controls),
and cardioembolic stroke (7,193 cases and 406,111 controls)
(Timmers et al., 2019). Supplementary Table S1 presents a
detailed summary of the included studies. We extracted
summary statistics for stroke (MR-base id: ebi-a-
GCST005838), ischemic stroke (MR-base id: ebi-a-
GCST005834), and cardioembolic stroke (MR-base id: ebi-a-
GCST006910) from MR-base (Hemani et al., 2018).
Supplementary Table S2 lists genetic associations of the
included instruments associated with stroke.

We assessed the associations of genetically predicted
transferrin, transferrin saturation, and iron status with stroke
using the Wald ratio (i.e., the ratio of the genetic outcome effect
estimate and the corresponding genetic exposure effect estimate)
or the inverse-variance weighted average of the Wald ratio
estimates with random effects (Burgess et al., 2013). We
assumed that all these associations were linear and
homogeneous (Lawlor et al., 2008). We reported Cochran’s
Q-statistic to detect potential heterogeneity. We conducted
sensitivity analyses using the weighted median (Bowden et al.,
2016b), MR-Egger (Bowden et al., 2015), and MR-RAPS(40) to
address the potential unknown pleiotropy statistically. We also

FIGURE 4 | Scatter plots of the estimated effects of genetically predicted higher transferrin versus higher transferrin saturation (A), higher transferrin versus higher
iron status (B), and higher transferrin saturation versus higher iron status (C) on stroke (including ischemic and cardioembolic stroke) and longevity. Points located in the
gray area indicate the presence of selection bias.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7293266

Yang et al. MR With Control Exposures

77

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


reported the MR-Egger intercept and its SE with p-value as an
indicator of potential pleiotropy. Two-sided p-values at the
Bonferroni-corrected threshold of 0.05/3 (for three exposures)
� 0.017 were considered statistically significant. P-values between
0.017 and 0.05 were reported as nominal. Data involving these
exemplars were publicly available, so it does not require ethical
approval.

RESULTS

Up to 11 genetic instruments were used for transferrin (mean
concentration 2.1 g/L and SD 0.43 g/L), 7 instruments for
transferrin saturation (mean percentage 29.9% and SD 11.0%),
and 5 instruments for iron status (mean concentration 18.4 μmol/
L and SD 5.6 μmol/L). The F-statistics of instruments for
transferrin ranged from 32.4 to 1,296.1, for transferrin
saturation ranged from 35.6 to 808.5, and for iron status was
37.8 to 346.7, suggesting weak instrument bias to be less likely.

Figure 4 shows the scatter plot of the estimated effects of
genetically predicted higher transferrin versus higher
transferrin saturation (A), higher transferrin versus higher
iron status (B), and higher transferrin saturation versus
higher iron status (C) on stroke (including ischemic and
cardioembolic stroke) and longevity, with full details
presented in Supplementary Table S3. Genetically
predicted higher transferrin was associated with a lower risk
of stroke (Figures 4A,B), although these protective effects did
not reach nominal significance (p < 0.05). Conversely,
genetically predicted higher transferrin saturation was
nominally associated with higher risk of stroke (Figures
4A,C). Such results suggest that the observed
transferrin–stroke association is open to selection bias,
possibly due to the missing people from the original GWAS
of stroke because they died before recruitment from the genetic
predictors of iron, an iron-related condition, stroke, or a
competing risk of stroke, which attenuated the true
association (Figure 2).

In addition, as expected (Gill et al., 2018; Daghlas and Gill,
2021), genetically predicted higher iron status was associated with
increased stroke and reduced longevity, as shown in Figures 4B,C
and Supplementary Table S3. Finally, the consistent effects of
higher transferrin saturation and higher iron status on stroke and
longevity further triangulated our conclusions. Even if selection
bias exists, its impact on the transferrin saturation–stroke and
iron status–stroke associations would be limited or at least could
not reverse the observed associations or biased them to the null.
These results support the advantages of using control exposures.

DISCUSSION

This paper advances the use of control exposures based on
subject matter knowledge in MR studies to triangulate the
estimated causal effects vulnerable to selection bias. The
potential mechanisms underlying selection bias in MR lies
in the re-opened backdoor pathway from genetic instruments

to the outcome of interest in the selected samples. It violates
the IV3 assumption and distorts the MR estimates. The
applied example demonstrates that MR is vulnerable to
selection bias because of missing data from sample
selection (Figures 1, 3), which is unlikely to be missing at
random, so requires modeling of the missing data process to
recover the estimates (Mohan and Pearl, 2021). Our proposal
provides a valuable approach to assessing credible MR
estimates in the presence of selection bias from selection of
survivors.

Furthermore, the control exposures introduced in the
proposal inherit properties similar to those of negative or
positive control exposures used in the conventional
observational studies but provide a more intuitive and
clinically meaningful interpretation of the estimated effects
(Lipsitch et al., 2010; Shi et al., 2020; Sanderson et al., 2021).
Choosing antagonists, decoys, or exposures with similar
biological activity as the control exposures based on subject
matter knowledge may facilitate its application in MR
studies. Systematic selection bias distorting both the
exposure–outcome and control exposure–outcome
associations, in a similar or even the same way, may exist,
resulting in inconclusive or misleading conclusions.
However, an additional or a validated control exposure with
a clear association with the outcome provides another tool to
triangulate the estimated effects. Notably, it is possible to use a
single control exposure in the proposal solely to validate the
MR estimates, especially when E1, E2, and E3 are selected from
different GWASs.

Despite the strengths of the proposal in validating MR
estimates, limitations exist. First, the proposal only detects
potential selection bias but fails to address it. The impact of
selection bias on summary statistics obtained from the original
GWAS might vary due to the small fraction of heritability
explained by genetic variants and the small effect size of the
genetic associations (Greenland, 2003; Freedman et al., 2004;
Park et al., 2011; Schooling, 2019). Thus, the proposal might
fail to detect its small effect on MR estimates. Nonetheless,
routinely applying control exposures still adds more credibility
to MR estimates. Second, the proposal inherits properties of
the conventional MR; limitations such as the stringent
instrumental assumptions remain (Davey Smith and
Ebrahim, 2003; Smith and Ebrahim, 2004; Lawlor et al.,
2008). However, recent advances in MR provide more tools
to alleviate or even eliminate these limitations (Ye et al., 2019;
Zhao et al., 2020; Liu et al., 2021). Third, choosing control
exposures that have the same potential selection bias sources as
the exposure–outcome association of interest or a clear
association with the outcome might be difficult in practice,
further limiting its application.

CONCLUSION

Routinely using control exposures in MR studies provides a
helpful tool to validate estimated causal effects that are
vulnerable to potential selection bias in the selected samples.
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Ovarian cancer is the second most dangerous gynecologic cancer with a high mortality
rate. The classification of gene expression data from high-dimensional and small-sample
gene expression data is a challenging task. The discovery of miRNAs, a small non-coding
RNA with 18–25 nucleotides in length that regulates gene expression, has revealed the
existence of a new array for regulation of genes and has been reported as playing a serious
role in cancer. By using LASSO and Elastic Net as embedded algorithms of feature
selection techniques, the present study identified 10 miRNAs that were regulated in
ovarian serum cancer samples compared to non-cancer samples in public available
dataset GSE106817: hsa-miR-5100, hsa-miR-6800-5p, hsa-miR-1233-5p, hsa-miR-
4532, hsa-miR-4783-3p, hsa-miR-4787-3p, hsa-miR-1228-5p, hsa-miR-1290, hsa-
miR-3184-5p, and hsa-miR-320b. Further, we implemented state-of-the-art machine
learning classifiers, such as logistic regression, random forest, artificial neural network,
XGBoost, and decision trees to build clinical prediction models. Next, the diagnostic
performance of these models with identified miRNAs was evaluated in the internal
(GSE106817) and external validation dataset (GSE113486) by ROC analysis. The
results showed that first four prediction models consistently yielded an AUC of 100%.
Our findings provide significant evidence that the serum miRNA profile represents a
promising diagnostic biomarker for ovarian cancer.

Keywords: Biomarker, Elasticnet, Feature Selection, Gene Expression Omnibus (GEO), Lasso, Machine Learning,
Ovarian Cancer

INTRODUCTION

Ovarian cancer is a major clinical challenge in gynecologic oncology. Due to the lack of a proper
biomarker-based screening method, most patients are asymptomatic until the disease has
metastasized and two-thirds of patients are diagnosed with advanced stages (Lheureux et al.,
2019). The International Federation of Gynecology and Obstetrics (FIGO) reported that in the
majority of those diagnosed in stage three or four ovarian cancer (2014), more than 70% will have a
relapse of their disease within the first 5 years (Reid et al., 2017). Currently, there is an acute need to
know potential biomarkers that could lead to the growth of modern andmore accurate predictors for
ovarian cancer diagnosis and prognosis. As noted, one of the most common gynecologic malignancy
is epithelial ovarian cancer (EOC), with each year of about 230,000 new cases and almost 140,000
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deaths (Greenlee et al., 2001). In 2020, it is estimated that
approximately 21,750 new cases and 13,940 deaths occurred in
the United States and 29,000 deaths happened in Europe due to
ovarian cancer (Iorio et al., 2007). Therefore, the underlying
molecular mechanism has not yet been elucidated. The timely
prediction of ovarian cancer would benefit women, healthcare
systems, and society as a whole. Accurate and reliable prediction
models would enable preventative interventions to reduce the
morbidity and mortality associated with ovarian cancer (Harter
et al., 2008).

MicroRNAs
MicroRNAs (miRNA) are important genomic datasets in the
human genome that play a regulative impress in cellular
processes. miRNAs are a type of non-coding RNA with 18–25
nucleotides in length and reported to play a serious role in human
cancers. miRNAs are often copied from DNA sequences to
primary miRNAs. Subsequent processes lead to the production
of precursor miRNAs and mature miRNAs. The most common
mode of action of miRNAs is their interaction with the 3′
untranslated region (3′ UTR) of target mRNAs and increased
mRNA degradation and translation suppression. miRNAs can

also interact with the five UTR, coding sequence, and promoter
regions of their target. In some cases, miRNA interaction with
target sequences can induce transcription or regulate
transcription. Various parameters modulate miRNA-mRNA
interaction, including the subcellular state of miRNAs, the
amount of miRNAs and target mRNAs, and the affinity of the
interactions (Chen et al., 2015). miRNAs play a role in almost all
aspects of cancer biology, such as apoptosis, proliferation,
metastasis, and angiogenesis (Lee and Dutta, 2009). In
addition, miRNAs have been proposed as potential biomarkers
for the recognition of various different cancer types (Lin et al.,
2015). Some studies also reported that several miRNAs have a
potential value as diagnostic biomarkers of ovarian cancer (Banka
and Dara, 2012; Yao et al., 2020).

Related Works
The down-regulation of miRNAs was found to be related to the
progression and the prognoses of cancers. Falzone et al.
determined that a group of 16 miRNAs were significantly
expressed between bladder cancer patients and normal
samples; they serve to modulate the expression of both EMT
and NGAL/MMP-9 pathways (Falzone et al., 2016). Falzone et al.

FIGURE 1 | Flowchart of feature selection and model building in the study.

TABLE 1 | Summary of miRNA genes shown to be statistically significantly associated with ovarian cancer.

Reference Association Up-regulated miRNA Down-regulated miRNA

Tuncer et al. (2020) Epithelial ovarian cancer miR-6131, miR-1305, miR-197-3p, andmiR-3651 miR-3135b, miR-4430, miR-664b-5p, and miR-766-3p
Nam et al. (2008) Serous ovarian cancer miR-16, miR-20a, miR-21, and miR-27a miR-145, miR-125B, miR-125B, and miR-100
Iorio et al. (2007) Epithelial ovarian cancer

and normal
miR-200a, miR-141, miR-200c, miR-200b, miR-
182, and miR-205

miR-127, miR-140, miR-9, miR-101, miR-147, miR-204, miR-
211, miR-124a, and miR-302b
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identified a series of novel microRNAs and their diagnostic and
prognostic significance in oral cancer and their study has
therefore developed a molecular detector (Falzone et al., 2019).
Another study by Asano et al. reported circulating serummiRNA
profile classifier for the detection of sarcoma samples using seven
miRNAs (Asano et al., 2019). Table 1 summarizes the results of
miRNA associations with ovarian cancer in three recent genetic
biomarker studies.

MATERIALS AND METHODS

Candidate Genetic Biomarkers
To identify a robust circulating miRNA biomarker, we searched
the Gene Expression Omnibus (GEO) database with specific
keywords, namely, [“ovarian neoplasms” (MeSH Terms) OR
ovarian cancer (All Fields)] AND “Homo sapiens” (porgn)
AND [“microRNAs” (MeSH Terms) OR miRNA (All Fields)].

Then, two datasets using the same platform (3D-Gene Human
miRNA V21_1.0.0) with larger sample sizes GSE106817 and
GSE113486 were included (360 ovarian cancer patients and
2,811 non-cancer controls in total) for our analysis.
GSE106817 (320 ovarian cancer patients and 2,759 non-cancer
controls) was used as the internal discovery cohort, and
GSE113486 (40 ovarian cancer patients and 52 non-cancer
controls) was used for independent validation. This study was
approved by the Ethics Committee of Tabriz University of
Medical Sciences (No: IR. TBZMED.REC.1400.006).

Data Preprocessing
Our analytical process is summarized in Figure 1. To discover
biomarkers for ovarian cancer, the free available dataset GSE106817
includes 320 ovarian cancer patients and 2,759 non-cancer controls
(11% ovarian cancer and 89% non-cancer). For machine learning
analysis purpose, we preprocessed, cleaned, and then normalized by
min-max normalization the data (Huang J. et al., 2015).

TABLE 3 | Predictive power of models for ovarian cancer classification and prediction in the external (GSE113486) validation data.

Classifier Hyperparameters AUCa

(%)
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)
Negative
predictive
value (%)

Positive
predictive
value (%)

Kappa
(%)

LR Parametersb 100 100 100 100 100 100 100
DT Cpc � 0.0115942 92.60 91.30 92.50 90.38 88.10 94 82.41
RF Mtryd � 2 100 97.83 95 100 100 96.30 95.55
ANN Sizee � 3 and decayf � 1e−04 100 100 100 100 100 100 100
XGB nrounds � 50, max_depthg � 2, eta � 0.3,

gammah � 0, colsample_bytreei � 0.8,
min_child_weightj � 1 and subsamplek � 1

100 98.91 97.50 100 100 98.11 97.78

aThe area under the receiver operating characteristic curve (maximum) was used to select the optimal model.
bThe formula for logistic regression for prediction of ovarian cancer is p � (1 + e−[14.19−40.34(has.miR.6800.5p)+3.61(has.miR.1228.5p)+16.09(has.miR.5100)+2.86(has.miR.1290)+4.17(has.miR.4783.3p)−

8.9(has.miR.3184.5p)+8(has.miR.320b)+9.23(has.miR.4532)−4.2(has.miR.4787.3p)−0.65(has.miR.1233.5p)])−1.
cThe complexity parameter (cp) is used to control the size of the decision tree and to select the optimal tree size. If the cost of adding an additional variable to the decision tree from the
current node is above the value of the cp, then tree building does not continue.
dmtry is the number of variables available for splitting at each tree node. In the random forests literature, this is referred to as the mtry parameter.
eSize is the number of units in a hidden layer.
fDecay is the regularization parameter used to avoid over-fitting.
gmax-depth is used to control over-fitting as higher depth will allow model to learn relations very specific to a particular sample.
hgamma A node is split only when the resulting split gives a positive reduction in the loss function. Gamma specifies the minimum loss reduction required to make a split. Makes the
algorithm conservative. The values can vary depending on the loss function and should be tuned.
iDenotes the fraction of columns to be randomly sampled for each tree.
jmin_child_weight used to control over-fitting. Higher values prevent a model from learning relations which might be highly specific to the particular sample selected for a tree. Too high
values can lead to under-fitting; hence, it should be tuned using CV.
kSubsample lower values make the algorithm more conservative and prevent overfitting, but too small values might lead to under-fitting.

TABLE 2 | miRNAs identified with threshold over 80% importance in both Lasso and Elastic net in the dataset GSE106817 with miRNA status.

miRNA-ID List Importnace in Elastic Net Importnace in LASSO (%) adj.p-value B logFC miRNAStatus

hsa-miR-5100 100 100 <0.001 16.18 4.15 Upregulated
hsa-miR-1290 100 100 <0.001 13.00 5.61 Upregulated
hsa-miR-320b — 88.07 <0.001 12.25 4.11 Upregulated
hsa-miR-1233-5p 85.63 87.81 <0.001 11.78 2.36 Upregulated
hsa-miR-4783-3p 100 87.44 <0.001 10.36 2.89 Upregulated
hsa-miR-6800-5p — 84.07 <0.001 8.66 −1.60 Downregulated
hsa-miR-4532 85.51 — <0.001 6.95 2.90 Upregulated
hsa-miR-3184-5p 83.33 — <0.001 5.29 −3.23 Downregulated
hsa-miR-4787-3p 100 — <0.001 3.82 2.30 Upregulated
hsa-miR-1228-5p 88.83 — <0.001 2.03 −0.93 Downregulated
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Feature Selection Algorithms
Feature (variable) selection is the main phase for selecting
biomarkers in biological data with high dimension and small
sample (p > n). Regularization is a kind of various technique of
feature selection methods that use different penalty function to
reduce the risk of overfitting and also reduce the complexity of
the models (Drotár et al., 2015). Least Absolute Shrinkage and
Selection Operation (LASSO) and Elastic Net are the most
common embedded feature selection method which are an
alternative to the subset selection and dimension reduction
techniques. Thus, these algorithms can significantly reduce the
variance by performing the variable selection. In the first
phase, the expression levels of all 2,568 miRNAs from
GSE106817 were analyzed to identify miRNAs as the
candidate biomarkers by LASSO and Elastic Net (Zou and
Hastie, 2005). For this sake, we used the “glmnet” package in R
version 4.0.3. The next subsection gives a brief introduction to
the LASSO and Elastic-Net.

LASSO
LASSO has been proposed by Tibshirani (Hastie et al., 2009) for
parameter estimation and variable selection simultaneously in
regression analysis. LASSO is a special instance of the penalized
least squares regression with L1-penalty function. LASSO
estimate of β can be defined as

β̂la(λ) � argminβ(

����Y − Xβ
����
2

2

n
+ λ

����β
����1) ;

Where

����Y − Xβ
����
2

2
� ∑

n

i�0
(Yi − βiXi)

2,
����β
����1 � ∑

j�1
k
∣∣∣∣∣βj

∣∣∣∣∣ and λ≥ 0.

Elastic Net
Elastic Net (ENET) is a convex combination of Ridge and
LASSO which shrinks some coefficients to be very small, and
on the other hand, similar to the LASSO, ENET set some
coefficients to be exactly zero. Elastic Net is an extension of the
LASSO that is robust to extreme correlations among the
predictors (Zou and Hastie, 2005). When the number of
variables exceeds the number of instances (p > n), ENET
performs better than LASSO. To trim the instability of the
LASSO solution paths, when predictors are highly correlated,
the Elastic Net was proposed for analyzing high dimensional
data (Liang and Jacobucci, 2020). The Elastic Net uses a
mixture of the LASSO and ridge regression penalties and
can be formulated as:

β̂el(λ) � argminβ(

����Y − Xβ
����
2

2

n
+ λ2

����β
����
2 + λ1

����β
����1)

and λ1 , λ2 ≥ 0, λ1 + λ2 � 1.

The entire path of variable selection by LASSO and ENET
algorithms is computed by the path coordinate descent
algorithms which is available “glmnet” package in R (Friedman
et al., 2010).

Machine Learning Classifier
Over the last decade, machine learning has been used for
successful classification, both for identifying specific classes
and for diagnosing cancers (Wang et al., 2005). We use this
approach to characterize miRNAs with biomarker potential that
could be useful for the diagnosis and/or prognosis of ovarian
cancer for potential benefit for public health (screening) and for
reduction in economic burden (Deb et al., 2018).

FIGURE 2 | Boxplots of the 10 identifiedmiRNAs in ovarian cancer patients
compared with the non-cancer control patients in the dataset GSE106817.
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Logistic Regression
Logistic regression (LR) analyzes the relationship among multiple
independent variables and a univariate binary outcome variable
(Menard, 2010). One of the main advantage of the logistic
regression is its simplicity and interpretability by providing the
odds ratio for an outcome (Stoltzfus, 2011). The goodness of fit of
a logistic regression model is evaluated using the area under the
curve (AUC) (Abdulqader, 2017).

Artificial Neural Networks
Artificial neural networks (ANN) have been broadly used in
medical studies (DeGregory et al., 2018). Such algorithms
perform well when there are complex and non-linear
associations between variables (Hassanipour et al., 2019).
Briefly, artificial neural networks use predictors as inputs and
connect them to multiple hidden layer combinations by assigning
suitable weights to predict the outcome (Lisboa and Taktak,
2006). The hidden layers and weights must be appropriately
selected by the analyst (Sherriff et al., 2004).

Decision Trees
Decision trees (DT) (Hassanipour et al., 2019) are a type of supervised
machine learning that can be used to find attributes and extract
patterns from big databases that are important for predictive
modeling (Lisboa and Taktak, 2006). Decision trees are the most
direct forward algorithm that processes a visual representation of the
relationships between the independents and dependent variables
(Hassanipour et al., 2019). However, the variation in the decision
trees, in some instances, can be improved by using random forests
for the outcomes of randomly generated decision trees to produce a
more robust model (Vens et al., 2008).

Random Forest
Among several machine learning algorithms, random forest (RF)
has a number of interesting characteristics. Firstly, RF does not

overfit when the number of features exceeds the number of
instances. Secondly, it does feature selection implicitly.
Thirdly, it takes into account the interactions between
variables (Okun and Priisalu, 2007). RF is an instance of
ensemble learning, in which a complex model is made by
combining many simple decision tree models to decrease the
variance (Qi, 2012).

XGBoosting
XGBoost (XGB) abbreviated for extreme Gradient Boosting
package. XGB is a decision-tree-based ensemble of machine
learning algorithms that uses a scalable implementation of
gradient boosting XGB framework tree boosting (Chen et al.,
2015). The most significant component in XGB success is its
scalability across all scenarios which is due to a number of major
systems and algorithmic enhancements (Chen and Guestrin,
2016).

Training Machine Learning Models and
Hyper Parameter Setting
We started by removing the noise variables with LASSO and
ENET. We then implemented SMOTE random oversampling
techniques to balance cancer and non-cancer cases in the training
data (GSE106817) using the “ROSE” package (Lunardon et al.,
2014). We find the optimal prediction models in the training data
by using 5-fold cross-validation. We performed ovarian cancer
classification using ANN, LR, RF, DT, and XGB (James et al.,
2013) algorithms to build our models, after finalizing the optimal
hyperparameters for each model. The varImp () function in the
caret package was used to determine the miRNAs that are the
most important. In this, study we select the most important
variables (variable importance >80%) from each of the models.
We evaluated our model prediction performances based on
several measures of accuracy, including sensitivity, specificity,

FIGURE 3 | Heatmap of hierarchical clustering analysis using the 10 identified miRNAs to distinguish different samples in the dataset GSE106817.
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area under the receiver operating characteristic (AUC), positive
predictive value, negative predictive values, and Kappa (Collins
et al., 2015). The ROC curves were analyzed by “pROC” in the R
software.

Further, two online tools are applied to assess the biological
plausibility of the selected miRNAs. To compare the
microarray expression profiles of ovarian cancer to the non-
cancer group, GEO2R is an interactive web tool that
allows users to compare two or more groups of samples in a
GEO Series. This procedure will enable the users to identify
indicators that are differentially expressed across
experimental conditions. To do this end, the limma R
package implemented in GEO2R online tool, which
generated adjusted p-value, B-statistic (or log-odds), Log2-
fold change (logfc), and moderated t-statistic. MiRNet is
an online tool for precision miRNA and xeno-miRNA
analysis and functional interpretation. This tool contains a
large amount of high-quality scientific data that connects
miRNAs to their targets and other associated compounds
(Fan et al., 2016).

RESULTS

GSE106817 included 2,568 miRNAs. Of those, LASSO and
ENET identified 76 and 162 miRNAs, respectively. Then, the
dataset was divided with a ratio of 70:30 for the training and
testing set, respectively. For the training set, there were 2,156
samples and there were 923 samples in the testing set. The
training set had 224 ovarian cancerous and 1,932 non-
cancerous samples. After balancing the training data, the
samples of non-cancerous decreased to 1,121 and cancerous
samples increased to 1,035. Model fitting and tuning parameter
selection by 5-fold cross-validation were done on the training
data. The dataset with reduced features is classified using LR
(statistical), DT and RF (tree-based), ANN and XGB (machine
learning) classifier. In this study, the features with higher
importance (over 80%) implemented in proposed models are
shown in Table 2.

We identified 10 potential miRNAs hsa-miR-5100, hsa-
miR-6800-5p, hsa-miR-1233-5p, hsa-miR-4532, hsa-miR-
4783-3p, hsa-miR-4787-3p, hsa-miR-1228-5p, hsa-miR-1290,
hsa-miR-3184-5p, and hsa-miR-320b from the GSE106817
datasets and were defined as the candidate miRNAs for
ovarian cancer diagnosis. It is clear that hsa-miR-1233-5p,
hsa-miR-4783-3p, hsa-miR-5100, and hsa-miR-1290 are
features identified by both feature selection methods. hsa-
miR-320b and hsa-miR-6800-5p have been identified as
important features by LASSO, and hsa-miR-4532, hsa-miR-
3184-5p, hsa-miR-4787-3p, and hsa-miR-1228-5p have been
recognized by ENET.

The results of GEO2R (generated by the limma) are
presented in Table function (Table 2). Note that the column
of adjusted p-value is generally recommended as the primary
statistic in the interpretation of results. The miRNAs with the
smallest p-values will be the most reliable, and column B shows
that the represented miRNAs are differentially expressed and
logfc presented change between normal and cancerous
conditions. As shown in Table 2, all upregulated miRNAs
have logfc > 2 and all of miRNAs have adjusted p-value
<0.0001. Based on the 10 selected miRNAs, the final machine

FIGURE 4 | Diagnostic performance of the 10 identified serum miRNA
signatures in the internal (GSE106817) data.
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learning models with optimal hyperparameters are presented in
Table 3.

We showed the expression levels of these 10 identified
miRNAs in the internal datasets using a boxplot (Figure 2);
among them, seven miRNAs (hsa-miR-320b, hsa-miR-5100,
hsa-miR-4783-3p, hsa-miR-1290, hsa-miR-4532, hsa-miR-
4787-3p, and hsa-miR-1233-5p) identified the most
significantly up-regulated in ovarian cancer samples compared
to non-cancer samples. The heatmap using the “pheatmap”
package shows differences between samples in each group. In
Figure 3 (the heatmap of GSE106817), the miRNAs has-mir-
3184-5p, has-mir-6800-5p, and has-mir-1228-5p in the left hand
side of the figure show a significantly low expression level in the
ovarian cancer group (red color). However, hsa-mir-5100, hsa-
mir-1290, hsa-mir-320b, hsa-mir-1233-5p, hsa-mir-4532, hsa-
mir-4783-3p, and hsa-mir-4783-3p have the high expression
levels in the cancerous group (light yellow color). The individual
AUCs of these 10 identified miRNAs are listed in Figure 4 which
shows that each of 10 miRNAs has high AUC in all proposed
models. Next, AUCs of all selected miRNAs are presented in
Figure 5 which clearly indicates that all moles, except DT, have
above 99% AUC. All miRNA-target gene interactions are
represented in Figure 6. The purple circles represent the
target genes implicated in cancer-related pathways that are
shown by yellow circles.

Model Evaluation in External ValidationData
Given the robust performance of 10 miRNAs in the internal
datasets, we further examined their performance in
independent external validation (GSE113486). External
validation dataset (GSE113486) has 40 ovarian cancer
patients and 52 non-cancer controls (43% ovarian cancer,
57% non-cancer). We found that all the miRNAs had high
performance and could efficiently distinguish the ovarian cancer
samples from non-cancer controls.

As shown in Figure 7, hsa-miR-320b, hsa-miR-1233-5p, hsa-
miR-3184-5p, and hsa-miR-4783-3p have 100% of AUC in all
proposed models. In the external validation dataset
(GSE113486), the AUC of each candidate miRNAs was over
95% (minimum AUC: 95.7%, maximum AUC: 100%) for
ovarian cancer classification (Figure 7). From
Supplementary Figure S2, it is clear that, except DT, other
machine learning models have an AUC over 100% in the
external validation dataset with 10 selected miRNAs.

The models that yielded the highest AUC, accuracy, and
sensitivity are shown in Table 3. As displayed in Table 3 (and
also Supplementary Figure S2), we found four models yielded
100% AUC; however, DT did not have a strong performance
because it is weak learner (Drucker and Cortes, 1996).

Finally, to make use of our prediction models, the practitioners
can give the values of the 10 selected miRNAs in the online excel

FIGURE 5 | AUC of proposed models of all identified microRNAs in the internal (GSE106817) validation data.
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sheet (https://ufile.io/t2exrfph) and calculate the probability of the
ovarian cancer for the patient (Supplementary Figure S1).

DISCUSSION

In the early phases, ovarian cancer is mostly asymptomatic or
existent with only non-specific symptoms (Desai et al., 2014; Tuncer
et al., 2020). Intervention at this phase makes ovarian cancer almost
curable, and thus, early detection and diagnosis are critical to
decrease the incidence and mortality of ovarian cancer (Zhang
et al., 2011). Therefore, in this study, we used effective strategies and
identified 10 miRNAs (hsa-miR-5100, hsa-miR-6800-5p, hsa-miR-
1233-5p, hsa-miR-4532, hsa-miR-4783-3p, hsa-miR-4787-3p, hsa-
miR-1228-5p, hsa-miR-1290, hsa-miR-3184-5p, and hsa-miR-
320b) as strong potential biomarkers for ovarian cancer. We
found that these miRNAs (all together) had high enough
prediction accuracy for identification of ovarian cancer from
non-cancer (logistic regression had an AUC 100%, sensitivity
100%, and specificity 100%; decision trees had an AUC 92.60%,
sensitivity 92.5%, and specificity 90.38%; random forest had an
AUC 100%, sensitivity 95%, and specificity 100%; artificial neural
network had an AUC 100%, sensitivity 100%, and specificity
100.0%; and XGBoost had an AUC 100%, sensitivity 97.50%,
and specificity 100%). Furthermore, hsa-miR-5100, hsa-
miR.4532, hsa-miR.4783.3p, and hsa-miR-320b were more stable
in the discovery and validation datasets.

Biological Insight
There is evidence in the literature for the biomarkers included in
our study. Huang et al. (2011) showed that modulation of miR-
5100 could potentially be employed as a therapeutic target for
cancer (Huang H. et al., 2015). It has shown that major target
gene of miR-5100 is AZIN1. AZIN1 gene encodes antizyme
inhibitor 1, the first member of this gene family that is
ubiquitously expressed, and is localized in the nucleus and
cytoplasm. Overexpression of antizyme inhibitor one gene has
been associated with increased proliferation, cellular
transformation, and tumorigenesis (Hu et al., 2017). Also, our
result is important about the relationship between ovarian cancer
and miR-5100 because of target gene function. Tuncer et al.
(2020) suggested that hsa-miR-6800-5p is an effective biomarker
for ovarian cancer. MiR-1233 is considered an oncomiRNA since
it targets p53, inhibiting its function in RCC (Iwamoto et al.,
2014). Hu et al., (2017) showed that miR-4532 is involved in the
multidrug resistance formation in breast cancer by targeting
hypermethylated cancer 1 (HIC-1), a tumor-suppressor gene
(Feng et al., 2018). Also, hsa-miR-4783-3p has a major target
of INSM1/IA-1 (insulinoma-associated one gene) (http://mirdb.
org/) and this gene is a developmentally regulated zinc-finger
transcription factor, exclusively expressed in the foetal pancreas
and nervous systems, and in tumours of neuroendocrine origin
(Juhlin et al., 2020). Li et al., 2016 suggest that miRNA-1228 is
deregulated, and the most encompassed biological pathways are
apoptosis-related (Li et al., 2016). In another study, miR-1290 is

FIGURE 6 | The miRNA network with target genes.
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significantly overexpressed in patients with high-grade serous
ovarian carcinoma (HGSOC) and they suggested that it is a new
potential diagnostic biomarker for HGSOC. Exosomal miR-1290

is a potential biomarker of high-grade serious ovarian carcinoma
(Cortez et al., 2018). The study of Tuncer et al. (2020) revealed
that miR-320b belonged to the miR-320 family which has low
expression levels in ovarian cancer. Prior studies indicated that
decreased expression level of the miR-320 family is associated to
activate cell proliferation (Tuncer et al., 2020). We have analyzed
the major target genes of the upregulated miRNA interactions
(Supplementary Figure S3). We found only two gene
interactions with string database system, especially TP53 and
HIC1 genes associated with a related system in human
metabolism (Supplementary Figure S3).

Strengths and Limitations
This study has several strengths. Firstly, we applied logistic regression
and four of the mainmachine learning approaches to predict ovarian
cancer. Secondly, we identified predictive models to predict the
ovarian cancer. Our findings provided strong evidence that the
serum miRNA profile represented a promising diagnostic
biomarker for ovarian cancer. Thirdly, we used two robust
variable selection approaches to identify the important miRNAs.
Finally, we evaluated the prediction accuracy of the proposed
prediction models in both internal and external data to provide
more robust results for practical and clinical applications.

However, there were certain limitations in our study. We had
relatively small sample size in ovarian cancer group. Other limitations
were the pathological information such as the tumor stage, age, or
other factors which were not available in GSE106817 dataset.
Nonetheless, the prediction accuracy of our model has high
enough (100% AUC) for clinical use. But we still suggest further
study to consider age, stage, and other unrecognized factors associated
with ovarian cancer that has not included in the current paper. Also,
we restricted our analysis to ovarian cancer patients and non-cancer
controls, and we did not evaluate the capability of these miRNAs to
distinguish ovarian cancer from other cancers.

CONCLUSION

In this paper, we used the state-of-the-art machine learning algorithms
along with so-called penalized statistical approaches to model ovarian
cancer with miRNA data. Our algorithms selected 10 important
miRNA that can predict the ovarian cancer with an AUC of 100%.
Our findings provided significant evidence that the serum miRNA
profile represents a promising diagnostic biomarker for ovarian cancer.
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Identification of Immune-Related
Genes Associated With Bladder
Cancer Based on Immunological
Characteristics and Their Correlation
With the Prognosis
Zhen Kang1,2, Wei Li 1,2, Yan-Hong Yu1,2, Meng Che1, Mao-Lin Yang1,2, Jin-Jun Len1,2,
Yue-Rong Wu1 and Jun-Feng Yang1,2*

1The Affiliated Hospital, Kunming University of Science and Technology, Kunming, China, 2Department of Urology, The First
People’s Hospital of Yunnan Province, Kunming, China

Background:To identify the immune-related genes of bladder cancer (BLCA) based on
immunological characteristics and explore their correlation with the prognosis. Methods:
We downloaded the gene and clinical data of BLCA from the Cancer GenomeAtlas (TCGA) as
the training group, and obtained immune-related genes from the Immport database. We
downloaded GSE31684 and GSE39281 from the Gene Expression Omnibus (GEO) as the
external validation group. R (version 4.0.5) and Perl were used to analyze all data. Result:
Univariate Cox regression analysis and Lasso regression analysis revealed that 9 prognosis-
related immunity genes (PIMGs) of differentially expressed immune genes (DEIGs) were
significantly associated with the survival of BLCA patients (p < 0.01), of which 5 genes,
including NPR2, PDGFRA, VIM, RBP1, RBP1 and TNC, increased the risk of the prognosis,
while the rest, including CD3D, GNLY, LCK, and ZAP70, decreased the risk of the prognosis.
Then, we used these genes to establish a prognostic model. We drew receiver operator
characteristic (ROC) curves in the training group, and estimated the area under the curve (AUC)
of 1-, 3- and 5-year survival for this model, which were 0.688, 0.719, and 0.706, respectively.
The accuracy of the prognostic model was verified by the calibration chart. Combining clinical
factors, we established a nomogram. The ROC curve in the external validation group showed
that the nomogram had a good predictive ability for the survival rate, with a high accuracy, and
the AUC values of 1-, 3-, and 5-year survival were 0.744, 0.770, and 0.782, respectively. The
calibration chart indicated that the nomogram performed similarly with the ideal model.
Conclusion:We had identified nine genes, including PDGFRA, VIM, RBP1, RBP1, TNC,
CD3D, GNLY, LCK, and ZAP70, which played important roles in the occurrence and
development of BLCA. The prognostic model based on these genes had good accuracy
in predicting the OS of patients andmight be promising candidates of therapeutic targets. This
study may provide a new insight for the diagnosis, treatment and prognosis of BLCA from the
perspective of immunology. However, further experimental studies are necessary to reveal the
underlying mechanisms by which these genes mediate the progression of BLCA.
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INTRODUCTION

Bladder cancer (BLCA) is one of the 10 most common cancers
around the world, with 550,000 new cases and 200,000 deaths in
2018 (Richters et al., 2020). The risk of BLCA is 1 in 74 for men
and 1 in 301 for women, and in the past decade, the number of
new cases of BLCA has increased by 32% (Fitzmaurice et al.,
2019). As we all know, non-muscle invasive bladder cancer
(NMIBC) and muscle invasive bladder cancer (MIBC) are the
two main types of bladder cancer. When patients progress from
NMIBC to MIBC, their overall survival (OS) rate significantly
decreases (Cao et al., 2020a; Tran et al., 2021), and about one-
third of NMIBC patients will develop MIBC (Sylvester et al.,
2006). As we all know, bladder cancer diagnosis represents a
challenge for clinicians, and currently available diagnostic and
staging tools include: 1) urine cytological analysis; 2) cystoscopy
and pathological biopsy; 3) computed tomography or magnetic
resonance imaging. However, all of the above-mentioned tools
have some defects, such as low sensitivity or demands for invasive
operation (van Rhijn et al., 2009). Tumor markers, as a new
research tool, can not only help clinicians understand the
characteristics of tumors, but also help early diagnosis,
improve prognosis and carry out risk stratification and
targeted therapy for tumor patients (Bratu et al., 2021). So far,
there have been many studies on blood (Dohn et al., 2021), tissue
and urine markers (Aibara et al., 2021; Chen et al., 2021; Tosev
et al., 2021) of bladder cancer, and clinical guidelines are paying
more attention to the application of clinical tumor markers
(Witjes et al., 2021). Especially, genetic testing often performs
better in predicting the prognosis, and multi-gene prognostic
models are gradually becoming the choice of more clinicians (Qu
et al., 2021).

In recent years, immune checkpoint inhibitors (ICPIs) have
revolutionized the treatment paradigm for most malignant
tumors with persistent positive responses even observed in
advanced and refractory cancers (Bindal et al., 2021).
Therefore, exploring the interaction between tumor cells and
immunity can help clinicians gain a deeper understanding of the
occurrence, development and metastasis of BLCA (Guan et al.,
2021). So far, a lot of recent studies have performed the analysis of
the immune characteristics of BLCA patients, which have fully
demonstrated that immune genes have higher predictive values of
the prognosis, and provide better clinical guidance than routine
clinical features or risk models (Cao et al., 2020b; Wang et al.,
2021; Zhang et al., 2021). However, these studies only evaluated
the immunological characteristics of BLCA from the view of
immune cell infiltration, and lacked the exploration on the
tumor-immune interaction and its potential values of
predicting the prognosis of BLCA.

The tumor microenvironment (TME) consists of immune
cells, stromal cells, extracellular vesicles and other molecules.
A study showed that TME was an important regulator of gene
expression and was closely involved in the occurrence,
development and treatment of tumors (Kumari et al., 2021).
The immune system and immune response play a crucial role in
TME (Dzobo, 2020). In this study, we innovatively used single-
sample gene set enrichment analysis (ssGSEA) to classify BLCA

patients into a high-immune (Immunity_H) group and a low-
immune (Immunity_L) group, and then explored the tumor-
immune interaction, related molecular characteristics, and the
potential prognosis from the perspective of immune-difference-
related genes. Finally, we used these genes and the machine
learning method of the Least Absolute Shrinkage and Selection
Operator (Lasso) algorithm to establish a prognostic model, and
validated the stability and repeatability of the model in an
external independent data set.

MATERIALS AND METHODS

Data Collection
The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/) is a landmark cancer genomics program that molecularly
describes over 20,000 primary cancer, and matches normal
samples spanning 33 cancer types. This joint effort between
National Cancer Institute (NCI) and the National Human
Genome Research Institute began in 2006, and has produced
over 2.5 petabytes of genomic, epigenomic, transcriptomic, and
proteomic data. The data, which has already led to improvements
in our ability to diagnose, treat, and prevent cancer, will remain
publicly available for anyone in the research community to use.
We downloaded FPKM standardized RNA-seq data, clinical
information and tumor mutation burden (TMB) information
from the TCGA-BLCA cohort in TCGA database.

ImmPort (https://www.immport.org/) is funded by the
National Institute of Health (NIH) and National Institute of
Allergy and Infectious Diseases (NIAID) in support of the NIH
mission to share data with the public. We clicked the “Resources”
button on the Immport database homepage, then clicked the
“Gene Lists” button on the “Resources” page, and finally clicked
the “Gene Summary” to download immune-related genes.

Gene Expression Omnibus (GEO) is a public functional
genomics data repository supporting MIAME-compliant data
submissions. Array- and sequence-based data are accepted.
Tools are provided to help users query and download
experiments and curated gene expression profiles. We
downloaded two data sets (GSE31684 and GSE39281)
recording bladder cancer transcriptome genes (RNA-seq) and
clinical information in the GEO database. After processing the
data with Perl, we obtained two gene expression matrices. Then,
we used the “sva” package in the R language (version 4.0.5) to
merges the two expression matrices and eliminate batch effects.

Data Analysis
(A) TMB analysis: we used BLCA mutation data in the TCGA
database and Perl language to calculate the number of base
mutations in each BLCA sample. (B) Single-sample gene set
enrichment analysis (ssGSEA) and hierarchical cluster analysis:
we used R packages (GSVA, GSEABase and limma) to perform
ssGSEA to calculate the immune score of each BLCA sample
according to 29 immune gene sets composed of different types of
immune cells with different functions, pathways and checkpoints
(Alhamdoosh et al., 2017). Firstly, the rank of gene expression values
in a given BLCA sample was normalized, and then the enrichment
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score (ES) was calculated using the empirical cumulative distribution
function. Each ssGSEA score XI was converted to XI′ by bias
normalization to obtain the scores of different immune cells and
immune-related functions in each sample. Then, we used the
hierarchical clustering method of Euclidean distance and Ward
linkage to do the immune stratification of BLCA patients.
Meanwhile, we also made use of the T-distribution stochastic
neighbor embedding (tSNE) algorithm to determine the immune
stratification of BLCA patients through RtSEN package (Gardner
et al., 2021). (C) Evaluation of tumor immune microenvironment:
based on ESTIMATE algorithm, BLCA transcriptome data was
utilized to predict stromal cell score, immune cell score and
tumor purity, and then the content of these two types of cells
was predicted, from which StromalScore, ImmuneScore and
EstimateScore were determined (Yoshihara et al., 2013). (D)
Tumor-infiltrating immune cells analysis: CIBERSORT, an R
tool, was used for the deconvolution of the expression matrix of
human immune cell subtypes according to linear support vector
regression. This method is based on a known reference set and
provides a set of gene expression characteristics of 22 immune cell
subtypes. Therefore, we used the CIBERSORT method to do the
calculation for the abundance of infiltrating immune cells in BLCA
samples (Newman et al., 2015). (E) Immune differential genes
determining the immune stratification: the limma package was
utilized to select differentially expressed genes (DEGs) among
people with different immune stratification (| log2 fold change |
> 1.50 and FDR <0.05), and then we obtained immune-related genes
from ImmPort (Bhattacharya et al., 2014). DEIGs were obtained
through the intersection of immune genes andDEGs. (E) Prognostic
markers: the survival package was utilized to do the univariate Cox
regression analysis (p < 0.05) to identify the markers of significant
prognosis-related immunity genes (PIMGs).

Gene Set Pathway Enrichment Analysis
Gene set enrichment analysis was performed via the GSEA
software (version 4.1.0) to analyze TCGA-BLCA
transcriptomes for the identification of the key signaling
pathways involved in DEGs.

The major Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways involved in the up-regulation of the
Immunity_H and Immunity_L subgroups (p < 0.05, FDR
<0.01) were selected. R (version 4.0.5) was used to perform
further analysis, and visualize the results. Then, we obtained
transcription factors associated with the occurrence and
development of bladder cancer from the CISTROME project,
extracted differentially expressed transcription factors (DETFs)
from the total DEGs, and used Pearson correlation coefficient
analysis to construct the regulatory network of PIMGs and
DETFs (R > 0.3 and FDR <0.01) (Mei et al., 2017). Finally,
the protein-protein interaction (PPI) network analysis was
performed using STRING (String-db.org/).

Constructing and Validating the Prognostic
Model of the Immune-Related Genes
We used the LASSO Cox regression model in R package (Dalal
et al., 2012) “glmnet” to find genes significantly associated with

the prognosis to construct the prognostic model of BLCA (PMB).
The risk score was calculated as the following formula:
riskScore � ∑9

i�1 βipLPIMGi, where LPIMGi represented the
i-th LPIMG (Lasso-prognosis-related immunity genes), and βi
represented the expression coefficient of LPIMGi obtained from
Lasso regression analysis. All cases were classified into a low-risk
group and a high-risk group based on the median risk score, and
we performed the Kaplan-Meier survival analysis to compare the
survival status between the high-risk group and the low-risk
group. In order to verify the predictive power of PMB, the receiver
operator characteristic (ROC) curve was drawn to calculate the
area under the curve (AUC) of 1-, 3-, and 5-year survival. We
conducted Kaplan-meier, logarithmic rank, ROC curve and
calibration analysis using “timeROC,” “rms,” “survival,” and
“survminer” software packages in R language. Based on the
risk score calculated by PMB, Pearson correlation coefficient,
Spearman correlation coefficient and corrplot package were used
to evaluate the correlation between the risk score and overall
survival, immune cell infiltration, immune checkpoint molecules
and TMB. p < 0.05 of the critical value for the significant
correlation was set. Eventually, univariate and multivariate
Cox regression analysis of the risk scores of the constructed
PMB and patients’ clinical characteristics (age, sex, stage) was
performed to verify the accuracy of the independence of PMB-
based risk characteristics. Based on the above factors, we created a
nomogram using the R packages of “rms”, “nomogramEX” and
“regplot.” Finally, the ROC and calibration chart were drew to
determine the suitability of our established nomogram for
potential clinical applications.

RESULTS

Identification of Two Subtypes of BLCA
Using Immune Analysis
In order to fully evaluate the immunological characteristics of
BLCA, we used the ssGSEA to analyze 414 tumor samples from
the TCGA-BLCA cohort. According to the ssGSEA scores and
hierarchical clusteringmethod, BLCA cases were divided into two
clusters. The average score of the immune microenvironment of
the first cluster was 0.62, and the average score of the immune
microenvironment of the second cluster was 0.49. Thus, the first
cluster was set as the Immunity_H (high) group, and the second
cluster as the Immunity_L (low) group (Figures 1A,B). The tSNE
was further used to analyze the immune levels for different BLCA
patients and the same classification was obtained
(Supplementary Figure S1A). The results of ESTIMATE
analysis indicated that EstimateScore (419.27 ± 1649.47),
ImmuneScore (750.39 ± 886.17), and StromalScore (-331.12 ±
910.28) in the Immunity_H group were significantly higher
than those which were (−2283.37 ± 727.70), (−620.62 ±
352.59), and (−1662.75 ± 487.21), respectively, in the
Immunity_L group (Wilcox test, p < 0.001) (Figure 1C).
CIBERSORT was used to detect the degree of immune cell
infiltration in the tumor, which found that the differences
between the Immunity_H group and the Immunity_L group
in T cells CD4 naive, T cells CD4 memory resting, T cells
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FIGURE 1 | (A) The two immune types of BLCA patients, the red part was the high immune group, the blue was the low immune group. (B) The status of immune
infiltration and tumor microenvironment (TME) in the TCGA-BLCA cases. (C) The comparisons of StromalScore, ESTIMATEScore, and ImmuneScore between the two
subtypes. (D) The comparison of expression level of HLA gene between the two subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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CD4 memory activated, NK cells resting, NK cells activated,
Macrophages M1 and Mast cells activated were significant
(Supplementary Figure S1B). The expression of human
leukocyte antigen (HLA) genes in the both groups was examined,
which suggested that most of HLA genes significantly increased in
the Immunity_H group and significantly decreased in the
Immunity_L group (Wilcox test, p < 0.05) (Figure 1D). Based
on our results, we believed that immune response might play
important roles in the development of BLCA.

Identification of immune-related genes associated with
bladder cancer and their correlation with prognosis.

We further studied the expression of differential genes of
immune stratification in BLCA patients. The FDR values and
log2 fold change multiples of the immune differential genes in the
Immunity_H group and the Immunity_L group were showed in
Figure 2A. After primarily screening, we totally identify 994
DEGs, of which 812 genes were up-regulated and 82 genes were
down-regulated (Figure 2B). Subsequently, 308 DEGs were
selected as DEIG using the ImmPort database (Figure 2C).

Univariate Cox regression analysis indicated that 13 PIMGs
had significant association with the survival of BLCA patients
in DEIGs (p < 0.01), of which seven genes, including NPR2,
TGFB3, PDGFRB, PDGFRA, VIM, RBP1, RBP1 and TNC,
increased the risk of prognosis, while the rest, including
CD3D, CIITA, GNLY, LCK, PDCD1 and ZAP70, were
conducive to survival (Figure 2D).

Identifying Prognosis-Related Genes and
Constructing the Prognostic Model
LASSO Cox regression analysis was performed on 13 selected
PIMGs (Figures 3A,B). Finally, 9 LPIMGs were identified
and their risk-correlation coefficients were calculated to
determine the prognosis of BLCA patients. The risk score
was calculated as follows: riskScore � NRP2*0.0101119 +
CD3D*−0.1990949 + GNLY*−0.1241769 + LCK*−0.0519549
+ VIM*0.1464182 + RBP1*0.1038418 + PDGFRA*0.1589969
+ ZAP70*−0.12644895 + TNC*0.0693184. Data from TCGA

FIGURE 2 | (A)Volcano plot of all differentially expressed genes (DEGs) showing the log2 (fold change) and FDR value of each gene. (B) DEGs expression between
the two subtypes in the heat maps. (C)Veen plot based on the intersection of DEGs and human immune genes. (D) Forest plot based on univariable Cox proportional
hazards regression analysis showing the prognosis-related immunity genes (PIMGs) and their hazard ratios.
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was selected as the training group, the risk score of each
BLCA case in this group was calculated, and all cases were
classified into the high-risk group (203 patients) and the low-
risk group (204 patients) based on the median risk score of
0.4886 (Supplementry Data S1; Supplementary Figure
S1C). The correlation analysis indicated that the risk score
had significant negative correlation with the survival time of
BLCA patients which gradually decreased with the increase of
the risk score (Supplementary Figures S1D,E). The Kaplan-
meier curve showed that the difference in overall survival
(OS) between the high-risk group and the low-risk group was
significant, and patients in the low-risk group had a longer
overall survival time than those in the high-risk group (Log-
rank test, p < 0.0001) (Figure 3C). In order to evaluate the
predictive power and accuracy of PMB-based risk
characteristics, the ROC curves of the training group were
drawn, and the AUC values of 1-, 3- and 5-year survival were
0.688, 0.719, and 0.706, respectively (Supplementary Figure
S1F). The accuracy of the prognostic model was verified by
the calibration chart, which suggested that the predicted
value of the prognostic model was in good consistence
with the actual value (Figure 3H). Besides, GSE31684 and

GSE39281 were used as the external validation group, and we
combined their data (GSECD) using R “sva” package to
further confirm the accuracy and feasibility of the
prognostic model, and the number of deaths in the high-
risk group increased significantly (Supplementary Data S2).
Then, the Pierce correlation analysis and Kaplan-Meier
curves suggested that the constructed PMB-based risk
characteristics still had good predictive power in the
external validation group (Figure 3D).

Combined Analysis of Tumor Immune
Microenvironment and the Model of
Prognosis
In order to investigate the correlation between immunotherapy
and bladder cancer, 14 immune checkpoint inhibitors inlcuding
BTLA, GITR, TNFRSF14, IDO, LAG-3, PD-1, PD-L1, PD-L2,
CD28, CD40, CD80, CD137, CD27, and Ctla-4 were selected for
analysis. It was found that the risk score had negative correlation
with the BTLA, CD27, CD40, CD80, and TNFRSF14 expression,
which had significant differences in different risk groups
(Supplementary Figure S2), indicating that tumor

FIGURE 3 | (A) LASSO coefficient curves were selected with simulation parameters set to 1000. (B) 10-fold cross-validation of selecting tuning parameter in the
LASSO model. (C) Kaplan-Meier survival analysis of the PMB-based risk signature in the TCGA-BLCA cohort. (D) Kaplan-Meier survival analysis of the PMB-based risk
signature in the GSECD cohort.
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immunosuppression might lead to an increased risk score of
patients. TYK2 and ACE2 were also differentially expressed in
different risk groups, and with the increase of the risk score,
their expression decreased (Figure 4A). In the TCGA-BLCA
cohort, the TMB of patients in the high-risk group was
significantly lower than that in the low-risk group (p �
0.009) (Figure 4B). In order to find the potential
correlation between TMB and the prognosis of patients,
according to the TMB cutoff value of 4.632, we divided the
patients into the high TMB group, and the low TMB group
(Supplementary Data S3). We found that the survival time of
patients in the high TMB group was significantly lower than
that of the low TMB group (p < 0.001) (Figure 4C). In order to
evaluate the outcomes of patients more comprehensively, we
investigated whether the combination of the risk score and
TMB could be a more accurate prognostic marker. We
integrated PMB-based risk characteristics with TMB,
stratified all samples into the H-TMB/high risk, H-TMB/
low risk, L-TMB/high risk, and L-TMB/low risk groups.
Figure 4D suggested that differences between groups were
significant (log-rank test, p < 0.0001), and in the H-TMB/low
risk group, patients had the longest overall survival. The above

results together suggested that the risk score had positive
correlation with the degree of malignant tumor.

Establishing a Nomogram With Clinical
Features
Due to the significant correlation between the risk score and the
degree of malignant tumor, univariate and multivariate Cox
regression analysis for age, sex, and stage as covariates was
conducted to test the potential possibility of the risk score as an
independent prognostic factor for BLCApatients, of which the results
showed that the PMBbased risk characteristics had a p value less than
0.001, confirming that the PMB based risk characteristics could be
used to predict the prognosis of BLCA patients (Table 1). Combined
with the above factors, we constructed a nomogram (Figure 5A) to
expand the clinical application and usability of PMB. The total score
of each patient was obtained by calculating and summing the score
for each prognostic parameter. The higher the total score was, the
worse the patient’s clinical outcomewas. The ROC curve showed that
the nomogram had a good predictive ability for the survival rate, with
a high accuracy, and the AUC values of 1-, 3-, and 5-year survival
were 0.744, 0.770, and 0.782, respectively (Figure 5B). In addition,

FIGURE 4 | (A) Heatmap showing the correlation of the prognostic model of BLCA (PMB)-based risk signature with immune cell infiltration. The red suggesting the
positive correlation while blue suggesting the negative correlation. (B) The comparison of TMB between High- and low-risk groups. (C) Kaplan-Meier survival analysis of
the TMB in the TCGA-BLCA cohort. (D) Kaplan-Meier survival analysis of four groups stratified by combining the TMB and the PMB-based risk signature in the TCGA-
BLCA cohort.
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the calibration chart indicated that the nomogram performed
similarly with the ideal model (Figure 5C).

Gene Set Pathway Enrichment Analysis
GSEA revealed that immune-associated pathways in the
Immunity_H group were highly active, including the signaling
pathway of T cell receptor, the pathway of antigen processing
and presentation, cytokine involved immune response, and
hematopoietic cell lineage. Additionally, various pathways of
immune-associated disease were identified in the Immunity_H
roup, including asthma, primary immune deficiency, graft-versus-
host disease, allograft rejection, thyroid disease related to

autoimmune, and immunity to leishmania infection (Figure 6A).
In order to clarify the role of the multi-dimensional regulatory
network of immune molecules in the occurrence and development
of bladder cancer, we firstly explored the upstream mechanism of
PIMG. By combining differential expression analysis with data from
the CISTROME database, we identified transcription factors
significantly associated with the BLCA prognosis. For the
Immunity_H subtype, a total of 7 up-regulated transcription
factors were identified. Figure 6B showed the regulatory network
of BLCA TF-PIMGs. PPI analysis was further conducted and we
confirmed the significant correlation between BLCA TF and PIMG
(Figure 6C).

TABLE 1 | Univariable and multivariable Cox analysis of clinical characteristics and riskScore in the TCGA-BLCA cohort.

Univariate cox regression Multivariate cox regression

ID HR HR.95L HR.95H pvalue HR HR.95L HR.95H pvalue
Age 1.039588391 1.022252149 1.057218636 6.04E-06 1.035655214 1.018448898 1.053152224 4.16E-05
Gender 0.913510834 0.6440517 1.29570661 0.611966738 0.870137802 0.611038106 1.239104053 0.440546516
Stage 1.822621822 1.479575308 2.245205288 1.68E-08 1.545728603 1.243151661 1.921951269 8.92E-05
riskScore 3.002207633 2.158508821 4.175683964 6.55E-11 2.483209078 1.749461945 3.524699316 3.58E-07

FIGURE 5 | (A) Nomogram of age, gender, stage and risk score as independent prognostic factors for predicting overall survival. (B) The receiver operator
characteristic (ROC) curves and the area under the curve (AUC) of the predictions for 1-, 3-, and 5-years of the nomogram for TCGA-BLCA cohort. (C) The calibration
chart of the nomogram for TCGA-BLCA cohort.
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DISCUSSION

In our study, we collected gene expression data and clinical
information of BLCA from the public databases. A total of
9 immune-related prognostic genes were identified by the
Lasso analysis. Subsequently, a nine-gene prognostic model of
BLCA (PMB) was established. We integrated clinical
characteristics and risk scores to establish a nomogram. The
ROC curve and calibration chart verified the prognostic accuracy
of the nomogram. The high-risk KEGG analysis showed that the
main functions of genes in the high-risk group were closely
related to immunity. Finally, TMB had a significant
correlation with the prognosis of patients, and had a potential
connection with the PMBmodel. These findings strongly implied
that immunity played a non-negligible role in the occurrence
of BLCA.

We used Lasso regression to establish a PMB model, and used
the file Supplementary Data S4, S5 and the code Supplementary
Data S6 to achieve the repetition of the results of the model. Wu

and Ma (2015) believed that in the researches of genetic analysis,
most of the analyzed genes were expected to be “noise”, and only a
few were related to the results and phenotypes. In the process of
eliminating “noise” genes, a variety of machine learning methods
(LASSO, adaptive LASSO, SCAD, and MCP) had been used. For
the low-dimensional genomics data, stable approaches were
widely developed, while for the high-dimensional genomics
data, the development of approaches was limited. Therefore, in
the process of screening genes, a variety of machine learning
methods are worthy of our further trial and comparison. Ren et al.
(Ren et al., 2019) believed that because gene expression might
show heavy tailed distributions (especially for the high-
expression genes), or be contaminated, the gene regulation
relationship inference based on non-robust methods might be
biased. Thus, we proposed a robust network based on the
regularization and variable selection method for high-
dimensional genomics data in cancer prognosis, and
correspondingly also used “regnet” package in R language. The
robust and regularized AFT model was fitted by the network

FIGURE 6 | (A) The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs. (B) Alluvial diagram of the BLCA TFs and PIMGs revealing
their regulatory network. (C) PPI network between BLCA TFs and PIMGs. Network nodes representing proteins, and edges representing protein-protein associations,
including both functional and physical protein associations. Line thickness indicating the strength of data support. The thicker line representing the higher confidence.
KEGG, Kyoto Encyclopedia of Genes and Genomes; BLCA TF, Bladder cancer transcription factors; PIMGs, prognosis- associated immunity genes.
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penalty, and 9 prognostic genes were obtained by Lasso regression
analysis. As we deeply understand the new machine learning
methods, we will introduce new methods such as “regnet” at the
design stage of bioinformatics analysis to explore more
possibilities in the future.

In the past, some prognostic models of BLCA patients had
been established (Dong et al., 2021; Liu et al., 2021), but in these
studies, the tumor-immune-TMB interaction have not been fully
considered. For the TCGA-BLCA patients, we firstly, based on
immunogenomics analysis, divided the patients into the high
immune (Immunity_H) subtype and the low immune
(Immunity_L) subtype. Compared with the Immunity_L
subtype, we found that the Immunity_H subtype showed
stronger immune cell infiltration and higher expression of
HLA genes, which suggested stronger immunogenicity. The
Immunity_H subtype had abundant immune-related
characteristics, and was rich in a lot of cancer-related
pathways, such as leukemia, pancreatic cancer, and melanoma.
What’s more, the results of our study found the potential
association between immune activity and pathway activity for
BLCA patients.

According to the expression of these 9 immune genes, the
PMB based risk characteristics was developed, as a new
predictive tool for the prognosis of BLCA, and was validated
in the two data sets of GSE31684 and GSE39281. The results
showed that the OS curves of patients with high- and low-risk
scores were significantly different. Based on the risk
characteristics of PMB combined with immune invasion, the
prognosis of patients was predicted, and the survival time of
patients in the low-risk/Immune-L group was the longest. Of the
9 genes used to construct the PMB, five oncogenes, namely
NRP2, VIM, RBP1, PDGFRA, and TNC, were promising
therapeutic targets. NRP2 (Neuropilin 2) can regulate the
activity of vascular endothelial growth factor-activated
receptor, protein binding, and heparin binding, and take part
in the positive regulation of angiogenesis, endothelial cell
proliferation, cell adhesion, endothelial cell migration and
other pathways, and its targeted drugs can treat hypoplasia
in children (Estrada et al., 2021). VIM (Vimentin) is involved in
the combination of double-stranded RNA, the formation of
cytoskeleton, the formation of the lens of the eye, negative
regulation of neuron projection development, astrocyte
development, and cytokine-mediated signaling pathway.
RBP1 (Retinol-binding protein 1) is involved in several
physiological functions (Gao et al., 2020), including
regulation of metabolism and retinol transport. PDGFRA
(platelet derived growth factor receptor alpha) mutations
cause a variety of heterogeneous gastrointestinal
mesenchymal tumors (Ricci et al., 2015), and TKIs inhibiting
the most common driving mutations in KIT or PDGFRA might
have brought about radical changes in treating gastrointestinal
stromal tumors in the past 20 years (Zalcberg, 2021). TNC
(enascin-C) is a large extracellular matrix glycoprotein that
promotes cell adhesion and tissue remodeling, and is
involved in the transduction of cellular signaling pathways
(Spenlé et al., 2021). These findings encourage us to explore
the molecular mechanisms of these genes in BLCA in the future.

It has been proved that immune checkpoint inhibitors, such as
nivolumab, pembrolizumab, ipilimumab, atezolizumab,
avelumab, and durvalumab, are effective for treating metastatic
urological neoplasms (Petzold et al., 2021). We found that five
immune checkpoint inhibitors, including CD27, CD40, CD80,
BTLA, and TNFRSF14, were significantly negatively correlated
with the risk score of patients, indicating that the risk of patients
would increase with the increase of immune expression.
Sensitivity to CD40 ligation-induced apoptosis might be a new
mechanism to eliminate tumor transformation of urothelial cells.
The important adaptive mechanism for the occurrence and
development of transitional cell carcinoma might be CD40
expression loss (Bugajska et al., 2002). CD80 is an essential
membrane antigen for the activation of T lymphocytes. CD80
monoclonal antibody inhibits the adjuvant stimulation of CD80,
and prevents the differentiation of B lymphocytes into plasma
cells, which plays a prominent role in the treatment of tumors
(Vackova et al., 2021). CD27 and CD40 belong to the tumor
necrosis factor receptor (TNFR) family. As a co-stimulatory
pathway molecule, CD40 has been proven to be very
successful in combination with pro-active drug antibody
targets in both single-dose therapy and combination therapy
(Peters et al., 2009). CD27 can stimulate the anti-tumor effect
of monoclonal antibodies, and the stimulation of CD27 on the
T cells surface and NK cells can increase the release of
chemokines (Seidel et al., 2016). B- and T-lymphocyte
attenuator (BTLA) is also known as B- and T-lymphocyte-
associated protein. Under normal physiological conditions, the
combination of BTLA and its ligand HVEM can inhibit the over-
activation of lymphocytes in vivo, and prevent the immune
system from damaging itself (Yu et al., 2021). Finally,
TNFRSF14 might exert a tumor suppressor effect in bladder
cancer by inducing cell apoptosis and inhibiting proliferation
(Zhu and Lu, 2018). These immune-related studies are worthy of
further exploration in the immunotherapy of bladder cancer in
the future.

BLCA patients with a higher level of TMB had better
prognosis, and when TMB increased, the response rate of
immunotherapy was higher, implying that TMB might be an
independent biomarker that can provide the guidance for more
effective immunotherapy and improve the prognosis of BLCA
(Ready et al., 2019). In addition, we observed that PMB was
significantly correlated with TMB. Compared the AUC values of
the ROC curves between the two groups, the combination of
TMB and PMB also could predict the survival of patients. These
findings suggested that risk characteristics based on PMB might
help measure the responses to immunotherapy.

There are some limitation in our study. Firstly, the underlying
mechanism of how the identified 9 LPIMGs regulate the BLCA
process is still unclear, and their biological functions need to be
further explored by experiments. Secondly, the development and
verification of this model are only based on the public databases,
and thus more clinical research data is still necessary to verify its
effectiveness. Lastly, regarding the machine learning methods, we
used Lasso regression to perform the gene screening and
completed all the research, but Lasso regression may not be
the most ideal method to identify relevant features (such as
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gene expression). The new method of “regnet” are worthy to use
in the future study.

CONCLUSION

In summary, we had identified nine genes, including PDGFRA,
VIM, RBP1, RBP1, TNC, CD3D, GNLY, LCK, and ZAP70, which
played important roles in the occurrence and development of
BLCA. The prognostic model based on these genes had good
accuracy in predicting the OS of patients and might be promising
candidates of therapeutic targets. In addition, further experimental
studies are necessary to reveal the underlying mechanisms by
which these genes mediate the progression of BLCA.
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Background: Primary biliary cholangitis (PBC) is an autoimmune disease and is often
accompanied by thyroid dysfunction. Understanding the potential causal relationship
between PBC and thyroid dysfunction is helpful to explore the pathogenesis of PBC
and to develop strategies for the prevention and treatment of PBC and its complications.

Methods:We used a two-sample Mendelian randomization (MR) method to estimate the
potential causal effect of PBC on the risk of autoimmune thyroid disease (AITD), thyroid-
stimulating hormone (TSH) and free thyroxine (FT4), hyperthyroidism, hypothyroidism, and
thyroid cancer (TC) in the European population. We collected seven datasets of PBC and
related traits to perform a series MR analysis and performed extensive sensitivity analyses
to ensure the reliability of our results.

Results: Using a sensitivity analysis, we found that PBC was a risk factor for AITD, TSH,
hypothyroidism, and TC with odds ratio (OR) of 1.002 (95% CI: 1.000–1.005, p � 0.042),
1.016 (95% CI: 1.006–1.027, p � 0.002), 1.068 (95% CI: 1.022–1.115, p � 0.003), and
1.106 (95% CI: 1.019–1.120, p � 0.042), respectively. Interestingly, using reverse-
direction MR analysis, we also found that AITD had a significant potential causal
association with PBC with an OR of 0.021 (p � 5.10E−4) and that the other two had
no significant causal relation on PBC.

Conclusion: PBC causes thyroid dysfunction, specifically as AITD, mild hypothyroidism,
and TC. The potential causal relationship between PBC and thyroid dysfunction provides a
new direction for the etiology of PBC.

Keywords: thyroid dysfunction, hypothyroidism, thyroid cancer, two-sample Mendelian randomization,
genome-wide association study

INTRODUCTION

Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease with a progressive
disease (Lleo et al., 2017). Its prevalence and annual incidence rate are from 6.7 to 492 cases and from
0.7 to 49 cases per million inhabitants, respectively (Delgado et al., 2012). In addition, some
population-based studies that investigate the incidence and prevalence of PBC are increasing year by
year (Carey et al., 2015; Rosa et al., 2018; Lindor et al., 2019). Even worse, similar to other

Edited by:
Jiajie Peng,

Northwestern Polytechnical
University, China

Reviewed by:
Mingwang Shen,

Xi’an Jiaotong University, China
Xiaomei Ma,

Independent Researcher, Zhengzhou,
China

*Correspondence:
Sheng Yang

yangsheng@njmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal
Frontiers in Genetics

Received: 09 October 2021
Accepted: 15 November 2021
Published: 10 December 2021

Citation:
Huang P, Hou Y, Zou Y, Ye X, Yu R and
Yang S (2021) The Causal Effects of
Primary Biliary Cholangitis on Thyroid
Dysfunction: A Two-SampleMendelian

Randomization Study.
Front. Genet. 12:791778.

doi: 10.3389/fgene.2021.791778

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7917781

ORIGINAL RESEARCH
published: 10 December 2021

doi: 10.3389/fgene.2021.791778

104

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.791778&domain=pdf&date_stamp=2021-12-10
https://www.frontiersin.org/articles/10.3389/fgene.2021.791778/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.791778/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.791778/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.791778/full
http://creativecommons.org/licenses/by/4.0/
mailto:yangsheng@njmu.edu.cn
https://doi.org/10.3389/fgene.2021.791778
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.791778


autoimmune diseases, the pathogenesis of PBC is complex and
multifactorial, which results in no effective treatment for PBC.
PBC can lead to cirrhosis, liver cancer, liver failure, and death
within 10 years (Pratt, 2016; Younossi et al., 2019). With
increasing prevalence and serious complications, it is worthy
of our further study to explore the possible pathogenesis of PBC.

As known, up to 73% of PBC patients have extrahepatic
manifestations (i.e., Sjogren’s syndrome, thyroid dysfunction,
and systemic sclerosis) whose high incidence declines the
quality of life (Chalifoux et al., 2017). Among them, thyroid
dysfunction occurs in 5.6%–23.6% of PBC patients, which is
obviously larger than that in the individuals without PBC (Huang
and Liaw, 1995; Gershwin et al., 2005; Silveira et al., 2009;
Chalifoux et al., 2017). Thyroid dysfunction results from
excessive or insufficient production of thyroid hormone
regulating human growth, neuron development, reproduction,
and energy metabolism and may lead to various thyroid diseases
such as hypothyroidism (Taylor et al., 2018). Studies have shown
that some patients have symptoms of hypothyroidism and PBC
symptoms simultaneously, and the incidence of hypothyroidism
increases in patients with PBC (Elta et al., 1983). It is reported that
levels of serum thyroid-stimulating hormone (TSH) and average
serum free thyroxine (FT4) are higher in PBC patients (Schussler
et al., 1978). The two kinds of hormone imbalance also occur in
cirrhotic patients (Vincken et al., 2017; Punekar et al., 2018). In
addition, patients with PBC, an autoimmune liver disease
(AILD), are at higher risk for other autoimmune diseases,
including autoimmune thyroid disease (AITD), Hashimoto’s
thyroiditis, and Graves’s thyroiditis (Floreani et al., 2015;
Suzuki et al., 2016; Zeng et al., 2020). However, the
abovementioned relationships between PBC and thyroid
dysfunction are obtained based on observational studies, in
which reverse causality, selection bias, and especially
unobserved confounding factors might mask true causal
relationships. It is essential to further investigate the causal
association underlying these correlations.

Mendelian randomization (MR) is widely used for causal
inference in observational studies by treating single-nucleotide
polymorphisms (SNPs) as instrumental variables (IVs) (Emdin
et al., 2017). According to Mendel’s law of inheritance, alleles
are transmitted randomly from parents to offspring during
meiosis without interference from external factors (Reyna
and Pickler, 1999). Therefore, MR has a natural advantage in
determining causal relationships by removing the unobserved
confounding. In addition, two-sample MR, requiring the
exposure and outcome measured in independent but
homogeneous samples, is accessible for the abundant
resources and availability of summary statistics of genome-
wide association studies (GWASs) (Evans and Davey Smith,
2015; Watanabe et al., 2019). MR is established on the basis that
if a causal relationship exists between PBC and thyroid
dysfunction, the SNP related to PBC will also be related to
thyroid dysfunction through the occurrence of PBC, in which
case the IVs only associate with PBC, and MR can help establish
a causal relationship between PBC and thyroid function (Davey
Smith and Hemani, 2014). Also, two-sample MR has been used
to explore the causal relationship between thyroid function and

breast cancer (Yuan et al., 2020), atrial fibrillation (Ellervik et al.,
2019), and blood lipid profile (Wang et al., 2021).

Here, we comprehensively investigate the potential causal
relationship between PBC and thyroid function. Specifically,
we use seven large-scale GWAS summary statistics in the
European population on PBC and thyroid indicators and
disorders, including AITD, TSH, FT4, hyperthyroidism,
hypothyroidism, and thyroid cancer (TC), to perform a series
of two-sample MR. Furthermore, we also perform several
sensitivity analyses, including the heterogeneity test, pleiotropy
test, leave-one-out (LOO) test, and reverse-direction MR analyses
to ensure the reliability of our results.

METHODS

Data Collection
We collected seven datasets on PBC and related traits, including
one PBC dataset (Cordell et al., 2015), one AITD dataset
(including both Hashimoto’s thyroiditis and Graves’ disease)
(Glanville et al., 2021), four datasets (for TSH, FT4,
hyperthyroidism, and hypothyroidism) from The
ThyroidOmics Consortium (Teumer et al., 2018), and one TC
dataset (Rashkin et al., 2020). Specifically, PBC dataset contained
13,239 individuals (Prev. � 0.209); AITD dataset contained
324,933 individuals (Prev. � 0.003); TSH dataset contained
54,288 individuals; FT4 dataset contained 49,269 individuals;
hyperthyroidism dataset included 51,668 individuals (Prev. �
0.626); hypothyroidism dataset included 53,241 individuals
(Prev. � 0.036); and TC dataset included 411,112 individuals
(Prev. � 0.002). All summary data came from the European
population. Then, we filter out SNPs 1) with INFO < 0.6, 2) with
minor allele fraction (MAF) <0.01, 3) with palindrome alleles,
and 4) whose odds ratio (OR) was larger or smaller than the
mean ± 3 SD. Finally, we obtained 1,134,141, 9,390,112,
7,666,442, 7,138,715, 7,138,916, 7,191,562, and 9,291,956 SNPs
for the seven traits. In addition, we used linkage disequilibrium
score regression (LDSC) (v1.0.1) to estimate heritability (h2) for
each dataset. We set the population prevalence (--pop-prev) for
the five diseases (PBC, AITD, hyperthyroidism, hypothyroidism,
and TC) to 0.209, 0.003, 0.036, 0.063, and 0.002 to estimate
liability heritability. The detailed information of the seven
datasets is shown in Supplementary Table S1.

Instrumental Variable Selections
A crucial step of MRwas to choose appropriate genetic variants to
serve as valid IVs for PBC. Based on the above datasets, we
followed the strict screening procedures in other previous MR
studies to select IVs (Zeng et al., 2019; Dong et al., 2021)
(Figure 1). First, we retained 773 variants for PBC with a
p-value smaller than 5.00E−8. Second, we removed 748 highly
correlated variants with r2 greater than 0.001 in the range of
10 Mb. In addition, we ensured that each alternative SNP selected
as IV was strongly associated with PBC. According to the
previous research (Zeng et al., 2019), we calculated the F
statistic to find weak IVs, and no variant was excluded with a
minimum F statistic of 30.16. Finally, we only kept a total of 25
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independent candidate IVs to study the causal relationship
between PBC and the other six traits. The details of these IVs
are shown in Supplementary Table S2.

We carried out three two-sample MR analyses, including
fixed-effects and random-effects inverse variance weighting
(IVW), MR-Egger, and weighted median (WM) methods, to
estimate the potential causal effect of PBC on the six traits
(Bowden et al., 2015; Bowden et al., 2016a). Without
consideration for the intercept term, IVW regarded the
reciprocal of the outcome variance (the square of SE) as the
weight. Under the assumption of IVW, we consider that IVs are
not pleiotropic. Therefore, we must ensure that these IVs are not
pleiotropic when using the IVW method; otherwise, the results
were biased (Bowden et al., 2015). Different from IVW, MR-
Egger used an intercept term tomeasure the horizontal pleiotropy
between these IVs (Bowden et al., 2016b). The WM method
assumed that variables that account for at least 50% of the total
IVs were valid, so the causal effects can be estimated consistently
(Bowden et al., 2016a).

Sensitivity Analysis
Following methods in previous studies (Noyce et al., 2017; Zeng
and Zhou, 2019), we performed a sensitivity analysis to evaluate
the potential violations of the model assumptions in the MR
analysis: 1) heterogeneity test, 2) pleiotropic test, and 3) LOO test.
First, heterogeneity analysis estimates the heterogeneity between
IVs. If the heterogeneity exists, it would be hard to combine the

IVs directly. Second, if IVs can directly affect the results without
exposure factors, then they violate the idea of MR; that is, the level
of pleiotropy in the test results will lead to serious deviations in
MR (Hemani et al., 2018; Ong andMacGregor, 2019).We useMR
pleiotropy residual sum and outlier (MR-PRESSO) to find
outliers and test the level of pleiotropy. For more verification,
we still use the MR-Egger intercept to test the pleiotropy. Finally,
the LOO test refers to gradually removing each SNP, calculating
the meta effect of the remaining SNPs, and observing whether the
result significantly changed after removing each SNP. Ideally, no
significant difference meant a robust result (Noyce et al., 2017).
All the analyses are performed by R software (v4.1.1). Specially,
we used TwoSampleMR R package (v0.5.6) to perform MR
analysis. The statistical significance level was set to 0.05
throughout our study.

Reverse-Direction Mendelian
Randomization Analyses
We also performed reverse-direction MR to assess potential reverse
causal effects of AITD, TSH, FT4, hyperthyroidism, hypothyroidism,
and TC on PBC. Following methods in previous literature (Savage
et al., 2018; Dong et al., 2021), for each exposure, we used the
clumping algorithm in PLINK (Chang et al., 2015) to select
independent SNPs for each trait (r2 threshold � 0.001, window
size � 10Mb, and p < 5.00E−8). Finally, we obtained two IVs for
AITD, 38 IVs for TSH, 17 IVs for FT4, 7 IVs for hyperthyroidism, 6

FIGURE 1 | The flowchart for IV selection. The flowchart shows the selection process of PBC IVs to estimate the causal effects on AITD, TSH, FT4, hyperthyroidism,
hypothyroidism, and TC. First, we use p < 5.00E−8 to select index SNPs to ensure that they strongly associate with PBC. Second, we use r2 > 0.001 in the range of
10 Mb to select independent index SNPs. We treat the EUR of 1000 Genomes Project as the reference panel. The first two steps are completed by PLINK. Finally, we
obtain 25 IVs on AITD, TSH, FT4, hyperthyroidism, and TC and 23 IVs on hypothyroidism. IV, instrumental variable; PBC, primary biliary cholangitis; AITD,
autoimmune thyroid disease; TSH, thyroid-stimulating hormone; FT4, free thyroxine; TC, thyroid cancer; SNP, single-nucleotide polymorphism.
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IVs for hypothyroidism, and 3 IVs for TC. We used these IVs of six
traits to perform reverse causal inferences on PBC to assess potential
reverse causal effects. The reverse-directionMR analysis process was
the same as previously described.

RESULTS

Summary of Genome-Wide Association
Study Data
We estimated the heritability for each trait. Specifically, the
genetic inflation factor (λgc) of PBC is 1.050 (LDSC intercept:
1.003); λgc of AITD is 0.999 (LDSC intercept: 0.999); λgc of TSH is
1.077 (LDSC intercept: 1.035); λgc of FT4 is 1.111 (LDSC
intercept: 1.014); λgc of hyperthyroidism is 1.029 (LDSC
intercept: 1.113); λgc of hypothyroidism is 1.044 (LDSC
intercept: 1.083); and λgc of TC is 1.008 (LDSC intercept:
0.999). With the use of GWAS summary statistics and 1000
Genomes Project (1000 GP) EUR reference panel, the SNP-based
liability heritability for PBC, AITD, and TC is 595.942, 0.012, and
0.103, respectively. The observed heritability for PBC, AITD,
TSH, FT4, and TC is 0.378, 0.003, 0.125, 0.152, and 0.002,
respectively (Supplementary Table S1). We used the
Manhattan plot to show the GWAS results for seven traits
(Supplementary Figure S1).

Mendelian Randomization Analysis
We performed MR analysis on the IVs of PBC selected on six
traits. Except for hypothyroidism, which only had 23 IVs, the
other five traits were all 25 IVs. Based on different assumptions,
we estimated the potential causal effects of four models, including
IVW (fixed- and random-effects models), MR-Egger, and WM.
And we use forest plots to show the causal relationship of a single
IV in each trait, scatter plots to show the overall fitting causal
effects between PBC and the traits, and funnel plots to show the
relationship between the effect of the MR model and the effect of
each SNP (Figures 2–4; Supplementary Figures S2–S4,
Supplementary Tables S3–S8). For the causal effect for the
six traits, we should use the result of the sensitivity analysis to
determine whether the analysis result is significant.

For PBC on AITD, we observe a positive causal effect. The
estimated OR from fixed-effects IVW method is 1.002 (95% CI:
1.000–1.005, p � 0.042). However, the result of the random-
effects IVW method (OR � 1.002, 95% CI: 0.999–1.005, p �
0.092) is similar to that of fixed-effects IVW, but it is not
significant. The result of WM (OR � 1.002, 95% CI:
1.000–1.005, p � 0.196) and MR-Egger (OR � 0.995, 95% CI:
0.987–1.005, p � 0.339) is similar to that of the random-effects
IVW method. The above results indicate that AITD would
increase with the increase of PBC risk. The details are shown
in Figure 2 and Supplementary Table S3.

FIGURE 2 | Summary of the MR analysis for PBC on AITD. (A)MR effect size of each IV, MR-Egger, and IVW. (B) The scatter plot of causal effects of PBC on AITD.
We use vertical and horizontal black lines to show 95%CI of the estimated effect of IVs on PBC (x-axis) and that on AITD (y-axis), respectively. We use the red line to show
the IVW random-effectsmodel. (C) The funnel plot of the causal effect of PBC on AITD. Each point represents the estimated causal effect of each IV. The vertical dark blue
line represents the causal effect estimate obtained using the MR-Egger method; the light blue line represents the causal effect estimate obtained using the IVW
method. MR, Mendelian randomization; PBC, primary biliary cholangitis; AITD, autoimmune thyroid disease; IV, instrumental variable; IVW, inverse variance weighting.
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For PBC on TSH, we also observe a positive causal effect. The
estimated OR from fixed-effects IVW method is 1.015 (95% CI:
1.005–1.025, p � 0.003). The result of the random-effects IVW
method (OR � 1.015, 95% CI: 1.000–1.030, p � 0.056) is similar to
that of fixed-effects IVW, but it is not significant. The result of
WM (OR � 1.007, 95% CI: 0.991–1.024, p � 0.362) andMR-Egger
(OR � 0.997, 95% CI: 0.944–1.052, p � 0.908) is similar to that of
the random-effects IVW method. The above results indicate that
TSH would increase with the increase of PBC risk. The details are
shown in Figure 3 and Supplementary Table S4.

For PBC on FT4, we failed to define a significant causal effect.
The estimated OR from fixed-effects IVW method is 1.005 (95%
CI: 0.994–1.015, p � 0.375). And the result of the random-effects
IVW method (OR � 1.005, 95% CI: 0.994–1.015, p � 0.380) is
similar to that of fixed-effects IVW. The result of WM (OR �
1.007, 95% CI: 0.992–1.022, p � 0.372) and MR-Egger (OR �
0.997, 95% CI: 0.960–1.036, p � 0.893) is similar to the above
conclusion. The above results indicate that FT4 would increase
with the increase of PBC risk, but none of them is significant. The
details are shown in Supplementary Figure S2 and
Supplementary Table S5.

For PBC on hyperthyroidism, we failed to define any
significant causal effect using the four models. The estimated

OR from fixed-effects IVW method is 0.984 (95% CI:
0.937–1.034, p � 0.534). And the result of the random-effects
IVWmethod (OR � 0.984, 95% CI: 0.938–1.034, p � 0.524) is not
significant, which is similar to that of fixed-effects IVW. The
results of WM (OR � 1.007, 95% CI: 0.939–1.081, p � 0.836) and
MR-Egger (OR � 0.933, 95% CI: 0.779–1.117, p � 0.457) are both
not significant. The details are shown in Supplementary Figure
S3 and Supplementary Table S6.

For PBC on hypothyroidism, in these 23 IVs, we observed the
positive causal effect of PBC on hypothyroidism. Note that we
only define the significant result from fixed-effects IVW method
(OR � 1.044, 95% CI: 1.001–1.089, p � 0.044), rather than the
result of the random-effects IVW method (OR � 1.044, 95% CI:
0.989–1.103, p � 0.122), the result of WM (OR � 1.051, 95% CI:
0.987–1.119, p � 0.116), and the result of MR-Egger (OR � 0.912,
95% CI: 0.744–1.118, p � 0.385). We should use the result of the
sensitivity analysis to check for the outliers and determine
whether the analysis result is representative. The details are
shown in Figure 4 and Supplementary Table S7.

For PBC on TC, the result of PBC on TC is similar to that of
hypothyroidism. The only significant result was from fixed-
effects IVW method (OR � 1.106, 95% CI: 1.019–1.120, p �
0.042) rather than the result of the random-effects IVW method

FIGURE 3 | Summary of the MR analysis for PBC on TSH. (A)MR effect size of each IV, MR-Egger, and IVW. (B) The scatter plot of causal effects of PBC on TSH.
We use vertical and horizontal black lines to show 95%CI of the estimated effect of IVs on PBC (x-axis) and that on TSH (y-axis), respectively. We use the red line to show
the IVW random-effects model. The potential SNP outlier (rs11065987 and rs2076310) is highlighted in green. (C) The funnel plot of the causal effect of PBC on TSH.
Each point represents the estimated causal effect of each IV. The vertical dark blue line represents the causal effect estimate obtained using the MR-Egger method;
the light blue line represents the causal effect estimate obtained using the IVW method. The potential SNP outlier (rs11065987 and rs2076310) is highlighted in green.
MR, Mendelian randomization; PBC, primary biliary cholangitis; TSH, thyroid-stimulating hormone; IV, instrumental variable; IVW, inverse variance weighting; SNP,
single-nucleotide polymorphism.
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(OR � 1.106, 95% CI: 0.990–1.235, p � 0.074), the result of WM
(OR � 1.137, 95% CI: 0.998–1.295, p � 0.054), and the result of
MR-Egger (OR � 1.243, 95% CI: 0.836–1.850, p � 0.294). The
details are shown in Supplementary Figure S4 and
Supplementary Table S8.

Sensitivity Analyses
We performed extensive sensitivity analyses to validate the results
of the MR analysis, which are mainly of heterogeneity analysis
and pleiotropic analysis on these IVs. We performed LOO
analysis only for the significant causal effect. Our purpose was
to explore whether the results obtained were robust, whether
there was potential bias (such as pleiotropy and data
heterogeneity), and whether there was a certain IV that
seriously affects the outcome variable.

First, we conducted a heterogeneity analysis. Based on IVW,
we found that TSH, hypothyroidism, and TC were
heterogeneous as compared with AITD, FT4, and
hypothyroidism. The PQ of TSH, hyperthyroidism, and TC
was 1.71E−4, 0.021, and 0.007, respectively. The PQ of the
remaining three traits was larger than 0.05. In order to
reduce the heterogeneity, we chose to perform MR-PRESSO

analysis to find and eliminate the outliers and can also test the
pleiotropy of IVs.

Next, we performed MR-PRESSO analysis and LOO test to
ensure the validation for MR analysis. For TSH, we found
rs11065987 (beta � 0.027, p � 2.30E−5) and rs2076310 (beta �
−0.019, p � 0.013) might be outliers that have affected the causal
effect of IVs. After they were removed, the p-value of MR-
PRESSO Global test changed from 0.001 to 0.098, which
indicated that the pleiotropy was eliminated, and the PQ of
TSH was also changed to 0.089, indicating that the
heterogeneity has been eliminated. The result of the LOO test
was significant for rs2076310 (PLOO � 0.008) and not significant
for rs11065987 (PLOO � 0.078). Therefore, we choose the result of
the fixed-effects IVW method after removing the outliers as the
significant causal effect for PBC on TSH. For hypothyroidism, we
define that rs2076310 (beta � −0.095, p � 0.002) might be an
outlier that has affected the causal effect of IVs. After it was
removed, the p-value of MR-PRESSO Global test changed from
0.022 to 0.345, which indicated that the pleiotropy has been
eliminated, and the PQ of hypothyroidism was also changed to
0.321, indicating that the heterogeneity has been eliminated. The
result of the LOO test for this outlier is the same as the above

FIGURE 4 |Summary of theMR analysis for PBC on hypothyroidism. (A)MReffect size of each IV, MR-Egger, and IVW. (B) The scatter plot of causal effects of PBC
on hypothyroidism. We use vertical and horizontal black lines to show 95% CI of the estimated effect of IVs on PBC (x-axis) and that on hypothyroidism (y-axis),
respectively. We use the red line to show the IVW random-effects model. The potential SNP outliers (rs2076310) are highlighted in green. (C) The funnel plot of the causal
effect of PBC on hypothyroidism. Each point represents the estimated causal effect of each IV. The vertical dark blue line represents the causal effect estimate
obtained using the MR-Egger method; the light blue line represents the causal effect estimate obtained using the IVW method. The potential outliers (rs2076310) are
highlighted in green. MR, Mendelian randomization; PBC, primary biliary cholangitis; IV, instrumental variable; IVW, inverse variance weighting; SNP, single-nucleotide
polymorphism.
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result (PLOO � 0.005). Therefore, we chose the result of the fixed-
effects IVW method after removing the outlier as the significant
causal effect of PBC on hypothyroidism. And for TC, we did not
identify any outliers.

Finally, we used the MR-Egger intercept to estimate pleiotropy.
We defined no significant pleiotropy in six potential causal
relationships. After the outliers were removed, the p-value of the
MR-Egger intercept increased.

To sumup, we used the result from the fixed-effects IVWmethod
to represent the causal effect of PBC on AITD (OR � 1.002, 95% CI:
1.000–1.005, p � 0.042); the result from fixed-effects IVW method
with outlier excluded was used to represent the causal effect of PBC
on TSH (OR � 1.016, 95%CI: 1.006–1.027, p � 0.002); and the result
from fixed-effects IVW method with outlier excluded was used to
represent the causal effect of PBC on hypothyroidism (OR � 1.068,
95%CI: 1.022–1.115, p � 0.003). The remaining three traits were not
significant.

Reverse-Direction Mendelian
Randomization Analysis
In order to identify potential confounding factors that mislead the
direction of causal effects, we performed reverse-direction MR
(Supplementary Figures S5–10). We found that AITD and TC
have a significant potential causal association with PBC with the
random-effects IVW method, while the causal effects for TSH,
FT4, hyperthyroidism, and hypothyroidism on PBC are not
significant. Specifically, using the random-effects IVW method,
the estimated OR for AITD and TC on PBC is 0.021 (p � 5.10E−4)
and 1.026 (p � 0.011), respectively (Supplementary Tables S3,
S8). Note that the results might be not reliable for the small
number of IVs (Dong et al., 2021).

DISCUSSION

Here, we performed a comprehensive two-sample MR analysis to
illustrate the potential causality between PBC and thyroid
dysfunction. After a series of sensitivity analyses, we found
that PBC significantly results in the occurrence of AITD
(OR�1.002) and hypothyroidism (OR � 1.068) and that PBC
significantly causes the increase of TSH level (OR � 1.016). Our
findings provided an exploration direction for the occurrence of
thyroid dysfunction in PBC patients, contributed to the treatment
of thyroid diseases in PBC patients, and improved the quality of
life for PBC patients. As expected, our results are consistent with
previous observational population-based studies. For the
potential causal relation of hypothyroidism, emerging
evidences indicate that PBC is often with the occurrence of
AITD (Crowe et al., 1980; Floreani et al., 2015; Patil et al.,
2021) and hypothyroidism (Crowe et al., 1980; Elta et al.,
1983) and the increase of TSH, one of the main signs of
hypothyroidism (Patil et al., 2021).

For PBC on AITD, we define that PBC and AITD might be
mutual cause-and-effect factors in both MR and reverse-direction
MR analyses. Consistent with our findings, emerging epidemiological
studies have shown that genetic components are important in the

pathogenesis of Hashimoto’s thyroiditis (Paknys et al., 2009). The
occurrence of PBC andAITDmight be caused by environmental and
genetic factors, such as intestinal flora (Fenneman et al., 2020),
estrogen (Qin et al., 2018), gene-mediated immunodeficiency, and
synergy between each other (Milette et al., 2019).

For PBC on hypothyroidism, Garber et al. also showed that
PBC causes mild hypothyroidism, manifesting as only increasing
TSH and normal FT4 levels (Garber et al., 2012). This finding is
consistent with our results, that is, significant causal relation of
PBC on TSH and insignificant causal relation of PBC on FT4.

There are several assumptions for the causality for PBC on
hypothyroidism. One is the interaction between thyroid
hormones and the liver (Salata et al., 1985). Liver damage
caused by PBC can lead to changes in the expression of the
enzyme D3 that controls the activity of thyroid hormones
(Gilgenkrantz and Collin de l’Hortet, 2018), which can lead to
a decrease in the accumulation of active thyroid hormones (Elbers
et al., 2016), can trigger hypothalamic–pituitary–thyroid
regulation disorders, and can increase TSH, leading to
hypothyroidism. The second is that PBC cholestasis decreases
Y protein, which in turn leads to hypothyroidism (Ariza et al.,
1984). Protein Y is a type of protein that is distributed in the liver
and promotes the absorption of thyroid hormones by the liver;
the decrease of protein Y makes the liver speed up the circulation
of thyroid hormones and reduce the free thyroid hormones in the
blood (Reyes et al., 1971), leading to
hypothalamus–pituitary–thyroid disorders, increase in TSH,
and appearance of symptoms of hypothyroidism.

For the potential causal relation for PBC on TC, few studies
have reported the association between PBC and TC. We assume
that PBC causes thyroid dysfunction (such as hypothyroidism
and thyroiditis), which eventually progresses to TC (dos Santos
Silva and Swerdlow, 1993; Pacini et al., 2012). Studies have shown
that AITD is one of the risk factors for TC, and elevated TSH
levels and thyroid autoimmune characteristics are defined as
independent risk factors for TC (Ferrari et al., 2020). Studies
have also shown that thyroid tumors mainly exhibit
hypothyroidism-like symptoms and that hypothyroidism may
be the basis for most TCs (Hernandez et al., 2021). Our research is
consistent with previous findings and explanations.

Our research also has some limitations. First, MR analysis
cannot rule out the influence of hidden and unknown
confounding factors, and we cannot completely rule out the
association of IVs to confounding factors. This makes the
assumptions of IVs strict and demanding. Especially weak IVs
should be considered in the research. Second, MR analysis only
provides directions for the etiology and progress of PBC and
thyroid dysfunction, which lacks the biological mechanism
behind the potential causal relationship. Last, the populations
of the data we analyzed are all of European descent, the final
results are limited by the genes of different races, and the results
may not be very applicable to Asian populations.

In conclusion, our findings show that PBC can cause thyroid
dysfunction, specifically as AITD, mild hypothyroidism, and TC.
The potential causal relationship between PBC and thyroid
dysfunction provides a new direction for the study of the
etiology and progress of PBC.
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Identifying Potential miRNA
Biomarkers for Gastric Cancer
Diagnosis Using Machine Learning
Variable Selection Approach
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and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, 6Department of Medical
Biology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey

Aim: This study aimed to accurately identification of potential miRNAs for gastric cancer
(GC) diagnosis at the early stages of the disease.

Methods: We used GSE106817 data with 2,566 miRNAs to train the machine learning
models. We used the Boruta machine learning variable selection approach to identify the
strongmiRNAs associated with GC in the training sample. We then validated the prediction
models in the independent sample GSE113486 data. Finally, an ontological analysis was
done on identified miRNAs to eliciting the relevant relationships.

Results: Of those 2,874 patients in the training the model, there were 115 (4%) patients
with GC. Boruta identified 30 miRNAs as potential biomarkers for GC diagnosis and hsa-
miR-1343-3p was at the highest ranking. All of the machine learning algorithms showed
that using hsa-miR-1343-3p as a biomarker, GC can be predicted with very high precision
(AUC; 100%, sensitivity; 100%, specificity; 100% ROC; 100%, Kappa; 100) using with the
cut-off point of 8.2 for hsa-miR-1343-3p. Also, ontological analysis of 30 identifiedmiRNAs
approved their strong relationship with cancer associated genes and molecular events.

Conclusion: The hsa-miR-1343-3p could be introduced as a valuable target for studies
on the GC diagnosis using reliable biomarkers.

Keywords: miRNA, machine learning, boruta algorithm, gastric cancer, hsa-miR-1343-3p, AUC, GSE106817,
GSE113486

INTRODUCTION

Gastric cancer (GC) is a significant global health issue due to being the fifth leading cancer worldwide
as well as the third cancer-related death leading cause, which leads to nearly 8,00,000 deaths annually
(Bray, 2018). Morbidity and mortality due to GC have reduced in recent years, though the rate of 5-
year survival is still fairly low (Howlader, 2014). A significant prognostic factor is the stage of cancer
at the diagnosis time. The 5-year survival of GC patients is below 30% if the disease is diagnosed at
the advanced stages (Hundahl et al., 2000), while the 5-year survival of patients ranges between 70
and 90% if diagnosed at the early stages (Choi, 2015). Thus, GC will remain among the toughest
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challenges for physicians and researchers for so long since GC is
not symptomatic until the advanced stages; this is why effective
screening approaches for the early detection of GC are mandatory
to overcome GC mortalities (Penon et al., 2014). Presently,
gastroscopy is yet the standard test to diagnose GC (Veitch
et al., 2015). Nonetheless, this screening approach is invasive
and costly. Furthermore, minimally invasive or non-invasive
markers, including carcinoembryonic antigen (CEA) and
carbohydrate antigen 19-9 (CA19-9) have been commonly
used clinically, though these markers are neither specific nor
sensitive enough for GC early diagnosis (Carpelan-Holmström
et al., 2002). Due to non-specific symptoms and the absence of an
early diagnosis, a great number of patients with GC are diagnosed
at the advanced stages (Hundahl et al., 2000; Hartgrink et al.,
2009). Thus, cost-effective and non-invasive biomarkers are
immediately required for the early diagnosis of GC.

Recent genome analysis revealed several biomarkers which are
related to RNA, DNA, exosome, et cetera. A class of endogenous
non-coding RNAs is MicroRNAs (miRNAs) (nearly 22 nt) which
module the expression of the gene after transcription through
degradation or translation blockage of target mRNAs (Bartel,
2004; Caldas and Brenton, 2005). It is well-known that cancer
cells may release miRNAs via exosomes to enhance proliferation
and migration (Li, 2018; Yoshimura, 2018; Zeng, 2018). The
exosomal miRNAs released into biofluids, including serum,
plasma, tear, urine, and gastric juice, may escape being
degraded by RNases (Gilad, 2008). Moreover, miRNAs have
been suggested as potential biomarkers which may be used to
diagnose several types of cancers, including testicular germ cell
tumors (using miRNA-371a-3p: specificity 94.0% and sensitivity
90.1%) (Dieckmann, 2019), bladder cancer (using 7-miRNA
panel: specificity 87% and sensitivity 95%) (Usuba, 2019a),
and hepatocellular carcinoma (using miR-424: specificity
87.13% and sensitivity 95.12%) (Lin, 2015), and lung cancer
(Aftabi, 2021). Moreover, several studies reported that
numerous miRNAs might be potentially used as biomarkers
for GC diagnosis (Zhou, 2010; Cui, 2013; Su, 2014).
Nonetheless, most of the miRNA biomarkers are not developed
using comprehensive data mining according to miRNA profiling,
and even they lack proper external efficacy validation (Link and
Kupcinskas, 2018; Wei, 2019). Instead, recently, Artificial
intelligence Technology (AT) usage in the field of microarray
Data has attracted more attention. The disadvantage of the
conventional statistical models, including logistic regression, was
that they excluded the possible interaction terms and highly
correlated variables; thus, they might lose a part of useful
information, which might decrease their accuracy, specifically in
the case of high dimensional miRNA data analysis (Alpaydin,
2020). Furthermore, the traditional models are not able to capture
variables’ non-linear associations (James et al., 2013; Gilani et al.,
2017; Gilani et al., 2019). Instead,Machine Learning (ML) is able to
deal with non-linear structures as well as detecting all the possible
interactions whichmay exist between predictors (Gilani et al., 2018;
Wiemken and Kelley, 2020).

Machine learning has several algorithms of which the decision
trees (DT), random forests (RF), extreme gradient boosted trees
(XGBT), and artificial neural networks (ANN) that have been

frequently applied in medicine (Cleophas and Zwinderman, 2015;
Deo, 2015), particularly in prediction of cancer (DeGregory, 2018;
Fakhari et al., 2019). Random forest is a tree-based classification
algorithm, and as the name indicates, the algorithm creates a forest
with a huge number of trees. It is an ensemble algorithm that
combines multiple algorithms. The random forest creates a set
of decision trees from a random sample of the training set. It
repeats the process with multiple random samples and makes a
final decision based on majority voting (Zhou, 2012). Briefly,
gradient boosted trees combine multiple classification trees into
an additively weighted classifier. Boosting refers to the method
where sequentially ascertained trees were trained, meaning each
observation was weighted by its error obtained by minimizing the
appropriate loss of function in the previous iteration. In this way,
boosting is a gradient descent algorithm (Christensen and Bastien,
2016) and forces the classifier to focus on aspects of the data that
are difficult to learn (Hastie et al., 2009).

Artificial neural networks have been broadly used in medical
studies (Darsey et al., 2015; DeGregory, 2018; Shahid et al., 2019).
Such models perform satisfactorily, especially for classification
problems with complex and non-linear associations between
variables (Hastie et al., 2009). Briefly, artificial neural networks
are based on a collection of artificial neurons, which receive and
process inputs (predictors), transmit them to other artificial
neurons, and produce an output (Zhou, 2012).

Considering the important role of GC early diagnosis in
patient’s survival rate and the lack of published article on
identifying potential miRNAs for GC prediction at an early
stage by AT, the present study aims to identify the potential
miRNA for predicting GC by AT in the datasets of Gene
Expression Omnibus (GEO) specifically with the stat of the art
machine learning models. Traditional statistical models such as
linear models previously has been used in looking for GC
biomarkers and identified miRNAs with the potential
prediction power (Yao, 2020), however, they have not
implemented advanced methods such as machine learning and
new variable selection approaches such as Synthetic Minority
Oversampling Technique (SMOTE). In the present study, for the
first time, we aimed to use those new techniques for identification
of GC related miRNAs with a reliable cut-of and highest possible
accurecy in the external validation.

METHODS

The Applied Datasets
For training sample, we used GSE106817 dataset that is
available at https://www.ncbi.nlm.nih.gov/geo/. The dataset
consist of the data of 2,566 miRNAs obtained from 2,759 non-
cancer controls, and 115 GC cases (4%). In the original study
the serum samples of cancer cases and non-cancer controls
have been analyzed by microarray for miRNA expression
profiles (Yokoi, 2018). For test sample we used GSE113486
dataset, which includes data of miRNA expression profiles
from the serum samples of 40 GC cases (28.6%) and 100
normal controls (71.4%) (Usuba, 2019b). All the datasets
were serum miRNA profiles based on the same microarray
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platform, 3D-Gene Huma miRNA V21_1.0.0 (39). The study
was approved by the NCCH Institutional Review Board
(2015-376, 2016-29) and the Research Ethics Committee of
Medical Corporation Shintokai Yokohama Minoru Clinic
(6019-18-3772). Written informed consent was obtained
from each participant (42). This study was approved by
the Ethics Committee of Tabriz University of Medical
Sciences (No: IR. TBZMED.REC.1400.006).

Boruta Machine Learning Algorithm
We used the Boruta machine learning algorithm to select the
most critical miRNAs related to GC in the training sample
that produce the highest prediction accuracy. In short, Boruta
selects the variables that have a high impact on the prediction
accuracy by providing the “variable importance” (Kursa and
Rudnicki, 2018). We used SMOTE random oversampling to
balance the outcome in the GSE106817 data. We then used
five-fold cross-validation to find the optimal hyper
parameters on DT, RF, LR, XGBT, and ANN to choose the
best approaches in the balanced sample using the most
important variables selected by Boruta. Once the
prediction models were developed, we applied them on the
test sample GSE113486 to verify the accuracy of developed

prediction approach. We looked for an algorithm that may
generate a higher predictive power among the 5 ML
algorithms in terms of the yielded areas under the ROC
curves (AUCs). Sensitivity, specificity, positive predictive
value, negative predictive value, misclassification rate, and
Kappa were assessed. The guidelines of developing
transparent multivariable prediction models was followed
for these analysis (Moons, 2015).

GeneCodis Ontological Analysis
GeneCodis is a web-based tool for the ontological analysis of lists
of genes, proteins, and regulatory elements like miRNAs,
transcription factors, and CpGs. It can be used to determine
biological annotations or combinations of annotations that are
significantly associated to a list of genes under study with respect
to a reference list. As well as single annotations, this tool allows
users to simultaneously evaluate annotations from different
sources, for example GO Biological Process and KEGG. To
this end, and before computing p-values, it uses the apriori
algorithm to extract sets of annotations that frequently co-
occur in the analyzed list of genes (Garcia-Moreno, 2021). We
used GeneCodis 4 (https://genecodis.genyo.es/) for ontological
analysis of the identified miRNAs list.

TABLE 1 | Selected important miRNAs by Boruta Algorithm Using XGboost Algorithm.

No miRNA Importance Se (%) Sp (%) PPV (%) NPV (%) AUC (%) Accuracy
(%)

Kappa
(%)

1 hsa-miR-1343-3p 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.00
2 hsa-miR-1290 80.39 92.50 98.00 94.87 97.03 99.05 96.43 0.96
3 hsa-miR-5100 80.11 100.00 99.00 97.56 100.00 99.23 99.29 0.99
4 hsa-miR-6746-5p 64.57 100.00 93.00 85.11 100.00 97.23 95.00 0.95
5 hsa-miR-4532 64.85 67.50 100.00 100.00 88.50 95.11 90.71 0.91
6 hsa-miR-8073 61.79 97.50 100.00 100.00 99.01 100.00 99.29 0.99
7 hsa-miR-1228-5p 56.24 97.50 100.00 100.00 99.01 100.00 99.29 0.99
8 hsa-miR-1199-5p 54.12 62.50 97.00 89.29 86.61 92.56 87.14 0.87
9 hsa-miR-

3622a-5p
54.49 80.00 99.00 96.97 92.52 97.26 93.57 0.94

10 hsa-miR-8060 53.75 85.00 98.00 94.44 94.23 98.79 94.29 0.94
11 hsa-miR-1246 50.42 92.50 100.00 100.00 97.09 99.90 97.86 0.98
12 hsa-miR-4787-3p 50.32 90.00 100.00 100.00 96.15 98.75 97.14 0.97
13 hsa-miR-6087 49.68 22.50 88.00 42.86 73.95 62.70 69.29 0.69
14 hsa-miR-4259 47.55 90.00 98.00 94.74 96.08 99.04 95.71 0.96
15 hsa-miR-6877-5p 46.90 92.50 94.00 86.05 96.91 97.73 93.57 0.94
16 hsa-miR-124-3p 45.42 92.50 94.00 86.05 96.91 96.81 93.57 0.94
17 hsa-miR-6787-5p 45.14 87.50 99.00 97.22 95.19 99.70 95.71 0.96
18 hsa-miR-4454 45.05 95.00 98.00 95.00 98.00 98.10 97.14 0.97
19 hsa-miR-6760-5p 45.42 90.00 94.00 85.71 95.92 98.58 92.86 0.93
20 hsa-miR-668-5p 45.24 77.50 98.00 93.94 91.59 96.44 92.14 0.92
21 hsa-miR-6762-5p 42.09 45.00 92.00 69.23 80.70 88.94 78.57 0.79
22 hsa-miR-3191-3p 40.43 75.00 94.00 83.33 90.38 93.48 88.57 0.89
23 hsa-miR-1268b 39.32 70.00 94.00 82.35 88.68 93.91 87.14 0.87
24 hsa-miR-1185-

2-3p
39.13 30.00 87.00 48.00 75.65 53.88 70.71 0.71

25 hsa-miR-6131 38.30 87.50 98.00 94.59 95.15 99.21 95.00 0.95
26 hsa-miR-920 38.39 87.50 96.00 89.74 95.05 98.26 93.57 0.94
27 hsa-miR-4635 38.02 77.50 98.00 93.94 91.59 95.38 92.14 0.92
28 hsa-miR-6724-5p 37.28 45.00 81.00 48.65 78.64 74.35 70.71 0.71
29 hsa-miR-1185-

1-3p
37.19 20.00 85.00 34.78 72.65 54.70 66.43 0.66

30 hsa-miR-422a 38.02 55.00 87.00 62.86 82.86 72.94 77.86 0.78
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FIGURE 1 | Boxplot of the selected miRNA from Boruta Algorithm. (A), hsa-miR-1228-5p; (B), hsa-miR-8073; (C), hsa-miR-6746-5p; (D), hsa-miR-5100; (E),
hsa-miR-4532; (F): hsa-miR-1343-3p; (G), hsa-miR-1290.
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RESULTS

Of those 2,874 patients included in this study, there were 115
(4%) patients with gastric cancer. This analysis consists of 2,566
miRNAs.

Selected miRNAs as Potential GC
Biomarkers
Of those 2,566 miRNA in GSE106817 data, the Boruta
algorithm initially selected 108 miRNA using Gini Index
measurement (results are not shown here). The processing
time was 17.24 minuts There were 77 tentative variables at the
first stage. After fixing the tentative features, Boruta identified
156 miRNA for the analysis (results are not shown here). The
process took 99 iterations convergence. It was observed that
hsa-miR-1343-3p had the highest importance for prediction
accurecy (minimum importance; 6.47, median importance;
11.44, mean importance; 10.81; maximum importance; 13.63)
among all identified miRNAs. The hsa-miR-1290 and hsa-
miR-5100 had the second and third highest importance, with
mean importance of 8.69 and 8.66, respectively (Table 1).

The balanced training data using SMOTE random
oversampling technique had 1,376 cancer cases and

1,498 non-cancer controls. We trained DT, RF, LR, XGBT,
and ANN perdition models with the selected miRNAs in the
balanced training data.

Prediction Models and Accuracy in the
Validation Data
The external validation data GSE113486 had 40 (28.6%) gastric
cancer and 100 (71.4%) non-cancer (controls). hsa-miR-1343-3
produced the highest prediction accuracy for GC prediction
(Table 1). For the hsa-miR-1343-3, all of the accuracy
measures including AUC, sensitivity and specificity, positive
predictive value, negative predictive value, Kappa were 100%.
According to the decision trees, the cut-off point for this miRNA
was 8.2 (Figure 1). Further, hsa-miR-8073 and hsa-miR-1228-5p
produced 100% AUC but other accuracy measures were not
100%. On the other hsa-miR-1185-1-3p had the lowest AUC
which has the least contribution to the prediction of GC.

Among several models discussed in the study, the XGBT
algorithm had better prediction accuracy overall (Table S1-S4).
However, for hsa-miR-1343-3 all models had consistently 100%
accuracy which indicates that this miRNA may strongly predict
GC. For some miRNA such as hsa-miR-422a XGBT algorithm
could predict GCwith higher accuracy than the logistic regression

FIGURE 2 | Correlation plot of the selected miRNAs. Dark blue and dark red shows the strength of the correlations between miRNAs.
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and decision trees. Figure 2 shows the correlation of the
important miRNAs. It can be observed that most of the
identified miRNAs except hsa-miR-422a, hsa-miR-1185-1-3p,
hsa-miR-1185-2-3p, hsa-miR-6087, and hsa-miR-1199-5p are
highly correlated. Consequently, clustering of correlated those
miRNAs is helpful for the identification of cancerous and non-
cancerous patients. Finally, Heatmap plot indicates the result of
the hierarchical clustering analysis of the 30 selected miRNAs,
which represents that identified miRNAs can easily distinguish
GC cases and controls in test sample obtained from GSE113486
dataset (Figure 3).

Ontological Analysis
Regulatory, functional, and perturbation analysis by
GeneCodis 4 showed that 30 identified miRNAs (Table 1)
are related strongly to the cancer-associated genes and
molecular events (Figure 4). Visualizations generated for
10 top terms of associations with Transcription Factors
(Figure 4A), co-annotation of HMDD v3 (the Human
microRNA disease database), MNDR (Mammalian ncRNA-
Disease Repository), and TAM2 (The tool for annotations of
human miRNAs) databases (Figure 4B), GO (Gene Ontology
and GO Annotations) Biological Process (Figure 4C), GO
Molecular Function (Figure 4D), co-annotation of KEGG
(Kyoto Encyclopedia of Genes and Genomes) Pathways,
Panther (Protein ANalysis THrough Evolutionary
Relationships) Pathways, and WikiPathways (Figure 4E),
and co-annotation of HPO (The Human Phenotype

Ontology) and OMIM (Online Mendelian Inheritance in
Man) databases (Figure 4F).

DISCUSSION

Using artificial intelligence technology, we identified hsa-miR-
1343-3 as a very strong nominate for biomarker analysis of GC
diagnosis. The value of hsa-miR-1343-3 higher than 8.2 indicates
that it could be a strong predictor for GC (100% of AUC, 100% of
Sensitivity and Sepecificity). We also found three other miRNAs
(hsa-miR-8073 and hsa-miR-1228-5p) with a great contribution
to the GC prediction. A medical expert can use these findings for
the early detection of GC instead of using costly and time-
consuming tools such as colonoscopy Yao et al. (Yao, 2020).

This study had several strengths compared to the previous
studies. Compared to Shi et al. that identified the miR-1246 as the
potential biomarker of GC that generated the AUC of 83%, our
study identified the hsa-miR-1343-3p using the Boruta algorithm
that led to a significant increase in the AUC (Shi and Zhang,
2019). The study of Yao et al., selected three miRNAs that
produced similar precision to our study that using only single
miRNA that may have economical merits. Further, their study
used a limited sample size (70 gastric cancer patients and
374 non-cancer controls) in the training set that may lead to
an inferior model. The current study used very advanced variable
selection methods and the state of the art machine learning
approaches that produced consistent results. Another merit of

FIGURE 3 | Heathmap plot of clustering of 30 selected miRNAs.
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the study is introducing a simple cut-off point of 8.2 using
decision trees that may has very practical value in GC
classification.

Figure 4A depicted that among the transcription factors
related to the genes associated with the identified miRNAs list
(Table 1) the SP1, MYC, and E2F1 have higher priorities. SP1
protein expression is up regulated in GC tissues compared with
normal tissues and is positively associated with depth of invasion
and TNM stage of GC (Shi and Zhang, 2019). MYC is an

oncogene responsible for excessive cell growth in cancer,
enabling transcriptional activation of genes involved in cell
cycle regulation, metabolism, and apoptosis, and is usually
overexpressed in GC (Maués, 2018). E2F1 is a member of the
E2F family that functions in cell cycle progression and apoptosis
induction in response to DNA damage. Deregulated E2F1 acts as
a driving force in GC progression and promotes tumor invasion
and metastasis independently from its other cellular activities
(Yan, 2014).

FIGURE 4 | GeneCodis Ontological analysis. Visualizations generated for 10 top terms of related categories with our identified miRNAs list are presented here for
Transcription Factors (A), Co-annotation of miRNAs-based analysis using HMDD v3, MNDR, and TAM2 (B), GO Biological Process (C), GOMolecular Function (D), Co-
annotation of KEGG Pathways, Panther Pathways, and WikiPathways databases (E), and Co-annotation of HPO and OMIM databases (F).
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As depicted in Figure 4B gastrointestinal cancers including
hepatocellular cancer, colon cancer, biliary tract cancer, and
especially early-stage GC are among the most related diseases
to the analyzed miRNAs list. From biological process and
molecular function perspectives as showed in Figures 4C,D,
the regulation of transcription and gene expression, and
protein and DNA binding are the most targeted aspects,
which are the general aspects of molecular biology of GC
(Cervantes et al., 2007; Vauhkonen et al., 2006; Tan and Yeoh,
2015). Co-annotation of three pathway databases (Figure 4E) has
shown that the miRNAs list is general in relation with pathways
in cancer, VEGFA-VEGFR2 signaling pathway and PI3K-Akt
signaling pathway. The increased expression of VEGFA in the
tubular glands and VEGFR2 in the endothelium of GC samples
mainly in the T2, T3 and T4 stages of tumor progression has been
reported previously (Tamma, 2018). Also, it is showed that the
PI3K/AKT/mTOR pathway is activated in GC with
overexpression in tumor tissue, which is correlated with the
depth of tumor infiltration and the presence of lymph node
metastases (Tapia, 2014). Surprisingly, relation with Human
cytomegalovirus infection, which was identified in our
pathway analysis, has been reported to be associated with the
development of GC (Jin, 2014) and GC lymphatic metastasis
(Zhang, 2017).

The analysis of human phenotype and Mendelian inheritance
ontologies identified Autosomal dominant inheritance and
Global developmental delay among the most related
phenomena with our miRNAs list. It is reported that gastric
adenocarcinoma and proximal polyposis of the stomach is an
autosomal dominant syndrome (Worthley, 2012). Also, some
common variants have been described for GC and developmental
delay (Hansford, 2015; Zhang, 2020).

In our study, we have shown theoreticaly that ther is a
strong relationship between hsa-miR-1343-3p and GC. Hsa-
miR-1343-3p has been indicated as a tumor suppressor for
many types of cancer. It has been suggested that miR-1343-
3p, which regulates the oncogenic effect of TEA domain
transcription factors is associated with GC (Zhou, 2017).
The correlation between hsa-miR-1343-3p and lung
adenocarcinoma was evaluated and its expression was
found to be low in patients with vascular invasion (Kim,
2017). Yuan et al. demonstrated that hsa-miR-1343-3p is
consistently down-regulated in colon, prostate, and
pancreatic cancers. Also, hsa-miR-1343-3p has been
proposed as a biomarker to distinguish pancreato-biliary
malignancy from non-malignant diseases. The major genes
targeted by miR-1343-3p have been identified (Yuan, 2016).
In this context, these target genes and their interaction with
GC should also be investigated. The hsa-miR-1343-3p targets
including SHISA7, TGFBR1, DLGAP3, SPRED1, ATXN7L3,
and PLXDC2 genes are listed at MIRDB (http://mirdb.org/).
Among them transforming growth factor beta-1 (TGFβ1)
play an important role in carcinogenesis upon binding its
receptor (TGFBR1). It acts as a tumor suppressor by
inhibiting cellular proliferation or by promoting cellular
differentiation and apoptosis. However, it turns to be a

tumor promoter by stimulating angiogenesis and cell
motility, suppressing the immune response, and increasing
progressive invasion and metastasis (Yuan, 2016). Other
reports have also revealed that hsa-miR-1343-3p reduces
the expression of transforming growth factor-β (TGF-β)
receptor-1, which induces angiogenesis through vascular
endothelial growth factor (VEGF)-mediated apoptosis.
Therefore, hsa-miR-1343-3p may also play an anti-
angiogenic role (Ferrari et al., 2009; Stolzenburg et al.,
2016; Kim, 2017). He et al. determined that TGFBR1
genes’ two polymorphisms (rs334348, rs10512263) were
associated with the risk of GC (He, 2018). In another
study, Zhang et al. have shown that silencing of TGFBR1
inhibited cell proliferation, migration, invasion, and EMT in
GC cells (Zhang, 2019).

Discs large associated proteins (DLGAPs) family has been
implicated in psychological and neurological diseases. However,
few studies have explored the association between the
expression of DLGAPs and different types of cancer. Liu
et al. has suggested that the significant overexpression of
DLGAP4 in GC may be a promising potential prognostic
marker for GC (Liu et al., 2018). Aslo, Liu et al. have
determined decreased expression of SPRED1 in GC tissues
(Liu et al., 2020).

However, there were certain limitations in our study. We
had relatively small sample size in GC group. Other limitations
were the pathological information such as the tumor stage, age
or other factors which were not available in our datasets.
Nonetheless, the prediction accuracy of our model has high
enough (100% AUC) for clinical use. Further, we were unable
to do the survival analysis to further validate the markers
identified in this paper based on public available data
(Howlader, 2014).

CONCLUSION

Using several state of the art machine learning methods and
Boruta algorithm, we identified several miRNAs that can predict
GC. Specifically, hsa-miR-1343-3p, which identified by cut-off
point of 8.2 may be nominated as a highly reliable biomarker for,
GC diagnosis after meticulous empirical tests.
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The wealth of high-throughput data has opened up new opportunities to analyze and
describe biological processes at higher resolution, ultimately leading to a significant
acceleration of scientific output using high-throughput data from the different omics
layers and the generation of databases to store and report raw datasets. The great
variability among the techniques and the heterogeneous methodologies used to produce
this data have placed meta-analysis methods as one of the approaches of choice to
correlate the resultant large-scale datasets from different research groups. Through multi-
study meta-analyses, it is possible to generate results with greater statistical power
compared to individual analyses. Gene signatures, biomarkers and pathways that
provide new insights of a phenotype of interest have been identified by the analysis of
large-scale datasets in several fields of science. However, despite all the efforts, a
standardized regulation to report large-scale data and to identify the molecular targets
and signaling networks is still lacking. Integrative analyses have also been introduced as
complementation and augmentation for meta-analysis methodologies to generate novel
hypotheses. Currently, there is no universal method established and the different methods
available follow different purposes. Herein we describe a new unifying, scalable and
straightforward methodology tometa-analyze different omics outputs, but also to integrate
the significant outcomes into novel pathways describing biological processes of interest.
The significance of using proper molecular identifiers is highlighted as well as the potential
to further correlate molecules from different regulatory levels. To show the methodology’s
potential, a set of transcriptomic datasets are meta-analyzed as an example.

Keywords: meta-analysis, omics, bioinformatics, biomarker analysis, pathway analysis, data integration

1 INTRODUCTION

Traditional data analytical approaches focus on hypothesis-driven methods to understand specific
and known molecular targets. Alternatively, data-driven approaches are based on high-throughput
methodologies that provide un-biased genome-wide analysis of multiple omics variables which
mirrors the different layers of biological regulation of a system. Undoubtedly, knowledge generated
by traditional approaches through the years is essential to contextualize and properly analyze high-
throughput data (McDermott et al., 2013; Guan et al., 2020). Ultimately, data-driven approaches aim
to provide a number of potential hypotheses that feed into the traditional approach cycle in order to
be validated or refuted (Fernandes and Husi 2019).
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Nowadays, the surge of studies based on high-throughput data
analysis has led to an expansion of public repositories (i.e., GEO,
ArrayExpress) that store and provide access to these data for
further analyses (Clough and Barrett 2016; Athar et al., 2019). As
a consequence, big data production and availability have provided
novel venues/opportunities for data interpretation, data
integration, statistical analysis, and therefore new hypotheses
that might reveal new inferences and provide a higher
molecular resolution of a determined phenotype or disease.
Nevertheless, the lack of a unified system to publish the
different omics data generated and to report, curate and
consolidate all the different identifiers available remains a
challenge (Durinck et al., 2005; McGarvey et al., 2019).
Unique outcomes generated from the different high-
throughput technologies and the lack of standardized
approaches to analyze, integrate and interpret these
heterogeneous and often incompatible data have led to the
emergence of different analytic methodologies that focus on
varying ways of data-interpretation.

Meta-analytic methodologies have been commonly followed
in data science to collate and identify commonalities across
different studies, and to rule out inconsistencies commonly
found in published literature (Waldron and Riester 2016;
Vennou et al., 2020). The statistical basis of these
methodologies provides valuable results and gives strength to
the variables that reflect an association and consistency across
studies. These methodologies are based on the fact that even
amongst heterogeneous studies, associations can be made. Thus,
meta-analysis can lead to the identification of robust and
quantifiable variables shared across studies published by
different groups–despite inherent differences in such
cohorts–generated through different platforms and techniques
that could have been otherwise overlooked (Care et al., 2015; Cho
et al., 2016; Piras et al., 2019; Winter et al., 2019). In the big-data
field, the exponential growth of high-throughput data availability
has highlighted the advantage to follow meta-analysis
methodologies in order to increase the statistical power of the
outcomes and make sense out of the great amount of data shared
within the scientific community (Xia et al., 2013; Kim et al., 2017;
Forero 2019; Jaiswal et al., 2020; Vennou et al., 2020).

The generation and analysis of high-throughput data are
commonly focused on a single biological parameter (e.g.,
transcripts, proteins, or metabolites) and represent only a
snapshot of what is happening in a specific molecular process.
Due to the high density of available studies, several meta-analytic
approaches have been developed and standardized to integrate
transcriptomic data. Effect size (t-statistic combination), rank-
ratio (fold-change ratio combination), Fisher’s (p-value
combination), and vote-counting (VCS–number of reporting
studies) are some of the common methods followed to
perform a meta-analysis on these samples (Rikke et al., 2015;
Goveia et al., 2016; Forero 2019; Shafi et al., 2019; Toro-
Domínguez et al., 2020). Among the many promising
applications of these approaches two stand out; namely,
biomarker discovery and signaling pathway identification. The
premise that biomarkers identified with computational
approaches from a single high-throughput study exhibit little

overlap with other studies indicates that these might represent
false positives and cannot be fully trusted. Thus, meta-analyses
have been long-performed with the goal to discover novel and
robust biomarkers, distinguishable and consistent patterns of
disease-associated deregulated genes. Statistically significant
deregulated genes have been associated with several cancers
and other diseases through the application of different meta-
analytic approaches (Fishel et al., 2007; Xu et al., 2009; Huan et al.,
2015; Cho et al., 2016; Bell et al., 2017; Piras et al., 2019; Su et al.,
2019). Pathway analyses have also dominated the meta-analysis
studies aiming to highlight the main deregulated processes to
some extent (Kröger et al., 2016; Wang et al., 2017; Badr and
Häcker 2019).

Nevertheless, due to the dynamicity of biological systems and
the known crosstalk among the multiple layers of biological
regulation, the orchestrated analysis of the different omics
levels remains essential. Thus, the study of deregulated
pathways and the implementation of integrative systems
biology approaches seems logical and sought after techniques
(Auffray et al., 2010; Norris et al., 2017; Parker et al., 2019; Shafi
et al., 2019; Myall et al., 2021). These approaches have been
highlighted by their potential to better understand the complex,
albeit inevitable, interactions among different omics data.
Ultimately, systems analysis aims to elucidate the regulation of
pathways that might underpin cause and effect factors and
improve the understanding of systems behavior by providing
more accurate models of a determined condition of interest.

Although integrative systems biology approaches have been
applied to individual studies by performing a variety of high-
throughput omics approaches and analyzing multiple layers of
gene regulation data (genetic variants, RNA transcripts, DNA
methylation profiles, protein concentrations, chromatin marks)
(Boeing et al., 2016; Saha et al., 2018; Xicota et al., 2019; Mair et al.,
2020), the possibility to sum-up and analyze publicly available data
generated by different scientific groups from individual omics
approaches through multi-study meta-analyses may not only
increase the statistical power of the outcomes but enhance and
complement the biological knowledge through the re-analysis and
integration of large-scale data; thereby highlighting significant but
previously undetectable molecular links.

Various methodologies are available to pursue systems biology
analyses, each of which follows different strategies, with
associated limitations and outcomes (Table 1) (Xia et al.,
2013; Rohart et al., 2017; Argelaguet et al., 2018; Forero 2019;
Singh et al., 2019;Winter et al., 2019; Zhou et al., 2019; Pang et al.,
2020; Toro-Domínguez et al., 2020; Yang 2020; Zhou et al., 2020).
Here we aim to describe the Harmonized Holistic (HH) meta
method, a simplistic, flexible, adjustable, and scalable
methodology (limited only by the availability of omics data)
that can go from single omics to multi-omics analyses
(Figure 1). Our methodology is not based on a computational
approach, it is a meta-analysis based on case and control
comparisons of pre-processed data per study. The basis of the
data to perform integrative approaches is of importance, and
there is where this meta-analysis approach gears towards allowing
heterogeneous omics data integration. It can integrate unmatched
mRNA, miRNA, DNA methylation profiles, protein, metabolites
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TABLE 1 | Comparison of available integrative systems biology methodologies.

Methodology Strategy Outcome Limitations References

HHmeta method Meta-analysis of Differentially
Expressed molecules from omics
data. Data from different platforms
(e.g. RNAseq, microarray) can be
integrated. Biomarker list generation
by ranking the frequency distribution
and contextualization of molecules
into pathways

- Integration of omics Biomarker lists
and contextualization into pathway
maps

- Depends on availability of the data Cervantes-Gracia et al. (2021);
current paper

- Novel hypotheses from the
Biomarker list

- Relies on previous knowledge

- Novel hypotheses from the Main
deregulated pathways

- Gaps prevail across the pathway
maps

- Better understanding of the
disease/condition of interest

- Molecules without a defined function
or interaction are not mapped

Network meta-
analysis

Meta-analysis of transcriptomics
data by including Differentially
Expressed comparison analysis per
independent study

- Differentially Expressed Gene list
based on meta-analysis of
independent experimental studies

- GSEA.

- Do not focuses on integrate
different omics

Winter et al. (2019)

- Focus on obtaining signatures/
biomarkers

MetaPCA Meta-analysis of transcriptomic or
epigenomic datasets through
identification of a common eigen-
space for dimension reduction

- Clusters and Patterns of gene
expression profile

- Do not focuses on integrate
different omics

Kim et al. (2018)

- Robust to outliers - Focus on obtaining signatures/
molecular patterns

MINT Independent omics studies integration
based on similar biological questions

- Identification of reproducible
biomarker signatures

- It can only include studies with a
sample size bigger than 3

Rohart et al. (2017)

Allows supervised and unsupervised
frameworks. It is a PLS-based method
to model multi-group (studies) data

- Focus on obtaining signatures/
biomarkers

NetworkAnalyst Gene expression profiling, meta-
analysis and systems-level
interpretation

- Creates and visualizes biological
networks

- Format of gene expression profiles
outside the application

Zhou et al. (2019)

- Web-based meta-analysis of gene
expression data

- Integration of transcriptomics
studies

- Comparison of multi gene lists
generated outside the tool

- Identification of shared and unique
genes and processes, through
multi-list heatmaps and enrichment
networks

Mergeomics Multi-omics association data,
pathway analysis and functional
genomics, analysis. It corrects for
dependencies between omics
markers. Based on pathway or
network-level meta-analysis

- Identification of key drivers of a
disease and causal subnetworks
for specific conditions

- Format of gene expression profiles
outside the application

Arneson et al. (2016)

- Single dataset: causal network or key
regulatory genes can be identified

- Based on comparison files: Cases
vs controls

- Multiple dataset (same or different
data type): meta-analysis, causal
networks, key regulatory genes

- Groups of disease associated
genes: key regulators, condition
sub-networks, gene sets
association with other conditions or
organisms

INMEX Meta-analysis of multiple gene-
expression datasets that allows
integration of transcriptomics and
metabolomics datasets

- Data preparation - Limited to integration of
transcriptomics and
metabolomics

Xia et al. (2013)
- Statistical analysis: multiple
datasets combination based on
p-values, effect sizes, rank orders
and other features

- Functional analysis and ID
combination between genes and
metabolites

DIABLO Multi-omics integrative, holistic and
data-driven method

- Identification of known and novel
multi-omics biomarkers

- Batch effect analyses in each
dataset are needed prior to
integration

Singh et al. (2019)

- Identify correlated variables within
omics datasets from the same
samples

- Integration of different omics
dataset from the same biological
samples

- Focus on obtaining signatures/
biomarkers

MOFA Unsupervised identification of
principal sources of variation among
multi-omics datasets

- Identification of factors specific to
data modalities and common within
multiple molecular layers

- Analysis and integration of different
omics datasets from the same
biological samples. Similar to
DIABLO, JIVE, PARADIGMorMCIA.

Argelaguet et al. (2018);
(Subramanian et al., 2020)

(Continued on following page)
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information from independent studies that meet the inclusion
criteria of a specific research question. By considering the
commonalities of the differentially expressed molecules across
studies, the HHmeta method circumvents the variable depth of
data produced by different measurement technologies
(i.e., Microarray, RNAseq), as well as by high and low-
throughput studies. This approach provides a ranking system
that goes beyond the p-value and log2-Fold Change significance
filtering, by defining the molecules with a significant and
consistent trend in regulation among the different studies
analyzed. Ultimately, this approach leads to the identification
of pathways that can be fed and confirmed with the different
omics data analyzed, which validates the outcomes and increase
the significance of the identified targets (see Graphical Abstract in
Supplementary Presentation S1).

We have previously explored our methodology in several
iterations and proved its potential in a variety of disease
settings (Fernandes and Husi 2016; Cervantes-Gracia and Husi
2018; Fernandes et al., 2018), however the ranking system was not
properly established. Here, we 1) consolidate the final optimized
pipeline and 2) apply this framework to 6 DLBCL (Diffuse Large
B Cell Lymphoma) datasets (DS) from different studies and
sources (tumoral tissue vs. b-cells). We aimed to identify the
DS that indeed showed a potential correlation to further identify
altered pathways coming only from B-cell deregulation
(Cervantes-Gracia et al., 2021; Sheppard et al., 2018). The
identified pathways represent the common deregulated
processes found within the different DS included in the
downstream analysis and delimit their significance by the
outlined trend of the pathway identified. The outlined

TABLE 1 | (Continued) Comparison of available integrative systems biology methodologies.

Methodology Strategy Outcome Limitations References

- Linear model, thus, non-linear
associations might be missed

Ingenuity pathway
analysis (IPA)

Multi-omics pathway analysis tool - Building of networks to represent
biological systems

- Commercial Ingenuity Pathway Analysis
tool (IPA; QIAGEN Inc.,
Germantown, MD, USA,
https://www.
qiagenbioinformatics.com/
products

- Pathway analysis and association of
processes activation or inhibition in
a specific condition

- Do not generate meta-analyses

- Identification of novel targets - Un-reproducible results
- Comparison across multiple
analyses. Similar to Pathway studio
(Elsevier)

- Based on computational
approaches

FIGURE 1 | Flowchart comparing conventional (left) vs. our proposed (right) meta-analytic approach. Blue box represents similarities between approaches. Dashed
line highlights the main differences between approaches.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8287864

Cervantes-Gracia et al. Integrative Derivatized Meta-Analysis Approach

126

https://www.qiagenbioinformatics.com/products
https://www.qiagenbioinformatics.com/products
https://www.qiagenbioinformatics.com/products
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


pathways can be further fed with different omics data by
complementing with the variables that correlate with the
outcomes from the different omics levels. This analysis shows
the potential of the presented methodology to not only identify
potential biomarkers but also deregulated processes with a
notable trend providing data-driven hypotheses that have
either already been validated or that better yet have not been
associated with the disease and need further validation.

2 MATERIALS AND METHODS

The cornerstone of this methodology is for each group of interest
to be compared to their most appropriate controls. Hence, the
integration of large-scale DS from a variety of publications relies
on keeping the study groups per publication intact. Thus, the
basis of the methodology is set on statistically significant
molecules and their ratio-metric values (e.g., log-fold change)
per comparison, identifiers curation through a unifier database,
data-format and structure, outlier detection, as well as group re-
stratification. This methodology has been previously performed
manually (Cervantes-Gracia and Husi 2018). The aim of this
work is to describe and summarize the whole procedure into a
formula that statistically ranks and explains the significance of the
molecules included in the biomarker list. Here, both the manual
approach and the frequency score (FS) index are presented.

The particular molecules under study (e.g., miRs, mRNA,
proteins) are individually processed and meta-analyzed before
the multi-omics integration and analysis is performed. In this
methodology, eachmolecular type has its own comparisonmatrix
where the large-scale studies are merged. Thus, every individual
DS comparison (case vs. control) has the main molecules
included in the analysis facing each other. The output of the
HHmeta method is divided on biomarker identification and
functional analysis. The methodology outline is divided into
four main sections: Data collection, Data correlation and
structure, Grouping and Biomarker discovery and Data
integration and Functional analysis.

2.1 Data Collection
High-throughput DS from publications can be collected from
public repositories such as GEO NCBI, ExpressionAtlas and
ArrayExpress from EMBL-EBI databases for raw and processed
omics data and SRA for raw sequencing data. Specialized databases
exist for the different omics data. PRIDE, Peptide Atlas,
ProteomicsDB, GPMDB, JPOST repository, MassIVE, PAXDB
for proteomics, MetaboLights, MetabolomeExpress,
MetabolomicsWorkbench, GNPS for metabolomics and EGA,
EVA for genomics are examples of available omics databases
(Carroll et al., 2010; Deutsch 2010; Coutant et al., 2012; Wang
et al., 2012; Vizcaíno et al., 2013; Fenyö and Beavis 2015;
Lappalainen et al., 2015; Kale et al., 2016; Sud et al., 2016;
Wang et al., 2016; Wang et al., 2018; Samaras et al., 2020;
Watanabe et al., 2021). Platforms like Omics discovery index
(OmicsDI) exist, where biological and technical metadata from
public omics datasets are stored and standardized through an
indexing system to enable access, discovery and broadcasting of

omics datasets (Perez-Riverol et al., 2017). In terms of cancer
databases TCGA, COSMIC, OCCPR and ICGC are distinguished
high-throughput data repositories. Data can also be collected
directly from the literature. The DS collected can be derived
from entirely unmatched sources (e.g., DNA, RNA, protein),
different platforms (e.g., Microarray, RNAseq), and samples
(e.g., tissue, blood, urine).

Here, the example shows the analysis of DLBCL and the
potential to correlate and find the common and significant
molecules and deregulated mechanisms across expression
profiles from tumoral vs healthy samples. The following DS
(gene expression profiles) were retrieved from GEO (NCBI)
database (Clough and Barrett 2016): GSE9327 (tumoral tissue
vs healthy tissue; CNIO Human Oncochip), GSE32018 (tumoral
tissue vs. healthy tissue; Agilent), GSE56315 (tumoral tissue vs.
healthy B-cells; Affymetrix), GSE12195 (tumoral tissue vs.
healthy B-cells; Affymetrix), GSE2350 (tumoral B-cells vs.
healthy B-cells; Affymetrix), GSE12453 (tumoral B-cells vs.
healthy B-cells; Affymetrix).

2.2 Data Correlation and Structure
This module comprises three steps: DS group comparison, Data
ID harmonization, and Data Merging within and across DS
comparisons.

2.2.1 Datasets Group Comparison
This step represents the first statistical evaluation embedded
within this methodology. Here we rely on pre-processed and
normalized available DS; raw data can also be considered. Raw
samples need to be normalized individually to be further
statistically assessed and generate ratio-metric values.
Differential expression analysis of the GEO DS collected are
performed through GEO2R, a web-based tool that includes
GEO Query and Limma Bioconductor packages and
performs multiple-testing correction through
Benjamini–Hochberg false discovery rate method as a default
(Benjamini and Hochberg 1995; Gentleman et al., 2004; Smyth
2004; Sean and Meltzer 2007). Data collected directly from the
literature already provides ratio-metric values to integrate into
the correlation matrix.

2.2.2 Data ID Harmonization
Given that different experimental platforms (e.g., different
microarray technologies, RNAseq) and functional analysis
tools usually produce and require unique identifiers, there is
a need for standard names for each type of molecule (e.g.,
transcript, protein) under study. In order to be able to correlate
the ratio-metric values of the molecules shared across every DS
comparison included, and reduce data redundancy within
studies, the DS needs to be mapped to a common identifier
(e.g., Uniprot or PADB identifiers). Furthermore, a unifier that
consolidates the different accession numbers and identifiers can
be of great assistance. The PADB database was established by H.
Husi (Husi 2004) as a unifier database for molecular data and it
has been the reference database for several of our studies
(available by request). PADB has been continuously curated
and updated over the last 20 years. It contains old and recent
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identifiers frommultiple databases and platforms that have been
assigned to the molecules through time. This database clusters
identifiers from a variety of databases and platforms (Ensemble,
Genenames, RefSeq, Uniprot, Swissprot, Agilent, Affymetrix,
Illumina, and others), and provides a unique unifier ID that
maps the molecules to all these reliable identifiers, allowing
further data merging and analysis through a variety of tools.
Uniprot database and BioMart also offer the option to retrieve
alternative identifiers (e.g., Ensemble, Genenames) for
molecules of interest or by downloading the complete file to
index by any cross-indexing tool (Smedley et al., 2009;
Consortium et al., 2021).

To cross-index and further merging of accession numbers,
the in-house software AWASH was used. It is a text
manipulation software that performs data cleaning and
merging by using either a single file or multiple files, the
latter based on a parent file as a reference for further
indexing on dependent files. To perform the indexing, a
Master file (containing the identifiers from the common
database chosen and the accession number of the DS in
question) and a Child file (different files for each DS
comparison containing all accession numbers, statistics, and
ratio-metric values) are needed. The input files should be in
Tab- Separated Values (TSV) format. After indexing, each Child
file accession number will be associated with a common unifier
ID and alternative identifiers.

2.2.3 Data Merging Within and Across Datasets
Comparisons
Often within large-scale DS, there is more than one probe-set and
values for the same molecule. Thus, the significant (e.g., FDR/
p-value) and ratio-metric (e.g., Fold change) values from
molecules with the same unifier ID can be either merged or
one can keep only the probe-sets that have the most significant
values, as long as the same method is followed for each DS
comparison merging. Every DS comparison should only
contain one ID for each of the molecules within it. AWASH
software can be used for this purpose based on the common
unifier IDs and a Masterfile containing each of the DS
comparisons.

Once all cleaned, all the DS comparisons from the same
molecular type are merged into a matrix based on a list of
unifiers reported among all the DS comparisons. The
identifiers from all DS comparisons would follow the same
order. Thus, the same molecule would be facing each other
across the different DS comparisons, a fitting format for
further analysis. In the manual approach we only focused on
the molecules below a p-value of 0.05 for all the DS comparisons
included independently of their ratio-metric value. However,
when calculating the FS index score, since it takes care of the
filtering, there is no need of applying cut-off at this step. In case of
a statistically poor dataset, where adjusted p-values were greater
than 0.05, the unadjusted values should be used.

2.3 Grouping and Biomarker Discovery
Dimensionality reduction facilitates analysis and visualization of
high-throughput data. This methodology relies on principal

component analysis (PCA) to cluster and interpret large-scale
DS comparisons. This step represents the 2nd statistical
evaluation within this approach. PCA plots allow the
identification of outliers, but most importantly it provides a
confirmation of the DS comparisons that group together and
can be further integrated to perform further analyses. The latter
will reduce bias and act as batch effects removal. In order to
avoid gaps in the data-matrix and misleading clustering, this
analysis should only include and compare the expression-level
differences of the molecules analyzed and shared among all DS
comparisons.

The 3rd statistical evaluation is founded on pattern
matching and centroid clustering to obtain the biomarker
list. In the manual approach, DS statistical pattern
recognition is based on correlation analysis to generate the
biomarker list. Here, unique thresholds (TH) are applied to
each DS comparison (THs might vary across DS) depending
on the number of their deregulated molecules (where more
than 10% of deregulated molecules can give a hint of
something off being compared within a DS). Only
molecules with significant p-values and log 2 fold-change
(FC) (above 1 or 2 depending on the DS comparison) are
included. A master molecule list (MML) is created containing
all the significant molecules reported within THs per DS
comparison without repetitions. The MML is used to merge
all DS as described above to perform cross-correlation analysis
and obtain the biomarker list.

To calculate an accurate frequency distribution manually per
molecule, the trend in regulation is determined, taking into
account the total count per molecule (TPM), to avoid bias.
The regulation trend is described as “Up” or “Down”;
molecules reported equally “Up” or “Down” regulated
(i.e., 50% up and 50% down regulated) among the DS
comparisons are removed. TPM represents the number of
times a molecule is analyzed across all the DS comparisons
included in the data-matrix. The latter highlights the point
that every platform might have different molecular depth,
thus, if a molecule is not analyzed in one platform it doesn’t
mean it is not significant. Consequently, a biomarker list is
created and can already be validated. This list is the core of
the next functional analysis.

Regarding the FS index, it was developed to generate the
former biomarker list from all values across all DS comparisons,
without the need of applying individual TH (see below). The FS
index is simply based on the log2FC trend per molecule and
whether these are significant or not. The formula is as follows:

FS �
∣∣∣∣∑(up) −∑(down)∣∣∣∣
∑(up) + ∑(down) ×

∑(significant)

∑(all)
From all the DS comparisons, the absolute value of the sum of

DS comparisons with up-regulated values (log2FC > 1) is
subtracted from the number of DS comparisons with down-
regulation (log2FC < -1) and divided by the sum of the number of
times a molecule was up and down regulated (log2FC > 1 and
<−1). This value is then multiplied by the value obtained from the
sum of the number of DS comparisons that have significant
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values (adjusted p-value <0.05) divided by all the DS comparisons
that have the specific molecule in question analyzed.

Additionally, the FS index includes an adjusted p-value and
log2FC calculation. Here, the basis of the approach is centroiding
clustering and it applies to all molecules individually. Molecules
with p-values and FCs for all the included DS can have significant
or non-significant values. To visualize the distribution of the data,
molecule sets −log (10) of the p-values and the log (2) of the FCs
can be plotted to get a Volcano plot (Figure 2). Here, centroiding
clustering brings a logical solution to fuse the data, with the center
being the optimal geometric location that minimizes the distance
to all datapoints. In an ideal situation the graph (Figure 2A)
would have a small group of datapoints close to each other for a
given molecule (similar p-values and similar FCs). The center-
value will then provide a new p-value and FC value. To obtain the
adjusted p-value its easier than the adjusted log2FC value, since it
does not have directionality; in this case an arithmetic mean is
calculated from the −log10 p-values to obtain the adjusted
p-value, since the non-transformed p-values are too small and
here a TH does not apply, therefore significant and non-
significant p-values are included and averaging these can
introduce bias. Regarding the adjusted log2FC, a common
mean calculation might give a biased result due to the possible
large values with opposing trends that the different DS
comparisons can have (Figure 2B). There are still several
options one can follow, such as geometric weighted means,
where a specific value is added to each log2FC, e.g., sample
size; trimmed means where extreme values (outliers) are left
out, and the mean is calculated from the values that remain
(Lawson et al., 2012; Miao and Jiang 2014; Li X. et al., 2015).
However, in this example and regarding the FS index calculation,
only where >50% of the molecules follow the same trend (up or
down regulation) with values above or below 0 molecule value
were averaged, the rest of the molecules were excluded.

These data, plus the calculated FS index value, upgrade
the score system and allow us to rank the molecules from the

most to the least significant based on: total significance, trend
(up/down-regulation), number of times a molecule was
analysed and present an either up or down-regulation,
adjusted p-value and adjusted log2FC, which sums up into
the FS index score. The higher the score, the more significant a
molecule is.

2.4 Data Integration and Functional Analysis
Despite the biomarker list potential to lead to new insights about
the disease in question, the contextualization of these molecules
can be even more informative. In this section of the approach, the
integration of the biomarker list through enrichment analysis is
performed. Functional analysis through Cytoscape plug-ins
ClueGO/CluePedia performs semantic clustering by assigning
gene ontologies and/or pathway terms (KEGG, Wikipathways,
Reactome) to the biomarker list, integrates them into functional
networks and ties-in the molecules associated with each of the
terms on the networks generated (Shannon et al., 2003; Bindea
et al., 2009; Bindea et al., 2013).

This analysis will highlight the main deregulated processes
that will be the center for further analyses. The biomarker list
contains molecules with different frequencies and FS index
scores, and results from the merging of the different DS
comparisons. Several TH are applied to the biomarker list to
determine the main deregulated pathways within it. The THs go
from the most to the least significant and frequent molecules
within the biomarker list. The TH end cut-off goes to a level
where the processes identified through the analysis of the most
frequent molecules are not lost but enriched and interconnected
by the molecules from the different THs applied.

In order to visualize and underlie the main processes
previously identified, pathway mapping is performed. It helps
unravel the regulation and involvement of the molecules by
placing them within their described position in the pathway of
interest. This allows the accurate identification of deregulated
processes by showing specific trends through the molecular

FIGURE 2 | Theoretical and Real centroiding clustering example visualized in a Volcano plot. (A) A and B represent 2 different molecules. Red and gray circles
represent molecule A distribution from the different dataset (DS) comparisons. The majority of molecule A values cluster regarding regulation, log2FC, and p-values (Red
circles). Gray circles represent molecule A with non-significant p-values. Green and Red triangles represent molecule B distribution. All molecule B values are significant
and cluster regarding regulation, log2FC, and p-values (Red triangles) but two DS comparisons (Green triangles). (B) B1629 and B8816 are real molecules within
the DS matrix and represents an example of the distribution of 2 molecules from the biomarker list obtained through the FS index.
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interplay, hence the identification of key players involved in the
pathophysiology of a disease. Pathvisio is a pathway-map editor
of described and pre-assembled pathway maps (KEGG,
Wikipathways, Reactome), it is a fine tool for integrative
analysis since it handles gene, protein, and metabolite data
and allows cross-mapping and integration through Bridgedb
(van Iersel et al., 2010; Kutmon et al., 2015). The pre-
assembled pathway maps will function as the sketch to base
on to get novel pathway maps reflecting their regulation in the
setting of interest. The pathways to be filled-in, edited, and
integrated are the ones identified by ClueGO/CluePedia
analysis. First, the molecules from the biomarker list are
mapped into their specific position within these pathways to
help keep the focus. Afterwards, irrespective of their logFC, all the
molecules from the first data merging with a significant p-value
are mapped as well in order to fill the gaps within the pathway
map of interest and be able to identify trends in regulation.

To enrich and complement the processes of interest identified
through Pathvisio, interactome analyses are performed on the
biomarker list molecules. GeneMANIA (Multiple Association
Network Integration Algorithm) generates networks that
resemble molecular interactions classified into gene-protein
interaction, co-expression, and localization, shared protein
domains, and pathways (Warde-Farley et al., 2010). It
provides the connections of the biomarker list molecules and
predicts molecules associated with the input.

In addition, disease analysis to explore the former outcomes
and their accurate association with the specific disease of interest
is performed. Through DisGeNET, reported gene-disease
associations from the biomarker list are identified (Piñero
et al., 2015; Piñero et al., 2020). This step functions as
validation by detecting the genes that have already been
reported in the disease under study. DisGeNET also provides
genes with gene-disease-association (GDA) scores, and the ones
with a higher score can be used to enrich the pathway model by
identifying their associations with the biomarker list molecules
and thus, provide an extra focus on the pathways where these
molecules play a role.

De novo pathway contextualization is produced by the
integration of all the different results previously obtained.
Since transcriptomic studies populate the databases and
literature, these are the backbone of the methodology. When
analyzing different molecular types, each OMIC layer validate
and reinforce the focus on the deregulated mechanisms identified
through transcriptomics analysis. miRNAs (miRs) and
metabolites do not align with gene/proteins but can also be
integrated into the developed model. In this case, cross-
mapping can be carried out through “mode of action” by
using either their targeted genes as a substitute ID (miR) or
how they are produced (metabolites) using the associated enzyme
to tie them into other OMICS data. By using the common unifier,
it allows their correlation and mapping into the de novo pathway
model described. CluePedia and MetaboAnalyst web-tools can
serve this purpose by enriching miRs andmetabolites respectively
(Pang et al., 2020). In this example, only transcriptomics data is
included.

3 RESULTS

3.1 DLBCL Dataets Comparisons
Correlation and Grouping
A total of 6 DLBCL gene expression profiles from human samples
were identified through GEO, correlated, and meta-analyzed
through the HHmeta method. From 6 GEO DS we ended up
with 10 comparisons: GSE9327–1. DLBCL vs Healthy tissue;
GSE32018–2. DLBCL vs. Healthy tissue; GSE56315–3.
Plasmablast DLBCL vs. Plasmablast Healthy B-cell, 4.
Centroblast DLBCL vs. Centroblast Healthy B-cell, 5.
Centrocyte DLBCL vs. Centrocyte Healthy B-cell, 6. DLBCL
vs. Healthy B-cells; GSE12195–7. DLBCL vs. Healthy B-cells;
GSE2350–8. DLBCL vs. Healthy B-cells; 9. DLBCL CD19 B-cells
vs. Healthy B-cells; GSE12453–10. DLBCL B-cells vs. Healthy
B-cells. All molecules from the DS comparisons were mapped and
indexed to PADB unifier ID. Only molecules/probe-sets with the
most significant p-values were kept among the repeats found
within each DS comparison. For the manual approach, DS
comparisons were filtered by p-value (<0.05), regardless of
their logFC value, and merged. When following the HHmeta
method, no filtering is needed at this stage.

Dimensionality reduction through PCA clustered 2 groups
and identified a potential outlier (Figure 3A). DS 1, 2, 8, 9, and 10
(Group 1) and DS 3, 4, 5, and 6 (Group 2) were clustered together.
Group 1 is composed of comparisons across healthy and tumoral
tissue (DS 1 and 2), as well as healthy and tumoral B-cells (DS 9
and 10), however DS 8 compares both healthy B cells vs DLBCL
tumoral tissue and also groups within this cluster. Group 2
contains 1 solely GEO DS (GSE56315) that is composed
mainly by comparisons among specific tumoral tissue DLBCL
subtypes and their matching healthy B-cell type, as well as the
comparison of all of them together plus some unclassified
DLBCLs and the complete population of healthy B-cells.
Group 2 samples belong to patients under either CHOP or
R-CHOP therapy. The highlighted outlier, DS 7 is composed
of DLBCL tissue samples and healthy tonsillar germinal center,
naive and memory B cells.

3.2 Biomarker List and ClueGO/CluePedia
Functional Analysis
Once grouped, the following analysis focused only on group 1.
For the manual procedure, p-value cut-off (<0.05) from the
previous filtering was kept and log2FC cut-offs (>1 and <−1)
were applied to each DS comparison. When applying the
HHmeta method FS index formula (see above), no threshold
is needed. Data merging allowed the comparison and
consolidation of molecular regulation based on their frequency
distribution. The resultant biomarker list from the manual
procedure contains a total of 3,241 significant molecules, and
from the FS index calculation, a total of 1,638 significant molecule
(Supplementary Table S1). Table 2 represents the top up and
down-regulated molecules from both biomarker lists group 1.

Through DisGENET one can already search for validation of
genes associated with the condition in question within the
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FIGURE 3 | PCA plot grouping and ClueGO/CluePedia focus of our DLBCL cohorts. (A) Blue dots: Group 1; Orange dots: Group 2; White dots: Outliers. (B)
ClueGO/CluePedia network created from the Manual approach biomarker list (66% threshold). (C) ClueGO/CluePedia network created from the FS index Biomarker list
(0.75 Absolute FS index threshold).

TABLE 2 | Top deregulated molecules obtained with the Manual approach and FS Index calculation.

ID Manual approach HHmeta method

CluSO ID Gene name Final Regulation Adj. P.V.
Mean

Log2FC Mean FS Index
Calculation

B2Q85 ITGA9 100 9.130E-23 4.29 1
B2O29 BIRC3 100 2.480E-05 2.19 1
BO058 HLA-DRB1 100 3.320E-03 2.04 1
BO135 BCL6 100 1.210E-04 2.01 1
B8773 LCE2D −100 2.760E-03 −2.24 1
B9009 LPP −100 4.687E-05 −2.25 1
BF875 SYCE1L −100 1.270E-05 −2.29 1
B1137 ATP10D −100 8.127E-08 −2.30 1
BL316 DNM1DN8-2 −100 3.360E-04 −2.40 1
BH305 TSPYL5 −100 4.326E-07 −2.49 1
B5415 FAM208B −100 7.820E-07 −2.55 1
B7596 IGF2 −100 3.810E-08 −2.59 1
BO237 RET −100 1.400E-17 −2.70 1
B8780 LCE5A −100 1.660E-04 −2.87 1
B8612 KRTAP5-3 −100 2.240E-07 −3.00 1
B6621 GPR150 −100 3.360E-07 −3.01 1
B2W20 YES1 −100 2.380E-08 −3.45 1
B7559 IFITM5 −100 3.360E-07 −3.46 1
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biomarker list generated or target genes obtained from the
functional analysis. In this example biomarker list genes with
a FS index equal to 1 (439 genes) were input into DisGENET. As
shown in Table 3, some have already been reported as related to
DLBCL, either as e.g., biomarker, altered expression or genetic
variants. DLBCL is a highly heterogeneous disease, thus it is
important to bear inmind that in this example we didn’t segregate
DLBCL by type (e.g., GCB, ABC), mainly because it was not
specified in every dataset included. Therefore, the outcome of this
analysis would mirror the core shared mechanisms among the
DLBCLs analyzed in each of the different studies included in the
meta-analysis of group 1. Also, within the genes found to be
associated with DLBCL from the biomarker list, these might have
been significantly deregulated in only one dataset because it was
the only one analyzing this molecule, however this doesn’t rule
out its importance since these can still interact with the main
pathways further identified. For instance, genes involved in NF-
kappa B pathway and TNF signaling, such as overexpression of
BCL2 regulator of mitochondrial apoptotic pathway (Tsuyama
et al., 2017), BCL6 proto-oncogene, essential for GC development
and FBXO11 a tumor-suppressor gene that stabilizes BCL6, have
already been related with DLBCL accelerated development and
poor prognosis (Saito et al., 2007; Duan et al., 2012; Zhang et al.,
2015). These, plus the rest of molecules covered by DisGENET
provide validation of the molecular list we relied on for further
functional analysis, and the meta-analysis itself.

Besides the already described molecules in the DLBCL setting,
the biomarker list contains molecules that have not been related
with the disease yet. As an example, one of the main deregulated
genes with a higher frequency distribution score is TSPYL5,
which was found with a downregulation trend in 4 out of the
5 DS comparisons included in group 1. TSPYL5 has been
attributed a tumor-suppressive function, and its
hypermethylation has been previously linked with several
cancers (Kim et al., 2010; Fan et al., 2020; Huang et al., 2020).
TSPYL5 suppression has been associated with PTEN
overexpression and AKT pathway inhibition (Vachani et al.,
2007; Jung et al., 2008; Kim et al., 2010; Fan et al., 2020).
Interestingly, TSPYL5 inhibition has been attributed to
overexpression of miR-483–5p and miR-629. In prostate cancer
it’s been recently proven that miR-483–5p antagonization through
the long non-coding RNA LINC00908 lead to an upregulation of
TSPYL5, inhibiting prostate cancer progression (Fan et al., 2020).

miR-629 overexpression has also shown the ability to promote
proliferation, migration and invasion in ovarian cancer by directly
inhibiting TSPYL5 (Shao et al., 2017). Although a specific role in
DLBCL has not being described yet, these results open a potential
novel regulation of carcinogenesis in this setting. ATP10D is also
within the genes with a higher FS index score. Although its
association with DLBCL hasn’t been described yet, its
downregulation has been significantly correlated with poor non-
small cell lung cancer survival (Fusco et al., 2018). It belongs to a
subfamily of P-type ATPases that play a role in phospholipids
translocation, and its being specially associated with sphingolipids
and ceramid plasma levels (Hicks et al., 2009). Sphingosine-1-
phosphate (S1P) sphingolipids are considered signaling molecules
involved in activation of carcinogenesis pathways and have been
previously linked to increase lung cancer risk (Furuya et al., 2011;
Alberg et al., 2013). These are interesting hypothesis that haven’t
been explored yet that by following our unbiased method could be
highlighted. Examples like these can already be validated, adding to
the main DLBCL pathway mechanisms.

3.3 ClueGO/CluePedia Functional Analysis
To distinguish the association amongst the biomarker list
molecules and determine their shared pathways and processes,
ClueGO/CluePedia analyses were performed (Figures 3B–C).
The main processes showing interconnectivity between the
molecules from the biomarker list of both, the manual
approach and FS index score were MAPK, PI3K, TNF, Ras
and B-cell signaling pathways, cytokine-cytokine receptor
interaction and chemokine signaling pathways, among others.
These pathways show high interconnectivity and potential
involvement of MMP9, STAT1, TNFRSF1A, NFKBIA, EFNA4,
CCL5, RAP1B. Networks in Figures 3B,C are similar, even
though the HHmeta method does not follow thresholds and
has an extra layer of significance raking through the FS index
score calculation. However, since the most significant molecules
were shared among the biomarkerlists generated through the
manual approach and the HHmeta method, the main deregulated
processes remain.

All the main pathways highlighted through this analysis are
somehow related with pro-survival signaling, and have been
previously associated with DLBCL pathology, as well as with
the heavy involvement and crucial role of the tumor
microenvironment. Pro-survival effects via PI3K-AKT

TABLE 3 | Top genes associated with DLBCL through DisGENET.

Gene GDA Score Association Type Number of PMIDs

BCL2 0.4 Biomarker Altered Expression Genetic Variation 222
FBXO11 0.32 Biomarker Genetic Variation Causal Mutation 2
IRF8 0.32 Biomarker Altered Expression Causal Mutation 2
BCL6 0.1 Biomarker Altered Expression Genetic Variation 224
BIRC3 0.08 Biomarker Genetic Variation 8
HDAC9 0.07 Biomarker Altered Expression 7
ZC3H12D 0.05 Biomarker 5
LIG4 0.04 Biomarker Post-translational modification 4
HLA-DRB1 0.03 Biomarker Genetic Variation 3
PSIP1 0.02 Biomarker 2
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signaling pathway, Ras signaling pathway (Eric Davis et al., 2001;
Davis et al., 2010; Miao et al., 2019), partly B-cell receptor
signaling pathway and cytokine induction have been long
correlated with DLBCL. TNF signaling pathway is known to
be indispensable for survival of transformed B-cells. TNF-
signaling pathway regulates NF-kappa B pathway and MAPK
signaling pathway, which was also determined as significant in
DLBCL (Webster and Vucic 2020).

3.4 Pathvisio Pathway Editing and
Complementation
The main pathways determined by ClueGo/CluePedia are now
involved in the following iteration step, which entails pathway
overrepresentation analysis and visualization in Pathvisio.
Pathways identified through ClueGO were displayed within
the significant pathways determined by Pathvisio. In order to
determine consistencies, inconsistencies, interconnected events,
and fill the gaps within the signaling pathways visualized, the
complete list of molecules with a significant p-value is used as an
input. In this case, a total of 5,146 molecules from the FS index
were analyzed. For instance, the total amount of molecules

obtained from the FS index might differ from the ones of the
manual approach. This because for the adjusted log2FC
calculation, the FS index only takes molecules determined as
up or down regulated for averaging (see section 2.3), leaving out
some molecules with mixed values. The manual approach is more
bias, where the arithmetic mean is calculated from all molecules
with a significant p-value, without prior filtering.

Once mapped, inconsistencies in the trend from sections or
complete signaling events were removed from the original
pathway maps. The complete pathway can be visualized in the
Supplementary Figure S1. The original pathway maps from
WikiPathways were redesigned to accurately contextualize the
role and interplay of the molecules in DLBCL B-cells. Here, only a
section of the assembled pathway is shown in Figure 4. From this
signaling map, a prominent up-regulation of most of the elements
involved can be seen. Chemokines, cytokines, and interleukin
signaling demonstrate their involvement in the NF-KB and JAK-
STAT pathway activation and therefore cell survival and
proliferation. Several factors either display an opposite
regulation or are absent within the biomarker list generated.
However, the consistency along the pathway outline reflects an
involvement of these processes in this B-cell malignancy.

FIGURE 4 | PathVisio edited pathway of the obtained biomarker list. NFKB and JAK/STAT section of the complete pathway map from Supplementary Figure S1.
This section of a pathway contextualizes and represents the up-regulation trend of the molecules included in the map. Molecules with an adjusted p-value <0.05 from the
FS index score calculation were included.
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Feedback loops such as the one established by IL6, as well as
regulators, such as PIAS, SOCS, and PTPN6 can already be
spotted and represent potential hits to focus on further
(Figure 5B).

GeneMANIA analysis can enrich the pathway maps from
PathVisio. Several angles can be considered to add to the main
hypothesis, for example, the top molecules from the biomarker
list, the associated and clustered molecules obtained from
ClueGO/CluePedia analysis, or the molecules of interest
within the edited PathVisio pathway. Here, STAT3 was taken
as an example to complement the pathway of interest, due to its
downstream effects and the potential regulation of its activity.
Figure 5. A. shows GeneMANIA results. Several molecules that
were not included in the pathway map make an appearance. The
connected molecules can either represent genomic interaction,
shared protein domain, shared pathway, co-expression, co-
localization, among other interactions. The additional
interactors of STAT3 identified through GeneMANIA, such
as NFKBIZ, EGFR, PTK6, and STAP2, complement the
previous pathway, and the trend in consistency remains
(Figure 5B). Here, one can hypothesize that the tumor
microenvironment, such as T-cells, promote the chemokine/
cytokine signaling in B-cells and lead to pro-inflammation,
cellular proliferation and maintenance to some extent
through JAK/STAT and NFKB signaling pathway constant
activation. The interconnected and functionally correlated
genes identified through ClueGO/CluePedia analysis, and
some others integrated into the final edited pathway, have
shown to be already associated with DLBCL.

4 DISCUSSION

The decreased costs of high-throughput technologies have made
the exploratory studies of complex biological traits, such as
cancer, possible. Integrative omics approaches have been
under the spotlight due to their potential to elucidate novel
pathophysiological insights that better capture the complexity
of molecular systems in a trait (Argelaguet et al., 2018; Kim et al.,
2018; Zhou et al., 2019). Despite the increase in studies
performing this type of analysis, efforts are still needed to
better analyse and decipher the origin of complex diseases, for
better diagnostics and discovering potential therapeutic targets,
reviewed in (Yan et al., 2017; Karczewski and Snyder 2018). As a
common characteristic, integrative methodologies rely on the
identification of shared features across different large-scale
datasets to further perform functional analysis. Nevertheless,
one of the main elusive challenges that remains is the
contextualization of the deregulated molecules; particularly in
cancer where the high variability and intricacy of biomolecules
involved can overwhelm meaningful readouts. In this setting, it is
complex to identify commonalities among the systems altered by
only looking at molecular signatures or protein-protein
interactions, even within samples from the same cancer type.
Thus, even though novel insights regarding potential correlations
have been depicted across multi-omics studies (Zhang et al., 2013;
Li J. et al., 2015; Mertins et al., 2016), the contextualization of how
a molecule might influence or affect a system is still lacking. Our
proposed methodology focuses not only on the identification of
shared features, but also on their contextualization through

FIGURE 5 | GeneMANIA focus and Pathvisio de novo pathway contextualization. (A) GeneMANIA results for STAT3; interactor molecules can either represent
physical interaction (red), co-expression (purple), genetic interaction (green), shared protein domain (yellow). (B) Pathvisio NFKB and JAK/STAT signaling pathway
section with added elements from GeneMANIA highlighted in purple; STAT3 analyzed gene highlighted in yellow box, blue boxes represent feedback loops. analyzed
gene highlighted in yellow box, blue boxes represent feedback loops.
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pathway mapping. Approaches such as IPA, also focuses on the
contextualization of features into pathway maps, however the
lack of identifier curation, track and maintenance can result in
poor reproducibility. In high-throughput studies the sample size
is also an issue that might affect reproducibility and specificity.
Usually, sample size increment correlates with higher
reproducibility; it is equally responsible for an increase in false
positives (Maleki et al., 2019). Thus, the fusion of integrative
approaches, meta-analysis, associative data and enrichment
methodologies gives an opportunity to boost the
understanding, correlation and contextualization of potential
molecules of interest affected in a disease. Moreover, one of
the main hallmarks of our methodology is the enhancement of
the statistical power of the biomarkers identified not only through
the integration of high-throughput studies but also small-scale
studies, which provides the focus on the pathway maps further
described.

The majority of the available big data approaches rely on
computational tools and therefore, the need of certain
background to be able to perform these analyses. However,
the HHmeta method provides a platform to not only perform an
integrative meta-analysis, but also the opportunity for
researchers lacking a solid background in bioinformatics to
be able to perform an unbiased and straight-forward, but
robust meta-analysis on pre-processed big data, to reach a
logical and contextualized overview of the molecular
interplay of a list of significant molecules related to an
specific research question. In the example presented above,
besides the identification of a deregulated and correlated set
of molecules through out the analysis of different studies
(Table 2), this methodology allowed their contextualization
to identify potential processes and mechanisms involved in
the disease (Figures 3, 4), and clarified targets influencing
cell growth, survival and metastasis.

An interesting aspect that is commonly under-rated–but can
influence downstream analysis and affect its replication–is the
wide range of identifiers. Their constant update, reuse, un-usage,
and the lack of unified efforts to both keep track and make
mapping between different platforms available for the scientific
community. Moreover, in order to merge datasets from different
platforms and sources, the harmonization of identifiers is crucial.
Thus, one of the solid basis and uniqueness of this methodology is
its reliability on the PADB unifier database (see Methods section).
Efforts have been previously made by others to address this issue
(Gaj et al., 2007; Klimke et al., 2011), through BLASTx
approaches (e.g., TargetIdentifier), linking annotations from
different databases (e.g., DAVID) and trying to provide as
much information as possible about IDs (Gaj et al., 2007),
however data curation and constant update its still lacking. It
has been noticed in pathway mapping that a great proportion of
arrays become useless, mainly because there is no track of older
IDs. Herein, PADB adds an extra quality-check to be able to rely
fully on the available annotations and support the replication
process. It enriches the downstream biological pathway map
interpretation by retaining old identifiers for those molecules
that currently have no annotation. PADB also allows cross-
linking through species by its ortholog IDs (OMAP), enabling

the identification of mechanisms that might be conserved across
species through the downstream analysis.

Conventional meta-analyses apply several strategies to merge
statistical measurements (i.e., p-value), and this is one of the main
differences highlighted in the methodology presented here.
Methods such as Fisher’s, Stouffer’s Z-test and Rank product
are examples of popular statistical approaches to follow when
performing meta-analyses to combine p-values of different
studies, and their use depends on the meta-analysis goal
(Zaykin et al., 2007; Hong and Breitling 2008). The former is
based on testing the probability that different null-hypotheses,
when combined, are statistically significant (Fisher 1992).
However, here the proposed methodology relies on already
statistically significant data for the manual approach; the FS
index calculation (see section 2.3) relies on the number of
times a molecule is significant, and the adjusted significance of
a molecule is only one layer of ranking to consider. Therefore, in
this setting Fisher’s method would not be the one of choice. In this
methodology, the more a molecule is significant across studies the
more likely it is that it is significant overall, regardless of the actual
p-value, same with log2FCs, threshold values are used to set those
boundaries. The significance of the molecules identified through
this method is then corroborated by pathway mapping and other
further analyses. Nevertheless, the HHmeta method and Fisher’s
are similar in the principle of getting a new p-value (in our case
also log2FC, plus the FS index) through the fusion of all the
studies included. The main difference among conventional meta-
analyses and our proposed methodology is that, by keeping the
studies intact regarding cases and controls, and correlating the DS
comparisons p-values and log2FCs, this methodology adds a layer
of confidence regarding the comparisons made, allowing a
primary correlation and clustering of studies through PCA plots.

PCA plot analysis have been used for the purpose of modelling
the relationship between samples, to detect group differences and
identify outliers and batch effects within a single high-throughput
study (Ringnér 2008; Conesa et al., 2016; Merino et al., 2016;
Todorov et al., 2018). Furthermore, there have been other
integrative methodologies that have generalized PCA rationale
to identify commonalities across different omics studies (Kim
et al., 2017; Argelaguet et al., 2018). In contrast, here we apply
PCA plot analysis to individual omics data types. Through this
analysis, we were able to identify different groups and outliers
from the initial high-throughput studies included in the analysis.
This quality-check gives the opportunity to identify
commonalities even amongst different samples, such as
complete tumoral tissue and B-cells, by only including the
molecules analysed in all the studies. It allows us to subtract
commonalities across diverse studies, provided that the research
question is well established. Even though the meta-analysis
performed through this methodology is based on similar data,
and therefore group of studies, it allows the comparison and
identification of the relation between groups of different
conditions (e.g., DLBCL vs. Healthy and DLBCL treated vs.
DLBCL non-treated) opening new opportunities to identify
specific responses and common enhanced pathways
deregulated by the disease itself. Thus, to perform standard
meta-analysis will be inadequate.
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The major liability of the HHmeta method is that it is based on
publicly available data. Thus, it is possible that the specific
research question one wants to address hasn’t been covered by
many research groups. The less high-throughput data sets
available for a certain topic of interest, the less statistical
power the data analysis would have. Moreover, if the available
data is heterogenous, for example due to differences in the biology
of the samples (treatments, stages of a disease, subtypes or sample
sources), it makes the correlation even more complex, and the
main question to address would need to change into a more
general one, where commonalities can be depicted. Another
weakness of the whole procedure is that the contextualization
of the biomarker list relies on pathways previously described, so
there will be gaps, molecules that do not map and unsolved
questions. Despite these flaws, this method takes advantage of
previous knowledge and uses it in the context of the specific topic
of interest.

The substantial amount of data generated throughout the
years represent a tool that can be somehow overlooked by the
scientific community. For instance, good scientific practice can be
enhanced by the screening, review and statistical analysis of
previous studies performed in the field of interest to identify
the gaps, commonalities and generating a better understanding
regarding the behaviour of a system of interest, by feeding a
potential model with what has already been proven and
enhancing the generation of novel hypothesis to address by
the inclusion of high-throughput data. The essence of the
proposed methodology is the merging of independent
statistical tests in an unbiased way, into a single test. It
embraces the availability and basis of statistical analyses used
in the big data field and utilizes their outcome to add to the
statistical power of the data, resulting in a novel analysis
approach. What sets the HHmeta method apart from the
already available approaches are the basis of the data
considered for merging, thresholding and its subsequent fusion
and scoring system. Here, the manual and FS index approach are
presented to highlight the main differences of what has been done
before with the same ground basis as the FS index approach (FS
index) which relies on a formula and adjusted values to produce
similar results.

5 CONCLUSION

Studies in basic science are commonly hypothesis-driven and
usually small-sampled. Likewise, and despite their exploratory
nature, high-throughput studies tend to be biased to the resulting
top deregulated genes. Therefore, novel findings require further
validation, and here is where meta-analysis comes in handy. Even
though the experimental design of different studies in essence is
unique, meta-analysis methodologies have provided the

opportunity to integrate the results of diverse and multiple
studies addressing the same question, to enhance the statistical
power of the results and therefore, the chances of finding true
positives. In contrast to the meta-analysis methodologies already
implemented in the big data-field, the methodology presented in
this manuscript provides a simple, novel, unbiased, integrative
and logical approach to not only meta-analyze single omics
studies, but to integrate small and big data sets, as well as
different omics studies. It includes quality checks to avoid
batch effects, relies on a powerful cross-indexing unifier
database and goes a step further by including associative
data to aid for the identification and understanding of novel
pathways and molecules involved in a specific disease. All in
all, the current methodology provides novel hypotheses to
further validate and a broader view of the system of interest,
enhancing the outcomes generated through conventional
meta-analysis.
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Integrative multi-omics analysis has become a useful tool to understand molecular
mechanisms and drug discovery for treatment. Especially, the couplings of genetics to
metabolomics have been performed to identify the associations between SNP and
metabolite. However, while the importance of integrative pathway analysis is
increasing, there are few approaches to utilize pathway information to analyze
phenotypes using SNP and metabolite. We propose an integrative pathway analysis of
SNP and metabolite data using a hierarchical structural component model considering the
structural relationships of SNPs, metabolites, pathways, and phenotypes. The proposed
method utilizes genome-wide association studies on metabolites and constructs the
genetic risk scores for metabolites referred to as genetic metabolomic scores. It is based
on the hierarchical model using the genetic metabolomic scores and pathways.
Furthermore, this method adopts a ridge penalty to consider the correlations between
genetic metabolomic scores and between pathways. We apply our method to the SNP
and metabolite data from the Korean population to identify pathways associated with type
2 diabetes (T2D). Through this application, we identified well-known pathways associated
with T2D, demonstrating that this method adds biological insights into disease-related
pathways using genetic predispositions of metabolites.

Keywords: pathway analysis, multi-omics integration, mGWAS, metabolite, SNP

1 INTRODUCTION

The advances in biological techniques have led to the generation of multiple omics (multi-omics)
data, which contribute to a better understanding of biological mechanisms and diseases. For instance,
the next-generation sequencing (NGS) technology for genome-wide data and mass spectrometry for
quantitative metabolic data allow us to generate multi-omics data from the same samples at a low
cost (Metzker, 2010; Suhre and Gieger, 2012). These technical improvements have enabled multi-
omics data analysis to become a useful tool in biomedical research.

Genome-wide association studies (GWAS) have been conducted worldwide to identify single
nucleotide polymorphisms (SNPs) associated with various diseases or phenotypes.
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An intermediate variable, linking genetic variants and
phenotype, is suggested to consider the effects of genes and
environmental factors in overcoming the limitation of GWAS
(Kronenberg, 2012). One of the potential intermediate variables is
serum metabolite concentration, providing a direct readout of
biological processes, to connect genetic factors and diseases (Illig
et al., 2010; Kronenberg, 2012). Recently, metabolite genome-
wide association studies (mGWAS) and metabolic quantitative
trait loci (mQTL) analyses have been conducted by utilizing SNP
and metabolite data together (Zhang et al., 2017; Park et al., 2019;
Ouyang et al., 2021). In addition, to explore the association
between SNPs and metabolites, disease-related metabolomic
markers using SNPs were investigated through Mendelian
randomization (Moayyeri et al., 2018). Even though many
studies attempted to analyze SNP and metabolite data
together, most studies have mainly focused on either analyzing
statistical associations between SNPs and metabolites or
discovering metabolomic markers of phenotypes using SNPs.

Since pathway analysis can give a more intuitive interpretation
of the biological system, several methods have been proposed for
pathway analysis that focuses on identifying significant pathways
related to certain traits of interest (García-Campos et al., 2015;
Kao et al., 2017). Specifically, pathway analysis using multi-omics
data has now become popularly used in recent bioinformatics
research. While the importance of integrative pathway analysis is
increasing, there have been few studies about integrating SNPs
and metabolite data (Kao et al., 2017). In this study, we focus on
integrative pathway analysis of SNPs and metabolite data.

Here, we propose an integrative pathway analysis of SNP and
metabolite data using a hierarchical structural component model.
This method calculates genetic risk scores of metabolites and
investigates pathways associated with phenotypes through the
genetic risk scores. This approach is based on our earlier work
Pathway-based approach using HierArchical components of
collapsed RAre variants Of High-throughput sequencing data
(PHARAOH) (Lee et al., 2016). PHARAOH uses rare variants to
construct collapsed genes and performs pathway analysis using
these gene-summaries. PHARAOH simultaneously analyzes the
entire collapsed genes and the entire pathways in a hierarchical
model (Lee et al., 2016). We utilize this main framework of
PHARAOH and mGWAS for the integration of SNP and
metabolite data and refer to this method as a Hierarchical
Structural Component Model of SNP and Metabolite data for
pathway analysis (HisCoM-SM).

The genetic metabolomic score (GMS) is calculated by
summing the effects of the corresponding SNPs on each
metabolite and then is used for pathway analysis in
PHARAOH. HisCoM-SM adopts the ridge penalties to both
GMSs and pathways to identify pathways while controlling for
potential correlations between GMSs and between pathways.

Here, we apply HisCoM-SM to SNP and metabolite data from
Korean Association REsource (KARE) cohort to identify
pathways associated with T2D. Note that T2D is a metabolic
disorder that is affected by genetic factors and environmental
exposure simultaneously (Murea et al., 2012). Through this
application to the KARE dataset, we demonstrate that
HisCoM-SM can identify previously reported pathways,

including insulin secretion and insulin resistance, associated
with T2D, using genetic predispositions of metabolites (Weyer
et al., 2001; Dayeh et al., 2014; Kahn et al., 2014).

The HisCoM-SM is available at https://statgen.snu.ac.kr/
software/HisCoM_SM.

2 MATERIALS AND METHODS

2.1 SNP Data
The SNP data was generated by the Affymetrix Genome-Wide
Human SNP array 5.0. from the Korea Association REsource
(KARE) project. KARE is based on Ansan and Ansung Korean
population cohort among 10,038 participants which was initiated
in 2001 (Cho et al., 2009). This chip originally consisted of 8,840
individuals and 352,228 SNPs. We applied quality control to our
SNP data to reduce the biases and used common variants for our
analysis (Turner et al., 2011). For quality control of SNP data, the
genotypes with over 0.1 missing rates and Hardy-Weinberg
equilibrium p-values < 10−6 were excluded. To use only
common variants, the genotypes with minor allele frequency
(MAF) ≤ 0.05 were excluded. Then, we retained the individuals
who have metabolite data and whose calling rate >0.9. After
quality control of SNPs from the KARE dataset using PLINK 1.90,
a total of 312,116 SNPs were analyzed in this work (Chang et al.,
2015).

2.2 Metabolite Data
The serum metabolites in the 691 participants were
quantitatively analyzed by a targeted metabolomics
approach using liquid chromatography-mass spectrometry
(LC-MS). 64 metabolites were measured in this work. The
metabolites of each subject were measured at the fifth follow-
up in the KARE dataset. Among 64 metabolites, 53 were
mapped to 101 pathways. The 53 metabolites were
classified into eight categories. Table 1 shows the number
of metabolites in each category. The list of metabolites and the
eight categories of metabolites are shown in Supplementary
Table S1. 627 samples were available with both SNPs and
metabolite data. Among these samples, 309 samples are
controls (normal) and 318 samples are cases (pre-T2D and
T2D). For metabolite data, systematical error removal using
random forest (SERRF) was used for batch effect correction to
remove variation due to instrument and injection time (Fan
et al., 2019).

TABLE 1 | Number of metabolites in each category.

Category Number of metabolites

Alkaloids and derivatives 1
Benzenoids 2
Lipids and lipid-like molecules 1
Nucleosides, nucleotides, and analogues 4
Organic acids and derivatives 33
Organic nitrogen compounds 4
Organic oxygen compounds 1
Organoheterocyclic compounds 7
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2.3 Diagnosis of Type 2 Diabetes
The criteria for diagnosis of T2D are 1) fasting blood glucose
(FBS) ≥ 126 mg/dl, 2) 2-h postprandial glucose (2 PP) ≥
200 mg/dl, 3) HbA1c ≥ 6.5 (%), and 4) treatment of drug.
Pre-diabetic (preT2D) individuals are diagnosed by the
criteria—1) 100 mg/dl ≤ FBS < 126 mg/dl, 2) 140 mg/dl ≤
2 PP < 200 mg/dl, 3) 5.6% < HbA1c < 6.5%, and 4) no
treatment of drug. The criteria for normal individual are 1)
FBS <100, 2) 2 PP < 140, 3) HbA1c ≤ 5.6%, and 4) no
treatment of drug. Here, we regarded T2D and preT2D
individuals as cases, and normal individuals as controls. The
baseline characteristics of those samples are shown in Table 2.

2.4 HisCoM-SM
The framework of HisCoM-SM consists of two steps. The step 1 is
to calculate genetic risk scores of metabolite data referred to
genetic metabolomic scores (GMSs). Genetic effects of
metabolites are estimated and then used to calculate the
GMSs. The step 2 is to perform pathway analysis using the
calculated GMSs by step 1. To perform pathway analysis, a
hierarchical structural component model (HisCoM) is used.
HisCoM consists of three layers which are input layer, latent
layer, and outcome layer. In our work, GMSs are used as input
variables, pathways are used as latent variables, and binary
phenotype is used as outcome variable. The two steps of the
process are described in more detail below.

2.4.1 Calculation of GMSs
To perform pathway analysis using SNP and metabolite data, we
first construct the GMSs. Here, we used two methods for
calculating GMSs. The first score was derived from the single-
SNP association test for metabolites. To do that, we applied linear
regression for each metabolite adjusted for age and sex and
calculated the GMSs by clumping and thresholding to remove
redundant correlated effects due to linkage disequilibrium (LD)
using PLINK (Chang et al., 2015). Clumping is the process of
selecting the most significant SNP iteratively, computing
correlation between this SNP and nearby SNPs within a
genetic distance of 250 k, and removing all the nearby SNPs
with highly correlation (r2 > 0.2) (Privé et al., 2019).
Thresholding is the process of filtering out variants with
p-values greater than a given threshold level (Privé et al.,
2019). Then, the GMSs are calculated from the effects of
remaining SNPs after clumping and thresholding using PLINK
(Chang et al., 2015).

The second score is based on the genetic best linear unbiased
prediction (GBLUP) method from Genome-wide Complex Trait

Analysis (GCTA) software (Yang et al., 2011). All SNPs are
treated as random effects in a mixed linear model adjusted for
fixed effects of sex and age (Yang et al., 2011). In GBLUP, the
effects of all SNPs are estimated by the genetic relationship matrix
(GRM) representing the relatedness of individuals’ SNPs (Yang
et al., 2011). The GRM is used to estimate the effects of all SNPs
and only 20% of SNPs with a high absolute value of the effect are
used to construct the GMSs. Then, the remaining SNP effects are
used to construct GMSs using PLINK (Chang et al., 2015).

2.4.2 Pathway Analysis Using GMSs in a Hierarchical
Component Model
After constructing the GMSs, pathway analysis is performed.
Figure 1 shows the diagram of HisCoM-SM. For each metabolite,
the correlated SNPs are selected by a single SNP association test
and GBLUP. Then, GMSs are derived as a linear combination of
these SNPs. Thus, each metabolite is linearly correlated with the
selected multiple SNPs. Similarly, each pathway is also linearly
correlated with multiple metabolites. First, an individual pathway
is mapped to the metabolites using the KEGG pathway database.
Next, the latent variables representing pathways are derived as a
linear combination of these metabolites. Then, the binary
outcome is used to estimate the effect of the relationship
between pathways and the phenotype. Let yj be the binary
outcome of the jth individual, K be the number of pathways,
Tk be the number of GMSs in the kth pathway. The xjkt denotes
GMS which is a continuous value, the wkt represents weight for
xjkt, and βk denotes the coefficient for pathway. Then, the
proposed HisCoM model is defined as follows:

logit(πj) � β0 +∑
K

k�1
⎡⎣∑

Tk

t�1 wktxjkt
⎤⎦βk (1)

To estimate the parameters of the model, we maximize a
penalized log-likelihood function (Eq. 2) and use alternating least
squares (ALS) for minimizing the objective function (Lee et al.,
2016). Let p(yj; γj, δ) be the probability distribution function for
the phenotype yj, λM and λP denote ridge parameters added for
potential multicollinearities between GMSs and between
pathways, respectively. After determining the ridge parameters
λM and λP by five-fold cross-validation, the coefficients wkt and
βk are estimated by ALS algorithm. In ALS algorithm, βk are
updated in a least square manner withwkt fixed. Likewise,wkt are

TABLE 2 | The characteristics of the subjects in each case (pre T2D + T2D) and
control (Normal) group.

Case Control p-value

Male 157 (49.37%) 157 (50.81%) 0.7794
Age (years) 58.26 57.32 0.0653
BMI 25.22 24.60 0.0059
Number of subjects 318 309 —

FIGURE 1 | A schematic diagram of the HisCoM-SM.
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updated with βk fixed. This ALS algorithm is iterated until
convergence.

ϕ � ∑
N

j�1log p(yj; γj, δ) − 1/2λM∑
K

k�1 ∑
Tk

t�1 w
2
kt − 1/2λP ∑

K

k�0β
2
k

(2)
After estimation, the phenotype is resampled 100,000 times

through permutation to generate the null distribution of
coefficients of pathways to calculate empirical p-values. To
correct the multiple comparisons problem, the false discovery
rate (FDR) is applied (Benjamini and Hochberg, 1995). Here, we
use the WISARD (workbench for integrated superfast association
studies for related datasets) to perform integrative pathway
analysis using GMSs (Lee et al., 2018).

3 RESULTS

3.1 Metabolite Genome-wide Association
Study in KARE Dataset
To detect genetic variants associated with metabolites, we
performed the mGWAS using linear regression, adjusting for
sex and age. Out of 53 metabolites, only two metabolites have
significantly (p < 1e-8) associated SNPs. Specifically, we identified
17 SNPs associated with Glycine which is related to insulin
sensitivity and secretion (Floegel et al., 2013). These SNPs are
located on chromosome 2. We also identified 15 SNPs associated
with Dimethylglycine. The list of the identified mQTL is shown in
Supplementary Table S2. Figure 2 is a Manhattan plot for SNPs
associated with Glycine and Dimethylglycine.

3.2 Pathway Analysis of T2D
HisCoM-SM was applied to SNP and metabolite data of T2D/
preT2D patients and normal samples from the KARE dataset

which is a large Korean population-based cohort. We first
mapped the KEGG pathway database with metabolite data.
Among 64 metabolites, 53 metabolites were mapped to 101
pathways. Then, the GMSs were used as components of
pathways, which are latent variables in the model. Note
that we used the two methods to construct GMSs: 1)
Single-SNP association-based GMSs and 2) GBLUP-based
GMSs. Those two methods are discussed in detail in the
Methods section. The lists of identified pathways with
HisCoM-SM based on single-SNP association denoted by
HisCoM-SM (single) and HisCoM-SM based on GBLUP
denoted by HisCoM-SM(GBLUP) are shown in
Supplementary Tables S3, S4, respectively.

To detect the significant pathways associated with T2D in
HisCoM-SM, we selected the pathways with high absolute
coefficient values and low q-values. The metabolic pathway
(map 01100) had the highest absolute effect value and the
lowest q-value in both HisCoM-SM (single) and HisCoM-
SM(GBLUP). Among the 49 metabolites contained in this
pathway, Arginine, Tryptophan, Lactate, Trimethylamine
N-oxide (TMAO), Trans-4-Hydroxy-L-proline, and Hippurate
were significant in both HisCoM-SM methods. Arginine
facilitates the action of glucose to stimulate insulin release
(Gerich et al., 1974). In addition to Arginine, the other five
metabolites have also been reported as risk factors for the
incidence of T2D or the prevalence of T2D (Van Doorn et al.,
2007; Crawford et al., 2010; Chen et al., 2016; Shan et al., 2017;
Tang et al., 2017). In addition, both HisCoM-SM methods
identified the same pathway with the second-highest absolute
coefficient value and the lowest q-value. This pathway is the
biosynthesis of amino acids (map 01230) and has also been
reported to be associated with T2D in previous studies
(Aichler et al., 2017; Lu et al., 2019). These results
demonstrate that HisCoM-SM(single) and HisCoM-
SM(GBLUP) can yield consistent results and identify pathways
associated with T2D.

3.3 Comparison of HisCoM-SM to
Conventional HisCoM Using Metabolite
Data
For comparison purposes, we applied the conventional
HisCoM to KARE metabolite data to identify the T2D
related pathways (Supplementary Table S5). Table 3
summarizes the commonly significant (FDR q-value < 0.05)
pathways by HisCoM-SM(single), HisCoM-SM(GBLUP), and
conventional HisCoM using only metabolite data. These
commonly significant pathways are categorized by the
KEGG pathway category and subcategory. Metabolism is
the category that has the greatest number of significant
pathways. Among the 64 significant pathways, 31 pathways
are included in the metabolism category. Figure 3 is a scatter
plot for the FDR q-values and the correlation coefficients for
each pair of methods. Here, the q-values of HisCoM-SM and
HisCoM showed quite consistent patterns yielding high
correlation coefficients. Figure 4 is a Venn diagram to
show the numbers of significant pathways (FDR q-value <

FIGURE 2 | Manhattan plot for Dimethylglycine and Glycine
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0.05) shared by different methods. Note that 64 out of 74
significant pathways were commonly identified by all three
methods, indicating that HisCoM based methods yielded
quite consistent results. Also, all pathways identified by
HisCoM-SM (single) were identified by HisCoM-
SM(GBLUP).

In Figure 4, conventional HisCoM identified two pathways
that HisCoM-SM could not detect, one of which
(selenocompound metabolism; map 00450) was previously
reported to be associated with T2D (Shin et al., 2020). On the
other hand, HisCoM-SM(GBLUP) identified three pathways,
which conventional HisCoM could not find. Two out of these
pathways were reported as associated with T2D. These two
significant pathways are biotin metabolism (map 00780) and
vascular smooth muscle contraction (map 04270) (Xie et al.,
2006; Hashimoto et al., 2020). For biotin metabolism, several
studies have shown that plasma triacylglycerol, low-density
lipoprotein cholesterol (LDL), and fasting glucose are reduced
in patients with T2D who take biotin supplementation (Maebashi
et al., 1993; Revilla-Monsalve et al., 2006). Furthermore, biotin

intake has been reported to be effective in improving glycaemic
control through diabetic animal models (Reddi et al., 1988; Zhang
et al., 1997).

4 DISCUSSION

Several studies have suggested that pathway analysis using
multi-omics data allows more insights into biological systems.
Pathway analysis using more than one omics data is becoming
increasingly common. However, few studies can identify
disease-related pathways considering SNPs and metabolites
together.

We proposed a novel pathway analysis integrating SNP and
metabolite data. Our method introduced novel genetic
metabolomic scores (GMSs) for pathway analysis. We used a
single-SNP association and a GBLUP approach to construct
GMSs. The calculated GMSs were used as components of
pathways in a hierarchical model. The coefficients can be
estimated by analyzing GMSs and pathways simultaneously,

TABLE 3 | Identified common pathways in HisCoM-SM and conventional HisCoM (q-value < 0.05). The pathways are categorized by KEGG pathway categories and KEGG
pathway subcategories. The values in parenthesis are the number of pathways included in the KEGG pathway.

KEGG pathway category KEGG pathway subcategory Pathway

Cellular Processes (3) Cell growth and death Ferroptosis
Cell motility Regulation of actin cytoskeleton
Cellular community - eukaryotes Gap junction

Environmental Information
Processing (4)

Membrane transport ABC transporters
Signal transduction mTOR signaling pathway/Sphingolipid signaling pathway
Signaling molecules and interaction Neuroactive ligand-receptor interaction

Genetic Information Processing (2) Folding, sorting, and degradation Sulfur relay system
Translation Aminoacy-tRNA biosynthesis

Human Diseases (9) Drug resistance: antineoplastic Antifolate resistance
Endocrine and metabolic disease Insulin resistance
Neurodegenerative disease Amyotrophic lateral sclerosis/Parkinson disease
Substance dependence Alcoholism/Amphetamine addiction/cocaine addiction/Morphine addiction/Nicotine addiction

Metabolism (31) Amino acid metabolism Alanine, aspartate and glutamate metabolism/Arginine and proline metabolism/Arginine
biosynthesis/Cysteine and methionine metabolism/Glycine, serine and threonine metabolism/
Histidine metabolism/Phenylalanine metabolism/Phenylalanine, tyrosine and tryptophan
biosynthesis/Tyrosine metabolism/Valine, leucine and isoleucine biosynthesis/Valine, leucine,
and isoleucine degradation

Biosynthesis of other secondary
metabolites

Caffeine metabolism/Neomycin, kanamycin, and gentamicin biosynthesis

Carbohydrate metabolism Butanoate metabolism/Glyoxylate and dicarboxylate metabolism/Pyruvate metabolism
Energy metabolism Nitrogen metabolism
Global overview maps 2-Oxocarboxylic acid metabolism/Biosynthesis of amino acids/Carbon metabolism/Metabolic

pathways
Metabolism of cofactors and vitamins Nicotinate and nicotinamide metabolism/Pantothenate and CoA biosynthesis/Porphyrin and

chlorophyll metabolism/Thiamine metabolism
Metabolism of other amino acids beta-Alanine metabolism/D-Arginine and D-ornithine metabolism/D-glutamine and

D-glutamate metabolism/Glutathione metabolism/Taurine and hypotaurine metabolism
Nucleotide metabolism Purine metabolism

Organismal Systems (15) Digestive system Bile secretion/Mineral absorption/Pancreatic secretion/Protein digestion and absorption
Endocrine system Estrogen signaling pathway/Insulin secretion/Prolactin signaling pathway
Excretory system Proximal tubule bicarbonate reclamation
Nervous system Dopaminergic synapse/GABAergic synapse/Glutamatergic synapse/Long-term depression/

Retrograde endocannabinoid signaling/Synaptic vesicle cycle
Sensory system Taste transduction
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considering the correlations between these scores and between
pathways, respectively.

We applied HisCoM-SM to the KARE cohort dataset. Our
HisCoM-SM successfully identified pathways that were
reported to be related to T2D. In our result, the pathways
identified by HisCoM-SM and conventional HisCoM were
almost overlapped, indicating that HisCoM-SM and HisCoM
yielded quite consistent results, and the GMSs can be utilized
for pathway analysis. Moreover, HisCoM-SM could identify
the T2D-related pathways that the conventional HisCoM
using only metabolite data could not detect. Since 53
targeted metabolomics in our analysis may cover only a
small portion of the metabolome, modeling the effects of

SNPs on these metabolites resulted in similar results from
the conventional HisCoM method using only metabolites. We
are planning to modify HisCoM-SM so that it allows for each
pathway to have inputs from both genes and metabolites
simultaneously. In other words, SNPs can directly
contribute to pathways (not through metabolites), which
also makes a more biological sense. The new model with a
rewired structure is expected to improve the performance. We
will leave it as a near-future study.

Here, we applied the clumping and thresholding process to
generate genetic metabolomic scores using p-values from
linear regression models. Instead of linear regression
models, other approaches such as Kernel regression can be
applied to detect non-linear relationships between SNPs and
metabolites. Our HisCoM-SM can also use other GMSs such
as the ones derived from the LD pred method (Vilhjálmsson
et al., 2015). Also, once the effect of SNPs on each metabolite
is obtained, it can be used to calculate the GMSs for other
datasets only with SNPs. The GMSs can be calculated using
the effects of SNPs. Regarding the estimation of effects of
pathways and genetic metabolomic scores, we can use
different types of penalty functions. For example, LASSO
or Elastic Net can be easily incorporated into our model
instead of the Ridge penalty. Furthermore, we can
construct a predictive model using HisCoM-SM approach
for diagnosis. Specifically, we will evaluate the prediction
performance of HisCoM-SM and compare it with those of
other models such as original HisCoM using only SNPs and
metabolites in a near future.

We believe that our method may add practical biological insights
into the disease-related pathways by genetic predispositions of
metabolites and contribute to the understanding of molecular
mechanisms and treatment for the disease.
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In the field of bioinformatics, understanding protein secondary structure is very important
for exploring diseases and finding new treatments. Considering that the physical
experiment-based protein secondary structure prediction methods are time-consuming
and expensive, some pattern recognition and machine learning methods are proposed.
However, most of the methods achieve quite similar performance, which seems to reach a
model capacity bottleneck. As both model design and learning process can affect the
model learning capacity, we pay attention to the latter part. To this end, a framework called
Multistage Combination Classifier Augmented Model (MCCM) is proposed to solve the
protein secondary structure prediction task. Specifically, first, a feature extraction module
is introduced to extract features with different levels of learning difficulties. Second,
multistage combination classifiers are proposed to learn decision boundaries for easy
and hard samples, respectively, with the latter penalizing the loss value of the hard samples
and finally improving the prediction performance of hard samples. Third, based on the
Dirichlet distribution and information entropy measurement, a sample difficulty
discrimination module is designed to assign samples with different learning difficulty
levels to the aforementioned classifiers. The experimental results on the publicly
available benchmark CB513 dataset show that our method outperforms most state-of-
the-art models.

Keywords: genetics, biology, protein secondary structure, deep learning, combination classifier, amino acid
sequence

INTRODUCTION

Gene controls the individual characters of biology through the guidance of protein synthesis to
express its own genetic information. With the completion of the human genome project, scientists
have never stopped studying the protein structure. Understanding protein secondary structure is
very important for exploring diseases and finding new treatments (Huang et al., 2016; Li et al., 2021).
Protein structure prediction is a very important research topic in the field of bioinformatics. Protein
is the material basis of life activities, the basic organic matter of cells, and the main undertaker of life
activities. Proteins can be folded into different structures or conformations, showing the feasibility of
various biological processes in organisms. The protein structure determines its function, so the
prediction of protein structure has great research value. In the field of bioinformatics, it is difficult to
predict the spatial protein structure from the primary structure, so the prediction of the protein
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secondary structure has attracted much attention (Zhang, 2008;
Källberg et al., 2012). Protein secondary structures refer to the
local spatial structure of the polypeptide chain skeleton, not
considering the conformation of the side chain and the spatial
arrangement of the whole peptide chain. Besides, protein
secondary structures are stabilized by hydrogen bonds on the
backbone and are considered the linkages between primary
sequences and tertiary structures (Myers and Oas, 2001).
According to the distinct hydrogen bonding modes, generally,
three types of secondary structures have been identified, namely
helix (H), strand (E), and coil (C), where the helix and strand
structures are most common in nature (Pauling et al., 1951). In
the new classification calculated by the DSSP algorithm, the
previous three states are extended to eight states, including α-
helix (H), 310 helix (G), π-helix (I), β-strand (E), β-bridge (B), β-
turn (T), bend (S), and coil (C) (Kabsch and Sander, 1983),
among which the α-helix and β-strand are the principal structure
features (Lyu et al., 2021).

In the field of genetics and bioinformatics, protein secondary
structure prediction is intended to predict the three-dimensional
structure of a protein from its amino acid sequence (Drozdetskiy
et al., 2015). The protein structure prediction is very important
for understanding the relationship between protein structure and
its function. Experimental protein structure determination
methods include X-ray crystallography, nuclear magnetic
resonance spectroscopy, and electron microscopy. However, all
of these methods are very time-consuming and expensive and
require expertise. What is more, at present, the growth rate of the
protein sequence is much higher than the chemical or biological
protein structure determination methods (Fang et al., 2020).
Hence, it is very urgent to explore the protein secondary
structure prediction methods. Although the three-dimensional
structure of a protein cannot be accurately predicted directly from
the amino acid sequence of the protein, we can predict the protein
secondary structure to understand the three-dimensional
structure of the protein. The protein secondary structure
reserves part of the three-dimensional structure information
and can help understand the three-dimensional morphology of
the amino acid in the primary structure (Hanson et al., 2019).

Due to the high application value of the protein secondary
structure prediction in many biological aspects, plenty of related
algorithms based on deep learning methods have been proposed
over the years (Li and Yu., 2016; Wang et al., 2016; Heffernan
et al., 2017; Fang et al., 2018; Zhang et al., 2018; Uddin et al., 2020;
Guo et al., 2021; Lyu et al., 2021; Drori et al., 2018). Current
methods mainly utilize the convolutional and recurrent neural
network to extract different protein features and then apply them
to protein secondary structure prediction. For example, Li and Yu
(2016) proposed an end-to-end deep network to predict the
secondary structure of proteins from the integrated local and
global context features, which leveraged convolutional neural
networks with different kernel sizes to extract multiscale local
contextual features and a bidirectional neural network consisting
of the gated recurrent unit to capture global contextual features.
Wang et al. (2016) presented Deep Convolutional Neural Fields
(DeepCNF) for protein secondary structure prediction, which can
model not only complex sequence-structure relationship by a

deep hierarchical architecture but also interdependency between
adjacent protein secondary labels, so it is much more powerful
than traditional Convolutional Neural Fields. Lyu et al. (2021)
presented a reductive deep learning model MLPRNN to predict
either 3-state or 8-state protein secondary structures. Besides,
Uddin et al. (2020) incorporated a self-attention mechanism
within the Deep Inception-Inside-Inception network (Fang
et al., 2018) to capture both the short- and long-range
interactions among the amino acid residues. Guo et al. (2021).
Integrated and developed multiple advanced deep learning
architectures (DNSS2) to further improve secondary structure
prediction. As described above, most researchers currently focus
on exploring the complex deep learning models, and a few try to
solve the protein secondary structure prediction task from the
perspective of model learning or training methods, for example,
“ELF: An Early-Exiting Framework for Long-Tailed
Classification” (Duggal et al., 2020).

Real data usually follow a long-tailed distribution, most
concentrated in only a few classes. On datasets following this
distribution, neural networks usually cannot deal well with all
classes (majority or rareness classes). If the model performs well
on majority classes, it tends to perform poorly on the rareness
classes and vice versa, resulting in poor performance. The protein
secondary structure prediction task also shows a similar problem.
For example, we visualize the CB6133-filtered and CB513 datasets
(Zhou and Troyanskaya, 2014) and find an imbalance problem in
the protein secondary structure labels distribution. For example,
the number of labels α-helix (H), β-strand (E), and coil (C) is
much greater than other labels. This imbalance problem has
traditionally been solved by resampling the data (e.g.,
undersampling and oversampling) (Chawla et al., 2002;
Minlong et al., 2019) or reshaping the loss function (e.g., loss
reweighting and regularization) (Cao et al., 2019; Cui et al., 2019).
However, by treating each example within a class equally, these
methods fail to account for the important notion of example
hardness. In other words, within each class, some examples are
easier to classify than others (Duggal et al., 2020). Hence, “ELF:
An Early-Exiting Framework for Long-Tailed Classification” is
proposed to overcome the above-described limitations and
address the challenge of data imbalance. ELF incorporates the
notion of hardness into the learning process and can induce the
neural network to increasingly focus on hard examples because
they contribute more to the overall network loss. Hence, it frees
up additional model capacity to distinguish difficult examples and
can improve the classification performance of the model.

To our knowledge, few studies try to solve the protein
secondary structure prediction task from the perspective of the
model learning process. This study proposes a framework called
Multistage Combination Classifier Augmented Model (MCCM)
to solve that task and fill in the blanks.We first introduce a feature
extraction module to extract features with different learning
difficulty levels. Then, we design two classifiers that can learn
the decision boundaries for easy and hard samples, respectively.
Finally, we propose a sample learning difficulty discrimination
module via exploring two strategies. Specifically, the first strategy
is label-dependent, assuming the sample is hard if it is
misclassified. However, the actual data is lack of labels. Hence,
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the second strategy utilizes Dirichlet distribution and information
entropy measurement. The experimental results based on the first
method and the benchmark CB513 dataset show that our
proposed framework outperforms other state-of-the-art models
by a large margin, indicating that if the multilevel samples
discriminating module can be designed effectively, our
framework can obtain state-of-the-art performance.
Furthermore, the results based on the second method also
show that our model outperforms most state-of-the-art
models. In this work, we made the following key contributions:

• We are first to develop a Multistage Combination Classifier
Augmented Framework for protein secondary structure
prediction task. It consists of multilevel (easy or hard
level in this study) features extraction, multistage
combination classifiers, and multilevel samples
discrimination module. The last module is realized based
on label-dependent and label-independent methods,
respectively.

• For our core multilevel samples discrimination module, a
label-independent measurement standard to discriminate
the easy and hard samples is first explored by our
work based on Dirichlet distribution and information
entropy theory. The Dirichlet distribution is designed
to measure the model confidence based on subjective
logic theory. The information entropy is designed to
evaluate whether the Dirichlet distribution shows a
highly confident distribution and, thus, capture the easy
samples that tend to be classified accurately by the easy
classifier.

• The results based on the label-independent method show
that our model outperforms most state-of-the-art methods,
indicating that the designed multilevel samples
discrimination module herein is effective. The excellent
result based on the label-dependent method means that
our framework can obtain a state-of-the-art performance if
the multilevel samples discriminating module is designed
appropriately. Hence, our work not only offers a new idea to
deal with the protein secondary structure prediction task
but also leaves room for further research focusing on how to
design a more effective multilevel samples discrimination
module.

METHODS AND MATERIALS

Benchmark Datasets
In the field of protein secondary structure prediction in genetics
and bioinformatics, CB6133-filtered and CB513 datasets (Zhou
and Troyanskaya, 2014) are two benchmark datasets widely used
by the researchers (Li and Yu., 2016; Fang et al., 2018; Zhang et al.,
2018; Guo et al., 2021; Lyu et al., 2021). The CB6133-filtered
dataset is filtered to remove redundancy with the CB513 dataset
(for testing performance on the CB513 dataset). In particular, the
CB6133-filtered dataset is used to train the model, and the CB513
dataset is used to test the model. The training CB6133-filtered
dataset is a large non-homologous sequence and structure

containing 5,600 training sequences. The dataset is made by
the PISCES Cull PDB server, a public server for screening
protein sequence sets from the Protein Data Bank (PDB)
according to sequence identification and structural quality
standards (Wang and Dunbrick, 2003). The testing dataset
CB513 was introduced by Cuff and Barton (Cuff and Barton,
1999, 2000), which contains 514 sequences. The two available
benchmark datasets can be obtained by Zhou’s website.

Input Features
Considering the difficulty of protein secondary structure
prediction in genetics and bioinformatics, we use four types of
features to characterize each residue in a protein sequence,
including 21-dimensional amino acid residues, one-hot coding,
and the sequence of 21-dimensional profile features, obtained
from the PSI-BLAST (Altschul et al., 1997) log file and rescaled by
a logistic function (Jones, 1999). Furthermore, the seven-
dimensional physical property features (Jens et al., 2001) were
previously used for the protein structure and property prediction
by researchers (Heffernan et al., 2017) and obtained a good
performance. The physical properties include steric parameters
(graph-shape index), polarizability, normalized van der Waals
volume (VDWV), hydrophobicity, isoelectric point, helix
probability, and sheet probability. We also take them as one of
the input features, and the features can be downloaded from
Meiler’s study (Jens et al., 2001). Finally, the one-dimensional
conservation score was obtained by applying the method (Quan
et al., 2016):

R � log 20 +∑
20

1
Li log Li. (1)

The residues are transformed according to the frequency
distribution of amino acids in the corresponding column of
homologous protein multiple sequence alignment. The score
information in the profile features was calculated from this
probability. Residue score in the ith column was calculated as
follows (Altschul et al., 1997):

Si � [ln(
Li

Pi
)]/λu, (2)

where Li is the predicted probability that a properly aligned
homologous protein has amino acid i in that column and Pi is the
background probability. λu is 0.3176. Li is defined as

Li � exp(Si · λu) · Pi. (3)

Model Design
The proposed model for protein secondary structure prediction
in genetics and bioinformatics consists of a feature extracting
module and a Multistage Combination Classifier Module. This
section firstly introduces the two modules separately and then
explains the overall architecture in detail.

Multilevel Features Extraction
We use a multilevel features extraction module to extract easy
(low level) and hard (high level) features. The easy feature is

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 7698283

Zhang et al. Protein Secondary Structure Prediction

150

https://www.princeton.edu/%7Ejzthree/datasets/ICML2014/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


obtained through four linear layers and multiscale one-
dimensional convolution layers. At first, we apply the four
linear layers to the amino acid residues one-hot coding,
sequence profile, physical property, and conservation score
features, respectively. Further, we apply the concatenation
function for the outputs, intended to obtain the feature
representations with denser and more information. We define
the concatenated outputs as

l � [l11, . . . , l
1
T, l

2
1, . . . , l

2
T, l

k
1, . . . , l

k
T], (4)

where lkT denotes the output of the linear layer k and T is the index
of amino acid sequence. To model local dependencies of adjacent
amino acids, we leverage multiscale one-dimensional convolution
layers to extract local contexts (Li and Yu., 2016):

ci � F · lki: i+f−1 � Relu(w · lki: i+f−1 + b), (5)
where F ∈ Rf·m is a convolutional kernel, f is kernel size, and m
is the feature dimensionality of the concatenated outputs of the
four linear layers l. w and b is the trainable parameters of the
convolution layers. In this study, f of the three one-dimensional
convolution layers is 5, 9, and 13, respectively. We define the
concatenated outputs of the multiscale one-dimensional
convolution layers as

c � [c11, . . . , c
1
T, cl

2
1, . . . , c

2
T, cl

k
1, . . . , c

k
T], (6)

where ckT denotes the output of the convolution layer k.
Then, based on the obtained easy feature c, the hard feature is

further extracted by one Gate Recurrent Unit (gru(·)) and the
attention mechanism. gru(·) is designed to capture the global
contexts in the amino acid sequences. Defining the input of the
GRU as (ckt , ht−1), the mechanism of a GRU can be presented as
follows:

rt � sigm(Wcr · ct +Whr · ht−1 + br), (7)
ut � sigm(Wcu · ct +Whu · ht−1 + bu), (8)

~ht � tanh(Wc~h · ct +Wh~h · (rt ⊙ ht−1 + b~h)), (9)
ht � ut ⊙ ht−1 + (1 − ut) ⊙ ~ht, (10)

where rt is the activation of the reset gate; ut is the activation of
the update gate; ~ht is the internal memory cell; ht is the GRU
output; Wcr, Wcr, Wcu, Whu, Wc~h, and Wh~h are weight matrices;
and br, bu, and b~h are bias terms. Besides, ⊙, sigm, and tanh
denote element-wise multiplication, sigmoid, and hyperbolic
functions, respectively. Further, the sequential attention
mechanism (SAM) has been widely used in the LSTM-based
solutions for sequential learning problems (Feng et al., 2019). In
this study, considering the global contexts ht of different amino
acid sequence steps could contribute differently to the
representation of the whole amino acid sequences. We use the
attention mechanism to compress the hidden representations of
global contexts ht at different sequence steps into an overall
representation with adaptive weights:

~αt � sTa tanh(Wa · ht + ba), (11)

αt � exp~αt

∑
T
t�1exp~αt

, (12)

αh � ∑
T

t�1αtht, (13)
whereWa, sa, and ba are trainable parameters and αh denotes the
important contexts information, aggregating from the global
contexts ht. Although αh aggregated most part of the
important contexts’ information, it also may lead to losing
part of important information more or less. Hence, we apply
the concatenation function to the original global contexts ht and
the aggregated contexts information αh. At last, the obtained local
contexts, global contexts, and aggregated global contexts through
SAM are concatenated together as the hard features:

v � [c, h, αh]. (14)
Finally, the easy feature c is sent to the easy classifier, and the

hard feature v is sent to the hard classifier.

Multistage Combination Classifier Module
Predicting protein secondary structure in genetics and
bioinformatics is a challenging task that we try to solve from
the perspective of the model learning method. On the one hand,
the existing research results point out that, within different classes
of all samples (the classes are either majority or minority), some
examples are easier than the others (Duggal et al., 2020). On the
other hand, different people may be suitable for different work.
Similarly, the different classifiers may be suitable for classifying
different samples. Following the theory and intuition, we design
two classifier branches in the model to deal with samples with
different difficulty levels. The first classifier branch comprises a
simple linear layer, which aims to deal with the simple samples
(easy to classify). The second classifier branch comprises a multi-
layer perceptron (MLP(·)), which is more complex than the first
classifier and aims to deal with the hard samples (hard to classify).
The first classifier branch can correctly classify some easy samples
and serve as a filter to filter them out, avoiding being sent to the
second complex classifier. We regard the remaining samples,
classified by the first classifier incorrectly, as hard samples and
further send them to the second complex classifier. After the
computation of each classifier, we calculate the cross-entropy loss
between the predicted outputs and ground truth labels:

LC � 1
B
∑

B

i
−∑

Z

j�1yij(log(pij)), (15)

where B is the number of batch samples and Z is the number of
target labels. We can further obtain the cross-entropy loss
computed based on the easy and hard classifier and describe
them as LC easy and LC hard, respectively. After the computation
of the first simple classifier, we can obtain the loss value of all
samples. Further, we can obtain the loss value of the hard samples
after the computation of the second hard classifier. Hence, the
loss value of the harder samples is increased in general, and the
model is induced to pay more attention to harder samples and
improve the classification performance. The final loss function is
the sum of the cross-entropy loss of the easy and hard versions:
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LC all � LC easy + LC hard. (16)

Sample Difficulty Discrimination Module
We have designed the easy and hard classifiers to deal with
different samples. However, we need to further design a
measurement standard to discriminate between the easy and
hard samples among all samples. For the model, a label is an
ideal tool to realize our purpose. If samples are classified
accurately according to their labels, we regard them as easy
samples and the others as hard samples sent to the hard
classifier. In this way, the different classifiers can be assigned
suitable samples, and our model can be trained well. However, the
actual data is lack of labels. Hence, we just can design the
measurement standard to get close to the ideal effect in all
possible ways. In this study, we design a measurement
standard based on subjective logic (SL) and Dirichlet
distribution with Z parameters α � [α1, α2, . . . , αZ] , and α are
called subjective opinions (Dempster, 2008; Josang, 2016). If the
model has a highly motivated subjective opinion on one class of
one test sample, it means that the model is confident to classify it
accurately after being trained on the training data. For example,
as shown in Figure 1, the easy classifier classifies the amino acid
into three states (H, E, and C). IE denotes the information
entropy, Tindex denotes the index of True label, and pz

denotes the expectation of the Dirichlet distribution. We will
further discuss them in the following part. Based on the subjective
logic theory, we know that if the predicted α of certain amino
acids are [14.10, 1.33, and 1.21] (each α corresponds to one state),
the easy classifier is very confident to classify the amino
accurately. Hence, following a Dirichlet distribution, the
subjective multinomial opinion will yield a sharp distribution
on one corner of the simplex (Figures 1A, B). However, if the
predicted α are [2.24, 1.82, and 1.78], as shown in Figure 1C, the

model is not confident to classify it accurately, and it should be
sent to a hard classifier. In this condition, the multinomial
opinion will yield a central distribution (Figure 1B). The
Dirichlet distribution is a probability density function (pdf) for
possible values of the probability mass function (pmf) p and can
be expressed by Z parameters α:

Dir(p
∣∣∣∣α) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
B(α)∏

Z

i�1
pαi−1
i ,

0 otherwise

, 17)

where p is the probability mass function and α � [α1, . . . , αZ] are
the parameters of Dirichlet distribution. Z denotes the label
category. B(α) is a polynomial beta function in Z dimension
[36]. Based on SL, the expectation of Dirichlet distribution based
on neural network evidence theory can be computed as follows:

pz � αz/S, (18)

S � ∑
Z

z�1
αz, (19)

αz � ez + 1, (20)
ez � ζ(ŷs), (21)

where αz are Dirichlet parameters, ŷs is the output vector
before being sent to the softmax layer, and ζ(·) denotes an
activation layer (e.g., ReLU). ez is the amount of evidence
and S is the Dirichlet strength. By minimizing the mean
square error loss based on the Dirichlet parameters, the
Dirichlet distribution can be optimized according to the
loss function as

Ldir � ∑
B

b�1(yb − pb)
2 + pb(1 − pb)

(Sb + 1) , (22)

where B is the batch size of the samples, yb is the real label of
a single sample, pb is the Dirichlet distribution expectation of
a single sample, and Sb is the Dirichlet strength of a single
sample.

Finally, we use the information entropy (IE) to know whether
the easy classifier has a highlymotivated subjective opinion on the
samples. Given the predicted Dirichlet distribution parameters
[α1, α2, . . . , αZ], we can compute pz. Further, we can compute the
information entropy of pz, which is defined as

H(pz) � −∑p(pz)log2(p
z). (23)

As shown in Figure 1, if the easy classifier is very confident to
classify the sample accurately, its information entropy tends to be
lower than other conditions. We can also find that the classifier
with low information entropy shows a highly motivated
subjective opinion on the current samples and classifies them
accurately (Figures 1A,B). However, the classifier with high
information entropy shows a uniform subjective opinion on
the current sample labels and classifies it incorrectly. Hence,
the information entropy can be used to help the model
discriminate between the easy and hard samples. We define
the discriminating process as

FIGURE 1 | Prediction of the Dirichlet distribution of the three amino acid
samples’ analysis.
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samplescur

� {
sampleseasy, if argmax(pb) � yb andH(pz)<H(pz)per
sampleshard, otherwise

,

(24)
whereH(pz)per is per th percentile ofH(pz), which is a threshold
to distinguish the samples into hard or easy samples. In
particular, in the training process, if the samples are classified
correctly and their information entropy is lower than the
threshold, they will not be sent to the hard classifier.
Otherwise, the samples will be sent to the hard classifier again.
In the test process, there is no need to know whether the samples
are classified correctly, and the easy or hard samples are only
divided based on the information entropy. The samples with the
high information entropy will be sent to the hard classifier for the
final prediction result.

Hence, the final loss function of our model can be obtained by
uniting Eqs. 16, 22:

LC final � LC easy + β · Ldir
easy + LC hard + β · Ldir

hard. (25)
According to Eq. 22, Ldireasy and Ldirhard are calculated based on

the output of the easy and hard classifiers, respectively.
The architecture of the Multistage Combination Classifier

Augmented Model (MCCM) is shown in Figure 2. After
preprocessing the dataset, 50-dimensional features are

obtained and taken as the input features, including the 21-
dimensional amino acid residues one-hot coding, 21-
dimensional sequence profile, 7-dimensional physical property,
and 1-dimensional conservation score. The features are first
preprocessed into easy ones through four linear layers and
multiscale one-dimensional convolution layers. Based on the
Dirichlet distribution and information entropy, the samples
are divided into easy and hard ones by an easy classifier (a
simple linear layer). Then, the easy feature is further
preprocessed into a hard one through gru(·) and the attention
mechanism SAM. Finally, the hard samples are sent into a hard
classifier (MLP(·)).

Implementation Details
The hidden sizes of the four linear layers used for the 21-
dimensional amino acid residues one-hot coding, 21-
dimensional sequence profile, 7-dimensional physical property,
and 1-dimensional conservation score features are 64, 128, 32,
and 16, respectively. The hidden size of the multiscale one-
dimensional convolution layers is 64 and the corresponding
kernel sizes are 5, 9, and 13, respectively. The GRU layer is
bidirectional and the hidden size is 256. The hidden size of the
linear layer used in the attention mechanism is 256. The hidden
sizes of the first two layers used in MLP are 512 and 1,024. The
models are optimized by Adam optimizer, and the learning rates
are set to 0.0005. During training, the dropout function can

FIGURE 2 | The overall architecture of the Multistage Combination Classifier Augmented Model (MCCM) for protein secondary structure prediction in genetics and
bioinformatics.
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randomly zero some of the elements of the input tensor with
probability τ using samples from a Bernoulli distribution. Herein,
the dropout function is used in four linear layers and the MLP
layers and τ is set as 0.5. The percentile of H(pz) used in this
study is 15, 30, and 35. The β used in Eq. 22 is 1. All results have
been produced based on the same hardware environment: Intel
(R) Core (TM) CPU I7-10700 @ 2.90 GHz 16 cores. Finally, we
define the proposed label-dependent model (only used to explore
the theoretical best performance) equipped with both LC easy and
LC hard as MCCM. The proposed label-dependent model
equipped with only LC easy is defined as MCCMeasy, which
means there is no backpropagation operation through the loss
functionLC hard. The proposed label-independent model (use the
evidence and information entropy theory to divide the samples
into easy and hard ones) is MCCMdir.

Performance Evaluation
In the field of protein secondary structure prediction in genetics
and bioinformatics, the Q score measurement formulated as Eq. 6
has been widely used to evaluate the performance of the proposed
models. It measures the percentage of residues for which the
predicted secondary structures are correct (Wang et al., 2016):

Qk � 100% ×
∑

k
i�1Ncorrect(i)

N
, (26)

where k indicates the number of classes, for example, Q3 score (k
= 3) or Q8 score (k = 8). Q8 classes include α-helix (H), 310 helix
(G), π-helix (I), β-strand (E), β-bridge (B), β-turn (T), bend (S),
and coil (C).Q8 is transformed toQ3 by treating the label (B, E) as
E, (G, I, H) as H, and (S, T, C) as C.

RESULTS AND DISCUSSION

Experimental Results of Evaluating
Indicators
The evaluation results of the proposed model based on the
public CB513 test dataset are shown in Table 1. MCCMdir

means using the Dirichlet distribution and information
entropy to divide the samples into easy and hard ones. In

MCCMeasy and MCCM, we use label information to divide the
samples, an ideal measurement method that can help us
explore the theoretical best performance. Besides,
MCCMeasy means there is no backpropagation operation
through the loss function LC hard and the model will not be
induced to pay more attention to hard samples. The results of
the benchmark methods on CB513 datasets are obtained from
(Shapovalov et al., 2020), except for the DNSS2, which is
obtained from Guo et al. (2021). We can find that the Q3
and Q8 accuracy of the MCCMdir is better than most of the
benchmark methods, denoting that the designed method is
based on Dirichlet distribution and information entropy to
distinguish the hard or easy samples is effective. Besides, note
that, due to our computer resource constraints, there are only
two designed classifiers and corresponding feature extractors
in our framework, which limits the performance of our model.
Moreover, compared with MCCMeasy, we can find that MCCM
outperforms state-of-the-art models by a large margin in both
Q3 and Q8 accuracies, which means that the model is induced
to pay more attention to hard samples and improves the
classification performance of the model overall through the
backpropagation operation of both LC easy and LC hard. It
shows that it is reasonable to use different classifiers to
classify samples with different difficulty levels, thus
increasing the loss values of hard samples, inducing the
model to pay more attention to hard samples. However, the
label information is lacking in actual data, so the excellent
performance of MCCM only denotes that if the multilevel
samples discriminating module (divide samples into hard and
easy ones) is designed very effectively, our method can obtain
the state-of-the-art performance.

Ablation Study
This section gives a more comprehensive analysis regarding the
effectiveness of the proposed framework. The different levels of
classifiers equipped with the multilevel samples discriminating
module can improve the performance of the prediction task. The
compared variants are as follows:

MCCMc1: the variant is the front part of our proposed model
(without the multilevel classifiers and sample difficulty
discrimination module), which only uses the concatenated
features c and easy classifier (see Figure 2) to deal with the
prediction task. This model only uses the convolution layer to
extract the features and then conducts the classification task based
on the low-level features.

MCCMc2: the variant is the part of our proposed model
(without the multilevel classifiers and sample difficulty
discrimination module) that uses the concatenated features

TABLE 1 | Q3 and Q8 accuracy of different algorithms on the public CB513
dataset.

Algorithms Q3 Q8

DeepCNF (2016) 81.80 69.1
DCRNN (2018) - 69.70
eCRRNN (2018) 81.20 70.2
DNSS2 (2021) 82.56 73.36
BLSTM (2015) - 67.40
GSN (2014) - 66.40
SSpro, free (2014) 78.50 63.50
JPRED4 (2015) 81.70 -
SecNet (2020) 84.30 72.30
MCCMdir 82.12 69.79
MCCMeasy 86.94 71.78
MCCM 96.31 83.74

The bold values denote the best values of performance metrics.

TABLE 2 | Q3 and Q8 accuracy of variant models on the public CB513 dataset.

Algorithms Q3 Q8

MCCMc1 79.93 66.30
MCCMc2 81.45 68.92
MCCMconf 81.00 66.42
MCCMdir 82.12 69.79

The bold values denote the best values of performance metrics.
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[c,h,a] and hard classifier (see Figure 2) to deal with the
prediction task. This model uses not only the convolution
layer but also gru(·) and the attention mechanism to extract
the features. Then, it conducts the classification task based on
both the low- and high-level features.

MCCMconf: the variant is designed based on the ELF (Duggal
et al., 2020), which uses the classifier confidence to distinguish the
samples into easy and hard ones. Particularly, in the training
process, if the samples are classified correctly and their classifier
confidence is lower than the threshold (0.9 used in ELF and this
study), they will not be sent to the hard classifier. Otherwise, the
samples will be sent to the hard classifier again. In the test process,
the samples with low classifier confidence will be sent to the hard
classifier for the final prediction result.

The experiment results are shown in Table 2. The
performance of MCCMc1 is the worst, and the performance of
MCCMc2 is better than it, which means that the addition of the
high-level features extractor GRU and attention mechanism is
effective. The performance of MCCMdir is better than MCCMc2,
which means that our proposed framework is effective. The
designed multilevel classifiers and sample difficulty
discrimination module can help the model pay more attention
to the hard samples and improve the model performance. Note
that, if we can increase the depth of our network and use more

classifier branches, the model performance will be better.
Moreover, the performance of MCCMdir is better than that of
MCCMconf, which means that our designed sample difficulty
discrimination module is better than that proposed in ELF
(Duggal et al., 2020). The Dirichlet distribution united with
the information entropy can divide the samples into hard and
easy ones, which is better than using the simple classifier
confidience.

Analysis of the Training Process
The training loss computed on the CB6133-filtered dataset and
the test loss computed on the CB513 dataset are shown in
Figure 3. Label-dependent MCCM and label-independent

FIGURE 3 | The loss value computed on the training and test datasets.

TABLE 3 | Prediction accuracy of each label in the Q8 states based on the CB513
dataset.

Label Types Frequency MCCMdir MCCMeasy MCCM

H α-Helix 30.86 91.97 89.91 96.30
E β-Strand 21.25 83.67 80.08 92.30
C Coil 21.14 63.73 63.92 88.45
T β-Turn 11.81 53.96 88.46 74.37
S Bend 9.81 26.35 23.68 51.91
G 310 Helix 3.69 30.62 18.3 46.87
B β-Bridge 1.39 4.57 3.47 6.94
I π-Helix 0.04 0.00 3.33 0.00

The bold values denote the best values of performance metrics.

TABLE 4 | Q3 confusion matrix, of 84,765 test labels (MCCMdir, MCCMeasy, and
MCCM).

Accuracy (MCCMdir) Pred freq. True label

82.12 C E H

True freq. 100% 42.76 22.65 34.59
Predicted label C 44.53 35.15 3.76 3.85

E 21.07 5.27 16.90 0.48
H 34.40 4.11 0.41 30.07

Accuracy (MCCMeasy) Pred freq. True label

86.94 C E H

True freq. 100% 42.76 22.65 34.59
Predicted label C 36.75 36.1 4.87 1.79

E 27.66 0.38 19.65 2.61
H 35.59 0.26 3.14 31.19

Accuracy (MCCM) Pred freq. True label

96.31 C E H

True freq. 100% 42.76 22.65 34.59
Predicted label C 42.41 41.75 0.29 0.72

E 22.59 0.47 21.22 0.95
H 35.00 0.19 1.07 33.33

The bold values denote the best values of performance metrics.
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MCCMdir are all optimized by the loss functions LC easy and
LC hard, but MCCMeasy is only optimized by the loss function
LC easy. Hence, the loss value of the MCCM is always greater than
that of MCCMeasy. LC hard is computed based on the hard
samples and can induce the model to pay more attention to
the hard samples (samples tend to be classified incorrectly in both
majority or rareness classes).

Analysis of the Prediction of Q8 States and
Confusion Matrix
In the field of protein secondary structure prediction in
genetics and bioinformatics, the predictive precision for
each class of Q8 would provide more useful information,
and we compute the prediction accuracy of each label in the
Q8 states based on the CB513 dataset. At the same time, we
compute the confusion matrix to further explore the model
performance. Table 3 shows the prediction accuracy
(MCCMdir, MCCMeasy, and MCCM) of each label in the Q8
states. Tables 4, 5 show the Q3 and Q8 prediction confusion

matrix, respectively. Associating the three tables, we can find
that although MCCMeasy is only optimized by the loss function
LC easy, it also outperforms MCCMdir. The main reason for the
better performance is that MCCMeasy uses the label
information to divide the samples into hard and easy ones,
denoting that the method to distinguish the samples is very
important.

The existing research results point out that, within different
classes of all samples (either the classes is majority or minority),
some examples are easier than others (Duggal et al., 2020).
Comparing the performance of MCCMeasy and MCCM, we
can find that the former based on loss function LC easy can
correctly classify the easier examples. Further, the latter, based
on loss functions LC easy and LC hard, can correctly classify the
easier examples and correctly classify the remaining harder
examples. For example, from Table 3, we can find that
MCCMeasy (optimized only by loss function LC easy)
prediction accuracy of labels H, E, C, S, G, and B is much
lower than that of MCCM (optimized by loss functions
LC easy and LC hard), which means the harder examples are

TABLE 5 | Q8 confusion matrix of 84,765 test labels (MCCMdir, MCCMeasy, and MCCM).

Accuracy (MCCMdir) Pred freq. True label

69.79 C B E G I H S T

True freq. 100% 21.14 1.39 21.25 3.69 0.04 30.86 9.81 11.81
Predicted label C 23.33 13.47 0.04 3.58 0.27 0.00 1.04 1.28 1.46

B 0.14 0.69 0.06 0.33 0.02 0.00 0.11 0.09 0.09
E 23.81 2.29 0.02 17.78 0.07 0.00 0.42 0.31 0.37
G 2.57 0.65 0.00 0.21 1.13 0.00 0.91 0.12 0.68
I 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00
H 33.43 0.86 0.01 0.29 0.4 0.00 28.38 0.1 0.82
S 5.12 3.48 0.01 1.07 0.18 0.00 0.69 2.58 1.79
T 11.6 1.9 0. 0.55 0.5 0.00 1.86 0.63 6.37

Accuracy (MCCMeasy) Pred freq. True label

71.78 C B E G I H S T

True freq. 100% 21.14 1.39 21.25 3.69 0.04 30.86 9.81 11.81
Predicted label C 13.51 13.51 0.21 0.54 0.03 0.46 0.32 0.54 5.52

B 1.14 0.00 0.05 0.14 0.01 0.09 0.04 0.1 0.98
E 18.58 0.00 0.15 17.02 0.01 0.35 0.17 0.33 3.22
G 0.78 0.00 0.13 0.09 0.68 0.11 0.11 0.2 2.38
I 2.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
H 28.84 0.00 0.13 0.1 0.01 0.21 27.74 0.21 2.46
S 4.12 0.00 0.24 0.47 0.02 0.6 0.28 2.32 5.88
T 30.91 0.00 0.24 0.22 0.02 0.3 0.17 0.41 10.45

Accuracy (MCCM) Pred freq. True label

83.74 C B E G I H S T

True freq. 100% 21.14 1.39 21.25 3.69 0.04 30.86 9.81 11.81
Predicted label C 23.31 18.7 0.02 0.45 0.31 0.00 0.38 0.56 0.71

B 0.21 0.48 0.10 0.29 0.04 0.00 0.09 0.26 0.14
E 22.1 0.48 0.03 19.62 0.11 0.00 0.1 0.63 0.30
G 3.23 0.53 0.00 0.21 1.73 0.00 0.31 0.29 0.60
I 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.01
H 31.50 0.35 0.01 0.11 0.2 0.00 29.72 0.23 0.24
S 7.76 1.8 0.05 0.96 0.33 0.00 0.48 5.09 1.10
T 11.88 0.96 0.00 0.46 0.49 0.00 0.42 0.69 8.79

The bold values denote the best values of performance metrics.
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further correctly classified. However, we also can find that the
MCCM prediction accuracy of labels T and I is lower than that of
MCCMeasy, which may cause by the limited classifiers. On the
whole, MCCMoutperformsMCCMeasy by a large margin because
MCCM is optimized by the loss functions LC easy and LC hard,
increasing the loss value of the harder samples and inducing the
model to pay more attention to them. Finally, the overall
classification performance of the model is improved. Hence,
the most harder samples (tend to be classified incorrectly by
MCCMeasy) are further classified correctly by MCCM, which can
be known in the shown tables.

Associating the performance of MCCMdir andMCCM, we can
induce that if we can design a method to distinguish the samples
well (the discrimination effect is close to using label information),
our method can obtain the state-of-the-art performance. Future
research can focus on this point.

CONCLUSION

In the field of bioinformatics, understanding protein secondary
structure is very important for exploring diseases treatments.
This study proposes a framework for predicting the protein
secondary structure, consisting of multilevel features extraction,
multistage combination classifiers, and multilevel samples
discriminating module. In the multilevel features extraction
module, we design a different backbone network to extract
the features of the multilevel (easy and hard levels in this
study) from the original data. In the multistage combination
classifiers module, we design two classifiers to deal with samples
with different difficulty levels, respectively. Finally, in the
multilevel samples discriminating module, we design a
measurement standard based on the Dirichlet distribution
and information entropy to assign suitable samples to
different classifiers (multistage combination classifiers) with
different levels. The first classifier is used to learn and
classify the easier samples and filter them out, avoiding being
sent to the second classifier. Further, the remaining harder
samples will be sent to the second classifier. We compute the
loss value of the two classifiers. Consequently, the loss value of
the harder samples will be accumulated and will always be
greater than the easier ones. This method can induce the model

to pay more attention to harder samples and improve the
classification performance. The experimental results on the
publicly available benchmark CB513 dataset show the
superior performance of the proposed method.

However, the experimental results show that the current
multilevel samples discriminating the module in this study
are not designed well, which limits the performance of our
framework. Herein, the related experiments show that if the
multilevel samples discriminating module is designed well,
our framework can obtain state-of-the-art performance.
Besides, the depth of our network and the number of
classifier branches also can be further increased to raise
the performance of our framework. Hence, future work can
focus on designing a more effective multilevel samples
discriminating module and designing the deeper network
as well as the more classifier branches to further improve
the model performance.
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