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Editorial on the Research Topic

Sex Hormone Fluctuations Across the Female Lifespan: Mechanisms of Action on Brain

Structure, Function, and Behavior

Medical and scientific literature, from preclinical animal models to clinical trials, largely excludes
females (Woitowich et al., 2020). The justifications for exclusion are manifold, with the cyclic
nature of hormones across the female lifespan targeted as a source of irremediable confound
(Shansky, 2019; Rechlin et al., 2022). This dogma has led to an overreliance on data from male
participants (Geller et al., 2018). As a result, significant disparities exist in our understanding of
the female brain and body across the lifespan (Taylor et al., 2020; Shansky and Murphy, 2021).
This perpetuates inequities, such that women frequently experience delays in receiving a diagnosis,
which results in inferior healthcare (Vlassoff, 2007; Westergaard et al., 2019; Chinn et al., 2021).
Important research over the past several decades has taught the field that sex hormones, including
estrogens, androgens, and progesterone, have far-reaching effects beyond their classic reproductive
functions. This Research Topic highlights the ways in which sex hormones exert broad systems-
levels effects on mammalian biology, including the central nervous system. These effects are not
static, but rather fluctuate across time scales ranging from diurnal to decades in both males and
females. Major hormone transition periods, including puberty/adolescence, the menstrual cycle,
pregnancy, the postpartum period, and the menopause transition impart unique effects on the
female brain that can alter the trajectory of brain and cognitive aging, resulting in long lasting
structural and functional brain changes (Koebele and Bimonte-Nelson, 2015). The contributions
to this collection not only expand our understanding of the impact of sex hormones on the brain
and behavior, but will also allow researchers and healthcare professionals to better serve individuals
who have an incredible depth and breadth of diverse hormone-related experiences and exposures
across the lifespan.

With regard to endogenous hormone fluctuations across the menstrual cycle, Diekhof et al.
provide an intriguing report on the influence of variations in 17β-estradiol levels and the
COMT-Val158Met genotype on decision-making across the menstrual cycle. Xu et al. also present
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novel findings demonstrating that varied workload demands
modulate menstrual cycle effects on attentional processes. These
studies help reveal the complexity and nuance of sex hormones’
influence on behavior.

Preclinical and clinical perspectives have elucidated
exogenous hormone effects on the brain and behavior, including
hormone-containing contraceptives and menopausal hormone
therapies. Despite a majority of women having exposure
to exogenous hormones during their lifetime (Centers for
Disease Control Prevention, 2019), this is a profoundly
understudied research area. In their topic contribution, Beltz
et al. explore biopsychosocial influences on spatial skills,
including those of oral contraceptive use and gender self-concept
on a mental rotation task, expanding our understanding of
factors contributing to performance variability often reported
from neuropsychological tasks. Kimmig et al. demonstrate that
oral contraceptives do not impair emotion recognition, and
that progesterone levels were associated with cycle-dependent
differences in negativity bias in naturally cycling women during
an emotion recognition task. Mentin-Henry et al. also provide
novel insights into emotional processing using resting state
functional magnetic resonance imaging by reporting both
sex and oral contraceptive use alter brain and behavioral
outcomes for their emotion recognition task; interestingly,
the androgenicity of oral contraceptives significantly impacted
results. In a complimentary fashion, Koebele et al. showed that
variations in hormone therapy formulation differentially impact
working memory, anxiety-like and depressive-like behavior
outcomes in a preclinical rat model of transitional menopause.
Together, these findings underscore the need to take an
individualized approach to exogenous hormone therapies rather
than the one-size-fits-all approach that is commonplace today.

Sex hormones modulate all body systems including the
brain, which is substantiated by clear sex differences in
the incidence of a number of psychiatric, autoimmune,
and neurological diseases (Barth et al., 2015; Mauvais-Jarvis
et al., 2020). Moreover, mounting evidence suggests that these
systemic influences interact. For instance, Engler-Chiurazzi
et al. share an in-depth review exploring the convergence
of estrogen effects on immune function and affect from
a lifespan perspective, advancing the field’s knowledge of
endocrine–immune interactions in the context of mental health.
Furthermore, the critical window hypothesis of hormone loss
and cognitive impairment has driven the field’s exploration of
cognitive changes during aging in recent decades (Maki, 2013).
Rodríguez-Landa contributes an insightful commentary on the
importance of hormone intervention timing when designing
preclinical experiments to investigate affective behavior. This
discussion will aid our understanding and interpretation of the

time course of hormone and brain changes following surgical
menopause intervention.

It is also imperative to illuminate the neurobiological
mechanisms underpinning cognitive–behavioral changes across
multiple time scales. Beamish and Frick propose a novel
mechanism through which estrogen exerts its effects on
hippocampal-dependent learning and memory by exploring the
role of the ubiquitin proteasome system in synapse remodeling
in both sexes. Jiménez-Balado et al. provide new insights into
neural mechanisms underlying episodic memory by utilizing
magnetic resonance spectroscopy to demonstrate that the
relationship between lower hippocampal γ-aminobutyric acid
(GABA) concentrations and poorer episodic memory is driven
by sex, not apolipoprotein E (ApoE) ε4 genotype, as the effect
was only observed in older community-dwelling women. Gilfarb
and Leuner also contribute a thoughtful review summarizing
the field’s current understanding of cognitive–behavioral effects
related to changes in the GABAergic system across major
hormonal transition periods from puberty to menopause.
Understanding the mechanisms underlying cognitive–behavioral
effects of sex hormones is key to ultimately enhancing precision
medicine approaches and care at every life stage.

Collectively, investigating the female brain and body across
the lifespan with intention not only provides opportunities for
advancement in the field of women’s health, but also permits us
to discover more about the broader human experience through
inclusive research practices. Elucidating mechanisms of action
of sex hormones on brain structure, function, and behavior
allows us to acknowledge the value of these molecules at each
life stage. Despite the decades-long axiom that female hormone
fluctuations introduce unwanted variability in research, we must
recognize that inherent hormone fluctuations across the female
lifespan are not pathological or inconsequential, but rather an
intrinsic and integral property of the female experience that
allows for lifelong neural plasticity and resilience. By emphasizing
sex and gender as key biological variables in research inquiries,
we will gain knowledge of the human experience as well as
improve healthcare and quality of life for women and gender
diverse individuals across all life stages. We also hope that
this growing awareness of the female experience will provide
support for women to have equal and equitable access to essential
healthcare across the lifespan.
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The sex hormone estradiol has recently gained attention in human decision-making
research. Animal studies have already shown that estradiol promotes dopaminergic
transmission and thus supports reward-seeking behavior and aspects of addiction. In
humans, natural variations of estradiol across the menstrual cycle modulate the ability
to learn from direct performance feedback (“model-free” learning). However, it remains
unclear whether estradiol also influences more complex “model-based” contributions
to reinforcement learning. Here, 41 women were tested twice – in the low and high
estradiol state of the follicular phase of their menstrual cycle – with a Two-Step decision
task designed to separate model-free from model-based learning. The results showed
that in the high estradiol state women relied more heavily on model-free learning,
and accomplished reduced performance gains, particularly during the more volatile
periods of the task that demanded increased learning effort. In contrast, model-based
control remained unaltered by the influence of hormonal state across the group. Yet,
when accounting for individual differences in the genetic proxy of the COMT-Val158Met
polymorphism (rs4680), we observed that only the participants homozygote for the
methionine allele (n = 12; with putatively higher prefrontal dopamine) experienced a
decline in model-based control when facing volatile reward probabilities. This group also
showed the increase in suboptimal model-free control, while the carriers of the valine
allele remained unaffected by the rise in endogenous estradiol. Taken together, these
preliminary findings suggest that endogenous estradiol may affect the balance between
model-based and model-free control, and particularly so in women with a high prefrontal
baseline dopamine capacity and in situations of increased environmental volatility.

Keywords: reinforcement learning, estrogen, menstrual cycle, dopamine, reward learning, reward volatility,
COMT-Val158Met genotype
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INTRODUCTION

Neuroactive steroid hormones like 17β-estradiol (estradiol) are
important modulators of neural processing (Becker, 2016). As
a natural dopamine agonist, estradiol has been implicated in
reward processing and basic aspects of reinforcement learning
and may modulate activity in the associated frontostriatal circuits
(Sakaki and Mather, 2013; Diekhof, 2018). In the striatum,
estradiol modulates dopaminergic transmission, which increases
the incentive salience of immediate reward and promotes the
development of behavioral habits that are inflexible and difficult
to overcome. This is why estradiol may also play a central
role in the initiation and reinstatement of female addiction
(Becker, 2016). However, estradiol is also involved in higher-
order prefrontal functions such as working memory (Dumas
et al., 2010; Jacobs and D’Esposito, 2011; Hampson and Morley,
2013). This suggests that estradiol could contribute to the more
goal-directed aspects of the decision-making process, which
enable more structured choices that can override existing habits
(Daw et al., 2005). However, this association hasn’t been assessed
yet and it remains elusive to what extent variations in estradiol
influence higher-order cognitive operations during the decision-
making process.

Decision-making in complex environments involves different
learning strategies. Action selection can be based on previous
performance feedback. However, such a “model-free” strategy
that requires agents to simply repeat actions that are reinforcing
is too inflexible to account for more complex cognitive strategies.
These latter strategies become necessary in more structured
decision environments that for instance require the prospective
anticipation of action consequences using a previously learned
map or model (Doll et al., 2015). Recent accounts on
reinforcement learning theory thus propose a dual-architecture
of two functionally distinct computational processes in decision-
making, thereby dissociating “model-free” and “model-based”
control (Daw et al., 2005; Dolan and Dayan, 2013; Daw and
Dayan, 2014). This dual-architecture is based on the assumption
that optimization of reward outcome does not always depend on
the most recent choice, but may require taking into consideration
the most likely cause of a reward and to do so the learner must
represent the task structure. Therefore, a second functionally
distinct computational process, “model-based” control, has been
proposed to support sequential choice that combines short-term
predictions of immediate actions in a sequence of choices that are
used to build a prospective model of the world. The process of
model-based control is assumed to capture the overall complexity
of the environment beyond model-free learning and enables
reflective planning (Daw et al., 2005). In humans, the relative
dominance of model-based control over the model-free system
is correlated with other higher-order cognitive operations like
declarative memory (Doll et al., 2015), working-memory span
(Potter et al., 2017), and attentional control (Otto, 2013).

Model-free control is believed to rely on the prediction error
signal of mesencephalic dopamine neurons (Glimcher, 2011).
Transient changes in dopamine thereby signal the difference
between received and predicted reward in the striatum, where
these signals have opposing effects on the dopamine D1- and

D2-receptors, i.e., DRD1 and DRD2, respectively, as well as on
the associated processes of approach and avoidance learning
(Collins and Frank, 2014). Model-based control depends on
central dopamine that modulates activation in both the striatum
and the prefrontal cortex. Deserno et al. (2015) found that
a higher presynaptic dopamine level in the ventral striatum
was associated with a bias toward model-based learning and
promoted model-based activation in the lateral prefrontal
cortex at the expense of model-free prediction errors in the
ventral striatum. Further, the transient enhancement of central
dopamine by agonist treatment enhanced model-based learning
capacity in healthy young men (Wunderlich et al., 2012; but
see Kroemer et al., 2019 for a null finding). In contrast,
reductions in the ability to rely on the model-based component
have been found in male addicts with a disturbed dopamine
system (Sebold et al., 2014), in Parkinson patients in the
dopamine-deprived state (Sharp et al., 2016), and following
disruptions of the prefrontal cortex by transcranial magnetic
stimulation (Smittenaar et al., 2013). These observations fit with
the idea that prefrontal and striatal dopaminergic mechanisms
interact in higher-order cognitive operations, such as model-
based learning, both supporting the stabilization and flexible
updating of goal representations (Frank and O’Reilly, 2006;
Cools and D’Esposito, 2011).

The COMT-Val158Met polymorphism codes for the activity of
the dopamine-degrading enzyme catechol-o-methyltransferase
(COMT) (Apud et al., 2007; Käenmäki et al., 2010), which
is more active in the prefrontal cortex of carriers of the
Val allele than of individuals homozygote for the Met allele.
This may lead to higher prefrontal dopamine availability
in Met-homozygotes (see also Schacht, 2016). It has been
proposed that the Met allele is more beneficial for the
stabilization of prefrontal information processing and may
protect goal-directed information from interference, supposedly
by optimizing signaling through prefrontal DRD1 in relation to
DRD2. In contrast, homozygosity for the Val allele may predict
less balanced signaling through these receptors, which results
in reduced cognitive capacity (Durstewitz and Seamans, 2008;
Slifstein et al., 2008; Schacht, 2016). The COMT-Val158Met
polymorphism has been associated with model-based control
(Doll et al., 2016), as well as with other aspects of higher-order
cognition including working memory and executive function
(Mier et al., 2010; Schacht, 2016). Homozygosity for the Met
allele thereby predicted an overall advantage in prefrontal tasks,
especially those with increased cognitive load (Mier et al., 2010).

As an indicator of dopamine baseline capacity in the
prefrontal cortex, the COMT-Val158Met polymorphism has
further been observed to interact with (pharmacological) agents
that transiently enhance dopamine. Notably, the resulting
relationship between the combined effect of tonic and phasic
dopamine on cognitive performance was not linear, but rather
followed an inverted U-shape. This has led to the “Inverted-U-
Hypothesis,” which presumes that peak cognitive performance is
linked to an optimal dopamine level that lies in the intermediate
physiological range, while cognitive performance is believed to
decline in individuals with either higher or lower than this
optimal dopamine range, which has been shown repeatedly
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(Cools and D’Esposito, 2011). Therefore, in the present study we
decided to account for the COMT-Val158Met polymorphism as
a baseline marker of prefrontal dopamine, when assessing the
phasic influence of estradiol on model-based control.

Apart from baseline differences in dopamine, our study
assessed the role of estradiol as a natural dopamine agonist
in model-based reinforcement learning. In rodents, estradiol
modulates dopamine within frontostriatal networks. Estradiol
increases dopaminergic transmission and amplifies the reward-
related dopamine release, for example by augmenting DRD1
action, while concurrently suppressing DRD2 action (Lévesque
et al., 1989; Krentzel and Meitzen, 2018; see also Becker,
2016; Yoest et al., 2018 for review). Similarly, estradiol down-
regulates the dopamine-degrading enzyme COMT in the female
prefrontal cortex, which in turn increases dopamine content
in this structure (Xie et al., 1999; Schendzielorz et al., 2011).
For these reasons, we expected an interaction between baseline
dopamine and the phasic influence of estradiol in women,
when comparing distinct high and low estradiol phases of
the natural menstrual cycle. We decided to test women twice
during the follicular phase. During the follicular phase estradiol
level rises from its nadir until it reaches its cyclic peak
right before ovulation. Progesterone, another steroid hormone
important for female reproductive function, remains at a low
concentration throughout the follicular phase. In the second
half of the menstrual cycle, estradiol rises again toward the mid
luteal phase. But this time, progesterone concentration is also
increased (Sakaki and Mather, 2013). This is insofar important,
since progesterone inhibits dopaminergic transmission through
various physiological mechanisms, and could thus antagonize the
dopamine agonistic effect of estradiol during the luteal phase
(e.g., Luine and Rhodes, 1983; Dluzen and Ramirez, 1984, 1987;
Luine and Hearns, 1990). By restricting our tests to the early
(low estradiol) and late (high estradiol) follicular phase, we were
able to assess the effect of the dopamine agonist estradiol widely
uncontaminated by the dopamine antagonist progesterone.

In line with the dopamine-agonistic properties of estradiol,
previous studies with humans showed that estradiol influenced
model-free learning, also in interaction with the dopaminergic
baseline capacity of the striatum that followed an inverted
U-shape relationship (Diekhof, 2015; Jakob et al., 2018; see also
Diekhof, 2018). In one study reward sensitivity was compromised
when estradiol level reached its peak in the late follicular phase of
the menstrual cycle. Conversely, intermediate estradiol levels at
the beginning of the follicular phase promoted reward sensitivity.
This was especially true for individuals with a lower dopamine
baseline capacity in the striatum (Diekhof, 2015), as indicated
by lower trait impulsivity (see also Buckholtz et al., 2010).
In a similar vein, Jakob et al. (2018) observed that carriers
of the 9-repeat-allele of the DAT1 genotype, with a higher
dopamine transporter (DAT) density in the striatum, apparently
experienced a marked reversal of DAT function as a consequence
of rising estradiol, which led to a significant decline in the
capacity to avoid negative outcomes in the high estradiol phase.

In the human prefrontal cortex, estradiol has been found
to stabilize working memory representations, most likely also
through its interaction with dopamine, and particularly so

in situations of high cognitive demand (Dumas et al., 2010;
Hampson and Morley, 2013). One prominent finding also
supported the “Inverted-U-Hypothesis,” by demonstrating
that the effect of estradiol on working memory performance
and prefrontal activity depended on baseline dopamine
concentration, and particularly so in high-load conditions
(Jacobs and D’Esposito, 2011). A dose-dependency of estradiol
could further be observed in ovariectomized rats in that only a
moderate dose, but neither a low nor high dosage of estradiol
preserved cognitive performance under high-load working
memory demands (Bimonte and Denenberg, 1999). This
shows that even independent of tonic dopamine, a deficit or
abundance of estradiol could destabilize prefrontal working
memory representations.

Until now, neurocognitive research has only addressed
the role of estradiol in model-free learning (Diekhof, 2018).
Considering the modulatory influence of estradiol on
frontostriatal networks and dopamine (Becker, 1999; Yoest
et al., 2018), and its association with both probabilistic feedback
learning (e.g., Diekhof, 2015) and higher-order working memory
processes (e.g., Jacobs and D’Esposito, 2011), we hypothesized
that estradiol – as a natural dopamine-agonist – should also
modulate model-based learning. The major aim of the present
study was to examine whether model-based reinforcement
learning is affected by the high estradiol state of the late follicular
phase compared to the low estradiol state at the beginning
of the follicular phase. Further, we also assessed whether the
hypothesized effect of estradiol on model-based learning depends
on prefrontal dopaminergic baseline capacity, similar to what has
been demonstrated for model-free control in relation to striatal
dopamine (Diekhof, 2018).

For this purpose, 41 women performed a Two-Step Markov
Decision Task (TS-task), once in the low estradiol state of the
early follicular phase and once during the high estradiol state
of the late follicular phase. The TS-task combined features of a
sequential choice task and a probabilistic selection task, which
allowed us to assess model-based relative to model-free choice,
while participants tried to maximize overall gain (Doll et al.,
2016). Each of the 300 experimental trials consisted of two
consecutive decision stages. At the initial stage of the TS-task,
the participants had to decide between two arbitrary stimuli (a
pair of Sanskrit symbols). The initial decision for one of the
symbols then stochastically determined a set of second-stage
options, i.e., one of the two second-stage stimulus pairs, with
fixed transition probabilities (0.7 and 0.3). Depending on the
initial choice, one set of options at the second-stage occurred
more often, i.e., the “common transition” occurred in 70% of
selections of the given first-stage symbol. The other second-
stage set is denoted as the “rare transition” that occurred only
in 30% of a given first-stage selection. After the selection of a
symbol at the second stage, subjects received feedback, either
in form of a monetary token or a feedback indicating outcome
omission. The outcome was probabilistic. In the first 150 trials
(the “drift phase”), outcome probability was slowly and randomly
drifting between 0.25 and 0.75, while in the remaining 150 trials
(the “stable phase”) the reward probabilities for each of the two
second-stage sets reached their final values, which was 0.7:0.3
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for one and 0.6:0.4 for the other set (see also Doll et al., 2016).
This enabled us to dissociate model-free control, i.e., the simple
repetition of rewarded choice regardless of the transition, from
model-based control, which also takes into account whether the
second-stage reward was linked to a rare transition (model-
based control would demand a switch to the other option at
the first-stage after a rare transition). Additionally, women were
genotyped for the COMT-Val158Met polymorphism, a proxy
of prefrontal dopamine content, in order to further examine
the potentially non-linear relationship between estradiol and
model-based control. Since none of the many previous studies
on model-based learning controlled for the hormonal state of
female subjects nor did they assess the interaction of estradiol
with baseline dopamine content, the present study is the first to
provide evidence regarding the role of endogenous estradiol in
higher-order reinforcement learning.

MATERIALS AND METHODS

Sample
In this study, 41 healthy young women [mean age
(±SEM) = 24.6 ± 0.5 years; age range = 20–30 years], were
tested with a TS-task in the early follicular phase, when
circulating estradiol levels were low, and the late follicular phase,
when circulating estradiol levels were high. Women were free
of medication and hormonal contraceptives. For the 26 women
who had previously taken hormonal contraceptives the mean
distance of the first test day to the last intake of hormonal
contraception was 15.8 months (SEM = 2.5 months; range = 2–
36 months). Four women had stopped the intake 2 months
before participation.

Women were included in the study if they had regular
menstrual cycles and no gynecological problems, like polycystic
ovary syndrome or endometriosis, or any other chronic
disorder of the hormone system, e.g., Diabetes, Hashimoto’s
thyroiditis. Current or previous psychiatric or neurological
problems precluded study enrollment as did the present use
of hormonal contraceptives. Subjects were of Middle European
origin as determined by the place of birth of their parents
and grandparents. All subjects gave written informed consent
and were paid for participation. The present study was
approved by the local Ethics Committee (Ethikkommission der
Ärztekammer Hamburg).

The women were tested twice within the follicular phase of
the menstrual cycle. One test occurred during the first 3 days
following the onset of menstruation, i.e., the early follicular phase,
which is characterized by low estradiol. The other one took
place 2–3 days before expected ovulation in the late follicular
phase, when estradiol approached its cyclic maximum. For
determination of the actual test day participants stated their
average cycle length based on previous menstrual cycles. Upon
the onset of menstrual bleeding (cycle day 1) we then used
the average cycle length to calculate the last expected cycle day
(anticipated cycle end) in the given menstrual cycle. This enabled
us to determine the optimal test day with a common counting
method: For all subjects with an average cycle length shorter than
28 days, we subtracted 15 days from the anticipated cycle end. For

subjects with an average of 28–31 days, 16 days were subtracted,
and for cycle lengths longer than 31 days, 17 days were subtracted
to schedule the late follicular phase test. Our subjects also tracked
the daily concentration of the gonadotrophin Lutropin, which
experiences a steep rise approximately 36 h prior to ovulation.
For this, a common urine test (One Step R© by AIDE Diagnostic
Co., Ltd.) was used. The urine test was performed on a daily
basis starting 2 days before the scheduled late follicular phase
test. In case of a positive result either before or on the day
of the scheduled test, the behavioral test was postponed to the
subsequent menstrual cycle. Test order was balanced between
subjects and half of the subjects started in the early follicular
phase. We initially recruited 48 women for the study. Of these,
seven women dropped-out after completion of the first test day.
Therefore the test order of the repeated tests was slightly biased
toward the early follicular phase (24 women started in the early
follicular phase). There was no significant interaction between
test order and cycle phase when assessing the two learning
components as shown in Table 1.

Collection and Analysis of Salivary
Estradiol
On each test day, subjects collected five samples of morning saliva
at home. Starting at their normal wake-up time, each subject
collected the samples (2 ml Eppendorf tubes) at regular intervals
over 2 h, in order to control for the episodic secretion pattern of
steroid hormones. During the sampling period, no consumption
of food or beverages other than water was allowed to avoid sample
contamination. Also, 12 h before sample collection subjects
refrained from eating meat or other animal products. On the
same day, the participants brought the samples to the lab, where
they were immediately frozen at −20◦C until further analyses.
The subsequent analysis of free estradiol content was based on
the aliquots of the five samples and used a 17beta-Estradiol
Luminescence Immunoassay (IBL International, Tecan Group,
Hamburg, Germany). The analysis followed the instructions
provided by the manufacturer. Altogether, this allowed us to
analyze the salivary estradiol level from the repeated tests of 39
subjects. The remaining samples of two women could not be
analyzed as the two Immunoassay-plates we used each provided
only 39 wells for double sampling.

DNA Collection, Extraction, and
Genotypic Analysis
Genotyping was performed by a commercial laboratory
(Bioglobe, Hamburg, Germany). DNA was extracted from buccal
swabs and purified with a standard commercial extraction
kit. The analysis of the single nucleotide polymorphisms
(SNP) rs4680 was performed on the MassARRAY R© system
(Agena Bioscience) applying the iPLEX R© method and MALDI-
TOF mass spectrometry for analyte detection. In general, all
iPLEX reactions were performed according to the standard
protocol recommended by the system supplier. The protocol
generates allele-specific analytes in a primer extension reaction
applying a primer directly adjacent to the SNP site. Assay
design was performed with platform-specific software for the
SNP sequences, aided by database information accounting
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TABLE 1 | Results of the repeated-measures ANOVAs with the factors “cycle phase” and “test-order” separately for drift and stable phase.

Main effect or interaction F-value df p-value Partial eta2

(A) Drift-phase – model-free component

Cycle phase* 7.45 1, 39 0.009 0.16

Test order 0.002 1, 39 0.969 <0.01

Cycle phase × test order 2.60 1, 39 0.115 0.06

(B) Stable-phase – model-free component

Cycle phase 0.13 1, 39 0.719 <0.01

Test order*,1 4.24 1, 39 0.046 0.10

Cycle phase × test order 0.84 1, 39 0.365 0.02

(C) Drift-phase – model-based component

Cycle phase 0.05 1, 39 0.828 <0.01

Test order 0.88 1, 39 0.355 0.02

Cycle phase × test order 0.29 1, 39 0.594 0.01

(D) Stable-phase – model-based component

Cycle phase 0.21 1, 39 0.648 <0.01

Test order 2.66 1, 39 0.111 0.06

Cycle phase × test order 0.32 1, 39 0.573 <0.01

*Significant effects (p < 0.05) are plotted in bold and are marked with an asterisk.
1The direct comparison of subjects who started their first test in the early follicular phase (early-to-late group; n = 24) with those that started in the late follicular phase
(late-to-early group; n = 17) yielded a significant difference in the model-free score of the stable phase (mean ± SEM: early-to-late = 20.6 ± 2.7; late-to-early = 11.8 ± 3.4;
t(39) = 2.06, p = 0.046). This suggests that one group of participants used the model-free learning component to a greater extent, yet this effect was independent of cycle
phase. This was also supported by the exploratory analysis of the respective test days. It showed that subjects from the early-to-late group, who were in the late follicular
phase on the second test day, had a trend-wise higher model-free score than subjects in the early follicular phase (2nd test day: Early = 9.8 ± 4.1; Late = 19.8 ± 3.5;
t(39) = −1.86, p = 0.071). Similarly, on the first test day the subjects from the early-to-late group being in the early follicular phase now had a somewhat higher score on
that day, even though again this difference was not significant (1st test day: Early = 21.5 ± 3.0; Late = 13.9 ± 4.6; t(39) = 1.46, p = 0.153).

for homologous regions and annotated secondary sequence
variations in close proximity to the target SNP (proxSNPs).
Based on rs-IDs, the multiplex assay design was performed
with MassARRAY assay design suite v2.0. The final in silico
design output was composed of a single multiplex reaction
(8plex). The PCR amplification procedure used the following two
primers: ACGTTGGATGTTTTCCAGGTCTGACAACGG and
ACGTTGGATGACCCAGCGGATGGTGGATTT. The iPLEX
primer was tCATGCACACCTTGTCCTTCA. The distribution
of genotypes was in Hardy-Weinberg equilibrium (p = 0.18;
two-tailed) as determined by the HW-Quick Check software by
Steven T. Kalinowski1.

Altogether, four participants were homozygote for the Val
allele (Val/Val), while 25 subjects were heterozygote (Met/Val),
and 12 subjects were homozygote for the Met allele (Met/Met).
Based on the distribution of genotypes, we decided to combine
the Val/Val and Met/Val, who constitute the group of “Val-
carriers” in all subsequent analyses. The two groups, Met/Met and
Val-carriers did not differ in most demographic characteristics
like average cycle length, cycle day of early and late follicular test,
estradiol level on the respective test day, and trait impulsiveness
as determined by Barratt Impulsiveness Scale (BIS-11) (Patton
et al., 1995), however, Met allele homozygotes were slightly older
than Val allele carriers (see Table 2).

Task Description
Participants started the Two-Step task with a computer-based
tutorial and a short training of 20 trials, which was supervised

1http://www.montana.edu/kalinowski/software/hw-quickcheck.html

by the experimenter. Then the sequential TS-task with 300 trials
in total was performed. Participants were tested with the version
of the TS-task already employed by Doll et al. (2016). The TS-
task incorporates a two-stage choice structure to achieve positive
feedback (a virtual 1 Euro-coin) and tests for the individual
model-free and model-based learning capacity. It thus captures
the distinction between model-free learning behavior, i.e., the
ability to adapt behavior based on direct performance feedback,
and prospective model-based learning (Daw et al., 2005; Dolan
and Dayan, 2013). In the first step of the TS-task, participants
choose between two options (two Sanskrit symbols) within a time
window of 2 s, which stochastically determines another set of
choices with fixed transition probabilities between steps (i.e., 0.7
and 0.3, see Doll et al., 2016).

In the TS-task, model-free control of behavior describes
the aspect of learning that increments the value of choices
based on the outcome that directly follows, and regardless of
the transitions experienced between task stages. In contrast,
model-based control takes the history of outcomes as well
as the noisy task structure prospectively into account (Daw
et al., 2005). Model-based learning is particularly important
in the TS-task, since an actual reward can only be reached
after the two consecutive choices. The first stage choice thereby
determines with a certain probability, which pair of options is
available for the second stage choice. For each action at the
first stage, one pair of options at stage 2 is more likely to
occur (common transition), while the other pair is less likely
(rare transition). The model-based component is assumed to
take these transition probabilities into account, while the model-
free component is not. From this, certain predictions can be
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TABLE 2 | Demographic data divided by genotype.

Met allele homozygotes Val allele carriers

Mean ± SEM Mean ± SEM t-value (p-value)

Age (years)* 26.6 ± 0.7 23.8 ± 0.5 2.95 (0.005)

Mean length of two consecutive menstrual cycles (days) 29.2 ± 1.1 30.7 ± 0.7 −1.18 (0.245)

Cycle day of early follicular phase 1.8 ± 0.4 2.5 ± 0.3 −1.29 (0.206)

Cycle day of late follicular phase 13.4 ± 0.8 13.2 ± 0.4 0.20 (0.839)

Estradiol level of early follicular phase (pg/ml) 2.98 ± 0.63 3.00 ± 0.27 −0.04 (0.969)

Estradiol level of late follicular phase (pg/ml) 3.81 ± 0.60 4.56 ± 0.35 −1.11 (0.274)

Impulsiveness score (BIS-11) 60.9 ± 2.5 62.7 ± 1.4 −0.64 (0.526)

*Significant differences (p < 0.05) are plotted in bold and are marked with an asterisk.

made: In case of a rare transition, the model-free component
would use the feedback at stage 2 to choose the stage 1 stimulus
independent of the nature of the transition. It would stay
with the previous first-stage choice, even after a rare second-
stage reward, which would lower overall reward outcome. In
contrast, after receiving a rare reward, model-based control
would probably bias the decision toward a switch at stage 1
and the choice of the option more likely to transition to the
second-stage state that would have produced reward on the last
trial (switch to the common transition) (Doll et al., 2016). Based
on these predictions and the stay frequencies from stage 1, we
calculated the model-based and model-free learning components
according to Sebold et al. (2014), which could then be compared
between cycle phases.

The model-free score thereby reflected the main effect of
reward on stay frequencies that was calculated by:

model− free score = % rewarded common transition

+% rewarded rare transition−% unrewarded common

transition−% unrewarded rare transition

The model-based score mirrored the interaction between
transition frequency and reward, which was indicated by:

model− based score = % rewarded common transition

+% unrewarded rare transition−% rewarded rare transition

−% unrewarded common transition

In contrast to other versions of the TS-task, the specific version
employed by Doll et al. (2016) included two task phases, the
drift phase of the first 150 trials and the stable phase of the
remaining 150 trials, which were characterized by different
degrees of reward uncertainty at the second stage choice. During
the drift phase the second stage choice is followed by reward
with a slowly and randomly drifting probability set within
the boundaries of 0.25 and 0.75. In the present study, one
of four sets of drifts was randomly assigned to each person
in each cycle phase, whereby the assignment did not differ
between cycle phases or COMT genotypes (p> 0.39). The design
feature of the drift phase emphasized model-free updating, as
subjects learned the values of these stimuli incrementally. In the
remaining 150 trials (the stable phase) the reward probabilities

reached their final values of 0.7 versus 0.3 in state 1, and 0.6
versus 0.4 in state 2.

Statistical Analysis
First, we analyzed the individual stay frequencies at the first
stage choice with a repeated-measures analysis of variance
(ANOVA). This was done separately for the drift and the
stable phase in order to account for the different degrees of
reward uncertainty (see task description above). The ANOVA
assessed stay frequencies in relation to the reward achieved at
stage 2 of the previous trial, i.e., the factor “previous reward”
(yes, no), and the previous transition that led to this reward,
i.e., factor “previous transition” (rare or common), as well
as their interaction. Additionally, the ANOVA also included
the within-subject factor “cycle phase” (early or late follicular
phase) and the between-subjects factor “COMT genotype”
(Val-carriers, Met-homozygotes). The effect size is reported
as partial eta2. Post hoc tests used paired or independent
t-tests. For effect sizes we use Cohen’s d or Hedge’s g for
comparisons including one group with n < 20. Statistical
significance was assumed at p < 0.05, two-tailed, if not
indicated otherwise.

In a second step, we looked more specifically at differences
in the model-free and model-based learning components.
For this, we calculated the model-based and model-free
learning components according to Sebold et al. (2014) (see
above), which were then compared between cycle phases and
genotypes, respectively.

RESULTS

Analysis of Menstrual Cycle Phase
Related Changes in Estradiol Level
Estradiol level followed the predicted cycle-typical pattern
and significantly increased from the early to the late follicular
phase [mean ± SEM: estradiolearly = 2.99 ± 0.26 pg/ml;
estradiollate = 4.35 ± 0.31 pg/ml; t(38) = 4.48, p < 0.001,
one-tailed], also within the subgroup of Val-carriers
[t(27) = 4.03, p < 0.001, one-tailed] and in the Met-
homozygotes [t(10) = 2.06, p < 0.034, one-tailed]. In
that way, the early follicular and the late follicular phase
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can be considered as the low and the high estradiol
state, respectively.

Analysis of Stay Frequencies and
Learning Scores of the Drift Phase
In the drift phase, the choice at stage 2 was followed by
probabilistic reward with a slowly and randomly drifting
probability. Thus, the drift phase required a constant updating of
the current decision to maximize reward, like in other versions of
the TS-task previously employed (e.g., Deserno et al., 2015; Doll
et al., 2016; Kroemer et al., 2019).

First, we assessed the influence of hormonal state and genetic
variance on the stay frequencies at the first stage choice of
the drift phase. The stay frequencies thereby represent the
probability that the same stage 1 choice would be made on the
next trial. We identified a significant main effect of “previous
reward” [F(1,39) = 39.63, p < 0.001, partial eta2 = 0.5] and
a significant interaction of “previous reward” by “previous
transition” [F(1,39) = 9.80, p = 0.003, partial eta2 = 0.2],
indicating that participants used both model-free and model-
based learning while performing the task (Daw et al., 2011).
We also found a significant two-way interaction between “cycle-
phase” and “previous reward” [F(1,39) = 6.56, p = 0.014, partial
eta2 = 0.14]. This was reflected by enhanced avoidance of non-
reward per se in the late as opposed to the early follicular phase
[non-reward: stay frequencyearly ± SEM = 73.2 ± 2.3%; stay
frequencylate ± SEM = 69.1 ± 2.1%; t(40) = 2.23, p = 0.031,
d = 0.33]. In addition to that, a four-way interaction between
“cycle-phase,” “previous reward,” “previous transition,” and
“COMT genotype” was found [F(1,39) = 4.48, p = 0.041, partial
eta2 = 0.1] (see also Table 3 for the complete ANOVA results).
Accordingly, the Val-carriers became better at avoiding the
commonly non-rewarded option in the late follicular phase (stay
frequencylate ± SEM = 65.4 ± 3.0%) compared to the early
follicular phase [stay frequencyearly ± SEM = 71.2 ± 2.6%;
t(28) = 2.18, p = 0.038, d = 0.44]. Since the Val-carriers represented
the majority of the test group, this change probably drove
the above described two-way interaction between “cycle-phase”
and “previous reward.” Apart from that, we also observed
that the stay frequencies of the Met-homozygotes in relation
to rare reward showed a trend-wise increase in the late
follicular phase [stay frequencyearly ± SEM = 74.3 ± 5.0%;
stay frequencylate ± SEM = 83.5 ± 3.8%; t(11) = −2.04,
p = 0.065, d = 0.53]. This increase was also significantly
different from the delta observed in Val-carriers [Delta stay
frequencylatevs.early ± SEM: Met/Met = 9.2 ± 4.5%; Val
carriers = −3.1 ± 2.8%; t(39) = 2.35, p = 0.025, Hedge’s
g = −0.81], suggesting that Met-homozygotes became impaired
in their ability to adequately integrate the complex task structure
in their choices when being in the high estradiol state (see
Figures 1A,B).

In a second step, we calculated the model-free and the model-
based scores based on the stay frequencies (Sebold et al., 2014).
We found a significant increase in the model-free score from
the early to the late follicular phase in the complete group of
subjects [Drift phase: model-freeearly ± SEM = 15.51 ± 2.18;

model-freelate ± SEM = 19.81 ± 2.65; t(40) = −2.44, p = 0.019,
d = −0.44] (see Figure 2A). Notably, the relative increase
in model-free learning from the early to the late follicular
phase (Deltamodel−free) was related to more suboptimal decision
making, reflected by a reduced task success in terms of the total
number of acquired coins during the drift phase (r = −0.417,
p = 0.007, n = 41) (see Figure 2C).

When the sample was dichotomized by genotype we
found that the increase in the model-free score from the
early to the late follicular phase was only significant in
the Met-homozygotes [model-freeearly ± SEM = 7.2 ± 5.4;
model-freelate ± SEM = 19.7 ± 5.8; t(11) = −2.71,
p = 0.020, d = −0.65], but not in Val-carriers [model-
freeearly ± SEM = 16.1 ± 2.9; model-freelate ± SEM = 22.4 ± 3.8;
t(28) = −1.47, p = 0.15]. In addition, Met-homozygotes
also showed a concurrent decline of the model-based score
during the drift phase [model-basedearly ± SEM = 13.6 ± 6.0;
model-basedlate ± SEM = 0.9 ± 3.2; t(11) = 2.62, p = 0.024,
d = 0.67], which was again absent in Val-carriers [model-
basedearly ± SEM = 4.9± 3.2; model-basedlate ± SEM = 8.5± 3.2;
t(28) = −0.80, p = 0.431]. The magnitude of cycle phase related
changes in both the model-free and model-based learning scores,
i.e., the Delta value of the score from the late minus the early
follicular phase, was also significantly different from zero in the
Met-homozygotes (see Figure 3A; see also Table 4).

Analysis of Stay Frequencies and
Learning Scores of the Stable Phase
Following the drift phase, unbeknownst to participants,
the reward probabilities at stage two stopped drifting and
remained fixed. In principle, this stable phase requires a
lower learning rate and the difficulty of learning is reduced,
since reward probabilities are reliable now. During the stable
part of the TS-task, we also found a significant main effect
of “previous reward” [F(1,39) = 45.22, p < 0.001, partial
eta2 = 0.54] and a significant interaction of “previous reward”
by “previous transition” [F(1,39) = 18.60, p < 0.001, partial
eta2 = 0.32]. However, in contrast to the drift phase, we observed
a significant three-way interaction between “cycle phase”,
“previous reward” and “COMT genotype” [F(1,39) = 8.30,
p = 0.006, partial eta2 = 0.18] (see also Table 5 for a
complete list of the ANOVA results). This was reflected by
a differential change in avoidance learning capacity between
cycle phases and genotypes. We found a reduced avoidance
capacity of non-reward (i.e., a higher stay frequency for
non-reward) in the late relative to the early follicular phase
in Met-homozygotes compared to the Val-carriers [Delta
stay frequencieslate−early ± SEM: Met/Met = 7.27 ± 3.35%;
Val-carriers = −3.8 ± 2.19%; t(39) = 2.74, p = 0.009,
Hedge’s g = 0.94]. Further conforming to this pattern, the
direct comparison of cycle phases within genotype groups
revealed two statistical trends, with the Met-homozygotes
showing a slight reduction in avoidance learning capacity
[stay frequencynon−reward ± SEM: Early = 69.2 ± 4.2%;
Late = 76.5 ± 3.8%; t(11) = −2.17, p = 0.052, d = 0.60], while
the Val-carriers showed a trend-wise increase in this capability
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TABLE 3 | Drift phase – Effects of cycle-phase, TS-task manipulation and COMT-genotype on stay frequencies.

Main effect or interaction F-value df p-value partial eta2

Previous reward* 39.63 1, 39 <0.001 0.50

Previous transition 0.58 1, 39 0.450 0.02

Cycle phase 0.37 1, 39 0.546 0.01

COMT genotype 0.17 1, 39 0.680 <0.01

Previous reward × previous transition* 9.80 1, 39 0.003 0.20

Previous reward × cycle phase* 6.56 1, 39 0.014 0.14

Previous reward × COMT genotype 1.25 1, 39 0.270 0.03

Previous transition × cycle phase 0.29 1, 39 0.596 0.01

Previous transition × COMT genotype 0.08 1, 39 0.780 <0.01

Cycle phase × COMT-genotype 2.238 1, 39 0.143 0.05

Previous reward × previous transition × cycle phase 1.39 1, 39 0.245 0.03

Previous reward × previous transition × COMT genotype 0.02 1, 39 0.899 <0.01

Previous reward × cycle phase × COMT genotype 0.70 1, 39 0.408 0.02

Previous transition × cycle phase × COMT genotype 0.53 1, 39 0.469 0.01

Previous reward × previous transition × cycle phase × COMT genotype* 4.48 1, 39 0.041 0.10

*Significant effects (p < 0.05) are plotted in bold and are marked with an asterisk.

FIGURE 1 | Mean stay frequencies separated by task phase (drift versus stable phase), genotype group (Met-homozygotes versus Val-carriers) and cycle phase
(early versus late follicular phase). (A) Drift phase, Met-homozygotes. (B) Drift phase, Val-carriers. (C) Stable phase, Met-homozygotes. (D) Stable phase, Val-carriers.
The differences between cycle phases are indicated with the respective p-value. These also include statistical trends (p < 0.10), for which the actual delta-values of
stay frequencies (Delta stay frequencylatevs.earlyfollicularphase) were significantly different between the genotypes (delta values are not shown here, but are reported in
the text). These statistical trends are additionally marked with an asterisk, if the direct comparison between the genotypes yielded a significant difference (p < 0.05).

[non-reward stay frequency ± SEM: Early = 74.2 ± 3.0%;
Late = 70.4 ± 2.7%; t(28) = 1.73, p = 0.095, d = 0.31] (see
Figures 1C,D).

With regard to the learning scores, the stable phase yielded
partly different results than the drift phase. First, in the analysis
of the complete group the model-free score remained unaffected
by cycle phase [model-free score ± SEM: Early = 16.7 ± 2.6;

Late = 17.3 ± 2.8; t(40) = −0.21, p = 0.835], like the model-
based score [model-based score ± SEM: Early = 9.4 ± 2.7;
Late = 11.5 ± 2.9; t(40) = −0.57, p = 0.572] (see Figure 2B).
However, similar to the drift phase the increased model-free
control in the late follicular phase negatively correlated with the
delta of totally acquired coins in the 150 trials of the stable phase
(r =−0.328, p = 0.036, n = 41) (see Figure 2D).
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FIGURE 2 | Cycle-phase modulates model-free learning in the Two-Step task (n = 41). (A) During the drift phase, a significant increase in model-free learning from
the early to the late follicular was observed, while no change in model-based learning occurred. (B) During the stable phase, with fixed reward probabilities at stage
two, the learning scores remained unchanged between cycle phases. (C,D) The relative increase in model-free learning from the early to the late FP was associated
with a reduction in the relative amount of coins won, i.e., 1points (late minus early follicular phase), in both the drift (C) and the stable phase (D) (For display
purposes, the individual data points of the Met/Met homozygotes and the Val allele carriers are shown in different colors).

Secondly, when separately looking at the two genotypes
we found that model-free processing decreased in
Met-homozygotes in the high estradiol state [model-
freeearly ± SEM = 20.4 ± 4.6; model-freelate ± SEM = 8.4 ± 5.6;
t(11) = 2.93, p = 0.014, d = 0.67]. Additionally, this strong decline
in model-free processing capacity in the Met-homozygotes

(Deltalate−early = −12.1 ± 4.1) differed from the delta of the
Val-carriers [Deltalate−early = 5.9 ± 3.6; t(39) = −2.88, p = 0.006,
Hedge’s g = 0.99]. In contrast to that, the model-based component
remained unchanged in the Met-homozygotes [model-based
score ± SEM: Early = 7.1 ± 5.0; Late = 12.2 ± 7.0; t(11) = −0.76,
p = 0.462].
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FIGURE 3 | The recruitment of model-free and the model-based control varied between cycle phases when accounting for COMT-Val158Met genotype. (A) In the
drift phase, Met-homozygotes exhibited a significant decline in model-based control from the early to the late follicular phase, whereas Val-carriers remained
unaffected by cycle phase. Further, the 1(lateminusearlyfollicularphase) for both the model-based and the model-free score differed from zero in the Met/Met genotype
only, indicating that individuals with higher prefrontal dopamine were apparently more negatively affected by the rise in endogenous estradiol. (B) In the stable phase,
there was a relative decline in model-free control in Met-homozygotes only, that was also significantly different in the comparison of genotypes.

TABLE 4 | Comparison of model-free and model-based scores between genotype and cycle phases.

Early follicular phase (mean ± SEM) Late follicular phase (mean ± SEM) Independent t-test Paired t-test

Met/Met
(n = 12)

Val-carriers
(n = 29)

Met/Met
(n = 12)

Val-carriers
(n = 29)

Between genotypes,
within cycle phases

Between cycle phases,
within genotype

Drift phase

Model-free score 7.2 ± 5.4 16.1 ± 2.9 19.7 ± 5.8 22.4 ± 3.8 n.s. Met/Met: t = −2.71 p = 0.020

Model based score 13.6 ± 6.0 4.9 ± 3.2 0.9 ± 3.2 8.5 ± 3.2 n.s. Met/Met: t = 2.62 p = 0.024

Stable phase

Model-free score 20.4 ± 4.6 15.1 ± 3.1 8.4 ± 5.6 21.0 ± 3.0 Late: t = −2.16 p = 0.037 Met/Met: t = 2.93 p = 0.014

Model based score 7.1 ± 5.0 10.4 ± 3.3 12.2 ± 6.9 11.2 ± 2.9 n.s. n.s.

Finally, similar to the drift phase, the Val-carriers did not show
significant cycle-related changes in the learning scores during
the stable phase [model-free score ± SEM: Early = 15.1 ± 3.1;
Late = 21.0 ± 3.0; t(28) = −1.63, p = 0.114] [model-based
score ± SEM: Early = 10.4 ± 3.3; Late = 11.2 ± 2.9; t(28) = 0.176,
p = 0.861] (see Figure 3B).

DISCUSSION

Variations in estradiol may influence dopaminergic transmission
and basic (model-free) aspects of reinforcement learning as
well as higher-order cognition (Jacobs and D’Esposito, 2011;
Becker, 2016; Diekhof and Ratnayake, 2016). Here, we examined
whether changes in estradiol modulate both model-free and
model-based reinforcement learning across the menstrual cycle,
also depending on the COMT-Val158Met genotype. The results
showed that women relied more heavily on model-free learning
in the high compared to the low estradiol state, yet only
when reward associations were volatile. This suggests that

the increased estradiol level may have led to a disruption of
frontostriatal interactions during reinforcement learning. This
seems plausible, since estradiol inhibits both striatal DRD2
expression and prefrontal COMT activity, which should interfere
with the prospective updating of value representations in the
striatum and should reduce the prefrontal signal-to-noise ratio
during the maintenance of behavioral goals. At the same time,
estradiol enhances dorsolateral striatal dopamine transmission
through DRD1, which would also favor habitual model-free
control (Lévesque et al., 1989; Xie et al., 1999; Schendzielorz
et al., 2011; Krentzel and Meitzen, 2018; see also Becker,
2016; Yoest et al., 2018 for review). When further accounting
for individual differences in the prefrontal dopaminergic
baseline capacity, we observed that Met-homozygotes with
high prefrontal dopamine also experienced a decline in model-
based control in the context of volatile reward probabilities.
In contrast, the model-based score of Val-carriers remained
unaffected by menstrual cycle phase. Altogether, these initial
findings lead us to infer that the endogenous change in estradiol
does not only affect model-free control, but also modulates
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TABLE 5 | Stable phase – Effects of cycle-phase, TS-task manipulation and COMT-genotype on stay frequencies.

Main effect or interaction F-value df p-value partial eta2

Previous reward* 45.22 1, 39 <0.001 0.54

Previous transition 0.19 1, 39 0.663 0.01

Cycle phase 0.26 1, 39 0.611 0.01

COMT genotype 0.01 1, 39 0.939 <0.01

Previous reward × previous transition* 18.60 1, 39 <0.001 0.32

Previous reward × cycle phase 0.97 1, 39 0.330 0.02

Previous reward × COMT genotype 0.58 1, 39 0.452 0.02

Previous transition × cycle phase 0.52 1, 39 0.474 0.01

Previous transition × COMT genotype 0.56 1, 39 0.460 0.01

Cycle phase × COMT-genotype 3.01 1, 39 0.091 0.07

Previous reward × previous transition × cycle phase 0.55 1, 39 0.461 0.01

Previous reward × previous transition × COMT genotype 0.06 1, 39 0.812 <0.01

Previous reward × cycle phase × COMT genotype* 8.30 1, 39 0.006 0.18

Previous transition × cycle phase × COMT genotype 1.04 1, 39 0.315 0.03

Previous reward × previous transition × cycle phase × COMT genotype 0.31 1, 39 0.583 0.01

*Significant effects (p < 0.05) are plotted in bold and are marked with an asterisk.

prospective model-based learning depending on prefrontal
baseline capacity.

We observed an increase in the propensity to use model-
free control in the high estradiol state in the complete group of
our subjects, yet only when reward-outcome was volatile. The
increase in model-free control was thereby related to reduced
task performance (reduced task success in terms of the total
number of acquired coins), suggesting that the predominant use
of model-free control was suboptimal for reward maximization
in the TS-task. It has been suggested that model-free learning
may be primarily mediated by striatal processing, whereas
model-based control may recruit both striatal and prefrontal
resources (Deserno et al., 2015; Doll et al., 2016). Interestingly,
the effect appeared to be specifically driven by the Met-
homozygotes, who showed an increase in model-free control as
well as a concurrent reduction in the capacity for model-based
learning during the drift phase, while the Val-carriers showed no
significant change in learning capacity. In that way, the present
observations may conform with the notion that higher estradiol
could have biased striatal processing toward the model-free, less
flexible learning component, and might even have concurrently
disrupted frontostriatal interactions necessary for model-based
control, at least in the Met-homozygotes. In the striatum of
female rodents, estradiol increases stimulated dopamine release,
particularly so in the dorsolateral striatum (Becker, 2016). In our
study, estradiol may thus have disrupted the balance between
model-based and model-free control by favoring model-free
processing and the incentive salience of immediate reward
during the drift phase. This becomes particularly likely when
also considering the environmental volatility of the drift phase.
In their theoretical paper on partial reinforcement, Anselme
(2015) proposed that incentive motivation may outweigh the
effect of actual learning on behavioral choice when a reward
outcome is uncertain. In humans, reward uncertainty increases
tonic dopamine in the midbrain and promotes reward-related
ventral striatal activation (Dreher et al., 2006). One may

therefore assume that the combined effect of reward volatility
and high estradiol could have biased behavioral choice toward
model-free control. In fact, Met-homozygotes also showed an
increased stay frequency following rare reward, which could have
reflected such a maladaptive increase in the incentive salience of
immediate reward.

Our observation of the estradiol-driven increase in model-
free control during the drift phase does neither fit with the
previously reported result of a disruption of model-free control
by the dopamine agonist L-DOPA (Kroemer et al., 2019), nor
with another observation of no influence of L-DOPA on model-
free learning, yet a positive effect on model-based control
(Wunderlich et al., 2012). However, these studies differ in
some important aspects from our own: First, any differences
to our young female sample (n = 41 women) could have been
related to the male predominance in the other two samples
[Wunderlich et al. (2012) tested 18 young male undergraduates
(mean age = 23 years), and Kroemer et al. (2019) examined
a representative adult sample (mean age = 37 years) of 49
men and 16 women], and might therefore reflect biological
sex differences in the mechanisms underlying reinforcement
learning (see Becker, 2016; Diekhof, 2018). Second, estradiol
and L-DOPA modulate different dopaminergic mechanisms.
Whereas, L-DOPA increases dopaminergic tone (Harun et al.,
2016) and thus reduces local dopamine changes after unexpected
reward, estradiol facilitates stimulated dopamine release (Becker,
1990, 1999; Xiao and Becker, 1998; Hu et al., 2006). More
specifically, in the prefrontal cortex, estradiol reduces tonic
dopamine, yet augments transient dopamine release following
stimulation, whereas in the striatum it increases both tonic and
phasic dopamine (Almey et al., 2015). Therefore, estradiol would
probably increase dopaminergic transmission after unexpected
reward, which would in turn increase model-free control, as
presently observed.

Only Met-homozygotes exhibited a compromised model-
based learning capacity during the drift phase when being in
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the late follicular phase. This was expressed by an increase
difficulty in the differentiation between common and rare reward,
with higher maladaptive stay frequencies after rare rewards.
These observations fit with the assumption that, on the one
hand, being homozygote for the Met allele is beneficial for
the stabilization of prefrontal information processing and may
protect goal-directed information from interference, since it may
keep the optimal range of dopamine for cognitive processing
(Durstewitz and Seamans, 2008; Slifstein et al., 2008; Schacht,
2016). On the other, the estradiol-promoted increase of prefrontal
dopamine should then have destabilized information processing,
also by disrupting the overall frontostriatal balance (Durstewitz
and Seamans, 2008). Even though our sample included only 12
Met-homozygotes, the observed decline in model-based learning
during the state of increased reward uncertainty may in fact
correspond to this pattern. Jacobs and D’Esposito (2011) found
a similar interaction between estradiol and COMT genotype in
a working memory task. In their study the 8 Met-homozygotes
showed a performance decline and a reduction of prefrontal
activation while processing the cognitively demanding lure trials
of an N-back task in the late follicular phase. Conversely,
in their study the 13 women homozygote for the Val-allele
apparently benefited from the higher estradiol and showed
enhanced cognitive performance, while prefrontal activation
was concurrently increased. In the present study, we did
not find a state-related change in the model-based learning
component of the 29 Val-carriers. We can only speculate that
the predominance of heterozygotes in this group (only 4 Val-
homozygotes) may explain this finding. Heterozygosity may
place an individual somewhere near or even within the optimal
range of prefrontal dopamine (Schacht, 2016) and it could be
expected that perturbations of dopamine through an endogenous
agonist such as estradiol may not at any case move an individual
beyond this range.

Further notably, the decline in model-based learning in
the Met-homozygotes was restricted to the state of increased
environmental volatility. We assume that this might have been
the result of the combined influences of (1) increased task
familiarity, and (2) the concurrent reduction of task difficulty.
Task familiarity, which can be achieved through extensive
training, may automatize model-based learning in the TS-task.
Economides et al. (2015) showed that repeated performance of
the TS-task on two consecutive days preserved model-based
control even in a dual-task condition. We assume that the
reduced task difficulty and increased task familiarity rendered
model-based learning less vulnerable to the influence of estradiol
during the stable phase, even in Met-homozygotes. Further,
previous evidence points toward a crucial involvement of striatal
DRD2 in the updating of goal-relevant representations, especially
in situations of increased task difficulty (Cools and D’Esposito,
2011). High estradiol can suppress DRD2-action and increases
stimulated dopamine release (Krentzel and Meitzen, 2018; see
also Becker, 1999; Yoest et al., 2018). Therefore, estradiol may
particularly interfere with the ability to update changing value
representations, which was crucially important for mastering
the drift phase. If we further presume that cognitive load
was increased by the volatile reward structure, we should also

expect an additional load-dependent increase in dopamine (see
also Mattay et al., 2003, who reported a similar interaction of
increased cognitive load and the dopamine agonist amphetamine
on working memory). This would also explain why the Met-
homozygotes showed a decline in model-based control during the
difficult drift, but not during the relatively easy stable phase.

In the stable part of the TS-task, we found that, in contrast
to the drift phase, model-free control decreased from the early
to late follicular phase in the Met/Met genotype, i.e., enhanced
stay frequencies in relation to non-reward, yet regardless of
transition type. Interestingly, this latter finding contrasted that
of the Val-carriers, who in the high estradiol state became
better at avoiding non-reward. Two previous studies found an
interaction between estradiol and avoidance learning capacity.
Diekhof and Ratnayake (2016) observed reduced activation of the
dorsal anterior cingulate cortex to negative feedback and reduced
avoidance learning performance in the late follicular phase.
Jakob et al. (2018) reported a similar effect, yet only in subjects
with a low striatal dopaminergic baseline. These observations
fit with the stable phase result of the Met-homozygotes,
but antagonize the observation in Val-carriers. Alternatively,
the differences between genotypes may be explained by the
interaction between dopamine and the prefrontal signal-to-noise
ratio. Firstly, in humans the Val allele has been associated
with a reduced prefrontal signal-to-noise ratio (Gallinat et al.,
2003; Winterer et al., 2006a,b). Secondly, in rodents dopamine
has been observed to increase the signal-to-noise ratio and
promote the encoding of aversive stimuli in the medial prefrontal
cortex (Weele et al., 2019). Thirdly, according to the inverted
U-shape hypothesis the prefrontal deficit of Val-homozygosity
can be transiently remedied, while the Met-homozygotes may
be thrown out of balance by dopamine agonists (Cools and
D’Esposito, 2011; Schacht, 2016). Since estradiol may down-
regulate COMT activity (Xie et al., 1999; Schendzielorz et al.,
2011), it should in turn increase prefrontal dopaminergic tone.
Thus, in the dopamine-deficient Val-carriers higher estradiol
might have increased the signal-to-noise ratio leading to a
better avoidance of (common) non-reward in both phases
(Cools and D’Esposito, 2011).

Nevertheless, this does not explain why Met-homozygotes
showed such marked differences in model-free control between
phases. We can only speculate that the marked differences
in reward volatility might have involved dissimilar cognitive
operations and thus taxed different physiological mechanisms to
solve the task at hand. On the one hand, the drift phase was
characterized by the need to learn stimulus values incrementally,
making prospective learning less effective. This emphasized
model-free learning from immediate outcome, particularly so in
the high estradiol state, and because of the supposedly increased
cognitive load, augmenting dopaminergic transmission (Becker,
1999, 2016; Mattay et al., 2003). On the other hand, stable reward
contingencies and decreased task difficulty enabled the more
effective use of model-based control in the second half of the TS-
task. Although the ability to integrate non-reward into behavioral
choice declined in the Met-homozygotes it did not impair overall
gain in the stable phase. This indicates that the more effective
use of model-based control outweighed the need to rely on
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model-free control of behavior here. In fact, the model-based
system has been shown to cooperate with the model-free system
and can “train” the latter by replaying and simulating experience
offline. This may in turn allow for choice that appears model-
based (see Gershman et al., 2014). Finally, it is possible that the
behavioral adaptations to randomly drifting reward probabilities
in combination with the increased effort the participants put into
responding during the drift phase could have to some extent
disguised an estradiol-related deficit in avoidance learning in the
state of heightened estradiol.

CONCLUSION

We found that cycle-related differences in reinforcement learning
capacity were most pronounced during the state of increased
environmental volatility (drift phase) and in Met-homozygotes,
whose ability to use model-based learning was significantly
reduced in the high estradiol state. Further, model-free learning
appeared to be enhanced in the same state and this effect was
already evident on the group level, but most pronounced in
the Met/Met genotype. In contrast, Val-carriers remained widely
unaffected by changes in endogenous estradiol. The present
data suggest a disruption of frontostriatal interactions during
reinforcement learning in a state of naturally enhanced estradiol.
This seems plausible as estradiol may have an inhibitory influence
on both striatal DRD2 expression and on prefrontal COMT
activity, which should interfere with prospective updating of
value representations in the striatum and reduce the prefrontal
signal-to-noise ratio during the maintenance of behavioral
goals. At the same time, estradiol may enhance dorsolateral
striatal dopamine transmission through DRD1, which could
decouple behavioral decisions from goal-directed, model-based
choice and might favor model-free control. Consequently,
the present observations may be important for the better
understanding of mechanisms that lead to addiction and
substance abuse or promote craving and relapse during
abstinence in naturally cycling women.
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Clinically Used Hormone
Formulations Differentially Impact
Memory, Anxiety-Like, and
Depressive-Like Behaviors in a Rat
Model of Transitional Menopause
Stephanie V. Koebele1,2, Ryoko Hiroi1,2, Zachary M. T. Plumley1,2, Ryan Melikian1,2,
Alesia V. Prakapenka1,2†, Shruti Patel1,2, Catherine Carson1,2, Destiney Kirby1,2,
Sarah E. Mennenga1,2†, Loretta P. Mayer3, Cheryl A. Dyer3 and
Heather A. Bimonte-Nelson1,2*

1 Department of Psychology, Arizona State University, Tempe, AZ, United States, 2 Arizona Alzheimer’s Consortium, Phoenix,
AZ, United States, 3 FYXX Foundation, Flagstaff, AZ, United States

A variety of U.S. Food and Drug Administration-approved hormone therapy options
are currently used to successfully alleviate unwanted symptoms associated with
the changing endogenous hormonal milieu that occurs in midlife with menopause.
Depending on the primary indication for treatment, different hormone therapy
formulations are utilized, including estrogen-only, progestogen-only, or combined
estrogen plus progestogen options. There is little known about how these formulations,
or their unique pharmacodynamics, impact neurobiological processes. Seemingly
disparate pre-clinical and clinical findings regarding the cognitive effects of hormone
therapies, such as the negative effects associated with conjugated equine estrogens
and medroxyprogesterone acetate vs. naturally circulating 17β-estradiol (E2) and
progesterone, signal a critical need to further investigate the neuro-cognitive impact
of hormone therapy formulations. Here, utilizing a rat model of transitional menopause,
we administered either E2, progesterone, levonorgestrel, or combinations of E2 with
progesterone or with levonorgestrel daily to follicle-depleted, middle-aged rats. A battery
of assessments, including spatial memory, anxiety-like behaviors, and depressive-like
behaviors, as well as endocrine status and ovarian follicle complement, were evaluated.
Results indicate divergent outcomes for memory, anxiety, and depression, as well
as unique physiological profiles, that were dependent upon the hormone regimen
administered. Overall, the combination hormone treatments had the most consistently
favorable profile for the domains evaluated in rats that had undergone experimentally
induced transitional menopause and remained ovary-intact. The collective results
underscore the importance of investigating variations in hormone therapy formulation
as well as the menopause background upon which these formulations are delivered.
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INTRODUCTION

During the midlife transition to menopause, a number of
symptoms that negatively impact quality of life and wellbeing
may occur. Most commonly, these symptoms originate from
natural changes in estrogen production by the ovaries as follicle
reserve declines, leading to the onset of vasomotor symptoms
(e.g., hot flashes, night sweats), dyspareunia, and urogenital
indications (Hoffman et al., 2012; Al-Safi and Santoro, 2014;
NAMS, 2014). Benign irregular or heavy bleeding patterns are
also common during the transition to menopause (Voorhis
et al., 2008; Corni̧tescu et al., 2011; Pinkerton, 2011). In
addition, during the menopause transition many individuals
report increased rates of depression and anxiety symptoms, as
well as impaired cognition, particularly in the realm of working
memory (Kritz-Silverstein et al., 2000; Mitchell and Woods, 2001;
Weber and Mapstone, 2009; Maki et al., 2012; Weber et al., 2012,
2014; Worsley et al., 2014; Zilberman et al., 2015; Unkenstein
et al., 2016; Rentz et al., 2017; Morgan et al., 2018; Im et al., 2019).

There are a variety of U.S. Food and Drug Administration
(FDA)-approved hormone therapy options available that
effectively alleviate undesirable symptoms associated with
menopause-related changes in the endogenous hormonal
milieu (Files et al., 2011; Hoffman et al., 2012; Pinkerton,
2012; Stuenkel et al., 2015; Pinkerton et al., 2017c). If the
uterus is intact, a hormone therapy regimen must include
a progestogen component (i.e., natural progesterone or one
of the many synthetic forms of progesterone; the latter are
collectively referred to as progestins) in combination with
an estrogen component (e.g., natural 17β-estradiol (E2),
synthetic ethinyl estradiol, conjugated equine estrogens). This
progestogen component is necessary to mitigate the risk of
uterine hyperplasia and cancer (Pinkerton et al., 2017c). If a
patient’s primary indication for treatment is heavy, irregular,
or abnormal uterine bleeding, medical professionals may
prescribe a progestogen-only hormone therapy, such as an oral
progestogen or an intrauterine device containing the progestin
levonorgestrel, a synthetic form of progesterone (Sitruk-Ware,
2002; Marret et al., 2010; Corni̧tescu et al., 2011; Pinkerton,
2011; Goldstein and Lumsden, 2017). If a patient has undergone
hysterectomy with or without ovary removal, they may take
estrogen-only hormone therapy, as the removal of uterine
tissue eliminates the need for the progestogen component
(Haney and Wild, 2007; NAMS, 2014; Pinkerton et al., 2017c).
Additionally, low-dose vaginal estrogen-only tablets, creams,
and rings are increasing in popularity for the treatment of
menopausal genitourinary syndrome even when the uterus
is intact (Rahn et al., 2014; Pinkerton et al., 2017b; Biehl
et al., 2018; Shifren, 2018). Thus, depending on an individual’s
circumstance and primary indications for menopausal hormone
therapy use, there are a range of possibilities for variations
in hormone therapy preparations, including estrogen-only,
progestogen-only, or combined estrogen plus progestogen
hormone therapy options, which in turn may have variable
effects on the brain and periphery.

Sex steroid hormones have been shown to impact learning
and memory, although the ideal parameters for individual and

combined hormone therapies have proven to be complex (for
review, see: Barha and Galea, 2010; Gibbs, 2010; Luine, 2014;
Frick, 2015; Koebele and Bimonte-Nelson, 2015, 2017; Korol
and Pisani, 2015). Depriving the female system of ovarian-
derived hormones leads to cognitive changes in both humans
and animal models (e.g., Phillips and Sherwin, 1992; Singh
et al., 1994; Bimonte and Denenberg, 1999; Nappi et al., 1999;
Heikkinen et al., 2004; Wallace et al., 2006; Rocca et al., 2007;
Gibbs and Johnson, 2008; Parker et al., 2009; Ryan et al., 2014).
Importantly, ovarian hormone loss also results in an increased
susceptibility to anxiety and depression (Parker et al., 2009;
Bromberger and Kravitz, 2011; Bromberger et al., 2011; Maki
et al., 2012; Weber et al., 2014; Parry, 2020; Soares, 2020;
Stute et al., 2020). Under certain parameters or experimental
conditions, estrogen supplementation following the surgical
removal of the ovaries (ovariectomy; Ovx) reverses or attenuates
detriments in cognition and affective behaviors in preclinical
models (Bimonte and Denenberg, 1999; Holmes et al., 2002;
Foster et al., 2003; Hiroi and Neumaier, 2006; Hiroi et al.,
2006, 2016; Fernandez et al., 2008; Harburger et al., 2009;
Rodgers et al., 2010; Gleason et al., 2015; Black et al., 2016,
2018; Koebele et al., 2020b). Much emphasis has been placed
on exogenous E2 administration following Ovx, and reports
show variable effects on cognition depending on the parameters.
However, most individuals experience a natural, non-surgical
transition to menopause and retain their ovaries. The ovatoxin 4-
vinylcyclohexene diepoxide (VCD) induces accelerated follicular
atresia, which serves as a rat model of transitional menopause,
wherein ovarian tissue is maintained but becomes follicle-deplete
(Mayer et al., 2002, 2004; Dyer et al., 2013; Koebele and Bimonte-
Nelson, 2016). Using VCD, our laboratory recently demonstrated
that compared to follicle-deplete rats that did not receive E2
treatment, tonic E2 had beneficial effects in the learning phase
of a complex spatial working memory task. However, some
working memory impairments were evident in the E2-treated
rats after the rules of the task had been acquired (Koebele
et al., 2020a), demonstrating the complex role of estrogens in
learning and memory.

Although E2 is a common component in many FDA-approved
combined hormone therapy formulations, the progestogen
component varies. Progestins are used frequently as an
alternative to natural progesterone due to significantly higher
oral bioavailability (Sitruk-Ware et al., 1987; Schindler et al.,
2003; Kuhl, 2005). All progestins exert progestogenic activity
at progesterone receptors, resulting in protective mechanisms
for the uterus, which is often their primary clinical application.
However, depending on its molecular derivative, a given
progestin can also have estrogenic, anti-estrogenic, androgenic,
anti-androgenic, and/or glucocorticoid activity to varying extents
(Schindler et al., 2003). These unique pharmacological profiles
lead to distinct patterns of activity and actions by progestins,
including variable cognitive effects (Sitruk-Ware, 2002; Schindler
et al., 2003; Braden et al., 2017). Several progestins have been
shown by our and other laboratories to negatively affect cognition
(Rapp et al., 2003; Shumaker et al., 2003; Rosario et al.,
2006; Braden et al., 2010, 2011; Lowry et al., 2010). However,
levonorgestrel, a common progestin in hormone therapy
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formulations and a hormone-containing intrauterine device, has
been reported to have neutral, or even beneficial, effects on
cognition in the surgical menopause (i.e., Ovx) rat model when
administered independently (Braden et al., 2017; Prakapenka
et al., 2018). Levonorgestrel may exhibit these unique effects
due to its distinct pharmacodynamic properties; in contrast
to natural progesterone or other progestins, levonorgestrel
does not elicit glucocorticoid or anti-mineralocorticoid receptor
activity, but does have some androgenic activity (Schindler
et al., 2003). For example, in middle-aged Ovx rats, we have
demonstrated that levonorgestrel alone produced cognitive
benefits; however, when levonorgestrel was co-administered
with E2, it failed to augment, and in fact attenuated, E2’s
favorable effects on cognition, producing impairments relative
to either hormone alone (Prakapenka et al., 2018). These
results highlight the importance of performing translational
research in which clinical practices are accurately modeled.
Whether a combined E2 + progestogen regimen exerts similar
effects in a model of transitional menopause remains to be
determined. This is a question of high importance, given that
minor alterations in molecular structure can lead to different
physiological effects of progestogens (Sitruk-Ware, 2002), and
that progestogens are most often given in combination with
E2 when an individual undergoing menopause has an intact
uterus and ovaries (Pinkerton et al., 2017c). It is critical to
methodically compare how daily administration of natural
progesterone and the progestin levonorgestrel influence learning
and memory independently as well as in combination with
E2, and whether progestogen type matters for outcomes with
transitional menopause.

To address this question, we administered VCD to permit
the retention of follicle-depleted ovarian tissue and to produce
a circulating hormone profile more similar to that associated
with transitional menopause than would be achievable with Ovx
(Koebele and Bimonte-Nelson, 2016). In the current experiment,
VCD treatment began at 8 months of age, as we have done
in previous publications (Koebele et al., 2020a). Three months
later, when rats were middle-aged and considered to be in the
early post-menopausal stage after substantial follicular depletion
ensued (Lohff et al., 2005; Acosta et al., 2009; Koebele et al.,
2020a), daily exogenous hormone treatment began and rats were
tested on a behavioral battery assessing spatial memory, anxiety-
like, and depressive-like behaviors. Thus, the goals of the current
experiment were manifold, as we aimed to systematically evaluate
the independent and combined effects of daily E2, progesterone,
and levonorgestrel on cognitive, anxiety-like, and depressive-like
measures in transitionally menopausal, follicle-deplete, middle-
aged rats.

MATERIALS AND METHODS

See Figure 1 for a detailed experimental timeline.

Subjects
Sixty sexually inexperienced female Fischer-344-CDF rats from
the National Institute on Aging colony at Charles River

Laboratories (Raleigh, NC) were used in this experiment. Rats
were approximately 8 months of age when they arrived at the
Arizona State University vivarium facility. Rats were pair-housed
upon arrival and had unrestricted access to food and water for
the duration of the experiment. Rats were maintained on a 12-
h light/dark cycle (lights on at 7 am) and had a 1 week period
of acclimation in the vivarium prior to the commencement of
experimental procedures. The Institutional Animal Care and Use
Committee at Arizona State University approved all procedures,
which adhered to National Institutes of Health standards.

VCD Injections
All rats were administered VCD (FYXX Foundation, Flagstaff,
AZ) intraperitoneally at a dose of 160 mg/kg/day in 50% dimethyl
sulfoxide (DMSO)/50% sterile saline vehicle solution (Sigma-
Aldrich, St. Louis, MO, United States) for a total of 15 injection
days, based on established protocols (Mayer et al., 2002, 2004;
Lohff et al., 2005, 2006; Acosta et al., 2009, 2010; Van Kempen
et al., 2011; Frye et al., 2012; Zhang et al., 2016; Koebele et al.,
2017, 2020a; Kirshner and Gibbs, 2018; Carolino et al., 2019).
Baseline body weight (g) was recorded for all subjects prior to
starting injections. VCD injection volume was calculated based
on individual daily body weight. If a rat’s body weight decreased
by 10% or more from its baseline, VCD administration was
discontinued until weight was recovered. VCD was administered
on Mondays, Tuesdays, Thursdays, and Fridays. Injections were
not administered on Wednesdays, Saturdays, or Sundays for
weight recovery (Koebele et al., 2017, 2020a). As such, to
accommodate injection-related weight loss and recovery, the 15
VCD injections were completed over approximately 9 weeks.
Two rats died during VCD injections: one from peritonitis and
one from an undetermined cause, likely unrelated to injections.

Hormone Treatment Administration
A 93 day waiting period from the first VCD injection was
employed to ensure substantial ovarian follicular depletion (Lohff
et al., 2005; Acosta et al., 2009; Koebele et al., 2020a) prior
to initiating daily hormone administration, modeling the early
post-menopausal time point. Rats were then randomly assigned
to one of the following treatment conditions: Vehicle (sesame
oil; Sigma Aldrich S3547; n = 10), 17β-estradiol (E2; 3 µg/day;
Sigma Aldrich, E8875; n = 10), Progesterone (PROG; 0.7 mg/day;
Sigma Aldrich, P0130; n = 9), Levonorgestrel (LEVO; 0.6 µg/day;
Sigma Aldrich, N2260; n = 9), E2 + PROG (3 µg E2 + 0.7 mg
PROG/day; n = 10), or E2 + LEVO (3 µg E2 + 0.6 µg
LEVO/day; n = 10) (summarized in Figure 1). All hormone
treatments were dissolved in sesame oil, delivered via a 0.10 mL
daily subcutaneous injection for 21 days prior to beginning
behavioral testing. Hormone or Vehicle injections continued for
the duration of the experiment until euthanasia.

Body Weights
Body weights (g) were recorded for all rats at the onset of VCD
injections and periodically collected throughout the experiment
until euthanasia. Body weight served as a peripheral indicator of
general animal health and was used to assess whether hormone

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 69683825

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-696838 July 19, 2021 Time: 14:30 # 4

Koebele et al. HT, Cognition, and Affective Behaviors

FIGURE 1 | Experimental Timeline. Following accelerated follicular depletion, rats received daily hormone treatments and were evaluated on a series of behavior
tasks assessing working memory, reference memory, anxiety-like behavior, and depressive-like behavior.

treatments altered body weight in an ovary-intact, follicle-
depleted background.

Vaginal Cytology
Vaginal smears were assessed immediately prior to behavioral
testing initiation for two consecutive days, as previously
published (Koebele et al., 2020a). The experimenter obtained
each swab sample by gently inserting a small cotton-tipped
applicator soaked in sterile saline into the vaginal opening.
A light microscope (Fisher Scientific Micromaster; CAT #12-
561-4B) was used to view the cells at 10× magnification. The
experimenter classified samples as proestrus-, estrus-, metestrus-,
or diestrus- like as our laboratory and others have previously
published (Goldman et al., 2007; Koebele and Bimonte-Nelson,
2016; Koebele et al., 2019).

Behavioral Testing
After 3 weeks of daily hormone administration, 114 days after
the first VCD injection, all rats (approximately 11–12 months
old) were tested on a series of behavioral tasks assessing
spatial working and reference memory, anxiety-like behavior, and
depressive-like behavior. These assays included the water radial
arm maze (WRAM) to evaluate spatial working and reference
memory, the Morris water maze (MM) to assess spatial reference
memory, the visible platform (VP) task to confirm motor and
visual competency for swim-based tasks, the open field task
(OFT) to assess locomotor activity and anxiety-like behavior, and
the forced swim task (FST) to evaluate depressive-like behavior.
Procedures for each task are described in detail below.

Water Radial Arm Maze
The WRAM evaluated spatial working and reference memory
in a water escape paradigm (Bimonte-Nelson et al., 2015). The
apparatus had eight arms (38.1 cm × 12.7 cm each) and a
circular center, and was filled with water maintained at 18–20◦C
throughout testing. To assist with spatial navigation, prominent
visual cues were placed on the walls around the maze in addition
to the tables and heat lamps situated in each room. A pre-
selected combination of platform locations was assigned to each
rat, wherein hidden escape platforms were submerged 2–3 cm

beneath the water’s surface in four of the eight maze arms
(locations counterbalanced across treatment groups); the other
four arms (including the start arm) never contained platforms.
Assigned platform locations remained the same across all testing
days for a given rat. Black non-toxic powdered paint was added
to the water to further obscure submerged platforms. Testing
consisted of four trials per day across 13 consecutive days. Day 1
was considered training, days 2–12 were normal testing sessions,
and day 13 included a delayed memory retention evaluation.
During each daily testing session, the experimenter gently placed
the rat in the non-platformed start arm. If the rat did not escape
the WRAM via a hidden platform within the allotted 3-min trial
time, the experimenter guided the rat to the nearest platform
using a lead stick. Upon locating a platform, the rat was allocated
15 s of total platform time before being returned to its heated
testing cage to reinforce platform location learning. During a
30 s inter-trial-interval (ITI), the experimenter removed the just-
found platform from the maze, swept the water for debris with
a net, and stirred the water to diffuse potential olfactory cues.
In this way, working memory load progressively became taxed
across trials within a daily testing session, as the number of
locations to be recalled increased with each trial. On Day 13 of
testing, a 6-h delay was implemented between trials two and three
to assess delayed working memory retention. During the delay
interval, rats were kept in their individual testing cages and given
access to water.

Learning and memory performance on the WRAM was
quantified by calculating the number of entries into non-
platformed arms prior to locating a platform on each trial within
a day, which were considered errors. The experimenter logged
each arm entry error manually on a testing sheet during the
trials. An entry was operationally defined as the tip of the rat’s
snout crossing a marker 11 cm into the arm (visible on the
outside of the maze, but not visible to the rat). Errors were
counted and divided into subtypes. Working memory correct
(WMC) errors were entries into an arm that previously contained
a hidden platform within a daily testing session. Of note, WMC
errors can only occur on trials 2–4, as all platforms are present
in the maze during the first trial; as such, statistical analyses
for WMC errors across trials are inclusive of trials 2, 3, and 4.
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Reference memory (RM) errors were the first entries into an arm
within a daily testing session that never contained a platform;
as such, a total of four RM errors could be made within a daily
testing session. Working memory incorrect (WMI) errors were
subsequent entries, within a daily testing session, into an arm
that never contained a platform (Bimonte-Nelson et al., 2015).
RM and WMI errors can be made on any trial; thus, analyses for
WMI and RM errors across trials are inclusive of trials 1–4.

Morris Water Maze
Following the WRAM delayed memory retention day, rats were
evaluated on the MM, a water-escape task which assesses spatial
reference memory (Morris et al., 1982; Morris, 2015). The MM
was a circular tub (188 cm in diameter) filled with 18–20◦C water
made opaque with non-toxic black paint. One platform (11 cm
diameter) was placed 2–3 cm below the surface of the water in
the northeast quadrant of the tub, where it remained across all
days and trials. The rats underwent four trials per day for five
consecutive days. During each daily session, rats were dropped
off from one of four directions (north, south, east, or west) at
the start of each trial. The pattern of the four drop-off locations
changed across days but was identical within a day for all rats.
Path length (cm) from drop-off to the platform was recorded
by a video camera and Ethovision tracking software (Noldus
Instruments; Wageningen, Netherlands). Maximum trial time
was capped at 1 min. If the rat did not navigate to the platform
in the allotted trial time, the experimenter gently guided the
rat to the platform using a lead stick. Once the rat located the
hidden platform, it was required to stay there for 15 s of platform
time before being returned to its heated testing cage for a ∼10-
min ITI, during which the other subjects were tested on that
trial. On the final testing day of MM, after the fourth trial, rats
completed a probe trial wherein the submerged platform was
completely removed from the maze. Rats swam freely in the
maze for the 1-min probe trial. The proportion of total swim
distance covered within the previously platformed quadrant vs.
the opposite quadrant was calculated to assess spatial localization
to the previous platform location.

Visible Platform
On the day following MM, generalized visual acuity and motor
competency necessary for completing swim-based escape tasks
were assessed using the VP control task (Morris, 1984; Mennenga
et al., 2015a). The VP was a rectangular tub (100 cm × 60 cm)
filled with clear water (18–20◦C). On the north wall of the tub, a
black platform (10 cm diameter) protruded approximately 4 cm
above the water’s surface and was easily visible to the rats. Opaque
curtains surrounded the VP apparatus to obscure spatial and
geometric cues within the testing room. Rats underwent six trials
in 1 day. Each rat was dropped off from a fixed location in
the center of the south wall of the tub. The platform position
varied across trials semi-randomly in three possible locations
along the north wall: left, center, and right. Each trial was capped
at 90 s to reach the visible platform. The experimenter used
a stopwatch to obtain latency to the platform and recorded it
manually on a testing sheet after each trial. After navigating to
the visible platform, the rat was required to stay on the platform

for 15 s before the experimenter returned the rat to its heated
testing cage outside of the opaque curtains. There was an ITI of
approximately 10 min for each rat while the other subjects were
tested on that trial.

Open Field Task
The day after VP, rats underwent one evaluation day in the OFT,
which measured locomotor activity and anxiety-like behavior.
Twenty-four hours before testing, the 100 cm × 100 cm black
Plexiglas arena was thoroughly cleaned with Odormute, an
enzyme cleaner, to remove potential odors from the apparatus.
OFT procedures were carried out in a dark room, a protocol
which has previously been found to be sensitive to changes in
hormone profiles in female rats (Hiroi and Neumaier, 2006;
Hiroi et al., 2016). At the beginning of the testing day, rats were
transferred from their home cages to single testing cages and
allowed to acclimate in the anteroom of the testing area for at
least 30 min. Each subject was brought into the room separately.
The experimenter placed the rat into the arena along the center
of the north wall and quietly exited the room. Each rat had
10 min to freely explore the arena. Trials were recorded using
Samsung infrared night vision cameras connected to an iPad via
the SmartCam application. Following each trial, the experimenter
reentered the room, removed the rat from the arena, discarded
any feces or urine in the arena, and wiped down the entire arena
with tap water to distribute odor cues. The box was dried with
paper towel prior to the beginning of the next subject’s trial. Using
an overlay of 25 evenly sized and shaped squares (20 cm× 20 cm),
an experimenter blind to treatment conditions manually scored
the recorded trials for time spent (s) in the corners, center, and
small center of the arena, as well as line crossings into the corners,
center, small center, and total line crossings.

Forced Swim Task
The day following the OFT, rats were exposed to 2 days of the
FST to evaluate depressive-like behaviors (Huynh et al., 2011;
Hiroi et al., 2016). Four clear Plexiglas cylinders (45 cm high and
20 cm in diameter) were filled up to 30 cm in height with fresh
water (25◦C) and separated by black Plexiglas divider screens.
On day one of the FST, rats were acclimated to the testing room
for at least 30 min. Each rat was placed in a cylinder for 10 min
before being removed, toweled dry, and placed back into a heated
testing cage. Twenty-four hours later, rats were given a 5-min
trial under the same conditions. Video recordings of the 5-min
trial on day two were captured using a GoPro camera connected
to an iPad. After the trial was completed, rats were removed
from the cylinder and towel dried prior to being placed under
an escapable heat lamp. Number of fecal boli were recorded after
the trial. The water was drained from the clear cylinder and
refilled with fresh water between each subject’s trial. Recordings
were scored by an independent experimenter blind to treatment
conditions for latency to first immobility (s), time immobile (s),
time climbing (s), time swimming (s), and number of dives.
Immobility was quantified as minor movements necessary to
keep the rat’s head above water. Climbing was scored as rapid
forearm movement to break the surface of the water or upward
vertical movement to climb against the cylinder wall. Diving
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was defined as a rapid downward movement into the cylinder.
Any other motion made by the rats during the 5-min trial was
identified as swimming behavior.

Euthanasia
Rats were given 1 week of rest following the FST prior
to euthanasia. At approximately 13 months old, all subjects
were deeply anesthetized using inhaled isoflurane prior to
cardiocentesis and decapitation. Blood was collected from the left
ventricle of the heart using a 20 g needle and allowed to clot at 4◦C
(Vacutainer 367986; Becton Dickinson and Company, Franklin
Lakes, NJ, United States) for a minimum of 30 min. Blood vials
were maintained on ice and centrifuged at 2000 rpm at 4◦C for
20 min at the end of the day. Serum was aliquoted and stored
at −20◦C until analysis. Ovaries were separated from the uterine
horns, trimmed of excess fat, and fixed in 10% buffered formalin
for 48 h prior to being transferred to 70% ethanol until analysis.
Uteri were dissected from the body cavity, trimmed of excess fat,
and wet weight (g) was obtained.

Serum Hormone Measurements
All serum hormone assay processing was completed at the
Core Endocrine Laboratory at Pennsylvania State University.
E2 levels were detected using a double antibody liquid-phase
radioimmunoassay (Beckman Coulter, Brea, CA, United States)
as previously described (Acosta et al., 2010; Camp et al., 2012;
Mennenga et al., 2015b,c; Koebele et al., 2017, 2019). This RIA
used estradiol-specific antibodies with a 125I-labeled estradiol
as the tracer. Inter-assay coefficients of variation for the assay
averaged 10% at a mean value of 28 pg/ml. E2 assay functional
sensitivity was 5 pg/ml. Androstenedione levels were evaluated
via ELISA (ALPCO, Salem, NH, United States) based on the
typical competitive binding scenario between unlabeled antigen
(present in standards, controls, and unknowns) and the enzyme-
labeled antigen (conjugate) for a limited number of antibody
binding sites on the microwell plate. Inter-assay coefficients of
variation for the androstenedione assay averaged 9% at a mean
value of 0.5 ng/ml. Functional sensitivity of the androstenedione
assay was 0.1 ng/ml. Progesterone levels were also evaluated using
ELISA (ALPCO, Salem, NH, United States). Progesterone ELISA
inter-assay coefficients of variation averaged 13% at a mean
value of 2.6 ng/ml. Functional sensitivity of the progesterone
assay was 0.3 ng/ml.

Ovarian Follicle Counts
Following post-fixation at euthanasia, one ovary from each rat
was randomly selected for processing and quantification. All
ovarian follicle histology and quantification was carried out by
FYXX Foundation (Flagstaff, AZ, United States). The oviduct was
separated from the ovary prior to processing by a Leica TP1020
tissue processor. The ovary was paraffin embedded and serial
sectioned at 5 µm on a semi-automatic rotary microtome. Every
10th section was placed on slides, which were stained with Gills
2 hematoxylin and counterstained with eosin Y-phloxine B, then
manually cover-slipped. Tissue was scanned for analysis using a
3D HisTech DESK Scanner. Every 20th section was analyzed for
viable primordial, primary, secondary and antral follicles. Viable

follicles were those with no apparent signs of atresia. Atretic
follicles were not counted. Criteria from Haas et al. (2007) was
used to classify follicle type. Briefly, a resting-state primordial
cell was classified by a single layer of squamous granulosa cells
around an oocyte. Primary follicles included a single layer of
cuboidal granulosa cells. Secondary follicles were identified by
several layers of granulosa cells surrounding the oocyte. Antral
follicles had two or more layers of granulosa cells in addition to
a fluid-filled antral space within the follicle (Haas et al., 2007).
The estimated total number of primordial follicles was obtained
using the following formula: Nt = (N0 × St × ts)/(S0 × d0), where
Nt = total follicle estimate, N0 = number of follicles observed in
the ovary, St = total number of sections in the ovary, ts = thickness
of the section (µm), S0 = total number of sections observed, and
d0 = mean diameter of the nucleus (Gougeon and Chainy, 1987).
Counts for primary, secondary, and antral follicles were summed.
Corpora lutea were counted through progression of appearance
across the entire sample.

Statistical Analyses
Statview statistical software was used to complete data analyses.
All analyses were two-tailed (α = 0.05) and presented as
means ± S.E.M. A series of two-group planned comparison
repeated measures ANOVAs were completed using Treatment
as the independent variable. We aimed to answer three key
questions with our experimental data. We asked: (1) What role
does daily E2-only treatment have with transitional menopause?
For this question, the VCD-E2 group was compared to the
VCD-Vehicle group. (2) Does daily treatment with an individual
progestogen impact cognition with transitional menopause, and is
type of progestogen a factor for outcomes? To address this question,
we compared the VCD-Vehicle group to the VCD-PROG group
and to the VCD-LEVO group, as well as the VCD-PROG
group to the VCD-LEVO group. (3) What role does combination
hormone therapy play for cognition with transitional menopause?
The VCD-E2 group was compared to each combination group
(VCD-E2 + PROG and VCD-E2 + LEVO) to assess the
impact of adding a progestogen component to E2 therapy in
a reproductive tract intact, but follicle-deplete, system. The
VCD-PROG and VCD-LEVO groups were compared to their
corresponding combination hormone treatment groups (VCD-
E2 + PROG or VCD-E2 + LEVO, respectively) to understand
how E2 alters progestogen-only effects in a reproductive tract
intact, but follicle-deplete, system. Combination groups were
also compared to the VCD-Vehicle group, and to each other to
evaluate whether different progestogen components of combined
hormone therapy matter for cognitive outcomes. Statistically
significant two-group comparisons are reported herein, while
select non-significant comparisons key to the highlighted
questions are provided for context.

Water radial arm maze data were divided into three phase
blocks, as previously published (Mennenga et al., 2015c; Braden
et al., 2017; Prakapenka et al., 2018; Koebele et al., 2019). Day
1 was considered training and was excluded from the analysis.
Days 2–5 were the Early Acquisition Phase, Days 6–9 the Late
Acquisition Phase, and Days 10–12 the Asymptotic Phase. Each
phase block was analyzed separately, and each error type was
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analyzed separately for each phase block, with WMC, WMI,
and RM errors as the dependent measures. The three trials for
WMC, or four trials for WMI and RM, were nested within
days within each phase block (Early Acquisition Phase Block
1: 4 days, Late Acquisition Phase Block 2: 4 days, Asymptotic
Phase Block 3: 3 days) as the repeated measures. Thus, these
analyses consisted of two-group ANOVAs with Treatment as the
independent variable, and two repeated measures variables of
trials within days (Trials), and days within block (Days). Separate
a priori two-group analyses were run for Trial 3 + Trial 4, the
high working memory load trials, for WMC and WMI errors on
each block based on prior age- and hormone-mediated effects
found in our laboratory (Bimonte and Denenberg, 1999; Bimonte
et al., 2003; Bimonte-Nelson et al., 2003, 2004; Acosta et al.,
2010; Mennenga et al., 2015b,c; Koebele et al., 2017, 2019, 2020b;
Prakapenka et al., 2018). Delayed memory retention data were
analyzed independently for each treatment group by comparing
WMC errors on Trial 3 on the last day of regular testing to Trial
3 on Day 13, the first post-delay trial on the Delay Day.

Morris water maze analyses were completed using the same
two-group comparison structure. Swim Distance to the Platform
(cm) was the dependent measure, and the four trials per day were
nested within the 5 days of the task as the repeated measures.
Performance was assessed across all 5 days of the task as well
as across the four regular (non-probe trial) trials on Day 5
alone. Probe trial data were analyzed for each treatment group
using Proportion Total Swim Distance in the NE (target) vs. SW
(opposite) quadrants.

Visible platform analyses were completed for individual
treatment groups. Analyses comparing performance on Trial 1
to Trial 6 were compared within each group. Latency to Platform
(s) was the dependent measure, and the first and last trials were
repeated measures.

Open field task analyses were completed for each two-group
comparison. ANOVA was used to analyze total time (s) spent in
the corners, center, and small center of the arena, as well as total
number of entries made into the corner, center, and small centers
of the arena to assess anxiety-like behavior. The total number of
line crossings were assessed to evaluate locomotor activity during
the task. The number of fecal boli produced during the 10 min
trial was quantified.

Forced swim task analyses were completed for each two-
group comparison. ANOVA was used to analyze latency to first
immobility (s), total immobility duration (s), total swimming
duration (s), total climbing duration (s), and number of dives as
measures of depressive-like behaviors, as well as the number of
fecal boli produced during the trial.

Body weights, uterine weights, serum hormone levels, and
ovarian follicle counts were analyzed using ANOVA. For each
two-group comparison, Treatment was the independent variable
and body weight (g), uterine weight (g), hormone levels (pg/mL
or ng/mL), or follicle counts were the dependent measures. An
additional set of analyses for ovarian follicle counts were carried
out post hoc to include a comparison group of ovary-intact,
non-VCD treated rats from an independent data set in our
laboratory quantified by FYXX Foundation (n = 10). This
ovary-intact group received the respective Vehicle injection

(50%DMSO/50%Saline) for VCD injections to provide additional
context for the VCD-induced follicular depletion in the current
study. Unless otherwise noted, the number of subjects per
treatment group in the reported analyses was as follows:
VCD-Vehicle n = 10, VCD-E2 n = 10, VCD-PROG n = 9,
VCD-LEVO n = 9, E2 + PROG n = 10, and E2 + LEVO
n = 10.

RESULTS

Water Radial Arm Maze
Figure 2 illustrates the learning curves for WMC (Figure 2A),
WMI (Figure 2B), and RM (Figure 2C) errors across Days 2–
12 of the WRAM.

Early Acquisition Phase (Days 2–5)
What role does daily E2-only treatment have in spatial
learning and memory with transitional menopause?
The VCD E2 vs. VCD-Vehicle groups did not differ for
WMC, WMI, or RM errors during the Early Acquisition
Phase, suggesting that daily E2 treatment at the given dose
did not affect early task learning in a model of transitional
menopause compared to follicle-depleted rats that did not receive
hormone treatment.

Does daily treatment with an individual progestogen impact
cognition with transitional menopause, and does type of
progestogen impact outcomes?
There were no differences between the VCD-Vehicle group and
the VCD-PROG group or the VCD-LEVO group, nor between
the VCD-PROG vs. VCD-LEVO groups for WMC, WMI, or
RM during the Early Acquisition Phase. This suggests that
with transitional menopause, daily progestogen treatment does
not influence early task learning as compared to no hormone
treatment, nor does type of progestogen differentially impact
outcomes during learning.

What role does daily combination hormone therapy play for
spatial learning and memory with transitional menopause?
For RM errors, there was a main effect of Treatment for the VCD-
E2 vs. VCD-E2 + LEVO comparison [F(1,18) = 4.54, p < 0.05],
where follicle-deplete rats treated with a combination of E2
and levonorgestrel made fewer RM errors compared to those
treated with E2-only (Figure 3). For the VCD-E2 + PROG
group vs. VCD-E2 + LEVO group, there was also a main effect
[F(1,18) = 9.78, p < 0.01], where follicle-deplete rats treated with
a combination of E2 plus levonorgestrel made fewer RM errors
than those treated with a combination of E2 plus progesterone
during the Early Acquisition Phase. Thus, a daily regimen of E2
plus levonorgestrel combined with transitional menopause may
confer benefits to spatial reference memory performance during
learning (Figure 3).

Late Acquisition Phase (Days 6–9)
There were no significant Treatment differences in WMC, WMI,
or RM errors for any two-group comparison during the Late
Acquisition Phase.
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FIGURE 2 | Water Radial Arm Maze Error Subtype Learning Curves. (A) Working memory correct errors across days (B) Working memory incorrect errors across
days (C) Reference memory errors across days. For all error types, Day 1 was considered Training and was excluded from data analysis. The Early Acquisition Phase
was defined as Days 2–5, the Late Acquisition Phase was defined as Days 6–9, and the Asymptotic Phase was defined as Days 10–12. Performance for each error
subtype was analyzed separately. The n/group for all WRAM two-group analyses were: VCD-Vehicle n = 10, VCD-E2 n = 10, VCD-PROG n = 9, VCD-LEVO n = 9,
VCD-E2 + PROG n = 10, and VCD-E2 + LEVO n = 10.

Asymptotic Phase (Days 10–12)
What role does daily E2-only treatment have in spatial
learning and memory with transitional menopause?
There were no significant differences in WMC, WMI, or RM
errors for the VCD-E2 vs. VCD-Vehicle group comparison
during the Asymptotic Phase of testing (Figures 5, 6),
suggesting that daily E2 treatment at the given dose did
not significantly affect memory maintenance with transitional
menopause compared to counterparts that did not receive
hormone treatment.

Does daily treatment with an individual progestogen impact
cognition with transitional menopause, and is type of
progestogen a factor for spatial learning and memory?
During the Asymptotic Phase, there were no main effects of
Treatment for WMC errors. There was a Trial × Treatment
interaction present for WMC errors where follicle-deplete rats
treated with progesterone performed worse than those treated

with levonorgestrel (VCD-PROG vs. VCD-LEVO: F(2,32) = 3.76,
p < 0.05; Figure 4A), indicating that progestogen type has an
impact on the ability to handle an increasing working memory
load. No significant differences in WMI or RM errors were
detected for this comparison in the Asymptotic Phase.

For WMI, there was a main effect of Treatment [F(1,17) = 5.26,
p < 0.05; Figure 5A] and a Trial × Treatment interaction
[F(3,51) = 2.87, p < 0.05; Figure 5B] whereby follicle-deplete
rats treated with progesterone made more WMI errors compared
to those without subsequent hormone treatment. When Trial
3 + Trial 4, the highest working memory load trials, were
evaluated for WMI errors, there was a main effect of Treatment
[F(1,17) = 5.21, p < 0.05; Figure 5C], again indicating that
follicle-deplete rats treated with progesterone made more WMI
errors when working memory load was burdened compared to
transitionally menopausal rats that did not receive subsequent
hormone treatment. No differences between WMC or RM errors
were present for this comparison.
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FIGURE 3 | Early Acquisition Phase RM Errors Across All Trials (Two-Group
Comparisons). The VCD-E2 + LEVO group showed enhanced reference
memory performance compared to the VCD-E2 group (p < 0.05) and
compared to the VCD-E2 + PROG group (p < 0.01) during the Early
Acquisition Phase. Significance: ∗ = p < 0.05, ∗∗ = p < 0.01.

What role does daily combination hormone therapy play for
spatial learning and memory with transitional menopause?
During the Asymptotic Phase of testing, there was a
Trial × Treatment interaction for WMC errors within the
VCD-PROG group vs. VCD-E2 + PROG group comparison
[F(2,34) = 3.42, p < 0.05; Figure 4B]; when the Trial 3 + Trial
4, the high working memory load trials, were probed for this
comparison, there was a main effect of Treatment for WMC
errors [F(1,17) = 4.66, p < 0.05; Figure 4C], where rats treated
with E2 plus progesterone made fewer errors than progesterone-
only counterparts. Similarly, for WMI errors, there was a main
effect of Treatment for the VCD-PROG vs. VCD-E2 + PROG
comparison [F(1,17) = 6.64, p < 0.05; Figure 5A], indicating
that the addition of E2 to progesterone treatment enhanced
performance compared to progesterone alone on WMI errors
across all trials; a Trial × Treatment interaction [F(3,51) = 3.17,
p < 0.05; Figure 5D] was also present for this comparison. When
Trial 3 + Trial 4, the high working memory load trials, were
probed for WMI errors, a main effect of Treatment persisted
[F(1,17) = 6.67, p < 0.05; Figure 5E], where combined E2 plus
progesterone treatment enhanced performance compared to
progesterone-only treatment, particularly when memory load
was highly burdened for WMI errors. A main effect of Treatment
was also present for RM errors between VCD-PROG and

VCD-E2 + PROG groups [F(1,17) = 7.56, p < 0.05; Figure 6A].
As such, across all error types, a daily combination treatment
of E2 plus progesterone treatment enhanced spatial memory
performance compared to progesterone-only treatment in
transitionally menopausal rats in the Asymptotic Phase. When
E2-only treatment was compared to this combination of daily
E2 plus progesterone, a Trial × Treatment interaction for RM
errors was present [F(3,54) = 5.72, p < 0.01; Figure 6B] with
a higher mean error score for the VCD-E2 treated group as
compared to the combined VCD-E2+PROG treated group on
Trial 4, suggesting a potential benefit for the VCD-E2 + PROG
group’s spatial reference memory at the highest working memory
load compared to E2-only treatment as well, although RM
performance across trials should be interpreted with caution
given a cap of four possible RM errors. Collectively, when
ovaries remained structurally intact but were follicle-deplete,
combined E2 plus progesterone treatment improved spatial
memory performance compared to treatment with E2 alone or
progesterone alone.

Six-Hour Delay
Treatment groups were analyzed separately for delayed memory
retention assessment. WMC errors committed on the first post-
delay trial (Trial 3) were compared to errors on Trial 3 on the last
day of baseline testing. There was a main effect of Delay Day for
the VCD-Vehicle group [F(9,1) = 10.76, p < 0.01; Figure 7A],
VCD-E2 group [F(9,1) = 21.00, p < 0.01; Figure 7B], VCD-
E2+ PROG group [F(9,1) = 7.36, p< 0.05; Figure 7E], and VCD-
E2 + LEVO group [F(9,1) = 19.29, p < 0.01; Figure 7F], where
most groups made more errors when an extended delay occurred,
regardless of hormone therapy regimen. Analyses did not reach
statistical significance for the VCD-PROG (Figure 7C) or VCD-
LEVO group (Figure 7D), suggesting that the progestogen-only
treatments promoted some level of memory retention across
the delay period.

Morris Water Maze
Figure 8A demonstrates MM performance across the 5-day task.

What Role Does Daily E2-Only Treatment Have on a
Simple Spatial Reference Memory Task With
Transitional Menopause?
There were no Treatment effects across all 5 days of the
task or on Day 5 alone between VCD-Vehicle and VCD-
E2 groups, indicating that daily E2 treatment at the given
dose did not alter spatial reference memory compared
to follicle-deplete rats that did not receive subsequent
hormone treatment.

Does Daily Treatment With an Individual Progestogen
Impact Cognition With Transitional Menopause, and
Is Type of Progestogen a Factor for a Simple Spatial
Reference Memory Task?
There were no Treatment effects for any planned comparison
including the progestogen-only groups across all 5 days of the
task or on Day 5 alone.
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FIGURE 4 | WMC Errors During the Asymptotic Phase. (A) While there was no main effect of Treatment collapsed across trials for any two-group comparison, there
were Trial × Treatment interactions between the VCD-LEVO and VCD-PROG groups (p < 0.05) and (B) VCD-PROG and VCD-E2 + PROG groups (p < 0.05).
(C) When the High Load trials (Trials 3 plus 4) were assessed, VCD-PROG rats made more WMC errors than VCD-E2 + PROG rats (p < 0.05). Significance:
∗ = p < 0.05.

What Role Does Daily Combination Hormone
Therapy Play for a Simple Spatial Reference Memory
Task With Transitional Menopause?
The VCD-E2 vs. VCD-E2 + PROG comparison yielded
a Trial × Treatment interaction across all days of MM
testing [F(3,216) = 2.78, p < 0.05]. On the final testing day,
there was a main effect of Treatment for the VCD-E2 vs.
VCD-E2 + PROG comparison [F(1,18) = 7.59, p < 0.05;
Figure 8B] and the VCD-E2 vs. VCD-E2 + LEVO comparison
[F(1,18) = 5.22, p < 0.05; Figure 8C], where follicle-deplete
rats treated with only E2 swam less distance to the platform
compared to follicle-deplete rats administered a combination
hormone therapy treatment. Thus, the addition of an
exogenous progestogen, whether it was an endogenous-like
progesterone or the synthetic progestin levonorgestrel, in
combination with E2 impaired performance compared to E2
administration alone at the end of this simple spatial reference
memory task.

Probe Trial
Probe trial analysis demonstrated that each treatment group
effectively learned to use a spatial strategy to solve the MM
task (Figures 8D–I). Indeed, when the platform was removed
from the maze, each treatment group spent a greater proportion
of total swim distance in the previously platformed target
quadrant compared to the opposite quadrant (VCD-Vehicle:
[F(9,1) = 150.44, p < 0.0001]; VCD-E2: [F(9,1) = 159.271,
p < 0.0001]; VCD-PROG: [F(8,1) = 52.40, p < 0.0001]; VCD-
LEVO: [F(8,1) = 82.03, p < 0.0001]; VCD-E2 + PROG:
[F(9,1) = 66.32, p < 0.0001]; VCD-E2+ LEVO: [F(9,1) = 159.306,
p < 0.0001]).

Visible Platform
When comparing performance on the first trial vs. the last trial
for each treatment group, there was a main effect of Trial for
the VCD-Vehicle group [F(9,1) = 9.16, p < 0.05], VCD-E2 group
[F(9,1) = 8.88, p < 0.05], VCD-PROG group [F(8,1) = 6.59,
p < 0.05], VCD-LEVO group [F(8,1) = 15.67, p < 0.01], and
VCD-E2 + LEVO group [F(9,1) = 15.62, p < 0.01]. The VCD-
E2 + PROG group Trial effect was marginal [F(9,1) = 4.50,
p = 0.06], although this was likely due to one subject in that
group that took 22 s to reach the platform on Trial 6 (Figure 9A).
When this subject was excluded from the analysis, the Trial
effect became significant [F(8,1) = 7.08, p < 0.05]. However,
all groups, including the VCD-E2 + PROG group, decreased
in average trial latency from Trial 1 to Trial 6 of the VP task,
with an average latency to platform of 5.3 ± 0.49 s on Trial
6 (Figure 9B).

Open Field Task
One subject from the VCD-E2+ PROG group was excluded from
OFT analyses due to a technical error. Figure 10A provides a
schematic of the OFT with boxes overlaid to operationally define
the Corners, Center, and Small Center within the arena.

What Role Does Daily E2-Only Treatment Have in
Anxiety-Like Behaviors With Transitional
Menopause?
Transitionally menopausal rats treated with daily E2-only
spent less time in the corners of the OFT when compared
to transitionally menopausal rats treated with no hormone
[Treatment main effect for the VCD-Vehicle vs. VCD-E2
comparison: F(1,18) = 5.24, p < 0.05], suggesting decreased
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FIGURE 5 | WMI Errors During the Asymptotic Phase. (A) Across all trials, a main effect of Treatment was present between the VCD-PROG group and the
VCD-Vehicle group (p < 0.05) as well as compared to the VCD-E2 + PROG group (p < 0.05). (B) VCD-PROG vs. VCD-Vehicle comparison: A Trial × Treatment
interaction was present for this comparison (p < 0.05) (C) When High Load trials (Trials 3 + 4) were assessed, VCD-PROG rats made more WMI errors than
VCD-Vehicle rats (p < 0.05). (D) VCD-PROG vs. VCD-E2 + PROG comparison: A Trial × Treatment interaction was present for this comparison (p < 0.05). (E) When
High Load trials (Trials 3 + 4) were assessed, VCD-PROG rats made more WMC errors than VCD-E2 + PROG rats (p < 0.05). Significance: ∗ = p < 0.05.

anxiety-like behavior when E2-only hormone therapy is given
after follicular depletion as compared to no hormone therapy
given after follicular depletion (Figure 10B). There were no
effects present for time in the Center or Small Center for
this comparison, nor were there differences in entries into the
Corners, Center, or Small Center.

Does Daily Treatment With an Individual Progestogen
Impact Anxiety-Like Behavior With Transitional
Menopause, and Is Type of Progestogen a Factor for
Outcomes?
Regarding Corner Time (s), transitionally menopausal rats
treated with daily progesterone alone spent less time in the
corners of the OFT when compared to counterparts without
hormone treatment [Treatment main effect VCD-Vehicle vs.
VCD-PROG comparison: F(1,17) = 4.80, p < 0.05], suggesting
a decrease in anxiety-like behavior for the progesterone-treated
group (Figure 10B). There were no effects present for time in
the Center or Small Center for these comparisons, nor were there
differences in entries into the Corners, Center, or Small Center.

What Role Does Daily Combination Hormone
Therapy Play for Anxiety-Like Behavior With
Transitional Menopause?
Analysis of Center Time (s) revealed a Treatment effect for
the VCD-E2 vs. VCD-E2 + LEVO comparison [F(1,18) = 4.61,
p < 0.05], wherein subjects treated with a combination of E2
and levonorgestrel spent significantly more time in the Center
of the open field, indicating reduced anxiety-like behavior,
compared to rats treated with E2-only (Figure 10C). There
were no other effects present for Corner time or Small Center
time for these comparisons. When assessing entries into the
Corners, there were Treatment effects for the VCD-E2 vs. VCD-
E2 + LEVO comparison [F(1,18) = 8.20, p < 0.05] and VCD-
E2 + PROG vs. VCD-E2 + LEVO comparison [F(1,17) = 4.87,
p < 0.05]. In both analyses, the VCD-E2 + LEVO group showed
increased entries into the corners (Figure 10F). A Treatment
effect was also indicated within the VCD-E2 vs. VCD-E2+ LEVO
comparison for Center entries [F(1,18) = 7.14, p < 0.05]
(Figure 10G) and Small Center entries [F(1,18) = 22.59, p< 0.001]
(Figure 10H). Increased Small Center entries were also evident
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FIGURE 6 | RM Errors During the Asymptotic Phase. (A) Across all trials, a
main effect of Treatment was present between the VCD-PROG group and the
VCD-E2 + PROG group (p < 0.05). (B) VCD-E2 vs. VCD-E2 + PROG
comparison: A Trial × Treatment interaction occurred (p < 0.01). Significance:
∗ = p < 0.05, ∗∗ = p < 0.01.

in the VCD-E2 + LEVO group compared to the VCD-Vehicle
group [F(1,18) = 8.10, p < 0.05] and the VCD-E2 + PROG
[F(1,17) = 5.21, p < 0.05] (Figure 10H).

Line Crossings Analyses
Total Line Crossings, measuring total locomotion, differed for
VCD-Vehicle vs. VCD-E2 + LEVO groups [F(1,18) = 4.64,
p < 0.05], VCD-E2 vs. VCD-E2+ LEVO groups [F(1,18) = 10.81,
p < 0.01], and VCD-E2 + PROG vs. VCD-E2 + LEVO
groups [F(1,17) = 5.11, p < 0.05], with rats treated with a
combination of daily E2 plus levonorgestrel exhibiting increased
locomotor activity in the OFT overall (Figure 10I). Transitionally
menopausal rats treated with E2-only produced more fecal boli
compared to rats without hormone therapy treatment (VCD-
Vehicle vs. VCD-E2: F(1,18) = 8.27, p < 0.05) and compared to

rats treated with a combination of E2 plus progesterone (VCD-
E2 vs. VCD-E2 + PROG: [F(1,18) = 8.87, p < 0.01]) during the
10 min trial (Figure 10E).

Forced Swim Task
What Role Does Daily E2-Only Treatment Have in
Depressive-Like Behaviors With Transitional
Menopause?
Latency to Immobility, Total Immobility Duration, Total
Swimming Duration, Total Climbing Duration, Number of
Dives, or Number of Fecal Boli did not differ between rats
treated with E2 only compared to counterparts not administered
subsequent hormone treatment (Figure 11).

Does Daily Treatment With an Individual Progestogen
Impact Depressive-Like Behavior With Transitional
Menopause, and Does Type of Progestogen Have an
Impact?
No differences were found in Latency to Immobility, Total
Immobility Duration, Total Swimming Duration, Total Climbing
Duration, Number of Dives, or Number of Boli for any planned
comparison including the VCD-Vehicle group compared to the
VCD-PROG or VCD-LEVO group, nor did VCD-PROG and
VCD-LEVO groups differ from one another (Figure 11).

What Role Does Daily Combination Hormone
Therapy Play for Depressive-Like Behavior With
Transitional Menopause?
Regarding Latency to Immobility, there was a Treatment
effect for the VCD-Vehicle vs. VCD-E2 + PROG comparison
[F(1,18) = 5.51, p < 0.05], the VCD-Vehicle vs. VCD-
E2 + LEVO comparison [F(1,18) = 8.63, p < 0.01], the
VCD-E2 vs. VCD-E2 + PROG comparison [F(1,18) = 5.35,
p < 0.05], and the VCD-E2 vs. VCD-E2 + LEVO comparison
[F(1,18) = 8.42, p < 0.01]. In all comparisons, transitionally
menopausal rats treated with combined E2 plus progestogen
hormone treatment regimens had longer latencies to immobility,
indicating that the addition of either natural progesterone or
the synthetic progestin levonorgestrel to E2 treatment yields
antidepressant-like behavior compared to E2-only treatment
or no hormone treatment following transitional menopause
(Figure 11A). Furthermore, Total Immobility Duration was
increased in the VCD-Vehicle group compared to the VCD-
E2 + PROG group [F(1,18) = 4.55, p < 0.05], and compared
to the VCD-E2 + LEVO group [F(1,18) = 6.94, p < 0.05]. In
both comparisons, the groups treated with combined E2 plus
progestogen hormone regimens spent less total time immobile,
indicating that combined hormone therapy regimens induce
antidepressant-like behavior compared to no hormone treatment
with transitional menopause (Figure 11B). Additionally, VCD-
LEVO vs. VCD-E2 + LEVO differed for Total Immobility
Duration [F(1,17) = 8.65, p < 0.01], where rats treated with
levonorgestrel alone spent more time immobile compared to
counterparts treated with a combination of E2 plus levonorgestrel
(Figure 11B). Although Total Swimming Duration did not differ
for any comparison (Figure 11C), rats treated with a combination
of E2 plus levonorgestrel spent more time presenting with
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FIGURE 7 | WRAM Six-Hour Delayed Memory Retention Test. (A) The VCD-Vehicle group exhibited a delay-induced working memory impairment compared to the
previous day’s baseline performance (p < 0.01). (B) The VCD-E2 group exhibited a delay-induced working memory impairment compared to the previous day’s
baseline performance (p < 0.01). (C) The VCD-PROG group did not display a delay-induced working memory impairment compared to the previous day’s baseline
performance. (D) The VCD-LEVO group did not display a delay-induced working memory impairment compared to the previous day’s baseline performance. (E) The
VCD-E2 + PROG group exhibited a delay-induced working memory impairment compared to the previous day’s baseline performance (p < 0.05). (F) The
VCD-E2 + LEVO group exhibited a delay-induced working memory impairment compared to the previous day’s baseline performance (p < 0.01). Significance:
∗ = p < 0.05, ∗∗ = p < 0.01.

climbing behavior compared to counterparts that did not receive
hormone therapy after follicular depletion (VCD-Vehicle vs.
VCD-E2+ LEVO: [F(1,18) = 6.62, p< 0.05]) (Figure 11D). Taken
together, these results suggest that a combined hormone therapy
regimen, particularly a combination of E2 and levonorgestrel,
results in antidepressant-like effects compared to no hormone
treatment, E2-only treatment, or progestogen-only treatment
after transitional menopause.

Vaginal Cytology
Across two consecutive days of vaginal cytology monitoring,
most VCD-Vehicle-treated rats exhibited mixed cytology
resembling metestrus-like smears, suggesting disrupted estrous
cyclicity, which is expected following accelerated follicular
depletion without subsequent hormone therapy treatment.
Rats that received E2 only displayed primarily cornified cells
resembling estrus-like smears, which was expected as a result
of daily E2 administration. Rats treated with progesterone only
or levonorgestrel only had primarily metestrus- or diestrus-
like smears, indicative of a relatively higher ratio of circulating
progesterone to estrogen levels. The VCD-E2 + PROG group

presented with cytology mostly resembling metestrus-like
smears, and some diestrus-like smears, while the VCD-
E2 + LEVO group showed estrus- and metestrus- like smears.
Based on prior data from our and other laboratories, normal
estrous cyclicity is disrupted approximately 4 months after VCD
injection administration, and vaginal cytology can be modified
by a given hormone therapy regimen (Koebele et al., 2020a).

Serum Hormone Levels
One VCD-Vehicle rat, all VCD-E2, and all VCD-E2 + LEVO
rats were excluded from the androstenedione analyses because
the measured serum hormone level was below the detectable
limit of the assay. Additionally, one VCD-Vehicle rat was
excluded from the E2 analyses due to insufficient serum volume
needed to run the assay. The n per group for each steroid
hormone assay is included in the Figure 12 caption summarizing
serum hormone levels.

How Does Daily E2-Only Treatment Affect Serum
Hormone Profiles With Transitional Menopause?
Transitionally menopausal rats treated with daily E2 had
increased circulating E2 levels compared to the Vehicle-treated
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FIGURE 8 | Morris Water Maze. (A) Swim Distance to Platform Across All Days. (B) VCD-E2 treated rats swam less distance to the platform compared to the
VCD-E2 + PROG treated rats (p < 0.05). (C) VCD-E2 treated rats swam less distance to the platform compared to the VCD-E2 + LEVO treated rats (p < 0.05).
(D–I) Probe trial. All treatment groups swam a greater proportion of total distance in the previously platformed quadrant vs. the opposite quadrant, indicating that all
groups spatially localized to the hidden platform location. Significance: ∗ = p < 0.05, ∗∗∗∗p < 0.0001.

counterparts, as expected [F(1,17) = 10.82, p < 0.01]
(Figure 12A). Progesterone levels did not differ between
VCD-Vehicle and VCD-E2 groups (Figure 12B). Lastly, all
subjects within the VCD-E2 group had undetectable levels of
androstenedione, and thus the comparison could not be carried
out between VCD-Vehicle vs. VCD-E2 groups (Figure 12C).

How Does Daily Treatment With Progesterone or
Levonorgestrel Affect Serum Hormone Levels With
Transitional Menopause, and Does Type of
Progestogen Impact Outcomes?
Treatment with progesterone or levonorgestrel did not alter
circulating E2 levels compared to transitionally menopausal
counterparts that did not receive hormone treatment or
compared to each other (Figure 12A). The VCD-PROG group
had higher circulating progesterone levels than the VCD-Vehicle
group [F(1,17) = 70.95, p < 0.0001] and the VCD-LEVO group
[F(1,16) = 71.26, p < 0.0001] (Figure 12B). Rats treated with
levonorgestrel had similar circulating progesterone profiles
compared to transitionally menopausal rats that did not receive
hormone therapy, suggesting that this synthetic progestin did not

alter endogenous progesterone levels in follicle-deplete ovary-
intact rats. Interestingly, the VCD-PROG group had higher
androstenedione levels compared to the VCD-Vehicle group
[F(1,16) = 20.53, p < 0.001], and compared to the VCD-LEVO
group [F(1,16) = 21.49, p < 0.001] (Figure 12C), suggesting that
follicle-deplete rats with exogenous administration of natural
progesterone experience increased circulating androgen levels
compared to follicle-deplete rats without hormone treatment,
or compared to those treated with the synthetic progestin
levonorgestrel. On the other hand, treatment with levonorgestrel
alone did not impact circulating androstenedione levels
compared to counterparts that did not receive hormone therapy.

How Does Daily Combination Hormone Therapy
Affect Serum Hormone Levels With Transitional
Menopause?
Compared to rats without hormone treatment, rats in both
combined hormone therapy groups demonstrated increased
levels of circulating E2 (VCD-Vehicle vs. VCD-E2 + PROG
group [F(1,17) = 14.18, p < 0.01]; VCD-Vehicle vs. VCD-
E2+ LEVO [F(1,17) = 20.21, p < 0.0001]). Circulating E2 did not
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FIGURE 9 | Visible Platform. (A) All subjects decreased latency to platform from the first to last trial. (B) Trial times (means + S.E.M.) for each treatment group are
provided. Significance: ∗ = p < 0.05, ∗∗ = p < 0.01, ˆ = p = 0.06.

differ between VCD-E2 and VCD-E2 + PROG groups or VCD-
E2 and VCD-E2 + LEVO groups, indicating that the addition of
a progestogen to E2 treatment was insufficient to alter circulating
E2 levels, at least at the given doses. Likewise, rats treated with
either type of progestogen independently had less circulating
E2 compared to their respective combined hormone therapy
group (VCD-PROG vs. VCD-E2 + PROG [F(1,17) = 16.83,
p < 0.001]; VCD-LEVO vs. VCD-E2 + LEVO [F(1,17) = 23.44,
p < 0.001]). The VCD-E2 + PROG vs. VCD-E2 + LEVO
groups did not differ in circulating E2 levels; thus, the type
of progestogen (i.e., natural progesterone or synthetic progestin
levonorgestrel) did not impact circulating E2 levels when the
hormone therapy was administered in a combined estrogen plus
progestogen fashion. Overall, the E2 component is likely the
primary driver in determining circulating E2 levels in a given
group (Figure 12A).

The VCD-E2 + PROG group had increased circulating
progesterone levels compared to the VCD-Vehicle group
[F(1,18) = 103.78, p< 0.0001], the VCD-E2 group [F(1,18) = 62.29,
p < 0.0001], the VCD-E2 + LEVO group [F(1,18) = 74.99,
p < 0.0001], and, interestingly, the VCD-PROG alone group
[F(1,17) = 9.36, p < 0.01]; the outcome from this latter
comparison indicates that combined E2 plus progesterone
therapy may have a synergistic effect on increasing circulating
progesterone levels compared to progesterone-only treatment.
Circulating progesterone levels did not differ between VCD-
Vehicle vs. VCD-E2 + LEVO groups, VCD-E2 vs. VCD-
E2+ LEVO groups, or VCD-LEVO vs. VCD-E2+ LEVO groups,
suggesting that the synthetic progestin levonorgestrel does not
influence endogenous progesterone production itself, at least at
the dose given in this experiment (Figure 12B).

All subjects in the VCD-E2 + LEVO group had undetectable
levels of circulating androstenedione, and thus could not be

evaluated relative to respective comparison groups. Because
all subjects treated with E2 only likewise had undetectable
androstenedione levels, this group also could not be compared
to the VCD-E2 + PROG group. The VCD-E2 + PROG
group did not differ in androstenedione levels from the VCD-
Vehicle group. Androstenedione levels differed between VCD-
PROG and VCD-E2 + PROG groups, whereby the combination
hormone therapy regimen yielded reduced androstenedione
levels compared to progesterone treatment alone [F(1,17) = 62.90,
p < 0.0001] (Figure 12C).

Ovarian Follicle Counts
Two subjects from the VCD-Vehicle group, two subjects from
the VCD-LEVO group, one subject from the VCD-E2 + PROG
group, and one subject from the VCD-E2 + LEVO group
were excluded from follicle analyses due to poor tissue quality.
Thus, the n/group for all follicle analyses was the following:
VCD-Vehicle n = 8, VCD-E2 n = 10, VCD-PROG n = 9,
VCD-LEVO n = 7, VCD-E2 + PROG n = 9, and VCD-
E2+ LEVO = 9. The independent ovary-intact Vehicle reference
group n = 10.

How Does Daily E2-Only Treatment Affect Ovarian
Follicle Profiles With Transitional Menopause?
Compared to the VCD-Vehicle group, the VCD-E2 group
had significantly fewer primordial follicles [F(1,16) = 6.10,
p < 0.05] and fewer primary follicles [F(1,16) = 9.89,
p < 0.01] (Figures 13A,B), an effect we have previously
observed in follicle-depleted rats with tonic E2 treatment
(Koebele et al., 2020a). Secondary follicles, antral follicles,
and corpora lutea counts did not differ between VCD-
Vehicle and VCD-E2 groups, although both groups
exhibited substantial follicle decline, indicating successful
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FIGURE 10 | Open Field Task. (A) Schematic of the OFT arena. Green squares indicate which boxes were defined as Corners, pink squares indicate which boxes
were defined as Center, and yellow stripes indicate the Small Center, which was also included in the “Center” measure. (B) The VCD-Vehicle group spent more time
in the corners compared to VCD-E2 and VCD-PROG groups. (C) VCD-E2 + LEVO treatment increased time spent in the center compared to VCD-E2 treatment.
(D) No significant differences in Small Center Time were detected. (E) The VCD-E2 group had more fecal boli than the VCD-Vehicle and VCD-E2 + PROG group.
(F) The VCD-E2 + LEVO group made more entries into the corner compared to the VCD-E2 group as well as the VCD-E2 + PROG group. (G) The VCD-E2 + LEVO
group made more entries into the center compared to VCD-E2 treatment alone. (H) The VCD-E2 + LEVO group made more entries into the small center compared
to VCD-Vehicle group, VCD-E2 group, and VCD-E2 + PROG group. (I) Total Line Crossing analyses indicate that the VCD-E2 + LEVO group moved more in the OFT
compared to VCD-Vehicle, VCD-E2, and VCD-E2+PROG groups. Significance: ∗ = p < 0.05, ∗∗ = p < 0.01, ∗∗∗ = p < 0.001.

VCD-induced follicular depletion. In fact, there were no
detectable antral follicles for any subject treated with E2 only
(Figures 13C–E).

How Does Daily Treatment With Progesterone or
Levonorgestrel Affect Ovarian Follicle Profiles With
Transitional Menopause, and Does Type of
Progestogen Matter?
There were no Treatment group differences in primordial
follicles, primary follicles, secondary follicles, antral follicles, or
corpora lutea counts in the VCD-Vehicle group vs. the VCD-
PROG group or vs. VCD-LEVO group, nor did the VCD-PROG
and VCD-LEVO groups differ from each other, indicating that
progestogen treatment alone does not impact the composition
of the ovarian follicle pool in an accelerated follicular depletion
model (Figures 13A–E).

How Does Daily Combination Hormone Therapy
Affect Ovarian Follicle Profiles in a Model of
Transitional Menopause?
Estimated primordial follicle counts did not differ for VCD-
Vehicle rats compared to the VCD-E2 + PROG group or
compared to the VCD-E2 + LEVO group. Compared to
transitionally menopausal rats treated with E2 only, transitionally
menopausal rats treated with E2 plus levonorgestrel had more
primordial follicles [F(1,17) = 4.86, p < 0.05] (Figure 13A),
suggesting that this combined hormone treatment protects
remaining healthy follicles in the ovarian reserve during this
menopause transition time point compared to treatment with
E2 alone. Estimated primordial follicle counts, primary
follicles, secondary follicles, and antral follicles did not
differ for combined hormone therapy groups compared
to their respective progestogen counterparts, nor did they
differ from each other. In addition, the VCD-E2 + PROG
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FIGURE 11 | Forced Swim Test. (A) Both combination hormone therapy groups had a longer latency to immobility when compared to VCD-Vehicle or VCD-E2
groups, suggesting an antidepressant-like effect of combination hormone therapy compared to no treatment or E2 treatment alone. (B) Total immobility was
decreased in the combination hormone therapy groups, again suggesting an antidepressant-like effect compared to Vehicle treatment or LEVO-alone treatment.
(C) No Treatment differences were indicated in time spent swimming. (D) The VCD-E2 + LEVO group spent more time climbing compared to the VCD-Vehicle group,
indicating antidepressant-like effects. (E,F) Total Dive Count and Fecal Boli Counts did not differ among treatment comparisons. Significance: ∗ = p < 0.05,
∗∗ = p < 0.01.

group had more corpora lutea compared to the VCD-E2
group [F(1,17) = 6.93, p < 0.05], indicating that rats treated
with E2 plus progesterone may have occasional ovulatory
cycles during the menopause transition, although both
groups were all significantly depleted and categorized as
infertile (Figure 13E).

Confirmation of Follicular Depletion in VCD-Treated
Groups: Comparison to an Ovary-Intact Vehicle
Reference Group
Overall, groups treated with VCD showed substantial ovarian
follicle loss in comparison to normally aging ovary-intact rats
that did not receive exposure to VCD. To confirm that VCD
treatment depleted the ovarian follicle reserve in all treatment
groups in the current study, we utilized an independent data
set of ovarian follicle counts collected in our laboratory from
rats that received the complementary Vehicle injection for
VCD administration, similar to a comparison procedure we
have published previously (Koebele et al., 2020a). This ovary-
intact Vehicle reference group was compared to each VCD-
treated group in the current study (Figures 13A–E; specific

comparisons below), with analyses showing that each VCD
group had fewer primordial follicles, secondary follicles, antral
follicles, and corpora lutea than this ovary-intact Vehicle
reference group.

For primordial follicles, there was a Treatment main effect for
each group comparison with the ovary-intact Vehicle reference
group: VCD-Vehicle: [F(1,16) = 62.55, p < 0.0001]; VCD-E2:
[F(1,18) = 125.72, p < 0.0001]; VCD-PROG: [F(1,17) = 82.70,
p < 0.0001]; VCD-LEVO: [F(1,15) = 14.79, p < 0.01]; VCD-
E2 + PROG: [F(1,17) = 48.98, p < 0.0001]; VCD-E2 + LEVO:
[F(1,17) = 50.17, p < 0.0001].

For secondary follicles, there was a Treatment main effect for
each group comparison with the ovary-intact Vehicle reference
group: (VCD-Vehicle: [F(1,16) = 134.22, p < 0.0001]; VCD-E2:
[F(1,18) = 175.61, p < 0.0001]; VCD-PROG: [F(1,17) = 130.12,
p < 0.0001]; VCD-LEVO: [F(1,15) = 90.70, p < 0.0001]; VCD-
E2 + PROG: [F(1,17) = 314.74, p < 0.0001]; VCD-E2 + LEVO:
[F(1,17) = 141.85, p < 0.0001]).

For antral follicles, there was a Treatment main
effect for each group comparison with the ovary-intact
Vehicle reference group (VCD-Vehicle: [F(1,16) = 40.27,
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FIGURE 12 | Serum Hormone Levels. (A) E2 was elevated in VCD-E2, VCD-E2 + PROG, and VCD-E2 + LEVO groups compared to VCD-Vehicle rats. Additionally,
combination hormone therapy groups had elevated E2 compared to their respective progestogen-only groups. E2 analysis n/group: VCD-Vehicle n = 9; VCD-E2
n = 10; VCD-PROG n = 9; VCD-LEVO n = 9; VCD-E2 + PROG n = 10; VCD-E2 + LEVO n = 10. (B) Progesterone was elevated in the VCD-PROG group and the
VCD-E2 + PROG group compared to the VCD-Vehicle group, VCD-E2 group, and VCD-LEVO group. The combination hormone group had higher progesterone
levels compared to the VCD-PROG group alone. Progesterone analysis n/group: VCD-Vehicle n = 10; VCD-E2 n = 10; VCD-PROG n = 9; VCD-LEVO n = 9;
VCD-E2 + PROG n = 10; VCD-E2 + LEVO n = 10. (C) All subjects in the VCD-E2 group and VCD-E2 + LEVO group had undetectable levels of androstenedione.
Androstenedione was elevated in the VCD-PROG group compared to VCD-Vehicle, VCD-LEVO, and VCD-E2 + PROG groups. Androstenedione analysis n/group:
VCD-Vehicle n = 9; VCD-E2 n = 0 [undetectable]; VCD-PROG n = 9; VCD-LEVO n = 9; VCD-E2 + PROG n = 10; VCD-E2 + LEVO n = 0 [undetectable]. Significance:
∗∗ = p < 0.01, ∗∗∗ = p < 0.001, ∗∗∗∗ = p < 0.0001.

p < 0.0001]; VCD-E2: [F(1,18) = 69.44, p < 0.0001];
VCD-PROG: [F(1,17) = 46.36, p < 0.0001]; VCD-
LEVO: [F(1,15) = 47.66, p < 0.0001]; VCD-E2 + PROG:
[F(1,17) = 62.13, p < 0.0001]; VCD-E2+ LEVO: [F(1,17) = 62.13,
p < 0.0001]).

For corpora lutea, there was a Treatment main effect for
each group comparison with the ovary-intact Vehicle reference
group: (VCD-Vehicle: [F(1,16) = 263.46, p < 0.0001]; VCD-E2:
[F(1,18) = 413.27, p < 0.0001]; VCD-PROG: [F(1,17) = 184.52,
p < 0.0001]; VCD-LEVO: [F(1,15) = 102.73, p < 0.0001]; VCD-
E2 + PROG: [F(1,17) = 278.58, p < 0.0001]; VCD-E2 + LEVO:
[F(1,17) = 314.74, p < 0.0001]).

Interestingly, the ovary-intact vehicle reference group
had fewer primary follicles compared to each VCD-treated
group: (VCD-Vehicle: [F(1,16) = 41.99, p < 0.0001]; VCD-E2:
[F(1,18) = 11.85, p < 0.01]; VCD-PROG: [F(1,17) = 20.16,
p < 0.001]; VCD-LEVO: [F(1,15) = 34.13, p < 0.0001]; VCD-
E2 + PROG: [F(1,17) = 21.74, p < 0.001]; VCD-E2 + LEVO:
[F(1,17) = 16.46, p < 0.001]).

Body Weights
Body Weight measurements across the experiment are illustrated
in Figure 14A.

How Does Daily E2-Only Treatment Affect Body
Weight With Transitional Menopause?
As we have previously observed (Koebele et al., 2020a), there
were no body weight differences between the VCD-Vehicle group
and the VCD-E2 group at euthanasia, indicating that daily E2

treatment was insufficient to alter body weight compared to a
reproductive tract intact, but follicle-deplete, rat not treated with
hormone therapy (Figure 14B).

How Does Daily Treatment With Progesterone or
Levonorgestrel Affect Body Weight With Transitional
Menopause, and Does Type of Progestogen Matter?
There were no differences in body weight between the VCD-
Vehicle and the VCD-PROG group, or the VCD-LEVO group,
at euthanasia. VCD-PROG vs. VCD-LEVO groups did not
differ in average body weight either. Overall, this indicates
that in reproductive tract intact, follicle-deplete rats, daily
progestogen treatment alone did not alter body weight compared
to counterparts not treated with hormone therapy. Moreover,
body weights from progestogen-only groups did not differ from
each other (Figure 14B).

How Does Daily Combination Hormone Therapy
Affect Body Weight With Transitional Menopause?
The VCD-E2+ PROG group weighed less than the VCD-Vehicle
group [F(1,18) = 6.12, p < 0.05] as well as less than the VCD-
PROG group [F(1,17) = 11.39, p < 0.01] at euthanasia. The
VCD-E2 + LEVO group weighed less than LEVO-only treated
counterparts as well [F(1,17) = 7.84, p < 0.05]. However, there
were no weight differences indicated between the VCD-Vehicle
vs. VCD-E2 + LEVO group at euthanasia. The combination
hormone therapy regimens did not have an impact on body
weight compared to E2-only treatment, nor did they differ
from each other. Overall, these data suggest that a combined
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FIGURE 13 | Ovarian Follicle Counts. An independent ovary-intact reference group (n = 10) is included to assess successful follicular depletion following VCD
treatment. The letter “a” indicates that this ovary-intact reference group was significantly different from each VCD-treated group. (A) Estimated primordial follicle
counts were decreased in the VCD-E2 group compared to the VCD-Vehicle group and the VCD-E2 + LEVO group. (B) Primary follicles were decreased in the
VCD-E2 group compared to the VCD-Vehicle group, replicating prior work. (C) Secondary follicle counts were significantly depleted in VCD-treated groups,
indicating successful accelerated follicular atresia. (D) Antral follicle counts were significantly depleted in VCD-treated groups, indicating successful accelerated
follicular atresia. (E) The VCD-E2 + PROG group had more corpora lutea compared to the VCD-E2 group, suggesting occasional ovulatory cycles in this group
during the transition to reproductive senescence. Significance: ∗ = p < 0.05, ∗∗ = p < 0.01.

hormone therapy regimen, particularly one containing natural
progesterone, may lead to weight loss with a follicle-deplete
background (Figure 14B).

Uterine Weights
How Does Daily E2-Only Treatment Affect Uterine
Weight With Transitional Menopause?
The VCD-Vehicle and VCD-E2 groups did not differ in uterine
weight (Figure 14C). Although we have previously reported
an increase in uterine weight with E2-only treatment in a
VCD model, that experiment administered E2 tonically using
Alzet osmotic pumps (Koebele et al., 2020a). It is possible that
transitionally menopausal rats given a low dose of E2 via daily
injection is insufficient to induce persistent changes in uterine
weight compared to transitionally menopausal rats not receiving
hormone therapy treatment.

How Does Daily Treatment With Progesterone or
Levonorgestrel Affect Uterine Weight With
Transitional Menopause, and Does Type of
Progestogen Matter?
While VCD-Vehicle vs. VCD-LEVO groups did not differ in
uterine weights, the VCD-PROG group had decreased uterine
weights compared to the VCD-Vehicle group [F(1,17) = 8.14,
p< 0.05] and compared to the VCD-LEVO group [F(1,16) = 6.92,
p < 0.05], suggesting that daily natural progesterone treatment
attenuates uterine weight in reproductive tract-intact but follicle-
deplete rats (Figure 14C).

How Does Daily Combination Hormone Therapy
Affect Uterine Weight With Transitional Menopause?
Neither combination hormone therapy regimens, E2 plus
progesterone nor E2 plus levonorgestrel, had an impact on
uterine weight as compared to transitionally menopausal
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FIGURE 14 | Peripheral markers of overall health and uterine stimulation. (A) Body weight changes across the experimental timeline (B) At the end of the experiment,
the VCD-E2 + PROG group weighed less than the VCD-Vehicle group and the VCD-PROG group, suggesting combination hormone therapy promotes weight
maintenance compared to no hormone therapy treatment or progesterone treatment alone. The VCD-E2 + LEVO group also weighed less than its VCD-LEVO alone
counterpart, again suggesting combination hormone therapy promotes weight maintenance. (C) PROG treatment reduced uterine weight compared to VCD-Vehicle,
VCD-LEVO, and VCD-E2 + PROG groups. VCD-E2 + PROG uterine weight was attenuated compared to VCD-E2 treatment along, suggesting progesterone blocked
uterine proliferation. The VCD-E2 + LEVO group uteri weighed more than those in the VCD-E2 + PROG group, indicating less progestin-induced attenuation of
uterine stimulation compared to natural progesterone when in a combined hormone therapy regimen. Significance: ∗ = p < 0.05, ∗∗ = p < 0.01, ∗∗∗∗ = p < 0.0001.

rats without hormone therapy. The combination of E2
plus progesterone decreased uterine weights compared to
E2-only treatment [VCD-E2 group vs. VCD-E2 + PROG
group: F(1,18) = 5.43, p < 0.05], while the combination E2
plus levonorgestrel did not yield this decrease compared
to E2-only treatment. Progesterone-only treatment also
reduced uterine weights compared to combined E2 plus
progesterone treatment [F(1,17) = 31.58, p < 0.0001].
Uterine weights did not differ between rats treated with
levonorgestrel alone and counterparts treated with a
combination of E2 plus levonorgestrel. However, when E2
was administered with levonorgestrel, this combination
resulted in higher uterine weights than when E2 was
combined with natural progesterone [F(1,18) = 4.627,
p < 0.05] (Figure 14C).

DISCUSSION

Using the VCD accelerated follicular depletion model of
transitional menopause, this experiment evaluated independent
and combined effects of daily E2, progesterone, and
levonorgestrel treatment on several aspects of cognition,
including spatial memory, anxiety-like, and depressive-like
behaviors in middle-aged, ovarian follicle-deplete female rats.
Endocrine and ovarian follicular profiles were reported in
conjunction with general health measures to provide the first
comprehensive report of cognitive outcomes associated with
independent and combined menopausal hormone therapy
regimens in a transitional menopause model. Until now,
preclinical investigations into combined hormone therapy
regimens have been conducted in Ovx rats (Gibbs, 2000;
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Simone et al., 2015; Prakapenka et al., 2018), and evaluations
of hormone effects utilizing the VCD model have been
limited to estrogen-only (Acosta et al., 2010; Pestana-Oliveira
et al., 2018; Long et al., 2019; Koebele et al., 2020a). Divergent
cognitive, anxiety-like, and depressive-like profiles were observed
dependent upon the type of clinically relevant, daily hormone
regimen administered. Overall, under the current experimental
parameters, progesterone-only treatment produced detrimental
impacts on spatial working memory, while combined E2 plus
progestogen treatments resulted in beneficial cognitive effects
spanning spatial memory, anxiety-like measures, and depressive-
like measures, as well as favorable body and uterine weight
profiles in a follicle-deplete, ovary-intact transitional menopause
model. Collectively, these findings demonstrate that the presence
of follicle-depleted ovarian tissue and the specific formulation of
hormone treatment not only yield unique behavioral phenotypes,
but are critical considerations when interpreting outcomes in
both preclinical and clinical evaluations.

Regarding spatial memory performance, daily E2 treatment
in follicle-deplete rats had a neutral effect on working and
reference memory compared to counterparts without subsequent
hormone treatment. Mode of hormone administration could
impact cognitive outcomes in a transitional menopause
background. Indeed, we have recently shown that tonic, chronic
administration of E2 via a subcutaneous Alzet osmotic pump
had beneficial learning effects, and some detrimental memory
effects, in follicle-deplete rats of the same age (Koebele et al.,
2020a). Thus, although the age of the rats, as well as the VCD
treatment, hormone dose, and behavior protocol were constant
across studies, varying the drug administration route from a
tonic exposure to a daily injection likely altered spatial working
memory outcomes.

We also report here that the combined hormone therapy
regimen containing E2 plus the synthetic progestin levonorgestrel
improved spatial reference memory during task acquisition
in the WRAM compared to E2-only treatment. This suggests
a unique and broad benefit in the transitionally menopausal
model that was not observed in a surgical menopause model,
wherein combined E2 plus levonorgestrel treatment attenuated
the beneficial effects of E2 alone after Ovx (Prakapenka et al.,
2018). Thus, the presence or absence of follicle-deplete ovarian
tissue in middle-age plays a role in the cognitive outcomes of
E2 plus levonorgestrel combination hormone treatment. Rats
that received E2 plus levonorgestrel treatment also had improved
reference memory during task acquisition compared to rats
treated with E2 plus progesterone concomitantly, suggesting
a unique cognitively beneficial role for levonorgestrel when
combined with E2 to enhance learning on a complex spatial
working memory task. Reference memory benefits observed for
the rats treated with daily E2 plus levonorgestrel treatment
did not carry over into MM, indicating that the presence of
a working memory component in a task alters outcomes on
the reference memory measure, an effect we have previously
shown in normally aging, ovary-intact rats without hormone
treatment (Bernaud et al., 2021). During the latter portion
of WRAM testing, transitionally menopausal rats treated with
only progesterone showed working memory impairments when

working memory was taxed compared to counterparts without
hormone treatment, with levonorgestrel treatment, or with E2
plus progesterone treatment. This progesterone-only induced
cognitive impairment has been observed in past work from
our laboratory and others using the Ovx menopause model
(Chesler and Juraska, 2000; Bimonte-Nelson et al., 2006;
Harburger et al., 2007; Lowry et al., 2010; Sun et al., 2010;
Braden et al., 2015). On the MM, transitionally menopausal
rats administered E2-only had significantly better performance
on the last day of the task compared to both combination
treatment groups, such that in the case of a simple spatial
reference memory-only task, the combination of progesterone
or levonorgestrel with E2 attenuated performance compared to
E2 treatment alone. However, regardless of treatment, all rats
spatially localized to the previously platformed area during the
probe trial, indicating the effective use of a spatial strategy in
the MM. Taken together, the cognitive effects resulting from
exogenous hormone treatment may be specific to memory
domain, task complexity, and menopause type (Koebele et al.,
in press). It is also of note that hormone therapy regimens in
this study began after follicular depletion was substantial, and
cognitive outcomes could have been impacted by the timing of
the hormone therapy administration relative to the extent of
follicular depletion.

Regarding anxiety-like behavior as measured by the OFT,
transitionally menopausal rats treated with a combination of
E2 plus levonorgestrel demonstrated less anxiety-like behavior
as defined by more time and entries into the open field
center compared to E2-only treatment, as well as more
entries into the smallest center designation compared to
transitionally menopausal rats without hormone therapy, or
those given E2-only, or E2 plus progesterone. The E2 plus
levonorgestrel group also had increased Total Line Crossings in
the OFT, suggesting increased overall locomotor activity with
this hormone treatment combination. Increased time in the
corners of the open field in the VCD-Vehicle group indicates
that the endogenous hormone profile associated with transitional
menopause without subsequent hormone therapy increases
anxiogenic behavior compared to the profile of transitional
menopause with E2-only or progesterone-only administration.
This observation corresponds to clinical literature showing
increased de novo affective disorders during midlife and the
transition to menopause, and calls for further evaluations
of midlife-aged individuals given these hormone therapies
(Bromberger and Kravitz, 2011; Maki et al., 2012; Weber
et al., 2014; Soares, 2019; Parry, 2020; Stute et al., 2020).
Overall, the combination of E2 and levonorgestrel produced
a favorable profile of reduced anxiety-like behaviors compared
to other groups. This is particularly noteworthy, as E2-only
therapy has been shown to alleviate affective symptoms during
the menopause transition, but not in the post-menopausal
life stage (Lokuge et al., 2011); perhaps combined hormone
regimens could be a novel pathway to alleviate anxiety symptoms
in individuals who are reproductive-tract-intact but ovarian
follicle-depleted. Regarding depressive-like behavior quantified
in the FST, transitionally menopausal rats given combined
hormone therapy regimen, irrespective of progestogen type,
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exhibited longer latencies to immobility and spent less time
immobile overall. This suggests that combined hormone therapy
regimens, particularly those containing levonorgestrel, produce
advantageous outcomes for depressive-like behaviors with a
follicle-deplete, ovary-intact background. It is important to
acknowledge that traditional FST measures have more recently
been discussed within the context of responsiveness or coping
after a severe acute stressor, rather than a pure measure of
persistent depressive-like behavior (Commons et al., 2017),
and that immobility could be an adaptive response rather
than a despair-like behavior (Molendijk and de Kloet, 2015).
In the future, it will be important to capture the impact of
variations in hormone therapy regimens on additional tasks that
encompass varied expressions of anxiety-like and depressive-like
behavior in rodents.

In terms of physiological measures, all groups treated with
E2 had elevated circulating E2 levels compared to groups that
were not treated with E2. Circulating progesterone was increased
in groups treated with progesterone. Of particular interest,
transitionally menopausal rats treated with a combination
of E2 and natural progesterone displayed elevated serum
progesterone levels compared to counterparts treated with
progesterone alone, which may point to a mechanism by
which the combined hormone treatment containing E2 plus
progesterone increased natural progesterone production
to a greater extent than did the exogenous progesterone
treatment alone. Circulating androstenedione levels were
undetectable in rats treated with E2 alone or in combination
with levonorgestrel, suggesting a potential role of exogenous
E2 in mediating endogenous androstenedione production,
which is synthesized in the interstitial ovarian tissue.
Rats treated with progesterone had elevated circulating
androstenedione levels compared to counterparts without
hormone treatment, with synthetic levonorgestrel, or with
combined E2 plus progesterone regimens, indicating that
exogenous progesterone alone promotes the synthesis of
endogenous androstenedione.

With regard to ovarian follicle counts, we report that
the VCD-E2 treated group had significantly fewer primordial
and primary follicles compared to the VCD-Vehicle group,
corresponding to recent work from our laboratory showing
similar effects with tonically administered E2 (Koebele et al.,
2020a). This is a novel phenomenon observed within the
middle-aged VCD model, wherein exogenous E2-only treatment
may further accelerate follicular depletion by a yet-unknown
mechanism. One possibility is that exogenous E2-associated
rapid follicular depletion may be moderated, in part, by
interactions with estrogen receptor-beta (Chakravarthi et al.,
2020). Moreover, a recent report in adult ovary-intact mice
revealed that administration of the synthetic estrogen ethinyl
estradiol downregulated estrogen receptor expression and
oxytocin receptor expression in ovarian tissue, with all receptor
downregulation persisting even after treatment was discontinued
(Garbett et al., 2020), pointing to a role for exogenous
estrogen treatment in accelerated follicular depletion in rodents.
Interestingly, the VCD-E2 + PROG group had statistically more
corpora lutea present compared to the VCD-E2 alone group, such

that the group administered E2 only was largely anovulatory,
whereas other groups may have had an occasional ovulatory
cycle during depletion, as has been observed in individuals
during the human menopause transition (O’Connor et al., 2009;
Burger, 2011), resulting in quantifiable corpora lutea at the time
of evaluation.

The addition of the ovary-intact vehicle reference group
confirmed that primordial, secondary, and antral follicles, as well
as corpora lutea, were sufficiently depleted in the VCD-treated
groups, regardless of subsequent hormone therapy treatment.
In contrast to our previously published findings (Koebele et al.,
2020a), the ovary-intact vehicle reference group had significantly
lower primary follicles counts compared to VCD-treated groups.
This may be due to a rat strain difference since the F344-NIH
strain utilized in our previously published work has since
been retired and replaced with the F344-CDF strain. Six single
nucleotide polymorphisms (SNPs) that differ between the strains
have been detected, although the effect of these SNPs on the F344-
CDF phenotypes is not well defined (National Institute on Aging,
2019). Because primary ovarian follicles are not steroidogenic or
responsive to gonadotropins, it is unlikely that there would be
a major biologically or behaviorally relevant consequence to the
increased primary follicle counts observed in the VCD-treated
groups herein. It is notable that the extremely low or undetectable
numbers of secondary and antral follicles in all VCD-treated
groups demonstrate that the ovatoxin successfully halted any
remaining primary follicles from transitioning into later stages
of growth, and was thus successful at inducing a transitional
menopause model.

Combined hormone therapy regimens containing both an
estrogen and progestogen appear to reduce or maintain body
weight during the menopause transition. Moreover, natural
progesterone-only treatment consistently promoted inhibitory
effects of uterine proliferation at the dose given. Follicle-
deplete rats administered combined E2 plus progesterone
therapy showed decreased uterine weights compared to E2-only
therapy, again suggesting that natural progesterone administered
exogenously attenuated endometrial growth; of note, we also
found that progesterone decreased the uterine weight when
combined with E2, while the synthetic progestin levonorgestrel
did not. A higher dose of levonorgestrel may prevent uterine
weight increases with transitional menopause. Of particular
clinical relevance, uterine weights from rats treated with either
combination hormone regimen did not differ from transitionally
menopausal rats without hormone treatment; thus, the tested
combined regimens did not yield substantial E2-induced uterine
hyperplasia overall.

Collectively, this experiment demonstrates the remarkable
variability that hormone therapy options can have on outcomes
associated with memory, anxiety, depression, endocrine, body
weight, and reproductive tract profiles during the transition
to menopause. In accordance with medical societies providing
recommendations for care during the menopause transition, our
data support the tenet that hormone therapy is not a one-size-
fits-all solution (Neves-E-Castro et al., 2015; Stuenkel et al., 2015;
Baber et al., 2016; Pinkerton et al., 2017a). Primary indications
for treatment and individual health risk factors must be taken
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into account when prescribing hormone therapy; it is clear that
formulation and presence of an intact reproductive tract are key
to this equation, despite being historically understudied. The
neurobiological, pharmacological, and behavioral effects of E2-
alone, progestogen-alone, and combined hormone therapy are
complex and, in some cases, task-specific. That levonorgestrel
has some androgenic receptor activity, but does not have
glucocorticoid or anti-mineralocorticoid activity like natural
progesterone or other clinically used progestins (Schindler et al.,
2003) may play a role in the behavioral phenotypes observed
herein. This is particularly important because progesterone-alone
had several negative effects on working memory performance
in this evaluation, replicating a well-documented effect in the
literature in Ovx rats (Chesler and Juraska, 2000; Bimonte-
Nelson et al., 2004, 2006; Harburger et al., 2007; Sun et al.,
2010; Braden et al., 2015). Moreover, progesterone-only, but not
levonorgestrel-only, treatment increased androstenedione levels
in the current experiment. Given that androstenedione has been
shown to detrimentally impact spatial memory in Ovx rats, likely
via its aromatization to estrone (Camp et al., 2012; Mennenga
et al., 2015c), interactive effects of levonorgestrel with androgen
receptors in conjunction with lower circulating androstenedione
levels than seen with progesterone treatment may be a putative
mechanism through which levonorgestrel mitigates or prevents
negative cognitive effects. Moreover, levonorgestrel has also
been shown to have some unique effects on insulin secretion
when combined with the synthetic estrogen, ethinyl estradiol
(Sitruk-Ware and Nath, 2011), indicating that independent or
combined administration may alter biological and behavioral
outcomes. Levonorgestrel remains a popular progestin prescribed
in intrauterine devices, combined oral contraceptives, emergency
contraception, and menopausal hormone therapy formulations;
the results described here are promising findings, as a favorable
hormone therapy regimen should not compromise cognitive
health for the individual (and optimally would provide benefits)
while fulfilling its function to alleviate other non-cognitive,
unwanted menopause symptoms. Continued exploration into
the biological underpinnings of levonorgestrel’s unique effects
on the brain and periphery will provide critical insight
for improving health outcomes across multiple stages in
the lifespan. Future investigations should consider additional
clinically relevant hormone formulations that take into account
a more holistic approach to understanding cognitive-behavioral
outcomes, including menopause type (Edwards et al., 2019) and
individual life history, with the goal to improve healthy life
expectancy outcomes.
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Background: The current pilot study was designed to examine the association between
hippocampal γ-aminobutyric acid (GABA) concentration and episodic memory in older
individuals, as well as the impact of two major risk factors for Alzheimer’s disease
(AD)—female sex and Apolipoprotein ε4 (ApoE ε4) genotype—on this relationship.

Methods: Twenty healthy, community-dwelling individuals aged 50–71 (11 women) took
part in the study. Episodic memory was evaluated using a Directed Forgetting task,
and GABA+ was measured in the right hippocampus using a Mescher-Garwood point-
resolved magnetic resonance spectroscopy (MRS) sequence. Multiple linear regression
models were used to quantify the relationship between episodic memory, GABA+, ApoE
ε4, and sex, controlling for age and education.

Results: While GABA+ did not interact with ApoE ε4 carrier status to influence episodic
memory (p = 0.757), the relationship between GABA+ and episodic memory was
moderated by sex: lower GABA+ predicted worse memory in women such that, for each
standard deviation decrease in GABA+ concentration, memory scores were reduced by
11% (p = 0.001).

Conclusions: This pilot study suggests that sex, but not ApoE ε4 genotype, moderates
the relationship between hippocampal GABA+ and episodic memory, such that women
with lower GABA+ concentration show worse memory performance. These findings,
which must be interpreted with caution given the small sample size, may serve as
a starting point for larger studies using multimodal neuroimaging to understand the
contributions of GABA metabolism to age-related memory decline.

Keywords: episodic memory, γ-aminobutyric acid, GABA, Alzheimer’s disease, sex, apolipoprotein ε4

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 69541650

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2021.695416
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2021.695416&domain=pdf&date_stamp=2021-08-26
https://creativecommons.org/licenses/by/4.0/
mailto:teich@usc.edu
https://doi.org/10.3389/fnbeh.2021.695416
https://www.frontiersin.org/articles/10.3389/fnbeh.2021.695416/full
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Jiménez-Balado et al. GABA, Sex and Memory in Aging

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder whose hallmark cognitive symptom is episodic memory
loss (Tierney et al., 1996). AD is the leading cause of dementia in
the elderly, and disproportionately affects women (Miech et al.,
2002; Bacigalupo et al., 2018; Dubal, 2020). Despite decades of
research investigating β amyloid (Aβ) as the trigger for a cascade
of neuropathophysiological events that cause AD dementia
(Hardy and Higgins, 1992), the failure of several high-profile
late-stage clinical trials targeting Aβ clearance has highlighted
the urgent need to explore alternative causal mechanisms for
some key aspects of AD pathophysiology (Cummings et al.,
2020). While the cholinergic and glutamatergic systems are
known to be affected in AD (Hampel et al., 2018; Findley
et al., 2019), the gamma-aminobutyric acidergic (GABAergic)
system has received less attention (Pike and Cotman, 1993).
However, animal models have shown that GABA plays a
critical role in long-term memory formation by synchronizing
pyramidal neuron activity (Paulsen and Moser, 1998; Lucas
and Clem, 2018) and by preventing hyperactivity in the
hippocampus (Najm et al., 2019), a brain structure critical for
episodic memory formation and retrieval (Nyberg et al., 1996;
Schacter et al., 1996). A study by Li et al. (2021) recently
showed, using a 5XFAD AD-mouse model, that hyperactivity
of pyramidal neurons in the CA1 field of the hippocampus
was driven by GABAA receptor-mediated inhibitory synaptic
decline, preceded Aβ-related pathology, was accompanied by
cognitive impairments in an episodic-like memory task, and
could be reversed via administration of a GABAA receptor
agonist (Li et al., 2021). In humans, electrophysiological
hyperactivity in the hippocampus—a brain structure that
undergoes early and significant morphologic changes in AD
(Putcha et al., 2011)—presages episodic memory decline in
individuals at-risk for AD (Dickerson et al., 2005; Hämäläinen
et al., 2007; Sperling et al., 2010; Yassa et al., 2010). Levetiracetam
(Keppra), an anti-epileptic drug thought to enhance the function
of GABA indirectly and to target hyperexcitability, reduces
hippocampal hyperactivity, as indicated by decreased blood
oxygenation level-dependent (BOLD) activation measured via
functional magnetic resonance imaging (fMRI). Levetiracetam
also mitigates memory impairment in patients with amnestic
mild cognitive impairment (Bakker et al., 2012, 2015). Together,
these findings suggest that GABAergic dysfunction plays a key
role in the early hippocampal hyperactivity that is associated
with episodic memory impairments in people at risk for, and
with, AD.

The prevalence of AD is greater in women than inmen (Miech
et al., 2002; Bacigalupo et al., 2018; Dubal, 2020). This higher
rate may reflect the fact that women typically live longer than
men (Mielke, 2018), and/or a sex dimorphism involving either
organizational effects that occur during development (Carroll
et al., 2010; Luo et al., 2020) or activation effects occurring
in mid-to-late life, most notably in the form of age-related
estrogen reductions (Pike, 2017; Dubal, 2020). Estradiol (E2),
the primary bioactive estrogen in women, increases spontaneous
GABA release and increases the expression of GABAA receptors

(Herbison et al., 1990; Herbison and Fénelon, 1995). Along with
the decline in E2 levels post-menopause, GABA levels (at least in
the anterior cingulate cortex) have been reported as significantly
lower than pre-menopausal ones (Wang et al., 2019). Pathology
studies in humans have shown lower expression of GABAA
α1, α2, α5, β3 receptor subunits on the membranes of brain
neurons in healthy older females in regions like the superior
temporal gyrus (Pandya et al., 2019). Furthermore, in vivo studies
of the frontal cortex suggest that there are stronger negative
correlations betweenGABA levels and age in women than inmen
(Gao et al., 2013).

The Apolipoprotein ε4 allele (ApoE ε4) is the strongest
common genetic risk factor for late-onset AD, being associated
with both higher risk and a markedly earlier mean age of
AD onset (Corder et al., 1993; Cacabelos, 2003). Several
studies comparing cognitively-normal ε4 carriers to non-carriers
reported memory-related electrophysiological hyperactivity in
the hippocampus and entorhinal cortex (Bondi et al., 2005;
Dickerson et al., 2005; Filippini et al., 2009; Sperling et al.,
2010). In vivo animal studies have shown that learning
and memory losses can be rescued through the deletion of
ApoE ε4 in GABAergic interneurons (Knoferle et al., 2014)
and that GABA-expressing interneurons in the hippocampus
are selectively vulnerable to ApoE ε4-mediated neurotoxicity,
including decreases in dendritic arborization and spine density
(Jain et al., 2013). Indeed, Najm et al. (2019) recently proposed
that GABAergic interneurons are selectively vulnerable to ApoE
ε4, which may translate into a reduction of phasic and tonic
inhibition that results in hippocampal excitability (Najm et al.,
2019).

Thus, the relation between dysfunction in hippocampal
GABA signaling and age-related memory impairment has been
widely studied using animal models (Ambrad Giovannetti and
Fuhrmann, 2019; Najm et al., 2019), and human studies have
revealed interactions between hippocampal hyperactivity and
memory which may serve as a biomarker for impending AD.
Nevertheless, to our knowledge, no study to date has tested
whether hippocampal GABA is associated with episodic memory
in cognitively healthy older adults, or considered how such a
relationship may be moderated by AD risk factors including
sex or ApoE ε4 genotype. The current pilot study explores
whether ApoE ε4 and/or sex are associated with decreases in
hippocampal GABA concentration and, if so, whether such
decreases predict worse episodic memory performance. Briefly,
participants completed an episodic memory task, and aMescher-
Garwood point-resolved spectroscopy sequence (MEGA-PRESS)
was then used to measure GABA concentration in the right
hippocampus, allowing us to interrogate the effects of GABA
concentration, ApoE ε4, and sex, as well as their interactions,
upon episodic memory.

MATERIALS AND METHODS

Setting and Participants
Healthy older adults were recruited for the study from two
participant cohorts maintained by the Cognitive Neuroscience
Division at Columbia University, the Cognitive Reserve Study,
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and the Reference Ability Neural Network Study. Participants
were recruited to these studies by mail-market procedures
targeting individuals within 10 miles of the Columbia University
Medical Center. Participants were required to be right-handed,
native English speakers with at least a fourth-grade reading level.
As part of these cohort studies, participants were genotyped
for ApoE ε4 and screened for neurological diagnoses and
medication use, as detailed elsewhere (Stern et al., 2014), and
for dementia using the Dementia Rating Scale (Mattis, 1988).
Any participant who scored below 135 was excluded. From
this cohort pool, we recruited participants based on their
ε4 carrier status (ε4+ and ε4-) and sex (male and female), to
obtain a final sample balanced across both variables. Participants
performed a Directed Forgetting memory task (MacLeod, 2012)
and then underwentMRI scans at the New York State Psychiatric
Institute MRI Research Program. Data from 11 women and
nine men aged 50–71 years (y) were included. The median
age of the sample was 61 years (y; range: 54.5 y to 67.8 y).
Ten women self-reported to be postmenopausal. Data on the
11th woman were not available. Twelve participants were ApoE
ε4+ (ε2/ε4 = 1; ε3/ε4 = 10; ε4/ε4 = 1), and eight were ApoE
ε4− (ε3/ε3 = 7; ε2/ε3 = 1). The median education level was
6 (range: 5–7), which corresponds to a bachelor’s degree or
equivalent, according to the International Standard Classification
of Education (ISCE) classification. Written informed consent,
as approved by the Institutional Review Board of the Columbia
University Medical Center, was obtained prior to study
participation.

Directed Forgetting Task
An item-method directed forgetting task was used to assess
episodic memory (MacLeod, 2012). In the study phase of the
task, participants were presented with unrelated, unambiguous
concrete nouns, ranging in length from 3 to 8 letters, one at a
time, for 2,500 ms each. Each word was followed by a 500 ms
delay, and then a memory cue, presented for 1,500 ms, which
indicated whether the preceding word was to be remembered
(TBR) or to be forgotten (TBF) for a later memory test.
Participants were instructed to remember the TBR words for a
later memory test and told that forgetting the TBF words would
help them to remember all of the TBR words. The TBR cue
consisted of four green R’s (for Remember), and the TBF cue
consisted of four red F’s (for Forget). To minimize primacy and
recency effects, six additional buffer trials were presented as the
first and last three trials of the experiment and were not scored.
Trials were separated by 1,000 ms intervals. Following the study
phase, and after a 5-min delay period, memory was tested for
all 36 studied words (18 TBR and 18 TBF), as well as 36 words
that had not been presented during the study phase. Old and new
words were presented in a blocked-randomized design to control
for the time between study and test. During this recognition
phase, each test word was presented on the screen for 20 s, or
until the participant responded. Participants were instructed to
press the Y key on the keyboard (for Yes) if they recognized the
test word as one of the words that had been presented to them,
and to press the N key (for No) if it had not. The current analysis
examined only accuracy for TBR items.

Neuroimaging Protocol
Magnetic Resonance Imaging
MRI data were acquired using a 32-channel head coil on a
3 Tesla MR scanner (Discovery, GE Medical Systems). Two
anatomical images were acquired for the MRS volume of
interest (VOI) placement; the first one was a three-dimensional
(3D) brain volume (BRAVO) T1-weighted sequence (echo time
(TE) = 2,700 ms, repetition time (TR) = 7,156 ms, inversion
time (TI) = 450 ms, 176 slices, 256 × 256 matrix size, slice
thickness = 1 mm, flip angle (FA) = 12◦). The second one
was a two-dimensional (2D) axially-acquired structural T1-
weighted fluid-attenuated inversion recovery (FLAIR) volume
(TE = 26 ms, TR = 2,300 ms, TI = 756 ms, 25 slices,
512 × 512 matrix size, slice thickness = 5 mm, voxel
size = 0.4 mm × 0.4 mm × 5 mm, FA = 111◦). The VOI with
a size of 4 × 2 × 2 cm3 was centered in the right hippocampus
(Figure 1A). 1HMRS data were acquired using a MEGA-PRESS
sequence (Mullins et al., 2014; TE = 68 ms, TR = 1,500 ms,
slice thickness = 20 mm, FA = 90◦, field of view = 512 × 512)
in one acquisition that lasted 768 s. A vendor-provided,
semi-automatic shimming procedure was implemented prior to
spectroscopic acquisition and was supplemented by interactive
manual shimming, resulting in full-width at half-maximum
(FWHM) water linewidths ranging from 9 to 22 Hz (mean line
width = 13± 3.49 Hz).

Anatomical Segmentation
The 3D T1-weighted images were analyzed using FreeSurfer
(v5.1.0) an automated segmentation and cortical parcellation
software package (Fischl et al., 2002). Boundary lines separating
gray matter, white matter, and pial surfaces were visually
inspected. When necessary, to ensure accuracy, manual editing
of voxel label maps was conducted according to the FreeSurfer
manual editing guidelines by a technician blinded to participant
demographics. In the second round of quality control, the
borders of the parcellated cortical and sub-cortical regions were
then overlayed onto the input structural images by a second
technician. The Desikan-Killiany Atlas, which includes 34 gyral-
based cortical regions, was used for cortical parcellation and for
regional identification of clusters (Desikan et al., 2006).

Magnetic Resonance Spectroscopy Quantification
The concentration of resting-state GABA in the right
hippocampus was quantified using the Jet algorithm1 in
MATLAB (Mathworks, MA, USA). This algorithm was used
to preprocess the spectroscopy data by aligning frequency
and phase for ON and OFF spectra, as described previously
(Mikkelsen et al., 2018). Then, we edited the GABA peak
at 3 parts per million (ppm) and co-edited the glutamine +
glutamate (Glx) peak at 3.77 ppm after subtraction of the ON
and OFF spectra, as shown in Figure 1B. Spectral fitting was
performed with a simulated basis-set for metabolites including
GABA, Glx, choline (Cho), creatine (Cr), and n-acetylaspartate
(NAA). Metabolites were quantified based on the area-under-
the-curve (AUC) for each fitted metabolite basis, as illustrated
in Figure 1C. The signal detected with these parameters will

1http://triton.iqfr.csic.es/guide/man/nmrsim/contents.html
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FIGURE 1 | Localized images and representative MR spectra from a 2 × 2 × 4 cm3 voxel manually placed in the right hippocampus of a subject. (A) Axial and
sagittal planes showing the hippocampal voxel, outlined in aqua, from one study participant’s MPRAGE T1-weighted image. (B) Loadings for the GABA edited
difference spectrum. (C) Representative model fitting showing Glx (a combination of glutamate and glutamine) and GABA spectrum peaks, representing the GABA
signal, from the same subject. The blue line represents the actual edited spectrum, whereas the overlaid pink line is the model of best fit. The residual is shown in the
black curve below the modeling plot.

contain contributions from both the macromolecules (MM) and
homocarnosine in addition to GABA (Rothman et al., 1997),
therefore we refer to this signal as GABA+ henceforth. GABA+
concentration was then quantified as a ratio to the reference Cr
metabolite concentration.

Statistics
The proportion of correct TBR responses (items that participants
were told to remember, which they correctly said were
presented), which provides a direct measure of episodic
memory, served as the outcome variable. Predictors of interest
included MRS-measured GABA+ concentration from the right
hippocampus, age, sex, education level (according to the
International ISCE classification), and ApoE ε4 genotype, coded
as a binary variable (either positive or negative). There were no
missing data pertaining to any of these variables.

Univariate analyses were used to assess the association
between GABA+, on the one hand, and age, sex, and ApoE
ε4 variables, on the other hand, using Spearman’s rank
correlation coefficients or Student’s t-tests for continuous or
categorical variables, respectively. Multiple linear regression
models were used to evaluate the relationship between episodic
memory and the predictors of interest. Memory served as the
dependent variable, with GABA+, age, sex, education, and ApoE
ε4 as independent variables. Independent variables were selected
according to a priori hypotheses based on the previous literature
or on univariate analysis results. To facilitate the interpretation of
regression coefficients, GABA concentrations were standardized
into z-scores. As our hypothesis involved ApoE ε4 and sex
effects on GABA+ concentrations, interaction terms for ApoE
ε4 × GABA+ and sex × GABA were included. Additionally,
to avoid overfitting due to the large number of variables and
small sample size, variables were selected via backward stepwise
elimination according to the Akaike information criterion (AIC).
Briefly, the AIC is a metric comparing the goodness of the fit of

two models by selecting the one with the highest likelihood after
penalizing for the number of parameters in the models. A lower
AIC thus corresponds to better goodness of fit. The statistical
assumptions (independence and normality of residuals, presence
of influential cases, and absence ofmulticollinearity) of themodel
obtained through variable selection were verified to confirm that
they had been met.

Overall accuracy on the task was high. To investigate as to
whether the effect of GABA+ (the predictor variable) on memory
was conditioned by the skewed distribution of TBR responses
(the dependent variable), we implemented separate quantile
regression models in men and women. In quantile regression,
instead of fitting a model at the mean of the dependent variable,
the effect of the independent variable is tested across the
distribution of the dependent variable. Hence, coefficients are
calculated at one or more quantiles of the distribution (expressed
as τ), which are set a priori. In our case, we considered deciles
from 10 to 90. This analysis allowed us to observe whether the
correlation between GABA+ and memory remained constant
across the distribution of TBR responses in men and women,
giving robustness to our results. Pairwise comparisons of those
models fitted at different τ were compared using Wald tests to
assess whether the effect of GABA+ varied across the distribution
of TBR responses.

All analyses were conducted using R software (R version
3.6.1, 2019-07-05; © 2019 The R Foundation for Statistical
Computing). For all analyses, α was set at 0.05.

RESULTS

Characteristics of the Sample
There was no significant sex-related difference in the sample’s
age (U(9,11) = 56.5, p = 0.621), educational attainment
(U(9,11) = 62.5, p = 0.318), or in its prevalence of the ApoE ε4 allele

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 August 2021 | Volume 15 | Article 69541653

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Jiménez-Balado et al. GABA, Sex and Memory in Aging

TABLE 1 | Linear regression models parameters illustrating the relationship
between GABA+ concentration and episodic memory performance.

Variable β(95% CI) t-value p-value

Baseline Model

Age [years] 0.00 (−0.01; 0.01) 0.69 0.501
Education, ISCED −0.01 (−0.07; 0.04) −0.61 0.551
GABA+ level, SD increase 0.11 (0.04; 0.18) 3.21 0.007
ApoE ε4, Positive −0.02 (−0.13; 0.10) −0.32 0.757
Sex, Male 0.12 (0.02; 0.22) 2.72 0.019
GABA+ × ApoE ε4 0.00 (−0.11; 0.11) 0.01 0.990
GABA+ × Sex −0.12 (−0.24; 0.00) −2.17 0.051

Final model

GABA+, SD increase 0.11 (0.05; 0.17) 3.92 0.001
Sex, Male 0.12 (0.04; 0.21) 3.10 0.007
GABA+ × Sex −0.11 (−0.20; −0.03) −2.74 0.015

Linear regression models were constructed using the proportion of correctly recognized
TBR words as the dependent variable, while adjusting for GABA+, age, sex, education,
the presence of the ApoE ε4 allele, and for both the GABA+ level × ApoE ε4 and GABA+
level × sex interactions. The final model displayed was obtained after selecting variables
via backward stepwise elimination. Female sex is the reference category; thus, the main
effect of GABA+ level showed in the final model represents the association between
GABA+ concentration and episodic memory performance in females. The adjusted R2

values were 0.34 and 0.48 for the baseline and final models, respectively. Listed are β
coefficients and their 95% confidence intervals, t-statistics, and p-values.

(χ2
20 = 0.01, p = 0.927). On the other hand, ApoE ε4 carriers

were older [median (interquartile range) = 65.5 y (55.8, 69.0)
y] than non-carriers [57.5 y (53.8, 60.3) y], but did not differ in
educational attainment (U(8,12) = 64.5, p = 0.194).

Relation Between GABA Concentration
and Episodic Memory
The average proportion of correctly recognized TBR words was
high, 0.9± 0.1. This score did not correlate with age (rs18 = 0.32,
p = 0.169) or education level (rs18 = 0.11, p = 0.632). Further,
GABA+was not associated with either age (rs18 = 0.05, p = 0.828),
or ApoE ε4 polymorphism (t(14,5) = 0.26, p = 0.802). However,
overall, women had higher GABA+ concentration than did men
(t(16,9) =−2.67, p = 0.016).

Multiple linear regression models were used to analyze
the relationship between episodic memory and the predictors
of interest (age, education, sex, and ApoE ε4 genotype), the
results of which are shown in Table 1. We did not observe a
main effect of ApoE ε4 [β (95% confidence interval) = −0.02
(−0.13, 0.10), p = 0.757], or a ApoE ε4 × GABA+ interaction
[β = 0.00 (−0.11, 0.11), p = 0.990; see Figure 2A]. We did
observe a main effect of sex, such that, on average, women
had worse memory performance [0.81 (0.75, 0.86)] than men
[0.93 (0.87, 0.99)]. However, this main effect was moderated
by a significant interaction between GABA+ concentration and
sex, such that lower GABA+ concentrations were associated
with worse memory performance in women (Table 1), but
not in men: β = 0.00 (−0.07, 0.06), p = 0.935. As shown in
Figure 2B, in women, for each standard deviation decrease in
GABA+ concentration, the proportion of correct responses on
the memory task decreased by 0.11.

The results of the quantile regression models revealed that
GABA+ was not associated with memory performance in men
in any portion of the TBR accuracy distribution. By contrast,

in women, GABA+ was positively correlated with memory at
all deciles except 20 and 50 (τ 10 = 0.10, t = 2.39, p = 0.040;
τ 20 = 0.20, t = 2.06, p = 0.070; τ 30 = 0.30, t = 2.32, p = 0.045;
τ 40 = 0.40, t = 2.27, p = 0.049; τ 50 = 0.50, t = 0.94, p = 0.370;
τ 60 = 0.60, t = 2.43, p = 0.038; τ 70 = 0.70, t = 2.46, p = 0.036;
τ 80 = 0.80, t = 2.70, p = 0.025; τ 90 = 0.90, t = 3.47, p = 0.007).
As shown in Figure 3, GABA+ related regression coefficients
in women ranged from 0.08 to 0.15. When significant models
were compared by pairs, no significant differences in any
comparison were found, suggesting relative stability of the
GABA+ concentration effect in women and confirming that
these results were not conditioned by a potential ceiling effect
observed in TBR accuracy.

DISCUSSION

To our knowledge, this is the first study to test the relation
between hippocampal GABA+ and episodic memory in
older adults. Contrary to our expectations, ApoE ε4 status
did not moderate the effect of GABA+ concentration on
memory. However, sex did: women with lower GABA+
concentrations showed worse episodic memory compared
to women with higher GABA concentrations and to men,
regardless of the latter’s GABA+ concentration. What
factors might mediate this effect? The female hippocampus
is very responsive to E2. In women, hippocampal volume
increases during the high-estradiol late-follicular phase of
the menstrual cycle (Protopopescu et al., 2008). In animal
models, the dendritic spine density of pyramidal hippocampal
neurons increases during the high-estradiol proestrous phase
(Woolley et al., 1990), resulting from decreased GABAergic
inhibition in the hippocampus (Murphy et al., 1998). The
changes in the hippocampal GABA system from pre- to post-
menopause—dynamic fluctuations across the menstrual cycle
(Protopopescu et al., 2008) to static low levels—may result in
static hyperexcitability of hippocampal neurons and to increased
risk of pathophysiology.

Other potential overlapping mediating factors are depression
and cognitive impairment. While the results are not always
consistent, both case-control and cohort studies have reported
that a history of depression is a risk factor for cognitive
impairment (Kessler, 2003; Ownby et al., 2006), and increases
AD risk (Ownby et al., 2006). Women have a higher
prevalence of depression (Pehrson and Sanchez, 2015; Flores-
Ramos et al., 2017), with symptom risk peaking during major
reproductive events (e.g., perimenopausal transition) when
fluctuations in sex steroid hormone levels are high (Soares
and Zitek, 2008). These transitional phases are associated
with dysregulation of the hypothalamic-pituitary-gonadal axis
function (Schweizer-Schubert et al., 2021), which is regulated
by GABAergic transmission (Flores-Ramos et al., 2017).
Interestingly, individuals with major depression have reduced
numbers of somatostatin-expressing neurons (a population of
GABAergic interneurons playing a key role in memory), and
this reduction is exacerbated in women (Fee et al., 2017).
Unfortunately, as this was a pilot study, we did not acquire
sex hormone levels or screen for depressive symptoms, and

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 August 2021 | Volume 15 | Article 69541654

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Jiménez-Balado et al. GABA, Sex and Memory in Aging

FIGURE 2 | Association between episodic memory and GABA+ concentration by sex. GABA+ concentration was standardized into z-scores. Lines show the
relation between GABA+ levels and episodic memory performance by (A) ApoE ε4 and (B) Sex. Linear regression models were constructed using the proportion of
the TBR words (those words that participants were instructed to remember) as the dependent variable, and while accounting for the interactions of ApoE
ε4 × GABA+ level and of sex × GABA+ level in separate models. Values represent regression coefficients β, their 95% confidence intervals (CIs), and the p-values of
the standardized GABA main effects.

we were therefore unable directly to test hypotheses on the
role of these factors in the relationships between GABA
concentrations, episodic memory, and sex that we quantified in
this study.

Recently, Schmitz et al. (2017) reported an association
between MRS-measured hippocampal GABA+ and the
mnemonic control over unwanted thoughts (Schmitz et al.,
2017). However, this study included only younger adults (Mean
age = 24.7 year). A study by Porges et al. (2017) did investigate
the relation between GABA+ and cognitive decline in older
individuals (Porges et al., 2017). However, the neuropsychologic
measure used in their study (theMontreal Cognitive Assessment,
MoCA) was broad and cognitively non-specific, and GABA
concentration was assayed in the prefrontal cortex, not in the
hippocampus.

Correlations between GABA+ in other brain regions and
other cognitive functions have been reported. Riese et al. (2015),
for example, reported better performance in a word list task
for older individuals with greater GABA+ concentration in
the posterior cingulate cortex (Riese et al., 2015). Likewise,
several studies reported that GABA+ concentrations in the dorsal
anterior cingulate and in the occipital cortex are associated
with measures of executive and visuo-perceptual functions,
respectively (Marenco et al., 2018; Simmonite et al., 2019).
Furthermore, Piras et al. (2019, 2020) found cerebral GABA
levels to be associated with performance in phonemic fluency
and in the Stroop Color-Word Test, a measure of response
inhibition (Piras et al., 2019, 2020). Thus, it is possible
that the relation between GABA+ levels and cognition is
not specific to memory. However, the data presented here,
while drawn from a small sample, support findings from

FIGURE 3 | Quantile regression plot of GABA+ statistical effect on memory
performance at each decile of TBR accuracy, by sex. The variation of GABA+
regression β coefficients (y axis) obtained from quantile regression models is
represented at each decile (x axis). Colors represent males (black) and
females (red). The red dashed line is set at 0, and thus error bars not crossing
the red dashed line represent statistically significant associations.

animal models, which have provided strong evidence for the
specificity of the age-related, GABA-mediated hippocampal-
episodic memory association.

In summary, the data from this pilot study revealed an
association between GABA+ levels and episodic memory in
women but not men, such that lower levels of GABA+
were associated with worse behavioral performance. Further
multimodal neuroimaging studies considering structural, MRS,
and fMRI data are needed to determine whether these
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GABAergic changes are also associated with hippocampal
hyperactivity (Jiménez-Balado and Eich, 2021). Moreover,
longitudinal studies with larger samples that consider depression
and hormonal balances will help to replicate the findings
presented here and test whether GABA-related dysregulation
predicts sex-specific incident MCI or dementia risk. Further
studies focusing on these questions would be of great interest
in confirming the contribution of GABA to age–related
cognitive impairment, and clarifying the role of sex in
these changes.

LIMITATIONS

This pilot study is preliminary and, as such, has several
notable limitations that necessitate the results to be interpreted
with caution. First, the sample size was small, which limited
statistical power, especially for the critical analyses of group
comparisons. Second, we collected neither sex hormone levels
(estradiol, progesterone, and testosterone) nor current levels or
history of depression. These are important avenues of future
inquiry, as they may provide insight into the mechanism
driving the sex-specific effects found, and future studies should
directly test the role of these factors in the relationship
between GABA+ concentration and episodic memory in
women. Third, while it is not possible to determine from
the 1H MRS estimate where the GABA signal originates,
as the measurement reflects a combination of synaptic,
intracellular, and extrasynaptic GABA from all types of
GABAergic interneurons in our right hippocampal region of
interest (Maddock and Buonocore, 2012), the findings reported
by Li et al. (2021) suggest that hippocampal CA1 GABAA
postsynaptic pyramidal neuron receptors might be a likely
source. Future studies using PET imaging could provide clarity
on the precise coupling of the source of the GABA signal
and its association with episodic memory deficits. Moreover,
fMRI measurements will additionally help to ensure that
the effect of GABA reduction or dysfunctional coupling on
cognitive impairment is mediated by hippocampal hyperactivity;
confirming the main hypothesis of this manuscript. Finally,
our sample may not be representative of typical older adults,
according to both their self-reported levels of education, and
to their objective (high) performance on the memory task.
On the other hand, hippocampal volume in our sample
(µ ± σ = 3.84 ± 0.5 cm3) was on par with recently published
normative data acquired from a large sample (N ' 20,000)
of clinically healthy older adults (mean age: 62.95 ± 7.48 y;
hippocampal volume '3.86 ± 0.4 cm3), and these results

were similar across sex. Specifically, the women in our sample
had average hippocampal volumes of 3.64 ± 0.47 cm3, vs.
3.77 ± 0.37 cm3 in the normative sample. Men in our sample
had average hippocampal volumes of 4.12 ± 0.35 cm3, vs.
3.97 ± 0.43 cm3 in the normative sample, which allays some
concern over how representative the participants in our sample
are (Nobis et al., 2019). Future studies that include larger
samples, use multimodal imaging methods, and also measure
depression and hormone levels would help to both remedy these
limitations and to facilitate generalization of the results to the
general population.
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Accuracy in facial emotion recognition has shown to vary with ovarian hormones,
both in naturally cycling women, as well as in women taking oral contraceptives. It
remains uncertain however, if specific – endogenous and exogenous – hormonal levels
selectively impact recognition of certain basic emotions (or neutral faces) and if this
relationship coincides with certain affective states. Therefore, we investigated 86 women
under different hormonal conditions and compared their performance in an emotion
recognition task as well as self-reported measures of affective states. Based on self-
reported cycle days and ovulation testing, the participants have been split into groups
of naturally cycling women during their early follicular phase (fNC, n = 30), naturally
cycling women during their peri-ovulatory phase (oNC, n = 26), and women taking
oral contraceptives (OC, n = 30). Participants were matched for age and did not
differ in education or neuropsychological abilities. Self-reported anxiety and depressive
affective state scores were similar across groups, but current affective state turned
out to be significantly more negative in fNC women. Independent of negative affective
state, fNC women showed a significantly higher negativity bias in recognizing neutral
faces, resulting in a lower recognition accuracy of neutral faces compared to oNC
and OC women. In the OC group only, negative affective state was associated with
lower recognition accuracy and longer response times for neutral faces. Furthermore,
there was a significant, positive association between disgust recognition accuracy and
negative affective state in the fNC group. Low progesterone levels during the early
follicular phase were linked to higher negative affective state, whereas in the peri-
ovulatory phase they were linked to elevated positive affective state. Overall, previous
findings regarding impaired emotion recognition during OC-use were not confirmed.
Synthetic hormones did not show a correlation with emotion recognition performance
and affective state. Considering the important role of emotion recognition in social
communication, the elevated negativity bias in neutral face recognition found for fNC
women may adversely impact social interactions in this hormonal phase.

Keywords: sex hormones, facial emotion recognition, oral contraceptives, menstrual cycle, affective state
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INTRODUCTION

Women experience significant fluctuations of ovarian hormones
over the menstrual cycle. Most notably, 17-β estradiol and
progesterone levels change periodically (Becker et al., 2005).
During the follicular phase at the beginning of the menstrual
cycle estradiol and progesterone levels are low. Estradiol is
rising until reaching its peak right before ovulation and abruptly
decreasing with ovulation. During the luteal phase, progesterone
is rising coinciding with a second yet smaller increase of estradiol,
with both hormones declining during the late luteal phase
reaching the initial low levels during menstruation. To prevent
pregnancy and facilitate safe family planning, millions of women
rely on hormonal contraceptives such as oral contraceptives
(OCs) during their reproductive years (United Nations [UN],
2020). OCs typically contain ethinyl estradiol (synthetic estrogen)
and progestin (synthetic progesterone) that effectively suppress
endogenous estradiol and progesterone levels and thus ultimately
prevent ovulation (Petitti, 2003). Evidence is accumulating that
endogenous as well as synthetic ovarian hormones impact
women’s socio-affective processing, including facial emotion
recognition (Derntl et al., 2008a; Hamstra et al., 2014, 2015, 2017;
for reviews see: Montoya and Bos, 2017; Lewis et al., 2019; Pahnke
et al., 2019; Gamsakhurdashvili et al., 2021a).

For human communication, the perception and correct
interpretation of facial expressions plays a major role. In a
fast and direct way, facial expressions project the emotional
state of a person to be perceived during social interactions
(Horstmann, 2003). Among other functions, facial expressions of
emotions can serve as eminent approach- or avoidance signals
(Marsh et al., 2005). In naturally cycling (NC) women, several
studies revealed superior facial emotion recognition in follicular
compared to luteal NC women (Derntl et al., 2008a,b, 2013;
Guapo et al., 2009; Rubin et al., 2011; for reviews see: Osório
et al., 2018; Gamsakhurdashvili et al., 2021a). However, there
are also some studies not finding any menstrual cycle effects
on female’s emotion recognition (Rubinow et al., 2007; Zhang
et al., 2013; Kamboj et al., 2015). These inconsistencies could
potentially be explained by different levels of progesterone in the
luteal NC women, as all studies that did not report a menstrual
cycle effect measured women either during the early or late luteal
phase in which progesterone levels are relatively lower than in
the mid-luteal phase (Gamsakhurdashvili et al., 2021a). Within
the follicular phase, first studies have not found a difference
in emotion recognition skills between early follicular and late
follicular (i.e., peri-ovulatory) NC women (Guapo et al., 2009;
Zhang et al., 2013) except for fear recognition, for which women
during the peri-ovulatory phase showed a better performance
(Pearson and Lewis, 2005).

In some of these studies endogenous estradiol and
progesterone levels were related to emotion recognition
performance. Across cycle phases, estradiol was positively
associated with facial recognition accuracy of fear (Pearson and
Lewis, 2005) and sadness (Hamstra et al., 2017), whereas it was
linked with lower performance in anger (Guapo et al., 2009)
and disgust recognition (Kamboj et al., 2015). Contradictory
findings were reported with respect to neutral face recognition,

as it was positively linked to estradiol in one study (Hamstra
et al., 2017), but negatively in another study (Shirazi et al., 2020).
This incongruency could possibly be due to the inclusion of
women in different cycle phases marked by different degrees
of estradiol fluctuations as well as levels. In the early follicular
phase, estradiol is comparatively low and stable, whereas in the
peri-ovulatory phase levels are higher and rapidly fluctuating day
by day. For progesterone, lower levels were linked to higher rates
of misclassifying emotional faces as neutral (Derntl et al., 2008a;
Kamboj et al., 2015). When including multiple cycle phases,
progesterone was associated with an increased bias for negative
emotions shown by higher recognition rates (Maner and Miller,
2014) as well as longer response times (Kamboj et al., 2015).
However, progesterone levels have also been negatively linked
with emotion recognition performance across cycle phases and
specifically when only considering the luteal phase (Derntl et al.,
2008a, 2013). Therefore, the measurement timepoint in the luteal
phase may indeed determine whether a higher sensitivity for
negative emotions or a general lower face recognition rate can be
detected compared to other cycle phases.

Like the midluteal phase, the hormonal milieu in OC-
users is marked by a progestogen dominance as high doses
of progestogens are needed to inhibit ovulation (Lovett et al.,
2017). Therefore, it is not surprising that basic as well as
complex facial emotion recognition was repeatedly found to
be impaired in OC-users compared to NC women (Hamstra
et al., 2014, 2015, 2017; Pahnke et al., 2019). These findings hold
especially for negative emotions including anger, sadness, disgust
(Hamstra et al., 2014, 2015, 2017). However, there are studies
not reporting differences in emotion recognition performance
between OC-users and NC women (Radke and Derntl, 2016;
Gamsakhurdashvili et al., 2021b), including a large-scale study
(n = 395; Shirazi et al., 2020). Interestingly, androgenicity of pill
type seems to play no role in the impaired emotion recognition
of OC-users (Pahnke et al., 2019). Regarding the modulatory role
of endogenous and synthetic ovarian hormone levels not much is
known, as previous studies have only measured endogenous but
not exogenous ovarian hormone levels in blood or saliva samples.
Since exogenous hormones pass the blood brain barrier and
bind to hormone-receptors in brain regions involved with socio-
emotional processing (Toffoletto et al., 2014; Barth et al., 2015;
Louw-du Toit et al., 2017; Rehbein et al., 2021), including them in
analyses could aid in shedding light on underlying mechanisms of
facial emotion recognition during OC-use.

The aim of this study is to elucidate hormone-based
differences in emotion recognition more closely by the
incorporation of exogenous in addition to endogenous ovarian
hormones. To assess the roles of estrogens and progestogens on
facial emotion recognition largely independently, we included
three groups of women with different hormonal states: (1) NC-
women during the early follicular phase with low concentrations
of estradiol and progesterone, (2) NC-women during the
peri-ovulatory phase with high estradiol and low progesterone
concentration, and (3) women actively taking combined OC-
pills, with medium estrogen and high progestogen concentration.
Based on previous literature on OC-and menstrual cycle-related
differences, we hypothesize that: (1) OC-users show impaired
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emotion recognition relative to NC women (see for reviews:
Osório et al., 2018; Gamsakhurdashvili et al., 2021a), and for
NC women, we hypothesized that: (2) Women in the peri-
ovulatory phase show enhanced fear recognition compared to
early follicular NC women (Pearson and Lewis, 2005), whilst
there is no evidence for an altered fear recognition in OC
compared to NC women.

We aim for a systematic investigation of hormone-related
effects on female’s facial recognition performance. Therefore, we
ran explorative analyses with regards to – especially synthetic –
ovarian hormones. In addition, affective state supposedly impacts
the recognition of valence-congruent emotions but impairs
performance for valence-incongruent facial expressions (Schmid
and Schmid Mast, 2010). Moreover, current affective state
has been associated with fluctuations of ovarian hormones
(Reed et al., 2008; Ocampo Rebollar et al., 2017). To
account for a possible interplay of affective state and ovarian
hormones on emotion recognition performance, we not only
exploratively checked for relations of affective state with emotion
recognition performance in different hormonal states, but also to
ovarian hormone levels.

MATERIALS AND METHODS

To investigate hormone-related differences in facial
emotion recognition, we used a quasi-experimental,
cross-sectional study design.

Participants
A total of 86 healthy females aged between 18 and 33 years
(mage = 23.8, ± 3.1) were recruited via postings at the University
of Tübingen, the University Hospital Tübingen, social media,
as well as in gynecological practices in Tübingen. Based on
self-reported cycle days, the women were divided into three
groups: (1) women with long-term (>6 months) OC-use (OC
group; n = 30, mage = 23.6 ± 3.0), (2) NC-women (>4
months) during the early follicular phase (fNC group; n = 30,
mage = 23.8 ± 3.3), and (3) NC-women (> 4 months) during the
peri-ovulatory phase (oNC group; n = 26, mage = 24.0 ± 3.0). The
assignment to hormonal status groups was validated by female
sex-hormone measurement and described in the Results section
(“Sample Description and Hormonal Levels”). The sample size
(n = 86) was based on previous, conceptually related studies
(Derntl et al., 2013; Radke and Derntl, 2016; Dan et al., 2019;
Gurvich et al., 2020; Kimmig et al., 2021). The fNC group
was tested 2–5 days after the onset of their menses, the oNC
group 3 days before until 2 days after a positive increase of
the luteinizing hormone confirmed via LH test (nal van minden
GmbH, Germany). The OC group was tested during day 3–21 of
active pill intake, expecting to have steady, suppressed estradiol-
and progesterone levels. None of the participants were diagnosed
with a gynecological illness nor had a lifetime pregnancy. All
women gave informed consent, and the study was approved by
the ethics committee of the Medical Faculty of the University of
Tübingen (331/2016BO2).

TABLE 1 | Sample characteristics (mean and standard deviation if not otherwise
specified) and hormone profiles per group (median and interquartile range).

OC fNC oNC p-value

N 30 30 26

Age (years) 23.6 (3.0) 23.8 (3.3) 24.0 (3.0) 0.906

Education (l/m/h)1 1/20/9 0/20/10 1/15/10 0.854

Verbal intelligence
(WST, raw scores)

32.4 (2.4) 32.9 (3.1) 32.7 (2.4) 0.563

Cognitive flexibility
(TMTB-A, sec)

18.2 (9.9) 16.8 (9.7) 16.4 (7.8) 0.718

Depressive mood
(BDI-II, scores)

5.5 (4.3) 7.4 (4.1) 5.2 (3.5) 0.072

Social anxiety
(Mini-Spin-R)

7.5 (2.9) 7.9 (1.6) 7.2 (2.2) 0.247

Trait anxiety (STAI) 34.1 (8.6) 34.5 (6.9) 32.8 (6.8) 0.648

State anxiety (STAI) 33.8 (7.1) 35.7 (7.0) 33.8 (8.7) 0.521

Positive affective
state (PANAS)

21.3 (8.3) 23.7 (5.9) 24.1 (5.5) 0.308

Negative affective
state (PANAS)

2.9 (3.8) 5.3 (4.7) 2.7 (3.0) 0.026
fNC > OC

Hormone profiles

EndoE2 (pmol/L) 16.9 (7.0) 98.4 (45.2) 444.2 (462.2) <0.001
oNC > fNC > OC

ExoE2 (pmol/L) 72.7 (36.3) <0.0012

oNC > fNC, OC

EndoP (nmol/L) 0.1 (0.6) 0.3 (0.4) 1.0 (4.4) <0.001
oNC > fNC > OC

ExoP (nmol/L) 33.6 (37.2) <0.0013

OC > oNC > fNC

Testosterone
(nmol/L)

0.7 (0.4) 0.7 (0.4) 0.9 (0.5) <0.001
oNC > OC, fNC

1 l, no higher education entrance qualification; m, higher education entrance
qualification; h, university degree.
2,3Group differences between endogenous hormone levels for NC women and
exogenous hormone levels of OC-users calculated. WST – Wortschatztest; TMT –
Trial-making test; BDI – Beck’s depression inventory; SPIN-R – social phobia
inventory revised; STAI – state-trait anxiety inventory; PANAS – positive and
negative affect schedule; EndoE – endogenous estradiol; exoE – exogenous
estradiol; endoP – endogenous progesterone; exoP – exogenous progesterone.

An overview of sociodemographic and neuropsychological
characteristics and the plasma hormone profiles for the different
groups is provided in Table 1.

Procedure
Participants came in for two appointments: (1) a screening
(45–60 min) and (2) an experimental session (30–45 min).
After a mental health screening, all women performed
neuropsychological tests and reported sociodemographic
information during the first session. The experimental session
took place in the respective hormonal phase (i.e., active OC
intake, early follicular or peri-ovulatory phase). At its beginning,
participants rated their current affective state. Subsequently, the
emotion recognition task was performed. After task completion,
plasma samples (2 × 9 ml EDTA) were taken by trained medical
staff to obtain the actual hormone status. At the end of the
session, participants filled in several questionnaires including
state-trait anxiety and depressive mood.
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Materials and Measures
Emotion Recognition Task
Stimuli consisted of 36 colored pictures of European-American
faces showing five basic emotions (happiness, sadness, anger,
fear, and disgust) as well as neutral expressions (i.e., six items
per condition, see Gur et al., 2002 for stimulus material).
This is a short version of the Vienna Emotion Recognition
Task (VERT-K) which has already successfully been carried
out to investigate female emotion recognition under varying
ovarian hormone concentrations (Derntl et al., 2008a,b, 2013;
Radke and Derntl, 2016). In each trial, participants were
instructed to choose the correct emotion from six verbal
possibilities presented in a random order next to the target
face stimulus by button press. A response was necessary to
finish the trial. The sequence of stimuli presentation was
pseudo-randomized for emotion type and sex of actor. Intertrial
intervals lasted 1 s. The variables of interest were emotion
recognition accuracy and response time. In total, the task
lasted about 2–4 min.

Neuropsychological Tests and Questionnaires
Positive and negative affective state was assessed using the
Positive and Negative Affect Scale (PANAS; Watson et al., 1988).
Current affective state was included to control for potential
confounding effects on emotion recognition. Moreover, we were
interested in the interplay of affective state, hormone status and
emotion recognition.

The following measures were used for sample characterization
and assessing comparability of the hormonal status groups. The
absence of current or lifetime mental disorders was checked using
a semi-structured interview (SCID screening; Wittchen et al.,
1997). The Wortschatztest (WST; Schmidt and Metzler, 1992)
was used to assess verbal intelligence and the Trail-Making-Test
A and B (TMT; Reitan, 1992) measured cognitive flexibility.
Furthermore, several affective measures were taken including
state-trait anxiety (STAI-I; Laux et al., 1981), social anxiety
with the brief version of the Social Phobia Inventory (Mini-
SPIN-R; Aderka et al., 2013) and depressive mood using the
Beck’s depression inventory (BDI; Hautzinger et al., 2006). These
neuropsychological and psychopathological measures were used
for sample characterization and assessing comparability of the
hormonal status groups.

Hormone Assessment
After blood collection, the sample was centrifuged to obtain
plasma, which was aliquoted into microtubes and stored
at –70◦C. Liquid chromatography-tandem mass spectrometry
(LC-MS/MS) was used to determine hormone levels of
estradiol (endoE), progesterone (endoP), testosterone, and
ethinylestradiol (exoE) as well as progestins (exoP) in pg/mL.
Plasma concentrations of the progestins were determined
individually for dienogest, levonorgestrel, nomegestrol as well as
chlormadinone acetate. The analytical system consisted of a 1290
Infinity II UHPLC (Agilent Technologies, Germany) coupled to
a QTRAP 4500 mass spectrometer (Sciex, United States). The
hormones were quantified via a surrogate calibrant approach
(Li and Cohen, 2003; Drotleff et al., 2018) and the method

was validated according to FDA guidelines. The dynamic range
of endoE, endoP, testosterone, exoE and the various progestins
ranged from 3.45–5179.13, 1.0–47657, 1.9–11438.00, 2.0–3000,
and 10–20000 pg/mL, respectively. To evaluate the performance
of the method and document the validity of the analytical
measurements method, quality control samples (QCs) were
analyzed on three consecutive days. Interday precision (i.e.,
repeatability between different days) and accuracy (as % recovery
of QCs’ nominal concentration) were 7.0–9.1% and 96.8–100.5%
(endoE), 6.4–9.9 and 97.0–104.6% (endoP), 7.4–9.9% and 94.3–
106.5% (testosterone), 5.6–12.3% and 97.1–99.9% (exoE), as well
as 4.4–11.1% and 93.4–109.2% (progestins), indicating excellent
method performance within the acceptance criteria of the FDA
bioanalytical method validation guideline. Interday precision
measures the repeatability of the concentrations of the quality
control samples between different days and interday accuracy the
percent recovery (% found/nominal concentration) in the quality
control samples on the different days.

Statistical Analyses
All statistical analyses were performed using SPSS 25 (IBM SPSS
Statistics) with alpha set to 0.05, if not otherwise specified. All
post hoc analyses were Bonferroni corrected.

Sample Characteristics and Hormonal Levels
Group differences (OC, fNC, and oNC) in sociodemographic
(i.e., age and educational level), neurocognitive (i.e., verbal
intelligence and cognitive flexibility) and affective parameters
[i.e., affective states (PANAS), state and trait (social) anxiety
(STAI and mini-SPIN), as well as depressive mood (BDI)] were
either analyzed with an independent ANOVA (age and state
anxiety, normality: yes, homogeneity of variances: yes), a Welch’s
ANOVA (positive affective state, normality: yes, homogeneity
of variances: no) or a non-parametric Kruskal-Wallis test
[verbal intelligence, cognitive flexibility, negative affective state,
trait (social) anxiety and depressive mood, normality: no,
homogeneity of variances: yes]. Educational level is a categorical
variable (i.e., 1 – no higher education entrance qualification, 2 –
higher education entrance qualification, 3 – university degree)
and thus analyzed with Fisher’s exact test, as not all cells had
counts higher than 5.

For OC-users, only exogenous hormone levels were used for
analyses as endogenous hormones are suppressed to very low
levels. All hormones (endogenous levels for NC groups and
exogenous levels of P for OC-users), except for testosterone
and exoE, were analyzed using the non-parametric median test,
as normality (according to visual inspection and Kolmogorov
Smirnov test: p < 0.05) as well as homogeneity of variances
(Levene’s test: p < 0.05) were not given. Group differences of
testosterone and exoE were assessed with the Kruskal-Wallis test
(normality: no, homogeneity of variances: yes).

Emotion Recognition Accuracy
The number of correct responses was calculated for each target
emotion, resulting in a mean score of emotion recognition
accuracy (percent correct) for each participant per emotion.
Kolmogorov-Smirnov tests suggested that the data was not
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normally distributed (p < 0.05). We therefore used Generalized
Estimating Equations (GEE) with emotion as within-subject
factor (anger, fear, happiness, sadness, disgust, and neutral) and
hormonal group as between-subjects factor (fNC, oNC, and
OC) to analyze differences in emotion recognition performance
dependent on hormonal status. Significant effects were followed
up with Bonferroni-corrected pairwise comparisons. As the
groups showed significantly different baseline levels in the
scores of the negative affective state scale (PANAS, see section
“Sample Description and Hormonal Levels”), we additionally
performed an ANCOVA with emotion as within-subject factor,
group as between-subjects factor and negative affective states
scores as covariate.

Emotion Recognition Response Times
Like the accuracy measure, mean emotion recognition response
times were also calculated per emotion for each participant.
However, only correct trials and trials with response times larger
than 200 ms were considered. A mixed AN(C)OVA with emotion
as within-subject factor, group as between-subjects factor and
negative affective state as covariate was performed. Due to the
violation of the sphericity assumption (Maulchy’s test: p = 0.045),
Huynh-Feldt corrected statistics were reported (Greenhouse
ε > 0.75). Bonferroni corrected pairwise comparisons were used
as post hoc analyses.

Correlational Analyses
Within group associations between overall emotion recognition
accuracy and response times with self-reported affective state (i.e.,
PANAS positive and negative scales) and hormones (endogenous
for NC groups, exogenous for OC-users; concentrations of
ovarian sex hormones as well as testosterone) were investigated.
Besides correlation analyses using the total percent correct
for emotion recognition accuracy and total mean response
time, exploratory analyses for single emotions were carried
out if the GEE or ANOVA analyses revealed significant
emotion-specific group differences. Normally distributed
data was analyzed with Pearson correlations (OC: overall
and neutral emotion recognition response times, exoE, and
positive affective state; fNC: overall emotion recognition
response time, testosterone, endoE and positive affective
state; oNC: overall response time, testosterone, endoE, and
positive affective state), whereas Spearman Rank correlations
(rhos) were used to account for non-normality in all other
correlational analyses.

RESULTS

Sample Description and Hormonal
Levels
Women across the different hormonal status groups did not differ
on sociodemographic characteristics such as age [F(2,83) = 0.10,
p = 0.906] and educational level [p = 0.854 (Fisher’s exact test)].
Furthermore, the groups were similar for neuropsychological
parameters including verbal intelligence, cognitive flexibility,
depressive mood as well as (social) anxiety (all |H| ≤ 5.26,

all p ≥ 0.072). Baseline levels of state anxiety and positive
affective state at the beginning of the experimental session were
comparable amongst women in different hormonal phases (all |F|
≤ 1.20, all p ≥ 0.308), whereas fNC women reported significantly
higher negative affective state compared to OC-users [main effect:
H(2) = 7.28, p = 0.026; fNC > OC: p = 0.044; fNC > oNC:
p = 0.088; OC > oNC: p = 1.00].

Figure 1 depicts the hormonal levels of the different hormonal
status groups. Hormonal analyses using median tests confirmed
that the women assigned to the respective groups indeed differed
in hormonal profiles accounting for endogenous as well as for
exogenous sex hormones [EndoE2 vs. ExoE2: H(2) = 56.73,
p < 0.001; EndoP vs. ExoP: X2(2) = 49.58, p < 0.001;
Testosterone: H(2) = 7.92, p = 0.019]. As expected, the oNC group
had significantly higher levels of estrogens than the OC and fNC
group (both p < 0.001, OC vs. fNC: p = 0.097), whereas the OC
group had highest levels of progestogens (OC > oNC, fNC: both
p < 0.001), followed by the oNC group (oNC > fNC: p = 0.022).
Testosterone was significantly lower in OC-users compared to the
oNC group (p = 0.020).

Emotion Recognition Accuracy
The GEE analysis for the emotion recognition accuracy (i.e.,
percent correct) revealed a main effect of emotion [Wald-
X2(5) = 468.52, p < 0.001, see Table 2 for means]. After
Bonferroni correction, recognition rates of all emotions differed
significantly from each other (all p ≤ 0.026) except for happiness
vs. anger (p = 1.000), anger vs. fear (p = 0.273), and fear vs. neutral
(p = 1.000). Happy and angry faces were recognized best, whilst
disgusted and sad expressions had the lowest performance scores.

Contrary to our expectation, there was no main effect of
group [Wald-X2(2) = 1.39, p = 0.500, see Figure 2A]. However,
the interaction emotion-by-group turned out significant [Wald-
X2(10) = 25.34, p = 0.005]. To disentangle the significant

TABLE 2 | Emotion recognition performance (in percent) and response times (in
ms) across the whole sample and for the individual hormonal groups (presented
as mean and standard deviation).

Whole sample
(n = 86)

OC (n = 30) fNC (n = 30) oNC (n = 26)

Emotion recognition response accuracy (%)

Happiness 96.1 (9.1) 96.7 (8.1) 96.1 (11.3) 95.5 (7.5)

Anger 95.4 (11.3) 95.6 (8.7) 97.2 (6.3) 93.6 (11.6)

Fear 91.1 (12.2) 91.1 (12.2) 88.3 (13.9) 94.2 (9.4)

Disgust 76.2 (17.6) 78.3 (15.3) 77.2 (18.8) 72.4 (18.8)

Sadness 61.6 (23.2) 61.1 (24.1) 63.3 (18.3) 60.3 (27.5)

Neutral 89.7 (15.4) 93.9 (11.1) 82.2 (19.0) 93.6 (11.6)

Emotion recognition response times (ms)

Happiness 2204.2 (629.0) 2104.6 (757.4) 2212.7 (428.1) 2309.3 (658.6)

Anger 2837.7 (937.8) 2579.0 (744.9) 2943.6 (966.6) 3013.9 (1066.1)

Fear 3510.4 (1265.2) 3308.5 (977.2) 3628.3 (1459.6) 3607.4 (1337.0)

Disgust 3008.8 (1095.7)* 2868.2 (1185.2) 3200.0 (1118.2) 2953.9 (958.3)*

Sadness 3135.1 (952.1)* 3177.5 (783.6) 3225.5 (1159.3)* 2987.0 (884.3)

Neutral 2570.9 (830.5)* 2327.0 (543.5) 2596.2 (867.1)* 2824.0 (997.0)

*One participant missing as no correct answers were recorded.
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FIGURE 1 | Chart depicting hormone levels of (A) endogenous estradiol (in pmol/L), (B) endogenous progesterone (in nmol/L), (C) exogenous (i.e., synthetic)
estrogens (in pmol/L) and progestogens (in nmol/L), and (D) endogenous testosterone (in nmol/L) for each hormonal status group [i.e., OC – oral contraceptive users
(blue), fNC – naturally cycling women in early follicular phase (magenta), and oNC – naturally cycling women in periovulatory phase (light green)].

interaction, separate GEEs for each group were performed. For
the OC and the oNC women, recognition performance of disgust
and sadness were significantly worse than for the remaining
emotions (all p ≤ 0.001). Whereas OC women recognized sadness
significantly worse than disgust (p = 0.001), oNC women’s
recognition accuracy did not differ between sad and disgust
expressions (p = 0.095). Happy, angry, neutral, and fearful faces
were equally well recognized (all p ≥ 0.116, except for happy
vs. fear in OC: p = 0.014). In contrast, fNC women recognized
facial expressions of anger and happiness significantly better than
fearful, neutral, disgusted, and sad faces (all p ≤ 0.006). Sad
expressions showed the lowest accuracy (all p ≤ 0.006) in fNC
women. Fear was significantly better recognized than disgust
(p = 0.002), accuracy for neutral faces did not differ significantly
from either of the two emotions (all p ≥ 0.116). Overall, the
recognition order per emotion for OC and oNC women was
happy, angry, neutral, (>) fearful > disgust, (>) sad. Whereas

fNC women’s recognition order was angry, happy > fear,
neutral (not different from fear or disgust), > disgust > sad.
Therefore, the recognition of neutral faces presents the largest
difference in the order of emotion recognition between the
groups. Congruently, separate GEE analyses looking at between
group difference for the specific emotions, revealed no group
difference for the five basic emotions (all |Wald-X2| ≤ 3.84,
p ≥ 0.147), while for neutral faces a significant group difference
emerged [Wald-X2(2) = 9.57, p = 0.008]. The fNC women had
significantly lower accuracy rates for the neutral condition than
OC and oNC women (all p ≤ 0.005, see Figure 2B). Neutral faces
were mostly misclassified by fNC women as sad or angry instead
(66 and 25% of incorrect trials, respectively).

When directly testing for our directed second hypotheses in
a GEE only involving fear and the two NC groups, we indeed
observed superior fear recognition in oNC compared to fNC
women [Wald-X2(1) = 3.66, p1tailed = 0.028].
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FIGURE 2 | Bar chart depicting the (A) overall emotion recognition accuracy (in percent) and (B) the emotion recognition accuracy for neutral faces (in percent) per
group [i.e., OC – oral contraceptive users (blue), fNC – naturally cycling women in early follicular phase (magenta), and oNC – naturally cycling women in periovulatory
phase (light green)]. Error bars with 1 SE. **p < 0.01.

Adding negative affective state as a covariate did not change
the aforementioned results (except that disgust = sadness
for fNC: p = 0.072) and had no direct link with emotion
recognition accuracy [negative affective state main effect:
Wald-X2(1) = 0.01, p = 0.924; negative affective state-by-
emotion: Wald-X2(5) = 3.13, p = 0.680]. However, there was
a significant group-by-affective state-by-emotion interaction
[Wald-X2(10) = 21.34, p = 0.019]. Separate emotion-specific GEE
analyses revealed no interaction effect with negative affective
state for recognition of all emotional faces as well as for
neutral faces (all |Wald-X2| ≤ 2.57, p ≥ 0.277), except for
disgust [group-by-affective state: Wald-X2(2) = 6.03, p = 0.049].
Parameter estimates suggest that negative affective state had
a significantly larger positive effect on disgust recognition in
fNC compared to oNC women [Wald-X2(1) = 5.98, p = 0.014],
whereas OC-users did not differ from either NC group (all
|Wald-X2| ≤ 3.05, p ≥ 0.081). Negative affective state was
positively related with accuracy in the fNC group [rhos(30) = 0.38,
p = 0.036], whereas there were no significant correlations for
the OC [rhos(30) = −0.10, p = 0.617] and the oNC group
[rhos(26) = −0.30, p = 0.129].

Emotion Recognition Response Times
The mixed ANOVA design of emotion recognition response
times only from correct trials revealed a significant main
effect of emotion [F(4.9,385.0) = 23.97, p < 0.001]. Post hoc
analyses revealed that happy faces were recognized the fastest
(all p ≤ 0.027), followed by neutral faces (all p ≤ 0.027, but
neutral vs. angry: p = 0.074). Angry and disgusted expressions
were significantly faster recognized than fearful (p = 0.001 and
p = 0.043, respectively), but not sad faces (all p ≥ 0.208). There
was no main effect of group [F(2,79) = 0.93, p = 0.401] nor a

group-by-emotion interaction [F(9.8,385.0) = 0.73, p = 0.695] in
the response times including only correct trials.

Adding negative affective state as a covariate did not affect
the findings reported above and also had no significant relation
with emotion recognition in women with different hormonal
states [negative affective state main effect: F(1,77) = 0.90,
p = 0.346; negative affective state-by-emotion interaction:
F(4.9,376.5) = 1.46, p = 0.203].

Within-Group Correlational Analyses:
Emotion Recognition, Sex Hormones,
and Self-Reported Affective Measures
Correlational analyses were run to assess whether affective states
(positive and negative) or hormone levels (endogenous and
exogenous ovarian hormones for NC women and OC-users,
respectively) are related to emotion recognition performance
(i.e., accuracy and response times) within different hormonal
states. All correlations between overall accuracy and response
times with sex hormones and self-reported positive and negative
affective state remained non-significant (all |r(s)| ≤ 0.36, all
p ≥ 0.073). Since there was a significant difference in emotion
recognition accuracy of neutral faces between OC and fNC
women, within group correlations between sex hormones,
self-reported affective state measures and emotion recognition
parameters of neutral faces have been additionally computed.
In OC-users, lower negative affective state was associated with
higher recognition accuracy [rhos(29) = −0.49, p = 0.008] and
faster response times [rhos(29) = 0.41, p = 0.028], when presented
with neutral faces. None of the other self-report measures
and sex hormone levels correlated significantly with emotion
recognition of neutral faces in the OC group (all |r(s)| ≤ 0.36,
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all p ≥ 0.054). There were no significant correlations for the fNC
group regarding the recognition of neutral faces (all |rhos| ≤ 0.27,
all p ≥ 0.143). Fear recognition accuracy was not significantly
related to affective states or hormonal levels in the fNC and
oNC groups (all |rhos| ≤ 0.32, all p ≥ 0.087). Fear recognition
response times showed a positive association with testosterone
levels in fNC women [rhos(30) = 0.46, p = 0.012], whilst all
other correlation remained non-significant in both NC groups
(all |rhos| ≤ 0.30, all p ≥ 0.143).

Furthermore, we were interested whether hormone-levels
(endogenous and exogenous ovarian hormones in NC women
and OC-users, respectively) were related to positive or negative
affective state, which in turn could be related to emotion
recognition. Spearman rank correlations revealed a negative
association of progesterone with negative affective state
[rhos(30) = −0.47, p = 0.009] in the fNC group, whereas in the
oNC group endoP correlated negatively with positive affective
state [rhos(26) = −0.63, p = 0.001]. Outlier removal did not
alter results significantly. All remaining correlations between sex
hormones and affective state measures did not reach significance
(all |r(s)| ≤ 0.26, all p ≥ 0.209).

DISCUSSION

Emotion recognition and other socio-emotional processes have
been repeatedly suggested to be associated with fluctuations
of endogenous sex hormones as well as with the intake of
synthetic ovarian hormones (see reviews: Montoya and Bos, 2017;
Osório et al., 2018; Lewis et al., 2019; Gamsakhurdashvili et al.,
2021a). However, studies are not entirely conclusive, and the
underlying mechanisms remain largely unclear. Therefore, our
aim was to systematically investigate the role of hormonal status
in facial emotion recognition by linking performance not only to
endogenous hormones in NC women, but for the first time also to
the more dominant exogenous hormone levels in OC-users. Here
the use of the highly recommended LC-MS method for hormone
determination is a major strength of this study. Furthermore,
we investigated associations to other emotional processes which
could impact emotion recognition such as negative and positive
affective state.

Overall, women during the early follicular phase,
independently of negative affective state differences among
groups, showed specific deficits in recognizing neutral faces
by misjudging neutral faces as sadness or anger. Furthermore,
in a direct comparison peri-ovulatory women, as expected,
recognized fearful faces significantly better than early follicular
women. There were no significant group-related differences in
emotion recognition response times. Endogenous and exogenous
sex hormones were, not linked to overall or neutral recognition
performance. During the early follicular phase low progesterone
levels were linked to higher negative affective state. Notably,
during the peri-ovulatory phase progesterone levels were
negatively associated with positive affective state.

Contrary to our expectation and previous literature (Hamstra
et al., 2014, 2015, 2017; Pahnke et al., 2019), we were not able
to replicate inferior emotional face recognition performance

in OC-users compared to NC women. Even though studies
use the same tasks for basic (i.e., VERT as in the present
study) or complex (i.e., Reading the mind in the eye task)
emotion recognition, they reveal mixed results. In line with
our findings, Radke and Derntl (2016) found no OC-related
impairment in basic emotion recognition. Furthermore, the up-
to-now largest study on hormonal contraceptives and complex
emotion recognition also failed to find any significant differences
(Shirazi et al., 2020). This incongruency in findings could be
due to the interplay of OC-use with other potential modulatory
factors. For instance, Hamstra et al. (2016) found only a
significant impairment in emotion recognition relative to NC
women in OC-users with a certain genotype of mineralocorticoid
receptor (MR-haplotype 1/3). In the present study, we found
negative affective state to play a role in neutral face recognition
of OC-users. The worse their affective state was, the more likely
women misclassified a neutral expression as sadness or anger
(i.e., increased negativity bias). The lack of finding any significant
associations between endogenous and exogenous hormone levels
with emotion recognition performance in OC-users further
corroborates the view that OC-related effects may be complex and
mediated rather than straightforward.

Regarding menstrual cycle phases, in a direct comparison, we
replicated previous findings indicating superior fear recognition
in the peri-ovulatory phase compared to the early follicular phase
with significantly lower endoE2 levels (Pearson and Lewis, 2005).
Interestingly, this superior fear recognition does not translate
into increased fear processing in peri-ovulatory women. In
fact, high levels of endoE2 have been linked to enhanced fear
extinction, whereas low levels (i.e., in the early follicular phase)
were associated with enhanced fear conditioning (Montoya and
Bos, 2017). Moreover, high levels of estradiol were previously
associated with lower disgust (Kamboj et al., 2015) and anger
recognition (Guapo et al., 2009), accordingly peri-ovulatory
women had lower accuracy in recognizing these facial expressions
than early follicular women, however, these differences were only
descriptive and did not reach significance. In the early follicular
group, disgust recognition accuracy was positively associated
with negative affective state. This is congruent with the notion
that affective state may enhance emotion recognition of valence-
congruent emotions (Schmid and Schmid Mast, 2010). In OC-
users and peri-ovulatory women the negative affective state
may have not been pronounced and variable enough to reveal
such associations.

Independent of negative affective state, early follicular women
were significantly worse than OC-users and peri-ovulatory NC
women in recognizing neutral faces. The neutral faces were
mostly misclassified as being sad or angry instead. However,
there were no significant differences in response times. Therefore,
suggesting that fNC women were not aware of their difficulty
in recognizing these faces correctly, as if they were uncertain,
response times should be longer. In previous studies, low endoP
levels were associated with a higher number of stimuli falsely
classified as neutral (Derntl et al., 2008a), faster response times
in correctly identifying neutral faces (Kamboj et al., 2015),
and higher amygdala activation during neutral face processing
(Derntl et al., 2008b). Therefore, from these studies we could
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have expected enhanced neutral face processing of early follicular
women, as here endogenous progesterone is low. However,
instead we found a greater negativity bias (i.e., misjudging neutral
as negative expressions) in this group, which was however not
related to ovarian hormone concentrations. This incongruency
could be explained by the different menstrual cycle phases
included in the studies. The previous studies (Derntl et al.,
2008a,b; Kamboj et al., 2015) pooled follicular and luteal women
to generate hormone correlations. Therefore, these findings
could be rather driven by the inclusion of luteal women with
high progesterone levels. Furthermore, the early follicular phase
was largely underrepresented in the follicular groups of the
previous samples, making a comparison of the previous studies
with the present study difficult. Negativity biases in neutral or
ambiguous face recognition have been repeatedly implicated in
individuals with affective disorders, (social) anxiety and other
mental problems (Richards et al., 2002; Leppänen et al., 2004;
Yoon and Zinbarg, 2008; Mier et al., 2014; Münkler et al.,
2015; Gutiérrez-García and Calvo, 2017; Peschard and Philippot,
2017). These biases or overinterpretations could contribute to
the difficulties in social interactions and relations in these
individuals. Our analyses, however, revealed no link between
affective state and (social) anxiety measures with the negativity
bias in the early follicular group. Considering, that the fNC
women had no elevated or clinically relevant levels on these
scales, these null finding may not be surprising. Nevertheless,
fNC women could have felt more menstrual discomfort and
pain, which is not evaluated by the PANAS or the STAI,
causing a greater precaution in processing of neutral facial
expression to account for their increased vulnerability. Indeed,
there is evidence of negative interpretation biases associated
with pain (Khatibi et al., 2015; Heathcote et al., 2016).
Therefore, future studies are needed to examine more closely the
possible link between menstrual pain/discomfort and negative
interpretation biases.

Independent of emotion recognition, our findings support
previous literature reporting a link between menstrual cycle
and affective state (Reed et al., 2008; Ocampo Rebollar et al.,
2017). As similarly shown by Ocampo Rebollar et al. (2017), the
negative link between progesterone and positive affective state
in the peri-ovulatory phase implies that pre-ovulatory women
have more positive affective state which decreases as ovulation
comes closer and progesterone levels start rising. In the early
follicular phase, however, lower levels of progesterone were
linked with worse affective state. Since progesterone levels in
this phase are already low, even lower concentrations could
lead to an interruption of the mood stabilizing effects of its
metabolite allopregnanolone, by reducing its effect (through
lower concentrations) on the GABAeric system (Chen et al.,
2021). However, these findings ought to be interpreted with
caution, given the generally low levels of progesterone in the
follicular phase.

In this study we have only included women using OCs but
excluded women using other (hormonal) contraception methods
such as intrauterine devices or vaginal ring. To fully capture
the impact of (hormonal) contraception on emotion recognition
and more general socio-emotional abilities, future studies should

systematically investigate their effect. Furthermore, our study
investigated women’s emotion recognition in a cross-sectional
design, comparing different women with different hormonal
status once. However, a longitudinal design enabling a within-
subject comparison would be beneficial to better characterize the
impact of endogenous and exogenous hormones on behavioral
outcomes. Additionally, statistical power could be improved this
way, without really having to increase the sample size (Gonzales
and Ferrer, 2016). Another downside of the sample size per
hormonal status group in addition to non-linearity issues of
the data was that no mediation analyses using affective state
could be carried out to investigate the interplay of sex hormones
and affective state on emotion recognition (minimum size per
group n = 72 for medium effects; Fritz and Mackinnon, 2007).
Finally, in this study we only measured emotion recognition
of basic emotions. Since in real-life, emotion recognition of
complex next to basic emotions plays a major role, the inclusion
of complex emotions in the study design could have raised
ecological validity.

CONCLUSION

With the current study we shed some light on the role of
different hormonal conditions (i.e., OC-use, early follicular
and peri-ovulatory phase) in emotion recognition abilities of
women. Our results suggest that women in their early follicular
phase show both, elevated negative affective state as well as a
negativity bias in perceiving neutral faces (i.e., neutral misjudged
as sadness or anger), which may impair their success in social
interactions. Furthermore, in a direct comparison peri-ovulatory
women showed better fear recognition accuracy. Generally, we
were not able to replicate OC-related impairments in emotion
recognition performance. More importantly, we also found no
significant links between endogenous and exogenous hormone
levels with emotion recognition, suggesting a more complex
mechanism by which emotion recognition is possibly influenced
by hormonal contraception. Thus, the study motivates more
research to better understand how different hormonal conditions
do impact women’s social life, and ultimately their mental
health. A better understanding of these processes is necessary
to provide gynecologists and potential users with details on
potential consequences of hormonal contraceptives on female
social cognition.
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Sex steroid hormones such as 17β-estradiol (E2) are critical neuromodulators of
hippocampal synaptic plasticity and hippocampus-dependent memory in both males
and females. However, the mechanisms through which E2 regulates memory formation
in both sexes remain unclear. Research to date suggests that E2 regulates hippocampus-
dependent memory by activating numerous cell-signaling cascades to promote the
synthesis of proteins that support structural changes at hippocampal synapses.
However, this work has largely overlooked the equally important contributions of
protein degradation mediated by the ubiquitin proteasome system (UPS) in remodeling
the synapse. Despite being critically implicated in synaptic plasticity and successful
formation of long-term memories, it remains unclear whether protein degradation
mediated by the UPS is necessary for E2 to exert its beneficial effects on hippocampal
plasticity and memory formation. The present article provides an overview of the receptor
and signaling mechanisms so far identified as critical for regulating hippocampal E2 and
UPS function in males and females, with a particular emphasis on the ways in which
these mechanisms overlap to support structural integrity and protein composition of
hippocampal synapses. We argue that the high degree of correspondence between E2

and UPS activity warrants additional study to examine the contributions of ubiquitin-
mediated protein degradation in regulating the effects of sex steroid hormones on
cognition.

Keywords: 17β-estradiol, memory, hippocampus, protein degradation, proteasome, ubiquitin

Abbreviations: E2, 17β-estradiol; DH, dorsal hippocampus; BLA, basolateral amygdala; LTP, long-term potentiation;
UPS, ubiquitin proteasome system; CA1, cornu ammonis 1; CA3, cornu ammonis 3; ER(s), estrogen receptor(s); ERα,
estrogen receptor alpha; ERβ, estrogen receptor beta; GPER, G-protein-coupled estrogen receptor; mGluRs, metabotropic
glutamate receptors; mGluR1a, metabotropic glutamate receptor 1a; NMDA, N-methyl-D-aspartate; NMDAR(s), NMDA
receptor(s); AMPA, α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; ERK, extracellular signal-regulated kinase;
PI3K, phosphoinositide 3-kinase; mTOR, mechanistic target of rapamycin; mTORC1, mechanistic target of rapamycin
complex 1; JNK, C-jun N-terminal kinase; PKA, protein kinase A; CaMKII, calcium/calmodulin-dependent protein
kinase II; PSD, post-synaptic density; CP, core particle; RP, regulatory particle; K48, lysine 48; Rpt6, regulatory particle
triple-ATPase 6 subunit; cAMP, cyclic adenosine monophosphate; LTF, long-term facilitation; CREB, cAMP-response
element binding protein; ATF4, activating transcription factor 4; β-lac, clasto-lactacystin β-lactone; Lac, lactacystin; TUBE,
tandem ubiquitin binding entity.
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INTRODUCTION

The sex steroid hormone 17β-estradiol (E2) is the most
potent and prevalent circulating estrogen and has been studied
extensively in the field of hormones and cognition because of its
ability to regulate hippocampal synaptic plasticity, spinogenesis,
and the storage of long-term memories in males and females.
In the early 1990’s, seminal work demonstrated that dendritic
spine density on pyramidal neurons in the CA1 region of the
dorsal hippocampus (DH) fluctuates throughout the rat estrous
cycle (Woolley et al., 1990), suggesting for the first time that
endogenous sex steroid hormones, such as E2, alter structural
plasticity in brain regions relevant for cognition. Research
since then has demonstrated that exogenous E2 can increase
CA1 dendritic spine density in ovariectomized rats and mice
as quickly as 30 min following systemic injection (MacLusky
et al., 2005; Inagaki et al., 2012) or DH infusion (Tuscher et al.,
2016). Likewise, exogenous E2 also increases intrinsic excitability,
excitatory neurotransmission, and long-term potentiation (LTP)
in hippocampal neurons (Wong and Moss, 1992; Woolley et al.,
1997; Foy et al., 1999; Foy, 2001). These, among other E2-
induced enhancements in hippocampal synaptic function and
spinogenesis, are thought to underlie E2’s ability to facilitate the
consolidation of multiple hippocampus-dependent memories,
including spatial, object recognition, fear, and social memories
in both males and females (Tuscher et al., 2015; Taxier et al.,
2020).

Despite the ample evidence that E2 enhances hippocampal
function and memory formation in both sexes, the neural
mechanisms through which E2 exerts its effects remain poorly
understood. A growing body of research has examined how
E2 activates rapid cell-signaling events to drive increases in
protein synthesis to support structural changes at hippocampal
synapses (Sarkar et al., 2010; Fortress et al., 2013; Sellers
et al., 2015; Tuscher et al., 2016). These studies suggest that
local protein synthesis is necessary for E2 to both increase
CA1 spine density and enhance memory consolidation (Fortress
et al., 2013; Tuscher et al., 2016). However, this work has
largely overlooked the potentially vital and parallel contribution
of protein degradation mediated by the ubiquitin proteasome
system (UPS). In the UPS, proteins are tagged with ubiquitin
and become substrates for degradation by the 26S proteasome.
UPS-mediated protein degradation is a necessary counterpart
to protein synthesis in driving synaptic plasticity and memory
(Jarome and Helmstetter, 2013; Hegde, 2017) because it regulates
the destruction of proteins that impose inhibitory constraints on
synaptic remodeling, cell signaling, and gene transcription events
across subcellular compartments of the neuron (Hegde, 2004).

In this review, we discuss the view that UPS-mediated protein
degradation is an overlooked mechanism that may play a key
role in regulating E2’s beneficial effects on hippocampal plasticity
and memory. The review briefly summarizes E2’s effects on
hippocampal function and then describes in some detail how
the UPS functions to influence memory. Effects of E2 on UPS
activity are then discussed, as are the numerous ways in which E2
and UPS signaling overlap to potentially regulate hippocampal
function, which include regulation of the structural integrity and

protein composition of hippocampal synapses. Finally, we offer
some suggestions for future research.

ESTRADIOL AND HIPPOCAMPAL
FUNCTION

E2 has received considerable attention in the past three decades
for its role as a powerful modulator of hippocampal synaptic
morphology, plasticity, and long-term memory in males and
females of various mammalian species (Frick, 2015; Hojo et al.,
2015; Hamson et al., 2016; Taxier et al., 2020). However, the
mechanisms through which E2 promotes hippocampal synaptic
function in both sexes remain largely unclear. Work to date has
demonstrated that E2 facilitates hippocampal synaptic plasticity
and memory consolidation in ovariectomized female rodents
by acting at the plasma membrane, where it interacts with
membrane-bound estrogen receptors (ERs; Boulware et al.,
2005, 2013) to initiate signal transduction events to rapidly
modulate synaptic morphology (Figure 1). Estrogen receptors
alpha and beta (ERα and ERβ) are the canonical intracellular
estrogen receptors. Although ERα and ERβ are known for
exerting genomic effects in the nucleus, they are also abundantly
expressed throughout all segments of hippocampal neurons,
including axon terminals, dendrites, and dendritic spines (Milner
et al., 2000, 2005), where they are positioned near the plasma
membrane to interact with metabotropic glutamate receptors
(mGluRs) and other receptors to rapidly regulate synaptic
signaling (Mitterling et al., 2010). Data from our lab and
others indicate that activation of ERα or ERβ facilitates the
consolidation of object recognition and spatial memories in
ovariectomized rats and mice (Jacome et al., 2010; Kim and
Frick, 2017; Hanson et al., 2018; Fleischer et al., 2021). Additional
evidence suggests that glutamate receptors play key roles in
mediating these memory-enhancing effects, as ERα and ERβ

directly interact with mGluR1a to trigger extracellular signal-
regulated kinase (ERK) signaling in the DH to facilitate object
placement and object recognition memory consolidation in
ovariectomized mice (Boulware et al., 2013). E2 may also interact
with the membrane-bound G-protein-coupled estrogen receptor
(GPER) to enhance spatial and object recognition memories,
however, GPER agonism appears to facilitate consolidation
independently by phosphorylating c-Jun N-terminal kinase
(JNK), not ERK (Kim et al., 2016), suggesting that GPER and
E2 use different cell-signaling pathways to regulate memory
formation. Additional signaling mechanisms that regulate E2’s
memory-enhancing and spinogenic effects depend on the rapid
activation of NMDA receptors (NMDARs) and tyrosine receptor
kinase B (TrkB) to trigger downstream signaling cascades
including calcium/calmodulin-dependent protein kinase II
(CaMKII), protein kinase A (PKA), ERK, and phosphoinositide
3-kinase (PI3K; Murakami et al., 2006; Fernandez et al., 2008;
Lewis et al., 2008; Fan et al., 2010; Gross et al., 2021).

E2-induced enhancements in hippocampal synaptic plasticity
and memory formation have largely been attributed to its
rapid effects on CA1 dendritic spine density (Mukai et al.,
2007; Inagaki et al., 2012; Tuscher et al., 2016; Kim et al.,
2019). E2 can promote hippocampal LTP by regulating actin
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FIGURE 1 | Schematic diagram illustrating a model of the mechanisms through which E2 regulates CA1 spine density and memory. E2 acts via
membrane-associated receptors like mGluRs, GPER, and TrkB, as well as ion channels like NMDAR, to stimulate cell-signaling kinases that promote local protein
synthesis and actin polymerization. ERα and ERβ promote protein synthesis via ERK and mTOR signaling, whereas GPER promotes actin polymerization through
JNK signaling. Illustration created using BioRender.com.

polymerization (Kramár et al., 2009), which is necessary for
spine growth and maturation (Penzes and Cahill, 2012). In the
DH of ovariectomized mice, E2 rapidly and transiently increases

phosphorylation of cofilin (Kim et al., 2019), which leads to
actin stabilization and polymerization (Chen et al., 2007; Babayan
and Kramár, 2013). E2-induced increases in CA1 spine density
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also require the rapid synthesis of new proteins within the
postsynaptic density (PSD). Several studies have demonstrated
that E2 can activate ERK and Akt signaling to promote local
protein synthesis by activating mechanistic target of rapamycin
(mTOR) and mTOR complex 1 (mTORC1) signaling (Akama
and McEwen, 2003; Sarkar et al., 2010; Fortress et al., 2013;
Briz and Baudry, 2014). Interestingly, E2 increases local protein
synthesis of the synaptic scaffolding molecule PSD-95 in
cultured neurons in an ERα-, Akt-, and mTOR-dependent
manner (Akama and McEwen, 2003), suggesting that these
newly synthesized proteins contribute directly to the expanding
dendritic architecture. Furthermore, work from our lab suggests
that E2 acts atmembrane-localized ERs in theDH to activate ERK
and mTORC1 signaling, which is necessary for E2 to increase
CA1 spine density and to enhance object recognition and object
placement memory consolidation in ovariectomized female mice
(Boulware et al., 2013; Fortress et al., 2013; Tuscher et al., 2016),
thereby supporting the hypothesis that local protein synthesis is
necessary for E2-induced spinogenesis and memory.

Thus, evidence to date suggests that E2 promotes
hippocampus-dependent memory by inducing rapid membrane-
initiated cell-signaling events that increase CA1 dendritic spine
density by reorganizing components of the cytoskeleton, as well
as driving increases local protein synthesis. These findings reflect
the field’s historic focus on identifying the signaling mechanisms
that promote protein production to support structural changes
at hippocampal synapses. However, this attention on protein
synthesis has caused researchers to overlook the potential
contributions of protein degradation as an equal, but opposite,
regulator of E2’s effects on memory. As will be discussed below,
protein degradation mediated by the UPS plays a vital role in
hippocampal plasticity and memory by structurally remodeling
the synapse and degrading proteins that exert inhibitory
constraints to synaptic plasticity. We show that the signaling
mechanisms that facilitate proteasomal protein degradation
overlap considerably with those that regulate E2’s effects on
CA1 spine density and memory, suggesting compelling reasons
to explore protein degradation mechanisms as key mediators of
E2’s effects on memory.

THE UBIQUITIN-PROTEASOME SYSTEM

TheUPS is the primarymechanism for degrading proteins within
mammalian cells (Glickman and Ciechanover, 2002). The UPS
is comprised of a network of signaling molecules that identify,
tag, and degrade substrate proteins within the cell (Figure 2).
In this system, proteins are first targeted for degradation by the
covalent attachment of the small protein modifier ubiquitin via
the coordinated actions of three separate classes of ubiquitin
ligases (E1, E2, and E3). The activating enzyme, E1, binds to and
activates free ubiquitin in an ATP-dependent reaction. E1 then
transfers activated ubiquitin to an E2 ligase that carries the
active ubiquitin to the substrate protein. The substrate proteins
to be degraded are recognized by specific E3 ligases which
identify degradation signals emitted by the substrate proteins
themselves (Nandi et al., 2006). The E2 ligase then binds to the
E3-substrate complex, enabling the transfer of activated ubiquitin

to the substrate protein (Figure 2A). The ubiquitination process
is highly complex and involves hundreds of different ligases
that interact in a combinatorial manner to achieve substrate
specificity. In the human genome, the coding genes for each
ligase total 1–2 for E1, 25–30 for E2, and more than 600 for
E3. Although substrate specificity is primarily achieved by
the vast number of E3 ligases, specificity is also achieved by
limited interactions of E2-E3 proteins. For example, E2s bind to
numerous different E3s, but not every E3 can interact with every
E2. Therefore, the E2s, E3s, and substrate proteins come together
to create a unique combinatorial code for the ubiquitin reaction
(Hegde, 2017). After the first ubiquitin is bound to the substrate
protein, another ubiquitin becomes attached to an internal lysine
residue on the first ubiquitin, eventually forming a polyubiquitin
chain. Substrate proteins can acquire several different types of
ubiquitin ‘‘tags,’’ however, those that receive a lysine-48 (K48)
polyubiquitin tag become targets for degradation by the 26S
proteasome complex (Glickman and Ciechanover, 2002; Musaus
et al., 2020).

The 26S proteasome is a multi-subunit structure comprised
of a cylindrical 20S core particle (CP) flanked by one or two 19S
regulatory particles (RP; Tanaka, 2009). The 19S RP contains an
outer lid comprised of a circular ring of non-ATPase subunits
where polyubiquitinated protein initially binds (Figure 2B).
When a polyubiquitinated substrate is bound to the outer
segment of the 19S CP, the polyubiquitinated chain becomes
hydrolyzed by deubiquitinating enzymes so that the ubiquitin
molecules can be reused in the system. The 19S RP also contains
an inner cap segment that consists of a circular ring of six ATPase
subunits that, when activated, are responsible for initiating
unfolding and translocating the protein into the catalytic 20S
core of the proteasome. The 20S CP is comprised of two outer
rings of α-subunits and two inner rings of β-subunits. The outer
α-subunits are connected to the inner ATPase subunits of the
19S cap which gives the proteasome its gate-like mechanism of
action. When the 19S ATPase subunits become activated, the α-
subunits enable the substrate to pass through its gated channel.
However, when a polyubiquitinated substrate is not bound to
the proteasome, the α-subunit gate remains closed to prevent the
degradation of intact protein, as well as the release of partially
degraded substrate protein from the 20S CP. The substrate is then
degraded by various catalytic activities (i.e., chymotrypsin-like,
trypsin-like, and caspase-like activity) of the 20S CP, which are
exerted by the inner β5, β2, and β1 subunits, respectively. The
resulting peptide fragments are then expelled through the base of
the proteasome.

Regulation of Proteasome Subunits by
PKA and CaMKII
As illustrated in Figure 2, proteasomes are multi-subunit
complexes that must be assembled to exert their chymotrypsin-
like, trypsin-like, and caspase-like proteolytic activities.
Proteasome subunit phosphorylation is a principal mechanism
that regulates proteolysis by altering proteasome assembly,
localization, or its catalytic activity (Hegde, 2004; Nandi et al.,
2006). Phosphorylation of the 19S regulatory particle triple-
ATPase 6 subunit at the serine 120 residue (Rpt6 at Ser120,
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FIGURE 2 | Ubiquitin-mediated proteolysis. (A) Schematic illustration of ubiquitin targeting pathway. Free ubiquitin molecules are activated by E1-activating ligases
via ATP hydrolysis. Activated ubiquitin is then bound to E1, which then transfers the active ubiquitin molecule to E2 carrier enzymes. E3 ligases bind to target
substrates destined for degradation. E2 enzymes localize to the E3-substrate complex, enabling the transfer of active ubiquitin to substrate protein. Additional
ubiquitin molecules attach at lysine-48 (K48) residues on subsequent ubiquitin, eventually forming a K48-linked polyubiquitin chain that is destined to the 26S
proteasome for proteasomal degradation. (B) Detailed schematic view of the 26S proteasome. The 26S proteasome contains one or two 19S caps and a 20S core.
K48-linked polyubiquitinated protein binds to the 19S regulatory cap at ubiquitin binding sites. Upon activation of the proteasome, which usually occurs at the 19S
subunit Rpt6 (Ser120 residue), the polyubiquitin chain becomes hydrolyzed and the substrate protein unfolds to allow β subunits in the 20S core to hydrolyze proteins
via caspase-, trypsin-, and chymotrypsin-like activities. Illustration created using BioRender.com.

hereafter referred to as Rpt6; Figure 2B) is the most commonly
studied phosphorylation site in the context of synaptic plasticity
and memory because this subunit is targeted by PKA and
CaMKII. Because these kinases are regulated by E2, they may
mediate its effects on UPS signaling. As such, the regulation of
UPS function by PKA and CaMKII will be discussed below.

Thus far, evidence to show that PKA regulates proteasome
activity comes from studies of non-neuronal cells or tissues
not typically associated with memory. Forskolin, a compound
that elevates cyclic AMP (cAMP) levels and activates PKA,
stimulates chymotrypsin-like and trypsin-like peptidase activity
in nuclear extracts from cultured normal rat kidney cells by
phosphorylating Rpt6 (Zhang et al., 2007). Moreover, this
forskolin-induced increase in proteasome activity could be
blocked pharmacologically, indicating that PKA-dependent
phosphorylation is responsible for the increases in peptidase
activity (Zhang et al., 2007). Phosphorylation of Rpt6 by
the cAMP/PKA pathway is also critical in regulating the
neuropathology of Huntington’s disease. For example,
striatal cells expressing mutant Huntington protein have
markedly low PKA activity that prevents phosphorylation

of Rpt6 (Lin et al., 2013). Expression of phosphomimetic
Rpt6 rescued motor impairments and reduced mutant
Huntington protein aggregates in the striatal synaptosome
fraction from Huntington’s mice (Lin et al., 2013), suggesting
an important role for Rpt6 in both pathology and behavior.
Additional evidence suggests that PKA regulates proteasome
activity by increasing transcriptional levels of proteasome
subunits. Artificially increasing cAMP levels in rat spinal cord
neurons not only increases chymotrypsin-like activity but
also increases mRNA and protein levels of Rpt6 and the 20S
proteasome subunit β5 in a PKA-dependent manner (Myeku
et al., 2012).

Rpt6 can also be phosphorylated by CaMKIIα in a neuronal
activity-dependent manner (Bingol et al., 2010), which then
leads to proteasome trafficking into dendritic spines. In
cultured hippocampal neurons, synaptic activity causes
autophosphorylated CaMKIIα to act as a postsynaptic scaffolding
molecule by physically binding to 19S and 20S proteasome
complexes and translocating them from dendritic shafts to
dendritic spines, where they co-localize to the actin cytoskeleton
in an NMDAR-dependent manner (Bingol and Schuman, 2006;
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Bingol et al., 2010). These findings are consistent with other
work demonstrating that proteasome activity in dendrites
of cultured hippocampal neurons is regulated by synaptic
activity and that overexpression of a constitutively active form
of CaMKII activates proteasomes by phosphorylating Rpt6
(Djakovic et al., 2009). Accordingly, homeostatic scaling of
synaptic strength in rodent hippocampal slices was impaired by
altered CaMKII-dependent phosphorylation of Rpt6 (Djakovic
et al., 2012). CaMKII-induced phosphorylation of Rpt6 also
regulates hippocampal spinogenesis, as expression of a
phospho-dead mutant of Rpt6 prevented activity-induced
hippocampal spine outgrowth on postsynaptic neurons
(Hamilton et al., 2012). Furthermore, Rpt6 phosphorylation
is also increased in the amygdala of male rats following
contextual fear conditioning (Jarome et al., 2013), suggesting
that activity-induced Rpt6 phosphorylation may promote the
structural plasticity underlying memory formation. Interestingly,
the learning-induced increase in Rpt6 phosphorylation depends
on CaMKIIα, but not PKA, activity in male rat amygdala tissue
(Jarome et al., 2013), indicating greater involvement of CaMKII
in mediating the proteasome activity stimulated by learning. It
should be noted that one recent study using knock-in mouse
models to block or mimic Rpt6 activity indicated no involvement
in measures of plasticity, spine growth, or fear conditioning
(Scudder et al., 2021), however, compensatory mechanisms
may have mitigated the loss of a functional Rpt6 Ser120 subunit
(Lokireddy et al., 2015; Guo et al., 2016). Overall, these findings
suggest that CaMKIIα-dependent phosphorylation of Rpt6 may
be critical for regulating the proteasomal protein degradation
involved in synaptic remodeling and long-term memory.

PROTEIN DEGRADATION AND SYNAPTIC
PLASTICITY

Substantial evidence supports a role for protein degradation
as a critical regulator of activity-dependent synaptic plasticity
(Fioravante and Byrne, 2010; Jarome and Helmstetter, 2013;
Hegde, 2017). Initial studies conducted in Aplysia investigated
how cAMP-dependent PKA remained persistently active
following long-term facilitation (LTF) when levels of cAMP
were depleted. This work revealed that the increased pool of
PKA regulatory subunits became ubiquitinated and degraded
by the proteasome, leaving the catalytic subunits intact and
persistently active (Hegde et al., 1993). Additional work in
Aplysia demonstrated that LTF increased expression of the
ubiquitin C-terminal hydrolase (Ap-uch), which is responsible
for deubiquitinating proteasome-bound protein, thereby
increasing proteasome activity within neurons. Inhibiting the
expression of Ap-uch blocked the induction of LTF (Hegde
et al., 1997). Similarly, the injection of proteasome inhibitors
prevented induction of LTF in Aplysia (Chain et al., 1999).

Later studies in hippocampal slices from male rats examined
the extent to which the proteasome regulates protein-synthesis-
dependent late-phase LTP (L-LTP). L-LTP is comprised of
an induction phase that requires translation of pre-existing
mRNAs at dendrites, and a maintenance phase that requires
de novo transcription in the nucleus (Kelleher et al., 2004).

In hippocampal slices, L-LTP can be induced by forskolin,
thereby supporting a key role for PKA. Interestingly, proteasome
inhibition has different effects on forskolin-induced L-LTP
based on the location of proteasome inhibition. For example,
proteasome inhibition at dendrites enhanced the induction
phase of L-LTP, whereas proteasome inhibition at the nucleus
blocked the maintenance phase of L-LTP (Dong et al., 2008).
These findings led to speculation that proteasome inhibition
enhances L-LTP induction by preventing the degradation
of proteins synthesized from pre-existing mRNAs, but
blocks L-LTP maintenance by preventing the degradation
of transcriptional repressors in the nucleus. Subsequent
work supported this hypothesis, as inhibition of ERK and
mTORC1 signaling in dendrites prevented proteasome
inhibition from enhancing the induction phase of L-LTP
(Dong et al., 2014). These novel findings showed that the
proteasome can paradoxically control local protein translation
by regulating the activity of translational activators and
repressors throughout the induction and maintenance phases of
L-LTP.

Other studies have assessed the effects of proteasome
inhibition on L-LTP and found that the maintenance phase,
but not the induction phase, of L-LTP was blocked entirely in
hippocampal slices from male rats when either protein synthesis
or protein degradation was inhibited. These impairments were
rescued if protein synthesis and protein degradation inhibitors
were applied at the same time (Fonseca et al., 2006; Karpova et al.,
2006). These findings conflict with the previous reports discussed
above that proteasome inhibition enhanced the induction phase
of L-LTP (Dong et al., 2008, 2014), which could result from
their use of a lower proteasome inhibitor dose or a less-specific
proteasome inhibitor. Nonetheless, these findings collectively
demonstrate that a delicate balance between protein synthesis
and protein degradation must exist to support L-LTP and
maintain long-lasting synaptic plasticity.

This work also began to illustrate that the proteasome
regulates hippocampal synaptic plasticity by targeting diverse
substrate proteins throughout neuronal synaptic and nuclear
compartments (Hegde et al., 2014). For example, the activity-
induced translocation of proteasomes to dendritic spines
causes other structural changes that influence synaptic
plasticity. Synaptic activity in bicuculline-treated cortical
neurons significantly increases the number of ubiquitinated
proteins in the synapse and PSD (Ehlers, 2003). In particular,
the post-synaptic scaffolding proteins Shank, GKAP, and
AKAP79 are ubiquitinated and degraded in response to synaptic
activity, an effect that is abolished following periods of inactivity
(Ehlers, 2003). These cytoskeletal and scaffolding proteins
become targets for proteasomal degradation following synaptic
activity because they directly support glutamate receptors
within the PSD (Sheng and Pak, 2000; Sheng and Kim, 2002).
AMPA receptor internalization following NMDAR activation
in hippocampal neurons depends on the ubiquitination and
subsequent degradation of PSD-95 (Colledge et al., 2003; Patrick
et al., 2003; Bingol and Schuman, 2004). Protein degradation
also appears to regulate spine shape, as the activity-inducible
kinase SNK is targeted to dendritic spines and is responsible
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for initiating the degradation of the PSD protein SPAR (Pak
and Sheng, 2003). SPAR was also shown to be degraded by the
proteasome in an NMDA-dependent manner following LTP
induction in CA1 neurons from male rats (Chen et al., 2012). As
such, UPS activity provides localized protein degradation within
synapses to rapidly remodel the spine morphology that supports
enhanced plasticity.

Finally, ubiquitin-mediated proteasomal protein degradation
can also influence plasticity by degrading nuclear proteins
that inhibit gene transcription. For example, induction of LTF
in Aplysia depends on the ubiquitination and proteasomal
degradation of the cAMP-response element binding protein
(CREB) repressor protein activating transcription factor 4
(ATF4; Upadhya et al., 2004). Furthermore, proteasome
inhibition following chemically-induced LTP prevents the
ubiquitination and degradation of ATF4, effectively preventing
the transcription of CREB-inducible genes, such as brain-derived
neurotrophic factor (bdnf, Dong et al., 2008). More recent work
has shown that the E3 ligase β-transducin repeat containing
protein (β-TrCP) ubiquitinates ATF4 in a PKA-dependent
manner (Smith et al., 2020). Therefore, the proteasome not only
serves to degrade synaptic proteins but also to regulate gene
expression by degrading machinery that exerts repressive effects
on the transcription of genes critical for synaptic plasticity and
memory.

PROTEIN DEGRADATION AND
LONG-TERM MEMORY

Numerous studies have demonstrated that proteasomal protein
degradation is not only critical for activity-dependent synaptic
plasticity but also plays an important role in regulating
long-term memory. These studies have predominantly used
proteasome inhibitors such as lactacystin (lac) and clasto-
lactacystin β-lactone (β-lac) to block the catalytic activities of
the proteasome (

—
Omura and Crump, 2019). Pharmacological

blockade of proteasome activity has enabled researchers to
examine the extent to which proteasome activity is required
for the consolidation and reconsolidation phases of memory
storage. The behavioral work to date has primarily examined the
involvement of protein degradation in fear learning among male
rats (for comprehensive reviews, see Jarome and Helmstetter,
2013, 2014; Hegde, 2017). However, recently published data
suggest differences in howmales and females regulate and engage
in proteasome activity, which will be discussed in more detail
below.

Initial work demonstrated that immediate post-training
bilateral infusion of lac into the CA1 region of the DH
caused full retrograde amnesia for one-trial inhibitory avoidance
learning in male rats (Lopez-Salon et al., 2001). Subsequently,
bilateral infusion of β-lac into CA1 was shown to impair
the extinction, but not consolidation or reconsolidation, of
contextual fear memory in male rats (Lee et al., 2008), suggesting
a potentially complex role for CA1 protein degradation in
fear learning. Protein degradation in other brain regions also
contributes to fear learning, as bilateral infusion of lac in
the amygdala and insular cortex impaired consolidation of

conditioned taste aversion memories (Rodriguez-Ortiz et al.,
2011). Moreover, immediate post-training infusion of β-lac
into the amygdala impaired the consolidation of both auditory
and contextual fear memories (Jarome et al., 2011). Although
the same study observed NMDA-dependent increases in
polyubiquitination of RISC factor MOV10 and scaffolding
protein Shank, β-lac infusion into the amygdala following
memory retrieval did not impair auditory or contextual fear
memory reconsolidation, but did rescue impairments caused
by infusion of protein synthesis inhibitor anisomycin (Jarome
et al., 2011), suggesting that protein degradation controls
destabilization of retrieved fear memories in the amygdala.
Subsequent findings also demonstrated that β-lac in male
rats impaired trace fear conditioning when infused into the
prefrontal cortex, and impaired contextual memory in a
context-preexposure facilitation paradigm when infused into
the dorsal and ventral hippocampus (Reis et al., 2013; Cullen
et al., 2017). Interestingly, recent work investigating AMPA
receptor (AMPAR) exchange at synapses in the amygdala of
male rats demonstrated that proteasome activity is critical
for the endocytosis of calcium-impermeable AMPARs with
calcium-permeable AMPARs during the destabilization phase
of reconsolidation (Ferrara et al., 2019). Together, these data
suggest an important role for UPS activity in numerous brain
regions in mediating fear learning among male rats.

A requirement for proteasomal protein degradation has also
become evident for spatial and object recognition memories.
Infusion of lac into the hippocampal CA3 subregion of male
mice significantly impaired spatial memory consolidation and
reconsolidation inMorris water maze when infused immediately,
but not 3 h, post-training (Artinian et al., 2008). These
findings provided the first demonstration that different phases
of non-aversive memory formation require proteasomal protein
degradation. Consistent with this conclusion, another study
utilizing an object rearrangement task in male mice assessed
whether proteasome activity is required for incorporating
partially modified information into a pre-existing memory,
and found that infusions of β-lac into area CA1 following
re-exposure to the context with switched objects disrupted
the initial consolidation of spatial information (Choi et al.,
2010). Similarly, object recognition memory consolidation
in male rats was disrupted by proteasome inhibition, as
the infusion of lac into CA1 immediately and 3 h, but
not 1.5 or 6 h, post-training significantly reduces the time
spent with a novel object during testing (Figueiredo et al.,
2015). However, these findings are inconsistent with other
work demonstrating that post-training infusion of β-lac into
CA1 did not impair consolidation or reconsolidation of
object recognition memory in male rats (Furini et al., 2015).
Interestingly, however, β-lac infusion reversed reconsolidation
impairments caused by anisomycin (Furini et al., 2015). The
discrepancies between this and the Figueiredo et al. (2015) study
could result from the administration of different proteasome
inhibitors at different doses. Nevertheless, the balance of studies
conducted so far suggests a potential role for hippocampal
proteasomal protein degradation in spatial and object memories
among males.
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Collectively, these studies suggest that protein degradation
mediated by the UPS is essential for different forms of learning
across numerous brain regions. Moreover, UPS activity and
hippocampal synaptic plasticity are regulated by protein kinases
that are also involved in E2’s effects on memory consolidation.
This overlap suggests compelling reasons to suspect that E2’s
well-documented effects on spatial and object recognition
memory consolidationmight be regulated in part by proteasomal
protein degradation.

EMERGING SEX DIFFERENCES IN UPS
ACTIVITY AND MEMORY

Several recent studies have documented notable sex differences
in the regulation of, and requirement for, protein degradation
following fear memory formation in the basolateral amygdala
(BLA) and CA1 region of the DH (Devulapalli et al., 2019,
2021; Martin et al., 2021). This work has also revealed
novel sex differences in the number and identity of
substrate proteins targeted for proteasomal degradation
across BLA and DH tissues (Farrell et al., 2021; Martin et al.,
2021).

The first study to examine putative sex differences in UPS
activity related to memory showed that CaMKII and PKA
differentially regulate proteasome activity in male and female
rats across subcellular compartments following contextual fear
conditioning (Devulapalli et al., 2019). Tissue in these studies was
fractionated to isolate synaptic, cytosolic, nuclear compartments.
Chymotrypsin activity, the predominant form of proteasome
activity, was decreased in synaptic fractions following CaMKII,
but not PKA, inhibition in the male DH, whereas chymotrypsin
activity was increased in synapses following CaMKII, but
not PKA, inhibition in the female DH. These data suggest
that proteasome activity is not only differentially regulated
CaMKII and PKA activity across subcellular compartments
but is also regulated in a sex-specific manner. Moreover, the
regulatory effects of CaMKII and PKA also differed across
brain regions. For example, nuclear chymotrypsin activity
was decreased following PKA, but not CaMKII, inhibition
in the male BLA, whereas nuclear chymotrypsin activity was
decreased following CaMKII, but not PKA, inhibition in the
female BLA (Devulapalli et al., 2019). These findings are
noteworthy because they not only provide support for the
idea that proteasome activity can be differentially regulated
across subcellular compartments (Upadhya et al., 2006) but
also highlight the differences that exist between males and
females in the regulation of proteasome function by signaling
kinases.

More recently, males and females were found to differ in
their engagement and requirement for UPS activity following
contextual fear conditioning. For example, trained male,
but not female, rats exhibited increased markers of UPS
activity, including upregulated proteasome activity and amount
of K48 polyubiquitinated proteins, in nuclear BLA extracts
relative to behaviorally naïve males (Devulapalli et al., 2021).
Interestingly, both naïve and trained females displayed elevated

UPS activity relative to naïve males, suggesting higher baseline
levels of UPS activity in nuclear BLA extracts among females
relative to males (Devulapalli et al., 2021). This finding could
have indicated that learning does not engage the UPS in
females, however, CRISPR-dCas9-mediated knockdown of UPS
activity in BLA was found to impair fear memory in both
sexes (Devulapalli et al., 2021), suggesting that males and
females differ in their engagement, but not requirement for,
UPS activity in the BLA for successful fear memory formation.
This conclusion was supported by additional data showing that
female rats had elevated levels of free ubiquitin and increased
expression of the ubiquitin coding gene Uba52 in BLA nuclear
extracts relative to males (Devulapalli et al., 2021), indicating
inherently higher numbers of ubiquitinated targets in females
relative to males. Furthermore, naïve female rats exhibited
increased 5-hydroxymethylation in the promoter region of the
ubiquitin coding gene Uba52, suggesting that this gene is more
actively transcribed in females than in males. Nevertheless,
CRISPR-dCas9-mediated silencing of the ubiquitin coding gene
Uba52 and the proteasome subunit Psmd14 in the BLA of
male and female rats reduced baseline protein degradation
levels and impaired contextual fear memory, whereas increasing
BLA baseline protein degradation facilitated fear memory
in both sexes (Devulapalli et al., 2021). Thus, despite sex
differences in baseline ubiquitination in the BLA, fear memory
formation in both males and females appears to depend on UPS
activity.

Surprisingly, the sex-specific activation of UPS activity by
contextual fear conditioning differs strikingly in the DH. In DH
nuclear extracts, learning-induced increases in UPS activity were
observed in female, but not male, rats (Martin et al., 2021).
Moreover, CRISPR-mediated knockdown of UPS activity in DH
CA1 blocked fear memory in females, but not males (Martin
et al., 2021). These data suggest that females require UPS activity
in the DH to form a contextual fear memory, whereas males do
not, which contrasts with the BLA in which both sexes require
UPS activity for memory formation. Thus, for fear learning, the
involvement of protein degradation appears to differ not only by
sex by also by brain region across the fear circuit.

Other recent work examined sex differences in UPS activity at
3, 15, and 22 months of age in response to trace fear conditioning
to a tone. Age-related memory impairments in trace fear retrieval
in male, but not female rats were associated with decreased
Rpt6 phosphorylation and increased K48 polyubiquitination in
synaptic fractions of BLA tissue (Dulka et al., 2021). Specifically,
22-month-old male rats exhibited impaired memory retrieval
24 h after training, whereas females of all ages displayed relatively
poor retrieval at all ages. Among male rats, retrieval-induced
Rpt6 phosphorylation was significantly reduced in 22-month-
olds relative to 3-month-olds in the BLA, but no changes were
observed in the DH or medial prefrontal cortex. Interestingly,
22-month-old females exhibited lower Rpt6 phosphorylation in
the cortex relative to 3-month-olds, but no retrieval-induced
changes in the other two brain regions. With respect to
K48 polyubiquitination, a similar regional pattern was observed,
with 22-month-old males having increased levels in the BLA,
whereas females had higher levels in the cortex. suggesting
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that the memory impairments observed in aged males may
arise in part by dysregulated proteasome signaling that results
in an accumulation of polyubiquitinated substrate proteins.
Together, these findings suggest that the role of UPS activity
in memory may differ not only by sex and brain region but by
age as well.

To date, most studies examining ubiquitin-proteasome
function in the context of learning and memory have examined
the factors that regulate proteasome activity itself, leaving
unanswered questions about which proteins are targeted for
proteasomal degradation following learning. Exciting new
work sheds light on the number and identity of protein
substrates targeted for proteasomal protein degradation
following contextual fear conditioning in both sexes. These
studies used an unbiased assay that focuses on K48-specific
ubiquitination because this particular lysine tag marks proteins
for degradation. This novel K48-specific tandem ubiquitin
binding entity (K48-TUBE) liquid chromatography-mass
spectrometry analysis captures K48-polyubiquitnated proteins
with high affinity, thereby protecting them from proteasomal
degradation and deubiquitination, permitting efficient
purification, and eliminating non-specific binding. This
method has revealed that the number of proteins in the BLA
in which K48 polyubiquitination was increased or decreased
in response to fear learning overlaps very little between males
and females (Farrell et al., 2021). Interestingly, fear learning
promoted protein degradation in both sexes, but more so in
females, which is in contrast to previous reports that nuclear
UPS activity in the BLA was not increased by fear conditioning
(Devulapalli et al., 2021); these discrepancies likely result from
the increased sensitivity and specificity of the K48-TUBE assay
to detect polyubiquitinated proteins relative to immunoblotting
(Farrell et al., 2021). In the DH, contextual fear conditioning
increased K48 polyubiquitin targeting of only three protein
targets in the CA1 of females, whereas learning did not increase
K48 polyubiquitination of any proteins in males (Martin et al.,
2021). This result is perhaps surprising but is consistent with the
finding that contextual fear conditioning did not increase UPS
activity in the CA1 of males (Martin et al., 2021). An ingenuity
pathway analysis of proteins in the female CA1 showed that
fear learning targets the ribosomal binding protein ribosomal
RNA processing 12 (RRP12) and chaperone protein heat shock
protein 40 (HSP40) for degradation, which has implications
for the regulation of intracellular signaling and DNA damage
response (Martin et al., 2021). Collectively, these initial findings
indicate little overlap between the sexes in how learning
influences the targeting of proteins for proteasomal protein
degradation in the BLA and CA1 and suggest that a variety of
different cellular processes are regulated in a sex-, brain region-,
and degradation-specific manner to support the formation of
fear memories.

These recent studies not only uncover key sex differences
in the regulation of, and requirement for, ubiquitin-proteasome
activity in different brain regions for the formation of fear
memories, but also reveal sex differences in the number
and identity of proteins targeted for proteasomal degradation
following learning. It is tempting to speculate, therefore, that sex

steroid hormones, such as E2, play a major role in these effects,
although this hypothesis has not yet been tested. In the next
sections, we discuss evidence that E2 can regulate UPS activity
and highlight commonalities between E2- andUPS-signaling that
support a potential role for UPS activity in the mnemonic effects
of E2.

ESTROGENIC REGULATION OF UPS
ACTIVITY

The data discussed thus far support the conclusion that theUPS is
not only involved in regulating synaptic plasticity and long-term
memory but also exerts its proteolytic effects to support memory
formation in a sex-specific manner. Although not yet examined
in the context of learning and memory, evidence also suggests
that the UPS can be directly stimulated by E2.

Data from non-neuronal cells indicate some reciprocal
interactions between E2 and UPS activity. ERα and ERβ are
rapidly degraded by the proteasome after they translocate to
the nucleus and bind to estrogen response elements on target
gene promoters to activate or repress gene transcription (Zhou
and Slingerland, 2014; Kondakova et al., 2020). In HeLa cells,
estrogen receptors are degraded by the proteasome in an E2-
dependent manner, as the application of proteasome inhibitors
MG132 or lactacystin increased ER levels by blocking E2-induced
ER degradation (Nawaz et al., 1999). Additionally, E3 ligases
appear to act as transcriptional co-activators for ERs, where they
are uniquely positioned to rapidly ubiquitinate E2-bound ERs
for degradation (Shang et al., 2000). Although these data were
collected from in vitro work assessing breast and endometrial
cancers, they lend support to the possibility that E2 might recruit
UPS activity through canonical signaling pathways to promote
hippocampal memory formation. This possibility is buoyed by
findings showing that E2 can stimulate the UPS by rapidly
activating cell-signaling mechanisms. For example, E2 causes
ERK-dependent phosphorylation of the cyclin-dependent kinase
inhibitor p27, which results in the increased ubiquitination and
proteasomal degradation of p27, and subsequent unchecked
proliferation of endometrial epithelial cells (Lecanda et al., 2007;
Huang et al., 2012).

Limited evidence also suggests that E2 signaling in the
hippocampus and cortex can directly stimulate UPS activity.
For instance, treatment of hippocampal slices with E2 increased
ubiquitination and proteasomal-mediated degradation of
GluA1-containing AMPA receptors in the CA3 region of the
male rat hippocampus (Briz et al., 2015). Other work has
shown that ERα in rat hippocampal CA1 undergoes enhanced
proteasomal degradation following long-term E2 deprivation,
an effect that was prevented when E2 was administered before,
but not after, E2 deprivation (Zhang et al., 2011). A separate
study in cultured primary cortical neurons found that Cav1.2, a
pore-forming subunit of L-type voltage gated calcium channel,
is ubiquitinated by the E3 ligase Mdm2 and degraded by the
proteasome in an ERα-dependent manner (Lai et al., 2019).
Moreover, this study demonstrated in an ovariectomized
Alzheimer’s mouse model that systemic administration of an
ERα agonist, but not ERβ agonist, reduced Cav1.2 protein in
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the hippocampus and cortex by increasing ubiquitination and
subsequent degradation of Cav1.2 by Mdm2 (Lai et al., 2019).
Thus, although relatively scant, there is some basis on which
to speculate that E2 and the ERs may regulate UPS activity in
cognitive brain regions such as the hippocampus and cortex and
that the resulting protein degradation may influence memory
formation.

OVERLAPPING MECHANISMS IN E2- AND
UPS-SIGNALING

E2 facilitates hippocampal spine density and memory
consolidation in both males and females by interacting with
receptors positioned at the plasma membrane to promote a
cascade of rapid cell signaling events that regulate protein
synthesis to support synaptic plasticity (Frick, 2015; Taxier et al.,
2020). Interestingly, the signaling events so far identified as
critical for regulating E2’s effects on structural plasticity and
memory overlap considerably with those that enable UPS to
regulate synaptic plasticity and memory.

For example, E2 promotes NMDAR signaling by increasing
excitatory postsynaptic potential amplitude and receptor
binding, and increases hippocampal sensitivity to NMDAR
inputs (Woolley et al., 1997; Foy et al., 1999). NMDAR activation
is required for many of E2’s effects, including enhanced
LTP (Foy et al., 1999), dendritic spine density (Woolley and
McEwen, 1994), and hippocampus-dependent memory (Lewis
et al., 2008; Vedder et al., 2013). Our lab has shown that
DH infusion of an NMDAR antagonist prevents E2 from
enhancing object recognition memory and activating DH cell
signaling in ovariectomized mice (Lewis et al., 2008), suggesting
that NMDA activity is necessary for E2 to facilitate memory
formation. Similarly, NMDAR activity is required for male rats
to increase the amount of polyubiquitinated proteins in the
amygdala following auditory fear retrieval (Jarome et al., 2011).
Additionally, NMDAR activity is required for proteasomes
to be redistributed to hippocampal dendritic spines (Bingol
and Schuman, 2006; Ferreira et al., 2021) and for targeting
polyubiquitination of synaptic scaffold proteins (Colledge et al.,
2003; Guo and Wang, 2007).

In addition to having similar requirements for NMDAR
activity, E2 and the UPS both increase the activity of CaMKII and
PKA to exert their beneficial effects on memory. For example,
systemic administration of E2 rapidly increases phosphorylation
of CaMKII in ovariectomized mice, a molecular effect that
depends on the activation of estrogen receptors (Sawai et al.,
2002). Similarly, calcium influx through NMDARs increases
CaMKII phosphorylation, which then phosphorylates Rpt6
(Djakovic et al., 2009, 2012), thereby increasing proteasomal
activity and proteasome redistribution to synapses (Bingol
et al., 2010). CaMKII-mediated phosphorylation of Rpt6 drives
hippocampal dendritic spine outgrowth (Hamilton et al., 2012)
and fear memory formation in male rats (Jarome et al.,
2013). Furthermore, work from our lab demonstrates that E2
requires PKA activity to enhance object recognition memory
consolidation in ovariectomized female mice (Lewis et al., 2008).
Other findings show that E2 requires PKA activity to potentiate

synapses in hippocampal slices from female, but not male,
rats (Jain et al., 2019). A sex-specific role for PKA activity
also appears to be critical for regulating proteasome activity
across subcellular compartments of DH and BLA neurons
following contextual fear conditioning (Devulapalli et al., 2019).
Thus, there are several overlapping mechanisms through which
E2 and the UPS regulate synaptic plasticity and long-term
memory which provide support for the possibility that E2 might
require aspects of UPS signaling to exert its neuromodulatory
effects.

Although the similarities in the requirements for NMDAR,
CaMKII, and PKA activity for both E2 and the UPS provide
compelling reasons to suspect UPS involvement in E2’s ability
to facilitate memory consolidation, additional support for this
hypothesis comes from the notion that the successful formation
long-term memories requires a delicate balance between protein
synthesis and protein degradation (Park and Kaang, 2019).
Evidence of the involvement of both processes can be seen
at the synaptic level, where polyribosomes are transported to
dendritic spines to promote local protein synthesis (Bramham
and Wells, 2007) at the same time that proteasomes are being
translocated to dendrites to promote local protein degradation
of synaptic scaffolding molecules (Bingol and Schuman, 2006;
Shen et al., 2007; Bingol et al., 2010). Similarly, at the behavioral
level, expression levels of mTOR and its downstream effector
p70S6 kinase were significantly increased at the same time that
levels of K48 polyubiquitination were increased in the amygdala
of male rats 1 h following contextual fear conditioning (Jarome
et al., 2011). E2 acts at membrane-localized ERs in the DH to
activate mTORC1 signaling, which is necessary for E2 to increase
CA1 dendritic spine density in the DH and enhance the spatial
and object recognition memory consolidation in ovariectomized
mice (Fortress et al., 2013; Tuscher et al., 2016). Therefore,
one might suspect that activity-dependent increases in protein
synthesis would precipitate similar increases in the opposite, but
equally important process, of protein degradation.

HYPOTHESIZED MECHANISM OF
ESTROGENIC REGULATION OF UPS

Based on the literature reviewed above, we hypothesize that
E2 may promote CA1 spine density and hippocampal memory
formation inmales and females by increasing UPS activity, which
would cause the degradation of structural proteins localized
in the PSD to allow for synaptic remodeling in response to a
learning event. In our model of E2-induced activation of UPS
signaling (Figure 3), we propose that E2 stimulates UPS activity
by binding to membrane-associated ERα and ERβ which then
increase NMDAR activity. E2-induced activation of NMDARs
could trigger an increase in UPS activity by: (1) upregulating the
amount of K48-linked polyubiquitinated proteins in the synapse
through the actions of E1-E3 ubiquitin ligases; and (2) increasing
the assembly and localization of 26S proteasomes to synapses by
CaMKII- and PKA-dependent phosphorylation of the Rpt6 26S
proteasome subunit. However, it is important to note that the
nature of the interaction between E2 and hippocampal NMDAR
activation in males and females remains unclear. Although
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we speculate that E2 activates NMDARs through interaction
with membrane-associated ERs, there are alternative putative
mechanisms through which NMDARs may be activated by E2 to
initiate UPS signaling. For example, E2 may indirectly increase
NMDAR activity by regulating the activity of AMPAR-mediated
currents (Srivastava et al., 2008; Smejkalova and Woolley, 2010;
Jain et al., 2019). This E2-induced activation of AMPARs could
theoretically regulate NMDAR activity and, thereby, calcium
influx and downstream activation CaMKII and PKA, to facilitate
both protein synthesis and protein degradation in ways that
increase spine density.

We hypothesize that E2 promotes local protein degradation
in a rapid manner that coincides with the need for local
protein synthesis. We have previously documented E2-induced
and mTOR-dependent increases in CA1 spine density in
ovariectomized mice 30 min after DH infusion (Tuscher et al.,
2016), and other reports show that DH infusion of E2 or the
GPER agonist G-1 increases CA1 spine density in ovariectomized
mice within 40 min (Phan et al., 2015; Kim et al., 2019). Because
UPS activity relies onmany of the same signaling pathways as E2-
induced memory enhancement and spinogenesis, it is plausible
that E2 could increase UPS activity as soon as 30 min following
DH infusion. Nevertheless, such rapid action would not exclude
the possibility of more long-term activation via genomic or
epigenomic actions of ERα and ERβ.

We speculate an involvement of ERα and ERβ because work
from our lab and others indicates that ERα and ERβ agonism
facilitates the consolidation of object recognition and spatial
memories in ovariectomized rats and mice (Jacome et al., 2010;
Kim and Frick, 2017; Hanson et al., 2018; Fleischer et al.,
2021). Moreover, ERα and ERβ in the DH interact directly with
mGluR1a to trigger the ERK signaling that is necessary for object
placement and object recognition memory consolidation in
ovariectomized mice (Boulware et al., 2013), which suggests that
these receptors both influence memory at the plasma membrane
to promote hippocampalmemory formation. Although both ERα

and ERβ play discrete roles in regulating synaptic potentiation
in male and female rats (Kramár et al., 2009; Smejkalova and
Woolley, 2010; Oberlander and Woolley, 2016), the interaction
between E2 and NMDARs may be particularly mediated by ERα,
whose agonism has been shown to increase the expression of
NMDARs in the DH of ovariectomized rats (Morissette et al.,
2008). ERα agonism has also been shown to increase NMDAR-
mediated EPSCs and lower the threshold for the induction of
NMDA-dependent LTP in the dentate gyrus of male rats (Tanaka
and Sokabe, 2013). Thus, ERα may play a larger role in activating
UPS signaling than ERβ.

Although we have proposed that UPS-mediated protein
degradation is required for the E2-induced facilitation of
CA1 spine density and memory consolidation in both sexes,
we suspect that the signaling mechanisms that regulate this
activity may differ considerably between males and females.
For example, although E2 can increase synaptic potentiation
in both sexes, males and females utilize different ERs at
pre- and post-synaptic sites to facilitate synaptic potentiation
(Oberlander and Woolley, 2016). In males, presynaptic increase
in glutamate release is mediated by ERα and postsynaptic

increase in glutamate sensitivity is mediated by ERβ. However, in
females, the presynaptic increase in glutamate release is mediated
by ERβ and the postsynaptic increase in sensitivity is mediated by
GPER (Oberlander and Woolley, 2016). Based on these findings,
we speculate that the effects of E2 on UPS activity in males and
females may be regulated in part by different ERs. Furthermore,
sex differences may also exist in the signaling mechanisms
that occur downstream of our proposed model of E2-induced
NMDAR activation. We speculate that E2 increases CaMKII
and PKA activity in a manner that is dependent on ER-driven
activation of NMDARs. There is sufficient evidence to suggest
that males and females might differ in their requirements for
CaMKII and PKA activity to initiate UPS activity following E2
exposure. For example, PKA is required for acute E2-induced
initiation of synaptic potentiation in females, but not males
(Jain et al., 2019). These findings potentially suggest that PKA
activity may be required for E2 to increase UPS activity in
females, but not males, at hippocampal synapses. In males, E2-
mediated UPS activity could be more driven by CaMKII or
K48 polyubiquitination.

In sum, our hypothesis posits multiple possible mechanisms
through which E2 might activate the UPS system to facilitate
protein degradation, synaptic remodeling, synaptic plasticity,
and memory consolidation. Although based largely on
circumstantial evidence from the E2 and UPS literatures,
our model provides a framework to empirically test the roles of
several UPS mechanisms in the effects of E2 on memory in both
sexes across multiple brain regions and subcellular sites.

DISCUSSION

This review has summarized evidence suggesting that protein
degradation is an important regulator of synaptic plasticity
and memory (Kaang and Choi, 2012; Hegde, 2017), yet the
role that UPS-mediated protein degradation plays in regulating
E2’s modulatory effects on memory formation in either sex
remains unexplored. E2 may facilitate hippocampal structural
plasticity andmemory consolidation in part by regulating protein
degradation mediated by the UPS. This hypothesis is supported
by evidence that E2 can directly stimulate UPS activity in
hippocampal slices (Briz et al., 2015), cultured neurons (Lai
et al., 2019), and in a rat model of long-term E2 deprivation
(Zhang et al., 2011). This notion is further strengthened by
data suggesting that the UPS is regulated in part by sex
steroid hormones, such as E2, as males and females appear
to have different baseline regulation of, and requirement for,
proteasome activity following fear learning, and target different
proteins for proteasomal degradation after learning (Devulapalli
et al., 2019, 2021; Farrell et al., 2021; Martin et al., 2021).
As such, there is sufficiently plausible evidence to support
future studies exploring a role for the UPS in estrogenic
memory modulation.

When speculating why E2 might stimulate UPS-mediated
protein degradation to regulate hippocampal memory formation,
we have proposed that E2 triggers degradation of proteins in
the synapse to promote structural remodeling of CA1 dendritic
spines. However, E2 may also stimulate UPS activity to
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FIGURE 3 | Hypothesized mechanisms through which E2 may activate the UPS to regulate CA1 dendritic spine density and hippocampal memory. E2 acts via
membrane-associated estrogen receptors including ERα and ERβ to promote postsynaptic sensitivity to glutamate (red circle on NMDAR) and opening of NMDARs.
E2-induced NMDAR activation promotes an increase in the amount of substrate proteins that acquire a K48-polyubiquitin tag through the actions of E1-E3 ubiquitin
ligases (left). NMDAR activation also simultaneously permits an influx of intracellular Ca2+ which results in an E2-induced increase in CaMKII and PKA activity (right).
CaMKII and PKA then phosphorylate the Rpt6 subunit of the 26S proteasome complex, which mobilizes proteasomes to dendritic spine shafts to initiate the
breakdown of K48-tagged substrate proteins. Illustration created using BioRender.com.

compensate for the enhanced synaptic potentiation caused by
E2 administration. Interestingly, some evidence suggests that E2
activates the UPS to regulate the expression of proteins involved
in synaptic transmission. For example, GluA1-containing AMPA
receptors are ubiquitinated and degraded in the CA3 region
of the male rat hippocampus following E2 administration (Briz
et al., 2015). Similarly, the pore-forming subunit of L-type voltage

gated calcium channel, Cav1.2, is ubiquitinated and degraded in
cultured primary cortical neurons in an ERα-dependent manner
(Lai et al., 2019). These findings might suggest that E2 can also
regulate UPS activity in a manner that promotes homeostasis
following E2-induced excitatory synaptic potentiation. It is of
course possible that E2 can promote UPS activity in a manner
to support both structural remodeling of synapses and to permit
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cellular homeostasis. However, the time course of E2-UPS
interactions for the latter would likely occur at a time point later
than 30 min, as we have proposed for structural remodeling.

Future work should examine the extent to which E2 requires
UPS activity in males and females to support changes in
hippocampal plasticity and memory. To our knowledge, no
studies to date have examined whether sex differences exist in
the requirement for proteasome activity in males and females
following non-aversive forms of learning. As such, it remains
unclear whether non-aversive tasks, such as the object placement
and object recognition paradigms, activate the same cell signaling
mechanisms and proteasome subunits to upregulate protein
degradation in males and females that have been documented
in aversive tasks. Work in this direction could potentially reveal
critical baseline and learning-induced sex differences that may
provide an impetus to examine the contributions of sex steroid
hormones.

Moreover, we speculate that the cellular mechanisms that
signal a need for protein degradation might differ between
males and females, as previous work from our lab and others
demonstrates that the molecular mechanisms through which E2
mediates DH plasticity andmemory consolidation differ between
the sexes (Oberlander and Woolley, 2016; Koss et al., 2018; Jain
et al., 2019; Koss and Frick, 2019). Much less is known about the
potential time course through which E2 requires UPS activity,
although data suggest that the need for protein degradation
during consolidation overlaps with that for protein synthesis
(Park and Kaang, 2019), potentially indicating that E2 stimulates
UPS activity rapidly following DH infusion, as we previously
documented for local protein synthesis (Fortress et al., 2013;
Tuscher et al., 2016). Finally, it remains unclear which proteins
could be targeted within the DH following E2 treatment, and
whether these protein targets differ between the sexes. Future
studies in this realm would provide more direct insights into
how E2 modifies the existing molecular framework to support
hippocampal plasticity and memory.

In conclusion, this review has provided an overview of the
signaling mechanisms so far identified as critical for E2 and
UPS function, with particular emphasis on the ways in which

these mechanisms overlap to support structural integrity and
protein composition of hippocampal synapses. If UPS activity
is integral to E2’s effects on memory, then this could lead to
exciting new avenues of basic research into hormonal regulation
of cognition that could have important clinical implications for
treating psychiatric and neurodegenerative diseases in which sex
or E2 play a role.
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Conversations about gender and spatial skills frequently dissolve into a hackneyed
debate over nature and nurture. This is particularly true for conversations concerning
three-dimensional (3D) mental rotations skill, which shows the largest gender difference
of all aspects of cognition, with men—on average—outperforming women. To advance
this empirical area of inquiry, biopsychosocial influences on spatial skills should be
considered, and a unique opportunity do to that is provided by combined oral
contraceptives (OCs). OCs with relatively low estradiol doses and with highly androgenic
progestins have been positively related to spatial skills. Gender self-concepts, including
masculine and feminine self-perceptions, have also been positively related to spatial
skills. It is wholly unknown, however, whether the exogenous sex hormones contained
in OCs moderate the link between self-perceived masculinity and 3D mental rotations.
This study filled that knowledge gap by utilizing a sample of 141 naturally cycling (NC)
women and 229 OC users who completed a computerized survey and cognitive tests.
A series of moderation analyses examined whether the link between masculinity and
3D mental rotations depended on pill use or on the estrogenic, progestational, or
androgenic activity in OCs, which were operationalized using a novel coding scheme.
Results showed that the positive masculinity-3D mental rotations link was only present
for NC women, presumably because it was altered by the exogenous hormones in OCs.
Indeed, the link was accentuated in users of OCs with relatively low estrogenic and high
progestational activity. Future research on menstrual cycle and pill phase is needed, but
these findings importantly delineate ways in which biological and psychosocial factors
combine to explain variation in spatial skills among women. They also suggest that
focus should be placed on the under-investigated progestational activity of OCs, which
is facilitated by the novel quantification of OC action used in this study. Thus, this
research increases understanding of the neurocognitive and behavioral correlates of
ovarian hormones and has implications for the betterment of women’s health.

Keywords: androgenic activity, estrogenic activity, progestational activity, mental rotation (MR), masculinity,
femininity, hormonal contraceptive, ovarian hormones
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INTRODUCTION

Interest in the biopsychosocial correlates of gender differences in
spatial skills has been persistent across time and pervasive across
scientists, parents, educators, and policy makers (see Newcombe,
2020). There is particular interest in three-dimensional (3D)
mental rotations skill in which men outperform women on
average, despite substantial variability within each gender (Voyer,
2011; Halpern, 2013; Beltz et al., 2020). Sex hormones, such as
androgens and estradiol, have been consistently shown to be
biological contributors to this gender difference. For instance,
prenatal androgens facilitate spatial skills throughout life, and
the gender difference in mental rotations skill is reduced during
low estradiol phases of the menstrual cycle (Berenbaum et al.,
2012; Peragine et al., 2020). There are also several psychosocial
contributors to gender differences in spatial skills, including
parent socialization (e.g., use of spatial language; Pruden and
Levine, 2017) and a person’s own gender self-concept, or how
they think about and use gender labels like masculine and
feminine (Nash, 1979; Reilly and Neumann, 2013). Despite
emerging evidence and hypotheses concerning the gendered and
interactive nature of biological and psychosocial influences on
cognition (e.g., Hausmann et al., 2009; Berenbaum et al., 2018),
research that concurrently examines these influences with respect
to spatial skills is limited. Combined oral contraceptive (OC)
users provide a unique opportunity to fill this knowledge gap
because their pills contain exogenous estradiol and progestins
that vary in androgenicity, yet they do not have different gender
self-concepts (e.g., self-perceived femininity and masculinity)
from naturally cycling (NC) women (Nielson and Beltz, 2021).
Thus, the goal of this study was to determine whether ovarian
hormonal milieu (marked by NC vs. OC status and the hormone
activity of OCs) moderates links between women’s self-perceived
masculinity and mental rotations skill.

There is strong empirical support for a positive association
between masculinity and spatial skills. Indeed, the sex-role
mediation hypothesis attempts to explain some mean-level gender
differences in cognition through this purported mechanism
(Nash, 1979), such that masculinity is positively related to spatial
skills, whereas femininity is positively related to verbal skills.
Empirical evidence from meta-analyses and well-powered studies
(N > 300) has borne out this general pattern of results for
masculinity and spatial skills, but findings are less consistent
for femininity and verbal skills (Signorella and Jamison, 1986;
Reilly and Neumann, 2013; Reilly et al., 2016; Kelly and
Beltz, under review). The most frequently assessed spatial skill
in the extant literature is 3D mental rotations skill, which
shows the largest effects, and masculinity is often assessed
by stereotypical gendered personality traits (e.g., “assertive”
or “independent”; Bem, 1974), but also by self-perceptions of
masculinity (e.g., “How masculine is your personality?”; Storms,
1979).

Although there is empirical support for an association between
masculinity and spatial skills, the extant literature is unclear
concerning potential gender differences in this link. This is
somewhat surprising because the link between masculinity and
spatial skills is an explanatory mechanism for cognitive gender

differences, according to the sex-role mediation hypothesis.
For instance, some studies report stronger relations between
masculinity and spatial skills for men than for women (Reilly
and Neumann, 2013), and other studies report that the relation is
stronger for women than for men (Signorella and Jamison, 1986;
Kelly and Beltz, under review).

This mixed evidence for a gender difference is not entirely
surprising, though, because masculinity and spatial skills are
complex, multi-determined constructs (Ruble et al., 2006;
Verdine et al., 2017). This is apparent in the conceptualization
of the sex-role mediation hypothesis and in work examining
it. For instance, Nash (1979) suggested that cultural norms
surrounding gender impact masculinity, and this predisposes
participation in gender stereotypical activities that hone spatial
skillsets. Consistent with that notion, recent work shows that
gendered experiences and interests (operationalized as the extent
to which college majors have a science, technology, engineering,
and mathematics, or STEM, focus) partially explain the relation
between masculinity and spatial skills, but only for women
and only for particular skills (e.g., 3D mental rotations; Kelly
and Beltz, under review). Thus, there is a pressing need for
research that explicates the relation between masculinity and
spatial skills—not just by identifying which social factors underlie
it, but also by identifying which biological factors might qualify it.
Indeed, the multidimensionality of gender (Ruble et al., 2006) and
a compelling literature on sex hormone contributions to spatial
skills suggest biology could play a significant role (reviewed
in Beltz et al., 2020).

A unique opportunity to study biological, particularly
neuroendocrinological, associations with masculinity and spatial
skills is afforded by women who use OCs, which are a widely
used natural experiment for ovarian hormone manipulations
(see Beltz and Moser, 2020; Hampson, 2020). All OCs contain
a progestin (synthetic progesterone), and combined OCs also
contain a synthetic estrogen (typically ethinyl estradiol; Beltz
and Moser, 2020; Hampson, 2020). Progestins in OCs vary (e.g.,
there are at least 12 types), and they have hormonal activity
other than progestational activity, with degrees of androgenic
or anti-androgenic activity most frequently studied (Beltz and
Moser, 2020; Hampson, 2020). Most OC regimens attempt to
mimic the average menstrual cycle, with about 21 active pills
(containing a progestin and perhaps ethinyl estradiol) followed
by about seven placebo pills, instigating menses. Monophasic
OCs have consistent progestin and ethinyl estradiol doses in
all active pills, whereas biphasic and triphasic OCs typically
have consistent ethinyl estradiol doses but progestin doses that
increase once or twice, respectively, across active pill days.
Through neuroendocrine feedback mechanisms, OCs effectively
halt ovulation, both preventing pregnancies and easing menstrual
cycle-induced symptoms (e.g., dysmenorrhea). Thus, OCs also
reduce endogenous levels of estradiol and progesterone in
the body, while increasing levels of the exogenous hormones
contained in the pills (Hampson, 2020). Though enlightening,
comparisons between endogenous and exogenous hormone
activity in OC users vs. NC women are not straight-forward
because assays for the exogenous hormones contained in OCs are
not widely available.
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Nonetheless, comparisons between OC users and NC women
are effective at marking whether general ovarian hormonal
milieus are related to behavior and neurocognition (consistent
with the approach of others; e.g., Peragine et al., 2020). These
comparisons also indicate whether there may be differences
between women who do and do not use OCs, as self-selection
into OC use has been posited as a potential confound of research
using NC-OC comparisons to make inferences about ovarian
hormone influences (Oinonen et al., 2008). The limited research
comparing NC women and OC users (that included women
from this sample) indicates that groups do not differ in Big
Five personality traits (i.e., neuroticism, extraversion, openness,
agreeableness, and conscientiousness; Beltz et al., 2019), nor in
gendered personality qualities most closely tied to the sex-role
mediation hypothesis, such as instrumentality and expressivity as
well as self-perceptions of masculinity and femininity (Nielson
and Beltz, 2021). Moreover, these studies showed that the
androgenicity of progestins, which vary across different types of
OCs, did not impact results (Beltz et al., 2019; Nielson and Beltz,
2021). Progestin androgenicity is the extent to which progestins
have androgenic properties and actions that are primarily due
to their structural derivatives. Thus, studies of ovarian hormone
links to gender self-concept suggest OC users of various pill
formations do not differ from NC women.

Similarly for spatial skills, many studies do not report
differences between OC users and NC women when OC users
are considered as a single, heterogeneous group (Rosenberg
and Park, 2002; Islam et al., 2008; Mordecai et al., 2008;
Wharton et al., 2008; Puts et al., 2010; Griksiene and Ruksenas,
2011; Beltz et al., 2015). One explanation for the lack of
differences is that research including NC women is challenged
by menstrual cycle phase. Although endogenous hormone levels
fluctuate throughout the cycle (i.e., with low estradiol and
progesterone during menses, heightened estradiol during the
follicular phase, followed by ovulation and slightly decreasing
estradiol levels and concomitant peak in progesterone during
the luteal phase), extant research examining how those phases
are related to spatial skills is inconsistent, likely owing to
poor research methodology. Some studies report improved
spatial skills, especially mental rotations performance, during
the follicular phase (e.g., Hausmann et al., 2000; McCormick
and Teillon, 2001; Maki et al., 2002), but others do not (e.g.,
Mordecai et al., 2008; Griksiene and Ruksenas, 2011). These
studies have small samples (most N < 40) and largely use
unreliable count methods (e.g., estimating days since menses) to
determine menstrual cycle phase (see Hampson, 2020; Gloe et al.,
under review). Another explanation for the lack of differences
when OC users are considered as a single, heterogeneous group is
that the variable hormone activities of OCs “cancel out” (e.g., the
effects of androgenic and anti-androgenic progestins; Pletzer and
Kerschbaum, 2014).

There is, however, indication that OC users and NC women
differ in spatial skills, particularly 3D mental rotations skill,
when OC users are categorized into smaller, homogenous
groups informed by their pharmacokinetics (described in
Beltz et al., 2015). These groups have primarily been formed
based upon progestin androgenicity, as androgens have been

shown to facilitate spatial skills in other natural experiments
(reviewed in Beltz et al., 2020). Increasingly precise progestin-
linked groups have led to increasingly precise inferences
about OC influences on spatial skills. For instance, groups
based solely on progestin generation, or the timing of a
specific progestin’s introduction to the United States or
European markets (Petitti, 2003), have shown mixed results:
Studies reported no differences between NC women and
androgenic generation or antiandrogenic generation OC users
(Griksiene and Ruksenas, 2011) as well as increased spatial
skills for androgenic early generation OC users compared
to antiandrogenic newer generation users (Gurvich et al.,
2020). Including information about progestin dose along
with generation led to consistent inferences, though, with
studies reporting that NC women outperformed monophasic
antiandrogenic new generation OC users in mental rotations
(Wharton et al., 2008; Griksiene et al., 2018), potentially
suggesting that endogenous androgens in NC women contribute
to performance. Finally, groups based on even more complete
information about OC pharmacokinetics, including the exact
type of progestin and estrogen as well as phase [according
to Food and Drug Administration (FDA) criteria; USDHHS,
2018], revealed even more specific neuroendocrine effects:
Women using monophasic pills containing ethinyl estradiol
and the moderately androgenic progestin norethindrone acetate
outperformed NC women and women using triphasic pills
containing ethinyl estradiol and the mildly androgenic progestin
norgestimate on a 3D mental rotations test (Beltz et al., 2015).
This study using FDA criteria was also unique among OC studies
in exploring exogenous hormone doses in OCs, finding that
ethinyl estradiol dose was inversely related to mental rotations
performance, but that progestin dose was not related to cognition
(Beltz et al., 2015).

Thus, findings across OC studies converge in suggesting
that there is a significant link between progestin androgenicity
and spatial skills, especially mental rotations skill; ethinyl
estradiol dose may also be important. These findings, however,
overwhelmingly come from studies focused solely on the
androgenicity of progestins, leaving unanswered questions
about the roles of hormones that largely prevent ovulation,
that is, the degree of estrogenic and progestational activity
in different OCs. This may be an unfortunate byproduct
of the methods researchers have used to account for OC
heterogeneity, which rely almost exclusively on homogenous
groups based on progestin generation or type. This approach
certainly has benefits, but even these groups are not consistently
defined across studies. Thus, future research that addresses
heterogeneity in OCs without dropping information about degree
of hormone activity, especially estrogenic and progestational
activity, is sorely needed.

Despite a biological literature linking ovarian hormones (e.g.,
progestin androgenicity) to spatial skills and a psychosocial
literature linking masculinity to spatial skills, the two perspectives
have yet to be combined. Thus, the goal of this study was to
take a biopsychosocial approach to the study of spatial skills,
particularly 3D mental rotations skill, in NC women and OC
users. Specifically, the link between self-perceived masculinity
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and mental rotations skill was examined in all women, and
then potential moderation of the link by hormonal milieu was
investigated to determine if its direction or magnitude differed
for NC women and OC users. Menstrual cycle phase was not
considered due to its unreliable determination in cross-sectional
data (see Hampson, 2020; Gloe et al., under review), but the
pharmacokinetics of OCs (i.e., estrogenic, progestational, and
androgenic activity, according to levels reported in Dickey,
2020) were examined as moderators of the masculinity-mental
rotations link within OC users, leveraging a novel four-point
coding scheme. These activities “are dependent on the biological
activities and the doses of individual estrogen and progestin
components and by potentiating and antagonistic effects of
one steroid component upon the other” (Dickey, 2020, p. 25).
Based on past research, it was expected that the link would
differ for NC women and OC users due to the progestin
androgenicity of pills.

MATERIALS AND METHODS

Previous reports use some data from this sample (e.g., to
show that NC women and OC users do not differ in
personality or gender self-concept; Beltz et al., 2019; Nielson
and Beltz, 2021), but study variables have not been investigated
in concert, and the coding scheme for examining unique
effects of estrogenic, progestational, and androgenic activity
in OCs is novel. All participants provided informed consent
before contributing to this research, which was conducted
under the auspices of the University of Michigan Institutional
Review Board.

Participants
Participants were 370 women aged 18–28 years
(Mage = 20.54 years; SDage = 2.28) recruited from a United States
university community via an established subject pool, online
announcements, and posted flyers. Most identified as White
(74%) and non-Hispanic (93%), with some identifying as Asian
(16%), Black/African American (8%), or multiracial (2%). They
were selected for inclusion in the current analyses from the
full sample of 473 women and 221 men. Men were excluded
from analyses because the primary research question on the role
of ovarian hormone milieu in the link between behavior and
cognition only concerned women. Women were excluded from
analyses for the following reasons: having a reproductive health
or medical condition that could impact ovarian hormone milieu,
including past pregnancy, irregular menstrual cycles, the use of
hormone-containing medications other than OCs (n = 64), being
inattentive during data collection, including sleeping (n = 14) or
failing to follow directions on the mental rotations test (n = 19),
or being statistical outliers (i.e., three standard deviations from
the sample mean) on age (n = 6); outliers bias error terms and
age is related to masculinity and especially to femininity (Barrett
and White, 2002; Jones et al., 2011).

Women in the analytic sample were grouped according to
whether they were naturally cycling (n = 141) or using OCs
(n = 229). OC users had been using the same pill for at

least 3 months, and NC women had not used any hormonal
contraceptive for at least 3 months and had regular menstrual
cycles. OC users and NC women did not differ significantly in age,
t(368) = −1.36, p = 0.174, or ethnicity, χ2(1) = 0.25, p = 0.615,
but there were disproportionately more Asian identified women
in the NC (26%) vs. OC group (11%), χ2(4) = 21.02, p< 0.001.

The OCs used by women in the sample represented a
wide range of formulations. All included ethinyl estradiol, but
progestins ranged from the highly androgenic levonorgestrel
(n = 15) and norethindrone acetate (n = 71) to the mildly
androgenic norgestimate (n = 71) to the antiandrogenic
drospirenone (n = 45), among a variety of others (n = 18).
Importantly, however, OCs were not merely grouped according
to progestin types, but rather, they were coded according to their
estrogenic, progestational, and androgenic activity, which are
based on hormone types and doses, particularly their biological
(e.g., receptor) actions (Dickey, 2020). Each hormone was
considered to have low, low-intermediate, intermediate-high, or
high activity in each OC formulation based on assays conducted
in rodent and human tissues; estrogenic activity was determined
by mouse uterine assay, progestational activity was determined
by human endometrial response, and androgenic activity was
determined by rat prostate assay (detailed in Dickey, 2020). These
levels were converted into a four-point Likert scale to facilitate
their inclusion in quantitative analyses (1 = Low, 2 = Low-
intermediate; 3 = Intermediate-high, and 4 = High). For example,
the commonly used OC Loestrin FE 1/20 (ethinyl estradiol,
norethindrone acetate) had activity codes of estrogenic = 2,
progestational = 3, and androgenic = 4, the triphasic Ortho
Tri-Cyclen (ethinyl estradiol, norgestimate) had activity codes
of estrogenic = 4, progestational = 1, and androgenic = 2,
and Yaz (ethinyl estradiol, drospirenone) had activity codes of
estrogenic = 2, progestational = 4, and androgenic = 1.

Nine OC users had pill types that could not be coded
because their specific formulations were not contained in the
coding system (Dickey, 2020). For the remaining 220 OC
users (which makes this study among the largest—if not the
largest—in terms of OC users with defined pharmacokinetic
pill properties; see Warren et al., 2014), average estrogenic
activity was 2.67 (SD = 1.03), progestational activity was 2.66
(SD = 1.29), and androgenic activity was 2.50 (SD = 1.18),
and all activity levels ranged from 1 to 4, suggesting notable
variability. Moreover, the activity levels showed both overlap and
distinction, with estrogenic and progestational activity correlated
at r(218) = −0.64, p < 0.001, estrogenic and androgenic activity
at r(218) = −0.36, p < 0.001, and progestational and androgenic
activity at r(218) = 0.11, p = 0.114. Thus, estrogenic and
progestational activity were most highly related in this sample,
but their relation only resulted in 41% overlap between the codes.

Procedures
Participants came to a university research laboratory for an hour-
long test session. During the session, they provided informed
consent, described their reproductive history in a brief interview,
recorded information about their OC formulation from the pill
packet they brought with them (if applicable), and completed
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a monitored online survey. They were compensated with either
course credit or $15.

Measures
Participants responded to the questionnaire and completed the
two cognitive tests described below as part of this study’s survey.
All responses were provided on laboratory computers.

Masculinity
Self-perceived masculinity was assessed with the six-item Sex
Role Identity Scale (Storms, 1979). This measure assesses gender
self-concept, specifically gender self-labels, as items concern
the extent to which individuals feel masculine or feminine in
general, in their behavior, and in their dress. Specifically, three
items correspond with masculinity (e.g., “How masculine is
your personality?”), and three items correspond with femininity
(e.g., “How feminine do you act, appear, and come across to
others?”). Participants were asked to respond to each item on
a five-point scale (1 = Not at all to 5 = Extremely). Following
recent studies and current conceptualizations of gender as a
continuum (Beltz, 2018; Gülgöz et al., 2019; Beltz et al., 2021),
the three feminine items were reverse coded and averaged with
the three masculine items, so that high scores reflect masculinity
and low scores reflect femininity. Cronbach’s α for the scale was
excellent at 0.89.

3D Mental Rotations Skill
3D mental rotations skill was assessed with the Vandenberg
and Kuse test (Vandenberg and Kuse, 1978). Each of 20 items
consists of a 3D object composed of small blocks portrayed in 2D
space and four response options that were similarly composed.
Two of the response options were the same shape as the target
but rotated in 3D space, which participants were instructed to
identify. Participants had 10 min to complete the test. Following
the “single scoring” procedure, participants received a single
point for each correct response; thus, scores could range from 0
to 40.

General Cognition
General cognition was assessed with the advanced vocabulary
test (Ekstrom et al., 1976), which is significantly correlated with
overall intelligence (Sattler and Ryan, 2009). General cognition is
important to consider in studies of spatial skills to isolate those
skills from other aspects of cognition; this has been done in some
previous neuroendocrine research (e.g., Beltz et al., 2015) and in
research on the sex-role mediation hypothesis (Kelly and Beltz,
under review). Each of 36 items consists of a target word or
phrase and five response options. Participants were instructed
to select which option is the best synonym of the target word,
and they had 4 min to complete each half of the test. They
received one point for each correct response, and were deducted
a quarter point for each incorrect response; thus, scores could
range from−9 to 36.

Analysis Plan
Analyses were conducted in three parts. First, a regression
was used to examine the relation between self-perceived

masculinity and 3D mental rotations skill for all women.
Second, a moderation analysis was used to examine whether
the masculinity-mental rotations relation differed between NC
women (coded 0) and OC users (coded 1). Third, three separate
moderation analyses in only OC users were used to examine
whether the masculinity-mental rotations relation varied by
pill estrogenic, progestational, or androgenic activity. Age and
general cognition were covariates in all analyses, and all predictor
variables were centered prior to analyses. Moderations were
conducted using the PROCESS macro in SPSS (see Hayes, 2013),
with follow-up simple slopes analyses conducted separately for
each group (i.e., NC women vs. OC users) or for hormone activity
and masculinity scores at the mean plus or minus one standard
deviation. Type I error was set at 0.05 for all analyses.

RESULTS

Prior to testing study hypotheses on the link between masculinity
and spatial skills and its potential moderation by hormonal
milieu, NC and OC group descriptives, differences, and
correlations among study variables were examined. Descriptives
are shown on the left of Table 1. Independent t-tests revealed
no significant differences for general cognition, t(368) = 0.81,
p = 0.421, masculinity, t(368) = 0.21, p = 0.837, or 3D mental
rotations, t(368) = −0.08, p = 0.934. Correlations for each
group are shown on the right of Table 1, revealing consistent
expected relations between age and general cognition, and
between general cognition and mental rotations. The patterns
of relations between masculinity and mental rotations differed
across NC women and OC users; these differences are directly
tested in moderations below.

Link Between Masculinity and Spatial
Skills in All Women
The first inferential analysis examined the link between
masculinity and spatial skills in all women. Results of the
regression revealed a significant overall model, F(3, 366) = 9.44,
p < 0.001, R2 = 0.07, due to the significant covariate of general
cognition, b = 0.34, p< 0.001; age was not a significant covariate,
b = 0.14, p = 0.431. Importantly, masculinity was not a significant
predictor of 3D mental rotations, b = 0.59, p = 0.331.

Oral Contraceptive Moderation of the
Link Between Masculinity and Spatial
Skills
The second inferential analysis was a moderation examining
whether the link between masculinity and spatial skills differed
for NC women and OC users; in other words, it examined
whether the lack of an association in the full sample was due
in part to women’s hormonal milieu. Results of the regression
revealed a significant overall model, F(5, 364) = 6.76, p < 0.001,
R2 = 0.09. General cognition continued to be a significant
covariate, b = 0.33, p< 0.001, and age was not, b = 0.17, p = 0.338.
Although there was a significant main effect of masculinity,
b = 2.35, p = 0.017 and not NC-OC group, b = 0.17, p = 0.819,
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TABLE 1 | Descriptive statistics and correlations among study variables by group.

Descriptives Correlations

NC women
N = 141

OC users
N = 229

Variables M SD M SD Age General cognition Masculinity Mental rotations

Age 20.33 2.28 20.66 2.27 0.43*** 0.12 0.25**

General cognition 13.42 5.70 12.97 4.88 0.31*** 0.08 0.36***

Masculinity 2.07 0.61 2.06 0.63 0.28*** 0.05 0.21*

Mental rotations 26.41 7.90 26.48 6.88 0.06 0.17** −0.02

Correlations for NC women are above the gray diagonal, and correlations for OC users are below the gray diagonal.
NC, Naturally cycling; OC, Oral contraceptive; M, Mean; SD, Standard deviation.
*p < 0.05, **p < 0.01, ***p < 0.001.

these main effects must be considered in the context of the
significant interaction between masculinity and group on 3D
mental rotations, b = −2.80, p = 0.023. Follow-up simple slopes
analyses revealed the expected significant positive association for
NC women, b = 2.35, p = 0.017, but not for OC users, b = −0.44,
p = 0.558. The nature of the interaction is also shown in the
scatterplot in Figure 1. Individual women are shown by the gray
circles (NC women) and black squares (OC users), with the zero-
order linear relation for each group indicated by the gray (NC
women) and black (OC users) lines.

Oral Contraceptive Pharmacokinetic
Moderation of the Link Between
Masculinity and Spatial Skills
The third inferential analysis was a moderation among only OC
users examining whether the link between masculinity and spatial
skills depended upon the pharmacokinetic properties of the pills.
Similar to the previous moderation, it examined whether the
lack of an association among OC users was due in part to the
heterogeneity of OCs, specifically their estrogenic, progestational,
and androgenic activity. Complete results are listed in Table 2 and
plotted in Figure 2, and significant findings are discussed here.

For estrogenic activity (top third of Table 2), the overall
model of the relation between masculinity and mental rotations
skill was not significant, but the interaction of masculinity and
estrogenic activity was significant. Estrogenic activity at one
standard deviation below the mean (dotted line in Figure 2A)
was positively related to masculinity and 3D mental rotations,
b = 1.45, p = 0.201, whereas estrogenic activity one standard
deviation above the mean (solid line in Figure 2A) was
inversely related to masculinity, b = −1.69, p = 0.094. Thus,
the masculinity-mental rotations relation became increasingly
positive as levels of OC estrogenic activity decreased.

For progestational activity (middle third of Table 2), the
overall model was significant. General cognition was a significant,
positive covariate, and the interaction of masculinity and
progestational activity was significant, with effects in the opposite
direction of estrogenic activity. Progestational activity at one
standard deviation below the mean (dotted line in Figure 2B)
was inversely related to masculinity and 3D mental rotations,
b =−1.66, p = 0.093, whereas progestational activity one standard
deviation above the mean (solid line in Figure 2B) was positively

related to masculinity, b = 1.52, p = 0.169. Thus, the masculinity-
mental rotations relation became increasingly positive as levels of
OC progestational activity increased.

For androgenic activity (bottom third of Table 2), the overall
model was not significant. The interaction of masculinity and
androgenic activity was also not significant, but general cognition
was a significant covariate (see Figure 2C).

Sensitivity analyses were conducted to determine whether
length of OC use altered these relations; thus, moderations were
repeated with length of OC use (in months) as a covariate. The
pattern of results, including inferences about the significance of
the interactions, did not change (estrogenic activity: b = −1.51,
p = 0.039, progestational activity: b = 1.17, p = 0.035, androgenic
activity: b = 0.64, p = 0.315).

DISCUSSION

The goal of this study was to leverage a natural experiment—
varying hormonal milieus through OC use—to reveal
biopsychosocial links to spatial skills in women. Based
on research showing that masculinity and the progestin
androgenicity of OCs are independently and positively
associated with those skills, this study aimed to—for the
first time—examine their combined influence. In a large sample
of NC women and OC users, whose pill pharmacokinetic
properties were innovatively coded on a four-point scale
for estrogenic, progestational, and androgenic activity (see
Dickey, 2020), hormonal milieu was found to moderate the
relation between self-perceived masculinity and 3D mental
rotations skill. Specifically, there was a positive relation for NC
women and virtually no relation for OC users. The lack of an
association among the heterogenous group of OC users was
partly due to the varying pharmacokinetic properties of OCs,
as the masculinity-mental rotations relation increased with
both decreasing pill estrogenic activity and with increasing pill
progestational activity. In contrast, androgenic activity of OCs
was not significantly related to the relation between masculinity
and mental rotations skill.

Interpretation of Findings
Across the full sample (i.e., NC women and OC users combined),
there was not a significant relation between masculinity and
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FIGURE 1 | Relation between masculinity and spatial skills (operationalized by three-dimensional mental rotations skill) plotted by hormonal milieu (operationalized by
NC vs. OC status). Gray circles and black squares show individual data points of NC women and OC users, respectively, with like-colored lines reflecting the linear
trends for each group (i.e., zero-order correlations). NC, naturally cycling; OC, oral contraceptive. ∗p < 0.05.

spatial skills. Even though a significant relation was expected
according to the sex-role mediation hypothesis (Nash, 1979),
the non-significance is not necessarily at odds with the

TABLE 2 | Results of moderation analyses examining whether sex hormone
activity in OCs moderates the link between masculinity and mental rotations skill.

Moderation model b F df R2

Estrogenic activity 2.12+ 5, 214 0.05

Age 0.04

General cognition 0.19+

Masculinity −0.12

Estrogenic activity 0.14

Interaction −1.52*

Progestational activity 2.45* 5, 214 0.05

Age −0.07

General cognition 0.20*

Masculinity −0.07

Progestational activity 0.38

Interaction 1.23*

Androgenic activity 1.61 5, 214 0.04

Age 0.03

General cognition 0.22*

Masculinity −0.27

Androgenic activity −0.41

Interaction 0.65

N = 220 OC users, and unstandardized b’s are shown in table.
+p < 0.10; *p < 0.05.

extant literature. Past empirical studies have led to somewhat
inconsistent results by statistically controlling for gender and
even occasionally finding a stronger relation in men than women
(Reilly and Neumann, 2013; Reilly et al., 2016). Importantly,
results of moderation analyses qualify that non-significant
masculinity-spatial skills relation in revealing that it depends
upon ovarian hormonal milieu (marked by NC vs. OC status):
Masculinity was significantly and positively related to mental
rotations skill for NC women, but not for OC users. The
robustness of this interaction effect is buttressed by the fact
that NC women and OC users did not differ in mean levels
in any study variables, including gender self-concept or mental
rotations skill, consistent with past research in heterogenous
samples (e.g., Beltz et al., 2015; Nielson and Beltz, 2021).
Thus, the sex-role mediation hypothesis may only describe
women with some hormonal milieus (e.g., those experiencing
the typical fluctuations in endogenous ovarian hormones that
characterize the menstrual cycle). As past studies on the sex-role
mediation hypothesis did not report the hormonal milieu of study
participants (e.g., whether all women were NC), it is possible
that varying hormonal milieus contributed to their inconsistent
findings. Additionally, varying hormonal milieus may even
contribute to the inconsistent findings among men for whom the
masculinity-spatial skills relation is not consistently found (e.g.,
Signorella and Jamison, 1986; Kelly and Beltz, under review),
and who experience fluctuations in endogenous sex hormones
levels depending upon season of the year, life experiences like
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FIGURE 2 | Relation between masculinity and spatial skills (operationalized by three-dimensional mental rotations skill) plotted by oral contraceptive hormone activity
(operationalized by a novel 4-point coding scheme). (A) The masculinity and spatial skills relation was significantly moderated by OC estrogenic activity. (B) The
masculinity and spatial skills relation was significantly moderated by OC progestational activity. (C) The masculinity and spatial skills relation was not moderated by
OC androgenic activity. Dotted, dashed, and solid black lines reflect low, average, and high hormone activity, respectively. Low vs. high hormone activity and
masculinity reflect the conditional effect for the model estimated for scores ± one standard deviation from the mean, respectively. Unstandardized coefficients (b)
reflect the masculinity-mental rotations relation for the low and high hormone activity levels with standard errors in parentheses. See Table 2 for results of statistical
interactions.

fatherhood, and even daily experiences like winning a game (e.g.,
Zilioli and Watson, 2012; Smith et al., 2013; Grebe et al., 2019).

To directly investigate the extent to which ovarian hormonal
milieus may have contributed to the null masculinity-spatial
skills relation in OC users, the OCs of all users in the study
were coded on a four-point Likert scale for their estrogenic,
progestational, and androgenic activity; the codes were based
on assays conducted in rodent models and human tissue
response, largely reflecting the action of OCs at receptors in
the context of other hormones (see Dickey, 2020). Moderation
analyses then revealed that the relation between masculinity
and 3D mental rotations depended upon both the estrogenic
and progestational—but not significantly upon the androgenic—
activity in OCs, although effects were clearly small (as seen in
Figure 2) and require replication. Specifically, as OC estrogenic
activity decreased but as progestational activity increased, there
was an increasingly positive association between masculinity
and spatial skills. Findings are consistent with the inverse

association between OC estrogenic and progestational activity
in this sample. Also, findings regarding estrogenic activity are
generally consistent with past work among OC users in showing
an inverse association between pill estradiol dose and spatial
skills (Beltz et al., 2015), and are also consistent with past
menstrual cycle studies showing an inverse relation between
endogenous estradiol and spatial skills (Hausmann et al., 2000;
Courvoisier et al., 2013; Hampson et al., 2014; Griksiene et al.,
2018, 2019), as well as with studies that show improvements in
spatial skills when estradiol levels are low (Maki et al., 2002;
Courvoisier et al., 2013).

Findings regarding progestational activity are novel, as there
is hardly any consideration of the effects of the progestins in
OCs—beyond their androgenicity—in the extant literature (for
an exception and null findings confounded by androgenicity,
see Beltz et al., 2015). Furthermore, findings from past research
on endogenous progesterone (e.g., from menstrual cycle studies
that often have notable methodological limitations, such as small
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sample size) are mixed (reporting null, positive, and inverse
associations; Hausmann et al., 2000; Maki et al., 2002; Griksiene
and Ruksenas, 2011; Courvoisier et al., 2013; Hampson et al.,
2014; Noreika et al., 2014; Pletzer et al., 2019; Shirazi et al., 2021).
There does seem to be a potential indirect role for progesterone
in spatial skills through attention, though. Progesterone has been
linked to the local vs. global processing of visual stimuli (Pletzer
et al., 2014), and similar global-local processing notions have
been used to explain gender differences in spatial skills, especially
mental rotations (Peña et al., 2008; Pletzer et al., 2014).

Therefore, this research is important not only for the empirical
findings it uncovered, but also for introducing and illustrating
the utility of a new coding scheme for OCs that disentangles
the estrogenic, progestational, and androgenic properties of the
pills. Past work has highlighted the importance of considering
heterogeneity in ovarian hormonal milieus afforded by different
OCs (Beltz and Moser, 2020), but most work has accomplished
this by classifying users based on the types of hormones in
their pills, such as androgenic or anti-androgenic progestins (e.g.,
Wharton et al., 2008; Griksiene and Ruksenas, 2011; Gurvich
et al., 2020) or according to active ingredients specified by the
FDA (e.g., Puts et al., 2010; Beltz et al., 2015, 2019). Some studies
have also accomplished this by considering the exogenous dose
of one hormone in the pills (e.g., ethinyl estradiol) without
simultaneously considering other hormones (e.g., Beltz et al.,
2015; Griksiene et al., 2018). The novel four-point coding scheme
used in this study may be an improvement upon all of these
approaches. It is based on the biological activity of the exogenous
hormones in animal tissue, and it does not require the creation
of inconsistent group classifications that could result in some
participants being excluded from analyses (e.g., if they are using
an OC that is not widely represented in the sample). Although
this study did not have power to detect higher order interactions,
this coding scheme permits the examination of interaction
effects between different hormone activities in OCs in future
studies with even larger samples (e.g., whether progestational and
androgenic activity combine masculinity to influence outcomes).

Because OC androgenic activity did not moderate the
masculinity-spatial skills relation, findings from this study may
seem inconsistent with past work showing that OCs with
highly androgenic progestins facilitate spatial skills, whereas
those with anti-androgenic progestins reduce spatial skills (Beltz
et al., 2015; Griksiene et al., 2018; Gurvich et al., 2020), and
with work showing a positive association between endogenous
testosterone and spatial skills (Hausmann et al., 2000; Pletzer
et al., 2019). Not all studies find links between progestin
androgenicity and spatial skills, though (e.g., Griksiene and
Ruksenas, 2011), and no studies have investigated potential
neuroendocrine modulation of the relation between masculinity
and spatial skills. Moreover, and as noted above, the OC
groupings used in past research may conflate androgenic and
progestational activity by focusing on groups of OC users
determined by progestin androgenicity. It could very well be that
past work focused on androgenic properties of pills was actually
reflecting (at least to some meaningful degree) progestational
activity. For instance, OCs containing the anti-androgenic
progestin drospirenone have among the highest progestational

activity (Dickey, 2020). Such conflation is less likely in this
study because of the small correlation between androgenic and
progestational activity.

Study Considerations
Study findings and presumed methodological advances should
be considered in light of other characteristics of the sample and
approach. Regarding the sample, it is likely not representative
of all OC users, as most participants were White, from a
Midwestern university community, and six women who were
deemed statistical age outliers were excluded from analyses.
Women who identified as Asian were also disproportionately
underrepresented among OC users (compared to NC women).
It is vital that future research on ovarian hormone links to the
brain and behavior include increasingly diverse and longitudinal
samples to best inform women’s health across the lifespan.
Hopefully, such research will be facilitated by the advances in OC-
related research methods proposed in this and other recent work
(reviewed in Beltz and Moser, 2020; Hampson, 2020).

Regarding the study approach, a common, validated, and
reliable measure of spatial skills, specifically the Vandenberg
and Kuse (1978) 3D mental rotations test, was used. This test
shows an established gender difference (Voyer, 2011; Halpern,
2013; Beltz et al., 2020), making it ideal for this study’s goal of
detecting gendered links (via masculinity) to mental rotations
performance. From these findings, however, it is not clear what
aspect of 3D mental rotations skill is linked to masculinity.
Although general cognitive ability can be largely discounted
(as it was a covariate in all analyses), other possibilities are
not easily parsed, including actual mental visualization, strategy
use including global vs. local processing, or working memory
interference caused by time constraints (see Peters, 2005; Pletzer,
2014; Boone and Hegarty, 2017). It is also not clear if the pattern
of findings would be the same if a different mental rotations test
was used, particularly a test that shows smaller average gender
differences than does the Vandenberg and Kuse (1978) measure;
this includes 2D tests and the Shepard and Metzler (1971) 3D
test. Thus, future work aimed at replicating and potentially
decomposing mental rotations skill and its links to masculinity
in the context of varying hormonal milieus is needed.

Also, the focus of this study was on the overarching hormonal
milieu afforded by having a natural menstrual cycle or using
OCs with particular pharmacokinetic formulations, both of
which holistically reflect neuroendocrine function. This leads
to some unique considerations for NC women and OC users.
Regarding NC women, we did not include menstrual cycle
phases in analyses, as methods for determining them are error-
ridden without many repeated assessments (Hampson, 2020;
Gloe et al., under review). Nonetheless, study findings are
broadly consistent with menstrual cycle research on spatial skills,
suggesting small roles for estradiol and progesterone. Regarding
OC users, we similarly did not assess active vs. placebo pill
phase, as placebo phases and adherence to them vary greatly
across users. Moreover, we did not assess time of pill ingestion;
it is linked to spikes in bloodstream hormone concentrations,
but the spikes have unclear implications for concentrations
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across days, and the temporal association between bloodstream
concentrations and central nervous system function is largely
unknown (Jusko, 2017; Hampson, 2020). Thus, future research
using valid and reliable measures of cycle phase and investigating
the pharmacokinetic properties of OCs on neurally mediated
processes is sorely needed.

Moreover, this study—like all complex biopsychosocial
research on OCs—has some unique considerations. For instance,
this study was novel in leveraging a coding scheme for
estrogenic, androgenic, and progestational activity of OCs, there
are undoubtedly individual differences in the biopsychosocial
impacts and correlates of these exogenous hormones, as humans
are likely more complex than the animal models upon which the
coding scheme is based. Thus, there is a pressing need for future
work that considers individual women and their daily OC use
across time (e.g., intensive longitudinal studies, such as Weigard
et al., 2021; Gloe et al., under review).

Finally, the vast majority of the extant research on the
sex-role mediation hypothesis (and on gender, more broadly)
has operationalized masculinity in terms of explicitly defined
gendered personality characteristics (e.g., independent vs.
patient), which are to some extent culturally determined and
time-varying (for a meta-analysis, see Donnelly and Twenge,
2017). In the present study and consistent with established
research (e.g., Egan and Perry, 2001; Beltz et al., 2021;
Nielson and Beltz, 2021; Kelly and Beltz, under review),
masculinity was operationalized by gender self-expression, with
its meaning (and the meaning of femininity) being implicitly
defined by the participant. Gendered personality qualities and
self-expressions are certainly related, but they are distinct
constructs with distinct outcomes (Eagly and Wood, 2017;
Hyde et al., 2019). Thus, future biopsychosocial research will
likely benefit from having multidisciplinary teams who grapple
with psychosocial measurement alongside biological indices of
hormone activity.

CONCLUSION

This biopsychosocial study examined the sex-role mediation
hypothesis in the context of women’s ovarian hormonal milieus,
revealing that exogenous hormones in OCs moderate the relation
between self-perceived masculinity and 3D mental rotations
skill: There was a positive relation for NC women and women
using OCs with low estrogenic and high progestational activity,
but not for women using OCs with intermediate exogenous
hormone activity. Moreover, the androgenic activity of OCs
was not a significant moderator of the masculinity-spatial skills
relation, which was unexpected but plausible, as androgenic and

progestational activity were likely confounded in past research.
Findings are important not only in delineating the ways in which
biological (i.e., ovarian hormone milieu) and psychosocial (i.e.,
self-perceived masculinity) factors combine to explain variation
in spatial skills among women, but also in demonstrating the
utility of a new approach for indexing the hormone activity of
OCs. In these innovative ways, this study may propel forward
research on women’s health, particularly the neurocognitive and
behavioral correlates of ovarian hormones.
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INTRODUCTION

Menopause is a clinical term that indicates the end of the reproductive period of women that
occurs naturally; however, it can be induced by bilateral oophorectomy, which is commonly
referred to as surgical menopause. Both types of menopause in women are characterized by low
plasma levels and brain concentrations of estradiol and progesterone, and a marked increase in
follicle-stimulating hormone (FSH) levels. This likely affects several brain neurotransmitter systems
and some peripheral physiological processes, impacting the quality of life of women (Monteleone
et al., 2018; Giannini et al., 2021). In addition, the long-term absence of steroid hormones is
associated with physiological changes that predispose women to genitourinary, cardiovascular,
osseous, and mood disorders (Giannini et al., 2021). While such changes occur gradually and
require a long time to stabilize in natural menopause, they are established in a shorter time
in surgical menopause, thereby influencing the severity of symptoms in comparison to natural
menopause (Rodríguez-Landa et al., 2015; Kingsberg et al., 2020; Giannini et al., 2021).

In preclinical research, ovariectomy performed onmice and rats is used as a surgical menopausal
model to study the effects of permanent reduction in the levels of steroid hormones. This model has
been used for studying the effects of surgical menopause on the central nervous system, which is
responsible for cognitive deterioration, irritability, anxiety- and depression-like behaviors (Zakaria
et al., 2019; Georgieva et al., 2021). In this way, the present article discusses the influence of
time post-ovariectomy on hormonal, neurochemical, and neuroanatomical changes in rodents and
its relation with anxiety- and depression-like behaviors that have been reported among women
subjected to bilateral oophorectomy. This would help in enhancing the understanding of behavioral
changes associated with surgical menopause and help evaluate potential pharmacological strategies
to ameliorate the negative effects produced by long-term ovariectomy.

MENOPAUSE, ANXIETY, AND DEPRESSION SYMPTOMS

Throughout the reproductive life of the human female, significant changes in the peripheral and
central concentrations of estradiol and progesterone have been reported. These hormonal changes
interfere with their physiological, endocrine, and neurochemical processes, and often have negative
implications on their quality of life (Kingsberg et al., 2020). Reduced concentrations of estradiol and

99

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2022.829274
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2022.829274&domain=pdf&date_stamp=2022-03-04
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:juarodriguez@uv.mx
https://doi.org/10.3389/fnbeh.2022.829274
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.829274/full


Rodríguez-Landa Ovariectomy as a Surgical Menopause Model

progesterone during the premenstrual, postpartum, and
menopausal periods predispose women to anxiety and depressive
symptoms (Albert et al., 2015). Generally, natural menopause
occurs at 45–55 years of age and indicates the end of the
reproductive period in women. However, surgical menopause,
which is artificially induced by bilateral oophorectomy
(Rodríguez-Landa et al., 2015), also exists as an option.
Oophorectomy is recommended to women for averting the
potential development of estrogen-dependent ovarian/breast
cancer or to reduce pain from endometriosis (Kingsberg et al.,
2020). Both types of menopause are known to predispose women
to neuropsychiatric disorders (Georgieva et al., 2021), which
is attributed to low concentrations of estradiol, progesterone,
and their reduced metabolites such as allopregnanolone, among
others (Zsakai et al., 2016).

Clinical studies have shown that womenwho undergo bilateral
oophorectomy develop physiological and psychological changes
similar to those that occur with natural menopause. One
report suggest that women can immediately develop symptoms
of severe anxiety that impair their quality of life (Chung-
Park, 2006). The emotional and affective symptoms associated
with surgical menopause vary among women; however, it has
been reported that performing bilateral oophorectomy before
natural menopause is associated with the development of anxiety
and depression disorders and an increased risk in cognitive
impairment, compared with women who experience natural
menopause (Rocca et al., 2018; Olmos-Vázquez et al., 2020).
Rocca et al. (2018) reported an increased long-term risk of
depression and anxiety symptoms in women who underwent
bilateral oophorectomy, which was principally associated with
estrogen deficiency. Interestingly, the incidence of anxiety
symptoms in bilateral oophorectomized womenwas higher in the
long-term as compared to that of non-oophorectomized women,
which exponentially increased as time post-oophorectomy
passed, even, 10, 20, and 30 years after the removal of both
ovaries. As such, preclinical and clinical studies are required to
understand the neurobiological bases of the disorders associated
with surgical menopause in the long-term, thus enabling the
evaluation of new therapeutic strategies to ameliorate symptoms
and improve the quality of life of this particular group of women.
In this case, neuroendocrine changes produced by long-term
ovariectomy should be considered when this surgical procedure
is used for evaluating the disorders associated with surgical
menopause and their potential treatments.

EFFECTS OF LONG-TERM OVARIECTOMY
ON ANXIETY- AND DEPRESSION-LIKE
BEHAVIOR

It is important to emphasize that multiple changes in the
levels of diverse hormones and other substances (e.g., estradiol,
progesterone, testosterone, cortisol, prolactin, insulin, glucose,
and lipids) occur during natural or surgical menopause in the
human female (Huerta et al., 1995; Kingsberg et al., 2020), which
contribute to multiple symptoms associated with menopause.
However, the most significant changes in natural or surgical

menopause among women include a decrease in early cycle
inhibin B and anti-Müllerian hormone levels. The decline in
inhibin B produces an increase in FSH levels, which regulate the
production of estradiol. Therefore, in menopausal women, FSH
levels are markedly raised, and estradiol levels are significantly
lowered (Burger et al., 2007; Kingsberg et al., 2020); these
are associated with characteristic symptoms during menopause.
Nonetheless, these hormonal changes are different between
natural and surgical menopause. These changes occur gradually
in natural menopause, while in surgical menopause, they occur
in a shorter time.

In preclinical research, ovariectomy is a surgical procedure
that involves the removal of one or both ovaries in females, which
in the medium- and long-term significantly reduces plasma and
brain concentrations of steroid hormones and other molecules
that negatively impact brain function (Alagwu and Nneli, 2005).
Interestingly, in ovariectomized mice and rats, similar hormonal
changes to those of the human female occur. The FSH levels
are increased as more time passes following ovariectomy, which
is higher at 4 weeks than at 1–2 weeks (Moiety et al., 2015).
Contrarily, progesterone and estradiol levels are undetectable at 3
months and 15 months post-ovariectomy, respectively, and they
are lower at 4 weeks, than they are at 1–2 weeks post-ovariectomy
(de Chaves et al., 2009; Moiety et al., 2015).

It has been reported that apparition of anxiety- and
depression-like behavior associated with ovariectomy depends
on the time elapsed after the procedure. For instance, the
incidence of anxiety-like behavior was higher in rats at 12
weeks than at 3 weeks post-ovariectomy (Picazo et al., 2006);
however, a limitation of this study was that these results were not
compared with those of non-ovariectomized rats. Interestingly, 1
week post-ovariectomy did not produce significant changes on
anxiety-like behavior with respect to non-ovariectomized rats;
however, 3 weeks post-ovariectomy, a high incidence of anxiety-
like behavior was detected in comparison with that of rats in
the proestrus-estrus phase. This effect was similarly detected in
rats at 6, 9, 12, and 15 weeks post-ovariectomy (Puga-Olguín
et al., 2019), which coincides with estradiol and progesterone
levels reduction. It was reported that rats at 12 weeks post-
ovariectomy were more responsive to diazepam, an anxiolytic
drug, than rats at 3 weeks post-ovariectomy (Picazo et al., 2006).
This emphasizes the importance of considering the time post-
ovariectomy in the evaluation of anxiety-like behavior and the
effect of anxiolytic drugs.

Moreover, in the forced swim test an increase in the time of
immobility was detected 2 weeks post-ovariectomy (Fedotova
et al., 2016). Contrarily, Puga-Olguín et al. (2019) did not
detect depression-like behaviors (increased time of immobility)
in rats at 1 and 3 weeks post-ovariectomy, with respect to
non-ovariectomized rats. Nonetheless, rats from 6 weeks post-
ovariectomy significantly increased the incidence of depression-
like behavior, with respect to rats in proestrus-estrus and
metestrus-diestrus phases, and this effect was similar in rats at
9, 12, and 15 weeks post-ovariectomy.

As mentioned above, the time post-ovariectomy in mice
and rats plays a significant role in the expression of anxiety-
and depression-like behavior, which can be partially explained
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by the hormonal, neurochemical, and neuroanatomical changes
associated with ovariectomy in the long term. It is noteworthy
that all these changes are simply an overview of how hormones
affect the brain in the context of anxiety and depression
symptoms, but we cannot disregard the other physiological
changes that may influence symptoms related to menopause.

EFFECTS OF LONG-TERM OVARIECTOMY
ON FOLLICLE-STIMULATING HORMONE
AND STEROID HORMONES IN RATS AND
MICE

Early studies have explored endocrine changes associated with
ovariectomy in rats and mice. Particularly in rats, 2 weeks
post-ovariectomy, the plasma concentrations of estradiol and
progesterone did not differ significantly from the basal conditions
(Ratka and Simpkins, 1990). However, 3 weeks post-ovariectomy,
there was a significant reduction in estradiol and progesterone
levels and an increase in luteinizing hormone and FSH levels
in plasma (Wise and Ratner, 1980). To note, the reduced
concentration of estradiol after 2 weeks post-ovariectomy
remained until 7 weeks when the study ended (Li et al., 2014).
Six weeks post-ovariectomy, a significant reduction in the plasma
levels of progesterone, estradiol, and testosterone was detected in
rats (Alagwu and Nneli, 2005).

On the other hand, Moiety et al. (2015) evaluated the effects
at 1 and 4 weeks after hysterectomy and unilateral and bilateral
ovariectomy on FSH and estradiol levels in rats. With respect
to the baseline, FSH levels increased approximately to 26.19
and 73.81%, after 1 and 4 weeks post-hysterectomy, respectively.
One week post unilateral ovariectomy, FSH levels increased
approximately to 44.68%, while after 4 weeks FSH increased
to ∼80.85% with respect to the baseline. Interestingly, a more
significant effect on FSH levels was observed when bilateral
ovariectomy was performed. In this case, 1 week post bilateral
ovariectomy FSH levels significantly increased to approximately
91.11% vs. the baseline, but more significant effects were detected
after 4 weeks, increasing FSH approximately to 222.22% with
respect to the baseline. As for the concentration of estradiol at 1
week post hysterectomy, a slight reduction of∼5.21% was noted,
while 4 weeks after, estradiol levels were reduced to ∼16.94%,
compared with the baseline. One week after the unilateral
ovariectomy, estradiol was reduced to 7.26%, while 4 weeks
after it was reduced to ∼29.19%, with respect to the baseline.
Interestingly, when bilateral ovariectomy was performed, the
concentration of estradiol was reduced to ∼21.45% of the
baseline. However, estradiol was further reduced to 60.81% 4
weeks post bilateral ovariectomy with respect to the baseline.
Importantly, the greater effects on FSH and estradiol were
produced after 4 weeks of bilateral ovariectomy, followed by
unilateral ovariectomy and hysterectomy. These results are
consistent with those of previous studies that found a significant
reduction in plasma concentrations of estradiol and testosterone
at 4 weeks post-ovariectomy and was undetectable at 24 weeks
post-ovariectomy (Zhao et al., 2005). The same effect was

detected in rats at 3 months and 15 months post-ovariectomy (de
Chaves et al., 2009).

Despite few studies on endocrine changes occurring in
ovariectomized mice, it has been reported that after 4 days
and 1 week post-ovariectomy, the concentrations of FSH
are significantly increased with respect to intact cycling
mice (Bronson, 1976; Chandrashekar and Bartke, 1996; Xu
et al., 2000), but greater effects are detected after 2–4
weeks post-ovariectomy (Rodin et al., 1990), as it occurs
in ovariectomized rats. Accordingly, after 2–14 weeks post-
ovariectomy in mice, serum estradiol levels were significantly
decreased by approximately 31% with respect to the sham-
operated mice, which was accompanied by a significantly
increased concentration of FSH (Park et al., 2014; Lee et al.,
2020; Canuas-Landero et al., 2021). These data clearly show
the importance of considering and standardizing the post-
ovariectomy time frame to identify behavioral and hormonal
changes associated with this surgical manipulation, thus avoiding
erroneous interpretation of results and compare results from
different laboratories.

NEUROANATOMICAL AND
NEUROCHEMICAL CHANGES
ASSOCIATED WITH LONG-TERM
OVARIECTOMY: EFFECTS ON ANXIETY
AND DEPRESSION-LIKE BEHAVIOR

The lower concentrations of progesterone and estrogen
that occur during surgical or natural menopause produce
an imbalance in neurochemical brain communication that
subsequently affects neurotransmitter pathways (Smith et al.,
1998; Rodríguez-Landa et al., 2015; García-Ríos et al., 2017;
Kingsberg et al., 2020), wherein reduced concentrations of
dopamine, serotonin, androstenedione, testosterone estradiol,
GABA, β-endorphin, and allopregnanolone, and increased
concentrations of noradrenaline and cortisol, among others,
have been reported (Monteleone et al., 2018). All these changes
produce neuroanatomical modifications in brain structures
involved in anxiety and depression such as the raphe nucleus,
hippocampus, and cerebral cortex (Monteleone et al., 2018).

In experimental research, bilateral ovariectomy in rats has
also been used to evaluate the effects of the post-ovariectomy
time frame on anxiety- and depression-like behavior, as well as
the effect of anxiolytic and antidepressant compounds under
these experimental conditions (Table 1). However, different post-
ovariectomy time frames in mice and rats have been used, which
can hinder the comparison of the results of different studies.
Therefore, it is important to establish the different changes
associated with the time of post-ovariectomy in rodents.

Ovarian hormones, estradiol, and progesterone, regulate
several neurochemical processes in brain structures involved
in the physiopathology of anxiety and depression, such as the
prefrontal cortex, hypothalamus, amygdala, septal nucleus, and
hippocampus (Giannini et al., 2021). Studies among laboratory
animals and humans have reported that progesterone and its
reduced metabolite allopregnanolone target the GABAA receptor
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TABLE 1 | Effects of timing post-ovariectomy and some pharmacological treatments on anxiety- and depression-like behaviors in mice and rats.

Effects of ovariectomy and anxiolytic drugs on anxiety-like behavior

Subjects/Weeks

post-OVX

OVX

effect/Test

Treatment Treatment effect References

NMRI mice/1 ne/EPM – – Galeeva and Tuohimaa, 2001

Wistar rats/1 ne/EPM – – Puga-Olguín et al., 2019

Sprague-Dawley rats/2 ne/OFT – – Hiroi and Neumaier, 2006

C57BL/6 mice/2 ne/CUS+EPM – – Lagunas et al., 2010

Wistar rats/3 ne/EPM – – Marcondes et al., 2001

Wistar Rats/8 /EPM – – Dornellas et al., 2018

Wistar rats/3,6,9,12,15 /EPM – – Puga-Olguín et al., 2019

Sprague-Dawley rats/4 /EPM – – Zoladz et al., 2019

C57BL/6 mice/16 /CUS+EPM – – Lagunas et al., 2010

Wistar rats/12 ne/EPM – – de Chaves et al., 2009

Wistar rats/60 /EPM – – de Chaves et al., 2009

Long-Evans rats/1 /DBT 4 mg/kg P

10 µg/rat E2

P reduces anxiety-like behavior,

E2 without effect

Llaneza and Frye, 2009

Sprague-Dawley rats/2 ne/EPM 6 µM/rat Allo ne Laconi et al., 2001

Sprague-Dawley rats/2 /EPM 25 mg/kg P

10 µg/kg E2B

ne Díaz-Véliz et al., 1997

Wistar rats/3 /LDB 1 mg/kg DZ Reduces anxiety-like behavior Zuluaga et al., 2005

Wistar rats/3, 12 /DBT 0.5, 1, and 2 mg/kg DZ

0.5 and 0.50

mg/kg 8-OH-DPAT

Both treatments reduce

anxiety-like behavior

Picazo et al., 2006

Wistar rats/4 /EPM 10 µg/kg E2

10 mg/kg Flx

E2 reduces anxiety-like behavior,

Flx without effect

Charoenphandhu et al., 2011

Wistar rats/4 /OFT 150 µg/rat/week E2 Reduces anxiety-like behavior Diz-Chaves et al., 2012

Wistar rats/8 /EPM 0.09 mg/kg E2 Reduces anxiety-like behavior Puga-Olguín et al., 2019

Wistar rats/12 /EPM 0.5, 1, 2, and 4 mg/kg Chry Only 1, 2, and 4 mg/kg Chry

reduce anxiety-like behavior

Rodríguez-Landa et al., 2019

Wistar rats/12 /LDB 0.25, 0.5, and 1 mg/kg Gen Reduces anxiety-like behavior Rodríguez-Landa et al., 2009

Wistar rats/12 /LDB 2 mg/kg Dz Reduces anxiety-like behavior Rodríguez-Landa et al., 2019

Wistar rats/12 /EPM 0.45, 0.09, and 0.18 mg/kg

E2 and Gen

Only 0.09 and 0.18 mg/kg

reduce anxiety-like

behavior

Rodríguez-Landa et al., 2017

Effects of ovariectomy and antidepressant substances on depression-like behavior

Animal/Weeks

post-OVX

OVX

effect/Test

Treatment Treatment effect References

C57BL/6 mice/2 ne/CUS+FST – – Lagunas et al., 2010

C57BL/6 mice/2 ne/FST

/TST

– – Carrier et al., 2015

Wistar rats/1, 3 ne/FST – – Puga-Olguín et al., 2019

Wistar rats/8 ne/FST – – Dornellas et al., 2018

Wistar rats/12, 60 ne/FST – – de Chaves et al., 2009

Wistar rats/6, 9, 12, 15 /FST – – Puga-Olguín et al., 2019

C57BL/6 mice/16 /CUMS+FST – – Lagunas et al., 2010

C57BL/6 mice /1-2 ne/TST 10 mg/kg P Reduces depression-like

behavior

Frye, 2011

Wistar rats/2 ne/FST 0.8, 1.6, and 3.0 mg/kg P Reduces depression-like

behavior

Martínez-Mota et al., 1999

(Continued)
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TABLE 1 | Continued

Effects of ovariectomy and antidepressant substances on depression-like behavior

Animal/Weeks

post-OVX

OVX

effect/Test

Treatment Treatment effect References

Wistar rats/2 /FST 0.3, 1, and 3 µg/rat E2 and

0.6 mg/rat Map

Reduces depression-like

behavior

Okada et al., 1997

Wistar rats/2 /FST 1 mg/kg P, Allo, Chry Reduces depression-like

behavior

Cueto-Escobedo et al., 2020

Wistar rats/7 /FST 150 µg/rat/week E2 Reduces depression-like

behavior

Diz-Chaves et al., 2012

Wistar rats/8 /FST 0.09 mg/kg E2 Reduces depression-like

behavior

Puga-Olguín et al., 2019

Wistar rats/8 /FST 0.5, 1, and 2 mg/kg P Only 1 and 2 mg/kg P reduce

depression-like behavior

Rodríguez-Landa et al., 2020

ICR mice/8 /FST

/TST

1 µg/kg E2 and 100 mg/kg

Pue

Both treatments reduce

depression-like behavior

Tantipongpiradet et al., 2019

Wistar rats/8 /FST 5 mg/kg P Reduces depression-like

behavior

Rodríguez-Landa et al., 2020

Wistar rats/9 /FST 25 µg/day/6 weeks E2 Reduces depression-like

behavior

Khayum et al., 2020

Wistar rats/12 ne/FST 0.25 mg/rat E2 ne Boldarine et al., 2019

Behavioral tests: CUS, chronic unpredictable stress; OFT, open field test; DBT, defensive burying test; LDB, light/dark box; FST, forced swim test; TST, tail suspension test. Evaluated

substances: E2, estradiol; E2B, estradiol benzoate; P, progesterone; Allo, neurosteroid allopregnanolone; Flx, fluoxetine; Map, maprotiline; Dz, diazepam; Chry, flavonoid chrysin; Gen,

isoflavone genistein; Pue, isoflavone puerarin. Effects of timing post-ovariectomy: ne, no effects on anxiety- or depression-like behaviors; , OVX increase anxiety-like behavior by

decreasing time in open arms and increasing anxiety index; , OVX increase anxiety-like behavior by decreasing time in open arms; , OVX increase anxiety-like behavior by increasing

time spent burying; , OVX increase anxiety-like behavior by decreasing time spent in light compartment; , OVX increase anxiety-like behavior in aged rats by decreasing time in

central areas; , OVX increase depression-like behavior by increasing total time of immobility; Anxiety- and depression-like behaviors are reduced when treatment produce the contrary

effect on the variable described in the second column of the table (indicated by the different arrow colors). OVX, ovariectomy.

and facilitate the activation of the GABAergic system, which
can modulate dopaminergic and serotonergic pathways (Chen
et al., 2021), producing anxiolytic- and antidepressant-like
effects (Fernández-Guasti and Picazo, 1995; Estrada-Camarena
et al., 2002; Frye and Walf, 2002; Rodríguez-Landa et al.,
2007). Estrogen appears to mediate anxiety- and depression-
like behavior by stimulating tryptophan hydroxylase, the rate-
limiting enzyme in the synthesis of serotonin (Bethea et al.,
2000; Giannini et al., 2021). In rats, estrogen also mediates the
regulation of the 5-hydroxytryptamine-1A (5-HT1A) receptor
expression in the dorsal raphe nucleus. Furthermore, it increases
the density of postsynaptic 5-HT2 receptors in the forebrain
(Sumner et al., 1999), thereby affecting the receptors involved in
the neurobiology of depressive disorders and the mechanisms of
action of antidepressant drugs (García-Ríos et al., 2017).

Interestingly, at 1 week post-ovariectomy in rats, there
was a reduction in the activation of glutamatergic receptors
in the basolateral amygdala (De Jesús-Burgos et al., 2012), a
structure involved in the regulation of anxiety. At 1–2 weeks
post-ovariectomy, a critical reduction of dendritic spines and
synaptophysin density occurred in the pyramidal neurons of the
CA1 layer of the hippocampus in rats (Velázquez-Zamora et al.,
2012), negatively impacting neuronal communication and the
regulation of emotional and cognitive processes. This reduction
in dendritic spine density in CA1 also occurs in rats at 3 weeks
post-ovariectomy (McLaughlin et al., 2008). It is important to

note that neurochemical changes in the brain are dependent
on the post-ovariectomy time frame. In this way, after 4 weeks
post-ovariectomy, genomic changes occur in the brain structures
involved in the neurobiology of anxiety and depression. As
studied in rats, the mRNA expression of the α-2 and α-3 subunits
of the amygdala GABAA receptor (De Jesús-Burgos et al., 2012)
was reduced, along with tryptophan hydroxylase mRNA, and
serotonergic transporter mRNA of the dorsal raphe nucleus
(Charoenphandhu et al., 2011). In addition, the concentration
of serotonin in the hippocampus and nucleus accumbens
(Pandaranandaka et al., 2009) is reduced. Additionally, other
neurochemical and molecular changes appear post-ovariectomy.
It is noteworthy that all these changes are reported from 4 weeks
post-ovariectomy, but it is unknown whether these changes
occur earlier than 4 weeks post-ovariectomy, which remains to
be explored.

Five weeks after ovariectomy in mice, there is a reduced
thickness of the CA1 layer in the hippocampus and the cerebral
prefrontal cortex (Xu and Zhang, 2006). While 6 weeks after
ovariectomy in rats, there is a reduction in the dopamine
concentration in the central nucleus of the amygdala (Izumo
et al., 2012) and a significant reduction in the expression
of Fos protein immunoreactivity in the dorsal, intermediate,
and ventral areas of the lateral septum. However, this was
negatively correlated with anxiety- and depression-like behavior
(Puga-Olguín et al., 2019). Interestingly, at 8 and 9 weeks
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post-ovariectomy, a reduced expression of estrogen receptors
(ER), αER and βERmRNA was detected in the hippocampus and
cerebral cortex along with a reduced density of dendritic spines
in the cerebral cortex of rats (Jin et al., 2005).

All these data clearly show that ovariectomy in mice and
rats produces significant neuroanatomical and neurochemical
changes in brain structures involved in the physiopathology of
anxiety and depression, in which anxiolytic and antidepressant
drugs play a contributory role, similar to women experiencing
early surgical menopause (Kingsberg et al., 2020; Georgieva
et al., 2021). Although few studies have correlated neurochemical
and neuroanatomical changes that occur in ovariectomy
with anxiety- and depression-like behaviors, these results
support that long-term ovariectomy can be a useful tool to
evaluate the neurobiological substrates that underlie anxiety-
and depression-like behaviors associated with a reduced
concentration of ovarian hormones induced by surgical
menopause. Further, consideration of these factors will aid in
studying the effect of new compounds with potential anxiolytic
and antidepressant activity in womenwhose ovaries are removed.

EVALUATION OF ANXIETY- AND
DEPRESSION-LIKE BEHAVIOR
ASSOCIATED WITH LONG TERM
OVARIECTOMY: EFFECTS OF ANXIOLYTIC
AND ANTIDEPRESSANT DRUGS

Long-term ovariectomy in mice and rats increases the incidence
of anxiety-like behavior in behavioral tests of anxiety, such as
the elevated plus maze (EPM), open field test, burying defensive
test, and light/dark box, as presented in Table 1. In the EPM,
ovariectomy decreases the time spent into the open arms, which
is considered as higher anxiety and depends on the time post-
ovariectomy (Puga-Olguín et al., 2019). Contrarily, anxiolytic
drugs like diazepam, hormones like progesterone and estradiol,
or natural products like flavonoids, significantly increase the
time in the open arms, thereby producing anxiolytic effects
(Charoenphandhu et al., 2011; Rodríguez-Landa et al., 2017,
2019). Similar effects are observed in the other behavioral
tests for anxiety. Ovariectomy reduces the time spent in the
area where anxiogenic stimuli are present, and this time
increases when anxiolytic drugs are injected to mice or rats,
such as diazepam, estradiol, progesterone, allopregnanolone, or
phytoestrogen genistein (Picazo et al., 2006; Llaneza and Frye,
2009; Rodríguez-Landa et al., 2009; Diz-Chaves et al., 2012).

Ovariectomy also increases the incidence of depression-like
behavior in some animal models to evaluate despair behavior,
including the tail suspension test (TST), forced swim test (FST),
and chronic unpredictable stress (CUS). In the TST and FST,
ovariectomy increases the time of immobility depending on the
time-post ovariectomy (Lagunas et al., 2010; Puga-Olguín et al.,
2019), which is considered as an indicator of depression-like
behavior. Interestingly, ovariectomized mice and rats treated
with antidepressant drugs like maprotiline, or some hormones
like progesterone, allopregnanolone, and estradiol, had reduced

time of immobility among other behavioral variables (Okada
et al., 1997; Tantipongpiradet et al., 2019; Cueto-Escobedo et al.,
2020; Khayum et al., 2020; Rodríguez-Landa et al., 2020), which
is considered as an antidepressant-like effect. In the particular
case of CUS, rats are subjected to several stressors for 4
weeks, which subsequently produces depression-like behavior
identified by an increase in the time of immobility in the FST
(Lagunas et al., 2010). This effect is dependent on the time post-
ovariectomy, which was higher at 20 weeks than at 6 weeks
post-ovariectomy. This shows that time post-ovariectomy is an
important variable that should be considered in studying the
effects of ovariectomy on anxiety- and depression-like behavior,
and their potential treatments.

CONCLUDING REMARKS

Studying the effect of the long-term absence of ovarian
hormone produced by ovariectomy in mice and rats on
anxiety- and depression-like behaviors and the underlying
neurochemical and anatomical changes is necessary in
understanding neuropsychiatric disorders among women
undergoing oophorectomy. Considering that in experimental
animals, it is possible to discard the socio-cultural influence
that menopause could have on women and its contribution to
their emotional and affective disorders (Afridi, 2017; Zhang
et al., 2019), the surgical menopause model in mice and rats
may provide new evidence for the neurobiological mechanism
resulting from ovariectomy (oophorectomy in women) in the
long-term. Therefore, this model can be used to explore potential
therapeutic strategies to ameliorate emotional and affective
symptoms, in addition to physiological, histological, structural,
and neuropsychiatric disorders occurring in women subjected to
surgical menopause.

As mentioned above, the time elapsed after ovariectomy in

rats plays a significant role in the expression of anxiety- and

depression-like behavior, and possibly in the effects produced by

anxiolytic and antidepressant drugs. Therefore, it is important

to consider the time post-ovariectomy when we use such

procedure to explore anxiety- and depression-like behavior
or potential anxiolytic or antidepressant drugs. Additionally,
including control groups of non-ovariectomized rats or referring
to the control groups in previously published studies would
ensure suitable comparations to progress our research. This
would help in enhancing the understanding of behavioral
changes associated with surgical menopause and help develop
potential pharmacological strategies to ameliorate the negative
effects produced by long-term ovariectomy. The model also
allows consideration of the post-ovariectomy time frame to
achieve better control of the evaluated variables and ensure the
reproducibility and comparison of results.
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Oral Contraceptives Modulate the
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Activity, Amygdala Connectivity and
Emotion Recognition – A Resting
State fMRI Study
Shanice Menting-Henry1,2†, Esmeralda Hidalgo-Lopez1,2†, Markus Aichhorn1,2,
Martin Kronbichler1,2,3, Hubert Kerschbaum1,4 and Belinda Pletzer1,2*
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Recent research into the effects of hormonal contraceptives on emotion processing and
brain function suggests that hormonal contraceptive users show (a) reduced accuracy
in recognizing emotions compared to naturally cycling women, and (b) alterations
in amygdala volume and connectivity at rest. To date, these observations have not
been linked, although the amygdala has certainly been identified as core region
activated during emotion recognition. To assess, whether volume, oscillatory activity
and connectivity of emotion-related brain areas at rest are predictive of participant’s
ability to recognize facial emotional expressions, 72 participants (20 men, 20 naturally
cycling women, 16 users of androgenic contraceptives, 16 users of anti-androgenic
contraceptives) completed a brain structural and resting state fMRI scan, as well as
an emotion recognition task. Our results showed that resting brain characteristics did
not mediate oral contraceptive effects on emotion recognition performance. However,
sex and oral contraceptive use emerged as a moderator of brain-behavior associations.
Sex differences did emerge in the prediction of emotion recognition performance by the
left amygdala amplitude of low frequency oscillations (ALFF) for anger, as well as left
and right amygdala connectivity for fear. Anti-androgenic oral contraceptive users (OC)
users stood out in that they showed strong brain-behavior associations, usually in the
opposite direction as naturally cycling women, while androgenic OC-users showed a
pattern similar to, but weaker, than naturally cycling women. This result suggests that
amygdala ALFF and connectivity have predictive values for facial emotion recognition.
The importance of the different connections depends heavily on sex hormones and oral
contraceptive use.

Keywords: emotion recognition, amygdala, limbic system, resting state fMRI, brain connectivity, ALFF, hormonal
contraceptives, progestins
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INTRODUCTION

Emotion recognition, specifically the recognition of facial
expressions, is central to social interaction (Mannava, 2012)
and important for both the ontogenetic and phylogenetic
development of our species (Schmidt and Cohn, 2001; Shenk
et al., 2013). It is also selectively impaired in a variety of
disorders associated with poor social functioning, e.g., autism
or schizophrenia (Kohler et al., 2003; Kuusikko et al., 2009;
Comparelli et al., 2013; Uljarevic and Hamilton, 2013). We are
now looking back at centuries of extensive research on emotion
recognition dating back to Darwin’s seminal work Darwin (1989).
The recognition of at least five basic emotional expressions
identified by Ekman (1992)—happiness, sadness, anger, fear,
disgust—is considered universal across cultures (Elfenbein and
Ambady, 2002; Scherer et al., 2011; but see Russell, 1994;
and Barrett et al., 2019).

Neuroimaging studies demonstrate that emotion recognition
is associated with the activation of limbic regions including
amygdala, basal ganglia, hippocampus, parahippocampus,
anterior cingulate cortex, and the orbitofrontal cortex (Lane
et al., 1998; Bush et al., 2000; Adolphs, 2002; Gur et al., 2002;
Streit et al., 2003; Lancaster et al., 2019). The response to
facial emotions by these limbic regions is modulated by the
relevance of the emotional content (Gur et al., 2002). The
amygdala in particular seems to be a key structure in the
recognition of emotions and consistently activates during the
processing of facial emotion expressions, especially during
fearful expressions (Thomas et al., 2001; Adolphs, 2002; Gur
et al., 2002; Hariri et al., 2002; Derntl et al., 2008b). This group
of nuclei, functionally connected to extensive subcortical and
cortical regions (Roy et al., 2009), has been the focus of a
multitude of neuroimaging studies describing how the brain
responds to recognizing different emotions in various contexts.
Subcortical connections of the amygdala allow the processing
of subliminal or unconscious facial emotion expressions, while
cortical connections are involved in the conscious recognition of
facial emotion expressions (Adolphs, 2002). Bilateral amygdala
activity is stronger when there is explicit emotion recognition,
and thus conscious emotion processing (Gur et al., 2002; Habel
et al., 2007). The activation of the amygdala in response to fear
and anger is lateralized with stronger reactivity in the right
hemisphere, and decreases after habituation (Thomas et al., 2001;
Hariri et al., 2002).

Previous research indicates that emotion recognition and
amygdala reactivity and connectivity are modulated by sex and
participant’s hormonal status (Engman et al., 2016). In most
studies, women display a higher accuracy in recognizing facial
emotions, particularly negative emotions, than men (Thayer and
Johnsen, 2000; Montagne et al., 2005; Hoffmann et al., 2010;
Rukavina et al., 2018; Connolly et al., 2019; Olderbak et al., 2019).
Limbic areas respond with stronger activation to emotional
expressions in men compared to women (Weisenbach et al.,
2014) and amygdala reactivity to emotional expressions is more
lateralized in men (Thomas et al., 2001).

However, these sex differences are further modulated by
women’s hormonal status, i.e., their menstrual cycle phase or

hormonal contraceptive use. An average menstrual cycle lasts
29 days, divided into follicular and luteal phase (Fehring et al.,
2006). Ovarian hormone levels are lowest at the beginning
of each cycle, i.e., during menses (Abraham et al., 1972).
During the follicular phase estrogen levels rise and peak right
before ovulation, while progesterone levels remain low. The
consecutive luteal phase is characterized by high progesterone
levels and medium estradiol levels. Androgen levels also vary
over the menstrual cycle, with lower levels of testosterone at the
beginning and end of the menstrual cycle (Judd and Yen, 1973).
These fluctuations in hormonal levels are not seen in women
using combined oral contraceptives (COCs). COCs contain
a synthetic estrogen, mostly ethinylestradiol, and a synthetic
progestin (Pletzer and Kerschbaum, 2014). These synthetic
steroids downregulate the hypothalamic–pituitary–gonadal axis
and decrease the production of endogenous sex hormones,
including testosterone (Wiegratz et al., 2003). Therefore, COC
users show reduced and stable levels of endogenous ovarian
hormones over time (Fleischman et al., 2010), most comparable
with levels seen during menses in naturally cycling women.
However, the synthetic steroids show strong estrogenic and
progestogenic activity due to their high binding affinities to
the estrogen and progesterone receptors, respectively (Sitruk-
Ware, 2008; Stanczyk et al., 2013). Accordingly, it is hard to
discern, whether the effects of COCs on emotion recognition
are attributable to the reduction of endogenous hormones or the
estrogenic and progestogenic actions of the synthetic hormones.

Ovarian hormonal fluctuations along the menstrual cycle
have been related to emotion recognition and associated brain
activation. During the follicular phase there is a higher emotion
recognition accuracy compared to the luteal phase (Derntl et al.,
2008a). On the contrary, it appears that women are more
sensitive to facial cues signaling nearby threats during the luteal
phase, when progesterone levels are high (Conway et al., 2007).
A neuroimaging review of Toffoletto et al. (2014) showed that
emotional processing leads to different activation across the
distinct cycle phases in the amygdala, medial prefrontal cortex,
orbitofrontal cortex, dorsolateral prefrontal cortex and inferior
frontal gyrus. The most consistent finding in fMRI studies is
that the amygdala has a stronger response to negative emotional
stimuli during the luteal phase (Sundström Poromaa and
Gingnell, 2014). The influence of ovarian hormones on emotion
recognition and concurrent amygdala activation in naturally
cycling women is not always found (Sundström Poromaa and
Gingnell, 2014; Shirazi et al., 2020).

Hormonal contraceptive use also influences emotion
recognition in women (Hamstra et al., 2014; Pahnke et al.,
2019). Some studies suggest that women using COCs are
less accurate in recognizing emotions (Hamstra et al., 2014;
Pahnke et al., 2019), while other studies report no significant
differences (Radke and Derntl, 2016; Shirazi et al., 2020). These
inconsistencies between studies may arise from a lack of control
for the type of COCs used. Apart from their progestogenic
activity, progestins can be classified by their interaction with
androgen receptors (Pletzer and Kerschbaum, 2014). Androgenic
progestins are derived from 19-nortestosterone and act as
agonists of the androgen receptor, whereas anti-androgenic
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progestins bind selectively to the progesterone receptor or act
as antagonists of the androgen receptor (Sitruk-Ware, 2008).
Accordingly, androgenic progestins have a more androgenic side
effect profile than anti-androgenic progestins (Gurvich et al.,
2020). Differential effects of androgenic and anti-androgenic
progestins on brain structure have already been reported (Pletzer
et al., 2015). To the best of our knowledge, Gurvich et al.
(2020) are the only group that also examined the effect of
oral contraceptive type on emotion recognition performance.
They found an effect of androgenic vs. anti-androgenic oral
contraceptive use on facial emotion recognition, in advantage
of androgenic oral contraceptive users. Since men have higher
androgen levels compared to women, their performance on facial
emotion recognition is of interest to compare with women using
androgenic and anti-androgenic COCs.

Pahnke et al. (2019) suggest that COCs impair the recognition
of emotions via changes in the activity and connectivity in the
prefrontal and temporal brain regions, caused by the reduction
in endogenous hormone levels. It has indeed been observed that
in hormonal contraceptive users, the amygdala shows not only
reduced reactivity to emotional stimuli (Petersen and Cahill,
2015), but reduced gray matter volumes and altered connectivity
to pre-frontal and central areas during the resting state (Lisofsky
et al., 2016; Engman et al., 2018). However, to the best of
our knowledge, these alterations in resting state connectivity
patterns in hormonal contraceptive users has not been related
to their ability to recognize facial emotional expressions. Despite
the extensive research into the brain reactivity to emotional
expressions, no study has so far assessed whether certain
characteristics of the resting brain, like the size and functional
connectivity of limbic areas such as the amygdala, are predictive
of emotion recognition performance.

Understanding these brain-behavior associations and
their modulation by androgenic vs. anti-androgenic oral
contraceptives use is meaningful in the larger context of women’s
mental health. Hormonal contraceptives are used by 150 million
women worldwide (Petitti, 2003) and though their effects on
the brain are not yet fully understood (Brønnick et al., 2020),
they have been implicated in cognitive, emotional and social
functioning (Montoya and Bos, 2017). Of particular interest with
regards to mental health are their effects on emotion processing.
Although long-term users of COC appear to experience
stabilizing effects on mood (Oinonen and Mazmanian, 2002),
about 4–10% of women report severe adverse mood effects
(Sundström Poromaa and Segebladh, 2012). Accordingly,
some studies report an increased risk of COC users to develop
depression (e.g., Skovlund et al., 2016), while other studies
suggest a protective effect of COCs regarding mood disorders
(Cheslack-Postava et al., 2015). It is yet unclear, why these
effects of COCs on mood appear to be bidirectional, but a
differential responsiveness of the brain to synthetic steroids
seems to be a plausible explanation. Accordingly, it is important
to identify brain areas, which are (i) associated with emotional
processing already at rest and (ii) modulated by COC use.
Since the risk for adverse mood effects appears to be increased
in adolescent compared to adult participants (de Wit et al.,
2020) and with androgenic compared to anti-androgenic

COCs (Sundström Poromaa and Segebladh, 2012), age and
androgenicity of progestins appear to be important modulators
in that respect.

The present manuscript focuses on identifying the neural
bases of emotion recognition performance in the resting brain
in relation to individual hormonal status. In order to do so, we
assess the gray matter volumes and the resting state oscillatory
activity in relation to emotion recognition performance. We
also considered whether this association was modulated by
sex and hormonal status. Furthermore, bilateral amygdalae
were defined as regions of interest (ROIs) and its volume,
oscillatory activity and functional connectivity at rest assessed in
relation to the participant’s ability to recognize facial emotional
expressions. We hypothesize that larger amygdalae, along with
higher resting activity or connectivity of these areas are predictive
of better emotion recognition performance. Taking into account
the hormonal status of participants, we hypothesize that any
behavioral differences in emotion recognition performance
between different groups of hormonal contraceptive users
(androgenic vs. anti-androgenic) and non-users can be explained
by differences in the resting brain. In order to clearly
characterize the differences between androgenic and anti-
androgenic contraceptives, men are used as a comparison group.

MATERIALS AND METHODS

Participants
Seventy-two healthy young participants (mean age:
25.34 ± 6.35 years). 20 men (mean age: 28.35 ± 8.83 years),
20 women with natural menstrual cycle (mean age:
25.95 ± 6.10 years) and 32 hormonal contraceptive users
(mean age: 23.09 ± 3.25 years) took part in this study. The
hormonal contraceptive group can be divided into 16 androgenic
users (mean age: 24.56 ± 3.03 years) and 16 anti-androgenic
users (mean age: 21.63 ± 2.83 years). All participants were
white Caucasian and college students or employees at university.
Naturally cycling women had a regular menstrual cycle with
a mean duration of 29.08 days (SD = 1.56 days). Within the
natural cycling (NC) group, only participants who had not
been using any hormonal contraceptives or intrauterine device
for the past 6 months were included. Of the 32 hormonal
contraceptive users, 16 were taking older generation hormonal
contraceptives containing androgenic progestins (Desogestrel,
Levonorgestrel or Gestoden) and 16 were taking newer
generation hormonal contraceptives containing anti-androgenic
progestins (Drospirenone, Chlormadinone Acetate, Dienogest).
Within the androgenic oral contraceptive (OC) and anti-
androgenic OC group, participants needed be on their
current OC for at least 6 months before start of the study.
All participants gave their signed written consent to participate
in the study. The study was approved by the University of
Salzburg’s ethic committee and conforms to the Code of
Ethics of the World Medical Association (Declaration of
Helsinki). Participants had no psychological, endocrinological or
neurological disorders and did not display any brain structural
abnormalities on structural MRI.
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Behavioral Data Acquisition
In order to assess a trait value of emotion recognition
performance, participants completed three different versions
of an emotion recognition task with approximately 10 days
between the respective sessions. Performance measures were then
averaged across the three test sessions. The order of versions
across test sessions was counterbalanced. During each session,
participants viewed 60 faces from the FACES database1 on a
computer screen, 10 each displaying either a neutral expression
or happiness, sadness, anger, fear or disgust (see Figure 1 for
example faces). The order of emotions was randomized during
each session. Participants had 4 s to rate the emotional expression
of each face as neutral, happy, sad, angry, fearful or disgusted by
pressing the, respectively, marked keys on a computer keyboard.
Mean reaction times (RT) and accuracy were recorded for each
emotion. The inter-stimulus-interval was 500 ms.

In order to control for potential hormonal influences
on emotion recognition performance, hormonal status of
the participating women was counterbalanced across test
sessions. Naturally cycling women completed the three sessions
during the following phases of their menstrual cycle: early
follicular/menstrual phase (cycle days 1–5; low estradiol and
progesterone), pre-ovulatory phase (1–3 days before ovulation;
high estradiol), mid-luteal phase (4–10 days past ovulation; high
estradiol and progesterone). Ovulation was assumed 14 days
before the onset of the next period as expected by participants’
self-reports of cycle length and onset of the last period and was
confirmed by commercial ovulation tests. The menses session
on average took place on day 5 (SD = 2.92), the ovulation
session on average took place on day 15 (SD = 2.34), the luteal
session on average took place on day 23 (SD = 4.70). Cycle
phases were confirmed by the assessment of the sex hormones
from saliva samples using DeMediTec ELISA kits for estradiol,
progesterone and testosterone, as reported in Pletzer et al. (2016).
Two naturally cycling women were excluded due to a mismatch

1http://faces.mpib-berlin.mpg.de/

between the expected and the actual cycle phase. Hormonal
contraceptive users completed one test session during the active
pill phase (hormone containing pills) and one test session during
the placebo phase (placebo pills or no pills). The third test session
was scheduled randomly either in the active pill or placebo phase.

Behavioral Analyses
In order to explore whether the hormonal status was predictive
of emotion recognition performance we investigated menstrual
cycle phase and oral contraceptive pill effects through linear
mixed models in R version 3.6.1.2 (R Core Team, 2019) with
nlme (Pinheiro et al., 2014) and multcomp (Hothorn et al.,
2008) packages. Using performance as dependent variable and
participant number (PNr) as random effect, for naturally cycling
women cycle phase and session number were used as fixed
effects (independent variables): e.g., RT ∼ 1|PNr + cycle
phase + session. For pill users, pill phase, pill type and its
interactive effect alongside the session number were used as
the independent variables: e.g., RT ∼ 1|PNr + pill phase∗pill
type + session. We then address whether the groups (men,
naturally cycling women, A-OC women and AA-OC women)
differed from each other in emotion recognition performance
using group and session number as fixed effects, and participant
number as random effect: e.g., RT∼ 1|PNr+ group+ session. In
all the aforementioned cases, we accounted for multiple testing by
first, FDR-correcting for the 5 emotions (anger, sadness, disgust,
fear, happiness), and second, conducting Tukey-corrected all-
pairwise comparisons between the different levels of the factors
cycle phase, session and group.

MRI Data Acquisition
Depending on the group participants were assigned to, they
were scanned during one, two or all three test sessions, although
only one scan is relevant to the current study. Of the 72
participants, two participants did not complete all planned

2https://www.R-project.org/

FIGURE 1 | Emotion recognition task. Three different versions were performed in each correspondent session. During each session, participants viewed 60 faces
from the FACES database (http://faces.mpib-berlin.mpg.de/), 10 for each emotion: anger, sadness, happiness, disgust, fear or neutral.
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scans and were therefore excluded from further analysis. Brain
images from one male participant were not included due to
bad quality, resulting in a final sample of 69 participants
(19 men, 18 women with a natural menstrual cycle and 32
hormonal contraceptive users). Men were scanned during one
visit only. Naturally cycling women were scanned during their
menses, pre-ovulatory and luteal cycle phase. Women using
oral contraceptives were scanned during pill intake and during
pill pause.

However, changes in brain structure and resting brain activity
related to cycle phase or pill phase were described elsewhere
(Pletzer et al., 2015, 2016) and are not within the scope of
the current manuscript. Therefore, only the menses scan from
naturally cycling women, and the active pill scan from oral
contraceptive users were used for the analyses. Given that oral
contraceptives use downregulates the hypothalamic–pituitary–
gonadal axis, decreasing the endogenous ovarian hormones
production to levels comparable to those observed in naturally
cycling women during menses, the menses session of naturally
cycling women was chosen as the most comparable in terms of
endogenous hormone levels.

Functional and high resolution structural images were
acquired on a Siemens Magnetom TIM Trio 3 Tesla scanner
(Siemens Healthcare) at the Christian Doppler Klinik (Salzburg,
Austria). For resting state a T2-weighted gradient echo planar
(EPI) sequence with 36 transversal slices orientated parallel to the
AC-PC line (whole-brain coverage, TE = 30 ms, TR = 2,250 ms,
flip angle 70◦, slice thickness 3.0 mm, matrix 192 × 192, FOV
192 mm, in-plane resolution 2.6 mm × 2.6 mm). Participants
were instructed to close their eyes, relax and let their mind flow.
For structural images we acquired a T1-weigthed 3D MPRAGE
sequence of 5 min 58 s (160 sagital slices, slice thickness = 1 mm,
TE 291 ms, TR 2,300 ms, TI delay 900 ms, FA 9◦, FOV
256 mm× 256 mm).

MRI Data Analysis
Preprocessing of Structural Images
In order to analyze the structural data, we performed voxel-
based morphometry (VBM) using the CAT12 toolbox3 of the
SPM12 software4 (Ashburner and Friston, 2000). During this
procedure, scans are corrected for bias-field inhomogeneities,
spatially registered to an anatomical template, and each voxel
is classified as gray matter, white matter or cerebrospinal fluid,
accounting for partial volume effects. CAT12 segmentation was
applied through default options, including affine registration to
SPM12 tissue probability maps and European brain templates,
light affine preprocessing and moderate (0.5) strength of local
adaptive segmentation, skull stripping and final clean-up for
segmentation. Spatial normalization to the MNI template was
used to correct intra-subject bias, and non-linear normalization
parameters to control for inter-subject variability (Luders et al.,
2004). For smoothing, we used an 8 mm full width at half
maximum Gaussian kernel.

3http://dbm.neuro.uni-jena.de/vbm/
4http://www.fil.ion.ucl.ac.uk/spm/

Preprocessing of Functional Images
In order to pre-process the functional images, we first applied a
3d-despiking as implemented in AFNI5, and then the standard
procedures and templates from SPM12 including realignment
and unwarping of the functional images using the fieldmap,
co-registration of the functional images to the segmented
structural images, normalization of functional images using
the parameters as estimated by CAT12, and spatial smoothing
using a 6 mm kernel. Finally, we perform ICA-AROMA non-
aggressive removal of artifactual components on the resulting
images (Pruim et al., 2015).

Calculation of ALFF Maps
In order to assess how strongly the BOLD- signal fluctuates, and
as a measure of spontaneous neuronal activity, the amplitude
of low-frequency fluctuations (ALFF) was calculated using the
DPABI toolbox (Yan et al., 2016). In order to do so, the signal was
first filtered (bandpass, 0.01–0.08 Hz) to remove effects of very-
low-frequency drift and high frequency noise as caused e.g., by
respiratory and heart rhythms. Then, ALFF maps were calculated
as the average square root of the power spectrum within this
range of frequencies.

ROI Analyses
In a first step, we focused on the amygdala as a region of interest
(ROI). Masks were constructed for the left and right amygdala via
the wfu-pickatlas toolbox, using the Neuromorphometrics atlas.
Gray matter (GM) volumes from the left and right amygdala were
extracted using the get_totals script by G. Ridgeway6. ALFF in the
left and right amygdala was extracted from a one-sample t-test
over all subjects using eigenvalues. In order to address whether
left and right amygdala volumes, as well as left and right amygdala
ALFF were predictive of emotion recognition performance and
whether this association was modulated by hormonal status, we
ran linear models in R 3.6.1. Each emotion was explored using
RT/Accuracy as dependent variable and GM volume/ALFF as
well as its interaction with group as independent variable (e.g., RT
∼ GM∗Group, Acc ∼ ALFF∗Group). We accounted for multiple
testing by FDR-correcting for the 5 emotions (anger, sadness,
disgust, fear, happiness). If a significant interaction between
performance and group was observed, correlation (Pearson’s r)
of performance with GM/ALFF was calculated for each group.

Calculation of Seed-Based Connectivity Maps
In order to investigate the connectivity of each of the left and
right amygdala to the rest of the brain, we assessed seed-to-
voxel connectivity using the CONN-toolbox7 (Whitfield-Gabrieli
and Nieto-Castanon, 2012). For each subject we calculated
connectivity maps through standard procedures and templates,
using 6 movement parameters as well as 5 white matter and
cerebrospinal fluid components as regressors in a first-level
analysis and a band-pass filter of 0.008 to 0.09 Hz.

5https://afni.nimh.nih.gov/
6http://www0.cs.ucl.ac.uk/staff/gridgway/vbm/get_totals.m
7http://www.nitrc.org/projects/conn
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Whole Brain Analyses
In a second step, we used SPM second level analyses at
the whole brain level to assess whether emotion recognition
performance related to gray matter volumes or ALFF outside the
amygdala on the one hand, and whether emotion recognition
performance related to amygdala connectivity on the other
hand. To that end, and separately for each emotion, we
performed full factorial models on modulated GM maps,
ALFF maps and connectivity maps, using either emotion
recognition RT or emotion recognition accuracy as regressors
and modeling their interaction with group. If a significant
interaction between performance and group was observed, brain
parameters were extracted from significant clusters and their
correlation (Pearson’s r) with performance explored for each
group. We also explored whether accounting for age via partial
correlations affected any correlation coefficients. However, due
to the age-homogeneity of the sample, this was not the case.
Accordingly, age was not considered further in the analyses. In
order to account for multiple testing, the uncorrected p-value
threshold was divided by the number of emotions (5) and
therefore set to p = 0.0002. Results are reported when Family-
Wise Error (FWE) corrected p < 0.05.

RESULTS

Behavior
Within the naturally cycling group of women (NC), there was
no cycle phase effect on either emotion recognition reaction
time (RT) or emotion recognition accuracy for any of the
emotions (all F2,31 < 2.15, pFDR > 0.05. For women on oral
contraceptives (OC) there were no significant effects of the pill
phase (all F1,46 < 5.10, pFDR > 0.05), the pill type (A or AA) (all
F1,27 < 6.10, pFDR > 0.05) or their interaction (all F1,46 < 4.40,
pFDR > 0.05) on either emotion recognition RT or emotion
recognition accuracy. When considering the whole sample, there
were no differences in performance (RT or accuracy) between the
groups for any of the emotions (all F3,65 < 3.35, pFDR > 0.05).
Emotion recognition RT and accuracy on the different emotions
for the four groups can be found in Tables 1, 2.

The number of sessions had an effect on RT for anger
(F2,133 = 7.78, pFDR = 0.003), fear (F2,133 = 3.78, pFDR = 0.04),
and disgust (F2,133 = 4.70, pFDR = 0.03). For these emotions
participants were faster during the second and third session than
the first session, irrespective of the group (SE < 0.15, |z| > 2.3,
ptukey < 0.05). The number of sessions also had an effect on the
accuracy for sadness (F2,133 = 7.04, pFDR = 0.006). Participants
were more accurate during the second and third session than
the first session, irrespective of the group (SE < 0.14, |z| > 2.5,
ptukey < 0.03).

ROI-Based Analysis
In order to address, whether left and right amygdala volumes,
as well as left and right amygdala ALFF were predictive of
emotion recognition performance and whether this association
was modulated by hormonal status, we ran linear models with
performance as dependent variable and GM volume/ALFF as

well as its interaction with group as fixed effects: e.g., RT
∼ GM∗Group. Here, we also accounted for multiple testing
by first, FDR-correcting for the 5 emotions (anger, sadness,
disgust, fear or happiness), and second, conducting Tukey-
corrected all-pairwise comparisons between the different levels
of group.

Gray Matter Volumes
Neither left nor right amygdala volumes were predictive of
either emotion recognition reaction time or emotion recognition
accuracy (all F3,61 < 3.00, pFDR > 0.05) and no interactions with
group were observed (all F3,61 < 2.18, pFDR > 0.05).

ALFF
The ALFF of the left amygdala showed a trend interactive effect
with group on the RT for anger (F3,60 = 3.58, p = 0.018),
however, it did not survive the multiple comparison correction
(pFDR = 0.09). ALFF and RT were found to be moderately
positively correlated for women on A-OC (r14 = 0.50; Figure 2).
The higher the ALFF in the left amygdala, the slower anger
recognition in women using A-OC.

No further main effects or interaction with group was
observed for left nor right amygdala ALFF on emotion
recognition RT (all F3,61 < 3.58, pFDR > 0.05).

Neither left nor right amygdala ALFF were predictive of
emotion recognition accuracy and no interactions with group
were observed (all F3,60 < 2.90, pFDR > 0.05).

TABLE 1 | Reaction time for emotion recognition.

Group Session Angry Sad Fear Happy Disgust

Men 1 1,960.68
(317.08)

1,993.27
(445.51)

2,328.84
(487.99)

1,303.05
(170.46)

2,073.35
(522.52)

2 1,686.76
(370.36)*

1,875.31
(386.45)

2,078.09
(567.13)*

1,278.01
(268.55)

1,920.69
(480.46)*

3 1,713.39
(282.43)*

1,952.4
(401.38)

2,021.63
(500.02)*

1,272.04
(167.5)

1,832.67
(434.06)*

NC women 1 1,677.46
(306.76)

1,846.7
(414.7)

1,991.86
(395.68)

1,229.62
(238.71)

1,820.05
(471.46)

2 1,615.58
(221.99)*

1,890.15
(382.19)

1,993.44
(484.65)*

1,147.72
(211.22)

1,713.28
(391.88)*

3 1,566.16
(348.84)*

1,873.44
(362.66)

1,955.08
(441.67)*

1,221.95
(205.67)

1,787.83
(308.96)*

A-OC women 1 1,709.23
(304.54)

1,900.21
(498.44)

2,010.89
(519.72)

1,203.37
(241.76)

1,671.62
(257.6)

2 1,618.56
(300.64)*

1,810.91
(453.7)

1,858.49
(356.62)*

1,108.9
(219.32)

1,585.55
(298.76)*

3 1,637.84
(384.47)*

1,773.26
348.54)

1,834.54
(447)*

1,152.74
(276.16)

1,622.3
(287.85)*

AA-OC women 1 1,834.08
(400.94)

1,982.83
(439.01)

2,255.06
(611.17)

1,244
(192.94)

1,887.47
(323.63)

2 1,669.09
(237.88)*

1,989.74
449.24)

2,014.23
(390.7)*

1,207.06
(171.7)

1,817.52
(303.47)*

3 1,733.11
(231.83)*

1,889.88
(349.86)

2,120.76
(446.16)*

1,175.14
(141.91)

1,761.33
(200.02)*

Mean in milliseconds (SD) *p < 0.05 for the second and third session compared
to the first one.
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TABLE 2 | Accuracy for emotion recognition.

Group Session Angry Sad Fear Happy Disgust

Men 1 80.00
(17)

50.00
(24.49)

56.32
(27.53)

98.95
(3.15)

72.11
(17.18)

2 87.89
(12.73)

64.21
(19.53)*

70.00
(30.55)

98.42
(5.01)

76.84
(21.1)

3 88.95
(15.6)

52.63
(25.79)*

67.37
(25.79)

97.89
(4.19)

75.26
(20.1)

NC women 1 88.89
(12.78)

55.56
(19.77)

78.33
(14.65)

100
(0)

82.78
(14.47)

2 89.44
(9.38)

66.67
(27.65)*

81.67
(22.03)

99.44
(2.36)

73.33
(18.15)

3 87.06
(12.13)

61.76
(28.34)*

78.24
(28.34)

97.65
(5.62)

78.82
(18.67)

A-OC women 1 88.13
(14.71)

51.25
(21.25)

76.25
(22.17)

98.75
(3.42)

72.50
(22.06)

2 90.67
(12.23)

63.33
(23.5)*

83.26
(14.44)

98.67
(3.52)

76.00
(21.31)

3 92.67
(10.33)

67.67
(19.17)*

88.00
(15.68)

100
(0)

77.67
(16.57)

AA-OC women 1 89.38
(10.63)

63.75
(17.08)

78.75
(21.56)

98.13
(4.03)

78.75
(17.84)

2 87.50
(14.38)

71.25
(16.28)*

72.50
(22.66)

98.13
(4.03)

86.25
(14.55)

3 93.75
(9.75)

71.25
(20.62)*

80.00
(16.73)

98.75
(3.42)

87.12
(16.01)

Mean percentage hits (SD) *p < 0.05 for the second and third session compared
to the first one.

Whole Brain Analyses
No main effects of performance were observed for the gray
matter volume or ALFF. No interaction of group by performance
was found for the gray matter volume. Regarding the ALFF,
we observed a significant group∗accuracy interaction in the left
posterior cingulate gyrus (PCC) [0 –28 34], k = 48 voxels,
F = 13.59, pFWE < 0.001, for the emotion of disgust. ALFF
and accuracy were found to be moderately negatively correlated

for women on AA-OC (r14 = −0.53; Figure 3). The lower the
ALFF in the left PCC, the higher disgust recognition accuracy in
women using AA-OC.

We also observed a significant group∗accuracy interaction for
the ALFF in the right superior parietal lobe (SPL) [33 –43 64],
k = 20 voxels, F = 4.09, pFWE = 0.02, for the emotion of sadness.
ALFF and accuracy were found to be positively correlated for
naturally cycling women (r16 = 0.69) whereas it was negatively
correlated for women on AA-OC (r14 =−0.82) (Figure 4).

The lower the ALFF in the right SPL, the lower sadness
recognition accuracy in naturally cycling women, while the
highest sadness recognition accuracy in women using AA-OC.

No interaction of group∗RT of any emotion was
observed for the ALFF.

Amygdala Connectivity
For the emotion of fear, we observed a significant group∗RT
interaction for the connectivity between the left amygdala and
the left anterior cingulate cortex (ACC) [−3 29 −8], k = 18
voxels, F = 12.35, pFWE = 0.02. Connectivity strength and RT
were found to be positively correlated for men (r17 = 0.82),
whereas it was negatively correlated for naturally cycling women
(r16 = −0.61) (Figure 5). The lower the left amygdala-ACC
connectivity strength, the faster fear recognition in men, while
the slower fear recognition in naturally cycling women.

Also for the emotion of fear, we observed a significant
group∗accuracy interaction for the connectivity between the right
amygdala and the left middle frontal gyrus (MFG) [−33 41 19],
k = 15 voxels, F = 10.61, pFWE = 0.04. Connectivity strength
and accuracy were found to be negatively correlated for naturally
cycling women (r16 =−0.75), whereas it was positively correlated
for women on AA-OC (r14 = 0.82) (Figure 6). The lower the
right amygdala-left MFG connectivity strength, the higher fear
recognition accuracy in naturally cycling women, while the lower
fear recognition accuracy in women using AA-OC.

In summary, we found the ALFF in the left amygdala, the
left PCC and the right SPL related to anger, disgust and sadness

FIGURE 2 | Relationship between the amplitude of low-frequency fluctuations (ALFF) in the left amygdala and reaction time (RT) for angry faces by group. ALFF and
RT were found to be moderately positively correlated for women on A-OC. *p < 0.05.
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FIGURE 3 | Relationship between the amplitude of low-frequency fluctuations (ALFF) in the left posterior cingulate gyrus and accuracy for disgust faces by group.
ALFF and accuracy were found to be moderately negatively correlated for women on AA-OC. *p < 0.05.

recognition performance (respectively), depending on hormonal
status in women (Figure 7). Regarding the connectivity from the
amygdalae, the connectivity strength to ACC and left MFG was
related to fear recognition performance, depending on sex and
hormonal status (Figure 7).

DISCUSSION

The current study set out to investigate whether hormonal
contraceptive effects on emotion recognition performance
were related to gray matter volume, oscillatory activity and
connectivity of emotion-related brain areas at rest. Notably, no
behavioral differences according to sex, menstrual cycle phase
or hormonal contraceptive use emerged. These results are in
accordance with previous studies who did not find a link between
emotion recognition performance and hormonal status or pill
use (Sundström Poromaa and Gingnell, 2014; Radke and Derntl,
2016; Shirazi et al., 2020), but differ from other studies who did
find an effect (Conway et al., 2007; Derntl et al., 2008a; Hamstra
et al., 2014; Pahnke et al., 2019; Gurvich et al., 2020). Habituation
over sessions could be a possible explanation for the lack of
differences between different genders and pill type. Participants
recognized anger, fear and disgust faster during the second and
third session and were more accurate in their identification of
sadness during the second and third session compared to the

first session, which could explain the similar emotion recognition
performance in the combined data.

Regarding the question, whether certain characteristics of the
resting brain were predictive of participants ability to recognize
five basic emotions (anger, fear, sadness, happiness, disgust),
while controlling for participant’s sex and hormonal status, no
general pattern of emotion recognition predictability emerged.
Instead, results were strongly dependent on (a) the respective
emotion and (b) the hormonal status of participants. Thus,
contrary to our predictions, resting brain characteristics did
not mediate oral contraceptive effects on performance, but oral
contraceptive use emerged as a moderator of brain-behavioral
associations. This suggests that depending on participants’
hormonal status, certain brain areas tune to the recognition
of specific emotions. In the following, we will first discuss the
differences that emerged between men and naturally cycling
women, and then discuss the differences between naturally
cycling women and OC users.

Sex differences did emerge in the prediction of emotion
recognition performance by the left amygdala amplitude of
low frequency oscillations (ALFF) for anger, as well as left
and right amygdala connectivity for fear. The recognition of
anger was faster in men with higher ALFF, but slower in
naturally cycling women with higher ALFF. This suggests that a
stronger oscillatory activity of the amygdala at rest facilitates the
recognition of anger in men, but impairs the recognition of anger
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FIGURE 4 | Relationship between the amplitude of low-frequency fluctuations (ALFF) in the in the right superior parietal lobe and accuracy of sadness by group.
ALFF and accuracy were found to be positively correlated for naturally cycling women, whereas they were negatively correlated for women on AA-OC. **p < 0.01,
***p < 0.001.

in naturally cycling women. Repple et al. (2018) show that men
have a stronger response in the amygdala after provocation, and
that this response correlated with trait anger. They also showed a
positive association between the anterior cingulate cortex activity
when provoked and a more aggressive response.

The connectivity between the amygdala and anterior cingulate
cortex (ACC) is involved in aversive learning and important for
threatening stimuli processing (Klavir et al., 2013). Inhibitory
functional coupling during threatening stimuli processing has
been shown (Toyoda et al., 2011) and in rodents inactivation
of the ACC inputs to the amygdala lead to an enhanced fear
response (Jhang et al., 2018). Projections from the ACC might
control anxiety in threatening situations (Jhang et al., 2018),
explaining the differential connectivity between the amygdala
and ACC found in this manuscript. The more strongly the left
amygdala recruits the ACC, the slower men are in recognizing
fear, but the faster are naturally cycling women. These results
suggest that a stronger connectivity of the amygdala at rest
impairs the recognition of fear in men, but facilitates the
recognition of fear in women. An interesting finding of Kogler
et al. (2016) shows that cortisol levels are negatively associated
with resting state functional connectivity of the amygdala with
the ACC in women, and positively associated in men. Higher
levels of cortisol can lower connectivity in women, hence making

their response slower, while the opposite occurs for men with
high cortisol levels. This is also of interest in the light of the
findings of Bouma et al. (2009) who showed reduced cortisol
reaction following hormonal contraceptive use.

Apart from that, the coupling of the amygdala and ACC
during face processing shifts from positive to negative over
age (Kujawa et al., 2016). Young people display greater ACC
activation to emotional faces due to inhibitory effects on
amygdala activation (Kujawa et al., 2016). Although in the
present sample, brain behavior association were not modulated
by age and this does not explain the faster recognition by
women, where the opposite effect was found, it could be that
such an effect appears more strongly in adult men than women.
Another possible explanation is that women use the connection
between the ACC and the amygdala to recognize fear faster,
because a fearful face is indicative of a threat and elicits a fear
response. Rahman et al. (2004) reported a faster response to
facial emotional stimuli for women compared to men. They
suggest that the faster response in women is a by-product of face
recognition, which has a faster response to non-congruent gender
faces than men do.

In addition, the more strongly the right amygdala recruits
the left middle frontal gyrus (MFG), the more accurate men
are in recognizing fear, but the worse naturally cycling women
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FIGURE 5 | Relationship between the left amygdala-anterior cingulate cortex connectivity and reaction time (RT) for fearful faces by group. Connectivity strength and
RT were found to be positively correlated for men, whereas they were negatively correlated for naturally cycling women. **p < 0.01, ***p < 0.001.

recognize fear. Studies have shown that the MFG is involved
in fearful engagement (Thielscher and Pessoa, 2007), and that
signaling from the middle frontal gyrus to the amygdala is
suppressed in response to emotional distractors (Yamasaki et al.,
2002). Since the MFG inhibits the right amygdala, it is possible
that the less inhibition there is of the amygdala, the better
men recognize fear.

Regarding OC effects the pattern of results was opposite as
expected. While we hypothesized a more masculinized pattern
of brain-behavior associations in androgenic OC users, but a
feminized pattern in anti-androgenic OC users, the opposite
pattern emerged. Anti-androgenic OC-users stood out in that
they showed strong brain-behavior associations, usually in the
opposite direction as naturally cycling women, while androgenic
OC-users showed a pattern similar to, but weaker, than naturally
cycling women. This was observed in (i) the ALFF of the left
amygdala, (ii) the ALFF of the posterior cingulate gyrus (PCC),
(iii) the ALFF of the superior parietal lobe (SPL), and (iv) the
connectivity between right amygdala and left MFG.

For most of the sample, higher ALFF in the PCC and SPL
was associated with higher accuracy in recognizing disgust and
sadness respectively. On the contrary, in anti-androgenic OC-
users, emotion recognition accuracy dropped with higher ALFF

in these areas. Regarding the left amygdala, anti-androgenic OC
users showed a similar increase in anger recognition speed as men
with higher oscillatory activity. This is of interest in relation to
possible effects of hormonal contraceptive use on adverse mood
symptoms and related disorders (Cheslack-Postava et al., 2015;
Skovlund et al., 2016; de Wit et al., 2020). The cingulate cortex
is known to play a role in emotional processing (Vogt, 2005),
and activity in its posterior section is higher when observing
disgusting stimuli compared to neutral stimuli (Benuzzi et al.,
2008). Activation in PCC in a face-related has been related to
both estradiol and testosterone levels in NC women (Rupp et al.,
2009), which may explain its modulation by OCs with estrogenic,
but anti-androgenic activity. As for the SPL, previous research
has shown that the display of sadness leads to increased activity
in the left SPL (McLellan et al., 2012). Functional resting-state
connectivity between the right basolateral amygdala and the SPL
are associated with the personality trait sadness (Deris et al.,
2017). Finally, regarding the connectivity of the right amygdala
and left MFG, the MFG seems to suppress emotional stimuli
(Yamasaki et al., 2002) and inhibits the right amygdala, explaining
the better fear recognition in anti-androgenic oral contraceptives.

While these results are somewhat surprising given that
masculinizing effects were expected in androgenic OC users
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FIGURE 6 | Relationship between the right amygdala-left middle frontal gyrus connectivity and accuracy for fearful faces by group. Connectivity strength and
accuracy were found to be negatively correlated for naturally cycling women, whereas they were positively correlated for women on anti-androgenic oral
contraceptives. ***p < 0.001.

FIGURE 7 | Summary of the brain areas that showed a differential relationship between ALFF or connectivity strength and emotion recognition performance by
hormonal status in women (A) and sex (B). (A) Areas modulated by hormonal status: ALFF and RT for anger were found to be moderately positively correlated for
women on A-OC in the left amygdala (purple). ALFF and accuracy for disgust were found to be moderately negatively correlated for women on AA-OC in the left
PCC (green). ALFF and accuracy for sadness were found to be positively correlated for naturally cycling women, whereas they were negatively correlated for women
on AA-OC in the right SPL (orange). Connectivity strength between right amygdala-left MFG (red) and accuracy for fear were found to be negatively correlated for
naturally cycling women, whereas they were positively correlated for women on AA-OC. (B) Areas modulated by sex: Connectivity strength between the left
amygdala-ACC (blue) and RT for fear were found to be positively correlated for men, whereas they were negatively correlated for naturally cycling women.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 March 2022 | Volume 16 | Article 775796118

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-775796 March 8, 2022 Time: 14:51 # 12

Menting-Henry et al. Oral Contraceptives and Emotion Recognition

due to the binding affinity of androgenic progestins to the
androgen receptor, there are two possible explanations for this
pattern. First, multiple mechanisms might facilitate androgenic
actions in OC users, some of which are also present in anti-
androgenic OC users. For instance, OC-use reduces the levels
of progesterone, which has a higher affinity for the enzyme
5α-dehydrogenase compared to testosterone (Wright et al., 1983).
Thus, in OC-users more testosterone can be converted into
the physiologically more active dihydrotestosterone, which has
a higher binding affinity for the androgen receptor. Second, it
is possible that these differences between groups are not due
to activational effects of sex hormones in adulthood, but the
result of organizational effects of sex hormones. Anti-androgenic
progestins are often prescribed in women who present with at
least slight androgenic symptoms, e.g., acne or hirsutism (Fuchs
et al., 2019). It is thus possible that our groups were subject to a
selection bias and women in the group of anti-androgenic OC-
users either had higher androgen levels until they started taking
their contraceptive or have a higher sensitivity to androgens.

Despite the extended use of OCs, only few studies have
investigated their effects on brain activity and connectivity
of emotion-related brain regions. Relatedly, the impact of
OCs use on psychological well-being and emotional regulation,
and a mechanistic approach on how this effects may be
exerted is lacking. Understanding the hormonal contraceptive
effects on emotion recognition performance related to brain
activity and connectivity at rest provide some groundwork
for future studies. In the present study, we showed that the
oscillatory activity in emotion-related brain areas, such as
PCC, SPL and amygdala were indeed predictive of participant’s
ability to recognize facial emotional expressions, particularly
the emotions anger, disgust, fear and sadness (Figure 7).
Furthermore, these results were dependent on the use and type
of COCs. Amygdalae connectivity were also predictive of fear
recognition performance.
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Major depression is a significant medical issue impacting millions of individuals
worldwide. Identifying factors contributing to its manifestation has been a subject
of intense investigation for decades and several targets have emerged including
sex hormones and the immune system. Indeed, an extensive body of literature has
demonstrated that sex hormones play a critical role in modulating brain function and
impacting mental health, especially among female organisms. Emerging findings also
indicate an inflammatory etiology of major depression, revealing new opportunities
to supplement, or even supersede, currently available pharmacological interventions
in some patient populations. Given the established sex differences in immunity and
the profound impact of fluctuations of sex hormone levels on the immune system
within the female, interrogating how the endocrine, nervous, and immune systems
converge to impact women’s mental health is warranted. Here, we review the impacts
of endogenous estrogens as well as exogenously administered estrogen-containing
therapies on affect and immunity and discuss these observations in the context of
distinct reproductive milestones across the female lifespan. A theoretical framework
and important considerations for additional study in regards to mental health and major
depression are provided.

Keywords: estrogen, sex differences, major depressive disorder, peripheral immune system, mood

INTRODUCTION

Mood disorders, including major depressive disorder (MDD), are a significant global health issue
(Krishnan and Nestler, 2008). Worldwide lifetime prevalence of mood disorders has been reported
to be nearly 10% (Steel et al., 2014), and in 2010, the nearly 300 million global cases of MDD
accounted for 8.2% of all disease-induced years lived with disability (Ferrari et al., 2013a). In the US
alone, one in six adults will receive an MDD diagnosis in their lifetime and more than 13 million

Abbreviations: 5-HT, serotonin; E2, estradiol; ABC, age-associated B cell; CNS, central nervous system; ER, estrogen
receptor; HRT, hormone replacement therapy; IL, interleukin; Ig, Immunoglobulin; LPS, lipopolysaccharide; MDD, major
depressive disorder; NK, natural killer (cell); rTMS, repetitive transcranial magnetic stimulation; SSRI, selective serotonin
reuptake inhibitor; TNF, tumor necrosis factor.
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Americans experience a major depressive episode with severe
impairment each year (Kessler et al., 2005; Ferrari et al.,
2013b; Brody et al., 2018). Annual costs associated with this
condition are estimated at ∼$210 billion (Greenberg et al.,
2015). MDD is generally considered a brain-targeted disease
associated with persistent sadness, guilt, anhedonia (reduced
interest in rewarding stimuli), despair, and in some cases, suicide
(Krishnan and Nestler, 2008). Due to a happenstance discovery of
psychiatric patients showing improved mood when treated with
monoamine oxidase inhibitors (Schildkraut, 1965), MDD has
historically been associated with deficiencies in serotonergic (5-
HT), dopaminergic, and noradrenergic signaling within limbic,
reward, and brainstem structures (Krishnan and Nestler, 2008).
Problematically, available pharmacologic treatments targeting
these presumed dysregulated monoamine systems are associated
with delayed and inadequate symptom alleviation in a large
proportion of patients (Trivedi et al., 2006; Al-Harbi, 2012; Akil
et al., 2018). This led the field to conclude that the pathology
of MDD is more complex than previously appreciated, that the
neurotransmitters thought to underlie MDD-associated brain
pathology may not be the sole contributors to its presentation,
and that the therapeutic interventions targeting these systems will
likely remain insufficient at imparting symptomatic relief.

Emerging data strongly implicate additional mechanisms
in the manifestation of mood disorders. As a result, many
researchers have begun considering biological factors that could
significantly contribute to the development and persistence of
MDD. One of these factors is that of genetic sex and the
accompanying differences in sex hormone secretion across the
lifespan. A substantial amount of research attention has been
paid to the role of sex hormones, especially the steroid hormone
estrogen, in driving development of MDD in women (Wharton
et al., 2012; Eid et al., 2019). In addition to sex hormones,
converging data amassed over the past few decades also support
significant immune contributions to brain function and mood
(Leonard, 2010; Dantzer, 2018). Indeed, it is now accepted
that inflammatory cascades mediated by innate and adaptive
arms of the immune system significantly contribute to MDD, at
least in some patient subsets (Maes, 2011; Wohleb et al., 2016;
Herkenham and Kigar, 2017). Sex differences in the susceptibility
to certain infections, the presence of sex hormone receptors on
immune cells, and shifts in the function of the immune system
during distinct periods of the reproductive lifespan all point to a
critical role of sex hormones in modulating immunity (Pennell
et al., 2012; Klein and Flanagan, 2016).

Given the known sex differences in the prevalence of mood
disorders, emerging support for the immune system’s role in
mediating susceptibility or resilience to psychosocial stress, and
the potentially profound impacts of sex hormones (especially
estrogens) on impacting immunity, the consideration of neuro-
immuno-endocrine interactions in the context of mood and
MDD across the female lifespan, is warranted. Here, we will
review evidence regarding the mood impacts of these factors
individually, describe shifts in immune responses during key
reproductive milestones, highlight a few examples of potential
autoimmune consequences of estrogenic stimulation in females,
and summarize the small but growing collection of findings

exploring the convergence of sex, sex hormones and immune
function in the context of mood and MDD. Finally, we present
important experimental considerations when the convergence of
these factors is investigated.

MANIFESTATION OF DISORDERED
MOOD ACROSS THE FEMALE
LIFESPAN: ROLE FOR ESTROGENS

Women shoulder a disproportionate burden of mood disorders
and the role of estrogen in modulating mood has been well
studied. Estrogens are generally thought to improve mood
in many, but not all, circumstances. Below, we highlight
major observations driving this conclusion. Though a thorough
discussion of this extensive literature is beyond the scope of the
current review, the reader is directed to several excellent reviews
specifically addressing this topic (Wharton et al., 2012; Altemus
et al., 2014; Eid et al., 2019; LeGates et al., 2019).

Sex Differences in Depression
Differences in the prevalence of MDD, phenotypic manifestations
of depression, and the efficacy of antidepressant therapy between
the sexes are well established (Altemus et al., 2014; LeGates et al.,
2019). Rates of MDD are substantially higher among females
compared to males (Weissman and Klerman, 1977), though this
sex difference appears to be critically dependent on age. Prior to
puberty, boys are more likely to have a mood disorder than girls
(Faravelli et al., 2013). This incidence shifts during the pubertal
transition as girls display depression at a rate double that of boys
between the ages of 15 to 19 (Faravelli et al., 2013). MDD is nearly
twice as prevalent in adult women than men, at rates of 10.4
and 5.5%, respectively (Brody et al., 2018). However, following
reproductive senescence during the fifth decade of life, aging
men and women tend to have similar prevalence rates of mood
disorders (Faravelli et al., 2013).

Throughout life, men and women may also differ in their
MDD endophenotypes. Results of several studies, including
the large-scale Sequenced Treatment Alternatives to Relieve
Depression (STAR∗D) trial, indicate that women display higher
rates of atypical and anxious depressive phenotypes. These are
characterized by increased appetite, weight gain, comorbid eating
disorder, rumination, hypersomnia, gastrointestinal complaints,
and a higher rate of past suicide attempts relative to male patients
(Marcus et al., 2008; Shors et al., 2017). Men are more likely
to display comorbid substance use coping strategies and have
higher rates of successful suicide, likely due to their use of
more lethal means (e.g., firearms). Reports of irritability and
the melancholic depressive subtype are similar in both men and
women (Marcus et al., 2008).

Finally, though MDD treatments are available, barriers
to treatment access as well as intervention type playing a
role in the realization of symptom relief (LeGates et al.,
2019) leaves the affective symptoms of many patients poorly
controlled. Indeed, a recent study assessing nearly 250,000
depressed adults noted that only about 30% of MDD patients
obtained pharmacological antidepressant treatment within three
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months of diagnosis (Waitzfelder et al., 2018), and of those,
antidepressant efficacy is often delayed and highly variable
(Trivedi et al., 2006; Al-Harbi, 2012; Akil et al., 2018). Sex
may account for some of this variability as women appear to
experience better symptom remission from selective serotonin
(SSRI) or norepinephrine reuptake inhibitors, while men respond
better when treated with tricyclic antidepressants (LeGates et al.,
2019). Sex differences were not readily observed among adult
patients with refractory bipolar/MDD undergoing repetitive
transcranial magnetic stimulation (Huang et al., 2008). This
observation appears to be age- and hormone status-dependent.
Older women may display a poor response to rTMS (Huang
et al., 2008) or the SSRI, venlafaxine (Thase et al., 2005),
and this effect was reversed by estrogen supplementation.
Sex differences in response to newly developed, fast-acting,
glutamatergic-modulating, antidepressant interventions such as
ketamine, are only beginning to be assessed. Emerging findings
suggests conflicting results. Some groups have reported needing
lower ketamine doses in female rats to impact affective behaviors
under basal conditions while others report that male mice may
be more responsive than females following exposure to stress
(Saland et al., 2017; Okine et al., 2020). This is noteworthy given
the recent Federal Drug Administration approval of nasally-
administered esketamine for MDD patients treatment-resistant
to traditional antidepressant interventions FDA (2019). It is
also important to note that these sex-specific antidepressant
treatment responses could also be explained, at least in part,
by differences in the observed MDD endophenotypes in men
versus women described above; further interrogation of this
possibility is needed.

Hormone Effects on Depression and
Mood During and After the Reproductive
Years in Women
These observations along with the dynamic shifts in reproductive
capacity that take place across the female lifespan implicate
ovarian hormones in modulating mood and mood disorders in
women. Indeed, between 10 and 80% of women experience mood
disruptions that are related to their menstrual cycle, (Baker and
Driver, 2007), and 3-8% of women can experience premenstrual
dysphoric disorder, characterized by extreme premenstrual
anxiety, decreased mood, and irritability (Robakis et al., 2019).
These observations have been reported for the past several
decades in both human and preclinical populations, though
not all studies have consistently found an association between
cycle stage and affect (Moos et al., 1969; Laessle et al., 1990;
Jenkins et al., 2001; D’Souza and Sadananda, 2017; Sundström-
Poromaa, 2018; Zhao et al., 2021). As well, the peripartum period
is associated with dynamic shifts in sex hormone levels, and
one of the most common complications of pregnancy, observed
to impact one in seven mothers, are postpartum mood and
anxiety disorders (Wenzel, 2016; Luca et al., 2019). Among
menopausal women, (Maartens et al., 2002; Bekku et al., 2006;
Gordon et al., 2016; Soares, 2017; Gracia and Freeman, 2018) and
ovariectomized rodents (de Chaves et al., 2009; Li et al., 2014;
Schoenrock et al., 2016), in whom levels of key sex hormones are

substantially lower, increased anxiety and depressive behaviors
have been noted.

Effects of Exogenous Estrogen
Therapies on Mood
Estrogen-containing treatments have been shown to improve
mood or attenuate depressive symptoms in humans (Schmidt
et al., 2000; Soares et al., 2001; Poromaa and Segebladh, 2012;
Maki et al., 2019) and to reverse at least some ovariectomy-
induced pro-depressive changes in rodents (Bernardi et al.,
1989; Galea et al., 2001; Walf and Frye, 2009; Schiller et al.,
2013; Li et al., 2014; Hiroi et al., 2016), suggesting pro-
resilience benefits. Estrogens, especially the most potent naturally
circulating estrogen 17β-estradiol (E2), are known to induce
dendritic spine plasticity and neuronal complexity, facilitate
neurogenesis, regulate brain region volume and activity levels,
and impact key neurotransmitter and growth factor systems
implicated in depression, to name just a few examples (Galea
et al., 2001; Maki and Resnick, 2001; Brinton, 2009; Walf and
Frye, 2009; Wharton et al., 2012; Marrocco and McEwen, 2016;
Engler-Chiurazzi et al., 2017). Yet, not all studies report beneficial
impacts of exogenously administered estrogens on mood. Several
studies have noted increased depression among women taking
hormonal contraceptives (Duke et al., 2007; Skovlund et al., 2016;
de Wit et al., 2020) though collective findings generally suggest
that contraception exerts minimal effects on mood (Robakis et al.,
2019). The realization of neurobiological and behavioral effects of
estrogen-containing treatments depends on a number of factors
including, but not limited to, age of the organism, etiology and
duration of hormone depletion, type of estrogen, treatment route
of administration, treatment regimen, and functional domain
targeted (Engler-Chiurazzi et al., 2017). Consideration of these
factors is of key importance when assessing mood-impacting
effects of this hormone.

EVIDENCE OF IMMUNE IMPACTS ON
THE DEVELOPMENT AND
PERSISTENCE OF DEPRESSION

The immune system supports the body’s response against
infection, injury, and disease. This complex network of
intercommunicating, interactive cells and their secretory factors
coordinates across multiple organs to mount a rapid and
appropriate response to a threat to homeostasis through complex
signaling cascades and activation/regulation sequences; the
reader is directed to several excellent reviews that thoroughly
describe the complexities of this system in detail (Chaplin,
2010; Marshall et al., 2018). Understanding of the complexity
of neuroimmune mechanisms within the central nervous system
(CNS) has grown rapidly in recent years. Although once
considered “immune privileged”, a compelling body of literature
indicates that the CNS and the peripheral immune systems
engage in bidirectional communication, profoundly influencing
one another during homeostasis and in pathological/diseased
states (Lucas et al., 2006; Pavlov et al., 2018), including those
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associated with chronic stress and MDD (Dantzer, 2018).
Microglial cells, the resident immune cells of the CNS, represent a
particularly well-studied neuroimmune cascade mediator. Their
actions as well as the contributions of other key CNS components
(i.e., astrocytes, oligodendrocytes, perivascular macrophages,
neurons, and endothelial cells) to the local neuroinflammatory
cascade in response to CNS perturbation have been extensively
described elsewhere (Ousman and Kubes, 2012; Ransohoff et al.,
2015; Morimoto and Nakajima, 2019). Therefore, we will focus
our discussion on the contributions of peripheral immune
components to mood and MDD.

The peripheral innate immune response is characterized by
rapid and non-specific activation of pattern/danger recognition
receptors on innate immune cells to initiate phagocytosis of
non-self antigens, secrete a variety of signaling factors including
cytokines and chemokines, and/or function as antigen presenting
cells to trigger adaptive immune activation (Chaplin, 2010;
Marshall et al., 2018). Inflammation driven by innate immune
system components, particularly macrophages, in modulating
mood is now well established (Adzic et al., 2018). Chronic
inflammation is implicated in a variety of mood disorders,
leading to the emergence of the “macrophage/monokine theory
of depression” (Dey and Hankey Giblin, 2018). For instance,
depressive phenotypes have been consistently reported both
among patients receiving proinflammatory cytokine treatment
regimens and in preclinical models (Pryce and Fontana, 2017).
As well, elevated levels of circulating cytokines, principally tumor
necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, have been
repeatedly reported among some subsets of depressed clinical
populations (Dowlati et al., 2010; Köhler et al., 2017). Elevated
levels of these inflammatory biomarkers are often associated with
poor responsiveness to 5-HT targeting interventions (Arteaga-
Henríquez et al., 2019), and anti-depressant treatment has
been shown to reduce proinflammatory cytokine levels among
treatment-responders or in preclinical models of immune
challenge (Roumestan et al., 2007; Arteaga-Henríquez et al.,
2019). Finally, compared to placebo, antidepressant treatment
with co-administration of agents of anti-inflammatory action,
such as non-steroidal anti-inflammatory drugs, statins, or
cytokine inhibitors, improved depressive symptoms and MDD
remission rates (Köhler-Forsberg et al., 2019). Mood benefits
among depressed patients were even realized when these
anti-inflammatory agents were administered as monotherapies
(Köhler-Forsberg et al., 2019).

The complement system, an innate Immune arm that
amplifies the recruitment signals initiated by other innate
immune players, labels non-self antigens to facilitate immune-
induced attack on these cells and mitigates the spread of the
infection via membrane dysfunction-induced cell death (Rus
et al., 2005), is also impacted by stress and depression. Indeed,
levels of C3c and C4 complement as well as several other positive
acute phase proteins including α1-antitrypsin and haptoglobin
are elevated in depressed populations, while negative acute phase
proteins like albumin are reduced (Kronfol and House, 1989;
Maes et al., 1992b; Song et al., 1994).

The adaptive immune arm represents a delayed, antigen-
specific response that targets intracellular infection/damage,

amplifies and also resolves inflammatory cascade responses,
and facilitates antigen memory (Chaplin, 2010; Marshall et al.,
2018). Though evidence supporting a role for the peripheral
adaptive immune system in modulating mood was slower to
evolve due in part to the historical perception that lymphocytes
are largely absent from brain parenchyma, T and B cells have
also been implicated in response to CNS injury and disease, in
the control of some normal brain functions and more recently,
in MDD (Maes, 2011; Herkenham and Kigar, 2017; Dantzer,
2018). Indeed, many adaptive immune cells express the cellular
machinery to respond to stimulation by the stress hormone,
cortisol, and elevated cortisol levels, like those associated with a
host of mood disorders, tend to be immunosuppressive (Gruver-
Yates et al., 2014; Kovacs, 2014). Importantly, chronic stress is
known to affect lymphocyte numbers/function in both humans
suffering from mood disorders and in preclinical populations
exposed to stressful conditions (Yin et al., 2000; Domínguez-
Gerpe and Rey-Méndez, 2001; Frick et al., 2009; Scheinert et al.,
2016). Lymphocytes are also profoundly impacted by 5-HT, at
least in the periphery (Herr et al., 2017).

That peripherally derived T cells are now appreciated to be
present in healthy brain parenchyma and can also infiltrate
CNS tissue in response to injury or autoimmune disease has
fostered major interest in the role of antigen-specific adaptive
immunity in normal and abnormal brain function, including
within the context of chronic stress and depression (Fletcher,
2010; Maes, 2011; Filiano et al., 2017; Herkenham and Kigar,
2017; Rayasam et al., 2018). Several seminal observations among
depressed patient populations reported increased numbers of T
helper/inducer cells and shifted ratios of CD4+/CD8+ T cells
(Darko et al., 1988; Schleifer et al., 1989; Maes et al., 1990).
Further, studies in lymphocyte-deficient mice (nude, scid or
Rag−/− mice) have noted deficits in adaptability to stress and
reconstitution with lymphocyte populations generally implicated
the absence of T cells in mediating these deficits in a subset-
specific way (Cohen et al., 2006; Beurel et al., 2013; Rattazzi et al.,
2013; Brachman et al., 2015; Clark et al., 2016). For example,
(primarily) T lymphocytes from stress-exposed mice can modify
the behavioral response to stress when adoptively transferred
into lymphocyte deficient subjects (Brachman et al., 2015). T
cells also robustly respond to glutamatergic signaling (Ganor and
Levite, 2012), a neurotransmitter system that is emerging as a key
contributor to MDD and a principle target for novel, fast acting
antidepressants (Wang Y. T. et al., 2021).

The B cell component of the adaptive immune system may
also play an important role in modulating both normal CNS
function as well as the response to stress. Historically there
were inconsistencies with regards to whether B cells were
changed in depressed populations. However, methodological
advances in measurement of these populations has revealed
blood B cell number alterations in the context of mood
disorders, including chronic academic stress, MDD, bipolar
disorder, and panic disorder (Darko et al., 1988; Maes et al.,
1992b; Schleifer et al., 2002; Robertson et al., 2005; Pavón
et al., 2006; McGregor et al., 2016; Ahmetspahic et al., 2018).
Further, some studies have reported B cell responsiveness among
MDD patients given monoamine-modulating antidepressant
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interventions (Hernandez et al., 2010; Ahmetspahic et al., 2018).
These observations have been successfully recapitulated in a
recently published preclinical study leveraging the chronic social
defeat stress model (Lynall et al., 2021). Indeed, pioneering
work from the Clathworhy group (Lynall et al., 2021) reported
that chronic stress increased splenic B cell activation and
increased meningeal monocytes, while meningeal B cell counts
were reduced. From a mechanistic perspective, like T cells, B
cells have been shown to express 5-HT receptors and the 5-
HT transporter, indicating that these cells may even take up
this key MDD-associated neurotransmitter and transport it to
distant sites (Meredith et al., 2005; Herr et al., 2017). Whether
the brain is one of these is yet to be determined. As well,
growth factors, such as brain derived neurotrophic factor, have
been implicated in the manifestation of MDD (Yang et al.,
2020), and their stimulation is critical for B cell development
(Schuhmann et al., 2005; Fauchais et al., 2008). Given the crucial
role of B cells in antigen presentation to T cells, their ability to
facilitate T cell activation, and emerging understanding of their
immunoregulatory impacts, additional exploration of their role
in the response to stress is warranted.

Key functional activities of B cells, such as antibody secretion,
may also be altered by stress in an antibody subclass-specific
way (Kronfol and House, 1989; Joyce et al., 1992; Song et al.,
1994; Gold et al., 2012). For example, relative to mentally
healthy control subjects, Gold and colleagues (Gold et al.,
2012) noted that depressed populations displayed reductions
in serum IgA, but not IgM or IgG levels, while Joyce et al.
(Joyce et al., 1992) reported increased IgA. Methodological
differences between sample populations and measurement
approaches may account for some of the discrepancy between
these studies. The critical role of hypothalamic-pituitary-
adrenal axis dysregulation and altered cortisol secretion in
the manifestation of MDD is well established (Krishnan
and Nestler, 2008). Physiological states associated with high
levels of circulating cortisol, such as hypercortisolism (Sarcevic
et al., 2020) or treatment of patients with corticosteroid-based
interventions, shifts serum antibody profiles relative to healthy
controls (Griggs et al., 1972; Settipane et al., 1978). As well,
neuronal surface autoantibody expression has been implicated
in a number of neuropsychiatric conditions, MDD included
(Zong et al., 2017).

ESTROGENIC IMPACTS ON IMMUNE
FUNCTION DURING DISTINCT
REPRODUCTIVE MILESTONES ACROSS
THE FEMALE LIFESPAN

Sex differences in immunity are well documented, and hormone
influences, including those of estrogens, have been shown to
impact immune function throughout adulthood (Pennell et al.,
2012; Klein and Flanagan, 2016). Immunological impacts of
genetic sex and of estrogenic stimulation across key reproductive
milestones are described in the following sections and have been
summarized in Figure 1.

Mechanisms of Estrogen Regulation of
Immunity
Estrogenic signaling is regulated by two nuclear estrogen
receptors (ER), ERα and ERβ, both of which are expressed
on a variety of immune cell types and tissues. For instance,
ERα is widely expressed in bone marrow thymocytes and
hematopoietic cells, while ERβ expression appears to be limited
to the thymus, lymphocytes in lymph nodes, and the spleen in
mid-gestational fetuses (Khan and Ansar Ahmed, 2015; Moulton,
2018; Rubinow, 2018; Zhang et al., 2020). Estrogens regulate
immune cell number and function likely via an ER-dependent
mechanism. When human lymphocytes were administered
17β-E2, CD45 and CD45RO isoform RNA expression were
increased, an effect that was blocked with co-treatment of ER
antagonists (Zhang et al., 2020). Less potent naturally circulating
estrogens also appear to exert similar regulatory effects on
immune cells. For example, estriol, at levels similar to the first
trimester of pregnancy (2 ng/mL), increased levels of venous
blood CD4+FoxP3+ T regulatory cells and decreased levels
of CD4+RORC+ Th17 lymphocytes were seen in women of
reproductive age (Shirshev et al., 2019).

Sex Differences in Immunity During Early
Life and Puberty
Some subtle sex differences in childhood immunity have been
reported. For example, splenocyte response to cell surface-
receptor-independent mitogenic combination of phorbol ester
and ionomycin was greater in female mice at 3 weeks old, but
was greater for 4-6 week old male mice (Rosen et al., 1999).
Furthermore, a study on healthy Asian children noted that male
babies showed 8% more natural killer (NK) cells at birth than
females, while female newborns showed higher levels of CD3+
T cells (Lee et al., 1996). Between 1 and 6 years of age, girls had
somewhat higher numbers of lymphocytes, B cells, and CD3+,
CD4+, and CD8+ T cells, while boys had higher NK, activated T
cells, and CD4+ T cell counts (Lee et al., 1996). In contrast, Lisse
et al. found that West African boys show higher levels of CD8+
cells and lower CD4+/CD8+ ratios than girls (Lisse et al., 1997).
Despite the discrepancy between these studies, prior to the onset
of puberty, it is generally thought that the immune systems of
male and female organisms exhibit few robust sex differences in
immune cell counts or function (Robinson et al., 2014; Sharma
et al., 2019). Indeed, splenic expression of some innate immune
response genes was greater in pre-pubescent male mice, though
the differences were not statistically significant and expression of
adaptive immune response genes was generally similar between
the sexes (Lamason et al., 2006). There also appear to be no sex
differences in the vaccine response during childhood (Vom Steeg
et al., 2019). This variability in the literature warrants future study
to clarify the extent to which these observations replicate across
study populations and translate to impact immunity overall
during childhood.

The pubertal transition to reproductive capacity and the
associated dramatic increases in sex hormone levels marks a
period of substantial change in the immune system, changes
that may exert functionally significant effects with regard to
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FIGURE 1 | Key immune system impacts of estrogen at distinct female reproductive milestones. Immune function is profoundly impacted by genetic sex and
variations in estrogen. Though a few subtle differences have been reported during childhood, prior to puberty onset immune cell counts are generally similar between
males and females and any differences appear to have little functional impact on overall immunity. However, beginning with adolescence and the onset of
menstruation, marked sex differences in immune cell ratios and response profiles emerge. Generally, females display a more robust inflammatory response to
immune challenge, rendering them potentially more resilient to the negative consequences of infection but also more susceptible to certain autoimmune conditions.
High concentrations of estrogen, whether they be due to natural shifts in circulating levels across the cycle or via administration of estrogen containing exogenous
treatments, appear to exert cell-type specific effects with regards to key immune players, generally potentiating adaptive immunity. Falling estrogen levels with the
transition to reproductive and immunosenescence also imparts profound consequences for immunity and is associated with dramatic shifts in peripheral immune cell
profiles, autoimmune disease manifestation, and susceptibility to immune challenge.

immune function in developing children. For instance, studies
have noted increased numbers of circulating NK cells, CD4+ T
cells, and B cells among girls, but higher CD8+ T cell numbers
among adolescent boys as well as distinct response profiles
of cultured peripheral blood mononuclear cells derived from
male vs. female donors to phytohaemagglutinin stimulation (Lee
et al., 1996; Uppal et al., 2003; Abdullah et al., 2012). There
are numerous functional consequences of these puberty-induced
sex differences in response to antigen challenge. Inflammatory
responses to infection or toll-like receptor stimulation appear to
be stronger in females than in males (Seillet et al., 2012; Robinson
et al., 2014), with females showing increased gene expression
of interferon-gamma, lymphotoxin beta granzyme A, IL-12
receptor beta2, and granulysin (Hewagama et al., 2009). Similar
findings have been found preclinically where, in post-pubertal
mice, following stimulation with ovalbumin and anti-CD3/CD28
antibodies, IL-4, IL-5, IL-13 were all significantly higher in female
bronchial lymph node cells than in male cells (Okuyama et al.,
2013). Additionally, IL-5 production from stimulated CD4+ T
cells was significantly increased in females compared to males.
Viral challenge with the mimetic polyinosinic:polycytidylic acid
induced greater sickness behavior in post-pubertal males than
females (Sharma et al., 2019). However, changes in body
temperature and central c-fos expression were more prevalent in

female mice, and gonadectomy both worsened sickness behavior
and altered temperature in both sexes. Efficiency of vaccination
has also been tested in murine models with adult female mice
having greater antibody response to the vaccination and an
increased number of antigen-specific hepatic CD8+ T cells
compared to young mice (Vom Steeg et al., 2019). Another
functional consequence relates to the prevalence of immune-
associated diseases, especially asthma. Indeed, despite having
similar numbers during childhood, adult females exhibit a 6.2%
prevalence of asthma while males exhibit a 4.3% prevalence
(Vink et al., 2010). Evidence supports that asthma responses and
estrogen are largely correlated (Melgert et al., 2007) and that
estrogen contributes to the innate macrophage polarization, thus
leading to greater allergy response (Keselman et al., 2017).

Immune Variation Across the Ovulatory
Cycle of Reproductively Capable
Organisms
Innate immune cell number and function display a complex
pattern throughout the menstrual cycle. For example, peripheral
levels of NK cells along with their cytotoxic potential became
heightened during the luteal phase, when estrogen levels begin to
decline but progesterone levels tend to be high (Lee et al., 2010).
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Monocyte numbers also appear to peak during the luteal phase
while circulating neutrophil levels decline during menstruation
(Pennell et al., 2012). Overall, estrogen seems to enhance, while
progesterone and androgens tend to suppress proinflammatory
innate immune responses (Roberts et al., 2001; Musabak et al.,
2003; Arruvito et al., 2008; Shepherd et al., 2020).

Adaptive immunity also displays dynamic changes across the
menstrual cycle. Estrogens generally have stimulatory effects on
lymphocyte presence, concentration, and function (Lee et al.,
2010; Oertelt-Prigione, 2012; Pennell et al., 2012; Rodriguez-
Garcia et al., 2013; Moulton, 2018) though cell type and tissue-
specific effects of estrogen stimulation have also been suggested
(Pung et al., 1985; Chen et al., 2015). For instance, increased
levels of estrogen are thought to stimulate overall CD4+ Th2
cytokine production in females (Ackerman, 2006; Pennell et al.,
2012; Shah, 2012). Peripheral regulatory T cell counts were shown
to be higher during the follicular phase when estrogen levels are
typically highest (Moulton, 2018). Wegienka et al. (2011) noted
that blood levels of the less potent naturally circulating estrogen,
estrone, were positively correlated with regulatory T cell counts
in asthmatic women. Peripheral blood CD3+ and CD4+ T cell
percentages decrease in the luteal phase, when estrogen levels are
low relative to those of progesterone (Lee et al., 2010). Inhibitory
effects of estrogens have also been noted within certain immune
cell subtypes. Indeed, estrogen exposure inhibits Th1 cytokine
proliferation and Th17 differentiation (Chen et al., 2015).

Though information regarding B cell changes across the
menstrual cycle is more limited, converging evidence suggests
that estrogen stimulates B cell differentiation and activation,
increases B cell numbers, and enhances their function (Verthelyi,
2001; Oertelt-Prigione, 2012; Moulton, 2018). For example,
B cell activation by 17β-E2 generally induces higher levels
of Ig synthesis (Franklin and Kutteh, 1999; Pennell et al.,
2012) specifically in B cells found in bone marrow and the
spleen (Moulton, 2018). In mice treated with sustained slow-
release 17β-E2-containing silastic implants (4-6 mg) resulting in
levels comparable to those achieved during murine pregnancy,
numbers of antibody-secreting plasma cell numbers increased
dramatically, and secretion of various immunoglobulins and
autoantibodies increased (Verthelyi and Ahmed, 1998). This
estrogen-driven B cell hyperactivity may contribute to the
development of autoimmune diseases (Pennell et al., 2012).

Sex hormone type also appears to influence female immunity
in a cell subtype-specific way. Indeed, while it is widely accepted
that estrogens usually correspond with an increased CD4+
Th2 cell response, androgens promote CD4+ Th1 and CD8+
cell responses (Ackerman, 2006; Pennell et al., 2012; Guven
Yorgun and Ozakbas, 2019). As for progesterone, increased
levels during the luteal phase sometimes correspond to increased
NK cell levels, unchanged Th1/Th2 ratios, decreased CD3+
and CD4+ T cell percentages, and increased serum levels
of the anti-inflammatory IL-1 receptor antagonist (Lee et al.,
2010; Vetrano et al., 2020). Despite this, in one study, serum
CD4+/IL10+ regulatory T cells displayed heightened responses
when progesterone levels were elevated in the late follicular
and luteal phases (Weinberg et al., 2011). These findings
reveal the significance of distinguishing between the different

immune cell subtypes in how they react to steroid hormone
stimulation in distinct target tissues and in response to various
immunological challenges.

Pregnancy-Associated Impacts to the
Immune System
Tight regulation of the maternal immune response are key
contributors to pregnancy success; historically, immune
responses during pregnancy were thought to be suppressed to
allow for a semi-allogeneic fetus (Racicot et al., 2014). However,
this previously held notion has been reevaluated as additional
findings implicating sex hormone regulation of immune
responses have emerged in recent years (Mor and Cardenas,
2010). Indeed, immune contributions to the development of the
decidua and placenta and the maintenance of the maternal-fetal
interface is required for a successful pregnancy (Hsu and Nanan,
2014). Nair et al. (2017), and there is growing appreciation that
dynamic shifts in maternal sex hormone levels may, at least
in part, contribute to observed shifts in gestational immunity
(Robinson and Klein, 2012). Uterine immune cells, including NK
cells, macrophages, T cells, dendritic cells, mast cells, and B cells,
are necessary for the normal formation of placenta beds and
appear to play a key role in converting high-resistance, low-flow
vessels to low-resistance, high-flowing vessels in spiral arteries in
the placental bed (Faas and De Vos, 2018). Maternal monocytes
and macrophages obtain a unique phenotype throughout
pregnancy that allows them to retain immunological tolerance
and permit hormone–immune cell interactions, both of which
are required for progression of the fetus inside the uterus
(Mendoza-Cabrera et al., 2020).

It is thought that the increase in steroid hormone levels
throughout pregnancy modulates inflammatory responses at
the maternal fetal interface, and E2, estriol, and progesterone
influence the transcriptional signaling of those responses
(Robinson and Klein, 2012). During the first trimester, levels
of placental-derived estrogen increase sharply and contribute
significantly to the development of organs and other bodily
systems in the fetus. T cell subsets are profoundly affected by
these changes. Early in pregnancy, the increase of regulatory
T cells supports the development of a semi-allogeneic fetus
protected from maternal immune rejection by restraining
inflammation during the shift from proinflammatory to anti-
inflammatory immunity (Krop et al., 2020). CD25+/CD4+ T
regulatory cell numbers reach a peak during the second trimester,
and it is thought that these cells allow the maternal immune
system to respond to the developing fetal organs within the uterus
(Somerset et al., 2004; Lima et al., 2017). Further, appropriately
titrated T cell populations early in pregnancy may contribute
to fetal viability. Indeed, when Lissauer and colleagues (Lissauer
et al., 2014) evaluated circulating T cell subsets across distinct
pregnancy stages, they observed that about 60% of Th17 cells in
the body during pregnancy were found during the first trimester
of pregnancy, though no changes in Th1 or Th2 T cell subsets
were noted across the gestational and postpartum period. Th1
and Th17 cells numbers were elevated among women with
recurrent miscarriage, suggesting that these cell types may serve
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as important targets to improve gestational success (Lissauer
et al., 2014). Memory T cells are also increased during the first
trimester and promote fetal-maternal tolerance (Kieffer et al.,
2019). It is thought that insufficient numbers of memory CD4+ T
cells contribute to pregnancy complications such as preeclampsia,
gestational diabetes, and premature labor (Lim et al., 2019).
Following pregnancy, it can take three to four months for cells to
return to normal function after delivery, and inhibition of helper
T cells and NK cells appears to last for the first few months.

Like T cells, B cells also support the semi-allogeneic fetus
while protecting the mother and fetus against infection (Muzzio
et al., 2013). Regulatory B cell numbers similarly increase
during the first trimester, limiting proinflammatory responses
(Esteve-Solé et al., 2018). B cell activation factors, which
facilitate the inflammatory response, are also increased, likely in
support immune tolerance of the semi-allogeneic fetus (Wang
L. et al., 2021). B cells also appear to impact immunity
during later stages of pregnancy and following parturition. Lima
and colleagues examined healthy pregnancies and determined
the degree of activation of different B cell subsets, reporting
increases in CD38+ and IgD markers of B cell activation
during the third trimester of pregnancy and postpartum period
(Lima et al., 2016).

Immune Shifts During Female
Reproductive Senescence and Aging
Aging plays a significant role in modulating the function of the
immune system and is associated with deterioration of immunity
seen in the elderly (Fulop et al., 2017). Immunosenescence
cascades have been reviewed elsewhere (Xu et al., 2020)
but in brief, key immunosenescence characteristics include
inflammaging, lymphopenia, higher susceptibility to infection
and poor vaccine response (Ghosh et al., 2014). Within the
adaptive immune system, aging is associated with an increase
in differentiated memory T cells, effector T cells, senescent
CD8+CD28− T cells, and age-associated innate-like B cells,
but a decrease in most B cell subsets and the ratio of
CD4:CD8 T cells, to name just a few examples (Weyand and
Goronzy, 2016). Collectively, these and other senescence-related
changes diminish the ability of the immune system to protect
against certain infections and cancers and may accelerate the
development of certain diseases, rendering older populations at-
risk for a host of immunological challenges. It was historically
presumed that this senescence-associated shift in immunity
occurred at a similar rate and manner, regardless of sex (Aiello
et al., 2019). However, rising life expectancies have revealed
that men and women experience these consequences along
different trajectories; emerging evidence suggests sex-specific
and potentially profound consequences of immunosenescence
(Gubbels Bupp et al., 2018; Márquez et al., 2020). Indeed, it is now
appreciated that female innate immune systems appear to age at
a faster rate, whereas the adaptive immune systems of men age at
a faster rate (Ghosh et al., 2014).

Age-related shifts in reproductive function likely influence
the function of the immune system during aging, and the
sex-specific nature of this transition period may account for

differences in male and female immunosenescence. Indeed, while
men experience andropause, a gradual reduction in circulating
testosterone over the course of several decades (Kevorkian, 2007),
women experience a more accelerated transition. Menopause
marks a period of reproductive senescence in a woman’s life when
the ovarian oocytes have become depleted, and sex hormones
are no longer produced by the ovaries (Keppel and Wickens,
2004). As a result, the menstrual cycle becomes irregular and
eventually terminates while levels of estrogens and progestins
drastically decline. Natural menopause is a normal part of aging
that typically occurs in the fourth and fifth decade of life and
can take place over the course of only a few years. Still others
undergo surgical menopause to remove the ovaries when there
is an increased likelihood of cancer, infection or endometriosis
(“Medical Causes of Menopause”), resulting in an accelerated
reproductive senescence.

The distinct trajectory of female reproductive senescence has
important impacts with regard to immune function during aging.
In comparison to men of a similar age or to reproductively
capable women, post-menopausal women are disproportionately
affected by certain autoimmune disorders and have an increased
susceptibility to infection with aging (Fairweather et al., 2008;
Gubbels Bupp et al., 2018; Maglione et al., 2019). Estrogen
deficiency has been implicated in many senescence-associated
changes seen in the immune cells, such as the increase in
proinflammatory markers IL-1, IL-6 and TNF-α (Gameiro
et al., 2010), and low levels of estrogen are linked to higher
levels of IL-17 produced by Th17 cells (Molnár et al., 2014).
Following menopause, women undergo various changes in the
levels of innate immune cells. Whereas the number of NK
cells increases, their cytotoxic capacity is diminished (Albrecht
et al., 1996; Ghosh et al., 2014; Toniolo et al., 2015). Further,
the number of macrophages, neutrophils and dendritic cells
decreases (Ghosh et al., 2014; Toniolo et al., 2015). Macrophages
are vital, as they aid in the conversion of proinflammatory
phenotypes to anti-inflammatory phenotypes, and estrogens
help to prevent the effects of proinflammatory agents on the
functions of macrophages by accelerating the resolution phase of
inflammation in these cells (Toniolo et al., 2015; Villa et al., 2015).
E2 also seems to decrease the rate of apoptosis in neutrophils as
following menopause, neutrophils numbers have been shown to
decrease as the rate of apoptosis increases (Chen et al., 2016).

Menopause is also associated with significant shifts in
adaptive immunity. As reviewed in Gubbels Bupp et al. (2018),
some studies report a decrease in total lymphocyte counts in
postmenopausal women (Giglio et al., 1994; Kamada et al.,
2000), while other studies have shown that numbers of some
lymphocyte subsets are significantly higher in postmenopausal
women (Chen et al., 2016; Abildgaard et al., 2020). Further, levels
of functioning CD4+ T and B cells decrease, while numbers
of exhausted and senescent cells rise, whether the etiology of
menopause is surgical or transitional (Giglio et al., 1994; Gameiro
et al., 2010; Gubbels Bupp et al., 2018; Maglione et al., 2019;
Abildgaard et al., 2020; Vrachnis et al., 2021). However, it has also
been shown that thirty days after surgical menopause via total
abdominal hysterectomy and bilateral salpingo-oopherectomy,
patients displayed increased levels of CD8+, but decreased levels
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of B cells and a reduced CD4+/CD8+ T cell ratio (Kumru
et al., 2004). Other conflicting literature has noted a decrease
in naïve CD8+ T cells, but an increase in memory or activated
T cells in postmenopausal women compared to pre-menopausal
women or women taking hormone replacement therapy (HRT)
(Kamada et al., 2000; Engelmann et al., 2016; Vrachnis et al.,
2021). In regards to the function of B cells, E2 enhances certain
aspects of humoral immunity (Gameiro et al., 2010). Aged
women tend to accumulate more innate-like age-associated B
cells (ABCs) than young women and men of any age, and there
is a relationship between ABCs, viral infections, autoimmunity
and a proinflammatory state (Rubtsova et al., 2015; Gubbels Bupp
et al., 2018). ABCs are known to originate from follicular B cells
and show a bias in females, due to hormones and X chromosome-
encoded genes, but the mechanisms that cause the production
and accumulation of ABCs are still unknown and need to be
further investigated (Rubtsova et al., 2015).

Effects of Exogenous
Estrogen-Containing Treatments on
Immune Function
Immune cells not only respond to endogenously secreted
estrogens; estrogen-containing contraceptives, commonly used
for pregnancy prevention, hormonal imbalances, and menstrual
cycle regulation, also impact immunity. For example, compared
to untreated women, women taking the oral contraceptive
pill, Ortho Novum 777 (containing ethinyl estradiol and
norethindrone), had higher Ig levels, implicating these hormones
in promoting B cell activity (Franklin and Kutteh, 1999).
In another small study evaluating respiratory performances
of thirteen asthmatic women, blood regulatory T cell counts
were higher among contraceptive treated women, and this was
associated with less intense asthmatic symptoms (Wegienka
et al., 2011; Vélez-Ortega et al., 2013). Estrogen-containing
contraceptives administered vaginally also impact the local
immune environment. Indeed, Hughes et al. noted that the
NuvaRing R© (0.12 mg etonogestrel/0.015 mg E2 per day) was
associated with increased T cell- related proteins, granulysin and
granzyme B in cervicovaginal fluid, indicating that, similar to
during phases of heightened estrogen in the menstrual cycle,
estrogen has a stimulatory effect on vaginal T cell response
when locally administered. Yet in mice, when the synthetic
estrogen, diethylstilbestrol, was administered subcutaneously for
five consecutive days, T cell proliferation and IL-2 production in
the spleen both declined (Pung et al., 1985), implicating species or
estrogen subtype differences with regards to exogenous estrogen
impacts to immunity.

Though menopausal HRT is commonly prescribed to
attenuate the negative vasomotor and vaginal symptoms of
menopause, it may also be a potential therapeutic option to
modify menopause-related shifts in immune system function
(Ghosh et al., 2014); the complexities associated with HRT
impacts to the brain and immunity have been extensively
reviewed elsewhere (Abdi et al., 2016). As an example,
postmenopausal women taking estrogen and progestin-
containing HRT have been reported to have higher numbers of

lymphocytes and B cells specifically, but maintain low levels of
CD4+ T cells, and exhibit a decrease in CD8+ cells resulting
in an increase in the ratio of CD4+/CD8+ T cells; naïve and
memory/activated T cell numbers generally remained consistent
(Kamada et al., 2000; Yang et al., 2000; Porter et al., 2001;
Kumru et al., 2004). These HRT-induced immune cell impacts
may be effective in alleviating the symptoms associated with
menopause or autoimmune disease, as well as the risk for
developing certain disorders, especially when used within 10
years of experiencing symptoms if the woman is under 60 years
old (Stopińska-Głuszak et al., 2006; Cagnacci and Venier, 2019).
Taken together, these data indicate that exogenous estrogen
treatment has significant immunological consequences, which
may in turn impact women’s susceptibility to systemic infection
or autoimmune disease (see below); additional investigation in
this research domain is clearly warranted.

SEX, ESTROGEN AND AUTOIMMUNITY –
CONSEQUENCES OF ESTROGENIC
IMPACTS TO THE FEMALE IMMUNE
SYSTEM

Though the evidence described above reveals robust sex-specific
differences in immune responses, may at times, provide some
advantages to infection for female organisms, maladaptive
consequences have also been indicated. Indeed, women shoulder
a disproportionate burden of some autoimmune diseases and
several reviews extensively explore the topic of sex differences
in the prevalence of autoimmunity (Lateef and Petri, 2012;
Pennell et al., 2012; Ortona et al., 2016; Moulton, 2018; Keestra
et al., 2021). For instance, with a typical age of disease onset
occurring during puberty, the prevalence of systemic lupus
erythematosus (SLE), an autoimmune condition associated with
widespread inflammation, in prepubertal girls is only double
that of boys; by adulthood, the ratio of female to male patients
has increased to 9:1 (Ngo et al., 2014; Moulton, 2018). Further,
SLE-associated flare-ups during pregnancy are common (Petri,
2020). That estrogen stimulation promotes a Th2 immune
phenotype may further contribute to the increased prevalence
of Th2-mediated autoimmune diseases such as SLE (Ackerman,
2006). For instance, regulatory CD4+ T cells from female SLE
patients showed reduced FoxP3 expression when incubated with
physiological levels of E2, suggesting that high E2 levels may place
women at an increased risk due to the presence of fewer immune
regulatory cells (Singh and Bischoff, 2021). Among SLE patients,
HRT has been found to increase the amount of mild, but not
severe, flares (Lateef and Petri, 2012).

A sex-specific burden of multiple sclerosis (MS), a chronic,
progressive, demyelinating inflammatory autoimmune disease
associated with a myriad of degenerative sensori/locomotor
and cognitive deficits, has also been documented (Goldenberg,
2012). Indeed, a woman’s risk for developing MS increases after
the pubertal transition, an effect linked to increasing levels of
estrogens given that MS symptomology appears to decrease in
intensity during the luteal phase of the menstrual cycle, when
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estrogen levels are low (Moulton, 2018; Keestra et al., 2021).
Additional clarity regarding the contributions of sex hormones
alone and in combination is warranted as perplexingly, some
studies note greater MS symptomology and worsened cognitive
function in the premenstrual phase when sex hormones are
generally at their lowest levels (Guven Yorgun and Ozakbas,
2019; Keestra et al., 2021). As well, though relapse rates increase
significantly by three months post-partum, pregnancy is typically
associated with symptom remission (Confavreux et al., 1998).
Short-term corticosteroid treatment to manage MS symptoms
during late pregnancy is considered safe with regards to fetal
outcomes such as risk of pre-term birth and low birth weight
(Ramo-Tello et al., 2021). Whether this treatment impacts
affective outcomes in the pregnant or post-partum mother is not
clear and represents an important area of investigation, given
that corticosteroid treatments are known to induce psychiatric
symptoms such as mania, depression, psychosis, and cognitive
changes (Brown and Chandler, 2001).

Rheumatoid arthritis (RA) is an autoimmune disease
characterized by joint pain, painful swelling, fatigue and fever due
to the immune system attacking its own healthy tissue (Bullock
et al., 2018). RA is both more common and may be more severe
in women than men (Walker, 2011; Pennell et al., 2012). Like
MS patients, women with RA experience symptom remission
during pregnancy but these effects are short-lived as women often
experience disease aggravation following parturition (Ostensen
et al., 1983). The typical age of RA onset in women is during
the menopausal transition, and an early age at menopause
is associated with an increased likelihood of RA (Goemaere
et al., 1990; Desai and Brinton, 2019). This observation may
be attributed to the loss of endogenous estrogen that women
experience during menopause. Menopausal RA patients taking
HRT do not appear to display increased flare-ups and may
even experience improved disease symptomology (Holroyd and
Edwards, 2009). Similar effects have been demonstrated among
pre-menopausal women, where oral contraceptive use did not
prevent emergence of new disease but did reduce transformation
of cases from mild to severe, suggesting beneficial effects of
exogenously-administered estrogen-containing therapies against
disease progression.

CONVERGENCE OF SEX, ESTROGEN
AND IMMUNITY IN STRESS AND
DEPRESSION

The complexities of how biological sex or sex hormones
and peripheral immunity converge to impact mood are
beginning to be revealed. Sex-specific affective responses to
peripheral inflammatory challenge generally suggest that female
organisms may respond more robustly to immune activation
(Bekhbat and Neigh, 2018). Indeed, inflammatory challenge
with lipopolysaccharide (LPS; bacterial infection mimic) was
associated with mood disruptions in women but not men
(Moieni et al., 2015) and intranasal LPS administration
induced depressive-like behavior and elevated hippocampal
proinflammatory cytokine expression only in female rodents

(Tonelli et al., 2008). However, this effect has not consistently
been observed. For instance, following LPS challenge, while
women displayed greater increases in proinflammatory IL-6 and
TNF-α levels than men and men displayed higher levels of the
typically anti-inflammatory cytokine IL-10, surprisingly affective
consequences were similar among both sex groups (Engler et al.,
2016). Similar observations were noted in preclinical studies
where male and female rodents displayed similar depressive-
like behavioral phenotypes despite robust sex-distinct effects
on inflammatory and growth factor cascades in response to
peripheral immune stimulation (Adzic et al., 2015; Brkic et al.,
2017). Still, other reports suggest that males may be more
susceptible to affective impacts of peripheral immune activation.
Indeed, in male mice exposed to a LPS challenge, depressive-
like behavioral changes along with altered brain proinflammatory
cytokine mRNA levels were observed at 24 h, and hippocampal
apoptosis was shown at 28 days later, effects not observed in
female mice (Millett et al., 2019; Rossetti et al., 2019).

Sex differences in peripheral circulating cytokine levels
among clinically depressed populations or in preclinical models
have also been reported. For instance, higher levels of
C-reactive protein were associated with an increased risk
of depressive transformation, and increased psychopathology
among depressed women was associated with elevated levels
of C-reactive protein where no such association was noted in
depressed men (Köhler-Forsberg et al., 2017; Kim et al., 2021;
Zainal and Newman, 2021). Genetic predispositions related to
the immune system also appear to induce sex-specific risk
factors for development of a depressive phenotype as IL-18
haplotype in women, but not men, is associated with increased
threat-induced central amygdala reactivity (Swartz et al., 2017).
Other cytokines that are associated with depressive phenotypes
in females, or the responsiveness of depressed patients to
antidepressant treatment, include IL-1β, and IL-6 (Carboni
et al., 2019; Kim et al., 2021; Zainal and Newman, 2021).
However, some inconsistencies regarding sex-specific differences
in peripheral inflammation among depressed populations have
been reported. For example, while Piantella and colleagues
(Piantella et al., 2021) agreed with other literature that IL-
6 was associated with higher depressive symptoms in women
exposed to workplace stress, they observed that higher C-reactive
protein levels were associated with depression only in men.
Further, in a study of more than 1,800 patient samples, C-reactive
protein was associated with MDD state only in men (Ramsey
et al., 2016). The experimental heterogeneity associated with
the study population and sample size, the stressor nature and
severity being evaluated, the approach to measure cytokine
levels, the post-stress measurement timeframe, etc., among
evaluations reported in the literature indicate that additional
work is needed to discern the utility of sex-specific cytokine
biomarkers for depression.

Taken together, it appears that immune activation cascades in
response to psychosocial stress differ between males and females,
though whether the consequences of these distinct trajectories
reliably manifest in differential mood-related disruptions
between the sexes is not altogether clear. Further clarification
of the parameters in which sex-specific mood impacts may be
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realized in the context of antigen-driven or sterile immune
challenges is needed.

DISCUSSION: CHALLENGES IN
EXPLORING
NEURO-IMMUNO-ENDOCRINE
INTERACTIONS IN THE CONTEXT OF
MOOD

As summarized above, genetic sex, estrogen, and the immune
system significantly contribute to mood and mood disorders both
individually and as converging, interactive factors (Figure 2). As
this exciting field further develops, consideration of a number
of limitations and challenges to probing these complex
interactions in the context of mental health is warranted.

Consideration of Relevant Biological
Variables
First, though historical representation of both sexes in biomedical
research has been lacking, there is increasing awareness among
researchers regarding the need to consider sex as a biological
variable and moreover consider how biological phenomena
change as reproductive capacity shifts across the lifespan
(Arnegard et al., 2020). Indeed, in 2015, the NIH (2015).
announced requirements for the appropriate consideration of
sex as a biological variable, incorporating this as a review
criteria for all proposals submitted shortly thereafter. This
policy change included requirements for the use of both
sexes within study populations unless strong justification is
provided as to why research questions being assessed could
only be evaluated in one sex (e.g., exploration of ovarian
function would preclude the use of only female organisms) as
well as disaggregation of data analyses to observe sex-related
trends and accurate reporting of data based on sex As part
of NIH’s larger initiative to improve experimental rigor and
reproducibility (Price and Duman, 2020), due consideration of
other relevant biological variables is now also strongly advised
(Lauer, 2016).

At present, the majority of research addressing the
convergence of immune cells and sex or sex hormones on mood
outcomes does not regularly factor in cyclicity stage, parturition
experience, nor circulating levels of steroid hormones. As well,
even when females are included in experimental designs, the
majority of work in this area is conducted in young adult subjects
prior to initiation of age-related immunosenescence cascades,
potentially limiting translatability of the findings to older cohorts.
While due consideration of key biological variables is not without
its methodological challenges, there exists numerous aging or
sex-based research centers of excellence around the United States
(e.g., Nathan Shock Centers of Excellence in the Basic Biology of
Aging, Tulane Center for Excellence In Sex-Based Biology and
Medicine, and several workshops (e.g., International Symposium
on the Neurobiology and Neuroendocrinology of Aging)
providing training in the conduct of aging and/or sex-based
research have been developed in recent years. In addition

to informal laboratory based training, several publications
laying out strategies are readily available (Bale and Epperson,
2017; Joel and McCarthy, 2017; Clayton, 2018). Especially
given the profound age-related shifts in immune function,
there exist numerous opportunities for productive research
collaborations between immunologists, neuroendocrinologists,
and biostatisticians to thoroughly address the convergence of
sex, sex hormones, age, immune function, and stress responses.
Continued progress is still needed (Woitowich and Woodruff,
2019; Arnegard et al., 2020), and additional incentivization
of research specifically aimed at systematically addressing sex
differences and the influence of sex hormones within the scope
of mental health research will likely benefit the field.

Complexities of Evaluating Mood and
Modeling Human Mental Health
Disorders Preclinically
Another significant challenge facing this area of study
is that effectively modeling complex mood disorders
such as MDD in a rodent is difficult (Krishnan and
Nestler, 2008; Nestler and Hyman, 2010; Wang et al.,
2017). Whereas the etiology of MDD can be varied in
humans, ‘depressive-like’ states in rodents are typically
experimentally induced via environmental, experiential, genetic,
pharmacological, physical, social, or surgical manipulations. Many
of the classic induction approaches, developed at the height of
the monoamine hypothesis of depression, were aimed at
revealing antidepressant efficacy novel drugs (Nestler and
Hyman, 2010; Wang et al., 2017). Unfortunately, no single
stress-induction approach fully recapitulates the heterogeneity of
disease susceptibility and no one readout fully captures the
behavioral and neurobiological pathology seen in human
populations, though some newer paradigms have been developed
that display better translational validity. For instance, the
long-leveraged forced swim stressor results in near ubiquitous
floating behavior, thought to be an indicator of behavioral
despair/learned helplessness, while the chronic social defeat
paradigm can effectively discriminate susceptible from resilient
populations (Golden et al., 2011; Bogdanova et al., 2013).

As well, MDD is a psychiatric disorder associated with a
variety of phenotypes, and many symptoms experienced by
human patients (i.e., sadness, guilt, suicide ideation) cannot
be directly evaluated in rodents. When MDD symptomology
can be more effectively recapitulated preclinically (anhedonia,
behavioral despair), the available murine tests of depressive-
like behavior generally only probe one dimension of this
heterogeneity. Evaluating depression phenotypes through the
assessment of other impacted functions, such as cognitive
domains, may provide additional insights (Hales et al., 2014; Price
and Duman, 2020). Further, in contrast with the delayed response
of antidepressants prescribed to patients in the clinic, acute
treatment of mice with antidepressants is sufficient to alleviate
depressive-like behavior in some of the commonly employed
preclinical tests, though again some paradigms show response
timing profiles similar to those observed in clinical populations
(Golden et al., 2011; Willner, 2017).
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FIGURE 2 | Schematic representation of mood-immune convergence across the female reproductive lifespan. A substantial amount of research has been dedicated
to exploring how endocrine and immune factors impact mood separately. For instance, neuroprotective effects of estrogen in regards to MDD are well-established.
Further, inflammatory insult and immune dysfunction are emerging as key contributors to disordered mood. Finally, genetic sex and estrogen clearly modulate
immune system components, having important functional consequences for immunity across the reproductive lifespan. However, insight regarding how these two
systems converge to impact mental health, especially during aging, is currently limited. This knowledge gap may be driven by experimental challenges associated
with exploring these complicated interactions including, but not limited to, heterogeneity associated with the study population and sample size, the species used, the
stressor nature and severity being evaluated, the approach to measure cytokine levels, the post-stress measurement timeframe, to name a few examples. Whether
estrogenic influences on inflammatory activation cascades in the context of ‘sterile’ psychosocial stress-induced immune challenges result in sex-specific
susceptibility to MDD during key reproductive milestones remains to be further interrogated and represents an exciting area of study.

Finally, methods used to induce stress phenotypes in rodents
may confound readouts. For instance, a common behavioral
readout of the chronic variable stress paradigm is sucrose
preference, a measure of anhedonia, the results of which
may be profoundly impacted by metabolic changes associated
with brief food restriction, a commonly leveraged component
of that stress-induction approach (Willner, 2017). As such,
no single preclinical stressor paradigm or test for ‘depression’
fully recapitulates the complexity of the MDD phenotype nor
the response profile to typically prescribed treatments given to
alleviate symptomology.

Selection of the method to induce stress as well as
the approach to determine behavioral, physiological,
and neurobiological responses require careful consideration
of the research question being posed. In alignment with
recent guidance from the NIMH (2019) and in pursuit of
current Research Domain Criteria (RDoC) recommendations
(Maes, 2011), it is advisable to leverage tests where the
underlying neurobiological circuitry is well understood rather
than on the basis of “presumed congruence to human symptoms
of mental illness”. Homological validity, that is capturing
behavioral readouts that are species-relevant, should also
be prioritized. The use of a behavioral battery of readouts
within affective domains rather than a single assessment is
also highly recommended to accurately capture the breadth

and depth of a phenomenon, though test order should be an
important consideration in their deployment (Powell et al.,
2012). Composite behavioral battery z-scores should also be
leveraged to capture overall impacts of stress on an organism as
there is often substantial individual performance variability on
unique readouts, especially among controls (Johnson et al., 2021).
Behavioral readouts are best coupled with physiological readouts
of stress, such as circulating corticosterone levels, metabolic
alterations (such as attenuated weight gain), reduced self-care
and health metrics, and shifts in circadian activity. There
are also logistical complexities in preclinically modeling
depression specifically in female organisms, including whether
to consider stage of estrous cycle and reproductive capacity.
Rigorous research portends the quantification of vaginal lavage
to determine cyclicity and inclusion of Cycle Stage as an
additional factor in statistical assessment of stress responses.
Importantly, Johnson et al. (2021) did not identify a predicitive
relationship between cycle stage and the stress response of
their experimental and control animals. Further, though ‘non-
brain’ measures showed more female-associated variability, a
recent metanalysis of 311 articles did not report large-scale sex
differences in neuroscience outcome measures and failed to
identify increased variability in female rodents due to estrous
cycle (Becker et al., 2016), suggesting that the impact of cycle
stage on stress/neuroscience readouts may be relatively small.
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It is also important to consider that some stress paradigms are
extremely difficult to apply to females and may need significant
modification to be applied to appropriately. For example,
chromogenic activation of the ventromedial hypothalamus was
required to induce male aggressors to attack female test mice
(Takahashi et al., 2017). When addressing age interactions in
response to stress within females, careful consideration of species
differences in the trajectory of reproductive senescence as well
as the biological consequences of surgical hormone depletion
is also warrented (Engler-Chiurazzi et al., 2017). Of note, there
are potentially independent cognitive contributions of ovaries
versus uterus (Koebele et al., 2019) and consideration of the
entire reproducitve system is necessary to comprehensively
discern immune-sex hormone interactions with mood. Finally,
investigators should not limit themselves to studying only
populations that display maladaptive stress response profiles
but should also consider exploration of subjects that display
stress resiliency; important understanding in this domain
is actively being advanced (Russo et al., 2012; Faye et al., 2018).

Sick as a Mouse: Can Rodent Models
Effectively Recapitulate Human
Immunity?
From an immunological perspective, consideration of the
limitations of the experimental model leveraged to study the
convergence of endocrine-immune factors within mental health
is of paramount importance. First, species differences among
humans vs. rodents in the development, total numbers, and
functional ability of a variety of immune cell subsets have
been long established and comprehensively discussed (Mestas
and Hughes, 2004). For example, notable differences in innate
immune responses including neutrophil defensin expression,
toll-like receptor distribution, and macrophage function as
it relates to nitric oxide, and natural killer cell inhibitor
receptors for major histocompatibility complex I molecules
between humans and rodents have been observed (Mestas
and Hughes, 2004). Peripheral leukocyte profiles also vary
by species such that up to 70% of immune cells in human
blood are granulocytes (such as neutrophils) while lymphocytes
make up approximately 30% of cells; monocytes are up to
10%, and other cell populations are more rare (Mestas and
Hughes, 2004; Olin et al., 2018). In contrast, rodents display
some sex differences in total blood leukocyte counts though
importantly in both sexes lymphocytes, at between ∼75-
90% for males and females, respectively, were the dominant
immune cell type in circulation while neutrophil counts
ranged between 24 and 8% (Doeing et al., 2003). Species
differences in adaptive immune responses have also been
reported, including variations in Fc receptor and Ig isotype
expression, the regulation of T and B cell development, and
the functional response of lymphocytes to antigen challenge
(Mestas and Hughes, 2004). The consequences of these
variations may be significant when attempting to address
consequences of immunogens that exhibit host-specific patterns
of infection, such as cytomegalovirus (Mestas and Hughes,
2004; Masopust et al., 2017), leading some researchers to

suggest that rodents poorly recapitulate human injury or disease-
associated inflammatory cascades and to advocate caution in
the utilization of rodent models for immune-focused research
questions (Seok et al., 2013).

As well, research mice are raised in specific pathogen
free vivarium facilities that abide guidelines for cleanliness
from regulatory organizations such as the United States
Department of Agriculture and Association for the Assessment
and Accreditation of Laboratory Animal Care accrediting bodies.
While such practices support the health and welfare of laboratory
rodents and promote reproducibility of data generated in a
variety of fields, it is now recognized that pathogen free mice have
immature immune systems that are functionally distinct from
laboratory mice deliberately exposed to pathogens, from wild
caught or pet-store reared mice, and from the human populations
they are meant to model (Abolins et al., 2017; Masopust et al.,
2017; Tao and Reese, 2017). For instance, adult humans have
differentiated memory CD8+ T cell subsets that are not observed
in laboratory mice raised in typical pathogen-free conditions;
co-housing mice with more antigen experienced pet-store mice
can “humanize” their immune profiles, potentially improving
their translational validity (Beura et al., 2016). Importantly,
antigen exposure history shapes the function of the immune
system (Beura et al., 2016; Tao and Reese, 2017), an important
consideration given that emerging evidence implicates a higher
infection burden with several negative neurological and cognitive
consequences across the aging trajectory. Whether these factors
manifest in functionally significant impacts for immunity as
it relates to mental health is not yet clear and will be an
important area of future study as the field evolves. Increased
interest among both scientists and funding organizations in the
rethinking of the research pipeline, the utilization of “dirty” mice,
and the deploying of novel sequencing methods that capture
the complexity of immune responses to explore key research
questions may reveal more translational insights in the coming
years (Shultz, 2016; Tao and Reese, 2017; Wagar et al., 2018).

Challenges Investigating Mood and
Immunity in Human Populations
Many factors contribute to challenges in successful translation of
preclinical findings to human populations. Here we will highlight
variability in human immune profiles (Brodin and Davis, 2017)
as well as mood disorder manifestations (Altemus et al., 2014).
Immune profiles in middle aged adults evaluated longitudinally
over the course of one year display some intra-individual
variability that varies in magnitude from subject to subject
and may be predictive of overall health (Lakshmikanth et al.,
2020). Immune variability is also prevalent across individuals as
immune profiles of the very young (Olin et al., 2018) and the
very old (Kaczorowski et al., 2017) exhibit more heterogenous
composition than do those of adults. As immune composition
of monozygotic twins become increasingly distinct with time,
the shaping of individual immune profiles is likely due to a
combination of heritable and environmental influences (Brodin
et al., 2015). Further, the numerous and sometimes vague or
opposing diagnostic criteria used to identify clinically depressed
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patients leads to a potentially highly variable subject pool that
likely reflects distinct MDD sub-phenotypes (Zimmerman et al.,
2015; LeGates et al., 2019). To account for this variability
when evaluating variables of interest, a straightforward statistical
solution is to increase sample size (Keppel and Wickens, 2004).
However, many of the seminal papers exploring immune profile
variations among depressed and mentally healthy populations
had stressed/depressed participant numbers of less than 50
(Darko et al., 1988; Maes et al., 1990, 1992a; Petitto et al., 1993;
McGregor et al., 2016; Ahmetspahic et al., 2018). This potential
under-sampling not only presents challenges to replicability of
the significant differences of immune readouts revealed in each
study, but could also indicate a lack of statistical power to detect
more subtle differences (Keppel and Wickens, 2004). However,
many studies do not report observed power nor effect sizes,
limiting the ability to make such determinations. These collective
factors may contribute to potentially large intra-individual
differences that make evaluation of the convergence of mood
and immune function a significant logistical challenge. Robust
assessment of immune-mood-sex interactions with statistically
powerful meta-analysis approaches will become more feasible as
additional investigations are conducted.

CONCLUSION

In summary, collective evidence addressing the unique affective
contributions of genetic sex, sex hormones, reproductive
capacity, and immunity has already expanded the prevailing

‘monoamine theory of depression’ and yielded improved
understanding of the mechanisms driving disordered mood.
Given the complex interactions that take place across the female
lifespan between these systems, due consideration of how these
factors acting in concert may converge to modulate mood is
necessary. This will be made possible by adherence to new
policies in the consideration of key biological variables, the
inclusion of diverse subject populations and the reporting of
findings based on population factors such as sex, reproductive
experience, and age. The goal of this expanded appreciation for
neuro-endo-immune factors in modulating mood is an increased
appreciation for the mechanisms driving the manifestation
of MDD and other mood disorders and revelation of novel,
potentially sex or age-specific therapeutic interventions; we look
forward to this outcome.
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Recent decades have witnessed increased research efforts to clarify how the menstrual
cycle influence females’ cognitive and emotional functions. Despite noticeable progress,
the research field faces the challenges of inconsistency and low generalizability of
research findings. Females of reproductive ages are a heterogeneous population.
Generalizing the results of female undergraduates to women in the workplace might
be problematic. Furthermore, the critical cognitive processes for daily life and work
deserve additional research efforts for improved ecological validity. Thus, this study
investigates cognitive performance across the menstrual cycle using a sample of young
nurses with similar duties. We developed a mini-computerized cognitive battery to
assess four mental skills critical for nursing work: cognitive flexibility, divided attention,
response inhibition, and working memory. Participants completed the cognitive battery
at menses, late-follicular, and mid-luteal phases. In addition, they were classified into
low- and high workload groups according to their subjective workload ratings. Our
results demonstrate a general mid-luteal cognitive advantage. Besides, this study
reveals preliminary evidence that workload modulates the menstrual cycle effect on
cognition. Only females of low workload manifest the mid-luteal cognitive advantage
on divided attention and response inhibition, implying that a suitable workload threshold
might be necessary for regular neuro-steroid interactions. Thus, this study advocates
the significance of research focusing on the cycling brain under workloads.

Keywords: menstrual cycle, workload, cognitive flexibility, inhibitory control, divided attention

INTRODUCTION

Ovarian hormones, such as estradiol and progesterone, fluctuate during the menstrual cycle in
healthy females of reproductive age. The estradiol levels gradually increase after the menses phase,
peaking in the late follicular phase and then dropping after ovulation and rising again in the mid-
luteal phase to moderate levels. The progesterone levels increase after ovulation and peak in the
middle of the luteal phase. Then, the two ovarian hormones drop to the lowest levels before the
onset of the next menses. Thus, the menstrual cycle is a convenient and ecological model of ovarian
hormones. Recent years have witnessed an explosion of research on how sex hormones and the
menstrual cycle shape female brains (Barth et al., 2015; Ycaza Herrera et al., 2019; Beltz and Moser,
2020; Le et al., 2020; Dubol et al., 2021; Hidalgo-Lopez and Pletzer, 2021).
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Estradiol and progesterone have neuroactive effects. The
hypothalamic-pituitary-gonadal (HPG) axis regulates the
reproductive processes and modulates cognitive and emotional
functions through direct or indirect projection to the prefrontal
cortex, hippocampus, thalamus, and brainstem (Morrison et al.,
2006; Le et al., 2020). It has long been hypothesized that cognitive
performance across the menstrual cycle might vary due to the
fluctuation of ovarian hormones. The effect of the menstrual
cycle has been found on social preference (Durante et al., 2014;
Zhuang and Wang, 2014; Wang and Chen, 2020; Wang et al.,
2021), cognitive ability (Hussain et al., 2016; Hidalgo-Lopez and
Pletzer, 2017; Leeners et al., 2017; Pletzer et al., 2017; Scheuringer
and Pletzer, 2017), motor learning (Ikarashi et al., 2020), cortical
structures (Lisofsky et al., 2015; Catenaccio et al., 2016; Pletzer
et al., 2018), and brain functions (Barth et al., 2016; Diekhof and
Ratnayake, 2016; Hidalgo-Lopez and Pletzer, 2019, 2021; Pletzer
et al., 2019; Wang et al., 2020a). Moreover, the late follicular or
luteal phase advantage on cognition has always been advocated
because of high neuroprotective steroids (Sundstrom-Poromaa
and Gingnell, 2014; Zhuang et al., 2020; Wang et al., 2021). For
example, previous studies suggest that females show superior
social cognitive performance during their luteal than menses or
follicular phase (Wang and Chen, 2020; Wang et al., 2020a,b,
2021). Although the neuroprotective role of estradiol has been
advocated, the role of progesterone remains ambiguous (Baudry
et al., 2013). Some studies suggest that progesterone may
antagonize rather than synergize estradiol effects (Rosario et al.,
2006; Carroll et al., 2008). It is hard to separate the effects of
progesterone and estradiol across the menstrual cycle because
both hormone levels are high in the mid-luteal phase. Thus,
studying the three different phases across the menstrual cycle is
necessary to clarify the relationship between hormones.

Despite the appealing association between the menstrual cycle
and cognition, the empirical evidence is far from consistent
(Sundstrom-Poromaa and Gingnell, 2014; Sundstrom-Poromaa,
2018; Beltz and Moser, 2020; Le et al., 2020). The evolutionary
hypothesis implicated that women might show visuospatial
ability advantage during their early follicular phase (low ovarian
steroids) and verbal ability advantage in the luteal phase (high
ovarian steroids). However, Sundstrom-Poromaa and Gingnell
(2014) summarized that the supporting evidence is insufficient in
the literature. In addition, their following review further suggests
that the menstrual cycle might influence emotion, but has a
limited effect on cognitive function (Sundstrom-Poromaa, 2018).
However, recent neuroimaging studies have revealed consistent
evidence that the menstrual cycle modulates the structure,
functional activation, and connectivity of brain regions that are
responsible for cognitive control (e.g., prefrontal cortex) and
memory (e.g., hippocampus) (Beltz and Moser, 2020; Dubol et al.,
2021). Thus, it might be too soon to reject the menstrual cycle’s
potential effect on “cold” cognition.

The inconsistency might be because the effect of the menstrual
cycle is too transient to be captured by behavioral assessment
or noise due to methodological flaws (Le et al., 2020). However,
it has been long overlooked in the field that healthy females
of reproductive age are a heterogeneous population with huge
variability in their social-economic status, years of education,

social support, occupation, and work pressure. Many studies
recruited undergraduate or graduated female students from
the campus or females in nearby communities of different
professions. These findings might not generalize seamlessly to
some specific populations. Only a few studies have employed
homogenous samples within a particular workplace, such as
nurses (Hatta and Nagaya, 2009). Investigating the cycling brain
in specific workplaces is, thus, a valuable research direction.

Furthermore, the inconsistency might be due to the menstrual
cycle’s interaction with other factors (Bernal and Paolieri, 2022).
It has been proposed that estrogen and progesterone interact
with cognition-related neurotransmitter systems, including
serotoninergic, dopaminergic, gamma-aminobutyric-acid
(GABA)-ergic, and glutamatergic pathways, with profound
effects on brain structure and function (Barth et al., 2015). For
example, recent evidence shows that the effect of estradiol status
on working memory function depends on the baseline dopamine
levels (Jacobs and D’Esposito, 2011). Using the eye blink rate
(EBR), an indicator of striatal dopamine levels, one following
study reveals that females with lower EBR showed superior
Stroop performance during their luteal phase and vice versa
(Hidalgo-Lopez and Pletzer, 2017). Hidalgo-Lopez and Pletzer
(2019) recent work also suggests that baseline performance
modulates the menstrual cycle effect on the inhibitory control
ability. Besides the factors mentioned above, there might be
many contextual and individual factors deserving increasing
research attention.

Female nurses account for 90% of the global nursing
workforce and play irreplaceable roles in public health (World
Health Organization, 2020). Meanwhile, female nurses undertake
noticeable workloads. For example, in China, on average, a
nurse in a general hospital takes care of 8 patients in the
daytime and 23 patients at night (Shen et al., 2020). Compared
with other careers, the nursing job characterizes by mental
pressures induced by multitasking and attentional interferences.
Potter et al. (2005) use a cognitive task analysis methodology
to reveal that a nurse must hold 11 activities in mind in
the acute care work setting. The nursing job is also full of
interruptions associated with procedure failures and clinical
errors (Westbrook et al., 2010). Thus, an efficient nurse needs
to switch flexibly among tasks (cognitive flexibility), attend to
patients and clinical signals simultaneously (divided attention),
inhibit automatic, habitual but inappropriate actions (response
inhibition), and store necessary information in mind (working
memory). Research focusing on the female nurse population is,
thus, valuable for promoting their occupational health.

Previous studies have suggested that hormones from the
hypothalamic-pituitary-adrenal (HPA) axis regulate the HPG
axis (Oyola and Handa, 2017). The HPA axis is the coordinator
of the brain’s fight-or-flight response, which increases cortisol
production to deal with stressful events. Previous studies have
also demonstrated an inverted U-shaped relationship between
workload and task performance (Ma et al., 2020). However, it
is still ambiguous whether workload would interact with the
menstrual cycle to affect cognitive performance. This study
investigates whether workload modulates the cycling brain using
a homogenous nurse sample. The workload here refers to the
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cognitive, emotional, and physiological resources expended to
complete the task requirement (Alghamdi, 2016). We chose
four representative cognitive paradigms (task-switching, divided
attention, spatial Stroop, and multiple change detection) to
target core mental skills necessary for nursing work. In addition,
a self-report measure, namely the National Aeronautics and
Space Administration Task Load Index (NASA-TLX), quantifies
the nursing workload, which can tease apart six sources of
work pressures (Hart, 2016). Although the workload can be
evaluated physiologically (Borghini et al., 2014), self-report
measures are helpful to provide a convenient, inexpensive,
reliable, and valid sampling (Wickens, 2008). We hypothesized
that female nurses perform better during their mid-luteal phase.
In addition, workload might be a potential modulatory factor of
the menstrual cycle effect.

MATERIALS AND METHODS

Participants
We recruited 96 healthy right-handed female registered nurses
in a local hospital. All of them had a regular menstrual cycle
of 24–35 days (Le et al., 2020) and variability between cycles
of less than 7 days in the past 3 months, with normal or
corrected-to-normal vision, had not taken oral contraceptive or
other hormonal medications within the previous 3 months, no
history of nicotine or alcohol abuse, no sleep disorders, and
no neurological, psychiatric, or endocrine disorders, including
premenstrual dysphoric disorder (PMDD) and premenstrual
syndrome (PMS). Ten participants were excluded due to their
actual cycle phase falling out of the normal range during
the experiment session according to their follow-up report
on the onset of the next cycle. Seven participants dropped
out for personal reasons, leaving a final sample of 79 nurses
(M = 25.52 years, SD = 4.33 years) with a mean cycle length
of 29.42 days (SD = 1.69). The study was approved by the local
ethics committee and was conducted following the Declaration
of Helsinki. All participants gave written informed consent and
received monetary compensation.

Research Procedure
Participants completed an online screening questionnaire to
determine whether they were eligible to participate in the
study. Eligible participants enrolled in the test session were
required to record their menses’ start date and duration for at
least 3 months to double-check whether their menstrual cycle
is regular. The first author (MX) interviewed them privately
to survey their subjective nursing workload and check their
menstrual cycle information and calculate their cycle phase for
those participants. The menstrual cycle mapping was determined
using the backward counting procedure widely used in the
literature (Zhuang and Wang, 2014; Hidalgo-Lopez and Pletzer,
2017; Schaumberg et al., 2017; Wang et al., 2021). Specifically, we
defined the menses phase (low estradiol levels, low progesterone
levels) as the 1–4 days after the onset of menstruation; the late-
follicular phase (estradiol levels peak and low progesterone levels)
as the 3 days before the predicted ovulation; and the mid-luteal

phase (moderate estradiol levels and high progesterone levels)
as 3 days after the expected ovulation to 3 days before the next
onset of the menstruation. We calculated the predicted ovulation
by subtracting 14 days from the expected next menstruation
onset, determined using each participant’s average cycle length in
the last 3 months.

The study was a within-subject, longitudinal design. Thus,
participants attended three behavior test sessions during the
menses, late-follicular, and mid-luteal phases. These cycle
phases were set apart by at least 6 days. The starting session
was counterbalanced among participants. About one-third of
participants started their first session in the menses, one-third
in the late-follicular, and one-third in the mid-luteal phase. For
each test session, participants first rated their negative emotions
of the past week. Then, they completed a ∼50-min mini-
computerized cognitive battery, including inhibitory control,
cognitive flexibility, divided attention, and working memory.
The experiment environment was a quiet room. A well-trained
graduate student (MX) instructed and monitored tests of all
participants. After the third test session, participants were tracked
for their subsequent menses to validate their predicted cycle
phase falling into the normal range. Those who violated were
excluded from analysis even after completing the study.

Self-Assessment Scales
National Aeronautics and Space Administration Task
Load Index
The NASA-TLX measured the subjective workload using six
subscales: mental demand, physical demand, temporal demand,
performance, effort, and frustration levels (Tubbs-Cooley et al.,
2018). Each subscale is rated on a 20-point scale (0 = low,
20 = high), but for the performance scale (0 = good, 20 = poor).
Higher scores indicate increased workloads.

Depression Anxiety Stress Scale-21
The Depression Anxiety Stress Scale-21 (DASS-21) measured
negative emotions in the past week, including depression,
anxiety, and stress subscale. Each subscale contains seven items.
Each item was scored on a 4-point scale ranging from 0 to 3.
The final score was the summed score multiplied by two (Henry
and Crawford, 2005). Higher scores indicate higher depression,
anxiety, or stress levels, respectively.

The Mini-Computerized Cognitive
Battery
The mini-computerized cognitive battery was developed using
GNU Octave and Psychtoolbox 3.16 (Brainard, 1997; Pelli, 1997)
under the UBUNTU 18.04 system on a Thinkpad T61 laptop
(12-inch, 1024 × 768 pixels, 50 Hz refresh rate). Participants
completed the battery sitting about 50 cm in front of the laptop
screen in a quiet room. The battery included four tasks measuring
inhibitory control, cognitive flexibility, divided attention, and
working memory capacity.

Measure of Inhibitory Control
The spatial Stroop task is a paradigm measuring inhibitory
control (Aidman et al., 2019). A typical trial starts with a fixation
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FIGURE 1 | The mini-computerized cognitive battery. (A) Spatial Stroop task. A typical trial starts with a fixation (600 ms). After a blank screen (200 ms), an arrow
appears on the left or the right side of the screen. Participants needed to report the arrow direction by pressing corresponding keys as soon as possible with the
accuracy ensured. (B) Task-switch task. On each trial, a number (randomly selected from 1, 2, 3, 4, 6, 7, 8, 9) appeared in a cell of a 2 × 2 grid. If the number
appeared in the upper row, participants needed to respond whether it was greater or less than 5. If the number appeared in the lower row, they answered whether it
was even or odd. The first number appeared in the right-top cell and changed location clock-wisely in the subsequent trials. (C) Divided attention task. A square
appears at regular intervals on the screen, and at the same time, participants listen to a sound. Every trial appeared every 1 s and lasted 1 s each. Participants
needed to detect changes in either the visual sequence or the audio sequence. Whenever the square gets noticeably lighter, or the sound gets noticeably higher
pitch twice in a row, they need to press the space bar as soon as possible. (D) Working memory task. A typical trial starts with a fixation (500 ms), followed by an
encoding array (5 colored squares). The colored squares appeared on an imaginary circle (500 ms). A test array appeared after a 1,000 ms delay. The test array
could have 0, 1, 2, or 5 changed items with equal probability. Participants had to indicate whether the test array and the encoding array differed.

in the screen center for 600 ms. After a blank screen of 200 ms, an
arrow pointing leftward or rightward appeared on the left or the
right side of the screen. Participants needed to report the arrow
direction by pressing corresponding keys as soon as possible
with accuracy ensured. The primary interest variable was the
congruency between the arrow direction (leftward, rightward)
and their position (left side, right side) (Figure 1A). There were
10 practice trials and 60 test trials, including 24 congruent and
36 incongruent trials. The error rate for each condition was
summarized. We also calculated the mean reaction time after
removal of error trials and trials too fast (< 150 ms) or too
slow (> 1,500 ms).

Measure of Cognitive Flexibility
The task-switching paradigm measures cognitive flexibility
(Monsell, 2003; Aidman et al., 2019). A number randomly chosen
from 1 to 9 appeared in one cell of a 2 × 2 grid for each trial.
If the number appeared in the upper row, participants needed

to respond whether it was greater or less than 5. If the number
appeared in the lower row, they answered whether it was even or
odd. The first number appeared in the right-top cell and changed
location clockwise in the subsequent trials. The trial was in repeat
condition (same task rule) if the number appeared on the top-
right and bottom-left cell; other trials were in switch condition
(change of task rule) (Figure 1B). There were 12 practice trials
and 60 test trials, including 29 repeat trials (with the first trial
discarded) and 30 switching trials. We calculated error rates and
mean reaction time for each condition. Error trials and trials
too fast (< 150 ms) or low (> 1,500 ms) were excluded from
reaction time analysis.

Measure of Divided Attention
The audiovisual cross-modal monitoring task measures divided
attention ability (Himi et al., 2019). A square appears at regular
intervals on the screen center, and, at the same time, participants
listen to a sound. Participants needed to detect changes in either
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the visual sequence or the audio sequence. Sometimes the square
gets noticeably lighter, and sometimes the sound gets a noticeably
higher pitch. Whenever the square gets noticeably lighter or the
sound gets noticeably higher pitch twice in a row, they need to
press the space bar as soon as possible (Figure 1C). Thirty-two
practice trials were followed by the test trials, which consisted of
200 trials. Every trial appeared every 1 s and lasted 1 s each. The
index of the task was the sensitivity calculated according to signal
detection theory using the non-parametric sensitivity measure
(A′) (Stanislaw and Todorov, 1999) and the mean reaction time
of correct responses.

Measure of Working Memory Capacity
The multiple change detection paradigm estimates working
memory capacity (Gold et al., 2019). A typical trial starts with a
fixation in the screen center for 500 ms, followed by an encoding
array (5 colored squares). The colored squares appeared on an
imaginary circle with a radius of 120 pixels centered on the center
of the screen for 500 ms. A test array appeared after a 1,000-
ms delay. The test array could have 0, 1, 2, or 5 changed items
with equal probability. Participants had to indicate whether the
test array and the encoding array differed (Figure 1D). There
were 240 trials with 60 trials for each change type. The working
memory capacity (K) was estimated according to a computational
model (Feuerstahler et al., 2019) and used R (R Core Team, 2021)
and the est_KAG function.1

Statistical Analysis
Participants were classified into high and low workload groups
using the mean value of NASA TLX total scores of all participants
as the cut-off criterion. The group difference was examined
using the independent-samples t-test and chi-square test. We
conducted an omnibus mixed factorial analysis of variance
(ANOVA) first for each emotion and task measure and performed
post hoc comparisons using the LSD method if necessary. The
p-value was adjusted using the Greenhouse–Geisser procedure
in case of violation of the sphericity hypothesis. We translate
p-values in the language of evidence to avoid the black-or-white
null-hypothesis testing with an arbitrary p-value cut-off (Muff
et al., 2022). The statistical analysis software was IBM SPSS
Statistics for Windows (Version 22.0. Armonk, NY, United States:
IBM). To exclude the practice effect and potential confounding
effect of age, we also conducted linear mixed model analyses
by controlling the effect of the session and participants’ age.
The supplementary analysis, in the form of an Rnotebook, is
available online (see Data Availability Statement). The linear
mixed-effect model was conducted using R (version 4.1.1) (R Core
Team, 2021), afex (Singmann et al., 2021), and lme4 (Bates et al.,
2015) package.

RESULTS

Subjective Workload
We divided participants into low (n = 41) and high (n = 38)
workload groups according to the mean NASA-TLX score

1https://github.com/leahfeuerstahler/vwm

(M = 69.65, SD = 14.81). Table 1 compares the low and high
workloads groups on demographic information and mental
health measures.

Effect of Workload and Menstrual Cycle
on Negative Emotion
A mixed factorial ANOVA of 2 (group: low, high workload) × 3
(cycle phase: menses, late follicular, mid-luteal) was conducted
for depression, anxiety, and stress scores, respectively. The
results revealed no evidence that the high and the low workload
group differed on each emotion subscale (all ps > 0.29, see
Supplementary Table 1 for detailed information). There was
no evidence of the effect of the cycle phase, no matter in
terms of main effect or interaction effect, on the depression and
stress scores (all ps > 0.1). However, there was weak evidence
of the main effect of the cycle phase on the anxiety score
(p = 0.071).

Effect of Workload and Menstrual Cycle
on Inhibitory Control
A mixed factorial ANOVA of 2 (group: low, high workload) × 3
(cycle phase: menses, late follicular, mid-luteal)× 2 (congruency:
congruent, incongruent) was conducted on error rate and
reaction time, respectively. See Supplementary Table 2 for a
summary of the ANOVA analysis.

On the measure of error rate, there was moderate evidence
for a main effect of congruency [F(1, 77) = 4.873, p = 0.03,
η2 = 0.06], indicating generally more errors in the incongruent
(M = 0.020, SE = 0.003) than the congruent condition (M = 0.014,
SE = 0.002). The statistical evidence supporting the main effect
of group and cycle phase was little or no (all ps > 0.2).
Besides, we found little or no evidence for the two-way
interactions (all ps > 0.05). However, there was moderate
evidence for the interaction effect among the three factors [F(2,
154) = 3.885, p = 0.023, η2 = 0.048]. A repeated-measures
ANOVA of 3 (cycle phase: menses, late follicular, and mid-
luteal) × 2 (congruency: congruent, incongruent) was then
performed for the low workload group and the high workload
group, respectively.

There was only weak evidence for the low workload group
for the main effect of the cycle phase [F(1.56, 62.3) = 2.87,
p = 0.076, η2 = 0.067]. However, there was strong evidence
for the main effect of congruency [F(1, 40) = 7.76, p = 0.008,
η2 = 0.163], and moderate evidence for the interaction effect
between the cycle phase and the congruency [F(2, 80) = 4.56,
p = 0.013, η2 = 0.102]. Follow-up analyses found no evidence
that performance on the congruent condition varied among the
cycle phase [F(2, 39) = 0.39, p = 0.68, η2 = 0.02]. However, on the
error rate of the incongruent condition, there was strong evidence
for the main effect of the cycle phase [F(2, 39) = 5.76, p = 0.006,
η2 = 0.23]. Error rates of the mid-luteal phase were lower than
the menses (p = 0.003) and the late follicular phase (p = 0.037).
There was little or no evidence for the difference between the
menses and the late follicular phase on the incongruent condition
(p = 0.183). We found little or no evidence for the main effect
and interaction term involving the cycle phase in the high
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TABLE 1 | Demographics and work characteristics of the sample.

Variables Low (n = 41) High (n = 38) p-value

Cycle length, mean (SD) 29.6 (1.81) 29.2 (1.64) 0.224

Age, mean (SD) 24.1 (3.81) 27.1 (4.40) 0.002

BMI, mean (SD) 20.6 (2.65) 21.2 (2.07) 0.286

Marital status, n (%) 0.093

Single 32 (78.0%) 22 (57.9%)

Married 9 (22.0%) 16 (42.1%)

Education level, n (%) 0.098

Specialist qualification 29 (70.7%) 19 (50.0%)

Bachelor degree 12 (29.3%) 19 (50.0%)

Monthly income, n (%) 0.126

< 4000 RMB 30 (73.2%) 19 (50.0%)

< 6000 RMB 9 (22.0%) 11 (28.9%)

< 8000 RMB 1 (2.44%) 4 (10.5%)

> 8000 RMB 1 (2.44%) 4 (10.5%)

BDI, mean (SD) 3.05 (2.77) 2.66 (2.81) 0.536

GAD-7, mean (SD) 3.34 (2.52) 3.76 (2.89) 0.493

BMI, Body mass index; BDI, Beck depression inventory; GAD-7, Generalized
anxiety disorder 7-item scale; SD, Standard deviation.

workload group [cycle: F(2, 74) = 0.17, p = 0.846, η2 = 0.005,
cycle × congruency: F(2, 74) = 1.18, p = 0.312, η2 = 0.031]. See
Figure 2 for an illustration.

On the measure of reaction time, there was strong evidence
for the main effect of congruency [F(1, 77) = 12.759, p = 0.001,
η2 = 0.142], indicating faster responses in the congruent
condition (M = 487 ms, SE = 8 ms) than the incongruent
condition (M = 499 ms, SE = 8 ms). We also found moderate
evidence for the main effect of group [F(1, 77) = 5.353,
p = 0.023, η2 = 0.065], suggesting that the high workload
group (M = 476 ms, SD = 11 ms) responded faster than
the low workload group (M = 511 ms, SD = 11 ms) in
general. However, we found little or no evidence for the
main effect or interaction effect involving cycle phase (all
ps > 0.05).

Effect of Workload and Menstrual Cycle
on Cognitive Flexibility
A mixed 2 (group: low, high workload) × 3 (cycle phase:
menses, late follicular, mid-luteal)× 2 (condition: repeat, switch)
factorial ANOVA was conducted on error rate and reaction
time, respectively. See Supplementary Table 3 for a summary of
the ANOVA analysis.

On the measure of error rate, there was very strong evidence
for the main effect of condition [F(1, 77) = 18.058, p < 0.001,
η2 = 0.19], suggesting more errors in the switch condition
(M = 0.028, SE = 0.003) than the repeat condition (M = 0.016,
SE = 0.002). We also found strong evidence for the main effect
of cycle phase [F(1.703, 131.121) = 5.271, p = 0.009, η2 = 0.064],
indicating fewer errors in the mid-luteal phase than the menses
phase (p = 0.006) and late follicular phase (p = 0.007). However,
there was little or no evidence that the menses and the late
follicular phase differ (p = 0.317). See Figure 3 for an illustration.
The results revealed little or no evidence for the main effect of
group [F(1, 77) = 0.628, p = 0.431, η2 = 0.008]. In addition,
we found little or no evidence for the two-way and three-way
interactions (all ps > 0.2, see Supplementary Table 3).

On the measure of reaction time, there was a strong
evidence for the main effect of condition [F(1, 77) = 445.941,
p < 0.001, η2 = 0.853], indicating slower responses in the switch
(M = 987 ms, SE = 15 ms) than the repeat condition (M = 825 ms,
SE = 15 ms). However, we found little or no evidence for the main
effect of the group and cycle phase and the two-way and three-
way interactions (all ps > 0.45, see Supplementary Table 3).

Effect of Workload and Menstrual Cycle
on Divided Attention
A mixed 2 (group: low, high workload)× 3 (cycle phase: menses,
late follicular, mid-luteal) factorial ANOVA was conducted on
the sensitivity measure (A′) and reaction time, respectively. See
Supplementary Table 4 for a summary of the ANOVA analysis.

The ANOVA on the sensitivity measure (A′) revealed
moderate evidence for the main effect of cycle phase [F(2,

FIGURE 2 | The interactive effect of workload and the menstrual cycle on the error rate measure of the spatial Stroop task. Error bars represent the standard error of
the mean. ∗ and ∗∗ indicates p < 0.05 and p < 0.01, correspondingly.
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FIGURE 3 | The main effect of the menstrual cycle on the error rate measure
of the task-switching task. Error bars represent the standard error of the
mean. ∗∗ indicates p < 0.01.

154) = 3.29, p = 0.035, η2 = 0.042]. Post hoc analysis indicated
higher A’ in the mid-luteal phase than in the menses phase
(p = 0.021) and late follicular phase (p = 0.030). However, there
was no evidence of the difference between the menses and the late
follicular phase (p = 0.780) (Figure 4). We also found little or no
evidence for the main effect and interaction terms involving the
group (all ps > 0.17, see Supplementary Table 4).

On the measure of reaction time, there was little or no
evidence for the main effect of cycle phase [F(2, 154) = 0.74,
p = 0.479, η2 = 0.01] or group [F(1, 77) = 0.473, p = 0.494,
η2 = 0.006]. However, the results revealed moderate evidence
for the interaction between the group and cycle phase [F(2,
154) = 3.21, p = 0.043, η2 = 0.04]. Follow-up analyses revealed that
moderate evidence that participants of low workload responded
faster during the mid-luteal phase than the menses (p = 0.037)
and little or no evidence for other comparisons (mid-L vs. late-
F: p = 0.12; late-F vs. menses: p = 0.635). However, there was
no evidence for the cycle effect in the high workload group (all
ps > 0.11) (Figure 5).

Effect of Workload and Menstrual Cycle
on Working Memory
A mixed 2 (group: low, high workload) × 3 (cycle phase:
menses, late follicular, mid-luteal) factorial ANOVA on the
working memory capacity estimation (K) was conducted. See
Supplementary Table 5 for a summary of ANOVA results.
However, there was no evidence for the main effects [group:
F(1, 77) = 0.563, p = 0.455, η2 = 0.007; cycle phase: F(2,
154) = 0.705, p = 0.496, η2 = 0.009] and the interaction effect [F(2,
154) = 0.009, p = 0.991, η2 < 0.001]. See Supplementary Table 5
for detailed information.

DISCUSSION

The present study investigates cognitive performance across the
menstrual cycle using a sample of nurses with similar duties.
As summarized in Table 2, our results demonstrate evidence

FIGURE 4 | The main effect of the menstrual cycle on the sensitivity measure
of the divided attention task. ∗ indicates p < 0.05.

for the general cognitive advantage of the mid-luteal phase, as
manifested by the main effect of the menstrual cycle on the
error rate measure of the task-switch task and the sensitivity
measure of the divided attention task. Moreover, the present
study demonstrates that workload might be a modulatory factor
of the menstrual cycle effect, with preliminary evidence that
the cycle phase effect on the reaction time measure of divided
attention task and the error rate measure of response inhibition
task is only manifested in the low workload group.

The Main Effect of the Menstrual Cycle
Our results demonstrate a mid-luteal phase advantage on
the error rate measure of task-switching. The task-switching
paradigm adopted in the current research is a classical measure
of cognitive flexibility (Monsell, 2003). Our results replicate a
typical switch-cost phenomenon: people make slower responses
and more errors when the task rule is switched compared
with repeat. Using the Wisconsin Card Sorting Task, Solis-
Ortiz et al. (2004) reported a similar finding that females
show superior cognitive flexibility during their luteal phase.
A recent study using a similar task-switching task in functional
MRI (fMRI) demonstrated that enhanced prefrontal activations
after hormone therapy (sequential estradiol-plus-progesterone)
were associated with improved task-switching performance in
a sample of early menopausal women (Girard et al., 2017).
However, Girard et al. (2017) did not observe beneficial effects
on behavioral measures. Their failure to detect behavioral effects
might be due to the task design tailored for fMRI or the
small sample size.

It should be noteworthy that we found no evidence for
the interaction between the menstrual cycle and the switch
condition. In other words, the menstrual cycle modulates the
general task performance, but not the switching cost in our
study. Thus, the performance improvement in the mid-luteal
phase might not specifically suggest the ovarian hormone’s effect
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FIGURE 5 | The interactive effect of workload and the menstrual cycle on the reaction time measure of the divided attention task. Error bars represent the standard
error of the mean. ∗ indicates p < 0.05.

TABLE 2 | Summary of main findings involving menstrual cycle.

Task Measure Cycle Cycle ×

Workload
Cycle × Workload

× Condition

Inhibitory control Error rate 0.274 0.096 0.023

RT 0.224 0.660 0.066

Cognitive flexibility Error rate 0.009 0.701 0.876

RT 0.531 0.599 0.498

Divided attention Sensitivity 0.035 0.224 –

RT 0.479 0.043 –

Working memory Capacity 0.496 0.991 –

RT, Reaction time; The Cycle × Workload × Condition is not available as no
experimental contrast was defined; The values in the table refer to p-values and
are shown in bold when p < 0.05.

on the task-switching process. The general task performance
improvement in the task-switch task is likely due to an attentional
augment mechanism. Female participants in our study might
show relatively good skills in neglecting task-irrelevant and
focusing on task-relevant information during their mid-luteal
phase. This hypothesis is consistent with our finding on the
divided attention task.

On the divided attention task, female nurses in our research
show superior sensitivity in detecting the visual and auditory
changes during their mid-luteal phase. We adopted a cross-modal
monitoring task to assess participants’ ability to simultaneously
attend to visual and auditory modalities (Himi et al., 2019). The
effect of hormones or the menstrual cycle on different facets of
attention has been explored, such as sustained attention (Solis-
Ortiz and Corsi-Cabrera, 2008), selective attention (Thimm
et al., 2014; Brotzner et al., 2015; Wang and Chen, 2020),
and divided attention (Leeners et al., 2017; Pletzer et al.,
2017). A seminal work from Pletzer et al. (2017) systematically
examined the sex and menstrual cycle effect on three aspects
of attention, which reports a follicular phase advantage on the
accuracy measure of divided and sustained attention. Unlike us,
Pletzer et al. (2017) use paper-pencil tests to assess selective

and divided attention. Moreover, Pletzer et al. (2017) only
compared the luteal and follicular phases, making a direct
comparison with us impossible. Leeners et al. (2017) adopted
a similar bimodal attention task as us, but they failed to
detect any association between hormone levels and divided
attention (Leeners et al., 2017). However, Leeners et al. (2017)
used a very heterogeneous sample, including both endocrine
disorders and healthy females, making a direct comparison
with us impossible.

The general cognitive advantage of the mid-luteal phase,
manifested in the task switch and divided attention task, is
consistent with recent evidence of the progesterone effect on
prefrontal function (Dubol et al., 2021). The prefrontal cortex
plays essential roles in cognitive control, influencing attention,
impulse inhibition, prospective memory, and cognitive flexibility.
A recent systematic review of multimodal neuroimaging studies
suggests that enhanced prefrontal activations in the middle
luteal phase are a convergent finding in the literature (Dubol
et al., 2021). For example, Pletzer et al. (2019) investigated brain
activations and functional connectivity changes when women
perform a spatial navigation task and a verbal fluency task
during the menstrual cycle. Intriguingly their study reveals
that progesterone increases the BOLD responses of the dorsal
prefrontal cortex and caudate during the luteal cycle phase
irrespective of the task (Pletzer et al., 2019). Whether the main
effect of the menstrual cycle on task switching and divided
attention performance was driven by progesterone’s impact on
the prefrontal cortex requires additional research efforts. Future
studies might use fMRI to clarify this issue.

Workload as a Modulatory Factor
This study reveals intriguing interactions between the error rate
measure of the spatial Stroop task and the reaction time measure
of the divided attention task. Analysis of the two tasks reveals a
similar finding that only low workload groups performed better
during their mid-luteal phases. However, the mid-luteal cognitive
advantage disappeared in high workload groups.
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In the spatial Stroop task, participants make a speeded
response to the arrow direction and inhibit the dominant
tendency to respond with the ipsilateral hand matching the
arrow position when direction and position information conflict.
Cognitive control is necessary to focus on the task-relevant
information (selective attention) and inhibit the dominant
response tendency (response inhibition) (Pires et al., 2018).
Unlike us, previous studies mainly used the color Stroop task, and
the results were inconsistent (Hatta and Nagaya, 2009; Hidalgo-
Lopez and Pletzer, 2017). For example, a study reported that
females performed worse during their luteal phase than during
the menses phase (Hatta and Nagaya, 2009). In contrast, we
did not find evidence for the main effect but evidence for the
interactive effect of the menstrual cycle. There was also moderate
evidence for the interaction effect on the reaction time measure
of the divided attention task.

Our findings parallel recent studies on modulatory factors
(Jacobs and D’Esposito, 2011; Hidalgo-Lopez and Pletzer, 2017,
2019; Bernal and Paolieri, 2022). A recent study demonstrates
that the menstrual cycle effect on color Stroop task performance
is modulated by the baseline dopamine levels (Hidalgo-Lopez
and Pletzer, 2017). Their following research used the stop-signal
fMRI task to measure inhibitory control and associated brain
activity, indicating the baseline inhibitory control might also
be a potential modulating variable (Hidalgo-Lopez and Pletzer,
2019). In addition, the recent review proposes that it is crucial
to consider modulating factors to avoid confounding findings
(Bernal and Paolieri, 2022). Those pieces of evidence, along
with us, advocate research attention to potential modulating
factors that might change the direction or strength of the
menstrual cycle effect.

It is noteworthy that the mid-luteal phase advantage was
eliminated in the high workload group on both the error rate
measure of the spatial Stroop task and the reaction time measure
of the divided attention task. These preliminary findings imply
that work-related stress might offset the protective effect of
ovarian steroids. Previous studies have suggested that hormones
from the HPA axis are involved in regulating the HPG axis
at different levels (Oyola and Handa, 2017). The HPA axis is
the coordinator of the brain’s fight-or-flight response, which
increases cortisol production to deal with stressful events.
A recent study indicates that the hair cortisol concertation
predicts work-related stress only in the high workload condition
but not in the normal workload condition (van der Meij
et al., 2018). The increased perceived workload in the high
workload group did not affect emotion yet as we did not
find the workload effect on the DASS scores. We failed to
detect the workload effect on emotion, but “cold” prefrontal-
mediated tasks might be due to the rating scale’s insensitivity.
Another explanation is a complex interaction among the HPA
axis, HPG axis, and the prefrontal network underneath women’s
cycling cognitive and affective performance. Our preliminary
findings advocate future research efforts to tease apart the
potential dynamics among the “cold”/“hot” brain systems and the
neuroendocrine system.

Contrary to our expectations, we did not find an effect
of workload and menstrual cycle on working memory. Visual

working memory is essential for cognitive performance (Luck
and Vogel, 2013). The present study estimates participants’ visual
working memory capacity (K) for each test session using a
multiple-change detection paradigm (Gold et al., 2019) and a
computational model (Feuerstahler et al., 2019). However, this
study did not reveal the workload or the menstrual cycle’s
effect on the K index, consistent with a recent study using a
single probe change detection paradigm (Wassell et al., 2015).
Although Wassell et al. (2015) revealed that progesterone levels
in the mid-luteal phase modulate mental imagery ability, but
they failed to find any association between cycle phase, hormone
concentration, and working memory performance.

Previous studies on the menstrual cycle effect primarily used
verbal working memory tasks (Joseph et al., 2012; Hidalgo-Lopez
and Pletzer, 2021). A recent study found enhanced frontal activity
and disinhibition of the salience brain network and striatum
in a verbal working memory task (letter N-back) during the
luteal phase (Hidalgo-Lopez and Pletzer, 2021). Hampson and
Morley (2013) suggest that estradiol, but not progesterone levels,
is associated with spatial working memory performance using a
sample of women of reproductive age. Their study implies that
females might perform best during their follicular phase when the
estradiol levels are high. However, using a working memory task
for emotional expressions, Gasbarri et al. (2008) indicated that
working memory is impaired in the follicular phase.

The inconsistent findings in the literature might be due
to methodological differences. Another potential explanation
might be complex interactions among the HPA axis, HPG
axis, and neurotransmitter systems, such as the dopaminergic
system. Previous studies have suggested an inverted U-shape
relationship between dopamine concentration and prefrontal
cortex mediated cognitive function, such as working memory
and cognitive control (Cools and D’Esposito, 2011). Recent
studies have found that the mid-luteal phase and progesterone
levels drive the effects of dopamine and cycle interactions
on cognitive control (Hidalgo-Lopez and Pletzer, 2017). The
picture gets increasingly complex by considering another
inverted U-shape association between workload and task
performance (Ma et al., 2020). It is possible that complex
interactions among progesterone, dopamine, and workload
obscure the findings of this study. Alternatively, it may be
due to other mechanisms, such as functional compensation
in the brain. Although this study provides insights on
potential intriguing modulating mechanisms, clarifying the exact
mechanism is far from our reach. Increasing research efforts are
necessary for the future.

Limitations and Future Directions
This study used a validated backward-counting procedure to
determine the late-follicular and mid-luteal phases. To further
minimize the impact of menstrual cycle mapping error, we
increase the sample sizes. As far as we know, few studies
have a sample size bigger than us (n = 79) if they used the
longitudinal design with a homogenous sample like us. In
addition, we double-checked and excluded participants if their
actual menses onset deviated from the normal range during the
experiment. Despite this, we admit that it might comprise a
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potential limitation without saliva, urine, or blood test to verify
the hormone levels.

Although our results indicate workload as a modulatory factor
on the menstrual cycle’s effect on cognition, caution should be
made that the evidence is preliminary. Future research is still
necessary to replicate the role of workload with samples of
females in other workplace settings. In addition, the workload is a
too complex construct that might confound many other concepts.
Moreover, participants in the present study rated their generally
experienced workload in the past 3 months, not their workload at
the moment. Thus, the current findings might not answer how
acute work stress impacts the menstrual cycling effect. Future
studies might use new research methodology, such as experience
sampling (Bos et al., 2015) and wearable neurophysiological
recordings (Yokota et al., 2017), to provide an objective and
immediate measure of workload.

This study contributes a mini-computerized cognitive battery
specifically designed to evaluate four cognitive skills critical for
nursing performance. We make it publicly available to make
replicative and collaborative research works possible. However,
we need to emphasize that the tasks in the battery are only a
tiny subset of cognitive assessment and may not capture the
cognitive performance at work. We suggest that it is valuable to
assess cognitive performance by tracking operational errors when
nurses perform routine tasks in their workplace.

CONCLUSION

How the menstrual cycle impacts the cognitive performance
of females in the workplace is less understood. The present
study employed a sample of nurses with similar duties and
tracked their cognitive performance during their menses, late-
follicular, and mid-luteal phases. Our results demonstrate a
general mid-luteal advantage in error rate measure of task-
switching and sensitivity measure of divided attention. Moreover,
the present study reveals preliminary evidence that workload
modulates the menstrual cycle effect on cognition. Only
females with low workload manifest the mid-luteal cognitive
advantage on the reaction time measure of divided attention
and the error rate measure of response inhibition, implying
that a suitable workload threshold might be necessary for
regular neuro-steroid interactions. Thus, this study advocates
the significance of research focused on the brain cycle
under workloads.
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The female lifespan is marked by periods of dramatic hormonal fluctuation. Changes
in the ovarian hormones estradiol and progesterone, in addition to the progesterone
metabolite allopregnanolone, are among the most significant and have been shown to
have widespread effects on the brain. This review summarizes current understanding
of alterations that occur within the GABA system during the major hormonal transition
periods of puberty, the ovarian cycle, pregnancy and the postpartum period, as well as
reproductive aging. The functional impacts of altered inhibitory activity during these times
are also discussed. Lastly, avenues for future research are identified, which, if pursued,
can broaden understanding of the GABA system in the female brain and potentially lead
to better treatments for women experiencing changes in brain function at each of these
hormonal transition periods.

Keywords: GABA, estradiol, progesterone, puberty, ovarian cycle, pregnancy, postpartum, menopause

INTRODUCTION

The female lifespan is marked by periods of dramatic hormonal flux. The first of these periods is
puberty, which is when the ovaries begin to secrete increasing amounts of estrogens and progestins
(Jost et al., 1973), and when the ovarian cycle emerges in spontaneously ovulating species, such
as humans, mice, and rats (Herbison, 2016, 2020). Fluctuations in 17β-estradiol (e.g., estradiol
or E2), the predominant circulating estrogen in females, and progesterone, the main progestin,
continue with each ovarian cycle until either: 1) pregnancy, when high levels of estradiol and
progesterone are sustained for an extended period of time, followed by a precipitous drop at birth
(Stewart et al., 1993; Tal and Taylor, 2000; Nair et al., 2017), or 2) the menopausal transition,
when steep declines in ovarian hormones mark reproductive senescence (Wise, 1999; Genazzani
et al., 2005; Nappi and Cucinella, 2020). These times are also accompanied by shifts in the
neuroactive progesterone metabolite allopregnanolone (also known as 3α-Hydroxy-5α-pregnan-
20-one, 3α,5α-Tetrahydroprogesterone, 3α,5α-THP, or ALLO).

The brain is highly responsive to changes in estradiol, progesterone, and ALLO, resulting
in heightened plasticity during periods of hormonal flux (Sisk and Foster, 2004; Shanmugan
and Epperson, 2014; Juraska and Willing, 2017; Piekarski et al., 2017b; Barrientos et al., 2019;

Abbreviations: ALLO, allopregnanolone, 3α-Hydroxy-5α-pregnan-20-one, 3α,5α-Tetrahydroprogesterone, or 3α,5α-THP;
CSF, cerebrospinal fluid; Estradiol, 17β-estradiol; E/I, excitatory/inhibitory; GABA, gamma-Aminobutyric acid; GABAAR,
GABAA receptor; GAD, glutamate decarboxylase; HPO, hypothalamic-pituitary-ovarian; HRT, hormone replacement
therapy; mPFC, medial prefrontal cortex; mPOA, medial preoptic area; OVX, ovariectomy; PAM, positive allosteric
modulator; PFC, prefrontal cortex; PNNs, perineuronal nets; PPD, postpartum depression; PV, parvalbumin; SST,
somatostatin; VCD, vinylcyclohexene diepoxide; VGAT, vesicular GABA transporter; VIP, vasointestinal peptide.
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Duarte-Guterman et al., 2019). Among the systems which exhibit
plasticity across such periods is the GABA (γ-aminobutyric acid)
system, which traffics the principal inhibitory neurotransmitter
GABA (Shen et al., 2007; Smith et al., 2009; Kilb, 2012;
Smith, 2013). Activity of the GABAergic system changes during
hormonal transition periods due to the actions of ovarian
hormones and their metabolites such as ALLO (Maguire and
Mody, 2008; Smith, 2013; MacKenzie and Maguire, 2014; Wang
et al., 2016, 2019). During times of hormonal change, adaptations
of the GABA system are necessary to maintain excitatory
and inhibitory balance (E/I balance). Failure to regulate E/I
balance has been linked to changes in cognitive functioning,
mood alterations, and susceptibility to the development of
psychiatric disorders (Scharfman and MacLusky, 2006; Smith,
2013; MacKenzie and Maguire, 2014; Page and Coutellier, 2018;
Sohal and Rubenstein, 2019).

The GABA system consists of multiple components that
together modulate inhibitory tone and aid in maintaining E/I
balance (Figure 1). The GABA system includes GABA neurons,
which are largely inhibitory interneurons expressing the proteins
parvalbumin (PV), somatostatin (SST), or vasointestinal peptide
(VIP) (Rudy et al., 2011; Tremblay et al., 2016). GABA neurons
synapse on pyramidal neurons or each other to form a network in
which GABA neurons control neural output (Meyer et al., 2011;
Buzsáki and Wang, 2012). Resulting neural outputs synchronize
and contribute to the production of gamma oscillations, which
further influence the activity of surrounding neurons (Buzsáki
and Wang, 2012). The GABAergic system is also comprised
of perineuronal nets (PNNs), which primarily (though not
exclusively) surround PV neurons and regulate the formation
of synaptic connections to affect inhibitory gain (Karetko and
Skangiel-Kramska, 2009; Bosiacki et al., 2019). GABA neurons
and PNNs are hormonally sensitive (Hart et al., 2001; Blurton-
Jones and Tuszynski, 2002; Maguire and Mody, 2008; Smith et al.,
2009; MacKenzie and Maguire, 2014; Wu et al., 2014; Równiak,
2017; Drzewiecki et al., 2020; Uriarte et al., 2020), making them
prime targets during periods of hormonal flux throughout the
female lifespan. GABAA receptors (GABAARs) are another facet
of the GABA system that can modulate inhibition within the
neurons that they populate (MacKenzie and Maguire, 2014;
Braden et al., 2015). Synaptic and extrasynaptic GABAARs are
ionotropic, pentameric receptors containing different subunits
[α(1–6), β(1–4), γ(1–3), δ, ε, θ, π and ρ(1–3)] that create
pores through which Cl- ion gradients form (Maguire and
Mody, 2009). α and β subunits are present in all different
receptor compositions; the γ subunit is mainly associated with
GABAARs expressed in the synaptic compartment and mediates
“phasic” inhibition, while the δ subunit is associated with
extrasynaptic receptors and mediates “tonic” inhibition (Licheri
et al., 2015). GABAARs are hormonally responsive, thus they
can further influence inhibition within the female brain during
times of hormonal change (Maguire and Mody, 2008; Smith
et al., 2009; MacKenzie and Maguire, 2014). For example,
ALLO can act as a positive allosteric modulator (PAM) at
GABAARs to potentiate inhibitory activity and alter inhibitory
tone (MacKenzie and Maguire, 2014).

This review explores how fluctuations in estradiol,
progesterone, and ALLO promote alterations within the GABA

system of the female brain during puberty, the ovarian cycle,
pregnancy and the postpartum period, as well as reproductive
senescence considering data from both humans and rodents.
Additionally, this review discusses the functional consequences
of altered inhibitory activity and suggests avenues for future
research. Broadening our understanding of the GABA system
across the female lifespan has important implications for mood
regulation and cognition, which are also known to be modified
during periods of hormonal flux (Maguire and Mody, 2009;
MacKenzie and Maguire, 2014; Wu et al., 2014). Ultimately,
expanding what is known about GABA system alterations during
hormonal transition periods may further aid in the development
of targeted strategies to maintain E/I balance and could lead
to better treatments for women experiencing changes in brain
function during these times.

PUBERTY

Puberty, the transition to reproductive maturity, is a
developmental stage when the ovaries begin to secrete increasing
amounts of estrogens and progestins due to a rise in activity of
the hypothalamic-pituitary-ovarian (HPO) axis (Jost et al., 1973;
Keating et al., 2019; Delevich et al., 2021). In addition, ALLO
gradually increases before and rapidly drops off with pubertal
onset in rodents and humans (Fadalti et al., 1999; McCartney
et al., 2007; Shen et al., 2007; Smith, 2013). Some evidence
suggests that changes in estradiol, progesterone, and ALLO
during puberty may play a key role in brain and behavioral
maturation by altering inhibitory tone (Schulz et al., 2009;
Holder and Blaustein, 2014; Jones and Lopez, 2014; Juraska and
Willing, 2017; Delevich et al., 2021).

Changes to the Gamma-Aminobutyric
Acid System Following Pubertal Onset in
Young Women
Adolescence, the developmental period beginning with pubertal
onset, is characterized by protracted development of inhibition
within late-developing brain regions like the prefrontal cortex
(PFC) (Chugani et al., 2001; Fung et al., 2010; Silveri et al., 2013;
Laube et al., 2020). Various changes within the human GABA
system likely contribute to increases in inhibition over the course
of adolescence. For example, cortical expression of the enzyme
responsible for GABA synthesis (glutamate acid decarboxylase,
GAD) peaks around puberty (Pinto et al., 2010). In addition,
shifts in GABAAR subunit expression occur during adolescence
(Pinto et al., 2010; Silveri et al., 2013). Interneurons in the PFC
also undergo protracted maturation throughout adolescence and
into adulthood exhibiting increased expression of PV, calcium
binding proteins which expand fast-spiking capabilities of GABA
neurons to promote neural synchrony and cortical maturation
(Fung et al., 2010). Moreover, PNN density increases within the
human PFC after pubertal onset (Mauney et al., 2013) and as
PNNs primarily enwrap PV neurons, likely contribute to the
regulation of both cortical plasticity and PV expression (Carceller
et al., 2020). Together, these changes to the GABA system during
adolescence increase cortical inhibition to facilitate maturation
of PFC functions such as working memory, executive abilities,
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FIGURE 1 | GABAergic synapse. During periods of hormonal flux across the female lifespan, numerous changes to the GABA system occur. Many of these changes
occur within GABA synapses, represented here. Included in this figure are the elements of the GABA system discussed in this manuscript. Pink text denotes an
enzyme. GABA = gamma-Aminobutyric acid, GAD = glutamate decarboxylase, VGAT = vesicular GABA transporter. Created with BioRender.com.

impulse inhibition, and emotional control (Luna et al., 2004;
Silveri et al., 2013; Laube et al., 2020).

The extent to which modifications in the GABA system
described above are driven by pubertal changes in ovarian
hormones and/or ALLO has yet to be determined. Indeed,
the focus of many studies is on how the GABA system and
brain function develop over adolescence, which is a more
protracted developmental period compared to the shorter
timeframe following pubertal onset. Further, many studies
do not examine sex as a biological variable thereby limiting
what conclusions can be drawn concerning the implications of
estradiol, progesterone or ALLO on GABA system activity in
young women following pubertal onset.

Changes to the Gamma-Aminobutyric
Acid System Associated With Puberty in
Rodents
Pubertal increases in inhibitory tone are also seen in the
rodent brain, providing an avenue to study the direct effects of
ovarian hormones and ALLO on GABA system activity following
pubertal onset in a mammalian system. Rodent studies have
shown that the underlying mechanisms that contribute to the
development of greater inhibitory tone in the brain following
pubertal onset are multifaceted and due in part to increases

in GAD expression, as well as increases in the production
of inhibitory synapses and GABA transporters (Kilb, 2012;
Shen et al., 2020). As described below, growing inhibitory tone
following pubertal onset also results from alterations in PV
neurons within the medial prefrontal cortex (mPFC, analog to
human PFC) and hippocampus (Sisk and Zehr, 2005; Smith et al.,
2009; Buzsáki and Wang, 2012; Kilb, 2012; Juraska et al., 2013;
Caballero and Tseng, 2016; Zimmermann et al., 2019; Delevich
et al., 2021). Inhibitory tone in these regions is further influenced
by changes in subunit expression of GABAARs, which affect
GABAAR activity (Smith et al., 2009). Evidence suggests that
changes to the GABA system within the mPFC and hippocampus
of the adolescent female brain may depend on the presence of
estradiol, progesterone, and/or ALLO and impact behavior (Sisk
and Foster, 2004; Smith et al., 2007; Shen et al., 2010; Juraska et al.,
2013; Wu et al., 2014; Caballero and Tseng, 2016; Piekarski et al.,
2017a,b).

Changes to PV Neurons Associated With Puberty
Expression of PV increases within the rodent mPFC and
hippocampus following pubertal onset (Cruz et al., 2003;
Kilb, 2012; Caballero et al., 2014; Glausier et al., 2014;
Wu et al., 2014; Delevich et al., 2021). In addition, evidence in
rodents indicates that both mPFC and hippocampal PV neuronal
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complexity are enhanced following pubertal onset resulting
in more synaptic connections with neighboring neurons over
adolescence despite no concomitant increase in PV neuron
number (Caballero et al., 2014; Honeycutt et al., 2016; Baker
et al., 2017; Shen et al., 2020). During adolescence, PV neurons
also begin promoting neural synchrony and the production of
gamma oscillations within the mPFC and hippocampus, both of
which are key to maturation of cognitive capacity and flexibility
as well as emotional regulation (Buzsáki and Wang, 2012; Kilb,
2012). These shifts in PV expression, morphology, and activity
enhance inhibitory tone following pubertal onset, positioning PV
neurons as pacers of brain maturation during adolescence.

Though PV expression increases within the hippocampus
and mPFC of both male and female rats during adolescence
(Caballero et al., 2014; Wu et al., 2014; Caballero et al.,
2020; Gildawie et al., 2020), rodent studies have shown that
gonadal hormones play especially critical roles in promoting PV
expression and activity in the female pubertal brain. A study
by Wu et al. (2014) showed that ovariectomy (OVX), but not
castration, prior to pubertal onset reduces hippocampal PV
expression in adult mice (Wu et al., 2014), illustrating the
importance of gonadal hormones in organizing patterns of PV
expression specifically in the female hippocampus. Activity of PV
neurons is also dependent on ovarian hormones. Piekarski et al.
(2017a) found that pre-pubertal, but not post-pubertal, OVX in
female mice impairs inhibitory signaling in the mPFC (Piekarski
et al., 2017a). Additionally, this same study demonstrated that
pre-pubertal hormone treatment with estradiol and progesterone
accelerates maturation of mPFC inhibitory tone and cognitive
development. Together this work suggests that ovarian steroids
play a role in pubertal maturation of inhibitory activity within
the female mouse mPFC through specific modulation of GABA
neurons to affect behavior (Caballero et al., 2014; Piekarski
et al., 2017a). Though the type of GABA neuron affected in the
Piekarski et al. (2017a) study was not identified, evidence strongly
suggests that they were PV neurons due to their patterns of
activity, increased activity following puberty, and vulnerability to
manipulation of ovarian hormones (Caballero et al., 2014, 2016;
Caballero and Tseng, 2016). The effects of ovarian hormones
on PV neurons enumerated here are perhaps not surprising,
as co-localization of PV neurons and estrogen receptors in the
rodent brain (including the hippocampus and mPFC) suggests
that estradiol acts directly on PV neurons to influence their
activity (Hart et al., 2001; Blurton-Jones and Tuszynski, 2002;
Wu et al., 2014; Równiak, 2017). However, increases in both
estradiol and progesterone accompany pubertal onset (Piekarski
et al., 2017b; Filice et al., 2018; Delevich et al., 2021). Thus,
the role of progesterone in PV neuron maturation within the
pubertal/adolescent female brain requires further consideration.

In addition to their role in facilitating cognitive maturation
during adolescence, mPFC PV neurons also contribute to
emotional behaviors specifically in female mice. Following
chronic stress during adolescence, PV neuron expression
in the mPFC increases, as do some anxiety-like behaviors
(Page and Coutellier, 2018). Further, chemogenetic activation of
PV neurons within the mPFC was shown to enhance anxiety-
like behaviors in adult female, but not male, mice (Page et al.,
2019). As adolescence is associated with the emergence of sex

differences in mood disorders (Smith et al., 2009), interactions
between ovarian hormones and the GABA system during
this time may render the female brain exceptionally sensitive
to stress and predispose adolescent females to developing
anxiety and depression.

Along with increases in both expression and activity of PV
neurons, PNN expression also increases following pubertal onset
within the mPFC (Drzewiecki et al., 2020). Though this increase
is observed in both male and female rats, PNN expression in the
mPFC transiently drops at pubertal onset exclusively in females
(Drzewiecki et al., 2020), an effect which may serve to facilitate
neurite growth and formation of new synapses in the female
mPFC. As PNN presence regulates the activity of the PV neurons
they surround (Carceller et al., 2020), sex differences in patterns
of PNN expression may also reflect modulation of PV neuron
activity by ovarian hormones through control of PNN formation.
PNN density also increases over adolescence in the human PFC
(Mauney et al., 2013) and thus, additional animal research can
aid in determining the function of pubertal changes in PNN
expression and the underlying hormonal mechanisms.

Together, available evidence suggests a critical role for
ovarian hormones in both the expression and function of PV
neurons following pubertal onset in females. However, additional
investigation of PV neuron development within the female
pubertal brain is needed, since many of the studies examining
inhibitory maturation during adolescence either do not include
female subjects or do not analyze the data by sex. Further, most
studies focus on the mPFC or hippocampus and thus it remains
to be determined if the pubertal pattern of PNN expression
is recapitulated in other brain regions (Caballero et al., 2014,
2020; Caballero and Tseng, 2016). Understanding the role of
hormones in maturation of GABA neurons in the developing
brain is critical, as activity of these neurons contribute to E/I
balance and the neural signatures necessary for the changes in
cognitive function and mood associated with adolescent brain
development (Piekarski et al., 2017a; Page and Coutellier, 2018;
Page et al., 2019).

Changes in GABAAR Expression Associated With
Puberty
In addition to modifications in the expression and activity of
PV neurons, pubertal onset induces shifts in GABAAR subunit
expression, as illustrated in mouse models of puberty (Smith
et al., 2009). Changes in the expression of GABAAR subunits
can affect ion gradients and thus, excitability of the neurons
expressing GABAARs (Smith et al., 2007, 2009; Smith, 2013;
Keating et al., 2019).

In the hippocampus of female mice, withdrawal of ALLO at
puberty leads to a transient increase in α4βδ GABAAR expression
on pyramidal neurons to affect behavior (Shen et al., 2007; Smith
et al., 2007, 2009; Smith, 2013; Keating et al., 2019). Specifically,
pubertal enhancements in hippocampal α4βδ GABAARs are
associated with impairments in hippocampal-dependent learning
tasks (Shen et al., 2010). Such impairments in learning appear
to be mediated by the δ subunit, the site of neurosteroid
action during periods of hormonal flux, and can be reversed
by administration of ALLO which reduces tonic inhibition at
puberty (Shen et al., 2010). Additional research in mice suggests
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that pubertal ALLO facilitates spontaneous spiking of pyramidal
neurons through reductions of inhibitory tone mediated by
hippocampal α4βδ GABAARs to promote anxiety-like behavior
(Shen et al., 2007; Smith, 2013). Together, these data suggest that
ALLO via its actions at α4βδ GABAARs affect inhibition during
puberty, as well as cognitive and emotional behavior (Shen et al.,
2007; Smith et al., 2009; Afroz et al., 2016; Parato et al., 2019).

Pubertal changes in GABAAR subunit expression also occur
on hippocampal PV neurons (Shen et al., 2020). While expression
of δ subunits increases on hippocampal pyramidal neurons,
δ subunit expression decreases on hippocampal PV neurons
following pubertal onset (Shen et al., 2010, 2020; Keating et al.,
2019). Since there are fewer δ subunits on PV neurons following
pubertal onset to diminish their activity, these neurons are
disinhibited and subsequently promote brain maturation by
enhancing inhibitory tone (Smith et al., 2007; Torres-Reveron
et al., 2009; Wu et al., 2014; Piekarski et al., 2017b; Shen et al.,
2020). Though the behavioral implications of these changes are
not yet known, reductions in δ subunit expression on PV neurons
may be another mechanism contributing to maturation of
cognitive function and emotional regulation during adolescence
(Shen et al., 2007, 2010).

In conclusion, existing data point to a role for ovarian
hormones and the progesterone metabolite ALLO in the
development of inhibition within the female pubertal brain.
Continued investigation into the hormonal mechanisms of
adolescent brain maturation is important, as the hormonal
environment during adolescence influences the trajectory of
GABA system development to potentially have long-lasting
effects on brain function and behavior (Shen et al., 2007, 2010;
Piekarski et al., 2017a,b).

THE OVARIAN CYCLE

Following pubertal onset, an infradian rhythm known as the
ovarian cycle begins. Fluctuations in estradiol, progesterone, and
ALLO affect the GABA system to determine inhibitory tone over
the ovarian cycle with implications for cycle-related variations
in behavior (Maguire and Mody, 2009; MacKenzie and Maguire,
2014).

Changes to the Gamma-Aminobutyric
Acid System Over the Menstrual Cycle
In humans, the menstrual cycle takes place over the course of
approximately one month and is comprised of the follicular
and luteal phases. Estradiol levels rise during the follicular
phase due to the complex interactions of both positive and
negative feedback loops within the HPO axis (Oyola and Handa,
2017). The follicular phase ends at ovulation when a mature
follicle within the ovaries ruptures and subsequently becomes the
corpus luteum, which produces high amounts of progesterone
and ALLO during the luteal phase. Estradiol also increases
during the luteal phase, though less robustly than during the
follicular phase. At menses, estradiol, progesterone, and ALLO
levels plummet and remain low for the a few days to mark the
beginning of the follicular phase of the following menstrual cycle
(Reed and Carr, 2018).

Inhibitory tone changes over the menstrual cycle in
association with fluctuations in estradiol, progesterone, and
ALLO (Harada et al., 2011; Vigod et al., 2014). Increases in
cortical inhibition, gamma oscillation frequency, and neural
synchrony are observed during the luteal phase relative to the
follicular phase despite a reduction in GABA concentrations
(Smith et al., 1999; Epperson et al., 2002; Sumner et al., 2018),
while at ovulation GABA concentrations peak within the PFC
(De Bondt et al., 2015). Alterations in GABAergic activity and
inhibitory tone likely contribute to changes in mood reported
across the menstrual cycle associated with specific hormonal
profiles, such as increased calmness during the luteal phase and
greater sensitivity to psychosocial stress during the follicular
phase (Albert et al., 2015; Welz et al., 2016). In contrast, negative
changes in mood are observed during the luteal phase in women
with premenstrual dysphoric disorder (PMDD). It has been
hypothesized that impaired mood regulation in women with
PMDD may result from enhanced cortical GABA levels and
reduced sensitivity of GABAARs to fluctuations in ALLO, thereby
preventing establishment of typical E/I balance (Epperson et al.,
2002; Hantsoo and Epperson, 2020).

Changes to the Gamma-Aminobutyric
Acid System Over the Estrous Cycle
Though similar hormonal shifts occur during the estrous cycle
of lab rodents compared to the menstrual cycle of women, there
are notable differences in the timing of these shifts which may
further depend on species of lab rodent. Rats and mice, the most
common models in studies examining neurobiological effects
of the ovarian cycle, have 4-6 day estrous cycles although the
duration of the cycle may be less consistent in mice (Lovick
and Zangrossi, 2021). The estrous cycle consists of four phases:
metestrus, diestrus, proestrus, and estrus. Though the names of
these phases are the same between rats and mice, the hormonal
profiles during these phases differ. In mice, estradiol levels peak
during proestrus and progesterone levels peak during diestrus
(Wood et al., 2007; McLean et al., 2012; Wu et al., 2013). In rats,
peaks in estradiol and progesterone coincide during proestrus
(Levine, 2015). ALLO levels also fluctuate across the estrous cycle
in relation to progesterone in both rats and mice.

Changes in PV and GABAergic Activity Across the
Estrous Cycle
Across the estrous cycle, ovarian hormones modify inhibitory
tone through PV neuron expression and activity to affect
behavior. For example, within the amygdala, PV expression
in rats decreases during proestrus, compared to diestrus,
contributing to an overall reduction in inhibition (Blume et al.,
2017). As the amygdala has been implicated in arousal and stress
reactivity, these inhibitory changes across the cycle may explain,
at least in part, estrous cycle-related variations in arousal and
stress-related behaviors (Lovick and Zangrossi, 2021). Hormonal
status can also influence sensory encoding through activity of PV
neurons in the barrel cortex of rats, as estradiol enhances both
fast spiking interneuron activity (thought to be PV neurons due
to their patterns of activity and sensitivity to ovarian hormones)
and frequency of inhibitory post-synaptic potentials following
social touch during estrus (Clemens et al., 2019). Other work

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 June 2022 | Volume 16 | Article 802530159

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-802530 June 11, 2022 Time: 14:32 # 6

Gilfarb and Leuner GABAergic Changes Over Female Lifespan

examining PNNs in the medial preoptic area (mPOA), a region
of the hypothalamus important for the expression of sexual
and parental behaviors, found no changes in PNN number or
intensity across the rat estrous cycle (Uriarte et al., 2020). As
PNNs preferentially surround PV neurons, these data suggest
that though PV neuron expression and activity are responsive
to changes in ovarian hormones, plasticity of the neurons may
not change with shifting hormones during the estrous cycle.
However, these data were derived from separate brain regions and
thus it remains unclear the extent to which findings in one region
generalize to others (Uriarte et al., 2020).

Changes to GABAARs Over the Estrous Cycle
Ovarian hormones and their metabolites can further modulate
inhibitory tone across the estrous cycle through GABAARs
(Löscher et al., 1992; Maguire et al., 2005; Maguire and Mody,
2007, 2009; Lovick, 2012; Wu et al., 2013; Sabaliauskas et al.,
2015). Notably, ALLO can act as a PAM at GABAARs over the
estrous cycle to modulate inhibition, an effect that is thought to
be mediated by expression of the ALLO-sensitive δ subunit of the
GABAAR (Maguire et al., 2005; Wu et al., 2013; Sabaliauskas et al.,
2015). Expression of this subunit is critically dependent on the
cyclic nature of the estrous cycle and ALLO levels, as changes
in δ subunit expression do not occur in acyclic mice and are
prevented in mice treated with finasteride, a drug which inhibits
the metabolism of progesterone to reduce ALLO production
(Barth et al., 2014; Wu et al., 2013). These cyclic changes in the
expression of neurosteroid-sensitive δ subunit of the GABAAR
affect neuronal activity and inhibitory tone to influence behavior.
For example, enhancements in hippocampal δ subunit expression
during late diestrus results in increased tonic inhibition within
dentate gyrus granule cells from the female mouse hippocampus,
along with reductions in anxiety-like behavior (Maguire et al.,
2005; Maguire and Mody, 2007). Changes in δ subunit expression
are also seen on inhibitory neurons in the female mouse
hippocampus across the estrous cycle (Barth et al., 2014).
Specifically, increases in δ subunit expression on PV neurons
during diestrus compared to estrus diminish production of
gamma oscillations and impair neuronal synchrony within
the hippocampus which may have consequence for cognitive
function (Barth et al., 2014; Shen et al., 2020). Together, these data
show that changes in GABAARs subunit composition depend
on hormonal status and can subsequently affect activity of
hippocampal interneurons to modulate inhibitory tone over the
estrous cycle. In addition to the hippocampus, other work in
rats has examined GABAA receptor subunit composition within
the midbrain periaqueductal gray (PAG), a region important
for integrating anxiety responses. Within the PAG, expression
of α4β1δ GABAA receptors fluctuates over the estrous cycle in
relation to changing levels of ALLO to modify GABAergic tone
and anxiety-like behavior (Griffiths and Lovick, 2005; Lovick,
2012).

Much of the research examining the effects of shifting ovarian
hormones on the GABA system across the estrous cycle has
focused on different brain regions and has used different animal
model species with variations in hormonal profiles across the
ovarian cycle, making direct comparisons across studies difficult.
Additionally, most of the existing research addresses the influence

of ALLO on the GABA system. Therefore, determining the
mechanisms by which estradiol and progesterone affect the
GABA system is warranted, as levels of these hormones change
over the ovarian cycle and have been shown to affect GABAergic
activity and brain functions dependent on proper E/I balance
during other hormonal transition periods (Löscher et al., 1992;
Maffucci and Gore, 2009; Barth et al., 2014; Blume et al., 2017;
Clemens et al., 2019). It is also worth mentioning that there are
a limited number of studies which have looked at the effects of
hormonal contraceptives on the GABA system and these have
found altered cortical GABA concentrations in human hormonal
contraceptive users as well as changes in GABAA receptor subunit
expression in rodents after prolonged treatment with hormones
found in hormonal contraceptives (Follesa et al., 2002; De Bondt
et al., 2015). Hormonal contraceptives may give rise to these
effects because they contain synthetic estradiol and progesterone
analogs that inhibit the HPO axis through negative feedback
leading to lower endogenous levels of estradiol and progesterone
and a suppression in the fluctuation of ovarian hormones across
the cycle as well as a decrease in ALLO (Montoya and Bos,
2017; Porcu et al., 2019). Although hormonal contraceptives are
used by millions of women worldwide, their impact on the brain
and behavior have not been well studied and warrant greater
consideration (Porcu et al., 2019; Taylor et al., 2021).

PREGNANCY AND THE POSTPARTUM
PERIOD

As during puberty and the ovarian cycle, major hormonal shifts
occur over the course of pregnancy and the postpartum period
(Bloch et al., 2003; De Bonis et al., 2012; Duarte-Guterman et al.,
2019). In humans, pregnancy induces profound increases in both
plasma estradiol and progesterone, which can reach levels 50- and
10-fold higher, respectively, than at peak concentration during
the menstrual cycle due to placental hormone production (Bloch
et al., 2003). In rodents, levels of estradiol and progesterone
similarly surge during late pregnancy (Concas et al., 1998, 1999;
Brunton and Russell, 2010). Likewise, ALLO concentrations rise
throughout gestation in rodents and humans reaching peak
concentrations during late pregnancy (Concas et al., 1999; Luisi
et al., 2000). This accumulation in hormones over the course
of pregnancy rapidly declines just prior to (rats) or following
(humans) delivery, resulting in a period of hormonal change
that affects different aspects of the GABA system and, in turn,
inhibitory tone (Concas et al., 1998, 1999; Epperson et al., 2006;
Maguire et al., 2009; MacKenzie and Maguire, 2014; Vigod et al.,
2014; Maguire, 2019; Deems and Leuner, 2021). As described
below, dysregulation in GABAergic signaling has been linked
to deficits in maternal care, as well as heightened anxiety- and
depression-like behaviors, during the postpartum period.

Changes in Gamma-Aminobutyric Acid
Concentration During Pregnancy and the
Postpartum Period in Humans
Central GABA concentrations have been reported to be altered
in pregnant and postpartum women. For example, GABA levels
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in cerebrospinal fluid (CSF) decrease during the last few weeks
of pregnancy (Altemus et al., 2004; Vigod et al., 2014) and then
significantly increase during labor (Sethuraman et al., 2006). In
addition, cortical GABA levels decrease after birth and begin to
normalize over the course of the postpartum period (Epperson
et al., 2006; Vigod et al., 2014). Though these data do not
directly support a causal relationship, they nonetheless suggest
that changes in GABA concentrations over late pregnancy and
into the postpartum period are related to changes in ovarian
hormones and ALLO given their coincident timing.

It has been proposed that aberrant GABAergic activity
and a failure to properly maintain E/I balance during the
transition into the postpartum period may be a precipitating
factor leading to postpartum depression (PPD), a disorder
in new mothers characterized by symptoms such as sadness,
cognitive impairment, and strained mother-infant interactions
(Deligiannidis et al., 2013, 2016; Stewart and Vigod, 2019; Deems
and Leuner, 2021). In particular, PPD is thought to arise, at least
in part, when there is a failure of GABAARs to adapt to the
abrupt decline in ALLO after birth (Faden and Citrome, 2020;
Meltzer-Brody and Kanes, 2020).

Changes in Inhibition During Pregnancy
and the Postpartum Period in Rodents
Changes in GABA During Pregnancy and the
Postpartum Period in Rodents
GABA concentrations are also altered in the rodent brain during
pregnancy and the postpartum period. For example, GABA
concentrations significantly decline during late pregnancy in
the mouse hippocampus and subsequently normalize following
parturition (Smolen et al., 1993). In postpartum rats, CSF
concentrations of GABA increase following offspring interaction
(Qureshi et al., 1987; Lonstein et al., 2014). GABA modifications
during pregnancy and the postpartum period are not limited
to GABA concentrations with increases in GABA synthesis (as
indicated by higher expression of GAD) reported in the lateral
septum of postpartum mice (Zhao et al., 2012) and the mPFC
of postpartum rats (Ahmed and Lonstein, 2012; Lonstein et al.,
2014). Other work has shown both lower GABA release in the
basolateral amygdala of pregnant rats (Young and Cook, 2006)
and reduced turnover in the cerebral cortex of late pregnant/early
postpartum mice (Smolen et al., 1993), while postpartum rats
have both higher basal GABA release and turnover in the mPFC
in comparison to virgins (Kornblatt and Grattan, 2000; Arriaga-
Avila et al., 2014; Ragan et al., 2022). Overall, these data show
complex effects on GABA that are highly dependent on species
and brain region. The regions analyzed in these studies have been
implicated in behavioral functions that are altered postpartum
such as anxiety, fear, maternal care, and maternal aggression,
with some work pointing to GABAergic involvement (Lee and
Gammie, 2009; Sabihi et al., 2021).

Changes in Expression of Perineuronal Nets During
Pregnancy and the Postpartum Period in Rodents
Over the course of pregnancy and into the postpartum period,
PNN number and intensity change in the rat mPOA, a region

that is both critical to establishment of maternal care behaviors
and highly plastic during this time (Keyser-Marcus et al., 2001;
Duarte-Guterman et al., 2019). Specifically, expression of PNNs
in the mPOA steadily increases from mid-gestation to late
pregnancy and peaks immediately prior to parturition (Uriarte
et al., 2020). PNN expression subsequently drops following
parturition, increases again to peak levels one week into the
postpartum period, and remains elevated in comparison to
cycling rats until weaning (Uriarte et al., 2020). These changes
in PNN expression during pregnancy and the postpartum period
may be due to extended exposure to ovarian hormones, as
induction of hormonal pseudopregnancy recapitulates a similar
pattern, though to a lesser extent (Uriarte et al., 2020). Since
PNN presence typically limits neuroplasticity (Karetko and
Skangiel-Kramska, 2009), changes in PNN expression in the
mPOA suggests that PNNs may play a time-dependent role in
contributing to both maintenance of established circuitry in this
region during pregnancy and transient permission of plasticity to
establish the circuitry critical to postpartum maternal behaviors.

Recent data also show that PNN expression in postpartum
rats changes in the primary somatosensory cortex (S1) following
viral-mediated knockdown of receptors for oxytocin, a
neuropeptide important for social bonding and maternal
behavior (Grieb et al., 2021). In oxytocin receptor knockdown
rats exhibiting disrupted postpartum social and affective
behaviors, more plasticity-restricting PNNs were found in
the S1 rostral region, and fewer in the S1 caudal region. It is
possible that such alterations in PNN expression may disrupt
cortical neuroplasticity to affect maternal sensitivity to tactile
cues from the young and impact behavior (Grieb et al., 2021).
Other work in never-pregnant mice housed in proximity to
pups demonstrates that pup interaction, and not hormonal
milieu, drive sub-regional differences in PNN density within
the somatosensory cortex (Lau et al., 2020; Grieb et al., 2021).
Additional studies are needed to better understand PNNs in
the maternal brain and the extent to which they contribute to
behavior during this time.

Changes to GABAARs During Pregnancy and the
Postpartum Period in Rodents
GABAARs and their capacity to mediate GABAergic inhibition
are highly plastic across pregnancy and the postpartum period.
Within rat forebrain, GABAAR binding affinity is enhanced
during late pregnancy and is further enhanced in the postpartum
period (Majewska et al., 1989). The brain region(s) driving these
effects are unknown but likely do not include the cortex as this
region shows a decrease in binding affinity during late pregnancy
(Concas et al., 1999). A postpartum reduction in total forebrain
GABAAR density has also been reported although again, specific
brain sites remain to be elucidated (Miller and Lonstein, 2011;
Lonstein et al., 2014).

Much of the work examining GABAARs during pregnancy
and the postpartum period has focused on ALLO’s effects on
the expression of specific GABAAR subunits. Overall this body
of work shows that during late pregnancy and the postpartum
period, shifts in ALLO lead to changes in subunit composition
of GABAARs to modulate GABAAR activity and influence
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inhibitory tone (Concas et al., 1999; Maguire and Mody, 2008;
Licheri et al., 2015). For example, in the hippocampal dentate
gyrus of late pregnant rats, high levels of ALLO enhance granule
cell expression of the δ subunit to increase tonic inhibition,
effects which can be blocked by finasteride treatment (Sanna
et al., 2009). Postpartum expression of the δ subunit in the rat
hippocampus, as well as tonic inhibition, diminishes following
a postpartum decline in ALLO (Smith et al., 1998; Sanna et al.,
2009). Though the functional effects of these changes in the
rat maternal hippocampus remain to be studied, they likely
contribute to the development of behaviors that have been shown
to be altered during pregnancy and the postpartum period and
that are hippocampal-dependent, such as working memory and
anxiety (Pawluski et al., 2006).

Like in rats, female mice show fluctuations in ALLO levels
over the course of pregnancy which affects hippocampal δ subunit
expression and modulates activity at GABAARs to influence E/I
balance. However, in contrast to rats, expression in mice is
instead reduced in the hippocampus as well as in the striatum
and thalamus, while remaining stable in the cortex (Maguire
et al., 2009). Within 48 hours of delivery, hippocampal δ subunit
expression subsequently recovers to virgin levels (Maguire et al.,
2009). This pattern of δ subunit expression is critical, as data
from mice deficient in the GABAAR δ subunit suggest that
the inability to regulate δ subunit-containing GABAARs during
pregnancy and the postpartum period results in increased
anxiety- and depression-like behaviors, as well as abnormal
mothering (Maguire and Mody, 2008; Melón et al., 2018).
Importantly, treatment of GABAAR δ subunit deficient mice with
a synthetic neuroactive steroid GABAAR PAM (SGE-516) was
shown to decrease PPD-like behaviors and improve maternal care
(Melón et al., 2018).

Localized changes in δ subunit expression also occur on
hippocampal interneurons during late pregnancy in mice
(Maguire and Mody, 2008; Melón et al., 2018). As δ subunit-
containing GABAARs often populate PV neurons in this region
and are vulnerable to changes in ALLO, reductions in δ subunit
expression during pregnancy in mice lead to a modification of
hippocampal PV neuron activity (Ferando and Mody, 2013).
Indeed, in vitro electrophysiological analyses indicate that the
downregulation in δ subunit expression during pregnancy
enhances gamma oscillation frequency in hippocampal slices
from pregnant mice because of the acute withdrawal from ALLO
(Ferando and Mody, 2013). However, application of ALLO at
concentrations physiologically equivalent to those seen during
pregnancy reduces the frequency of gamma oscillations in the
hippocampi of pregnant mice to that observed in virgin mice,
suggesting that ALLO acts as a PAM to normalize PV neuron
activity during pregnancy through regulation of the δ subunit
of GABAARs (Ferando and Mody, 2013). Following parturition
and the subsequent decline in ALLO, δ subunit expression
on hippocampal interneurons returns to baseline, as does the
frequency of induced gamma oscillations (Ferando and Mody,
2013). This evidence points to modulation of interneuron activity
by ALLO at δ subunits, and not changes in interneuron density
or connectivity, as main determinants of inhibitory tone in
the hippocampus during pregnancy (Ferando and Mody, 2013).

Overall, despite differences in mice and rats, these data indicate
that high levels of ALLO during pregnancy modulate expression
of neurosteroid-sensitive GABAARs δ subunits to determine E/I
balance in the rodent hippocampus to affect behavior.

Other evidence points to modifications in γ subunits
of GABAARs, which are responsive to changing levels of
neurosteroids (Maguire and Mody, 2008; Licheri et al., 2015).
For example, expression of the γ2L subunit is reduced in the rat
hippocampus and cortex, as well as in the mouse hippocampus,
with rising ALLO levels during pregnancy which, along with
observed changes in expression of the δ subunit, may serve to
potentiate inhibitory tone (Concas et al., 1998, 1999; Maguire and
Mody, 2008; Maguire et al., 2009; Sanna et al., 2009). Following
a postpartum drop in ALLO levels, expression of γ2L in the rat
hippocampus and cortex increases to likely facilitate a return of
inhibitory tone to a pre-pregnancy state (Concas et al., 1998,
1999; Sanna et al., 2009). In addition to the postpartum changes
seen in the hippocampus, γ2 subunit expression increases in the
rat paraventricular nucleus of the hypothalamus during lactation
(Fénelon and Herbison, 1996), an effect that could be necessary to
ensure sufficient stimulation of oxytocin neurons in this region to
establish maternal care behaviors (Giovenardi et al., 1997).

Along with δ and γ, α subunit expression also changes over
pregnancy and the postpartum period. In rats, hippocampal
α4 expression increases during the postpartum period and
likely contributes to changes in hippocampal inhibitory tone
and anxiety-like behavior (Smith et al., 1998; Sanna et al.,
2009). However, some studies report no change in α subunit
expression in the rat hippocampus or cortex during pregnancy
and the postpartum period (Concas et al., 1998, 1999; Follesa
et al., 1998). Thus, despite some heterogeneity, the data overall
show cell-, region-, and species-specific changes in δ, γ, and α

subunit composition which are important for the establishment
of inhibitory tone during pregnancy and the postpartum period.

Together, evidence points to major changes in the GABA
system over the course of pregnancy and the postpartum
period. While some findings implicate ovarian hormones in
these changes, much of the research during pregnancy and the
postpartum period to date has focused on ALLO and changes
in GABAAR subunit composition. There is also work which
suggests that another important mediator of inhibition in the
pregnant and/or postpartum brain to consider is oxytocin,
which aligns with known oxytocin-GABA interactions within the
hypothalamus (Giovenardi et al., 1997; Fénelon and Herbison,
2000; Kornblatt and Grattan, 2000; Herbison, 2001; Lonstein
et al., 2014) and the mPFC (Sabihi et al., 2014, 2021) to affect
maternal, cognitive, and emotional behavior.

MENOPAUSAL TRANSITION AND
REPRODUCTIVE SENESCENCE

Aging gives way to reproductive senescence caused by HPO
axis disruption (Wise, 1999). In women, the decline in HPO
axis activity that characterizes the menopausal transition occurs
following ovarian follicle depletion, which in turn promotes
production of gonadotropins in an effort to rescue falling
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concentrations of estradiol, progesterone, and progesterone
metabolites (Wise, 1999; Morrison et al., 2006; Andréen et al.,
2009; Kimball et al., 2020). Failure of such rescue causes
menstrual irregularity and eventually amenorrhea which over
time will render an individual reproductively senescent and
menopausal, typically around 52 years of age (Jacobs and
Goldstein, 2018). Reproductive senescence represents another
period of the female lifespan during which hormonal changes
impact the GABA system with consequences for declining
cognition and mood often experienced during this time (Harden
et al., 1999; Andréen et al., 2009; Erel and Guralp, 2011; Jacobs
and Goldstein, 2018).

Changes Within the GABA System
During the Menopausal Transition in
Women
Like during other periods of hormonal fluctuation, the brain
experiences shifts in GABAergic tone during the menopausal
transition. Recent work examining pre- and post-menopausal
women shows that GABA concentrations in the cortex
decline over the menopausal transition and decline further
in postmenopausal women with depression (Wang et al.,
2016, 2019). Postmenopausal reductions in cortical GABA
concentrations may also be relevant to cognitive function, as a
recent study shows that hippocampal GABA positively correlates
with memory performance in older women (Jiménez-Balado
et al., 2021). Other than these few reports, we are unaware of
any other work assessing GABAergic activity of postmenopausal
women, though decreases in ALLO associated with reproductive
senescence suggest that additional changes are likely. As ALLO is
both reduced in postmenopausal women (Kimball et al., 2020)
and is a PAM of GABAARs, changes in functional inhibition
most likely occur over the course of the menopausal transition
(Gordon et al., 2015).

Models of Reproductive Senescence in
Rodents
Comparisons between humans and rodents are difficult in the
context of reproductive senescence due to various factors. First,
rodents do not undergo menopause but instead as they enter
middle age, will experience irregular cycles and eventually will
cease ovulation and become acyclic at which time they are
either in persistent diestrus or persistent estrus (Kermath and
Gore, 2012). Following this transition, which typically begins at
approximately 10–12 months of age, estradiol levels depend on
if a rodent transitions into persistent diestrus (lower estrogen)
or persistent estrus (higher estrogen). This stands in contrast
to the to the eventual decline in estradiol observed universally
in women (Wise, 1999; Koebele and Bimonte-Nelson, 2016).
Second, rodents do not undergo follicular depletion to the same
extent as in humans nor do they depend expressly on follicular
content within the ovary to determine reproductive senescence
(Peng and Huang, 1972; Wise, 1999; Diaz Brinton, 2012). Lastly,
many research groups choose to model menopause through
OVX, which does not capture the steady decline in hormones
that characterize the transition to menopause and thus limits
translatability as most women undergo natural, not surgical,

menopause (Diaz Brinton, 2012). In fact, many studies modeling
menopause through OVX frequently use young rodents, which is
inconsistent with the middle-age timing of menopausal transition
in women. OVX as a model of menopause is also problematic
when studying the GABAergic system, as OVX in rats can
contribute to reductions in hippocampal GABA concentrations
(Tominaga et al., 2001) and enhances GABA binding across
various brain regions dependent on time between OVX and
assessment (Bosse and Paolo, 1995; Bossé and Paolo, 1996). Thus,
simply reducing ovarian hormones has substantial effects itself
on inhibitory tone within the brain. Other work investigating
the menopausal transition and reproductive senescence centers
on the use of hormone replacement therapy (HRT) to address
menopausal symptoms, such as onset of hot flashes and vaginal
dryness (Shanmugan and Epperson, 2014; Toffol et al., 2015).
This is reiterated in rodent neuroscience research, as the
combination of OVX and ovarian hormone supplementation is
a commonly used model to study the effects of HRT during
menopause on the brain and behavior, including cognition and
mood (Dumitriu et al., 2010; Rao et al., 2013; Koebele et al., 2017,
2021; Jacobs and Goldstein, 2018; Prakapenka et al., 2018).

Changes Within the GABA System
During the Transition to Reproductive
Senescence in Rodents and in Response
to Hormone Replacement Therapy
The effects of HRT on the GABA system have only been examined
in a few studies. These studies have shown that supplementation
of both estradiol and progesterone following OVX reduces
hippocampal GAD expression in rats (Weiland, 1992) and
attenuates GABAergic gene expression within the hippocampus
and amygdala of rhesus macaques (Noriega et al., 2010). It
has also been shown that exogenous hormone administration
following OVX in aged female rats ameliorates depressive-like
behaviors through a GABAergic mechanism (Rodríguez-Landa
et al., 2020), suggesting that HRT may modulate the GABA
system to positively affect behavior in reproductively senescent
rodents. However, not all studies find beneficial effects of HRT
on brain function. One research group used OVX female rats
over one year of age to study how supplementation of either
progesterone or a synthetic progestin (medroxyprogesterone
acetate) commonly used in HRT immediately following OVX
affects GAD expression and brain function during reproductive
senescence. Using this model, GAD was found to be reduced
in the hippocampus and increased in the entorhinal cortex
following progesterone or progestin supplementation compared
to rats not supplemented with any hormones (Braden et al.,
2010). Further, progesterone supplementation following OVX
in aged female rats was associated with a decline in working
memory, which later studies demonstrated was caused by
excessive activity at GABAARs (Braden et al., 2015). Although
other work has shown that HRT can improve working memory,
these typically use HRT with estrogenic components suggesting
that is important to consider both estrogens and progestins
when studying the GABA system during reproductive senescence
(Koebele et al., 2021).
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FIGURE 2 | Summary of changes to the GABA system of females during periods of hormonal flux. Ovarian hormones substantially change across the female
lifespan. They first increase at puberty, fluctuate on an infradian cycle during reproductive years, surge to their lifelong peak during pregnancy, and steadily decline
into reproductive senescence. Along with ALLO, these fluctuations in ovarian hormones, which are mostly recapitulated in rodents, are associated with changes to
GABA system in both humans (top row) and rodents (bottom row). Reproduced with the permission of The Ohio State University, patterned after Figure 1 in
Barrientos et al. (2019). ALLO = allopregnanolone, CSF = cerebrospinal fluid, GAD = glutamate decarboxylase, OTR-KD = oxytocin receptor knockdown,
mPFC = medial prefrontal cortex, mPOA = medial preoptic area, PAG = periaqueductal gray, PNNs = perineuronal nets, PV = parvalbumin.
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It is also worth noting studies that have provided additional
insight into how activity of the GABA system within the
hypothalamus changes with age (Cashion et al., 2004;
Grove-Strawser et al., 2007; Neal-Perry et al., 2008). For
example, in middle-aged rats, fluctuations in hypothalamic GAD
are attenuated over the course of the estrous cycle resulting in
reduced hypothalamic GAD expression compared to adult rats
on the day of proestrus (Cashion et al., 2004; Grove-Strawser
et al., 2007; Neal-Perry et al., 2008). Estrogen and progesterone
receptors may be involved since their expression changes across
different regions of the hypothalamus during aging in rats
(Wilson et al., 2002; Chakraborty et al., 2003; Kermath and
Gore, 2012). Overall, this work suggests possible mechanisms
contributing to HPO axis disruption during the transition to
reproductive senescence.

Together, these data point to changes occurring in the GABA
system during the transition to reproductive senescence in both
humans and animals. However, the existing evidence is limited.
For example, no studies have examined if and how PV expression
or PNNs change over the course of reproductive aging in females.
Also lacking are studies looking at GABAA receptor plasticity
specifically during the menopausal transition. Furthermore,
additional research using animal models that better reflect the
steady withdrawal from ovarian hormones are needed to advance
understanding of GABAergic changes across the menopausal
period as well as in the preceding perimenopausal period. In
this regard, the ovarian toxin vinylcyclohexene diepoxide (VCD),
which causes a steady decline in ovarian follicles as seen in human
menopausal transitions, may be useful (Diaz Brinton, 2012;
Koebele and Bimonte-Nelson, 2016; Koebele et al., 2021). Some
preliminary work has shown effects of VCD on the brain, though
no work to date has examined the GABA system (Koebele et al.,
2021). Studies using more translational models of reproductive
senescence could provide critical insights into the mechanisms
by which changes to the GABA system can impair mood and
cognitive function during this critical stage of the female lifespan.

TARGETING GABA SIGNALING FOR THE
TREATMENT OF MOOD
DYSREGULATION ACROSS THE
FEMALE LIFEPSAN

Recent advances have been made in the treatment of PPD
through FDA approval for use of the GABA-modulating drug
Brexanolone, a synthetic version of ALLO which stabilizes
fluctuations in ALLO levels allowing GABAARs to steadily
adjust. Brexanolone, a PAM of GABAARs, tempers the dramatic
changes in E/I balance that arise postpartum due to ALLO
withdrawal and, as a result, has been shown to improve mood,
cognition, and mother-infant bonding in women with PPD
(Kanes et al., 2017; Dacarett-Galeano and Diao, 2019; Faden and
Citrome, 2020; Meltzer-Brody and Kanes, 2020). The success of
Brexanolone in treating PPD adds further credence to GABAergic
dysfunction and withdrawal from ALLO as contributing factors
involved in the pathophysiology of PPD. While Brexanolone

must be intravenously administered in a hospital setting, recent
data suggest another neuroactive steroid GABAAR PAM drug,
Zuranolone, is also effective in reducing PPD symptoms and
unlike Brexanolone, can be orally administered (Deligiannidis
et al., 2021). Additional GABA-modulating drugs are also
under investigation for the treatment of mood dysregulation
associated with other times of hormonal change including PMDD
(Bixo et al., 2018; Bäckström et al., 2021; Schweizer-Schubert
et al., 2021) and menopausal depression (Saripalli et al., 2021;
Schweizer-Schubert et al., 2021) but more data are needed.

CONCLUSION

The ovarian hormones estradiol and progesterone, as well as
the progesterone metabolite ALLO, exert substantial influence
over the GABA system during periods of hormonal flux that
characterize the female lifespan (Figure 2). However, there
remain gaps in our understanding of the GABA system during
these hormonally dynamic periods. This is in part because our
current knowledge is based on results that often span different
brain regions or focus on only one aspect of the GABA system.
There are also components of the GABA system that remain
almost completely unexplored. For example, PV neurons have
been the focus but are not the sole GABA neurons in the
brain. Thus, whether other GABA neurons, like SST and VIP
neurons, are affected in relation to hormonal fluctuations across
the female lifespan should be examined. In addition, the role
of GABAB and GABAC receptors in modulating inhibitory
tone during periods of hormonal transition periods warrants
exploration, as some evidence suggests that GABA binding
capacity at GABAB receptors differ between stages of the estrous
cycle (Al-Dahan et al., 1994). It is also important to consider
that different types of estrogen predominate during different
phases of the female lifespan, yet the focus of ongoing research
centers on estradiol, the most common type in women of child-
bearing age (Stillwell, 2016). For example, minimal research
has examined the effects of estriol, the main estrogen during
pregnancy (Falah et al., 2015), and estrone, the predominant
form of estrogen during menopause (Cui et al., 2013), on
the GABA system. Further insight into how hormones affect
the GABA system will broaden our understanding of the
female brain and could lead to better treatments for women
experiencing changes in brain function at each of these hormonal
transition periods.
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