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Editorial on the Research Topic
Exploring mechanisms of cardiac rhythm disturbances using novel
computational methods: Prediction, classification, and therapy

Introduction

Cardiac rhythm disturbances, including arrhythmias and sudden cardiac death (SCD),
represent a major worldwide public health problem, accounting for 15%–20% of all deaths
(Mehra, 2007; Srinivasan and Schilling, 2018). The electrophysiological mechanisms
underlying certain cardiac arrhythmias and SCD are not completely understood. There
is still strong debate whether rhythm disturbances such as atrial and ventricular fibrillation
are caused entirely by disorganized rhythms, sustained by multiple wavefronts, or if they are
caused by organized drivers with subsequent wave breaks and fibrillatory conduction (Nattel,
2003; Nash et al., 2006).

Computational methods for prediction, classification and therapy of cardiac arrhythmias
and SCD are of great interest to improve the clinical outcomes of these disorders. However,
considerable challenges persist that limit the efficacy and cost-effectiveness of available
methodologies. It is therefore vital to develop computational tools to help better understand
the underlying mechanisms and improve effectiveness and efficacy of current therapies.

Recent advances in computational power and applications in bioinspired systems
including machine learning, big data and statistical mathematics, allow new and more
complex architectures with great potential to outperform traditional methods. Novel
computational methods applied in electro-anatomic mapping, non-invasive imaging,
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cardiac clinical and optical mapping, and biophysical computational
models will help to describe the mechanisms causing the
arrhythmias. A Research Topic compiling these novel
computational methods in complex cardiac arrhythmias and SCD
may significantly contribute to shed light on clinical applications in
prediction, classification and therapy, providing unique and critical
importance for management of these significant public health issues.

This Research Topic includes 17 original papers focusing on
technological challenges and breakthroughs for mechanisms of
cardiac rhythm disturbances using novel computational methods:
prediction, classification, and therapy. The papers were co-authored
by 149 authors from various science backgrounds, emphasising the
importance of interdisciplinary research, particularly by young
researchers, in advancing novel computational methods in
cardiac research.

Non-invasive detection, stratification and
machine learning

The utilization ofmachine learning (ML) approaches in the analysis
of electrocardiogram (ECG) signals has been proposed as a means of
improving the early detection of atrial fibrillation (AF) (Hannun et al.,
2019). Studies have demonstrated that these ML algorithms, such as
deep learning, decision trees, and support vectormachines, possess high
accuracy in identifying patterns associated with AF within ECG data
(Murat et al., 2021). Additionally, these techniques can also be utilized
to predict the likelihood of future events, thereby aiding in risk
stratification (Raghunath et al., 2021; Barker et al., 2022). Early
detection of AF is crucial for the timely initiation of therapy, as
untreated AF can lead to serious complications, including stroke. On
this theme, Tseng and Noseworthy reviewed the recent advancements
in the use of machine learning techniques in the prediction and
screening of atrial fibrillation. They highlighted the effectiveness of
various ML algorithms in detecting and predicting AF from ECG
signals and how other data such as heart rate variability can also be used
for the same purpose. For instance, Valiaho et al. developed a new
method for detecting AF that utilizes photoplethysmography (PPG)
data. This technique can be integrated into PPG wristbands for AF
detection. Mazumder et al. proposed a deep neural architecture for
classifying shockable rhythms such as ventricular fibrillation (VF) and
ventricular tachycardia (VT) versus other types of non-shockable
rhythms. They evaluated their proposed architecture on two open
access ECG databases and discovered that the classification accuracy
achieved is in compliance with American Heart Association standards
for wearable cardioverter defibrillator (WCD). This computational
model can also be used for the design and development of
personalized WCD vests based on the subject’s specific anatomy and
pathology, apart from acting as a device validation test-bed. Accurate
detection of ectopic beats is a crucial step in ECG processing, Liu et al.
developed a beat-by-beat arrhythmia detection method using weakly
supervised deep learning. The model was trained to detect ventricular
ectopic beats (VEBs) and supraventricular ectopic beats (SVEBs) on five
large, coarsely-annotated datasets. The framework has potential
applications in both clinical settings and telehealth. For better
treatment planning, Li et al. developed a new ECG classification
framework that can differentiate between different levels of
organization of fibrillation. This method can non-invasively

distinguish AF/VF of different global organization levels from the
ECG alone. This framework may be useful in guiding patient
selection and mechanism-directed tailored treatment strategies.
Improved accuracy of detection and stratification of cardiac
complexities can be achieved by utilising a deeper understanding of
features obtained from ECG time series data; Li et al. conducted a
retrospective study on 1024 consecutive patients who underwent
cardiac surgery. They described that certain ECG biomarkers, such
as the J wave, T peak to end (Tpe) greater than 112.5 ms, and the
amplitude of SV1+RV5 (Sokolow Lyon index) greater than 35 mm,
were strong predictors of postoperative ventricular arrhythmias
(POVAs). For better utilising non-invasive ECG in clinical pathway,
Roudijk et al. conducted the first in-human comparison of non-invasive
intracardiac electrocardiogram (iECG) and invasive local activation
time (LAT)maps on both the endocardial and epicardial surface during
sinus rhythm. They found that iECG and LAT-maps showed improved
agreement, but there was considerable absolute difference andmoderate
correlation coefficient. The study concluded that non-invasive iECG
still requires further refinements to facilitate clinical implementation
and risk stratification.

Catheter ablation in atrial fibrillation

Atrial arrhythmias including AF are commonly treated with
catheter ablation when medication fails to maintain a patient in
normal rhythm. Characterising the atrial electrical activity and
structure in patients may be a key step toward a successful
intervention. To determine the arrhythmogenic substrate, this
stage largely depends on diverse approaches for mapping
electrical activity and tissue properties. In this issue, Liao et al.
developed a new deep learning (DL) model that can classify the focal
source of human AF with high accuracy. The model is trained on
raw unipolar electrogram (EGM) data and can automate the process
of identifying the focal source (FaST) sites of AF. FaST sites were
determined based on data from a single recording location, rather
than the activation pattern obtained from a multi-electrode array.
The clinical significance of this method is yet to be determined.
Roney et al. developed a new time-averaged wavefront analysis
method, which showed that there are preferential pathways of
activation during AF. They also proposed a new index that
measures the propagation of activation waves from the
pulmonary vein antra into the atrial body. This index was
significantly higher in patients who responded to pulmonary vein
isolation (PVI) treatment compared to those who did not respond.

The dominant frequency (DF) of atrial electrograms during AF
reflects the local activation rate of the atria. The highest DF sites may
play a key role in the maintenance of AF. From a study on 40 patients
who underwent a step-CA (stepwise cavotricuspid isthmus ablation) for
persistent atrial fibrillation (persAF), Pithon et al. reported that high
baseline DF values are predictive of unfavourable ablation outcomes.
They also found that a reduction in LAA DF early in the ablation
process following PVI is associated with the termination of AF (atrial
fibrillation) and maintenance of sinus rhythm in the long term. Chu
et al. conducted a prospective AF ablation study using simultaneous
whole-chamber non-contact mapping of the highest dominant
frequency (HDF). They concluded that targeting dynamic HDF sites
is feasible and can be effective, but it lacks specificity in identifying
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relevant persistent atrial fibrillation (persAF) substrate. They also found
that spectral organization may have an adjunctive role in preventing
unnecessary substrate ablation. Additionally, they concluded that
dynamic HDF sites are not associated with observable rotational
activity on isopotential mapping, but epi-endocardial breakthroughs
could be contributory. Hwang et al. used realistic computational
modelling to study 25 AF patients. They studied that the reduction
ofDF (dominant frequency) with antiarrhythmic drugs (AADs) ismore
prominent in the PVs (pulmonary veins) and during a high Smax
(maximum spatial dispersion of DF) condition, which results in
termination or fragmentation of AF. Additionally, they found that a
lower DF and spatially unstable (higher DF-COV) condition also leads
to AF termination or fragmentation.

Innovative computational methods are critical components in the
robust capture of advanced features. Mase et al. introduced a novel
methodology for the characterization of wave propagation and the
identification of focal drivers in AF, which is based on the
reconstruction of CV vector fields and the application of divergence
analysis. They stated that divergence analysis was effective in identifying
focal drivers in a complex simulated AF pattern. They also applied this
method to human AFmapping data and discovered that it consistently
detected focal activation in the pulmonary veins and left atrial
appendage area. These results suggest the potential of divergence
analysis in combination with multipolar mapping to identify critical
sites for AF. Siles-Paredes et al. developed a Circle Method for robust
estimation of local conduction velocity high-density maps from optical
mapping data. This method aims to provide a more accurate
representation of the electrical activity in the heart enables
quantitatively predictive studies of how local CV changes affect
heart electrophysiology.

Computer models can aid in the discovery of underlying
mechanisms of complex cardiac arrythmias. Lyon et al. adapted a
computer model of mouse ventricular electrophysiology using
experimental data and found that beta-adrenergic stimulation
and connexin43 hemichannel-mediated calcium entry contribute
to the generation of delayed-afterdepolarizations upon loss of
plakophilin-2 function. This work provides insights into
potential future antiarrhythmic strategies in arrhythmogenic
cardiomyopathy due to plakophilin-2 loss-of-function. Jin
et al. developed a realistic computational model of AF and
uncovered that circumferential PVI was effective in reducing
the DF of AF, increasing its spatial heterogeneity in areas
outside of the pulmonary veins, and providing better anti-AF
effects than ablation in areas outside of the pulmonary veins or
the use of additional flecainide in conditions where gaps existed
in PVI.

Additionally, Luo et al. explored the electro-characteristics of
myocardial pouches and the relationship between steam pops (SPs),
pouches, and impedance. They reported that appropriate delta
impedance cutoff settings (percentage of delta impedance (PDI):
15%; delta time: 3 s) can reduce the frequency of SPs and improve
the safety of radiofrequency ablation (RFA).

Conclusion

Cardiac arrhythmias and sudden cardiac death are a major
public health problem and the mechanisms underlying these

disorders are not fully understood. Computational methods, such
as machine learning, big data, and statistical mathematics, can help
to improve the effectiveness and efficacy of current therapies by
helping better understanding of the underlying mechanisms. Recent
advances in these areas, along with other technologies such as
electro-anatomic mapping and non-invasive imaging (Salinet
et al., 2021), have the potential to significantly improve the
management and treatment of these disorders. The future outlook
for the field of Electrophysiology (EP) is very promising with many
new and innovative advancements expected to emerge in the coming
years. With the growth of data analytics, machine learning, and
artificial intelligence, the ability to analyse and understand complex
ECG data will increase dramatically. Additionally, new technologies
such as wearable ECG monitors, non-invasive EP procedures, and
real-time monitoring systems are expected to become increasingly
prevalent. These advances will improve the accuracy of arrhythmia
detection and stratification, leading to more effective and
personalized treatments for cardiac patients. Additionally, the
development of new drugs and ablation techniques are also
expected to play a critical role in the future of EP. Overall, the
next decade promises to be an exciting and transformative period for
the EP field, and researchers and practitioners alike are looking
forward to the many new innovations and advancements that are yet
to come. We are pleased to present a Research Topic of studies
describing recent investigations into the mechanisms of cardiac
rhythm disturbances using novel computational methods for
prediction, classification, and therapy. We hope that scientists,
engineers, clinicians, and patients interested in the Research
Topic will find this overview of basic, clinical, and translational
research trends inspiring and encouraging in the development of
novel computational methods in cardiac research.
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Atrial fibrillation is often asymptomatic and intermittent making its detection challenging.
A photoplethysmography (PPG) provides a promising option for atrial fibrillation
detection. However, the shapes of pulse waves vary in atrial fibrillation decreasing
pulse and atrial fibrillation detection accuracy. This study evaluated ten robust
photoplethysmography features for detection of atrial fibrillation. The study was
a national multi-center clinical study in Finland and the data were combined
from two broader research projects (NCT03721601, URL: https://clinicaltrials.gov/
ct2/show/NCT03721601 and NCT03753139, URL: https://clinicaltrials.gov/ct2/show/
NCT03753139). A photoplethysmography signal was recorded with a wrist band.
Five pulse interval variability, four amplitude features and a novel autocorrelation-
based morphology feature were calculated and evaluated independently as predictors
of atrial fibrillation. A multivariate predictor model including only the most significant
features was established. The models were 10-fold cross-validated. 359 patients
were included in the study (atrial fibrillation n = 169, sinus rhythm n = 190). The
autocorrelation univariate predictor model detected atrial fibrillation with the highest
area under receiver operating characteristic curve (AUC) value of 0.982 (sensitivity
95.1%, specificity 93.7%). Autocorrelation was also the most significant individual
feature (p < 0.00001) in the multivariate predictor model, detecting atrial fibrillation with
AUC of 0.993 (sensitivity 96.4%, specificity 96.3%). Our results demonstrated that the
autocorrelation independently detects atrial fibrillation reliably without the need of pulse
detection. Combining pulse wave morphology-based features such as autocorrelation
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with information from pulse-interval variability it is possible to detect atrial fibrillation
with high accuracy with a commercial wrist band. Photoplethysmography wrist bands
accompanied with atrial fibrillation detection algorithms utilizing autocorrelation could
provide a computationally very effective and reliable wearable monitoring method in
screening of atrial fibrillation.

Keywords: atrial fibrillation, atrial fibrillation detection, arrhythmia detection, pulse detection,
photoplethysmography, autocorrelation, algorithms, stroke

INTRODUCTION

Atrial fibrillation (AF) is the most common tachyarrhythmia
and it’s prevalence is increasing as the population ages
(Morillo et al., 2017). AF is associated with thromboembolic
complications, such as stroke (Xiong et al., 2015; Morillo
et al., 2017; Pereira et al., 2020). It is estimated that 20–30%
of all strokes are due to AF (Kirchhof et al., 2016; Pereira
et al., 2020). In addition, 25% of ischaemic strokes are of
unknown cause and there is persuasive evidence that most of
these are of thromboembolic origin (Hart et al., 2014). Up to
two thirds of strokes can be prevented with anticoagulation
(Saxena and Koudstaal, 2004; Hart et al., 2007). A clinical
challenge is that AF is often asymptomatic or paroxysmal
(Xiong et al., 2015) and therefore, difficult to be diagnosed.
Intermittent electrocardiograms (ECGs) recorded during clinical
visits have a low likelihood of detecting paroxysmal AF. Long-
term, continuous monitoring with automatic AF detection
would improve AF screening detection allowing appropriate
primary and secondary strategies for prevention of stroke
(Pereira et al., 2020).

Photoplethysmography (PPG) technology is widely used for
welfare or sport-tracking purposes. PPG has also been proven
to be promising also in the detection of AF (Tison et al.,
2018; Dörr et al., 2019; Fan et al., 2019; Kashiwa et al.,
2019; Väliaho et al., 2019; Pereira et al., 2020). Usually, in
PPG the rhythm assessment is based on pulse-to-pulse interval
detection. However, AF detection with PPG based on pulse-
to-pulse (PP) interval irregularity is often challenging. Namely,
AF is characterized by poorly coordinated atrial activation,
resulting in highly irregular heart rate and variable pulse
wave amplitudes. In addition, the signal is susceptible to
artifacts caused by motion of the sensor against the skin
or poor sensor contact (Pereira et al., 2020). Furthermore,
the pulse detection accuracy is lower in patients with AF
compared to those in sinus rhythm (SR) and even lower
in patients with episodes of short duration of AF (Väliaho
et al., 2019). Several companies are currently developing
wrist worn PPG devices with arrythmia detection features.
Thus, reliable methods for PPG-based AF detection are
under strong interest and could lead to improved rhythm
diagnostics of AF patients.

In this study we introduce a novel PPG pulse wave
morphology-based method which enables AF detection
without the need of individual pulse detection. A robust
morphology-based PPG-analysis can significantly improve AF
detection accuracy of PPG wrist bands.

MATERIALS AND METHODS

Study Design
The study was a national multi-center clinical study implemented
in three hospitals in Finland: Kuopio University Hospital (KUH),
Helsinki University Hospital (HUS) and North Karelia Central
Hospital (NKCH). The data were combined from two studies
(Afib study and Single-ECG study), both of which were approved
by the Ethics Committee of KUH (237/2017 and 850/2018) and
registered in the ClinicalTrials.gov database (NCT037216011 and
NCT037531392).

The participants were given written and oral information and
an opportunity to ask questions about the study. All participants
provided written informed consent.

Study Population
A total of 555 patients were screened in the emergency
care departments and the cardiological wards of the three
participating hospitals (Figure 1) in two broader research
projects (the Afib study and the Single-ECG study). A total of
295 patients were screened in KUH, HUS and NKCH between
May – September 2017 (the Afib study), and 260 patients in KUH
between November 2018 – May 2019 (the Single-ECG study).

The inclusion criteria were AF or sinus rhythm (SR) diagnosed
by the treating physician from a 12-lead resting ECG. The
exclusion criteria were a body mass index (BMI) ≥ 33 kg/m2

(the Afib study) or ≥ 35 kg/m2 (the Single-ECG study), a cardiac
pacemaker, a left bundle branch block (LBBB), a right bundle
branch block (RBBB), an inconclusive or a non-stable rhythm
and a medical condition requiring immediate treatment. In the
initial screening 182 patients were excluded; 143 due to not
meeting the inclusion criteria, 21 patients declined and 18 were
excluded for other reasons. After the 3-lead continuous ECG
and PPG recording (see below), additional 14 patients were
excluded: six due to inconclusive rhythms, two due to RBBBs
and six due to inadequate PPG data. Thus, the final population
consisted of 359 patients: 169 AF patients and 190 patients in
SR (Figure 1).

Data Acquisition
After the initial screening, simultaneous 3-lead ECG and PPG
wrist band signals were recorded for at least 5 minutes. The 3-
lead ECG was recorded with 1,000 Hz sampling frequency using

1https://clinicaltrials.gov/ct2/show/NCT03721601
2https://clinicaltrials.gov/ct2/show/NCT03753139
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FIGURE 1 | Standards for Reporting Diagnostic Accuracy Studies (STARD) flow diagram of the study patient flow. A total of 555 patients were screened in the
participating hospitals KUH, HUS, and NKCH. 359 patients were included in the analysis. AF, atrial fibrillation; ECG, electrocardiogram; SR, sinus rhythm; PPG,
photoplethysmography; RBBB, right bundle branch block.

a Holter ECG device (Faros 360, Bittium, Oulu, Finland) with
five wet electrodes. A simultaneous PPG signal was recorded
using 64 Hz sampling frequency with an Empatica E4 wrist
band (Empatica Inc, Cambridge, United States). This wrist band
captures optical PPG signal utilizing the blood volume pulse
(BVP) method. Before the recordings, patients were resting for
at least 2 min. After the rest, the ECG and the PPG signals were
recorded simultaneously with the patient in the supine position.

ECG Analysis
The final rhythm classification was based on 3-lead ECG
recording interpreted by two experienced cardiologists blinded to
the initial 12-lead ECG. The consensus of rhythm interpretation
by the two cardiologists served as the “golden standard” for the
final rhythm analysis. If no consensus was met, the patient was
excluded from the study (Figure 1).

PPG Processing and Feature Extraction
The PPG data was transferred to a MATLAB R© software (version
R2017b) for pre-processing and analysis. The PPG data was
first interpolated to 128 Hz to increase the time resolution for
the beat detection. A digital zero-phase finite impulse response
lowpass filter with order of 256 and a cut-off frequency of
4 Hz was used to remove high frequency noise. A PPG quality
algorithm was used to identify a 1-min period of good quality
PPG signal from each measurement. Only the first eligible

1-min section of each patients’ recording was utilized, and
the rest of the recording was discarded. The PPG quality
algorithm used acceleration measurement from the wristband
to detect stable periods with no movement of the wrist and
PPG amplitude variation to detect artifacts from the PPG signal.
The first continuous 1-min sample of each PPG recording with
at least 55 s fulfilling the above conditions was accepted for
the analysis. If a good quality period was not found from
the PPG recording, the patient was excluded from the final
analysis (Figure 1).

A total of ten features were calculated from the PPG
signal, from which five were based on pulse interval (PIN,
Figure 2) detection and four on pulse amplitude (AMP)
detection. The five PIN-based variables were: mean PIN,
root-mean-square values of successive differences (RMSSD),
AFEvidence (AFE), Coefficient of Sample Entropy (COSEn) and
turning point ratio (TPR). AFEvidence is based on relative
population of segments in a 2D histogram representing dRR-
intervals (Sarkar et al., 2008) and COSEn is an estimate of
entropy optimized for AF detection (Lake and Moorman,
2011). Four features based on pulse amplitude were: mean
AMP, RMSSD, Sample Entropy (SampEn) and TPR. These
nine features are more commonly used for AF detection
(Tang et al., 2017; Väliaho et al., 2019). In addition, we
evaluated the performance of a more novel autocorrelation
(AC) feature.
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FIGURE 2 | Example recordings. PPG (upper) and ECG (lower) recordings from three patients. Panel (A) shows a patient with sinus rhythm, panel (B) atrial fibrillation
with lenient heart rate and panel (C) atrial fibrillation with high heart rate. Algorithm ECG QRS detection points and PPG pulse detection points are marked with red
circles. A PIN time series was formed with detected PPG pulses for PIN-based AF detection features. ECG, electrocardiogram; PPG, photoplethysmography; HR,
heart rate.

The pulses were detected from the 1-min PPG samples using a
method described and validated in our previous study (Figure 2;
Väliaho et al., 2019). A time series with PINs was formed from
the successive pulse detections. The PIN-based features (mean,
RMSSD, AFE, COSEn and TPR) were calculated from these
time series.

The amplitude of each PPG pulse wave was calculated as
difference of maximum and minimum amplitude in a 0.5 s
window around the detected pulse. The formed amplitude
time series was used to calculate the values for the AMP-
based features (mean, RMSSD, SampEn and TPR). The values
of TPR and AC features were used as 100-fold for better
calculation accuracy (by avoiding dividing by almost 0) and
estimation of odds ratios.

AC is a pulse wave morphology-based feature extracted from
the PPG signal. It represents the correlation between a signal and
its delayed copy as a function of delay. AC describes the regularity
of the PPG signal morphology without a need for detection of
individual pulses from the time series (Figure 3). AC values are
decreased if the shape and periodicity of the PPG pulse waves
vary. The average of absolute autocorrelation values (performed
over different delays) was calculated for 1-min PPG samples of
each patient. The normalized value of AC for different delays can
be calculated as

Rl =

(
1
N
∑N−l

t=1 xtxt+l
)

R0
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FIGURE 3 | Autocorrelation. PPG (upper) and ECG (lower) recordings from a patient with sinus rhythm (A1) and atrial fibrillation (B1). Corresponding autocorrelation
values were calculated for 1-min samples of PPG signal for each patient. First 10 s of example recordings and calculated autocorrelation values (A2 and B2) are
shown in panels. Autocorrelation is a feature calculated straight from the signal and it requires no pulse detection. It is the correlation between a signal and its
delayed copy as a function of delay. ECG, electrocardiogram; PPG, photoplethysmography.

where Rl is the value of AC for delay l, R0 is the value of AC with
no delay, xt is signal value for time index t and N is total number
of samples in the signal.

Atrial Fibrillation Detection With
Univariate Predictor Models
To test how all the ten features can individually predict
AF, each feature was evaluated as a univariate predictor
model for detection of AF. All ten features were established
in ten independent linear logistic regression models. The
logistic regression uses the features to estimate the probability
of the PPG sample being true positive AF. Since our
dataset was balanced, the cut-off value of AF detection
was set at 0.5. The performance was evaluated with 10-
fold cross-validation (see below) and diagnostic performance
parameter values were calculated for each univariate predictor
model.

Establishing the Multivariate Predictor
Model for Atrial Fibrillation Detection
Linear logistic regression with backward feature selection
procedure was used to detect independent and statistically
significant features for the detection of AF with MATLAB R©

software version R2017b. Our hypothesis was that the combined
performance of some of the features is better than any of these
features independently. Backward feature selection method was
started with all the ten features using all the data samples and
recommended significance level of 0.157 (Heinze et al., 2018).

Features were removed from the model one at a time if
removing them would not significantly decrease the performance
of the model. A logistic regression model including only the
most significant features was established. The cut-off value
of AF detection was set at 0.5. The performance of this
multivariate predictor model was tested with 10-fold cross-
validation.

Validation of the Predictor Models
AF data samples (n = 359) were randomly divided into ten
sections for 10-fold cross-validation. All ten univariate predictor
models and the established multivariate predictor model were
validated with this method. Each time nine sections were used
to train the model and one section was used to validate the
prediction performance. The process was repeated ten times,
with each of ten sections used only once as the validation
data. The advantage of this validation method is that same
samples are not used simultaneously for training and validation
(reduce bias) of the predictor model, and each individual
sample is used exactly once for validation. The diagnostic
performance parameter values were averaged to produce a
single estimation of AF prediction, including area under
receiver operating characteristic curve (AUC) value, sensitivity,
specificity, positive prediction value (PPV), negative prediction
value (NPV) and accuracy.

The receiver operating characteristics (ROC) curve was
formed for each prediction model by using the average of true
and false positive rates from the 10-fold cross validation models.
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Statistical Analysis
Clinical characteristic data and PPG feature parameter values
were analyzed using IBM SPSS statistics software version 25.
Continuous variables between AF and SR patients were analyzed
with independent-sample t-tests and categorical variables with χ2

tests. The significance of differences within AF and SR patients
were tested with paired t-tests. All significance tests were two-
tailed with p ≤ 0.05 considered statistically significant.

RESULTS

Clinical Characteristics
The study population consisted of 359 patients (AF n = 169, SR
n = 190). Patients with AF were older, had higher heart rate, more
often medical history including earlier AF episodes, congestive
heart failure and heart surgery, and were more often on beta-
blockers, digoxin or anticoagulation therapy (Table 1). There
were no adverse events related to the study recordings.

PPG Feature Comparison Between
Rhythm Groups
Calculated parameter values of all ten features of the PPG signal
differed between AF and SR groups (Table 2).

Univariate Predictor Models With Single
Features for AF Detection
The novel PPG pulse wave morphology-based AC feature
detected AF as a univariate predictor model with highest AUC of
0.982 (sensitivity 95.1%, specificity 93.7%). The PIN-based AFE
detected AF with AUC of 0.977 (sensitivity of 96.0%, specificity
92.9%) and PIN-based COSEn with 0.964 (sensitivity of 92.3%,
specificity of 92.1%). The other seven univariate predictor models
yielded lower AUC values. The averaged 10-fold cross-validated
diagnostic performance parameter values for each univariate
predictor models are presented in Table 3. The ROC curves for
each univariate predictor models are presented in Figure 4.

AF Detection With the Multivariate
Predictor Model
The multivariate predictor model was reduced with the backward
feature selection to include only four features: PIN_AFE
(p = 0.007), PIN_TPR (p = 0.008), AMP_mean (p = 0.031) and
AC (p < 0.00001) (Table 4).

The multivariate predictor model detected AF with AUC
of 0.993, sensitivity of 96.4% and specificity of 96.3%. The
diagnostic performance parameters of the validated multivariate
predictor model are presented in Table 5. The ROC curve for the
multivariate prediction model is presented in Figure 4.

DISCUSSION

We demonstrated that the novel AC as a univariate predictor
model detected AF with high sensitivity (95.1%) and specificity
(93.7%) from the PPG wrist band signal. AC had the highest

AUC (0.982) of all ten univariate predictor models, each
containing only one PPG feature. The advantage of AC is
that it requires no individual pulse detection from the PPG
signal unlike all other nine features evaluated. To the best
of our knowledge, this is the first time AC was assessed and
validated as a predictor of AF with a PPG wrist band. The
AC feature was also included in the multivariate predictor
model with backward feature selection method and it turned
out to be the most significant individual feature in the model
(p < 0.00001).

In addition, our study shows that combining pulse wave
morphology-based AC with PIN and AMP-based features
improves the diagnostic performance of PPG wrist bands.
The multivariate predictor model developed and validated in
our study consisting of four PPG features detected AF with
higher AUC, sensitivity and specificity (0.993, 96.4%, 96.3%)
than any of the ten evaluated features as univariate predictor
models independently.

Short-term AC has been used earlier for instantaneous heart
rate (IHR) and R-peak detection from the ECG signal due to
its noise-tolerant performance (Fujii et al., 2013). In addition,
the advantage of short-term AC for wearable ECG monitoring
systems is that it has low digital processing capacity requirements
(Fujii et al., 2013). From the PPG signal, short-term AC has
been used to estimate pulse-to-pulse interval with short 4-s time
windows because it has more instability tolerance (Kashiwa et al.,
2019). PPG pulse waves frequently have low peaks or varying
amplitude in AF patients. This is due to loss of atrial-ventricular
synchrony, impaired ventricular diastolic filling, and irregular
ventricular rate. As a result, the PPG pulse detection sensitivity in
patients with AF is lower compared to patients with SR, and even
lower if the AF has lasted for less than 48 h (Väliaho et al., 2019).
Autocorrelation as a robust and computationally very effective
method can detect the absence of this morphology regularity.
An obvious advantage of AC is that it recognizes AF without
pulse detection.

Yan et al. used a smartphone camera to measure the PPG from
the fingertip and contact-free from the face (Yan et al., 2018).
They used a smartphone application utilizing a support vector
machine (SVM) with the AC to detect AF from the PPG signal
(Yan et al., 2018). The SVM is a machine learning technique
(Kwon et al., 2019). The sensitivity and specificity were 94.7
and 95.8% for facial PPG and 94.7 and 93.0% for the fingertip
PPG (Yan et al., 2018). Recently Kwon et al. reported that the
SVM with the AC to detected AF with sensitivity of 93.26% and
specificity of 89.60% with a pulse oximeter from the fingertip
(Kwon et al., 2019). In our study the multivariate predictor
model including the AC feature achieved higher sensitivity
and specificity compared to both studies. Also, the method of
measuring PPG was different in these studies as compared to the
wrist band that was used here.

In our study we assessed the feasibility of a PPG wrist band, a
commonly used method for sport and welfare purposes, for AF
detection. A wide range of other devices such as smartwatches
(Tison et al., 2018; Dörr et al., 2019; Guo et al., 2019; Perez
et al., 2019), smartphone applications (Yan et al., 2018; Kwon
et al., 2019), and chest strap ECGs (Hartikainen et al., 2019)
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TABLE 1 | Clinical characteristics of the patients.

AF group, SR group, Significance Mean difference and

n = 169 n = 190 (2-sided) [95% CI of the difference]

Characteristics

Age, years 72.2 ± 14.3 57.9± 18.8 <0.001 14.29 [10.85 to 17.73]*

BMI, kg/m2 26.0 ± 3.9 25.8 ± 3.7 0.635 0.19 [−0.60 to 0.99]*

Sex, male 87 (51.5) 97 (51.1) 0.936 0.43 [−9.83 to 10.67]

PPG

Mean heart rate, min−1 84.4 ± 15.0 69.8± 13.6 <0.001 14.59 [11.62 to 17.56]*

Medical history

Atrial fibrillation 128 (75.7) 44 (23.2) <0.001 52.58 [43.04 to 60.56]

Hypertension 112 (66.3) 96 (50.5) 0.003 15.75 [5.53 to 25.47]

Coronary artery disease 48 (28.4) 41 (21.6) 0.135 6.82 [−2.12 to 15.75]

Congestive heart failure 46 (27.2) 6 (3.2) <0.001 24.06 [16.96 to 31.42]

Diabetes 30 (17.8) 29 (15.3) 0.525 2.49 [−5.18 to 10.31]

Cardiac surgery 22 (13.0) 9 (4.7) 0.005 8.28 [2.42 to 14.59]

Other arrhythmia 16 (9.5) 21 (11.1) 0.622 −1.59 [−7.93 to 4.93]

Structural heart disease 14 (8.3) 9 (4.7) 0.171 3.55 [−1.64 to 9.15]

Medication

Anticoagulation 131 (77.5) 42 (22.1) <0.001 55.41 [46.01 to 63.16]

Beta-blocker 125 (74.0) 74 (38.9) <0.001 35.02 [24.99 to 43.99]

Digoxin 22 (13.0) 1 (0.5) <0.001 12.49 [7.60 to 18.41]

Anti-arrhythmic drugs 9 (5.3) 4 (2.1) 0.103 3.22 [−0.83 to 7.88]

Values are mean ± standard deviation and number (percentages). In the last column values are mean difference and [95% Confidence Interval of the Difference]. Values
for dicotomical variables in this column (e.g., sex or hypertension) are percentages.
AF, atrial fibrillation; CI, confidence interval; HR, heart rate; PPG, photoplethysmography and SR, sinus rhythm.
*Mean difference and [95% confidence interval of the difference] values for Age, BMI, and HR are years, kg/m2 and min−1.

TABLE 2 | Comparison of feature parameter values between atrial fibrillation and sinus rhythm groups.

Feature AF group SR group Significance Mean difference and

n = 169 n = 190 (2-sided) [95% CI of the difference]

Mean ± SD Mean ± SD

Pulse-interval

PIN_mean 0.734 ± 0.134 0.892 ± 0.166 <0.00001 −0.158 [−0.189 to −0.126]

PIN_RMSSD 0.281 ± 0.102 0.122 ± 0.111 <0.00001 0.159 [0.136 to 0.181]

PIN_AFE 58.201 ± 13.838 −26.111 ± 36.605 <0.00001 84.312 [78.432 to 90.191]

PIN_COSEn −0.411 ± 0.554 −1.981 ± 0.511 <0.00001 1.570 [1.459 to 1.680]

PIN_TPR 61.751 ± 6.059 48.836 ± 10.984 <0.00001 12.915 [11.054 to 14.776]

Amplitude

AMP_mean 64.380 ± 46.774 90.082 ± 57.042 <0.00001 −25.703 [−36.612 to −14.794]

AMP_RMSSD 27.782 ± 20.453 17.072 ± 16.800 <0.00001 10.710 [6.841 to 14.580]

AMP_SampEn 2.217 ± 1.073 1.774 ± 0.664 <0.00001 0.443 [0.260 to 0.626]

AMP_TPR 65.716 ± 6.536 57.169 ± 8.565 <0.00001 8.547 [6.951 to 10.144]

Morphology

AC 4.790 ± 1.544 14.723 ± 5.306 <0.00001 −9.933 [−10.766 to −9.101]

Values were calculated for each PPG feature for each patient individually in both rhythm groups. Numbers are mean ± standard deviation. Significance is between groups.
AC, autocorrelation; AF, atrial fibrillation; AFE, AFEvidence; AMP, peak amplitude; CI, confidence interval; COSEn, coefficient of sample entropy; PIN, pulse interval; PPG,
photoplethysmography; RMSSD, root mean square of successive pulse-to-pulse differences; SampEn, sample entropy; SD, standard deviation; SR, sinus rhythm and
TPR, turning point ratio.

have also been evaluated for AF detection. Recently, in the
Huawei Heart study 187 912 participants were monitored with
a PPG wrist band or a wristwatch (Guo et al., 2019). During

the monitoring, 424 (0.23%) subjects received an irregular pulse
notification and of those 262 were followed up with an ECG
or 24-h Holter (Guo et al., 2019). AF was ECG-confirmed
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TABLE 3 | Averaged 10-fold cross-validated univariate predictor model diagnostic performance values for detection of atrial fibrillation.

Univariate predictor models AUC* Sensitivity Specificity PPV NPV Accuracy

Pulse-interval

PIN_mean 0.780 72.2 72.2 69.6 75.0 72.1

PIN_RMSSD 0.867 77.4 80.9 78.5 79.8 78.8

PIN_AFE 0.977 96.0 92.9 93.1 97.0 94.7

PIN_COSEn 0.964 92.3 92.1 91.4 93.2 92.2

PIN_TPR 0.841 80.1 72.3 71.7 81.1 76.0

Amplitude

AMP_mean 0.659 59.7 60.4 57.3 63.0 59.6

AMP_RMSSD 0.726 46.0 82.6 70.7 63.2 65.0

AMP_SampEn 0.680 48.1 72.8 61.0 61.6 61.3

AMP_TPR 0.792 72.2 73.1 71.1 74.7 72.7

Morphology

AC 0.982 95.1 93.7 93.5 96.2 94.4

AC, autocorrelation; AF, atrial fibrillation; AFE, AFEvidence; AMP, peak amplitude; AUC, area under the curve; CI, confidence interval; COSEn, coefficient of sample entropy;
NPV, negative predictive value; PIN, pulse interval; PPG, photoplethysmography; PPV, positive predictive value; RMSSD, root mean square of successive pulse-to-pulse
differences; SampEn, sample entropy; SD, standard deviation; SR, sinus rhythm and TPR, turning point ratio.
*The values are percent (%) except AUC is absolute value.

FIGURE 4 | Averaged AF detection ROC curve of the univariate models and the multivariate predictor model.

in 227 (87%) cases with the PPV 91.6% for the PPG-based
algorithm (Guo et al., 2019). Correspondingly, in the Apple
Heart Study PPG was recorded with a smartwatch from 419
093 participants (Perez et al., 2019). 2161 (0.52%) of subjects
received PPG-based irregular pulse notifications and of those
450 were monitored with ECG patches for an average of 6.3
days (Perez et al., 2019). AF was found in 153 (34%) of the
subjects (Perez et al., 2019). Only 86 individuals had irregular

PPG pulse notifications during simultaneous use of an ECG
patch, and AF was confirmed in 72 of these cases resulting in
a PPV of 84% with the PPG smartwatch (Perez et al., 2019).
Because of the study designs in both Huawei Heart Study
and Apple Heart Study, sensitivity could not be assessed and
thus compared to the results of our study. Perez et al. state
that their PPG-based irregular pulse detection algorithm was
designed to minimize false positive findings of AF and should
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not be used for AF screening (Perez et al., 2019). However, our
algorithm produced high sensitivity (96.4%), specificity (96.3%)
and PPV (96.1%) indicating PPG wrist bands could enable
reliable detection of AF.

Kashiwa et al. developed a wrist band pulse wave monitor
for long-term PPG monitoring that detects AF with PPG
pulse frequency-based analysis (Kashiwa et al., 2019). Their AF
detection was based on two statistical values: the coefficient
of variation (CV) of PP values and Kolmogorov-Smirnov (KS)
difference (Kashiwa et al., 2019). They detected AF with a patient
average sensitivity of 81.0%, specificity of 96.4% and PPV of
86.6% with AF episodes lasting over 6 min (Kashiwa et al., 2019).
Compared to Kashiwa et al., in our study, using the multivariate
predictor model, the sensitivity and the PPV were higher (96.4
and 96.1%) and the specificity was equal (96.3%). Fan et al. used a
novel algorithm utilizing combined PPG morphology and pulse
frequency analysis to detect AF with a PPG wrist band (Fan
et al., 2019). The quality of the PPG signal was assessed with
a mobile phone application, and in case of rejected recording
the measurement was retaken (Fan et al., 2019). In line with
us, they analyzed also 1-min samples, but they extracted three
samples from each patient, yielding a sensitivity of 95.36%, a
specificity of 99.70% and a PPV of 99.63% for AF detection
(Fan et al., 2019). The sensitivity of the multivariate predictor

TABLE 4 | Features in the multivariate predictor model.

Feature Estimate SE OR Significance
(2-sided)*

Any (Intercept) −3.723 2.671 0.024 0.163

Pulse-interval PIN_AFE 0.045 0.017 1.046 0.007

PIN_TPR 0.126 0.047 1.135 0.008

Amplitude AMP_mean 0.016 0.008 1.017 0.031

Morphology AC −0.771 0.171 0.463 <0.00001

All features included in the established multivariate predictor model were statistically
significant with p < 0.05. Intercept is the constant of the linear logistic
regression model.
AC, autocorrelation; AFE, AFEvidence; AMP, peak amplitude; OR, odds ratio; PIN,
pulse interval; SE, standard error and TPR, turning point ratio.
*For logistic regression model including all four features.

TABLE 5 | Multivariate predictor model 10-fold cross-validation diagnostic
performance results in detection of atrial fibrillation.

Mean Min Max

Multivariate

AUC 0.993 0.987 1.000

Sensitivity 96.4 88.9 100.0

Specificity 96.3 90.0 100.0

PPV 96.1 88.9 100.0

NPV 96.9 88.9 100.0

Accuracy 96.4 91.7 100.0

The multivariate prediction model consisted of PIN_AFE, PIN_TPR, AMP_mean and
AC features. Mean values are averaged from ten validations with subsections. The
values are percent (%) except AUC are absolute values (number).
AFE, AFEvidence; AMP, peak amplitude; AUC, area under the curve; Max,
maximum; Min, minimum; NPV, negative predictive value; PPV, positive predictive
value; PIN, pulse interval and TPR, turning point ratio.

model in our study was slightly better but the specificity and
the PPV were lower.

Recently, Tison et al. reported that PPG smartwatch was able
to detect AF utilizing a deep neural network with sensitivity of
98.0%, specificity of 90.2% and PPV of 90.9% (Tison et al., 2018).
They trained their method in 6,682 patients and validated it in
51 patients (Tison et al., 2018). The algorithm-based multivariate
predictor model developed in our study achieved significantly
higher specificity (96.3%) and PPV (96.1%) with only slightly
lower sensitivity (96.4%). Also, Dörr et al. showed that an AF
detection algorithm detected AF with a PPG smartwatch with
a sensitivity of 93.7%, a specificity of 98.2% and a PPV of
97.8% calculated from high quality samples (Dörr et al., 2019).
As compared to the other studies Dörr et al. reported high
number of non-interpretable samples, more than 20% of their
1-min PPG samples remained without rhythm interpretation
(Dörr et al., 2019). Our method yielded higher sensitivity
and slightly lower specificity and PPV, however, by using our
method there were only six (1.6%) samples which rhythm could
not be interpreted.

Limitations
AF detection was performed from 1-min PPG samples of good
quality data. These samples were selected automatically by the
quality algorithm. The PPG signal is susceptible to disturbances
caused by movement of the optical sensor against the skin,
blood pressure changes and vascular elasticity fluctuations. In
our study, the PPG signal was recorded only for 5 min and from
stationary patients. For detection of paroxysmal atrial fibrillation,
the technology should allow longer rhythm monitoring in
ambulatory patients. The quality of the data can be improved
by using PPG wrist bands equipped with acceleration sensors
programmed to accept only PPG signal for AF analysis when
the patient is at rest and the hand is stable position. Further
clinical studies are needed to assess the utility of PPG wristband
in the detection of AF in long-term monitoring of ambulatory
patients. The capability of the AF detection algorithms should
be evaluated in a setting where the PPG signal is exposed to
the artifacts caused by e.g., motion, thus describing the actual
practical capability of the AF detection method in patients’
daily situations.

The effect of premature atrial (PAC) and ventricular
contractions (PVC) on the AF detection was not examined in
this study. The presence of premature contractions could affect
the AF detection and probably impair AF detection specificity
as they are probable to cause irregularity in both ECG and
PPG signals. Irregular pulse during sinus rhythm with premature
contractions could be falsely detected as atrial fibrillation by
automated algorithms based on pulse irregularity or altering
the PPG morphology.

CONCLUSION

We demonstrated that the novel AC feature based on pulse wave
morphology detects AF independently with high sensitivity and
specificity without the need of pulse detection. In addition, we
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proved that combining pulse wave morphology-based features
such as AC with information from pulse-interval variability
it is possible to detect AF with high accuracy by using a
commercial PPG wrist band.

Results indicate that PPG wrist bands accompanied with
AF detection algorithm could provide an easy-access and a
reliable wearable monitoring method in search of paroxysmal or
asymptomatic AF.
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Focal sources are potential targets for atrial fibrillation (AF) catheter ablation, but they
can be time-consuming and challenging to identify when unipolar electrograms (EGM)
are numerous and complex. Our aim was to apply deep learning (DL) to raw unipolar
EGMs in order to automate putative focal sources detection. We included 78 patients
from the Focal Source and Trigger (FaST) randomized controlled trial that evaluated
the efficacy of adjunctive FaST ablation compared to pulmonary vein isolation alone
in reducing AF recurrence. FaST sites were identified based on manual classification
of sustained periodic unipolar QS EGMs over 5-s. All periodic unipolar EGMs were
divided into training (n = 10,004) and testing cohorts (n = 3,180). DL was developed
using residual convolutional neural network to discriminate between FaST and non-
FaST. A gradient-based method was applied to interpret the DL model. DL classified
FaST with a receiver operator characteristic area under curve of 0.904 ± 0.010
(cross-validation) and 0.923 ± 0.003 (testing). At a prespecified sensitivity of 90%, the
specificity and accuracy were 81.9 and 82.5%, respectively, in detecting FaST. DL had
similar performance (sensitivity 78%, specificity 89%) to that of FaST re-classification
by cardiologists (sensitivity 78%, specificity 79%). The gradient-based interpretation
demonstrated accurate tracking of unipolar QS complexes by select DL convolutional
layers. In conclusion, our novel DL model trained on raw unipolar EGMs allowed
automated and accurate classification of FaST sites. Performance was similar to FaST
re-classification by cardiologists. Future application of DL to classify FaST may improve
the efficiency of real-time focal source detection for targeted AF ablation therapy.

Keywords: atrial fibrillation, unipolar electrogram, focal sources, machine learning, catheter ablation

INTRODUCTION

The pathogenesis of atrial fibrillation (AF) is complex, potentially involving localized drivers
and abnormal atrial substrate outside the pulmonary veins (Heijman et al., 2016), which may
account for the poor long-term success of pulmonary vein isolation (PVI) alone (Ganesan et al.,
2013). Using panoramic high-resolution mapping, localized drivers, including focal electrical
sources have been observed to sustain experimental AF (Lee et al., 2013, 2020), but their
relevance in the pathogenesis of human AF is less clear. Detecting focal electrical sources
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in humans is challenging owing to the low spatial resolution
of mapping techniques (Roney et al., 2017) and complex
electrogram (EGM) features (DeBakker and Wittkampf, 2010).

To address these challenges, we have developed a pragmatic
focal source detection algorithm, known as Focal Source and
Trigger (FaST) mapping, where bipolar and unipolar EGMs
are analyzed for periodicity and unipolar QS features as
footprints of centrifugal wave propagation (Gizurarson et al.,
2016; Kochhauser et al., 2017). In a randomized controlled trial,
FaST sites were widely distributed in PV and extra-PV regions in
all patients, and their ablation reduced AF recurrence compared
to PVI alone (Chauhan et al., 2020; Nayyar et al., 2020). In
FaST mapping, the accurate detection of sustained, periodic
unipolar QS electrograms is critical and requires over reading
by the cardiologist after the onset of the unipolar electrograms
has been annotated by the FaST algorithm to guide morphology
classification. This can be challenging when unipolar EGMs
appear fractionated and non-stationary over 5-s recordings.

In this regard, machine learning, and more specifically deep
learning (DL), has been used recently to automate classification
of complex biomedical signals from ECG recordings (Hannun
et al., 2019; Chang et al., 2021), but the utility of DL in raw
EGM classification during AF has not been explored (Feeny et al.,
2020). DL has the advantage of automatically learning features
from raw signals without the need for a priori manual features
engineering. We hypothesized that automating the detection of
sustained, periodic unipolar QS EGMs using DL will improve
the reliability and efficiency of FaST mapping for cardiologists
performing AF driver catheter ablation. Our objective was to
develop a DL model trained on raw unipolar EGMs to allow
automated and accurate identification of FaST sites during AF as
putative focal source targets for ablation.

MATERIALS AND METHODS

Patient Population
The FaST randomized controlled trial evaluated the efficacy of
FaST ablation as an adjunct to PVI in reducing AF recurrence
compared to PVI alone in 80 patients with drug-refractory, high-
burden paroxysmal or persistent AF (Chauhan et al., 2020).
Real-time endocardial mapping of the left atrium (LA) during
sustained AF was completed in 78 patients, who comprised
the cohort for the present study. The study was approved by
the University Health Network Research Ethics Board and all
patients provided written, informed research consent.

AF Mapping
The FaST mapping protocol and ablation outcomes have been
previously described (Chauhan et al., 2020). Briefly, anti-
arrhythmic drugs were held for 5 half-lives with the exception of
amiodarone which was discontinued 1 month before mapping.
LA mapping was performed during either spontaneous AF
or induced AF using burst atrial pacing at CL 180–250 ms,
and if necessary, intravenous isoprenaline (0.5–1 µg/min).
Electroanatomic data was acquired using the CARTOTM 3
(Biosense Webster, Diamond Bar, CA, United States) system

and a roving 20-pole circular catheter (LassoTM Nav Variable,
15–25 mm diameter, 1 mm electrodes at 2–6–2 mm spacing,
Biosense Webster, Diamond Bar, CA, United States). Stable
catheter-tissue contact and signal quality were ensured before
recording 5-s bipolar (bandpass 30–500 Hz) and unipolar
EGMs (bandpass 0.05–500 Hz) at a sampling rate of 1,000 Hz.
Unipolar EGMs were recorded only from one electrode of
the bipolar electrode pair. All EGMs were exported for off-
line analysis of FaST sites using custom software written in
MatlabTM (MathWorks Inc., Natick, MA, United States). Noisy
EGMs with low signal:noise and EGMs recorded >5 mm
from the LA endocardium were excluded to minimize far-field
signal contamination.

FaST Sites
The hierarchical algorithm for FaST detection has been
previously reported (Dalvi et al., 2016; Gizurarson et al., 2016;
Chauhan et al., 2020; Nayyar et al., 2020) and is summarized
in Figure 1. Briefly, each 5-s bipolar EGM underwent fast
Fourier transformation after bandpass filtering (40–250 Hz
followed by 0.5–20 Hz) and rectification. Periodicity was
present if the spectral frequency with the largest spectral
power contained at least 10% of the total spectral power. The
corresponding periodicity CL was defined as the inverse of
this frequency. Among bipolar EGMs demonstrating periodicity
within a CL ranging from 100 to 250 ms (i.e., physiologic
atrial refractory period), local bipolar periodic activations were
annotated using a graph search function. For this purpose,
candidate local activations were automatically selected provided
their amplitude was above a noise threshold of 0.05 mV and
a slew rate >0.014 mV/ms. Local periodic activations across
the 5-s bipolar EGM were identified as those with the greatest
number of consecutive candidate activations having the extracted
periodicity CL, which satisfied the lowest cost of a matrix
containing the difference between each candidate activation
and the extracted periodicity CL (see Supplementary Methods)
(Dalvi et al., 2016). This ensured that sustained periodic
activations with predefined periodicity CL were identified
regardless of their EGM amplitude, which itself is not a pre-
requisite for defining local activation. These local periodic bipolar
activations were then transposed to the corresponding unipolar
EGMs in order to annotate unipolar EGM onset and thereby
facilitate manual classification of unipolar morphology as QS or
non-QS. FaST was defined based on the presence of sustained
bipolar EGM periodicity and a dominant unipolar QS pattern
(i.e., R/S ratio < 0.1) in >90% of EGMs over the 5-s recording,
which was assigned manually by two cardiologists in real-time
before ablation. Any disagreement in FaST classification by the
cardiologists was resolved by consensus. FaST sites were classified
as PV vs. extraPV and they were considered to be anatomically
distinct if >7 mm from one another.

Patient Cohorts and Data Augmentations
Patients were randomly divided into a training and testing cohort,
and all periodic unipolar EGMs from both cohorts were firstly
down-sampled to 200 Hz using fast Fourier transformation.
Then, their magnitudes were normalized through a min-max
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FIGURE 1 | FaST Algorithm. (A) Hierarchical steps in FaST classification. (B) Representative examples of bipolar and unipolar EGMs from three different left atrial
sites. In each example, the power spectral plot of the bipolar EGM indicates the presence of periodicity (i.e., spectral peak above threshold red horizontal line). The
periodicity cycle length is calculated from the spectral peak (right panels). The first two examples are classified as FaST sites by the FaST algorithm based on the
presence of bipolar EGM periodicity and sustained unipolar QS complexes for the duration of the 5-s recording. The top example shows discrete bipolar EGM
complexes while the bottom example also contains complex, fractionated bipolar EGM complexes. In contrast, the third example is classified as No FaST because
the unipolar EGM does not manifest sustained QS complexes for the duration of the 5-s recording, even though there is bipolar EGM periodicity. The first 1.4 s of the
unipolar EGM manifests RS complexes, followed by QS complexes.

FIGURE 2 | Convolutional Neural Network Architecture. The DL model inputs raw unipolar EGM (right) and outputs a binary decision as FaST vs. non-FaST (left).
For robust training, the raw inputs are normalized and augmented as described in the text. The architecture of the proposed network is inherited from ResNet-18,
which has 4 residual blocks. Each block consists of 2 convolutional, 2 batch normalization, and one ReLU layers. Abbreviations: Conv – convolutional layer,
MaxPool – 1-D max-pooling layer.

feature scaling. To improve the generalizability of the model, four
artificial data augmentations were implemented, namely baseline
shifting, Gaussian noise, cropping and resampling. Baseline
shifting added constant noise to the EGM signal, where the
constant is sampled from a normal distribution. Gaussian noise
added normal noise, sampled from a Gaussian distribution, to
the EGM. Cropping randomly replaced a segment of data with

zeros, while resampling further removed a data segment, but
unsampled the shorter signal to the original length (Perez and
Wang, 2017). A hyper-parameter was introduced to track the
probability of augmentation and to ensure that both clean and
noised examples were observed during training. The effectiveness
of augmentation is demonstrated in the Supplementary Methods
and Supplementary Figures 1, 2.
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FIGURE 3 | Consort Diagram for DL Training and Testing Cohorts. Patients
(n = 78) were divided into a training/validation cohort (n = 58) and test cohort
(n = 20). The number of periodic unipolar EGMs in each cohort is indicated.

One-Dimensional Residual Convolutional
Neural Network
The DL model was designed to take the raw periodic unipolar
EGM as input, and then output the probability of FaST on a
continuous scale from 0 to 1. The model is a one-dimensional
(1-D) residual, convolutional, deep neural network (CNN)
which is implemented through PyTorch (Paszke et al., 2019).
The network architecture is inspired by ResNet-18 for image
recognition, which has been credible in a large number of datasets
(He et al., 2016). In brief, it is an 18 layer neural network
consisting of five residual convolutional blocks and one fully
connected layer. Each block abstracts the features gradually
from raw inputs to a higher level representation (LeCun et al.,
2015). Specifically, each residual convolutional block consists of a
convolutional layer, a pooling, a batch normalization, a dropout,
a non-linear activation and a residual connection (LeCun et al.,
2015). Notably, our EGM network replaces the 2-D convolution
filters in each block of ResNet-18 by 1-D filters so that the
architecture becomes suitable for unipolar EGM analysis. Our DL
architecture is illustrated in Figure 2.

Due to similar structure, our DL model shares the same hyper-
parameter settings with ResNet-18, such as kernel size, stride size
and dropout rate (He et al., 2016). Although larger networks
(e.g., ResNet-50, ResNet-101) and different architectures (e.g.,
EfficientNet) were also explored, we found ResNet-18 achieved
the best testing performance in classifying FaST as shown
in Supplementary Table 1. To prevent model overfitting, we
searched a small subset of hyper-parameters, including batch
size, initial learning rate and the learning rate scheduler. The
best hyper-parameter combination was found through grid
search with a three-fold cross-validation, which was then applied
to the whole training cohort to train the DL model. The
trained DL model was finally evaluated in the testing cohort.
In terms of optimization details, the network is initialized by

He-initialization and optimized by Adam (Kingma and Ba, 2014;
He et al., 2015).

In addition, we investigated the performance of classic
machine learning models to classify FaST, including logistic
regression, support vector machine (SVM) and k nearest
neighbor (KNN). Compared to DL, these classic models have
a lower model complexity, which limits their ability to analyze
complex data, such as EGMs. We reported the SVM and KNN
with two different hyper-parameters, where the polynomial
degree is either 3 or 10 for SVM, and the number of k neighbors is
either 10 or 50 for KNN. These classic models were implemented
through scikit-learn (Pedregosa et al., 2011).

DL Model Discretization to Explain
Classification
To explain DL classification as FaST vs. non-FaST, we adopted
a gradient-weighted class activation mapping method (Guided
Grad-CAM) to probe important features (Selvaraju et al., 2017).
Grad-CAM is commonly used in computer vision to provide a
contextual explanation for model decisions. Briefly, Grad-CAM
defines the importance of a feature based on the changes in the
classification output in response to a small variance or gradient in
the feature. A larger change in output indicates that this feature is
more important. For our study, Grad-CAM was applied because
of similar architecture between our model and models in vision.
Specifically, the gradient in the convolutional layer of the residual
blocks of our model were probed. The importance of features
was visualized as a 1-D importance plot where peaks indicated
more importance.

FaST Re-Classification by Cardiologists
Manual classification of FaST using the FaST algorithm at the
time of PVI served as the gold standard. Subsequently, two
cardiologists (VC, SN) independently performed blinded re-
classification of periodic unipolar EGMs as FaST vs. non-FaST
using the FaST algorithm in a subset of 100 EGMs, which
included 50 random EGMs and 50 EGMs falsely classified by
DL. The sensitivity and specificity of FaST re-classification by the
cardiologists was evaluated relative to the gold standard. Inter-
and intraobserver agreement among the cardiologists in FaST
re-classification was assessed using the kappa statistic.

Statistical Analysis
Continuous variables are presented as mean ± standard
deviation. Comparison between patient cohorts was done using
an unpaired t-test or Mann-Whitney U test where appropriate.
Receiver operator characteristic (ROC) analysis was performed
to evaluate the diagnostic performance of the DL algorithm
for detecting FaST with results presented as area under the
curve (AUC) and 95th percentile confidence interval (95% CI).
Specificity was calculated at prespecified sensitivities of 85, 90,
and 95% as well as the sensitivity of cardiologists re-classifying
a subset of 50 random periodic unipolar EGMs. In order to
complement ROC analysis for class-imbalanced datasets, the
performance of DL was evaluated using the F1-score which is a
harmonic mean of the positive predictive value and sensitivity
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TABLE 1 | Baseline patient characteristics.

All patients (n = 78) Training/ validation cohort (n = 58) Testing cohort (n = 20) p-value

Age, years 61 ± 10 61 ± 10 59 ± 8 0.229

Male, n (%) 58 (74) 42 (72) 16 (80) 0.503

Body mass index, kg/m2 29 ± 5 30 ± 5 29 ± 5 0.598

LVEF,% 59 ± 8 58 ± 9 61 ± 4 0.097

LA dimensions

LA diameter, mm 42 ± 7 42 ± 6 40 ± 8 0.383

LA volume, ml 90 ± 35 90 ± 33 91 ± 39 0.893

LA volume index, ml/m2 44 ± 16 43 ± 16 44 ± 16 0.811

AF characteristics

High-burden paroxysmal, n (%) 40 (51) 29 (50) 11 (55) 0.700

Persistent, n (%) 38 (49) 29 (50) 9 (45) 0.700

Duration of AF, years 5.6 ± 5.0 5.9 ± 5.0 4.6 ± 3.4 0.245

Comorbidities

Diabetes, n (%) 4 (5) 2 (3) 2 (10) 0.270

Hypertension, n (%) 37 (47) 25 (43) 12 (60) 0.192

Sleep apnea, n (%) 25 (32) 19 (33) 6 (30) 0.820

Obesity, n (%) 29 (37) 23 (40) 6 (30) 0.441

Coronary artery disease, n (%) 2 (3) 2 (3) 0 (0) 1.000

Current antiarrhythmic drugs

Flecainide or propafenone, n (%) 29 (37) 26 (45) 3 (15) 0.017

Sotalol, n (%) 6 (8) 5 (9) 1 (5) 1.000

Amiodarone, n (%) 21 (27) 14 (24) 7 (35) 0.345

β-blocker, n (%) 37 (47) 28 (48) 9 (45) 0.800

Calcium channel blocker, n (%) 15 (19) 9 (16) 6 (30) 0.192

Number of failed AAD 1.7 ± 0.9 1.7 ± 1.0 1.6 ± 0.8 0.482

AAD, antiarrhythmic drugs; CL, cycle length; LA, left atrium; LVEF, left ventricular ejection fraction; obesity–BMI > 30 kg/m2; renal dysfunction–eGFR < 50 ml/min/1.72 m2.

(Saito and Rehmsmeier, 2015). A two-tailed p-value < 0.05
was considered statistically significant. Statistical analyses were
performed using scikit-learn (Pedregosa et al., 2011).

RESULTS

Patient and FaST Characteristics
Seventy-eight patients (age 61 ± 10 years, 74% males) were
included with either high-burden paroxysmal AF (51%) or
persistent AF (49%). The LA volume and LV ejection fraction
were 44 ± 16 ml/m2 and 59 ± 8%, respectively (Table 1).
Mapping was performed during spontaneous AF in 36 (46%)
patients and after inducing sustained AF with programmed atrial
stimulation in the remaining 42 (54%) patients. On average,
340 ± 60 LA sites from 60 ± 8 circular catheter acquisitions were
analyzed per patient after excluding overlapping points and those
with poor endocardial contact. FaST sites were identified in all
patients (4.9 ± 1.9 per patient), including 2.1 ± 1.1 PV FaST and
2.8 ± 1.4 extra-PV FaST per patient.

Performance of Deep Learning and
Classic Machine Learning Models
Among the 78 patients, a total of 13,184 periodic unpolar EGMs
were recorded of which 1,220 (9.2%) had a dominant, sustained
QS morphology (i.e., FaST) and the remaining 11,964 (90.7%)

were non-FaST (Figure 3). The DL model was trained and
validated using 10,004 periodic unipolar EGMs from a cohort
of 58 patients, where the prevalence of FaST EGMs was 9.2%.
Cross-validation in this cohort was achieved using five different
random seeds, such that each seed produced a different validation
cohort and a different network initialization (i.e., three-fold cross
validation performed five times). The final DL model was then
tested using 3,180 periodic unipolar EGMs from a testing cohort
of 20 patients, where the prevalence of FaST EGMs was 9.4%.
The clinical characteristics of the validation and testing cohorts
were similar as shown in Table 1. The performance of DL in
classifying FaST for the three-fold cross-validation and testing
cohorts is demonstrated by the ROC curve in Figure 4A. The
DL model achieved a high ROC AUC of 0.904 (95% CI 0.884,
0.924) and 0.923 (95% CI 0.917, 0.929) in cross-validation and
testing cohorts, respectively. The AUC variance for the test cohort
was < 0.5% demonstrating robustness of the DL model. In
contrast, the performance of classic machine learning models,
including logistic regression, SVM and KNN, was inferior to that
of DL based on a lower ROC AUC, specificity and F1-score as
shown in Figure 4B and Supplementary Table 2.

The performance of DL in classifying FaST was also evaluated
using different prediction thresholds. Because the DL model has
continuous output, ranging from 0 to 1, the prediction was
classified as FaST when the DL output was above a threshold,
which was based on achieving a predefined sensitivity of 85,

Frontiers in Physiology | www.frontiersin.org 5 July 2021 | Volume 12 | Article 70412225

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-704122 July 21, 2021 Time: 17:14 # 6

Liao et al. Automated Focal Source Detection in AF

FIGURE 4 | Performance of DL Model. (A) ROC curve is shown for FaST classification using DL model in the validation and testing cohorts. (B) ROC AUC is shown
for DL and classic machine learning models. The error bars indicate standard deviation of different random seeds. (C) ROC AUC for DL is shown as a function of the
training cohort size. (D) ROC curve is shown for FaST classification using DL model in a random sample of 50 periodic unipolar EGMs. The performance of two
cardiologists for FaST re-classification is also plotted for comparison. AUC – area under curve; KNN – k nearest neighbor (either 10 or 50); LR – logistic regression;
ROC – receiver operator characteristic; SVM – support vector machine (D refers to polynomial degree).

90, or 95% in detecting FaST. The respective specificity, positive
predictive value (PPV), negative predictive value (NPV), F1-
score and accuracy are shown in Table 2. DL had reasonably
high specificity for each predefined sensitivity. In the case of
90% sensitivity, DL achieved a specificity of 81.9% (95% CI
81.8 – 82.0%), PPV of 33.6% (95% CI 33.3 – 33.9%), NPV
of 98.5% (CI 95% 98.4 – 98.6%), F1-score of 0.486 (CI 95%
0.481 – 0.491), and an accuracy of 82.5% (95% CI 82.3, 82.6).
Because DL performance improves with larger training datasets
(LeCun et al., 2015), the performance of our DL model was
further evaluated using smaller training cohorts. As shown in
Figure 4C, the ROC AUC significantly improved when the test
cohort size was increased from 25 to 75% of the original sample
size. However, a further increase from 75 to 100% was associated
with a marginal change in ROC AUC from 0.921 to 0.923,

respectively, suggesting that our training cohort of 58 patients
was adequately sized.

Performance of Deep Learning
Compared to Re-Classification by
Cardiologists
The reliability in FaST re-classification was evaluated in a random
sample of 50 periodic unipolar EGMs from 18 patients by
two cardiologists. In this 50 EGM subset, the proportion with
FaST was modest at 18%. Intra- and interobserver variability
was moderate based on a kappa of 0.43 and 0.46, respectively,
but intraobserver variability improved (kappa 0.81) after the
cardiologists reviewing their disagreements and retrained.
Among these 50 EGMs, the DL model’s classification of FaST had
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FIGURE 5 | False Classification of FaST and non-FaST using DL Model. (A) False negative classification of FaST using DL due to low-amplitude, sustained periodic
unipolar QS complexes near PV ostium (Patient 1, top panel) and broad, slurred unipolar QS complexes (Patient 2, bottom panel). (B) False positive classification of
FaST using DL due to sustained unipolar rS complexes with small r waves (Patient 3, top panel) and near-sustained periodic unipolar QS complexes (red stars – rS
complexes) (Patient 4, bottom panel).

an ROC AUC of 0.927 (95th CI 0.916, 0.938) (Figure 4D), which
was similar to that of the whole periodic unipolar EGM dataset.
In the subset of 50 random EGMs, the sensitivity and specificity
in classifying FaST with DL was 78.1 (95th CI 77.6, 78.7) and
82.2 (95th CI 80.0, 84.4), respectively, which was similar to that
of the cardiologists (sensitivity 77.8, specificity 79.0) (Figure 4D).
Among the EGMs with interobserver agreement (n = 35 of 50),
the DL model’s classification of FaST had a higher ROC AUC of
0.980 (95th CI 0.980, 0.986).

Characterizing False Classifications by
Deep Learning
In order to evaluate the basis for the false classification
of FaST and non-FaST by DL, a subset of 50 periodic

unipolar EGMs were selected, which comprised 25 false negative
EGMs with the lowest DL predicted probability for FaST,
and 25 false positive EGMs with the highest DL predicted
probability for FaST. False positive classification by DL was
commonly due to borderline EGMs with small rS complexes
or non-sustained periodicity. In contrast, false negative cases
by DL were most often the result of EGM fractionation
or low amplitude/slewed QS complexes, such as near the
PV ostium as shown in Figure 5. Given the complexity
of these EGMs, the reliability in FaST re-classification was
assessed by two cardiologists. In this 50 EGM subset, the
proportion with FaST was 50%, which included all 25 false
negative EGMs. Intra- and interobserver variability in FaST re-
classification was poor based on a kappa of −0.08 and −0.02,
respectively, which was concordant with the false classification or
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FIGURE 6 | Discretization of DL model to explain classification. (A) FaST site defined by the FaST algorithm based on sustained, periodic unipolar QS for 5-s. Bipolar
EGM and unipolar EGM are shown with dashed, red vertical lines annotating periodic activations. The DL model inputs the raw unipolar EGM without annotations
and the importance plot from convolutional layer 3.0 demonstrates peaks corresponding to the majority of atrial unipolar QS complexes, but not the far-field
ventricular complexes during the 5-s recording. (B) Non-FaST site defined by the FaST algorithm based on non-sustained periodic unipolar QS. The first 8
complexes are unipolar RS, while the rest are unipolar QS. The importance plot from the DL model’s convolutional layer 3.0 demonstrates peaks corresponding to
the majority of atrial unipolar QS complexes, but not the atrial unipolar RS complexes. (C) Non-FaST site defined by the FaST algorithm based on the absence of
unipolar QS complexes. Accordingly, the importance plot from the DL model’s convolutional layer 3.0 demonstrates virtually no peaks. There are 2 peaks which
correspond to atrial unipolar rS complexes, similar in morphology to QS complexes.
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disagreement with DL. However, intraobserver agreement among
the two cardiologists improved (kappa 0.71) after they reviewed
disagreements and retrained.

Discretization of Deep Learning to
Explain FaST Classification
From the subset of 100 periodic unipolar EGMs used above to
evaluate observer reliability and false classification of FaST, a
random sample of 10 EGMs were input into Grad-CAM in order
to determine which convolutional layers of the DL model best
tracked unipolar QS complexes. Our results suggest that Grad-
CAM’s importance plot from convolutional layer 3 identified
atrial unipolar QS complexes most consistently in all 10 EGMs.
Figure 6 shows three examples of periodic unipolar EGMs from
FaST and non-FaST sites where EGM onset is annotated with
a vertical red line using the FaST algorithm. In each example,
the importance plot from convolutional layer 3 demonstrates
periodic peaks of importance that coincide temporally to most
atrial unipolar QS complexes, while ignoring atrial unipolar
RS complexes and far-field ventricular unipolar QS complexes.
These importance plots provide a visual explanation of DL’s
classification of FaST vs. non-FaST.

DISCUSSION

Our DL model automatically classified periodic unipolar EGMs
with sustained QS complexes (i.e., FaST) during AF without
the requisite for EGM segmentation or annotation. The DL
model’s accuracy in FaST classification was 82.5% (ROC AUC
of 92.3), which is high considering the low prevalence of
FaST EGMs (9%) and the spatiotemporal variability in unipolar
EGM morphologies. False detection of FaST was attributed to
ambiguous, time-varying unipolar EGM signal features, but in
these instances the reliability in re-classifying FaST was also poor
among cardiologists, indicating that DL’s performance was on par
with that of the cardiologists. For select EGMs, introspection of
the DL convolutions identified the layer that tracked individual

periodic unipolar QS EGMs, thereby providing visual verification
of DL performance.

Focal sources are a well-established mechanism of AF,
and have been demonstrated in a canine model of vagal
AF (Lee et al., 2013, 2020) as well as in human AF (Lee
et al., 2015, 2017). Using 512-electrode, high-density, biatrial
activation mapping, Lee et al. (2015, 2017) demonstrated focal
sources lasting up to 30 s during AF. At their epicenter,
focal sources manifested fairly discrete, periodic unipolar QS
EGMs. Our FaST algorithm searches for similar signal features
to identify putative focal sources, but to improve specificity,
unipolar QS periodicity must be sustained for 5-s. To avoid
ambiguity in unipolar morphology classification, the onset of
the unipolar EGM is annotated based on a graph search
function whose input is the respective periodic bipolar EGM.
However, unipolar QS classification is still performed manually
and therefore susceptible to interpretation by the cardiologist,
especially when morphology features are ambiguous, albeit
periodic. This accounts for the moderate intra- and interobserver
agreement in FaST re-classification in a random subset of
periodic unipolar EGMs (kappa 0.43–0.47), and essentially no
intra- or interobserver agreement in a subset falsely classified
by DL. However, intraobserver agreement did improve (kappa
0.71–0.81) after cardiologists were retrained. These findings
highlight the modest precision in the manual interpretation and
classification of periodic unipolar QS EGMs during AF.

Despite this inherent limitation, DL achieved reasonable
performance in classifying FaST based on an ROC AUC > 90%
in the training and testing cohorts. This performance was similar
when assessed in 75% of the training cohort indicating that data
satisfaction was reached and that a larger training cohort would
be unlikely to significantly improve classification accuracy. Based
on ROC AUC, this performance was also comparable to re-
classification by the cardiologists. False negative classification of
FaST by DL was commonly due to fractionation at unipolar EGM
onset and low amplitude/slew unipolar EGMs near the PV ostia.
In false positive cases, periodic unipolar EGMs manifested small
rS complexes or were non-sustained for only a few beats such that

TABLE 2 | Performance of DL model.

FaST Prevalence Predefined
Sensitivity

Specificity PPV NPV F1-score Accuracy

Cross-
Validation
Cohort

9.2% (n = 1,220) 78* 87.3 (81.0 – 93.5) 40.0 (30.9 – 49.1) 97.4 (97.0 – 97.9) 0.528 (0.448 – 0.607) 86.4 (80.7 – 92.1)

85 81.2 (75.9 – 86.6) 32.1 (28.7 – 35.6) 97.9 (97.6 – 98.3) 0.464 (0.429 – 0.499) 81.5 (76.8 – 86.2)

90 73.7 (69.7 – 77.7) 26.3 (22.9 – 29.8) 98.5 (98.3 – 98.6) 0.406 (0.365 – 0.447) 75.2 (71.7 – 78.7)

95 60.3 (54.9 – 65.7) 20.0 (18.8 – 21.2) 99.0 (98.7 – 99.3) 0.330 (0.313 – 0.347) 63.6 (58.9 – 68.2)

Testing
Cohort

9.4% (n = 300) 78* 88.8 (87.4 – 90.3) 42.3 (39.1 – 45.5) 97.5 (97.5 – 97.6) 0.549 (0.522 – 0.576) 87.9 (86.5 – 89.2)

85 85.0 (83.2 – 86.9) 36.7 (34.2 – 39.2) 98.0 (97.7 – 98.3) 0.509 (0.486 – 0.532) 84.9 (83.3 – 86.4)

90 81.9 (81.8 – 82.0) 33.6 (33.3 – 33.9) 98.5 (98.4 – 98.6) 0.486 (0.481 – 0.491) 82.5 (82.3 – 82.6)

95 68.7 (61.4 – 76.1) 24.1 (19.8 – 28.4) 99.1 (99.1 – 99.2) 0.383 (0.330 – 0.437) 71.1 (64.6 – 77.7)

*Sensitivity of cardiologist re-classifying FaST from a subset of 50 random periodic unipolar EGMs; NPV, negative predictive value; PPV, positive predictive value; 95%
confidence intervals presented in parentheses.
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the prespecified criteria of >90% temporal stability for 5-s was
not met.

Comparison With Previous Machine
Learning Studies
Deep learning has recently been applied to arrhythmia
classification, but primarily in ECG recordings. Hannun
et al. (2019) used residual CNN to classify a finite number of
arrhythmias from a single-lead ECG strip, while Chang et al.
(2021) employed the bi-directional long short term memory
(LSTM) network to classify the same arrhythmias from a 12-lead
ECG. To our knowledge, our study is the first application
of DL to classify raw, intracardiac EGMs during AF. Similar
to Hannun et al. (2019), we adopt residual CNN because all
EGM signals were of the same duration, so that LSTM was not
required. Machine learning models have also been developed
to detect rotational activation during human AF, but the input
training dataset was either color-coded phase maps (Alhusseini
et al., 2020) or EGM frequency spectral features (Zolotarev
et al., 2020) from a multielectrode array, and not raw EGMs
as in our study. In the CNN model by Alhusseini et al. (2020),
rotational activation was detected with an accuracy of 95%,
while more classic machine learning models by Zolotarev et al.
(2020) achieved an accuracy of 80–90% depending on size of
the multi-electrode mapping array input into the model. In our
study, the performance of classic machine learning models, such
as logistic regression, SVM and KNN, in classifying FaST sites
was inferior to that of DL, which highlights the computational
proficiency of DL in EGM classification without the requisite for
discrete feature input, such as unipolar EGM onset.

Explainability of DL Model
Several techniques have been proposed to interpret machine
learning classification in electrophysiology. We used Grad-CAM
to evaluate explainability because the whole EGM signal is
considered and the contribution of DL convolutional layers
are weighted to generate visually interpretable importance plots
(Selvaraju et al., 2017). Other approaches have been described,
such as “occlusion mapping,” where portions of the signal are
systematically deleted to assess the effect on DL performance
(Bleijendaal et al., 2021), but this cannot be applied to our dataset
because the entire 5-s EGM recording requires classified. Our
findings with Grad-CAM suggested that the higher convolutional
layers are more relevant in periodic unipolar QS classification,
and in distinguishing atrial EGMs from far-field ventricular
EGMs. These layers also detect the presence of sustained
periodicity, which adds temporal dimensionality to the detection
of individual unipolar QS complexes (Figure 6).

Clinical Implications
Focal sources may be a relevant mechanism sustaining AF
in some patients, which provides the rationale for accurate
mapping. Given the complexity and non-stationarity of AF
EGMs, automating focal source detection is difficult using
multisite EGM recordings and conventional time-frequency
domain analysis. Manual overreading may improve the

robustness of focal source detection, but this is time-consuming
and still susceptible to imprecision. In our randomized controlled
trial, FaST sites were identified manually from an automated list
of candidate periodic unipolar EGMs. FaST ablation terminated
AF in 30% of patients, prolonged AF cycle length by 20 ± 14 ms
among those with AF termination, and reduced AF recurrence
by 48% at 1-year follow (Chauhan et al., 2020), suggesting that
FaST sites defined with our non-DL FaST algorithm may identify
focal sources. In the present study, FaST detection with DL using
a training set of periodic unipolar EGMs was accurate, and the
fully automated approach will ultimately improve interobserver
variability and reduce FaST mapping time. As a clinical mapping
tool, high sensitivity is important to identify the majority of
putative focal sources, but equally important is the need to
visually verify the EGM output so false positives are discarded.
At a prespecified sensitivity of 90%, the specificity and accuracy
of FaST detection with DL was high at 82 and 83%, respectively.
Thus, DL has the potential to improve clinical AF mapping
workflow by efficiently generating a comprehensive list of FaST
sites, which can then be manually overread by the cardiologist.
In addition, explainability of DL is essential to demystify the
“black box” and facilitate adoption as a bone fid mapping tool
in AF given the ambiguity of many EGMs and the uncertainty
in their classification. Explainability was demonstrated with
the importance plots using Grad-CAM for a subset of periodic
unipolar EGMs in our study. Ultimately, our DL model may
provide a more standardized approach to FaST detection as an
adjunctive ablation strategy to PVI.

Limitations
There are several limitations to acknowledge. First, FaST sites
were defined based on a single recording site and not the
activation pattern from a multielectrode array, but this was
intentional to avoid the ambiguity of activation mapping
in AF. Although unipolar QS are markers of focal sources,
passive activation from epicardial-endocardial breakthrough or
source-sink mismatch may also produce similar unipolar EGM
morphology, but sustained periodicity would be unlikely. It is
possible that DL training with neighboring unipolar EGMs from
a multielectrode array will improve the specificity focal source
detection (Zolotarev et al., 2020). Second, EGMs were rcorded
for 5-s, but longer recordings could increase the sensitivity and
specificity of FaST detection as putative AF sources. This was
not performed to avoid circular catheter instability and poor
EGM quality in some mapping region. Prior studies with ≥ 30 s
recordings have been performed with a 64-electrode basket
catheter, but this approach is disadvantaged by poor electrode-
tissue contact and lower spatial resolution compared to FaST
mapping. Third, our study population and periodic unipolar
EGM dataset is relatively small and sourced from a single center.
The performance of our DL model requires external validation
in a larger patient cohort. The prevalence of FaST was also low,
which can create class imbalance and a lower PPV and F1-score.
To address this, we evaluated the performance of the DL model
based on a number of predefined sensitivities and benchmarked
this performance to cardiologists with good results as shown
in Table 2 and Figure 4D. Fourth, our DL model, although
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comprehensive, has limitations in robustness and explainability,
which are common to other DL algorithms (LeCun et al., 2015).
Robustness was optimized by training the DL model on different
sets of patients each with different random seeds, but this may
still not be sufficient to address systematic noise (e.g., far-field
ventricular EGM) or adversarial EGMs (e.g., borderline unipolar
QS cases) (Papernot et al., 2016). For explainability, Grad-CAM
was applied to probe the importance of features, but the analysis
was qualitative because there are no clear metrics for quantitative
benchmarking. Finally, DL was not used to guide real-time FaST
ablation, however its reliability and efficiency will be evaluated in
a future multicenter, randomized trial.

CONCLUSION

Our novel DL model trained on raw unipolar EGMs in
AF accurately identified FaST EGMs in patients with drug-
refractory AF. Performance was similar to FaST re-classification
by cardiologists. Explainability analysis showed that our DL
model temporally tracked the hallmark periodic unipolar QS
complexes that define FaST. DL is a promising computational
tool to automate AF EGM classification and improve the
efficiency of FaST detection, which may facilitate focal source
mapping and ablation.
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Background: We previously reported that a computational modeling-guided
antiarrhythmic drug (AAD) test was feasible for evaluating multiple AADs in patients with
atrial fibrillation (AF). We explored the anti-AF mechanisms of AADs and spatial change
in the AF wave-dynamics by a realistic computational model.

Methods: We used realistic computational modeling of 25 AF patients (68% male,
59.8 ± 9.8 years old, 32.0% paroxysmal AF) reflecting the anatomy, histology, and
electrophysiology of the left atrium (LA) to characterize the effects of five AADs
(amiodarone, sotalol, dronedarone, flecainide, and propafenone). We evaluated the
spatial change in the AF wave-dynamics by measuring the mean dominant frequency
(DF) and its coefficient of variation [dominant frequency-coefficient of variation (DF-COV)]
in 10 segments of the LA. The mean DF and DF-COV were compared according to the
pulmonary vein (PV) vs. extra-PV, maximal slope of the restitution curves (Smax), and
defragmentation of AF.

Results: The mean DF decreased after the administration of AADs in the dose
dependent manner (p < 0.001). Under AADs, the DF was significantly lower (p < 0.001)
and COV-DF higher (p = 0.003) in the PV than extra-PV region. The mean DF was
significantly lower at a high Smax (≥1.4) than a lower Smax condition under AADs.
During the episodes of AF defragmentation, the mean DF was lower (p < 0.001), but
the COV-DF was higher (p < 0.001) than that in those without defragmentation.

Conclusions: The DF reduction with AADs is predominant in the PVs and during a high
Smax condition and causes AF termination or defragmentation during a lower DF and
spatially unstable (higher DF-COV) condition.

Keywords: atrial fibrillation, computational modeling, antiarrhythmic drug, dominant frequency, spatial changes

INTRODUCTION

Atrial fibrillation (AF) is a common arrhythmia, with a prevalence of more than 1.6% of the
total population, and the prevalence continues to increase in the aging society (Kim et al., 2018).
Antiarrhythmic drugs (AADs) are the most commonly used first-line treatment for AF rhythm
control. However, inadvertent use of AADs can increase the mortality (Cardiac-Arrhythmia-
Suppression-Trial-(CAST)-Investigators, 1989; The-AFFIRM-Investigators, 2004) and has the risk
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of various side effects (Chandhok and Schwartzman, 2007).
After the establishment of the guidelines of AF management
on the use of AADs, the safety of AADs has been improving,
and early rhythm control using AADs ensures a better
prognosis in AF patients (Kirchhof et al., 2020; Hindricks
et al., 2021). Nevertheless, as AADs are ion channel blockers,
their efficacy highly varies from person to person due to
the interaction of multiple ion channels and the genetic
influence (Darbar and Roden, 2013) and remains unsatisfactory
(Roy et al., 2000). Many experimental studies have conducted
to investigate the effects of AADs, however, most of the
studies were results of animal studies (Varela et al., 2016).
Previous study indicated that APD heterogeneity promoted
substrate for arrhythmogenic re-entrant waves during AF
initiation and maintenance. Amiodarone has shown anti-AF
effect by increasing atrial APD and reducing APD heterogeneity.
Increasing atrial APD and reduced APD heterogeneity were
effective in controlling arrhythmogenic reentry (Varela et al.,
2016). If the rhythm control effect of AADs can be predicted
through simulation modeling, an efficient selection of AADs
might be possible and can reduce the adverse effects or trial
and error. We recently reported that the virtual AAD test can
be performed through computational modeling reflecting the
personalized atrial anatomy, histology, and electrophysiology
of AF patients (Hwang et al., 2021). Computational modeling
can evaluate the efficacy of multiple AADs under the same
condition and can quantify the mechanistic effects of AADs
using very high-spatiotemporal resolution maps (Loewe et al.,
2014; Li et al., 2016; Lim et al., 2020b; Bai et al., 2021; Hwang
et al., 2021). This virtual AAD test does not have any ethical
problems because it allows testing of multiple drugs with variable
doses without the risk of adverse events (Hwang et al., 2021).
This study analyzed the mechanism of the AAD effects on the
AF wave-dynamics using an AF computational modeling that
reflected the anatomical, histological, and electrophysiological
characteristics of 25 patients with AF. The purpose of this
study was to quantify the dominant frequency (DF) and its
spatial heterogeneity after using AADs (Jarman et al., 2012;
Kogawa et al., 2015; Li et al., 2016) and to compare the
regional differences between the pulmonary veins (PVs) and
extra-PV regions and differences according to the AF wave-
break conditions (Li et al., 2016). In addition, we compared
the characteristics of the wave-dynamics in episodes of AF
termination or defragmentation under AAD use.

MATERIALS AND METHODS

Ethical Approval
The study protocol followed the Declaration of Helsinki
and was approved by the Institutional Review Board of
the Severance Cardiovascular Hospital, Yonsei University
Health System. All participants were included in
Yonsei AF Ablation Cohort Database (ClinicalTrials.gov
Identifier: NCT02138695) and provided written consent to
participate in the study.

Activation Time Matching
First, electroanatomical modeling using patient voltage data was
conducted. Over 500 bipolar voltage data points that included
sequential recordings of electrograms at a 500 ms cycle length
were obtained from the surface of the individual atria during
AF catheter ablation (Figure 1). The individual CT images
were merged with the voltage data to produce the personalized
electroanatomical environment of each patient. The inverse
distance weighting (IDW) method (Ugarte et al., 2015) was used
to interpolate the clinical voltage signal for a simulation. The
interpolation was based on the IDW method (Ugarte et al., 2015)
and was within a 10-mM radius from the region of interest.
Interpolation of the clinical voltage data produced a virtual
voltage map with an amplitude. The detailed equation for the
IDW was as follows:

Wij =
dij
−a∑nj

k dkj
, Rj =

nj∑
i=1

wijRij

where W demonstrated the weighted average of neighboring
values; i and j represented the unknown and known values of the
respective points; dij

−a was the distance between unknown and
known points; Rj represented the interpolation value at unknown
point j; and Rij indicated the known point of the value. The 3D
left atrium (LA) model was created using the interpolated voltage
map and CT images through the Ensite Navx system (Abbott Inc.,
Lake Bluff, IL, United States). Accurate matching of the voltage
and CT images data on the 3D LA model was conducted using
rotation and translation. We interpolated a clinical voltage map
to produce a virtual voltage map on 3D model. The registration
of the electro-anatomical maps onto the CT models involved
the four following steps: geometry, trimming, field scaling, and
alignment. The registration error could occur during such steps.
Each step was conducted manually by an operator therefore
possible human error potentially existed (Lim et al., 2020a). The
fiber orientation involved two states: tracking and visualization.
Tracking was a parallel task making it effective for graphic
processing unit (GPU)-based fiber tracking. The conductivity
varied due to the direction of the vector. A vector pointing
perpendicular to the direction of conductivity indicated slower
conductivity compared with a vector pointing the same direction
as the conductivity. The fiber orientation was produced by
simulating a clinical local activation map as well as the atlas-based
mesh of atrial geometry. The fiber orientation was produced by
simulating a clinical local activation map as well as the atlas-
based mesh of atrial geometry (Pashakhanloo et al., 2016; Lim
et al., 2020a). We estimated personalized fiber orientations using
an atlas-based method (Niederer et al., 2019; Roney et al., 2021)
to reflect anisotropic conduction from isotropic triangular mesh
with 300 µM edges. Then, we adjusted the fiber orientation based
on the clinical LAT map. The conductivity of our model (Zahid
et al., 2016) was applied 0.1264 S/m (non-fibrotic longitudinal
cell), 0.0546 S/m (fibrotic longitudinal cell), 0.0252 S/m (non-
fibrotic transverse cell), and 0.0068 S/m (fibrotic transverse cell).
Fibrosis areas were estimated based on the clinical bipolar map.
Fibrosis was determined using a non-linear relationship of the
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FIGURE 1 | Computational modeling of the left atrium with atrial fibrillation (AF). Realistic left atrium (LA) modeling was conducted using an interpolation of the
voltage map and merging with the CT images. Fibrosis and the fiber orientation were implemented. The LAT map synchronization and AF simulation protocol were
conducted for the analyses.

bipolar voltage and the probability of fibrosis. The equation for
the probability of fibrosis was described as follows (Hwang et al.,
2019):

Pfibrosis

=


1, X < 0

−40.0X3
+ 155X2

− 206X + 99.8 0 ≤ X ≤ 1.74
0, 1.74 < X

where X is the bipolar voltage at each node, and it was ranged
from 0 to 1.74 mV. If X is >1.74 mV, then Pfibrosis would be
zero. The probability of fibrosis was determined using clinical
bipolar voltage data.

Fiber tracking was performed to determine the direction of
the conduction. Fibrosis was represented using the relationship
between the probability of fibrosis and bipolar voltage values
(Zahid et al., 2016). The diffusion coefficient was calibrated
by synchronization of the clinical and virtual conduction
velocity. Before a preliminary simulation, conduction velocity
was calculated by using the distance from the pacing location
to the LA appendage and divided it by the travel time to get the
conduction velocity. We then matched conduction velocity from
the simulation to clinical conduction velocity by modulating the
diffusion coefficient (Lim et al., 2020a). A color scale indicating
the conduction time was compared between the clinical and
virtual activation time maps for matching to produce an accurate
conduction environment for each patient.

Virtual Antiarrhythmic Drug Intervention
The human atrial myocyte model (Courtemanche et al., 1998)
was used for normal sinus rhythm, and an AF state was created
by modifying that model (Lee et al., 2016). For the baseline

AF state, the INa, Ito, ICaL, IKur , and ICaup were decreased by
10, 70, 70, 50, and 20%, and the IK 1 was increased by 110%
as compared to that of the Courtemanche model (Lee et al.,
2016). Five types of AADs were used for the study. Class
III included amiodarone, sotalol, and dronedarone, and class
IC indicated flecainide, and propafenone. High dose included
amiodarone 10 µM, sotalol 10 mM, dronedarone 10 µM,
flecainide 15 µM, and propafenone 10 µM. Low dose included
amiodarone 5 µM, sotalol 60 µM, dronedarone 3 µM, flecainide
5 µM, and propafenone 5 µM. All the ionic changes for each
drug were derived from previously reported references. Our AAD
references used IC50 values. We used such references and make
percent changes relative to the Courtemanche-Ramirez-Nattel
model (Courtemanche et al., 1998). The reduction of channel
conductance was calculated to reflect the ion channel blocking
effect at the considered concentration. For the implementation
of ion currents for each dose, we conducted the literature search
and implemented such information to construct the ion currents
for each dose as previously reported in our study (Hwang et al.,
2021). As the Courtemanche-Ramirez-Nattel model (Sossalla
et al., 2010; Grandi et al., 2011) being the baseline, the effects
of each dose were implemented by applying the blockage of
specific ion channels. Supplementary Tables 1, 2 showed detailed
descriptions of the ion current changes from baseline in response
to the different AADs references including the class IC and class
III drugs as well as each dose.

Atrial Fibrillation Induction, Dominant
Frequency, and Smax Analyses
Our GPU-based customized software (CUVIA ver. 2.5, Model:
SH01; Laonmed Inc., Seoul, South Korea) was used virtually to
induce and apply appropriate ion currents for AADs. The DF and
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TABLE 1 | Effects of antiarrhythmic drugs (AADs) on the electrophysiological and fibrillatory wave-dynamics parameters.

Baseline
(†n = 25)

Overall AADs
(†n = 250)

P-value Class IC
AADs

(†n = 100)

Class III AADs
(†n = 150)

P-value Low dose
AADs

(†n = 125)

High dose
AADs

(†n = 125)

P-value

APD90 (ms) 233.000
(231.000,
239.000)

273.000
(263.000,
295.000)

<0.001 269.000
(256.000,
290.000)

277.000
(265.000,
303.000)

0.002 267.000
(261.000,
273.000)

293.000
(271.000,
309.000)

<0.001

CV (m/s) 0.750 (0.617,
0.906)

0.612 (0.411,
0.741)

0.007 0.598 (0.474,
0.732)

0.618 (0.395,
0.745)

0.615 0.674 (0.484,
0.826)

0.526 (0.346,
0.685)

<0.001

Mean AFCL (ms) 135.616
(130.526,
150.303)

159.344
(145.632,
176.964)

<0.001 156.508
(140.000,
171.579)

162.312
(150.923,
183.952)

0.038 153.750
(140.000,
172.281)

164.167
(156.508,
192.404)

<0.001

Mean Smax 0.785 (0.656,
0.963)

0.802 (0.635,
1.009)

0.899 0.851 (0.639,
1.027)

0.744 (0.629,
0.998)

0.136 0.730 (0.628,
0.916)

0.851 (0.677,
1.106)

0.003

Mean DF (Hz) 7.025 (6.097,
7.379)

5.722 (1.286,
6.553)

<0.001 6.148 (5.315,
6.922)

5.170 (1.200,
6.145)

<0.001 6.121 (5.082,
6.874)

5.101 (1.200,
6.098)

<0.001

COV-DF (%) NA 141.421
(105.265,
173.205)

NA 149.079
(108.095,
173.205)

141.421
(102.270,
170.349)

0.001 141.000
(120.000,
141.000)

141.000
(119.000,
141.000)

0.918

APD90, Action potential duration 90%; CV, Conduction velocity; AFCL, AF cycle length; Smax, The Maximal slope of the restitution curves; DF, Dominant frequency;
COV-DF, Coefficient of Variation-Dominant Frequency.
Patients who did not sustain proper normal sinus rhythm and an atrial fibrillation (AF) status were excluded from the analysis.
Median (IQ1, IQ3) was displayed in the Table.
†n = The number of patients × AAD × Dose.

Smax were analyzed using this same GPU-based software. AF was
initiated in a pacing location using AF pacing from 200 to 120 ms
with eight beats per cycle using ion currents for specific AADs.
Virtual pacing location was matched with clinical activation
time map for a realistic LA modeling. Before AF induction
simulation, clinical and virtual pacing sites were matched to
reflect the personalized LA model. Successful AF induction
was determined during AF pacing by observing electrogram in
the 3D LA map (Supplementary Figure 1). Defragmentation
of AF includes termination of AF and conversion of AF to
atrial tachycardia. Defragmentation was determined by visually
assessing the electrogram and 3D activation map of each case. If
there were <2 spiral waves, we determined it as a defragmented
state. Once AF was induced successfully, maintenance of AF was
observed up to 32 s. During the maintenance period, the DF was
calculated from 17 to 23 s. APD90 was a normal sinus rhythm
measured at a pacing cycle length of 600 ms. We calculated using
non-linear fitting of APD90 and diastolic interval (Shattock et al.,
2017) from over 400,000 nodes during single-site pacing. Smax
values were defined at every node in LA regions per patient.
For the regional analyses of the Smax and DF, the LA was
divided into 10 regions. 10 regions of LA were decided based
on the previous clinical study (Park et al., 2009). We used 3D
spiral CT images of LA to divide LA portions according to
the embryological origin. The portions include the venous LA
(posterior LA including the antrum and posterior wall), anterior
LA (excluding LA appendage), and LAA. We also divided PV
antrum, posterior inferior wall, and septum along the posterior
inferior line and septal line. The mean DF and mean Smax were
calculated using the results of all 10 regions. A high DF and
high Smax were defined as the respective top 10% of the values
(Supplementary Figures 2, 3). For the stability of the DF and

Smax after AADs, the coefficient of variation (COV) of the high
DF and high Smax were calculated as the standard deviation
divided by the mean:

COV =
σ

x

σ represented the standard deviation, and x
indicated the mean value.

Statistical Analyses
The continuous variables were represented as the median
and interquartile range. A comparison of the DF, Smax, and
COV was conducted using a t-test and Mann-Whitney test
depending on the distribution. A p-value < 0.05 was considered
statistically significant. Any case in which the DF terminated
before 17 s was excluded from the study. Statistical analyses
were conducted using SPSS (IBM Corp., IBM SPSS Statistics
for Windows, Version 21.0) and RStudio [RStudio Team (2020).
RStudio: Integrated Development for R. RStudio, PBC, Boston,
MA]1 software.

RESULTS

Effects of Antiarrhythmic Drugs on the
Atrial Fibrillation Wave-Dynamics
The patient group consisted of 25 AF patients (68.0% male,
59.8 ± 9.8 years old, 32.0% paroxysmal AF) who had undergone
radiofrequency catheter ablation (Supplementary Table 3).
Table 1 compared the effects of AADs on the electrophysiological

1http://www.rstudio.com/
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FIGURE 2 | The effects of antiarrhythmic drugs (AADs) on extra-PV and pulmonary vein (PV) regions. The 3D dominant frequency (DF) map indicated that the mean
DF was higher in the PV regions. Electrograms demonstrated regional voltage changes in PV and extra-PV areas. Coefficient of Variation-Dominant Frequency
(COV-DF) was higher in class IC and PV region.

parameters and wave-dynamic parameters. Overall (2 class IC
and 3 class III AADs, low and high doses for each drug),
the AADs prolonged the action potential duration for the 90%
repolarization (APD90, p < 0.001) and mean AF cycle length
(AFCL, p < 0.001) and reduced the conduction velocity (CV,
p = 0.007), but did not change the Smax (p = 0.899). The DF
(p < 0.001) and COV-DF (p = 0.001, Figure 2) reduction effects
of the class III AAD were more significant than those of the class
IC AADs (Table 1). AADs dose-dependently changed the APD90
(p < 0.001), AFCL (p < 0.001), and CV (p < 0.001), and the DF
reduction was more pronounced at high doses than low doses
(p < 0.001, Table 1).

Different Antiarrhythmic Drug Effects on
the Pulmonary Vein and Extra-Pulmonary
Vein Regions
Among the 10 segments of the LA, we compared the areas of the
PV antrum and extra-PV regions (Table 2). The Smax and DF
did not differ between the PV antrum and extra-PV LA regions
during the baseline AF. After the administration of the AADs,
the mean DF became lower (p < 0.001, Figure 2) and COV-DF
higher (p = 0.003, Figure 2) at the PV antrum than in extra-PV
LA regions, which suggested a lower and unstable DF on the PV
antrum after AADs.

Post-antiarrhythmic Drug Mean
Dominant Frequency Depending on the
Smax
We compared the changes in the mean DF and COV-DF at
a Smax value of 1.4, based on a previous clinical study for
human atrial restitution (Table 3). In Table 3, we used the
baseline Smax values threshold for baseline mean DF, and post-
AAD Smax threshold for post-AAD mean DF. At a Smax ≥1.4,
the post-AAD mean DF was significantly lower than that at a
Smax <1.4 (p = 0.014, Figure 3). The pattern of a higher mean
DF during a Smax <1.4 condition was consistent in the PV
(p = 0.039, Figure 3) and extra-PV areas (p = 0.002, Figure 3).
However, the COV-DFs did not differ depending on the Smax
value. Additionally, we differentiated especially Table 3 into
subgroups as indicated in Supplementary Table 4. DF was higher
in dronedarone 3 µM and amiodarone 5 µM at low Smax.

Termination or Defragmentation of Atrial
Fibrillation Depending on the Dominant
Frequency and Coefficient of
Variation-Dominant Frequency
Table 4 shows the electrophysiological characteristics of the
termination and defragmentation episodes of AF after the AAD
administration. In the episodes of AF defragmentation within
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TABLE 2 | Effects of antiarrhythmic drugs (AADs) on the pulmonary vein (PV) vs. Extra-PV tissue.

Baseline AAD

PV (†n = 25) Extra-PV (†n = 25) P-value PV (†n = 750) Extra-PV (†n = 500) P-value

Mean Smax 1.258 (1.060, 1.619) 1.418 (1.006, 1.729) 0.541 1.264 (0.802, 1.659) 1.290 (0.892, 1.663) 0.541

1Mean Smax NA NA NA −0.027 (−0.219, 0.170) 0.006 (−0.326, 0.250) 0.692

Mean DF (Hz) 7.567 (6.246, 8.186) 7.916 (7.383, 8.595) 0.086 6.464 (5.246, 7.170) 7.029 (6.209, 7.659) <0.001

1Mean DF NA NA NA −0.820 (−1.275, −0.236) −0.848 (−1.368, −0.298) 0.238

COV-DF (%) NA NA NA 141.421 (117.963,
173.205)

‡140.446 ± 33.227

141.421 (97.825, 172.515)
‡130.932 ± 41.633

0.003

Smax, The Maximal slope of the restitution curves; 1Mean Smax, Changes of Smax; DF, Dominant Frequency; 1Mean DF, Changes of DF; COV-DF, Coefficient of
Variation-Dominant Frequency.
Patients who did not sustain proper normal sinus rhythm and an atrial fibrillation (AF) status were excluded from the analysis.
Median (IQ1, IQ3) was displayed in the Table.
†n = The number of patients × AAD × Dose.
‡Mean ± SD.

32 s after the AAD administration, the mean DF was significantly
lower (p < 0.001, Table 4 and Figure 4), and the COV-DF was
significantly higher (p < 0.001, Figure 5) than that in those with
sustained AF. In the AF termination episodes, the mean DF was
consistently lower (p < 0.001, Table 4) and COV-DF higher
(p < 0.001, Figure 5). The tendency of a low DF and unstable
(higher) COV-DF in the AF defragmentation episodes was
consistent regardless of the class IC or class III AAD (Table 4).

DISCUSSION

Main Findings
We evaluated the spatial changes in the AF wave-dynamics
reflected by the mean DF and COV-DF after using AADs in
a realistic computational model that reflected 25 AF patients’
LA geometry, histology, and electrophysiology. The AAD classes
and doses apparently affected the AF wave-dynamics, and those
effects differed between the PV and extra-PV regions depending
on the Smax. The AADs easily caused defragmentation or
termination at a reduced mean DF and spatially unstable DF
(high COV-DF). Realistic AF computational modeling was a
feasible approach to study the regional effect of AADs or
electrophysiological changes.

Anti-atrial Fibrillation Effects of
Antiarrhythmic Drugs on the Pulmonary
Vein or Extra-Pulmonary Vein Regions
The mechanism of the AADs involves the blocking of specific
trans-membrane ion channels to inhibit the initiation or
maintenance mechanisms of fibrillation. Class IC drugs function
by blocking the rapid inward sodium current that slows the rate
of the increasing action potential, and class III AADs block the
outward potassium current, lengthening the repolarization and
refractoriness (Kowey, 1998). However, it is not known how
AADs act on different regions of the atrium and how the wave-
dynamics react according to the anatomical structure. There have
been many studies on the role of the PVs in the mechanism
of AF (Khan, 2004). The PVs have a venous atrium origin that

differs from that of other parts of the atrium in terms of the
embryological development (Sherif, 2013) and are influenced
highly by AF-associated genes such as PITX2 (Wang et al., 2010).
For this reason, the electrical isolation of the PV antrum is the
most important target for AF catheter ablation (Chen et al., 1999).
PV isolation blocks not only the triggers from the PVs, but also
the cardiac autonomic nerves located in the PV antrum and
reduces the atrial critical mass. In this study, AADs reduced the
mean DF and its spatial instability (COV-DF) more significantly
in the PV area than non-PV area. That suggested that the anti-
AF effect of AADs mainly is responsible for the lower and
spatially unstable DFs in the PV area than in the extra-PV areas.
Investigation of the select effects of AADs on the LA regions can
have a significant impact on the treatment of AF.

Atrial Fibrillation Mechanisms of Multiple
Wavelet or Focal Sources
The focal source hypothesis and multiple wavelet hypothesis
have been considered as mechanisms of AF initiation and
maintenance (Saad et al., 2009; Narayan and Jalife, 2014).
The focal source hypothesis indicates that a special form of
a reentry pattern of activation produced by rotors drives the
AF mechanism. The multiple wavelet hypothesis explains the
AF mechanism as spontaneous wave-breaks that constantly
generate randomly wandering daughter wavelets. These wave-
breaks collide, are disrupted, coalesce, or give rise to new
wavelets in a self-sustaining turbulent process (Chen et al.,
2000). High DF areas were used to locate the source of AF
drivers or rotors (Hwang et al., 2016), and high Smax areas
represent the vulnerable condition of AF wave-breaks in the AF
maintenance mechanism (Kalifa et al., 2006). Therefore, the DF
is a representative parameter for the focal source hypothesis, and
the Smax advocates the multiple wavelet theory. Wu et al. (2002)
reported that the focal source and multiple wavelets interact
and maintain fibrillation according to the tissue conditions such
as the conduction velocity. The present study demonstrated
for the first time that the Smax has a direct effect on the DF
wave-dynamics in AF and anti-AF mechanisms. Although the
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TABLE 3 | Atrial fibrillation (AF) wave-dynamics depending on the Smax values.

Overall P-value PV P-value Extra-PV P-value

Smax < 1.4
(†n = 13)

Smax ≥ 1.4
(†n = 12)

Smax < 1.4
(†n = 13)

Smax ≥ 1.4
(†n = 12)

Smax < 1.4
(†n = 13)

Smax ≥ 1.4
(†n = 12)

Baseline mean DF (Hz) 7.958 (7.138,
8.485)

7.708 (7.194,
8.013)

0.650 7.797 (6.246,
8.243)

7.338 (6.382,
8.061)

0.689 8.103 (7.796,
8.599)

7.836 (7.220,
8.385)

0.503

Post-AAD Mean DF (Hz) 6.986 (6.011,
7.677)

6.584 (5.801,
7.015)

0.014 6.732 (5.013,
7.534)

5.963 (5.430,
6.815)

0.039 7.225 (6.411,
7.781)

6.818 (5.859,
7.168)

0.002

Post-AAD COV-DF (%) 141.000
(104.000,
141.000)

141.000
(110.000,
141.000)

0.656 141.000
(116.500,
141.000)

141.000
(131.500,
141.000)

0.532 141.000
(96.600,
141.000)

140.000
(91.900,
141.000)

0.371

DF, Dominant Frequency; COV-DF, Coefficient of Variation-Dominant Frequency.
Patients who did not sustain proper normal sinus rhythm and an AF status were excluded from the analysis.
Median (IQ1, IQ3) was displayed in the Table.
†n = The number of patients × AAD × Dose.

FIGURE 3 | Changes in the dominant frequency (DF) during a high and low Smax. The 3D DF map indicated that the mean DF was inversely related to the mean
Smax. Regional voltage changes in pulmonary vein (PV) and extra-PV areas were demonstrated in electrograms.

AADs did not decrease the Smax, the focal source mechanism
represented by the DF was predominant in maintaining AF in
atrial tissue with a low Smax. At a low Smax, the mean DF was
high in both the PV and extra-PV regions, whereas the mean DF
was low when the Smax was high. Therefore, the DF and Smax
exhibited an inverse relationship.

Sufficient Conditions for Atrial Fibrillation
Defragmentation or Termination
Many studies (Pandit et al., 2005; Jarman et al., 2012; Sánchez
et al., 2012) have been conducted over the years to understand
spiral wave meander and AF termination in various ways.
After the AADs, the continuous wave-breaks and reentrant

behaviors could not be sustained, resulting in termination
or defragmentation. Though a spiral meandering and reentry
termination are challenging to study quantitatively (Pandit
et al., 2005), we analyzed the DF and Smax changes during
the AF defragmentation using realistic computational modeling
of AF. This is because the computational modeling enabled
spatiotemporally high-resolution mapping while repeatedly
being performed (Li et al., 2016; Hwang et al., 2021). In this study,
the changes in the DF wave-dynamics had a close relationship
with the AF defragmentation. The defragmented AF episodes
after the virtual AAD intervention exhibited a reduced mean DF
and high COV-DF (spatial instability of DF) regardless of the type
of AAD. These changes in the DF were consistently observed in
the AF termination episodes. The change in the Smax did not
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TABLE 4 | Electrophysiological characteristics terminated atrial fibrillation (AF) after antiarrhythmic drugs (AADs).

Defragmentation Overall AADs Class IC Class III

Defragmented
(†n = 290)

Not
defragmented
(†n = 2210)

P-value Defragmented
(†n = 60)

Not
defragmented
(†n = 940)

P-value Defragmented
(†n = 230)

Not
defragmented
(†n = 1270)

P-value

Mean Smax 1.254 (1.022, 1.526) 1.263 (0.923,
1.675)

0.777 1.275 (0.920,
1.509)

1.271 (0.901,
1.549)

0.894 1.238 (1.036,
1.507)

1.255 (0.941,
1.856)

0.729

Mean DF (Hz) 5.476 (1.299, 6.706) 6.913 (6.233,
7.466)

<0.001 5.770 (5.201,
6.563)

7.118 (6.527,
7.860)

0.029 5.262 (1.299,
6.640)

6.710 (5.992,
7.227)

<0.001

COV-DF (%) 141.000 (139.000,
141.000)
‡126.166 ± 33.607

141.000 (108.500,
141.000)
‡117.571 ±
39.203

<0.001 141.000
(140.750,
141.000)
‡136.285 ±
10.847

141.000 (109.750,
141.000)
‡117.432 ± 39.783

<0.001 141.000 (138.250,
141.000)
‡123.734 ± 36.821

141.000 (98.625,
141.000)
‡115.311 ± 40.276

0.008

Termination Overall AADs Class IC Class III

Terminated
(†n = 230)

Not Terminated
(†n = 2270)

P-value Terminated
(†n = 30)

Not Terminated
(†n = 970)

P-value Terminated
(†n = 200)

Not Terminated
(†n = 1300)

P-value

Mean Smax 1.265 (1.041, 1.437) 1.263 (0.901,
1.675)

0.704 0.812 (0.809,
1.059)

1.264 (0.900,
1.552)

0.281 1.294 (1.089,
1.481)

1.255 (0.941,
1.856)

0.885

Mean DF (Hz) 5.295 (1.299, 6.677) 6.889 (6.170,
7.465)

<0.001 5.041 (3.170,
6.896)

7.101 (6.469,
7.843)

0.385 5.476 (1.299,
6.677)

6.170 (5.507,
6.684)

0.084

COV-DF (%) 141.000 (139.500,
141.000)
‡126.312 ± 33.185

141.000 (103.000,
141.000)
‡116.545 ±
40.083

<0.001 141.000
(136.000,
141.000)
‡131.124 ±
19.179

141.000 (113.000,
141.000)
‡118.718 ± 38.890

0.199 141.000 (141.000,
141.000)

138.000 (85.750,
141.000)

<0.001

Smax, The Maximal slope of the restitution curves; DF, Dominant Frequency; COV-DF, Coefficient of Variation-Dominant Frequency.
Defragmentation: Termination + Atrial Tachycardia.
Patients who did not sustain proper normal sinus rhythm and an AF status were excluded from the analysis.
Median (IQ1, IQ3) was displayed in the Table.
†n = The number of patients × AAD × Dose.
‡Mean ± SD.
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FIGURE 4 | Changes in the dominant frequency (DF) during Termination and Atrial Tachycardia. The 3D DF map indicated that the mean DF was lower during AT
episodes, and AF termination episodes. Electrograms demonstrated AT and AF termination episodes.

FIGURE 5 | Heterogeneity of dominant frequency (DF). Heterogeneity of DF was observed in overall defragmentation as well as termination group.

have a direct effect on the AF termination, which was presumably
because the AADs did not significantly change the Smax.

Limitations
Right atrium (RA) was omitted from the study. The biatrial
model is premature to be applied in personalized modeling
because current image resolution cannot define the personalized
interatrial connections. Heterogeneity due to nervous influence
has been neglected. The fiber orientation layer was a monolayer.
The LA wall thickness can be implemented to reflect a more
clinically acceptable LA model. Bipolar voltage was not a
feasible marker for fibrosis, and fiber orientation was not

measured in a patient-specific manner. To incorporate a clinical
electroanatomical map to the high-resolution computational
modeling, we heavily extrapolated the limited number of
bipolar electrograms. We measured DF at a fixed time window
and it did not change over time. Regions especially PV
specific ionic currents were not applied in this study due to
lack of reference for ion currents effects of AADs on PV
cells. No focal triggers were simulated in this study. The
personalized LA model consisted of a monolayer. The LA
wall thickness can be implemented to reflect a more clinically
acceptable LA model. Multiple induction sites can reflect the
complex mechanism of AF initiation (Prakosa et al., 2018).
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Although there are some differences in the rate-dependent action
potential changes, restitution, and calcium dynamics among
different human myocardial cell models (Nygren et al., 1998;
Maleckar et al., 2009; Grandi et al., 2011; Koivumäki et al., 2011),
the Courtemanche-Ramirez-Nattel model (Sossalla et al., 2010;
Grandi et al., 2011) accurately represented the mathematical
modeling of human atrial myocyte as indicated in our previous
studies (Hwang et al., 2016, 2019, 2021; Lee et al., 2016; Lim
et al., 2020a,b). The ion currents conductance values might
not be an accurate representation of the effects of AADs in
human atrial myocytes, however, the amount of uncertainty
was minimal since large mammals were selected for references
(Supplementary Table 2). Invasive mapping data were used for
the analysis. Non-invasive late gadolinium enhancement of the
cardiac magnetic resonance imaging data can be used for further
analysis (Lopez-Perez et al., 2015).

CONCLUSION

A DF reduction due to AADs is predominantly observed in the
PV regions, and the AAD-induced low and heterogeneous DF
condition during a high Smax condition was associated with AF
termination or defragmentation. Personalized AF computational
modeling provided evidence of how AADs exhibit anti-AF effects
according to the atrial region or electrophysiological condition.
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Background: Patients with arrhythmogenic cardiomyopathy may suffer from lethal

ventricular arrhythmias. Arrhythmogenic cardiomyopathy is predominantly triggered by

mutations in plakophilin-2, a key component of cell-to-cell adhesion and calcium cycling

regulation in cardiomyocytes. Calcium dysregulation due to plakophilin-2 mutations may

lead to arrhythmias but the underlying pro-arrhythmic mechanisms remain unclear.

Aim: To unravel the mechanisms by which calcium-handling abnormalities

in plakophilin-2 loss-of-function may contribute to proarrhythmic events in

arrhythmogenic cardiomyopathy.

Methods: We adapted a computer model of mouse ventricular electrophysiology using

recent experimental calcium-handling data from plakophilin-2 conditional knock-out

(PKP2-cKO) mice. We simulated individual effects of beta-adrenergic stimulation,

modifications in connexin43-mediated calcium entry, sodium-calcium exchanger (NCX)

activity and ryanodine-receptor 2 (RyR2) calcium affinity on cellular electrophysiology

and occurrence of arrhythmogenic events (delayed-afterdepolarizations). A

population-of-models approach was used to investigate the generalizability of our

findings. Finally, we assessed the potential translation of proposed mechanisms to

humans, using a human ventricular cardiomyocyte computational model.

Results: The model robustly reproduced the experimental calcium-handling changes

in PKP2-cKO cardiomyocytes: an increased calcium transient amplitude (562 vs.

383 nM), increased diastolic calcium (120 vs. 91 nM), reduced L-type calcium current

(15.0 vs. 21.4 pA/pF) and an increased free SR calcium (0.69 vs. 0.50mM). Under

beta-adrenergic stimulation, PKP2-cKO models from the population of models (n = 61)

showed a higher susceptibility to delayed-afterdepolarizations compared to control (41

vs. 3.3%). Increased connexin43-mediated calcium entry further elevated the number

of delayed-afterdepolarizations (78.7%, 2.5-fold increase in background calcium influx).

Elevated diastolic cleft calcium appeared responsible for the increased RyR2-mediated

calcium leak, promoting delayed-afterdepolarizations occurrence. A reduction in RyR2
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calcium affinity prevented delayed-afterdepolarizations in PKP2-cKO models (24.6 vs.

41%). An additional increase in INCX strongly reduced delayed-afterdepolarizations

occurrence, by lowering diastolic cleft calcium levels. The human model showed similar

outcomes, suggesting a potential translational value of these findings.

Conclusion: Beta-adrenergic stimulation and connexin43-mediated calcium entry upon

loss of plakophilin-2 function contribute to generation of delayed-afterdepolarizations.

RyR2 and NCX dysregulation play a key role in modulating these proarrhythmic

events. This work provides insights into potential future antiarrhythmic strategies in

arrhythmogenic cardiomyopathy due to plakophilin-2 loss-of-function.

Keywords: arrhythmogenic cardiomyopathy (ACM), plakophilin-2, computational modeling, calcium handling,

arrhythmia

INTRODUCTION

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac
disease characterized by fibrofatty replacement of the cardiac
muscle, predominantly in the right ventricle. Individuals with
ACM suffer from an increased risk of ventricular arrhythmias
and sudden cardiac death (SCD), often occurring in young
adults during exercise, in early (asymptomatic) stages of the
disease (Corrado et al., 2017). However, disease penetrance is
incomplete, and imaging techniques are at present unable to
detect subclinical stages of the disease (Philips and Cheng, 2016),
making early detection of ACM to prevent SCD challenging
(Groeneweg et al., 2015). A better understanding of the
mechanisms underlying ACM is needed to identify markers of
early disease and predict potential arrhythmic events.

ACM can be caused by mutations in genes coding for
desmosomal proteins. Among these, one of the most affected
genes is PKP2, coding for the protein plakophilin-2 (PKP2).
PKP2 is a desmosomal protein present in the intercalated disks
of cardiac cells. As such, it plays a role in cell to cell adhesion,
but as a component of the connexome, it also influences
various molecular pathways. A dysfunction of these mechanisms
would disrupt transcriptional events in the cardiomyocyte. The
consequences of PKP2 deficiency in the cardiomyocyte remain
poorly known, but recent studies have shown the crucial role of
PKP2 in the translation of signals originating at the cell junction
into intracellular signals controlling structural and electrical
cardiomyocyte components, especially connexin43 (Oxford et al.,
2007), voltage-gated sodium channel (Sato et al., 2009), and
calcium cycling (Cerrone et al., 2017; Austin et al., 2019).
This influence on calcium homeostasis suggests a key role for
PKP2 loss-of-function in arrhythmogenicity, even in absence of
structural disease (Cerrone et al., 2017).

A cardiomyocyte-specific PKP2 conditional knockout (PKP2-
cKO) mouse model has previously been used to study the role of

Abbreviations: ACM, arrhythmogenic cardiomyopathy; AP, action potential;

APD, action potential duration; BARS, beta-adrenergic stimulation; Cx43,

connexin43; DAD, delayed afterdepolarization; HF, heart failure; NCX, sodium-

calcium exchanger; PKP2, plakophilin-2; PKP2-cKO, PKP2 conditional knockout;

RMP, resting membrane potential; RyR2, ryanodine receptors 2; SCD, sudden

cardiac death; SR, sarcoplasmic reticulum; WT, wildtype.

PKP2 in cardiomyocyte pathophysiology, and seemed to replicate
critical components of ACM disease onset and progression in
humans (Cerrone et al., 2017). This model can therefore serve
as helpful tool to investigate early cellular events that trigger
arrhythmia upon loss of PKP2 function. Among other things,
these studies have revealed that PKP2 loss-of-function promotes
disruption of intracellular calcium handling, resulting in an
increased susceptibility toward arrhythmias induced by beta
adrenergic stimulation (Cerrone et al., 2017; van Opbergen et al.,
2019). Important proarrhythmic modifications include increased
permeability of connexin43 (Cx43) hemichannels for calcium
ions, potentially because of a weakened intercellular adhesion,
leading to an increased calcium influx into cardiomyocytes
(Kim et al., 2019). In addition, a reduced expression of the
ryanodine receptor (RyR2), in combination with an increased
calcium sensitivity of the channel, has been reported in PKP2-
cKO hearts (Kim et al., 2019). RyR2 is an important regulator
of sarcoplasmic reticulum (SR) calcium release and its activity
is modulated by the cytoplasmic calcium concentration (Eisner
et al., 2004). Therefore, RyR2 dysfunction predisposes to
spontaneous SR calcium release events, playing a key role in
arrhythmogenicity (Kim et al., 2019). However, the relative
contribution of these calcium-handling alterations (Cx43-
permeability and RyR2 calcium leak) to arrhythmia initiation,
as well as the modulatory role of BARS in this model remain
incompletely understood.

Computational models provide a controlled environment
to evaluate the influence of distinct parameters on cellular
electrophysiology and thereby may be very helpful to uncover
mechanisms contributing to the arrhythmogenicity of PKP2-
cKO cardiomyocytes. Computational models have shown to be
effective at providing mechanistic insights into the dysregulation
of cardiomyocyte calcium-handling (Sutanto et al., 2020).
Previous studies have used computer models to demonstrate the
role of aberrant sodium-current kinetics in facilitating reentry-
based arrhythmias upon reduced presence of PKP2 (Deo et al.,
2011), or to confirm the experimentally observed calcium-
handling abnormalities (Cerrone et al., 2017). However, none of
these studies focused on the underlying mechanisms by which
calcium-handling abnormalities due to PKP2 loss-of-function
may lead to arrhythmias.
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In this paper, we adapted a computer model of mouse
cardiac electrophysiology (Morotti et al., 2014), based on recent
experimental data, to better understand how BARS and increased
calcium influx through Cx43 hemichannels may contribute to
proarrhythmic events in PKP2-cKO cardiomyocytes. Using a
population-of-models approach (Britton et al., 2013), we show
the synergistic effects of BARS and Cx43-mediated calcium entry
in the generation of proarrhythmic delayed-afterdepolarizations
(DADs), as well as the role of RyR2 and sodium-calcium
exchanger (NCX) dysregulation in modulating these events. In
PKP2-cKO cardiomyocytes, an increased diastolic cleft calcium
was responsible for an increased RyR2-mediated calcium leak
under BARS, leading to the occurrence of DADs. Reducing
the affinity of RyR2 for calcium prevented the occurrence of
DADs. In addition, increasingNCX activity further reducedDAD
occurrence by lowering diastolic cleft calcium levels. Similar
results were obtained in a human ventricular cardiomyocyte
model. These cellular data provide initial insights into potential
future antiarrhythmic strategies in ACM due to loss-of-function
of PKP2.

MATERIALS AND METHODS

The overall methodology is illustrated in Figure 1. Details are
provided in the subsections below.

Experimental Calcium-Handling Data:
PKP2 Conditional Knock-Out Mouse Model
Calcium imaging and patch-clamp data were obtained from
previously published studies using a cardiomyocyte-specific,
tamoxifen-activated, PKP2-cKO mouse model (Cerrone et al.,
2017; Kim et al., 2019). Published differences in levels
of proteins involved in calcium-handling, action potentials
(AP) characteristics and calcium-transient properties were
incorporated. In addition, the arrhythmia susceptibility upon an
isoproterenol challenge was evaluated.

PKP2-cKO Computer Simulations
Computer simulations of cardiomyocyte electrophysiology were
performed using a validated state-of-the-art mouse ventricular
cardiomyocyte model by Morotti et al. (2014), which also
incorporates BARS signaling. Experimental characteristics from
PKP2-cKO mouse cardiomyocytes were modeled as described
below, following the mathematical simulations presented in
Cerrone et al. (2017). Calsequestrin concentration was reduced
to 45.3% of its original value. The closing rate of the L-type
calcium channels was reduced to 75% of its original value and
the current density of the L-type calcium current to 50% of
its original value. Maximal calcium flux through the RyR2 and
junctional volume were adjusted to 60% of their original value
to account for RyR2 decreased expression. Model changes are
summarized in Table 1.

The effect of increased calcium influx via Cx43 hemichannels
(reported in Cerrone et al., 2017; Kim et al., 2019) was assessed by
varying the maximum conductance of the background calcium
current (ICaB). In the simulations presented here, PKP2-cKO
Cx43 hemichannel-mediated calcium entry is modeled by a

1.5-fold increase in ICaB (as reported in Kim et al., 2019). To
assess the potential impact of this influx on electrophysiological
properties, simulations without ICaB increase as well as with a
larger Cx43 hemichannel-mediated calcium entry (simulated as
a 2.5-fold increase in ICaB) were also performed. In addition,
the effect of BARS on electrophysiological properties of PKP2
cardiomyocytes was modeled as described in Morotti et al.
(2014).

Models were paced at 1Hz for 500 s and AP and calcium-
handling properties were recorded. The presence of DADs was
quantified as secondary calcium transients with an amplitude
> 100 nM after t = 400ms. The model was implemented in
MATLAB and solved usingODE15s and is available for download
at https://github.com/aurora2093.

Population-of-Models Approach
To evaluate the generalizability of the findings from the single
model, take into account the effect of inter-subject variability
on the electrophysiological properties modeled in this study,
and quantify the relative contribution of modulating factors
involved in DAD generation, we used a population-of-models
approach (Britton et al., 2013; Muszkiewicz et al., 2016). The
maximum conductances of eight major ionic currents (INa,
INaL, ICaL, IKr, IK1, Ito, INCX, INaK) and the activity of RyR2
and SERCA2a were scaled using Latin-hypercube sampling
as previously described (Britton et al., 2013; Ledezma et al.,
2018). Five-hundred models were generated, and this control
population was calibrated based on AP properties. Models
were considered physiological if AP duration was between
20 and 80ms, peak membrane potential larger than 25mV,
resting membrane potential (RMP) lower than−75mV, upstroke
duration lower than 10ms and if the membrane potential was
lower than RMP+ 2mV after 400ms. Non-physiological models
were rejected. In total, 61 out of 500 models that met these
criteria were included in the analysis and the PKP2 remodeling
as presented in section PKP2-cKO Computer Simulations was
applied to these models.

Human Model
To assess the translatability of our findings to human
cellular electrophysiology, we simulated, as a proof-of-
principle, the effects of the PKP2-cKO alterations detailed
in section PKP2-cKO Computer Simulations in a human
ventricular cardiomyocyte model. We adapted the Grandi
et al. model (Grandi et al., 2010) which exhibits a similar
structure as the Morotti et al. mouse model (especially
in terms of RyR2 description). BARS and Cx43-mediated
calcium influx were modeled as in section PKP2-cKO
Computer Simulations.

Statistical Analysis
Continuous variables with normal distribution are expressed as
mean ± standard deviation. Categorical variables are presented
as observed number with percentage. Normally distributed data
were compared using t-tests. Non-normally distributed data
were compared using the Mann–Whitney U-test. Statistical
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FIGURE 1 | Methodology of combining experimental data with computational modeling to understand proarrhythmic mechanisms due to loss of plakophilin-2 (PKP2).

PKP2-cKO, PKP2 conditional knock-out; RyR2, ryanodine receptors 2; Cx43, connexin43; NCX, sodium-calcium exchanger.

TABLE 1 | Summary table of the parameters changed in the original model (Morotti et al., 2014) to simulate the PKP2-cKO experimental characteristics, their

interpretation, their values in the original WT and PKP2-cKO model and the relative change between WT and PKP2-cKO.

Model parameter Interpretation WT value PKP2-cKO value Relative change

Vjunc Junctional volume 1.78e-14 L 1.07e-14 L ×60%

Bmax_Csqn Calsequestrin buffer concentration 2.7mM 1.22mM ×45.3%

ICa_scale Scaling of ICa,L 1 0.5 ×50%

r2m2 L-type calcium channel (LTCC) closing rate 0.38 ms−1 0.28 ms−1 ×75%

ks SR Ca release rate 25 ms−1 15 ms−1 ×60%

kleak SR Ca passive leak rate 1.22.10−05 ms−1 7.32. 10−06 ms−1 ×60%

significance was assumed when p < 0.05. Statistical tests were
performed using MATLAB.

RESULTS

The Computer Model Recapitulates
Experimentally-Measured
Calcium-Handling Properties
PKP2-cKO changes were incorporated in the model as
described in Methods. The model was able to recapitulate the
experimentally observed changes in calcium-handling properties
(Cerrone et al., 2017). The PKP2 model displayed an increased
calcium transient amplitude compared to control (562 vs.
383 nM), as well as increased diastolic calcium levels (120 vs.
91 nM). Peak L-type calcium current was reduced (15.0 vs. 21.4
pA/pF) and the amount of free calcium in the SR was increased
(0.69 vs. 0.50mM), due to the reduced SR calcium buffering
capacity by calsequestrin (Figure 2). Simulations revealed that
the increased background calcium influx via Cx43 hemichannels
(ICaB) contributed largely to the increased calcium transient

amplitude, which was observed experimentally in PKP2-cKO
cardiomyocytes (Figure 3).

Beta-Adrenergic Stimulation and
Cx43-Mediated Calcium Entry Contribute
to DAD Occurrence
Simulating BARS in the PKP2-cKO cell model without Cx43
calcium influx led to an increased calcium transient peak (448
vs. 355 nM), a reduction in calcium transient duration (550
vs. 681ms) and a reduction in diastolic calcium levels (66 vs.
103 nM). In combination with an increased Cx43 calcium influx,
BARS promoted spontaneous diastolic SR calcium-release events,
which translated into the occurrence of DADs (occurring at t =
713ms) (Figure 4A, top). Figure 4A (bottom) shows the calcium
transient and AP traces in all models from the population of
models. Of note, a larger (2.5-fold instead of 1.5-fold) increase
in ICaB was sufficient to induce DADs in the PKP2-cKO model,
even in the absence of BARS (Figure 4B).

Subsequently, we employed a population-of-models approach
to assess the generalizability of our findings. This approach
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FIGURE 2 | Calcium-handling properties [L-type calcium current (ICa,L), calsequestrin protein levels, calcium transient and diastolic calcium concentrations] measured

experimentally (modified from Cerrone et al., 2017) (**p < 0.01) in wildtype (WT) (black) and PKP2-cKO (red) cardiomyocytes (left), and corresponding simulated data

[ICa,L, free sarcoplasmic reticulum (SR) calcium concentration, calcium transient] (right).

FIGURE 3 | Intracellular calcium transient in WT and PKP2-cKO models with varying scaling of ICaB (1.5 – baseline model, and 1, 0.5, 0.75, 1.25), to mimic different

magnitudes of background calcium influx via Cx43 hemichannels.

confirmed the synergistic effects of BARS and increased Cx43-
mediated calcium entry on the occurrence of DADs. At baseline,
DADs were observed in 3.3% (n = 2) of control models and

13.1% (n= 8) of PKP2-cKOmodels without Cx43 calcium influx.
Under BARS, 11.4% (n= 7) of controls and 16.4% (n= 10) of the
PKP2-cKO models without Cx43 calcium influx showed DADs.
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FIGURE 4 | (A) Top: Representative calcium transient and membrane potential traces of the wildtype (WT) and PKP2-cKO model, with and without BARS and the

PKP2-cKO model with no Cx43 hemichannels-mediated calcium influx, with and without BARS. Please note the occurrence of a DAD-like event in the presence of

PKP2-cKO under BARS (purple line) but absence of these events without Cx43 hemichannels-mediated calcium influx. Bottom: Calcium transient and membrane

potential traces for all models from the population of models in the five situations described above. (B) Calcium transient in PKP2-cKO models with various increments

of Cx43 hemichannel-mediated calcium influx showing the occurrence of DADs from ICaB x 2. (C) Percentage of models showing DADs under control (wildtype, WT)

conditions with and without BARS, PKP2-cKO conditions with no Cx43 hemichannel-mediated calcium influx with and without BARS, PKP2-cKO conditions (1.5-fold

increase in Cx43 hemichannel-mediated calcium influx) with and without BARS, and PKP2-cKO conditions in addition of an even larger increase in Cx43

hemichannel-mediated calcium influx (2.5-fold) with and without BARS.

Upon a 1.5-fold increased Cx43 hemichannel mediated calcium
influx, 31.2% (n = 19) of the PKP2-cKO models showed DADs,
vs. 41% (n = 25) under BARS (Figure 4C). With an even larger
increase in calcium influx (2.5-fold), the contribution of BARS to
the occurrence of DADs became smaller (77.1%, n = 47 without
BARS vs. 78.7%, n= 48 with BARS).

Ryanodine Receptor Dysfunction
Contributes to the Occurrence of DADs
Using the ability of computer modeling to investigate the
contribution of individual parameters in themodel, we compared
the specific configurational changes in RyR2 states (inactive,
open, recovered) at the onset of the DAD between control
and PKP2-cKO with BARS. The RyR2 open probability was
increased in the PKP2-cKO model compared to control, leading
to an increased RyR2-mediated SR calcium leak. This resulted in
increased cleft calcium levels, which in turn promoted further
RyR2 opening, spontaneous SR calcium release events and the
appearance of the DADs (Figure 5A).

To confirm the causal link between RyR2 hyperactivity and
PKP2-cKO-related calcium-handling abnormalities, we reduced
the RyR2 calcium affinity by 80% in our population of models,

thereby lowering the sensitivity of RyR2 channels to increased
cleft calcium concentrations. This reduction led to a decrease in
the number of models that showed DADs (Figure 5B). This was
effective in PKP2-cKO models with BARS without Cx43 calcium
influx (6.6%, n = 4 vs. 16.4%, n = 10), in the PKP2-cKO models
with BARS (1.5-fold increased Cx43 hemichannel-mediated
calcium influx) (24.6%, n = 15 vs. 41%, n = 25), as well as in
the PKP2-cKO models with BARS plus an even larger (2.5-fold)
increase in Cx43 hemichannel-mediated calcium influx (54.1%,
n = 33 vs. 78.7%, n = 48). Figure 5C shows a representative
example of the effect of reducing RyR2 calcium affinity on
calcium transient characteristics, clearly preventing DADs.

Reduced NCX Activity Promotes DADs by
an Increase in Diastolic Cleft Calcium
To further understand why the reduction in RyR2 calcium
affinity did not remove the occurrence of DADs in all models
with elevated Cx43 hemichannel-mediated calcium influx (2.5-
fold) (54.1%, n = 33, Figure 5B), we analyzed the parameters
that varied during the construction of the population of models.
We compared the models in which reducing RyR2 calcium
affinity removed the occurrence of DADs (RyR2-sensitive), with

Frontiers in Physiology | www.frontiersin.org 6 September 2021 | Volume 12 | Article 73257352

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lyon et al. Computational Modeling of Arrhythmogenic Cardiomyopathy

FIGURE 5 | (A) Representation of the intracellular calcium transient, RyR2 configuration (inactive, recovery and open state), cleft calcium levels and RyR2-mediated

calcium release in the wildtype model (blue) and PKP2-cKO model with BARS (1.5-fold Cx43 hemichannel-mediated calcium influx incorporated) (purple). Bottom:

Zoom-in on the zone of DAD occurrence. (B) Percentage of models showing DAD-like events when comparing PKP2-cKO model with no Cx43 hemichannel-mediated

calcium influx with and without BARS, with or without reduced RyR2 affinity, PKP2-cKO model plus BARS (1.5-fold Cx43 hemichannel-mediated calcium influx

incorporated), with or without reduced RyR2 affinity, as well as the PKP2-cKO model plus BARS and 2.5-fold Cx43 hemichannel-mediated calcium influx, with or

without reduced RyR2 affinity. (C) Representative calcium transient traces of the different models. Please note the disappearance of DADs when reducing the RyR2

calcium affinity in the PKP2-cKO model in presence BARS (1.5-fold Cx43 hemichannel-mediated calcium influx still incorporated).

the models that still exhibited a DAD after a reduction in
RyR2 calcium affinity (RyR2-insensitive). Significant parameter
differences were observed in the scaling multipliers of RyR2 (p
= 0.004, Figure 6A) and INCX (p < 0.001, Figure 6A). RyR2-
insensitive models had a lower INCX maximum conductance
multiplier compared to the RyR2-sensitive models (0.72 ± 0.15
vs. 1.18 ± 0.21, p < 0.001), suggesting an additional and
modulating role for NCX in development of spontaneous SR
calcium release events.

To analyze the role of NCX in modulating the occurrence of
spontaneous calcium releases and DADs in the PKP2-cKOmodel
plus BARS (including 1.5 fold Cx43 hemichannel-mediated
calcium influx), we doubled INCX in the models from the RyR2-
insensitive group. This greatly reduced the number of models
showing DADs; 3.3% (n= 2), upon doubled INCX vs. 54.1% (n=

33), with RyR2 calcium affinity reduction only). In line with this
observation, a 50% reduction in INCX in RyR2-sensitive models
greatly increased the occurrence of spontaneous calcium releases
(83.6%, n= 51, Figure 6B).

We analyzed the mechanisms by which an increase in
INCX may help to reduce the occurrence of spontaneous
calcium releases by comparing the diastolic cleft calcium

concentration with and without an increase in INCX. Diastolic
cleft calcium level was much lower with increased INCX (471 ±

150 nM), compared to baseline INCX (758± 195 nM; Figure 7A),
suggesting that an NCX-mediated lowering of diastolic cleft
calcium level underlies the potential antiarrhythmic effects of
increased NCX. In agreement, Figure 7B shows the relationship
between diastolic calcium levels and likelihood of DADs in the
various situations [PKP2-cKO with BARS without Cx43 calcium
influx, PKP2-cKO with BARS (1.5-fold Cx43 hemichannel-
mediated calcium influx), PKP2-cKO with BARS, 1.5-fold
Cx43 calcium influx and reduced RyR2 calcium affinity, and
PKP2-cKO with BARS, 1.5-fold calcium influx, reduced RyR2
calcium affinity and increased NCX]. This analysis revealed an
increased occurrence of DADs with larger diastolic calcium levels
(78.7% at 799 nM in PKP2-cKO plus BARS and 1.5-fold Cx43-
mediated calcium influx vs. 3.3% at 473 nM in PKP2-cKO plus
BARS, 1.5-fold calcium influx, reduced RyR2 calcium affinity
and increased INCX in RyR2-insensitive models, correlation
coefficient r = 0.861). A reduction in RyR2 calcium affinity
and an increase in INCX apparently facilitate a reduction in
diastolic cleft calcium level, thereby reducing the number of
models showing DADs.

Frontiers in Physiology | www.frontiersin.org 7 September 2021 | Volume 12 | Article 73257353

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lyon et al. Computational Modeling of Arrhythmogenic Cardiomyopathy

FIGURE 6 | (A) Scaling multiplier of RyR2 and INCX between models that still show DADs after a reduction in RyR2 calcium affinity (RyR2-insensitive, blue) and the

ones who do not show DADs after reduction (RyR2-sensitive, red). (B) Percentage of models showing DADs when comparing; the PKP2-cKO model with no Cx43

hemichannel-mediated calcium influx, PKP2-cKO model plus BARS (1.5-fold Cx43 hemichannel-mediated calcium influx incorporated), with or without reduced RyR2

affinity, the PKP2-cKO model plus BARS (1.5-fold Cx43 hemichannel-mediated calcium influx), with or without reduced RyR2 activity, doubled INCX in the

RyR2-insensitive group or a 50% reduction of INCX in the RyR2-sensitive group (top); the corresponding calcium traces (bottom).

Translation to Humans
As a proof-of-principle for the translational relevance of our
computational findings, based on experimental mouse data, for
human ACM pathophysiology, we incorporated the measured
PKP2-cKO changes in a human ventricular cardiomyocyte
computer model. Increasing the Cx43 hemichannel-mediated
calcium entry in WT (via an increase in ICaB) modulated the
amplitude of the the calcium transient, like in the mouse.
However, contrary to the mouse model, a 2.5-fold increase in
ICaB did not lead to an increased calcium transient amplitude in
the human PKP2-cKO model, compared to control (Figure 8A).
Under BARS and increased Cx43 hemichannel-mediated calcium
entry (5-fold increase in ICaB), DADs occurred (yellow trace,
Figure 8B). A reduction in RyR2 calcium affinity removed the
DADs (purple trace) but increased the amplitude of the calcium
transient considerably. An increase in NCX activity (2-fold)
also removed the DADs, as seen in the murine PKP2-cKO
computational model.

DISCUSSION

Pathophysiological remodeling of the heart is a complex
orchestration of molecular alterations which, together, gradually
may deteriorate normal performance toward heart failure

(HF). The magnitude and importance of different underlying
molecular mechanisms often changes during the transition
toward HF, which makes it extremely difficult to pinpoint
the most relevant ones for cardiac deterioration. This also
applies to pathological alterations in the cardiac calcium
homeostasis that gradually compromise contractility, but also
enhance the susceptibility to arrhythmias. Pathophysiological
mechanisms are often studied using experimental models like
(transgenic) mice or human induced pluripotent stem cells-
derived cardiomyocytes. In previous studies we have used the
PKP2-cKO mouse model to study the endophenotype of PKP2
and ACM disease progression. This work identified disturbed
calcium homeostasis as a major contributor toward cardiac
arrhythmias in the early stage of the disease, and disease
progression in general. To better understand and specify the
molecular events contributing to the disturbed calcium handling
in these cardiomyocytes, we employed the computational
approach described in the current study. Using a combination
of mouse-specific computer modeling and experimental data
obtained from the PKP2-cKOmouse model, our work highlights
the contribution of BARS and Cx43 hemichannel-mediated
calcium entry in the generation of proarrhythmic DADs in
this mouse model. Our simulations uncovered RyR2 and NCX
dysregulation as important modulators of these proarrhythmic
events. In PKP2-cKO cardiomyocytes, an increased diastolic
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FIGURE 7 | (A) Diastolic cleft calcium levels upon a reduced RyR2 calcium affinity (blue) and on top of that an increased INCX (red). (B) Percentage of models showing

DADs, plotted against the diastolic cleft calcium levels presented for six different situations in the PKP2-cKO model (top); Corresponding calcium traces (bottom).

cleft calcium was responsible for an increased RyR2-mediated
calcium leak, leading to the occurrence of DADs. Reducing the
affinity of RyR2 for cytosolic calcium prevented the occurrence
of DADs. In addition, a further increase in NCX activity reduced
the likelihood of DADs, by lowering the Cx43 hemichannel-
mediated elevation of diastolic cleft calcium level. These cellular
data provide initial insights into potential future antiarrhythmic
strategies in ACM, due to loss-of-function of PKP2.

PKP2-cKO Cellular Changes Are Captured
by the Computer Model and the
Population-of-Models Approach Captures
Cell Variability
Our computer model convincingly reproduced the cellular
changes measured in the PKP2-cKO mouse model; a reduced
L-type calcium current, increased SR calcium load, increased
calcium transient amplitude and increased diastolic calcium
levels. Our simulations suggested that Cx43 hemichannel-
mediated calcium entry is a key modulator of calcium
transient amplitude in PKP2-cKO computational models. An
increased Cx43 hemichannel-mediated calcium entry upon loss-
of-function of PKP2 in mice has been demonstrated in previous
studies (Kim et al., 2019; van Opbergen et al., 2019) and is
likely the result of a disrupted cell-to-cell adhesion and/or
orphan Cx43 hemichannels, allowing influx of calcium into
the cardiomyocytes.

Interestingly, the effects of this Cx43 hemichannel related
calcium entry were different in the human model, likely due to
inter-species differences in cellular electrophysiology (discussed
inmore detail in section Translation toHuman). The population-
of-models approach allowed us to assess the generalizability of
our findings by generating 61 different models with slightly
varying baseline electrophysiological properties. This helped us
to uncover an additional and potential key role for NCX by
comparing the electrophysiological properties of the models that
did, and those that did not, respond to a RyR2 calcium affinity
reduction, and linked that to the occurrence of DADs.

BARS and Cx43 Hemichannels-Mediated
Calcium Entry Contribute to
Arrhythmogenicity by PKP2-cKO
BARS and Cx43 hemichannel-mediated calcium entry both
contributed to arrhythmogenic events in the PKP2-cKO
computational models. This was illustrated by the number of
models showing DADs under the conditions of PKP2-cKO plus
BARS with and without Cx43 hemichannel-mediated calcium
entry. This is in agreement with an enhanced susceptibility
to isoproterenol induced arrhythmias in PKP2-cKO hearts
(Kim et al., 2019). Cx43-mediated calcium entry had a larger
contribution to the number of DADs than BARS, with a smaller
increase in DAD occurrence with BARS in the presence of
large Cx43-mediated calcium entry (2.5-fold increase in ICaB). In
agreement, a large (2-fold) increase in Cx43-mediated calcium
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FIGURE 8 | (A) Calcium transients in the human WT, PKP2-cKO and PKP2-cKO model, with various increments of Cx43 hemichannels-mediated calcium entry,

applied in the Grandi human ventricular cardiomyocyte model. (B) Calcium transients in the PKP2-cKO model with no Cx43 calcium influx with and without BARS,

and PKP2-cKO model plus BARS, RyR2 calcium affinity reduction and increased INCX.

entry was sufficient to induce DADs even in the absence of
BARS. This is in line with the experimental data reported in Kim
et al. (2019), showing a larger amount of early and delayed after-
transients in PKP2-cKO cardiomyocytes, even in the absence
of BARS. This role of Cx43 hemichannel-mediated calcium
entry in PKP2-cKO arrhythmogenesis is also consistent with
recent studies showing its pro-arrhythmic effect (van Opbergen
et al., 2019), and has been reported in other conditions such
as heart failure (Smet et al., 2021) and muscular dystrophy
(Patrick Gonzalez et al., 2015). Importantly, blocking Cx43
hemichannels with GAP19 normalized intracellular calcium
homeostasis and reduced the occurrence of calcium sparks in
PKP2-cKO cardiomyocytes (Kim et al., 2019), confirming the
proarrhythmic effects of Cx43-mediated calcium entry.

RyR2 and NCX Dysfunction Modulate the
Occurrence of DADs in PKP2-cKO Models
by Increasing Diastolic Calcium Levels
In the simulations, DADs occurred as a direct consequence of
RyR2 dysfunction. The RyR2 open probability was increased
in the PKP2-cKO model compared to control, leading to an
increased RyR2-mediated SR calcium leak. Resulting from that,
the diastolic cleft calcium levels were increased, promoting
further opening of RyR2 channels, spontaneous SR calcium
release and the development of DADs. Our modeling confirmed
that a reduction in the calcium affinity of RyR2 decreased the

number of PKP2-cKO models showing DADs, even back to
baseline values.

A reduction in RyR2 calcium affinity was not sufficient to
remove all DADs when the magnitude of Cx43 hemichannel
calcium entry was so large that DADs occurred without
BARS. An increase in INCX, however, reduced the diastolic
cleft calcium levels and removed any remaining DADs. Our
previous experimental studies did not discover changes in INCX,
NCX protein levels and NCX mRNA levels in PKP2-cKO
hearts (Kim et al., 2019). However, the population-of-models
approach uncovered that NCX dysfunction, in addition to
electrophysiological remodeling upon loss-of-function of PKP2,
may act as a potential additional proarrhythmogenic factor. In
a more general setting of HF, both unchanged and enhanced
activity have been reported (Flesch et al., 1996; Schwinger et al.,
1999; Sipido et al., 2002). Interestingly, unchanged NCX activity
was associated with diastolic dysfunction whereas diastolic
function in the case of enhanced NCX activity remained normal
(Hasenfuss et al., 1999). This suggests that an enhanced NCX
activity may be a biological compensatory mechanism to temper
calcium handling dysregulation in the heart (Louch et al., 2010),
substantiating our computational findings in this regard.

In our simulations, the DADs observed in PKP2-cKO cells
originated from increased diastolic calcium levels. Thus, reducing
the RyR2 calcium affinity and increasing INCX helped lowering
diastolic calcium and preventing the occurrence of DADs.
Increasing INCX was particularly powerful in reducing diastolic
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calcium levels, even removing DADs in the models that did
not respond to the RyR2 inhibition alone. This highlights the
complementary effects of reducing both the cytosolic influx of
calcium from the SR (RyR2 effect) and normalizing diastolic
cleft calcium levels (NCX effect). Interestingly, no particular
role of intracellular sodium was found in our simulations,
reinforcing the influence of calcium handling disturbances in
arrhythmogenicity induced by loss-of-function of PKP2.

Translation to Human
In order to investigate the translational value of our findings
in mouse models, to human pathophysiology of ACM,
we introduced the PKP2-cKO alterations in our human
computational electrophysiology model. These simulations
suggested that the mechanisms presented in this study have
potential translational value, in spite of differences between
murine and human electrophysiology. We observed that in
human the calcium amplitude remained lower in the PKP2-
cKO model, compared to control, despite an increased Cx43
hemichannel-mediated calcium entry. This could be caused
by a difference in the balance in transsarcolemmel (ICaL and
NCX) and SR (SERCA) calcium fluxes between mice and
human. Reducing ICaL had more impact on the calcium
transient amplitude in the PKP2-cKO human model, because
ICaL has a more profound role in calcium entry in human
cardiomyocytes when compared to that in mice (Bers, 2008).
However, despite these inter-species differences, the simulations
showed that DADs caused by BARS and Cx43 hemichannel-
mediate calcium entry were suppressed by a reduction in RyR2
calcium affinity, similar to what was shown in the mouse
models. This suggests that the mechanisms presented here
potentially translate to humans, which could open doors for
future clinical management of patients with ACM. These results
also reinforce the potential of computer modeling in translating
experimental findings to patients, thereby hopefully bridging
the gap in knowledge regarding the molecular mechanisms
involved in the pathogenesis of ACM in humans. The latter
being obviously compromised by the fact that human cardiac
specimen to study thesemolecular alterations are virtually absent,
especially when it comes to patients in the concealed phase of the
disease, who might be at high risk for major arrhythmic events
and SCD.

Clinical Impact
Here, we propose a role for RyR2 dysfunction and NCX
modulation as potential targets for the prevention/treatment
of arrhythmias resulting from loss of PKP2 function. We
suggest that a reduction in the calcium affinity of RyR2 and an
increase in NCX activity may help to reduce the occurrence of
arrhythmogenic events. This can have implications for potential
therapeutic strategies, for example drugs modulating RyR2
activity, such as ent-verticilide (Batiste et al., 2019). Interestingly,
our simulations suggest an additional anti-arrhythmic role for
NCX stimulators, which would inhibit the reverse-mode of NCX.
This could be further investigated experimentally in the PKP2-
cKOmice. This is in agreement with previous studies reporting a
cardioprotective effect of NCX stimulatory drugs like flecainide,

although flecainide also is known to modulate RyR2 and the
sodium current (Watanabe, 2019). Flecainide was effective in
suppressing arrhythmic events through direct modulation of
INCX in Andersen-Tawil syndrome-induced pluripotent stem
cells-derived cardiomyocytes (Kuroda et al., 2017). Interestingly,
patients with ACM do respond positively to flecainide (Ermakov
et al., 2017; Bouvier et al., 2018) and this is current subject
of an ongoing clinical trial (Zareba, 2021). This highlights the
potential effect of the drug on calcium handling disturbances
and includes modulation of NCX as a potential antiarrhythmic
mechanism. In addition, our simulations suggested that Cx43-
mediated calcium entry may be a major proarrhythmic trigger.
Correcting this increased calcium entry could therefore be an
additional potential therapeutic strategy.

Limitations and Future Directions
In the simulations, we mimicked Cx43 hemichannel-mediated
calcium entry by an increase in background calcium current.
This reproduced a general entry of calcium in the cell, but the
localization of the channel, residing in the perimeter of the gap
junctions, as well as the entry of other ions like sodium were
not included in the model. Future work may focus on describing
in more detail the action of Cx43 hemichannels to investigate
the influence of potential other factors (dynamically regulating
calcium entry) in the mechanisms proposed here.

In addition, a thorough analysis of the mechanisms in humans
is beyond the scope of this study, but our simulations show a
promising translation of the mechanisms we propose here to
human. Future work will focus on investigating the role of BARS,
Cx43-mediated calcium entry, RyR2 and NCX dysfunction
in humans. Finally, these results provide insights in cellular
proarrhythmic events in PKP2 loss-of-function, but arrhythmias
are inherently multicellular phenomena and extrapolation across
these spatial scales remains challenging and beyond the scope of
the current study.

CONCLUSIONS

Using computer modeling combined with experimental data
from mouse models, we uncovered the contribution of BARS
and Cx43 hemichannel-mediated calcium entry in generation
of proarrhythmic DADs in the PKP2-cKO model. In these
cardiomyocytes, an increased diastolic cleft calcium was
responsible for increased RyR2-mediated calcium leak, leading
to the occurrence of DADs. A reduction in RyR2 calcium affinity
prevented the occurrence of DADs and an increasedNCX activity
further reduced DAD occurrence by lowering diastolic cleft
calcium levels. By uncovering additional mechanisms underlying
arrhythmogenicity in PKP2-cKO cardiomyocytes, this work
provides potential insights into future antiarrhythmic strategies
in ACM due to dysfunction of PKP2.
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Electrical activation during atrial fibrillation (AF) appears chaotic and disorganised, which

impedes characterisation of the underlying substrate and treatment planning. While

globally chaotic, there may be local preferential activation pathways that represent

potential ablation targets. This study aimed to identify preferential activation pathways

during AF and predict the acute ablation response when these are targeted by pulmonary

vein isolation (PVI). In patients with persistent AF (n = 14), simultaneous biatrial contact

mapping with basket catheters was performed pre-ablation and following each ablation

strategy (PVI, roof, and mitral lines). Unipolar wavefront activation directions were

averaged over 10 s to identify preferential activation pathways. Clinical cases were

classified as responders or non-responders to PVI during the procedure. Clinical data

were augmented with a virtual cohort of 100 models. In AF pre-ablation, pathways

originated from the pulmonary vein (PV) antra in PVI responders (7/7) but not in PVI non-

responders (6/6). We proposed a novel index that measured activation waves from the

PV antra into the atrial body. This index was significantly higher in PVI responders than

non-responders (clinical: 16.3 vs. 3.7%, p = 0.04; simulated: 21.1 vs. 14.1%, p = 0.02).

Overall, this novel technique and proof of concept study demonstrated that preferential

activation pathways exist during AF. Targeting patient-specific activation pathways that

flowed from the PV antra to the left atrial body using PVI resulted in AF termination during

the procedure. These PV activation flow pathways may correspond to the presence of

drivers in the PV regions.

Keywords: atrial fibrillation mechanisms, catheter ablation, pulmonary vein isolation, computational modelling,

signal processing
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INTRODUCTION

Patients with persistent atrial fibrillation (AF) are a diverse
population. Some patients with persistent AF require multiple
catheter ablation procedures with more extensive ablation
strategies, which may still be ultimately unsuccessful, while
for other patients, isolation of the pulmonary veins (PVs)
is a sufficient treatment approach (Verma et al., 2015).
Identifying appropriate ablation strategies for specific patients
with persistent AF, including stratifying patients for whom
pulmonary vein isolation (PVI) will be sufficient treatment,
remains a clinical challenge (Johner et al., 2019). If solved, this
could lead to improved safety and better patient selection, as
well as decreased time and cost for procedures. Determining the
optimal catheter ablation therapy for patients with persistent AF
requires an understanding of the patient-specific mechanisms
that sustain AF (Calkins et al., 2017).

It can be challenging to characterise mechanisms sustaining
AF because AF appears chaotic and disorganised (Lee et al.,
2014). In particular, the Signal Transfer of Atrial Fibrillation to
Guide Human Treatment (STARLIGHT) clinical study, which
analysed AF complexity from basket mapping catheters, found
no evidence for electrical drivers of persistent AF within the
mapping field and instead demonstrated multiple wavelets
of activation (Child et al., 2018). In the current study, we
hypothesised that while globally chaotic, there may be local
preferential activation pathways that can be identified by
analysing AF activation sequences probabilistically over time.
We further hypothesised that the features of these activation
pathways can be used to predict PVI ablation response.

In this study, we aimed to develop a technique for identifying
preferential pathways of activation by analysing AF wavefront
patterns over time. Then, we aimed to use this information
to predict PVI acute ablation response, with the hypothesis
that in cases where PVI terminated AF during the procedure,
the source of preferential pathways, whether re-entrant or
focal, should originate from the PVs. We performed this
analysis on recordings from patients with persistent AF collected
using simultaneous biatrial contact mapping with 64 electrode
constellation catheters. To test the sensitivity of the algorithm to
driver type, catheter size, and catheter contact, we used synthetic
signals obtained from AF simulations for a virtual patient cohort
in which the underlying AF mechanisms are known.

METHODS

Clinical Basket Recordings
This study assessed 14 patients with persistent AF from the
STARLIGHT clinical trial (NCT01765075) (Child et al., 2018).
These patients had a mean age of 61 ± 8 years, mean duration
of persistent AF of 20.2 ± 6.7 months, mean left ventricular
ejection fraction of 59± 10%, mean left atrium (LA) size of 46×
55mm, and mean right atrium (RA) size of 42 × 55mm. Other
properties are as follows: five patients had hypertension; three
had obstructive sleep apnoea; seven had a body mass index > 30.

All patients gave informed consent and the study was
approved by the local ethics committee. Simultaneous biatrial
contact mapping was performed with two 64 electrode

Constellation catheters (size, 48, 60, and 75mm; Boston
Scientific, Saint Paul, Minnesota), using the Ensite Velocity
cardiac mapping system (St. Jude Medical, St. Paul, MN,
USA). The recordings were performed pre-ablation, post-PVI,
and post each subsequent lesion set. The recordings were
sampled at a rate of 2.0345 kHz and the recording duration
was in the range from 49.8 to 245 s (mean: 147.4 ± 74.6 s).
Acute PVI responders were patients who went into sinus
rhythm or an atrial tachycardia or flutter following PVI,
while acute PVI non-responders remained in AF. Seven of
the patients were PVI responders, six were non-responders
to PVI, and one patient presented with atrial tachycardia,
which provided data for validating the algorithms on a simpler
rhythm. The ablation protocol used isolated the PV first and
secondary lines were only applied if the patient remained in AF
after PVI.

Simulation Data: Constructing a Virtual
Patient Cohort
Imaging data for 25 patients with persistent AF were used to
construct a virtual patient cohort; ethical approval was granted
by the regional ethics committee (17/LO/0150 and 15/LO/1803).
This dataset was a separate clinical imaging cohort from the
STARLIGHT cohort. These cases have a range of atrial sizes
from 90.8 to 244.9 cm2 (mean 143.4 ± 30.5 cm2) and LA
fibrosis surface areas ranging from 5.16 to 46.3 cm2 (mean
20.7 ± 13.5 cm2). We combined different anatomies with
different fibrosis maps from the dataset to create a virtual cohort
of patients, covering the range of atrial sizes, morphologies,
anisotropies, and fibrosis distributions that were seen in patients
with AF (Sim et al., 2019). AF simulations for these models
have different underlying AF mechanisms, cycle lengths, and
arrhythmia complexities. As such, we tested PVI response across
a range of different structural and electrical AF properties.

For each case, the left atrium was segmented from contrast-
enhanced magnetic resonance angiogram (CE-MRA) scans
and registered with late-gadolinium enhancement magnetic
resonance imaging (LGE-MRI) scans using CEMRGApp
software (https://cemrg.com/software/cemrgapp.html) King’s
College London, London, UK (Razeghi et al., 2020). Segmented
meshes were re-meshed to produce a regular edge length
of 0.34mm, using mmgtools software (www.mmgtools.org)
(Dapogny et al., 2014). Simulations were run for monolayer left
atrial models using the Cardiac Arrhythmia Research Package
(CARPentry) simulator, with the monodomain model for
excitation propagation and the Courtemanche-Ramirez-Nattel
human atrial ionic model (Courtemanche et al., 1998), and with
modifications to represent the effects of AF electrical remodelling
(Courtemanche et al., 1999; Vigmond et al., 2003). Longitudinal
conductivity was assigned as 0.4 S/m and transverse as 0.1 S/m
(Bayer et al., 2016). Models were constructed with repolarization
heterogeneity by labelling each PV and the LA appendage using
Paraview software, Kitware (https://www.paraview.org/) and
assigning different ionic conductances, following our previous
studies (Roney et al., 2018, 2019). Fibrotic remodelling was
incorporated in each mesh according to the LGE-MRI intensity
values, which were assigned as the maximum value through the
wall (Sim et al., 2019).
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Fibrotic effects were incorporated as regions of conduction
slowing [100% conduction velocity (CV) in regions of 0–56%
normalised LGE intensity, 80% CV for 56–60% LGE; 60% CV
for 60–64% LGE, and 40% CV for > 64% normalised LGE
intensity]. The ionic properties were also modified in fibrotic
regions to represent the effects of elevated TGF-β1 (maximal
ionic conductances were rescaled in regions with LGE intensity
> 3 standard deviations above the mean of the blood pool as
follows: 50% gK1, 60% gNa, and 50% gCaL) (Roney et al., 2016;
Zahid et al., 2016; Krueger et al., 2014).

Simulations were run for each anatomy, with or without
patient-specific fibrosis and with two further different fibrosis
maps randomly selected from the remaining 24 fibrosis maps
to create a virtual patient cohort of 100 models. These 100
models were used for testing the preferential pathways analysis
algorithms. Fibrosis distributions were mapped between atrial
anatomies by expressing all anatomies in universal atrial
coordinates, following our previous methodology (Roney et al.,
2019).

To investigate the effects of fibre field on simulated
preferential pathways and PVI acute response, fibrosis model
simulations with three different fibre fields were compared. The
baseline fibre field incorporated in all model set-ups (the 100
models described above) was the rule-based LA endocardial fibre
field in the study of Labarthe et al. (2014). Additional simulations
were performed for the 25 different anatomies incorporating
patient-specific fibrosis with a diffusion tensor MRI (DTMRI)
human atrial fibre field (dataset number 1 from Roney et al.,
2020b) or an average LA endocardial field constructed from seven
DTMRI datasets (Roney et al., 2020b available to download at
https://zenodo.org/record/3764917). For each case, atrial fibres
were mapped to each atrial mesh using the universal atrial
coordinate system (Roney et al., 2019).

Simulation Data: AF Initiation,
Post-processing, and Modelling PVI
Ablation
Atrial fibrillation was induced through burst pacing, and basket
catheter electrode signals were simulated across the atria, as
shown in Figure 1. For each model, AF was induced through
burst pacing the right superior pulmonary vein (RSPV) at a
cycle length of 155ms for five beats following sinus rhythm
(Roney et al., 2018). To investigate the effects of AF initiation
pacing protocol on preferential pathways and PVI outcome, we
considered two additional pacing protocols for the 25 models
with patient-specific fibrosis and the rule-based LA endocardial
fibre field (Roney et al., 2020a). These methods and results are
presented in detail in the Supplementary Material.

Atrial fibrillation transmembrane potential data were analysed
at points that correspond to a constellation basket catheter
configuration, using the same methodology that was used
for the clinical data. Our previous study compared simulated
unipolar electrogram phase and bipolar electrogram phase to
action potential phase to demonstrate a good agreement (phase
singularity trajectory distance < 0.8mm) (Roney et al., 2017b).
To construct a basket arrangement of points in each anatomy,
the recording locations from one of the clinical cases were aligned

with a simulation mesh such that the largest separation between
splines was across the mitral valve annulus (see Figure 1). These
locations were then rescaled by two scaling factors to represent a
larger and smaller basket and assigned to the closest points on the
atrial geometry. Finally, to transfer the basket electrode locations
to each atrial geometry, electrode locations were expressed in
universal atrial coordinates (Roney et al., 2019) and mapped to
the corresponding atrial coordinates on the target anatomy.

Pulmonary vein isolation, which was modelled as two non-
conducting rings (tissue conductivity of 0.001 S/m) around the
left and right LA-PV junctions, was applied 5 s post-AF initiation
for all AF simulations. Pulmonary vein isolation outcome was
visually classified at 2 s post-PVI as responder (macro-reentry or
termination) or non-responder (AF continues).

Simulation Data: Biatrial Bilayer
Simulations of Different Atrial Rhythms
To test the preferential pathways methodology on different atrial
rhythms, we used simulation data from a previously published
biatrial bilayer model (Labarthe et al., 2014). Left and right atrial
baskets were positioned in each atrium by rescaling, rotation, and
translation of clinical basket electrode locations. Atrial flutter was
initiated by applying a line stimulus from the tricuspid valve to
the inferior vena cava and temporarily adding a line of the block
along the crista terminalis. After five re-entry circuits, this line of
the block was removed and the re-entry was sustained. The focal
activity was simulated by stimulating a region on the posterior
wall of the left atrium at a cycle length of 200 ms.

Electrogram Processing
Unipolar electrogram signals were processed to calculate a
normalised derivative signal and a phase signal using a
sequence of steps, shown in Supplementary Figure 1. First, QRS
subtraction was applied to unipolar electrograms to remove any
ventricular artefacts from the signals (Shkurovich et al., 1998).
Following QRS subtraction, electrograms were differentiated and
the derivative signal was filtered using a sequence of filters
typically used prior to dominant frequency analysis to make
the signal more sinusoidal (Ng et al., 2007). For each of the
64 electrodes on each basket catheter, filtered derivative signals
were normalised and the unipolar phase was also calculated,
following our previously validated methodology (Roney et al.,
2017b) (for further details see the Supplementary Material). The
mean cycle length (CL) was calculated for each electrogram by
taking the mean of all the time intervals between peaks of the
normalised filtered derivative signal. The mean of all LA or RA
electrogram CLs was calculated to give the mean LA or RA CL
for each patient.

Normalised filtered derivative signals were then displayed
in a 9 × 8 arrangement corresponding to the eight splines of
the basket catheter, which each have eight electrodes, with the
anterior mitral valve (MV) spline duplicated at the posterior MV
side of the grid, following the study of Child et al. (2018) (see
Figure 2). The visualisation used has the posterior MV at the
bottom of the grid, the anterior MV at the top, and the left PV
(lateral wall) and right PV (septal wall) on the left and right
of the grid, respectively. Correspondingly for the right atrium
(RA), the inferior vena cava (IVC) is displayed at the bottom
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FIGURE 1 | Schematic showing the steps in model construction, simulation, and post-processing. (A) Imaging data were segmented, and simulation meshes were

created incorporating conductivity and ionic changes in areas of fibrotic tissue identified using LGE-MRI intensity values. Atrial fibrillation (AF) was simulated and

analysed at a basket arrangement of points modelled based on clinical electrode locations. Pulmonary vein isolation (PVI) was applied after 5 s. (B) Models were

generated for different combinations of anatomy and fibrosis distribution to build a virtual patient cohort of 100 models. (C) Simultaneous biatrial contact mapping was

performed with two 64 electrode Constellation catheters.

of the grid, the superior vena cava (SVC) at the top, the septal
tricuspid valve (TV) on the left, and the lateral TV on the right.
This 2D arrangement was performed on a case-by-case basis
depending on the spline arrangement in relation to the MV and
TV location. Finally, these data were linearly interpolated to a
higher resolution grid with an additional two points introduced
between every two points on the original grid (Roney et al.,
2017a).

Vector Mapping, Streamline Visualisation,
and Statistics Over Time
To track the direction of propagation of activation wavefronts,
the optical flow of the interpolated grid of normalised filtered
derivative signals was calculated. Specifically, a displacement
vector was calculated for each normalised filtered derivative
pixel at each time frame analysed to show where that pixel is
found in the next time frame, i.e., the direction of flow. This

was performed at an increment of 40 frames (approximately
20ms) to allow for sufficient movement of pixels between frames.
This implementation followed Horn and Schunck (1981). These
optical flow vectors were then averaged for activation wavefronts,
which were identified as isolines of 0.9 normalised filtered
derivative with greater than three connected pixels (Kay andGray
et al., 2005), as shown in Figure 2. This averaging was performed
over 10 s windows using vector addition.

For visualisation of these average optical flow vectors and
identification of preferential pathways, activation streamlines
were constructed. Activation streamlines were calculated using
an adaptation of the technique as proposed in the study
of Saliani et al. (2019). Specifically, a Delaunay triangulation
of the recording points was calculated to construct a mesh,
and streamlines were initially calculated from seeds at each
mesh element. This construction progressed both forward
and backward along the vector field direction, subject to an
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FIGURE 2 | Methodology used for calculating the average activation flow vector field from unipolar electrograms. (A) The normalised filtered derivative signal for each

electrode on the basket catheter was displayed in a regular 9 × 8 grid. These signals were interpolated to a higher resolution grid, and optical flow vectors were

calculated. The vectors were averaged over time for isolines of constant normalised filtered derivative signal (indicated by white and black dots; wavefront and wave

back). Finally, streamlines were calculated from average optical flow vectors to visualise activation pathways. The normalised derivative, interpolate and isoline plots

are snapshots representing the wavefronts at a given time in the recording, while the average activation flow and streamlines are calculated as an average across the

10 s recording. (B) Example PV activation flow calculation for a case with low PV activation flow. Vectors within the blue boxes were assessed, with red vectors tagged

as PV antra to LA activation flow. (C) Example PV activation flow calculation for a case with high PV activation flow.

angular stopping criterion of 0.7 radians. Finally, a set of these
streamlines was built iteratively at the desired spacing by adding
streamlines to the set by order of decreasing streamline length
subject to a minimum distance criterion (0.5 pixels). Each
streamline is plotted with thickness dependent on the magnitude
of the underlying average vector field to indicate how often
a direction is repeated. The direction of the centre of each
streamline is marked with an arrow, again with magnitude
proportional to the magnitude of the average vector field

at that point. An example is shown in the final subplot of
Figure 2.

To quantify the degree of PV antra to LA body activation
flow, the percentage of optical flow vectors that were of threshold
magnitude and directed into the LAwere calculated. This analysis
was performed for vectors within a box close to the left PV and
a box close to the right PV, indicated in blue in Figures 2B,C.
Specifically, vectors within these boxes were tagged as PV to LA
activation flow in the case that their magnitude was larger than
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the mean magnitude across the array to represent a degree of
repeatability, and that their direction was within a 90◦ range into
the body. These vectors were identified for both the left PV and
the right PV antra, and an activation flow metric was calculated
for each box separately as the percentage of all vectors in the
boxes tagged as representing PV to LA activation flow. The PV
activation flow metric was then calculated as the maximum of
the left PV and right PV activation flow metrics. To compare
PV activation flow metrics between PVI responders and PVI
non-responders, we performed the Wilcoxon signed-rank test
and calculated the following metrics: sensitivity; specificity; area
under the receiver operating characteristic curve.

Calculation of vector maps and activation flow maps was
performed blinded to acute PVI response.

RESULTS

Testing on Simulated Atrial Re-entry and
Focal Activation
Simulations of atrial re-entry and focal activation resulted in
activation flow patterns that qualitatively reflected the underlying
activation, as shown in Figure 3 for the biatrial bilayer model.
Simulation data corresponding to an RA atrial flutter is shown in
Figure 3A with wavefront propagation from the IVC along the
septal wall to the RAA and SVC, which then propagated along
the lateral wall from the RAA and the SVC to the IVC. This
wavefront propagation, from the IVC to SVC along the septal
wall and from the SVC to IVC along the lateral wall, has formed
a re-entrant circuit.

The activation streamlines constructed from the average
optical flow field vector map show this activation pattern, with
the wavefront propagation direction indicated by the green
arrows. A re-entrant pattern is visible on the roof of the right
atrium because there is a driving pattern around the TV that
propagated along the septal wall from the IVC to SVC, and
then along the lateral wall from the SVC to the IVC. This
resulted in the discontinuity in the streamlines along the roof
as one end of the reentrant wavefront travels along the roofline
and did not propagate to the other wall as it is still refractory
from the previous propagation. A further simulation example
representing a fixed focal source is shown in Figure 3B, with
an activation streamline map that is divergent from the source
location. This demonstrated that the methodology correctly
identifies re-entrant and focal mechanisms.

Testing on Clinical Atrial Tachycardia Data
To validate the developed algorithms on clinical data, we
applied the techniques to a typical clinical tachycardia case.
Macro-reentrant tachycardia generated a regular activation,
which should manifest as clear lines following the activation
path, providing suitable data for validating our algorithms.
Clinical atrial tachycardia data for one patient with re-entry
on the posterior LA wall and passive RA activation, previously
analysed in the study of Child et al. (2018), were used to
test our preferential pathways methodology. Figure 4A shows
phase maps for the unipolar electrogram recordings, together
with the normalised filtered derivative signals interpolated to

a regular grid on which re-entry on the posterior LA wall is
observed and regular passive RA activation. Streamlines that
were constructed from the average optical flow activation vector
fields for this case had demonstrated a re-entrant activation
pattern on the LA posterior wall and regular RA activation
starting at the septal RA wall following activation from the LA,
offering testing of the technique. Figure 4B shows LA basket
electrograms at four locations indicated by the locations E1–E4.
These electrograms are sequentially activated, demonstrating the
presence of re-entry.

Testing on Simulated AF Data: Pathway
Analysis and PV Activation Flow Metrics
for PVI Responders vs. Non-responders
Preferential pathway analysis was next applied to simulated pre-
ablation AF recordings across the cohort of 100 models. AF was
initiated in the same way for each model through burst pacing
the RSPV, while maintenance mechanisms varied between the
models, exhibiting different numbers, stability, and locations of
drivers. Figure 5A shows example simulated isopotential maps
for AF pre-ablation for a case in which PVI terminated AF,
and Figure 5B shows an AF example pre-ablation in which AF
continued post-PVI. For the PVI responder case (Figure 5A),
re-entry around the right PV drove the AF pre-ablation, with
secondary rotational activity and break-up below the left inferior
pulmonary vein (LIPV) in an area of fibrotic remodelling. It is
challenging to determine the dominant arrhythmia driver from
the isopotential maps, but right PV driver dominance was evident
on the average optical flow activation map, for which 22% of
PV vectors represented activation flow from the PV antra to the
LA body. For the PVI non-responder case (Figure 5B), there
were multiple drivers in the LA body pre-ablation as well as
break-up due to fibrosis, with no clear drivers in the PV regions.
The optical flow map is more chaotic, with only 4% of PV
vectors representing PV activation flow. Splitting the pre-ablation
simulations into PVI responder and non-responder cases results
in significantly different PV activation flow metric values, shown
in Figure 5C. The results are as follows: median for responder
21.1% vs. non-responder 14.1%; p = 0.018 (Wilcoxon signed-
rank); sensitivity = 0.79; specificity = 0.58; area under the
receiver operating characteristic curve= 0.69.

Fibre field does not have a large impact on simulated acute
response or PV activation flow metric in models incorporating
fibrotic remodelling (86.7% of model PV activation flow metrics
for the two fibre fields were within ±10% of baseline fibre field,
see Supplementary Material). These simulations were for the
25 anatomies with patient-specific fibrosis with three different
fibre field maps. Overall, this provided a confirmation of the PV
activation flow metric for a virtual patient cohort.

Application to Clinical AF Data: Pathway
Analysis and PV Activation Flow Metrics
for PVI Responders vs. Non-responders
Vector maps calculated on pre-ablation clinical recordings for
PVI responder cases are shown in Figure 6. These maps visually
demonstrated preferential flow from the PV antra regions, which
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FIGURE 3 | Validation using simulated data: flutter and focal activity. (A) Simulated atrial flutter with activation streamlines from the IVC to SVC along the septal wall

and from the SVC to IVC along the lateral wall, to complete the re-entry circuit. Basket location, isopotential plots and the activation streamlines are shown. The

wavefront propagation path direction is indicated by the green arrows. The orientation of the RA in each sub-figure was chosen to offer easier visualisation of the

electrode locations and the wavefront propagation direction. (B) A simulated repetitive focal source manifests as a divergent activation streamline field. TV, tricuspid

valve; SVC, superior vena cava; IVC, inferior vena cava; RAA, right atrial appendage; MV, mitral valve; LSPV, left superior pulmonary vein; LIPV, left inferior pulmonary

vein; RIPV, right inferior pulmonary vein; RSPV, right superior pulmonary vein; LA, left atrium; RA, right atrium.

were marked as left inferior PV (LIPV), left superior PV (LSPV),
right inferior PV (RIPV), and RSPV, into the atrial body. The
activation of the atrial body from the PV regions was quantified
using the PV activation flow metric. In the pre-ablation cases
shown in Figure 6, this was 37.5, 28.8, 26.9, 16.4, 12.5, 10.6,
and 5.8%. Conversely, pre-ablation recordings for which PVI
ablation did not terminate AF, as shown in Figure 7, did not
visually demonstrate a preferential activation flow from the PV
antra into the atrial body. Instead, recordings demonstrated a
range of repeatability over time: some recordings exhibited the
presence of repeated re-entrant activity within the atrial body,
while others were more chaotic. The pulmonary vein activation
flow metric for these cases pre-ablation are as follows: 0, 1.9, 2.9,
4.5, 6.7, and 27.9%. The average optical flow vector fields with
PV activation flow vectors indicated in red are shown for PVI
responders in Supplementary Figure 2 and PV non-responders
in Supplementary Figure 3.

Figure 8A shows that for the clinical dataset, the PV activation
flow pre-ablation was significantly higher for PVI responders
than PVI non-responder cases. The results are as follows: median
16.3 vs. 3.7%; p = 0.035, (Wilcoxon signed-rank); sensitivity

= 0.86; specificity = 0.83; area under the receiver operating
characteristic curve = 0.86. Other metrics including LA cycle
length (Figure 8B: median 182ms for PVI responder, 173ms for
PVI non-responder) and RA cycle length (Figure 8C: median
183ms for PVI responder, 176ms for PVI non-responder) were
not significantly different between the PVI responder and non-
responder groups.

Algorithm Sensitivity to Recording Window
Choice and Duration Assessed Using
Clinical Recordings
To test the effects of recording duration onmeasured preferential
pathways, average optical flow maps were constructed and
the PV flow metric was calculated for one clinical case using
between 5 and 120 s of data (with 5 s increment). The pulmonary
vein flow metric was within a small range of 35–40.4%, and
so did not depend on recording duration. We also tested
whether the choice of 10 s segment used for analysis from
the AF episode affected the PV flow metric by analysing 10
intervals of 10 s spaced at regular intervals through an AF
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FIGURE 4 | Algorithm validation using clinical atrial tachycardia data. (A) Clinical atrial tachycardia phase maps, exhibiting re-entry on the LA posterior wall and

passive RA activation are shown on the left of the figure. Normalised filtered derivative signals interpolated to a regular grid are shown on the top right for a single time

point to show LA re-entry. Streamlines constructed from the average optical flow activation field for this clinical atrial tachycardia case demonstrate a re-entrant

activation pattern on the LA posterior wall, and regular RA activation starting at the RA septal wall as it is activated from the LA. (B) Four LA basket electrograms are

shown at the grid locations indicated by boxes with E1 to E4 on the streamline map. Locations E1-E4 are sequentially activated, demonstrating the presence of

reentry. TV, tricuspid valve; SVC, superior vena cava; IVC, inferior vena cava; RAA, right atrial appendage; MV, mitral valve; LSPV, left superior pulmonary vein; LIPV, left

inferior pulmonary vein; RIPV, right inferior pulmonary vein; RSPV, right superior pulmonary vein; LA, left atrium; RA, right atrium.
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FIGURE 5 | Simulated data PV activation flow metric is significantly different for PVI responder and non-responder cases. Isopotential snapshots (left), streamlines

(middle), and optical activation flow (right) plots for examples of (A) PVI responder and (B) PVI non-responder. PV activation flow was quantified as % of vectors

pointing into the LA body in a 90◦ range within the PV regions (blue boxes). PV activation flow vectors are shown in red. (A) For this simulation, re-entry around the

right PV drives AF pre-ablation and PVI terminates AF (an example of a responder), with a PV activation flow metric of 22.2%. (B) For this simulation, multiple drivers

exist in the LA body pre-ablation, and PVI did not terminate AF (an example of a non-responder); the PV activation flow metric is 4.4%. (C) Simulated PV activation

flow metric is significantly different pre-ablation for PVI responder and non-responder cases (median 21.1 vs. 14.1%, p = 0.018, Wilcoxon signed rank).
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FIGURE 6 | Clinical average vector fields demonstrate activation flow from the PV antra into the atrial body for PVI responder cases pre-ablation. Paths are shown for

the left and right atria as streamlines with the magnitude dependent on the magnitude of the underlying average vector field, signifying how often a direction is

repeated. The direction of the centre of each streamline is also indicated. Cases are arranged in order of decreasing PV activation flow metric: (A) 37.5%, (B) 28.8%,

(C) 26.9%, (D) 16.4%, (E) 12.5%, (F) 10.6%, and (G) 5.8%.

recording. Figure 9 shows example activation streamline maps
for different recording segments within a single AF episode.
This example AF recording was 217.8 s, and so all intervals
represent separate segments with no overlap (approximately
20 s between the start of each interval). For this example, 9

out of the 10 intervals which were assessed had demonstrated
visually similar activation, with PV activation flow metric within
±10% of the first interval. Preferential activation pathways were
seen from the right PV antra to the LA body for nine of the
recordings (for example Figures 9A,C,D), while one interval
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FIGURE 7 | Clinical average vector fields did not demonstrate activation flow from the PV antra into the atrial body for PVI non-responder cases pre-ablation.

Visualisation details are as in Figure 6. Cases are arranged in order of increasing PV activation flow metric: (A) 0, (B) 1.9, (C) 2.9, (D) 4.5, (E) 6.7, and (F) 27.9%. For

case (D), multiple splines of the LA basket were not in contact and so these were excluded from the analysis.

instead demonstrated flow from the left PV antra to the LA body
(Figure 9B).

Comparing the PV activation flowmetric for the 10 s segments
to the PV activation flow metric for the first window across all
clinical cases, showed that 79.2% of PV activation flow metrics
for the different windows were within ±10% of the first window
(77.1% for PVI responders and 81.7% for PVI non-responders).

Algorithm Sensitivity to Catheter Size and
Contact Tested Through Simulations
This study further investigated the effects of basket size and
contact on the preferential activation flow calculation and the PV
activation flow metric using simulation. Decreasing the basket
size from an average spline length of 50 to 35.7mm for the
same simulation set as in section Testing on Simulated AF

Data: Pathway Analysis and PV Activation Flow Metrics for
PVI Responders vs. Non-responders resulted in a PV activation
flow metric difference that is no longer significant (larger basket:
median 21.1 vs. 14.1%, p= 0.018, Wilcoxon signed-rank median;
smaller basket: 24 vs. 17.7%, not significant, see Figure 10). This
demonstrated that catheter coverage is important, as well as
recording distance from the PVs. The baseline simulated basket
size was similar to the smallest of the clinical baskets (simulated:
50mm; clinically used basket sizes were 48, 60, and 75 mm).

Our current methodology assumes basket recordings are
located on a regular grid. However, for catheter recordings in
patients, inter-spline distances vary. The study of Laughner et al.
(2016) showed that inter-spline distances exhibit large variations
for basket catheters, depending on deployment. In addition,
multiple studies have shown that spatial resolution affects the
analysis of arrhythmia mechanisms (Roney et al., 2017a). To test
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FIGURE 8 | The clinical PV activation flow metric is significantly different for PVI responder and non-responder cases. (A) Clinical PV activation flow (%) pre-ablation

was significantly higher for PVI responder than PVI non-responder cases (PVI responder: 16.3% vs. non-responder: 3.71%, p = 0.035). (B) LA cycle length was not

significantly different between groups (Wilcoxon signed-rank). (C) RA cycle length was not significantly different between groups.

FIGURE 9 | Effects of recording duration on streamlines for example AF episode. Streamlines are shown for 10 s recordings taken from intervals spread through the

entire recording. The top row shows the left atrium, and the bottom row shows the right atrium. The streamline plots in (A) show the original interval; panels (C,D) are

visually similar to (A), while the LA for (B) demonstrates larger differences. The PV activation flow metrics from the right PV are as follows: (A) 37.5%, (B) 96%, (C)

31.7%, (D) 38.5%. There were 9 out of 10 recordings that had no activation flow from the left PV to the LA body, while (B) has a PV activation flow metric from the left

PV of 27.3%. The start times for these recordings are 0, 6, 125, and 187 s.

these effects on our current analysis, we simulated the effects
of removing electrode recordings from the analysis across the
100 atrial models. The effects of poor electrode contact were
simulated by randomly removing electrogram recordings from
the analysis across all simulations. The percentage of points
removed was varied in the range of 10–50%. The pulmonary vein
activation flow metric was higher for PVI responder cases than
for PVI non-responder cases when the analysis was performed
with all electrodes, 90 or 75% of electrodes, although these

differences were only significant for the case of all electrodes. It
was not possible to differentiate between the PVI responder and
PVI non-responder groups when only 50% of electrodes were
included in the analysis; shown in Figure 11.We next considered
that electrode locations in poor contact are likely to be spatially
correlated, and so we considered randomly removing one spline,
two splines, or four splines of data from the analysis. These
results are shown in Supplementary Figure 4. As for the case of
randomly removing electrodes, the PV activation flowmetric was
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FIGURE 10 | Effects of basket size on preferential pathways. Reducing the basket size changed the significance of the PV flow metric: larger basket: median 21.1 vs.

14.1%, p = 0.018, Wilcoxon signed-rank median; smaller basket: 24 vs. 17.7%, not significant.

higher for PVI responder cases than for PVI non-responder cases
when the analysis was performed with all splines, one missing
spline or twomissing splines. For the case of four missing splines,
i.e., only 50% of electrodes included, it was again not possible to
differentiate between the two groups.

Algorithm Sensitivity to Driver Type Tested
Through Simulations
We tested if the mechanistic source of PV activation flow affected
our results. In doing this, simulated cases without fibrosis for
which PVI terminated AF (n = 6) were selected from the dataset
and simulated AF pre-ablation was compared with simulating a
repeated PV trigger (through pacing the RSPV at 155ms for 5
beats). The left side of Figure 12 shows examples (Figure 12A)
isopotential maps, (Figure 12B) average optical activation flow
vector fields, and (Figure 12C) activation streamlines for a
simulation sustained by PV triggers. In this case, preferential
activation flow is from the PV antra to the LA body and the PV
activation flowmetric is 31.7%. The right side of Figure 12 shows
the same anatomy but for a simulation where re-entry around the
PV antra drives AF, with a PV activation flow metric of 25.5%.

The streamline map for the PV trigger case is more organised
than the streamline map for the PV rotational driver. Collating
the simulations, the PV activation flowmetric for PV triggers and
PV re-entry cases are not significantly different (mean triggers: 26
± 8.3 %, mean PV re-entry: 26.5 ± 3.9 %, a paired t-test showed
not significantly different).

DISCUSSION

Main Findings
In this study, we proposed and tested amethodology for detecting
preferential activation pathways in patients with persistent AF.
We tested the methodology on simulated data and a clinical
atrial tachycardia dataset. The technique developed in this study
identified patients likely to respond to PVI during the ablation
procedure as those with preferential activation flow from the
PV antra to the left atrial body. We hypothesised that this
activation flow may correspond to the presence of drivers in PV
regions. We simulated AF sustained by either PV triggers or
by PV rotational drivers to demonstrate that both mechanisms
result in a similar PV flow metric. As such, this suggested that
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FIGURE 11 | Effects of basket contact on preferential pathways. Effects of poor contact on preferential pathway analysis. PV activation flow metrics are shown for

cases with 10–50% of electrodes removed. (A) All electrodes: median 21.1 vs. 14.1%, p = 0.018, Wilcoxon signed rankmedian. (B) 90% of electrodes included: 17.9

vs. 11.9%, p = 0.07. (C) 75% of electrodes included: 16.7 vs. 10.3%, p = 0.09. (D) 50% of electrodes included: 6.4 vs. 10.7%, p = 0.49.

isolating the PV antrum is more important in some patients than
others when the mechanism for maintaining persistent AF in
the atria has preferential pathways using the area around the
PVs. Our study could motivate a prospective clinical study to
confirm the relationship between preferential flow and long-term
PVI outcome.

Comparison to Other Methodologies
Phase mapping for this dataset did not identify stable
rotational activity (Child et al., 2018), suggesting anarchic
fibrillation. Instead, analysing these data probabilistically over
time identified preferential pathways of activation, indicating a
degree of hierarchy.

Our preferential pathway technique has identified repeated
structures in the activation patterns. The study of Vandersickel
et al. proposed a directed network for identifying repeated
activation patterns in the specific case of tachycardia arrhythmias
(Vandersickel et al., 2019). Their technique worked on atrial
surface meshes rather than projecting to a two-dimensional
grid, but this requires a higher resolution data set. Both
approaches determine likely circuits of activation. On one hand,
the directed network approach in the study of Vandersickel et al.
(2019) assumed a stable re-entry circuit, for example, an atrial
tachycardia (Van Nieuwenhuyse et al., 2021). On the other hand,
our technique also worked for fibrillatory data. As such, we have
proposed a novel general tool for identifying critical paths of
activation during atrial arrhythmia, which can be applied to atrial
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FIGURE 12 | Simulating PV triggers vs. PV rotational drivers. (A) Isopotential plots, (B) average optical flow activation vector fields and (C) activation streamlines are

shown for a case sustained by PV triggers (left) and for a PV rotational driver (right).
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macro-reentrant tachycardia (Figure 4) or fibrillation (Figures 6,
7). Similarly, the study of Bellmann et al. (2018) has published
an electrographic flow mapping technique to identify electrical
sources within the mapping field and classify them as either
active or passive. Our technique could be used similarly, but
we found no evidence of drivers in the mapping field in this
patient cohort. Instead, we utilised the activation flow direction
to identify preferential pathways and to assess the arrhythmia,
in which we hypothesised that PV triggers or drivers exist for
cases in which activation flow occurred from the PV antra to the
LA body (Figure 6). Our current methodology assumed global
biatrial recordings, and our future work will aim to adapt this
technique to work with sequentially acquired data, with a focus
on recording at the PV antra.

Relation to Other AF Mechanisms
Our study demonstrated the importance of activation from the
PV in predicting acute PVI response, wherein PVI responder
cases had a significantly higher PV activation flow metric pre-
ablation than PVI non-responder cases (Figure 8). Similarly, the
study of Navara et al. (2018) demonstrated using two mapping
methodologies (Rhythmview from Abbott and phase mapping)
rotational activity and focal activity in PV antral regions in
patients for whom AF terminated during the PVI procedure,
which would manifest as preferential activation flow from the
PV antra to the LA body. These results agree with our findings.
For cases in which activation flow was from the PV antra to
the LA body, we found that this was from either the left or
right PV, and the utilised PV did not change over time. Previous
studies have hypothesised that the smooth PV antra may act as
an anchor for rotors (Hocini et al., 2002), which agrees with our
simulation studies. Our previous simulation study showed that
high PV phase singularity density may indicate the likelihood of
a positive PVI response (Roney et al., 2018). Our current study
extended our previously proposed metric to one that does not
require PV recordings, greatly increasing clinical applicability.
Our current simulations suggested that clinical basket sizes are
sufficient for PVI ablation outcome prediction using the PV
activation flow metric (Figure 10). The simulations also showed
that the PV activation flow metric cannot differentiate between
PV triggers and PV rotational drivers using LA body recordings
alone (Figure 12). Although this distinction is mechanistically
important, the PVI outcome is the same in either case.

The examples shown in Figure 6G (PVI responder) and
Figure 7F (PVI non-responder) represent outliers. For the PVI
responder case (Figure 6G), the optical flow vectors (shown in
Supplementary Figure 2G) visually demonstrate flow from the
right PV antra to the LA body. However, the magnitudes of these
vectors were less than the mean magnitude and so these did not
count toward the PV activation flow metric. In this case, the
activation flow away from the PV demonstrated a high degree
of repeatability. Modifying the threshold magnitude for when to
include activation vectors in the PV activation flow metric would
increase the value for this outlier. In contrast, the magnitude of
repeated directions across the basket device is small for the PVI
non-responder case (Figure 7F and Supplementary Figure 3F).
For this case, the PV activation flow metric is high even though

PV activation flow is not visually evident on the activation
streamline map, due to the small vector magnitude in the LA
body. It is possible that PV isolation was incomplete for this
patient resulting in AFmaintenance post-PVI ablation. The other
PVI non-responder cases in Figure 7 demonstrated preferential
paths in the LA body, distinct from any PV activation flow.

The study of Dharmaprani et al. (2019) characterised AF
dynamics through calculating the lifetimes of wavelets and
phase singularities demonstrating exponential lifetimes, which
was also seen in the study conducted by Child et al. (2018).
Our current study demonstrated preferential flow from the
PV antra when activation directions were averaged over time.
This is compatible with an exponential distribution of phase
singularity lifetimes, suggesting that wavefront propagation may
demonstrate preferential directions over time.

An alternative AF sustaining mechanism is the presence of re-
entry in the RA. For example, the study of Hansen et al. (2015) has
demonstrated the presence of intramural re-entry along fibrotic
tracks in the human RA. These re-entries were detectable using
sub-endocardial mapping for 80% of re-entries, but only for 40%
of sub-epicardial re-entries, using FIRM mapping (Zhao et al.,
2017). We did not find any evidence of such RA re-entries in this
patient cohort using our methodology.

Simulation Limitations
We used a monolayer model for the simulations in this study.
The monolayer is an approximation, like all models, of the
atrial activation patterns observed clinically. We chose to use
a monolayer model as its complexity reflected the available
data. While wall thickness and transmural fibrosis distribution
may contribute to atrial arrhythmias and ablation outcomes
(Csepe et al., 2017; Roy et al., 2018; Ali et al., 2019), these
cannot be reliably measured using standard clinical LGE-MRI.
We did not account for these features, and this is an inherent
limitation of building models from routine clinical data. The
AF simulations in this study were initiated through pacing the
RSPV. To investigate the effects of AF initiation protocol on
preferential pathways and the PV activation flow metric, we
also simulated AF initiation through burst pacing the LSPV or
using initial conditions corresponding to four spiral wave re-
entries. We found that the AF initiation pacing protocol used
affected the preferential pathways and PV activation flow metric,
where AF wavefront patterns were generally different for AF
initiated using each of the AF initiation protocols for the same
model (see Supplementary Figure 5). Despite this, it was still
the case that the PV activation flow metric was higher for PVI
responders compared with non-responders: for LSPV pacing:
15.6 vs. 5.3% (p = 0.06) and for initiation with four spiral wave
re-entries: 19.6 vs. 9.6% (p = 0.03). These results are presented
in the Supplementary Material. Our future work will extend
this to systematically investigate the effects of initiation location
on preferential pathways and will test this metric for different
AF induction protocols (for example, following the studies of
Azzolin et al., 2021 and Boyle et al., 2018).

To test whether the PV activation flow metric defined in this
study could be used to predict acute PVI response in simulations,
we post-processed transmembrane potential signals from AF
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simulations. Similar to the previous studies (Boyle et al., 2018;
Roy et al., 2018; Azzolin et al., 2021), we chose to analyse
transmembrane potential signals to eliminate the complexities
associated with the effects of wavefront direction on electrogram
complexity. However, to demonstrate the full applicability of our
pipeline in the clinical environment, it is necessary to also test it
on electrogram signals. To test whether the choice of the signal
used to calculate preferential pathways affected our simulation
results, we compared PV activation flow metrics calculated
using transmembrane potential signals to those from unipolar
electrogram signals for the LSPV paced dataset. These results are
presented in the Supplementary Material where we found that
the PV activation flow metric for unipolar signals was similarly
higher for PVI responders compared with non-responders, with
the same significance value as for the transmembrane potential
analysis (p= 0.06 for both data types). This suggested themethod
was not significantly affected by the choice of the input signal,
agreeing with our previous study (Roney et al., 2017b). However,
these simulations do not include the effects of several clinical
complexities, including electrode size, orientation, and noise on
the electrogram signals (Potse, 2018).

A further analysis choice or assumption is how to treat data at
the mitral and tricuspid valves. We chose to follow the study of
Child et al. (2018) and duplicated the anterior MV spline at the
posterior side of the grid (using a similar approach for the TV),
working on a 9 × 8 grid. This captured that there may be areas
where propagation occurred across these splines. An alternative
approach was to work on an 8 × 8 grid (Narayan et al., 2012).
To test the effects of grid choice, we compared the PV activation
flow metric for an 8 × 8 grid to the default 9 × 8 grid analysis.
This analysis is presented in the Supplementary Material. Using
an 8× 8 grid, the PV activation flow metric was also significantly
higher for the PVI responder cases with a p-value of 0.012 (21.4
vs. 14.0%), similar to the results for the 9 × 8 dataset (21.1 vs.
14.1%, p= 0.018). The difference between activation flowmetrics
calculated with or without spline duplication was small, with a
mean absolute difference of 1.4%.

Clinical Limitations
This study has further limitations clinically. We had applied
a new method to a limited number of patients in an acute
study. The proportion of acute PVI responders is likely to be
different in a larger patient population (Verma et al., 2015). A
limitation of this study is that patients did not receive the same
ablation procedure. All patients had PVI at the start of their
ablation, but subsequent ablations were at the discretion of the
operator. This was accounted for by assessing acute PVI ablation
outcome during the procedure, which while correlated with long-
term outcome, is not a surrogate for a long-term outcome (Lim
et al., 2015; Kochhäuser et al., 2017; Singh et al., 2017). This
study motivated the application of this technique to a larger
patient cohort in a prospective trial with standardised ablation
procedures and long-term follow-up to determine applicability
for general clinical practise. Temporally averaging and spatially
coarsening the data to calculate preferential pathways may lose
information on individual wavefronts. The technique presented
here could be extended to assess the role of the left atrial

appendage (Romero et al., 2020), and to identify the intermittent
driver or focal regions by analysing shorter recording segments
(Gerstenfeld et al., 1992). Future work will compare pathways
to atrial fibre structures, including the crista terminalis and
septopulmonary bundle (Pashakhanloo et al., 2016; Roney et al.,
2020b). Further work should investigate alternative mechanisms
for PVI response, for example, by reducing the critical mass
of tissue available for fibrillation. The effects of additional
ablation lesions on preferential pathways could be investigated
in future studies.

CONCLUSIONS

Preferential pathways of activation exist during AF. Our novel
technique identified patients that were likely to respond to
PVI during an ablation procedure as those with preferential
activation flow from the PV antra to the LA body. This flow
may correspond to the presence of drivers in the PV regions. We
proposed that themetric should be applied in a prospective study,
with high-density catheter recordings in the PV at the LA-PV
junction, to confirm the relationship between preferential flow,
AF mechanisms, and long-term PVI outcome.
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Robert W. Roudijk1†, Machteld J. Boonstra1†, Rolf Brummel1, Wil Kassenberg1,
Lennart J. Blom1, Thom F. Oostendorp2, Anneline S. J. M. te Riele1,
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This study presents a novel non-invasive equivalent dipole layer (EDL) based inverse
electrocardiography (iECG) technique which estimates both endocardial and epicardial
ventricular activation sequences. We aimed to quantitatively compare our iECG
approach with invasive electro-anatomical mapping (EAM) during sinus rhythm with
the objective of enabling functional substrate imaging and sudden cardiac death risk
stratification in patients with cardiomyopathy. Thirteen patients (77% males, 48 ± 20
years old) referred for endocardial and epicardial EAM underwent 67-electrode body
surface potential mapping and CT imaging. The EDL-based iECG approach was
improved by mimicking the effects of the His-Purkinje system on ventricular activation.
EAM local activation timing (LAT) maps were compared with iECG-LAT maps using
absolute differences and Pearson’s correlation coefficient, reported as mean ± standard
deviation [95% confidence interval]. The correlation coefficient between iECG-LAT maps
and EAM was 0.54 ± 0.19 [0.49–0.59] for epicardial activation, 0.50 ± 0.27 [0.41–
0.58] for right ventricular endocardial activation and 0.44 ± 0.29 [0.32–0.56] for left
ventricular endocardial activation. The absolute difference in timing between iECG maps
and EAM was 17.4 ± 7.2 ms for epicardial maps, 19.5 ± 7.7 ms for right ventricular
endocardial maps, 27.9 ± 8.7 ms for left ventricular endocardial maps. The absolute
distance between right ventricular endocardial breakthrough sites was 30 ± 16 mm and
31 ± 17 mm for the left ventricle. The absolute distance for latest epicardial activation
was median 12.8 [IQR: 2.9–29.3] mm. This first in-human quantitative comparison of
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iECG and invasive LAT-maps on both the endocardial and epicardial surface during sinus
rhythm showed improved agreement, although with considerable absolute difference
and moderate correlation coefficient. Non-invasive iECG requires further refinements to
facilitate clinical implementation and risk stratification.

Keywords: inverse problem of electrocardiography, sudden cardiac death, electrocardiographic imaging (ECGI),
equivalent dipole layer, cardiac arrhythmia, electroanatomical mapping, non-invasive mapping

INTRODUCTION

Non-invasive imaging of cardiac depolarization and
repolarization sequences, known as electrocardiographic
imaging, is based on body surface potentials maps and
cardiovascular imaging (Huiskamp and Van Oosterom, 1988;
Ramanathan et al., 2004; van Dam et al., 2009; Rudy, 2013). Two
major methods have been introduced: (1) the potential based
Equivalent Potential Distribution (EPD) method (Ramanathan
et al., 2004; Sapp et al., 2012; Rudy, 2013; Cluitmans et al., 2017;
Duchateau et al., 2019; Graham et al., 2019; Hohmann et al.,
2019), which estimates electrograms on the epicardium in a linear
relation whereof activation and recovery timings are determined
on the epicardium, and (2) the wave-front formulation based
on the equivalent dipole layer (EDL) (Huiskamp and Van
Oosterom, 1988; van Dam et al., 2009; van Oosterom, 2014;
Oosterhoff et al., 2016). The EDL-based method, used in this
study and referred to as inverse electrocardiography (iECG),
calculates transmembrane potentials at both the endocardium
and epicardium as a local source, whereof activation and recovery
times are derived (van Dam et al., 2009; van Oosterom, 2014).
More precisely, these transmembrane potentials represented in
the EDL-based method create currents that are proportional
to the second derivative of the local transmembrane potentials
(Leon and Witkowski, 1995). Since the relation between the
transmembrane potentials and the body surface potential map
is non-linear, an initial estimation of the activation sequence is
required (Huiskamp and Van Oosterom, 1988; van Dam et al.,
2009; Oosterhoff et al., 2016).

The implementation of electrocardiographic imaging in
clinical practice is limited, which may partly be explained by
poor results for estimations during sinus rhythm (Cluitmans
et al., 2018). Whereas estimation of rhythms with a single
ventricular focus, i.e., ventricular pacing or premature ventricular
complexes, is promising (Rudy, 2013; Oosterhoff et al., 2016;
Cluitmans et al., 2018; Duchateau et al., 2019; Graham et al.,
2019; Hohmann et al., 2019). Estimation of ventricular activation
during sinus rhythm is complicated by the nearly simultaneous
initiation of activation waves from multiple endocardial sites
mediated by the His-Purkinje system (Durrer et al., 1970).
Quantitative comparison studies during sinus rhythm are
limited and have shown poor performance, represented by low
correlation coefficients between non-invasive estimations and
invasive mapping (Duchateau et al., 2019).

The proposed iECG method mimics the effects of the His-
Purkinje system on the initiation of ventricular activation waves
to improve accuracy of estimation during sinus rhythm (van Dam
et al., 2009; Sapp et al., 2012; Rudy, 2013; van Oosterom, 2014;

Cluitmans et al., 2017; Duchateau et al., 2019; Graham et al.,
2019). With improved accuracy of estimation during sinus
rhythm, iECG techniques may enable functional imaging of
electro-anatomical substrates on both the epicardium and
endocardium and aid early detection and non-invasive risk
stratification of patients with cardiomyopathies (Tung et al.,
2020). Therefore, a quantitative comparison of this novel iECG
method for estimation of ventricular activation during sinus
rhythm was performed. In this study, invasive endocardial
and epicardial high-resolution local activation timing (LAT)
maps obtained during electro-anatomical mapping (EAM) were
compared to non-invasively estimated activation patterns.

MATERIALS AND METHODS

Patient Population
Patients referred for endocardial and epicardial EAM and
ablation were enrolled. Epicardial mapping was indicated because
of either recurrent ventricular tachycardia with a suspected
epicardial substrate or symptomatic premature ventricular
complexes with a prior failed endocardial ablation. Anti-
arrhythmic drugs, except amiodarone, were discontinued for a
minimum of three half-lives prior to the ablation procedure.
Amiodarone was continued because of its long half-life. The
study protocol was approved by the local institutional review
board (University Medical Center Utrecht, Utrecht, Netherlands;
protocol nr.17/628). The study was conducted according to the
declaration of Helsinki and all patients gave informed consent
prior to non-invasive and invasive mapping.

Data Acquisition
The workflow of the study is depicted in Figure 1. Patients
underwent 67-electrode body surface potential mapping
(sampling frequency 2048 Hz, Biosemi, Amsterdam,
Netherlands) prior to the invasive mapping procedure and
the electrode positions were captured using a 3-dimensional
camera (Intel Realsense D435, Santa Clara, CA, United States)
(Hoekema et al., 1999). Per patient, cardiac computed
tomography (CT, Philips Healthcare, Best, Netherlands)
was performed to manually create patient specific anatomical
models of the ventricles with both epicardial and endocardial
surfaces, ventricular blood pool, lungs and thorax. The
ventricular anatomical models were supplemented with
patient specific endocardial structures associated with early
ventricular activation through the His-Purkinje system (e.g.,
the left ventricular papillary muscles and right ventricular
moderator band) (Durrer et al., 1970). Electrode positions were
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reconstructed by registering 3-dimensional images to the thorax
model. The volume conductor model was computed using the
boundary element method. Conductivity values of 0.2 S/m for
the thorax and ventricular tissue, 0.04 S/m for the lungs and 0.6
S/m for the blood cavities were used (Supplementary Methods).

Signal Processing
Baseline drift and 50 Hz noise were removed from the body
surface potential map signals. Per patient, five subsequent
sinus rhythm complexes were selected to be analyzed in the
iECG procedure. Premature ventricular complexes and sinus
rhythm complexes prior to premature ventricular complexes
were excluded from analysis. The root mean square of all
recorded signals was used to annotate QRS onset, J-point and
T-wave end. One lead from the standard 12-lead ECG was used
as timing reference to allow comparison of absolute timings
between iECG estimations and invasive EAM timings.

Inverse Electrocardiographic Imaging
Procedure
The novel iECG method has been described in more detail in the
Supplementary Methods (Greensite et al., 1990; Huiskamp and
Greensite, 1997; van Dam et al., 2009; van Oosterom, 2014). In
short: the iECG method simulates body surface potential maps
using the patient specific EDL cardiac source model, the patient
specific volume conductor model and the estimated ventricular
activation sequence. Nine regions containing potential foci were
localized: four at the left ventricular septum, two at the base
of both the posterior and anterior papillary muscles of the left
ventricle, two at the right ventricular septum and one at the
insertion of the moderator band at the right ventricular free
wall free wall (Durrer et al., 1970). The fastest route algorithm
was used to compute activation sequences emerging from these
locations and combinations of foci (van Dam et al., 2009).
All possible combinations of foci were tested as the initial
estimation (Supplementary Methods). The activation sequence
from the initial estimation with the highest correlation between
the simulated body surface potential map and the recorded
body surface potential map, was selected as input for the
optimization step (Supplementary Methods) (van Dam et al.,
2009). The optimized activation sequence was used to assign LAT
to each node in the patient specific ventricular anatomical model
(Figure 1 and Supplementary Figure 1).

Invasive Electro-Anatomical Mapping
Invasive EAM was performed under general anesthesia during
sinus rhythm or atrial pacing. Ventricular paced complexes and
premature ventricular complexes were excluded from analysis.
Epicardial access was obtained by percutaneous subxiphoid
approach (Sosa et al., 1996) and endocardial access was
obtained through the right femoral vein. Access to the left
ventricle was gained through a transseptal puncture, using
a steerable sheath (Mobicath, Biosense-Webster Inc. Irvine,
CA, United States). Anatomical coordinates, LAT maps and
voltage maps were automatically created with EAM systems
(Carto-3, Biosense-Webster Inc. Irvine, CA, United States

or EnSite Precision, Abbott, Chicago, IL, United States)
without prior integration of cardiac CT images. Endocardial
and epicardial EAM was performed with multi-electrode
catheters (PENTARAY R© catheter, Biosense-Webster Inc. Irvine,
United States or ADVISORTM HD Grid mapping Catheter,
Abbott, Chicago, Il, United States). Unipolar and bipolar
electrograms were simultaneously recorded with standard 12-
lead ECG (band pass filters 30–500 Hz, sampling frequency
1000 Hz), and one of these leads was used as timing reference
for electrograms. Post-procedure, bipolar and corresponding
unipolar electrograms were manually reviewed by investigators
who were blinded to the information from the corresponding
iECG map. LAT was set at the maximal amplitude of
the bipolar signal, corresponding to maximum downslope
(dV/dt) in unipolar electrograms (see Figure 2 for examples)
(Cantwell et al., 2015). In case of doubt, recordings from
neighboring electrograms were taken into consideration to
determine LAT. Epicardial and endocardial myocardium with
abnormal voltage electrograms was defined as bipolar voltage
amplitude < 1.5 mV.

Comparison of Non-invasive Mapping
and Invasive Mapping
Anatomical coordinates with corresponding annotated LAT
and bipolar voltage, obtained during EAM, were exported
(MATLAB-2017a, The Mathworks Inc, Natick, United States).
These anatomical coordinates were semi-automatically aligned
to the CT-based ventricular anatomical model, according to
anatomical landmarks (right ventricular outflow tract and the
apex of the ventricles, Figure 1). Endocardial alignment was
optimized using a closest point matching algorithm (Bergquist
et al., 2019). Surface Laplacian interpolation was used for
areas with incomplete EAM, within a distance of 10 mm. To
reduce misalignment errors, invasively collected datapoints for
myocardial surfaces were projected onto the nearest node of the
CT-based model and all projections per node were averaged.
iECG-LAT maps were referenced to the same timing reference
used during the EAM procedure. Pearson’s inter-map correlation
coefficient and inter-map absolute difference in milliseconds
(ms) were determined for the epicardium, right ventricular
endocardium and left ventricular endocardium. Breakthrough of
activation was defined as nodes with the lowest LAT value, and
sites of latest activation were defined as the node with the highest
LAT value. Euclidian distances between sites of earliest and latest
activation were determined in millimeters (mm). Myocardial
conduction velocity over surfaces was calculated as the minimum
positive velocity between nodes, velocities more than 3 mm/ms
were excluded. A relatively high cut-off of 3 mm/ms was used
to account for velocities observed in regions with a high density
of Purkinje-myocardial junctions as the conduction velocity of
Purkinje fibers ranges between 2 and 3 mm/ms. This cut-off was
used to take into account that the electrical pulse may spread via
the Purkinje fibers to the neighboring myocardial tissue instead of
via the myocardial tissue itself. Ventricular activation sequences
were presented in right anterior oblique, left anterior oblique and
inferior views (Cosio et al., 1999).
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FIGURE 1 | Workflow. The workflow of the study consisted of data recording (left panel), data processing (middle panel) and quantitative comparison (right panel).
Body surface potential mapping (BSPM) using 67-electrodes was performed. CT imaging of the thorax and cardiac anatomy was performed and used to construct
patient specific anatomical models and compute the volume conductor. The EAM anatomical point clouds were registered to the CT-based ventricular anatomy and
LAT and bipolar values were projected on the CT-based anatomy. EAM-LAT maps were quantitatively compared to iECG-LAT maps.

Statistical Analysis
Data were presented as mean ± standard deviation or median
[interquartile range], supplemented with 95% confidence interval
(CI). Continuous data were compared using (un)paired Student’s
t-test or Mann–Whitney U test as appropriate. Differences
between iECG-LAT maps and EAM-LAT maps were presented
as absolute difference in ms for timings or absolute difference in
mm for differences in sites of breakthrough, earliest activation or
latest activation. iECG-LAT and EAM-LAT maps were compared
with Pearson’s linear correlation and presented as correlation
coefficient. Agreement between iECG and EAM-LAT timings
was quantitatively compared by Bland-Altman plots. A 2-sided
P-value of <0.05 was considered significant. Statistical analysis
was performed in MATLAB (MATLAB 2017a, The Mathworks
Inc, Natick, MA, United States).

RESULTS

Study Population
Thirteen patients (77% males, age 48 ± 20 years) referred for
epicardial and endocardial mapping and ablation of ventricular
tachycardia (n = 10) or symptomatic premature ventricular
complexes (n = 3) were included. Patients were diagnosed with
arrhythmogenic cardiomyopathy (n = 5), dilated cardiomyopathy

(n = 2), symptomatic premature ventricular complexes (n = 3), or
ventricular arrhythmias after healed myocarditis (n = 3). Patients
had either sinus rhythm (n = 10) or atrial pacing by an implanted
permanent pacemaker (n = 3) during body surface potential
recording and the EAM procedure, see Supplementary Table 1
for a summary of the included population and Supplementary
Table 2 for a detailed description per included patient.

Electrocardiographic Imaging Procedure
Quality
The patient cardiac anatomical models had an inter-node spatial
resolution of 8 ± 1 mm. The QRS complex morphology
of the recorded body surface potential maps correlated
with the QRS complex morphology of the simulated body
surface potential maps in the iECG procedure (correlation
coefficient = 0.97 ± 0.02). The QRS morphology of the timing
reference lead during EAM correlated with the timing reference
lead of the recorded body surface potential map (correlation
coefficient = 0.94 ± 0.02).

Electro-Anatomical Mapping Quality
Epicardial EAM was performed in all patients, right ventricular
endocardial EAM in 10 patients and left ventricular endocardial
EAM in four patients. EAM consisted of median 4611 [3369–
5633] epicardial electrograms, 910 [280–1638] right ventricular
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FIGURE 2 | Comparison of early and latest activated myocardium and annotation of local activation timing. (A) LAT maps derived from iECG and EAM from early
(red) to late (blue) activation. Breakthroughs of ventricular activation are indicated with a white asterisk. Epicardium: both EAM and iECG estimation showed
breakthrough of activation at the right ventricular free wall and the left ventricular free wall. Endocardial activation of the right ventricular free wall: iECG estimation
corresponds to EAM, intraventricular septum activation was located more toward the apex in the EAM. Imaging views are based on the anatomical approach for
EAM (Cosio et al., 1999). MV, mitral valve; RVOT, right ventricular outflow tract; TV, tricuspid valve. (B) Patient with healed myocarditis and right bundle branch block.
Imaging views are based on the anatomical approach for EAM (Cosio et al., 1999). 1: Epicardial EAM-LAT map from early (red) to late (blue) activation. The early
regions in the left ventricle and late regions in the right ventricle suggest a right bundle branch block. 2: EGM annotation of bipolar electrograms. The green line
corresponds to the timing reference. The yellow line shows annotation to the maximal amplitude of the bipolar signal. 3: iECG-LAT map of epicardial activation from
early (red) to late (blue) activation. (C) Epicardial activation and electrogram annotation in a patient with arrhythmogenic cardiomyopathy. Imaging views are based on
the anatomical approach for EAM (Cosio et al., 1999). 1: EAM-LAT maps from early (red) to latest (blue) activation. 2: Electrogram annotation of bipolar signals. The
green line corresponds to the timing reference. The yellow line shows annotation to the maximal amplitude of the bipolar signal. 3: iECG-LAT map from early (red) to
late (blue) activation.

endocardial electrograms and 605 [247–1412] left ventricular
endocardial electrograms. The number of annotations per square
mm was 20 ± 11 for the epicardium, 10 ± 5 for the right
ventricular endocardium and 8 ± 4 for the left ventricular
endocardium. The percentage of EAM per surface was on average
67 [range: 48–82]% of anatomical nodes for the epicardium,
45 [range: 15–79]% for the right ventricular endocardium and
48 [range: 22–71]% for the left ventricular endocardium. The
anatomical EAM model was limited to the locations where the
catheter had been positioned during the EAM procedure.

Local Activation Timing
Figure 2A shows an example of the comparison of iECG and
EAM for LAT maps, and the comparison between earliest and
latest activated nodes for both the epicardium and endocardium.
The ranges between earliest and latest ventricular activation
were not significantly different between iECG-LAT maps and
EAM-LAT maps (111 ± 23 vs. 124 ± 39 ms, p = 0.311). The
ranges of earliest and latest activation per patient are included
in Supplementary Table 3. Figure 2B shows an example of
the iECG and the EAM approach in a patient with a healed
myocarditis with right bundle branch block. The fast and His-
Purkinje mediated activation of the left ventricular myocardium

is shown in contrast to the relatively slower activation of the right
ventricle due to the right bundle branch block. Figure 2C shows
an example of the activation pattern and epicardial electrogram
annotation in a patient with arrhythmogenic cardiomyopathy.
Furthermore, all LAT and voltage maps of each included patient
are available as Supplementary Figure 1. The mean correlation
coefficient between iECG-LAT maps and EAM-LAT maps was
0.54 ± 0.19; [95% CI: 0.49–0.59] for epicardial maps, 0.50 ± 0.27;
[95% CI: 0.41–0.58] for endocardial right ventricular maps
and 0.44 ± 0.29; [95% CI: 0.32–0.56] for endocardial left
ventricular maps (Table 1). The moderate agreement of LAT
between iECG and EAM maps is shown in Figure 3A for all
included electrograms on the epicardium (R = 0.632, p < 0.001),
right ventricular endocardium (R = 0.597, p < 0.001) and left
ventricular endocardium (R = 0.546, p< 0.001). Figure 3B shows
that a prolonged QRS duration of the included complexes did
not affect correlation coefficient or absolute difference. Figure 3C
suggest that a higher density of mapped electrograms per mm2
reduces the scatter of correlation coefficients. The absolute
difference for epicardial LAT maps was 17.4 ± 7.2 ms; [95% CI:
15.6–19.2], for endocardial right ventricular maps 19.5 ± 7.7 ms;
[95% CI: 17.2–21.7], and for endocardial left ventricular maps
27.9 ± 8.7 ms; [95% CI: 24.2–31.5]. The relation between
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TABLE 1 | Comparison between iECG and EAM.

Parameters Mean ± SD Median [IQR]

Epicardium

Correlation coefficient 54.1 ± 19.0 51.0 [44.0 – 71.5]

Absolute difference (ms) 17.4 ± 7.2 15.1 [12.8 – 19.6]

Absolute difference earliest breakthrough (mm) 42.1 ± 18.6 37.9 [28.4 – 58.5]

Absolute difference terminal site of activation
(mm)

54.1 ± 26.9 51.0 [33.4 - 69.6]

Absolute difference timing of latest activation
(ms)

19.1 ± 20.9 12.8 [2.9 – 29.3]

EAM breakthroughs (n) 3.15 ± 0.9 3.0 [2.5 - 4.0]

iECG breakthroughs (n) 3.3 ± 0.8 3.4 [2.9 – 4.0]

Right ventricular endocardium

Correlation coefficient 49.6 ± 27.3 55.5 [46.0 – 62.0]

Absolute difference (ms) 19.5 ± 7.7 17.4 [13.2 - 24.4]

Absolute difference earliest breakthrough (mm) 29.9 ± 16.0 28.3 [22.3 - 47.4]

Absolute difference terminal site of activation
(mm)

46.7 ± 28.8 37.0 [24.5 - 69.4]

Absolute difference timing of latest activation
(ms)

20.4 ± 16.7 15.2 [10.1 - 28.7]

EAM breakthroughs (n) 2.1 ± 0.6 2.0 [2.0 - 2.25]

iECG breakthroughs (n) 1.8 ± 0.6 2.0 [1.2 - 2.3]

Left ventricular endocardium

Correlation coefficient 44.0 ± 28.8 53.5 [13.5 - 65.0]

Absolute difference (ms) 27.9 ± 8.7 27.3 [20.1 - 36.2]

Absolute difference earliest breakthrough (mm) 31.0 ± 16.8 31.1 [14.7 - 47.1]

Absolute difference terminal site of activation
(mm)

32.7 ± 17.2 39.2 [14.8 – 44.1]

Absolute difference timing of latest activation
(ms)

29.5 ± 26.3 20.8 [10.4 - 57.3]

EAM breakthroughs (n) 1.8 ± 1.0 1.5 [1.0 - 2.8]

iECG breakthroughs (n) 1.8 ± 0.5 2.0 [1.3 - 2.0]

the percentage of mapped anatomical points during EAM and
the agreement for LAT values is shown in Figure 3D. The
correlation coefficient between iECG-LAT maps and EAM-LAT
maps was not significantly affected by the absolute number of
EAM electrograms (p = 0.324), the number of electrograms with
abnormal voltage (p = 0.306) or the QRS duration (p = 0.485)
(see Supplementary Figure 2). However, the annotation density
and the percentage of mapped anatomical points per map affected
the agreement between iECG and EAM. In maps with a low
annotation density or lower percentage of mapped anatomical
points the correlation coefficients were low (Figures 3C,D). This
may have negatively affected the observed correlation coefficients
in this study because endocardial EAM was often limited to
either the right ventricular or left ventricular surface. The iECG
estimations were based on five QRS complexes selected from the
body surface potential maps, but a Bland-Altman analysis did
not result in divergent results per included QRS complex. These
scatter plots and Bland-Altman plots for each included patient
are available in Supplementary Figure 3.

Localization of Earliest Breakthrough
and Areas of Latest Activation
The number of endocardial breakthrough points was similar
when comparing iECG-LAT maps and EAM-LAT maps:

3.3 ± 0.8 vs. 3.2 ± 0.9 for epicardial maps, 1.8 ± 0.6 vs.
2.1 ± 0.6 for right ventricular endocardial maps and 1.8 ± 0.5
vs. 1.8 ± 1.0 for left ventricular endocardial maps (Table 1).
These findings were in line with the observations of Durrer
et al. and the assumptions of the iECG initial estimation
(Durrer et al., 1970). Epicardial breakthrough of activation had
an absolute difference between iECG-LAT maps and EAM-
LAT maps of 42.1 ± 18.6 mm; [95% CI: 36.7–47.5]. For
endocardial breakthrough of activation, the absolute difference
was 29.9 ± 16.0 mm; [95% CI: 25.1–34.8] for the right ventricular
endocardium and 31.0 ± 16.8 mm; [95% CI: 23.8–38.1] for the
left ventricular endocardium. The latest activated nodes had an
absolute difference between iECG and EAM of 54.1 ± 26.9 mm;
[95% CI: 47.5–60.7] for epicardial maps, 46.7 ± 28.8 mm;
[95% CI: 38.8–54.7] for right ventricular endocardial maps
and 32.7 ± 17.2mm; [95% CI: 25.1–40.4] for left ventricular
endocardial maps (Table 1). The timing of the latest activated
nodes differed 12.8 [2.9–29.3] ms; [95% CI: 6.4–31.7] for
epicardial maps, 15.2 [10.1–28.7] ms; [95% CI: 8.5–32.5] for right
ventricular endocardial maps and 20.8 [10.4–57.3] ms; [95% CI:
12.5–71.4] for left ventricular endocardial maps. The myocardial
conduction velocity was not significantly different between iECG
and EAM maps for, respectively, the epicardium (1.26 ± 0.16
vs. 1.26 ± 0.20 m/s, p > 0.999), right ventricular endocardium
(1.13 ± 0.09 vs.. 0.94 ± 0.17 m/s, p = 0.069) or left ventricular
endocardium (1.03 ± 0.11 vs. 0.92 ± 0.07 m/s, p = 0.968).

DISCUSSION

This is the first study to quantitatively compare non-invasive,
EDL-based iECG estimation of ventricular activation sequences
during sinus rhythm with invasive high density endocardial and
epicardial EAM in humans. Comparison of agreement between
iECG-LAT maps with EAM-LAT maps showed moderate
agreement. However, this observed agreement (correlation
coefficient = 0.54 ± 0.19) was remarkably higher compared to
a recent validation study (correlation coefficient = −0.04 ± 0.3)
performed during sinus rhythm (Duchateau et al., 2019).
Mimicking the effects of the His-Purkinje system on ventricular
activation in the iECG method resulted in activation patterns
corresponding to observations of Durrer et al. in experiments
with explanted human hearts (Durrer et al., 1970). In contrast
to prior EPD-based studies which were limited to estimations on
the epicardium, estimation of both the endocardial and epicardial
activation sequences was achieved. Although accuracy and spatial
resolution require further improvement before implementation
of this diagnostic tool in clinical practice, these findings may be of
clinical importance for functional non-invasive substrate imaging
during sinus rhythm to improve the value of ECG screening and
risk stratification of sudden cardiac death (Tung et al., 2020).

Quantitative Comparison
Previous quantitative EPD-based validation studies showed
higher agreement between ventricular paced complexes and
EAM, compared to sinus rhythm complexes (Duchateau et al.,
2019; Graham et al., 2019). Duchateau et al. (2019) showed poor
epicardial inter-map correlation coefficient (−0.04 ± 0.3) during
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FIGURE 3 | Scatter plots of local activation timing stratified for epicardial and endocardial surfaces. (A) For each node in the ventricular anatomy the EAM-LAT
values (X-axis) are scattered against iECG-LAT values (Y-axis). The black line in each plot represents the linear regression line and R-value and p-value are shown in
each plot. (B) Relation between QRS duration (X-axis) for the 5 selected complexes in the iECG procedure and correlation coefficient/absolute difference for the LAT
values (Y-axis). (C) Relation between annotation density (X-axis) per mm2 and correlation coefficient/absolute difference for LAT values for the 5 selected complexes
in the iECG procedure (Y-axis). (D) Relation between percentage of EAM of the total surface (X-axis) and correlation coefficient/absolute difference for LAT values
(Y-axis).

sinus rhythm, although correlation coefficients increased with
increasing QRS duration. This relation is most likely explained
by the complexity of multiple simultaneous ventricular activation

waveforms occurring during sinus rhythm, which decreases in
rhythms with a single focus (Duchateau et al., 2019). In the
present study, a considerably higher agreement (correlation
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coefficient 0.54 ± 0.19) between EAM and the novel iECG-
LAT maps was observed during sinus rhythm. This improved
performance is attributed to the incorporation of the effects of
the His-Purkinje system on the initiation of ventricular activation
(Oosterhoff et al., 2016). Previously reported absolute difference
for breakthrough of epicardial pacing was smaller compared to
the present study (13.2–20.7 mm vs. 42.1 ± 18.6 mm) (Oosterhoff
et al., 2016; Graham et al., 2019; Hohmann et al., 2019).
However, previously reported absolute difference for epicardial
breakthrough during sinus rhythm was higher compared to our
results (75.6 ± 38.1 mm vs. 42.1 ± 18.6 mm) (Duchateau et al.,
2019). Again, these differences may be explained by estimations
of rhythms originating from a single ventricular focus and sinus
rhythm. Thus, spatial resolution observed in this study was
comparable to the earlier studies in paced complexes (Cluitmans
et al., 2017; Hohmann et al., 2019). Due to the complex nature of
the His-Purkinje system and the Purkinje-myocardial coupling,
the implemented methods remain an approximation of the true
myocardial activation and His-Purkinje physiology (Durrer et al.,
1970; Myerburg, 1971; Veenstra et al., 1984).

We observed a high agreement between estimated and
measured body surface potential maps, whereas the inter-
map agreement was less. As the inverse problem is ill-posed,
completely different ventricular activation sequences can result
in similar body surface potential map waveforms, consequently
we found a high agreement between body surface potential maps
but a lower agreement in myocardial activation patterns.

The conduction velocities calculated on the epicardial and
endocardial surfaces in this study for both the EAM-LAT maps
and iECG-LAT maps were quite high (>1 m/s). However, we
note that these conduction velocities are mostly determined
by the velocity estimated at the surface of the myocardium.
Consequently, in a Purkinje dense region, surface velocity may
appear high because it also reflects the effect of the activation
spread by the Purkinje fibers and not only by the myocardial
tissue at the endocardial surface. Furthermore, at the epicardial
surface, velocities may appear high due to the occurrence of
transmural waves.

Modeling the Effects of the His-Purkinje
System During Sinus Rhythm
In this study, initial sites of activation were determined in the
iECG method based on the observations of Durrer et al. and
nine possible sites of early activation were localized (Durrer
et al., 1970). Sets of these initial sites of activation were tested
based on the correlation coefficient between the computed and
recorded body surface potential maps, as described in more detail
in the Supplementary Methods. This hypothesis was partially
tested by comparing the EAM-LAT maps to the iECG-LAT maps.
However, as endocardial EAM-LAT maps were often either of the
right or the left endocardial surface and also did not cover the
complete endocardial surface for each patient, the comparison
between the number of identified EAM foci and iECG foci was
hampered. This was also reflected in the absolute difference in
location of identified foci of approximately 30 mm comparing
iECG foci to EAM foci.

Previous versions of EDL-based methods estimating His-
Purkinje mediated activation (e.g., sinus rhythm) were based on
a multi-focal search algorithm over the complete endocardium
and epicardium, where the first identified focus was chosen
based on the highest correlation between recorded and simulated
body surface potentials (van Dam et al., 2009; Oosterhoff et al.,
2016). Consequently, this algorithm directly assumed that by
using one focus, most of the underlying activation sequence
could be ‘explained’. However, sinus rhythm, and especially
narrow QRS complex sinus rhythm is an interplay between
multiple activation wavefronts. Implementation of the His-
Purkinje system excludes these unrealistic estimates and provides
the possibility to test multiple near simultaneous foci. At the
same time the initial estimation is restricted to the physiologically
realistic anatomical areas and the computational burden of the
iECG algorithm is minimized.

Post-processing and Reference
Standard
Post-processing of ECG signals, electrogram signals, and cardiac
imaging influences iECG accuracy (Cluitmans et al., 2018;
Graham et al., 2019). To achieve high quality EAM-LAT maps,
which were used as gold standard for comparison, electrograms
derived from multi-electrode catheters required re-annotation
using bipolar and unipolar signals and timing to a timing
reference (Cantwell et al., 2015; Graham et al., 2019). However,
inhomogeneity in LAT distributions of EAM-LAT maps were
observed even after re-annotation, which may have influenced
the observed agreement between iECG and EAM-LAT maps.
Both the epicardial and endocardial surfaces had an adequate
spatial distribution of electrograms as reflected in the number
of LAT per mm2 (see Figure 3C). Furthermore, the percentage
of mapped surfaces was variable and some EAM procedures
resulted in incomplete endocardial EAM anatomical point
clouds, which affects calculated inter-map correlation coefficient
(see Figures 3C,D).

Clinical Implications and Future
Directions
Despite a considerable improvement of the iECG approach for
sinus rhythm, the technique requires further adaptations and
refinements that will facilitate implementation in clinical
practice. Further integration of cardiovascular imaging
techniques may improve performance and spatial resolution
(Tung et al., 2020). Currently, the patient specific anatomical
models were limited in spatial resolution by the computational
models of the iECG procedure, allowing at maximum 3000
cardiac nodes, which directly affects the resolution of the
cardiac anatomical model resulting in an inter-node spatial
resolution of 8 ± 1mm. Diffuse or local myocardial fibrosis
affects ventricular activation patterns in structurally diseased
hearts. Integration of these structural abnormalities in the iECG
method and refinement of the cardiac anatomical models is
likely to improve imaging of electro-anatomical substrates (van
Dam et al., 2009; Oosterhoff et al., 2016; Tung et al., 2020).
Since electro-anatomical substrates are not limited to solely
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the epicardium or endocardium, iECG may allow functional
imaging of such 3-dimentional substrates in patients with
arrhythmias or cardiomyopathy (Tung et al., 2020). Besides
diagnostic implications, non-invasive sinus rhythm iECG
may play a role in the monitoring of disease progression
and in sudden cardiac death risk stratification in patients
with complex electroanatomical substrates, such as inherited
cardiomyopathies. Eventually, reducing the number of electrodes
of the body surface potential map that currently ranges from 67
to 256 electrodes, may improve clinical applicability (Hoekema
et al., 1999). For EDL-based studies, also this study, the 64-
electrode setup is often used (van Dam et al., 2009; Oosterhoff
et al., 2016). Mathematically this setup suffices, as the number of
independent signals is adequately captured using this number of
electrodes and additionally, the electrodes are distributed with
a high resolution in the high-gradient potential regions on the
surface of the thorax (Hoekema et al., 1999).

Limitations
This single center study with a small sample size included
patients with structural heart disease, which may influence
the generalizability of the results. Additionally, we used a
set conduction velocity over the model to determine the
initial estimation. This assumption may not hold in the
presence of pathologies or myocardial scarring after prior
ablation, but the EDL holds for homogeneous anisotropic tissue
(Geselowitz, 1992).

Electro-anatomical mapping procedures and body surface
potential maps were not simultaneously recorded, but in similar
conditions especially concerning anti-arrhythmic drugs. During
EAM, complexes were selected using dedicated Carto/Ensite
EAM systems. Furthermore, sinus rhythm complexes directly
following a premature ventricular complex were excluded for
analysis in both the EAM and iECG-LAT map. However,
a possible influence of variations in heart rate, autonomic
tonus or general anesthesia cannot be excluded. The quality
of gold standard EAM may have been influenced by vendor
specific algorithms within the EAM systems and regional
mapping by the operator during the procedure. Inherent
to invasive electrophysiological studies, EAM maps consisted
of electrograms recorded from consecutive sinus rhythm
complexes, whereas iECG maps were derived from five sinus
rhythm complexes selected from the body surface potential map.

Conclusion
Quantitative comparison of EDL-based iECG during sinus
rhythm in patients undergoing invasive endocardial and
epicardial electro-anatomical mapping showed improved
agreement when compared to prior validation studies, although
with considerable absolute difference in both timing and
breakthrough of ventricular activation. Non-invasive iECG of
both the epicardium and endocardium may prove valuable as
a diagnostic tool for functional imaging of electro-anatomical
substrates in sinus rhythm where activation always starts at the
endocardial surface, to improve the value of the ECG in screening
for cardiomyopathy and sudden cardiac death risk stratification.
Future research should focus on improving accuracy and spatial

resolution before implementation into clinical practice to enable
imaging of functional electro-anatomical substrates.
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Dynamics of Intraprocedural
Dominant Frequency Identifies
Ablation Outcome in Persistent Atrial
Fibrillation
Alain Pithon 1, Anna McCann 2, Andréa Buttu 2, Jean-Marc Vesin 2, Patrizio Pascale 1,

Mathieu Le Bloa 1, Claudia Herrera 1, Chan-Il Park 3, Laurent Roten 4, Michael Kühne 5,

Florian Spies 5, Sven Knecht 5, Christian Sticherling 5, Etienne Pruvot 1† and Adrian Luca 1*†

1 Service of Cardiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland, 2 Applied Signal

Processing Group, Swiss Federal Institute of Technology, Lausanne, Switzerland, 3Department of Cardiology, Hôpital de La

Tour, Geneva, Switzerland, 4Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern,

Switzerland, 5Department of Cardiology, University Hospital of Basel, Basel, Switzerland

Background: The role of dominant frequency (DF) in tracking the efficiency of a stepwise

catheter ablation (step-CA) in persistent atrial fibrillation (peAF) remains poorly studied.

We hypothesized that the DF time-course during step-CA displays divergent patterns

between patients in whom a step-CA successfully restores long-term sinus rhythm (SR)

and those with recurrence.

Methods: This study involved 40 consecutive patients who underwent a step-CA

for peAF (sustained duration 19 ± 11 months). Dominant frequency was computed

on electrograms recorded from the right and left atrial appendages (RAA; LAA) and

the coronary sinus before and during the step-CA synchronously to the 12-lead ECG.

Dominant frequency was defined as the highest peak within the power spectrum.

Results: Persistent atrial fibrillation was terminated by a step-CA in 28 patients

[left-terminated (LT)], whereas 12 patients remaining in AF after ablation [not

left-terminated (NLT)] were cardioverted. Over a mean follow-up of 34 ± 14 months,

all NLT patients had a recurrence. Among the 28 LT patients, 20 had a recurrence, while

8 remained in SR throughout follow-up. The RAA and V1 DF had the best predictive

values of the procedural failure to terminate AF (area under the curve; AUC 0.84, p <

0.05). A decision tree model including a decrease in LAA DF ≥ 6.61% during the first

20min following pulmonary vein isolation (PVI) and a baseline RAA DF< 5.6Hz predicted

long-term SR restoration with a sensitivity of 83% and a specificity of 93% (p < 0.05).

Conclusion: This study found that high baseline DF values are predictive of unfavorable

ablation outcomes. The reduction of the LAA DF at early ablation steps following PVI is

associated with procedural AF termination and long-term SR maintenance.

Keywords: atrial fibrillation, catheter ablation, dominant frequency, intracardiac electrogram, surface

electrocardiogram, decision tree model
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INTRODUCTION

Pulmonary vein isolation has emerged as an effective treatment
for patients suffering from paroxysmal atrial fibrillation (AF),
while its success rate in persistent AF (peAF) is significantly lower
(Brooks et al., 2010). An extra-pulmonary vein (PV) substrate
ablation, including the ablation of complex fractionated atrial
electrograms (CFAEs) and/or the creation of linear lesions, may
be beneficial (Nademanee et al., 2008; Brooks et al., 2010),
but extensive ablation lesions are associated with increased
procedural time and a high incidence of post-procedural
atrial tachycardia.

It has been shown that the clinical efficacy of a stepwise
catheter ablation (step-CA) is associated with a decrease in AF
complexity as indicated by changes in the dominant frequency
(DF) of AF (Lemola et al., 2006; Johner et al., 2020; Ma et al.,
2021). However, whether the time-course of AF organization
throughout an ablation may serve as an indicator of the efficacy
of the procedure remains to be determined.

We recently showed that patients with peAF that are
unresponsive to step-CA displayed higher AF complexity at
baseline as indicated by higher DF values (Luca et al., 2020)
and lower ECG-based organization indices (Buttu et al., 2016;
McCann et al., 2021) than patients with successful ablation.
Furthermore, we found that a step-CA led to increases in surface
ECG AF organization in most patients (McCann et al., 2021),
without significant differences between patients who remained in
sinus rhythm (SR) in the long term and those who did not. In
this study, we hypothesized that combining baseline intracardiac
DF and its time-course throughout an ablation may be used to
track the efficacy of step-CA en route to long-term SR restoration
in peAF.

METHODS

Patient Population and Ablation Procedure
This study has been performed within the framework of
an ongoing project (REORGANIZE-AF) that is aimed at
assessing the level of ECG and intracardiac electrogram (EGM)
organization in peAF to improve the selection of patients for
ablation. The study group consisted of 40 consecutive patients
with peAF referred for a first step-CA. The patients suffered
from AF for 6 ± 4 years, sustained for 19 ± 11 months before
the ablation, and were resistant to pharmacological or electrical
cardioversion. The details of the clinical characteristics of the
study population are provided in Table 1.

All patients underwent a step-CA procedure consisting of
pulmonary vein isolation (PVI), followed by left atrial (LA)
CFAEs ablation and linear ablation (roof and mitral isthmus).
The stepwise ablation protocol has been described previously
(Buttu et al., 2016; Luca et al., 2020). The details of the ablation
procedure are also provided in the Supplementary Material. The
procedural endpoint was reached when AF terminated in SR or
atrial tachycardia (AT). Patients with non-terminated peAF were
electrically cardioverted. After the index ablation, all patients
were followed and data were recorded at 3, 6, 12, 18, and
24 months, then every year. Recurrence was defined as AF or

AT lasting more than 30 s (Calkins et al., 2017). All patients
provided written informed consent, and the study was approved
by the Human Research Ethics Committee of the Lausanne
University Hospital.

Based on procedural and clinical outcomes, the study
population was divided into three subgroups. Subgroup 1 (n
= 8) consisted of patients in whom peAF was terminated
into SR or AT by ablation and who remained arrhythmia free
throughout the follow-up (left-terminated without recurrence—
LT_SR). Subgroup 2 (n = 20) consisted of patients in whom
peAF was terminated by ablation and who had a recurrence after
the first step-CA procedure (left-terminated with recurrence—
LT_Rec). Subgroup 3 (n = 12) consisted of patients in whom
the step-CA procedure failed to terminate peAF (not left-
terminated—NLT), all with recurrence during follow-up.

Electrophysiological Study
More details are available in the Supplementary Material. The
following catheters were introduced via the left and right
femoral veins: a 3.5-mm cooled-tip catheter for mapping and
ablation (Navistar Thermocool, Biosense Webster R©, Irwindale,
California), a circumferential duodecapolar Lasso R© catheter
(electrode spacing 2-6-2mm, Biosense Webster R©, Irwindale,
California) within the LA, a quadripolar catheter (electrode
spacing 5-5-5mm, 4mm electrode tip size, Supreme St Jude
Medical R©, Saint Paul, Minnesota) placed into the right atrial
appendage (RAA), and a steerable decapolar catheter (electrode
spacing 2-8-2mm, 1mm electrode tip size, Biosense Webster R©,
Irwindale, California) placed into the coronary sinus (CS), with
the proximal electrode at the ostium. The ECG chest lead V6

was placed on the back (V6b) of the patients, within the cardiac
silhouette, in order to better record LA activity (Luca et al.,
2020). Furthermore, EGMs were synchronously recorded from
the left atrial appendage (LAA), RAA, and CS at baseline, i.e.,
before the ablation, during PVI, and throughout CFAEs and
the linear ablation. Surface ECG was continuously monitored at
baseline and during the entire step-CA procedure. The ECG and
EGM signals were recorded using an Axiom Sensis XP R© System
(Siemens R©, Munich, Germany) at a sample rate of 2 kHz and
bandpass filter settings of 0.5–200 and 30–400Hz, respectively.

Data Processing
The ECG and EGM signals were retrospectively processed using
MatLab (The Mathworks Inc., Natick, MA, USA).

The EGM signals were rectified and bandpass filtered at
1–20Hz (Botteron and Smith, 1995; Ng and Goldberger,
2007). Frequency spectra were estimated using the fast Fourier
transform, and DF was identified as the highest peak frequency
between 3 and 15Hz. The EGMs with a DF power (1-Hz
band centered at the DF peak) lower than 20% of the total
power in the 3- to 15-Hz band were reviewed to exclude
spurious DF values (Sanders et al., 2005). The surface ECG
signals were bandpass filtered (1–50Hz) to remove baseline
wander and power line interference. Surface ECG DF estimation
was preceded by ventricular activity cancelation in order to
ensure the reliability of the ECG analysis during AF. The
single beat method, in which the QRS and T waves are treated
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TABLE 1 | Clinical characteristics.

All

n = 40

NLT

n = 12

LT_Rec

n = 20

LT_SR

n = 8

p-valuea p-valueb p-valuec

Age (yrs) 63 (56; 65) 63 (58; 64) 63 (53; 67) 60 (58; 63) 0.98 0.56 0.65

Sex (male/female) 38/2 12/0 18/2 8/0 0.26 - 0.35

AF duration (yrs) 6 (2; 8) 5 (2; 7) 5 (3; 6) 9 (6; 11) 0.74 0.03 0.07

Duration of sustained AF (mo) 15 (12; 24) 22 (14; 39) 13 (12; 24) 20 (10; 24) 0.05 0.28 0.60

BMI (kg/m2 ) 30 (25; 31) 30 (24; 31) 30 (25; 34) 29 (27; 30) 0.63 0.94 0.72

High blood pressure 27 (68) 8 (67) 13 (65) 6 (75) 0.72 0.69 0.68

Valvular disease 6 (15) 1 (8) 3 (15) 2 (25) 0.58 0.31 0.53

Diabetes 6 (15) 2 (17) 3 (15) 1 (13) 0.90 0.80 0.86

Tobacco 8 (20) 2 (17) 4 (20) 2 (25) 0.81 0.65 0.77

Hypercholesterolemia 18 (45) 6 (50) 9 (45) 3 (38) 0.78 0.58 0.72

Coronary artery disease 0 (0) 0 (0) 0 (0) 0 (0) - - -

Sleep apnea syndrome 23 (58) 6 (50) 13 (65) 4 (50) 0.40 >0.99 0.46

Chronic kidney disease 1 (3) 0 (0) 1 (5) 0 (0) 0.43 - 0.52

CHA2DS2-Vasc score 1 (1; 2) 1 (0; 1) 2 (1; 2) 1 (1; 2) 0.12 0.41 0.47

Dilated cardiomyopathy 14 (35) 3 (25) 9 (45) 2 (25) 0.26 >0.99 0.33

Hypertrophic cardiomyopathy 3 (8) 0 (0) 2 (10) 1 (13) 0.26 0.21 0.85

Left ventricular fraction ejection (%) 50 (40; 60) 55 (50; 60) 50 (35; 56) 55 (44; 55) 0.18 0.50 0.47

Left atrial volume (ml) 168 (143; 193) 174 (160; 193) 162 (140; 190) 167 (139; 204) 0.41 0.64 0.90

During stepwise catheter ablation

Cumulative ablation time (min)

Total 56 (48; 68) 76 (61; 81) 55 (50; 60) 40 (29; 54) <0.01 <0.01 0.04

PVI 22 (18; 26) 19 (16; 23) 25 (20; 28) 22 (16; 25) 0.11 0.76 0.39

CFAEs and linear ablation 33 (21; 49) 55 (48; 59) 26 (20; 40) 19 (5; 30) <0.01 <0.01 0.09

Beta-blockers 28 (70) 7 (58) 15 (75) 6 (75) 0.33 0.44 >0.99

Calcium channel blockers 8 (20) 2 (17) 4 (16) 2 (25) 0.82 0.65 0.77

Amiodarone 7 (18) 1 (8) 4 (16) 2 (25) 0.38 0.31 0.77

Other antiarrhythmics 5 (13) 3 (25) 2 (10) 0 (0) 0.26 0.13 0.35

No. of antiarrhythmics drugs 2 (1; 3.5) 2 (2; 3) 3 (2; 3) 2 (2; 2) 0.03 0.27 0.43

Statins 5 (13) 3 (25) 2 (10) 0 (0) 0.26 0.13 0.35

Recurrence type at follow-up

Persistent AF 4 3 1

Paroxysmal AF 3 0 3

ATs 25 9 16

Sites of AF termination

Roof 4 3 1

Left atrial appendage 2 0 2

Coronary sinus 4 3 1

Mitral isthmus 8 6 2

Pulmonary veins 2 0 2

Septum 7 7 0

Left lateral wall 1 1 0

Values are median with 25th and 75th percentiles or n (%).
aNLT vs. LT_Rec.
bNLT vs. LT_SR.
cLT_Rec vs. LT_SR.

AF, atrial fibrillation; AT, atrial tachyarrhythmia; CFAEs, complex fractionated atrial electrograms; LT_Rec/LT_SR, left-terminated with/without recurrence at follow-up; NLT, not

left-terminated; PVI, pulmonary veins isolation.

separately, was used as originally described by our group
(Lemay et al., 2007). Following QRST cancellation, the power
spectrum of each atrial ECG signal was computed using Welch’s

method (2.5-s Hamming window, 50% overlap) and the DF
was defined as the frequency of the highest peak between 3
and 15 Hz.
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The ECG and EGM signals were analyzed at different steps
of the procedure: (i) baseline, (ii) during PVI, and (iii) during
CFAEs and the linear ablation (LA ablation). The EGM DFs
were computed on the distal dipole of the RAA catheter, on the
Lasso R© catheter placed within the LAA as the average DF of the
10 dipoles, and on the CS catheter as the average DF of the 5
dipoles. Because the atrial activity is best recognized in the leads
V1 and V6b (Luca et al., 2020), the ECG DFs were computed
only on these two leads. The ECG and EGM signals were divided
into 10-s epochs. Hence, for each 10-s epoch, a single DF value
was available for each catheter (1 for the RAA distal dipole, 1
for the Lasso R© catheter, and 1 for the CS catheter) and each
ECG lead per patient. Interatrial EGM and ECG left-to-right
DF gradients were obtained as the difference between LAA and
RAA DFs and between V6b and V1 DFs, respectively. Figure 1
shows an illustrative example of DF estimation on 10-s epochs
simultaneously recorded from the LAA, RAA, and the ECG leads
V1 and V6b in an LT_SR patient at baseline and after 20min of
cumulative CFAEs and linear ablation. For each ECG recording,
the atrial V1 and V6b signals represent the ECG leads V1 and V6b

devoid of ventricular activity.

Statistical Analysis
Continuous variables were expressed as the median and
interquartile range (IQR) and categorical variables as numbers
and percentages. The significance of any difference between
subgroups was analyzed with the Mann–Whitney U-test for
continuous variables and with the Fisher’s exact test for
categorical variables. A receiver-operator characteristic (ROC)
analysis was performed to assess the performance of ECG and
EGM DFs as predictors of ablation outcomes. The optimal ROC
curve cutoff was defined as the combination of the highest
sensitivity and specificity. A logistic regression analysis was used
to determine the predictors of ablation outcomes and to compute
the respective odds ratios (OR). Freedom from atrial arrhythmias
>30 s during follow-up was analyzed using the Kaplan–Meier
method, and a log-rank test was applied to compare differences
between subgroups. A decision tree model based on baseline DF
and its relative evolution during LA ablation were developed
to intra-procedurally predict ablation outcomes. The statistical
significance was set at p < 0.05. Analyses were performed using
XLSTAT (ADDINSOFT R©, Paris, France) or MatLab.

RESULTS

Study Population
Persistent AF was terminated by ablation within the LA in 28
out of 40 patients (70%, LT group). Twelve patients (30%, NLT
group) remained in AF at the end of the procedure and required
electrical cardioversion to restore SR. The termination of AF
occurred during PVI in 2 patients, during ablation of CFAEs
in 14 patients, and after PVI plus CFAEs and linear ablation
in 12 patients. After a single step-CA procedure, all 12 NLT
patients developed a recurrence. Among the 28 LT patients,
20 had a recurrence (LT_Rec group), while 8 remained in SR
throughout follow-up (LT_SR group). In the NLT and LT_Rec
groups, recurrence occurred as AF (n = 7) and as ATs (n

= 25) on average 7 ± 10 months after the index procedure.
The baseline characteristics of the subgroups are presented in
Table 1. A gradual and significant decrease in total ablation
time was observed between the subgroups, with the longest
time in NLT patients, intermediate in LT_Rec patients, and the
shortest time in LT_SR patients (76 vs. 55 vs. 40min, respectively;
p < 0.05). Moreover, NLT patients had significantly longer
ablation times during CFAEs and linear ablation than LT_Rec
and LT_SR patients (55 vs. 26 vs. 19min, respectively; p <

0.01). Clinical parameters and PVI ablation times were similar
between subgroups. The mean follow-up duration for the study
population was 34 ± 14 months, and at the end of the follow-up
period, 34 (85%) patients were in SR without (28 out of 34, 82%)
and with (6 out of 34, 18%) amiodarone, with a mean number of
2± 1 ablation procedures per patient.

Baseline ECG and EGM DF Values
Table 2 shows the DF values computed at baseline (before
ablation) on RAA, LAA, CS EGMs, and on ECG leads V1 and
V6b for the entire population and the three subgroups. Both ECG
and EGM DFs were uniformly higher in NLT patients than in
LT patients. Although there was no significant difference in DF
between the LT_Rec and LT_SR patients, graded DF values were
observed among the three subgroups, starting with the highest
ones for NLT patients to the lowest ones for LT_SR patients.
Particularly, NLT patients also displayed a negative LAA-to-RAA
DF gradient [median (IQR): −0.32 (−0.58; 0.09) Hz], while
that of LT patients was positive [LT_Rec: 0.19 (−0.04; 0.34) Hz;
LT_SR: 0.28 (−0.23; 0.39) Hz]. In contrast, the surface V6b-to-V1

DF gradient was similar between the three subgroups. Altogether
these results show that ECG and EGM DFs have the potential
to refine the selection of patients with peAF unresponsive to
ablation (NLT group).

Baseline DF as a Predictor of Ablation
Outcomes
Table 3 reports the predictive performances of baseline ECG
and EGM DFs for the pre-ablation selection of NLT patients. A
univariate logistic regression analysis showed that an increased
DF in the RAA (OR 10.9), in LAA (OR 3.7), and on lead V1

(OR 8.5) and lead V6b (OR 7.8), and a negative LAA-to-RAA DF
gradient (OR 0.8) were all significantly (p < 0.05) associated with
an unfavorable procedural outcome. The ROC curve analysis
showed that an RAA DF ≥ 5.92Hz (area under the curve;
AUC = 0.86; Figure 2A) or a V1 DF ≥ 5.86Hz (AUC = 0.84;
Figure 2C) predicted the procedural outcome (p < 0.05) with
a sensitivity of 91%, a specificity of 68%, and a PPV and NPV
of 53 and 95%, respectively. Figures 2B,D show the distribution
of DF values from the RAA and lead V1, respectively, grouped
by procedural and clinical outcomes. Supplementary Table 1

shows the predictive performance of baseline ECG and EGM
DFs for the pre-ablation identification of patients with long-term
SR maintenance after a single CA procedure (LT_SR subgroup).
No significant association was found between baseline DF and
the restoration of long-term SR. In summary, high surface and
intracardiac DF values and a negative LAA-to-RAA DF gradient

Frontiers in Physiology | www.frontiersin.org 4 October 2021 | Volume 12 | Article 73191792

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pithon et al. Dominant Frequency Analysis in Persistent AF

FIGURE 1 | Dominant frequency estimation on 10-s epochs recorded from the LAA, RAA, and the ECG leads V1 and V6b in an LT_SR patient at baseline and after

20min of cumulative CFAEs and linear ablation. For the surface ECG recordings, the atrial V1 and V6b signals represent the ECG leads V1 and V6b devoid of ventricular

activity. The corresponding power spectral densities (normalized by their maximum value) and the estimated DFs are illustrated in the right column. DF, dominant

frequency; %DF, relative change in DF during ablation compared with baseline DF values. Other abbreviations as in previous tables.

before ablation are associated with the procedural failure to
terminate AF.

Effect of Ablation on DF
To assess the cumulative effect of ablation on AF organization,
ECG and EGM DFs were computed during PVI and LA
ablation (CFAEs and linear ablation) until AF termination or
cardioversion. For each patient, DFs were first computed on 10-s
epochs and then averaged over all available epochs at the end of
PVI (end_PVI), during the first 10, 20, and 30min of cumulative
ablation following PVI, and the last 3min of ablation (end_ABL).
The relative change in DF was calculated as the percentage
deviation of the average DF from the baseline DF value.

The only divergent patterns of DF values between the three
subgroups during LA ablation were observed in the LAA. The
temporal evolution of RAA, CS, V1, and V6b DF was similar
between subgroups (Figure 3). Supplementary Figure 2 shows
that the subgroups displayed a similar decrease in DF at end_ABL
compared with the baseline DF values. Supplementary Figure 3

shows that, for LT patients, the extra-PV substrate ablation led to
the durable abolition of the baseline positive LAA-to-RAA DF

gradient. In contrast, for NLT patients, after a transient phase
of null LAA-to-RAA DF gradient during the first 30min of LA
ablation, the baseline negative LAA-to-RAA DF gradient was
re-established at end_ABL.

Figure 4 shows an illustrative example of the temporal
evolution of DF estimated on 10-s epochs acquired from the
LAA at baseline, during PVI, and during LA ablation in an
LT_SR, an LT_Rec, and an NLT patient. The average DF at
baseline and during the first 10, 20, and 30min of cumulative
ablation within LA are indicated by horizontal blue, red, green,
and magenta lines, respectively. For the LT_SR patient, the
ablation led to the progressive reduction of the LAA DF from
end_PVI throughout the LA ablation (1DFBL−10min −6.6%,
1DFBL−20min −8.9%, 1DFBL−30min −10.2%). For the LT_Rec
patient, the reduction in LAA DF only occurred after 20min
of CFAE ablation (1DFBL−10min +1%, 1DFBL−20min −2.3%,
1DFBL−30min −4.3%), while for the NLT patient, no significant
changes in DF occurred during the first 30min of ablation.
These specific findings were confirmed for the three subgroups
(Figure 3A). The subgroup comparison shows that the relative
changes in LAA DF at end_PVI and after the first 10min
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TABLE 2 | Surface ECG and intracardiac electrogram (EGM) DF values at baseline.

All

(n = 40)

NLT

(n = 12)

LT_Rec

(n = 20)

LT_SR

(n = 8)

p-valuea p-valueb p-valuec

RAA 5.74

(5.32; 6.42)

6.69

(6.13; 7.12)

5.62

(5.25; 6.08)

5.37

(5.14; 5.80)

<0.001 <0.005 0.51

LAA 5.74

(5.55; 6.50)

6.26

(5.70; 6.79)

5.69

(5.42; 6.52)

5.57

(5.42; 5.91)

0.08 <0.05 0.5

CS 5.47

(4.88; 6.00)

5.73

(5.61; 6.07)

5.12

(4.83; 5.87)

5.26

(4.86; 5.69)

0.09 0.10 0.85

V1 5.78

(5.13; 6.35)

6.23

(5.98; 6.77)

5.49

(5.10; 5.92)

5.31

(5.13; 5.83)

<0.005 <0.01 0.95

V6b 5.49

(5.13; 5.86)

5.86

(5.55; 6.41)

5.19

(4.88; 5.62)

5.37

(5.13; 5.86)

<0.01 0.06 0.51

LAA-to-RAA DF gradient 0.14

(−0.32; 0.34)

–0.32

(−0.58; 0.09)

0.19

(−0.04; 0.34)

0.28

(−0.23; 0.39)

<0.05 0.11 0.99

V6b-to-V1 DF gradient 0.00

(−0.49; 0.06)

0.00

(−0.67; 0.00)

0.00

(−0.37; 0.03)

0.00

(−0.43; 0.24)

0.78 0.42 0.48

Values are median (25th and 75th percentiles) Hz.
aNLT vs. LT_Rec.
bNLT vs. LT_SR.
cLT_Rec vs. LT_SR.

CS, coronary sinus; DF, dominant frequency; LAA, left atrial appendage; RAA, right atrial appendage; other abbreviations as in Table 1.

TABLE 3 | Baseline ECG and EGM DFs as predictors of procedural ablation outcomes (NLT patients vs. LT_Rec + LT_SR patients).

Odds ratio ROC analysis

OR 95% CI p-value AUC (95% CI) Optimal cutoff Se Sp PPV NPV

RAA 10.9 2.3–53.6 0.003 86% (0.78–0.94) ≥5.92Hz 91% 68% 53% 95%

LAA 3.7 1.2–11.6 0.025 72% (0.57–0.88) ≥5.64Hz 91% 50% 42% 93%

CS 2.65 0.89–7.92 0.07 70% (0.58–0.82) ≥5.61Hz 82% 68% 50% 90%

V1 8.5 1.9–37.3 0.005 84% (0.75–0.93) ≥5.86Hz 91% 68% 53% 95%

V6b 7.8 1.7–35.6 0.008 80% (0.67–0.93) ≥5.49Hz 91% 61% 48% 94%

LAA-to-RAA DF gradient 0.80 0.66–0.97 0.02 74% (0.56–0.92) ≤-0.44Hz 45% 93% 71% 81%

AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; OR, odds ratio; ROC, receiver operating characteristic; PPV, positive predictive value; Se, sensitivity;

Sp, specificity; other abbreviations as in Table 2.

of LA ablation were not significantly different. However, the
LT_SR subgroup displayed significantly higher reduction of DF
than the other two subgroups after 20min of ablation within
LA (LT_SR vs. LT_Rec vs. NLT: −8.73 vs. −3.78 vs. −2.25%,
p < 0.05; Figure 3A). Altogether, these results suggested that
tracking intracardiac DF in the LAA during complex ablation
procedures may help identify patients without recurrence
at follow-up.

Changes in DF During Ablation as a
Predictor of Clinical Outcome
The ROC analysis of the relative change in LAA DF after
20min of LA ablation (time point of significant difference
between subgroups) showed that a decrease in LAA DF ≥

6.61% predicted long-term maintenance of SR, with 83%
sensitivity, 74% specificity, 38% PPV, and 96% NPV (AUC
= 0.75, 95% CI 0.64–0.86, p < 0.05; Supplementary Table 2;
Supplementary Figure 4A). Supplementary Figure 4B shows
that patients with an LAA DF decrease of ≥6.61% displayed a

trend toward a lower recurrence rate than those with a decrease
of <6.61% (40 vs. 5%; p = 0.055). Relative changes in RAA,
CS, V1, and V6b DF after 20min of cumulative ablation within
LA were not associated with the long-term maintenance of SR
(Supplementary Table 2).

A decision tree model combining the relative change in
LAA DF during ablation within LA and baseline RAA DF was
developed to improve the prediction performances for long-term
ablation outcomes (Figure 5A). This model was based on two
steps: (1) a decrease of<6.61% in LAADF after a 20-min ablation
was associated with recurrence; (2) a baseline RAA DF <5.6Hz
in patients displaying an LAA DF decrease of ≥6.61% identified
cases with the lowest risk of recurrence as shown by the Kaplan–
Meier analysis (AF-free rate: 62 vs. 4%, p< 0.01; Figure 5B), with
a sensitivity of 83%, a specificity of 93%, and a PPV and an NPV
of 63 and 97%, respectively.

In summary, progressive LAA organization during ablation
and low baseline RAA DF values are associated with the long-
term maintenance of SR. These findings suggest that tracking
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FIGURE 2 | ROC curve for baseline DF computed from the RAA (A) and lead V1 (C). (B,D) Show the distribution of RAA and V1 DF values, respectively, grouped by

the procedural outcome (NLT, LT_Rec, and LT_SR). The horizontal dashed lines indicate the optimal cutoff points for DF above which both procedural AF termination

and SR maintenance at follow-up were less likely to be achieved by ablation. Abbreviations as in Table 3.

the LAA DF during ablation may help define procedural
ablation endpoints.

DISCUSSION

Main Findings
This study presented new information regarding the clinical role
of DF in predicting ablation outcomes and tracking of the efficacy
of complex ablation procedures. First, the study confirmed that
high surface and intracardiac DFs and a negative LAA-to-RAA
DF gradient before ablation are associated with the procedural
failure to terminate AF and high recurrence rates at follow-up.
Second, it demonstrated that patients with a significant decrease
in LAA DF during ablation and low RAA DF at baseline were
more likely to remain in SR after a single ablation procedure.
Altogether, these findings suggested that monitoring the intra-
procedural evolution of DF may help assess the amount of
ablation required to restore long-term SR in patients with long-
standing peAF.

High Baseline DF and Negative
LAA-to-RAA DF Gradient Are Predictive of
Unfavorable Procedural Ablation
Outcomes
Extensive atrial remodeling is associated with suboptimal
outcomes of catheter ablation in peAF (Nademanee et al., 2008;
Brooks et al., 2010). Intracardiac DF is an acceptable surrogate for
the degree of atrial remodeling, with high DF values indicative
of advanced remodeling (Lemola et al., 2006; Brooks et al.,
2010). Our group has recently shown that patients with peAF
unresponsive to stepwise ablation had advanced bi-atrial and CS

remodeling as shown by high surface and intracardiac DFs (Luca
et al., 2020). The clinical role of DF in predicting procedural
ablation outcomes has been investigated by several groups.
Yoshida et al. (2011) found that patients without AF termination
after both PVI and CFAE ablation had higher DFs in the LAA
and on lead V1 than patients with procedural AF termination. Lo
et al. (2009) showed that low bi-atrial DFs were associated with
acute AF termination. Our study confirms that high DFs in the
RAA, LAA, and ECG leads V1 and V6b were associated with the
procedural failure to terminate AF. Another important finding
is that the RAA DF had the highest predictive accuracy, which
is in line with previous studies reporting that non-PV foci such
as in the right atrium (RA) can maintain peAF (Narayan et al.,
2012; Hasebe et al., 2016). Narayan et al. (2012) in the CONFIRM
trial found that up to one-third of the identified AF rotors or
drivers were located in the RA. Hasebe et al. (2016) showed that
AF initiated by RA triggers had a baseline positive RA-to-LA
DF gradient. In our study, patients without AF termination by
ablation within the LA had higher RAA and LAA DFs, negative
LAA-to-RAA DF gradients, and longer ablation times than those
of patients with successful ablation. These results supported the
hypothesis of a high number of bi-atrial AF drivers in patients in
whomAF persists despite extensive LA ablation. In summary, our
findings suggested that bi-atrial DF values before ablation may
help predict the procedural outcome.

Temporal Evolution of DF During Stepwise
Ablation
Extensive ablation has been shown to affect the atrial fibrillatory
activity. Yokokawa et al. (2010) showed that linear ablation upon
PVI resulted in a significant decrease both in the prevalence of
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FIGURE 3 | Relative changes (%) in DF compared with the baseline DF at the end of PVI (endPVI) and during the first 10, 20, and 30min of cumulative ablation

following PVI. DF was measured within the LAA, RAA, CS, and on the ECG leads V1 and V6b. RFA, radiofrequency ablation. Abbreviations as in previous tables and

figures.

major spectral components and in the DF of lead V1 and the CS.
Johner et al. (2020) recently showed that stepwise extra-PV AF
substrate ablation significantly affects the CS and RA DF. Our
study evaluated the effect of PVI followed by CFAEs and linear

ablation on theDFmeasured fromRAA, LAA, CS, and ECG leads
V1 and V6b. Surface and intracardiac DFs significantly dropped
from baseline to the end of ablation for all the subgroups of
patients. Importantly, the time-course of relative changes in the
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FIGURE 4 | Temporal evolution of DF measured on 10-s epochs recorded

from the LAA in an LT_SR patient (top), an LT_Rec patient (middle), and an

NLT patient (bottom) at baseline (BL), at the end of PVI (end_PVI), and during

LA ablation (CFAEs and linear ablation). Each dot represents the DF value

computed on a single 10-s epoch. Average DFs at baseline and during the first

10, 20, and 30min of cumulative ablation following PVI are represented by the

horizontal blue, red, green, and magenta lines, respectively. PVI, pulmonary

vein isolation; RFA, radiofrequency ablation; 1DF, relative change in DF during

ablation compared with the baseline DF value. Other abbreviations as in

previous tables and figures.

DF during ablation was significantly different between subgroups
only for the DF measured in the LAA. In particular, LT_SR
patients displayed a progressive reduction in the LAA DF during

LA ablation, while NLT patients showed a decrease in the LAA
DF only toward the end of ablation. In contrast, LT_Rec patients
displayed an intermediate pattern. A few possibilities may explain
the high sensitivity of LAA DF to cumulative ablation in the
LT_SR group. LT_SR patients had short CFAEs ablation time
and positive LAA-to-RAA DF gradient, suggesting a limited
number of critical AF drivers within the LA (Haissaguerre et al.,
2014). In contrast, patients without AF termination (NLT group)
underwent extensive LA ablation before the occurrence of DF
changes, suggestive of multiple bi-atrial AF drivers. A failure
to decrease the LAA DF at the early stages of ablation may
reflect the insufficient elimination of LA AF drivers. Recently,
Honarbakhsh et al. (2018) reported that the ablation of AF
drivers (rotational and focal) corresponding to sites of high
atrial organization was more likely to cause LAA cycle length
prolongation or AF termination. Altogether, these findings
suggested that the intra-procedural evolution of LAA DF may
be a useful marker of ablation efficacy en route to restoring
long-term SR in peAF.

Intracardiac DF and Long-Term Ablation
Outcome
The present study showed that a ≥6.61% decrease in the
LAA DF after 20min of CFAE ablation was associated with
long-term SR after a single ablation procedure. We found
that a decision tree model combining the level of LAA DF
decreases and baseline RAA DF values improves the specificity
of SR maintenance. Among the patients with a decrease in
LAA DF ≥6.61%, only those with baseline RAA DF <5.6Hz
had the lowest risk of arrhythmia recurrence. While the
decrease in LAA DF may reflect the efficient elimination
of LA AF drivers, a low baseline RAA DF value fits with
mild RA remodeling, while high baseline RAA DF suggests
multiple RA drivers (Narayan et al., 2012). In summary, a
decision tree model combining the changes in LAA DF during
ablation and baseline RAA DF values appears promising in
guiding complex ablation procedures for restoring long-term SR
in peAF.

Clinical Implications
A prior study found that a ≥11% decrease in DF of lead V1

after PVI and CFAE ablation was as predictive of freedom
from recurrences as AF termination (Yoshida et al., 2010).
Acute AF termination may reflect the elimination of AF critical
drivers (Oral et al., 2008; Honarbakhsh et al., 2018) and has
long been thought of as an optimal ablation endpoint in peAF.
Studies reporting the association of AF termination with long-
term clinical success have shown conflicting results. While in
the study of Scherr et al. (2015), procedural AF termination
improved long-term outcomes in patients undergoing substrate-
based ablation, in a substudy of the STAR AF II trial, acute
termination did not predict long-term AF freedom (Kochhäuser
et al., 2017). In our study, 70% of patients with AF termination
developed a recurrence. Importantly, these patients did not
display any significant decrease in LAA DF during the first
20min of CFAE ablation, which is suggestive of our inability
to eliminate critical AF drivers (Lemola et al., 2006). Moreover,
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FIGURE 5 | Predictive performance of DF for long-term SR maintenance. (A) Decision tree model based on the relative changes in LAA DF after the first 20min of LA

ablation and baseline RAA DF. (B) Kaplan–Meier curves for freedom from AF recurrence after catheter ablation. Abbreviations as in previous figures.

these patients had longer ablation times than those without AF
recurrence, suggesting that extensive LA substrate modification
does not improve ablation success despite acute AF termination.
These findings add to the bulk of studies showing the lack of
long-term clinical benefit of stepwise ablation (Verma et al.,
2015; Kochhäuser et al., 2017). In a previous study, Atienza
et al. (2009) found in a mixed paroxysmal and persistent
AF population undergoing ablation of DFmax sites and PVI
that only those patients showing significant reductions in
both LA and RA DFs with the abolition of the baseline LA-
to-RA DF gradient remained free from AF. In our study,
among patients displaying both baseline positive LAA-to-RAA
DF gradient and its abolition by extra-PV substrate ablation,
only those with significant reductions of the LAA DF at
the early steps of ablation had the lowest risk of arrhythmia
recurrence (LT_SR group). In conclusion, significant LAA DF
reductions during ablation may be used as an indicator of
the elimination of the AF drivers and ablation efficacy, but
further studies are needed to validate this parameter in real-
time settings.

Limitations
First, this study is limited by the small size of the population,
which might have resulted in overestimated performances of
the predictive models. However, the patients were consecutively
included, and the analysis was performed offline, preventing
any selection bias. Second, the tracking of AF organization
was performed on EGMs from a limited number of atrial
sites (LAA, RAA, and CS). Because of the stepwise ablation
at multiple LA sites, the LAA was intently chosen as the site
for the tracking of AF organization as no ablation was applied
in this structure. It is possible that other atrial sites would

have identified different intraprocedural dynamics and threshold
values for DF. Third, patients in whom AF was terminated by
a step-CA also had shorter ablation times than those without
AF termination. We intentionally did not include cumulative
ablation time in our decision tree model because it may not
reflect the efficacy of ablation as no contact force measurements
were available at the time of the study. In contrast, the reduction
of the LAA DF at the early steps of ablation may reflect the
adequate elimination of critical AF drivers (Lemola et al., 2006;
Honarbakhsh et al., 2018). Finally, we acknowledge that the DFs
estimated by the Fourier analysis may lack temporal stability
due to the non-stationarity of EGM signals during AF (Salinet
et al., 2014). To address this potential limitation, the DFs were
first computed on 10-s epochs and then averaged over multiple
epochs, which has been shown to improve the DF reproducibility
(Ng and Goldberger, 2007).

CONCLUSION

This study showed that high surface and intracardiac DF values,
and a negative LAA-to-RAA DF gradient before ablation are
associated with the procedural failure to terminate AF and
high recurrence rates at follow-up. Patients who achieved both
a significant increase in LAA organization within 20min of
ablation following PVI and a low baseline RAA DF seem to
benefit most from additional non-PV substrate modifications.
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Prediction of Atrial Fibrillation Using
Machine Learning: A Review
Andrew S. Tseng and Peter A. Noseworthy*

Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States

There has been recent immense interest in the use of machine learning techniques in
the prediction and screening of atrial fibrillation, a common rhythm disorder present with
significant clinical implications primarily related to the risk of ischemic cerebrovascular
events and heart failure. Prior to the advent of the application of artificial intelligence in
clinical medicine, previous studies have enumerated multiple clinical risk factors that can
predict the development of atrial fibrillation. These clinical parameters include previous
diagnoses, laboratory data (e.g., cardiac and inflammatory biomarkers, etc.), imaging
data (e.g., cardiac computed tomography, cardiac magnetic resonance imaging,
echocardiography, etc.), and electrophysiological data. These data are readily available
in the electronic health record and can be automatically queried by artificial intelligence
algorithms. With the modern computational capabilities afforded by technological
advancements in computing and artificial intelligence, we present the current state of
machine learning methodologies in the prediction and screening of atrial fibrillation as
well as the implications and future direction of this rapidly evolving field.

Keywords: atrial fibrillation, electrocardiogram, echocardiography, risk factor, prediction, deep learning, machine
learning

INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia worldwide with its burden expected to
continue to increase with the aging population. AF is diagnosed clinically, requiring detection of
the arrhythmia on formal electrocardiographic testing. Improvements in monitoring technology,
including high-fidelity long-term monitors, have increased the yield for the detection of AF, thereby
enhancing our knowledge of the true clinical burden of AF.

Beyond detection, there has been immense interest in prediction of AF using both clinical
risk factors as well as objective testing. Numerous clinical risk scores have been proposed,
incorporating readily available variables from the patient’s medical history, such as age, ethnicity,
height, weight, blood pressure, smoking status, medication use, and comorbidities (Schnabel et al.,
2009; Chamberlain et al., 2011; Alonso et al., 2013; Suenari et al., 2017; Li et al., 2019; Hu and Lin,
2020; Lip et al., 2020; Himmelreich et al., 2021). Abnormalities in both cardiac and inflammatory
biomarkers have been shown to augment the predictive ability of clinical prediction scores (O’Neal
et al., 2016). Structural cardiac abnormalities, including atrial fibrosis and atrial enlargement, as
well as associated manifestations on physiologic parameters such as mitral inflow Doppler and
atrial strain have been shown to be predictive of AF (De Vos et al., 2009; Caputo and Mondillo,
2012; Hwang et al., 2015). Likewise, electrocardiographic (ECG), particularly P wave morphology,
has been well-studied and shown to have predictive utility. Overall, there is an abundance of clinical
variables that have been shown to be predictive of AF, individually or in limited pairings.
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With advancements in artificial intelligence technology and
the rapid accumulation of digital clinical data, machine learning
has the potential to analyze and synthesize seemingly disparate
variables to predict AF in such a way that vastly surpasses
conventional methods (Siontis et al., 2020). Machine learning
algorithms can not only assist in processing imaging or
electrocardiographic data, but it may also be able to incorporate
and interpret large amounts of clinical data and discover new
clinical patterns and concepts. We seek to present the latest
review of conventional and machine learning methodologies in
the prediction of AF.

THE PRESENT STATE OF MACHINE
LEARNING TECHNIQUES

At the core of machine learning is the convergence of
statistical analytics and computer engineering. Machine learning
algorithms are able to process complex inputs, such as images,
and discern subtle relationships that may not be evident with
traditional statistical methods. Machine learning techniques can
be categorized broadly into three categories: supervised learning,
unsupervised learning, and reinforcement learning. Supervised
learning requires labels during training, such as the presence or
absence of incident AF. Therefore, the algorithm is provided with
both the input variables as well as outcome labels. Unsupervised
learning seeks to identify relationships within the data without
the assistance of labels. Various methods such as clustering
have been described for this method of learning. Reinforcement
learning uses the concept of reward maximization, in which
the machine learning algorithm assumes the role of an agent
that receives either positive or negative reinforcement to guide
decision making (Thrun and Littman, 2000; Koohy, 2017; Géron,
2019). For the purposes of this review, we will discuss the most
used learning method, supervised learning.

Supervised learning itself utilizes different methods including
regression modeling, random forests, and neural networks. In
regression modeling, both with and without machine learning,
preselected variables undergo regression analysis to determine
their ability to predict an outcome. Machine learning improves
upon these traditional modeling techniques by its ability
to analyze large and complex datasets. Techniques include
classification algorithms such as Support Vector Machine and
K-Nearest Neighbor (Sultana et al., 2016). Random forests utilize
branching decision trees, empirically deriving thresholds to
determine how the data should be split (Koohy, 2017; Géron,
2019; Uddin et al., 2019).

Neural networks have fundamentally changed the machine
learning landscape. Fundamentally, the network architecture is
comprised of layers and processing units within each layer called
nodes. Data is analyzed in one layer and then transmitted to
the next layer, such that a node in a deeper layer receives
inputs from one or more nodes in the prior layer. All neural
networks have an input layer to process input data and an output
layer while a deep neural network continues numerous “hidden”
intermediary layers and nodes. Convolutional neural networks
utilize the concept of “convolutions,” whereby nodes in a deeper

layer only receive input from select subset of nodes from the
previous layer. Therefore, these networks seek to identify local
correlations and preserve local special dependences, which is
particularly important for image processing. It also allows for
more efficient computational processing by reducing the input
data into smaller localized convolved features via methods of
dimensionality reduction (Stankovic and Mandic, 2021).

There are a vast array of different machine learning
techniques, which by themselves can be the subject of reviews and
textbooks. For the clinician, we have summarized the different
supervised machine learning techniques, including names of
techniques one might encounter, as well as the general advantages
and disadvantages in Table 1.

FROM CLINICAL DATA

Validated clinical risk scores to predict AF, such as the FHS,
ARIC, CHARGE-AF, C2HEST, and HATCH score, utilize readily
obtainable clinical variables, such as age, ethnicity, height, weight,
blood pressure, smoking status, antihypertensive medication use,
history of diabetes, heart failure myocardial infarction, etc. Based
on these readily available variables from the patient history, these
risk scores have shown adequate model discrimination for the
prediction of incident AF (area under the receiver operator curve,
AUCs, generally around 0.70) (Schnabel et al., 2009; Chamberlain
et al., 2011; Alonso et al., 2013; Suenari et al., 2017; Li et al., 2019;
Hu and Lin, 2020; Lip et al., 2020; Himmelreich et al., 2021).
AUCs, or c-statistic, are commonly used in studies of diagnostic
test performance as an overall indicator of test performance
(Bradley, 1997). Other measures of test performance, though
not universally reported, include accuracy (proportion of correct
assessments), precision (or positive predictive value), and recall
(or sensitivity). Due to inconsistencies with reporting these other
measures of test performance, which limits comparison among
studies, we will largely focus on AUCs. The studies for these
validated clinical risk scores to predict AF are summarized in
Table 2.

The addition of serologic testing of common cardiac
biomarkers, including natriuretic peptides and C-reactive
protein, has been shown to enhance the predictive ability of
such clinical risk scores (Sinner et al., 2014). Additional markers
of chronic kidney disease, such as Cystatin C, and endothelial
dysfunction have also been shown to be associated with AF,
though no studies have been shown that the addition of these
parameters enhances the predictive ability of existing clinical risk
scores (O’Neal et al., 2016).

With the abundance of clinical and laboratory data available
in digital format, recent investigators have started to evaluate the
use of machine learning in predicting AF using the electronic
health record. To facilitate this, organizations have developed
a common data models for analysis, one prime example being
the Observational Medical Outcomes Partnership Common Data
Model in an effort to synchronize data from disparate sources
for systematic analysis (FitzHenry et al., 2015). In a recent large
study of nearly 2 million patients from the University of Colorado
health systems by Tiwari et al. (2020) investigators applied a
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TABLE 1 | Advantages and disadvantages of different supervised machine learning techniques.

Examples Advantages Disadvantages

Linear/logistic regression Simple and easy to implement Reduced accuracy with variables with complex relationships

k-Nearest Neighbor Simple and can handle noisy instances or instances with
missing attribute value

Computationally taxing, does not identify variables that are
important for classification

Support vector machines More robust than ordinary regression and can classify
semi-structured/unstructured data

Computationally taxing, does not handle data noise well

Random forests Performs well in large datasets and identifies variables that are
important for classification

Computationally taxing, easy to overfit

Neural networks Detects complex non-linear relationships between variables Computationally taxing, cannot access decision making
process (“blackbox”)

TABLE 2 | Original and validation studies of clinical AF risk scores.

Clinical AF risk score Original study Example validation*

FHS
(Age, sex, BMI, SBP, hypertension treatment,
PR interval, clinically significant cardiac
murmur, CHF)

4,764 patients from the United States
AUC 0.78 (95% CI 0.76–0.80) (Schnabel et al., 2009)

49,599 patients from the United States
0.734 (0.724–0.744) (Shulman et al., 2016)

ARIC
(Age, race, height, SBP, hypertension
treatment, smoking status, precordial murmur,
left ventricular hypertrophy, left atrial
enlargement, DM, CAD, CHF)

14,546 patients from the United States
AUC 0.765; 95% CI, 0.748–0.781 (Chamberlain et al.,
2011)

None

CHARGE-AF
(Age, ethnicity, height, weight, blood pressure,
smoking, antihypertensive use, DM, CHF, MI)

18,556 patients from the United States
AUC 0.765 (95% CI: 0.748–0.781) (Alonso et al., 2013)

114,475 patients from the Netherlands
AUC 0.74 (95% CI: 0.73–0.74) (Himmelreich
et al., 2021)

C2HEST
(CAD/COPD, hypertension, age, CHF,
hyperthyroidism)

471,446 patients from China
AUC 0.75 (95% CI: 0.73–0.77) (Li et al., 2019)

1,047,330 patients from Denmark
AUC 0.588 (95% CI: 0.585–0.591) (Lip et al.,
2020)

HATCH
(Hypertension, age, stroke/TIA, COPD, CHF)

670,804 patients from Taiwan
AUC 0.716 (95% CI: 0.710–0.723 (Suenari et al., 2017)

692,691 patients from Taiwan
AUC 0.771 (no CI provided) (Hu and Lin, 2020)

AF, atrial fibrillation; AUC, area under the curve; BMI, body mass index; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive pulmonary
disease; DM, diabetes mellitus; MI, myocardial infraction; SBP, systolic blood pressure; TIA, transient ischemic attack.
*Studies selected for explanatory purposes and may not be an exhaustive list.

machine learning model to over 200 most common health record
features, including demographics and comorbidity data, and
derived a model with an AUC of 0.79 to detect incident AF in
a 6 month timeframe, which is in line with non-machine learning
clinical AF risk scores. In another study of over 2 million primary
care patients from the United Kingdom by Sekelj et al. (2021)
another machine learning algorithm achieved an AUC of 0.83
in the development dataset and 0.87 in the validation dataset to
detect incident AF in a registry that spanned 7 years, indicating
better performance compared to traditional risk scores.

When comparing the AI algorithms to the traditional risk
scores, many factors may impact and limit the interpretation
of the test performance. Firstly, there is significant variation in
the duration of follow-up for each study, ranging from as short
as 6 months to more than 10 years. This clearly significantly
impacted the proportion of patients at study termination with
incident AF (1% vs. 10%, respectively) (Schnabel et al., 2009;
Tiwari et al., 2020). It is possible that limited follow-up such
as 6 months in the Tiwari AI study may have reduced the test
performance in part due to the limited duration of follow-up,

where “false positives” (i.e., AI screening positive, AF negative
at 6 months) would have been “true positives” if given sufficient
time to manifest or vice versa with “true negatives” at the end of
study turning into “false negatives” (Tiwari et al., 2020).

In a recent study by Hill et al. (2019) of nearly 3 million
patients in the United Kingdom, the investigators compared
a machine learning algorithm with time-varying covariates to
the CHARGE-AF risk score. The use of time-varying covariates
represents yet another technique in neural networks, in which
the input covariates are not static but are allowed to be
incorporated into the model at varying time points during
the study period. This means that the temporal association
between a covariate and the outcome becomes another critical
factor during the development of these neural networks. In this
study, the found that the time-varying model had an AUC of
0.827 while the traditional CHARGE-AF risk score applied to
the same population had an AUC of 0.725. Using the time-
varying methodology, they were able to determine that congestive
heart failure diagnosed within the most recent 91-day quarter
contributed the most to the prediction of incident AF. This study
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not only showed the benefits of using different machine learning
techniques to extract potentially clinically relevant predictors
(such as time-dependent variables), but also that the machine
learning algorithms performed more robustly than traditional
risk scores (Hill et al., 2019). While these algorithms have not
been tested prospectively nor have they been validated in external
health systems, the size and scale of these massive projects
far exceed previous studies of conventional clinical risk scores
for AF, and shows the increasing promise of utilizing easily
accessible data from the electronic health record to predict the
risk of incident AF.

FROM CARDIAC IMAGING DATA

AF is often associated with distinct structural heart
abnormalities that are apparent on cardiac imaging, including
echocardiography, CT and MRI. Oftentimes, these structural
abnormalities result from conditions that predispose patients to
AF, such as diastolic dysfunction, but AF can also itself lead to
valvular regurgitation. From an echocardiography perspective,
previous studies have shown that left atrial volumes, measures
of diastolic dysfunction, ventricular wall thickness, strain
echocardiography can be associated with the risk of new-onset
AF (Xu et al., 2011; Caputo and Mondillo, 2012; Hirose et al.,
2012). Newer, non-conventional measurements such as the
total atrial conduction time, as a marker of atriopathy, was also
shown to be associated with development of AF in a smaller
cohort of 249 patients (De Vos et al., 2009). Cardiac CT to
evaluate the left atrial appendage have demonstrated mixed
results on prediction of AF after AF ablation (Ebersberger et al.,
2020). However, left atrial thickness as a marker of atriopathy
on cardiac CT has been shown to be associated with increased
risk of transition for paroxysmal AF to chronic AF as well
as low-voltage areas as potential sites of ablation (Nakamura
et al., 2011; Nakatani et al., 2020). Given the unique ability of
MRI to evaluate tissue characteristics, left atrial fibrosis by late
gadolinium enhancement on cardiac MRI has been shown to
be associated with new-onset AF. One study with 182 patients
evaluated the predictive ability of left atrial fibrosis>6% and
derived an AUC of 0.67, which was further enhanced to 0.80
after adding history of hypertension and left ventricular ejection
fraction (Siebermair et al., 2019). Overall, the use of these
imaging parameters to predict AF have largely been restricted to
small association and procedural studies, and there has not been
systematic use of imaging data to develop or refine existing risk
scores for predicting AF.

Machine learning has likewise begun to make headway
in image analysis. Unlike the categorical or numerical input
of data from the electronic health records, images require
additional sophisticated methodologies when applying machine
learning, yet the fundamental theory remains similar (Fu et al.,
2019). Small-scale studies have started to investigate the use
of machine learning on cardiac imaging. In a small study on
cardiac CT using machine learning to evaluate left atrial and
pulmonary vein morphology in 203 patients undergoing AF
ablation, the machine learning algorithm was able to predict

AF recurrence after ablation using these CT images with an
AUC of overall AUC of 0.87 (Firouznia et al., 2021). A similar
study of 68 patients using cardiac CT left atrial morphology
to predict AF recurrence after ablation demonstrated an
AUC of 0.78 when combining imaging and clinical features
(Atta-Fosu et al., 2021).

However, there have not been investigations in the use
of machine learning in cardiac imaging to predict new-
onset AF. Given multiple factors, including the complexity
of image processing, machine learning in cardiac imaging
has focused on image acquisition, processing, and basic
interpretation (Chang et al., 2020). Future studies will be
needed to develop the role of machine learning in prognosis
and detection of non-imaging diagnoses such as AF. As
such, large population-based studies may not be feasible,
related to the costs of screening asymptomatic patients with
imaging and significant selection bias for patients who have
indications to undergo cardiac imaging tests. Nonetheless,
machine learning in cardiac imaging for AF will undoubtedly play
an important role in periprocedural prognosis and management,
and perhaps with well-designed studies can help with the
prediction of AF.

FROM ELECTROPHYSIOLOGICAL DATA

Pathophysiologic changes in AF can also manifest itself
as abnormalities on electrophysiology testing, such as
electrocardiography and invasive intracardiac electrograms.
Previous studies have shown that ECG findings, such
as P-wave duration, dispersion and amplitude as well as
premature atrial contraction morphology and frequency,
have been shown to be predictive of incident AF, achieving
AUCs ranging from 0.69 to 0.87 (Dilaveris et al., 2000;
Thong et al., 2004; Yoshizawa et al., 2014). One study
evaluated premature atrial contraction characteristics and
percent burden as a risk factor for AF among 652 patients
who underwent Holter monitoring, with an AUC of 0.58
(Im et al., 2018).

Intracardiac electrograms are generally obtained during an
electrophysiology study in patients with known or suspected
arrhythmia. Therefore, there have not been studies specifically
evaluating the predictive ability of electrogram features on new-
onset AF. However, elements of the intracardiac electrogram
have been shown to be correlated with the risk of AF
recurrence after ablation. For example, in one study on
140 patients, multiple electrogram characteristics including
dominant frequency, regularity index and organizational index
of fibrillatory electrograms have shown predictive value for AF
recurrence after AF ablation (Szilagyi et al., 2018).

The use of machine learning on the ECG to predict new-onset
AF has been the subject of immense inquiry recently. Unlike
the use of machine learning to process cardiac imaging, the
processing of electrocardiographic signals is highly standardized
using a static time series dataset and more easily interpretable
compared to a series of images, including moving images like in
echocardiography. In a large study from the Mayo Clinic of over
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600,000 ECGs in normal sinus rhythm, a convolutional neural
network was developed with a robust AUC of 0.87 for predicting
new-onset AF, with further augmentation of the AUC to 0.90
for patients with multiple ECGs (Attia et al., 2019). A small
study by Ebrahimzadeh et al. (2018) in 53 patients of extended
ECG recordings sought to evaluate different machine learning
techniques using heart rate variability analysis in extended ECG
monitoring to predict initiation of AF. In this self-controlled
study, all patients had an episode of paroxysmal AF, in which a
5-min ECG segment obtained 30 min prior to the onset of AF
(“AF” label) was compared to a 5-min ECG segment obtained
45 min after termination of AF (“non-AF” label). Unlike the
convolutional neural network used in the Mayo Clinic study
in which the features of the neural network are hidden, the
investigators identified multiple features from the heart rate
variability signal, including linear, non-linear and time frequency
features, in order to develop the machine learning model.
They found that the combined machine learning approach
performed better than traditional machine learning classifiers
(Multilayer Perceptron, K-Nearest Neighbor, Support Vector
Machine) (accuracy of 98.21% vs. 91.90–93.76%, respectively)
(Ebrahimzadeh et al., 2018).

Thus, there are numerous techniques in machine learning
being explored for the use of electrophysiological data
to predict AF. These techniques range from different
“traditional” machine learning classification algorithms
to convolutional neural networks. No direct comparison
between traditional models and machine learning models in
ECG interpretation have been performed to date. However,
machine learning methodologies allow analysis of large
quantities of ECG data that may be too cumbersome and
time consuming to perform manually and has thus far
allowed for the development of prediction models with
strong diagnostic performance.

FUTURE DIRECTION

As the reader considers the various sections in this review
from clinical data to electrophysiological data, we can see
that machine learning, while still in its infancy, has begun
to drastically improve our ability to predict AF. There are
current worldwide efforts and clinical trials to prospectively
test and harness the potential of AI in clinical practice
for AF. In the United States, the Batch Enrollment for
AI-Guided Intervention to Lower Neurologic Events in
Unrecognized AF, or BEAGLE trial, seeks to assess the
performance of AI on detecting AF on normal sinus ECGs
in adult patients who do not have a previous diagnosis of
AF and are eligible for anticoagulation based on standard
stroke risk stratification (Yao et al., 2021). Similar efforts
are being undertaken in France, United Kingdom, the
Netherlands, Finland, and Germany, some also testing the
utility of AI applied to ECGs obtained by portable devices
(ClinicalTrials.gov, 2021a,b,c,d,e).

Despite these important advancements, there is still significant
room for growth within this space.

(1) Integration of all modalities of data: While siloed
approaches are often necessary in the beginning to refine
specific methodologies as it pertains to different modalities
of data, we have seen from conventional studies that the
combination of data (e.g., clinical, laboratory, imaging,
etc.) often leads to the highest predictive ability for any
clinical risk score. This same principle should be applied
to machine learning algorithms, such that the development
of a machine learning algorithm that can incorporate all
modalities of data, likely further enhancing the powerful
predictive performance of the existing AI algorithms.

(2) Advancements in our understanding and methodologies of
machine learning: At this early stage, due to the nature
of many advanced types of machine learning, including
convolutional neural networks, the signal features selected
by the AI as important predictive features in an algorithm
cannot be known (the so-called “black box”). It is
possible that future techniques will allow the algorithms
to be more explicit and informative about its own
methodologies, both to inform clinicians on novel patterns
that may advance human understanding but also to inform
researchers on potential troubleshooting issues, such as the
inadvertent use of non-medical or unrelated data in their
predictive algorithms.

(3) Implications of machine learning algorithms on
management: While the overall aim of this review is
to evaluate the role of AI in predicting AF, future studies
should undoubtedly evaluate the prospective use of these
algorithms to determine optimal management strategies for
patients. In AF, for example, there is significant implication
with AF diagnosis regarding stroke prevention via the use
of anticoagulation. Could there be important changes to
clinical outcomes and patient management based on the
results of the algorithm that can be eventually be actionable,
perhaps even before a clinical diagnosis?

CONCLUSION

There is no doubt that artificial intelligence will play a
greater role in medicine as the technology continues to
advance and our understanding of its applications continues
to grow. While still in its early stages and still flawed
by inherent limitations, machine learning shows great
promise in improving our ability to predict AF. The future
integration of clinical, imaging and electrophysiological data
will certainly improve the performance of these machine
learning algorithms, and ultimately improve the care of
patients worldwide.
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Background: Atrial fibrillation (AF) and ventricular fibrillation (VF) are complex heart

rhythm disorders and may be sustained by distinct electrophysiological mechanisms.

Disorganised self-perpetuating multiple-wavelets and organised rotational drivers (RDs)

localising to specific areas are both possible mechanisms by which fibrillation is

sustained. Determining the underlyingmechanisms of fibrillationmay be helpful in tailoring

treatment strategies. We investigated whether global fibrillation organisation, a surrogate

for fibrillation mechanism, can be determined from electrocardiograms (ECGs) using

band-power (BP) feature analysis and machine learning.

Methods: In this study, we proposed a novel ECG classification framework to

differentiate fibrillation organisation levels. BP features were derived from surface ECGs

and fed to a linear discriminant analysis classifier to predict fibrillation organisation level.

Two datasets, single-channel ECGs of rat VF (n = 9) and 12-lead ECGs of human AF

(n = 17), were used for model evaluation in a leave-one-out (LOO) manner.

Results: The proposed method correctly predicted the organisation level from rat VF

ECGwith the sensitivity of 75%, specificity of 80%, and accuracy of 78%, and from clinical

AF ECG with the sensitivity of 80%, specificity of 92%, and accuracy of 88%.

Conclusion: Our proposed method can distinguish between AF/VF of different global

organisation levels non-invasively from the ECG alone. This may aid in patient selection

and guiding mechanism-directed tailored treatment strategies.

Keywords: fibrillation, cardiac arrhythmia, electrocardiography, electrograms, ablation

1. INTRODUCTION

Atrial fibrillation (AF) and ventricular fibrillation (VF) are complex heart rhythm disorders with
an increasing prevalence (Zheng et al., 2001; Morillo et al., 2017; Martín-Yebra et al., 2019). Both
AF and VF show beat-to-beat variability in electrical propagation through the myocardium and the
mechanisms that initiate and sustain these rhythms are not entirely understood.
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The limited insight intomechanisms of myocardial fibrillation
stems primarily from ex vivo optical mapping studies of the
transmembrane potentials with potentiometric dyes (Laughner
et al., 2012), which have shown several competing mechanisms
(Handa et al., 2021). The multiple wavelet hypothesis proposes
that fibrillation is a chaotic disorganised rhythm sustained by
multiple wavelets of electrical activity that meander, collide, and
continuously regenerate (Moe et al., 1964; Krummen et al., 2016).
The competing hypothesis is that fibrillation is a spatiotemporally
organised phenomenon sustained by one or more rotational
drivers (RDs). RDs are scroll waves of electrical propagation that
perpetuate around a point of phase singularity, that can anchor
to specific regions and/or meander through the myocardium,
generating fibrillation wavefronts (Pandit and Jalife, 2013).
Multiple disorganised rapidly discharging foci within the
myocardium have also been shown to sustain fibrillation (Lee
et al., 2015), while, more recently, a more complex mechanism
of asynchronous endo-epicardial disassociation of fibrillatory
conduction has been proposed in AF (de Groot et al., 2016).

Treatment options for patients at risk of VF and those
suffering from AF are empirical at present and not targeted
towards the specific mechanism of fibrillation. VF survivors who
are at further risk of future episodes are conventionally offered
implantable cardioverter defibrillation to terminate VF episodes,
while pulmonary vein isolation (PVI) to electrically disconnect
the atrial body from the pulmonary veins (where rapid firing can
trigger AF) is the only proven efficacious treatment in AF (Sau
et al., 2019). The absence of any mechanism-directed treatment
for patients with AF in particular has led to limited success
rates in catheter ablation for persistent AF (Schreiber et al.,
2015). There is a pressing need to move beyond the one-size-
fits-all approach of empirical treatment towards mechanism-
directed treatments.

We recently showed that there is a range of AF and VF
mechanisms, with varying degrees of the global organisation,
using ex vivo optical mapping of explanted perfused hearts
and invasive intracardiac mapping in patients undergoing AF
ablation (Handa et al., 2020). Only some forms of AF are
globally organised and driven by stable RDs, and these would
be potentially amenable to ablation targeting RDs, while other
forms of AF are globally disorganised with no clear drivers
and as such may respond to compartmentalisation of the atria.
A possible approach to individualised tailored therapy would
be to select the appropriate treatments based on the specific
electrophysiological mechanisms sustaining fibrillation in each
specific patient (Ng et al., 2020). Ideally, we would be able to
identify the mechanism non-invasively.

The electrocardiogram (ECG) is an integral part of cardiac
diagnostics and routine care. With the advent of machine
learning, there has been increasing interest in extending
the diagnostic abilities of ECGs beyond qualitative human
assessment (Fan et al., 2018). Signal processing of ECGs has been
implemented in AF (Meo et al., 2013), where certain features of
ECG complexity have been shown to correlate with the long-term
success of catheter ablation (Lankveld et al., 2016). Conventional
signal processing techniques, in the form of dominant frequency
(DF) analysis (Uetake et al., 2014) and entropy analysis (Alcaraz

and Rieta, 2012) have been utilised to analyse AF surface ECGs,
in addition to more novel techniques such as fibrillation-wave
power (FWP) and fibrillation-wave amplitude (FWA) analysis
(Lankveld et al., 2016) to predict treatment outcomes. A recent
study employed convolutional neural networks to identify the
ECG signatures of AF from normal sinus rhythm ECGs alone
with an accuracy of 83.3% and proposed it as a tool to
eliminate the need for expensive long-duration ECG monitoring
to diagnose AF (Attia et al., 2019).

In this study, we sought to investigate whether the degree
of the global organisation of VF and AF and the underlying
fibrillation mechanisms itself can be detected with a machine
learning classification framework based on the non-invasive
ECG recording alone. First, epicardial VF activity was recorded
in ex vivo explanted perfused rat hearts with high spatial
resolution optical mapping. The mechanism was classified
using phase analysis as either globally chaotic and driven by
multiple wavelets, or globally organised and driven by RDs. This
characterisation was designated as ground truth for labelling
the corresponding single channel ECG recorded during the
optical mapping studies and to train a machine learning model
(Li et al., 2019; Handa et al., 2020). After developing and
validating our characterisation of VF mechanisms from ECGs,
we trained the model on human AF surface ECGs in patients
with persistent AF to determine the prediction accuracy in the
classification of the underlying AF organisation/mechanism as
determined by invasive intracardiac mapping. For both data
sets, the proposed classification frameworks were evaluated in a
leave-one-out (LOO) manner, and classification results showed
that the proposed method correctly predicted organisation level
from rat VF ECGs sensitivity of 75%, specificity of 80%, and
accuracy of 78%, and from clinical AF ECG with the sensitivity
of 80%, specificity of 92%, and accuracy of 88%. Accurate
classification of fibrillation organisation and mechanism using
the ECG may allow for more tailored treatments based on the
specific arrhythmia mechanism.

2. DATA ACQUISITION AND DATA
LABELLING

The objective of the proposed classification framework is
to differentiate between organised and disorganised forms of
fibrillation from surface ECG. Organised fibrillation is usually
driven by RDs while disorganised fibrillation is by multiple
wavelets (Handa et al., 2020). This novel technique could be
ultimately used to guide patient selection for individualised
treatment options. The two data sets used for the model
evaluation were derived from a recent study by our group,
and the methodology for data acquisition has previously been
described in detail (Handa et al., 2020). Optical mapping VF data
were obtained by performing ex vivo perfused rat heart optical
mapping of the transmembrane potential and the clinical AF data
were acquired from patients in persistent AF using intracardiac
multipolar catheter recordings of electrograms (EGMs) during
catheter ablation procedures. Concurrent surface ECGs were also
recorded for rat VF and human AF.
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FIGURE 1 | Schematic showing the proposed method evaluated by different sets. For the rat ventricular fibrillation (VF) data, as shown in (A), the ECG was labelled by

the rotational driver (RD) detection results from phase mapping. For the clinical atrial fibrillation (AF) data, as shown in (B), GC analysis of the electrogram (EGM) data

was the surrogate organisation label for the ECG classification.

For the rat VF model, the labelling of the fibrillation
organisation level was conducted using phasemapping, described
below. For the clinical AF data, where the high-resolution
recording was not available, a Granger causality (GC) analysis
of the intracardiac EGM data was used for labelling the clinical
ECG. A schematic of the study design is shown in Figure 1.
The methodology for phase analysis and GC analysis has
been described in detail (Handa et al., 2020). Details of the
analysis techniques and labelling are presented briefly in the
following section.

Data for the AF mapping studies were collected in the cardiac
electrophysiology lab, Hammersmith Hospital. Approval was
given by the Local Research and Ethics Committee for Imperial
College Healthcare NHS Trust and written informed consent was
obtained from all patients. LA mapping data were obtained for
17 patients with persistent AF. Electroanatomical mapping data

were collected using the EnSite
TM

Velocity
TM

system (Abbott
Inc, Minnesota, USA). On the day of the procedure, all patients
were presented in AF. Left atrial access was gained with a

transeptal puncture. A 20-ring electrode A-Focus II
TM

(Abbot
Inc., Minnesota, USA) mapping catheter (double loop, 1 mm
length electrodes, 4 mm interelectrode spacing) was used to
acquire LA geometry and EGM. EGM were collected with stable
tissue contact at the endocardial surface. Data from pulmonary
veins and left atrial appendage were excluded from the analysis.
Data were collected in both persistent AF and a subset of
patients in sinus rhythm after direct current cardioversion. The
bipolar EGMs were filtered at 30–500 Hz bandpass filtering.

The endocardial area subtended by the A-FocusII
TM

mapping
catheter was termed a ’kernel’. For each given kernel, 20 s of data
were subsequently analysed.

The number of kernels collected and subsequently the number
of segments analysed in this paper varied between patients due to

TABLE 1 | Patient characteristics of invasive clinical data-set.

Patient characteristics (n = 17)

Age (years) 66±7

Male 10

Mean left atrium size on TTE (mm) 44±5

Mean CHA2DS2VASc score 2.5(0-6)

Hypertension 7

Diabetes Mellitus 4

Cerebrovascular Disease 2

History of heart failure 3

Duration of persistent AF (months) 20.5±9

differing left atrial geometry and catheter stability. An attempt
was made to map the left atrium extensively for all subjects,
thus, the impact of the heterogeneity will be minimised in the
final analysis. A summary of patient characteristics can be found
in Table 1.

2.1. Phase Mapping of Rat VF Data
For the rat VF model, nine ex vivo perfused rat hearts underwent
high-resolution optical mapping of the left ventricular
epicardial surface after VF induction with programmed
electrical stimulation, and the single-channel ECG was recorded
simultaneously, with a sampling rate of 1,000Hz.

Phase analysis is a gold standard technique for the analysis
of fibrillatory signals (Nattel et al., 2017). Phase mapping
was applied to the optical mapping data to identify phase
singularities (PS) and RDs for further labelling. All our methods
for analysing optical mapping fluorescence data have been
previously described in detail (Ng et al., 2013, 2016; Roney et al.,
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2017; Li et al., 2019; Handa et al., 2020). In this study, a RD was
defined as a PS with more than two full rotations. Figure 1A
shows the ECG labelling based on the RD identification: ECGs are
identified as organised if spatiotemporally stable RDs sustained
VF on optical mapping and disorganised if VF was driven by
chaotic wavefronts with no identifiable stable RD.

2.2. GC Analysis of Clinical AF Data
For clinical AF data (17 subjects), alternative analysis techniques
based on GC analysis were used to classify organisational levels of
fibrillation recordings as phase analysis of intracardiac EGMs is
confounded by several issues, including the low spatial resolution
of clinical data (Roney et al., 2017).

Granger causality is a measurement of signal inter-
dependency and has been previously used to delineate dominant
patterns of wavefront propagation in fibrillation (Luengo
et al., 2016, 2018; Rodrigo et al., 2016; Alcaine et al., 2017).
In our previous study, two measurements derived from GC,
causality pairing index (CPI) and circular interdependence value
(CIV) were applied to intra-cardiac EGM to quantify the AF
organisation level, detect RDs, and identify the likely mechanism
sustaining fibrillation (Handa et al., 2020). In this study, the
CPI and CIV calculated from intra-cardiac electrogram data
(EGM) were used to label the corresponding surface ECGs
as organised or disorganised fibrillation. To make this work
self-contained, the calculation of CPI and CIV will be presented
in the following section.

2.2.1. Causality Pairing Index
From the multi-variate cardiac signal, x(t) ∈ R

nc at time t of the
dimension of nc, GC is inferred by fitting an auto-regressive (AR)
model to x(t) as

Â(τ ) = argmin
A(τ )

nt
∑

t=L+1

||x(t)−

L
∑

τ=1

A(τ )
⊤

x(t − τ )||2 + (1)

λ

L
∑

τ=1

||A(τ )||1, τ = 1, . . . , L

A(τ ) ∈ R
nc×nc is the AR coefficient matrix, τ is the time lag,

L is the maximal time lag of the model, and λ is a regularisation
coefficient. Let xi(t) be the i-th row of x(t). The element of the i-th
row and j-th column,A(τ , i, j), reflects the strength of the xi(t−τ )
in predicting xj(t), or in other words, the temporal dependency
between xi(t) and xj(t).

The optimisation problem in Equation 1 is usually termed
as the Lasso-Granger approach (Valdés-Sosa et al., 2005; Arnold
et al., 2007; Song and Bickel, 2011). With the l1-norm-based
regularisation term

∑L
τ=1 ||A(τ )||1, the Lasso-Granger approach

yields a more sparse and robust Granger causality estimation.
In this study, Forward Backward Lasso Granger Causality is
applied to solve (Equation 1), which is faster and more robust
(Cheng et al., 2014).

With the l1-norm sparsity constraint, solving (Equation
1) drives all elements in Â(τ ) to be zero unless the casual
relationships between certain pairs of signals are very strong.

Therefore, a measurement of the organisation was calculated as
the percentage of the non-zero pairings between different signals.

To be specific, define S as the set containing all the non-zero
elements in Â(τ ), i.e.,

S = {â(τ , i, j) | a(τ , i, j) > 0, i 6= j, (2)

τ = 1, . . . , L, and i, j = 1, . . . ., nc}

where â(τ , i, j) is the element of i-th row and j-th column in Â(τ ).
The CPI is obtained as the following by

CPI =
|S|

L(n2c − nc)
(3)

where | · | is the cardinal number of a set.
By Equation (3), CPI quantifies the global fibrillatory

organisation by calculating the number of possible Granger-
causal signal pairs in fibrillation between which there are
propagational effects on a normalised scale of 0–1, where 0 is
defined as no possible pairing having causal dependency (most
disorganised) and 1 where all possible pairings have causal
dependency (most disorganised).

2.2.2. Circular Interdependence Value
Circular interdependence value is an analytical tool for localising
RDs from regional analysis of cardiac signals from the flow
directions indicated by Â(τ ). Let xi(t) be the i-th signal of x(t).
The major source index si for xi(t) is defined as the signal with
the strongest causal influence on xi(t), i.e.,

si = argmax
j

∑

τ

Â(τ , i, j), j = 1, . . . , nc and j 6= i (4)

Let psi and pi be the coordinates of the locations corresponding
to xi(t) and xsi (t) in a global coordinate, respectively, and the GC
vector for xi(t), gi, is calculated as the following

gi =

{

psi − pi if
∑

τ
Â(τ , i, si) > 0.

0 otherwise.
(5)

The GC vector gi in Equation (5) can be regarded as the source-
to-sink vector for electrode i, pointing from its source electrode
si to electrode i. Let p0 be the coordinates of the location of
interest. Then, then rotational direction for pi relative to p0
could be calculated as the cross product of pi − p0 and gi after
normalisation, i.e.,

ri =
pi − p0

||pi − p0||
×

gi
||gi||

(6)

≡ ri,1i+ ri,2j+ ri,3k

where i, j, and k are the standard basis vectors corresponding
to the x-, y-, and z-axis in the global coordinate, respectively.
Suppose a local coordinate where the x-y plane is specified by p0,

pi, and psi with standard basis vectors ĩ, j̃, and k̃ corresponding to
the x-, y-, and z-axis, respectively. Define the origin of the local
coordinate as p0, and

ĩ ≡
pi − p0

||pi − p0||
(7)
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Then, the rotational direction ri could be written as

ri = r̃i,1 ĩ+ r̃i,2 j̃+ r̃i,3k̃ (8)

where r̃i,1 and r̃i,2 are equal to 0, and the sign of r̃i,3 indicates the
direction of possible rotational activities. If the rotation with the
centre as p0 is clockwise, r̃i,3 < 0 and vice versa.

Remark 1. ĩ, j̃, and k̃ may vary depending on the locations p0, pi,
and psi for i = 1, . . . , nc. For spiral catheters (e.g., Lasso, Biosense
Webster), ideally all recording points are in the same x-y plane, and
k̃ are the same for all i = 1, . . . , nc. Thus, the global coordinate
and local coordinates could be represented by just one coordinate
for simplification. However, the simplification is not applicable for
basket catheters.

With Equations (6) and (8), CIV is calculated as

CIV =
|
∑

i sign(r̃i,3)|

nn(p0)
(9)

where nn(p0) is the number of available neighbouring recordings
around p0 to quantify the rotational activity. CIV ranges from 0
to 1 and measures the circulatory propagation patterns, whereby
spatially stable RD yield a high CIV and meandering unstable
RDs a low value. Details of using CIV for RD detection and its
validation can be found in the method section and in our recent
study by Handa et al. (2020).

2.2.3. Labelling
In the patient with persistent AF group, each subject underwent
detailed intracardiac mapping in the atrium with a 20-electrode
AFocusII mapping catheter, (St Jude Medical, MN, USA).
Multiple areas were mapped within the atrium with the catheter
recording 20 separate EGMs at a time. CPI, a measure of
organisation of fibrillation, was calculated for each set of
AFocusII recordings in a given region. Global CPI was calculated
as the average of the CPI of all the regional AFocusII recordings
for the subjects. The criteria for binarising the 17 subjects in
the clinical AF data sets is shown in Figure 1B. In particular,
those with RD-positive areas and CPI above the median CPI were
labelled as organised, and those without any RD-positive areas or
CPI below the median CPI as disorganised.

3. METHOD

3.1. QRS Subtraction
The frequency spectrum of the individual QRS complex is often
found in a range of 10∼30 Hz (Bollmann et al., 2006), and the
frequencies characterising the atrial signal are mostly confined to
the interval of 5∼12 Hz (Lin, 2008). Due to this overlap between
atria electrical activity and QRS complexes, QRS subtraction
was applied to the clinical AF ECG data set. In particular, QRS
detection followed by linear interpolation proposed in Ahmad
et al. (2011) was adopted. Normal QRS duration is between 0.08
and 0.10 s. To ensure ventricular activity fully removed, points
corresponding to a QRS duration of 0.10 s were subtracted and
replaced with linearly interpolated points with a ratio of 5:6, i.e.
with 5/11 points before and 6/11 points after the peak detection,

as described in Ahmad et al. (2011). Two examples of QRS
subtraction are shown in Figure 2.

3.2. Feature Extraction
In this study, we propose to use the band-power (BP) feature,
i.e., the power of the ECG signals corresponding to different
frequency bands, to classify the organisation type. Given the heart
rate in rats is markedly higher than in humans, in this study,
different bands and data segmentation settings were selected for
rat VF and clinical AF ECG feature extraction.

For the rat VF model, the single-channel continuous ECG
recordings were sampled at a sampling rate of 1,000 Hz and
segmented by a 2 s window with a window shift of 1 s. The DF
of rat VF ranges from 10∼20 Hz (Handa et al., 2018). Thus, the
segmented data were filtered with eight temporal philters with a
bandwidth of 4 Hz ranging from 2∼3 4Hz (2∼6 Hz, 6∼10 Hz, . . .
30∼34 Hz, fourth-order band-pass Butterworth philters with an
allowance of 2 Hz). In addition to band-power, an AR model was
applied to boost the number of features for the single-channel
rat VF ECG. The AR coefficients with the order of 20 together
with the BP of the eight bands were concatenated and used as the
feature vector. Thus, the total number of features for rat VF ECG
was 28.

For the clinical AF dataset, the continuous 12-lead ECG
recordings were sampled with a sampling rate of 2034.5 Hz and
segmented by an 8 s window with a window shift of 4 s. The
segmented data were then filtered into four bands, i.e., 5∼15 Hz,
15∼25 Hz, 25∼50 Hz, and 50∼100 Hz (fourth order band-pass
Butterworth philters with an allowance of 2 Hz). The DF of AF
was found to be within the frequency spectrum of 3∼12Hz. Thus,
most of the AF components can be covered by the band 5∼15
Hz. The other three higher bands are selected to capture subtle
high-frequency characteristics of the signals. For each band and
each lead, the band-power was calculated then normalised by the
total power of the signal of a broad band 2∼200 Hz. With four
normalised BP features extracted for each lead, the total number
of features for a clinical AF ECG segment was 48.

3.3. Feature Selection
Mutual information is a measurement of the dependence
between features and class labels and has been successfully
applied for feature selection of BP features of time series (Ang
et al., 2012). Thus, in this study, mutual information was adopted
for feature selection.

Given the feature f and class label c, the mutual information is
formulated as below:

I(f , c) = H(c)−H(c|f ) (10)

where H(c) is the individual entropy of class label c and H(c|f ) is
the conditional entropy of class label c given feature vector f . It
could be interpreted as the amount of uncertainty reduced in the
class label c through observing feature f Ang et al. (2012).

In this study, the class label c was the organisation level. For
each BP or AR feature, its mutual information with class label c
was calculated during the training stage. The top 50% of features
with the highest mutual information were selected and used in
the classification step.
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FIGURE 2 | Two examples of QRS subtraction applied to the AF ECG data set (Lead I). Upon QRS detection, points corresponding to a QRS duration of 0.10 s were

replaced with linearly interpolated points.

3.4. Classification
In this study, binarised linear discriminative analysis (LDA) and
a linear regression model were adopted for the organisation level
prediction. During the model training and testing, features from
2 s segments of ECG were used. With the prediction results
at the segment level, the final organisation level prediction of
each subject was obtained by voting or averaging. For each
subject, the final class label was the class label that was predicted
most frequently during the segment classification. The subject
was predicted as organised if more than half of the segments
were predicted to be organised. For clinical AF data, a linear
regression model was also tested for continuous organisation
level prediction. With the regression model, the mean predicted
value of all segments was used as the final prediction of
the subject.

The whole evaluation ran in LOO manner, whereby the
feature selection and classification framework were trained by
data segments from eight out of nine subjects (rat VF ECG) or 16
out of 17 subjects (clinical AF ECG) and evaluated on segments
from the remaining subject. Thus, for different subjects, different
features could have been selected in the training. In this way, the
data segments for each subject were not used to train the model
that they were tested with.

4. EXPERIMENTAL RESULTS

4.1. GC Analysis of Clinical AF Data
Figure 3A shows an example of a source-to-sink vector map
constructed for a set of intracardiac multipolar (AFocusII)
catheter recordings in AF. It shows a site with a stable RD
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FIGURE 3 | (A) shows a source-to-sink vector map constructed from the intra-cardiac EGM signal, indicating a site with a stable RD with a high circular

interdependence value (CIV). The arrows show the directions of the source-to-sink vectors. The corresponding EGMs in (B) show organised clockwise rotational

activation: electrode 12 was activated first, followed by electrodes 1, 4–8, 10, and 11, and the activation of the electrode 11 was followed by the next activation of

electrode 12. Figure reproduced from Handa et al. (2020) (CC BY 4.0).

FIGURE 4 | Histograms of RD positive areas and causal pairing index (CPI) of the 17 subjects of clinical AF ECG/EGM dataset. Most of the subjects have less than 2

RD positive areas, and the median CPI of all subjects is 0.14.

with a high CIV driving a globally organised form of AF.
The arrows show the directions of the source-to-sink vectors.
The corresponding EGMs show organised clockwise rotational
activation. For this example, the CIV of 0.68 was above the
threshold of 0.60, which is the operating point obtained using rat
VF data in our previous study for classifying an RD-positive area
(Handa et al., 2020).

Figure 4 shows histograms of RD-positive areas (Figure 4A)
and CPI (Figure 4B) of the 17 subjects of the clinical AF
ECG/EGM dataset. For this data set, 8 out of 17 subjects have
no RD-positive area, and the maximum number of RD-positive
areas identified with intracardiac mapping is 4. The median CPI

of all subjects is 0.14. Among the nine subjects with RD-positive
areas, the five subjects with CPI above 0.14 were labelled as
organised, and those without any RD-positive areas or CPI below
the median CPI as disorganised.

4.2. Statistical Correlation Analysis
To investigate whether the surface ECG BP reflected the AF
organisation level measured invasively, Pearson correlation
analysis was performed to test the correlation between
normalised band-power features and the organisation level
as quantified by CPI for the clinical AF ECG. Logarithm was
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FIGURE 5 | Correlation between log (band power) of different bands and the global fibrillatory organisation level measured with causal pairing index (CPI). Significant

correlations were found for higher frequency bands 25∼50 Hz and 50∼100 Hz with certain leads.

TABLE 2 | Correlation results with clinical atrial fibrillation (AF) data.

Band Lead β

25∼50 Hz I –0.53*

25∼50 Hz aVL –0.56*

25∼50 Hz V1 –0.67**

50∼100 Hz III –0.49*

50∼100 Hz aVL –0.59*

*α = 0.05, **α = 0.01.

applied to make the BP distribution normal distribution. A
p-value smaller than 0.05 was considered statistically significant.

Figure 5 shows examples of the correlation results of leads
I, V1, and III, with each closed circle representing one subject.
Table 2 summarises all significant correlations with p < 0.05.
The significant correlations were found in two relatively higher
bands, 25∼50 Hz and 50∼100 Hz. The correlation was the
strongest with BP of lead V1, 25∼50 Hz (β = –0.67; p <

0.01). No significant correlation was found with bands of lower
frequencies, i.e., 5∼15Hz and 15∼25Hz. The correlation analysis
demonstrates that there is a negative correlation between the
amount of high-frequency components in the signal and the level
of global fibrillatory organisation for certain leads.

4.3. Organisation Level Classification of
ECG
The proposed method was evaluated by LOO, and subsequently,

the numbers for the training and test data passed to the classifier
varied. For the rat VF classification, the number of training
samples ranges from 1,856 to 2,416, and that of the test from 17
to 577. For the clinical AF data, the number of training samples
ranges from 1,368 to 1,491, and that of the test from 37 to 160.
The LOO classification results for both rat VF and clinical AF
data are summarised in Table 3, where c and ĉ are the true and
predicted class labels, respectively, and ‘O’ and ‘D’ represent the
organised and disorganised classes, respectively. nseg is the total
number of the data segments per subject, and for the clinical AF
data, the number of areas being mapped nk was also included.

TABLE 3 | Leave-one-out (LOO) classification results (%).

Subject ID nseg (nk ) c ĉ Pw (%)

Rat-1 168 O D 76.78

Rat-2 196 O O 73.98

Rat-3 439 O O 98.61

Rat-4 577 O O 100.54

Rat-5 162 D D 71.43

Rat-6 179 D D 77.09

Rat-7 17 D O 100.00

Rat-8 434 D D 82.10

Rat-9 261 D D 93.87

Clinical-1 160 (21) D D 63.12

Clinical-2 47 (8) D D 100.00

Clinical-3 44 (9) D D 100.00

Clinical-4 85 (16) D D 100.00

Clinical-5 148 (28) D D 68.24

Clinical-6 76 (15) D D 59.21

Clinical-7 53 (9) D D 100.00

Clinical-8 131 (20) D D 87.79

Clinical-9 97 (16) D O 91.75

Clinical-10 67 (9) O D 100.00

Clinical-11 123 (25) O O 98.37

Clinical-12 151 (27) O O 97.35

Clinical-13 80 (10) D D 61.25

Clinical-14 40 (6) D D 87.50

Clinical-15 91 (25) O O 98.90

Clinical-16 98 (15) D D 100.00

Clinical-17 37 (6) O O 54.05

Bold values indicate correct predictions by the machine learning algorithm. i.e. c = ĉ.

For each subject, the final prediction was calculated by voting:
the subject would be organised if more than 50% of the segments
were predicted as organised, and disorganised if below (or equal
to) 50%. In Table 3, Pw is also presented, which is the percentage
of segments classified as the winner class during voting. The
confusion matrices of the classification at segment and subject
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FIGURE 6 | Confusion matrices of the binary classification of the fibrillatory organisation level of the rat VF and clinical AF data. (A) Rat VF ECG, segment level. (B) Rat

VF ECG, Subject level. (C) Clinical AF ECG, segment level. (D) Clinical AF ECG, subject level.

FIGURE 7 | Feature distribution regarding the fibrillatory organisational level. The three best features selected by mutual information were plotted. The colour of the

features are corresponding to the CPI values except features of subject clinical-10 in red. In General, the features with the high and low CPI are separated. However,

features of subject clinical-10 with high CPI (in red triangles) tend to be overlapped with features from the low-CPI group. (A) Rat VF features. (B) Clinical AF features.

levels were shown in Figure 6. For the subject-level prediction,
the sensitivities are 75 and 80%, the specificities are 80 and
91.67% and the accuracies are 77.78 and 88.24% for rat VF and
clinical AF, respectively.

Figures 7A,B show the distribution of the three most

discriminative features selected using mutual information for rat

VF ECG and clinical AF ECG, respectively. In both panels, each

circle represents one feature calculated from a 2 s data segment.

Note that the feature selection was only applied for illustrative

purposes. For the rat VF ECG in Figure 7A, most segments from

the organised class fell within one cluster, separated from the two

clusters of disorganised features. For Rat-7, the duration of VF is

shorter, resulting in amuch smaller number of available segments
than the other rat subjects. Thus, the short ECG segment may
not be able to fully represent the fibrillatory characteristic, which
could be the reason for its incorrect classification with high Pw =

100%.
Figure 7B shows the features of the clinical AF ECG,

which formed more sub-clusters. The colour of the features
are corresponding to the CPI values except for features of
subject clinical-10 in red, as clinical-10 is the only organised
subject that is classified as disorganised. Generally, the features
with the highest and lowest CPI tended to be separated

from each other, while the features with intermediate CPI
tended to have more overlapping. Clinical-10 has a CPI of
0.22 and stable RD identified, however, the features of this
subject tend to be closer to features from the disorganised
class, which could be the reason for the wrong classification.
Clinical-9 has a CPI of 0.15 and was labelled as disorganised
because no RD is detected for this subject. The reason for
the subject being classified wrongly could be the CPI is very
close to the median CPI that is used to binarise the data into
two groups.

Figures 8A,B show examples of the rat VF ECG segments
from organised and disorganised classes based on the phase
mapping. In Figures 8C–F, examples of clinical AF ECG
segments of lead I are shown with the corresponding CPI.
Generally, there are no clear morphological patterns associated
with CPI level and subsequently, it is difficult to discern
the organisation level of a given data segment by visual
evaluation alone.

5. DISCUSSION

Experimental results showed that the proposed classification
methods can differentiate fibrillation of different organisation
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FIGURE 8 | (A,B) show examples of organised and disorganised rat VF ECG. (C–F) shows examples of clinical AF ECG with different CPI levels calculated from the

corresponding EGM data. For both rat and clinical data, it is difficult to differentiate the organised and disorganised data by visual evaluation alone.

levels using the surface ECG an with accuracy of 78% for the rat
VF data and an accuracy of 88% for the clinical AF data. Based
on the results, this method has the potential to non-invasively
the determine degree of organisation to aid mechanism-directed
treatment decisions for patients with AF and in VF survivors.

The concept of ‘organisation’ within AF is not fully established
or defined, in part due to a limited understanding of the
underlying mechanisms. The degree of complexity within AF has
been analysed previously by both local and multi-site analysis
of EGMs in time and frequency domains (Ravelli and Masè,
2014). Some groups have looked at analysing the repetitive nature
of wavefronts in AF using techniques such as similarity index
(Ravelli et al., 2005) and Retro-Mapping (Mann et al., 2019).
These techniques require intracardiac electrogram analysis from
invasive mapping. Lankveld et al. (2014) previously showed that
the spatiotemporal organisation of the AF ECG as measured
by techniques such as F-wave complexity, harmonic decay, and
DF analysis could delineate paroxysmal AF from the more
disorganised persistent AF (Lankveld et al., 2014). Furthermore,
it was shown that these AF complexity parameters derived from
surface ECGs could predict procedural outcomes from catheter
ablation in patients with persistent AF at long-term follow-up
(Lankveld et al., 2016). The proposed methodology in this study
for characterising the complexity of fibrillation from ECGs has

the strength of being both non-invasive and being validated
with detailed optical mapping studies in rat VF. The binary
classification of AF ECGs as organised or disorganised with
regard to description of the probable underlying mechanism
may be useful in selecting appropriate treatment strategies
for patients. Patients with disorganised AF are likely better
suited for treatment with anti-arrhythmic drugs or extensive
compartmentalisation of the atria with a surgical approach, while
those with an organised AF may benefit from catheter ablation.

5.1. Implication of High-Frequency
Components
This study shows that the power of frequency bands of relatively
higher frequency is negatively correlated with the organisation
level, which is consistent with existing studies that organised AF
tends to have a lower DF (Lankveld et al., 2016).

In Figure 9, filtered signals (normalised by the total
power) corresponding to bands 25∼50 Hz (i.e., high-frequency
components) from one organised and one disorganised subject
were compared, and it shows that the power of these high-
frequency components from the disorganised subject was
consistently higher than that from the organised subject,
although high-frequency components (>25 Hz) constitute a
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FIGURE 9 | Comparing filtered signals of bands 25∼50 Hz from one organised and one disorganised subjects (clinical AF dataset).

relatively small part of the whole signal spectrum, they may be
helpful in distinguishing organised from disorganised AF.

Optical mapping data and EGM recordings can be regarded
as sources, and the surface ECG can be regarded as a linear
mixture of the sources due to the volume conduction effect.
The organised fibrillation driven by one or two stable RDs tends
to have activation with consistent and synchronised patterns of
activation, yielding the power spectral density (PSD) of the ECG
concentrating on a few low-frequency components. When the
fibrillation is chaotic with randomly propagating wave-fronts,
source signals tend to be more fragmented, resulting in the
surface ECG with more high-frequency components.

It is also worth noting that the temporal morphological
characteristics of ECG signals are only one aspect of the
differences implied by high-frequency bandpower features
between the organised and disorganised classes. The
significant associations between high frequency bandpower
and organisation level were found with only certain leads. Only
using features with significant correlations yielded classification
accuracies around the chance level. Moreover, using features
from all 12 leads but from only one single band, 25∼50 Hz
or 50∼100 Hz, also yielded accuracies around 60%. Neither a
single band nor a single lead can fully capture the source pattern
differences between the organised and disorganised subjects. The
different spatial dispersion patterns over the 12 leads of different
frequency bands are the key in discriminating the organised and
disorganised classes.

5.2. Lead Optimisation
For the 12-lead clinical ECG, we also estimated the lead weights
by solving the following optimisation problem

ŵ = argmin
w

E[(w⊤xo(t))
2]

E[(w⊤xd(t))2]
(11)

where w ∈ R
12 is the channel weights, and xo(t) and xd(t) are

the vectors of the band-passed ECG signal at time t of organised
and disorganised classes, respectively. w⊤xo(t)(w

⊤xd(t)) can
be regarded as a single virtual channel, and E[(w⊤xo(t))

2]
and E[(w⊤xd(t))

2] denotes the expectation of the BP of the
single virtual channel for organised and disorganised classes,
respectively. By solving (Equation 11), the lead weights could be
optimised in a way that w maximises the difference between the
BP of the organised and disorganised classes. We have applied
(Equation 11) to each band and used the bandpower of the single
virtual channel as the feature. This approach was evaluated in
the same LOOmanner. However, the lead optimisation based on
Equation (11) is not as good as that using mutual information
for feature selection, possibly due to over-fitting. Selecting the
leads yielding BP features with the highest mutual information
means that weights of leads could be either 0 or 1. This process
involves fewer parameters to be tuned as solving (Equation
11), and subsequently, is more robust against the cross-subjects
dissimilarities within the same class.

5.3. Limitations
A limitation of this study is that the AF mapping data were low-
resolution sequentially acquired intracardiac EGM data used to
label the underlying mechanism, and follow-up data were not
available. Thus, the ground truth for the organisation level could
not be directly determined and had to be inferred from GC
analysis. GC analysis of intracardiac electrogram in patients with
AF was established from a methodology developed from analysis
of rat VF optical mapping. The outcomes measured in AF in
this study may have been influenced by mapping resolution,
interelectrode distance, catheter stability, and heterogeneity in
mapping. CPI value to determine the fibrillatory organisation,
while applied to an unselected population may also have been
influenced by the characteristics of this population.
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Because the sample size of the clinical AF data is small, it
is difficult to infer the true distribution of the CPI of clinical
AF. In this study, we combined the RD detection results with
median CPI to binarise the data. A more comprehensive data set,
e.g., including cardiac imaging data from patients and follow-up
data post ablation would be needed for a better binarisation in
future study. Furthermore, in this study we have conducted
QRS subtraction while it is difficult to fully remove T-waves
while keeping the fibrillation signals intact. In our future study,
we will seek better signal processing approaches for fibrillation
signal extraction.

6. CONCLUSION

Individualised mechanism–directed treatments with better
patient selection are needed for myocardial fibrillation treatment.
If the mechanism of myocardial fibrillation, specifically AF, can
be determined from the surface ECG, patients can be non-
invasively screened for specific treatment strategies, whereby
only patients with globally organised fibrillation are candidates
for targeted ablation of drivers, and those with globally
disorganised fibrillation are better treated with anti-arrhythmic
drugs or ablation strategies to compartmentalise the atria.
In this study, we propose a classification framework for
detection of the fibrillation organisation level, and thus, the
underlying fibrillation mechanism (stable RD vs. multiple
wavelet driven) from the ECG alone, with no need for invasive
intracardiac recordings.

Experimental results in this study showed that the proposed
classification methods can differentiate fibrillation of different
organisation types: for the rat VF ECG, the sensitivity, specificity,
and accuracy are 75, 80, and 78%, respectively; and when
these methodologies were adapted for the clinical AF ECG,

the sensitivity, specific, and accuracy are 80, 92, and 88%,
respectively. Therefore, the proposed techniques in this study
have the potential to determine fibrillatory mechanisms and may
aid non-invasive mechanism-directed tailoring of treatments for
patients with AF and in VF survivors.
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A. APPENDIX

Circular interdependence value for RD identification was
validated with optical mapping data of the rat VF model.
Figure A1 shows an example of the down-sampling optical
mapping data. In (Figure 6A), The background is the ground
truth of the rotational activity obtained by phase mapping in
the form of a heat map, the value of which is the percentage
of the time rotational activities staying at the given location.
In particular, the red hotspot is of a value around 10%,
which is around 350 ms given that the total duration of this
recording is 4 s. The DF of the rat VF data usually ranges
from 20∼30 Hz. Thus, the rotation activity at the red hotspot

FIGURE A1 | (A) shows the down-sampling of the high-resolution optical mapping data of rat VF. Areas 1 and 2 were labelled according to the RD (RD) heatmap

shown as the background, the local GC vector maps of which were shown in (B) and (C), respectively. (D) shows the ROC of the RD prediction using CIV.

would have approximately 18 times of rotations, making it a
relatively very stable RD site. The original optical mapping data
were down-sampled as 4-by-4 grids with 1/4 of the original
resolution. Each rat heart would generate approximately 75
down-sampled areas.

Two examples of local GC map after down-sampling are
shown in (Figures 6B,C), and areas 1 and 2 were labelled as RD
and non-RD class, respectively, according to the heat map in
(Figure 6A). The CIV for area 1 is much higher at 0.83 than that
of area 2 at 0.27. The RD prediction for all the down-sampled
areas using CIV yielded the receiver operating characteristic
(ROC) curve shown in (Figure 6D), with an area under curve
(AUC) of 0.87 and the best operating point at 0.60.
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Wearable cardioverter defibrillator (WCD) is a life saving, wearable, noninvasive

therapeutic device that prevents fatal ventricular arrhythmic propagation that leads to

sudden cardiac death (SCD). WCD are frequently prescribed to patients deemed to

be at high arrhythmic risk but the underlying pathology is potentially reversible or to

those who are awaiting an implantable cardioverter-defibrillator. WCD is programmed

to detect appropriate arrhythmic events and generate high energy shock capable of

depolarizing the myocardium and thus re-initiating the sinus rhythm. WCD guidelines

dictate very high reliability and accuracy to deliver timely and optimal therapy.

Computational model-based process validation can verify device performance and

benchmark the device setting to suit personalized requirements. In this article, we

present a computational pipeline for WCD validation, both in terms of shock classification

and shock optimization. For classification, we propose a convolutional neural network-

“Long Short Term Memory network (LSTM) full form” (Convolutional neural network-

Long short term memory network (CNN-LSTM)) based deep neural architecture for

classifying shockable rhythms like Ventricular Fibrillation (VF), Ventricular Tachycardia

(VT) vs. other kinds of non-shockable rhythms. The proposed architecture has been

evaluated on two open access ECG databases and the classification accuracy achieved

is in adherence to American Heart Association standards for WCD. The computational

model developed to study optimal electrotherapy response is an in-silico cardiac

model integrating cardiac hemodynamics functionality and a 3D volume conductor

model encompassing biophysical simulation to compute the effect of shock voltage on

myocardial potential distribution. Defibrillation efficacy is simulated for different shocking

electrode configurations to assess the best defibrillator outcome with minimal myocardial

damage. While the biophysical simulation provides the field distribution through Finite

Element Modeling during defibrillation, the hemodynamic module captures the changes

in left ventricle functionality during an arrhythmic event. The developed computational

model, apart from acting as a device validation test-bed, can also be used for the design

and development of personalized WCD vests depending on subject-specific anatomy

and pathology.

Keywords: sudden cardiac death, defibrillation threshold, hemodynamics, myocardial damage, biophysical

simulation, deep learning
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1. INTRODUCTION

Sudden cardiac death (SCD) is a sudden and unpredictable
event caused due to loss of cardiac functionality. SCD accounts
for the largest cause of natural death in the adult population,
causing around 13% of deaths in the overall population and
about 36% of deaths in heart failure patients (Smith and Cain.,
2006). The leading cause of SCD is primarily attributed to
electrical abnormality like ventricular arrhythmia (VA) and
ventricular fibrillation (VF) followed by structural cardiac
disorders like ischemia. VF is usually lethal within minutes of
its inception and if not immediately treated, leads to cardiac
arrest (Barraud et al., 2017). Electrical defibrillation is the only
effective therapy for such conditions. Electrical defibrillation
through wearable cardioverter-defibrillator (WCD) provides a
non-invasive therapeutic option for patients during a period
when the risk of SCD is changing or unclear (Poole et al., 2008;
Sharma et al., 2017).

Wearable cardioverter-defibrillator is mostly recommended
to patients who are newly diagnosed with non-ischemic
cardiomyopathy with severely reduced left ventricle ejection
fraction (LVEF), patients awaiting heart transplantation or in
patients with ventricular assist devices, temporary inability to
implant an intra-cardiac defibrillator (ICD) or in ambulatory
event monitoring, often performed for several weeks in an effort
to determine an arrhythmic etiology for syncope (Wan et al.,
2013). Similar to ICD, WCD detects ventricular arrhythmic
events and delivers a defibrillation shock to terminate VF
or tachycardia (>180 bpm) by resetting myocardial potential
distribution. Instead of the intracardiac electrogram (EGM)
signal, the ECG signal recorded from the body surface is used
to detect arrhythmic events. Therapeutic devices like WCD
though indispensable, have to maintain very high reliability and
accuracies in order to deliver timely and optimal therapy (Epstein
et al., 2013). WCD devices are programmed to be autonomous,
thus further burdening device complexity. Malfunction in any
form while in detection or during shock generation can cause
serious injury, which can even be fatal. An effective way of device
reliability and performance validation is through computational
model aided trials (Ariful et al., 2016). For WCD, computer-
aided validation processes could evaluate device performance
in virtual trials and benchmark the device settings to suit
personalized requirements. In this regard, two separate aspects
require validation and bench-marking: the classification accuracy
of detecting shockable rhythm from non-shockable rhythm and
shock voltage profile optimization based on a personalized
requirement to optimize shock efficacy.

The central requirement of autonomous WCD devices is the
detection of VF by means of reliable detection algorithms. Over
the past decades, special focus has been given toward developing
efficient algorithms that can correctly detect VF abnormality,
especially in real-time (Ayala et al., 2014; Figuera et al., 2016).
Different large-scale machine learning (ML) methods have
been explored for ECG beat classification identifying shockable
rhythm (Jekova, 2000; Amann et al., 2005). In spite of the
high accuracy of classification, incorporating complex feature
measurement within theWCD setting is a challenge.WCD shock

detection algorithm requires real-time analysis with minimal
decision delay, low complexity, and low memory requirement
for computations that presents a certain risk of poor feature
quality due to inaccurate delineation of ECG waves, filtering, or
approximations (Aramendi et al., 2010). As an alternate, several
self-learning approaches based on the deep neural network have
been proposed recently (Zhong et al., 2020) and are now widely
applied on arrhythmia classification using Convolutional Neural
Network (CNN) (Lee et al., 2019). The CNN-based arrhythmia
classification could eliminate the cumbersome requirement of
criteria selections and parameters setting in traditional ML-
based arrhythmia detection methods while achieving high
detection accuracy. Some notable prior arts (Silva et al., 2019)
implementing CNN architecture for arrhythmia classification,
reports the use of various architectural layers (Kwon et al., 2018),
attention on noise removal, use of LSTM networks (Krasteva
et al., 2020), etc. The most recent work reporting the highest
accuracy to date uses a bidirectional LSTM (bi-LSTM) instead of
unidirectional LSTM (Jeon et al., 2020).

Irrespective of high detection accuracy and type of
defibrillator, strong shocks that are required during defibrillation
are reported to have serious adverse effects, most prominently
via electroporation that may initiate post-shock arrhythmia
(Colley et al., 2019). Strong shocks can also potentially cause
myocardial damage, giving rise to mechanical dysfunction
(stunning), increase in contractility, and development of
hemodynamically mediated symptoms (Qiana et al., 2018).
Hence, it is extremely important to tune and optimize the
shock energy to get the desired effect. The mechanism of
defibrillation has been studied extensively in recent years, mostly
for ICD placements (Stinstra et al., 2008; Onofrio et al., 2018).
Computational models analyzing defibrillation mechanism and
the after-effect of shock voltage in the myocardium can provide
an in-depth understanding of the fibrillation mechanism and
help in optimizing the defibrillation threshold (Stinstra et al.,
2007). The distribution of electric fields in the heart is closely
related to defibrillation outcomes. Three dimensional cardiac
models like the volume conductor models coupled with Finite
Element Modeling are well suited to reflect the electric field
distribution in myocardium substrate (Stinstra et al., 2010;
Trayanova et al., 2011; Tate et al., 2018).

Prior art lists sufficient methods of classifying shockable
and non-shockable rhythms but for defibrillator performance
validation, an integrated pipeline that could classify shockable
rhythm as well as validate the shockable energy delivery efficacy
is the need of the hour. The shock delivery circuit of WCD
generates very strong fields of fixed energy or current to
stop the arrhythmic propagation by resetting the myocardial
potentials to a depolarized state (Morgan et al., 2009). It has been
observed that field distribution required to provide defibrillation
effect is greatly dependent on subject-specific parameters like
torso geometry, trans-thoracic impedance, cardiac structure, etc.
(Hatib et al., 2000). A computational pipeline that could integrate
the aspects of shock identification and pre-plan personalized
shock delivery can be extremely useful as a WCD device
validation. Mathematical modeling and computer simulation can
efficiently accelerate the process of optimizing and testing of
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WCDs. A computational model-based validation approach could
evaluate device performance on virtual trial and benchmark the
device setting to suit personalized requirements.

In this article, we propose a computational pipeline for
WCD validation, both in terms of shock classification and
shock optimization. The schematic representation of the
proposed computational framework is shown in Figure 1.
The computational model is an in-silico cardiac model
integrating cardiac functionality in terms of hemodynamics
and electrophysiology, encompassing biophysical simulation
to compute the effect of shock voltage on myocardial potential
distribution. We propose a CNN-LSTM architecture for the
classification of VF, VT (shockable), and other (non-shockable)
rhythms. The proposed network is evaluated on two open-
access databases, the CUDB and the VFDB databases. A 3D
cardiac computational model in line with the volume conductor
model is developed utilizing high definition torso-cardiac MRI.
This model is used to study the variation of shock efficacy by
varying plausible electrode configurations. A novel metric is
designed for quantifying the shock efficacy computed using
the energy required to obtain DFT and extent of myocardial
damage. Along with the biophysical modeling aspect, the
cardiac computational model also integrates the hemodynamics
functionality that closely replicates the dynamic changes in left
ventricular functions during VF/VT episodes, thus providing key
physiological insights. Novelty and uniqueness of the proposed
computational pipeline for shock classification and distribution
analysis lies in incorporating a CNN-LSTM overlapping window
algorithm, deriving defibrillation efficacy metric for optimal
electrotherapy, and inclusion of hemodynamic insights during
VF initiation and subsequent termination. Such concepts have
not been proposed earlier for WCD and have the potential to
enhance conventional WCD functioning in terms of device
validation and personalization.

2. MATERIALS AND METHODS

The proposed computational framework is divided into three
major sections involving the key features of the proposed model
which are

• CNN-LSTM based shockable rhythm classifier architecture
with both non-overlapping and overlapping window
variations

• Biophysical modeling of shock propagation and shock efficacy
index generation

• Capturing hemodynamics changes during VF/VT episodes
and recovery

Subsequent sections concentrate on the development and
integration of each of these features in a computational model
incorporating the functionality of a standardWCD. Themodeled
WCD referred to in this paper is the WCD model of Zoll
electronics (WCD system, LifeVest, ZOLL, Pittsburgh, PA, USA)
(Reek et al., 2017). The basic working of WCD can be found in
the Supplementary Material.

2.1. Dataset and ECG Pre-processing
The classification algorithm is designed and validated using two
publicly available datasets, the MIT-BIH Malignant Ventricular
Arrhythmia database (VFDB) (Greenwald, 1986) and the
Creighton University Ventricular Tachycardia database (CUDB)
(Nolle et al., 1986). The VFDB dataset contains 30-min long
Holter ECG record files belonging to 22 subjects. The CUDB
dataset contains 8-min long ECG records collected from 35
patients who have experienced sustained episodes of lethal VA.
The sampling rate for all recordings is 250 Hz.

A pre-processed version of the ECG recording datasets,
as discussed in Krasteva et al. (2010) and Bisera et al.
(2008), have been utilized for the design and validation of the
proposed algorithm. The preprocessing steps followed are mean
subtraction, moving average filtering [order = 5], a high-pass
filter with fc = 1Hz to eliminate drift suppression, and low-pass
Butterworth filter with fc = 30Hz. Further, noise and artifacts
have been excluded from the datasets along with intermediate
rhythms like slow VT (<150 bpm) and fine VT. Also, recording
segments with minimal electrical activity have also been excluded
from the datasets. With all the preceding pre-processing steps
applied, the resultant recording is split into windows of different
lengths namely, 2, 4, 6, and 8 s. Further, windows with uniform
labeling only have been retained for use. The details regarding

FIGURE 1 | Schematic representation of the computational model to analyze Wearable cardioverter-defibrillator (WCD) efficacy.
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the final count of windows generated through the process for the
different classes under consideration (VT, VF, and Others) are
given in Table 1. These instances have been used for training and
validation of the proposed algorithm in a k-fold cross-validation

TABLE 1 | Dataset segmentation details.

CUDB VFDB

Segment length (s) NSh VF VT NSh VF VT

2 6,075 120 1,390 16,005 1,473 1,597

4 2,986 53 663 7,861 702 784

6 1,959 31 422 5172 446 516

8 1,446 21 302 3,823 326 377

FIGURE 2 | Sample ECG-(A) 8 s duration Ventricular Tachycardia (VT) signal,

(B) 8 s duration VF signal, (C) 8 s duration non-shockable signal.

framework. Plots of the 8 s recordings with labels VT, VF, and
non-shockable rhythm are given in Figures 2A–C, respectively.

Apart from the above-discussed processing strategy, another
approach toward dataset segmentation has been explored. In
this second approach, the datasets have been segmented into
training and validation subsets in a subject-wise manner. This
process ensures that data signatures of a particular subject are
not present in both the training and validation sets, thereby
ensuring a robust evaluation strategy of the proposed algorithm.
This study only considers data with 8 s of data length. In addition,
in order to study the impact of over-lapping contiguous windows
on classification scores, three overlapping scenarios have been
considered under this approach. The three scenarios pertain
to 25, 50, and 75% overlapping of contiguous windows. For
the different overlapping percentages, the number of windows
generated can be expressed in terms of Equation (1).

m = (n− r)/(k− r) (1)

where, m = number of windows, n = total samples, r = overlap
sample, and k= window sample.

2.2. Deep Learning Architecture for
Classification
For classifying different arrhythmic rhythms, we propose a deep
CNN-LSTM architecture for the classification of VT, VF, and
other conditions from ECG. Here, other conditions can include
any cardiac condition other than VT and VF, that do not require
shock therapy. The block diagram of the proposed network
architecture is shown in Figure 3.

The CNN-LSTM is a type of LSTM architecture specifically
designed for sequence prediction problems for input data with
spatial structure that can not be easily modeled with a vanilla
LSTM. The architecture contains a series of CNN layers for
the extraction of features from the input data which are then
applied to an LSTM architecture for temporal modeling and
prediction. As shown in Figure 3, input ECG data after pre-
processing is applied to a series of 1D convolutional layers. For
each convolutional layer, the kernel dimension is taken as 5.
Batch normalization is applied at the end of the convolution
operation for standardizing the inputs to a layer for each mini-
batch. The number of filters in the base convolutional layers is
selected as 16. As we go deeper, the number of filters in the
convolutional layers are gradually increased by a factor of 2 to
extract more detailed features. However, the dimension of the
feature is reduced by applying the stride length of 2 in every
alternate layer for doing the convolution operation. The neurons
in the convolutional layer are activated using the non-linear
Rectified linear unit (Relu) activation function. The output of the
final convolutional layer is applied to an average-pooling layer
having a window size of 4 to select a representative feature set
at a reduced dimension. This is applied to a pair of LSTM layers
having 128 and 64 units, respectively, followed by a dense layer
having 3 neurons for classification of VT, VF, and other rhythms
using a softmax activation function.
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FIGURE 3 | Block diagram of the proposed convolutional neural network-"full form of LSTM" (CNN-LSTM) architecture.

2.2.1. Network Parameters

Selection of the optimum network hyper-parameters becomes a
major challenge in designing a neural network architecture. In
our architecture, we focused on a few parameters while designing
the optimum architecture including, (1) number of filters in the
base convolutional layer, (2) dimension of the filter kernel, (3)
the stride length, and (4) number of hidden units in the LSTM
layers. We opted for a randomized search as the hyper-parameter
selection strategy, where the possible values of different hyper
parameters are randomly selected from a pre-defined range to
train and evaluate the network on a small representative dataset
obtained from the CUDB database. The evaluation is done
based on 5-fold cross-validation on the representative dataset.
The combination of hyper-parameters producing the maximum
median accuracy in the cross-validation approach is selected
as the optimum combination for designing the network. The
duration of instances in the representative dataset is considered
as 4 s.

2.2.2. Training of the Proposed Network

The proposed architecture is implemented in python 3.6.9 using
TensorFlow 1.5. The platform where the network was trained
contains an Intel Core i7 processor and 8 GB of primarymemory.
The mini-batch size is selected as 32. During training, the
categorical cross-entropy loss of the network is minimized using
an Adam optimizer with learning a rate of 0.005 and 300 epochs
limit are used before stopping the training. The initial weights
are set using Xavier initialization. In this process, the values are
randomly assigned from a Gaussian distribution of zero mean
and a finite variance var =

2
nin+nout

, where nin and nout are the

number of input and output neurons in that layer, respectively.
The bias terms are initialized by zeros.

2.3. Cardiac in-silico Model
The cardiac in-silico model is a computational model
encompassing a 0D lumped hemodynamic model and a 3D
volume conductor model enabling biophysical simulation.
There is also electrophysiology (EP) block that can synthesize
ECG template and is responsible for the initiation of cardiac
contraction and pulsating behavior of heart chambers that
drives the hemodynamic block. In this particular work, the ECG
signal is used directly from the database or it can be the signal
measured by sensing leads of WCD. If required, synthesized
VF/VT ECG can also be generated using the proposed in-silico
model (Mazumder et al., 2021).

2.3.1. Hemodynamics Module

The Hemodynamic block consists of a four-chambered heart
with lumped pulmonary and systemic circulations. The pressure
variations across the cardiac chambers are modulated through
time-varying compliance functions. Heart valves are modeled
to replicate the functionality of each cardiac phase, capturing
the pressure difference across the cardiac chambers to ensure
unidirectional blood flow through the heart and maintain
the pressure-volume dynamics. The model is also coupled
with central nervous system modulation in terms of a
baroreflex control, which regulates pressure autonomously
through sympathetic and parasympathetic interaction of heart
rate, contractility, and systemic vascular resistance, explained in
detail in our prior works (Mazumder et al., 2019; Roy et al., 2021).
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The dynamic equations to replicate the pressure dynamics of
the model at various chambers and pulmonary and aortic arteries
can be represented by state-space equations, depicting the flow
variation due to resistance to blood flow from the vessel along
with the compliance property of the chambers. As an example,
the flow equation of the left ventricle is expressed in Equation
(2).

Ṗlv =
1

Clv(t)

[

Umi ×
Pla − Plv

Rmi
− Uao ×

Plv − Psa

Rao
− Ċlv(t)Plv

]

(2)

Here Pla, Plv, Psa are the pressure variables in the left-atrium,
left-ventricle, systemic arteries, respectively, Rmi, Rao are the
valvular resistances across the mitral and aortic valve, Clv is
the left ventricle compliance. The symbols Umi,Uao are the

control functions to mimic the opening or closing of the
respective cardiac valves. Pulsating action of the heart is driven
by a compliance function, which determines the time-varying
compliance of auricles and ventricles and brings about the
pumping action of the heart, utilizing time and morphological
metrics from ECG signal. This compliance adjustment is the
most crucial part of this study as the effect of VF is modeled
by decoupling atrium and ventricular compliance and then
modulating the ventricular compliance to emulate the effect of
VA.

In generic ECG signal, for one cardiac cycle, the characteristic
cardiac electrical events like PQ (auricular depolarization),
QRS (ventricular depolarization), ST duration (ventricular re-
polarization), and R-R intervals are marked by a specific
set of PQRST peaks whose amplitudes and time-instances
can be represented as

[

(Pp,Tp) (Pq,Tq) (Pr ,Tr) (Ps,Ts) (Pt ,Tt)
]

FIGURE 4 | (A) ECG signal decomposed to its constituent components and phase matched cardiac chamber compliance functions, (B) Compliance variation of left

ventricle tuned with arrhythmia ECG signal levels derived from the database.
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(Figure 4A). These electrical instances are encoded to modulate
compliance function and timing information to control the
synchronized operation of four heart chambers (Roy et al., 2021).
Compliance function of the left ventricle can be modeled as
follows:

Ci(t) = Ci × uv(t − d), i ∈ {lv, rv} (3)

uv(t) =















0.5− 0.5 cos
(

π
t
T1

)

, 0 ≤ t < T1

0.5+ 0.5 cos
(

π
t−T1
T2−T1

)

, T1 ≤ t < T2

0, T2 ≤ t < T

(4)

where uv(t) is the activation function, and d = (Tr − Tp)
represents the delay in activation of ventricles from the right-
atrium, T1 = (Tr + Tt)/2 and T2 = Tt are the systolic and
diastolic duration of the cardiac cycle (T), respectively. Similarly,
compliance for the other chambers can also be modeled. The
ventricular compliance (Ci; ∀i ∈ {lv, rv}) are computed by
the ratio between the R-peak and T-peak, expressed as Ci =
Pr
Pt
. Compliance functions estimated from ECG template for a

healthy heart for all the 4 chambers are shown in Figure 4A.
Ventricular fibrillation is an abnormal heart rhythm, where

irregular heart signals cause the ventricles to twitch uselessly.
As a result, the cardiac elasticity across the ventricles increases,
and hence, those cardiac chambers get stiff with decreased
compliance (Arts et al., 2005). Subsequently, the heart does
not pump blood to the rest of the body. To hemodynamically
simulate this effect, the compliance function during the VF
condition has been remodeled. Let us assume that Ci

(v,Nor)
(t),

where, (i ∈ RV , LV) is the compliance across the ventricles (right
and left) during normal conditions at the tth time. When the VF
episode starts, Ci

(v,Nor)
(t) starts decreasing. To model this effect

analytically, we have formulated the following equation:

Ci
v(t) =

{

Ci
v,Nor × exp(− t

τ
), if VF = 1

Ci
v,Nor , else

; ∀i ∈ {RV , LV} (5)

where, t is the duration of the VF/VT episode, and τ defines
the time constant of that VF episode. Thus, during the
VF occurrence, the ventricular compliance starts decreasing
exponentially. One such instance of remodeled ventricular
compliance phase tuned with VF/VT occurrence is shown in the
Figure 4B. The raw ECG signal along with the annotated labels,
derived from the CUDB dataset is used as a reference to show
the modulation of ventricular compliance with changes in ECG
morphology and arrhythmic patterns.

2.3.2. Biophysical Modeling

Understanding and replication of defibrillator behavior need
reconstruction of torso-cardiac anatomy with bio-physically
detailed realistic-geometry models. We have used anMRI scan of
a 19-year-old healthy subject, obtained from a dataset developed
by an Open Source software project of the SCI Institute’s
NIH/NIGMS CIBC Center (SCI, 2016) to create a 3D torso-
cardiac model. Conductivity levels of various organs and tissues
in the torso section, like the skin, skeletal muscles, fat, bones,

lungs, spleen, liver, stomach, kidneys, and spinal cord are defined
as per standard values reported in the literature (Lim et al.,
2018). Finite element meshes are created in the 3D cardiac-torso
model to help in solving the biophysical model associated with
the application of external fibrillation. This is similar to forward
electrophysiology, the only difference being that instead of using
cardiac potential as the source model, defibrillator voltage is
acting as the source. We have used monodomain equations to
solve the biophysical model. Shocking electrodes are placed in
the torso section for various possible configurations. Effect of an
external voltage applied at the electrodes is captured through the
modified torso and cardiac potential generation. The standard
shocking configuration in WCD is via Apex-Posterior shock.
In one of our previous works (Mazumder and Sinha, 2021),
we compared three other shocking electrode configurations to
obtain optimized defibrillation, expressed in terms of the critical
mass hypothesis. In that analysis, Front-Back configuration
resulted as the most optimized electrotherapy. In this work,
we extend our previously designed defibrillator efficacy concept
and focus on analyzing electrotherapy responses at various sub-
locations in Apex-Posterior and Front-Back configurations.

The governing equation for biophysical simulation is the
modified steady state electrical potential in an inhomogeneous
volume conductor described by Laplace equation:

∇(σ∇φ) = 0 (6)

where, σ is the conductivity tensor field and φ is the electric
potential. This is subjected to two boundary conditions, Dirichlet
boundary condition, defined as φ(x, y, z) |�k

= Vk applied
anywhere the electric potential is known (Vk is the known
potential of electrode k, and �k specifies the domain coincident
with electrode k) and Neumann boundary condition, defined

as ∂φ

∂n |� = 0, applied on the surface of the object being
simulated, not defined by �. In this implementation, we assume
a linear and isotropic volume conductor model, with negligible
capacitance and inductance, and applied the Galerkin finite
element formulation with tri-linear interpolation (Colley et al.,
2019). All the processes involved in a biophysical simulation
like monodomain equation solving, mesh model generation, and
their visualization were done using SCIRun software (Burton
et al., 2011). For computing the biophysical equation, the torso
model and the electrode model (defined over any place in
�) are integrated into a computational mesh composed of
hexahedral elements suitable for finite element modeling. Mesh
created for the cardiac structure consists of 34,927 elements with
1,17,649 nodes, while the torso structure has 45,328 elements
and 8,25,871 nodes, build around a lattice volume of 50 x 50
x 75 cm. SCIRun uses BioPSE modeling library and packages
like TetGen for generating mesh structure (Stinstra et al., 2007).
During simulations, boundary conditions are specified on all
finite element nodes within the geometrical regions defined
by the electrodes above. Electrodes are assigned a constant
potential over their surface. For shocking electrodes (anode),
the extracellular potential was fixed at the specified values to
define the strength of the applied shock (500 V); for ground
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electrodes (cathode), the extracellular potential was defined to be
0 V throughout.

There are various theories to define defibrillation efficacy,
but the underlying principle for all of them suggests that for
fibrillation to be effective, the Defibrillation threshold voltage
(DFT) value should be high enough to stop the fibrillation
effect but lower than upper threshold level (ULV), that is
capable of regenerating fibrillation mechanism through reentry
(Karagueuzian and Chen, 2001). We have implemented the
Critical point theorem (Zipes et al., 1975) which considers
DFT value capable of changing at least 95% myocardial mass
to a potential gradient of 5V/cm as a measure of complete
defibrillation. After the potential distribution is solved using
the finite element method, the gradients of the potential
field are evaluated for the full thorax using tri-linear spatial
derivatives and DFT values are computed. The DFT surrogate
intrinsically obtains extracellular potential fields throughout the
3D volume of the myocardium making it inherently convenient
for use in computational modeling studies in real-time (Morgan
et al., 2009). Along with DFT, ventricular mass with voltage
gradient distributions are also calculated. Higher voltage gradient
(>30 V/cm) causes irreversible damage to the myocardium
(Dosdall et al., 2010). Defibrillation energy is calculated using
the formulation for energy type defibrillator, defined as E =
1
2CV

2 where C = 130µF and V is the required voltage DFT
for the particular electrode configuration (Reek et al., 2017).
In Figure 5, the electrode locations in the 3D volume model

(cardiac-torso integrated), torso potential and cardiac potential
just after defibrillation, and the myocardial voltage gradient for
Apex-Posterior and Front-Back configurations are shown. Apex-
Posterior is the default standard shocking electrode configuration
used in WCD. Out of the two posterior electrodes, only one is
functional at any given time. For our analysis, we have considered
the right electrode as the shocking electrode. The cardiac
potential reflects the state of complete cardiac depolarization,
indicating effective defibrillation. The histogram representation
of voltage gradient distribution gives an idea of the defibrillation
pattern and efficacy.

2.3.3. Defibrillation Evaluation

Defibrillation threshold value reaching the critical mass is
capable of stopping the VA but the shock magnitude itself has
sufficient energy to damage the myocardium. We calculate the
ventricular mass with a voltage gradient >30, >45, and >

60V/cm, to assess possible myocardial damage. A new measure
combining DFT and myocardial damage is formulated using
probabilistic distribution and weighted KL divergence (KLD)
(Mazumder and Sinha, 2021). We define an ideal distribution
of myocardial voltage gradient after defibrillation by combining
two exponential functions, one rising and the other decaying
in amplitude for below and above of 5V/cm, respectively. The
distribution is defined such that the required critical mass
defibrillation is achieved ideally around the 5 V/cm mark and
the decay component diminishes for a value of the voltage

FIGURE 5 | Left to right: Electrode location, torso potential distribution just after defibrillation, cardiac potential indicating complete myocardial de-polarization state

and defibrillation threshold (DFT) histogram representation for Apex-Posterior (upper) and Front-Back configuration (lower).
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gradient (x) ≥ 30V/cm (Zipes et al., 1975). Considering the
modeled distribution asM and the defibrillation Voltage gradient
distribution as C, the divergence or the information gain from
M to C can be computed using KLD (Sekeh et al., 2013). Higher
voltage gradient leads to greater myocardial damage, hence we
have proposed the error measure reflecting the efficacy of the
defibrillation (ED) using weighted KLD (WKLD) Dw

KL. Here, the
weight (W = x) allows the regions with a higher myocardial
gradient to be penalized more in the computation of the error

measure (ED). Lower the measure, lower is the difference in
entropy between M and C, making the actual defibrillation
function closer to the modeled or ideal one. This difference can
be considered as the error between these two distributions and
provide an informative efficacy measure (ED) combining both
DFT and myocardial damage information expressed as follows:

WKLD(C) = Dw
KL(C||M) =

∞
∑

x=0

x.C(x)ln
C(x)

M(x)
(7)

FIGURE 6 | Calculation of metrics derived from the relative orientation of heart with respect to the WCD electrodes-(A) flow chart, (B) schematic representation, (C)

electrode locations considered for Apex-Posterior, and (D) Front-Back configuration.
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Defibrillation threshold, energy, and WKLD values are
calculated for two standard shocking electrode orientations
(Apex-Posterior and Front-Back) as well as in between various
plausible subspaces of the specified configurations. WCD
electrodes are all of similar shape and size (0.1 m × 0.1 m).
For the Apex-Posterior configuration, the “apex” electrode acting
as the cathode is positioned at the mid-axillary line at the level
of the 5th intercostal space, apex coordinates being (0.1420,
–0.074, and 0.0224) with respect to 3D world co-ordinate center
(0,0,0). Here the representation is (X,Y , and Z), where X is along
the medio-lateral, Y is along anterio-posterior and Z is along
the vertical direction, the units are in meter (m). The center
(0, 0, and 0) is taken as the center of torso at the transverse
plane aligned center to the heart. Anode electrodes are placed
under the right clavicle at the 4th intercostal level (−0.099,
0.0744, and 0.1225). The cathode electrode is placed on the
left precordium, in front of the chest at coordinates (−0.0301,
−0.0744, and 0.0225), and an anode is placed on the back
behind the heart in between the scapulas (−0.0301, 0.0744, and
0.0225) for the Front-Back configuration (shown in Figure 5).
For each of these configuration, we create a subspace of probable
electrode locations to study the variation in defibrillation efficacy.
We examine the variation of the defibrillation energy (E) and
WKLD for each such electrode locations to find the location
which minimizes the WKLD, while having a low and acceptable
value of E. For a given configuration (Apex-Posterior or Front-
Back), the variation in the position of the anode, leads to a
different view point from which the electric field is propagated
through the myocardium. Such change in the relative view
point, with respect to the orientation of the heart, is quantified
using certain distance and area metrics. In total, four metrics
are defined namely, three distance metrics D1,D2,D3, and one
area metric A1. The flow chart of the computation is given in
Figure 6A. A schematic representation of the axes, planes, and
projections used to define the metrics is shown in Figure 6B.
D1 is the perpendicular distance from the origin of the world
3D coordinate “O” to line “AC” connecting the center of the
anode and cathode. D2 is the distance between “O” and the
center of the anode “A.” To compute the remaining metrics, the
structure of the 3D heart is projected on the plane perpendicular
to the line connecting the anode and cathode. The vector EAC
is computed using the centers of the anode (XA,YA,ZA) and
cathode (XC,YC,ZC), which defined the view direction of the
electrodes. Next, a projective transformation matrix (TO) is
derived (given by Equation 8) to project any data point from the
world 3D coordinate to a plane (P) perpendicular to the vector
EAC.

TO =









m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
0 0 0 1









(8)

The mii indicates the rotation and scaling related parameters
and the entries in the last row and last column, except m44 are
zeros indicating no translation and the scenario of orthographic
projection (Hu et al., 2014). Recently, the orthographic projection

was also used to analyze the structure of various parts of the
human heart (Sherknies et al., 2003; Liu et al., 2019). We have
considered such a projection to preserve the relative distances
between a pair of points from the 3D space to the plane, which
is required for the computation of the distance and area metrics
on the plane P. A 3D mesh of the heart is created and then the V
vertices of the mesh, with coordinates (vi

xh
, vi

yh
, vi

zh
), ∀1 ≤ i ≤ V ,

are projected to the 2d plane P using the transformation matrix
TO as shown in Equation (9).
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1









(9)

The vertices of the 3D mesh are used as homogeneous form
([vi

xh
vi
yh

vi
zh

1]T), where T denotes the transpose. The projected

coordinates [vixp viyp]
T lies on the 2D plane P perpendicular to

the view vector EAC. A convex-hull (CH) is derived using the 2D
co-ordinates [vixp viyp]

T on the plane P. The centroid of the CH

is computed as XPC,YPC, and the line AC intersects the plane P
(atXPL,YPL) as shown in Figure 6B. ThemetricD3 is the distance
between (XPL,YPL) and XPC,YPC, and the metric A is the area of
the convex hull.

Along with the standard Apex-Posterior and Front-Back
configuration, 12 similar orientations are recreated by placing
the anode electrode in different locations and recomputing the
mesh and biophysical simulations, keeping the cathode fixed.
The top-most right location being (–0.1025, 0.0744, and 0.1025)
and bottom left location being (0.1025,0.0744, and –0.1025). The
other 10 electrodes are distributed in a symmetrical pattern with
a 0.05 m gap in both “X” and “Z” axes. From the findings of these
12 new locations for each configuration, a finer distribution is
studied by introducing 5 separate electrode locations in places
translating to a better defibrillation index. The electrode sub-
locations throughout the torso space are shown in Figures 6C,D.

3. RESULTS

Initially, we present the results regarding the accuracy of
detection of the shockable rhythms based on two datasets
namely, CUDB and the VFDB. Then, the characteristics of
the hemodynamics obtained from the cardiovascular simulation
model, during both shockable and non-shockable segments, are
given. Finally, results on the defibrillation metrics are presented
for different electrode positions in two configurations namely,
Apex-Posterior and Front-Back.

3.1. Detection of Shockable Rhythm
This sub-section details the performance of the proposed deep
learning classifier in identifying VT, VF, and other classes on both
CUDB and VFDB datasets based on a 5-fold cross-validation
approach. The ECG measurements from all subjects, as available
in the original dataset, are first segmented into small non-
overlapping windows of equal length. Every single window is
considered as an independent training or test instance for the
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classifier. The objective of this study is not only to measure the
classification accuracy but also to estimate the optimum window
length required for robust classification performance. Table 2
summarizes the classification performance of the proposed
CNN-LSTM architecture on the CUDB and the VFDB datasets
on different window lengths of 2, 4, 6, and 8 s. Here, we report the
median classification performance in terms of precision, recall,
and F1-score of detecting various target classes across 5-fold
cross-validation.

Precision, recall, and F1-score are popularly used for
measuring the performance of a classifier. In theory, precision
measures the number of correct positive predictions, and recall
measures the number of correct positive predictions made out
of all positive predictions that could have been made by the
classifier. For a multi-class classifier, these two are defined for
every target class in terms of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN), across all classes
in one vs. all method:

precision =
TP

TP + FP
recall =

TP

TP + FN
(10)

F1-score is a method of measuring the classification accuracy
based on the combined effect of precision and recall.
Mathematically, it measures the harmonic mean of precision and
recall as follows:

F1 = 2
(precision ∗ recall)

precison+ recall
(11)

As mentioned in Section 2.1, both our target datasets are largely
imbalanced. Among the 3 different classes (VT, VF, and other),

the instances corresponding to the other conditions occupy the
major portion of both CUDB and VFDB datasets, whereas the
number of instances related to VT is the least in number. It can
be observed from Table 2 that the overall F1-score of detecting
various classes tends to improve with the increased window-
length and the optimum performance is achieved at a window-
length of 8 s. It is to note that the overall signal quality of the
CUDB datasets is better than the VFDB dataset, which contains
many noisy instances where the classifier does not yield reliable
performance. Hence, the proposed classifier produces a better
classification accuracy on the CUDB dataset compared to VFDB.

Table 2 summarizes the classification performance of our
proposed approach on the CUDB and the VFDB databases.
Similar to the existing approaches in the literature, the
classification approach is evaluated by applying cross-validation
on the entire dataset and the accuracy is reported against a
fixed window length. However, this approach does not reveal the
utility of the classifier in detecting the onset of a VT or a VF
event on a long data stream recorded from a subject. Hence,
in the second part of our experiment, we perform a detailed
subject-wise analysis.

Typically, a shock is applied within 32 s of detecting a VT or
a VF event. Hence, in this stage we evaluate our classification
performance on every 32 s long data segment. The decision
window is fixed at 8 s and a final decision corresponding to a 32
s data stream is made based on majority voting on the prediction
labels on the continuous 8 s long windows within the 32 s
long data stream. For the subject-wise analysis, we completely
separate the train and test subjects on both datasets considered
in this article. About 80% of all subjects form the training set
and the remaining 20% of the subjects form the test set. The

TABLE 2 | Classification performance of the proposed deep learning classifier on CUDB and VFDB dataset (P = precision, R = recall, F1 = F1 score).

2 s 4 s 6 s 8 s

Target label P R F1 P R F1 P R F1 P R F1

VF (CUDB) 0.96 0.92 0.94 0.94 0.99 0.97 0.97 0.96 0.96 0.97 0.98 0.98

VT (CUDB) 0.89 0.66 0.76 0.67 0.47 0.55 0.50 0.83 0.62 1.00 0.69 0.82

Others (CUDB) 0.98 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.99 0.99 1.00 1.00

VF (VFDB) 0.73 0.81 0.77 0.75 0.85 0.80 0.85 0.70 0.77 0.82 0.78 0.80

VT (VFDB) 0.80 0.69 0.74 0.78 0.70 0.74 0.70 0.83 0.76 0.74 0.81 0.77

Others (VFDB) 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00 0.99 1.00

TABLE 3 | Subject-Wise classification performance overlapping windows of 8 s on CUDB and VFDB dataset (P = precision, R = recall, F1 = F1 score).

Overlappingwindow 0% 25% 50% 75%

Target label P R F1 P R F1 P R F1 P R F1

VF (CUDB) 0.93 0.96 0.94 0.98 0.98 0.98 0.98 1.00 0.99 0.99 0.99 0.99

VT (CUDB) 0.95 0.60 0.74 0.98 0.75 0.85 0.98 0.90 0.94 0.97 0.92 0.90

Others (CUDB) 0.98 0.98 0.98 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

VF (VFDB) 0.82 0.78 0.80 0.90 0.82 0.86 0.97 0.90 0.93 0.99 0.90 0.93

VT (VFDB) 0.71 0.80 0.75 0.77 0.89 0.83 0.88 0.94 0.91 0.80 0.94 0.85

Others (VFDB) 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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FIGURE 7 | Hemodynamic parameter variations tuned with sample ECG signal from CUDB database: (A) ECG signal with ground truth label and classifier derived

labels, (B) Variation in Heart Rate, (C) left-ventricular functional metrics (Ejection fraction, Cardiac output, and Mean arterial pressure).
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deep learning model is retrained on the new training set and is
individually applied on every test subject for prediction. Different
hyper-parameters of the neural networks are kept unchanged.
To analyze the detection accuracy of the onset of an event, we
applied overlapping on the successive 8 s-long windows, in a 32
s long data-stream. Table 3 shows the impact of overlapping in
classification performance based on non-overlapping, 25, 50, and
75% overlapping. Depending upon the amount of overlapping, a
32 s long data stream contains 4, 5, 7, and 13 data windows.

3.2. Hemodynamic Parameter Variations
The hemodynamic module takes ECG signal as the driving
parameter and based on the morphological variation, apparent
during VF/VT, adjusts the left ventricular compliance, as
explained in Section 2.3.1. Figure 7A shows particular instances
of ECG waveform variation along with the ground truth label
and the performance of our proposed classifier. Heart rate
(Figure 7B), calculated from the ECG signal is also displayed.
Based on the detected VF/VT regions, compliance is modulated.
Left ventricle compliance, as shown in Equation (2), dictates
the pressure-flow dynamics of the systemic circulation. As
Clv, heart rate, and flow parameters vary due to change in
cardiac contractility, there is a marked effect on inherent cardiac
parameters like ejection fraction (EF), cardiac output (CO), mean
arterial pressure (MAP), etc. (Figure 7C). These parameters are
of paramount medical importance in analyzing cardiac function.
LVEF is the most important factor in stratifying SCD. EF,
as captured from the computational model, shows a marked
reduction during VF/VT period, which if left uncorrected will
lead to SCD. In the dataset used, the VF episodes were occurring
randomly for a short duration along with normal sinus rhythm.
The hemodynamicmodule adapts to these changes in conduction
dynamics and computes left ventricle information in real-
time, without any additional delay. Along with EF, CO and
MAP also follow pathological trends observed during VF/VT
episodes. MAP calculated takes into account the change in

cardiac contractility, heart rate variation, and also change in
systemic resistance, regulated through a baroreflex mechanism.
Hence, these observations are not just reflections of the initiation
of pathological conditions, some level of modulation offered
by the Central nervous system in an attempt to regularize the
hemodynamic turbulence is also encoded in it. This trend is
especially evident in post-VF episodes, where the ground truth
label is normal but there are fluctuations in MAP trying to
maintain the homeostasis.

3.3. Defibrillation Metrics
The results provided for defibrillation efficacy computation are
an extension of our previously published work (Mazumder and
Sinha, 2021), where we compared four different shock electrode
configurations, naming Apex-Anterior, Apex-Posterior, Side-
Side, and Front-Back, and found that the unconventional Front-
Back configuration yielded better defibrillation efficacy compared
to the other configurations. In this work, we extend the concept
of varying the electrode location in a sub-plane around the
Apex-Posterior and Front-Back configuration to analyze the
effect of inter-electrode distance and effect of electrode location
in overall defibrillation efficacy. Table 4 tabulates 4 different
distance metric vectors along defibrillation efficacy metrics in
terms of WKLD and Energy for 13 locations in Apex-Posterior
and 13 Front-Back configurations. The configurations are shown
in Figures 6B,C. It is interesting to note that apart from the
original standard location, there are other locations that reports
even lower WKLD and energy value, pointing to location where
fibrillation is more efficient. For Apex-Posterior configuration,
locations 2, 5 coinciding with the upper right quadrant, and
for Front-Back, locations 3, 4, and 8, coinciding with the upper
left quadrant shows the most decreased WKLD and DFT energy
trend. Similarly, electrodes lying in lower torso quadrants show
increased defibrillation energy. For defibrillation, an optimal
position is defined as the position of anode and cathodes that
allow maximum current path. Current conduction, apart from

TABLE 4 | Defibrillation efficacy analysis on varying electrode location (loc-location, O-original, E-Energy, J-Joule, the units of D1,D2, and D3 are meter (m) and A1 is m2).

Apex-Posterior Front-Back

loc D1 D2 D3 A1 WKLD E(J) D1 D2 D3 A1 WKLD E(J)

O 0.096 0.099 0.053 0.009 11.085 6.735 0.052 0.030 0.057 0.009 4.854 2.483

1 0.084 0.050 0.062 0.007 24.256 5.283 0.083 0.103 0.069 0.010 5.982 11.906

2 0.066 0.053 0.056 0.009 7.578 5.847 0.077 0.053 0.068 0.010 5.827 5.595

3 0.088 0.053 0.064 0.007 19.168 4.800 0.040 0.053 0.023 0.008 4.664 2.471

4 0.137 0.103 0.060 0.008 29.414 13.121 0.052 0.103 0.033 0.009 4.443 4.882

5 0.098 0.103 0.054 0.010 8.274 9.399 0.083 0.103 0.069 0.010 6.583 9.615

6 0.098 0.103 0.054 0.010 46.953 25.437 0.083 0.103 0.069 0.010 5.982 11.906

7 0.137 0.103 0.060 0.008 126.765 43.836 0.052 0.103 0.033 0.009 20.696 11.143

8 0.137 0.103 0.060 0.008 55.518 16.087 0.052 0.103 0.033 0.009 3.597 3.530

9 0.098 0.103 0.054 0.010 57.113 36.115 0.083 0.103 0.069 0.010 15.478 18.736

10 0.066 0.053 0.056 0.009 60.734 29.313 0.077 0.053 0.068 0.010 16.600 14.800

11 0.088 0.053 0.064 0.007 85.297 33.501 0.040 0.053 0.023 0.008 20.777 13.214

12 0.137 0.103 0.060 0.008 92.375 49.465 0.052 0.103 0.033 0.009 21.686 16.757
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TABLE 5 | Defibrillation efficacy analysis on upper torso concentrated sections,

M1 = %myo > 30V/cm, M2 = %myo > 45V/cm, M3 = %myo > 60V/cm,

(loc-location, O-original, E-Energy, J-Joule, the units of D1,D2, and D3 are meter

(m) and A1 is m2 ).

loc D1 D2 D3 A1 DFT(V) E(J) WKLD M1 M2 M3

p1 0.066 0.052 0.056 0.009 268.5 4.687 8.099 6.092 0.868 0.129

p2 0.042 0.030 0.067 0.008 269.9 4.734 10.535 6.568 1.007 0.138

p3 0.066 0.052 0.056 0.009 272.0 4.809 6.204 4.756 0.564 0.102

p4 0.083 0.075 0.053 0.009 326.9 6.944 5.340 4.584 0.576 0.111

p5 0.098 0.102 0.053 0.009 387.3 9.750 5.721 5.109 0.612 0.102

a1 0.040 0.052 0.022 0.008 159.0 1.642 3.260 1.556 0.252 0.0667

a2 0.046 0.075 0.029 0.008 205.3 2.740 4.792 3.177 0.646 0.182

a3 0.051 0.102 0.032 0.009 255.2 4.234 3.745 2.232 0.611 0.249

a4 0.046 0.075 0.029 0.008 184.4 2.209 4.095 2.643 0.405 0.118

a5 0.040 0.052 0.022 0.008 173.1 1.946 3.798 2.174 0.342 0.104

the geometry of electrodes and voltage applied, also largely
depends on the trans-thoracic Impedance (TTI) and intra-
thoracic impedance. TTI is dependent on numerous factors
like torso geometry, respiration rate and phase, electrode size,
etc. and varies from person to person while intra-thoracic
impedance, dictated by thoracic organs and tissue may remain
fairly constant in normal physiology but gets changed drastically
in cardiac conditions like heart failure (Wang, 2007). As we
are considering only a single subject scan data, TTI is assumed
to be constant. So the current conduction path is mostly a
function of a distance vector and tissue conductivity in the
thoracic chambers. Out of the four distance metrics defined,
D1 and D3 values are less in the Front-Back configuration
as compared to Apex-Posterior. Metric A1 and D2 do not
show much variations in changing the electrode locations. It
is interesting to note that as the electrodes are organized
throughout the torso in a geometric fashion, electrodes in
the upper and lower quadrants have fairly equivalent distance
metrics calculated from the center of the heart, yet, defibrillation
energy required in some quadrants is comparatively higher
than others. This is mainly due to the high conductivity
indices of tissues in the upper torso, decreasing the impedance
in the current pathway, and paving the way for efficient
defibrillation. In Table 5, a more concentrated torso area is
analyzed. Based on the deduction from Table 4 on the possible
optimal electrode location, 5 new electrode locations both for
Apex-Posterior and Front-Back configurations are analyzed. The
distance metrics, DFT voltage, defibrillation energy, WKLD
value, and Percentage of myocardial volume (%myo) above
critical gradient capable of causing myocardial damage are
shown.

4. DISCUSSION

In this article, we present a computational pipeline integrating
shockable rhythm detection and shock voltage field optimization
for evaluation, testing, and personalization of a WCD design
and operation.

In general, machine learning classifiers like an SVM or a
random forest can be successfully deployed to predict cardiac
events, where the clinical markers/ features are well-known
and are relatively simple to compute from the ECG signals
(Figuera et al., 2016). However, deep learning approaches are
typically preferred in large scale analysis where the disease-
specificmarkers are not very easy to compute in terms of numeric
features to train a classifier. A deep learning approach can also
deal with the internal noise present in the signal. Both CNN
and LSTM based deep architectures have been successfully used
in prior literature (Silva et al., 2019). Finding the optimum
window length for decision making is an important parameter in
biomedical classification problems. In general, a shorter window
is preferred due to low latency in inference. However, a small
window may not always contain the discriminating markers for
accurate decision making. On the other hand, a longer window
length may ensure the presence of a discriminating marker.
However, there remains a risk of latency in inference which may
delay in applying the shock. We evaluated classifier performance
on varying the window length from very small windows of 2 s to
larger windows of 8 s. As tabulated in Table 2, there is a trend of
improved precision, recall, and F1 score for VF, VT, and all other
rhythms were grouped as non-shockable with the increase in
window length. Our proposed CNN-LSTM architecture achieves
a sensitivity of 96.10%, specificity of 98.34% for shockable
rhythms (VF and VT) detection on a very small window size of 2
s for CUDB data and sensitivity of 94.68%, specificity of 92.77%
for the VFDB dataset. For 8-s window size, which is the standard
size reported in many prior arts, our algorithm attains sensitivity
of 99.21%, specificity of 99.68% for the CUDB dataset and
sensitivity of 98.56%, specificity of 99.08% for the VFDB dataset.
As per guidelines established by the American heart association
(AHA) (Kerber et al., 1997), a sensitivity (Se) higher than 90%
for shockable rhythms, and specificity (Sp) higher than 95% for
non-shockable rhythms is the benchmark for WCD detection
algorithms and our proposed method exceeds the benchmark
requirement. Also while comparing with the state-of-the-art, as
tabulated in Table 6, our sensitivity-specificity values are closely
comparable to the highest accuracy reported by Jeon et al.
(2020) for WCD applications. Although our reported accuracy
is fractionally lower, it is important to note that apart from 8 s
standard window-based classification, we have also implemented
an overlapping window-based detection that actually spans over
32 s long data that may contain up to 13 windows depending
upon the amount of overlapping.

Table 3 shows the classification performance on the ECG
data-stream obtained on individual test subjects. Here, the
training and the test data were created based on different
subjects. The decision was made by combining multiple 8 s long
windows in a 32 s time frame. Just like any other time signal,
an ECG data-stream is not entirely stationary. Breaking a 32 s
long block into multiple non-overlapping windows may cause
information loss at the junction of two consecutive windows.
Hence, we analyse the impact of overlapping windows by a
applying various percentage of overlapping starting with non-
overlapping to 25, 50, and 75% of overlapping. The number
of 8 s long windows increases with the increased overlapping
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TABLE 6 | Comparison of existing algorithms for detection of shockable rhythms.

Reference Brief approach Dataset used Accuracy reported

Figuera et al. (2016) An ML-algorithms with built-in feature

selection capabilities were used to

determine the optimal feature subsets

for classification. Patient-wise

bootstrap techniques were used to

evaluate algorithm performance on

public database

Validated on the VFDB and the CUDB

datasets

Sensitivity = 96.6%, Specificity = 98.8%

Kwon et al. (2018) The authors proposed an embedded

microcontroller where an ECG sensor

is used to capture, filter and process

data, run a real-time VF detection

algorithms developed a VF detection

algorithm, via Time Delay (TD), based

on phase space reconstruction.

Open access MIT-BIH dataset Sensitivity = 96.56%, Specificity = 81.53%

Krasteva et al. (2020) A deep convolutional network was

proposed and studied on Holter ECG

recordings for detection of shockable

and non-shockable rhythms. The

impact of various network

hyper-parameter tuning was reported

The data used in the study contains a

wide variety of non-shockable and

shockable rhythms from two sources:

public Holter ECG databases from

continuously monitored patients with

ventricular arrhythmias, and OHCA

databases recorded by AEDs from

patients in cardiac arrest.

For analysis on short windows (2 s): Sensitivity 97.6% =,

Specificity = 98.7%. For analysis on long windows (5 s) :

Sensitivity = 99.6 % Specificity = 99.4 %

Jeon et al. (2020) A deep architecture comprising

convolutional layers and recurrent

networks for classification of ECG

beats. Furthermore, a lightweight

model is proposed with fused RNN

for speeding up the prediction time

on central processing units (CPUs)

The authors used 48 ECGs from the

open access MIT-BIH Arrhythmia

Database, and 76 ECGs were

collected with S-Patch devices

developed by Samsung SDS

For the baseline model: Sensitivity = 99.86%, Specificity

= 98.31% for the light-weight model: Sensitivity =

99.92%, Specificity = 99.11%

Our proposed

approach

A CNN-LSTM architecture is

proposed for classification of VF, VT

and other rhythms from ECG

The approach is evaluated on CUDB

and VFDB datasets

Detection rate of shockable rhythms (VF and VT) on

CUDB: very small windows (2 s) Sensitivity = 96.10%,

Specificity = 98.34% for large windows (8 s) Sensitivity

= 99.21%, Specificity = 99.68%

Detection rate of shockable rhythms (VF and VT) on

VFDB: very small windows (2 s) Sensitivity = 94.68%,

Specificity = 92.77% for large windows (8 s) Sensitivity

= 98.56%, Specificity = 99.08%

percentage which is able to capture more detailed features
from the data stream. Table 3 clearly indicates that there is a
positive impact on classifier accuracy due to overlapping. Overall
classification performance in terms of precision, recall, and F1-
score significantly improves over the non-overlapping scenario
and reaches the optimum performance when a 50% overlapping
is applied between successive windows.

A completely novel aspect of our proposed computational
pipeline is the capability of generating hemodynamic parameters
during VA. SCD though initiated by different causes is
ultimately governed by the left ventricle EF (Sun et al.,
2014). ICD/WCD requirement stratification is also modulated
based on left ventricle functions (Arts et al., 2005). As
such, only understanding the electrical aspects of cardiac
functioning through arrhythmia propagation, without giving
due importance to its mechanical functioning, results in a
partial understanding of the disease etiology and defibrillation
response. The proposed in-silico cardiac model captures the flow-
pressure-volume relationship for each cardiac chamber and for
all cardiac phases, thus providing a holistic understanding of

the pathophysiological changes occurring as VF/VT initiates,
propagates, and subsequently gets terminated naturally or
through the application of shock. As the hemodynamic module
is controlled via ECG signals (either simulated or captured
in real-time or used from database), real-time phase matched
comparative hemodynamic metrics like cardiac output, mean
arterial pressure, cardiac compliance, ejection fraction, etc. can
be studied with ECG signal variations due to arrhythmia or
any other cardiac disease that changes the ECG morphology,
like myocardial ischemia. Another important rationale for
introducing the hemodynamic module is evident in Figure 7.
The ECG signals may be misclassified at several small window
locations, however, this has no impact on the outcome of
hemodynamic variables as the hemodynamic parameters are
not dependent on the classified signal annotations but reflect
the true physiological changes during arrhythmic events. The
cardiac compliance value gets modulated through heart rate
extracted after ECG processing along with physiologically
matched mathematical derivations of systemic and pulmonary
resistance, aortic and chamber compliance etc. So even if the
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classification algorithm fails for any particular window, by
judging the hemodynamic parameter variations, initiation of VA
can be well speculated and analyzed offline.

We have tabulated some common hemodynamic parameters
like CO, EF, MAP, end-systolic pressure volume ratio (ESPVR),
and end-diastolic pressure volume ratio (EDPVR) for shockable
and non-shockable rhythms utilizing labels and ECG signals
from CUDB and VFDB datasets. As indicated in Table 7, there
is a marked difference between VA hemodynamic parameters
compared to other non fatal group. ‘Other’class compiled from
VFDB and CUDB datasets are not healthy but agglomeration of
different supra-ventricular, normal, atrial fibrillation type rhythm
grouped as non-shockable. CO, indicative of the volume of
blood pumped by the heart in a cardiac cycle, gets heavily
reduced during VA, indicating LV failure. EF also gets lowered
to a dangerous level indicating impaired LV functionality and
subsequent heart failure, if left untreated. The MAP also drops
significantly due to low CO. ESPVR is commonly used as a
marker for cardiac contractility (Yaxin et al., 2017) and the
tabulated value clearly shows the reduction in LV contractility
under VA conditions. Similarly, EDPVR is a marker for chamber
compliance (reciprocal relation) and is used to judge ventricular
stiffness (Yaxin et al., 2017), which during our simulation,
also followed a medically correlated trend. The hemodynamic
insights not only provides a better understanding of the
disease progression but also provide an idea about the operable
timeline, to take necessary corrective action in case of heart
failure trends. In real time operation of WCD, implementing
such a hemodynamic module might not be practical in the
embedded circuit used for arrhythmia detection. However,
a cloud based implementation of such modules could aid
physicians better, in assessing overall cardiac functionality during
VF/VT episodes and/or other arrhythmic episodes and may help
in generating revised treatment plans with amore subject-specific
personalized focus.

In Table 4, where we tabulate the variations in electrode
location and corresponding defibrillation metric, apart from the
trend established in terms of optimized electrode positioning,
additional important insights can be inferred. For both Front-
Back and Apex-Posterior configuration in various sub spacing,
the minimum energy requiring location is not the location that
reports the minimum WKLD value. As WKLD integrates both
DFT voltage and myocardial damage probability, it becomes
quite evident that lower defibrillation energy does not necessarily
suffice to minimum cardiac tissue damage. Overall, in all possible
location variations, the Front-Back configuration results in better

TABLE 7 | Hemodynamic parameter variation for shockable and non-shockable

pathological conditions.

Parameters Shockable (VF/VT) Non-shockable

CO (lt/min) 2 ± 0.5 4.5 ± 1.2

EF (%) 25 ± 7.5 60 ± 5

MAP (mmHG) 60 ± 15 118.9 ± 20

ESPVR 0.36 ± 0.32 2.5 ± 0.5

EDPVR 0.4 ± 0.29 0.16 ± 0.04

efficacy. Judging by the WKLD value, the most optimal location
is “location 8” in Front-Back (FB) configuration and location 2
in Apex-Posterior (AP) configuration, while the least effective
location is location 12 and location 7 for Front-Back and Apex-
Posterior, respectively. The DFT voltage and % myocardium >

45V/cm and >60V/cm for location 8 (in FB) and 2 (in AP) are
233V, 0.46, 0.191 and 299.9V, 0.72, 0.12, respectively, while for
location 12 (in FB) and 7 (in AP), the respective metric values
are 507.7V, 1.884, 0.5189 and 821.2, 19.60, 12.67. As observed,
the far-away electrode locations require excessive DFT voltage,
associated with a greater extent of myocardial damage. The
observations from these metrics can indicate locations to avoid
while placing electrodes and then can guide areas where optimal
defibrillation efficacy can be expected.

In Table 5, the myocardial voltage gradient values are also
generated to provide an indication of the relation between DFT
voltage, energy, and distance metric in the specific torso area
where optimal defibrillation pattern is expected, as deduced
from Table 4. Location p4 in Apex-Posterior and a1 in Front-
Back provided the least WKLD value and negligible probability
of myocardial damage. Judging 18 locations each for both the
configuration, Location 2 and a1 provide the best outcome
in Apex-Posterior and Front-Back configurations, respectively.
Figure 8 represents the myocardial voltage gradient histogram
for location a1 (in FB), 2 (in AP) and 12 (in FB), 7 (in AP)
as two best and two least desired electrode configurations,
respectively. In the concentrated areas, situated in the upper
thorax, the intra-thoracic conductivity parameters for both Apex-
Posterior configuration as well as Front-Back configurations
are fairly constant, the current path has to navigate mostly
through the skin, skeletal structure, and lungs region. However,
due to variation in the anode location, metric D1 and D3
are relatively shorter in Front-Back as compared to Apex-
Posterior configurations, yielding a better current pathway and
effective defibrillation.

Use of computational pipeline for shock distribution analysis
and deriving metrics that can be incorporated in WCD vest and
shock generating circuit for optimized defibrillation is a unique
solution aimed at providing WCD shock efficacy validation
and personalization. Such concepts have not been proposed
earlier for WCD and have the potential to enhance conventional
WCD functioning.

In this article, we have integrated two different aspects of
WCD working in a biophysical computational framework for
better understanding and validation of WCD performance both
in terms of arrhythmia detection and shock efficacy computation
through the DFT principle. While the hemodynamic module
of the cardiac in-silico model provides additional insights
into pathophysiological changes in cardiac functionality
during arrhythmic episodes, the 3D volume conductor
cardiac model and FE analysis with changeable electrode
configuration provided an understanding of the defibrillator
efficacy parameter variation with change in shocking electrode
configuration and location. This is particularly useful for
obese patients or pediatric users where the use of standard
configuration may provide successful defibrillation but at
the cost of higher myocardial damage. As our proposed
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FIGURE 8 | Histogram distribution of myocardial potential gradient for location

(A) a1-FB, (B) 2-AP, (C) 12-FB, and (D) 7-AP. The red zones indicate a

potential gradient harmful enough to create permanent myocardial damage.

model incorporates a monodomain modeling approach rather
than a bi-domain, the realistic myocardial tissue behavior
during defibrillation is not captured. However, as we do
not intend to calculate absolute defibrillation response in
myocardial tissue but aim to use the platform to provide
an estimate by which the intra-thoracic field strength over
the myocardium can be compared given differing electrode
configurations, the computationally less extensive monodomain
model is suitable. A particular drawback of this study is
that the defibrillation efficacy simulation is based on single
subject data and MRI data for multiple subjects with varying
torso geometry would help to consolidate the electrode
location variations observed. In future, for the classification
of shockable rhythm, we would integrate the proposed
algorithm in an embedded platform to make it suitable for
real-time applications.

5. CONCLUSION

In this article, we present a computational pipeline for WCD
performance validation, both in terms of shockable arrhythmia
classification and optimal electrotherapy generation. We also
derived some useful insights regarding the physiological
changes in cardiac hemodynamics during Ventricular
arrhythmic patterns leading to compromised LV functions.
In the classification domain, our proposed CNN-LSTM
architecture detection accuracy surpassed AHA recommended
accuracy. The inclusion of the novel overlapping window
approach guarantees a minimum loss of vital information
in between detection windows, increasing the reliability
of detection.

Cardiac defibrillators are lifesaving therapeutic devices with
potentially harmful capacity if not tuned properly. With the
growing demand for WCD, the creation of a personalized
energy distribution model based on a patient’s anatomy,
rather than a ‘one size fits all’ approach, is the need of the
hour. Our proposed optimal electrotherapy assessment using
biophysical modeling compares the efficiency of standard
(Apex-Posterior) and non-standard (Front-Back) WCD
electrode placement along with different plausible electrode
locations variation throughout the torso, demonstrating
significant differences in defibrillation efficacy associated
with different strategies. The proposed approach of tuning
defibrillation parameters coupled to a physical cardiac model
that provides insights regarding the hemodynamic and
electrophysiological changes at initiation or after the termination
of an arrhythmic event could enable therapeutic device
validation and testing, better patient stratification for ICD
or similar invasive procedures, and creating subject-specific
treatment plan providing a personalized approach toward
cardiac care.
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Mapping: A Computational Study
Michela Masè1,2* , Alessandro Cristoforetti1, Maurizio Del Greco3 and Flavia Ravelli1,4*

1 Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology –
CIBIO, University of Trento, Trento, Italy, 2 Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy,
3 Division of Cardiology, Santa Maria del Carmine Hospital, Rovereto, Italy, 4 CISMed – Centre for Medical Sciences,
University of Trento, Trento, Italy

The expanding role of catheter ablation of atrial fibrillation (AF) has stimulated the
development of novel mapping strategies to guide the procedure. We introduce a
novel approach to characterize wave propagation and identify AF focal drivers from
multipolar mapping data. The method reconstructs continuous activation patterns in the
mapping area by a radial basis function (RBF) interpolation of multisite activation time
series. Velocity vector fields are analytically determined, and the vector field divergence
is used as a marker of focal drivers. The method was validated in a tissue patch
cellular automaton model and in an anatomically realistic left atrial (LA) model with
Courtemanche–Ramirez–Nattel ionic dynamics. Divergence analysis was effective in
identifying focal drivers in a complex simulated AF pattern. Localization was reliable even
with consistent reduction (47%) in the number of mapping points and in the presence
of activation time misdetections (noise <10% of the cycle length). Proof-of-concept
application of the method to human AF mapping data showed that divergence analysis
consistently detected focal activation in the pulmonary veins and LA appendage area.
These results suggest the potential of divergence analysis in combination with multipolar
mapping to identify AF critical sites. Further studies on large clinical datasets may help
to assess the clinical feasibility and benefit of divergence analysis for the optimization of
ablation treatment.

Keywords: atrial fibrillation, mapping, signal processing, computational models, vector field analysis, conduction
velocity, focal activity, wave propagation patterns

INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia in the clinical practice, with increasing
prevalence due to population aging and high morbidity associated to a fivefold increase in the risk
of stroke (Fuster et al., 2006; Virani et al., 2021). The most promising approach for AF treatment
is represented by catheter ablation, which performs targeted lesions on the atrial surface aiming
to isolate arrhythmia sources and to interrupt critical activation pathways. Following the seminal
work of Haissaguerre et al. (1998), pulmonary veins (PVs) isolation has become the cornerstone of
AF ablation procedures and the common approach to treat patients with paroxysmal and persistent
AF. However, given the ineffectiveness of the sole PVs ablation, especially in persistent AF, novel
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methodologies and approaches have been proposed to identify
and ablate AF drivers located outside the PVs (Stiles et al., 2018;
Buist et al., 2021; Parameswaran et al., 2021; Quintanilla et al.,
2021). In parallel with the expanding role of catheter ablation,
novel mapping strategies have been developed to guide the
procedure and improve efficacy (Mahida et al., 2014). Multipolar
mapping catheters, such as the PentaRay catheter, have been
introduced to guide substrate modification and to identify extra-
PV foci. These systems allow reduced mapping times and
greater spatiotemporal resolution. In addition, the temporal and
directional information provided by the simultaneous multisite
electrograms allows, in principle, the reconstruction of activation
patterns during AF.

Despite the variety of signal analysis techniques available
for the point-by-point analysis of single electrograms (Nollo
et al., 2008; Ravelli and Masè, 2014; Baumert et al., 2016;
Almeida et al., 2018, 2021; Baher et al., 2019), fewer approaches
have been proposed for the analysis of simultaneous multisite
electrograms and the characterization of propagation patterns.
These comprise, for instance, techniques based on computation
of conduction delays and wave directions (Ganesan et al., 2015,
2018, 2019), cosine model fitting (Weber et al., 2010, 2011;
Roney et al., 2019), probabilistic interpolation (Coveney et al.,
2020), and physics-informed neural network (Sahli Costabal
et al., 2020) applied to activation time series, as well as
multivariate approaches based on causality analysis applied to
atrial electrograms (Richter et al., 2011; Rodrigo et al., 2016;
Alcaine et al., 2017; Luengo et al., 2019; Handa et al., 2020; Masè
et al., 2020).

The present study introduces a novel framework for the
reconstruction of wave activation patterns and the identification
of focal drivers from clinically available multipolar mapping
systems. The method is based on a radial basis function
(RBF) interpolation approach (Franke, 1982; Fornefett et al.,
2001), which reconstructs the activation patterns in the
mapping area from scattered multisite activation time series.
Propagation pattern properties are quantitatively characterized
by an analytical determination of the conduction velocity (CV)
vector fields, providing information on conduction heterogeneity
and slow conduction areas. Finally, focal activation patterns
are localized by the analysis of the vector field divergence,
which marks the presence of centrifugal propagation from
a localized source. After presenting the methodology, the
capability of the method to accurately reconstruct activation
patterns and CV fields and to identify focal drivers is tested
in two different simulation models. RBF reconstruction of
various propagation patterns and localization of focal activity
is evaluated in a tissue patch cellular automaton (CA)
model (Lammers et al., 1991; Masè et al., 2005), where
the reliability of the procedure is tested against electrogram
loss and activation time misdetection. The localization of
focal drivers in a realistic AF context is then evaluated
on synthetic electrograms from an anatomically realistic and
ionically detailed left atrial (LA) model (Courtemanche et al.,
1998; Cristoforetti et al., 2013). Finally, we show a proof-
of-concept application of the method to clinical multipolar
AF mapping data.

MATERIALS AND METHODS

Conduction Velocity Vector Field
Approach for the Analysis of Multipolar
Electrograms
Reconstruction of Activation Maps by Radial Basis
Function Interpolation
The reconstruction of the activation process in the mapping
plane was addressed as a multivariate interpolation problem and
solved by RBFs. Let’s consider a set of N mapping points, with
positions

−→
X i = [xi, yi] in the 2D catheter mapping area, where

i indicates the recording site, and the activation time series ti(n)
extracted from the corresponding mapping electrograms, where
n numbers subsequent atrial beats. For each beat n, the task of the
RBF interpolation is to determine a continuous and sufficiently
differentiable interpolation function f = f

(
−→
X
)

, describing the
variation of the activation time as a function of a generic 2D
spatial position

−→
X = [x, y] (Franke, 1982). The function f(

−→
X )

must fulfill the interpolation constraints at the mapping point
positions

−→
X i, given by:

f
(
−→
X i

)
= ti (n) i = 1, . . .N (1)

In the RBF approach the interpolation function f(
−→
X ) takes the

form:

f
(
−→
X
)
=

N∑
i=1

αiR
(
||
−→
X −
−→
X i||

)
(2)

where R
(
||
−→
X −
−→
X i||

)
are radially symmetric functions,

centered on the mapping points
−→
X i, ||

−→
X − Xi|| is the Euclidean

distance between interpolation and mapping points, and αi are
the weights of the RBF base elements.

From condition (1), it follows that:

f
(
−→
X i

)
=

N∑
j=1

αjR
(
||
−→
X i −

−→
X j||

)
= ti for i=1,. . . , N (3)

Equation 3 can be written in matrix form as:
R
(
||
−→
X 1 −

−→
X 1||

)
R
(
||
−→
X 1 −

−→
X 2||

) R
(
||
−→
X 2 −

−→
X 1||

)
R
(
||
−→
X 2 −

−→
X 2||

)
...

R
(
||
−→
X 1 −

−→
X N ||

) ...

R
(
||
−→
X 2 −

−→
X N ||

)
. . .

. . .

R
(
||
−→
X N −

−→
X 1||

)
R
(
||
−→
X N −

−→
X 2||

)
. . .

...

R
(
||
−→
X N −

−→
X N ||

)




α1
α2
...

αN

 =


t1
t2
...

tN

 (4)
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Or in compact form:

Rα = t, (5)

where R is a real-symmetric N × N matrix and α and t are
N× 1 vectors.

It is sometimes useful to add a low order polynomial
term to the interpolant function in Eq. 2 to gain polynomial
precision for some portions of f (e.g., to reproduce linear and
constant parts of the function) and to ensure solvability of the
interpolation problem.

Defining pj, j = 1, 2, . . ., M as a basis of the polynomial space
and adding it to Eq. 2, we obtain the following expression for the
interpolant function:

f
(
−→
X
)
=

N∑
i=1

αiR
(
||
−→
X −
−→
X i||

)
+

M∑
j=1

βjpj
(
−→
X
)

(6)

with additional constraints for the polynomial part (Fornefett
et al., 2001):

N∑
i=1

αipj
(
−→
X i

)
= 0, j = 1, . . . ,M (7)

Adding the polynomial in the interpolant function and
considering these extra-constraints in Eq. 7 leads to the linear
system of equations: [

R P
PT 0

] [
α

β

]
=

[
t
0

]
(8)

where P is a N × M matrix and PT indicate the transposed
form of P.

It can be demonstrated that with proper choice of the RBFs
and of the polynomial term, the left-hand side matrix in Eq. 8
is non-singular and thus the system of equations is solvable and
unique values for α and β can be determined (Fornefett et al.,
2001; Kybic et al., 2002a,b).

In the present study, the Duchon’s radial cubic function was
used as basis:

Ri
(
−→
X
)
=

(
||
−→
X −
−→
X i||

)3
(9)

and a first-order polynomial term was added to the interpolant
function:

P
(
−→
X
)
= β1 + β2x+ β3y (10)

Interpolation with Duchon’s functions has an elegant theory in a
Hilbert space setting, where Eqs 6–8 were derived as the solution
of a variational problem targeting minimization of Duchon’s
semi-norm and the interpolant curvature (Duchon, 1977).
Duchon’s functions were shown to display excellent accuracy
when interpolating scattered data, visual pleasantness and
smooth appearance, low complexity, and reduced computational
and memory costs (Franke, 1982). In addition, in contrast
to multiquadratic or Gaussian RBFs they do not require the
subjective choice of additional tuning parameters (Franke, 1982).

Analytical Determination of Conduction Velocity
Vector Fields
Conduction velocity vector fields were analytically computed
from the RBF reconstructions of the activation process f

(
−→
X
)

.

The interpolant function f
(
−→
X
)

describes activation as a
function of position and sections of the function at constant
time describes local isochronal contours. The gradient vector ∇f ,
whose components are given by the partial derivatives of f

(
−→
X
)

:

∇f =
[

∂f
∂x

,
∂f
∂y

]
(11)

is, by definition, normal to isochrone contours and thus it defines
the direction of wavefront propagation (i.e., it is parallel to the
velocity vector).

The components of the 2D velocity vector −→v =
[
vx, vy

]
are

given by:

vx =
dx
dt
=

∂x
∂t
+

∂x
∂y

∂y
∂t

vy =
dy
dt
=

∂y
∂t
+

∂y
∂x

∂x
∂t

(12)

As detailed in Bayly et al. (1998), Eq. 12 can be solved by assuming
that the direction of propagation is specified by the normal to the
isochronal contours (i.e., the direction of propagation is parallel
to the gradient in Eq. 11), resulting in the following relationship
for the two velocity components:

vy =

∂f
∂y
∂f
∂x

vx (13)

Combining Eqs 11–13 an expression for velocity estimates can be
obtained, which is directly linked to the partial derivatives of the
interpolant function:

vx =
dx
dt
=

∂f
∂x(

∂f
∂x

)2
+

(
∂f
∂y

)2

vy =
dy
dt
=

∂f
∂y(

∂f
∂x

)2
+

(
∂f
∂y

)2

(14)

Velocity estimates can be analytically computed through Eq. 14,
once f

(
−→
X
)

has been determined (i.e., once α and β have been
calculated from Eq. 8). This means that the computation of the
velocity vector field requires no additional manual operations
with respect to the determination of an activation map.

Localization of Focal Drivers by Divergence Analysis
Focal activation sites are defined as sites or regions, which
centrifugally activate the surrounding atrial tissue (Haissaguerre
et al., 1998). CV vector fields corresponding to centrifugal
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FIGURE 1 | Activation maps of the propagation patterns simulated on the tissue patch cellular automaton model and position of the simulated multipolar catheter.
From left to right, plane wave propagation (A), focal propagation in tissues with homogeneous (B) and heterogeneous (C) conduction properties, and wave
collision (D).

activation present well-defined angular properties, resulting in
positive divergence values. To identify focal activation, the
divergence operator was applied to the analytically determined
CV vector field. Before divergence computation, CV vectors were
normalized to unit vectors Ev =

[
vx, vy

]
, to consider the sole

contribution of vector angular properties. The divergence (D) of
the vector field Ev on the mapping plane in Cartesian coordinates
is given by:

D = ∇ · −→v =
∂vx
∂x
+

∂vy
∂y

(15)

where ∇· represents the divergence operator. D yields a signed
scalar with positive values in presence of field sources and
negative values for field sinks. Focal activation sites are thus
located in correspondence of the local maxima of D.

Validation of Radial Basis Function
Framework by Computer Simulations
Validation on a Simulated Tissue Patch
The capability and accuracy of the method to reconstruct
activation patterns, quantify propagation properties, and detect
focal activation sites were evaluated in a bidimensional tissue
patch CA model (Lammers et al., 1991; Masè et al., 2005), where
the method was tested against the effects of missing electrograms
and activation time misdetections.

A previously detailed bidimensional CA model of excitable
tissue was used to simulate basic propagation patterns (Lammers
et al., 1991; Masè et al., 2005). The model consisted of a
bidimensional patch of 1000 × 1000 cell units (4 cm × 4 cm),
each assigned with an evolving excitation state. As shown
in Figure 1, four basic activation patterns were simulated:
planar wave propagation (a), focal propagation in a tissue
with homogeneous (b) and heterogeneous (c) conduction
properties, and wavefront collision (d). Conduction properties
were homogeneous and isotropic in patterns (a), (b), and (d)
with CV values reported in Table 1. In pattern (c), eight
areas with different normally distributed conduction properties
were created around the focal site, resulting in a CV of
59.9 ± 12.5 cm/s. The simulation output consisted of the

activation time series at each cell element, which were down-
sampled on a 200 × 200 element grid to limit grid artifacts on
propagation patterns. Multipolar activation time series were thus
acquired from 15 mapping points, corresponding to the position
of the electrode bipoles in a PentaRay catheter-like configuration,
as displayed in Figure 1.

The accuracy of the reconstruction of CV fields was
determined in the four propagation scenarios by comparing exact
and estimated pointwise CV vector magnitudes and directions
on the 200 × 200 grid. The localization of the focal source
was evaluated in simulated scenarios (b) and (c), calculating the
cell-distance between the exact position of the focal source and
the maximal divergence site identified by the algorithm. The
localization was considered accurate for average distances less
than a distance threshold r = 2.7 mm (equivalent to 13.5 cells
in the down-sampled 200 × 200 grid). The threshold value r
was determined based on a statistical principle, so that the ratio
between the circular area of radius r and the circular area swept
by the simulated catheter was equal to 0.05. This corresponded to
a probability <0.05 of locating the source by chance.

A stability analysis was led to test the method against
factors that might corrupt clinical mapping data. The effect of
electrogram loss (e.g., due to poor catheter displacement or
inadequate contact) was evaluated by performing the analysis
when removing a progressively larger number of randomly
selected mapping points. The method stability against activation
time misdetections was tested by adding random jitters to
the simulated activation times series. Jitters were uniformly
distributed around zero with distribution amplitude ε, varying
from 0 to 20% (step 0.5%) of the activation cycle length (150 ms).
The stochastic procedure was repeated 100 times for each number
of sites removed and noise level. For the assessment of source
localization, the catheter center was randomly moved over the
patch at different repetitions.

Validation on an Anatomically Realistic Left Atrial
Model
The capability of the method to localize AF focal drivers was
tested on synthetic electrograms, obtained from an anatomically
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TABLE 1 | Effects of electrogram removal on the estimation of median velocity, velocity vector magnitudes, and directions.

Simulated
pattern

Removed
electrograms

Exact median
speed (cm/s)

Estimated median
speed (cm/s)

Absolute single value
speed error (%)

Absolute angle
error (rad)

Plane wavefront
(pattern a)

0 60.4 60.4 0.16 0.002

2 60.4 60.4 (60.4, 60.4) 0.16 (0.14, 0.18) 0.002 (0.001, 0.002)

4 60.4 60.4 (60.4, 60.4) 0.18 (0.15, 0.24) 0.002 (0.001, 0.002)

6 60.4 60.4 (60.3, 60.4) 0.21 (0.16, 0.27) 0.002 (0.001, 0.002)

8 60.4 60.4 (60.4, 60.5) 0.18 (0.14, 0.24) 0.002 (0.001, 0.003)

10 60.4 60.4 (60.3, 60.5) 0.17 (0.12, 0.27) 0.002 (0.001, 0.003)

Focal source in
homogeneous tissue
(pattern b)

0 54.6 54.2 7.6 0.059

2 54.6 53.6 (53.0, 54.1) 7.9 (7.5, 8.5) 0.065 (0.061, 0.067)

4 54.6 53.2 (52.5, 54.2) 9.3 (8.3, 10.4) 0.074 (0.068, 0.081)

6 54.6 54.8 (53.1, 56.6) 12.7 (10.2, 14.4) 0.098 (0.083, 0.144)

8 54.6 59.3 (56.1, 63.1) 16.7 (14.7, 19.2) 0.167 (0.142, 0.202)

10 54.6 66.7 (63.4, 74.6) 25.7 (20.3, 38.3) 0.265 (0.210, 0.376)

Focal source in
heterogeneous tissue
(pattern c)

0 59.9 59.4 7.1 0.092

2 59.9 58.7 (57.7, 59.4) 7.8 (7.0, 8.5) 0.097 (0.093, 0.098)

4 59.9 58.2 (56.9, 59.2) 9.2 (8.2, 10.0) 0.101 (0.096, 0.108)

6 59.9 59.1 (56.8, 60.9) 12.0 (10.4, 13.6) 0.121 (0.106, 0.150)

8 59.9 61.5 (57.5, 66.1) 17.0 (14.1, 19.7) 0.170 (0.140, 0.196)

10 59.9 70.2 (63.0, 79.4) 25.2 (19.3, 36.1) 0.255 (0.201, 0.396)

Colliding wavefronts
(pattern d)

0 55.8 56.6 11.4 0.088

2 55.8 56.7 (56.4, 58.8) 12.3 (11.6, 13.1) 0.102 (0.092, 0.115)

4 55.8 57.8 (55.9, 59.7) 13.7 (12.7, 15.4) 0.130 (0.110, 0.158)

6 55.8 59.7 (55.1, 63.7) 18.7 (15.3, 22.5) 0.190 (0.145, 0.272)

8 55.8 64.6 (59.4, 74.7) 23.6 (18.4, 33.1) 0.352 (0.208, 0.675)

10 55.8 73.3 (64.3, 87.5) 31.2 (22.5, 53.2) 1.015 (0.679, 1.402)

Data are median (IQR) over 100 stochastic repetitions.

realistic LA model, based on Courtemanche–Ramirez–Nattel
(CRN) cell formulation (Courtemanche et al., 1998; Cristoforetti
et al., 2013). Ionic dynamics were described by the CRN human
atrial cell model in monodomain formulation (Courtemanche
et al., 1998). The ionic model was implemented on a
realistic LA anatomy, segmented from cardiac tomography
images (Cristoforetti et al., 2008). A remodeled version of
the CRN model (Jacquemet et al., 2003) with an isotropic
diffusion tensor of 0.2 cm2/s was used to obtain spiral
breakups and multiple wavelet formation. After stabilization
of the multiple wavelet pattern, a localized focal driver was
activated in the region of the PVs. The resulting pattern
comprised a centrifugal propagation in proximity of the
focal driver (Figure 2, upper panels) combined with a
more complex propagation with transient rotors and colliding
wavefronts in the region dominated by multiple wavelets
(Figure 2, lower panels).

ODE–PDE system integration was performed by a fully
adaptive multi-resolution algorithm (Cristoforetti et al., 2013),
which dynamically restricted computation to a set of active
nodes. Reaction and diffusion were integrated with time
step 1t = 0.1 ms, using the Rush Larsen non-standard
finite difference forward Euler method and explicit node-
centered finite difference stencils (Jacquemet and Henriquez,
2005), respectively.

Synthetic electrograms were generated according to the
current source approximation (Jacquemet et al., 2003) and

acquired at different locations of the LA, using a PentaRay
catheter configuration (see Figure 2). Specifically, 20 recording
electrodes were arranged in five splines (with interelectrode
distance of 4 mm), located at 0.5 mm from the atrial surface,
and bipolar electrograms were computed as differences between
neighboring unipolar electrograms on the same spline. Simulated
signals of 5 s length, sampled at 1 kHz, were used for
method evaluation.

Proof-of-Concept Application to Clinical
Mapping Data
Conduction velocity vector field reconstruction and divergence
analysis were applied to clinical electrograms, retrospectively
available from one patient with persistent AF, who underwent a
pre-ablation electrophysiological study. The study was approved
by the local Ethical Committee and performed in accordance with
the principles outlined in the Declaration of Helsinki. The patient
gave written informed consent. During the electrophysiological
study, a 20 pole PentaRay mapping catheter (Biosense Webster,
Inc., Diamond Bar, CA, United States), composed of five
radiating splines, each carrying four electrodes was sequentially
moved in the LA. Twenty-one atrial regions were mapped in the
patient, sampling the PVs and LA body areas. Three hundred
and fifteen atrial electrograms (i.e., 15 bipolar electrograms × 21
sites) of 2 s length were recorded during the study and
exported for off-line analysis. Electrograms with inadequate
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FIGURE 2 | Simulation of atrial fibrillation in a realistic left atrial model. In gray, anatomical model of the left atrium and positions of the simulated multipolar catheter.
In color, sequential snapshots of the membrane voltage at three mapping sites: at the focal driver (A), at the boundary between the focal driver and multiple wavelets
region (B), and in the multiple-wavelets region (C).

signal-to-noise ratio were excluded from subsequent analysis.
Activation time series were automatically extracted from each
bipolar electrogram as previously reported (Faes et al., 2002;
Masè et al., 2015). Briefly, electrograms were pre-processed to
remove ventricular interference, local atrial activation waves were
identified by signal filtering and adaptive threshold crossing (Faes
et al., 2002; Masè et al., 2015) and atrial activation times were
estimated by measuring the barycenter of local activation waves
(Faes et al., 2002).

Statistical Analysis
Data are expressed as mean ± standard deviation (SD) or
median [interquartile range (IQR)], as appropriate. Divergence
values are given as median, maximal, minimal, and/or range
values, as appropriate.

RESULTS

Conduction Velocity Vector Field
Representation of Propagation Patterns
Figure 3 displays RBF reconstructions (top panels) and
superimposed normalized CV fields (arrows) corresponding to
the simulated patterns in Figure 1. The angular properties of
the fields are quantified by divergence maps (bottom panels).
All propagation patterns were precisely reconstructed by RBF
interpolation. CV vectors, which were analytically determined

by RBF approach, clearly indicated the direction of wavefront
propagation, being orthogonal to isochronal lines. CV values
estimated from RBF reconstructions approximated well the set
values, resulting of 60.4, 54.2, 59.4, and 56.6 cm/s for patterns
(a) to (d). Propagation pattern properties were quantitatively
distinguished in terms of divergence analysis. Indeed, planar
wave propagation (a) was characterized by almost-zero values of
the divergence [range (−7.5·10−3, 7.5·10−3 mm−1), in green].
Focal sites (b and c), acting as sources of the field, were marked
by maximal positive divergence values (Dmax = 10 mm−1, in
red) versus the almost-zero values of the surrounding area
(Dmedian = 0.125 mm−1). The collision line, acting as a field sink,
displayed negative divergence values (Dmin = −5.5 mm−1, in
blue, versus Dmedian = 6.25·10−3 mm−1).

Stability Analysis
The results of the stability analysis are summarized in Tables 1, 2,
where reconstruction errors of CV vector magnitudes and
directions are reported for the four patterns at the progressive
removal of mapping sites (Table 1) and at increasing noise in
activation time detection (Table 2). Reliable estimations of CV
magnitudes and directions were obtained even with reduced
electrogram sets (Table 1), although the number of sites necessary
for the reconstructions increased with pattern complexity. The
reconstruction of the plane wave pattern was not affected by
the progressive removal of the electrograms. Focal patterns in
homogeneous/heterogeneous tissues were reconstructed from

Frontiers in Physiology | www.frontiersin.org 6 December 2021 | Volume 12 | Article 749430146

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-749430 December 20, 2021 Time: 15:39 # 7

Masè et al. Divergence Analysis of Focal Drivers

FIGURE 3 | Radial basis function-reconstructed activation (top) and divergence maps (bottom) corresponding to the simulated patterns in Figure 1. Analytically
determined conduction velocity vector fields are displayed on the maps as normalized arrows indicating the direction of wave propagation. Divergence maps quantify
pattern properties, assigning zero divergence values (green) to planar wave propagation (A), positive divergence values (red) to focal sources (B,C), and negative
divergence values (blue) to collision lines (D).

a minimum of nine sites (six sites removed) with pointwise
CV magnitude errors ∼12% and direction errors of ∼0.12 rad.
Wavefront collision pattern were reconstructed from a minimum
of 11 sites (four sites removed) with magnitude errors of ∼14%
and direction errors of ∼0.13 rad. Median CV estimates were
less affected than pointwise velocities by the reduction of sites,
with percentage errors of 0.2 and−1.4% for focal and of 3.5% for
collision patterns.

Activation time misdetection affected the reconstruction of
all the patterns (Table 2), with a progressive increase of the
estimation errors at increasing levels of noise. Noise had more
severe effects on the estimation of CV vector magnitudes than on
median CV estimates. Absolute errors on CV vector magnitudes
for focal source patterns raised from 7.6 and 7.1% at 0% noise
to 32.3 and 33.9% at 10% noise, and for wavefront collision
patterns errors raised from 11.4 to 28.8%. Median CV values
underestimated true CV values at a progressively higher extent
with increasing noise levels. At 10% noise, median CV estimates
decreased to 50.5 and 52.2 cm/s (error of −7.5 and −12.8%) in
focal patterns and to 49.6 cm/s (error of−11.1%) in the wavefront
collision pattern. In terms of CV vector directions, angle errors
for the simulated patterns increased from a range of 0.002–
0.09 rad at 0% noise levels to 0.27–0.43 rad at 10% noise. Noise
effects on vector magnitudes and directions were significantly
reduced by averaging CV values over few beats. At 10% noise
amplitude, a 10-beat average reduced CV magnitude errors to
14–16% for focal patterns, and to 18% for the collision pattern,
keeping direction estimation errors <0.18 rad in all patterns.

The precision of divergence analysis to locate focal sources
in tissues with homogeneous and heterogeneous conduction

properties is reported in Figure 4 for changing number of
recording sites (left) and noise levels (right). The localization
strategy was stable against a reduction in the number of
recording sites. Accurate identification was maintained with a
minimum of nine sites available (i.e., seven sites removed).
Focal drivers were precisely localized from single-beat divergence
maps in presence of mild levels of noise (<11 and <10%,
for homogeneous and heterogeneous conduction properties,
respectively). Accurate identification at higher levels of noise
(<17 and <14%) could be accomplished by averaging divergence
maps over 10 beats (gray lines).

Identification of Focal Drivers in
Simulated Atrial Fibrillation
The capability of the RBF framework to locate focal sources in a
realistic, but controlled AF context, was evaluated by analyzing
synthetic AF electrograms (Figures 5A, 6A, 7A), generated by
a detailed LA model. Figures 5B, 6B, 7B show the activation
and divergence maps obtained by moving the catheter from the
region dominated by the focal driver (Figure 5) to the region with
prevailing multiple-wavelet propagation (Figure 7).

In Figure 5 the presence of the focal driver at the center
of the mapping system resulted in a centrifugal sequence of
activation from internal to external recording points (i.e., from
A34 to A12 and from C1112 to C910). Focal activation was apparent
from the reconstructed activation maps (Figure 5B, top) and
was accompanied by high positive values in the divergence
maps (e.g., at time T1, Dmax = 3.91 mm−1, in red, versus
Dmedian = 0.10 mm−1). The regularity of the focal pattern could
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TABLE 2 | Effects of temporal noise (expressed as percentage of atrial cycle length) on the estimation of median velocity, velocity vector magnitudes, and directions.

Simulated
pattern

Noise
level
(%)

Exact
median speed

(cm/s)

Estimated
median speed

(cm/s)

Absolute
speed error
(%) 1 beat

Absolute
angle error
(rad) 1 beat

Absolute
speed error
(%) 10 beats

Absolute angle
error (rad)
10 beats

Plane wavefront
(pattern a)

0 60.4 60.4 0.16 0.002 0.158 0.002

1 60.4 60.2 (59.8, 60.9) 3.6 (3.1, 4.3) 0.037 (0.030, 0.044) 1.4 (1.2, 1.6) 0.014 (0.012, 0.016)

2 60.4 59.7 (58.7, 60.8) 6.9 (6.1, 8.2) 0.072 (0.060, 0.088) 2.8 (2.4, 3.2) 0.027 (0.024, 0.032)

5 60.4 57.3 (55.4, 59.8) 16.9 (15.0, 19.0) 0.190 (0.160, 0.225) 7.0 (6.2, 8.0) 0.072 (0.065, 0.082)

10 60.4 51.1 (47.7, 55.5) 28.3 (25.1, 33.0) 0.353 (0.292, 0.410) 16.4 (14.3, 18.0) 0.143 (0.121, 0.173)

15 60.4 43.1 (40.0, 47.3) 37.1 (33.1, 41.2) 0.488 (0.423, 0.613) 28.1 (25.8, 30.0) 0.223 (0.188, 0.253)

20 60.4 37.4 (34.0, 39.9) 44.2 (40.9, 48.6) 0.677 (0.527, 0.814) 38.4 (35.8, 40.5) 0.299 (0.258, 0.354)

Focal source in
homogeneous
tissue (pattern b)

0 54.7 54.2 7.6 0.059 7.6 0.059

1 54.7 54.5 (53.7, 55.2) 8.7 (7.9, 9.4) 0.078 (0.073, 0.085) 7.7 (7.5, 8.0) 0.064 (0.062, 0.066)

2 54.7 54.6 (53.3, 56.5) 11.7 (10.4, 13.1) 0.103 (0.094, 0.111) 8.4 (7.8, 8.6) 0.073 (0.070, 0.077)

5 54.7 54.5 (51.5, 57.9) 21.5 (18.5, 24.3) 0.160 (0.142, 0.179) 10.5 (9.1, 11.3) 0.094 (0.085, 0.099)

10 54.7 50.5 (44.8, 56.2) 32.3 (27.5, 36.0) 0.273 (0.228, 0.319) 14.0 (12.4, 15.9) 0.122 (0.106, 0.133)

15 54.7 43.9 (39.2, 48.7) 38.6 (34.2, 43.1) 0.381 (0.311, 0.482) 22.2 (18.9, 24.0) 0.176 (0.145, 0.197)

20 54.7 37.8 (33.2, 42.6) 44.2 (38.9, 47.5) 0.488 (0.389, 0.661) 30.4 (27.9, 32.6) 0.213 (0.182, 0.241)

Focal source in
heterogeneous
tissue (pattern c)

0 59.9 59.4 7.1 0.092 7.1 0.092

1 59.9 58.7 (57.7, 59.9) 8.3 (7.8, 9.1) 0.102 (0.098, 0.104) 7.3 (7.1, 7.6) 0.095 (0.093, 0.097)

2 59.9 58.3 (56.7, 60.7) 11.3 (10.0, 12.8) 0.115 (0.108, 0.124) 7.9 (7.4, 8.4) 0.099 (0.096, 0.103)

5 59.9 57.1 (52.8, 59.3) 20.8 (17.9, 23.4) 0.168 (0.154, 0.193) 10.2 (8.9, 11.2) 0.112 (0.103, 0.123)

10 59.9 52.2 (46.7, 56.5) 33.9 (29.2, 37.4) 0.276 (0.232, 0.326) 16.0 (14.1, 18.8) 0.135 (0.116, 0.156)

15 59.9 43.5 (40.2, 48.9) 39.8 (36.9, 44.9) 0.390 (0.319, 0.519) 25.6 (21.8, 27.9) 0.166 (0.148, 0.190)

20 59.9 38.9 (33.3, 42.6) 46.1 (41.4, 50.1) 0.521 (0.401, 0.699) 33.8 (31.4, 36.3) 0.207 (0.175, 0.243)

Colliding
wavefronts
(pattern d)

0 55.8 56.6 11.4 0.088 11.4 0.088

1 55.8 56.4 (55.7, 57.0) 12.2 (11.7, 12.8) 0.096 (0.088, 0.107) 11.3 (11.1, 11.5) 0.089 (0.085, 0.093)

2 55.8 56.0 (54.6, 57.4) 14.2 (13.1, 15.0) 0.116 (0.102, 0.130) 11.4 (11.0, 11.7) 0.093 (0.086, 0.098)

5 55.8 55.8 (53.3, 58.8) 19.3 (17.5, 22.0) 0.230 (0.199, 0.266) 12.9 (12.0, 14.0) 0.114 (0.103, 0.125)

10 55.8 49.6 (45.3, 54.1) 28.8 (25.7, 31.1) 0.428 (0.350, 0.518) 18.0 (16.0, 19.7) 0.172 (0.150, 0.200)

15 55.8 42.2 (38.6, 47.4) 36.2 (31.5, 40.6) 0.590 (0.483, 0.688) 26.3 (24.0, 28.6) 0.253 (0.209, 0.289)

20 55.8 37.1 (33.3, 42.4) 43.4 (38.1, 47.1) 0.701 (0.563, 0.835) 35.5 (32.9, 38.0) 0.337 (0.287, 0.408)

Data are median (IQR) over 100 stochastic repetitions.

be observed comparing successive single-beat activation and
divergence maps and resulted in a consistent average divergence
map (Dmax = 3.45 mm−1, in red, versus Dmedian = 0.10 mm−1).

Figure 6 displays signals and maps from an intermediate
region, with the focal driver located at the top right corner of the
mapping system. Here, the presence of the focal driver was less
apparent from visual inspection of the recorded signals, but it was
revealed by single-beat and average divergence maps, displaying
maximal positive values at the focal source (e.g., in the average
map, Dmax = 3.44 mm−1, in red, versus Dmedian = 0.06 mm−1).
Single-beat activation and divergence maps showed that the area
was invaded by wavefronts from the multiple wavelet region,
which collided with wavefronts originating from the focal driver.
The presence of collision lines resulted in negative divergence
values (e.g., at time T4, Dmin = −3.02 mm−1, in blue, versus
Dmedian = 0.07 mm−1).

Figure 7 shows the complex propagation patterns observed
in the multiple wavelet region. The activation sequence of the
simulated electrograms suggested that the area was activated
by wavefronts of changing directions. This was apparent in
the beat-to-beat activation and divergence maps, which showed
the presence of collision lines marked by minimal negative

divergence values (e.g., at time T1, Dmin = −4.40 mm−1, in blue,
versus Dmedian = −0.07 mm−1). The irregularity of the patterns
and the changing position of collision lines resulted in an average
divergence map with almost-zero values [range = (−0.19, 0.08)
mm−1, in green].

Proof-of-Concept Application to Clinical
Atrial Fibrillation Data
The methodology was applied to multipolar catheter
electrograms acquired in the LA of a patient with persistent AF.
Three representative examples of activation and divergence maps
observed in the patient in different LA regions are displayed in
Figure 8. The observed patterns can be directly compared to the
simulated maps of Figures 5–7.

Figure 8A displays the activation and divergence maps
reconstructed from the mapping of the LA appendage region.
The regular activation sequence from the internal to the external
bipoles (i.e., from A34 to A12 and from C1112 to C910) and the
repetitive morphology of the signals suggested the presence of a
stable focal activation pattern. The reconstructed map identified
the focal site at the center of the mapping area. Wavefronts
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FIGURE 4 | Effects of missing or corrupted data on the accuracy of localization of focal drivers by divergence analysis in a tissue patch with homogeneous (pattern
b) and heterogeneous conduction properties (pattern c) in the presence of partially corrupted data. Distance between exact and estimated focal driver position as a
function of the progressive removal of electrograms (left) and at increasing levels of noise in activation time series (right). The horizontal dotted line indicates the
threshold for accurate localization. In the right panel, black and gray lines correspond to single-beat and 10-beat position estimation, respectively. Data are median
over 100 stochastic repetitions.

propagated centrifugally from the focal site with an average CV
of 44.0 ± 4.3 cm/s and activated the region at a mean cycle
length of 147 ms. The stability of the focal pattern was testified by
the average divergence map, which displayed a maximal positive
value at the center of the mapping area (Dmax = 1.03 mm−1 versus
Dmedian = 0.08 mm−1 in the surrounding area).

The mapping of the right superior PV ostium in Figure 8B
showed a regular, but more complex pattern. Activation and
divergence maps suggested the presence of a focal activation site
at the top corner of the mapping area (Dmax = 0.78 mm−1), firing
at a cycle length of 150 ± 16 ms. Wavefronts from the focal
site activated the mapping area from top to bottom (i.e., from
A12 to A34 to C1112) at an average CV of 49.8 ± 8.7 cm/s and
collided with wavefronts from the bottom. Collision lines were
suggested by the fragmentation of electrogram C1112 (Figure 8B)
and were marked by negative values in the average divergence
map (Dmin =−0.82 mm−1).

Maps from the LA floor (Figure 8C) evidenced a complex
activation process. Single-beat activation/divergence maps
suggested that the region was invaded by colliding wavefronts,
propagating with an average CV of 48.0 ± 4.9 cm/s. The region
was characterized by an average cycle length of 160 ms and higher
variability (cycle length SD of 14 ms). The average divergence
map displayed almost-zero values [range = (−0.24, 0.11) mm−1],
reflecting the instability of the activation process and the absence
of a prevalent propagation pattern.

Overall, the patient’s mapping data showed an average LA
cycle length of 150.1 ± 7.5 ms, with the fastest activity
(136.9 ± 2.7 ms) recorded in the region of the vein of Marshall
and the slowest (159.6 ± 2.9 ms) on the LA floor. Reconstructed
CV vector fields showed that CV values in the LA ranged from
40.8 to 58.5 cm/s, with a mean value of 47.2 ± 4.5 cm/s.
Beat-averaged divergence maps evidenced the presence of focal
activation patterns in the region of the LA appendage, right
superior PV and vein of Marshall, where maximal divergence

values were observed (Dmax = 1.00 ± 0.28 mm−1). Collision
lines were observed in proximity of focal sites and in ostial
regions, where average divergence maps displayed minimal
negative values (Dmin = −1.03 ± 0.64 mm−1). Differently,
mapping sites on the LA body were prevalently characterized by
complex and variable propagation patterns with more uniform
divergence maps.

DISCUSSION

This study introduced and validated by computer simulations
a novel approach for the characterization of wave propagation
and the identification of focal drivers in AF, based on a RBF
reconstruction of local CV vector fields from multipolar mapping
electrograms. Computer simulations demonstrated the method
flexibility in reconstructing continuous activation patterns and
CV fields corresponding to different propagation patterns from
scattered activation time series, and its accuracy in localizing
focal drivers even in the presence of partially corrupted data. The
proof-of-concept application to clinical multipolar mapping data
detected focal activation patterns in the PVs and LA appendage
region and more complex propagation patterns on the LA body,
suggesting the potential of the approach for identifying critical
sites in human AF.

Radial Basis Function-Based Conduction
Velocity Vector Approach for the
Characterization of Propagation Patterns
Our approach was based on a RBF reconstruction of activation
patterns and corresponding CV vector fields in the mapping
area. The RBF approach presents several features, which
makes it suitable for integration with clinically available
mapping systems. RBF interpolation does not require any
assumptions on the spacing and/or density of the interpolation
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FIGURE 5 | Application of divergence analysis during simulated atrial fibrillation in a region activated by a focal driver. (A) Schematic representation of the multipolar
mapping system, indicating the central position of the bipoles, and representative synthetic electrograms corresponding to the red bipoles of the catheter. Arrows
indicate the prevalent activation sequence. (B) Beat-to-beat reconstructed activation (top) and divergence maps (bottom) corresponding to the evidenced beats. The
average divergence map over the analyzed epoch is displayed in the bottom right panel. The presence of the focal driver is evidenced by maximal positive
divergence values (red).

points (Fornefett et al., 2001; Kybic et al., 2002a,b). This allows
integration with different clinically available mapping systems,
with respect to other approaches (Rogers et al., 1997; Bayly
et al., 1998; Alcaine et al., 2014; Zeemering et al., 2020) proposed
in the experimental setting, which instead require regularly
spaced and/or high-density latency data. In this study we
demonstrated the capability of RBFs to accurately reconstruct
CV fields from the analysis of simultaneous electrograms from
multipolar catheters and we showed that the application of
operators, such as the divergence, to the calculated CV fields
could be used to identify focal drivers in the presence of
complex propagation patterns. This extends our preliminary
work (Masé and Ravelli, 2010), where we suggested the possibility
of using RBFs to reconstruct activation patterns and CV fields

from scattered latency data, consecutively acquired by electro-
anatomic mapping system, during atrial pacing. In addition,
in the present work we corroborated the stability of the
reconstructions at a progressive reduction of the mapping sites,
suggesting that the method may be able to cope with partial
information loss due to inappropriate deployment and/or poor
electrode contact with the endocardial surface.

A second advantage of RBF interpolation is that the
methodology displays a certain degree of flexibility in
reconstructing continuous activation patterns that can be
present during atrial arrhythmias, such as focal activation,
multiple wavelet propagation, and wave collision. This
may represent an advantage with respect to previously
proposed algorithms, such as cosine or ellipse model fitting
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FIGURE 6 | Application of divergence analysis to simulated atrial fibrillation at the boundary between the focal driver and multiple wavelets region. (A) Schematic
representation of the multipolar mapping system, indicating the central position of the bipoles, and representative synthetic electrograms corresponding to the red
bipoles of the catheter. Arrows indicate the prevalent activation sequence. (B) Beat-to-beat reconstructed activation (top) and divergence maps (bottom)
corresponding to the evidenced beats. The average divergence map over the analyzed epoch is displayed in the bottom right panel. The presence of the focal driver
is evidenced by positive divergence values (red), while collision lines are indicated by negative values (blue).

(Weber et al., 2010, 2011; Roney et al., 2019) and triangulation
approaches (Kojodjojo et al., 2006; Ravelli et al., 2011), which
display accuracy in the estimation of wavefront speed,
direction, and conduction anisotropy in the presence of a
single propagating wavefront, but are not able to operate in the
presence of other propagation patterns. Flexibility in reproducing
different activation patterns, such as focal activation and wave
collision, has been recently demonstrated by physically informed
neural network, which may represent a promising approach
also to quantify the epistemic uncertainty associated with these
predictions (Sahli Costabal et al., 2020). Despite the flexibility
of RBFs to reproduce different propagation patterns, it should
be noticed that the definition of the interpolant function as a
sum of continuous functions makes RBFs incapable to accurately

reconstruct patterns where discontinuities and/or abrupt
changes in activation time are present. Thus, although capable to
reconstruct wavefronts with different curvature, RBFs may not be
suitable to trace the head-meet-tail region and phase singularity
of rotors, where discontinuities in phase values are present. This
is exemplified in Figure 9, which displays the RBF reconstruction
of a transient rotor observed in the complex activity region of
the simulated AF. In the displayed time window, the electrical
activity in the PentaRay mapped area was characterized by
a rotational wave activating the tissue in a counterclockwise
direction (Figure 9A). The RBF reconstruction (Figure 9B)
was able to track the sequence of activation, showing a wave
entering from the upper left region and turning to the right, but
it could not reliably map the head-meet-tail part of the reentrant
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FIGURE 7 | Application of divergence analysis to simulated atrial fibrillation in the region dominated by multiple wavelets propagation. (A) Schematic representation
of the multipolar mapping system, indicating the central position of the bipoles, and representative synthetic AF electrograms corresponding to the red bipoles of the
catheter. Arrows in the electrograms indicate changes in the activation sequence. (B) Beat-to-beat reconstructed activation (top) and divergence maps (bottom),
corresponding to the evidenced beats. The average divergence map over the analyzed epoch is displayed in the bottom right panel. The absence of a stable
propagation pattern is evidenced by the almost-zero values of the average divergence map (green).

circuit. Given this limitation, specific techniques available in the
literature, which detect rotors by examining the characteristics
of the electrograms obtained from catheters (Roney et al., 2017;
Ganesan et al., 2018, 2019; Orozco-Duque et al., 2019; Li et al.,
2020), should be used to supplement our approach when the
aim is the precise localization of rotors’ critical sites. Another
pattern that may not be correctly reproduced by our method is
the occurrence of conduction block. Indeed, our reconstruction
algorithm assumes that activation times are correctly identified
and aligned per beat at different atrial sites. In the presence of
conduction block and missed activations at some space locations,
direct RBFs interpolation may wrongly extrapolate a continuous
electrical activation in these areas. To address this problem,
in future implementations, missed activation times should be
properly marked on the activation map and restrictions to
interpolate activation patterns in these regions may be posed.
Alternatively, imposition of late activation times at these sites
may be considered to mimic conduction blocks in terms of
extremely slow conduction areas.

Radial basis functions provide an analytical formulation of the
activation patterns, which can be directly used for the analytical
determination of the CV vector field and its properties in the
mapping area. CV fields integrate and complete the information
content of activation maps, providing quantitative data on local
CVs and directions of propagating wavefronts. In combination
with spatial and/or anatomical information, CV maps evidence
spatial heterogeneities in conduction and slow conduction areas.
As well, specific angular properties of CV vectors mark areas of
focal activation and/or wave collision (Fitzgerald et al., 2005). Of
note, in a study performing a quantitative comparison of the use
of vector maps and isochrone cardiac activation maps to identify
patterns and features associated with arrhythmias, the former
displayed superior performance in mapping simple arrhythmias,
reducing the number of measurements necessary to select the
correct ablation target and presenting more rapid learning curves
(Fitzgerald et al., 2004). Despite the potentiality of CV vector
field representation of activation patterns (Fitzgerald et al., 2004),
CV field maps have been mostly limited to experimental models
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FIGURE 8 | Proof-of-concept application of divergence analysis to multipolar electrograms acquired during left atrial mapping in an AF patient. The displayed
multipolar mapping data were collected at the left atrial appendage (A), PVs region (B), and left atrial floor (C). For each mapped region, the left panels show a
schematic representation of the multipolar mapping system with arrows indicating the prevalent activation sequence and the representative electrograms
corresponding to the red bipoles of the catheter. The right panels show single-beat reconstructed activation and divergence maps for the evidenced beat and the
average divergence map calculated over the analyzed epoch.

(Bayly et al., 1998; Eijsbouts et al., 2003; Fitzgerald et al., 2003)
and open-heart surgery settings (Hansson et al., 1998), and
are only recently entering electrophysiological mapping data
software (O’Shea et al., 2019; Williams et al., 2021). Our approach
makes the construction of a CV vector maps equivalent to that
of an activation map, in terms of both clinician skill and time
expenditure, which supports clinical applications. Indeed, the
analytical formulation derived from RBFs allows the automatic

determination of the direction of propagation (given by the
gradient of the function), solving the problem of precisely
delineating the activation front. The interpolation function is
globally estimated from all latency data, without need of point
latency grouping as required by triangulation and bilinear fit
model approaches (Fitzgerald et al., 2003; Kojodjojo et al., 2006;
Ravelli et al., 2011). The potential of RBF approaches to measure
CV is testified by a recent study, where RBFs were chosen to
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FIGURE 9 | Reconstruction of a rotational pattern by radial basis functions during simulated atrial fibrillation in a realistic left atrial model. In panel (A), the sequential
snapshots of the membrane voltage show the presence of a transient rotor, which activates the PentaRay mapping area in a counterclockwise direction. Panel (B)
shows the activation map reconstructed from RBF interpolation of the activation times recorded at the PentaRay bipoles, with the normalized conduction velocity
vectors indicating the direction of wave propagation. The RBF activation map tracked the activation sequence, but it was not able to reproduce the head-meet-tail
part of the circuit (B).

estimate CV values in an open software for mapping data analysis
(Williams et al., 2021). Together with the computation of CV
fields by RBFs, the present study implemented the application of
operators, such as the divergence, to the CV fields. We showed
the divergence able to reveal and quantify important arrhythmia
features, such as the presence of focal sources or wave collision
lines. These features may thus be used to inform the mapping
strategy in order to accelerate the detection of these critical
sites in the absence of human pattern recognition. Few previous
studies have proposed algorithms to navigate the mapping
catheter toward focal or early activation sites (Roney et al., 2014;
Weber et al., 2017; Ganesan et al., 2019). An algorithm based on
iterative regression analyses displayed high accuracy to predict
the earliest activation site during focal tachycardias, requiring a
significantly lower number of mapping points with respect to
an operator-guided mapping (Weber et al., 2017). However, the
method was developed to work in combination with a point-by-
point acquisition mapping and thus with a single bipole at each
catheter location, while instead our approach has the advantage
of condensing in the divergence index the collective information
from a multipolar catheter at each mapping location. Collective
information from multipolar mapping systems was extracted in
another study (Roney et al., 2014) by fitting a single planar or
circular wave model to the activation times of the bipoles. The
direction of the estimated wave was used to guide the catheter
toward the earliest activation focal source. As our approach, this
method had the advantage not to be limited to a specific catheter
configuration, although better detection of focal sources was
obtained in combination with PentaRay or spiral catheters than
with circular catheters. While the approach in Roney et al. (2014)
provided a global evaluation of the direction of propagation in
the mapped area by a single-wave fit, our method allows a more
local and precise description of the actual wave propagation
patterns. In the absence of a source in the mapped area, local RBF-
estimated CV vectors may be nonetheless easily combined in a
macroscopic average vector to determine a prevalent propagation
direction and thus direct the mapping process. More recently, a
multiparameter algorithm was proposed to iteratively guide the
incremental movement of circular catheter through the atrium

until source (either focal or reentrant) detection (Ganesan et al.,
2019). The detection was based on the computation of four
indices describing the propagation pattern and the fulfillment
of source detection criteria. In particular, focal sources were
detected based on the “so-called” wave divergence index, which
was approximated as the SD of the direction of the velocity
vectors computed through subgrouping of the mapping points
into triads (Ganesan et al., 2019). Differently from this method,
our divergence approach may have the advantage of not requiring
any subgroup of electrodes nor specific catheter configurations
or symmetries, and of providing a divergence evaluation directly
based on a physical definition. Our method may be conveniently
integrated into these mapping navigation schemes, where the
RBF-based detection of focal sources would complement the
rules for the identification of rotors (Ganesan et al., 2019).
However, the implementation would require the estimation of
reliable threshold values for the divergence index, which may
be determined by receiver-operating characteristic analysis or
statistical approaches (Schreiber and Schmitz, 2000).

It is important to notice that our approach shares with all
these methods the necessity of a correct detection of activation
times. Indeed, although the use of an interpolation approach
allows flexibility for pattern reconstruction, interpolation is more
sensitive to activation time misdetections and noise effects, with
respect to techniques based on model fitting (Bayly et al., 1998;
Fitzgerald et al., 2003; Weber et al., 2010; Alcaine et al., 2014) or
approaches that do not require activation time detection (Richter
et al., 2011; Rodrigo et al., 2016; Alcaine et al., 2017; Luengo
et al., 2019; Handa et al., 2020). In order to reduce inaccuracy
in activation time estimations, activation waveforms from patient
data were automatically identified by a well-established technique
(Botteron and Smith, 1995; Faes et al., 2002), and activation
times were set at the waveform barycenter (Faes et al., 2002;
Masè et al., 2005, 2015). As suggested in several works (Holm
et al., 1996; Faes et al., 2002; El Haddad et al., 2013; Ravelli and
Masè, 2014), the use of a morphology-based activation detection,
such as the barycenter method, improves estimation accuracy
in the presence of fragmented electrograms. In addition, the
barycenter identifies the central point of the activation waveform
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and thus can be spatially associated with the midpoint of the
bipole, where bipolar electrogram coordinates were set. The
importance of an accurate estimation of activation series was
pointed out by our computer simulations, which showed a
progressive deterioration of estimation accuracy at increasing
noise levels. Noise affected at a higher extent the estimation of CV
vector magnitudes, while vector directions (and thus divergence
analysis) were less affected. On the other hand, median CV
displayed a decreasing trend with increasing noise, which may
be partially related to a minimization of the wavefront curvature
performed by RBF. Since simulations showed the method to be
more robust against electrogram loss than misdetection, it should
be preferable to exclude activation series from noisy or excessively
fragmented electrograms, although extrapolation of activation
patterns to poorly mapped regions should be considered with
caution. Alternatively, uncertainty in local activation times
may be profitably addressed using novel approaches based on
probabilistic interpolation, able to keep into account activation
time errors at different sites and to pin the activation map more
strongly at site with higher precision measurements (Coveney
et al., 2020). Consistently with previous works (O’Shea et al.,
2019), our simulations also suggested that, in the presence
of stable patterns, noise effects on CV estimation and source
localization could be reduced by averaging values over few beats.
Thus, although the method is potentially able to work on a beat-
to-beat basis, sequential divergence maps should be computed
to distinguish transient instances of focal activation [e.g., due
to epicardial breakthroughs (de Groot et al., 2010)] from the
presence of a stable localized source, whose activity should be
repetitive and persist over longer periods (Takahashi et al., 2006;
de Groot et al., 2010; Ravelli et al., 2012, 2014). Assuming an atrial
cycle length <200 ms during AF, averaging of 10 beats would
require very short (<2 s) signal windows, which are consistent
with clinical mapping times. The method may thus be used to
complement other descriptors of the fibrillatory patterns, such as
causality-based approaches (Richter et al., 2011; Rodrigo et al.,
2016; Alcaine et al., 2017; Luengo et al., 2019; Handa et al., 2020),
which may require longer signal windows for the analysis.

Divergence-Based Identification of Focal
Patterns in Human Atrial Fibrillation
The proof-of-concept application of divergence analysis to
clinical multipolar electrograms revealed the presence of stable
focal activation patterns at the PVs, vein of Marshall, and LA
appendage during AF. The position of the detected focal sites
is consistent with previous studies in AF patients (Haissaguerre
et al., 1998; Hwang et al., 2000; Schmitt et al., 2002; Nitta et al.,
2004; Sanders et al., 2005; Ravelli et al., 2012, 2014). Arrhythmic
episodes of multifocal origin, with triggers located outside the
PV region, were observed in AF patients by multisite biatrial
mapping using a basket catheter or a non-contact mapping
system (Schmitt et al., 2002). Rapid repetitive activity from the
LA veins, including the PVs (Haissaguerre et al., 1998) and
the vein of Marshall (Hwang et al., 2000), were reported to
trigger paroxysmal AF. Dominant frequency analysis applied
to atrial electrograms in paroxysmal AF showed that the PVs

and ostial regions were most likely to harbor a high frequency
source (42%), while the probability decreased in other atrial
regions and in the coronary sinus (Sanders et al., 2005). In
patients with permanent AF and mitral valve disease (Nitta et al.,
2004), intraoperative mapping of the entire atrial epicardium
showed LA focal activation from the posterior region adjacent to
the PVs and the LA appendage. Consistently, electro-anatomic
mapping and combined cycle length/wave similarity analysis in
patients with persistent AF localized AF sources in the PV region
in 47% of patients and in the LA appendage area in 12% of
patients (Ravelli et al., 2012). Our analysis revealed the presence
of collision areas and more complex propagation patterns in
proximity of the focal sites, as observed at the right superior PV
(see Figure 8B) and in other ostial regions. This is consistent
with experimental (Kalifa et al., 2006) and clinical studies (Stiles
et al., 2008; Ravelli et al., 2014; Kochhäuser et al., 2017), which
identified zones characterized by propagation pattern variability
and fractionated activity alongside areas of fast and regular
atrial activation.

In the present study the analysis of clinical data was restricted
to a proof-of-concept, being limited to the LA mapping of a
single AF patient. Nonetheless, the consistency of our results with
previous studies suggests the potential of the approach and fosters
the performance of systematical studies on larger patient groups
to investigate the spatial distribution of focal activation patterns
in AF and their correlation with ablation outcomes. In addition,
the developed techniques may be useful to map more organized
forms of AF, as well as secondary atrial tachycardias at re-do
procedures (Haissaguerre et al., 2006). Further validation of the
method in larger clinical datasets, including different types of
atrial arrhythmias, is necessary to clinically validate the method
and to assess its applicability and benefit for the optimization of
ablation strategies.

CONCLUSION

This paper introduced a novel methodology for the
characterization of wave propagation and the identification
of focal drivers in AF, which is based on the reconstruction
of CV vector fields and the application of divergence analysis.
Tests led by computer simulations suggested that accurate
reconstruction of propagation patterns and localization of focal
sites was feasible with clinically available catheter configurations.
The proof-of-concept application of the methodology to human
AF signals consistently identified focal patterns in the PVs and
LA appendage area. The combination of RBF and divergence
analysis with other methods for the extraction of collective
information from multipolar mapping data may allow a more
robust interrogation of cardiac conduction patterns, potentially
leading to the optimization of ablation treatment.
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Background: Radiofrequency ablation (RFA) effectively treats arrhythmia. Steam pop 
(SP) is a dangerous complication of RFA, which can lead to pericardial tamponade or 
even death.

Objective: This study aimed to explore the electro-characteristics of myocardial pouches, 
and the relationship between SP, pouch, and impedance.

Methods: Swine myocardium was divided into the pouch group and smooth myocardium 
group. Continuous RFA at 50 W was applied. The initial impedance reduction within the 
first 3 s of ablation and the time from the start of ablation to SP were recorded. After 
enabling the delta impedance cutoff function, RFA was performed at different percentage 
of delta impedance (PDI) cutoff thresholds.

Results: The impedance was higher for the pouch myocardium compared to the smooth 
myocardium (123.22 ± 8.63 Ω and 95.75 ± 4.75 Ω, respectively; p < 0.001). The RFA 
duration before SPs was shorter in the pouch group compared to the smooth myocardium 
group [9 s (interquartile range, IQR: 6.25–13 s) and 33 s (IQR: 26.25–40.75 s), respectively; 
p < 0.001]. Within the first 3 s of RFA, impedance reduction (24.65 ± 6.57 Ω and 
12.78 ± 3.35 Ω, respectively; p < 0.001) and PDI [19.18% (IQR: 16.39–24.20%) and 12.96% 
(IQR: 11.17–14.39%), respectively; p < 0.001] were greater in the pouch group compared 
to the smooth myocardium group. A PDI of 15% and delta time of 3 s effectively reduced 
the frequency of SPs without seriously affecting RFA use.

Conclusion: SPs occur more frequently in the pouch area during RFA. Appropriate delta 
impedance cutoff settings (PDI: 15%; delta time: 3 s) can reduce the frequency of SPs 
and improve the RFA safety.

Keywords: arrhythmia, atrial fibrillation, radiofrequency ablation, impedance, pouch, steam pop
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INTRODUCTION

Radiofrequency ablation (RFA) is an effective treatment for 
patients with arrhythmia (Hindricks et  al., 2021). However, 
there is concern regarding the safety of RFA, especially with 
the recently introduced high-power, short-time RFA and left 
atrial isolation (Eichenlaub et  al., 2021; Zedda et  al., 2021).

During RFA, coagulation necrosis begins at temperatures 
higher than 50°C. As the tissue temperatures rise, steam is 
formed within the myocardium, leading to a steam pop (SP). 
SP refers to the audible sound produced by an intramyocardial 
explosion when the intra-tissue steam is rapidly produced, 
causing pressure buildup (Nakagawa et  al., 1998). SPs are 
relatively infrequent (0.1–1.5%) but are a potentially severe 
complication of RFA; SPs may result in myocardial wall disruption 
and increased risk for cardiac perforation, pericardial tamponade, 
embolic stroke, and even death (Seiler et  al., 2008; Tokuda 
et  al., 2011). It is difficult to achieve the optimal balance 
between sufficient energy to penetrate deep myocardial tissues 
and avoiding excessive heat and SPs. Therefore, it will be useful 
to develop technology that prevents this potentially life-
threatening complication (Kondo et  al., 2017; Viles-Gonzalez 
et  al., 2017).

SPs often occur after the changes in myocardial tissue 
impedance (Theis et  al., 2015; Alfonso-Almazán et  al., 2019). 
During RFA, the impedance gradually decreases, sometimes 
with a steep decrease at the very beginning (Ikeda et  al., 2014; 
Viles-Gonzalez et  al., 2017). SP is associated with more rapid 
impedance reduction at the initial stage (Cooper et  al., 2004; 
Theis et al., 2015; Nguyen et al., 2018). RFA may be interrupted 
due to impedance changes, based on several important principles. 
First, the application of radiofrequency produces lesions through 
resistive heat, which depends on tissue electrical resistivity 
and is inversely related to tissue water content. Second, tissue 
impedance initially decreases due to increased mobility of ions. 
Third, thermal lesions are associated with decreased impedance, 
and the magnitude of the decrease depends on tissue temperature 
and area of the heated cardiac tissue. Thus, higher tissue 
temperature and faster rise in temperature correlate with faster 
and earlier decrease in impedance. Finally, a rapid increase 
in temperature (resulting in a rapid and significant decrease 
in impedance) produces gas from the ablated tissue 
through vaporization.

If impedance is rapidly reducing or has reduced to a great, 
it is reasonable to interrupt RFA. However, the cutoff values 
to guide this decision and prevent SPs have not been determined.

There are many pocket-shaped indentations of various sizes 
in the human endocardium, called pouches (Figure  1; Costa 
et  al., 2004; Shimizu et  al., 2018). Pouches can interfere with 
RFA, resulting in prolonged RFA duration (Chen et  al., 2011; 
Shimizu et  al., 2018). The sub-Eustachian pouch depth was 
independently associated with total RFA duration and 
radiofrequency energy delivered during cavotricuspid isthmus 
ablation (Shimizu et  al., 2018). Some experts believe that 
resistive heating and impedance reduction at the beginning 
of RFA are associated with the amount of cardiac tissue 
surrounding the catheter tip (Viles-Gonzalez et al., 2017). When 

the catheter is placed in the pouch, its tip is surrounded by 
more cardiac tissue; therefore, a large amount of heat is rapidly 
generated. The rapid blood flow through the heart removes 
some of the heat, which is important to lower the temperatures 
of the catheter tip and cardiac tissue. However, blood flows 
slowly through the pouches. Therefore, theoretically, SP is more 
likely to occur in the pouches, but this assumption has not 
evaluated in previous studies.

Large pouches, such as those in the cavotricuspid isthmus 
and atrial septum, can be  detected by intracardiac 
echocardiography, transesophageal echocardiography, intracardiac 
imaging, and multislice computed tomography (Shimizu et  al., 
2018). However, there is no effective, safe, and easily applicable 
method to detect small pouches, such as those in the left atrium.

To explore the relationships between pouch, impedance, and 
SP, we  aimed to determine whether SPs occur more frequently 
in pouches, whether impedance differs between the pouch and 
the smooth myocardium, and whether impedance-related settings 
can be  used to improve the safety of RFA.

MATERIALS AND METHODS

Experimental Instruments
The experimental instruments consisted of a container with 
saline, a thermostat, a water circulator, and an RFA system 
(Figure  2). The thermostat maintained the temperature of 
the saline at 37°C, and the water circulator continuously 
circulated the saline. Swine hearts were obtained from 

FIGURE 1 | A figure to show pouch.
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commercial vendors and transported to the laboratory on 
ice immediately after the slaughter. The myocardium was cut 
into small pieces (5 × 5 cm), which were spread out and fixed 
on a rubber plate in saline. A total of 37 swine hearts 
were used.

The EnSite Precision system (St. Jude Medical Inc., St. Paul, 
MN, United States) and an Ampere™ radiofrequency generator 
were used for RFA. The TactiCath™ quartz contact force-
sensing ablation catheter (75/65) was fixed in a plastic tube 
perpendicular to the tissue to maintain stability. The dynamic 
force sensor (TactiSys Quartz) was used to maintain a stable 
force (15–20 g) at the distal end of the catheter. The rate of 
irrigation flow of cold saline was 17 ml/min at the distal end 
of the catheter end (Cool Point Irrigation Pump).

Experiment Design
Pouch and smooth myocardium were identified by observing 
the myocardial shape. Parts of the pouch and regular smooth 
myocardium co-existed in the same sections; multiple ablations 
were performed in the pouch and smooth myocardial areas 
on the same tissue sections.

The experiment comprised of four parts. First, continuous 
RFA at 50 W was applied until SP occurred. The RFA duration 
before SP was recorded for 40 RFAs performed in the pouch 
group and regular smooth myocardium group each. Second, 
impedance of the pouch group and smooth myocardial group 
without RFA was recorded. Third, continuous RFA at 50 W 
was applied to the pouch and smooth myocardial tissues, and 

impedance reduction within the first 3 s was recorded. The 
percentage of delta impedance (PDI, %) was calculated as (delta 
impedance/initial impedance) × 100. A total of 40 RFAs were 
performed in the pouch and smooth myocardium groups each. 
Fourth, continuous RFA at 50 W was applied using the delta 
impedance cutoff function (i.e., when delta impedance was 
higher or lower than the set value within the set delta time, 
the system automatically turned off the RFA). The following 
setting procedure was completed on the screen of the RF 
generator: Menu → Ablation Parameters → Delta Impedance 
Cutoff → Enable. For example, if delta impedance and delta 
time were set at 20 Ω and 3 s, respectively, the system will 
automatically terminate the RFA if the delta impedance reached 
20 Ω within 3 s. Delta impedance was tested at a range of 
1–50 Ω, and delta time was tested at a range of 1–10 s. Because 
the initial myocardial impedance varies between different 
locations, subgroups based on PDI are better able to reflect 
the changes in impedance. RFA was performed 40 times at 
each cutoff value in each group.

Statistical Analysis
Normally distributed data are expressed as mean ± standard 
deviation (SD); data with a skewed distribution are expressed 
as median (interquartile range, IQR: P25–P75). A two-sample 
t-test was used to compare the data with normal distribution 
and homogeneity of variance. The Mann–Whitney U-test was 
used for data with a non-normal distribution. Categorical 
and grade data are expressed as number, rate, or percentage. 

FIGURE 2 | Experimental set-up. The experimental instruments consisted of a container with 0.9% saline, a thermostat, a water circulator, and an RFA system. The 
thermostat maintained the temperature of saline at 37°C and the water circulator continuously circulated the saline. Swine heart tissue was secured on a rubber 
plate in the saline container. RFA, radiofrequency ablation.
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The Kaplan–Meier method was used to analyze the probabilities 
of endpoint events. A time-event curve was constructed. A 
two-sided value of p < 0.05 was considered statistically  
significant.

RESULTS

RFA Duration Before SP Was Shorter in 
Myocardial Pouches
Continuous RFA at 50 W, without the cutoff function, caused 
SPs in all ablation lesions in the pouch and smooth myocardium 
groups. RFA duration before the SP was significantly shorter 
in the pouch group compared to the smooth myocardium 
group [9 s (IQR: 6.25–13 s) and 33 s (IQR: 26.25–40.75 s), 
respectively; p < 0.001; Figure  3A].

The Kaplan–Meier curves with SP as the endpoint event 
(Figure  3E) confirmed that SP occurred earlier in the pouch 
group compared to the smooth myocardium group.

Impedance Change Was More Significant 
in Pouches Than Smooth Myocardium
The initial impedance was significantly higher in the pouch 
group compared to the smooth myocardium group 
(123.22 ± 8.63 Ω and 95.75 ± 4.75 Ω, respectively; p < 0.001; 
Figure  3B). The impedance significantly decreased in the 
first 3 s of RFA at 50 W in both groups when the delta 
impedance cutoff function was disabled. The decrease in 
impedance was much greater in the pouch group compared 
to the smooth myocardium group (24.65 ± 6.57 Ω and 
12.78 ± 3.35 Ω, respectively; p < 0.001; Figure 3C), confirming 
that the pouch areas had a more significant impedance 
change during RFA. Moreover, PDI was significantly higher 
in the pouch group compared to the smooth myocardium 
group [19.18% (IQR: 16.39–24.20%) and 12.96% (IQR: 
11.17–14.39%), respectively; p < 0.001; Figure 3D]. PDI during 
the first 3 s of RFA was stratified as <5%, 5–10%, 10–15%, 
15–20%, 20–25%, and > 25%. Among these PDI-based strata, 
0, 1, 6, 15, 10, and 8 ablation lesions, respectively, were 

A B

D E

C

FIGURE 3 | Steam pops occurred earlier in the pouch group. Impedance of the pouch tissue was high and rapidly decreased at the beginning of RFA. (A) RFA 
duration before SPs was shorter in the pouch group compared to the smooth myocardium group. (B) Impedance was higher in the pouch group compared to the 
smooth myocardium group. (C) Decrease in impedance in the first 3 s of RFA was faster in the pouch group compared to the smooth myocardium group. (D) The 
PDI of the pouch group was greater than that of the smooth myocardium group. (E) Kaplan–Meier curves show that SPs occurred earlier in the pouch group 
compared to the smooth myocardium group. PDI, percentage of delta impedance.
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observed in the pouch group, and 0, 7, 26, 5, 2, and 0 
ablation lesions, respectively, were observed in the smooth 
myocardium group (Figure  4A).

SPs Are Prevented With the Use of Delta 
Impedance Cutoff
Using the delta impedance cutoff function, RFA procedure 
was continued until the cutoff was reached or SP occurred. 
RFA was performed using different PDI cutoff values (i.e., 5, 
10, 15, 20, and 25%). For example, when a PDI cutoff value 
of 5% was selected and the delta impedance exceeded 5% of 
the initial impedance value, RFA was terminated.

The cutoff value was reached and RFA was terminated 
in some ablation lesions in both groups. No SP occurred 
in these cases. However, SP occurred in ablation lesions 
without the cutoff function. Using different PDI cutoff values, 
the rates of cutoff without SP were 100 and 100% (PDI = 5%), 
100 and 80% (PDI = 10%), 90 and 15% (PDI = 15%), 32.5 
and 2.5% (PDI = 20%), and 22.5 and 0% (PDI = 25%) in the 
pouch group and smooth myocardium group, respectively 
(Figure  4B).

Because five cutoff threshold values were set, 200 RFAs 
were performed (5 thresholds × 40 lesions) in each group. 
Cutoff was invoked in 138 and 77 RFAs in the pouch group 
and smooth myocardium group, respectively. The RFA duration 
before cutoff was 1–5 s (minimum to maximum). In the 
pouch group, most cutoffs occurred within 1–3 s after the 
start of RFA (130/138 cutoffs, 94.20%), and a few cutoffs 
occurred in 4 s (7/138, 5.07%) and 5 s (1/138, 0.72%). In 
the smooth myocardium group, all cutoffs occurred within 
the initial 3 s (77/77 cutoffs, 100%; Figure  5), confirming 
that significant impedance changes occurred at the 
beginning of RFA.

DISCUSSION

SPs Occur More Frequently and Earlier in 
Pouch Areas
When the catheter tip was placed in a pouch, it was surrounded 
by more myocardial tissue compared to when it was placed 
on smooth myocardium, producing a greater amount of heat 
(Viles-Gonzalez et al., 2017). In addition, less blood flow passes 
through the pouch to remove the heat. Therefore, heat builds 
up much faster in pouches compared to the smooth myocardium, 
causing SPs during RFA. Because the presence of pouches is 
a risk factor of SP, techniques to detect the presence of pouches 
or avoid RFA in the pouches will reduce the incidences of 
SP and other serious complications. Such techniques are especially 
desirable for high-power, short-time RFA, which involve a rapid 
increase in temperature and strictly controlled ablation.

In our study, the pouch group and smooth myocardium 
group were separated based on visual inspection. The 
characteristics of the pouches that may increase the incidence 
of SP are as: firstly, the diameter of the pouch is larger than 
the outer diameter of the ablation catheter so that the catheter 
can fall into and ablate within the pouch. Currently, the outer 
diameter of the ablation catheter used commonly is greater 
than 7F (2.331 mm), so pouch should be greater than 2.331 mm 
in diameter. Secondly, a shallower and greater pouch is more 
conducive to heat dissipation and less likely to produce SP.

Impedance of Pouch Myocardium Is 
Significantly Increased
It is not completely clear why impedance is higher in pouches 
compared to the smooth myocardium. Marmar et al. suggested 
that the main determinant of impedance is the cross-sectional 
area of the lumen where the catheter tip is placed (Vaseghi 

A B

FIGURE 4 | Appropriate PDI cutoff settings effectively prevented SPs. (A) The number of ablation lesions with PDI values (< 5%, 5–10%, 10–15%, 15–20%, 20–
25%, and > 25%) during the first 3 s of RFA in the pouch group and smooth myocardium group. (B) The frequency of invoked cutoffs at different PDI settings. Red 
line indicates that at the optimal PDI setting of 15%, the cutoff rate in the pouch group was 90%, while RFA application was only terminated in 15% of all cases in 
the smooth myocardium group.
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et al., 2005). The cross-sectional area of a pouch is significantly 
smaller than that of the smooth myocardium. Therefore, the 
pouch generally has higher impedance. In addition, blood is 
an excellent electronic conduction medium, and abundant blood 
flow decreases the impedance of the myocardial tissue. Pouch 
cavities in the left atrial/ventricle endocardium have significantly 
reduced blood flow due to their small size, while the smooth 
myocardium is rich in blood flow, which increases the difference 
in the impedance of the two myocardial regions. Cheung et al. 
(2004) and Vaseghi et  al. (2005) reported that the pulmonary 
veins have relatively high impedance (Cheung et  al., 2004; 
Vaseghi et  al., 2005), which may complicate pulmonary vein 
RFA by causing pulmonary vein stenosis or even occlusion 
(Teunissen et  al., 2017; Fink et  al., 2018). In this study, RFA 
in the pouch was associated with increased risk of SP. Therefore, 
RFA-related risks are increased in areas with high impedance, 
such as pouch and the pulmonary vein. A significant increase 
in impedance during the movement of the catheter suggests 
that the catheter tip may have entered a special anatomical 
site, such as a pouch or pulmonary vein. Therefore, in such 
a case, the catheter should be repositioned until the impedance 
decreases to the initial level, and RFA can be  resumed.

Using the delta impedance cutoff function, cutoff will 
be  invoked when the impedance increases or decreases to a 
certain value. In China, most RFA procedures are performed 
under local anesthesia rather than general anesthesia; therefore, 
the catheter tip is prone to movements during the operation 
due to unstable breathing, coughing, and body movements. 
Large abnormal movements of the catheter tip during RFA, 
such as sliding into the pulmonary vein from the atrial wall, 
may lead to dramatic impedance changes, which will invoke 
cutoff and automatically terminate the RFA. The cutoff method 
can reduce the likelihood of performing ablation under unstable 

conditions and improve RFA efficiency and safety. However, 
the optimal cutoff value has not been determined.

In clinical practice, SP is often accompanied by significant 
changes in impedance. When designing the study protocol, 
we  tried to reduce SP by interfering with this impedance 
change. However, we  gave up finally, because it was found 
that the interval between these impedance change and SP was 
very short or even simultaneous, so it was difficult to intervene 
by impedance cutting. This impedance change may be  related 
to tissue change or catheter displacement during SP occurrence.

Appropriate Cutoff Settings Can Prevent 
SPs and Ensure Normal RFA Application
During the first 3 s of RFA, the impedance significantly decreased 
in the pouch group and smooth myocardium group; both the 
impedance reduction and PDI were greater in the pouch group 
compared to the smooth myocardium group. A low PDI threshold 
easily invoked cutoff, thereby preventing SPs and interfering 
with the normal RFA procedures. Conversely, when a high PDI 
threshold was used, cutoff was not frequently invoked, thereby 
rarely interfering with the normal RFA procedures. However, 
the incidence of SP increased. When the PDI threshold was 
set to 15% (red reference line in Figure  4B) and delta time to 
3 s, 90% of RFAs in the pouch group were cutoff, while only 
15% of RFAs were terminated in the smooth myocardium group 
(Figure  4B). Therefore, PDI of 15% and delta time of 3 s are 
the optimal cutoff settings, which significantly reduce the incidence 
of SPs, while having minimal effect on normal RFAs.

In this study, we  observed that the impedance decreased 
rapidly in the initial stage of continuous RFA and decreased 
slowly in the later stage, consistent with the previous studies 
(Nakagawa et al., 1998). In the present study, 96.28% (207/215) 

A B

FIGURE 5 | Most cutoffs occurred within the first 3 s of RFA. RFA duration before the cutoff was 1–5 s. Percentage of RFA duration in the pouch group (A) and 
smooth myocardial group (B) are depicted.
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of the cutoffs occurred within the first 3 s of RFA, confirming 
a significant decrease in impedance in the initial stage. At 
50 W, the RFA durations before SP were 9 s (IQR: 6.25–13 s) 
and 33 s (IQR: 26.25–40.75 s) in the pouch group and the 
smooth myocardium group, respectively. Both durations were 
significantly longer than the 3 s required to invoke cutoffs. 
Therefore, cutoffs usually occurred before SPs, thereby lowering 
SP incidence and ensuring RFA safety.

Study Limitations
The ablation power we  used was 50 W, and the results were 
obtained under experimental conditions. In clinical practice, 
parameters may vary according to different conditions. When 
designing the study protocol, we  attempted to conduct a study 
in vivo. However, in this study, the pouch group and smooth 
myocardium group were separated based on visual inspection, 
which is difficult to do in vivo. Temperature is associated with 
SP production. In order to simulate temperature changes in the 
real environment, myocardial tissue needs to be  immersed in a 
large amount of flowing fluid during RFA. We also tried to replace 
saline with heparinized blood. However, we  found that pouch 
was difficult to visualize in this blood, so we did not use heparinized 
blood in place of saline in our model ultimately. Therefore, further 
research is needed to identify the optimal cutoffs settings for 
RFA in human tissue. With advancements in catheter-based RFA 
technology, it is likely that no single factor will be able to predict 
the occurrence of SPs. Therefore, a combination of parameters 
may be  evaluated to predict and prevent SP formation.

CONCLUSION

The endocardial pouch structure has a higher initial 
impedance and a faster impedance decreases during RFA. 

The endocardial pouch structure is prone to the occurrence 
of SPs. The use of an appropriate delta impedance cutoff 
threshold (PDI of 15% and delta time of 3 s) can effectively 
prevent SPs without affecting RFA application, thereby 
increasing RFA safety.
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Purpose: Sites of highest dominant frequency (HDF) are implicated by many proposed
mechanisms underlying persistent atrial fibrillation (persAF). We hypothesized that
prospectively identifying and ablating dynamic left atrial HDF sites would favorably
impact the electrophysiological substrate of persAF. We aim to assess the feasibility
of prospectively identifying HDF sites by global simultaneous left atrial mapping.

Methods: PersAF patients with no prior ablation history underwent global simultaneous
left atrial non-contact mapping. 30 s of electrograms recorded during AF were exported
into a bespoke MATLAB interface to identify HDF regions, which were then targeted
for ablation, prior to pulmonary vein isolation. Following ablation of each region, change
in AF cycle length (AFCL) was documented (≥ 10 ms considered significant). Baseline
isopotential maps of ablated regions were retrospectively analyzed looking for rotors and
focal activation or extinction events.

Results: A total of 51 HDF regions were identified and ablated in 10 patients (median
DF 5.8Hz, range 4.4–7.1Hz). An increase in AFCL of was seen in 20 of the 51 regions
(39%), including AF termination in 4 patients. 5 out of 10 patients (including the 4
patients where AF termination occurred with HDF-guided ablation) were free from AF
recurrence at 1 year. The proportion of HDF occurrences in an ablated region was not
associated with change in AFCL (τ = 0.11, p = 0.24). Regions where AFCL decreased
by 10 ms or more (i.e., AF disorganization) after ablation also showed lowest baseline
spectral organization (p < 0.033 for any comparison). Considering all ablated regions,
the average proportion of HDF events which were also HRI events was 8.0 ± 13%.
Focal activations predominated (537/1253 events) in the ablated regions on isopotential
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maps, were modestly associated with the proportion of HDF occurrences represented
by the ablated region (Kendall’s τ = 0.40, p < 0.0001), and very strongly associated with
focal extinction events (τ = 0.79, p < 0.0001). Rotors were rare (4/1253 events).

Conclusion: Targeting dynamic HDF sites is feasible and can be efficacious, but lacks
specificity in identifying relevant human persAF substrate. Spectral organization may
have an adjunctive role in preventing unnecessary substrate ablation. Dynamic HDF
sites are not associated with observable rotational activity on isopotential mapping, but
epi-endocardial breakthroughs could be contributory.

Keywords: atrial fibrillation, catheter ablation, non-contact mapping, atrial electrograms, dominant frequency,
persistent AF, multi-layer, rotors

INTRODUCTION

Atrial fibrillation (AF) is the commonest cardiac arrhythmia
in clinical practice, affecting 2% of the population worldwide
(Nattel, 2002). AF increases the risk of stroke fivefold and
is associated with increased mortality (Nattel, 2002). Catheter
ablation is an effective therapy for paroxysmal AF (pAF)
(Haissaguerre et al., 1998; Fichtner et al., 2015), but the
identification of successful ablation targets in patients with
persistent AF (persAF) remains challenging (Jalife et al.,
2002; Nattel, 2002, 2003). The electrophysiological mechanisms
underlying persAF and current adjunctive ablation strategies
beyond pulmonary vein isolation (PVI) lack clear evidence
for effectiveness (Providencia et al., 2015; Verma et al.,
2015; Mohanty et al., 2018). Recently, endocardial-epicardial
interaction has been highlighted as a relevant pathophysiological
contributor (Yamazaki et al., 2012; Gutbrod et al., 2015;
Hansen et al., 2015), but this has not yet been translated into
the clinical arena.

Sheep optical mapping studies (Mandapati et al., 2000;
Mansour et al., 2001; Kalifa et al., 2006) first outlined the
potential of using dominant frequency (DF) assessment to detect
AF driver sites, predicated around the observation of rotors
(Mandapati et al., 2000), but the utility of DF is also implicit
with other proposed mechanisms (Kumagai et al., 2000; Lin
et al., 2005; Kalifa et al., 2006). DF has previously demonstrated
good correlation with local cycle length (Earley et al., 2006;
Lin et al., 2007; Gojraty et al., 2009). Despite this, human
ablation studies based on point-by-point sequential DF mapping
were inconclusive (Atienza et al., 2009, 2014; Verma et al.,
2011). Highest DF (HDF) sites have since been shown to be
spatiotemporally unstable (Lazar et al., 2004; Yokoyama et al.,
2009; Habel et al., 2010; Jarman et al., 2012; Salinet et al., 2014);
consequently, as a natural corollary, simultaneous multisite
mapping is necessary to reliably localize atrial high DF areas.

In this study, we hypothesized that the strategy of
prospectively identifying and ablating dynamic left atrial
HDF sites would favorably impact the electrophysiological
substrate of persAF. We sought in particular to assess the
feasibility of prospectively identifying HDF sites by global
simultaneous left atrial mapping across long continuous time
segments, and to describe the underlying wavefront activation
characteristics at these sites.

MATERIALS AND METHODS

Patients
Ten persAF patients with no previous ablation history gave
written informed consent to undergo HDF mapping and
ablation, on uninterrupted oral anticoagulation. All had
undergone successful direct current cardioversion (DCCV)
previously, and median AF duration (from the first documented
AF post-DCCV up to the time of their procedure) was 219 (range
132–848) days. Table 1 summarizes the clinical characteristics
of the group. The study was independently approved by
the United Kingdom national health research ethics service.
Procedures were performed under general anesthesia. All anti-
arrhythmic drugs (AADs) were stopped for at least 5 half-lives,
except amiodarone which was continued. Every patient was in
AF at the start of their procedure.

Non-contact Mapping
A non-contact multi-electrode array (Ensite Array, St. Jude
Medical, St Paul, MN, United States) was positioned transseptally
in the left atrium (LA) alongside an EZ Steer Thermocool ablation
catheter (Biosense Webster, Diamond Bar, CA, United States).
Patients were heparinized to maintain an activated clotting
time > 300 s. 3D electroanatomic mapping was performed using
the Velocity platform (St. Jude Medical). 30 s of continuous AF
activity were recorded, and the virtual electrograms (vEGMs) of
a 2048 node geometry from this period were exported.

Signal Processing
A bespoke MATLAB graphical user interface was created for the
study (Li et al., 2017), incorporating our previously published
spectral analysis methodology (Salinet et al., 2014; Li et al.,
2021), generating 13 sequential DF maps in each patient with
30 s data. The non-contact MEA catheter was used to collect
intracardiac signals, as previously described. 2,048 channels of
virtual electrograms (vEGMs) were sampled at 2034.5 Hz and
exported with a 1–150 Hz filter setting from Ensite system
(Figure 1A). MATLAB was used to analyze the data offline
(Mathworks, United States). As shown in Figure 1B, ventricular
far-field activity was removed from the recorded vEGMs using a
previously described QRST subtraction technique (Salinet et al.,
2013). The vEGMs were then divided into 4 s window segments
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TABLE 1 | Clinical and procedural characteristics of patients with and AF
recurrence within 12 months following ablation.

All patients AF free at
12 months

AF-recurrence
within 12 months

N 10 5 5

Age/years 57.7 ± 12.1 57.3 ± 9.0 58.2 ± 14.6

Body mass index/kg m−2 31.0 ± 5.7 32.6 ± 6.7 29.5 ± 3.7

Longstanding persistent AF 3 2 1

LA volume/ml 151 ± 38 146 ± 40 156 ± 35

Amiodarone usage 2 2 0

Hypertension 3 1 2

Diabetes mellitus 1 0 1

Previous myocardial
infarction

1 1 0

Procedure duration/mins 389 ± 80 386 ± 65 393 ± 92

LA area ablated during HDF
targeting/mm2 (% of LA
total)

1362 ± 704
(7.3 ± 3.6)

1055 ± 494
(5.9 ± 3.1)

1670 ± 746
(8.7 ± 3.6)

HDF occurrences ablated
(%LA)

559 ± 268
(22.8 ± 8.7)

448 ± 278
(21.6 ± 7.1)

670 ± 205
(23.9 ± 9.9)

Electrical cardioversion
required at procedure end
to restore sinus rhythm

5 0 5

Numbers are mean ± SD where relevant. HDF, highest dominant frequency;
LA, left atrium.

that overlapped by 50%. The fast Fourier transform (FFT) was
used to perform spectral analysis on each segment (Figure 1C).
A Hamming window was applied to the atrial vEGMs to reduce
leakage. To improve DF identification, zero padding was used,
resulting in a frequency step of 0.05 Hz. The peak in the power
spectrum within the physiological range of 4–10 Hz was defined
as DF (Figure 1C) (Salinet et al., 2014). Regularity index (RI)
was defined as the ratio of spectral area (power) under the
curve centered at DF peak (0.75 Hz bandwidth) and area under
the full physiological spectrum (here 4 – 20 Hz, Figure 1C)
(Sanders et al., 2005).

Highest Dominant Frequency Ablation
Targeting
For each 4 s window, HDF occurrences were defined as all
nodes hosting a DF within 0.25 Hz of the maximum DF for
that map (shown as purple on the LA geometry in the example
in the top panel of Figure 1D). To avoid biasing for target
size, the spatial centers of the HDF occurrence regions for
each map were projected onto the LA geometry in MATLAB
(bottom panel, Figure 1E). The intended regions of ablation
were transcribed on to the Velocity geometry, with the objective
of prospectively defining several discrete regions for ablation.
Each region where possible would encompass multiple co-
localizing HDF spatial centers which would be ablated “en-bloc”
(Figure 1F). Once this initial map was created, changes or re-
mapping were not permitted.

Ablation Protocol
Highest dominant frequency spatial centers were targeted for
radiofrequency ablation, with the objective of eliminating local
atrial signal. The bipolar signal at the LAA is invariably well

demarcated and permits unambiguous manual assessment of
AFCL, has been applied as a surrogate of AF organization
in many other clinical studies (O’Neill et al., 2006, 2009;
Haissaguerre et al., 2007; Rostock et al., 2011; Honarbakhsh
et al., 2018a). Following each region of HDF-guided ablation,
AFCL in the left atrial appendage (LAA) was measured using
the ablation catheter over 10 cycles to evaluate ablation response.
A 10 ms change in AFCL was considered a priori to be significant
(Bezerra et al., 2020). This was repeated until one of the following
pre-defined endpoints was reached:

1) Termination of AF to sinus rhythm (SR);
2) Conversion from AF to an organized LA rhythm, or;
3) Operator decision to stop based on satisfactory target

coverage or patient safety.

A further post-procedural Velocity data export was performed
to capture all radiofrequency (RF) point (lesion) locations
corresponding to each ablation region. Every RF point has
an associated location on the LA geometry (the closest atrial
endocardial surface point). Regularity index (RI) was defined as
the ratio of spectral area (power) under the curve of DF peak and
area under the full spectrum. Therefore, each point was associated
with a DF value and an RI value which both vary over time. The
DF and RI values at these LA geometry points were averaged
spatially and temporally to generate (scalar) mean DF and RI
values for each ablated region individually. There was no attempt
to manually filter ablation points.

Finally, the Array was removed and replaced by PVAC
(Pulmonary Vein Ablation Catheter, Medtronic, Fridley, MN,
United States) to achieve PVI, irrespective of the atrial rhythm.
Where necessary, intravenous flecainide followed by DCCV was
delivered to restore SR at the end of the procedure.

Associating Post-ablation AF Cycle
Length Change With Regional
Pre-ablation Spectral Characteristics
Each of the 51 ablated regions across the whole patient cohort
was categorized by the AFCL change arising from ablation in
the region. The DIS group was pre-defined as regions where
ablation resulted in a reduction in AFCL (i.e., DISorganization)
by 10 ms or more. The ORG group was pre-defined as regions
where ablation resulted in AFCL increase by 10 ms or more, or
termination of arrhythmia (i.e., ORGanization). All other regions
were classified as EQUivocal (i.e., an AFCL change of 9 ms or less
in either direction).

Highest dominant frequency was defined as above, while
highest RI (HRI) was defined as the top decile of RI values
for the LA within any single given time window. HDF + HRI
concurrence was defined whenever a given LA geometry point
hosted HDF and HRI in the same time window.

HDF, HRI, and HDF + HRI concurrence was retrospectively
compared across the DIS, EQU, and ORG groups.

Isopotential Map Wavefront Analysis
A retrospective analysis of the pre-ablation patterns of activation
behavior in HDF regions was performed in the Velocity
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FIGURE 1 | Diagram of the workflow for ablation targets identification. (A) St. Jude Ensite: left atrial geometry isopotential map exported from Ensite Velocity
System. (B) Array data is imported into a bespoke MATLAB user interface. QRST subtraction: Electrograms using one ECG lead as reference. (C) FFT and DF
detection: power spectrum of the current non-contact atrial signal and DF identification (D) 3D and 2D DF/HDF maps: MATLAB reconstructed 3D Atrial geometry
with color-coded DF/HDF and transformation to 2D uniform grid. (E) The top panel shows an antero-posterior view of the LA, with the region hosting HDF for a
single 4 s time window highlighted in purple. The pink dots indicate the HDF spatial centers for all time windows. For better intraprocedural clarity, the bottom panel
shows only the HDF spatial centers (white dots) identified across all the mapped time windows. (F) Identifying and ablating HDF regions. These are transcribed into
the Velocity 3D mapping system and targeted with ablation (red dots). Yellow dots represent anatomical marker points. FFT, fast Fourier transform; HDF, highest
dominant frequency.

environment using the following pre-specified protocol. Each
discrete region that received ablation was circumscribed on the
geometry. The isopotential mapping area was then centered
upon this region. Activation was defined when local vEGM
voltage fell below the fixed thresholds of either −0.28 or
−0.53 mV (Hoshiyama et al., 2016). The rationale for these
thresholds is based on the work of Hoshiyama and colleagues,
where endocardial mapping of the LA was performed using
the same non-contact multielectrode array as the one in the
present study (Hoshiyama et al., 2016). In their study, vEGM
signals from premature atrial contractions (PACs) were recorded
at the time of spontaneous onset of AF. In particular, very
short-coupled PACs (VS-PACs) were defined as “PAC with the
shortest coupling interval that was observed just before the
AF onset.” The amplitude of the vEGM during VS-PACs was
reported as 0.53 ± 0.25 mV. This threshold represented the
smallest amplitude for a PAC that would have been associated
with discrete ECG evidence of relevant activation, and was
therefore used to define the lower activation threshold of −0.53
mV and the upper threshold of −0.28 mV (one standard
deviation above the lower threshold) as used in the present study.
The described approach avoided reliance upon more arbitrary
amplitude thresholds during AF, with such thresholds inevitably
being smaller and hence unfavorably reducing overall signal-
noise ratio. Playback of the isopotential map from the 30 s period
corresponding to the time of HDF mapping was performed,

looking to document specific pre-defined activation trajectories
encompassing current mechanistic theories of AF persistence (see
Figure 2 for detailed examples, and also the video links available
in Supplementary Materials). Examples of the considered
behaviors are provided in Figure 2, and Supplementary Video
links are available in Supplementary Materials. Events were
pre-defined as specific visually observed behaviors of activation
encompassing current mechanistic theories of AF:

1) Rotor (Narayan et al., 2012, 2014) – core must remain
in the lesion with a circular activation path of at
least 360 degrees.

2) Critical pathway involved in single or multiple loop
re-entry (Lin et al., 2005) – entry and exit of >50%
of the activation wavefront must be from distinct
sides of the lesion.

3) Wavelet propagation (Moe and Abildskov, 1959; Moe
et al., 1964; Allessie, 1985) – Division of a primary
wavefront into two or more separate wavefronts occurring
within the lesion.

4) Focal wavefront activation (Haissaguerre et al., 1998;
Kumagai et al., 2000) – wavefront spontaneously emerges
radially from within an otherwise non-activated lesion.

5) Focal wavefront extinction (de Groot et al., 2010, 2016) –
wavefront enters from outside the lesion, reduces radially
and extinguishes within the lesion.
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FIGURE 2 | Patterns of pre-ablation isopotential map behavior in and around HDF regions. For each case, the temporal sequence is from left to right and top to
bottom. The timing of each frame relative to the first is given in ms. Each image is centered around an area that was subsequently ablated based upon the presence
of HDF spatial centers. Purple areas on the map represent atrial myocardium where local activation is absent, as defined by a local vEGM (virtual electrogram)
amplitude above –0.28 mV. Voltages of –0.53 mV or less display as white, with the remainder of the color scale defining intermediate values. The appearance and
trajectory of color around the maps were used to define the following wavefront activation patterns: (A) Rotor-like behavior, seen on the LA roof. The final panel
shows an isochronal map of the area during this period, confirming rotational activity. AFCL was not significant altered by ablation in this region. (see also
Supplementary Video 1). (B) Activation passes through the posterior wall of the LA three times consecutively (see Supplementary Video 2) within a single TQ
period, but ablation here did not alter AFCL. (C) A wavefront is seen to split into two independent wavefronts on the LA roof, with the division occurring within the
ablated area. AFCL was not significantly affected by ablation here (see also Supplementary Video 3). (D) Focal activation occurs near the left upper pulmonary
vein, migrating out of the ablated area before extinguishing, as also demonstrated in Supplementary Video 4A. Later on, the same area is seen to activate again
from an identical origin (Supplementary Video 4B), this time extinguishing within the lesion. Ablation here terminated AF to an atrial tachycardia. (E) A recurring
focal extinction event, occurring on the LA roof. Focal activation arises outside the ablated region, then moves into and extinguishes within the ablated area (first 10
images). This behavior is repeated again shortly afterward (last 10 images) within the same TQ interval. See also Supplementary Video 5.

For each ablated region, the frequency of each of the
above behaviors within the 30 s segment was counted (see
Supplementary Videos for examples). The observer was blinded
to the AFCL change. Events partially or entirely within the QRST
period were ignored.

The consistency of focal activation events was evaluated within
each ablation region individually by assessing the maximum
and minimum number of focal events over the prior 10 TQ
intervals, creating a “moving maximum” (MMax) and “moving
minimum” (MMin). The difference between the greatest and least
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value of MMin and MMax over the 30 s period was designated
“diffMMin” and “diffMMax,” respectively.

Clinical Follow-Up
Following a 3-month blanking period, patients underwent at
least 24 h of continuous ambulatory ECG monitoring, and
recurrence was defined as any documented AF of at least 30 s
occurring between 3 and 12 months post-procedure, irrespective
of ongoing AADs.

Statistical Analysis
Data normality was assessed visually and using the Kolmogorov-
Smirnov test. Correlations were performed using Spearman’s
or Kendall’s method depending on the presence of rank ties,
within MATLAB or using Prism v7.03 (Graphpad Software,
CA, United States). Pairwise comparisons between groups were
performed using the “TPB20” percentile bootstrap method with
20% trimmed means (Wilcox, 2012). Non-parametric trends
analyses were performed using the Jonckheere-Terpstra test.
Statistical significance was defined at the 0.05 level, and further
adjusted for multiple comparisons. Both linear and logistic mixed
effects regression models were explored but did not add utility
(p = 1.00 and p = 0.27, respectively) for non-zero between-patient
variance in AFCL outcome, (R v3.2.1, R Foundation for Statistical
Computing, Vienna, Austria).

RESULTS

Clinical Outcomes
All patients completed the study protocol. Procedure duration
was 390± 57 min, in keeping with a novel mapping and ablation
protocol. RF time ablating HDF regions was 54 ± 27 min,
covering an LA ablation area of 1447± 676 mm2, corresponding
to 7.8± 3.6% of the total mapped LA area, prior to PVI.

Five patients converted to SR without the need for DCCV.
Patient 1 (longstanding persAF, on amiodarone) converted
with flecainide after PVI. Patients 10 (longstanding persAF,
on amiodarone), 5 (Figure 3A) and 4 converted from AF to
atrial flutter, and patient 7 converted transiently to LA silence
(Figure 3B) before then terminating to SR (all with HDF-guided
ablation alone, prior to PVI). AF termination sites were the base
of LAA, the LA roof (in 2 patients), and the posterior wall. An
example of the ablation performed is shown in Figure 4A.

No significant adverse events occurred. During the 12-month
follow-up period, all 5 patients requiring DCCV at the end of
their procedure experienced AF recurrence, in contrast to zero
out of the 5 who ended their procedure in SR without the need
for DCCV. Table 1 lists the clinical characteristics of patients with
and without recurrent AF.

Characteristics of 30 s Highest Dominant
Frequency-Guided Ablation Regions and
AF Cycle Length Responses
The pre-ablation global LA mean DF was strongly correlated
with baseline AFCL (r = 0.88, p < 0.001). A total of 51 discrete

regions were ablated during the study, 20 (39%) of which resulted
in significant AFCL increase or termination, as summarized in
Table 2. Ablated region size was 267 ± 290 mm2. The averaged
DF for each ablated region was 5.7± 0.7 Hz with an average RI of
0.35± 0.06. A median of 4 (range 3–10) regions of ablation were
delivered per patient.

Figure 4B shows the AFCL response to prospectively targeted
ablation of consecutive HDF regions, demonstrating: (1) higher
baseline AFCL conferred greater likelihood of achieving SR
without DCCV (p < 0.01); (2) HDF-targeted ablation could
disorganize as well as organize AF, but; (3) this did not
preclude subsequent AF organization and/or termination. Only
one patient had a further significant increment in AFCL following
PVI (Patient 9, from 195 to 222 ms).

Median lesion size was 166 (21–1380) mm2. The area
of ablation alone (debulking) was not associated with AFCL
variation (Kendall’s τ = 0.05, p = 0.64).

The proportion of HDF occurrences per ablated region
(compared with the entire LA across 30 s) ranged from 0 to 14.7%
(median 2.6%). Correlation between this and AFCL change was
non-significant (τ = 0.11, p = 0.24).

Highest Dominant Frequency and
Highest RI Occurrences in Ablated
Regions
The relationship between the spectral behavior of ablated regions
and the AFCL response to ablation was assessed by comparing
the number of HDF and HRI occurrences between the AFCL
response groups, as shown in Figure 5. In view of the prolonged
RF delivery times and varying extent of ablation, the possibility of
cumulative ablation effects was assessed by evaluating the above
metrics for only the first two (indicated in red) and first three
(indicated in green) ablated regions for each patient, and finally
for all ablated regions (indicated in blue).

Highest RI showed statistically significant trends analyses, as
well as differences between the DIS group and the ORG group,
for all extents of ablation. A significant difference was also seen in
HRI between the DIS and EQU group when considering only the
first two lesions. No other trends or comparisons were statistically
relevant. Considering all ablated regions, the average proportion
of HDF events which were also HRI events was 8.0± 13%.

For each patient in this study, DF mapping utilized a
total of 13 consecutive time windows of 4 s each, with an
overlap of 2 s. The geometry consists of 2048 notes, each of
which may or may not host HDF, and may or may not host
HRI. Across the 13 time windows, there are therefore 2048 ∗
13 = 26624 opportunities for HDF + HRI concurrence per
patient. A period of HDF + HRI concurrence is considered as
a spatially and temporally contiguous period of HDF + HRI
concurrence of at least 1 time window, at any single node.
With this in mind, the median (range) of HDF + HRI
concurrence periods was 128.5 (0–628) out of a possible 26624
occurrences, per patient.

When considering all patients together, in this study there
were a total of 1952 periods of HDF + HRI concurrence.
The median duration of HDF + HRI concurrence was 1 time
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FIGURE 3 | Examples of AF termination following ablation of a region of highest dominant frequency. (A) Patient 5. The white arrow indicates the point of transition
from AF to a persistent organized atrial tachyarrhythmia. (B) Patient 7. The left atrium is silent with no coronary sinus (CS) signal at baseline, but with ECG evidence
of ongoing AF. Pacing from the ablation (Abl) catheter captures the CS with organized distal to proximal activation.

FIGURE 4 | (A) The four HDF targeted ablation regions from patient 5 are shown. The color scale corresponds to occurrences of HDF at the given spatial location.
Individual lesions are labeled according to their impact on AFCL, with a change of 10 ms or more considered significant. Yellow triangles indicate the location of HDF
spatial centers. (B) Changes in AFCL for each consecutive region of HDF-guided LA ablation. Lines are labeled with their respective patient number. Case
progression is from left to right. *, patients in whom sinus rhythm was restored without the need for electrical cardioversion; AFCL, atrial fibrillation cycle length; HDF,
highest dominant frequency; MV, mitral valve annular locations; LUPV, left upper pulmonary vein; RUPV, right upper pulmonary vein; RLPV, right lower pulmonary vein.

window (of 4 s), range 1–3 windows, i.e., 4–8 s (after accounting
for window overlap). Importantly, only 82 out of the 1952
periods (4.2%) of HDF + HRI concurrence lasted for more
than 1 time window.

Analysis of Isopotential Maps
The numbers of activation events per patient across all 51 ablation
regions observed on 30 s pre-ablation isopotential maps are
summarized in Table 3.
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TABLE 2 | Location of ablated regions targeted using HDF mapping, and their
associated left atrial response.

Termination AFCL
increase

AFCL
unchanged

AFCL
decrease

Anterior 0 2 2 1

Posterior 1 3 5 3

Roof 2 3 9 0

Septum 0 4 0 1

Left PV region 0 2 3 1

Right PV region 0 0 4 2

Left atrial appendage 1 1 0 0

Lateral 0 1 0 0

AFCL, atrial fibrillation cycle length; PV, pulmonary vein.

A positive association between the proportion of HDF
occurrences and all isopotential events within ablated regions was
mainly driven by the focal activation group (τ = 0.40, p < 0.0001).
Focal event rates were indicatively different between ablation
response groups (Figure 6A), and their ablation was weakly
associated with an organizing AFCL response (τ = 0.21, p = 0.04).

Focal extinction events were strongly correlated with focal
activations in the same region (τ = 0.79, p < 0.0001, Figure 6B).
0.65 extinction events (95% confidence intervals 0.58–0.71,
p < 0.0001) were estimated to occur for every activation event
in the same region. Rotor behavior was only observed 4 times
during this study, and only in one patient (Patient 6). 3 of these 4
rotors occurred in the same ablated region. This particular region
also recorded the highest overall number of wavefront activation
events (excluding extinction events) in the whole study.

The maximum and minimum number of focal activation
events occurring in any given ablation region appeared to be
consistent over time (example in Figure 7A). diffMMin values
ranged from 0 to 1 only, whilst all diffMMax values were 2 or
less, except one. Greater variability (i.e., higher diffMMax and
diffMMin) tended to occur only with higher mean event rates.
(τ = 0.73 and 0.41, respectively, p < 0.0001 for both, Figure 7B).

DISCUSSION

The present study shows that spatiotemporally dynamic HDF
areas throughout the LA during human in vivo persAF can be
prospectively, feasibly, and efficaciously targeted using a global
multisite mapping approach based on an established commercial
platform, even before PVI. 39% of HDF-targeted lesions resulted
in an AFCL increase of 10 ms or more. The presence of focal
activations on isopotential mapping was the most commonly
observed electrophysiological behavior, and co-localized with
HDF activity during AF in ablation regions. These activations
were consistently observed in the same areas. Focal extinction
events were strongly associated with focal activation events in
these same areas, while rotor events were rare.

Regions with lower HRI occurrences were associated with
a negative AFCL response to ablation, but HDF occurrences
were not predictive. Simultaneous concurrence of HDF and HRI

in the same time window and spatial location was uncommon
and short-lived.

Dynamic Highest Dominant Frequency
Mapping Does Not Identify Clinically
Relevant Rotor Behavior
Dominant frequency is implicated across multiple potential
mechanisms of AF persistence including multiple loop re-
entry (Lin et al., 2005), focal sources (Takashima et al., 2010)
and rotors (Mandapati et al., 2000; Mansour et al., 2001), yet
previous results from DF-targeted persAF ablation have been
disappointing (Atienza et al., 2009, 2014; Verma et al., 2011).
Part of the explanation lies in the temporal-spatial variability
in DF (Yokoyama et al., 2009; Habel et al., 2010; Jarman et al.,
2012; Salinet et al., 2014) which may have limited the point-
by-point approaches that have been employed in many studies
to date, and underpinned our belief that a panoramic whole-
atrial method would be necessary for robust spectral mapping of
persAF. However, despite using such an approach, prospective
ablation of dynamic HDF targets in the present study did not
predict AF organization.

While previous retrospective data alluded to this possibility
(Jarman et al., 2012) the current study is the first to
prospectively reach this conclusion. Early data from the
cholinergic stimulation of sheep atria (Kalifa et al., 2006;
Filgueiras-Rama et al., 2012) first proposed the relevance
of micro-reentrant phenomena producing spatial frequency
gradients which might be potentially mapped in the frequency
domain. Subsequent evidence supported the concept of such
“rotor” meandering around anatomical or recurrent functional
areas of block (Gianni et al., 2016; Salinet et al., 2017), or varying
in response to the autonomic milieu (Atienza et al., 2006), both
of which would lead to dynamic DF behavior and hence require
similarly dynamic mapping to target successfully.

It was hypothesized that the present study might clarify this
through the combination of isopotential activation map analysis
alongside HDF. However, during the comprehensive isopotential
map analysis of ablated regions in the present work, only 4
rotor-like events were observed, all in the same patient. This is
comparable to the published rates of similarly described behavior
using the same technology (Yamabe et al., 2016). Our observation
suggests that where rotors do arise, they may co-localize with
(and could thus confound the targeting of) other activation
phenomena. Overall though, the rarity of this type of rotor
behavior, coupled to the overall equivocal AFCL outcomes with
prospective dynamic HDF targeting, questions the significance of
such phenomena in relation to both HDF mapping and human
AF persistence, as detected using the current study platform.
Direct rotor observation and ablation in humans (Narayan et al.,
2012, 2014) has been controversial (Benharash et al., 2015; Gianni
et al., 2016) and some groups using direct atrial patch electrodes
during cardiac surgery have not observed rotor phenomena at all
(Moe et al., 1964; Allessie et al., 2010; Lee et al., 2015).

In addition, the definition of a rotor is still debated. A popular
approach is to generate instantaneous phase signals from time
series data using the Hilbert transform (Umapathy et al., 2010).
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FIGURE 5 | Spectral characteristics of HDF-targeted ablation regions compared with the AFCL response to ablation of that region. (A) HDF counts. (B) HRI counts.
(C) HDF + HRI concurrence counts. Values shown are median ± interquartile range. DIS – ablation lesions resulting in an AFCL decrease/disorganization of 10 ms or
more; EQU – ablation lesions resulting in equivocal change in AFCL of between –9 and + 9 ms; ORG – ablation lesions resulting in AFCL increase/organization of
10 ms or more; * indicates a statistically significant difference when compared with the corresponding DIS group after correction for multiple comparisons.

To “unmask” the rotational behaviors within narrower frequency
ranges, pre-processing methods have been applied to intracardiac
data before Hilbert transform. Wavelet/sinusoidal reconstruction

TABLE 3 | Frequency of left atrial activation events during lesion-by-lesion visual
assessment of isopotential maps within each patient.

Patient 1 2 3 4 5 6 7 8 9 10 Total

Rotor 0 0 0 0 0 4 0 0 0 0 4

Critical pathway 21 0 12 6 7 127 11 3 86 42 315

Wavelet propagation 1 0 0 2 0 10 0 0 5 2 20

Focal activation 23 1 37 60 70 70 27 25 167 57 537

Focal extinction 27 1 18 48 59 41 27 19 121 16 377

See text for definitions of activation behavior.

and band-pass filters centered on DFs are examples of techniques
for filtering out undesirable and/or non-physiologic activations
(Rodrigo et al., 2014; Kuklik et al., 2015). Once robust phase
mapping has been obtained, another factor to consider is the
definition of a rotor in terms of completeness of rotations. While
the original idea is of a re-entrant circuit requiring a full rotation
with 1 cycle or 360 degrees, in practice, this is usually not
achievable due to spatial electrodes sampling. More recently, a
rotor with >75% of a full rotation was considered to be generally
acceptable (Kowalewski et al., 2018). In the present study, the
rotors were defined by visual assessment of isopotential maps in
a manner similar to that of Yamabe et al. (2016). It is nevertheless
possible that we could have underestimated the number of rotors
that were present, as using activation or isopotential maps alone,
based on electrograms or activation wavefronts, may have a
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FIGURE 6 | (A) Comparing numbers (mean and SD) of focal activation events with the AFCL response to ablation of that region; ∗p < 0.05 for Kendall’s correlation
between the variables. (B) Counts of focal extinction and activation events within the same regions. Line of best fit and confidence intervals by linear regression are
shown (p < 0.0001).

FIGURE 7 | Demonstrating the temporal consistency of focal activation events. (A) In one patient, for each consecutive TQ interval, the number of observed focal
activation events for one ablated region is shown by the solid line. The dotted line indicates the MMax (moving maximum) for the region, and an example of the
derivation of diffMMax is shown. (B) The variation in the consistency of focal activation as measured by diffMMax (filled circles) and diffMMin (unfilled circles) across
all 51 lesions from all 10 patients are shown. See main text for definitions.

tendency to overlook phase-singularity events that have been
used to define rotors (Narayan and Zaman, 2016).

Identifying Spectral Organization May
Minimize Excess Ablation
The data in the present study shows that HDF-guided
ablation may not always result in AF organization; in another
words, HDF-guided mapping results in false-positive substrate
identification. Interestingly however, where HDF-guided ablation
resulted in AF disorganization, the pre-ablation HRI in these
areas was significantly lower than if AF had organized, and to a
lesser extent than if there was no AFCL response. Therefore, low
HRI may have utility as an adjunctive indicator to avoid the risks
of ineffective ablation of false-positive targets identified by HDF,
or indeed by other putative substrate markers.

Dominant frequency variability is known to be inversely
associated with spectral measures of AF organization (Takahashi
et al., 2006; Jarman et al., 2014; Honarbakhsh et al., 2018b).
As such, atrial zones with low HRI may be expected to host
substantially more DF variation, which would not be consistent
with putative source-like behavior. The fact that HDF and HRI

were only very rarely spatiotemporally coincident in our cohort
thus further supports a significantly lesser role for HDF than was
previously assumed.

Relatively few studies have specifically evaluated the spectral
assessment of organization in the context of AF ablation.
Computer simulation has suggested that OI (organization index,
a measure of spectral organization similar to the RI used in
the present study) would be superior to DF in localizing focal
activity (Everett et al., 2001; Tobon et al., 2012), Tuan et al.
(2010) noted a rise in OI prior to AF termination with flecainide,
with Takahashi and colleagues observing the same after isolation
of a driving PV in pAF (Takahashi et al., 2006). Jarman and
colleagues documented in 6 patients, also using a non-contact
array in the LA, that where PVI with wide area circumferential
ablation had coincidentally crossed areas of higher organization,
the organization in a distal part of the LA (around the LAA)
also increased (Jarman et al., 2014). However, the organization in
adjacent sites did not change significantly which may run counter
to the idea of the index area as an AF source.

More recently, Honarbakhsh et al. (2019) used a 64-pole
basket contact catheter and CARTOFINDER to evaluate 44
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AF driver sites in 29 patients, defined by either rotational or
focal activity observed over 30 s. Following PVI, 39 out of 44
prospectively ablated driver sites resulted in AFCL prolongation
(of at least 30 ms) or termination. Interestingly the sensitivity
(true positive rates) for HDF and HRI were 50 and 95%, while
false positive rates were 37 and 33%, respectively.

Epicardial-Endocardial Interaction: An
Alternative Hypothesis for Highest
Dominant Frequency in Atrial Fibrillation
Persistence
Our method of tracking HDF did not assume any specific
underlying electrophysiological mechanism other than the
relevance of high frequency activation sites in maintaining
persAF. To explore this further, we investigated the underlying
isopotential patterns within ablated regions, seeking pre-defined
mechanistic behaviors that co-localized with or formed the basis
for HDF events or for the AFCL response to ablation.

Out of all our pre-defined activation patterns, only focal
activation events were found to be associated with AFCL
response, and more interestingly also (very strongly) with focal
extinction events. The co-localization of focal activation and
extinction suggests that the same anatomical regions may act as
both source and sink in the electrophysiological environment,
where current can both originate from and flow back to. Our
results suggest the possibility of other electrophysiologically
active tissue permitting the channeling of current both toward
and away from the endocardium – in other words, multiple
electrophysiologically relevant myocardial layers. To the best
knowledge of the authors, this is the first presentation of data
from a commercially available mapping system in the LA that
is supportive of the multi-layer hypothesis in human persAF
(de Groot et al., 2010, 2016). In keeping with this interpretation
and their own conclusions, de Groot and colleagues (de
Groot et al., 2016) documented highly correlated numbers of
focal endocardial and epicardial events measured using contact
electrodes in the right atrium during AF in cardiac surgery
(R2 = 0.89, p < 0.0001, our calculation). Not all focal waves
breaking through to the epicardium will originate from the
endocardium, which may explain the apparent shortfall of
endocardially observed extinction events compared to activation
events in the present work. Notably, 57% of our ablated regions
demonstrated repetition of focal behavior, often with clear
anatomical consistency even within the ablated area (see example
in Supplementary Video 4), whereas < 10% of focal events in
the data from de Groot et al., were repetitive, probably due to
differences in detection criteria, and a shorter mapping time of
10s per patient. Our data suggests that 30 s would be sufficient to
observe temporally consistent focal activity in humans.

We also show for the first time an association between HDF
events and observed focal events. Computer modeling studies
(Gharaviri et al., 2017) suggest that reducing the number of
epicardial-endocardial breakthrough sites (BTRs) could increase
or decrease AF stability. Although this study could not look
specifically at BTRs ablation, our finding of a heterogeneous
AFCL response to ablation in potentially equivalent areas is

supportive of this and may have contributed to the equivocal
outcomes from previous DF-targeted persAF ablation studies.

Limitations
We believe our work on a small number of patients offers a
number of useful insights into persAF behavior in the context
of HDF ablation, but larger patient cohorts would be needed
to confirm or otherwise the prospective validity of future
similar methodologies.

Isopotential map analysis was voltage thresholded at a level
which may have precluded visualization of lower amplitude but
electrophysiologically relevant signals. It is however notable that
the correlation between focal activation and extinction events was
preserved (τ = 0.82, p < 0.0001) even when the threshold for
activation was reduced (i.e., made more stringent) from−0.28 to
−0.53 mV, negating the idea of a noise-driven phenomenon, and
suggesting that the −0.28 mV threshold was reasonably specific
for the detection of this type of behavior.

An average of 10% of Array geometry points were located
more than 40 mm from the Array, at which point signal quality
is known to decrease (Kadish et al., 1999). The process of HDF
evaluation will be partially resistant to this effect (Gojraty et al.,
2009), as it is less dependent on signal amplitude.

Ablation can alter spectral characteristics at distant sites
(Jarman et al., 2014; Salinet et al., 2017), therefore it is possible
that the cumulative effect of sequentially targeted ablation may
be different to each lesion considered individually. The effect
of this was partially accounted for with analysis for 2,3 and all
available lesions separately as shown in Figure 5. In the future,
faster generation of global DF maps may increase the feasibility
of applying an iterative approach (remapping after each lesion is
delivered) to investigate this further.

The current investigation was focused on frequency domain
analysis. Future work including other metrics such as entropy and
coherence could bring new insights and help to better understand
the underlying mechanisms of persAF (Lee et al., 2013; Almeida
et al., 2017, 2018; Li et al., 2020, 2021).

In the absence of confirmatory epicardial data, the endo-
epi interaction shown through non-contact mapping was
observational in nature and hence hypothesis generating
only. Computational simulation or pre-clinical experiments
may provide more evidence but were not included in
the current study.

CONCLUSION

We have shown that the ablation of spatiotemporally dynamic
HDF regions guided by global intra-cardiac non-contact
mapping is feasible and can acutely organize persAF before PVI.
However, HDF alone has inadequate specificity for AF driving
sites. During persAF ablation, left atrial areas of low organization
in the frequency domain are unlikely to be appropriate substrate
targets and should be avoided to reduce excess ablation and
its consequences. Whole-chamber non-contact mapping may be
able to detect epicardial-endocardial interactions in persAF, but
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further studies are needed to better delineate the importance of
this in clinical practice.
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Background: Although pulmonary vein isolation (PVI) gaps contribute to recurrence after 
atrial fibrillation (AF) catheter ablation, the mechanism is unclear. We used realistic 
computational human AF modeling to explore the AF wave-dynamic changes of PVI with 
gaps (PVI-gaps).

Methods: We included 40 patients (80% male, 61.0 ± 9.8 years old, 92.5% persistent 
AF) who underwent AF catheter ablation to develop our realistic computational AF model. 
We compared the effects of a complete PVI (CPVI) and PVI-gap (2-mm × 4) on the AF 
wave-dynamics by evaluating the dominant frequency (DF), spatial change of DF, maximal 
slope of the action potential duration restitution curve (Smax), and AF defragmentation 
rate (termination or change to atrial tachycardia), and tested the effects of additional virtual 
interventions and flecainide on ongoing AF with PVI-gaps.

Results: Compared with the baseline AF, CPVIs significantly reduced extra-PV DFs 
(p < 0.001), but PVI-gaps did not. COV-DFs were greater after CPVIs than PVI-gaps 
(p < 0.001). Neither CPVIs nor PVI-gaps changed the mean Smax. CPVIs resulted in higher 
AF defragmentation rates (80%) than PVI-gaps (12.5%, p < 0.001). In ongoing AF after 
PVI-gaps, the AF defragmentation rates after a wave-breaking gap ablation, extra-PV DF 
ablation, or flecainide were 60.0, 34.3, and 25.7%, respectively (p = 0.010).

Conclusion: CPVIs effectively reduced the DF, increased its spatial heterogeneity in 
extra-PV areas, and offered better anti-AF effects than extra-PV DF ablation or additional 
flecainide in PVI-gap conditions.

Keywords: atrial fibrillation, computational modeling, pulmonary vein, gap, dominant frequency

INTRODUCTION

Catheter ablation is the most effective rhythm control method for atrial fibrillation (AF; Turagam 
et  al., 2019). The cornerstone of AF catheter ablation (AFCA) is pulmonary vein isolation 
(PVI; Oral et  al., 2006). However, even after AFCA with an adequate PVI, the AF recurrence 
rate is 40–50% within 5 years (Saguner et  al., 2018). In patients with a post-AFCA recurrence 
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during a repeat procedure, the pulmonary vein (PV) reconnection 
rate, which is the leading cause of recurrence, reaches 37–95% 
(Lin et  al., 2015). PV reconnections are due to the technical 
limitations of the PVI durability (Arujuna et  al., 2012). On 
the other hand, extra-PV triggers are also an important AF 
mechanism in AF patients with significant atrial remodeling 
(Velagapudi et al., 2013). Because AF is a progressive, degenerative 
disease, an empirical extra-PV ablation has been attempted, 
especially in patients with persistent or long-standing AF 
(Haissaguerre et  al., 2005). Nevertheless, there is no evidence 
that an empirical extra-PV linear, electrogram-guided, or rotor 
ablation has a rhythm outcome superior to a complete PVI 
(CPVI) alone for ablating persistent AF (Verma et  al., 2015). 
Indeed, the mechanism by which a CPVI and additional 
extra-PV ablation provide equivalent rhythm control is unknown. 
Little is known about the optimal procedure for AF patients 
with recurrence and an incomplete PVI (Park et  al., 2019).

Therefore, this study used realistic human AF computational 
modeling to explore how a CPVI affects the extra-PV AF 
wave-dynamics and how a PVI-gap affects the recurrence 
mechanism. Current AF computational modeling takes advantage 
of recent improvements in the computational power to precisely 
simulate human AF by applying a personalized anatomy, 
histology, and electrophysiology (Lim et  al., 2020a). Various 
virtual interventions and virtual anti-arrhythmic drug tests have 
become possible using controlled in silico conditions (Shim 
et  al., 2017; Kim et  al., 2019). In this study, we  hypothesized 
that a CPVI would affect the extra-PV AF wave-dynamics. In 
addition, we  evaluated the effects of a PVI with-gaps on the 
AF maintenance and compared the interventions and drug 
challenges to find the optimal anti-AF outcomes.

MATERIALS AND METHODS

Ethical Approval
The study protocol followed the Declaration of Helsinki and 
was approved by the Institutional Review Board of Severance 
Cardiovascular Hospital, Yonsei University Health System. All 
participants were included in the Yonsei AF Ablation Cohort 
Database (ClinicalTrials.gov Identifier: NCT02138695) and 
provided written informed consent for us to use their cardiac 
CT images and clinical electrophysiological mapping data for 
computational modeling studies.

3D Computational Model of the Left Atrium
Figure  1 illustrates the protocol for the computational atrial 
modeling and AF simulations used in this study. We developed 
an ionic currents model according to the human atrial action 
potential model proposed by Courtemanche et  al. (1998). For 
AF atrial ionic remodeling, the sodium current (INa), transient 
outward potassium current (Ito), L-type calcium current (ICaL), 
and ultrarapid outward current (IKur) decreased by 10, 70, 50, 
and 50%, respectively, and the inwardly rectifying potassium 
current (IK1) and Na+/Ca2+ exchanger (INCX) increased by 100 
and 40%, respectively (Lee et  al., 2016). The surface of the 
left atrial (LA) 3D model was composed of triangular meshes 

containing 400,000–500,000 geometric elements, and the mean 
distance between adjacent elements was 235.1 ± 32.1 μm. 
Interpolated voltage data were generated from bipolar 
electrograms recorded from >500 points on the atrial surface 
using a circular mapping catheter and CT images (Figure 1A). 
Artifact caused by the patient’s breathing was removed by 
trimming the ostial positions on the PVs and mitral valve. 
The coordinates of the electroanatomical map (NavX, Abbott, 
Inc., Chicago, IL, United  States; CARTO System, Biosense 
Webster, Diamond Bar, CA, United States) were precisely aligned 
with the patients’ clinical heart CT images, and then the 
registration between the electroanatomical maps and clinical 
CT data was completed. We used the inverse distance weighting 
method (Ugarte et  al., 2015) to represent the interpolation of 
the electroanatomical map values during the simulation 
procedures. Our graphical user interface software (Model: SH01, 
CUVIA ver. 2.5; Laonmed Inc., Seoul, Korea) integrated the 
fibrosis formation and fiber orientation into the LA surface 
and enabled a virtual AF induction and AF wave-dynamic 
changes by using the dominant frequency (DF) and maximal 
slope of the action potential duration restitution curve (Smax; 
Lim et  al., 2017). The fiber orientations were defined in the 
meshes of each patient’s geometry and adjusted based on the 
clinical local activation time map (Pashakhanloo et  al., 2016). 
Bipolar voltage data obtained from catheter ablation mapping 
were matched onto the computational nodes of the LA 3D 
model, and the locations of the fibrotic areas were determined 
using the map (Figure  1B). The fibrosis status of each node 
was numerically defined (Hwang et  al., 2019). We  simulated 
the clinical local activation data by using the model, which 
reflected the cardiac structural orientation and fiber orientation 
(Figure  1C). The conductivity of the model was based on the 
status and shape of the fibrosis (Zahid et  al., 2016). For the 
ion currents of fibrotic cells, the inward rectifier potassium 
current (IK1), L-type calcium current (ICaL), and sodium current 
(INa) were decreased by 50, 50, and 40%, respectively, as compared 
to normal cells (Zahid et  al., 2016). The reaction–diffusion 
equation for the cardiac wave propagation was solved numerically 
and adjusted based on the specific conduction velocity in each 
case to represent personalized AF simulations (Lee et al., 2016).

AF Simulation
Figure  1F shows the process used in the study protocol. 
We  induced AF in each case using AF pacing from 200 to 
120 ms with eight beats per cycle lasting a total of 11,520 ms, 
based on appropriate ion current settings. Each virtual pacing 
location corresponded to the clinical activation time map for a 
realistic LA modeling, and the pacing sites were matched precisely 
to reflect the personalized LA models. AF maintenance was 
observed for 32 s. We defined a successful AF induction according 
to the electrograms in each LA model. AF defragmentation 
involved AF termination and AF conversion to atrial tachycardia.

Virtual Interventions
We applied a virtual ablation and virtual anti-arrhythmia 
drug to our realistic AF model. For the virtual ablation, the 
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membrane potential of the ablated regions was set as zero 
to produce a permanent conduction block interrupting the 
cardiac wave propagation. First, we  performed a virtual PV 
isolation with four gaps located on the anterior and posterior 
sides of each pulmonary vein isolation line (Figure  1D). 
Then we  ablated all those gaps to perform a circumferential 
pulmonary vein isolation. The size of each gap was 2 mm. 
We  initiated AF induction after performing each ablation. 
We  applied high dose virtual flecainide (15 μm) to the failed 
AF defragmentation cases. With the Courtemanche-Ramirez-
Nattel model (Courtemanche et  al., 1998; Sossalla et  al., 
2010; Grandi et  al., 2011) as the baseline, the effects of 
flecainide were implemented by applying the percent changes 
for the specific ion channels. Compared with baseline AF, 
the Ito, ICaL, IKr, and INa were decreased by 5, 5, 30 and 45%, 
respectively (Wang et  al., 1993; Hilliard et  al., 2010; Kramer 
et  al., 2013; Crumb et  al., 2016; Geng et  al., 2018; Sutanto 
et  al., 2019).

Analysis of the Spatial Changes in the AF 
Wave-Dynamics
We analyzed the wave-dynamics of the DF and Smax from 
17 to 23 s. The DF was defined as the frequency with the 
highest power. It was analyzed using a Fourier transform for 
6 s of action potentials at each node and the power spectra 
density function (Lim et  al., 2017). We  calculated the DF 
values for all nodes in the 3D LA model (Figure  1E). To 
examine the stability of the DF after each intervention, the 
coefficient of variation (COV) of the high-DF was calculated 
as the standard deviation divided by the mean. The Smax 
values were defined at every node in the LA regions of 
each patient.

Statistical Analysis
The continuous variables are represented as the median and 
range. The proportion of categorical variables was compared 
among the groups using a Fisher’s exact test. Comparisons of 
the DF, Smax, and COV-DF were conducted using t-testing 
or Mann–Whitney testing, depending on the distribution. A 
value of p <0.05 was considered statistically significant. Statistical 
analyses were conducted using SPSS (Statistical Package for 
Social Sciences, Chicago, IL, United States) software for Windows 
(version 26.0).

RESULTS

Wave-Dynamic Changes After the PVI
We induced virtual AF in realistic computational models obtained 
from 40 patients (Supplementary Table S1). PV interventions 
(40 CPVI and 40 PVI-gap) significantly increased the mean 
AF cycle-lengths (140.9 ms [129.9, 153.3] to 147.1 ms [131.6, 
200.3], p = 0.045), but they did not change the mean DF (7.69 Hz 
[7.31, 8.47] to 7.65 Hz [6.27, 8.30], p = 0.150) or Smax (0.97 
[0.81, 1.26] to 0.88 [0.66, 1.13], p = 0.144). The AF termination 
and defragmentation rates after the PV interventions were 20 
and 46.3%, respectively. Any episode terminated before 17 s 
was excluded from the AF cycle-length, DF, and Smax analyses.

Effects of the CPVI vs. PVI-Gaps on the 
Extra-PV Area
Table  1 compares the AF wave-dynamic changes between 
the CPVI and PVI-gap procedures. Compared with baseline 
AF, the CPVI significantly increased the mean AF cycle-
lengths (p < 0.001), but the PVI-gap did not (p = 0.581). The 

A

F

B C D E

FIGURE 1 | Study protocol of the computational atrial modeling and AF simulation. (A) CT merged 3D-clinical electroanatomical map. (B) Clinical map integrated 
computational modeling. (C) Baseline AF induction in activation map. (D) Application of CPVI and PVI-gap. The yellow arrows indicate gaps in the PVI. (E) DF-based 
wave-dynamics analyses. (F) Study protocol. CT indicates computed tomography; EP, electrophysiology; LAT, local activation time; PVI-gap, pulmonary vein 
isolation with gap; CPVI, complete pulmonary vein isolation; DF, dominant frequency; AF, atrial fibrillation; AT, atrial tachycardia.
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CPVI also reduced the mean DF (p < 0.001), but the PVI-gap 
did not (p = 0.354, Figure 2). The amount of the DF reduction 
was significantly greater in the CPVI group than PVI-gap 
group (p < 0.001). The COV-DF, which reflected the spatial 
instability of the DF, was significantly greater in the CPVI 
group than PVI-gap group (p < 0.001). However, neither the 
CPVI (p = 0.445) nor PVI-gap (p = 0.078) changed the mean 
Smax (Table  1).

Defragmentation Rates After the CPVI vs. 
PVI-Gap and Flecainide
The AF defragmentation and termination rates after the PVI 
are listed in Table  1. There was no AF termination or 
defragmentation during the 32 s waiting period during the 
baseline AF. The AF termination rate after the CPVI was 

32.5%, and it was 7.5% after the PVI-gap (p = 0.010). The 
AF defragmentation rates were also higher in the CPVI group 
(80.0%) than PVI-gap group (5%, p < 0.001). This finding was 
consistent after changing the location and number of PVI-gaps 
(Supplementary Table S2).

We added virtual flecainide to the failed defragmented 
episodes after the CPVI (n = 8) and PVI-gap (n = 35). The post-
flecainide termination rate in the group after the CPVI (25.0%) 
tended to be  higher than that in the PVI-gap group without 
statistical significance (2.9%, p = 0.084, Table  2).

Mechanism of the AF Maintenance After 
the PVI-Gap
We evaluated the PV and extra-PV wave-dynamic 
interactions in 35 ongoing AF episodes after the PVI-gap 

TABLE 1 | Wave-dynamic changes and defragmentation after virtual PV interventions.

Baseline PVI-gap CPVI
p value

(n = 40) (n = 40) (n = 40)

Mean AFCL
140.87

[129.87,153.26]

138.89

[128.21,149.25]

212.77*,†

[148.76,242.45]
<0.001

Mean DF (Hz)
7.690

[7.306,8.474]

8.061

[7.566,8.524]

5.760*,†

[4.984,7.847]
<0.001

ΔMean DF NA
0.171

[−0.099,0.441]

−1.482†

[−3.184,−0.044]
NA

COV-DF (%) NA
2.026

[1.190,4.555]

17.162†

[1.849,34.705]
NA

Mean Smax
0.974

[0.805,1.259]

0.847

[0.643,1.047]

0.943

[0.707,1.304]
0.208

ΔMean Smax NA
−0.154

[−0.350,−0.034]

−0.102

[−0.350,0.181]
NA

Defragmentation, % (n) 0%(0/40) 12.5%(5/40) 80.0%(32/40)*,† <0.001
Termination, % (n) 0%(0/40) 7.5%(3/40) 32.5%(13/40)*,‡ <0.001
Converted to AT, % (n) 0%(0/40) 5.0%(2/40) 47.5%(19/40)*,† <0.001

Smax, The maximal slope of the restitution curves; DF, Dominant frequency; COV-DF, Coefficient of variation-dominant frequency; AFCL, Atrial fibrillation cycle lengths. The median 
(IQ1, IQ3) is displayed in the table. *p < 0.001 vs. Baseline. †p < 0.001 vs. PVI-gap. ‡p = 0.010 vs. PVI-gap.

A B C

FIGURE 2 | Wave-dynamic changes after the virtual PVI-gap and CPVI. (A) The ECGs were obtained at the blue * sites in the DF maps. (B) The red arrows indicate 
gaps in the PVI. (C) The 3D DF maps and ECGs indicate that the CPVI reduced the mean DF, increased the AF cycle lengths, and defragmented the AF, but the 
PVI-gap did not. However, neither the CPVI nor PVI-gap changed the Smax. DF indicates dominant frequency; Smax, the maximal slope of the restitution curves; 
PVI-gap, pulmonary vein isolation with gaps; CPVI, complete pulmonary vein isolation; AF, atrial fibrillation; AT, atrial tachycardia; ECG, electrocardiogram.
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intervention (Figure 3). The extra-PV DF was greater than 
the PV-DF in 28 of those episodes (80%), and the inside 
PV-DF was greater than the extra-PV DF in 7 episodes 
(20%). The wavelet interactions were maintained through 
the PVI-gaps for as long as the AF was maintained. The 
wave-breaks generally appeared at the wavelet exit of the 
gaps by a source-sink mismatch (Figure  4). The rate of 
a wave-break did not differ between the episodes in which 
the wavelet moved from the higher DF site to the 
lower DF site and that in which it moved from the 
lower DF site to the higher DF site (48.8% vs. 50%, 
p = 1.000).

Among the 35 episodes of ongoing AF after the PVI-gap, 
filling the wave-breaking PVI-gaps (total 91 gaps), ablation 
of the highest DF site without touching the PVI-gaps (112 
extra-PV and 51 intra-PV sites), and additional virtual flecainide 
defragmented the AF in 60.0, 34.3, and 25.7% of cases, 
respectively (p = 0.010, Figure  5). The AF termination rate 
was significantly greater after filling the PVI-gaps than after 
ablating the highest DF or administering flecainide (p = 0.010, 
Table  3).

DISCUSSION

Main Findings
In this study, we used realistic human AF computational modeling 
to explore how a CPVI affected the extra-PV wave-dynamics 
and PVI-gaps as a mechanism for AF recurrence. The CPVI 
significantly reduced the mean extra-PV DF and its spatial 
stability (increased COV-DF), but it had no effect on the Smax, 
an index of wave-breakability. In the episodes of ongoing AF 
after the PVI-gap, wave-breaks commonly occurred at the wavelet 
exit of the gaps. Additional ablation of wave-breaking PVI-gaps 
had a greater defragmentation effect than extra-PV DF ablation 
or virtual flecainide. Therefore, the CPVI effectively reduced 
the mean DF in the extra-PV area, and under the PVI-gap 
condition, filling the PVI-gaps had anti-AF effects superior to 
those of an extra-PV DF ablation or additional flecainide.

Extra-PV Effects of the CPVI
The CPVI has traditionally been the cornerstone of AFCA 
(Oral et  al., 2006), and it has several potential anti-AF 

TABLE 2 | Flecainide-induced defragmentation rates of ongoing AF after the CPVI vs. PVI-gap.

PVI-gap CPVI
p value

(n = 35) (n = 8)

Defragmentation, % (n) 25.7%(9/35) 62.5%(5/8) 0.089
Termination, % (n) 2.9%(1/35) 25.0%(2/8) 0.084
Converted to AT, % (n) 22.9%(8/35) 37.5%(3/8) 0.401

PVI-gap, Pulmonary vein isolation with gap; CPVI, Complete pulmonary vein isolation; AT, Atrial tachycardia.

FIGURE 3 | Wave-dynamic interactions between the PVs and extra-PVs in 35 ongoing AF episodes after the PVI-gap intervention. DF indicates dominant 
frequency; PV, pulmonary vein.
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mechanisms. First, the CPVI blocks the PV triggers (Oral 
et  al., 2006). Second, the CPVI partially denervates cardiac 
autonomic nerves, including the ganglionated plexi around 
the PV antrum (Po et  al., 2009). Third, a wide CPVI 
significantly reduces the atrial critical mass (Hwang et  al., 
2012). We  have here identified another novel mechanism by 
which the CPVI significantly reduces the mean DF and spatial 
heterogeneity of the DF at extra-PV sites. Among the 40 
patients who were included in this study, 93% had persistent 
AF, and we  integrated their voltage-activation maps into our 
realistic computational models. We  found that the CPVI still 
plays an important role in the extra-PV AF maintenance 
mechanism, even in AF patients with atrial substrate 
remodeling. To date, no empirical extra-PV LA ablation, 
including linear, electrogram-guided, or rotor ablation, has 
shown equivalent rhythm outcomes in patients with a CPVI, 
despite multiple randomized clinical trials (Verma et  al., 
2015). Our results reconfirm the importance of a CPVI in 
the LA, even though extra-PV areas, including the right 
atrium, contribute to the maintenance mechanisms of AF 
(Lim et  al., 2020b).

Role of PV-Gaps as a Mechanism of 
Recurrence After a PVI
Irrespective of the uncertain unifying mechanisms of AF, a 
PV electrical isolation is an objective, standard, and widely 
accepted minimal requirement for AFCA (Calkins et al., 2012). 
However, despite advances in the catheter efficiency, a long-
term durable PVI still has technical limitations. The rate of 
PV reconnections during a repeat ablation has been reported 
to range from 36% to more than 95% in repeat procedures 
(Lin et  al., 2015). Many studies have reported that PV 
reconnections are the leading cause of arrhythmia recurrences. 
However, PV reconnections have also been observed in patients 
without AF recurrence (Nilsson et  al., 2006). In this study, 
we  evaluated how PV gaps affected the AF maintenance 
mechanisms. Of the four 2-mm PV gaps that remained in 
our model, 65% (91/140) were accompanied by wave-breaks 
and 19.3% (27/140) contributed to wave-breaks in the PV to 
LA direction. The PV gap size also had an essential influence 
on the AF maintenance. Following Herweg’s report, we applied 
2-mm gaps, which were suitable for generating wave-breaks 
by a source-sink mismatch (Herweg et  al., 2021).

A

B

FIGURE 4 | Wave-break at the wavelet exit of the gaps by a source-sink mismatch. (A) The 3D DF map indicates that the extra-PV DFs was greater than the PV-
DFs. The activation map and ECG indicate that a regular wavelet turned into a wave-break when moving from the posterior wall of the LA to inside the PV through 
the gap. (B) The 3D DF map indicates that the inside PV-DF was greater than the extra-PV DF. The activation map and ECG indicate that a regular wavelet turned 
into a wave-break when moving from inside the PV to the lateral wall of the LA through the gap. DF indicates dominant frequency; PV, pulmonary vein; LA, left 
atrium; LSPV, left superior pulmonary vein; LIPV, left inferior pulmonary vein; ECG, Electrocardiogram.

186

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Jin et al. PVI Gaps in AF Ablation

Frontiers in Physiology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 846620

Appropriate Management of Recurrent AF 
After AFCA
The most effective repeat procedures for patients with 
recurrence after AFCA is not yet known. Depending on 
the recurrent AF burden or the operators’ discretion, gap 
fillings for the reconnected PVs or an empirical extra-PV 
ablation, such as a posterior wall isolation, have been 
performed (Lee et al., 2019). In patients with a well-maintained 
PVI during redo-mapping, extra-PV triggers play a significant 
role in AF recurrence, and the outcomes of a repeat ablation 
are worse than in patients with PV reconnections (Kim 
et al., 2021). In this study, we examined the AF maintenance 
mechanism during the PVI-gap state by using computational 
models made with the electroanatomical maps of 40 patients, 
most of whom had persistent AF. Under those controlled 
conditions, filling the wave-breaking gap produced a more 
effective AF defragmentation than ablation of the extra-PV 
DF sites or using antiarrhythmic drugs. That was consistent 
with the results of a recent randomized clinical trial, 
suggesting that a durable PVI is more effective than an 

empirical extra-PV ablation as a repeat AF ablation procedure 
(Kim et al., 2022).

Limitations
This study had some limitations in its computational simulations. 
First, bi-atrial modeling manifesting interatrial conduction was 
not applied in this study. Second, we  did not consider the 
LA wall thickness in our LA model. Third, because we applied 
fibrosis based on voltage-map, not a magnetic resonance image 
(Boyle et  al., 2019; Baek et  al., 2021), it is not clear whether 
the detailed structure of cardiac fibrosis with microchannels 
is adequately reflected in our morel. Fourth, our personalized 
LA model consisted of a monolayer, not bilayers representing 
the endocardial and epicardial layers. Fifth, the rate-dependent 
effect of flecainide on INa may not be  reflected sufficiently in 
this study (Moreno et  al., 2011).

Conclusion
The CPVI effectively reduced the mean DF and increased its 
spatial heterogeneity in the extra-PV areas. Filling the PVI-gaps 

A B C

FIGURE 5 | Wave-dynamic changes after filling the wave-breaking PVI-gaps, ablating the highest DF sites, and adding virtual flecainide. ECGs were obtained at the 
green * sites in the DF map, and the green arrows indicate the gaps in the PVI. (A) AF terminated after ablating the two gaps on the posterior wall of the LA. (B) AF 
terminated after ablating the high DF site (white areas indicated by black arrows). (C) AF converted to AT after adding virtual flecainide without additional ablation. 
PVI-gap indicates pulmonary vein isolation with gaps; PV, pulmonary vein; DF, dominant frequency; AF, atrial fibrillation; AT, atrial tachycardia; ECG, 
Electrocardiogram.

TABLE 3 | Defragmentation rates after interventions for 35 AF PVI-gap episodes.

Wave-break gap ablation Highest DF sites ablation Add virtual flecainide
P value

(n = 35) (n = 35) (n = 35)

AF Defragmentation, % (n) 60.0%(21/35)* 34.3%(12/35) 25.7%(9/35) 0.010
AF termination, % (n) 25.7%(9/35)† 8.6%(3/35) 2.9%(1/35) 0.010
AF converted to AT, % (n) 34.3%(12/35) 25.7%(9/35) 22.9%(8/35) 0.538

AF, Atrial fibrillation; DF, Dominant frequency; AT, Atrial tachycardia. *p = 0.007 vs. Add virtual flecainide. †p = 0.013 vs. Add virtual flecainide.
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had anti-AF effects superior to those of an extra-PV DF ablation 
or additional flecainide under the PVI-gap condition.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included 
in the article/Supplementary Material, further inquiries can 
be  directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and 
approved by Institutional Review Board of Severance 
Cardiovascular Hospital, Yonsei University Health System. The 
patients/participants provided their written informed consent 
to participate in this study.

AUTHOR CONTRIBUTIONS

ZJ contributed to the data, statistical analyses, and writing of 
the manuscript. IH contributed to the statistical analyses and 
data acquisition. O-SK contributed to the software programming 
and data acquisition. BL confirmed the data acquisition and 
references. J-WP contributed the clinical data acquisition. H-TY, 

T-HK, BJ, and M-HL contributed to the clinical data acquisition 
and interpretation of clinical data. H-NP contributed to the 
study design, clinical data acquisition, data interpretation, and 
revision of manuscript. All authors contributed to the article 
and approved the submitted version.

FUNDING

This work was supported by grants (HI19C0114) and (H21C0011) 
from the Ministry of Health and Welfare and grants 
(NRF-2020R1A2B01001695) and (NRF-2019R1C1C1009075) 
from the Basic Science Research Program run by the National 
Research Foundation of Korea (NRF), which is funded by the 
Ministry of Science, ICT, and Future Planning (MSIP).

ACKNOWLEDGMENTS

We would like to thank Mr. John Martin for his linguistic assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be  found online 
at: https://www.frontiersin.org/articles/10.3389/fphys.2022.846620/
full#supplementary-material

 

REFERENCES

Arujuna, A., Karim, R., Caulfield, D., Knowles, B., Rhode, K., Schaeffter, T., 
et al. (2012). Acute pulmonary vein isolation is achieved by a combination 
of reversible and irreversible atrial injury after catheter ablation: evidence 
from magnetic resonance imaging. Circ. Arrhythm. Electrophysiol. 5, 691–700. 
doi: 10.1161/CIRCEP.111.966523

Baek, Y. S., Kwon, O. S., Lim, B., Yang, S. Y., Park, J. W., Yu, H. T., et al. 
(2021). Clinical outcomes of computational virtual mapping-guided catheter 
ablation in patients With persistent atrial fibrillation: A multicenter prospective 
randomized clinical trial. Front. Cardiovasc. Med. 8:772665. doi: 10.3389/
fcvm.2021.772665

Boyle, P. M., Zghaib, T., Zahid, S., Ali, R. L., Deng, D., Franceschi, W. H., 
et al. (2019). Computationally guided personalized targeted ablation of 
persistent atrial fibrillation. Nat. Biomed. Eng. 3, 870–879. doi: 10.1038/
s41551-019-0437-9

Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S. A., 
et al. (2012). 2012 HRS/EHRA/ECAS expert consensus statement on catheter 
and surgical ablation of atrial fibrillation: recommendations for patient 
selection, procedural techniques, patient management and follow-up, definitions, 
endpoints, and research trial design. J. Interv. Card. Electrophysiol. 33, 171–257. 
doi: 10.1007/s10840-012-9672-7

Courtemanche, M., Ramirez, R. J., and Nattel, S. (1998). Ionic mechanisms 
underlying human atrial action potential properties: insights from a 
mathematical model. Am. J. Phys. 275, H301–H321. doi: 10.1152/
ajpheart.1998.275.1.H301

 Crumb, W. J. Jr., Vicente, J., Johannesen, L., and Strauss, D. G. (2016). An 
evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia 
assay (CiPA) proposed ion channel panel. J. Pharmacol. Toxicol. Methods 
81, 251–262. doi: 10.1016/j.vascn.2016.03.009

Geng, L., Kong, C. W., Wong, A. O. T., Shum, A. M., Chow, M. Z. Y., 
Che, H., et al. (2018). Probing flecainide block of INa using human 
pluripotent stem cell-derived ventricular cardiomyocytes adapted to automated 

patch-clamping and 2D monolayers. Toxicol. Lett. 294, 61–72. doi: 10.1016/j.
toxlet.2018.05.006

Grandi, E., Pandit, S. V., Voigt, N., Workman, A. J., Dobrev, D., Jalife, J., et al. 
(2011). Human atrial action potential and Ca2+ model: sinus rhythm and 
chronic atrial fibrillation. Circ. Res. 109, 1055–1066. doi: 10.1161/
CIRCRESAHA.111.253955

Haissaguerre, M., Hocini, M., Sanders, P., Sacher, F., Rotter, M., Takahashi, Y., 
et al. (2005). Catheter ablation of long-lasting persistent atrial fibrillation: 
clinical outcome and mechanisms of subsequent arrhythmias. J. 
Cardiovasc. Electrophysiol. 16, 1138–1147. doi: 10.1111/j.1540-8167.2005.00308.x

Herweg, B., Nellaiyappan, M., Welter-Frost, A. M., Tran, T., Mabry, G., 
Weston, K., et al. (2021). Immuno-electrophysiological mechanisms of 
functional electrical connections Between recipient and donor heart in 
patients With Orthotopic heart transplantation presenting With atrial 
arrhythmias. Circ. Arrhythm. Electrophysiol. 14:e008751. doi: 10.1161/
CIRCEP.120.008751

Hilliard, F. A., Steele, D. S., Laver, D., Yang, Z., Le Marchand, S. J., Chopra, N., 
et al. (2010). Flecainide inhibits arrhythmogenic Ca2+ waves by open state 
block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ 
spark mass. J. Mol. Cell. Cardiol. 48, 293–301. doi: 10.1016/j.yjmcc.2009.10.005

Hwang, M., Kim, J., Lim, B., Song, J. S., Joung, B., Shim, E. B., et al. (2019). 
Multiple factors influence the morphology of the bipolar electrogram: an 
in silico modeling study. PLoS Comput. Biol. 15:e1006765. doi: 10.1371/
journal.pcbi.1006765

Hwang, E. S., Nam, G. B., Joung, B., Park, J., Lee, J. S., Shim, J., et al. (2012). 
Significant reduction of atrial defibrillation threshold and inducibility by 
catheter ablation of atrial fibrillation. Pacing Clin. Electrophysiol. 35, 1428–1435. 
doi: 10.1111/j.1540-8159.2012.03517.x

Kim, D., Shim, J., Kim, Y. G., Yu, H. T., Kim, T. H., Uhm, J. S., et al. (2021). 
Malnutrition and risk of procedural complications in patients With atrial 
fibrillation undergoing catheter ablation. Front. Cardiovasc. Med. 8:736042. 
doi: 10.3389/fcvm.2021.736042

Kim, D., Yu, H. T., Kim, T.-H., Uhm, J.-S., Joung, B., Lee, M.-H., et al. (2022). 
Electrical posterior box isolation in repeat ablation for atrial fibrillation: a 

188

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/articles/10.3389/fphys.2022.846620/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2022.846620/full#supplementary-material
https://doi.org/10.1161/CIRCEP.111.966523
https://doi.org/10.3389/fcvm.2021.772665
https://doi.org/10.3389/fcvm.2021.772665
https://doi.org/10.1038/s41551-019-0437-9
https://doi.org/10.1038/s41551-019-0437-9
https://doi.org/10.1007/s10840-012-9672-7
https://doi.org/10.1152/ajpheart.1998.275.1.H301
https://doi.org/10.1152/ajpheart.1998.275.1.H301
https://doi.org/10.1016/j.vascn.2016.03.009
https://doi.org/10.1016/j.toxlet.2018.05.006
https://doi.org/10.1016/j.toxlet.2018.05.006
https://doi.org/10.1161/CIRCRESAHA.111.253955
https://doi.org/10.1161/CIRCRESAHA.111.253955
https://doi.org/10.1111/j.1540-8167.2005.00308.x
https://doi.org/10.1161/CIRCEP.120.008751
https://doi.org/10.1161/CIRCEP.120.008751
https://doi.org/10.1016/j.yjmcc.2009.10.005
https://doi.org/10.1371/journal.pcbi.1006765
https://doi.org/10.1371/journal.pcbi.1006765
https://doi.org/10.1111/j.1540-8159.2012.03517.x
https://doi.org/10.3389/fcvm.2021.736042


Jin et al. PVI Gaps in AF Ablation

Frontiers in Physiology | www.frontiersin.org 9 March 2022 | Volume 13 | Article 846620

prospective randomized clinical study. J. Am. Coll. Cardiol. Clin. Electrophysiol.   
doi: 10.1016/j.jacep.2022.01.003 (in press).

Kim, I. S., Lim, B., Shim, J., Hwang, M., Yu, H. T., Kim, T. H., et al. (2019). 
Clinical usefulness of computational modeling-guided persistent atrial 
fibrillation ablation: updated outcome of multicenter randomized study. Front. 
Physiol. 10:1512. doi: 10.3389/fphys.2019.01512

Kramer, J., Obejero-Paz, C. A., Myatt, G., Kuryshev, Y. A., Bruening-Wright, A., 
Verducci, J. S., et al. (2013). MICE models: superior to the HERG model 
in predicting torsade de pointes. Sci. Rep. 3:2100. doi: 10.1038/srep02100

Lee, Y. S., Hwang, M., Song, J. S., Li, C., Joung, B., Sobie, E. A., et al. (2016). 
The contribution of ionic currents to rate-dependent action potential duration 
and pattern of reentry in a mathematical model of human atrial fibrillation. 
PLoS One 11:e0150779. doi: 10.1371/journal.pone.0150779

Lee, J. M., Shim, J., Park, J., Yu, H. T., Kim, T. H., Park, J. K., et al. (2019). 
The electrical isolation of the left atrial Posterior Wall in catheter ablation 
of persistent atrial fibrillation. JACC Clin. Elect. 5, 1253–1261. doi: 10.1016/j.
jacep.2019.08.021

Lim, B., Hwang, M., Song, J. S., Ryu, A. J., Joung, B., Shim, E. B., et al. 
(2017). Effectiveness of atrial fibrillation rotor ablation is dependent on 
conduction velocity: An in-silico 3-dimensional modeling study. PLoS One 
12:e0190398. doi: 10.1371/journal.pone.0190398

Lim, B., Kim, J., Hwang, M., Song, J. S., Lee, J. K., Yu, H. T., et al. (2020a). 
In situ procedure for high-efficiency computational modeling of atrial 
fibrillation reflecting personal anatomy, fiber orientation, fibrosis, and 
electrophysiology. Sci. Rep. 10:2417. doi: 10.1038/s41598-020-59372-x

Lim, B., Park, J. W., Hwang, M., Ryu, A. J., Kim, I. S., Yu, H. T., et al. (2020b). 
Electrophysiological significance of the interatrial conduction including cavo-
tricuspid isthmus during atrial fibrillation. J. Physiol. 598, 3597–3612. doi: 
10.1113/JP279660

Lin, D., Santangeli, P., Zado, E. S., Bala, R., Hutchinson, M. D., Riley, M. P., 
et al. (2015). Electrophysiologic findings and long-term outcomes in patients 
undergoing third or more catheter ablation procedures for atrial fibrillation. 
J. Cardiovasc. Electrophysiol. 26, 371–377. doi: 10.1111/jce.12603

Moreno, J. D., Zhu, Z. I., Yang, P. C., Bankston, J. R., Jeng, M. T., Kang, C., 
et al. (2011). A computational model to predict the effects of class I  anti-
arrhythmic drugs on ventricular rhythms. Sci. Transl. Med. 3:98ra83. doi: 
10.1126/scitranslmed.3002588

Nilsson, B., Chen, X., Pehrson, S., Kober, L., Hilden, J., and Svendsen, J. H. 
(2006). Recurrence of pulmonary vein conduction and atrial fibrillation 
after pulmonary vein isolation for atrial fibrillation: a randomized trial of 
the ostial versus the extraostial ablation strategy. Am. Heart J. 152, 537.
e1–537.e8. doi: 10.1016/j.ahj.2006.05.029

Oral, H., Pappone, C., Chugh, A., Good, E., Bogun, F.,  Pelosi, F. Jr., et al. 
(2006). Circumferential pulmonary-vein ablation for chronic atrial fibrillation. 
N. Engl. J. Med. 354, 934–941. doi: 10.1056/NEJMoa050955

Park, J. W., Yang, P. S., Bae, H. J., Yang, S. Y., Yu, H. T., Kim, T. H., et al. 
(2019). Five-year change in the renal function After catheter ablation of 
atrial fibrillation. J. Am. Heart Assoc. 8:e013204. doi: 10.1161/JAHA.119.013204

Pashakhanloo, F., Herzka, D. A., Ashikaga, H., Mori, S., Gai, N., Bluemke, D. A., 
et al. (2016). Myofiber architecture of the human atria as revealed by 
submillimeter diffusion tensor imaging. Circ. Arrhythm. Electrophysiol. 
9:e004133. doi: 10.1161/CIRCEP.116.004133

Po, S. S., Nakagawa, H., and Jackman, W. M. (2009). Localization of left atrial 
ganglionated plexi in patients with atrial fibrillation. J. Cardiovasc. Electrophysiol. 
20, 1186–1189. doi: 10.1111/j.1540-8167.2009.01515.x

Saguner, A. M., Maurer, T., Wissner, E., Santoro, F., Lemes, C., Mathew, S., 
et al. (2018). Catheter ablation of atrial fibrillation in very young adults: 
a 5-year follow-up study. Europace 20, 58–64. doi: 10.1093/europace/euw378

Shim, J., Hwang, M., Song, J. S., Lim, B., Kim, T. H., Joung, B., et al. (2017). 
Virtual in-Silico modeling guided catheter ablation predicts effective linear 
ablation lesion set for longstanding persistent atrial fibrillation: multicenter 
prospective randomized study. Front. Physiol. 8:792. doi: 10.3389/fphys.2017. 
00792

Sossalla, S., Kallmeyer, B., Wagner, S., Mazur, M., Maurer, U., Toischer, K., 
et al. (2010). Altered Na(+) currents in atrial fibrillation effects of ranolazine 
on arrhythmias and contractility in human atrial myocardium. J. Am. Coll. 
Cardiol. 55, 2330–2342. doi: 10.1016/j.jacc.2009.12.055

Sutanto, H., Laudy, L., Clerx, M., Dobrev, D., Crijns, H., and Heijman, J. 
(2019). Maastricht antiarrhythmic drug evaluator (MANTA): a computational 
tool for better understanding of antiarrhythmic drugs. Pharmacol. Res. 
148:104444. doi: 10.1016/j.phrs.2019.104444

Turagam, M. K., Garg, J., Whang, W., Sartori, S., Koruth, J. S., Miller, M. A., 
et al. (2019). Catheter ablation of atrial fibrillation in patients With heart 
failure: a meta-analysis of randomized controlled trials. Ann. Intern. Med. 
170, 41–50. doi: 10.7326/M18-0992

Ugarte, J. P., Tobon, C., Orozco-Duque, A., Becerra, M. A., and Bustamante, J. 
(2015). Effect of the electrograms density in detecting and ablating the tip 
of the rotor during chronic atrial fibrillation: an in silico study. Europace 
17(Suppl. 2), ii97–ii104. doi: 10.1093/europace/euv244

Velagapudi, P., Turagam, M. K., Leal, M. A., and Kocheril, A. G. (2013). Atrial 
fibrosis: a risk stratifier for atrial fibrillation. Expert. Rev. Cardiovasc. Ther. 
11, 155–160. doi: 10.1586/erc.12.174

Verma, A., Jiang, C. Y., Betts, T. R., Chen, J., Deisenhofer, I., Mantovan, R., 
et al. (2015). Approaches to catheter ablation for persistent atrial fibrillation. 
N. Engl. J. Med. 372, 1812–1822. doi: 10.1056/NEJMoa1408288

Wang, Z., Fermini, B., and Nattel, S. (1993). Mechanism of flecainide's rate-
dependent actions on action potential duration in canine atrial tissue. 
J. Pharmacol. Exp. Ther. 267, 575–581

Zahid, S., Cochet, H., Boyle, P. M., Schwarz, E. L., Whyte, K. N., Vigmond, E. J., 
et al. (2016). Patient-derived models link re-entrant driver localization in 
atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 110, 443–454. 
doi: 10.1093/cvr/cvw073

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2022 Jin, Hwang, Lim, Kwon, Park, Yu, Kim, Joung, Lee and Pak. 
This is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) and the copyright owner(s) are credited 
and that the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does not 
comply with these terms.

189

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://doi.org/10.1016/j.jacep.2022.01.003
https://doi.org/10.3389/fphys.2019.01512
https://doi.org/10.1038/srep02100
https://doi.org/10.1371/journal.pone.0150779
https://doi.org/10.1016/j.jacep.2019.08.021
https://doi.org/10.1016/j.jacep.2019.08.021
https://doi.org/10.1371/journal.pone.0190398
https://doi.org/10.1038/s41598-020-59372-x
https://doi.org/10.1113/JP279660
https://doi.org/10.1111/jce.12603
https://doi.org/10.1126/scitranslmed.3002588
https://doi.org/10.1016/j.ahj.2006.05.029
https://doi.org/10.1056/NEJMoa050955
https://doi.org/10.1161/JAHA.119.013204
https://doi.org/10.1161/CIRCEP.116.004133
https://doi.org/10.1111/j.1540-8167.2009.01515.x
https://doi.org/10.1093/europace/euw378
https://doi.org/10.3389/fphys.2017.00792
https://doi.org/10.3389/fphys.2017.00792
https://doi.org/10.1016/j.jacc.2009.12.055
https://doi.org/10.1016/j.phrs.2019.104444
https://doi.org/10.7326/M18-0992
https://doi.org/10.1093/europace/euv244
https://doi.org/10.1586/erc.12.174
https://doi.org/10.1056/NEJMoa1408288
https://doi.org/10.1093/cvr/cvw073
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Generalizable Beat-by-Beat
Arrhythmia Detection by UsingWeakly
Supervised Deep Learning
Yang Liu1, Qince Li1,2*, Runnan He2, Kuanquan Wang1, Jun Liu1, Yongfeng Yuan1, Yong Xia1

and Henggui Zhang2,3,4*

1School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China, 2Peng Cheng Laboratory,
Shenzhen, China, 3School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom, 4Key
Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan
Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China

Beat-by-beat arrhythmia detection in ambulatory electrocardiogram (ECG) monitoring is
critical for the evaluation and prognosis of cardiac arrhythmias, however, it is a highly
professional demanding and time-consuming task. Current methods for automatic beat-
by-beat arrhythmia detection suffer from poor generalization ability due to the lack of large-
sample and finely-annotated (labels are given to each beat) ECG data for model training. In
this work, we propose a weakly supervised deep learning framework for arrhythmia
detection (WSDL-AD), which permits training a fine-grained (beat-by-beat) arrhythmia
detector with the use of large amounts of coarsely annotated ECG data (labels are given to
each recording) to improve the generalization ability. In this framework, heartbeat
classification and recording classification are integrated into a deep neural network for
end-to-end training with only recording labels. Several techniques, including knowledge-
based features, masked aggregation, and supervised pre-training, are proposed to
improve the accuracy and stability of the heartbeat classification under weak
supervision. The developed WSDL-AD model is trained for the detection of ventricular
ectopic beats (VEB) and supraventricular ectopic beats (SVEB) on five large-sample and
coarsely-annotated datasets and the model performance is evaluated on three
independent benchmarks according to the recommendations from the Association for
the Advancement of Medical Instrumentation (AAMI). The experimental results show that
our method improves the F1 score of supraventricular ectopic beats detection by
8%–290% and the F1 of ventricular ectopic beats detection by 4%–11% on the
benchmarks compared with the state-of-the-art methods of supervised learning. It
demonstrates that the WSDL-AD framework can leverage the abundant coarsely-
labeled data to achieve a better generalization ability than previous methods while
retaining fine detection granularity. Therefore, this framework has a great potential to
be used in clinical and telehealth applications. The source code is available at https://
github.com/sdnjly/WSDL-AD.
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generalization ability
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1 INTRODUCTION

Cardiac arrhythmia has become one of the leading causes of
morbidity and mortality worldwide (Roger et al., 2012).
Ambulatory electrocardiogram (ECG) monitoring with
prolonged duration (several days or weeks) provides critical
information for early detection and treatment of arrhythmias,
especially for transient and asymptomatic arrhythmias (Sana
et al., 2020). The ambulatory ECG devices have been
sufficiently miniaturized, wearable and connected to high-
speed mobile networks with the promise to give patients high-
quality yet affordable health monitoring services at home. To
enable the adoption of remote ECG monitoring services in the
general population, reliable automatic ECG analysis and
diagnosis technology is necessary as analyzing the vast amount
of monitoring data is far beyond the capability of human
physicians. Although the technologies for automatic ECG
analysis have been developed for decades, current technologies
cannot replace human physicians for diagnosis because they have
limited generalization ability to cope with the diverse artifacts and
inter-patient variations in the ECG signals (Alday et al., 2020;
Siontis et al., 2021). Therefore, novel technologies for
generalizable detection of arrhythmias are in urgent demand.

Beat-by-beat arrhythmia detection, determining the rhythm
type of each heartbeat in an ECG recording, is essential for the
analysis of ambulatory ECG. According to the ANSI/AAMI
EC57:2012 standard (AAMI, 2012), a beat-by-beat arrhythmia
detection software should discriminate five types of heartbeats:
ventricular ectopic beat (VEB or V), supraventricular ectopic beat
(SVEB or S), ventricular fusion beat (F), ambiguous beat (Q), and
beat of all other types (N). In particular, the detection
performances of SVEB and VEB are of major interest to
health care practitioners and constitute the evaluation metrics

for the detectors as recommended by the ANSI/AAMI standard.
An accurate beat-by-beat arrhythmia detector has several
important implications for clinical practices. The detected
beat-wise rhythm types manifest the occurrence time of each
arrhythmia episode which is necessary evidence to correlate the
detected arrhythmias with the symptoms recorded by the
patients. Besides, the detected types of each heartbeat in the
recording can be used to measure the burdens (i.e., the
proportions in all heartbeats) of VEB and SVEB which are
important indicators in evaluating cardiac function (Baman
et al., 2010), assessing the effectiveness of treatments (Deyell
et al., 2012), and predicting the risk of malignant diseases, such as
stroke, heart failure and sudden death (Binici, 2010; Marcus,
2020). Furthermore, the fine-grained beat-wise rhythm types can
be further used to identify some complex patterns of arrhythmias,
such as ventricular/supraventricular tachycardia, bigeminy, and
trigeminy.

The state-of-the-art methods for beat-by-beat arrhythmia
detection are generally based on machine learning (ML), a
methodology to guide the models to learn detection rules from
a training dataset. Typically, the ECG signal is segmented into
individual heartbeats, each of which is then fed into a classifier to
determine its rhythm type, as shown in Figure 1A. The classifier
is usually trained in a supervised learning methodology, where
each training beat is annotated with a corresponding rhythm
type. According to the split of training and test sets, the classifiers
can be further categorized into two types: intra-patient classifier,
of which the training and test data are from the same group of
patients (Kiranyaz et al., 2016; Li et al., 2018; Degirmenci et al.,
2021), and inter-patient classifier, of which the training and test
data are from non-overlapping patient populations (Raj and Ray,
2018; Guo et al., 2019; Niu et al., 2020). The intra-patient
classifiers are suitable to develop personalized arrhythmia

FIGURE 1 | Comparison between different methodologies of machine learning for arrhythmia detection. (A) The supervised learning (SL) method for
heartbeat/segment classification which uses fine-grained annotations for model training and achieves fine-grained predictions. (B) The SL method for ECG
recording classification which uses coarse-grained labels as supervision and achieves coarse-grained predictions. (C) The weakly supervised learning (WSL)
method for beat-by-beat classification which uses coarse recording labels for model training but achieves fine-grained predictions. N = normal or bundle
branch block beat. SVEB = supraventricular ectopic beat. VEB = ventricular ectopic beat.
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detectors, while the inter-patient classifiers aim to provide
diagnostic models for general populations. Intra-patient
classifiers usually perform much better than inter-patient
classifiers because they have been fine-tuned for the target
population. This in turn suggests that it is more challenging to
develop models with good generalization abilities to deal with
data from unseen patients. In real-world medical settings, the
ECGs are obtained from large, diverse populations, which makes
the classifier’s generalization ability of critical importance.

A key reason for the poor generalization ability of current
methods is that the training data come from a small population.
For example, the MIT-BIH Arrhythmia Database, a dataset used
by dozens of studies for classifier training, contains only 48 ECG
recordings collected from 47 subjects (Moody and Mark, 2001).
Since the training data only reflect the characteristics of a few
people, it is naturally difficult for the model learner to learn the
discrimination features applicable to data from general
population. For example, it has been demonstrated that
patients with COVID-19 exhibit obvious ECG changes, based
on which an automatic diagnostic model for COVID-19 has been
developed and achieved a quite high accuracy and F1 score (both
≥93.0%) (Ozdemir et al., 2021). These COVID-19-related ECG
changes represent a new class of conditions that may not be
considered by previous arrhythmia detectors and may affect the
generalization ability of those detectors. Besides, the models tend
to over-fit the small amount of training data and thus impair their
generalization ability. The small sample sizes of the training
datasets are partly because of the high cost of the beat-by-beat
annotation work. In order to ensure the correctness of the labels,
independent labeling by multiple experts is often required and the
disputed samples should resort to an expert committee for
adjudication. Another challenge of machine learning for
arrhythmia detection is class imbalance, where samples of
normal sinus rhythm tend to predominate in the datasets.
Some strategies have been proposed to address this problem.
For example, Lu et al. utilized focal loss to address the class
imbalance in ECG classification (Lu et al., 2021).

In view of the limitation of annotated training data, some
researchers have explored new methods to improve the
generalization ability of ECG classifiers, such as unsupervised
learning and semi-supervised learning. The unsupervised
learning methods have been developed to mine unlabeled ECG
data for representative learning (Rajan and Thiagarajan, 2018),
domain adaptation (Li et al., 2021; Wang et al., 2021), and data
augmentation (Golany and Radinsky, 2019; Wulan et al., 2020).
Some semi-supervised learning methods that use both labeled
and unlabeled data for model training have also been developed
to fine-tune the classifier for the target patient without the need
for patient-specific labeled data (Zhai et al., 2020). Although these
methods contribute to the improvement of generalization ability,
the limited labeled data still plays a very central role in the
training of these models and induce a high risk of overfitting.

This study explores the possibility of another learning
approach, i.e., weakly supervised learning (WSL), to improve
the generalization ability of beat-by-beat arrhythmia detectors.
Unlike previous methods that utilize unlabeled samples or
synthesize new samples, the WSL approach tries to train a

model with incomplete, inexact, or inaccurate annotations that
are usually much easier to obtain (Zhou, 2018). In the domain of
ECG classification, there are a large amount of ECG data
annotated with coarse-grained labels, i.e., a recording (typically
several to tens of seconds) is labeled as a whole (Liu et al., 2018;
Alday et al., 2020). Since the rhythm types of individual
heartbeats in these datasets are not annotated, these datasets
are mainly used to train recording classifiers that determine if
certain anomalies are present in an ECG recording, as shown in
Figure 1B, in previous studies. Nevertheless, the recording labels
indicate the rhythm types of an unknown subset of heartbeats in
the recording, which can provide a form of weak supervision for
the model training. In addition, as these datasets reflect diverse
signal artifacts and inter-patient variations, they may help
prevent overfitting and improve the generalization ability of
the heartbeat classifiers.

Several issues need to be addressed for applying WSL to beat-
by-beat arrhythmia detection. Firstly, what is the mapping
relationship between the target labels of individual heartbeats
and the labels of their recording? For this study, the recording
labels in datasets such as the PhysioNet/CinC Challenge 2020
datasets clearly reflect the presence of SVEB or VEB in the
recordings, which is critical to a successful application of
WSL. Secondly, how to construct a beat-by-beat classifier that
can be trained under the supervision of recording labels? As the
true heartbeat labels are not available, a mechanism is needed to
guide the optimization of the heartbeat classifier based on the true
recording labels and the mapping relationships between heartbeat
labels and recording labels. Finally, how to address the ill-posed
problem that the constraints of recording labels can be satisfied by
different hypotheses of the heartbeat rhythms? The ill-posed
problem usually arises when two types of samples always
occur concomitantly (Choe et al., 2020). For example, SVEBs
and sinus beats usually occur alternately and have similar
waveforms, which may confuse the classifier in discriminating
these two kinds of beats since swapping their categories can also
map to the same recording labels. Therefore, the ill-posed
problem must be addressed to ensure the stability of the
heartbeat classifier.

In this study, we propose a deep-learning-based WSL
framework for beat-by-beat arrhythmia detection (WSDL-AD),
as shown in Figure 1C, which can be trained with just coarse
record-level labels in an end-to-end manner. In this framework,
the model first makes local predictions for each heartbeat, and
then maps the heartbeat predictions to the prediction of the
recording labels by an aggregation mechanism. The model can be
optimized by gradient descent, where the gradients of the
recording predictions are back-propagated through the
aggregation layer to calculate the gradients of the heartbeat
predictions. Thus, the heartbeat classifier can be optimized
according to the coarse recording labels. To address the ill-
posed problem, we design a two-stage training strategy: a
supervised pre-training stage with small amounts of heartbeat
labels, and a weakly-supervised training stage with large amounts
of recording labels. In addition, we introduce some techniques
into the WSDL-AD framework to enhance the model
performance. 1) To assist the model in utilizing contextual
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information, two knowledge-based features, namely relative RR
interval and RR entropy, are proposed. 2) Considering the
heartbeats vary in length and are unevenly distributed over
time, we propose a masked aggregation mechanism that can
select a representative prediction for each heartbeat for
aggregation without the need to split the ECG signal into
heartbeat segments.

The remainder of this paper is organized as follows. In section
2, the proposedWSDL-AD framework and the datasets for model
training and evaluation are described in detail. The experimental
setup and results are present in section 3. Section 4 compares our
results with that of other studies and discusses the implications
and limitations of this work. Finally, we conclude this work in
section 5.

2 MATERIALS AND METHODS

2.1 Datasets
We use multiple coarsely annotated and finely-annotated
datasets in this study. The coarsely-annotated datasets are
from the PhysioNet/CinC challenge 2020/2021 (Alday et al.,

2020; Reyna et al., 2021), including two China physiological
signal challenge datasets (CPSC and CPSC-Extra) (Liu et al.,
2018), the Physikalisch Technische Bundesanstalt extension
(PTB-XL) dataset (Wagner et al., 2020), the Georgia 12-lead
ECG challenge dataset (G12EC), and the Chapman University,
Shaoxing People’s Hospital and Ningbo First Hospital
database (Chapman-Shaoxing-Ningbo) (Zheng et al., 2020).
There are a total of 87,653 12-lead ECG records in these
datasets. Each record was annotated as a whole using the
SNOMED CT codes (Donnelly, 2006). The ANSI/AAMI
standard recommends five classes for the arrhythmia
detector, namely VEB, SVEB, F, Q, and N (AAMI, 2012). In
addition, as recommended by the standard, a detector is
neither penalized nor rewarded for its treatment of F and
Q. Therefore, in this work, we only deal with the classification
of VEB, SVEB, and N. The data of F and Q are excluded from
the evaluation. The mapping between the original labels and
the ANSI/AAMI classes is available in Table 1. Statistics of the
datasets are shown in Table 2.

The finely annotated datasets used in this study include the
MIT-BIH arrhythmia database (MITBIH-AR) (Moody and
Mark, 2001), the MIT-BIH supraventricular arrhythmia

TABLE 1 | The mapping between the dataset labels and the classes suggested by the ANSI/AAMI standard. The dataset labels are in the parentheses following their
corresponding class names.

ANSI/AAMI SNOMED CT codes PhysioBank labels

N All labels except that mapped to SVEB, VEB Normal beat (N)
Left bundle branch block beat (L)
Right bundle branch block beat (R)
Atrial escape beat (e)
Nodal (junctional) escape beat (j)

SVEB Premature atrial contraction (284470004) Atrial premature beat (A)
Supraventricular premature beats (63593006) Aberrated atrial premature beat (a)

Nodal (junctional) premature beat (J)
Supraventricular premature or ectopic beat (S)

VEB Premature ventricular contractions (427172004) Premature ventricular contraction (V)
Ventricular premature beats (17338001) Ventricular escape beat (E)
Ventricular ectopic beats (164884008)

TABLE 2 | The compositions of the datasets.

Datasets Recording numbers Recording lengths Sampling rate
(Hz)

Annotations Annotation unit

N VEB SVEB

CPSC 6,877 6–144 s 500 5,564 700 616 record
CPSC-Extra 3,453 8–98 s 500 3,150 194 124 record
PTB-XL 21,837 10 s 500 20,194 1,154 555 record
G12EC 10,334 5–10 s 500 9,336 395 640 record
Chapman-Shaoxing-Ningbo 45,152 10 s 500 42,536 1,385 1,321 record
MITBIH-AR-DS1 22 30 min 360 45,869 3,789 945 beat
MITBIH-AR-DS2 22 30 min 360 44,264 3,221 1837 beat
MITBIH-SUP 78 30 min 128 162,368 9,950 12,207 beat
INCART 75 30 min 257 153,673 20,012 1960 beat

CPSC, the China physiological signal challenge; PTB-XL, the Physikalisch Technische Bundesanstalt extension dataset; G12EC, the Georgia 12-lead ECG challenge dataset;
MITBIH-AR-DS1, the DS1 of MIT-BIH arrhythmia database; MITBIH-AR-DS2, the DS2 of MIT-BIH arrhythmia database; MITBIH-SUP, the MIT-BIH supraventricular arrhythmia
database; INCART, the St. Petersburg INCART arrhythmia database; N, normal or bundle branch block beat; SVEB, supraventricular ectopic beat; VEB, ventricular ectopic beat.
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database (MITBIH-SUP) (Greenwald et al., 1990), and the St.
Petersburg INCART arrhythmia database (INCART)
(Goldberger et al., 2000). The MITBIH-AR dataset is further
divided into two subsets as in (De Chazal et al., 2004), namely
MITBIH-AR-DS11 (or DS1) and MITBIH-AR-DS22 (or DS2),
which contain ECG records from non-overlapping patient
groups and have similar category distributions. This
division is widely used in previous studies (Mar et al., 2011;
Raj and Ray, 2018; Niu et al., 2020), where the models are
trained on DS1, and tested on DS2. For comparison purposes,
we also adopt this division in this study. All these datasets
contain two-lead ECG signals with physician-reviewed beat-
by-beat annotations in the PhysioBank labels, which can be
mapped to the AAMI classes as in Table 1. The compositions
of the datasets are shown in Table 2.

In this study, the signal in the lead II of each recording is
used for beat-by-beat arrhythmia detection. For recordings in
MITBIH-AR, the modified lead II (MLII) is used instead. If the
lead configurations are unavailable, such as in MITBIH-SUP,
the signal in the first lead is used.

2.2 Overview of the WSDL-AD Framework
We propose the WSDL-AD framework for beat-by-beat
arrhythmia detection, as shown in Figure 2. The framework is
input with an ECG signal of variable length. The input signal is
first preprocessed to unify the signal configurations (such as
sampling rate and amplitude) and eliminate noise. Then, feature
maps are extracted from the signal by a residual convolutional
neural network (ResNet) and domain-knowledge-based methods
respectively. Based on the features, the framework makes local
predictions in the granularity of a sampling point. Then the
predicted rhythm for each heartbeat is obtained by selecting the
prediction at its R peak. Finally, the beat-level predictions are
aggregated into the global prediction, whereby the loss value for
the prediction can be calculated according to the global
annotations to enable the model to be trained end-to-end.

2.3 Preprocessing
The preprocessing is mainly aimed to eliminate the noise and unify
the sampling rate and amplitude of the ECG signals. Each ECG
recording is first processed by a moving average filter (the window
size is one second) to estimate the baseline wander which mainly
originated from the offset and low-frequency noises in the signal.
The estimated baseline wander is then removed by subtracting it
from the signal. The signal is also processed by a band-pass filter
(0.1–30 Hz) to suppress noises in other bands. In addition, we
resample the signal to 125 Hz and normalize the signal to havemean
zero and variance one. Among these datasets, the MITBIH-SUP has
a frequency (128 Hz) very similar to our target frequency, so signals

FIGURE 2 | The schematic diagram of the weakly supervised deep learning framework for arrhythmia detection (WSDL-AD). CNN = convolutional neural network.
N = normal or bundle branch block beat. S = supraventricular ectopic beat. V = ventricular ectopic beat.

1MITBIH-AR-DS1 comprises recordings 101, 106, 108, 109, 112, 114, 115, 116,
118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, and 230.
2MITBIH-AR-DS2 comprises recordings 100, 103, 105, 111, 113, 117, 121, 123,
200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, and 234.
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of this dataset are not resampled. But the frequencies of other
datasets are all much higher than the target frequency, so signals in
these datasets are downsampled to 125 Hz.

For the coarsely-annotated training data, a tricky situation is
that if a recording contains both sinus and arrhythmia episodes,
its annotation usually does not include the label for sinus rhythm.
To address this problem, we complement the labels based on the
rules of co-occurrence of different rhythms. Specifically, if the
label set of a recording contains SVEB or VEB, and contains
neither supraventricular tachyarrhythmia nor idioventricular
rhythm, it is very likely that beats of N are also present in the
recording. So, in this case, we add the label N to the label set of the
recording for complementing.

2.4 Knowledge-Based Features
Contextual information, e.g., the variation of RR intervals, is
essential for the detection of many arrhythmias. In order to
facilitate the utilization of contextual information in
arrhythmia detection, we design two context-relative features
based on domain knowledge. The extraction of the two
features requires the positions of QRS complexes, which are
usually not directly available, and need to be detected by some
algorithms. In this study, the QRS complexes are detected by a
U-net-based model that has been proposed in a previous study
(He et al., 2020).

2.4.1 Relative RR Interval
The change of current RR interval relative to the contextual
normal sinus RR intervals supplies important information for the
detection of many arrhythmias including SVEB and VEB. So, we
design a feature, named relative RR interval, to represent this
information: IR � (IN − IA)/IN · s , where IR is the relative RR
interval, IA is the absolute RR interval, IN is the representative
normal RR interval in the context, and s is a scaling parameter.
Here, we use the mean RR interval of the context to approximate
IN for simplicity of calculation: IN ≈ mean(I), where I is the set
of RR intervals in the context. Note that IR is negatively related
with IA. IR is positive when IA < IN, while IR is negative when
IA > IN. Due to the wide adoption of rectified linear unit (ReLU),
many DNN models are more sensitive to positive values.
Therefore, our design can induce the DNN to be more
sensitive to the shortening of RR interval which is an
important indicator of ectopic heartbeats. Besides, IR is
normalized by IN in the formula to better reflect the degree of
relative changes.

In selecting the length of the context for estimating IN, a trade-
off should be considered between the accuracy and robustness:
the longer the context is, the more robust the mean RR interval is
to local disturbances, but the less accurately it reflects a temporal
fluctuation of the sinus RR interval. In this work, we set the
context length to 60 RR intervals with the current RR interval at
the middle of the context. And when the number of RR intervals
in a recording is less than 60, all the RR intervals are used as the
context. The scaling parameter, s, is used to increase the feature’s
contribution in the prediction since the raw value is usually small
and easy to be ignored by the classifier. In our implementation, s
is set to 10.

The relative RR intervals of a recording are organized in a
feature map, which has the same length as the ECG. In this way,
the feature map can be easily combined with the DNN-extracted
feature maps, and used in the local predictions. The feature map is
organized as follows: the points in the region of a heartbeat are
assigned the feature value of the corresponding heartbeat. Here,
we define the region of a heartbeat as the portion between the
midpoint of its preceding RR interval and the midpoint of its
succeeding RR interval.

2.4.2 RR Entropy
The regularity and stationarity of the RR intervals in the context
also provide important diagnostic information. We measure this
information by another feature, named RR entropy. The RR
entropy is calculated by the sample entropy (SampEn) method
(Richman and Moorman, 2000). SampEn is the negative natural
logarithm of the empirical probability that two templates
(i.e., segments) of length m+1 from the input sequence match
each other given that their sub-templates containing the
corresponding first m sampling points match. In our
implementation, m is set to 1, and the threshold to determine
whether two templates match is set to 0.05. Before the entropy
calculation, the RR intervals are divided by their median value for
normalization. Since the entropy can fluctuate with time, we
calculate its values dynamically in a sliding window. Similar to the
selection of the context length for estimating normal RR interval,
the selection of window size for entropy calculation should also
take into account the balance between accuracy and robustness.
The window size is set also to 60 RR intervals in our
implementation. And the method for window selection is the
same as that for specifying the context in normal RR interval
estimation. The calculated RR entropies are also organized in a
feature map, where the result of each moving window calculation
is mapped to the region of the central heartbeat (typically the 30th
heartbeat) of the window. Any sampling point that is not mapped
in the above process is assigned the value of its neatest mapped
neighbor.

To assess the discriminative abilities of the features, we
randomly sample 2,700 heartbeats from the MITBIH-AR-DS1
(900 for each category), and apply one-way ANOVA test on their
feature values grouped by categories. The results show that the
values of both features are significantly different (p < 0.0001)
among these categories. We also perform multiple pairwise
comparisons on the feature values, and the results are given in
Figure 3. We found that the feature values are significantly
different (p < 0.0001) between each pair of categories.
Therefore, these knowledge-based features have certain
discernibility for categories and will contribute to the
classification task.

2.5 DNN-Based Feature Extraction and
Local Prediction
The ResNet is used to automatically extract features from the
ECG. It consists of a stack of residual convolutional blocks (Res
blocks) as shown in Figure 4. Each Res block contains two
convolutional (Conv) layers and some assistant layers,
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including batch normalization (BN) (Ioffe and Szegedy, 2015),
rectified linear unit (ReLU) (Nair and Hinton, 2010), and
Dropout (Srivastava et al., 2014). The output of a block’s last
convolutional layer is merged with the block’s input by element-
wise addition, as suggested by the original ResNet (He et al.,
2016). A max-pooling layer with a pool size of two then
compresses the merged output to half of its original length.
The blocks are connected in series, with the output of the
previous one serving as the input of the latter. The outputs of

the last block are a series of feature maps characterizing each
temporal slice of the input recording. To align with the
knowledge-based features, these DNN-extracted feature maps
are up-sampled along the time dimension to the same length
of the input. Then, these feature maps are concatenated with the
feature maps of knowledge-based features along the feature
dimension, and jointly used for the local prediction. This
architecture contains several hyperparameters which may
affect the model performance. We optimize the
hyperparameters by grid search: different choices of residual
blocks number (3, 4, 5, and 6), convolutional kernel number
(16, 32, and 64), convolutional kernel length (8, 16, and 32), and
dropout rate (0, 0.25, and 0.5) are tested to find the combination
that achieves the best performance on the validation set
(MITBIH-AR-DS1). After the hyperparameters optimization,
the ResNet consists of 4 Res blocks. In each Res block, each
convolutional layer contains 32 kernels with a kernel length of 8.
The parameters of each convolutional layer are initialized by the
method proposed in (He et al., 2015), which takes the ReLU into
account and allows for very deep models. The dropout rate of
each dropout layer is 0.25.

Based on the feature map merged from DNN features and
knowledge-based features, the local predictions are made by a
time distributed dense (TDD) layer, which leverages a dense layer
(i.e., fully-connected layer) to process each temporal element
separately. The cell number of the TDD layer is equal to the
number of considered rhythm types. The output of the TDD layer
at each temporal element is then processed by the softmax
function to calculate probability of each considered rhythm
occurring at the slice.

2.6 Aggregation for Global Prediction
The aggregation mechanism, mapping the local predictions to the
global prediction, is a critical part in the WSDL-AD framework.
Here, we introduce the method of applying the traditional
aggregation mechanisms to this framework, and also propose
the masked aggregation mechanism.

FIGURE 3 | The results of one-way ANOVA with multiple pairwise comparison for the knowledge-based features. (A) The results for relative RR interval. (B) The
results for RR entropy. The symbol “****” indicates that the corresponding two groups are significantly (p < 0.0001) different from each other in features values. N = normal
or bundle branch block beat. S = supraventricular ectopic beat. V = ventricular ectopic beat.

FIGURE 4 | The structure of residual convolutional network (ResNet) for
feature learning. Res block = residual block. Conv = convolutional layer. Batch
Norm = batch normalization. ReLU = rectified linear unit.
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2.6.1 Traditional Aggregation Methods
A series of aggregation methods have been proposed in previous
studies for computer vision, including global average pooling
(GAP) (Zhou et al., 2016), global maximum pooling (GMP)
(Pathak et al., 2014), and Log-Sum-Exp (LSE) (Pinheiro and
Collobert, 2015). Here, we formalize these methods for
application to the mapping between the local predictions and
the global prediction. GAP averages all local predictions to obtain
the global prediction: GAP(Ŷ)c � 1

n∑
n
i�1ŷi, c, where Ŷ is the

collection of local predictions, ŷi, c is the prediction for
rhythm c at the ith sampling point. We argue that GAP is not
suitable for use in the WSDL-AD framework, because some
arrhythmias, e.g., ectopic beats, may account for only a very
small fraction of a recording, and the predictions for them will be
ignored by GAP. In contrast, GMP selects the maximum local
prediction for a class as its global prediction:
GMP(Ŷ)c � max

i∈{1, ..., n}
ŷi, c. By using GMP, a rhythm is

considered to be present in a recording as long as it occurs at
some time in the recording regardless of the duration. One
possible problem of GMP is that it may underestimate the true
region of an object (Kolesnikov and Lampert, 2016), because the
gradient of the prediction loss will be saturated (extremely close to 0)
as long as the maximum activation for the existing arrhythmia is
extremely close to 1. One solution for this problem is to make a
compromise between GAP and GMP. For example, LSE is a convex
approximation of the max function (Pinheiro and Collobert, 2015):
LSE(Ŷ)c � (1/b)log( (1/n)∑n

i�1exp(bŷi, c)), where b> 0 is a hyper-
parameter that controls the degree of the approximation to GMP.
Increasing b will push the function closer to GMP, while decreasing
b will make the function closer to GAP.

However, there are some problems when directly applying
these aggregation methods to the local predictions. Firstly, the
local predictions are corresponding to sampling points rather
than heartbeats. Although we can divide these local features and
predictions into individual heartbeats, the variable length and
uneven distribution of heartbeats can make an accurate division
difficult and increase the complexity of the model structure.
Secondly, due to the significant morphological differences
between the subwaves (e.g., P wave, QRS complex, and T
wave) of a heartbeat, the local predictions at different parts of
a heartbeat may be inconsistent, i.e., different parts of a heartbeat
are classified to different classes. These inconsistent predictions
are unreasonable and will increase the difficulty of model
optimization. To address these problems, we propose a
masked aggregation mechanism.

2.6.2 Masked Aggregation
The inconsistent predictions within a heartbeat are mainly due to
the morphological differences between the subwaves (e.g., P,
QRS, and T) of a heartbeat. This problem can be
circumvented by selecting the prediction at a certain point in
a heartbeat (i.e., the reference point) as the representative
prediction for the beat. To ensure the representativeness of the
selected predictions, we propose to aggregate only the selected
predictions to obtain the global prediction. In this way, only the
selected predictions are optimized according to the gradient of the

global prediction loss, and thus they will be representative of the
beats after the training. Since other predictions are masked out in
the aggregation, we call this mechanism masked aggregation. In
this work, we choose the R peak as the reference point of a
heartbeat because it can be usually accurately recognized by
certain algorithms (He et al., 2020). On the selected local
predictions, the aggregation methods mentioned above can
also be applied. Here, we combine masked aggregation with
GMP to get masked global max pooling (MGMP):
MGMP(Ŷ)c � max

i∈R
ŷi, c, where R denotes the set of reference

points. By selecting only the local predictions at the reference
points, the space of possible solutions for local predictions will be
significantly reduced, because the reference points in a recording
are a few orders of magnitude less than the sampling points.
Furthermore, the masked aggregation induces the model to learn
features around the reference points so that the learned features at
different reference points are semantically comparable between
each other.

2.7 Loss Calculation
The global predictions are used for the loss calculation since only
record-level labels are available in our WSL setting. The loss
function should support multi-label classifications, because
multiple rhythms may coexist in a single ECG record. Here,
we use the binary cross-entropy as the loss function for the
training of our models:

Lθ(X,T) � − 1

|C| ∑
|C|
c�1(tclog(f(X; θ)c) + (1 − tc)log(1 − f(X; θ)c))

(1)
where X is a recording of the training set, T is the record-level
label set of X, f is the prediction model, and |C| is the number of
considered classes. tc is an indicator of the presence of class c in
the label set T: if c ∈ T, tc � 1; otherwise, tc � 0. Besides, because
N is much more common than SVEB and VEB in clinic, there is
an extreme imbalance between these classes. For this problem, we
assign different weights to the training samples of different classes
in the loss calculation:

Lθ(D) � 1
M

∑(Xi,Ti)∈D w(Xi,Ti)Lθ(Xi, Ti) (2)

where Lθ(D) is the loss for the training setD,w(Xi,Ti) is the weight
for the sample (Xi, Ti), and M is the number of samples in the
dataset. In our implementation, after tuning the weight
parameters with experiments, the weight for a sample with
SVEB or VEB is set to 2, the weight for a sample with both
SVEB and VEB is set to 4, while the weight for a sample with
neither SVEB nor VEB is set to 0.1.

2.8 Two-Stage Training Strategy
To address the ill-posed problem of WSL, we propose a two-stage
training strategy. In the first stage, the model is pre-trained in SL
with small amounts of samples with heartbeat labels. Then, in the
second stage, the pre-trained model is further trained in WSL
with large amounts of coarsely-labeled ECG data. The SL-based
pre-training is implemented by omitting the aggregation part of
the WSDL-AD framework and applying the supervision directly
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to the local predictions. The loss value is calculated using
categorical cross-entropy on the predictions at the R peaks, as
in (3).

Lθ(X,Y) � − 1

|R| ∑i∈R
∑|C|

c�1(yi,c log(g(X; θ)i,c)) (3)

where g is the local prediction model, R denotes the set of
heartbeat positions, Y denotes the set of heartbeat labels. yi,c is an
element of Y: if the heartbeat at the ith sampling point belongs to
category c, yi,c � 1; otherwise, yi,c � 0. The idea behind this
strategy is that the SL-based pre-training can initialize the
model with proper parameters that may prevent the
subsequent WSL-based training from going in the wrong
direction.

3 RESULTS

In this section, we describe the experimental setup and results to
evaluate the performance of the WSDL-AD framework in beat-
by-beat arrhythmia detection. Ablation studies are also
conducted to assess the influence of our proposed techniques
on the model’s performance.

3.1 Experimental Setup
For comparison between different ML methodologies, we
conduct the experiments in three settings: 1) SL setting, where
the model is trained with full supervision; 2) WSL setting, where
the model is trained with only weak supervision; and 3) the SL +
WSL setting, where the model is pre-trained with full supervision
on a small dataset, and then trained with weak supervision on a
large dataset. Details of each setting are shown in the following
subsections.

We implement the models based on the Tensorflow and train
the models on a workstation with a CPU running at 3.5 GHz, an
NVIDIA Quadro k6000 GPU, and 64 GB of memory. The
method used for model optimization is Adaptive Moment
Estimation (Adam) (Kingma and Ba, 2014), where β1 is 0.9, β2
is 0.999, and the learning rate is 0.001. The training process is
terminated when the mean F1 score for all categories on the
validation set doesn’t increase over 10 epochs. The source code is
available at https://github.com/sdnjly/WSDL-AD.

By comparing the model predictions with the annotations, we
calculate several metrics to evaluate the model performance.
These metrics include sensitivity (Sen), specificity (Spe),
positive predictivity (Ppr), accuracy (Acc), F1 score, and
average precision (AP). Formulas for calculating these metrics
are as follows:

Sen � TP

TP + FN
(4)

Spe � TN

FP + TN
(5)

Ppr � TP

TP + FP
(6)

Acc � TP + TN

TP + FP + TN + FN
(7)

F1 � 2 × Sen × Ppr

Sen + Ppr
(8)

AP � ∑
n
(Senn − Senn−1)Pprn (9)

where TP denotes true positive predictions, TN denotes true
negative predictions, FP denotes false positive predictions, and
FN denotes false negatives predictions. Senn and Pprn are the
sensitivity and positive predictivity at the nth threshold of the
precision-recall curve (PRC) (Chen, 2003).

3.2 The SL Setting
For training the SL model, recordings of MITBIH-AR-DS1 are
split into segments of 20 s 80% of the segments are randomly
selected as the training set, and the remaining 20% are used as the
validation set. The validation set is just used for hyperparameters
tuning and early stopping of the training process. The trained
model is tested on the other three completely independent and
finely annotated datasets, including MITBIH-AR-DS2, MITBIH-
SUP, and INCART. The metric scores on these test sets are used
for the final evaluation of the model performance.

The test results on each dataset and the total test data are
shown in Table 3. For the detection of SVEB, the SL model
achieves high scores in Spe andAcc, but has very low scores in Sen,
Ppr, and F1. For example, the Spe scores of the SL model on
MITBIH-AR-DS2, MITBIH-SUP, and INCART are 0.994, 0.981,
and 0.993, respectively, whereas its Sen scores on these datasets
are only 0.066, 0.130, and 0.590, respectively. The high scores of
Spe and Acc can be attributed to the extreme class imbalance of
the test sets, where only a tiny minority of the samples belong to
SVEB. And the low scores of Sen, Ppr, and F1 are a true reflection
of the poor ability of the SL model in detecting SVEB. The test
scores for VEB detection are much higher than those for SVEB
detection. Besides, the model performances are different from
dataset to dataset. For example, the scores of Ppr and F1 for VEB
detection on the MITBIH-SUP dataset are much lower than that
on the other datasets. These differences may result from the
diversity of data distribution among these test sets.

3.3 The WSL Setting
TheWSL model is trained on the five coarsely-annotated datasets
from the PhysioNet/CinC challenge. MITBIH-AR-DS1 is used as
the validation set, and the other three finely-annotated datasets
are used as the test sets. For ease of batch processing during the
model training, all recordings in the training set are padded or
truncated at the end to 20 s. The recordings in the validation set
are also split into segments of 20 s.

The evaluation results on the test sets are shown in Table 3. By
comparing the scores with those in the SL setting, we find that the
WSL model improves the scores for detecting SVEB, VEB and N
on all of the test sets. Especially, the scores for SVEB detection are
improved most significantly. For example, on the dataset of
MITBIH-AR-DS2, the Sen, Ppr, and F1 scores for SVEB
detection are improved from 0.066, 0.286, and 0.108 to 0.806,
0.799, and 0.803, respectively. The differences are shown visually
by the PRCs in Figure 5. In the detection of both VEB
(Figure 5A) and SVEB (Figure 5B), the curves for the WSL
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model (in orange) cover significantly larger areas than that for the
SL model (in blue), especially in the detection of SVEB.

3.4 The SL + WSL Setting
In this two-stage training setting, the model is pre-trained in SL
for 10 epochs on the segments from the first half of each recording
in the MITBIH-AR-DS1. Then the model is trained in WSL on
the same data in the WSL setting, with the last-half recordings in
the MITBIH-AR-DS1 as the validation set. Finally, the model is
tested on the three test sets, with the results shown in Table 3.
These results are very close to that in the WSL setting, which is
also shown in Figure 5. The WSL and SL + WSL models have
superiority over each other in different datasets and metrics. For
example, theWSLmodel outperforms the SL +WSLmodel in Ppr
and F1 for detecting SVEB on the INCART, whereas the SL +
WSL model outperforms the WSL model in Sen and F1 for

detecting SVEB on the MITBIH-SUP. On the total test set, the
overall performance (indicated by F1 and AP) of the SL + WSL
model is superior to that of the WSL model in detecting both
SVEB and VEB. Especially, in the detection of SVEB, the SL +
WSL model achieves obvious better scores (F1 of 0.610, AP of
0.601) than the WSL model (F1 of 0.550, AP of 0.583) on the total
test set.

3.5 Stability Assessment
Due to the ill-posed problem of WSL, there is a chance that the
rules learned by a WSL model deviate from the ground truth. To
assess the stability of the model performance from training to
training, we train the model independently 50 times in each of the
WSL and SL +WSL settings. In the WSL setting, the F1 scores for
SVEB detection and VEB detection are 0.370 ± 0.260 and 0.740 ±
0.187, respectively, whereas in the SL +WSL setting, the F1 scores

TABLE 3 | Experimental results of different training setting on the evaluation datasets.

Test
set

Experimental
setting

N S V

Sen Ppr Spe Acc F1 Sen Ppr Spe Acc F1 Sen Ppr Spe Acc F1

MITBIH-AR-DS2 SL 0.985 0.959 0.634 0.949 0.972 0.066 0.286 0.994 0.959 0.108 0.935 0.873 0.991 0.987 0.903
WSL 0.990 0.987 0.883 0.979 0.988 0.806 0.799 0.992 0.985 0.803 0.902 0.950 0.997 0.990 0.925
SL + WSL 0.990 0.992 0.928 0.983 0.991 0.886 0.785 0.991 0.987 0.832 0.916 0.956 0.997 0.992 0.936

MITBIH-SUP SL 0.932 0.941 0.574 0.889 0.936 0.130 0.323 0.981 0.924 0.186 0.826 0.434 0.939 0.933 0.569
WSL 0.991 0.951 0.629 0.947 0.971 0.325 0.776 0.993 0.949 0.458 0.803 0.774 0.987 0.977 0.788
SL + WSL 0.986 0.962 0.717 0.954 0.974 0.452 0.705 0.987 0.951 0.551 0.795 0.768 0.986 0.976 0.782

INCART SL 0.991 0.978 0.844 0.973 0.985 0.590 0.487 0.993 0.989 0.534 0.826 0.945 0.994 0.975 0.882
WSL 0.990 0.988 0.914 0.981 0.989 0.852 0.575 0.993 0.991 0.687 0.886 0.950 0.994 0.982 0.917
SL + WSL 0.993 0.990 0.933 0.986 0.992 0.927 0.519 0.990 0.990 0.665 0.880 0.976 0.997 0.984 0.926

The Total Test Set SL 0.964 0.959 0.701 0.932 0.961 0.179 0.371 0.988 0.956 0.242 0.837 0.696 0.968 0.957 0.760
WSL 0.990 0.971 0.782 0.965 0.981 0.445 0.721 0.993 0.972 0.550 0.862 0.893 0.991 0.980 0.878
SL + WSL 0.990 0.978 0.835 0.971 0.984 0.560 0.669 0.989 0.972 0.610 0.858 0.906 0.992 0.981 0.882

N, normal or bundle branch block beat; S, supraventricular ectopic beat; V, ventricular ectopic beat; SL, supervised learning; WSL, weakly supervised learning; Sen, sensitivity; Ppr,
positive predictivity; Spe, specificity; Acc, accuracy; F1, F1 score.

FIGURE 5 | Precision-recall curves (PRCs) of the detection for ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB) on the total dataset in
different learning settings. (A) PRCs of VEB detection. (B) PRCs of SVEB detection. SL = supervised learning. WSL =weakly supervised learning. AP = average precision.
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for SVEB detection and VEB detection are 0.582 ± 0.019 and
0.886 ± 0.009, respectively. The distribution of the scores on the
total test data are shown by the histograms in Figure 6. The
results show that the performance of the WSL model in detecting
both arrhythmias fluctuates wildly from training to training. The
distribution of the scores for SVEB detection is polarized: some
scores are clustered at the top pole, while other scores are located
near the bottom pole. This suggests that different hypotheses of
the detection model can satisfy the weak constraints of the
recording labels and cause the instability of the model
performance from training to training. By contrast, the
performance of the SL + WSL model is very stable in multiple
training sessions. The SL-based pre-training only initializes the
model with a few training samples. It indicates that proper
initialization can avoid the unstable performance of a
WSL model.

3.6 Ablation Studies
Several ablation studies are conducted to evaluate the effects of
the proposed knowledge-based features, DNN-based feature
extraction and masked aggregation on the performance of the
WSDL-AD framework. And all of the ablation studies are in the
SL + WSL setting.

3.6.1 Knowledge-Based Features
Ablation experiments are conducted to evaluate the contributions of
knowledge-based features to the prediction. Four configurations are
studied in the experiments, including none (using only DNN
features), RR entropy (using DNN features and RR entropy),
relative RR interval (using DNN features and relative RR
interval), both features (using DNN features and both of the
knowledge-based features). The test results on the total test data
are shown by PRCs in Figures 7A,B. The PRCs of VEB detection are
very similar among different configurations, so the knowledge-based
features have little effect on the VEB detection. In contrast, there are
significant differences among the PRCs for the SVEB detection. The
model with no knowledge-based features has an AP score of 0.485,
while applying the RR entropy and relative RR interval alone

improves the score to 0.512 and 0.529 respectively. The joint
application of both knowledge-based features further improves
the score to 0.607. Therefore, the knowledge-based features have
positive effects on the model’s performance in detecting SVEB.

3.6.2 DNN-Based Feature Extraction Methods
In our framework, the DNN-based features are extracted using the
ResNet. But our framework is also compatible with other kinds of
networks for feature extraction. To evaluate the impacts of the
network structure on the model performance, we conduct ablation
experiments with different types of networks for feature extraction.
Besides the ResNet, several well-known networks are tested for
comparison, including AlexNet (Krizhevsky et al., 2012), VGG-19
(Simonyan and Zisserman, 2014) and U-Net (Ronneberger et al.,
2015). Since these networks are all originally designed for processing
2D images, we replace the 2D convolutional and pooling layers with
their 1D counterparts to adapt to the processing of 1D ECG signals.
The recommended hyperparameters of these networks are adopted
in our experiments. Some dimension-related hyperparameters (such
as, convolutional kernel size and pool size) are converted to the 1D
counterparts. For example, the convolutional kernel size (3 × 3) of
the VGG-19 is converted to 3. The test results on the total test set are
shown in Figures 7C,D. From the results, we can find that the
performances of models with different network structures are
obviously different. Among these networks, ResNet achieves the
best performance in both SVEB (AP = 0.607) and VEB (AP = 0.962)
detections on the total test data. The performance of VGG-19 is very
close to that of ResNet, and the main difference lies in the detection
of VEB (AP = 0.943). By contrast, the performances of models with
AlexNet and U-Net are much lower than that of ResNet. These
results indicate that the structure of the feature-extraction network
has important impacts on the model performance. To obtain good
performance, it is necessary to choose a proper network structure for
feature extraction.

3.6.3 Aggregation Mechanisms
Four aggregation mechanisms are compared in our ablation
studies, including GAP, GMP, LSE (b = 5), and MGMP. The

FIGURE 6 |Distributions of the F1 scores on the total test data in multiple independent training sessions. (A) The histogram of the results for ventricular ectopic beat
(VEB) detection. (B) The histogram of the results for supraventricular ectopic beat (SVEB) detection. SL = supervised learning. WSL = weakly supervised learning.
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test results on the total test data are shown in Figures 7E,F. In
detecting VEB, GAP achieves the poorest performance (AP =
0.661) among all of the tested mechanisms, which may be
attributed to the fact that an arrhythmia epoch may only
account for a small portion of a recording. The performance

of LSE (AP = 0.793) is better than GAP since it makes a
compromise between GAP and GMP. Much better
performances are achieved by GMP (AP = 0.938) and MGMP
(AP = 0.962). It may be because that these two mechanisms are
consistent with the basic principle that an arrhythmia should be

FIGURE 7 | Precision-recall curves (PRCs) of the ablation studies on the total test data. (A) and (B) show PRCs of models with different knowledge-based features.
(C) and (D) show PRCs of models with different feature extraction networks. (E) and (F) show PRCs of models with different aggregation mechanisms. GAP = global
average pooling. GMP = global max pooling. LSE = Log-Sum-Exp. MGMP = masked global max pooling. AP = average precision. The parameter b of LSE is set to 5.
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included in the global prediction as long as it exists somewhere in
the recording. As for the detection of SVEB, the performances of
GMP and MGMP are also significantly better than GAP and LSE.
Especially, the MGMP, achieving an AP of 0.607, outperforms all
other mechanisms by a large margin. This indicates that the
masked mechanism is indeed helpful to improve the performance
of WSL-based arrhythmia detection, especially for arrhythmias
with subtle morphological changes, e.g., SVEB.

3.7 Analysis of Detection Examples
The qualitative results of theWSDL-ADmodel in detecting SVEB
and VEB are shown in Figure 8. In this figure, both the ECG
signal and the knowledge-based feature maps (including relative
RR interval and RR entropy) of each example are present. The

local classifications contain the rhythm-wise probability
distribution at each sampling point. The beat-by-beat
detections are derived from the local predictions by selecting
the predictions at the R peaks. The local classifications indicate
that theWSL models have learned the ability to detect SVEBs and
VEBs in various contextual rhythms, such as normal sinus
rhythm, atrial fibrillation (AF), atrial bigeminy (AB), and
ventricular bigeminy (VB). And, in most cases, the model has
adequate confidence for the classification, where the predicted
probability for some class is significantly higher than that for
other classes. The value of the relative RR interval exhibits a
positive correlation with the occurrence of SVEB and VEB, which
is in line with our expectations and thus can serve as an effective
indicator. However, a shortened RR interval, manifested by the

FIGURE 8 | Qualitative results of arrhythmia detection on the MITBIH-AR-DS2 in the SL + WSL setting. (A) An example during normal rhythm. (B) An example
during atrial fibrillation. (C) An example during atrial bigeminy. (D) An example during ventricular bigeminy. The vertical dashed lines indicate the positions of R peaks. In
the ECG waveform charts, the reference category of each heartbeat is labeled above the ECG. In the local classification charts, the predictions for supraventricular
ectopic beats (S) are drawn in blue, the predictions for ventricular ectopic beats (V) are drawn in orange, and the detected categories are labeled above the
prediction lines. N denotes a normal or bundle branch block beat. Since the probabilities of N, S, and V add up to one at each sampling point, the predictions for N are not
plotted in the figure for clarity.
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high value of relative RR interval, doesn’t necessarily indicate an
ectopic beat, because it may be caused by other arrhythmias, such
as AF. The RR entropy, on the other hand, reflects the variation of
RR intervals in the context: when the RR interval changes greatly
(e.g., during AF, AB, or VB), the entropy value is at a high level,
and vice versa (e.g., during sinus rhythm). Therefore, the joint
application of relative RR interval and RR entropy can supply the
information about the significance of a local RR-interval change,
and help to increase the precision of the detection.

However, there are also some cases where the model has low
confidence in the classification or even makes errors, as shown in
Figure 9. In the example of Figure 9A, two SVEBs during
supraventricular tachyarrhythmia (SVTA) are misclassified as
N. This can be attributed to the successive occurrence of SVEBs
during SVTA, where the change of RR intervals from beat to beat
is not significant, and especially most SVEBs are followed by
noncompensatory pauses. Figure 9B presents an example that a
VEB during the left bundle branch block (LBBB) is misclassified
as SVEB. At the beat, the predicted probability for VEB is slightly
less than that for SVEB, and both probabilities are significantly
higher than that for N. It implies that the model has enough
confidence to classify the beat as an ectopic beat, but has not
enough confidence to distinguish whether it is an SVEB or VEB.
One possible reason for this is that the QRS complex of the VEB is
not significantly wider than that of the neighboring beats.

4 DISCUSSION

In this study, we propose a WSL framework (WSDL-AD) for the
beat-by-beat detection of arrhythmias, which requires only
coarse-grained record-level annotations during the model
training. The evaluation on independent datasets shows that a
WSDL-AD model is able to learn the ability to detect VEB and

SVEB from the coarsely annotated ECGs. In particular, our WSL
model outperforms its SL counterpart by a large margin on
multiple external test sets, which indicates that the WSL
framework can facilitate the generalization ability of
arrhythmia detection by exploring the large amount of
coarsely-annotated ECG data. The biggest improvement is in
the detection of SVEB, which is more difficult to detect because its
waveform variation is usually very subtle. In this section, we will
compare the results of our method with that of other state-of-the-
art studies, and discuss the implications and limitations of
this study.

4.1 Comparison With Other Studies
We compare our results with that of representative previous
studies. The previous studies on the heartbeat classification can be
categorized into two types: inductive learning (or induction),
which learns general rules from labeled training samples and
applies the rules to test samples; and transductive learning (or
transduction), which learns the detection rules from both the
labeled training samples and the unlabeled test samples, and
applies the rules on the same test samples. This study and most
previous studies are in inductive learning. Some studies that
based on unsupervised domain adaptation are in transductive
learning (Li et al., 2021; Wang et al., 2021). Although the models
of transductive learning usually achieve better performance than
inductive learning models, their requirement for the unlabeled
target samples during the model training stage is hard to satisfy,
since there are always new patients in routine clinical practice.

The MITBIH-AR-DS2 dataset is mostly used by previous
studies for model evaluation, and the results of some
representative studies are shown in Table 4. On the dataset,
the test scores of our WSL models (in both WSL and SL + WSL
settings) in detecting SVEB and VEB are significantly superior to
that of the state-of-the-art methods of supervised inductive

FIGURE 9 | Qualitative results of error predictions. (A) An example of misclassifying supraventricular ectopic beats (S) as normal or bundle branch block beats (N)
during supraventricular tachyarrhythmia. (B) An example of misclassifying a ventricular ectopic beat (V) as an S during left bundle branch block (LBBB).
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learning (Guo et al., 2019; Niu et al., 2020), and comparable to the
state-of-the-art results of unsupervised transductive learning (Li
et al., 2021;Wang et al., 2021). Compared with previous inductive
models, the improvements of F1 scores are >8% (from 0.766 to
0.832) for SVEB and >4% (from 0.898 to 0.936) for VEB. The test
results of previous studies on the MITBIH-SUP dataset and the
INCART dataset are present in Tables 5,6 respectively. On the
MITBIH-SUP dataset, our WSL models substantially outperform
previous studies of induction (increasing the F1 scores by >290%
for SVEB and >11% for VEB) and transduction methods
(increasing the F1 scores by >66% for SVEB and >3% for
VEB). Similar improvements are also observed for the
INCART dataset. In particular, for the detection of SVEB, our
WSL models have a big superiority over the transduction

methods on these two datasets, although the transduction
methods have optimized their models according to the test
samples. These improvements indicate that the proposed WSL
method can learn robust rules from a large amount of coarsely
annotated data and has a better generalization ability.

4.2 Implications of the Proposed Method
This study shows that the WSL approach is effective to improve
the generalization ability of beat-by-beat arrhythmia detectors by
leveraging the large amounts of coarsely-annotated ECG data. An
arrhythmia detector with both fine detection granularity and
good generalization ability has important implications for clinical
practice. The fine granularity is necessary for measuring the
burden and pattern (e.g., bigeminy and trigeminy) of

TABLE 4 | Comparison of our method with other studies on DS2 of the MITBIH-AR dataset.

Studies Learning
type

N S V

Se Ppr F1 Se Ppr F1 Se Ppr F1

De Chazal et al. (2004) Induction 0.869 0.992 0.926 0.759 0.385 0.511 0.777 0.819 0.794
Llamedo and Martínez. (2010) Induction 0.776 0.995 0.872 0.765 0.413 0.536 0.829 0.880 0.854
Mar et al. (2011) Induction 0.896 0.991 0.841 0.832 0.335 0.478 0.868 0.759 0.809
Zhang et al. (2014) Induction 0.889 0.990 0.937 0.791 0.360 0.495 0.855 0.928 0.890
Raj and Ray. (2018) Induction 0.909 0.994 0.950 0.808 0.488 0.608 0.822 0.854 0.838
Garcia et al. (2017) Induction 0.940 0.980 0.959 0.620 0.530 0.571 0.873 0.594 0.707
Guo et al. (2019) Induction — — — 0.627 0.612 0.619 0.913 0.883 0.898
Niu et al. (2020) Induction 0.989 0.974 0.981 0.765 0.766 0.766 0.857 0.941 0.897
Wang et al. (2021) Transduction 0.991 0.984 0.990 0.765 0.902 0.830 0.940 0.923 0.930
Li et al. (2021) Transduction 0.994 0.983 0.989 0.772 0.934 0.845 0.906 0.944 0.924
This work (WSL setting) Induction 0.990 0.987 0.988 0.806 0.799 0.803 0.902 0.950 0.925
This work (SL + WSL setting) Induction 0.990 0.992 0.991 0.886 0.785 0.832 0.916 0.956 0.936

N, normal or bundle branch block beat; S, supraventricular ectopic beat; V, ventricular ectopic beat; Se, sensitivity; Ppr, positive predictivity; F1, F1 score.
The bold text indicates the maximum of each column.

TABLE 5 | Comparison of our method with other studies on the MITBIH-SUP dataset.

Studies Learning type S V

Se Ppr F1 Se Ppr F1

Al Rahhal et al. (2016) Induction 0.088 0.143 0.109 0.652 0.093 0.163
Guo et al. (2019) Induction 0.079 0.645 0.141 0.868 0.588 0.701
Wang et al. (2021) Transduction 0.236 0.539 0.33 0.844 0.563 0.68
Li et al. (2021) Transduction 0.238 0.472 0.316 0.785 0.724 0.753
This work (WSL setting) Induction 0.325 0.776 0.458 0.803 0.774 0.788
This work (SL + WSL setting) Induction 0.452 0.705 0.551 0.795 0.768 0.782

S, supraventricular ectopic beat; V, ventricular ectopic beat; Se, sensitivity; Ppr, positive predictivity; F1, F1 score.
The bold text indicates the maximum of each column.

TABLE 6 | Comparison of our method with other studies on the INCART dataset.

Studies Learning type S V

Se Ppr F1 Se Ppr F1

Llamedo and Martínez. (2010) Induction 0.77 0.39 0.52 0.81 0.87 0.84
Al Rahhal et al. (2016) Induction 0.156 0.025 0.04 0.751 0.376 0.501
Wang et al. (2021) Transduction 0.711 0.435 0.54 0.901 0.903 0.90
This work (WSL setting) Induction 0.852 0.575 0.687 0.886 0.950 0.917
This work (SL + WSL setting) Induction 0.927 0.519 0.665 0.880 0.976 0.926

N, normal or bundle branch block beat; S, supraventricular ectopic beat; V, ventricular ectopic beat; Se, sensitivity; Ppr, positive predictivity; F1, F1 score.
The bold text indicates the maximum of each column.
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arrhythmias, which can be used to assess critical risks (e.g., stroke
and heart failure) in clinic (Boriani et al., 2014; Marcus, 2020). On
the other hand, the generalization ability is a necessary
prerequisite for an algorithm to be trusted for clinical use,
because ECG is susceptible to environmental and individual
differences. The diagnoses made by currently used algorithms
still need to be reviewed by doctors. However, with the explosion
of ECG data from mobile devices, it is not practical to rely on
doctors to review every record. With the improvements in
generalization ability, our WSL method can deal with more
situations and make more reliable detections independently,
which are of significance to prompt the revolution of
automatic ECG diagnosis.

This superiority of the WSL models may source from the fact
that their training data are from a much larger patient group
than that of the SL models. The coarse-grained annotations
usually take much less time and effort than fine-grained
annotations. And to ensure the correctness of the
annotations, fine annotation needs multiple experts to reach
a consensus on the labels of each beat, while coarse annotation
only needs a consensus on the global labels. In addition, in many
medical institutions, the electronic medical records, containing
both physiological signals and diagnostic reports, are inherent
coarsely annotated data and could be used to train the WSL
models. Therefore, the amount of coarsely annotated data could
be accumulated rapidly in the future, which provides essential
substrates for continually improving the reliability of automatic
arrhythmia detectors.

As demonstrated by the ablation experiments, the proposed
knowledge-based features and masked aggregation mechanism
also play an important role in improving the performance of the
WSL models. One of the advantages of the knowledge-based
features is that they integrate the information in a very wide
context, which is usually difficult to learn by the model self,
especially under weak supervision. By fusing the knowledge-
based features and the DNN-extracted features, the
representative ability of the feature vector might be enhanced,
thus causing the detection performance to be improved. On the
other hand, the masked aggregation mechanism selects the
representative prediction for each heartbeat at the specified
reference point, which greatly reduces the space of possible
local predictions. Besides, because the reference points belong
to the same type of ECG subwave, e.g., the R peak, the features
aligned to the reference points are also semantic comparable with
each other. Consequently, the masked aggregation mechanism
helps to improve the performance of ectopic beat detection.
Furthermore, the results of multiple independent training
sessions reveal the instability of the training process of WSDL-
AD. We also demonstrate that SL-based pre-training on a few
finely-annotated samples can effectively improve the stability of
the training process. It implies that the initialization has a critical
effect on the training process of the WSL model. These methods
proposed in this study may also be enlightening to further studies
in arrhythmia detection and even other fields.

The computational complexity of our framework can be
divided into several parts, which are corresponding to
preprocessing, QRS complexes detection, knowledge-based

features extraction, DNN-based features extraction, local
prediction, and aggregation, respectively. Among these parts,
the part of DNN-based features extraction dominates the
computational complexity of the framework. The network for
feature extraction is a 1D ResNet whose computational
complexity mainly comes from the convolutional layers in it.
The computational complexity of each convolutional layer is
O(K×M×N), where K is the kernel number, M is the kernel size
(kernel length × channels), and N is the signal length. By putting
the hyperparameters in the formula, we get O(K×M×N) = O (32
× 16×32×N) = O(N). There are only nine convolutional layers in
our 1D ResNet, and the feature maps are gradually down-
sampled. Taken together, the computational complexity of
the 1D ResNet is O (9 × 32×16 × 32×N) = O(N). Thus, the
computational complexity of the 1D ResNet is linear to the
signal length. Besides, the number of layers and the number of
convolutional kernels in our network are much smaller than that
of other well-known networks, such as VGG-19 (Krittanawong
et al., 2019) and U-Net (Ronneberger et al., 2015). Therefore, the
computational complexity of our framework is moderate, which
is critical for scenarios where computing resources are scarce,
such as mobile ECG monitoring.

4.3 Limitations
This work also has some limitations. First, the WSL models
have a high error rate for SVEB detection. The waveform
patterns of SVEB are usually subtle and therefore difficult to
be recognized by the model. To address this problem,
collecting more training data or improving the design of the
WSL framework (e.g., extracting features of the P wave) would
be helpful. Second, the WSDL-AD framework is not evaluated
for detecting other kinds of ECG abnormalities, such as branch
bundle blocks and ST segment changes. Future work is
required to assess the effectiveness of WSL in detecting
more diverse ECG abnormalities.

5 CONCLUSION

In conclusion, this study develops and evaluates a WSDL
framework for beat-by-beat arrhythmia detection, by which we
demonstrate the feasibility of training a fine-grained arrhythmia
detector on only coarsely-labeled ECG data. The evaluations on
multiple external datasets show that the proposed framework has
a significant superiority in generalization ability over previous SL-
based methods. The knowledge-based features and masked
aggregation mechanism also have important contributions to
the performance of the model, while the SL-based pre-training
helps to improve the stability of the training process.
Furthermore, the computational complexity of our framework
is moderate, which permits the models to be deployed on
hardware with limited computing resources. Our approach
would substantially reduce the burden of data annotation and
enhance the reliability of beat-by-beat arrhythmia detection, and
therefore has a great potential to promote the application of
automatic cardiac monitoring both in and out of hospitals.
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Electrocardiography is Useful to
Predict Postoperative Ventricular
Arrhythmia in Patients Undergoing
Cardiac Surgery: A Retrospective
Study
Weichao Li*, Weihua Liu and Heng Li

The Sixth Affiliated Hospital of Guangzhou Medical University, Department of Anesthesiology, Qingyuan People’s Hospital,
QingYuan, China

Background: Preoperative detection of high-/low-risk postoperative ventricular
arrhythmia (POVA) patients using a noninvasive method is an important issue in the
clinical setting. This study mainly aimed to determine the usefulness of several preoperative
electrocardiographic (ECG) markers in the risk assessment of POVA with cardiac surgery.

Method: We enrolled 1024 consecutive patients undergoing cardiac surgery, and a total
of 823 patients were included in the study. Logistic regression analysis determined
preoperative ECG markers. A new risk predicting model were developed to predict
occurrence of POVA, and the receiver operating characteristic curve (ROC) was used
to validate this model.

Results: Of these, 337 patients experienced POVA, and 485 patients did not experience
POVA in this retrospective study. Among 15 ECG markers, a univariate analysis found a
strong association between POVA and preoperative VA, the R-wave in lead aVR, the QRS
wave, index of cardiac electrophysiological balance (iCEB), QT interval corrected (QTc),
Tpeak–Tend interval (Tpe) in lead V2, the J wave in the inferolateral leads, pathological Q
wave, and SV1+RV5>35mm. Multivariate analysis showed that a preoperative J wave
[adjusted odds ratio (AOR): 3.80; 95% CI: 1.88–7.66; p < 0.001], Tpe >112.5-ms (AOR:
2.80; 95% CI: 1.57–4.99; p < 0.001), and SV1+RV5 >35mm (AOR: 2.92; 95% CI:
1.29–6.60; p = 0.01) were independently associated with POVA. A new risk predicting
model were developed in predicting POVA.

Conclusion: The ECG biomarkers including J wave, Tpe >112.5 ms, and SV1+RV5

>35mm were significantly predicted POVAs. A risk predicting model developed with
electrocardiographic risk markers preoperatively predicted POVAs.

Keywords: postoperative ventricular arrhythmia, electrocardiographic markers, model, J wave, abnormal
repolarization
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INTRODUCTION

Postoperative ventricular arrhythmia (POVA) is a frequent
complication after surgery. Some clinical studies have
suggested that POVA increases short- and long-term
mortality and further deteriorates heart failure postprocedure
(El-Chami et al., 2012; Valderrábano et al., 2016a). It is
important to identify patients at high risk of developing
POVA so that targeted prophylactic therapy or alternative
strategies can be given. Many clinical markers for the
development of malignant arrhythmia in ischemic heart
diseases have been reported, including episodes of
conduction disturbance postprocedure, T wave peak and end
(Tpe) as an independent predictor of arrhythmic events (Maury
et al., 2015), fragmented QRS (fQRS) (Morita et al., 2008), an
early repolarization (ER) pattern (Pieroni et al., 2008), short- or
long-QT intervals (Schwartz and Ackerman, 2013; Bjerregaard,
2018), the existence of late potential, and the index of cardiac
electrophysiological balance (iCEB: QT/QRS) (Lu et al., 2013).
In addition, the markers can also be used to stratify patients for
short- and long-term outcomes and to predict sudden cardiac
death due to malignant ventricular arrhythmia (SCD-VA)
(Erikssen et al., 2012; Tse et al., 2018). However, the
evidence on whether preoperative markers can predict an
increased risk of POVA is not clear in the surgical setting. In
this study, we chiefly aimed to identify preoperative risk
markers for POVA by paying attention to surface
electrocardiographic parameters.

METHODS

Design, Setting, and Ethical Statement
Ethical approval for this retrospective cohort study (Ethical
Committee approval number: IRB-202108-K4-amendment
review-01) was provided by the Ethical Committee of the
Sixth Affiliated Hospital of Guangzhou Medical University,

QingYuan, GuangDong (Chairperson Prof JiFang Liu) on 12
November 2021. We registered the study protocol with the
Chinese Clinical Trial Registration (identifier:
ChiCTR2100052496).

Data Source
The current study used the data archived in the electronic medical
record system of Southern Huiqiao and in the anesthesia care
system database in the operating room. The exact date of death of
in-hospital patients was recorded explicitly.

Study Population and Inclusion and
Exclusion Criteria
In this retrospective cohort study, we screened 1024 consecutive
patients undergoing open cardiac surgery from January 2013 to
October 2021. Twenty-three patients were excluded due to the
loss of ECG data. Only three patients who died during surgery
were excluded from the analysis. Another 175 patients were
excluded for age <18 years. A total of 823 patients were
included in the study (Figure 1).

Postoperative Ventricular Arrhythmia
Rhythm disturbances were evaluated by continuous
electrocardiographic monitoring from the time of the removal
of the aortic clamp to 72 h postoperatively. POVA was defined as
any premature ventricular beats, ventricular fibrillation, and
bradyarrhythmias during the reperfusion period or in the
postoperative period (Valderrábano et al., 2016b).

Electrocardiographic Measurements
After a quality check assessing recording speed (>25 mm/s),
standard 12-lead ECGs (MedEx-ECGworkstation, Madicks Co.,
Ltd., BeiJing, China) were recorded in the same way and were
evaluated for the QRS width, QT or QTc interval, ST-segment
level at the J point, Tpeak–Tend interval (Tpe), iCEB, SV1+RV5

>35 mm, QT/QTc ratio, and fQRS. The Tpeak–Tend interval
(Tpe) is defined as the interval from the peak to the end of the
T-wave in the V2 lead; this interval was measured in three beats
and then averaged (Demidova et al., 2019). The QT interval was
automatically measured in lead II and corrected for the heart
rate with the Bazett method. An S-wave in lead I was defined as a
depth >0.1 mV and/or a width >40 ms (Calò et al., 2016). An
R-wave in lead aVR was defined as an R-wave height >0.3 mV
and/or an R-wave/q-wave ratio >0.75 (BabaiBigi et al., 2007).
Regarding the defined short- or long-QT intervals, the current
guideline recommends an upper normal limit of a corrected QT
(QTc) interval of 440 ms and a lower limit of 340 ms (Schwartz
and Ackerman, 2013; Campuzano et al., 2018). The presence of
fQRS was defined as abnormal fragmentation within the QRS
complex as four spikes in several leads as described previously.
Based on the American Heart Association’s scientific statement,
the J wave or J point was defined as the amplitude of the
elevation that had to be at least 1 mm above the baseline
level at the ST-segment level, either as QRS slurring or
notching (Patton et al., 2016). Atrial fibrillation was
diagnosed as previously reviewed. The voltage sum SV1+RV5

FIGURE 1 | Flowchart of patient selection.
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>35 mm using the Sokolow-Lyon voltage criteria was diagnosed
as left ventricular hypertrophy (LVH) (Antikainen et al., 2003).
iCEB was defined as QRS/QT.

Selection of Preoperative ECG Markers
We selected 15 potential ECG markers (Figure 1) of POVA risk
according to previous reviews. Four potential markers were
associated with depolarization/conduction disorders, including
a QRS width>120 ms, a fragmented QRS in the precordial leads
(fQRS), an S wave in lead I, and an R-wave in lead aVR. Five
potential markers were implicated in repolarization disorders: the
J wave or J point, short- or long-QT intervals, QT/QTc, and Tpe.
One potential marker was related to an imbalance between
repolarization and depolarization, that is, the iCEB. The
following remaining potential markers were unclassified: atrial
fibrillation (AF), ST-segment change, and SV1+RV5 >35 mm
representing LVH.

Statistical Analysis
Data are expressed as the mean ± SD or median (interquartile
range). Student’s t test was performed to compare variables
between groups, and categorical data and percentage
frequencies were compared with the chi-square or Fisher
exact test as appropriate. Univariate analysis was
performed for associated POVA events. Multivariate
analysis was used to estimate the occurrence risk for those
predictors and identified independent risk factors relative to
POVA. Receiver operating characteristic (ROC) curve and
area under the curve (AUC) analyses were used to estimate
the usefulness of preoperative Tpe for the prediction of
POVA. Candidate variables were defined as a p value <
0.10 in univariate analysis and the 2-group comparison of

each model. A p value <0.05 was considered statistically
significant.

RESULTS

Population Characteristics
Altogether, 823 patients from the same hospital were included
in this analysis, with women accounting for 51.3% of the
entire cohort and a mean age of 54.7 years. A total of 546
patients underwent isolated valve surgery (66.3%), and 186
patients underwent isolated coronary artery bypass grafting
(CABG) [22.6%]. Ventricular and auricular septal defect
repair was conducted in 28 and 71 patients, respectively,
and 28 patients underwent cardiac myxoma removal. In
total, 44 patients underwent other isolated surgeries. POVA
occurred in 338 patients (41%). Table 1 shows the
characteristics of patients with and without POVA. The
proportions of patients with diabetes, stroke, and
undergoing CABG or valve surgery were higher among
patients with POVA than among patients without POVA.
Patients with ventricular and auricular septal defect were,
more often, POVA free. Table 2 shows preoperative
electrocardiographic data in patients with POVA and
POVA-free. The proportions of patients with the presence
of S-wave in lead I, R-wave in lead aVR, Tpe interval >112.5-
ms, ST-segment change, J wave, Preoperative AF, and
SV1+RV5 > 35 mm were higher among patients with POVA
than among patients without POVA. Compared with the
patients with POVA-free, the duration of QRS complex,
Tpe interval, and QTc duration in the patient with POVA
were prolonged.

TABLE 1 | Baseline Characteristics in patients with POVA and POVA-free.

POVA (n = 338), %
(n)

POVA-free (n = 485), %
(n)

p Value

Age, yrs 52.2 ± 12.8 46.8 ± 11.6 0.062
Male 48.7% (165) 33.3% (160) <0.001
Weight, kg 58.3 ± 11 54.3 ± 11.2 0.69
NYHA class ≥ III 53.8% (182) 66% (320) <0.001
Medical history
Dyslipidemia 9.5% (48) 5.3% Tse et al. (2021) 0.545
Hypertension 20.5% (69) 8.9% (43) 0.91
Diabetes 5.7% Takagi et al. (2013) 5.3% Tse et al. (2021) 0.027
Stroke 12.8% (43) 2.6% Calò et al. (2016) 0.023
COPD 3.2% Valderrábano et al. (2016b) 6.2% Shenasa et al. (2015) 0.057
Previous MI 10.2% Valderrábano et al. (2016a) 4.4% Rosenthal et al. (2015) 0.28

Cardiac cardioplegia
HTK solution 64.7% (219) 19.1% (93) 0.038
Cold blood cardioplegia 35.2% (119) 80.8% (392) 0.038

Surgery variables
GABG 27.4% (93) 10.7% (93) 0.005
Heart valve surgery 62.1% (210) 69.1% (336) <0.001
Ventricular septal defect repair 2.5% Erikssen et al. (2012) 4% Takagi et al. (2013) 0.005
Auricular septal defect repair 7.6% Tse et al. (2021) 9.3% (45) <0.001
Cardiac myxoma removal 3.8% Calò et al. (2016) 3.1% (Schwartz and Ackerman, 2013) 0.18
Others 6.8% Valderrábano et al. (2016a) 0.8% Erikssen et al. (2012) 0.14

MI, myocardial infarction; COPD, chronic obstructive pulmonary disease; GABG, coronary artery bypass grafting.
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Univariate Analysis in Preoperative ECG
Table 3 shows the results of the univariable analysis. In univariate
analysis, heart rate, fQRS, the S wave in lead I, QT/QTc, ST-
segment change, and preoperative AF did not predict POVA.
Preoperative VA, the R-wave in lead aVR, QRS duration, iCEB,
QT interval, QTc interval, Long- or short- QT intervals, Tpe in
lead V2, inferolateral J wave, J wave + fQRS, Q wave, and SV1+RV5

> 35 mm were associated with POVA.

Multivariate Analysis of Preoperative ECG
Parameters and Receiver Operating
Characteristic Analysis
The multivariate logistic regression analysis identified the following
preoperative factors that could predict POVA: the J wave (AOR: 3.80;
95%CI: 1.88–7.66; p< 0.001), and SV1+RV5> 35mm (AOR: 2.92; 95%
CI: 1.29–6.60; p = 0.01). Each 10-ms decrease in Tpe was associated
with a 16% increase in the risk for POVA (AOR: 0.984; 95% CI:
0.97–0.99; p < 0.001). In addition, ROC curve analysis revealed the
utility of Tpe for the prediction of POVA. TheAUCwas 0.724 (95%CI
0.67–0.77, p < 0.0001), with discrimination at 112.5-ms yielding a
sensitivity of 54.5% and specificity of 87.5% (Supplementary
Figure S1). Subsequently, multivariate analysis again identified that
preoperative Tpe >112.5ms was independently associated with POVA
(AOR: 2.80; 95% CI: 1.57–4.99; p < 0.001).

Construction and Validation of a POVA Risk
Prediction Model
Points were assigned to each risk predictor according to its
number, enabling the development of a model that predicted

the risk of POVA. The presence of the J wave was assigned 1
point, the presence of the SV1+RV5 > 35 mm wave was assigned 1
point, and the presence of the Tpe >112.5-ms wave was assigned
one point. Thus, the POVA risk prediction model was developed
with a range of 0–3 points based on this calculation. The rates of
POVA and the risk scores in the cohorts are shown in Figure 2. In
addition, the established ROC curve and AUC were validated in
the model for the total cohort (Supplement Figure 1). The AUC
for this model was 0.797 (p < 0.0001).

DISCUSSION

The present study showed the following findings (El-Chami et al.,
2012): a preoperative J wave, SV1+RV5 >35 mm, and Tpe
>112.5 ms were independently associated with POVA, and
(Valderrábano et al., 2016a) the risk prediction model could
preoperatively predict the risk of POVA.

Preoperative Electrocardiographic Markers
of POVA.
A preoperative J wave was independently associated with POVA.
There is a long-established concept that the J wave is benign. This
concept has been significantly contradicted in recent years. Some
studies have shown that the presence of the J wave was associated
with a higher incidence of ventricular tachyarrhythmia (VT/VF) in
patients with Brugada syndrome (Takagi et al., 2013), short QT
syndrome, noncompaction cardiomyopathy (Caliskan et al., 2012),
and ischemic heart disease (Patel et al., 2012). This evidence implies
that more arrhythmogenic susceptibility appears in patients with the

TABLE 2 | Preoperative electrocardiographic data in patients with POVA and POVA-free.

POVA (n = 338),
% (n)

POVA-free (n = 485),
% (n)

p Value

Depolarization/conduction disorders markers
Duration of QRS complex, ms 96.2 ± 17.7 89.3 ± 14.9 <0.001
Fragmented QRS 17.9% (61) 12.0% (58) 0.054
S-wave in lead I 29.4% (100) 26.3% (128) <0.001
R-wave in lead aVR 95.5% (323) 86.6% (420) <0.001

Repolarization disorders markers
Tpe interval in lead V2, ms 115.1 ± 36.8 87.0 ± 24.1 <0.001
Tpe interval >112.5-ms 53.8% (182) 13.8% (67) <0.001
QT duration, ms 382.6 ± 61.7 369.5 ± 50.1 0.024
QTc duration, ms 435.2 ± 50.1 415.6 ± 40.8 <0.001
QT/QTc ratio 0.9 ± 0.1 0.9 ± 0.1 0.486
Long- or short- QT intervals 55.7% (188) 39.7% (193) 0.189
ST-segment change 17.3% (58) 12.0% (58) <0.001
J wave 69.2% (234) 18.7% (91) <0.001

Abnormal depolarization-repolarization
Combination of the J wave and fQRS 16.6% (56) 7.5% Moss et al. (2002) <0.001

Unclassified markers
Preoperative AF 19.8% (67) 25.4% (123) <0.001
Preoperative VA 29.4% (100) 16.5% (80) 0.07
iCEB (QRS/QT) 0.3 ± 0.1 0.2 ± 0.1 0.081
Pathological Q wave 4.4% Schwartz and Ackerman, (2013) 0.8% (Morita et al. (2008) 0.092
SV1+RSV5 > 35 mm 16.6% (56) 4.9% Panikkath et al. (2011) <0.001
Heart rate, bpm 80.8 ± 19.9 79.5 ± 19.3 0.485

AF, atrial fibrillation; VA, ventricular arrhythmia; iCEB, the index of cardiac electrophysiological balance.
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presence of the J wave. Under surgical conditions and global cardiac
ischemic factors, there is a general risk of POVA in patients. Our
finding that a preoperative J wave was more common in patients
experiencing POVA is in agreement with these previous findings.
The underlying mechanismmay be that the disparity of outward Ito
current density between segments of the ventricular epicardium has
the potential to cause ventricular tachyarrhythmias.

In addition, Tpe, representing cardiac repolarization
inhomogeneity, was implicated in POVA, and ROC curve and
multivariate analyses considered that Tpe >112.5 ms was
independently associated with POVA. Todd et al. suggested
that the T-peak to T-end interval predicts ventricular
tachyarrhythmia in a primary prevention population with
systolic cardiomyopathy (Rosenthal et al., 2015). The T peak-

Tend interval was previously associated with endothelial
dysfunction, arterial stiffness and impaired coronary perfusion
(Mozos, 2015). Ragesh et al. considered that a prolonged Tpeak-
to-Tend interval on resting ECG was associated with increased
VF for sudden cardiac death (Panikkath et al., 2011). Tpeak-Tend
interval was reported to be prolonged in hypertensive, overweight
and obese patients, smokers, and persons with prolonged
exposure to shift work (Mozos and Filimon, 2013). Some
studies suggested that repolarization variability predict
ventricular arrhythmogenesis in mouse or human hearts
(Castro-Torres et al., 2015; Tse et al., 2021). Our finding is in
accordance with previous reviews of Tpe predicting cardiac
arrhythmias. The ventricular myocardium includes three
electrophysiologically distinct cell types-endocardial, epicardial,

TABLE 3 | Analyses of independent electrocardiographic markers of POVA using logistic regression models.

Variables Univariate Multivariable

Adjusted
OR (95% CI)<

p Value Adjusted OR (95% CI) p Value

J wave 9.75 (6.04–15.72) <0.001 3.80 (1.88–7.66) <0.001
Tpe >112.5 ms 7.26 (4.43–11.89) <0.001 2.80 (1.57–4.99) <0.001
SV1+RSV5 > 35 mm 3.87 (1.85–8.10) <0.001 2.92 (1.29–6.60) 0.01
Preoperative VA 2.11 (1.29–3.45) 0.003 — —

R-wave in lead aVR 3.29 (1.40–7.70) 0.006 — —

QRS duration 0.97 (0.96–0.98) <0.001 — —

ICEB 0.057 (0.002–1.51) 0.087 — —

QT interval 0.99 (0.992–1.00) 0.027 — —

QTc interval 0.99 (0.985–0.995) <0.001 — —

Combination of the J wave and fQRS 2.43 (1.27–4.66) 0.007 — —

Q wave 5.21 (1.06–25.4) 0.041 — —

Heart rate, bpm 0.99 (0.98–1.00) 0.484 — —

FQRS 1.59 (0.89–2.83) 0.11 — —

the S wave in lead I 1.16 (0.74–1.84) 0.500 — —

QT/QTc 1.94 (0.29–12.65) 0.486 — —

ST-segment change 1.52 (0.85–2.72) 0.151 — —

Preoperative AF 0.72 (0.44–1.19) 0.206 — —

FIGURE 2 | Several electrocardiographic markers for POVA (A) S-wave in lead I (B) R-wave in lead aVR (C) Tpeak-Tend interval in lead V2 (D) Combination of
fragmented QRS and J wave (E) fragmented QRS (F) J wave in the inferior leads, and (G) SV1+RV5 >35 mm.
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and subendocardial M cells. Tpe corresponds to the transmural
dispersion of repolarization in the ventricular myocardium, a
period during which the epicardium has repolarized and is fully
excitable, but the M cells are still in the process of repolarization
and are vulnerable to the occurrence of early afterdepolarizations.
If conditions permit, these early afterdepolarizations can lead to
reentry, resulting in polymorphic ventricular tachycardia or
ventricular fibrillation (Antzelevitch, 2007).

SV1+RV5 >35 mm was considered a risk marker of POVA.
SV1+RSV5 >35 mm represents left ventricular hypertrophy (LVH)
according to the Sokolow-Lyon ECG criteria. Seth R. et al. found
that ECG LVH was an independent predictor of nonoperative
arrhythmic events (Bender et al., 2012). A previous review suggested
that left ventricular hypertrophy (LVH) poses an independent risk
of increased morbidity and mortality, including atrial arrhythmias,
ventricular arrhythmias, and sudden cardiac death (Shenasa et al.,
2015). The gap junction surface area is reduced, and its unusual
distribution may decrease the threshold of arrhythmogenesis in
patients when undergoing cardiac surgery (Wolk, 2000).

A POVA Risk Prediction Model
According to the number of risk markers, we assigned points and
subsequently developed a model predicting POVA. The POVA
risk prediction model was developed with a range of 0–3 points
based on this calculation in Figure 3A. The rates of POVA and its
risk scores in the cohorts were the highest in the two-point
position and did rise by points increased in Figure 3B.
Subsequently, ROC curve analysis was performed for the
validation of the model. The AUC for this model was 0.797
(p < 0.0001). The model is simple, efficient and practical. Patients
with ventricular and auricular septal defect were, more often,
POVA free. There is rarely the relationship between some types of
operation including ventricular and auricular septal defect and
postoperative arrhythmia. Potential reasons probably were that
the patients undergoing the mentioned types of surgery were
younger.

Prediction Factors and Clinic Outcomes of a
POVA
An abundant study suggested that POVA is associated with
increased short- and long-term mortality after cardiac surgery
(CS). Previous studies have suggested that have shown that
POVA predicts higher (21.7–28.9%) in-hospital mortality
compared with control (1.4–1.9%) (Ascione et al., 2004; Yeung-
Lai-Wah et al., 2004). Besides, Most deaths in patients with POVA
occur in the hospital and within the first year after discharge (El-
Chami et al., 2012). Rodrigo et al. have suggested that developing a
new POVA increases the risk of in-hospital mortality independently
in the medical intensive care unit (Valderrábano et al., 2016a). Older
age, female sex, systemic hypertension, peripheral vascular disease
(PVD), lower ejection fraction (EF), and emergent surgery are
associated with a higher risk of POVA, whereas off-pump
surgery seems to be protective (Yeung-Lai-Wah et al., 2004; El-
Chami et al., 2012). Some studies looking at risk of POVA after CS
found that patients with POVA are older than patients without
POVA (Steinberg et al., 1999). Ascione et al. reported a trend toward
a reduction in POVA with the use of off-pump surgery compared
with on-pump. A group of patients with LV dysfunction associated
with a previous MI have been reported that common POVA (Moss
et al., 2002). The presence of PVD in some studies is found to be
predictive of POVA and operative mortality (Loponen et al., 2002;
Bonacchi et al., 2020). Our previous study has been suggested that
systemic hypertension was an independent risk factor of post-
operative ventricular fibrillation. The need for emergent CABG
also strongly predicted POVA. Emergency CABG generally
carries a higher risk of in-hospital mortality and added
requirements for hemodynamic support (Yang et al., 2005).

Limitations
These electrocardiographic markers are dynamic; thus, the true
prevalence of this coexistence is difficult to evaluate. Various
methods to measure the Tpe interval have been used in other
studies. Our results may not be reproducible with other Tpe
measurement methods. In addition, limits of the Bazett formula
and the heterogeneity of the studied population also were
considered necessarily. This retrospective study evaluated
patients from a single hospital, existing the observational bias.
There is the limited clinical applicability of the findings in the
absence of other clinical and biochemical markers.

CONCLUSION

The ECG biomarkers including J wave, Tpe >112.5 ms, and
SV1+RSV5 >35 mm were significantly predicted POVAs. A risk
predicting model developed with electrocardiographic risk
markers preoperatively predicted POVAs.
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High-Density Maps From Optical
Mapping Data: Characterization of
Radiofrequency Ablation Sites
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Conduction velocity (CV) slowing is associated with atrial fibrillation (AF) and reentrant
ventricular tachycardia (VT). Clinical electroanatomical mapping systems used to localize
AF or VT sources as ablation targets remain limited by the number of measuring electrodes
and signal processing methods to generate high-density local activation time (LAT) and CV
maps of heterogeneous atrial or trabeculated ventricular endocardium. The morphology
and amplitude of bipolar electrograms depend on the direction of propagating electrical
wavefront, making identification of low-amplitude signal sources commonly associated
with fibrotic area difficulty. In comparison, unipolar electrograms are not sensitive to
wavefront direction, but measurements are susceptible to distal activity. This study
proposes a method for local CV calculation from optical mapping measurements,
termed the circle method (CM). The local CV is obtained as a weighted sum of CV
values calculated along different chords spanning a circle of predefined radius centered at
a CV measurement location. As a distinct maximum in LAT differences is along the chord
normal to the propagating wavefront, the method is adaptive to the propagating wavefront
direction changes, suitable for electrical conductivity characterization of heterogeneous
myocardium. In numerical simulations, CM was validated characterizing modeled ablated
areas as zones of distinct CV slowing. Experimentally, CMwas used to characterize lesions
created by radiofrequency ablation (RFA) on isolated hearts of rats, guinea pig, and
explanted human hearts. To infer the depth of RFA-created lesions, excitation light bands
of different penetration depths were used, and a beat-to-beat CV difference analysis was
performed to identify CV alternans. Despite being limited to laboratory research, studies
based on CM with optical mapping may lead to new translational insights into better-
guided ablation therapies.

Keywords: conduction velocity (CV), optical mapping, delayed activation, catheter ablation, local activation time,
conduction slowing
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1 INTRODUCTION

Persistent cardiac arrhythmia can lead to heart failure, and heart
failure can lead to arrhythmia. atrial fibrillation (AF) is the most
common sustained cardiac arrhythmia, affecting 2.9% of the
worldwide population (Benjamin et al., 2019). AF is associated
with significant hemodynamic and thromboembolic
complications (Zimerman et al., 2009). In comparison,
ventricular tachycardia (VT) usually occurs in structurally
diseased hearts.

Conduction velocity (CV) slowing is one of the determinants
for AF vulnerability (Narayan et al., 2011), preceding AF
initiation (Lalani et al., 2012), and is responsible for AF
perpetuation (Shinagawa et al., 2000). VT initiation and
persistence also depend on CV slowing (Moe et al., 1964;
Allessie et al., 1977; Rensma et al., 1988). When an excitation
wave encounters a zone of conduction block, it may propagate
around the zone and reenter the previously unexcited region,
reexciting it, repetitively (Rudy, 2012). As such, CV slowing
facilitates reentry (Nattel et al., 2005) as for a reentrant wave
to encounter an excitable tissue recovered from refractory phase,
the propagating time around the block zone must be longer than
the refractory period (Spector, 2013).

At the cellular level, CV slowing results from ionic remodeling
or cell-to-cell uncoupling, leading to decreased excitability. For
example, dilatation of the left atrium results in gap junctions
remodeling (Takeuchi et al., 2006) and formation of atrial
interstitial fibrosis, resulting in CV slowing due to reduced
electrical conductivity between myocytes and fibroblasts
(Vasquez et al., 2010; Thompson et al., 2011). Dilatation of
ventricular tissue also reduces electrical conductivity, resulting
in CV slowing (El-Sherif et al., 1987). This leads to dispersion of
repolarization (Kuo et al., 1983), contributing to spatially
discordant alternans (Chen et al., 2017; Uzelac et al., 2017,
2021), and arrhythmia susceptibility. Among these reasons, it
is important to identify local CV changes at the high
spatiotemporal resolution to identify and characterize regions
of delayed activation to better understand the mechanism leading
to arrhythmia (Irie et al., 2015b).

Radiofrequency catheter ablation (RFA) is the most effective
invasive treatment for the termination and prevention of AF and
VT recurrence, creating tissue lesions through thermal injury.
Tissue sustains heating damage in direct contact with a catheter
tip via resistive heating, while deeper tissue is damaged through
convective heat transfer. Lesion formation is based on the
assumption that heat transfer has a predictable profile in
homogeneous tissue, and the profile of RFA-created lesions
depends on many factors such as delivered RFA power and
duration, temperature increase, catheter pressure force,
catheter–tissue impedance, and the location of the ground patch.

While the lesion profile is predictable for homogeneous
myocardium, persistent AF or VT may be caused by the
reentrant waves originating from islets of heterogeneous
myocardium within the scar, which can be buried inside the
myocardial wall. The common RFA strategy is to identify
clinically relevant scar tissue and deliver ablative energy to
homogenize the scar. However, the effects of RFA on fibrotic

tissue are poorly understood, as heat transfer prediction is
challenging in contrast to heterogeneous tissue. Lesion
formation depends on electric impedance and increases within
scar tissue. Only 10% of RFA applications for scar
homogenization resemble the expected lesion pattern
(Barkagan et al., 2019). Additionally, adipose cells effectively
shield the surrounding myocytes from RFA thermal injury
(Sasaki et al., 2015). This imposes challenges in ablation
treatment for VT, as one of the ablation goals is to create a
lesion across the thick ventricular wall, which was significantly
improved with the advent of irrigated catheter tips (Wittkampf
and Nakagawa, 2006).

1.1 Measurement of CV
1.1.1 Clinical Practice: Catheter Mapping-Based
Measurement of CV
CV measurement has multiple potential benefits in clinical
practice, especially during ablation procedures of complex
arrhythmias. These benefits include mapping and localizing
the substrate suitable for ablation and assessing the quality
and depth of ablation lesions. However, CV measurement is
not a standard part of such procedures despite all the potential
benefits due to technical difficulties. Accurate determination of
CV changes at a high spatiotemporal resolution to identify and
localize areas of delayed activation is challenging in clinical
practice. Instead, the focus during ablation is on the amplitude
and fractionation of local electrograms. On the electrograms, the
areas of interest for ablation commonly present as low-amplitude
potentials and are characterized as arrhythmogenic substrates
(Fukumoto et al., 2016; Kim et al., 2020). Anatomically, the areas
represent islets of heterogeneous myocardium within the scar and
can be alternatively identified in late gadolinium enhancement
cardiac magnetic resonance imaging in atria (Fukumoto et al.,
2016) or ventricles (Malaczynska-Rajpold et al., 2020).

Traditionally, substrate mapping before ablation is performed
point by point with the help of a steerable mapping/ablation
catheter under the guidance of a 3D electroanatomical mapping
system. The success or failure of ablation to terminate persistent
AF or VT depends on arrhythmia complexity, electrical catheter
mapping type, and the sampling density. Bipolar electrograms are
known to exhibit directional dependence on the propagating
wavefront (Haines, 1993; Foppen, 2009). In contrast, unipolar
electrograms may be contaminated with far-field electrical
potential (Prystowsky, 2008; Allessie, 2014; Zaman et al.,
2017), masking the myocardial activation time and
misrepresenting the true electrophysiological state (Zaman
et al., 2017). These technical challenges, along with
uncertainties in electrode locations, hinder accurate CV
measurement (Berenfeld et al., 2011; Zaman et al., 2017).

Fortunately, there have been recent advances in catheters and
electrophysiology systems that render CV measurement in
clinical settings feasible. These advances originated from the
realization that CV measurement (both velocity and direction)
is beneficial and, second, requires the relative geometry of
recording electrodes to be tightly constrained. Under these
conditions, the lesson learned from CV measurement of
optical mapping data (on a grid) can be applied to clinical
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recordings. One such system is the Advisor HD grid catheter
(Abbott Technologies, Minneapolis, MN), which forms a
relatively rigid and flat 4 × 4 electrode array with known
geometry and small electrodes (Hong et al., 2019; Hsen et al.,
2020).

One emerging application of CV measurement in clinical
electrophysiology is mapping VT substrates during sinus
rhythm. For example, the isochronal late activation maps
(ILAM) method is based on generating isochronal maps from
local activation and identifying slow zones from isochronal
crowding (Irie et al., 2015a; Aziz et al., 2019). It is expected
that a more accurate CV measurement using grid catheters
should improve the applicability of this technique.

1.1.2 Basic Science: Optical Mapping-Based
Measurement of CV
Conduction depends on fiber direction (anisotropy), tissue
heterogeneity such as trabeculated or fibrotic tissue, aging,
local ischemia, inflammation, or heart failure. Optical mapping
directly measures transmembrane action potential (AP) at a high
spatial resolution, achieving sub-millimeter mapping density.
Therefore, it is a method of choice in basic science research to
study cardiac electrophysiology from cells to tissue and whole
heart level. As optical mapping can be used as a tool in studies of
different end goals, published methods for CV estimation based
on optical mapping differ (Tu et al., 1997; Mironov et al., 2008;
Linnenbank et al., 2014; Doshi et al., 2015), with no one-fits-all
method. While most CV methods are based on either polynomial
surface fitting or a single vector approach, additional
enhancements are often needed to tailor a method for the
particular study aim.

In this study, we propose a robust method, termed the circle
method (CM), for accurate estimation of local CV (both
magnitude and direction) to evaluate the effects of RFA from
optical mapping measurements. Ablated areas were localized, and
spatial extent and depth of RFA-created lesions were
characterized by examining the CV maps before and after
ablation and identifying beat-to-beat CV alternans after the
ablation.

2 METHODS

2.1 Computer Simulations
Simulations were based on Fenton–Karma’s three variables
model (Fenton and Karma, 1998) and were carried out using
the explicit Euler method for the variables. The integration time
step was dt = 0.05ms, space discretization dx = 200 μm, and the
standard diffusion coefficient of 0.001 cm/ms2 was used. Tissue
level simulations were performed in a 2D isotropic monodomain
with 256 × 256 cells (~ 26 cm2). The area is large enough to
investigate the effect of CV reduction. The ablated region was
modeled as the area of decreased excitability by increasing the
time constant of the fast inward Na+ current from 0.4 to 0.55ms.
Low excitability is associated with a larger threshold stimulus
needed to support AP propagation and is associated with CV
slowing. With the model parameter change, modeled RFA area

was not excitable. Inside the ablated area, wavefront propagation
was only possible due to electronic coupling, significantly
decreasing CV.

To test the proposed CM method in predicting RFA size and
location as a function of measurement noise, white Gaussian
noise was added to the numerical data with different signal-to-
noise ratios (SNRs): 5, 10, 15, 20, 25, 30, and 60 dB (the amplitude
ratio, respectively: 1.78, 3.16, 5.62, 10, 17.78, 31.62, and 1,000).
Then, LAT, CV maps, and estimated ablation area (size and
location) are obtained to evaluate the effect of different noise
levels. The surrogate CV maps, obtained with different noise
levels, were compared with the reference CV map with no added
noise, using the 2D Pearson’s correlation coefficient. The 2D
Pearson’s correlation coefficient was calculated by choosing two
different segments of the domain, a segment mainly containing
the ablated area and a segment containing almost the entire
simulation domain, with the ablated area at the center. The Dice
similarity coefficient (Dice, 1945) was used to evaluate the impact
of noise by comparing cropped CV maps with the reference CV
map to test for noise effects on the accuracy in the determination
of the ablated area location.

2.2 Heart Excision and Experimental Setup
Optical mapping imaging with transmembrane voltage (Vm)
sensitive dyes was used to characterize RFA-created lesions,
analyzing high-density CV maps before and after RFA in ex-
vivo superfused isolated rat atria (N = 2), arterially perfused
guinea pig heart (N = 1), and explanted human hearts (N = 2).
Motion was suppressed for guinea pig and human hearts with
(-)-Blebbistatin (Cayman Chemicals) at 1.8 μM concentration in
Tyrode perfusate. All RFA procedures were performed using a
high-frequency desiccator (Bowie).

Heart excision and experimental setup for isolated rat atria
have been described in detail elsewhere (Pollnow, 2018). In
brief, the right atria from two Fisher rats were dissected by
cutting along the tricuspid valve to the superior vena cava,
fixated in a bath, superfused with Krebs–Henseleit solution, and
stained with Di-4-ANEPPS Vm sensitive fluorescent dye. The
dye was excited using a green LED of 525 nm center wavelength
(Cairn Research). Emitted Vm fluorescence from endocardial
tissue was passed through the 635DF55 filter (Omega Optical)
on the camera side. The sequence of images was acquired using
an EMCCD camera (Evolve Delta 512, Photometrics) at a
sampling frequency of 868 Hz with a binning factor of 2 and
a resolution of 82 × 82 pixels, equivalent to a spatial resolution of
128 × 128 μm/pixel corresponding to a 10.5 × 10.5 mm field of
view (Figure 1A). The atrial epicardium was stimulated (6.7 Hz)
with a unipolar electrode. The RFA was performed
approximately at the center of the epicardium as a sequence
of RFA steps, increasing RFA time duration in each step while
keeping the RFA power constant at 10 W. The ablation
procedure was performed using a tungsten electrode of
0.4 mm diameter (Pollnow, 2018).

Heart excision and experimental setup in Langendorff-based
whole heart perfusion using whole isolated guinea pig heart have
been described in detail elsewhere (Uzelac et al., 2021). The RFA
procedure was performed on the epicardial side of the left
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ventricle, using a 0.4-mm-wide tungsten electrode for 20 s with
power set to 10W (Figure 1A).

The cardiac surgeon team performed human heart excisions
during the heart transplantation procedure. Immediately after
receiving the heart from the surgical team, ice-cold cardioplegia
solution was flushed through the right and left coronary arteries
to protect the myocardium against ischemia during
transportation to our optical mapping lab within 20 min while
maintaining arrested heart temperature around 4°C. The left and
right coronaries were separately perfused in the whole heart
preparation for epicardial optical mapping. The human left
ventricular wedge preparation was used for optical mapping of
the endocardium. The marginal artery was cannulated, and the
cannula was secured with a surgical silk ligature. Leaks in the
wedge preparation were secured by clamping the wedge
preparation around the cut regions. The whole heart and the
wedge preparations were placed in an oval heated chamber
maintained at 37°C while continuously perfused with
oxygenated Tyrode solution (Ng et al., 2014) also kept at 37°C
and oxygenated with the mixture of 95% O2/5% CO2. Coronary
pressure of 70 mmHg was kept constant during the experiments.
RFAwas performed with power set to 40W, using a non-irrigated
electrode with a blunt tip.

Guinea pig and human hearts were stained with Vm sensitive
dye Di-4-ANBDQPQ (JPW-6003) (Potentiometric dyes), with

0.25 mg of the dye for whole guinea pig heart, and 0.5 mg of the
dye for each human ventricle. The dye was prepared as a stock
solution previously dissolved in pure ethanol at a 1 mg/ml ratio.
Two red LEDs with the center wavelength at 660 nm were used as
light excitation sources for the Vm dye (Figure 1A). The LED light
was collimated with a plano-convex lens (ThorLabs) and
bandpass filtered with a 660/10 mm filter (Edmund Optics).
Additionally, two green LEDs with a center wavelength of
525 nm were used for the optical mapping measurements
performed on the human heart endocardium. The LED light
was collimated with a plano-convex lens (ThorLabs) and
bandpass filtered with a 520/10 mm filter (Edmund Optics). A
custom-designed two-channel LED driver was used, with the
ability to switch the excitation light bands in sync with the camera
frame rate (donated from Aleksa Tech). The emitted fluorescence
was passed through a 700 nm long-pass filter (Chroma) on the
camera side. The sequence of images was acquired at 500 Hz
using an EMCCD camera (Evolve 128, Photometrics) at a
resolution of 128 × 128 pixels.

In the post-processing, baseline drift for each pixel trace was
removed by applying a low-pass Kaiser Window FIR filter with a
stop-band frequency of 1 Hz and a pass-band frequency of
0.5 Hz. The output signal from the FIR filter, representing the
baseline drift, was subtracted from the raw pixel trace. The
difference was divided with the baseline drift signal, obtaining

FIGURE 1 | Illustration of the experimental setup and the CMmethod application to obtain local CV and CV maps. (A) For isolated rat atria, RFA was performed in
steps of increasing ablation duration of 0.5, 1, 1.5, 2, 2.5, 3, and 4 s, with 2 min pause between the steps. The ablation was performed on the epicardial side with optical
mapping measurement on the endocardial side. The ablation was performed on the ventricular tissue for the whole guinea pig heart and human heart preparations.
Collimated and bandpass-filtered LED light was used to excite the Vm dye. Emanating fluorescent light was passed through the long-pass filter in front of the
EMCCD camera sensor. (B) Illustration of the circle method, evaluating LATs differences at the points along a circle of radius r, centered at a grid point (i,j). Left, example
of a wave propagating at 45°. Right, a set of test CV values, S (θn), which is evaluated by taking the difference in LATs along diameters (blue lines) at different angles θn. The
circlemethod evaluates the resulting conduction velocity by performing a geometrically weighted average of S (θn) over an angular range around θPD (blue shaded region).
(C) Top, an example of a set of LAT differences for different chords, with a clear maximum along the chord normal to the propagating wavefront along vector SCV as in
(B). Bottom, application of the CM method at every pixel in the LAT map inside the dashed rectangular region, obtaining local CV directions.

Frontiers in Physiology | www.frontiersin.org August 2022 | Volume 13 | Article 7947614

Siles-Paredes et al. Circle Method for Local CV

219

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


the relative change in fluorescence ΔF/F (Uzelac et al., 2019). To
boost SNR, approximately 40 optical APs (OAPs) were stacked
(ensemble averaged) with a period equaling two beats upon
reaching steady-state conditions, significantly reducing the
noise (Uzelac and Fenton, 2015). In the next step, the traces
were temporally filtered using an anisotropic 1D diffusion filter
(Perona and Malik, 1990; Gerig et al., 1992), which preserves the
OAP upstroke.

LATs were obtained by linear fit along the OAP upstroke and
determining the 50% rise of the OAP upstroke. Contrary to
bipolar electrograms, where activation time determination is
based on the maximum of the first derivative, OAP signals are
inherently spatially averaged across clusters of cells
corresponding to a single pixel trace. As the sampling rate is
generally lower, the first derivative method is less accurate than
the 50% approach (Efimov et al., 2004; Fedorov et al., 2009;
Walton et al., 2012; Bastos-Filho, 2021). Obtained LAT maps
were subsequently minimally filtered using an anisotropic 2D
diffusion filter, which preserves sharp boundaries in LAT maps
(Perona and Malik, 1990; Gerig et al., 1992).

2.3 Circle Method (CM)
By assuming a planar wavefront propagation inside a circle of
radius r (Figure 1B), centered around each LAT grid point, the
CV can easily be determined. This can be done by first calculating
differences in the LAT across the endpoints of chords passing
through the center of the circle. From the LAT differences, an
effective conduction speed, S(θ), can be calculated as a function of
the chord’s orientation angle, θ. The maximum of S(θ)
corresponds to the true conduction speed along the
propagation direction, S(θPD) (Figure 1C). The evaluation of
S(θPD) incorporates measurements along a single path, centered
at the LAT grid point. To reduce the effect of LAT measurement
uncertainty, CV along neighboring chords can be incorporated.

To reduce noise in the determination of the CV, conduction
speeds along chords lying within the range,
(θPD − 1

2Δθ, θPD + 1
2Δθ), are combined to calculate a CV that

is spatially averaged over the hourglass-shaped area subtended by
these chords (Figure 1B right). Because chords within this range
do not all lie along the direction of propagation, the conduction
speeds are enhanced to account for this geometry before
combining. To account for the misalignment, �S(θ) is back
projected onto �S(θPD)/‖ �S(θPD)‖. The resulting conduction
speed can be calculated from the average of these back-
projected speeds as,

SCV � 1
N

∑
N

n�1

S θn( )
cos θPD − θn( ), (1)

for all N chords lying within the range spanned by Δθ. For a
detailed discussion of this equation, see SupplementaryMaterial.

This method is equivalent to central differences with a
separation of 2r grid points for waves propagating along the
optical mapping grid; however, unlike central differences, the
fidelity of the calculation does not depend on the propagating
wavefront orientation. Additionally, interpolation is performed
for LAT differences calculated along chords with endpoints that

do not fall on LAT grid points. Incorporating conduction speed
information along with many chords reduces uncertainty in the
estimation of local CV.

For comparison with other methods, the CV maps from the
numerical simulation, isolated rat atria, guinea pig heart, and
whole explanted human heart, obtained with the CM and the
finite-difference approach (FiD) (van Schie et al., 2021), were
used. The distance between neighbors using the FiD method was
set to 20 pixels, corresponding to r = 10 used for CM (diameter =
20 pixels). A MATLAB function for implementing the CM for a
given LAT map is provided on GitHub at https://github.com/
uzelaci/Circle_Method and https://github.com/HEartLab-ufabc/
Circle_Method.

3 RESULTS

3.1 Computer Simulations
Figure 2A shows the LAT map of simulated curved wavefront
propagation with isochrone lines and superimposed CV vectors, and
corresponding CV maps for the entire domain and the selected area
with dash line, around the ablated region for improved visibility. The
ablated area was modeled as decreased excitability for a circular
region, 20 pixels in radius, centered in the domain. Due to decreased
excitability in the ablated area, propagation is only due to electrotonic
coupling between the excitable and non-excitable (ablated) regions,
resulting in a wave block for a large enough ablated area. A point
stimulation was used to generate a curved propagating wavefront to
capture wavefront effects. A 2D Person correlation (Figure 2A upper
right) was used to compare the reference noise-free CV map and its
surrogates (Figure 2B), obtained with different noise levels.
Correlation 1 plot refers to the correlation coefficients obtained
regarding the referent noise-free CV map of whole domain
(236 × 236 pixels), and Correlation 2 for the subdomain around
the ablated area (80 × 80 pixels). Dice similarity coefficient is
calculated for the subdomain to compare the noise-free reference
CV map and its surrogate maps with added noise.

Figure 2B shows the noise effect on the CVmaps and ablation
area segmentation under different SNR levels of 60, 30, 25, 20, 15,
10, and 5 dB. The correlation coefficients are similar for the SNR
range between 60 and 15 dB, varying from 1 to 0.9. Correlation
decreases for SNR < 15 dB, with no difference between the two
correlation curves, and a significant difference for SNR < 10 dB
(0.020). Dice similarity coefficient is less dependent on noise. For
SNR = 5 dB, the coefficient is equal to 0.83, and increases to
0.91 for SNR = 60 dB. Even under high levels of noise (i.e., SNR <
5 dB), the ablated area could be segmented (i.e., size and location),
showing a high level of similarity between noise corrupted CV
maps and the reference noise-free CV map.

3.2 Effects of Ablation on CV: Isolated Rat
Atria
Figure 3A shows LAT maps obtained before and after 14.5 s of
ablation for two experiments on isolated rat atria. In the
experiment A, the wavefront propagates from the upper-right
corner, and in the experiment B from the left side. The respective
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CV maps (Figure 3B) are calculated for the area outlined with a
dashed line. A region of distinctly lower CV values depicts the
location and shape of the ablated tissue, represented by a deep-
blue shaded area. The relative difference in CV maps after and
before the ablation for both experiments is shown in Figure 3C. A
well-defined area where CV decreases is observable, delineating
the region where ablation was performed. In both experiments,
the ablated area resembles an elliptical shape of approximately
24 × 48 pixels for experiment A (2 × 4 mm) and 24 × 72 pixels
(2 × 6 mm) for the experiment B. The OAPs inside these areas are
presented in Figure 3D, depicting a higher amplitude reduction
and change in morphological pattern.

3.3 Effects of Ablation on CV: Guinea Pig
Ventricle
Wavefront propagation across ventricular tissue is more complex
than atrial tissue due to tissue heterogeneity and transmural wave
propagation. Figure 4A shows the LATmaps obtained at baseline
and after application of RFA (initially applied for 3 s and
subsequently for 10.5 s). Figure 4B shows the respective CV
maps, calculated from areas around the ablated region, within the
dashed square region from Figure 4A. From the figure, it can be

inferred that the area representing lower CV values expands in
size, with an additional ablation of 10.5 s. Due to the inherent
spatial variation in CV, unlike with CV maps of more
homogenous rat atria, direct comparison of CV maps is more
difficult. A CV map of relative change after and before the
ablation, ΔCV map, was calculated for the two ablation steps
shown in Figure 4C, showing the relative decrease in CV post-
ablation. The maps delineate the elliptically shaped red-color-
shaded ablated region.

3.4 Effects of Ablation on CV: Human Heart
Ventricles
Figures 5, 6 show optical mapping measurements on the whole
explanted human heart with epicardial ablation and left ventricle in
wedge preparation with endocardial ablation, respectively, using a
blunt ablation electrode (Bowie). Hearts were explanted from
patients undergoing heart transplantation, suffering from
progressive heart failure and recurrent VT as a result of viral
myocarditis. As such, ventricular tissue is highly heterogeneous,
and the CV maps illustrate challenges in quantifying CV maps.
Despite optical mapping achieving high density in comparison to
contemporary electroanatomical mapping systems, LAT and CV

FIGURE 2 | Numerical simulations of the RFA and effects of added noise on CV for the spatial determination of the ablation area. (A) Left, the LAT map of a
simulated curved wavefront propagation with isochrone lines spaced 20 ms apart, and superimposed CV vector map showing CVmagnitude and direction. The ablated
area is modeled as a circular region, 20 pixels radius at the center. Middle, the corresponding CV maps from the LAT map for the whole domain and sub-domain (80 ×
80 pixels) region around the ablated area outlined with an inscribed dashed rectangle. Right, 2D Pearson’s correlation coefficient for different SNR levels ranging
from 5 to 60 dB, for the CV maps of different sizes on the left, 236 × 236 (Correlation 1) and 80 × 80 pixels (Correlation 2). The Dice similarity coefficient for the selected
80 × 80 pixels CVmap around the ablated area. (B) Zoomed-in CV surrogate maps for different SNRs of 60, 30, 25, 20, 15, 10, and 5 dB, with the delineated boundary of
the ablated area. The color bar range in all figures is set from the 5th to 95th percentile.
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maps illustrate the complex electrophysiology of the human
ventricles. This observation is expected as the human
endocardium can be highly trabeculated, and the presence of
papillary muscle may hinder the mechanism of CV slowing
(Supplemental Figure S2). For both hearts, epicardial and
endocardial LAT and CV maps fail to delineate the ablated
region. Moreover, for endocardial ablation (Figure 6), even the
maps of relative CV difference before and after ablation are not

much practical to characterize RFA lesion. Therefore, we modified
our optical mapping protocol to overcome these challenges and
performed optical mapping with light bands of different penetration
depths to study beat-to-beat CV alternans in post-ablation. Analysis
of relative CV maps difference for subsequent beats with green light
band illumination does not show the presence of CV alternans,
indicating a complete surface ablation. However, the same analysis
with deeper red-light band illumination of greater tissue penetration

FIGURE 3 | Effect of ablation on CV slowing on isolated rat atria. (A) LAT map obtained before (Baseline) and after RFA for the total duration of 14.5 s and power of
10 W, approximately at the center of the map, along with the superimposed CV vector map. (B) Respective CVmaps obtained with the CMmethod for selected dashed
square regions presented in (A) outline the ablated areas as regions of CV reduction. (C) Relative change, ΔCV, between the CV maps after and before the ablation,
shows a large relative decrease of CV in the ablated areas, delineating the ablated area from non-ablated, suitable for characterization of the ablated area boundary.
(D)Optical AP traces from a pixel inside the ablated area, normalized before ablation, show the reduction in AP amplitude and morphology changes. The color bar range
in all figures is set from the 5th to 95th percentile, except for ΔCV maps’ upper boundary that was set to zero. Radius of 10 pixels (1.3 mm), in the CM, was used for CV
calculation.
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depth shows CV alternans due to incomplete or non-homogeneous
ablation across the ventricular wall. This observation agrees with the
images of the RFA lesion taken after the experiment, showing the
spatial extent of the lesion and its depth across the ventricular wall
(Supplemental Figure S2).

4 DISCUSSION

Although the ablated tissue is not excitable, a signal resembling AP
can be measured within the ablated area due to electronic coupling
between the excitable cardiac cells and a lesion consisting of
unexcitable cells (Quinn et al., 2016). APs inside the lesion show
characteristic distorted morphology (Figure 3D) and decreased
amplitude (Figure 5E), characteristic of electrotonic coupling. As
electrotonic coupling slows wavefront propagation, the ablated
region size can be characterized as a CV decrease. The numerical
simulations show CV linearly decreases inside the ablation zone
toward the ablation center. This allows easy estimation of the lesion

size as a knee point deviation from linear CV rise from the ablation
center (Figure 7A). The same pattern was observed in experiments.
The CV increases linearly with the CM radius increase, centered
inside the lesion, as long as the radius is smaller than the ablated area
(Figure 7). The knee points of curves shown in Figure 7 estimate
ablated areas size very well. For example, the CV vs. radius curve for
guinea pig ventricular ablation estimates diameter of the ablated area
of 5 mm, which is in agreement with the ΔCV map shown in
Figure 4C for RFA of 3 s. The limitation of this approach is circular-
shaped approximation of the ablated area; as for elliptically shaped
lesions, the knee point corresponds to the minor axis.

A distinct feature of the proposedCM is its inherent adaptation to
the local changes in a propagating wavefront direction, making the
method independent of the propagating wavefront direction. CV
maps are also obtained through automatized data processing,
identifying the wavefront propagation direction upon which the
CV’s magnitude and angle are obtained. The CM accuracy depends
on the chosen circle radius approximating planar wavefront
propagation inside the circle. With increased radius, the accuracy

FIGURE 4 | Effect of ablation on CV slowing on guinea pig ventricle for different RFA durations. (A) LAT maps obtained at baseline (top) and RFA duration of 3 s
(middle) and 10.5 s (bottom), respectively. (B) Respective CV maps inside the dashed square regions, where ablation is performed, show CV decrease, with a larger CV
decrease after longer RFA. (C)Relative difference in CV after and before ablation, ΔCVmaps, outlines the ablated region as a distinct decrease of CV. The color bar range
in all figures is set from the 5th to 95th percentile, except for ΔCVmaps’ upper boundary that was set to zero. Radius of 10 pixels (1.6 mm), in the CM, was used for
CV calculation.
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decreases to estimate a true local CV. However, the precision
increases as LAT differences are calculated along chords spanning
larger spatial differences. In experimental setups, the minimum
radius of 1 mm was chosen, to balance the accuracy and
precision, resulting in CV maps resolving small conduction
heterogeneities with acceptable SNR.

4.1 Comparison With Other CV Methods
In general, optical mapping-based methods estimating local CV
differ due to particular study goals. The gold standard for measuring
conduction properties (Bayly et al., 1998) is based on a polynomial
surface fit over a LAT map to estimate local gradients, whose
implementation is available as the Rhythm MATLAB toolkit
(Gloschat et al., 2018). However, this method is not ideally suited
for heterogeneously conducting tissue, or for those whose activation
does not have a continuous pattern, as with calcium imaging in cell
cultures. The Ccoffinn method (Tomek et al., 2016) has been
developed as an alternative to the standard polynomial surface fit
method. The method considers wavefronts from sequential frames,
using a graph-based algorithm to find a set of vectors that best
describe the direction and velocity of wave propagation. Tissue
anisotropy is commonly studied following an activation wavefront

spread starting from the central pacing site. Single vector and average
vector method (Linnenbank et al., 2014) approaches are helpful to
estimate tissue anisotropy by quantifying longitudinal and
transversal CV, assuming a homogeneously anisotropic
myocardium, and the methods are implemented in ElectroMap
open source for analysis of cardiac electrophysiology (O’Shea et al.,
2019). The assumption that transverse propagation lies
perpendicular to the longitudinal does not consider the influence
of irregularity of tissue geometry or heterogeneous discontinuities.
The semi-automated ORCA method has been developed to study
tissue anisotropy addressing the issue of non-orthogonality (Doshi
et al., 2015) to obtain longitudinal and transversal CV and is
implemented in the Rhythm toolkit. ORCA employs the single
vector method assuming that the CV is constant in an anisotropic
2D sheet at a distance from the pacing site. Longitudinal and
transversal CVs were estimated using the linear fits on segments
of activation time curves along different directions spanning a
complete circle to detect the maximal and minimal slopes of the
linear fits corresponding to longitudinal and transverse CVs.

In clinical practice, triangulation is commonly used amongmany
different CVmethods, as the method is not constrained by electrode
configurations and is suitable for mapping catheters of different

FIGURE 5 | Optical mapping on whole explanted human heart for quantification of RFA-created lesion. RFA was performed on ventricle’s epicardial side in two
steps, termed RFA1 and RFA2, with power set to 40 W for 10 s in each step. (A) LAT time maps show wavefront propagation slowing in the upper right region where the
ablation was performed. (B)CVmaps before and after ablation show characteristic CV slowing in the ablated region. (C)Change in CV obtained as the relative difference
after and before ablation clearly outlines the red area where ablation was performed of a distinct CV decrease. (D) Black and white images captured using the
optical mapping camera illustrate ablated regions. (E) Optical AP traces from a pixel marked with a yellow dot in D normalized before ablation. The traces show the
relative change in fluorescence corresponding to transmembrane voltage change. The color bar range in all figures is set from the 5th to 95th percentile, except for ΔCV
maps’ upper boundary that was set to zero. Radius of 4 pixels (1.1 mm), in the CM, was used for CV calculation.
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electrode configurations (Cantwell et al., 2014). The accuracy of the
triangulationmethod depends on the size of a selected triangle, as the
CV values are interpolated inside the triangle assuming locally planar
wavefront propagation (Cantwell et al., 2015). FiD method is based
on a 2D grid layout of measurement points, determining the
difference in activation times with known spatial distance
between neighboring points and two orthogonal directions, and is
suitable for optical mapping measurement. As the CV is calculated
using a global coordinate system, the accuracy of the method
depends on the wavefront propagating direction. For example,
the same activation time of neighboring points results in large
CV uncertainties or unphysiological high CV.

The cosine fit is another CV method explicitly developed for
atrial mapping. As the arrangement of measurement electrodes in
the clinical environment depends on the choice of a catheter, the
cosine fit approach (Weber et al., 2010) allows estimation of local
CV and the angle of incidence frommeasured electrograms using
electrodes positioned on a circular catheter under sinus or pace
mapping. This single-shot analysis is suitable for determining the
pacing source, assuming a sufficiently large distance from the

wavefront source and assuming planar wavefront propagation
inside the circular catheter. A limitation of this analysis is that the
locally determined angle of incidence does not necessarily point
toward the stimulation origin. As wavefronts may exhibit
curvature, particularly if originating from a nearby focal
source, the improved cosine-fit method (Roney et al., 2014)
allows CV determination and the direction toward the
location of a focal source for either circular or planar
wavefronts, recorded from the arbitrary arrangements of
electrodes. As both methods assume isotropic conductivity to
estimate a focal source to address tissue conduction anisotropy
and heterogeneities, another cosine-fit-type method (Roney et al.,
2018) combines multiple activation maps from different pacing.
This technique is suitable for estimating conduction anisotropy
and fiber direction from clinically available atrial electrical
recordings.

We did not quantitatively compare cosine-basedmethods with
the CM to test for accuracy, as both are developed for different
purposes. Cosine-based methods are developed for clinical atrial
mapping applications to efficiently extract patient-specific

FIGURE 6 | Optical mapping on the LV’s endocardium in wedge preparation for quantification of RFA-created lesion. The RFA was performed on a highly
trabeculated endocardium for 20 s, and power set to 40 W. Different light excitation bands were used, a green LED of 525 nm center wavelength and a red LED of
660 nm center wavelength, to measure optical APs emanating from the endocardial surface and deeper transmural layers. (A) Due to the highly heterogeneous
endocardium (Supplementary Figure S2), identification of the ablated area from LAT maps is non-trivial. (B,C) CV maps and the relative CV difference after and
before the ablation do not clearly outline the ablated area, lacking characteristic CV slowing. (D) Relative difference in CV maps between subsequent beats (wavefront
propagation), termed even and odd, elicits the CV differences due to AP amplitude alternans in the ablated area. Green LED light illumination of penetration depth limited
to the endocardial surface layer, and the absence of alternans indicates a complete ablation of the surface layer. Illumination with a deep-red light band of deeper
penetration depth enables measuring APs from deeper ventricular wall layers. The presence of CV alternans indicates the non-homogeneous or incomplete ablation
across the ventricular wall (Supplementary Figure S2). The color bar range in all figures was set from the 5th to 95th percentile, except for ΔCVmaps’ upper boundary
that was set to zero. Radius of 3 pixels (1.05 mm), in the CM, was used for CV calculation.
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substrate parameters for patients undergoing ablation. CM is easy
to implement in optical mapping-based ventricular and atrial
data experiments to characterize ablated lesions. CM applicability
can be extended to determine focal sources, as propagating
wavefront direction changes can be tracked. However, optical
mapping is currently limited to basic science research.

The CM method can be viewed as an extension of the FiD
method as both methods are based on LAT differences over a 2D
grid, and the two methods were compared using both numerical
and experimental data (Figures 8A,B). The relative CV difference
between the twomethods, (CM-FiD)/CM, is shown in Figure 8C.
As expected with numerical data, both methods result in similar
CV maps with small relative differences. The disparity between
the two methods increases significantly for experimental data,
ranging from −20% to 10% for rat atria and isolated guinea pig
hearts and −40% and 20% for highly trabeculated human
ventricular endocardium. We also investigated whether the
choice of radius plays a role in the observed differences. We
compared the CVmaps obtained with the twomethods for radius
ranging from 5 to 10 pixels. However, the differences between the
twomethods were consistent. With CM, the local CV is calculated
using a locally defined coordinate system with one of the axes
coaligning with the automatically identified wavefront direction.
In contrast, FiD is based on a globally defined coordinate system,
obtaining x and y components separately. If a propagating

wavefront line aligns with one of the axes, LAT differences
can be zero, resulting in large CV uncertainties. In Figure 8B,
the FiD overestimates CV values in rat atria for the red-colored
region in the middle of the CV map. Since the wavefront is
changing its direction and moving down vertically in some parts
of the atria (Figure 3A), large uncertainties of CV x-axis
component result in a rapid rise of local CV.

One of the challenges in ventricular tissue ablation is depth
estimation of the created lesions. In this study, we used two
different Vm dye excitation bands, a green band centered at
525 nm and a deep red band centered around 660 nm, for
optical mapping of the human endocardium. While no
measurement of penetration depth for different wavelengths
is performed, penetration depth in the skin is generally under
1 mm for the green light and over 3 mm for deep red light (Avci
et al., 2013). Using two different light bands allowed us to study
the differences in CVmaps obtained from AP signals emanating
from the surface layer on the epicardial side and AP signals from
the deeper layers (Figure 6D). A highly trabeculated
endocardium of the human left ventricle and the presence of
papillary muscle result in a highly heterogeneous CVmap which
would hinder the ablated area as the zone of decreased CV
(Figures 6B,C). Amplitude alternans, the beat-to-beat variation
in AP amplitudes, occur when the dispersion of AP
refractoriness results in decreased excitability and can be

FIGURE 7 | Estimation of the ablated area size based on the CM radius. (A) In numerical simulations, CV linearly increases with CM radius inside the ablated area of
20 pixels in radius, reaching a limit value outside the ablated area. The ablated area radius can be estimated as a deviation, the knee point, from a linear rise, independent
of wavefront direction. (B)Heatmap of CV values at the ablated area center of rat atria as a function of RFA duration and CM radius. The heatmap shows the expansion of
the ablated area with each subsequent ablation step characterized by distinctive CV slowing. (Bottom) CV curves are shown for different RFA steps, with a knee
point for the approximate radius of 25 pixels, or 2 mm. (C)Whole isolated guinea pig heart. The CV curve at the center of ablation (RFA of 3 s) for different CM radii flattens
for an approximate radius of 2.5 mm, indicating an RFA-created lesion of 5 mm diameter. (D) Human heart epicardium of LV. From the figure, the CV curve, obtained in
the same fashion, flattens for an approximate radius of 1.5 mm. (E) Human heart endocardium of LV. Upper, for deep-red light excitation, the CV curve flattens for an
approximate CM radius of 2.5 mm, and CM radius of 4 mm for green light excitation (lower figure), indicating narrowing of RFA-created lesion across the transmural wall.
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quantified as a decrease in CV. As shown in Supplemental
Figure S2, the depth of the created lesion is 3–4 mm, measured
optical AP traces from the surface layer with green light
excitation are solely due to electrotonic coupling between
excitable cells and a lesion, resulting in no alternans at PCL
of 800 ms. However, deep-red-light excitation shows the
presence of CV alternans due to incomplete transmural
ablation. One mechanism leading to CV alternans could be
due to the presence of unexcitable cells coupled with excitable
cells resulting in reduced cell-to-cell coupling, leading to
decreased excitability.

5 CONCLUSION

In this study, RFA-created lesions were quantified as local CV
decrease using optical mapping measurements with submillimeter
spatial resolution. For the application of the CM method, no prior
information about the propagating wavefront direction is required,
and CM robustness was tested and validated in numerical
simulations, and experimentally on isolated rat’s atria, whole
guinea pig’s heart, and human hearts. RFA-created lesion profiles
were quantified as the relative change of CV before and after ablation
or, as in the case of a human heart with highly trabeculated

FIGURE 8 | Comparison of CV maps using the CM and FiD method. (A) CV maps generated with the CM method for the simulation, rat’s atria, guinea pig’s
ventricle, and human ventricle (epicardium). (B) Respective CV maps obtained with the FiD method. (C) Relative difference of CV maps obtained with the two methods.
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endocardium, by analyzing CV alternans using excitation light bands
of different penetration depths to estimate lesion depth across the
thick transmural wall. As the CV is one of the important parameters
for studying heart electrophysiology, CM can be applied to other
studies, such as identifying slow zones for mapping VT substrates.

The histopathological features of RFA have been mainly studied
in normal myocardia, and its effect on clinically relevant
heterogeneous scars is not well understood. For treatment of
reentrant VT, reentry typically occurs within the scarred region
due to tissue heterogeneities, and the RFA prevents reentry by
homogenizing the scared areas. However, studies show that scar
tissue is more resistant to thermal injury compared to healthy
cardiomyocytes (Barkagan et al., 2019), which may impair the
effectiveness of the RFA procedure. Optical mapping with near-
infrared Vm dyes enables measurements of transmural wavefront
propagation (Herndon et al., 2016; Uzelac et al., 2016) for better
depth characterization of the scar area. Although limited to lab
research, the high spatial resolution of optical mapping enables
quantitatively predictive studies of how local CV changes affect heart
electrophysiology. New findings may add toward a better
understanding of arrhythmia mechanisms and ablation effects on
tissue electrophysiology to develop improved ablation strategies
(Jalife et al., 2002; Sanders et al., 2005; Narayan et al., 2012;
Clayton and Nash, 2015; Hansen et al., 2015).

6 LIMITATIONS

In this study, experiments were performed at different
institutions. Histological evaluations were not performed.
Statistical analysis was not possible due to the limited number
of experiments. Nevertheless, one of the main objectives of this
study is to present the method and results suitable for further
investigation of RFA outcome assessment.
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