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Editorial on the Research Topic

Methods and Tools for Bioimage Analysis

A core purpose of biological imaging data is the quantification of complex phenomena through
bioimage analysis. Recent advances in our ability to observe living systems, enabling life scientists to
monitor the dynamics of biological phenomena across spatiotemporal scales and at high resolution,
have led to a much increased demand for methods and tools to analyze microscopy data. In many
scientific projects in the life sciences, the bottleneck has now shifted from not having the technology
to image interesting phenomena to not being able to extract information from the unfathomable
amounts of image data acquired during said imaging experiments.

Historically, Bioimage Analysis operates in between the disciplines of computer science, physics,
microscopy, medicine, and biology, presenting a rather unique set of challenges on various levels.
With growing demands, the community grew, and saw the emergence of national and international
networks such as NEUBIAS (http://eubias.org/NEUBIAS/), COBA (https://openbioimageanalysis.
org/), or BINA (https://www.bioimagingnorthamerica.org/), all aiming at connecting bioimage
analysis researchers, helping them to better align their interest, and ultimately be more efficient
and less redundant. This has also helped this community to better understand what its strengths
are, and where bioimage analysis methods are still missing.

An interesting and quite unique aspect of our work as Bioimage Analysts is that we need
to develop not only methods but also tools—both tasks being exquisitely time-consuming and
requiring very different skills. Our “users,” on the other hand, are experts in the specific biological
systems they study and should ideally not require beyond average computational skills. Hence, even
the most powerful new computational method is of little to no use if not cast into accessible and
usable software tools.

We present a Research Topic of useful new methods, all cast into accessible software tools that
enable life-scientists to analyze their microscopy image data.

In this Research Topic we collected work that presents methods needed to analyze microscopy
image data, all of which are cast into accessible software tools. We cover a wide range of pressing
bioimage analysis tasks, with individual contributions addressing either specific or common
analysis problems, in ways that might focus on describing novel methodological ideas or onmaking
known methods and approaches available in efficient and user-friendly ways. All presented work
has one thing in common: the promise to enable the analysis of scientific image data in the hands
of our users.

Four contributions have a particularly interesting focus on novel methodological approaches,
and are essential for pushing forward robustness and automation in the bioimage analysis field.
Ulicna et al. develop a hybrid deep learning and Bayesian cell tracking approach to reconstruct
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lineage trees from live-cell microscopy data, offering their
novel approach to users in an open Python-based software
tool. The work by Haase demonstrates the utility of defining
image filtering operations directly on a grid of biologically-
relevant objects such as cells instead of image pixels, thereby
rendering these filtering operations efficient enough for real-
time applications even on sizable image data. In Matskevych
et al., the authors observe that the power of deep learning
based segmentations and the simplicity of a random forest
based pixel classification can be combined in an intriguing
new transfer learning idea. Finally, Klatzow et al. combine
several state-of-the-art concepts for surface matching into a
fully automated shape correspondence pipeline, demonstrated to
efficiently streamline the landmark-free alignment of complex 3D
objects for downstream shape analysis.

Other work we present excels in making potentially widely
applicable ideas and methods better accessible to a wide range of
users and/or applicable to truly large datasets. While biological
image data is filled with fibrillar structures of various kinds,
quantifying their orientation is often a critical step. Marcotti et
al. present a method, with open sources in Matlab and Python,
allowing users to efficiently and accurately quantify both local
and global alignments by fibrillar structure using a Fourier-based
alignment strategy. In Chiaruttini et al., the authors introduce
Warpy, a pipeline for solving another pressing alignment
problem, namely the alignment of whole slides in histopathology.
Their solution combined state of the art software platforms
(elastix, Fiji and its BigWarp plugin, and QuPath), enabling
users to perform semi-automated non-linear registration of their
data through robust user interfaces. In Arzt et al., the authors
present Labkit, a random forest based trainable pixel classifier
capable of segmenting truly large volumetric image and time-
series data. Labkit offers an intuitive user interface, and ows its
efficiency to BigDataViewer and imglib2, two essential parts of
the modern Fiji ecosystem (https://fiji.sc/). While Fiji still is a
pillar of many tools and workflows, napari (https://napari.org/)
has recently begun to take the bioimage analysis field by storm. It
allows users to visualize andmanipulate their images in a Python-
based environment, with n-dimensionality being one of napari’s
core principles. D’Antuono and Pisignano present ZELDA, a
plugin for napari, designed to enable users to build customizable
bioimage analysis workflows, demonstrated in the context of 3D.
Finally, Ritchie et al. present Tonga, a new software platform
that gives emphasis to ease-of-use and user-friendliness. Tonga’s
wizard feature suggests suitable methods to its users, depending
on the image and the task at hand, with a special focus on
detection and segmentation of nuclei.

The final group of contributions enable specific bioimage
quantification investigations. By definition, these pipelines and
tools are not intended to be generally applicable, but without
them, the research they support would become impossibly

time-consuming to conduct, and insights hard to gain. Rodriguez
et al. present a ML based computer vision approach to quantify
the foraging behavior of bees at the entrance of their hive using
deep learning for detecting bees and then tracking them while
also estimating their pose. In Rahm et al., the authors introduce
a mean-squared displacement analysis to classify single-molecule
tracklets into immobile, confined diffusing, and freely diffusing
states. Their system can also detect transitions between these
modes, allowing them to better understand the molecular system
they study. Last but not least, Schmied et al. present SynActJ,
an ImageJ plugin combined with a R Shiny app designed for
the automatic detection and analysis of synaptic activity in time-
lapse movies. SynActJ allows end-to-end analysis, from filter-
based synapse segmentation, to the full analysis of all previously
segmented traces within a user-friendly tool.

In summary, this Research Topic provides a collection of
bioimage analysis methods and open software tools, developed
with the needs of our community in mind. We strongly believe
that the work presented in this Research Topic demonstrates how
broad our field is and how important it is to conduct research
that contributes with not only novel methods to pressing analysis
problems, but also with sound solutions that are open, available,
and applicable by others to their own data. If our community
keeps pushing these virtues, progress in the life sciences will be
making progress in bigger and bigger strides.
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Measuring the organization of the cellular cytoskeleton and the surrounding extracellular
matrix (ECM) is currently of wide interest as changes in both local and global alignment can
highlight alterations in cellular functions and material properties of the extracellular
environment. Different approaches have been developed to quantify these structures,
typically based on fiber segmentation or onmatrix representation and transformation of the
image, each with its own advantages and disadvantages. Here we present AFT −

Alignment by Fourier Transform, a workflow to quantify the alignment of fibrillar
features in microscopy images exploiting 2D Fast Fourier Transforms (FFT). Using pre-
existing datasets of cell and ECM images, we demonstrate our approach and compare
and contrast this workflowwith two other well-known ImageJ algorithms to quantify image
feature alignment. These comparisons reveal that AFT has a number of advantages due to
its grid-based FFT approach. 1) Flexibility in defining the window and neighborhood sizes
allows for performing a parameter search to determine an optimal length scale to carry out
alignment metrics. This approach can thus easily accommodate different image
resolutions and biological systems. 2) The length scale of decay in alignment can be
extracted by comparing neighborhood sizes, revealing the overall distance that features
remain anisotropic. 3) The approach is ambivalent to the signal source, thus making it
applicable for a wide range of imaging modalities and is dependent on fewer input
parameters than segmentation methods. 4) Finally, compared to segmentation
methods, this algorithm is computationally inexpensive, as high-resolution images can
be evaluated in less than a second on a standard desktop computer. This makes it feasible
to screen numerous experimental perturbations or examine large images over long length
scales. Implementation is made available in both MATLAB and Python for wider
accessibility, with example datasets for single images and batch processing.
Additionally, we include an approach to automatically search parameters for optimum
window and neighborhood sizes, as well as to measure the decay in alignment over
progressively increasing length scales.

Keywords: alignment, fast Fourier transform (FFT), cytoskeleton, extracellular matrix (ECM), fibers, anisotropy
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1 INTRODUCTION

Measuring the anisotropy of features in biological images is of
increasing interest as the degree of alignment can inform on both
the underlying cellular behaviors and material properties of the
sample. For example, different cell types have unique emergent
capacities to align in culture, controlled by cellular packing and
geometry (Duclos et al., 2014, Duclos et al., 2017). When cells are
exposed to external forces such as cyclical stretch, they tend to
align their cytoskeleton perpendicular to the axis of stretch
(Standley et al., 2002; Yoshigi et al., 2005; Livne et al., 2014).
Subcellular cytoskeletal networks can also spontaneously
organize in response to the stresses of their environment
(Gupta et al., 2015, 2019) or changes in biochemical signalling
(Ridley and Hall, 1992). Similar changes in cytoskeletal
architecture can be seen in reconstituted protein systems
(Falzone et al., 2013; Linsmeier et al., 2016). Additionally, the
extracellular matrix (ECM) also has an inherent capacity to align
in different tissues or pathologies, such as cancer (Ouellette et al.,
2021) or tissue fibrosis (Park et al., 2020; Mascharak et al., 2021),
which is thought to alter the ECM network mechanical
properties. These examples illustrate the variety of
environments where alignment of features reveals important
biological properties. As such, it is necessary to develop
approaches to efficiently quantify anisotropy of features across
a range of length scales, from subcellular organization to tissue
level alignment.

A number of different approaches have been developed to
quantify the alignment of image features. These methods can be
categorized based on the type of algorithm used to highlight
features and subsequently quantify anisotropy. Fiber
segmentation tools, such as the Fiji Ridge Detection plugin
(Lindeberg, 1998), the curvelet-based CurveAlign/CT-FIRE
suite (Bredfeldt JS. et al., 2014; Bredfeldt J. S. et al., 2014; Liu
et al., 2017, 2020), and Filament Sensor (Eltzner et al., 2015),
provide individual fiber information. Tools based on
representation/transformation of the image, such as the Fiji
plugins OrientationJ (Rezakhaniha et al., 2012) and FibrilTool
(Boudaoud et al., 2014) or the CytoSpectre suite (Kartasalo et al.,
2015), supply overall fiber alignment information. Hybrid tools,
such as TWOMBLI, which exploit a combination of approaches
(i.e., fiber segmentation followed by matrix representation of the
image) have also been recently made available (Wershof et al.,
2021).

Many image transformation algorithms rely on Fourier
transformation of the image and exploit its frequency space
representation to obtain alignment information (Chaudhuri
et al., 1987; Pourdeyhimi et al., 1997; Marquez, 2006; Sander
and Barocas, 2009; Goldyn et al., 2010; Kartasalo et al., 2015;
Clemons et al., 2018). These algorithms tend to be
computationally efficient (Sander and Barocas, 2009) and
insensitive to the image background noise (Liu et al., 2020),
which is desirable for rapidly processing large volumes of
experimental data (Püspöki et al., 2016). Another desirable
trait for an alignment detection tool is its flexibility in terms
of size and location of alignment patterns (Püspöki et al., 2016),
which is handled well by the only open-source software available

in this category (CytoSpectre (Kartasalo et al., 2015)) due to a
power spectrum analysis of the image’s discrete Fourier
transform.

One feature missing from the available tools in the literature is
an analysis of the alignment length scale. Depending on the
scientific question of interest, one may want to measure
alignment over a small region of the image (e.g., local
cytoskeletal features inside cells) or over a broad length scale
(e.g., ECM organization in whole tissues). Additionally, when
comparing experimental datasets, it is important to understand
the precise length scale over which the observed alignment is
significant and determine the spatial decay of the anisotropy,
which will allow for better interpretation and analysis of results
(e.g., is the alignment of a region of interest a subcellular or
supracellular phenomenon). Here we explain the implementation
of an open-source alignment quantification algorithm, AFT −
Alignment by Fourier Transform, that can be run on a variety of
biological images and has a number of advantages over pre-
existing approaches. This FFT-based quantification is rapid and
computationally efficient, flexible to different types of microscopy
images and samples, easy to use with a low number of parameters,
and importantly allows for a user-defined length scale over which
to measure feature anisotropy.

2 MATERIALS AND METHODS

2.1 Biological Images
Sample datasets of microscopy images were used to illustrate the
analysis and are provided as Supplementary Material. In
particular, cultured fibroblasts transfected with GFP-actin,
fibroblasts fixed and stained for filamentous actin (F-actin,
phalloidin), fixed cell-derived matrices immunostained for
actin (before decellularization) and fibronectin (after
decellularization), and second harmonic generation imaging of
tissue samples were utilized. Fixed actin images were acquired at
different magnifications using either single cells or cells at
confluence, to allow for evaluation of the length scale of
alignment. Y-27632 treated cells were incubated in the
indicated concentration of the drug for 30 min and then fixed
and stained with phalloidin.

Fixed samples were imaged using a Zeiss LSM 880 equipped
with a 40x NA 1.3 Plan-Apochromat oil objective or 63x NA
1.4 Plan-Apochromat oil objective. Decellularized matrices were
imaged using a Zeiss LSM 880 equipped with 63x NA 1.4 Plan-
Apochromat oil objective. For second harmonic generation
imaging, tissue sections were imaged using a Zeiss LSM 7MP
equipped with a 20x NA 1.0 water immersion objective. Y-27632
treated cells were imaged on a 3i Marianas Imaging System
consisting of a Zeiss Axio Observer 7 inverted microscope
attached to a Yokogawa W1 Confocal Spinning Disk using a
63x NA 1.4 Plan-Apochromat oil objective.

2.2 Synthetic Data
Images of fibrillar features were simulated in MATLAB
(Mathworks, v2018b) to create sets of synthetic data with
specific length scales. To this aim, squared units with a
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pre-defined size were randomly distributed in the field of view.
Each unit was filled with parallel lines with 5 px spacing, and
then rotated with a random angle between 0° and 180°. Three 10-
image sets were generated, with unit sizes equal to 100, 200, or
400 px.

2.3 Pre-Processing
Image pre-processing is not required for this analysis, but can
be used to additionally highlight the fibrillar features. In the
context of this work, pre-processing was performed only for
the cell-derived matrix images, as their surface is often not flat,
resulting in uneven signal across the field of view. To account
for this, contrast was enhanced in Fiji (0.35% saturated pixels)
and subsequently a local contrast adjustment was performed
(CLAHE plugin, default parameters). All images shown are
maximum projections of Z-stack acquisitions, except for the
live cell images which represent a single confocal slice.

2.4 Comparison With Other Available
Alignment Tools
The performance of the algorithm presented in this work was
compared with OrientationJ (Rezakhaniha et al., 2012) and
TWOMBLI (Wershof et al., 2021), by using two 10-image
samples of fibronectin-stained cell-derived matrices that were
either isotropic or anisotropic. To access the alignment vector
field for OrientationJ, a Fiji macro was designed to batch run
the OrientationJ Vector Field plugin. This operation was either
performed on its own or preceded by fiber segmentation by the
Ridge Detection plugin (Lindeberg, 1998), this second
approach mimicking the TWOMBLI workflow (hybrid
method). To obtain a comparable spatial resolution of the
vector field, a window of 100 px with 50% overlap was used to
run the FFT analysis, and a matching local window σ of 100 px
with a grid size of 50 was employed in OrientationJ. The Ridge
Detection parameters were set to: line width � 20 px, high
contrast � 120, low contrast � 0, sigma � 6.27, lower threshold �
0, upper threshold � 0.17, minimum line length � 10 px. These
parameters were selected to match the ones assigned by the
TWOMBLI macro when calling the Ridge Detection plugin
(see below for the user input parameters that were chosen in
TWOMBLI). From the acquired vector fields, an order
parameter over neighborhoods of 5x vectors was calculated
and compared for the three approaches.

A second comparison was based on coherency, the metric
traditionally used for global alignment output by both
OrientationJ and TWOMBLI. Coherency of the FFT was
measured on windows of 100 px with 50% overlap and
averaged to obtain a median value representing the global
alignment score for each image. To obtain the coherency score
from OrientationJ, a macro was designed to batch process the
images using the OrientationJ Dominant Direction plugin.
TWOMBLI was run on the sample data as per the developer
instructions. A parameter optimization step was performed on
test images and the obtained parameter file was used for batch
processing (line width � 20 px, curvature window � 150 px,
branch length � 10).

Computational time was measured on a 3.6 GHz Quad-Core
Intel Core i7 machine with 32 GB memory, with suitable
functions in MATLAB and ImageJ macro language. Only the
effective analysis time for a 10-image sample (1 MB per image)
was taken into account, excluding the input and parameter
upload. Timings for OrientationJ refer to the designed macro,
no manual handling of data was involved.

2.5 Statistical Analysis
Statistical analysis was performed in Prism (Graphpad, v9).
Mann-Whitney two-tailed tests were used to compare metrics
on isotropic vs. anisotropic samples. Significance is reported in
figure panels as follows: ‘****’ for p-values lower than 0.0001, ‘***’
lower than 0.001, ‘**’ lower than 0.01, ‘*’ lower than 0.05, ‘ns’
otherwise.

2.6 Implementations
This approach builds upon previous work employed in
(Aratyn-Schaus et al., 2011; Cetera et al., 2014; Fernandes
et al., 2020) and adds features such as periodic
decomposition to improve the accuracy of the FFT angle
determination along with the ability to search for the optimal
length scale for comparison. The current implementation is
available at https://github.com/OakesLab/AFT-Alignment_
by_Fourier_Transform, both in MATLAB and Python
languages. The MATLAB version is provided with a
simple user interface for inputting parameters, while the
Python version is presented as a set of Jupyter notebooks.
The code is divided into two separate suites. The first suite
can be used to perform the alignment quantification on a
sample of images containing fibrillar structures. The second
suite can be used to run a search to optimise the analysis
parameters, with the aim of maximizing differences between
two samples, i.e., locating the length scale for which the
difference in alignment between two samples is greatest.
Further code documentation is provided in the repository.

3 RESULTS

3.1 Measuring Alignment
The algorithm is inspired by the general approach of Particle
Image Velocimetry (Willert and Gharib, 1991), where the image
is broken down into a series of windows that are analyzed
independently to create a vector field that represents the entire
image. Windows are analyzed in frequency space to reveal
information about both the fibrillar structure and local
alignment as illustrated in Figure 1 using filamentous actin
images. If the image contains aligned features in the real
space, the corresponding FFT in the frequency domain will be
asymmetrically skewed, with the direction of skew orthogonal to
the original feature orientation (Figure 1A,B). This process can
then be repeated on each successive window across the image,
resulting in a vector field that represents the local alignment in the
image. A detailed protocol for determining the local alignment of
each window and the order parameter of global alignment
follows.
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3.1.1 Local Alignment
Square windows of n x n pixels are chosen from the original real
space image and a 2D FFT is performed. Typically, n is chosen as
odd to ensure that the zero-order frequency component, which is
always the greatest in magnitude, is situated at the centre of the
FFT. FFTs of non-periodic signals are often plagued by strong
horizontal and vertical components, appearing as a cross, due to
the mismatch of intensity in the images at the edges. To avoid this
effect, we break down the image into its smooth and periodic
components following the approach of Moisan (2011). We use
the periodic component of this decomposition to take the FFT
and then take its norm to only deal with real numbers. The
resulting image is then multiplied by a mask of diameter n/2 to
capture all the relevant high frequency components and to ensure

the sample is symmetric. The central image moments of the
masked FFT are then calculated as

μij′ �
∑
x
∑
y
(x − �x)i(y − �y)jI(x, y)∑

xy
I(x, y) , (1)

where x and y represent the position and I is the magnitude of the
FFT norm. We next construct the covariance matrix of the
image as

cov[I(x, y)] � μ20′ μ11′
μ11′ μ02′

[ ], (2)

which has eigenvalues of

FIGURE 1 | Using FFTs to measure local alignment of biological images. (A) Small windows of a microscopic image are considered, containing either aligned
filamentous actin fibers, or isotropic signal. The 2D Fast Fourier Transform (FFT) shows an elongated (i.e., skewed) shape if the image in the real space contains
aligned fibrillar features, and displays a more round shape otherwise. Scale bar, 5 μm. (B) A small window of a microscopic image containing aligned filamentous
actin fibers is considered. Its FFT shows a predominant skewness (black line) of an angle that is orthogonal to the direction of the fibers in the real space image.
The obtained alignment vector (yellow line) can be overlaid to the original image to highlight the measured fiber orientation. Scale bar, 5 μm. (C) The alignment vector
is calculated for an image containing aligned actin fibers by exploiting the characteristics of the FFT. The same image, rotated by 45°, is analyzed, to demonstrate
robustness of the method to rotation. Scale bar, 5 μm. (D) A square representing the window size for analysis (250 px, light blue) is overlaid on a filamentous actin
image. The black squares represent subsequent instances of such a window with the defined overlap, as the image is scanned during the analysis to calculate local
alignment vectors (yellow). The heatmap shows a different representation of the alignment vector field, with a wrapped colour scale ranging from 0° to 180°. Scale
bar, 20 μm.
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λi � μ20′ + μ02′
2

±
��������������
4μ11′ + (μ20′ − μ02′ )2

√
2

. (3)

The orientation of the FFT can thus be calculated by

θ � 1
2
arctan

2μ11′
μ20′ − μ02′

( ), (4)

and the eccentricity, a measure of how oblong the FFT is, as

e �
�����
1 − λ2

λ1

√
. (5)

The orientation of the features in the real image is orthogonal to the
orientation of the FFT, and thus we apply a 90°rotation (Figure 1B).
Orientation vectors do not have a polarity, and thus angles of 0° or
180° are considered equivalent. Therefore, all angles are mapped to a
range of 0°–180°(Figure 1D). This methodology is robust to
rotational transformations and does not suffer from the inherited
bias of FFT for vertical and horizontal components (Figure 1C).

3.1.2 Order Parameter Calculation
Both the size of the window and the degree of overlap between the
windows is customizable (Figure 1D). To measure how aligned

fibrillar features are within adjacent windows, we define an order
parameter by correlating the directionality of vectors within the
neighborhood of customizable size. Specifically, the order
parameter can be calculated as

S � 2 < cos2θij > − 1
2

( ), (6)

with θij representing the angle between the orientation of a
central reference vector and its neighbors (Figure 2A). The
order parameter can take values between −1 and 1 (Figure 2A),
with 1 representing perfect alignment (i.e., all vectors in the
neighborhood have the same orientation as the reference
vector), 0 representing random orientation, and −1
representing opposite alignment (i.e., all vectors in the
neighborhood are pointing in the orthogonal direction
compared to the reference vector). While a number of
different formulations of the order parameter have been
used previously, in the context of the current analysis, the
chosen order parameter normally ranges between 0 (random)
and 1 (perfectly aligned), as fiber polarity is not taken into
account and the neighborhood area is kept relatively local
(Figure 2B). Similar results were obtained for real and
simulated data (and Figure 3).

FIGURE 2 | Calculating an image order parameter. (A) The equation for the order parameter used to assign an alignment score for each neighborhood is shown,
together with examples. The order parameter takes a value of 1 for complete alignment, 0 for random alignment, and −1 for orthogonal alignment. (B) A square
representing a neighborhood of 5x vectors (magenta, neighborhood radius of 2x vectors around the central reference) is overlaid on an actin image and its corresponding
alignment vector field. The black squares represent subsequent instances of such neighborhood, as the vector field is scanned during the analysis to obtain local
alignment scores. The resulting order parameters for each neighborhood are reported in the heatmap, together with their median value, representing the output of the
analysis.
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To calculate an overall alignment score for each image,
we define a neighborhood size. The previously calculated
vector field is then split into all possible overlapping
neighborhoods of such size. The order parameter is
subsequently calculated for each neighborhood, and the overall
order parameter for the image is defined as the median value
(Figure 2B).

3.2 Investigating the Optimal Alignment
Length Scale Between Two Samples
When comparing two samples displaying different degrees of
alignment, it may be of interest to evaluate the length scale for
which this difference is greatest. The approach described
above allows for this, as it is possible to evaluate the order
parameter using a range of window and neighborhood sizes
which correspond to different length scales (i.e., each
permutation of window and neighborhood size define a
specific length scale). By comparing the obtained alignment
scores between the two experimental conditions for the
different parameter permutations, it is possible to
investigate the precise length scale at which the difference
between the two samples is most pronounced. The
comparison can be carried out by looking at the order
parameter difference between the two samples or by
running statistical tests and analyzing the resulting p-values.

We tested this parameter search approach on actin images of
cultured fibroblasts with different degree of isotropy (Figure 4A,

10 images for each sample), for window sizes ranging from 25 to
325 px and neighborhood radii ranging from 1x to 38x vectors
(Figures 4B,C). We performed the comparison in alignment
scores for each window/neighborhood size permutation by
quantifying the difference between the sample order
parameters (Figure 4B) or by calculating the p-value of a
Mann-Whitney statistical test between the two populations
(Figure 4C).

It should be noted that small windows paired with small
neighborhoods display noisy output (Figures 4B,C), as the
corresponding FFT for such small windows will tend towards
low eccentricity values (i.e., increasing the likelihood of
spurious vectors, Figure 1A). Interestingly, when comparing
two samples with known differences in alignment (Figure 4A),
it can be observed how the difference in order parameter
between the two samples displays a peak when keeping the
window size constant and increasing the neighborhood
(Figure 4B). This suggests a well-defined optimum length
scale where a clear difference between the two samples
occurs, and it is likely to be correlated with relevant
dimensions in the sample (e.g., cell size). It is important to
note that the optimal length scale will likely exist for a range of
different window/neighborhood pairs, which together will
define a similar local area. In the example shown in
Figure 4B, the order parameter difference peaks for a
length scale of ∼ 90 μm, as calculated by multiplying the
window size by the neighborhood size for pairs displaying
high difference values. This suggests that this length scale

FIGURE 3 | Examples of image neighborhoods and corresponding order parameter. (A) Examples of neighborhoods in simulated data displaying different degrees
of alignment are shown together with the calculated order parameter (window size 35 px). Scale bar, 25 px. (B) Examples of neighborhoods in actin images displaying
different degrees of alignment are shown together with the calculated order parameter (window size 100 μm). Scale bar, 50 μm.
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should be investigated further to evaluate the biological
relevance of features of such size.

3.3 Evaluating the Length Scale Decay in
Alignment
A similar approach to the parameter search can be employed to
look at how the alignment decays over increasingly larger length
scales, by progressively enlarging the size of the region over which

the alignment is measured. To this aim, the window size over
which the angle vector field is calculated is kept constant, while
progressively increasing the neighborhood over which the order
parameter is evaluated.

To confirm the performance of the algorithm in locating the
alignment length scale, we created three 10-image sets of
synthetic data. These images show a number of squared units
of pre-defined size (i.e., 100, 200, or 400 px), randomly arranged
in the field of view. Each unit is filled with parallel lines

FIGURE 4 | Determining the optimal length scale difference. (A) Example actin images taken from two separate samples and displaying different degrees of
alignment (higher on the left, more anisotropic; lower on the right, more isotropic). Scale bar, 20 μm. (B) The parameter search runs the analysis for a range of window
sizes (y-axis, from 25 px to 325 px) and a range of neighborhood sizes (x-axis, from 3x to 77x vectors, where the neighborhood size is defined as 2*neighborhood radius +
1). Each permutation of window and neighborhood represents a length scale. Each colored square shows the difference in the median order parameter between
the anisotropic sample and the isotropic sample (mean values over 10 images for each sample) for a specific pair of window and neighborhood sizes. Small window sizes
paired with small neighborhoods (upper left corner) display noisy output, due to the limited amount of image information available to process. Three example vector fields
are shown for a window size of 25 px and neighborhood of 55x vectors (corresponding to 92 μm), 75 px and 17x vectors (89 μm), and 200 px and 5x vectors (79 μm),
with the light blue and magenta squares showing the size of the window and neighborhood respectively. Despite relatively similar neighborhood sizes, the output varies
depending on the size of the examined window. Reading the graph horizontally from left to right for each window size up to ∼ 150 px, it is possible to note how an optimal
length scale of ∼ 90 μm is detected (i.e., a peak difference value is displayed), likely correlated to relevant biological dimensions (e.g., cell size). (C) A similar graph to the
one in (B) is shown for the p-value of Mann-Whitney tests between the two samples for all the combinations of window and neighborhood sizes. In this case, greater
differences are represented by lower values (yellow).
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representing fibers (Figure 5A). We first measured the median
order parameter for each image in each set with a window size of
35 px and a neighborhood of 5x vectors, corresponding to 100 px
(Figure 5B). The order parameter increases with the selected unit
size, as expected as neighborhoods of a given size will represent a
progressively more local point of view for increasing unit sizes.
Moreover, we analyzed the decay in the order parameter by
keeping a fixed 10 px window size and progressively increasing
the neighborhood size (Figure 5C). The half-life of the fitted
decay curve shows values very close to the pre-defined unit size
for each set. This result highlights the ability of our approach to
correctly identify the alignment length scale within an image.

We then used the alignment decay analysis to quantify the
length scale on real biological data, as exemplified by using ∼
1mm2 tilescan images of cell-derived matrices (i.e., matrices
produced in situ by the cells) stained for F-actin and
fibronectin (before and after decellularization, respectively,
Figure 6A). We first calculated the angle vector field for both
actin and fibronectin using the FFT approach for a window size of
250 px and overlap of 50% (Figure 6B). Subsequently, we
calculated the median order parameter over neighborhoods of
increasing radii, ranging from 1x to 21x vectors, corresponding to
50 x 50 μm to 1050 x 1050 μm in the original image (Figures
6A,C,D). By plotting the median order parameter over the
neighborhood size, it is possible to observe the alignment
decaying from the local to the global length scale (Figure 6D).
As expected, actin and fibronectin displayed a similar decay in

alignment as cells are responsible for depositing and remodelling
the ECM in this experiment.

3.4 Filtering Input for Alignment Analysis
Some biological images might display regions that are either
blank (i.e., little to no signal, lack of image features), or isotropic
(i.e., no obvious fibrillar features). In certain applications, such
regions should be excluded from the alignment analysis, as
images containing noisy or blank areas will affect the output
order parameter. By exploiting our window-based algorithm, it is
possible to implement optional filtering of features to
automatically exclude regions with such characteristics from
the analysis.

To filter out blank regions, a threshold can be set on the mean
intensity for each window, as demonstrated on second harmonic
generation imaging of tissue samples (Figure 7A). In this
example, windows that are considered background have a
mean intensity signal lower than 20 (with intensity values
ranging from 0-black to 255-white). This value can be set as a
threshold: windows displaying mean intensity values lower than
the threshold will be ignored during the calculation of the angle
vector field (and subsequent alignment score, Figure 7B).

Regions in which image features display isotropic organization
can also be excluded by setting a threshold on the eccentricity of
the FFT calculated for a given window, as shown for cell derived
matrices immunostained for fibronectin in Figure 7C. The FFT
eccentricity can be used as a measure of its skewness (Figure 1A):

FIGURE 5 | Evaluating length scale on synthetic data. (A) Synthetic images were created by randomly distributing units of parallel lines within the field of view. The
size of each unit was pre-defined to be either 100 px (left, black), 200 px (centre, orange) or 400 px (right, green). Each sample contains 10 images. The blue andmagenta
boxes represent the window and neighborhood sizes used for the analysis in (B), set to 35 px and 100 px, respectively. (B) Measuring the order parameter using the
same parameters for the three sets of images shows an increase in its median value with the unit size. This can be expected, as the information within this length
scale will be more aligned the bigger the unit size. (C) Keeping the window size constant (10 px) and progressively increasing the neighborhood shows a decay in the
order parameter for all three samples (dots). By fitting a one-phase decay to each data set (shaded lines) and measuring its half-life, it is possible to appreciate how the
algorithm is able to locate the pre-defined length scale (i.e., unit size).
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regions containing oriented fibers will display a more elongated
FFT, hence higher eccentricity (values closer to 1); regions where
no fibers can be detected, or where there are multiple fibers
without a clear orientation, will display a more homogeneously

shaped (i.e., round) FFT, hence lower eccentricity (values closer
to 0). In the example shown in Figure 7C, threshold on the
eccentricity was set to 0.73, allowing for the exclusion of isotropic
regions from the angle vector field calculation (Figure 7D).

FIGURE 6 |Measuring the decay in order parameter as a function of length scale. (A) Example tilescan images about 1 mm2 in size for actin and fibronectin on the
same sample (fibroblast-derived matrix). Scale bar, 100 μm. (B) Angle heatmap showing the alignment vector field for the images in (A), using a window size of 250 px
and 50% overlap. Actin and fibronectin display similar alignment. (C) Schematic of the alignment decay analysis, where the window size is maintained constant while
increasing the size of the neighborhood (i.e., including more and more vectors in the order parameter calculation to evaluate alignment from the local to the global
scale). The solid magenta square represents the starting neighborhood, which then increases in size at each iteration (dashed magenta squares). (D) The calculated
order parameter for actin and fibronectin for the images in (A) is graphed for a window size of 250 px, for each neighborhood ranging from 50 μm (3x vectors,
neighborhood radius of 1x vector) to 1050 μm (43x vectors, neighborhood radius of 21x vectors). Alignment decays in a similar manner when going from local (small
neighborhood size) to global (large neighborhood size) length scales.
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Finally, it is possible that only a specific region within an image
is to be analyzed, as in the case of actin in single cells (Figure 7E).
A binary image can be used to mask the angle vector field, in
order to only consider a given area of the original input.

3.5 Extracting Kinetics of Organization From
Live Imaging
Many biological processes involve the evolution of
architectures and organizations over time. By measuring an
order parameter for each frame of a time series it is possible to
extract the kinetics of alignment in response to perturbations.
As an example, we transfected an NIH 3T3 fibroblast with

GFP-actin and imaged the cell before, during, and after
treatment with the Rho kinase inhibitor Y-27632
(Figure 8). Inhibition of Rho kinase leads to a reduction in
myosin activity and thus a dissolution of stress fibers (e.g., a
loss of fibrillar structures; Figure 8A). As a test case, treatment
with Y-27632 is convenient because it acts rapidly and is easily
washed out by replacing the media in the sample chamber with
fresh media. Upon removal of Y-27632, the actin cytoskeleton
begins to reform stress fibers and again takes on an aligned
appearance (Figure 8B). As evidenced in the plot of the order
parameter, we can see a loss of alignment immediately after
addition of Y-27632 and an immediate recovery following
washout (Figure 8C).

FIGURE 7 | Filtering vector fields based on intensity and eccentricity. (A) A tissue section second harmonic generation (SHG) image is shown. Two regions with the
same size of the window used for the alignment analysis (100 px) are enlarged and their mean intensity value measured. The intensity of an 8-bit image can vary from 0 to
255. The area on the top left contains little to no signal and it is considered background (mean intensity of 11); the area on the right contains many dark pixels, for a mean
intensity of 84. A threshold value of 20 is set, meaning that all windows with mean intensity lower than such values will be considered as blank (i.e., background) and
excluded from the analysis. Scale bar, 50 μm. (B) The alignment vector field (yellow) is overlaid on the raw SHG image, either without filtering for blank regions (left) or
filtering with a threshold on the mean intensity of 20 (right). Magenta asterisks highlight regions excluded from the analysis. (C) An immunostaining for fibronectin in cell-
derived matrices is shown. Two regions with the same size of the window used for the alignment analysis (100 px) are enlarged and their 2D Fast Fourier Transform (FFT)
displayed. The FFT eccentricity can range from 0 (circular) to 1 (highly elongated). The region on the top lacks clear aligned fibers, resulting in a more uniform FFT
(eccentricity of 0.40); the area on the bottom has aligned fibrillar features, leading to a highly skewed FFT (eccentricity of 0.84). A threshold value of 0.73 is set, meaning
that all windows with eccentricity lower than such values will be considered as isotropic and excluded from the analysis. Scale bar, 20 μm. (D) The alignment vector field
(yellow) is overlaid on the raw fibronectin image, either without filtering for isotropic regions (left) or filtering with a threshold on the eccentricity of 0.73 (right). Magenta
asterisks highlight the regions excluded from the analysis. (E) The actin in a single cell is shown. If one wants to exclude the background from the analysis, a binary mask
can be provided highlighting the regions of the image to be analyzed (window size 50 px with 50% overlap). Scale bar, 50 μm.
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To measure the kinetics of this interaction we can fit the data
to any relevant model. For the washout of Y-27632 we fit the
post-washout data to a simple exponential recovery curve of the
form

S(t) � A − B exp(−t/C). (7)

We can then define a t1/2 value, or the time it takes to reach half its
maximum recovery value, as

t1/2 � −C ln
A

2B
( ). (8)

This results in a value of t1/2 ≈ 7 min for the Y-27632 washout
experiment, consistent with previous reports (Aratyn-Schaus
et al., 2011). To further illustrate the robustness of this
approach, we imaged numerous cells treated with varying

concentrations of Y-27632 (Figure 8D). Cells were treated
with concentrations ranging from 0–20 μM for 30 min, and
then fixed and stained with phalloidin. Analysis of these data
sets reveals a steady decrease in order parameter as a function of
Y-27632 concentration, as expected. The difference in magnitude
of the order parameter between the fixed and live imaging is the
product of superior signal to noise and better labelling that is
achieved with phalloidin compared to fluorescently
expressed actin.

3.6 Comparing With Other Available
Algorithms
The performance of the algorithm presented in this work was
tested against two other open-source tools widely used by the

FIGURE 8 |Measuring kinetics of alignment. (A) An NIH 3T3 fibroblast transfected with GFP-actin is shown before, during, and after washout of 20 μM Y-27632.
(B) Local alignment was calculated for each frame in the time series using a window size of 17 px and an overlap of 50%. Yellow vectors indicate the local direction of
alignment in the image while insets show the angle of orientation for each window. (C) Plot of the calculated order parameter over time for a neighborhood radius of 2x
vectors. Arrows indicate the time points of addition of Y-27632 and wash out of the drug. Red dashed line indicates the fit to Eq. 7. (D) Boxplots of the average
order parameter for fibroblasts treated for 30 min with different concentrations of Y-27632 and then fixed and stained with phalloidin to label actin. Each dot represents
the median order parameter of a single cell with a window size of 33 px, overlap of 50%, and neighborhood radius of 2x.
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FIGURE 9 | Comparing approaches to measure organization in biological images. (A) A fibronectin image showing fibrillar features with strong alignment is
analyzed with the FFT approach presented in this work, with the Fiji OrientationJ Vector Field plugin, and with a combined approach using the Fiji Ridge Detection plugin
followed by OrientationJ (mimicking the TWOMBLI hybrid approach, the binary mask calculated by the Ridge Detection is shown). A window size of 100 px with 50%
overlap was used, and the order parameter was calculated over neighborhoods of 5x vectors (neighborhood radius of 2x vectors). Both the alignment vector field
and the angle heatmap are shown for each case; zooms for the areas highlighted by the white boxes are displayed. The three algorithms behave similarly. Scale bar,
20 μm. (B) The analysis of a more randomly organized fibronectin image is compared as in (A). It can be noted how the FFT returns more accurate alignment vectors for
the more isotropic regions of the image (insets).
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biology community, OrientationJ (Rezakhaniha et al., 2012) and
TWOMBLI (Wershof et al., 2021). OrientationJ is a Fiji plugin based
on image representation by structure tensors using real space, and
evaluates orientation by the coherency metric, that indicates the
degree of feature orientation with values ranging from 0 (random) to
1 (perfectly aligned) (Rezakhaniha et al., 2012; Clemons et al., 2018).
Using this approach, it is possible to output either an alignment
vector field (OrientationJ Vector Field) or a global coherency score
for the image (OrientationJ Dominant Direction). TWOMBLI is a
Fiji macro envisioned as a hybrid approach performing fiber
segmentation followed by alignment analysis. Fiber segmentation
is carried out with the Ridge Detection plugin (Lindeberg, 1998),
while the alignment of the binarized image is subsequentlymeasured
viaOrientationJ. In addition to the coherencymetric as a measure of
alignment and due to the segmentation step, TWOMBLI also allows
the user to obtain further metrics that characterize the fibrillar
features, such as number of branch and end points, density,
curvature, and fractal dimensions.

We first compared the alignment vector field calculated with
the three methods (FFT, structure tensor, and hybrid approach)

for cell-derived matrices immunostained for fibronectin
displaying different degrees of isotropy (Figure 9). When
comparing the alignment vector field for images with strongly
anisotropic fibrillar features, similar output was observed for the
three methods (Figure 9A). When working with less aligned
input, however, the FFT was able to better resolve the feature
alignment in the isotropic regions compared to the other two
algorithms (Figure 9B).

Two alignment metrics were analyzed, the order parameter S
(Eq. 6) and the coherency; the first metric is the one used in this
work, while the coherency is the standard output of both
OrientationJ and TWOMBLI. The comparison dataset
contained two samples of images, with isotropic (Figure 9B)
and anisotropic (Figure 9A) features. All the tested algorithms
were able to recognize the alignment difference in the data,
however, the order parameter scores calculated with the
TWOMBLI approach (fiber segmentation via Ridge Detection
followed by alignment with OrientationJ) did not reach statistical
significance (Figure 10A). Moreover, the order parameter values
calculated with both OrientationJ and the hybrid approach were

FIGURE 10 |Comparing output metrics of different approaches to measure organization in biological images. (A)Boxplots of the order parameters for the samples
shown in Figure 9 calculated with the three methods, the FFT (as presented here), OrientationJ (Vector Field plugin), and the hybrid approach (Ridge Detection followed
by OrientationJ Vector Field). Local windows of 100 px with 50% overlap and 5x vector neighborhoods were considered. Insets represent zooms of the y-axis to better
display distributions. Mann-Whitney two-tailed test (****p < 0.0001, **p � 0.0039, ns � 0.063). (B) Boxplots of the global coherency calculated with the three tools,
AFT − Alignment by Fourier Transform (as presented here), OrientationJ (Dominant Direction plugin), and TWOMBLI. Mann-Whitney two-tailed test (***p � 0.0002, ***p �
0.0002, *p � 0.0147).
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very close to the upper limit of the range (values equal to 1
signify perfect alignment). This suggests that these methods
might not be reliable in detecting subtle differences between
samples, due to their limited ability to resolve local isotropy
(Figure 9). Global coherency obtained with the three methods
was also compared, showing that all of them could successfully
distinguish the global alignment differences in the two samples
(Figure 10B).

Computational time is comparable between the FFT and
OrientationJ (with a dedicated macro) with each image being
evaluated in less than half a second, while it increases for
TWOMBLI with about 7 s per image (due to the fiber
segmentation step). While this difference might appear
insignificant for small samples as the ones used in this
context, it might become important should batch processing
be required for larger sample sizes or more high-throughput
applications. The FFT approach presented here can be easily
used to address length scale analysis. While OrientationJ also
offers the option of a length scale analysis (Vector Field
plugin), this requires ad hoc macros and further post-
processing to obtain a unique alignment score for each
image for a given window size. TWOMBLI allows the user
to obtain a wider range of metrics characterizing the fibrillar
features, thanks to its fiber segmentation step, but this comes at
the cost of setting more parameters to start the analysis. The
FFT performs best at resolving local alignment differences
(Figure 9), and the available filters on window intensity and
eccentricity make it straightforward to automatically exclude
regions of the images. This avoids having to manually discard
entire images containing unsuitable regions, as would happen
with the other two methods. The pros and cons of each
methodology should be taken into account depending on
the application (Table 1); overall, the AFT approach
demonstrated efficient performance and broad flexibility to
different types of input images.

3.7 Implementing a Streamlined Software
for Measuring Alignment
Finally, we have developed a workflow named AFT − Alignment
by Fourier Transform to automate image analysis using the
approach described above. This includes the pipeline described
in Section 3.1, the parameter search in Section 3.2, the analysis of

length scale decay in Section 3.3, the filtering options in Section
3.4, and the extraction of organization kinetics in Section 3.5.
Open-source implementation is made available in bothMATLAB
and Python at https://github.com/OakesLab/AFT-Alignment_
by_Fourier_Transform.

Some considerations regarding the choice of parameters
follows. The user is requested to set three mandatory
parameters in order to run the alignment analysis: the window
size, the overlap, and the neighborhood size (Section 3.1, Figures
1D, 2B). Each of these parameters will affect the calculated order
parameter by changing the length scale of the alignment analysis.
While default parameters are suggested, it is important to test
different values on individual images to gain some insight on the
optimal length scale over which to carry out this analysis. In
addition to the mandatory parameters, a number of optional
filtering features are available as described in Section 3.4
(Figure 7).

3.7.1 Mandatory Parameters
• Window size. The size of the local regions in the image to
analyse. This value depends on the image resolution, the size
of the fibrillar features to be examined, and the length scale of
interest (Figure 1D). In practice, within a window one should
be able to observe enough information to discern by eye an
orientation of features. There is no hard-set lowest limit for
the window size, but it should be noted that smaller windows
will lead to more spurious vectors as the calculated FFT will
be nearly circular (i.e., not skewed, Figure 1A) for regions
where fibrillar features are not recognized. A visual check of
the output images is always recommended during the
parameter optimization phase.

• Overlap. The overlap between adjacent windows (Figure 1D).
Increasing the overlap, in conjunction with choosing smaller
window sizes, allows for increasing the resolution of the
analysis, with more sampled areas (i.e., vectors) within the
field of view. A starting value of 50% is recommended.

• Neighborhood radius. The length scale over which to
compare neighboring measures of alignment. This should
be set depending on the length scale of interest. It is defined
as the number of nearest neighbor vectors to be compared to
a central reference in order to obtain an alignment score
(Figure 2). Neighborhood size is calculated as
2*neighborhood radius + 1.

3.7.2 Optional Parameters
• Output images.This parameter enables the ability to save the
analyzed images, consisting of the original image overlaid
with the alignment vector field and the angle heatmap
(Figure 1D). The color scale for the angle heatmap is
wrapped, with similar colors for 0° and 180°, as fibers are
not considered polar (Section 3.1, Figure 1D).

• Filter blank spaces. Windows that contain little or no signal
can be excluded from the analysis. When enabled a
threshold on the mean window intensity can be set
(Figures 7A,B). Windows below this mean intensity are
not analyzed. Threshold values can be estimated by opening
a sample image in Fiji, selecting regions considered

TABLE 1 | A comparison of the performance and characteristics of the three
analysis methods.

AFT OrientationJ TWOMBLI

Computational time low (1.8-4.8 sa) low (4.8 sb) high (72.4 s)
Length scale analysis c d -
Additional metrics - d c

Automated image filtering c - -

Computational time was measured on a 3.6 GHz Quad-Core Intel Core i7 machine with
32 GB memory for a 10-image sample.
aDepends on window size.
bWith a dedicated macro.
cYes
dYes, but requires further post-processing.
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background with similar size to the window size, and
measuring their mean intensity. Expected values range
from 0 (black) to 255 (white) for an 8-bit image.

• Filter isotropic regions. It is possible to exclude windows from
the analysis should the eccentricity of their FFT be lower than a
threshold (Figures 7C,D). Values for the FFT eccentricity
range from 0 (circular, isotropic) to 1 (elongated, anisotropic).
To estimate this threshold, the analysis can be run iteratively
for increasing values until the desired output is achieved
(i.e., until the regions considered isotropic do not contain
alignment vectors in the output images).

• Masking. By default, the whole image is being analyzed.
Alternatively, the user can input a folder containing binary
masks of selected areas to be analyzed for each input image
(Figure 7E). A similar output as the one shown in Figure 7E
could have also been obtained by filtering out the blank spaces,
as the regions of interest have brighter signal than the
background. However, if regions devoid of signal would also
be present inside the cell outline, they would be disregarded as
well. Therefore, a binarymasking approachmight be preferable
in this case.

4 DISCUSSION

Quantifying alignment of fibrillar features in biological images has
gained wide interest as a possible biomarker in disease aetiology
and progression (Ouellette et al., 2021). While tools are available
for this aim (Püspöki et al., 2016; Liu et al., 2017), many are difficult
to implement and fairly rigid on the length scale over which
anisotropy can be interrogated. The method presented in this
work exploits the representation of the image in the frequency
domain paired with a custom window-based approach, offering a
computationally efficient algorithm that can be easily applied to
investigate local to global alignment. Decay in alignment scores
with increasing distance can be evaluated to reveal the length scale
at which fibrillar features remain anisotropic.

An open-source suite, AFT − Alignment by Fourier Transform, is
presented: its flexibility to a wide range of biological images is
showcased through the examples, and its performance tested against
synthetic data. The AFT − Alignment by Fourier Transform tool is
demonstrated to be robust for different imaging modes (fixed, live-
cell, SHG, fluorescence), fluorescent probes (F-actin, fibronectin),
and image resolutions (from single cells to tissue tilescans). Further
applications for which this method could be used that were not
shown in the present work could entail the evaluation of alignment
across the depth of a sample (measuring alignment for each slice of a
Z-stack), or the investigation of cytoskeletal architectures in
reconstituted protein systems.

The FFT approach performance was comparable to both
OrientationJ and TWOMBLI, with increased accuracy in resolving
local isotropic regions. Its computational efficiency makes it a good
candidate for analyzing high volumes of data. Moreover, the
availability of filters and masking options allow for this
methodology to be applied to a wide range of microscopy images.

Excitingly, more advanced 3-dimensional imaging modalities
are becoming available, with techniques being developed to

achieve isotropic resolution. While currently the FFT approach
is designed to work with 2D data, the algorithm could be adapted
to evaluate alignment of 3D fibrillar features, and its low
computational cost could be exploited for these more
computationally intensive data.

5 CONCLUSION

Here we presented a methodology to measure fibrillar feature
alignment in biological images. We created an open-source
tool that can be used on a wide range of biological images. Its
performance was compared against other common workflows,
and it was shown to be computationally efficient without
compromising on accuracy. It is easy to implement with a
small number of analysis parameters, and allows for
interrogating the length scale of fiber anisotropy.
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Automated Deep Lineage Tree
Analysis Using a Bayesian Single Cell
Tracking Approach
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Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell
populations, arising from the interplay of deterministic and stochastic processes.
However, it remains challenging to quantify single-cell behaviour from time-lapse
microscopy data, owing to the difficulty of extracting reliable cell trajectories and
lineage information over long time-scales and across several generations. Therefore,
we developed a hybrid deep learning and Bayesian cell tracking approach to
reconstruct lineage trees from live-cell microscopy data. We implemented a residual
U-Net model coupled with a classification CNN to allow accurate instance
segmentation of the cell nuclei. To track the cells over time and through cell
divisions, we developed a Bayesian cell tracking methodology that uses input
features from the images to enable the retrieval of multi-generational lineage
information from a corpus of thousands of hours of live-cell imaging data. Using our
approach, we extracted 20,000 + fully annotated single-cell trajectories from over
3,500 h of video footage, organised into multi-generational lineage trees spanning up to
eight generations and fourth cousin distances. Benchmarking tests, including lineage
tree reconstruction assessments, demonstrate that our approach yields high-fidelity
results with our data, with minimal requirement for manual curation. To demonstrate
the robustness of our minimally supervised cell tracking methodology, we retrieve cell
cycle durations and their extended inter- and intra-generational family relationships in
5,000 + fully annotated cell lineages. We observe vanishing cycle duration correlations
across ancestral relatives, yet reveal correlated cyclings between cells sharing the
same generation in extended lineages. These findings expand the depth and breadth of
investigated cell lineage relationships in approximately two orders of magnitude more
data than in previous studies of cell cycle heritability, which were reliant on semi-manual
lineage data analysis.

Keywords: nuclei segmentation, cell classification, multi-object tracking, lineage tree reconstruction, single-cell
heterogeneity
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1 INTRODUCTION

Individual cells grown in identical conditions within populations
of either clonal or closely related origin often exhibit highly
heterogeneous proliferative behaviour (Skylaki et al., 2016).
Deciphering why and how cell heterogeneity is established,
maintained and propagated over generations remains a key
challenge (Figure 1A). This is increasingly important in
studying dynamic developmental processes involving the
emergence of diverse cell types committed to different cell
fates (Bendall et al., 2014), as well as in pathological scenarios,
including cancer (Dagogo-jack and Shaw, 2017).

The contribution of stochasticity and determinism to the
origins of cell cycle duration heterogeneity in cultured
populations has been examined previously (Sandler et al.,
2015; Chakrabarti et al., 2018; Kuchen et al., 2020). However,
these analyses have been performed by manually annotating
movies, which is laborious and limits the depth and statistical
power to study more distant relationships amid noisy data.
Despite major efforts in the area of automated cell detection
and tracking (Bao et al., 2006; Jaqaman et al., 2008; Downey et al.,
2011; Amat et al., 2014; Magnusson et al., 2015; Schiegg et al.,
2015; Faure et al., 2016; Hilsenbeck et al., 2016; Skylaki et al.,
2016; Stegmaier et al., 2016; Akram et al., 2017; Tinevez et al.,

2017; Ulman et al., 2017; Allan et al., 2018; Hernandez et al., 2018;
McQuin et al., 2018; Schmidt et al., 2018; Wen et al., 2018; Wolff
et al., 2018; Berg et al., 2019; Han et al., 2019; Moen et al., 2019;
Tsai et al., 2019; Fazeli et al., 2020; Lugagne et al., 2020; Stringer
et al., 2020; Bannon et al., 2021; Fazeli et al., 2021; Mandal and
Uhlmann, 2021; Sugawara et al., 2021; Tinevez, 2021), high-
fidelity extraction of multi-generational lineages remains a major
bottleneck and rate-limiting step in microscopy image analysis.
The requirement for additional human oversight to manually
curate, or correct, the tracker outputs represents a laborious,
time-consuming and often error-prone task. This results in trade-
offs being made between the minimum experimental replicates
sufficient for reliable low-throughput analysis and maximum
volumes of imaging data that researchers are capable to semi-
manually process. Further, no single tracking algorithm is likely
to be universally performant across all experimental datasets,
necessitating an ecosystem of algorithms for scientists to
choose from.

To increase the throughput of single-cell studies focusing on
cell relationships within their lineages, we developed a hybrid
deep learning and cell tracking approach to automatically
reconstruct lineage trees from a corpus of live-cell data with
single-cell resolution (Figure 1B). Our workflow consists of a cell
detection step, where individual cells are segmented from live-cell

FIGURE 1 |Overview of the experimental (data acquisition) and computational (data analysis) design to track single cells and generate lineage trees. (A)We analyse
heritability of cell cycle duration across multiple cell generations using automatically reconstructed multi-generational lineage trees. (B) Sequential fields of view obtained
by live-cell imaging experiments, showing both brightfield (BF) and fluorescence (FP). Scale bar � 20 μ m. (C) Fully automated, deep learning-based movie analysis
consists of a cell detection step using information from bright-field (col. 1) and fluorescence (col. 2) time-lapse microscopy channels. Cells are localised using the
segmentation network (col. 3) and labelled according to their mitotic state by a trained classifier (col. 4). Our software then performs multi-object tracking to reconstruct
individual cell trajectories (col. 5) and assembles the parent-children relationships (col. 6) into lineage tree representations. Scale bar � 5 μ m.
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images with a wide range of cell densities and fluorescence
intensities. The segmented nuclei are subsequently classified
according to their cell cycle stage based on their chromatin
morphology, followed by a Bayesian tracking algorithm for
unsupervised single-cell tracking of cell populations imaged
using time-lapse microscopy (Figure 1C).

Benchmarking results confirm that our open-source Python
pipeline connects single-cell observations into biologically
relevant trajectories and correctly identifies cell divisions and
relationships within cell families with high fidelity. Enabled by
our fully automated approach, we extracted 20,074 single cells
organised into 5,325 multi-generational cell lineages with
annotated ancestor-descendant relationships in graphical
lineage tree representations. This repository of fully annotated
cell tracks corresponds to two orders of magnitude more single-
cell data than in previous studies of cell cycle heritability (Sandler
et al., 2015; Chakrabarti et al., 2018; Kuchen et al., 2020). To
demonstrate the utility of our pipeline, we analyse cell cycle
durations of our heterogeneous cell population on single-cell level
and determine their cross-generational correlations in extended
cell lineages.

2 METHODS AND MATERIALS

2.1 Image Acquisition
2.1.1 Automated Widefield Microscopy
A custom-built automated epifluorescence microscope was built
inside a standard CO2 incubator (Heraeus BL20) which
maintained the environment at 37°C and 5% CO2. The
microscope utilised an 20× air objective (Olympus Plan
Fluorite, 0.5 NA, 2.1 mm WD), high performance encoded
motorized XY and focus motor stages (Prior H117E2IX,
FB203E and ProScan III controller) and a 9.1 MP CCD
camera (Point Grey GS3-U3-91S6M). Brightfield illumination
was provided by a fibre-coupled green LED (Thorlabs, 530 nm).
GFP and mCherry/RFP fluorescence excitation was provided by a
LED light engine (Bluebox Optics niji). Cameras and light sources
were synchronised using TTL pulses from an external D/A
converter (Data Translation DT9834). Sample humidity was
maintained using a custom-built chamber humidifier. The
microscope was controlled by MicroManager (Edelstein et al.,
2014) and the custom-written software OctopusLite, available at:
https://github.com/quantumjot/OctopusLite.

2.1.2 Cell Culture Conditions
We usedMadin-Darby Canine Kidney (MDCK) epithelial cells as
a model system. Wild-type MDCK cells were grown, plated and
imaged as described previously (Norman et al., 2012; Bove et al.,
2017). To enable visualisation and tracking of the cells, we used a
previously establish MDCK line stably expressing H2B-GFP
(Bove et al., 2017). Cells were seeded at initial density of ≈3 ×
104 cells/cm2 in 24-well glass-bottom plates (ibidi). The imaging
was started 2–3 h after seeding. Imaging medium used during the
assay was phenol red free DMEM (Thermo Fisher Scientific,
31053), supplemented with fetal calf serum (Thermo Fisher
Scientific, 10270106) and antibiotics.

2.1.3 Time-Lapse Movie Acquisition
We acquired a dataset of 44 long duration (∼ 80 h) time-lapse
movies of MDCK wild-type cells in culture across nine biological
replicates. A typical experiment captured multiple locations for
over 80 h with a constant frame acquisition frequency of 4 min
for each position. Multi-location imaging was performed inside
the incubator-scope for durations of ≈1,200 images (80 h). In
total, the dataset comprised 52,896 individual 1,600 × 1,200 × 2
(530 × 400 μm) channel images (brightfield and the nuclear
marker H2B-GFP), containing ∼250,000 unique cells. This
dataset of >3,500 h spans densities from isolated cells to highly
confluent monolayers.

2.2 Software Implementation
2.2.1 Image Processing
All image processing was performed in Python, using scikit-
image, scikit-learn, Tensorflow 2.4, on a rack server running
Ubuntu 18.04LTS with 256 Gb RAM and NVIDIA GTX1080Ti
GPUs. The btrack package was implemented in Python 3.7 and
C/C++ using CVXOPT, GLPK, Numpy and Scipy libraries. We
tested the software on OS X, Ubuntu and Windows 10 and found
the btrack algorithm to be performant even on basic commodity
hardware such as laptops. We have provided extensive
documentation online, visualisation tools, and user-friendly
tutorials with tracking examples, example data and installation
instructions.

2.2.2 Data Visualisation Tools
In addition, we developed a track visualization layer and
interactive lineage tree plugin for the open-source multi-
dimensional image viewer, napari-arboretum (Sofroniew et al.,
2021) available at: https://github.com/quantumjot/Arboretum.
To visualize single cell tracking data using the napari-
integrated Tracks layer, follow the fundamentals tutorial
available at: https://napari.org/tutorials/applications/cell_
tracking.

2.3 Cell Tracking Pipeline
In this subsection, we provide a detailed description of our step-
wise pipeline to process the raw microscopy image data to extract
reconstructed lineage tree information in a fully automated
manner. However, it should be noted that the steps in our
workflow function independently, allowing users to integrate
different software tools into our modular pipeline based on
their preference. This is including, but not limited to, the
popular segmentation algorithms such as CellPose (Stringer
et al., 2020) or StarDist (Schmidt et al., 2018).

2.3.1 Cell Instance Segmentation
To localise cells in the raw fluorescence images, we constructed a
U-Net (Ronneberger et al., 2015) to first segment cell nuclei in the
time-lapse microscopy images (Figure 2) using a semantic
segmentation approach. We used residual blocks (He et al.,
2015) in each of the five convolutional up and down layers
(3 × 3 kernels), and uses max-pooling and nearest neighbor
upscaling to down and upsample respectively. The final layer of
the network is a 1 × 1 convolution with two kernels in the case of a
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binary segmentation, with a per-pixel softmax activation. The
final segmentation map is decided by argmax function on the
stack of class-corresponding maps, outputting the class with
highest probability at each position in the FoV. We trained
the network with 150 hand-segmented training images with
ranging levels of cell confluency, from which regions of 768 ×
768 pixels were randomly cropped using on-the-fly
augmentations such as cropping, rotation, flipping, noise
addition, uneven illumination simulation, scale and affine
deformations. At train time, we used a weighted per-pixel
cross entropy loss function (Ronneberger et al., 2015) to force
the network to prioritise regions separating proximal nuclei. To
achieve accurate learning of the border pixels, we constructed
pixel-wise weight maps using a difference of Gaussian (DoG)
filter on a Euclidean distance map to upweight the importance of
pixels at either foreground-background interface or pixels
separating two or more proximal cells. We trained the
network using the Adam optimizer (Kingma and Ba, 2015)
with batch normalisation, a batch size of 16 for 500 epochs
after an extensive search for the most optimal
hyperparameters. In the following step, each segmentation
mask has all of its non-zero values labelled as individual cell
instances while zero values are considered the background. This
turns the semantic map into instance segmentation mask, in
which each cell can be counted and localized by the centre of mass
of each segmented region (Figure 2).

2.3.2 Cell State Classification
In the following, optional step, the segmentation masks have each
single cell region cropped as image patches of 64 × 64 pixels.
Those are extracted from the corresponding cell positions in both
transmission and fluorescence channel images. Our proprietary
cell state classifier (Figure 2) is used to label the phase of the

current state each cell is in [s ∈ (Interphase, Prometaphase,
Metaphase, Anaphase, Apoptosis)].

The instantaneous cell state is labelled by a convolutional
neural network based classifier. Its feature extractor consists of
five connvolutional layers with 3 × 3 kernels, each of which
doubles the 3D input image in depth. Max-pooling operations
downsample the activations after each convolution layer. A fully
connected layer outputs a flattened array of 256 features-long
representation, after which dropout is applied to perform implicit
data augmentation. The final linear classifier outputs the softmax
probability for each of the five classes, with the highest score
considered to be the predicted label.

We performed the cell state classifier training with ∼15,000
manually annotated examples of the extent of the cell nucleus,
capturing the diversity of cell nuclear morphology during the cell
cycle or at cell cessation. We used categorical cross entropy to
calculate loss. The detailed protocol together with user-friendly
tutorial to train-your-own-model for cell cycle classification is
available at: https://github.com/lowe-lab-ucl/cnn-annotator.

2.3.3 Tracklet Linking Using a Bayesian Belief Matrix
The first step of the tracking algorithm is to assemble tracklets by
linking cell detections over time that do not contain cell division
events (Figure 3A).

Let T k−1 be the set of tracklets in frame k − 1 andOk be the set
of cells observed in the current frame k, where track tj ∈ T k−1 and
object oi ∈ Ok. The algorithm attempts to calculate the posterior
probability of assigning tk−1j → oki and also of being lost. To do so,
we create a Bayesian belief matrix (Narayana and Haverkamp,
2007) of all possible associations, Bn×(m+1), where n is the number
of active tracklets (|T k−1|), and m is the number of cell
observations (|Ok|). We initialize B with a uniform prior
probability of association bji � P(tj → oi) � 1/(m + 1), where

FIGURE 2 | Single-cell annotation workflow. Cell instances are segmented from fluorescence images of their H2B-GFP labelled nuclei. The U-Net consists of
residual blocks and residual skip connections. A final 1 × 1 convolution layer, followed by softmax activation generates the output. Detected cells are localised using the
centre of mass and used to crop nucleus-centred image patches from both transmission and fluorescence images. These serve as inputs to a CNN-based cell state
classifier to label instantaneous phase of each segmented object. Labels indicate whether the cell is in interphase, mitosis or apoptosis. Scale bars � 20 µm.
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m + 1 denotes the fact that the association can be to another
object, or lost.

Next, we perform Bayesian updates on B using evidence
from motion models and the cell state classifier. Each tracklet
initialises its own Kalman filter (Kalman, 1960) that is used to
provide estimates of the future state of the cell. The state
labels from the cell classifier are then used to associate
observations to tracklets, based on visual features observed
by the cell classifier which distinguishes typical nuclear
morphology changes and chromatin condensation levels.
For a given object oi and a given tracklet tj, we first update
the belief matrix given the evidence E:

bjid
P(E|tj → oi) × bji

P(E) (1)

We use estimates from the Kalman filters, and a transition
matrix of cell state transitions using the CNN features, to
determine P(E|tj → oi). For the motion estimates, we use a
constant velocity model in this case, although other models
are possible. The output of the Kalman filter is an estimate of
the future position and error in position, modelled as a
multivariate normal distribution with a diagonal
covariance matrix. As such, we can define a

computationally simple approximation of the probability
that the estimated new position of tj lies within a units
(e.g. pixels) of the new observation oi:

f(x, μ, σ, a) � 1
2

erf
x − μ + a

σ
�
2

√( ) − erf
x − μ − a

σ
�
2

√( )[ ]
P(Emotion|tj → oi) ≈ ∏

d∈{x, y, z}
f(xd, μd, σd, a)

(2)

where μd and σd represent the estimate of the position and standard
deviation of the motion model prediction in each spatial dimension.
The advantage of this approach is that, not only do we include the
difference between the new object position and the motion model
prediction, but also include the motion model uncertainty into the
Bayesian update. Further, we can use appearance information to
inform the update. Let S be the set of states that each object is labelled
with by the cell state classifier.We use a transitionmatrix of cell state
transitions to determine the probability of linking two observations
based on their respective states:

P(Eappearance|tj → oi) � P(Sj � sj, Si � si), s ∈ S (3)

where si and sj are the states (as labelled by the cell state classifier)
for the new observation and the last observation of the tracklet
respectively. Importantly, this transition matrix enables the

FIGURE 3 | Bayesian tracking approach overview. (A) Bayesian belief matrix with uniform prior is constructed for tracklet association. Using the localised and labelled
cell observations, btrack uses Kalman filters to predict the future state of the cell (x̂) from previous observations. Each object appearing in the new frame has uniform prior
probability of track association or loss. The belief matrix is an N x (M+1) matrix where N equals number of active tracks and M is the number of detected objects per field of
view. Bayesian updates are performedusing the predicted track positions and state information to calculate the probability that tracks are considered lost, or to be linked
to an object. Objects which are not assigned, initialise new tracks. T1 represents a simple association,where the predictionmatches the observation O1. In T2 the cell divides,
meaning that there is no simple association. New tracks T3 and T4 are initialised. (B)Global track optimisation. An n-dimensional local search creates all possible hypotheses,
eachwith an associated likelihood, for each track based on user defined parameters. Several hypotheses are generated for Track T2, as in (A): possible linkage to T3 or T4, T2
undergoesmitosis generating T3and T4, T2 is a false positive track or that T2undergoes apoptosis. The log-likelihood of each hypothesis (ρ) is calculated using the image and
motion features. These hypotheses are evaluated in a global optimisation step to generate the final tracking results.
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tracker to penalise transitions such as Metaphase → Anaphase,
preventing track linking for these cases, and allowing later steps of
the algorithm to more accurately identify cell divisions.
Combining these motion and appearance features, we arrive
upon our estimate of P(E|tj → oi):

P(E|tj → oi) � P(Emotion|tj → oi) · P(Eappearance|tj → oi) (4)

and:

P(E) � P(E|tj → oi) · bji + P(E|t→ o) · (1 − bji) (5)

where, P(E|¬t→ o) represents the probability of not assigning an object
to a tracklet (i.e. the false positive detection rate), and is a hyper-
parameter of the model. We then update beliefs for all other objects
(≠ i), and the lost column, with track tj, normalizing such that∑m+1

i�1 bji � 1. As such, we treat the lost column of the belief matrix
as with the real objects, and do not need to perform explicit updates.

FIGURE 4 | Single-cell Segmentation Performance. (A) Comparison of Residual U-Net (pink), TrackMate (beige) and TrackPy (cyan) algorithms in detecting and
localising cells in three representative fields of viewwith low, medium and high cell density. Overlaid are the cropped regions of ground truth segmentation masks with cell
centroid markers depicted for zoomed-in region of the original fluorescence channel image (leftmost column). Cell localisation scores for multi-object tracking precision
(MOTP) and accuracy (MOTA) are listed above. Red arrows indicate the presence of false-negative (upward right) and false-positive (downward facing arrow) cell
detection errors. (B) Detailed overview of segmentation performance on portion of high cell density field of view. (Left) Per-object bounding boxes indicate visual
matches between ground truth (GT, green) and Residual U-Net segmentation mask (RUN,magenta) for intersection-over-union score calculation (overlapping areas IoU,
grey). Two typical segmentation error types are highlighted (red boxes), where an object is mis-detected (left) and two separate objects are detected as one instance
(right). (Centre) Pixel weight map designed to prioritise regions between proximal nuclei. Pixel upweighting is indirectly proportional to amount of free space between
cell nuclear instances, as demonstrated in the merged image overlap (Right).
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The tracking algorithm can be used with two different
methods to update the belief matrix, B:

• EXACT—where the updates use the full sets of objects, Ok,
which is the method of choice for all the downstream
analysis in this paper, or

• APPROXIMATE—where the updates use a subset of the
objects within a user defined distance from the current
track. This is computationally more efficient for very large
numbers of objects and tracks, at the expense of evaluating
all possible linkages and penalising, for example, a mixture
of fast moving objects in a field of slow moving ones.

Finally, given the belief matrix, we associate observations by
choosing the hypothesis with the maximum posterior probability
for each tracklet. Objects without an association initialise a new
set of tracklets. Tracklets without an object association are flagged
as lost and are maintained as active until reaching a threshold
number of missing observations. Tracklets associated with an
object are linked, and the motion and state models are updated
with the new evidence. This combination of motion and cell state
information in the belief matrix approach improves, for example,
the subsequent detection of cell divisions, by ensuring that
daughter cells are not incorrectly linked to parent cells.

2.3.4 Global Track Optimization
After linking observations into tracklets, they are next assembled into
tracks and lineage trees using multiple hypothesis testing (Al-Kofahi
et al., 2006; Bise et al., 2011) to identify a globally optimal solution.
We built an efficient hypothesis engine, which proposes possible
origin and termination fates for each track based on their appearance
and motion features (Figure 3B, Supplementary Materials). The
following hypotheses are generated: 1) false positive track, 2)
initializing at the beginning of the movie or near the edge of the
FoV, 3) termination at the end of the movie or near the edge of the
FoV, 4) a merge between two tracklets, 5) a division event, or 6) an
apoptotic event. In addition, we added “lazy” initialization and
termination hypotheses, allowing cells to initialize or terminate
anywhere in the movie. These lazy hypotheses are strongly
penalized, but their inclusion significantly improves the output by
relaxing the constraints on the optimization problem. The log
likelihood of each hypothesis (ρ) is calculated based on the
observable features and heuristics. We construct a sparse binary
matrix A(h×2n) ∈ {0, 1} that assigns the h hypotheses to n tracks. The
matrix has 2n columns to account for the fact that each hypothesis
may describe the initialization and termination of the same or
multiple different tracklets. For example, in the case of track
joining between tracklets ti and tj, a 1 is placed in columns i and
n + j. In the case of a mitotic branch, a 1 is placed in column i for the
parent tracklet ti, and columns n + j and n + k for the two child
tracklets tj and tk. As such, thematrixA can be used to account for all
tracklets in the set. We then solve for the optimal set of hypotheses
(x*) that maximises the likelihood function:

x* � argmax
x

ρux, s.t. Aux � 1 (6)

where the optimization space of x is also a binary variable (x ∈ {0,
1}). As a result, the optimal set of hypotheses (x*) accounts for all

tracklets in the set. Once the optimal solution has been identified,
tracklet merging into the final tracks can be performed. A graph-
based search is then used to assemble the tracks into lineage trees,
and propagate lineage information such as generational depth,
parent and root IDs, from which the tree root (founder cell
identity) and leaf cells (those with no known progeny) can be
identified.

3 RESULTS

To assess the heterogeneity and the heritability of cell-cycle
duration in a population of cells, we sought to automatically
reconstruct family trees from individual cells in long-term time-
lapse movies. Our time-lapse microscopy dataset (see Section 2.1)
spans densities from single cells to highly confluent monolayers,
providing a unique dataset to thoroughly test the computational
framework.

To provide an initial baseline for our pipeline’s performance
on our non-trivial imaging dataset, the assessment of our movie
analysis workflow was contrasted to 1) a Python-based, general-
purpose particle tracking package, TrackPy (Allan et al., 2018),
and 2) a cell tracking-specific ImageJ/FiJi plugin, TrackMate
(Tinevez et al., 2017). Both of these tracking engines represent
recently-developed popular cell and/or particle tracking
frameworks which function as backbones to the current
state-of-the-art cell tracking software, such as Usiigaci (Tsai
et al., 2019) and MaMuT (Wolff et al., 2018) or Mastodon
(Tinevez, 2021), respectively. Detailed description of the
tracking softwares calibration can be found in the
Supplementary Materials section.

3.1 Bayesian Cell Tracking Approach
To automate data analysis, we developed a fast, open source and
easy-to-use cell tracking library to enable calculation of
intermitotic durations and the capture of multi-generational
lineage relationships. Our pipeline consists of three steps: 1)
cell segmentation, 2) cell state labelling, where progression of
cells towards division is classified, and 3) cell tracking with lineage
tree reconstruction.

3.1.1 Cell Detection Performance
To assess the quality of the cell detection step, we selected three
representative fields of view capturing fluorescently labelled
nuclei of cells at low, medium and high confluency. We
manually annotated the nuclear areas by circling around the
cell nuclei to create an instance segmentation mask where pixels
of value 0 � background, 1 � foreground, i.e. individual cells. We
then computed the nuclear centroid of each cell instance and
measured the fidelity of cell detection and localisation by
calculating multi-object tracking precision (MOTP,
Supplementary Equation S1). Out of 869 cells in total, 847
cells had their centroid localized within acceptable error of ≈1
nuclear radius length (<20 pixels ≈ 7 µm) compared to the
ground truth annotations. We report that our pipeline reached
sub-pixel precision and outperforms both particle detection
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approaches with > 5-fold enhancement of the TrackPy- and >2.5-
fold higher localisation precision than TrackMate-embedded cell
detection method (Figure 4A).

Our cell localisation approach performs a pixel-wise image
classification, which offers the opportunity to segment the
whole area belonging to the cell nucleus from which centroid
coordinates are calculated. To calculate the accuracy of the
nuclear area segmentation, we computed the per-object
metrics from the residual U-Net and compared them to
the manually labelled ground truth (Figure 4B). We report
that out of 616 ground truth nuclei in a nearly confluent FoV
(Figure 4A), 574 nuclei had at least 50% Intersection over
Union (IoU, Supplementary Equation S2), yielding a Jaccard
Index (J, Supplementary Equation S3) of 0.933, meaning
that 93% of all objects in the FoV were correctly detected.
Across the total of 869 cells detected in all assessed FoVs, we
achieved an IoU equal to 0.802 and a J of 0.975, while
retaining a pixel identity (PI, Supplementary Equation
S4) at 0.874 (Supplementary Materials).

To assess the cell state classification performance, we
calculated a harmonic mean between the precision and recall
(F1-score, Supplementary Equation S5) for each class to be
distinguished by our model classifier (Figure 5A). To do this, we
plotted a confusion matrix of >2,600 single cell image patches and
compared the classifier predictions with human annotations
(Figure 5B). Our optional cell state labelling step yields an
overall accuracy of >97% with all state labels classified with
>96% F1-scores (Figure 5A).

3.1.2 Trajectory Following Accuracy
Next, we calculated the multi-object tracking accuracy (MOTA,
Supplementary Equation S6) which scores the tracker’s ability to
retain cell’s identity and trajectory over longer periods of time.
The MOTA score intrinsically penalises the tracking pipeline for
static (falsely positive and falsely negative detections) as well as
dynamic (identity switches) errors, which often strongly rely on
the detection algorithm performance.

We used short movie sequences of up to 20 successive frames
from a FoV at three different cell density levels. Observing 2,161
individual cell objects over time, our tracking pipeline performed
with 97.66% accuracy of between-frames associations. Identical
dataset assessed by TrackMate resulted in a comparable score of
97.54%, while tracking by TrackPy yielded 73.77% accuracy.
These results confirm that tracklet linking and object
associations between subsequent frames are performed with
comparably high fidelity across both tracking tools designed
specifically for cell tracking.

However, because the MOTA score is not designed to detect
track splitting events, we sought alternative metrics to assess the
fidelity of cell division history recording. Although multiple
approaches exist to cross-compare tracking performances
(Ulman et al., 2017), few of those look specifically at the
assessment of branching events of parent tracks and correct
assignment of generational depth to the resulting children
tracks. Below, we describe the adopted as well as newly
defined metrics for measuring the fidelity of track splitting
events. Although we continued with using TrackMate for

FIGURE 5 | Single-cell classification performance. (A) Representative predictions from the trained network for the given images patches. Depicted is an image
patch (fluorescence channel only) centred at the cell nucleus representative of the class label with a per-class F1-score calculated on 2,613 single-cell images in the
testing dataset. (B) Confusion matrix for cell state labelling of the testing patch dataset (>500 images per class) of cell image crops. Per-class image patch counts and
their normalised counts are depicted. Comparison of human annotations vs. the classifier-generated annotations are shown.
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additional comparisons on our validation dataset
(Supplementary Materials), it should be noted that further
analysis by TrackPy was excluded as this tracking algorithm
currently lacks the capacity to follow cases of track branching,
typical for dividing cells.

3.1.3 Lineage Tree Reconstruction Fidelity
Reconstructing lineages represents a complex challenge and a
common source of tracking errors in multigenerational cell
observations. From our track validation dataset, we
automatically reconstructed 154 lineage trees which
contained at least one mitotic event. These trees were
initiated in three instances: 1) through their initial presence
in the FoV at the beginning of a movie, 2) as a consequence of
migration into the FoV, or 3) upon breakage of an existing
branch from its tree.

We manually reconstructed the ground truth lineage trees
of 24 randomly selected founder cells, the subsequent progeny
of which spanned the entire movie duration and accounted for
1,032 cells including tree founders (Supplementary
Materials). This sample accounted for more than 1/3 of
initially seeded cells and served as validation dataset for
comparison of the ground truth observations to their
respective automatically reconstructed lineages. We
subjected these trees to multiple lineage fidelity metrics for
benchmarking to robustly assess the cell tracking performance
with and without manual curation.

For ease of lineage tree visualisation, we provide a convenient
visualisation for track survival over time (Supplementary Movie
S1), revealing trajectories that can be tracked all the way to the

movie start via their ancestors, as an easy way to visually
demonstrate the tracking fidelity and identify errors.

3.1.4 Cell Division Correctness
To measure the correctness of parent-child relationships, we
calculated the mitotic branching correctness score (MBC,
Supplementary Equation S7; Figure 6A and Supplementary
Materials) for the detection of mitosis. Here, cell divisions are
correctly identified when computer-identified mitoses can be
mapped to human-annotated ground truth lineage trees (Bise
et al., 2011). Additionally, we introduced a penalty for excessive
branching assignment where cells were only scored as “hits”when
they were assigned the correct generational depth relative to their
founder cell. Similarly, we defined a leaf retrieval score (LRS,
Supplementary Equation S8; Figure 6A and Supplementary
Materials), which computes the number of all terminal cells in
the respective lineage tree appearing in the last frame of the
movie. To account for the fidelity of generational depth, in the
penalty-applied MBC and LRS calculations, the progeny were
considered as correct only when the generational depth relative to
the tree root matched the ground truth (Supplementary
Materials).

Keeping record of cell division history over the entire
duration of the live-cell imaging is necessary to elucidate
whether cells with shorter cell cycles have the capacity to
dominate the population and competitively outgrow the
slowly dividing cells over time. Our software correctly
records the cell division history as reflected by both MBC
and LRS scores, >86% with and >87% without penalty for MBC
and >78% with and >84% without penalisation for LRS

FIGURE 6 | Summary of Benchmarking Metrics to Evaluate the Tracking Performance. (A) Summary of cell division-specific metrics for tracker benchmarking on
identical number of ground truth events. (B) Visual overview of automated tree reconstruction with additional manual tree re-assembly. Highlighted are the regions of
ground truth trees (black thick background) which were correctly recapitulated by btrack (overlaid golden lineage). Upon branch breakage, two types of assembly actions
were applied: subtree attachment (cyan), where the branch underwent further splitting, or branch attachment (pink), where the track did not further branch. (C)
Summary of additional benchmarking metrics to score the performance of btrack approach with respect to single-cell trajectory following and lineage tree reconstruction
in naïve btrack outputs and expert annotator re-assembled trees.
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(Figure 6A). We report that both the MBC and LRS scores
were considerably higher for our btrack algorithm with
between ∼ 2-fold and 5.5-fold better performance than our
benchmarking standard using both penalised and penalty-free
variants (Figure 6A), respectively.

These results highlight the utility of the extra labelling
information for cell tracking, as well as our tracker’s
sophistication upon building complex predictions based on
position and state of each cell. This is in contrast to
approaches which employ hard distance thresholding to
account for splitting events, or which minimise link distances
by connecting cells with their closest neighbour in the subsequent
frames. Such algorithms are by default unable to discriminate
between false cell divisions, where two independent cells migrate
into close proximity below set threshold, and true mitotic events
which are accompanied by characteristic morphological changes
in nucleic acid organisation in the parent dividing cells as well as
progeny cells. Accounting for the “metaphase” and “anaphase”
labels in our approach leads to minimising of the occurrence of
parent-to-child track fusions (Supplementary Materials). Our
scoring system therefore manifests the importance of our
optional cell state classification step, which generates
additional information for correct division hypotheses creation
utilised by the global optimisation engine on the tracking data.

3.1.5 Manual Tree Re-Assembly
To compute further metrics for assessing btrack performance in
multi-generational lineage reconstruction, we performed manual
tree re-assemblies of our automated btrack output data, where
necessary (Figure 6B, Supplementary Materials). This allowed
us to perform detailed error analysis by aligning re-assembled
trees to the ground truth observations and evaluate the overall
extent of the need for human lineage curations, discussed next.

Branch breakages occur due to incorrect cell segmentation
(e.g. due to low fluorescence signal), or through tracking errors.
However, these breakage errors were very rare (one breakage per
∼6,000 correctly linked frame observations, Figure 6C). When
the lost cell is re-detected, it becomes the founder of a newly
initialised track. This track now becomes the root of a new tree,
which can continue to further grow and divide as a “subtree” of
the true tree or exist without further splitting as “branch”
(Figure 6B).

3.1.6 Tracking Effectiveness
Finally, we computed metrics reflecting how well the human-
annotated cell trajectories are followed by the reconstructed
lineage trees (recall; Supplementary Equation S9) and vice
versa (precision; Supplementary Equation S10) (Bise et al.,
2011).

Without any manual curation, our btrack algorithm
faithfully follows >90% of the human-annotated cell
trajectories (recall) with over >99% of observations in
agreement with the ground truth trees (precision)
(Figure 6C). Taking further advantage of our large dataset,
we randomly sampled an additional 302 unseen, automatically
reconstructed trees from multiple movies. For each tree, we
visually scored them as sufficient if they had >90% recall of the

ground truth tree as determined by an expert annotator, which
added up to 201 out of 370 reconstructed trees overall.

To quantify the remainder of the trees containing one or more
errors, we returned to our fully annotated validation dataset to
manually re-assemble the broken trees. We needed to perform
only eight “subtree” re-assembly actions to the original trees
(Supplementary Materials), which added 11,505 frame
observations, and a single subtree swap (where part of the tree
was falsely associated with another tree). Although the accuracy
scores were further enhanced to >99% recall by additional human
annotation via tree re-assembly (Figure 6B), we report that our
workflow achieves competitive performance on long-term live-
cell imaging data even in fully unsupervised manner (Figure 6C).
This is essential to investigate the existence of inheritable cell
cycle characteristics and their regulation using large datasets.

3.2 Single Cell Cycling Duration Analysis
Having validated the lineage tree reconstructions, we pooled the
tracking data from the entire dataset of 44 time-lapse movies.
First, we removed those cells which were partially resolved i.e.
founding parents (root cells) or progeny (leaf cells) in the
reconstructed lineages. This yielded 22,519 cells, organised into
lineage trees spanning up to eight generations. Next, we
calculated the per-cell inter-mitotic time as the time between
the first appearance of separated chromosomes during mitosis
(labelled as anaphase by the CNN; due to the temporal sampling
this may be before cytokinesis occurs) to the frame preceding the
next anaphase (Figure 7A).

Detailed inspection of the nuclear areas and CNN labels lead
us to exclude certain cells from our distribution. We found that
the tracks with inter-mitotic time below 7 h had high incidence of
start with a non-anaphase label, did not end with pro-(meta)
phase label, or a combination of both. This observation suggested
that these short tracks represent fragments of cell trajectories
where branch breakages occurred, rather than being
representative of ultra-fast cycling cells. Visual observation of
the nuclear growth (increase of cell nucleus segmentation mask
area over time) indicated that tracks with cycling time over 42 h
often captured track instances where a parent cell (undergoing
mitosis) was falsely linked to one of the arising children cells,
most likely due to imperfection in the segmentation step.

3.2.1 Heterogeneity in Cell Cycling Durations
To avoid possible incorporation of prematurely terminated
tracks, concatenated parent-to-child tracks or other tracking
errors, we filtered our pooled dataset to only consider cells
with cycling lengths between and including 7 and 42 h for
further analysis (Figure 7B). Our final dataset consisted of
20,074 cells with known lineage over up to eight generations,
representing at least two orders of magnitude greater numbers
than in previous studies (Puliafito et al., 2012). Importantly, the
whole process to filter the relevant cells, calculate their division
times and pool the single-cell information across 44 movies took
less than a minute to produce, illustrating the utility of our
tracking pipeline for large data analyses.

The pooled dataset shows a positively skewed normal
distribution of cell cycle durations (Figure 7B). This
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distribution confirms the presence of division time heterogeneity
at very large population numbers, while standing in good
agreement with previously published work (Puliafito et al.,
2012; Bove et al., 2017). We also confirmed that cell cycle
length was not correlated with the time at which a cell was
born for the first 60 h of time-lapse imaging (Supplementary
Materials).

We used the population distribution to categorise individual
cells as fast, medium and slow dividers based on whether their
cycling duration was below (<15.5 h), within or above (>20.3 h)
half a standard deviation away from the sample mean

(Figure 7B). This definition yields a subpopulation of fast
dividing cells (n � 6,719 cells; 33.5% of the population),
medium dividers (n � 8,500 cells; 42.3%) and slow dividers
(n � 4,855 cells; 24.2%).

We extended this categorisation to describe individual cell
families and contrasted three lineages extracted from our
representative movie, with the trees observed from the movie
start frame. Mapping the number of progeny originating from
these three founder cells (Figure 7C, Supplementary Movie S2),
we confirmed our large-scale observation of broad cycling
heterogeneity spectrum. Based on the average cell cycle length

FIGURE 7 |Cell cycling heterogeneity and colony expansion capacity within single cell clones. (A)Cell cycle duration, defined here as the time elapsed between two
subsequent anaphases, from themitosis of reference cell’s parent (first image patch) to division into two children cells (last image patch). Scale bar � 5 µm. (B)Calculated
cell cycle duration distribution over the pooled MDCK live-cell imaging dataset from 5,325 unique lineage trees. Error bars (colored vertical bars) show one and two
standard deviations around the mean (blue circle) of tracked cells for generational depths spanning 1 to 6 (generations #0 and #7 were excluded as those
corresponded to the tree root of leaf cells). Cell categorisation into fast (green), medium (blue) and slow (orange) dividers is depicted as below, within or above 1/2
standard deviation away from themean (dashed black vertical lines), respectively. Percentages of single cells belonging to each category are stated. (C) Sequence of four
colourised binary masks with segmented individual cells (grey) on background (black), highlighting cell proliferation from the start (top left) to the end (bottom right) of a
representative movie. Time in hh:mm is indicated in the bottom left corner. Founder cells and progeny corresponding to slow (orange), medium (blue) and fast (green)
dividers are highlighted. Scale bar � 50 µm. (D) 2D representations of typical lineage trees captured from data, showing slow (orange), medium (blue) and fast (green)
dividing cells. Computer-generated tracks (colour) are overlaid on human-reconstructed ground truth trajectories (black). Individual recall and precision scores are shown
for each lineage tree, with vertical branch lengths corresponding to intermitotic time (cell cycle duration) elapsed between the first post-division frame (anaphase) to the
last frame prior to the next cell division (metaphase). Trees illustrate an error-free tracking (orange tree) and two types of tracking errors, i.e. falsely identified mitosis (blue
tree) and missed mitotic event (green tree).
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of all fully-resolved cells within the tree, we classified the cell
families as slow, medium and fast cyclers. Visual inspection of
their lineage tree representations reveals that variability in
intermitotic durations amongst single cells directly influences
the cell capacity to divide and raises the potential for fast cycling
cells to eventually dominate the population by overgrowing the
slower-cycling clones (Figures 7C,D), as suggested previously
(Mura et al., 2019).

Indeed, taking trees corresponding to three different root cells,
we find that at the end of the movie, the slow dividing family
results in five leaf cells, the medium dividing family in 15 cells and
the fast dividing family in 31 leaf cells, over the same period of
80 h. These correspond to mean intermitotic durations of 20.6 ±
6.5 h (n � 3 cells), 16.9 ± 4.5 h (n � 14 cells), and 14.0 ± 1.9 h (n �
29 cells) for each tree, respectively (Figure 7D). Our findings
suggest a high degree of intrinsic cell cycling heterogeneity
present in the wild-type MDCK cell population. This cycle-
time heterogeneity appears to be maintained within cell lineages.

3.2.2 Cell Cycle Duration Correlations in Deep
Lineages
To study whether the observed cell cycle duration could represent an
inheritable characteristic, we extracted 20 different types of cell pair
relatedness from up to 8-generation deep lineages (Figure 8A). It was
previously observed (Sandler et al., 2015) that cell cycle durations
within lineages show poor correlation when observing the directly
ancestral, inter-generational cell pairs (mother-daughter and
grandmother-granddaughter), but remain highly correlated when
examining intra-generational relationships (sister and cousin cells)
(Sandler et al., 2015; Chakrabarti et al., 2018; Kuchen et al., 2020).
However, due to lack of deep datasets, the analysis has traditionally

focused on immediate cell relatives, including mother, grandmother,
sister and first cousin relationships (Sandler et al., 2015; Chakrabarti
et al., 2018) and less frequently onmore remote familymembers, such
as great-grandmothers or second cousins (Kuchen et al., 2020).

Enabled by our automated approach, we calculated the correlation
between cell cycle duration in lineages captured for >8 generational
depths, extending previous studies (Sandler et al., 2015; Chakrabarti
et al., 2018; Kuchen et al., 2020) using the enhanced depth, breadth
and number (5,032 trees) of automatically reconstructed lineages in
our tree pool. If the cell cycle duration is not controlled in a heritable
fashion, we would expect poor cycling correlations across inter-
generational (generationally unequal) as well as intra-generational
(generationally equal) family relationships (Figure 8A).

Our analysis revealed moderate correlations in immediate
inter-generational relationships (Pearson and Spearman rank
coefficients of 0.43 and 0.51, respectively between 11,696
reference and mother cell pairs), which rapidly decreased over
2–3 rounds of division (Figure 8B). Such diminishing ancestral
correlations would be strongly indicative of cell cycle duration
inheritance being a stochastic event, as previously speculated
(Sandler et al., 2015). Alternatively, this behaviour could also
indicate that the accumulation of noise across inter-generational
lineage relationships represents a very rapid process.

Our analysis confirmed a previously observed trend of highly
synchronised cell cycling durations in sister cell pairs (Pearson
and Spearman rank coefficients of 0.65 and 0.71, respectively
between 14,380 sister cells examined). In addition, our analysis
revealed that intra-generational correlations remained above 0.5
in 1st and 2nd cousins. Over five generations, intragenerational
correlations became progressively less marked but remained
consistently larger than inter-generational correlations.

FIGURE 8 | Large-scale multigenerational analysis of single-cell cycling durations. (A) Illustrative lineage tree showing 20 types of family relationships of a reference
cell (bold) to its lineage relatives determined using our automated approach. The tree captures extended kinships on ancestral (inter-generational; generationally unequal)
to fourth cousin span (intra-generational; generationally equal). Strength of the branch colour shading illustrates the generational distance to nearest common ancestor
between family member and reference cell. (B)Cycling length correlations in cell lineages. intra-generational (red) correlations appear to be consistently higher than
the inter-generational (cyan) correlations in directly ancestral branches. Pearson (dotted) and Spearman (dashed) rank correlation coefficients with 95% confidence
interval (CI) are shown for selected relationship pairs as in the lineage tree schematic, categorised according to the generational distance to first common ancestor.
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Our results derived from high-replicate lineage data are in good
agreement with previously published studies, using manually
annotated data (Sandler et al., 2015; Chakrabarti et al., 2018;
Kuchen et al., 2020). Overall, the data provide additional evidence
that cycling length is correlated across longer-range relationships (4
and 5 generations to nearest common ancestor) than previously
examined. These long-term correlations may suggest heritability in
cell cycle durations, as proposed by others (Mura et al., 2019).
However, it is possible that, as culture conditions evolve with time
(nutrients become depleted and cells more confluent), the highly
correlated behaviour between same generation family members
represents a consequence of environmental synchronisation.
Further experiments are needed to discriminate between these
hypotheses.

4 DISCUSSION

We developed an easy-to-use, open-source Python package to enable
rapid and accurate reconstruction of multi-generational lineage trees
from large datasets without time-consuming manual curation. We
show that the addition of cell state information into a probabilistic
single cell tracking framework improves multi-generational lineage
tree reconstruction over other approaches. Our software enables users
to characterise population-level relationships with single-cell
resolution from time-lapse microscopy data in an unsupervised
manner. As a demonstration of our fully automated approach, we
extend the cell cycling analysis to family relationships which could not
be previously examined in (semi-) manual annotation-dependent
studies (Sandler et al., 2015; Chakrabarti et al., 2018; Kuchen et al.,
2020) due to lack of experimental data. We envisage our tracking
software could further be applied to analysis of (cancer) stem cell
identification in tissues, detection of differentiation and/or
reprogramming success in populations, studying of cell cycle
control mechanisms in cell lineages and dynamic high-throughput
screens of various pharmaceutical compounds with live-cell imaging.
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Diffusion State Transitions in
Single-Particle Trajectories of MET
Receptor Tyrosine Kinase Measured
in Live Cells
Johanna V. Rahm1, Sebastian Malkusch2, Ulrike Endesfelder3,4, Marina S. Dietz1 and
Mike Heilemann1*

1Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany, 2Institute of Clinical Pharmacology,
Goethe University, Frankfurt, Germany, 3Department of Physics, Carnegie Mellon University, Pittsburgh, PA, United States,
4Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

Single-particle tracking enables the analysis of the dynamics of biomolecules in living cells
with nanometer spatial and millisecond temporal resolution. This technique reports on the
mobility of membrane proteins and is sensitive to the molecular state of a biomolecule and
to interactions with other biomolecules. Trajectories describe the mobility of single particles
over time and provide information such as the diffusion coefficient and diffusion state.
Changes in particle dynamics within single trajectories lead to segmentation, which allows
to extract information on transitions of functional states of a biomolecule. Here, mean-
squared displacement analysis is developed to classify trajectory segments into immobile,
confined diffusing, and freely diffusing states, and to extract the occurrence of transitions
between these modes. We applied this analysis to single-particle tracking data of the
membrane receptor MET in live cells and analyzed state transitions in single trajectories of
the un-activated receptor and the receptor bound to the ligand internalin B. We found that
internalin B-bound MET shows an enhancement of transitions from freely and confined
diffusing states into the immobile state as compared to un-activated MET. Confined
diffusion acts as an intermediate state between immobile and free, as this state is most
likely to change the diffusion state in the following segment. This analysis can be readily
applied to single-particle tracking data of other membrane receptors and intracellular
proteins under various conditions and contribute to the understanding of molecular states
and signaling pathways.

Keywords: single-particle tracking, single-trajectory analysis, membrane receptors, MET receptor, single-molecule
imaging, diffusion states

INTRODUCTION

Cells sense their environment through membrane proteins, and extracellular stimuli are translated
into intracellular signaling cascades and a cellular response. This process often begins with ligands
that bind to membrane receptors, induce receptor oligomerization, and recruit other proteins such as
co-receptors. The formation of receptor oligomers and signaling platforms reduce the receptor
mobility and change its diffusion behavior (Stone et al., 2017; Dietz and Heilemann, 2019). Single-
particle tracking (SPT) is a method to measure and to reveal subtle changes in the diffusion of
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membrane receptors in cells and at the molecular level (Manzo
and Garcia-Parajo, 2015; Shen et al., 2017). SPT requires low
molecular densities, in order to allow single-molecule detection
and assignment of these into single-protein trajectories. Such low
molecular densities can be achieved by substoichiometric
labeling, by the introduction of a photoactivatable fluorophore,
or by using transiently binding labels that specifically target the
membrane protein (Manley et al., 2008; Giannone et al., 2010).
SPT provides information on diffusion coefficients and on the
type of motion, i.e. free diffusion, spatially confined movement,
and immobile particles (Michalet, 2010). It may also occur that a
molecule switches between different diffusion states within a
single trajectory; such transitions can be analyzed by
comparing the experimental dataset to Monte Carlo
simulations (Wieser et al., 2008), using hidden Markov models
(Persson et al., 2013; Sungkaworn et al., 2017; Liu et al., 2019),
analytic diffusion distribution analysis (Vink et al., 2020), local
MSD exponent values (Hubicka and Janczura, 2020), and
unsupervised Gibbs sampling (Karslake et al., 2021).

Receptor tyrosine kinases (RTKs) constitute a family of
membrane receptors comprising 58 different proteins
(Lemmon and Schlessinger, 2010). One subfamily is the MET
receptor family containing the hepatocyte growth factor receptor,
also known as MET. MET was first discovered as an oncogene in
1984 (Cooper et al., 1984). The role of MET together with its
physiological ligand hepatocyte growth factor/scatter factor
(HGF/SF) is manifold: It is essential in embryogenesis, is
involved in growth, and regulates cell migration (Bladt et al.,
1995; Schmidt et al., 1995; Uehara et al., 1995). MET
overexpression was found to be of relevance in several cancers
and is targeted in cancer therapy (Ichimura et al., 1996; Goyal
et al., 2013; Mo and Liu, 2017). Next to its canonical ligand HGF,
MET is targeted by the surface protein internalin B (InlB)
secreted by the pathogenic bacterium Listeria monocytogenes
that causes human listeriosis (Braun et al., 1998). InlB triggers
similar cellular responses as HGF/SF and induces bacterial
invasion into hepatocytes (Dramsi et al., 1995; Shen et al.,
2000; Niemann et al., 2007).

Here, we apply a segmentation analysis to single-molecule
trajectories of un-activated and InlB-bound MET and extract
the diffusion states and transitions between these diffusion
states. To follow activated MET, we used the N-terminal
internalin domain of InlB (InlB321) that binds to the
extracellular domain of MET and induces MET
phosphorylation (Banerjee et al., 2004; Niemann et al., 2007;
Ferraris et al., 2010; Dietz et al., 2013), and that we used in
previous work to measure the diffusion of MET in living HeLa
cells with single-particle tracking (Harwardt et al., 2017). We
found that MET bound to InlB diffuses slower than resting
receptors and that the immobile population increases. This
immobilization was assigned to interactions with the actin
cytoskeleton as well as to recruitment of MET to endocytosis
sites. Using a segmentation approach, we now present an
extended analysis of these data by taking into account that
single receptors may switch between different diffusive states
within single trajectories. For this analysis, single trajectories
were divided into segments showing uniform movement. These

segments were analyzed separately with regard to their diffusion
mode (free, confined, immobile) (Rossier et al., 2012; Harwardt
et al., 2017; Orré et al., 2021). In addition, we extracted the
transitions between different segments within single
trajectories, which report on functional transitions of the
MET receptor signaling complex. For MET, we found that
upon InlB activation the immobile state becomes more stable
and transitions into immobile states occur more often. The
confined diffusion state acts as an intermediate state between
immobile and free, as this state is most likely to change the
diffusion state in the following segment. This straight-forward
analysis routine can be transferred to SPT data of other
biological targets.

METHODS

Data Acquisition
The SPT data used within this study, together with
experimental details on data acquisition and sample
preparation, were previously published (Harwardt et al.,
2017). In brief, the universal point accumulation for
imaging in nanoscale topography (uPAINT) method
(Giannone et al., 2010) was applied to measure the
dynamics of the MET receptor in living HeLa cells. For the
resting receptor, an ATTO 647N-labeled, non-activating Fab
antibody fragment was used. The ligand-bound state was
probed using the InlB321 ligand site-specifically labeled with
ATTO 647N which was fully functional (Dietz et al., 2013;
Dietz et al., 2019). Imaging was performed in total internal
reflection fluorescence (TIRF) mode using an N-STORM
microscope (Nikon, Japan). For both un-activated MET and
InlB-bound MET, 60 cells were analyzed.

Single-Molecule Localization
The MET receptor was targeted with fluorescent labels and its
position in a cell membrane determined by analyzing image
stacks with the ThunderSTORM plugin (version dev-2016-09-
10-b1) (Ovesný et al., 2014) implemented in the image processing
program Fiji (Schindelin et al., 2015). Camera settings were
adjusted according to the manufacturer’s manual and the base
level was estimated by averaging the pixel intensity with the
shutter closed. Deviations from ThunderSTORM default settings
are the chosen fitting method “maximum likelihood”, activated
“multi-emitter fitting analysis” with a “maximum numbers of
molecules per fitting region” of 3 and a “limit intensity range”
spanning the 2-sigma interval of the photon distribution in log-
space, extracted from detected emitters with “multi-emitter fitting
analysis” disabled. The localizations were filtered by applying
“remove duplicates”.

Single-Particle Tracking
Trajectories of MET receptors were obtained by loading single-
molecule localization data provided by ThunderSTORM into the
swift tracking software (version 0.4.2) (Endesfelder et al.,
manuscript in prep). Parameters for swift analysis were
determined using the SPTAnalyser software. A detailed
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description is added to the manual at https://github.com/
JohannaRahm/SPTAnalyser. The parameters “diffraction_limit”
� 14 nm, “exp_displacement” � 85 nm (Fab)/75 nm (InlB), “p_
bleach” � 0.010 (Fab)/0.014 (InlB), and “p_switch” � 0.01 were set
globally for all cells. The parameters “exp_noise_rate” and
“precision” were calculated individually per cell. swift divides
trajectories into segments if the diffusion behavior of the particle
changes.

Diffusion State Analysis
The diffusion state analysis was performed with SPTAnalyser.
Diffusion coefficients of individual segments were calculated by
optimizing the parameters of a linear diffusion model on the basis
of the first four time steps of the mean squared displacement
using the method of least squares (Eq. 1). Segments with a
diffusion coefficient below 0 were discarded.

MSD(Δt) � 4DΔt (1)

Segments with a minimum length of 20 frames (400 ms) were
classified into diffusion states as previously reported (Rossier et al.,
2012; Harwardt et al., 2017; Orré et al., 2021). First, the segments
were separated into immobile and mobile diffusion applying a
diffusion coefficient threshold Dmin. The threshold is derived from
the dynamic localization error (Eq. 2) which was calculated for
each cell, with average values ofMSD(0) and diffusion coefficient D
(Savin and Doyle, 2005; Michalet, 2010). The third quartile was
used to determine Dmin (Eq. 3), where n is the number of time steps
used in the linear model to extract the diffusion coefficient. All
segments with a diffusion coefficient below Dmin � 0.0028 μm2/s
were classified as immobile.

σdyn �
�������������������
〈MSD(0)〉 + 4

3 〈D〉 · dt
4

√
(2)

Dmin �
σ2
dyn

4·n·dt (3)

Mobile segments were separated by fitting 60% of the MSD
plot with Eq. 4, where rc is the confined diffusion radius and τ is a
time constant. Segments with τ smaller than half the time interval
used to compute the MSD (120 ms) are classified as confined
diffusion, and values higher than that as free diffusion.

MSD(Δt) � 4
3
r2c · (1 − e−Δt/τ) (4)

Transition Counting
For each single trajectory in which at least two segments were
identified, the transition of the diffusion state between the segments
was determined. For the three diffusion states of immobile (i),
confined (c), and freely diffusing (f) particles, nine different
transitions are distinguished: i-i, i-c, i-f, c-i, c-c, c-f, f-i, f-c, f-f.
Segments with a length of less than 20 frames, or with a negative
diffusion coefficient, were not classified. Transitions between a
classified and an unclassified segment were neglected. Unclassified
segments that occurred between two classified segments, and that
had a length of up to 19 frames, were masked, and the transition

between the segment before and after the unclassified segment was
considered in the analysis. This means that all segments that were
shorter or equal than the mask length of 19 frames were removed
from the trajectories, and that transitions between the preceding
and the succeeding segment were counted. The mask value was
synchronized to the minimum length a segment must exceed to be
classified into a diffusion state. Transition counts were normalized
per cell and summed to one to compare the occurrences of
transition types. Transition counts were normalized per
diffusion state so that the counts of transition types proceeding
from the same diffusion state summed up to one to compare the
occurrences of diffusion states in adjacent segments.

Statistical Analysis
Mean values are listed with respective standard errors of the
mean (SEM). Mean values and SEMs were determined for each
cell and globally averaged. Nonparametric tests were chosen as
populations partly rejected the hypothesis of being normally
distributed (tested with the Shapiro-Wilk test for normality,
significance level � 0.05). Wilcoxon signed rank tests were used
to validate the comparison of distributions within a treatment
group (Supplementary Tables S2, S5). Mann-Whitney U tests
were used to validate the comparison of distributions from two
treatment groups (Supplementary Tables S1, S3, S4, S6). Levels
of significance were classified as follows: p > 0.05 no significant
difference (n.s.), p < 0.05 significant difference (*), p < 0.01 very
significant difference (**), p < 0.001 highly significant difference
(***). All tests were performed with SciPy (version 1.6.2)
(Virtanen et al., 2020).

Simulations
To evaluate the error rate of the diffusion state classification,
simulations of single-particle trajectories were performed. For
this purpose, the software ermine (Estimate Reaction-rates by
Markov-based Investigation of Nanoscopy Experiments) was
used to create simulations of trajectories of freely diffusing
particles. The probability distribution was defined by the
expectation value of the mean squared displacement r within
a timestep t (Eq. 5). The apparent mean squared displacement r
was calculated based on the apparent diffusion coefficientD and
the static error ε (Savin and Doyle, 2005) (Eq. 6). In order to
match the simulation close to the experimental data, the
following parameters were chosen: for D, the average
diffusion coefficient of 0.12 μm2/s of the mobile population
(confined and free) was used, t corresponds to the camera
integration time of 0.02 s, τ to the time lag between two
consecutive frames of 0.02 s, and ε to the average localization
error of 29 nm.

p(r|〈r2〉) � 2r
〈r2〉 · e

−( r2

〈r2〉
)

(5)

〈r2〉 � 4D(t − τ

3
) + 4ε2 (6)

The error rate of the diffusion state classification model was
estimated by classifying the simulated trajectories of freely
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diffusing particles into confined or free by fitting their MSD
values with Eq. 4 (seeDiffusion State Analysis Section). The false
negative rate was calculated as the number of confined classified
trajectories divided by the sum of confined and free classified
trajectories.

Availability
The analysis procedure introduced in this work can be straight-
forward applied to other single-particle tracking data.
Localizations can be detected with rapidSTORM (Wolter
et al., 2012) or ThunderSTORM (Ovesný et al., 2014) and
connected to trajectories with swift. Swift version 0.4.2, used
in this manuscript, and all subsequent versions of the swift
software, as well as documentation and test data sets, can be
obtained on the swift beta-testing repository (http://bit.ly/
swifttracking). The home-written software SPTAnalyser in
Python (3.7.6) estimates parameters for tracking with swift
and executes diffusion state analysis and transition counting.
SPTAnalyser has a graphical user interface with adaptable
analysis parameters and assists in processing large amounts
of data by creating macros for ThunderSTORM and batch files
for swift. SPTAnalyser is compatible with PALMTracer
(Bordeaux Imaging Center), which is a software for
localization and tracking available as a plugin for
MetaMorph (Molecular Devices, Sunnyvale, CA, USA). The
source code of SPTAnalyser, together with a detailed manual, is
available from https://github.com/JohannaRahm/SPTAnalyser.
Simulations of trajectories of freely diffusing particles were
conducted with ermine version 0.1 (https://github.com/
SMLMS/ermine-tutorial).

RESULTS

Extraction of Different Diffusion States
Within Single-Molecule Trajectories
We developed a data analysis workflow that extracts transitions
between diffusion states from single-particle trajectories
(Figure 1A, Supplementary Figure S1). We applied this
analysis to single-particle tracking data of MET receptors in
live HeLa cells recorded using the uPAINT principle
(Giannone et al., 2010). For that purpose, MET receptors were
either labeled with a monoclonal Fab fragment, which binds to
but does not activate the receptor, or with the bacterial ligand
InlB, which binds and activates the receptor (Figure 1B). Both
ligands were conjugated to the fluorophore ATTO 647N. The
positions of the fluorophore labels were measured in live cells
using TIRF microscopy and subsequently linked to trajectories
(Figure 1A). Individual trajectories were divided into segments
that exhibited uniform motion. Segments were classified as
immobile (i), confined (c), and freely diffusing (f) states and
transitions between diffusion states within single trajectories were
analyzed.

Segments of single trajectories of Fab- and InlB-bound
receptors exhibit different properties in terms of their
mobility, population of diffusion states, lengths, and
confinement radii (Figures 1C–F). Diffusion states (free,
confined, immobile) were determined by analyzing the MSD
plots of the segments (for details see Methods). The diffusion
coefficients of the InlB/MET complexes are significantly smaller
compared to Fab/MET for the confined (DInlB � 0.051 ±
0.003 μm2/s vs DFab � 0.094 ± 0.007 μm2/s) and free (DInlB �

FIGURE 1 | Analysis pipeline of single-particle tracking data of the METmembrane receptor. (A) Diffraction limited signal of membrane-bound fluorescently labeled
receptors is localized with subpixel accuracy (scale bar 1 μm) (left). Localizations are connected over time to trajectories and changes in diffusion behavior within a
trajectory give separated segments (schematic scale bar 100 nm) (middle). Segments are classified into the diffusion states immobile (blue), confined (green), and free
(orange) (right). Gray segments are below the necessary length to be classified and have no diffusion state label. Transitions between diffusion states are counted.
(B) Membrane bound MET receptors are labeled extracellularly with a monoclonal Fab fragment that binds but does not activate and with InlB that binds and activates
the receptor. Both ligands carry ATTO 647N as a fluorescent label. The movement of bound labels is detected and analyzed. The segment properties (C) diffusion
coefficient, (D) population of diffusion states, (E) segment length, and (F) confinement radius are displayed as violin plots; dashed lines mark the quartiles. For each
condition, Fab (blue) and InlB (gray), the average segment values of 60 cells are displayed.

Frontiers in Computer Science | www.frontiersin.org November 2021 | Volume 3 | Article 7576534

Rahm et al. State Transitions in Protein Trajectories

39

https://paperpile.com/c/3upMQk/rkJi
http://bit.ly/swifttracking
http://bit.ly/swifttracking
https://github.com/JohannaRahm/SPTAnalyser
https://github.com/SMLMS/ermine-tutorial
https://github.com/SMLMS/ermine-tutorial
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


0.084 ± 0.003 μm2/s vs DFab � 0.134 ± 0.004 μm2/s) population
(Figure 1C). The diffusion coefficients for the immobile
populations are smaller than the precision of the method and
result from segments below the detection limit of mobility (see
Methods). Upon activation with InlB, the population of the freely
diffusing particles is reduced and driven towards the immobile
state (Figure 1D). Segment lengths are drastically shorter for
confined segments compared to the other two diffusion states
(Figure 1E). For example, in InlB-treated cells, a segment
classified as confined diffusion lasts an average of 0.64 ± 0.02 s
compared to 1.19 ± 0.03 s for immobile and 1.00 ± 0.04 s for a free
diffusion. InlB-bound receptors generally move in a more
confined manner, as confinement radii calculated for the
confined and free populations are smaller compared to un-
activated MET (Figure 1F). Interestingly, the confinement
radii of the free diffusion state are in the order of magnitude
of the cell sizes.

To evaluate the accuracy of the classification model, simulated
trajectories of freely diffusing particles were classified. An error
rate was calculated from freely diffusing particles particles that
were classified as confined diffusion (Supplementary Figure S2).
This error rate decreased with increasing trajectory length. In
addition, trajectories of freely diffusing particles were simulated
with number and trajectory length corresponding to the
distribution of trajectories in the Fab experiments, resulting in
an error rate of 15%. This suggests the possibility that trajectories

of freely diffusing particles contribute to the confined population
and reduce the average trajectory length, as a misclassification is
more likely with shorter trajectories.

The number of transition events observed for all
trajectories of a cell is 184 ± 11 within a measurement
period of 20 s. Compared to the average number of 1440 ±
90 trajectories per cell, this number appears relatively
small, which is because such events rarely occur within the
observed time window of a trajectory (1.36 ± 0.06 s). More
transition events occur in longer trajectories (Supplementary
Figure S1A). However, 70% of the trajectories do not change
their diffusion mode and consist of only one segment
(Supplementary Figure S1B). The number of transition
counts increases by up to 30% by masking unclassified
segments, i.e. segments with a length below the threshold
of 20 frames. For this, the transitions of adjacent segments
with a defined diffusion state around the masked segment are
counted. Without masking, the average is 22.2 ± 0.6% of
transitions between segments with a defined diffusion state.
With masking, this value is increased to 71.6 ± 0.7%
(Supplementary Figure S1C). Mostly no significant
changes are observed between the relative frequencies of
transitions when masking or without masking
(Supplementary Figures S1D,E). Only transitions between
immobile and free diffusion benefited slightly less from
masking than those of the other transition types.

FIGURE 2 | Single-molecule trajectories and quantification of transitions within trajectories. Single-molecule trajectories of (A) Fab-bound and (B) InlB-bound MET
receptors within exemplary cells. Diffusion states of segments are highlighted in colors (free: orange, confined: green, immobile: blue). Highlighted regions in the overview
images are shown as zoom-ins (right). In the zoom-ins only trajectories showing at least one transition are displayed. Scale bars 5 μm, zoom-ins 1 μm. Violin plots of the
nine different diffusion state transitions between segments within trajectories in (C) Fab-bound and (D) InlB-bound cells (i � immobile, c � confined, f � free). Counts
are normalized to one per cell. For each condition 60 cells were analyzed. Dashed lines mark the quartiles, crosses correspond to the means.
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METReceptor ActivationWith InlB Changes
Diffusion State Transitions Between
Segments
Segments of single-molecule trajectories of Fab-bound as well as
InlB-bound MET receptors were classified into freely diffusing,
confined moving, and immobile particles as described above.
Exemplary cells with color-coded segments are shown in
Figures 2A,B for resting and activated MET, respectively. In
the zoom-ins only trajectories with at least one transition are
displayed. In InlB-treated cells, the number of confined and
especially immobile segments increases in comparison to Fab-
treated cells, while at the same time the occurrence of freely
diffusing particles is significantly lower. In addition, an
increased confinement of InlB-bound receptors is visible.
These observations are in accordance with the increased
fractions of immobile and confined receptors (Figure 1D)
and the decreased confinement radius of InlB-bound MET
trajectories.

In the next step, we quantified the probability of specific
transitions between segments in individual trajectories (Figures
2C,D). From this analysis, we found a probability of 22 ± 1% for
Fab-bound receptors and 42 ± 2% for InlB-bound receptors that
an immobile particle stays immobile. A similar observation is
made for freely diffusing receptors, which mainly stay in this
diffusion state (Fab: 31 ± 2%, InlB: 13.2 ± 0.8%). Homogeneous
transitions of the confined diffusion state are less probable (Fab:
2.2 ± 0.3%, InlB: 2.6 ± 0.2%). This is interesting, as the confined
and immobile states for Fab-bound receptors (immobile: 15.6 ±
0.5%, confined: 17.4 ± 0.4%) are nearly equally populated
(Figure 1D), but significantly less homogeneous transitions
occur in the confined population. Regarding heterogeneous
transitions, transitions from free to immobile (Fab: 11.4 ±
0.4%, InlB: 9.8 ± 0.3%), immobile to free (Fab: 8.9 ± 0.4%,
InlB: 9.1 ± 0.3%), and confined to free for Fab-bound MET
(6.3 ± 0.4%) and confined to immobile for InlB-bound MET
(8.2 ± 0.3%) are most frequent.

Interestingly, when comparing the frequencies of transitions
between resting and InlB-bound MET receptors they mostly
differ highly significantly (Supplementary Figure S2). Only
the transitions from immobile to free and from confined to
confined do not change significantly. The transition from
immobile to immobile segments, from immobile to confined
segments, as well as from confined to immobile segments
increases for the activated cells. At the same time, transitions
to the freely diffusing state occur less probable out of the InlB-
activated state.

To visualize the differences between the different diffusion
states, we normalized the transitions with regard to the
respective diffusion state (Supplementary Figure S3). For
both, Fab-bound and InlB-bound MET receptor trajectories,
it clearly shows that the immobile and the free state are
relatively stable diffusion states, which we infer from the high
probability that an immobile particle stays immobile in the
next segment and a freely diffusing molecule remains freely
diffusing (Supplementary Figures S3 A,B). The confined
state appears to be a more intermediate state: a confined

diffusing receptor very likely changes its diffusion state in the
next segment, either getting immobilized or switching to free
diffusion. When comparing resting and InlB-activated MET
mobility most transitions significantly change
(Supplementary Figure 3C). Transitions towards the
immobile state become more likely and to the freely
diffusing state less probable in activated cells. The
transitions involving the confined diffusing state change
less significantly.

DISCUSSION

We report an analysis method for single-particle tracking data
that resolves segments of different diffusional states within single
trajectories. The method is sensitive to report segments of free,
confined, and immobile states within single trajectories, and
transitions between these diffusion states. This allowed us to
relate dynamic information on protein mobility to functional
states of a protein in a membrane, e.g. the immobilization upon
binding of a ligand to a receptor. This additional information
from single-particle tracking data complements the available
portfolio on analyzing mobility data of single proteins (Rossier
et al., 2012; Calebiro et al., 2013; Ibach et al., 2015; Sungkaworn
et al., 2017).

As a showcase example, we investigated the diffusion of
the MET receptor in living HeLa cells by analyzing available
single-particle tracking data of resting and InlB-activated
MET (Harwardt et al., 2017). Our analysis reports similar
diffusion coefficients for resting and InlB-bound MET. In
addition, we were able to segment trajectories and to reveal
transitions between diffusion states within single trajectories;
this information was so far averaged out by a global MSD
analysis of single-particle trajectories. The analysis of
segments in single MET receptor trajectories revealed that
upon activation, MET transits from a free diffusion state to
confined and immobile states and the immobile state becomes
more stable, which is in line with the canonical model of
receptor tyrosine kinase activation and internalization (Li
et al., 2005; Chung et al., 2010). Interestingly, we found
that the confined state has a short lifetime which is
reflected in the segment lengths as well as the transition
probabilities. This diffusion state can be seen as an
intermediate state of MET. Upon entry into this state, it is
probable that the receptor is soon either immobilized, e.g.
prior to endocytosis, or returns to a highly mobile state, e.g.
searching for interaction partners.

Our analysis procedure can be applied to single-particle
tracking data of other molecules and provides straight-forward
access to transitions in the mobility of proteins that can be
related to functional states. Future developments may focus on
extending the trajectory length and extracting the kinetics of
transitions within single trajectories. This could be achieved by
either using more stable fluorescent probes such as quantum
dots (Hagen et al., 2009; Li et al., 2012; Cognet et al., 2014), or
by recording single-molecule data with very low illumination
intensity and in combination with image analysis-assisted
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localization through e.g. denoising algorithms (Kefer et al.,
2021). Another exciting extension is dual-color SPT (Wilmes
et al., 2015, 2020), which in combination with segmentation
analysis may relate changes in diffusion states to molecular
interactions such as the formation of transient complexes
between two receptors.
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Image Processing Filters for Grids of
Cells Analogous to Filters Processing
Grids of Pixels
Robert Haase 1,2*

1Bio-image Analysis Technology Development Group, DFG Cluster of Excellence “Physics of Life”, Technische Universität
Dresden, Dresden, Germany, 2Center for Systems Biology Dresden, Dresden, Germany

Intra- and extra-cellular processes shape tissues together. For understanding how
neighborhood relationships between cells play a role in this process, having image
processing filters based on these relationships would be beneficial. Those operations
are known and their application to microscopy image data typically requires programming
skills. User-friendly general purpose tools for pursuing image processing on a level of
neighboring cells were yet missing. In this manuscript I demonstrate image processing
filters which process grids of cells on tissue level and the analogy to their better known
counter parts processing grids of pixels. The tools are available as part of free and open
source software in the ImageJ/Fiji and napari ecosystems and their application does not
require any programming experience.

Keywords: image processing, cells, tissues, region adjacency graphs, spatial analysis, imagej, Fiji, napari

1 INTRODUCTION

Forces between intra-cellular structures, groups of cells and external structures are involved in
forming an organism (Stern, 2004; Rauzi et al., 2008; Benton et al., 2013; Münster et al., 2019; Bhide
et al., 2020). Processing images using filters for segmenting and analysing sub-cellular structures and
cells is a common task for bio-image analysts. Furthermore, the concept of grouping pixels into
superpixels for further analysis is well known in computer vision (Ren andMalik, 2003). Thus, it is at
hand to process groups of pixels which represent cells and thus, sub-entities of images. Quantitative
measurements derived from those digital representations of individual cells can deliver insights
about a cells’ identity. However, such measurements may not fully capture important aspects of
tissue formation because of their spatially constrained nature. A cells’ identity might depend on
properties of neighboring cells (Toth et al., 2018). To unravel physical principles on tissue level, it is
worthwhile to formulate image processing filters taking numeric parameters, such as quantitative
measurements, of cells and cell-neighbors into account analogously to classical image processing
filters taking the intensity of pixels and their neighbors as input.

Most image processing software packages are limited to process imaging data on pixel level
using filters. Filters are defined as numerical operations which consume an image to produce
another image. Images can be seen as grids of rectangular shaped picture elements, pixels, in 2D
or volume elements, voxels, in 3D. Typically, filters take the neighboring pixels of every pixel into
account to produce a new pixel value. For example, the mean average filter computes the average
intensity of pixels around every pixel and saves the resulting value for each pixel in the new
image. In common image processing software, various neighborhood specifications are used:
Pixels touching a given reference pixel in corners, edges and voxels touching the given voxel in a
plane can be seen as directly touching neighbors. Furthermore, pixels/voxels within a
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rectangular/cuboidal or ellipsoidal shaped region with given
radii around the reference pixel form the proximal
neighborhood. Some image processing libraries also offer
customizing neighborhood definitions to specific needs.
Such a definition is then referred to as structuring element
or footprint of a filter.

Combining pixels to objects is common practice and
quantification of parameters of objects, such as size and
shape, is straightforward. With that, we can visualize
parameters of objects as intensity in images, so called
parametric images. For example, a parametric image can
show large objects with a higher intensity and small objects
with a lower intensity. Objects can be cells and thus, studying
quantitative parameters of cells in parametric images is
straightforward. Studying relationships between cells in
such parametric images is more complex and requires some
form of so called region adjacency graph (RAG), an abstract
representation of neighborhood relationships between cells.
For example, measuring the mean area of cells in a given
neighborhood around each cell requires determining the RAG
of all cells in the tissue and then averaging the area of
neighboring cells for each cell. If this would be
straightforward, one could think of selecting all cells in a
tissue which for example are smaller than the average area
minus two times the standard deviation of the area of cells in a
given neighborhood. In a more advanced setting, cell
classification algorithms could take properties of cells into

account that are within a given radius around the cell of
interest. Image analysis workflows could benefit from
incorporating such operations on tissue level and thus,
might enable new perspectives when studying for example
tissue development.

Software libraries in R and Python for processing RAGs,
such as SPIAT (Yang et al., 2020) and NetworkX (Hagberg
et al., 2008), are accessible to an audience with programming
experience and offer powerful approaches to study spatial
relationships between cells. Widely used open source tools
with graphical user interfaces for processing quantitative
measurements of cells and their neighbors such as CytoMap
(Stoltzfus et al., 2020) typically operate on tabular data and are
not integrated in image processing software. Another software
package for digital pathology, QuPath (Bankhead et al., 2017),
supports similar tools and is limited to two dimensional image
data. Thus, the even though operations on RAGs in the cell/
tissue context are well known, their application as general
purpose tools for processing information between three
dimensional cells were yet missing. In this article I present
filters for processing objects such as cells, their neighbors and
quantitative information derived from them targeting general-
purpose use-cases. These filters can process two- and three-
dimensional image data and are available for users without
programming experience in the ImageJ/Fiji (Schneider et al.,
2012; Schindelin et al., 2015) and napari (Sofroniew et al.,
2020) ecosystems.

FIGURE 1 | Neighborhood relationships of pixels (A) and cells (B): Pixels and cells sharing edges can be considered “touching” neighbors. Cells and pixels with a
centroid distance below a given threshold can be considered “proximal” neighbors.
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FIGURE 2 | Comparison between filters for binarizing an image on a grid of pixels (A) and a grid of cells (B). Both can be used analogously: When applying a mean
average filter on a pixel-grid, the intensities of neighboring pixels are averaged. In case of a cell-grid, intensities of cells in a given parametric image are averaged locally to
make a new parametric image. The associated label image serves as representation of the region adjacency graph of the cells. Binary image processing filters such as
erosion and dilation work analogously, also on the same region adjacency graph expressing neighborhood relationships between cells.

FIGURE 3 | Application of the mode filter to a binary parametric image. Starting from a cell grid shown as label image (A) and a corresponding imperfect
classification shown as binary parametric image (B), the application of mode filter of proximal cells within a radius of 80 pixels (C) can be used to locally correct
classification results. Note that the cells are no hexagons. The simulated tissue consists of cells with variable shape, position and size.

Frontiers in Computer Science | www.frontiersin.org November 2021 | Volume 3 | Article 7743963

Haase Image Processing Grids of Cells

46

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


2 METHODS

Analogously to image processing filters taking pixel intensities
into account, filtering RAGs of cells is feasible. For example, when
applying a mean average filter on neighboring cells, the filter
could average the intensity, or any other quantitative parameter,
of neighboring cells within a certain region and store the resulting
value in the corresponding cell of the resulting image. This way
you can combine context specific information and any other
neighbourhood properties. As for those filters on tissue level the
RAG needs to be taken into account, a visual representation of the
RAG is required for a user friendly interface. Label images can be
used as convenient visual representation of RAGs. Label images
are also based on pixel grids and are used to label objects, e.g. with
numbers. Thus, in the case of processing images of tissues, a label
image could have intensity values numerating the cells. A given
pixel intensity 1 means the pixel belongs to cell 1. A label image
containing n cells can have pixel intensities ranging from 0 to n,
with 0 representing background or empty space between cells.
From a label image it is straightforward to retrieve an RAGs
following the above specified neighborhood definitions, for
example by searching the label image for adjacent pixels with
different label values. If there are two neighboring pixels with
labels 1 and 2, obviously the cells 1 and 2 are adjacent. In the
following, that case will be referred to as “touching neighbors”. As
mentioned above, touching neighbors are also defined for pixel
grids and thus, the analogy between pixel-based image processing
filters and cell-based filters is obvious. For determining if cells are
within a given circular neighborhood, the centroids of the cells
can be used to compute their distances to each other and to derive
an RAG based on cell-cell centroid distances below a given

threshold. This case can be referred to as “proximal
neighbors”. Two examples for touching and proximal pixels
and cells are given in Figure 1. An example workflow
applying filters to touching neighbors for the purpose of image
segmentation in grids of pixels and grids of cells is shown in
Figure 2. Furthermore, for the sake of completeness, when
studying relationships between segmented objects such as cells,
another type of adjacency is commonly used: n-nearest
neighbors. Also in this case, centroids of the cells can be used
to determine a given number of cells that are adjacent to every cell
in a given label image.

The proposed implementation offers so called label neighbor
filters for processing labeled objects such as cells. The filters
include local minimum, mean, maximum and standard deviation.
Those filters work analogously to filters operating on a pixel grid.
Furthermore, a filter for calculating the mode of neighbors on a
cell grid has been implemented. This filter can be used for post-
processing of cell classification results. If a classification algorithm
for labeled objects results in a classification that is not perfect and
rather noisy, the mode filter can reclassify the cells based on the
most popular adjacent cell classification. A synthetical use case for
this filter is shown in Figure 3.

Parametric images, e.g., showing shape, size and topological
parameters of cells in tissues, which can be processed using the
proposed filters can be generated using the CLIJ (Haase et al.,
2020b) and the MorpholibJ (Legland et al., 2016) libraries in the
ImageJ/Fiji ecosystem. Those parametric images are can also be
used within the python/napari ecosystem. For generating those
parametric images with python, programming experience is
necessary, e.g., to make use of the scikit-image (van der Walt
et al., 2014) library. Also other quantitative image processing

FIGURE 4 | Application of the mode filter to a classification result of cells in a developing Tribolium castaneum embryo. Starting from a given 3D image dataset (A)
and a label image representing the cell segmentation (B), cells can be classified into three classes. If the classification is noisy (C), application of the mode of proximal
neighbors filter can be used to determine the most popular class in each cell’s neighborhood (D).
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libraries can be used. The only constraint is that the parametric
images and label images must be available as numpy (Harris et al.,
2020) arrays.

To demonstrate the label neighbor filters with a realistic use-
case, cell classification in a developing Tribolium castaneum
embryo serves as example. Starting point is a three
dimensional data set of the embryo and a given cell
segmentation. A classifier based on average distances to
neighboring cells was trained to differentiate embryo, serosa
and a border region in between the two where possibly the
amnion will form later during development (Benton et al.,
2013). As visualized in Figure 4, the resulting classification is
a bit noisy. After filtering the cells for the mode of proximal
classes, the cell classification appears more organized spatially.
The border region between embryo and serosa can be identified
more clearly, which may be crucial for understanding the
differentiation of these tissues biologically.

The proposed user interfaces in ImageJ/Fiji and napari offer
a category of “Label neighbor filters” containing the above
introduced filters as shown in Figure 5 and Figure 6,
respectively. The tools are available to end-users as part
of the CLIJ2-assistant (Haase et al., 2020a) in Fiji and the

napari-pyclesperanto-assistant (Haase et al., 2021) in napari.
In Fiji, the tools can be installed by activating the “clij” and
“clij2″ update sites. The current development version of the
assistant can be installed by activating the “clijx-assistant”
update site. The napari-pyclesperanto-assistant can be
installed in napari using napari’s the plugin installer. The
napari plugin is also under development yet as napari itself
is in early developmental stage. Tools that are under
development should be used with care and we developers
highly value feedback to guide development of our tools in
the right direction. Both, the Fiji and the napari plugins,
execute the filters based on GPU-accelerated image
processing kernels of the CLIJ library. The filters are
available in an interactive fashion allowing the users to
change parameters, such as the maximum distance of cells
to be considered as proximal neighbors, and see the resulting
filtered parametric image in real time. Furthermore, in both
platforms the user can generate code that represents a
workflow as designed on screen and thus, enable
reproducibility of the workflow incorporating label neighbor
filters potentially together with classical image processing,
segmentation, analysis and visualisation steps.

FIGURE 5 | User interface in Fiji: The label neighborhood filters are available in Fiji via the CLIJ2-assistant user interface on a right-click. After clicking on the given
filter, a new window opens and a corresponding dialog where the user can fine tune parameters such as the maximum distance of cells to be considered in the filter as
neighborhood.
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3 DISCUSSION

The presented label neighbor filters fill a gap in the landscape of
available image processing techniques and build a bridge between
biologists, bio-image analysts and graph/network scientists. When
studying cells and tissues using computational methods,
interdisciplinary communication and terminology has to be chosen
carefully. Typically, experts studying measurements of cells on tissue
level speak about RAGs. Those graphs consist of nodes, which
represent cells, and edges which connect nodes and thus, represent
the adjacency/neighborhood relationship between cells. Edges could
also be seen as abstract representation of tight junctions between two
cells. Thus, cell-cell communication, via chemical signals or physical
forces, happens along the edge in computational models. While
understanding the concepts of graphs, nodes and edges appears
crucial from a computer science perspective, a biologist may think
more about how cells exchange proteins through their membranes. A
physicist may think about forces along cell membranes. Thus, it
appears worthwhile to remove any kind of field-specific
terminology from a given user interface and present the filters for
processing cells and tissues in a generic fashion. As the concepts also
work for objects that are no cells, the presented user interfaces use the
term “label images” as it is common in the image processing context.
Furthermore, while the proposed implementation of the label neighbor
filters is limited to basic descriptive statistics operations, the framework
is extensible via the ImageJ2 pluginmechanism (Rueden et al., 2017) in

Fiji. A solution for extending the napari infrastructure is on the way.
Contributions to the underlying open source projects are welcome.

When it comes to storing information such as neighborhood
relationships, choosing the right file format is crucial. NetworkX
supports a JSON-based file format, which is not compatible to any
ImageJ/Fiji or napari plugin at the time of writing this. On Fiji side,
plugins for managing lineage trees, which are in practice spatio-
temporal RAGs, can be managed using plugins such as Trackmate
(Tinevez et al., 2017) and stored as XML-based files. Due to the lack of
an accepted community standard for cross-platform file formats for
storing RAGs, and no available interactive graphical user interfaces for
managing those in the biological image processing context, the
proposed software uses label images as interchange format for
RAGs. Label images can be stored in manifold file formats such as
TIF and manipulated using various software packages including
plugins for ImageJ, Fiji and napari. The additional processing step
to retrieve an RAG from the label image can be neglected in our
implementation as processing is executed on graphic processing units
(GPUs). This operation can be parallelized and thus, fits well in the
scope of GPU-acceleration libraries such as CLIJ.

4 CONCLUSION

In this manuscript I presented filters for local filtering of quantitative
parameters of segmented and labeled cells within their local

FIGURE 6 | User interface in napari: Users can access the label neighborhood filters via the napari-pyclesperanto-assistant user interface. After clicking on a
category, the user can select a filter such asmode of proximal neighbors and fine tune parameter such as themaximum distance of cells to be considered for determining
the mode.
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environment in two and three dimensional imaging data. Such tools
appear crucial for visualization, analysis and deeper understanding of
quantitative parameters on tissue level. Special emphasis was put on
accessibility and user-friendliness to enable a broad audience to
explore their image data of cells and tissues.
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SynActJ: Easy-to-Use Automated
Analysis of Synaptic Activity
Christopher Schmied1,2*, Tolga Soykan1, Svenja Bolz1, Volker Haucke1* and
Martin Lehmann1*

1Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany, 2Fondazione Human Technopole (HT), Milano,
Italy

Neuronal synapses are highly dynamic communication hubs that mediate chemical
neurotransmission via the exocytic fusion and subsequent endocytic recycling of
neurotransmitter-containing synaptic vesicles (SVs). Functional imaging tools allow for
the direct visualization of synaptic activity by detecting action potentials, pre- or
postsynaptic calcium influx, SV exo- and endocytosis, and glutamate release.
Fluorescent organic dyes or synapse-targeted genetic molecular reporters, such as
calcium, voltage or neurotransmitter sensors and synapto-pHluorins reveal synaptic
activity by undergoing rapid changes in their fluorescence intensity upon neuronal
activity on timescales of milliseconds to seconds, which typically are recorded by fast
and sensitive widefield live cell microscopy. The analysis of the resulting time-lapse movies
in the past has been performed by either manually picking individual structures, custom
scripts that have not been made widely available to the scientific community, or advanced
software toolboxes that are complicated to use. For the precise, unbiased and
reproducible measurement of synaptic activity, it is key that the research community
has access to bio-image analysis tools that are easy-to-apply and allow the automated
detection of fluorescent intensity changes in active synapses. Here we present SynActJ
(Synaptic Activity in ImageJ), an easy-to-use fully open-source workflow that enables
automated image and data analysis of synaptic activity. The workflow consists of a Fiji
plugin performing the automated image analysis of active synapses in time-lapse movies
via an interactive seeded watershed segmentation that can be easily adjusted and applied
to a dataset in batch mode. The extracted intensity traces of each synaptic bouton are
automatically processed, analyzed, and plotted using an R Shiny workflow.We validate the
workflow on time-lapse images of stimulated synapses expressing the SV exo-/
endocytosis reporter Synaptophysin-pHluorin or a synapse-targeted calcium sensor,
Synaptophysin-RGECO. We compare the automatic workflow to manual analysis and
compute calcium-influx and SV exo-/endocytosis kinetics and other parameters for
synaptic vesicle recycling under different conditions. We predict SynActJ to become
an important tool for the analysis of synaptic activity and synapse properties.

Keywords: pHluorin imaging, calcium imaging, synapse, synaptic activity, ImageJ, Fiji, bioimage analysis, computer
vision
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INTRODUCTION

Neuronal synapses are important cellular communication hubs
that transmit signals between neurons to enable brain function
(Figure 1A). The transmission of the signal is mediated by
chemical neurotransmitters that are synthesized in the
presynaptic neuron and stored in the lumen of synaptic
vesicles (SVs). When an action potential reaches the synapse,
calcium enters the presynaptic terminal via voltage-gated calcium
channels and triggers the exocytic fusion of release-ready SVs
with the plasma membrane (Sudhof, 2013). The released
neurotransmitter molecules rapidly diffuse through the
synaptic cleft to activate postsynaptic receptors of the
receiving neuron. Depending on its type, the neurotransmitter
can either help (i.e. excitatory transmitters) or hinder (i.e.
inhibitory transmitters) the postsynaptic neuron from firing its
own action potential. At the presynaptic terminal, shortly after
their fusion with the plasma membrane, SVs are recycled via
endocytosis and refilled with neurotransmitter to sustain synaptic
transmission (Soykan et al., 2016).

To study these highly dynamic processes that occur on
timescales of milliseconds to seconds and to monitor the
molecular components that orchestrate them, functional
imaging tools are crucial. For instance, the exocytosis and
endocytosis of SVs can be tracked using synapto-pHluorins,
chimeric proteins comprising a pH sensitive variant of GFP
genetically fused to the luminal domain of a SV membrane
protein. As the pH of a SV under physiological conditions is
acidic (∼pH 5.5) the fluorescence of pHluorin is quenched at
steady-state (Miesenböck et al., 1998). Upon arrival of an action
potential (e.g. electrical stimulation of a neuron) SVs release their
neurotransmitter content by fusing with the plasma membrane,
thereby exposing their lumen to the neutral pH of the
extracellular medium (∼pH 7.4), upon which pHluorin
becomes strongly fluorescent. Subsequent endocytosis of SV
membrane proteins from the plasma membrane and rapid
acidification of the endocytic vesicle lumen via the vesicular
ATPase results in re-quenching of the fluorescence signal
elicited from pHluorin molecules (Figures 1B,C) (Miesenböck
et al., 1998; Wienisch and Klingauf, 2006; Kavalali and Jorgensen,
2014). Other assays for synaptic function include molecular
sensors that detect the pre- or postsynaptic influx of calcium
(Figures 1D,E) (Zhao et al., 2011), as well as reporters that
monitor changes in membrane voltage or detect the released
neurotransmitters (Lin and Schnitzer, 2016). These tools all have
in common that they need to detect fast changes in fluorescence
signals in small, often diffraction-limited structures to enable the
visualization of specific synaptic functions.

The optical detection of synaptic fluorescence is in general
performed on live cell or tissue cultures using widefield
microscopy to capture as much signal as possible on large, fast
and highly sensitive detectors with a diffraction limited resolution
of ∼200 nm. In order to reduce bleaching and phototoxicity, the
light exposure is kept to a minimum. This produces relatively
noisy images with abundant out-of-focus signal and many
cellular structures that are irrelevant for the downstream
analysis (Figures 1F–H). The resulting time-lapse movies are

thus hard to analyze via automated image analysis workflows that
only rely on intensity thresholding and detection, often resulting
in the analysis being performed manually (Balaji, 2007; Soykan
et al., 2017), using custom scripts not easily usable for a wider
research community (Chanaday and Kavalali, 2018), or (i.e. for
calcium imaging) via advanced software toolboxes that require
programming expertise (Kaifosh et al., 2014; Pachitariu et al.,
2016; Giovannucci et al., 2019; Robbins et al., 2021)
(Supplementary Table S1). To eliminate the need for tedious,
time consuming and biased manual image analysis, the key
challenge is to develop robust and easy-to-use software tools
that do not require in-depth expertise in programming and image
analysis. These tools need to be implemented rigorously, using
scientific software engineering to enable easy, transparent and
fully reproducible analysis of synaptic imaging data. In recent
years the research community has recognized this need and more
of such tools have become available for different applications. For
example, EZcalcium has been developed for the analysis of
calcium imaging data (Cantu et al., 2020). However, due to its
implementation in MATLAB, EZcalcium and similar tools
require expensive software licenses, thereby limiting their
accessibility.

Here we present SynActJ an easy-to-use, entirely free and open
source Fiji plugin (Schindelin et al., 2012a) combined with an R
shiny app (R-Core-Team, 2020; RStudio-Team, 2020; Chang
et al., 2021) that allows the fully automatic detection and
analysis of synaptic activity in time-lapse movies. The
segmentation parameters can be easily and conveniently
adjusted and verified over an entire dataset after which the
image analysis can be performed in batch. It is fully
reproducible by allowing the saving and loading of the
segmentation parameters. SynActJ is implemented as a Fiji
plugin in Java and can thus be easily installed via a Fiji update
site. For the necessary data processing and quality control of the
extracted traces a convenient R Shiny app is provided as well as an
example script for more detailed analysis and plotting.

AVAILABILITY AND IMPLEMENTATION

The Fiji plugin can be accessed via the Cellular Imaging update site:
https://sites.imagej.net/Cellular-Imaging/. The code for the Shiny app
can be downloaded from github: https://github.com/schmiedc/
SynActJ_Shiny. Documentation for using the plugin and the app
can be found here: https://schmiedc.github.io/SynActJ/. A test dataset
is made available on Zenodo: https://doi.org/10.5281/zenodo.
5644945. The code is distributed free and open-source under the
MIT license: https://github.com/schmiedc/SynActJ/blob/master/
LICENSE. The source code of the Fiji plugin can be downloaded
from github: https://github.com/schmiedc/SynActJ. Contact and
support: https://forum.image.sc/u/schmiedc/.

RESULTS

Typically, live cell neuronal cultures are imaged using a widefield
system with a large field of view. The tissue is illuminated with as
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FIGURE 1 | Live imaging of synaptic activity. (A) Synaptic signal transmission between neurons depends on the function of synaptic vesicles and on the activity of
ion channels. (B) Functional imaging by synapto-pHluorin allows studying synaptic vesicle exocytic fusion and subsequent endocytic recycling and acidification using a
pH sensitive GFP genetically fused to the luminal domain of a synaptic vesicle membrane protein. The GFP fluorescence is quenched under physiological steady-state
conditions in the acidic vesicle lumen. (B,C) Upon fusion pHluorin is exposed to the higher extracellular pH, becomes fluorescent and is rapidly quenched when the
vesicle is endocytosed, and its lumen returns to its normal acidic pH. (D,E) The influx of calcium elicits synaptic vesicle exocytosis and can be detected using calcium
sensors. (F) A single frame from a full field of view time-lapse movie of a hippocampal neuronal culture transfected with Synaptophysin-pHluorin. [(G), arrowheads]

(Continued )
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little light as possible, to reduce bleaching and phototoxicity. The
data sets, while rich in quantitative data, contain out-of-focus
signal and many different biological structures that are irrelevant
to the analysis (Figures 1F,G). For synapto-pHluorin imaging,
upon applying field stimulation to the live neuron culture with an
electric current, the synaptic boutons respond with a sharp
elevated fluorescence signal corresponding to the exocytic
fusion and subsequent release of neurotransmitter. Following
stimulation, the signal rapidly drops back to baseline on a
timescale of seconds as the pHluorin tag gets quenched when
SVs are endocytosed and acidified (Figures 1H–H-). These
events of briefly elevated signal with relatively small responses
over the baseline signal are hard to detect by eye and require that
brightness contrast settings are set correctly for perceiving the
specific signal responses (Figures 1I,J).

SynActJ achieves accurate automatic segmentation of active
synaptic boutons (Figures 2A,B). It solves the segmentation
problem by carving out the portion of the image signal that
increases around the time of stimulation (Figure 2C). This is
achieved by dividing the maximum intensity projection of 10
frames post-stimulation by the maximum intensity projection of
the frames before the stimulation. This allows the program to
selectively detect responding boutons within the image while
removing any non-relevant signal from the remainder of the field
of view (Figures 2E,F). In order to improve detection of weakly
responding synapses an ImageJ implementation of the Laplacian-
of-Gaussian (LoG) filter (Sage et al., 2005) is applied to enhance
blob-like structures of a defined size range followed by a
maximum detection to spot individual events within the
diffraction limited resolution of ∼200 nm (Figure 2G). To
create an accurate segmentation of the bouton area, an
intensity threshold is applied. The detection and segmentation
masks are then used in a marker-controlled watershed using the
MorpholibJ Fiji plugin (Legland et al., 2016). This limits the
segmentation to objects that have passed the detection threshold
and enables the separation of touching detected structures
(Figure 2H). The segmentation can be further refined by
performing a size and object circularity filter. To quantitatively
measure the background the maximum intensity projection of the
movie is filtered with a large Gaussian blur and an intensity
threshold is used to segment the broad signal of the tissue. The
resulting mask of the field of view is finally inverted to create a
segmentation of the background.

SynActJ provides a graphical user interface which enables the
user to interactively adjust the parameters of the workflow via a
preview (Figure 2D). Importantly the user has access to the entire
dataset and, thus, is able to quickly verify and adjust the
parameters on any of the movies the analysis is applied to.
SynActJ ensures full reproducibility of the workflow by
allowing the user to conveniently save, load and access all the

processing settings. Once suitable segmentation parameters have
been defined by the user, the entire image analysis can be
executed on the dataset in batch, e.g. different movies of
different stimulations or treatments (Figure 2D). The
segmentation exactly outlines the area of the signal response
after stimulation (Figures 2A,B,H) and the raw average signal is
measured over time in this area. Since the segmentation is
outlining the bouton, it is vital that any drift is corrected prior
to segmentation using plug-ins such as Correct 3D drift (Parslow
et al., 2014).

The resulting measurements are saved in the specified output
folder and can then be processed easily using the R Shiny app
provided (Figure 3A). The app allows rapid processing of the
individual traces extracted by the image analysis and provides
overview plots for quick and efficient quality control of the data.
For each movie the number of ROIs, area of segmented structures
and background are plotted (Figure 3B). Furthermore, for each
movie the raw traces, raw background signals, as well as the
average raw traces and background values are plotted and
provided as a data table (Figure 3C). The raw values can be
further filtered and processed in custom data analysis workflows.

The Shiny App also performs basic as well as advanced data
processing on each individual movie. The average background
value is subtracted from the average signal (Figure 3D). To
compare the differences in peak responses to the stimulation,
the background-corrected signal is surface-normalized by
dividing the signal by the average value of the trace in the
frames prior to stimulation (Figure 3E). To compare how fast
the signal returns to baseline a further normalization to the peak
of the trace is performed (Figure 3F). The result of this data
processing is again provided as a data table accessible for further
custom statistical analysis and plotting. For instance in order to
characterize and quantitatively compare the rate of endocytosis
one can fit an exponential decay function to the peak-normalized
data and compute the time constant τ (tau: time it took the signal
to return to 1/e of the peak) (Figure 3F).

To benchmark our workflow we applied SynActJ to an existing
dataset that has previously been analyzed manually (Soykan et al.,
2017). In this dataset, cultured hippocampal neurons expressing
Synaptophysin-pHluorin were treated with DMSO or para-nitro-
Blebbistatin (Kepiro et al., 2014), a specific inhibitor for Myosin-
II, and stimulated with 50 APs (10 Hz, 5 s) to determine whether
Myosin-II activity is involved in SV exo-/endocytosis. In line with
the previously proposed role for Myosin-II at synapses
(Chandrasekar et al., 2013; Flores et al., 2014; Yue and Xu
2014), para-nitro-Blebbistatin treatment led to reduced
Synaptophysin-pHluorin exocytosis after stimulation, as well
as delayed endocytosis. Our automated workflow was able to
segment more boutons compared to the previously performed
manual analysis, which was limited to about 20 ROIs for

FIGURE 1 | Acquisition with fast and sensitive widefield live imaging using low light exposure leads to images with many irrelevant and out of focus structures around the
objects of interest. (H–H-) The increase in fluorescence of Synaptophysin-pHluorin after electrical stimulation is small in size and intensity. (I,J) Raw individual traces
shown from the top ROI and bottom ROI in panel H. Peak intensity is relatively small over background signal and varies between ROIs. Scale bars: 50 µm (F) and
5 µm (G,H).
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FIGURE 2 | Fast, automatic and easy-to-use image analysis of synaptic activity usingSynActJ. (A)Hippocampal neuronal cultures transfectedwith Synaptophysin-pHluorin.
[(A,B), yellow outlines] Structures showing a signal response upon stimulation, corresponding to active synaptic boutons are segmented with SynActJ. (C) Segmentation is
achieved by detecting blob-like structures that display an increase in signal after the stimulation frame and by separating touching structures using amarker-controlled watershed.
(D) The segmentation parameters can be adjusted and verified on the entire dataset using a GUI that allows testing each segmentation parameter easily, after which the
workflow can be executed in batch. [(E), arrowheads] Crop of a raw image showing Synaptophysin-pHluorin with peak fluorescence after electrical stimulation. [(F), arrowheads]
The increase in signal around the time point of stimulation is enhanced by dividing the maximum projection of time points after the stimulation by the time points before the
stimulation. [(G), arrowheads] Blob-like structures of a specific size are enhanced using a LoG filter]. [(H), yellow outlines] Active boutons are segmented using an intensity threshold
and touching objects split with a seeded watershed. Scale bars: 50 µm (A), 20 µm (B) and 10 µm (E–H).
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responding boutons and five background ROIs (Figure 4A). For
further validation we asked how many of the manually selected
ROIs also contain an automatically detected ROI. We found that
64% of the manually selected ROIs overlapped with the
automatically detected ones (Figure 4B). We further
determined which objects the automatic analysis missed in the
manual dataset and found that many of those structures were

large objects such as clusters of boutons or large uniform,
potentially out of focus objects (Figure 4C). Overall the
automatic segmentations of SynActJ seemed to be more
restrictive in terms of object size and shape compared to the
manual segmentation. To remove false positive automatic
detections that by chance showed an increase around the
stimulation frame, we removed traces in which the response

FIGURE 3 | SynActJ enables easy and rapid data processing and analysis via an R Shiny app. (A) The shiny app allows users to process and plot the result of the
image analysis using a GUI. (B) Vital parameters for quality control such as number of ROIs andmean area of ROIs per movie are plotted per time-lapse. (C)Raw traces of
the signal as well as the background are extracted and plotted over time. (D) Per movie the average signal is computed, and the background value is subtracted. The
average and background subtracted signal traces are surface (E) as well as peak normalized (F).
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was below two standard deviations of the variation of the
background. Further, we removed traces with peaks much
later than the stimulation frame. This filter operations
removed 312 traces from the original set, leaving 6,623 traces
from the automatic segmentation that conform to the necessary
response upon stimulation.

The automatic analysis was able to reproduce the results of the
manual analysis: Surface-normalized plots revealed a decreased
exocytic response to stimulation (Figures 4D,D9) while peak-
normalized signals displayed a delay in the return to baseline

(Figures 4F,F9). The automatic analysis also showed a reduced
peak signal (Figures 4E,E9) and a significant increase in the time
constant for returning to baseline intensity upon para-nitro-
Blebbistatin application (Figures 4G,G9). Interestingly,
automatic analysis detected a lower peak signal than analysis
by manual assessment. This likely is attributed to the fact our
automated analysis workflow is superior with respect to the
detection of weakly responding synaptic events, thereby
increasing the accuracy of the analysis and reducing bias
towards larger and strong responding structures (Figure 4C).

FIGURE 4 | SynActJ allows the rapid analysis of synaptic activity using synapto-pHluorin imaging and reproduces the results of a comparable manual analysis.
(A) The automatic image segmentation allows extracting many more ROIs from the image data compared to a manual segmentation. (B) 64% of the manual ROIs
have been detected in the automated analysis. (C)Many of the manual ROIs without automatic ROIs are clusters of boutons or relatively large, potential out of focus
objects, aside from single boutons (false negative automatic segmentation), example images of these cases are provided. [(D,E) compare to (D9,E9)] The
automatic image analysis is able to reproduce the results from amanually performed image analysis (Soykan et al., 2017) showing significant decrease in peak signal
increase after stimulation. (F,G) compared to (F9,G9) A significant delay of SV endocytosis and reacidification can be detected in the automatic and manual analysis.
Data are presented as mean ± standard error of the mean (SEM) in all panels; n. s not significant; *p < 0.05; **p < 0.01. N � 5 independent experiments; paired t-test.
Scale bar corresponds to 5 µm (C).
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This is particularly overt for the DMSO control, for whichmanual
detection overall used much fewer active boutons (Figures
4E,E9). Finally, the variability in the extracted parameters is
greatly reduced with the standard deviation dropping by a
factor of 1.5–2.4 (Figures 4E,G; Tables 1, 2), further
illustrating the increased precision of the automated approach.

To test if our plugin can be applied to other modes of
functional imaging of synaptic activity, we further validated
our approach on calcium imaging data. Calcium imaging
suffers from similar challenges as those seen for Synapto-
pHluorins such as relatively noisy and background-rich live
images with fast, yet comparably small fluorescence signal
changes over baseline (Figure 5A–C). We recorded time-lapse
movies of cultured hippocampal neurons expressing the
presynaptic calcium sensor Synaptophysin-RGECO and
stimulated successively with 10, 20 and 40 APs (all at 40 Hz
and 0.25, 0.5 and 1 s, respectively). Similar to the data from
Synapto-pHluorin imaging experiments, we were able to rapidly
produce accurate segmentations of active boutons in which
calcium influx was revealed by RGECO (Figures 5A,B).
Automated image analysis by SynActJ successfully extracted
traces thereby enabling the detection of calcium spikes with
overall results near-identical to those produced by manual
analysis (Figures 5D,E), yet in only a fraction of the time.

DISCUSSION

Biological image data is notoriously difficult to robustly analyze
automatically. Not only do the biological and experimental
variability hamper computational analysis but also noise and
background introduced by hard limitations in the acquisition of
biological data. Thus, it is often easier for highly trained scientists to
perform these image analysis tasks by hand. For analyzing synaptic
activity another key challenge are the brief changes in fluorescent
intensity, limited tomany small structures throughout a large field of
view with heterogeneous signal. This renders manual detection also
biased towards strong and large structures that are easier to detect.
The difficulty to manually detecting active boutons effectively also
limits the number and completeness of detected events that can be
analyzed (Soykan et al., 2017). Furthermore, manual selection of
responding synaptic terminals using circular ROIs does not allow for
precisely outlining the boutons, which is advantageous if there is a
slight sample drift or tissue movement. However, this leads to the
inclusion of some background area in the final quantification
making the measurement less accurate.

The automated analysis of SynActJ efficiently overcomes these
challenges. As an easy-to-use workflow it allows the robust and

transparent application of well-tested classical image analysis on
complex time-lapse movies. It is delivered as an easily installed
Fiji plugin for the image analysis as well as a Shiny app that are
centered on easy-to-use GUIs. The segmentation is interactive
and can be fine-tuned using particle size and shape filters. Basic as
well as advanced data analysis is provided via an R Shiny app.
SynActJ thereby replaces the tedious manual analysis, which may
be prone to user-dependent bias, increases as demonstrated the
overall accuracy and precision of the analysis, and enables a fully
reproducible data analysis by allowing a standardized ROI
selection. Together with its compatibility with a wide variety
of optical sensors, we believe SynActJ will become an important
toolset for the analysis of synaptic activity and function.

METHODS

Preparation of Hippocampal Neuronal
Cultures
Hippocampal neuronal cultures were prepared by dissection of
hippocampi from postnatal mice at p1-3 and grown in MEM
medium (ThermoFisher) supplemented with 5% FCS,
0.5 mM L-glutamine and 2% B-27-supplement. For limiting
glial proliferation 2 µM AraC was added at 2 days in vitro
(DIV). The hippocampal neurons were transfected at DIV 7-9
with 6 µg plasmid DNA carrying synaptophysin fused to
pHluorin (gift from L. Lagnado, Cambride, United Kingdom)
or SypHy-RGECO (Jackson and Burrone, 2016) (Addgene
Plasmid #84078), using a Calcium Phosphate transfection kit
(Promega).

Live Imaging
Synapto-pHluorin assay and calcium imaging was performed at
DIV13-16 by applying electrical field stimulation to the neuronal
culture in a RC-47FSLP stimulation chamber (Warner
Instrument) and imaging at 37°C in equilibrated and
osmolarity-adjusted basic buffer [170 mM NaCl, 3.5 mM KCl,
0.4 mM KH2PO4, 20 mMN-Tris (hydroxyl-methyl)-methyl-2-
aminoethane-sulphonic acid (TES), 5 mM NaHCO3, 5 mM
glucose, 1.2 mM Na2SO4, 1.2 mM MgCl2, 1.3 mM CaCl2,
10 mM CNQX and 50 mM AP-5, pH 7.4] using an inverted
epifluorescence microscopy (Nikon Eclipse Ti) and 40Χ/NA
1.3 oil-immersion objective. For detecting synapto-pHluorin
signal an eGFP filter set F36-526, and a sCMOS camera (Neo,
Andor) were used. Image acquisition was performed at 0.5 frames
per second with 100 ms exposure. For calcium imaging, a 580 nm
LED (pE4000, CoolLED), backilluminated-sCMOS camera
(Prime95B, Photometrics), a Penta DAPI/FITC/Cy3/Cy5/Cy7

TABLE 1 | Signal increase after stimulation.

Analysis Mean Sd SEM N

DMSO automatic 0.82 0.176 0.079 5
pN-Blebb automatic 0.58 0.128 0.057 5
DMSO manual 1.10 0.427 0.191 5
pN-Blebb manual 0.54 0.292 0.131 5

TABLE 2 | Endocytic time constant measurement.

Analysis Mean Sd SEM N

DMSO automatic 29.8 4.44 1.99 5
pN-Blebb automatic 35.1 9.52 4.26 5
DMSO manual 27.0 9.36 4.18 5
pN-Blebb manual 57.5 14.40 6.46 5
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Penta LEDHC Filter Set (AHF 66-615) and 600/52 emission filter
(Semrock) were used. Image acquisition was perfomed at 10
frames per second with 20 ms exposure.

Manual Image Analysis
Manual quantitative analysis of responding boutons was performed
in ImageJ (NIH) (Schneider et al., 2012b) by selecting 20 circular
ROIs that exhibit remarkable fluorescence increase at the time point
of stimulation and five similar-sized circular ROIs selected from the
background areas that display uniform fluorescence values
throughout the time-lapse image. Examples of these manual
regions of interest are provided here: https://doi.org/10.5281/
zenodo.5644945. The mean intensity for each ROI is measured
using the built-in tools in ImageJ and raw intensity values were
calculated by subtracting the average intensity of background ROIs

from responding ROIs. Normalized traces were generated for each
image by dividing the raw intensity values to the mean intensity
before stimulation (for surface normalization) and the maximum
intensity (for peak normalization). For the analysis of synapto-
pHluorin images, Prism 5 (Graphpad) software were used to
determine the post stimulation time constants by fitting the peak
normalized values to a mono-exponential decay curve:

y0 + Ape−x/t

Constraints: y0 � 1 and zero offset.

Automatic Image Analysis
Movies affected by drift were processed using the Correct 3D drift
(Parslow et al., 2014) plugin using multi time scale computation

FIGURE 5 | SynActJ can readily be applied to other imaging modalities for synaptic activity such as calcium imaging. (A) Cultured mouse neurons
transfected with Synaptophysin-RGECO. [(B), yellow outline] Active boutons in calcium imaging data can be successfully segmented]. (C) Electric field
stimulation of the neurons leads to an increase in fluorescence in synaptic boutons that rapidly drops down to baseline. (D) The data analysis allows the
visualization of the increase in signal that corresponds to the influx of calcium during/post-stimulation, reproducing the results from manual segmentation
(E). Scale bars: 10 µm (A) and 5 µm (B,C). Data presented as mean ± SEM. N � 4 images.
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for detecting slow drifts. Since the tissue presented many edge
features, the edge enhancement was turned on. Sub pixel drift
correction was turned off to avoid interpolation. Only pixels with
gray values larger than 130 were considered. The maximum shift
was set to 10 pixel (px) in x and y.

The image analysis plugin was developed as ImageJ1 plugin
(Schneider et al., 2012b). To create comparable detections over
different image magnification the sigma of LoG is input in
micrometre. For the analysis of the synapto-pHluorin time-
lapse movies a LoG of 1 µm was used. For the maximum
detection a prominence of 0.01 (A.U.) was selected. To
segment the area a Gaussian filter with a sigma of 1 px,
rolling ball background subtraction of 9 px and an automatic
intensity threshold using the Triangle algorithm was used. No
erosion was applied to the segmentation masks. For splitting
detections that are touching a gradient radius with 5 px radius
was applied. The final ROIs were filtered for objects larger than
15 μm2, no circularity filter was applied. For segmenting the
background a Gaussian filter with a sigma of 4 px and an
intensity threshold using the MinError algorithm was applied
to the maximum projected movie. An example of the raw
synapto-pHluorin movies as well as the image analysis
parameters and results is provided here: https://doi.org/10.
5281/zenodo.5644945.

For the calcium imaging data a LoG sigma of 1 µm and a
prominence of 0.001 A.U. For segmenting the area of the boutons
a Gaussian filter with sigma of 2 px and a rolling ball background
subtraction with radius 50 px was applied. The Triangle
algorithm was used for intensity thresholding without applying
an erosion to the binary mask. For the seeded watershed a
Gradient radius of 10 px was applied. No circularity and size
filter was applied. For the background segmentation a Gaussian
filter with a sigma of 4 px and the MinError thresholding was
applied. The stimulation frame was set to the first stimulation at
frame 55.

Automatic Data Analysis
For the synapto-pHluorin datasets the extracted traces per
ROI were collected using the SynActJ Shiny app. The
detection traces were filtered for false positive detections
particularly traces that showed a noisy profile without
specific response to the stimulation or traces with linear
increase over the movie. These would correspond to false
detections in the background that by chance had a sufficiently
large intensity difference around the stimulation, bright
objects that move slightly in their position over the time-
lapse as well as structures in the tissue that increase in
intensity without responding to stimulation. For this we
computed for each trace an average before the stimulation
(6–8 s) as well as at the peak of the intensity just after the
stimulation (14–16 s). Traces were removed that had a smaller
increase in intensity than 2x the standard deviation of the
variation of the background signal. Further, traces were
rejected that peaked 26 s after the start of the movie. From
the mean traces per movie the mean of the background was
subtracted. The background corrected mean over time was
then divided by the mean intensity of the frames before

stimulation (surface normalization). To determine the
exocytic response the peak over the baseline was measured.
The surface normalized traces were divided by the peak to
perform a peak normalization. Examples for the results of the
data processing are provided in the example dataset (https://
doi.org/10.5281/zenodo.5644945). For determining the
stimulation time constant the same method as the manual
image analysis was performed.

For the calcium imaging dataset the extracted traces were
collected with the SynActJ Shiny app, no filtering for false positive
detections was applied for the further analysis. The mean of the
detection traces were subtracted by the mean of the background
traces per movie. The corrected mean traces per movie were
surface normalized and the means over the different movies
plotted as line plot with mean ± SEM.

Comparison of Manual and Automatic ROIs
For testing how many manual ROIs also contain an automatic
ROI, a binary mask image was first produced for the automatic
segmentations. The manual ROIs were then overlaid onto this
binary mask image. Since the manual ROIs do not outline the
objects of interest precisely nor they were generated on drift
corrected movies, any overlap was counted as manual ROI with
an automatic ROI. Manual ROIs with overlap to multiple
automatic ROIs was counted only once. Manual ROIs without
overlap with an automatic ROI were then further visually
analyzed to estimate false negatives. The objects outlined by
the manual ROIs were grouped into the following classes: 1.
Single bouton. 2. Large structure of cluster of boutons. 3. Very
large and uniform, potentially out of focus object. 4. Large and
bright structures.

Statistics
All data are presented as mean ± SEM and were obtained from
multiple independent experiments (e.g. independent mouse
cultures), with total sample numbers provided in the figure
legends as N independent experiments. No statistical method
was used to pre-determine sample size as sample sizes were not
chosen based on pre-specified effect size. Instead, multiple
independent experiments were carried out using several
sample replicates as detailed in the figure legends. The
statistical significance between two groups for all normally
distributed data was evaluated with a two-tailed paired
Student’s t-test.
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ZELDA: A 3D Image Segmentation and
Parent-Child Relation Plugin for
Microscopy Image Analysis in napari
Rocco D’Antuono1* and Giuseppina Pisignano2

1Crick Advanced Light Microscopy STP, The Francis Crick Institute, London, United Kingdom, 2Department of Biology and
Biochemistry, University of Bath, Bath, United Kingdom

Bioimage analysis workflows allow the measurement of sample properties such as
fluorescence intensity and polarization, cell number, and vesicles distribution, but often
require the integration of multiple software tools. Furthermore, it is increasingly appreciated
that to overcome the limitations of the 2D-view-based image analysis approaches and to
correctly understand and interpret biological processes, a 3D segmentation of microscopy
data sets becomes imperative. Despite the availability of numerous algorithms for the 2D
and 3D segmentation, the latter still offers some challenges for the end-users, who often do
not have either an extensive knowledge of the existing software or coding skills to link the
output of multiple tools. While several commercial packages are available on the market,
fewer are the open-source solutions able to execute a complete 3D analysis workflow.
Here we present ZELDA, a new napari plugin that easily integrates the cutting-edge
solutions offered by python ecosystem, such as scikit-image for image segmentation,
matplotlib for data visualization, and napari multi-dimensional image viewer for 3D
rendering. This plugin aims to provide interactive and zero-scripting customizable
workflows for cell segmentation, vesicles counting, parent-child relation between
objects, signal quantification, and results presentation; all included in the same open-
source napari viewer, and “few clicks away”.

Keywords: image analysis, 3D, segmentation, parent-child, napari, plugin, microscopy, measurement

INTRODUCTION

Microscopy and image analysis significantly contribute to the advancement of research in life
sciences. However, researchers operating microscopes have to deal with a number of experimental
challenges often requiring different types of image analysis procedures. For instance, the counting of
protein structures, such as the ProMyelocytic Leukemia Nuclear Bodies (PMLNB) found involved in
chromatin remodeling, telomere biology, senescence or viral infections (Lallemand-Breitenbach and
de The, 2018), is achievable by applying a “2D counting” image analysis tool to first identify cells and
then determine the number of contained PML NB (Supplementary Figure S1A). Similarly, in
experiments where the measurement of transient concentration of Ca2+ or metabolites is assessed, a
stable staining and reliable segmentation of individual cytoplasmic organelles might be required to
then apply a “2D measurement” of fluorescence intensity and organelle shape (Supplementary
Figure S1B). This can be fundamental in studies of mitochondrial metabolism where a complex
correlation between ER-mitochondria Ca2+ fluxes and autophagy have been highlighted (Missiroli
et al., 2020). Furthermore, some kidney pathological conditions, such as the glomerulocystic disease,
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could originate from topological defects acquired during
development (Fiorentino et al., 2020). Such conditions can be
studied using a staining to identify single cells, glomeruli, and the
renal tubular system (Supplementary Figure S1C). The
conformational study of a glomerulus, with the assessment of
the number of cells, is referred to as “3D cell counting” or “3D
object segmentation”. In influenza infection, instead, the released
viral genome can be involved in mechanisms such as replication
or viral protein transcription and identified by the presence of a
negative-sense RNA (Long et al., 2019). The dynamics of the viral
infection can therefore be monitored by localizing the RNA
molecules within the cell nuclei (Supplementary Figure S1D)
in a task definable as “3D object segmentation” and “parent-child
relation”.

The ability to extrapolate valuable results from microscopy
experiments as those just mentioned, mainly relies on the image
analysis knowledge, and availability of the right software tools for
the specific purpose. The bioimage analysis is a combination of
multiple informatics tools (referred to as “components”)
organized into “workflows” with different levels of complexity
(Miura et al., 2020). Such components are often available only by
scripting and researchers may struggle to find an effective way of
combining them together in a complete workflow. To date, there
have been great initiatives to both promote the bioimage analysis
(NEUBIAS Training Schools (Martins et al., 2021)) and raise
awareness about informatics tools (BioImage Informatics Index,
http://biii.eu/), while a growing number of excellent open-source
software became available (Schindelin et al., 2012) (McQuin et al.,
2018). However, the end-user has still to acquire a minimum level
of bioinformatic knowledge in order to analyze image data.

A recent survey proposed by the COBA1 to the bioimage
analysis community has suggested that the most used bioimage
analysis tools belong to the category of the “open-source point
and click software” and there is a high demand for better software
for “3D/Volume” and “Tissue/Histology” analysis (Jamali et al.,
2021), underlining the urgency of more and more new, easy and
customizable tools for multi-dimensional image segmentation.

Furthermore, to guarantee the experimental reproducibility,
minimize the mistakes, and preserve scientific integrity, any new
analysis software should include accurate logging of the used
parameters at each step of the workflow2.

To facilitate life science researchers during the application of
image analysis to biological experiments, we developed ZELDA:
a napari plugin for the analysis of 3D data sets with multiple
object populations. ZELDA has the advantage of being equipped
with ready-to-use protocols for 3D segmentation, measurement,
and “parent-child” relation between object classes. It then allows
the rapid cell counting, quantification of vesicle distribution,
and the fluorescence measurement of subcellular compartments
for most biological applications. Since each image analysis
workflow is designed as a simple protocol with numbered

steps, it requires no knowledge of image analysis and it’s
sufficient to follow the step-by-step instructions to perform a
complete analysis. Furthermore, while the integration in napari
allows to easily view each step of the image processing as 2D
slice or 3D rendering, the visibility, opacity and blending
modulation facilitates the tuning of the used parameters (for
example threshold value or gaussian filter size) by visualizing
multiple layers at the same time.

Altogether ZELDA plugin is a new easy to use open-source
software designed to assist researchers in the most common
bioimage analysis applications without requiring any scripting
knowledge.

MATERIALS AND METHODS

Image Acquisition
The data sets of influenza infected human eHAP cells, BPAE cells
(Invitrogen FluoCells Slide #1) and mouse kidney tissue
(Invitrogen FluoCells Slide #3), shown and analyzed in
(Figures 2, 4, 5, Supplementary Figure S1; Supplementary
Figure S3) have been acquired with a Zeiss LSM880 confocal
microscope, using a Plan-Apochromat 20X/0.8 NA objective. A
sequential acquisition for DAPI (excitation 405 nm, detection in
the range 420–462 nm), AlexaFluor 488 and AlexaFluor 568
(excitation 561 nm, detection in the range 570–615 nm) was
used to acquire z-stacks with the total size up to 13 um, every
0.5 um. Pixel size was 0.20 um.

The beads used to show the segmentation workflow (Figure 1)
were TetraSpeck™Microspheres, 0.1 µm; images were acquired on
a ZeissObserver.Z1 usingMicro-Manager (https://micro-manager.
org/) software with a Hamamatsu ORCA-spark Digital CMOS
camera, using a 63X/1.4 NA objective. Pixel size is 0.08 um.

Object Segmentation, Measurements, and
Results Export
The segmentation obtained by running the ZELDA protocols is
achieved using scikit-image (van der Walt et al., 2014) (version
0.18.1) and SciPy (Virtanen et al., 2020) (version 1.6.3) modules
for image processing in python.

The resulting measurements are handled as Pandas data
frames (McKinney, 2011) (version 1.2.4) and plotted with
Matplotlib (Hunter, 2007) (version 3.4.2). JupyterLab Version
3.0.14 was used to handle the result tables (pandas), calculate the
jaccard index (scikit-learn (Pedregosa et al., 2011)), and plot the
data (matplotlib). Additionally, the latest version of napari-zelda
uses datatable package to handle results (https://github.com/
h2oai/datatable).

Graphical User Interface Design, Plugin
Development, Installation, and Execution
ZELDA plugin for napari (“napari-zelda”) can be installed
through the “Install/Uninstall Package(s)” menu in napari
(napari contributors, 2019), and its interface can be added
with “Plugins/Add dock widget”.

1Center for Open Bioimage Analysis: https://openbioimageanalysis.org/.
2Kota Miura 2020, “In Defense of Image Data & Analysis Integrity” -
[NEUBIASAcademy@Home] Webinar: https://www.youtube.com/watch?v�c_
Oi2HKom_Y.
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FIGURE 1 | ZELDA plugin for napari. (A) GUI of ZELDA with the description of the ready-to-use protocols sufficient to run a complete image analysis workflow
(white text box on the top right). Each protocol is divided into numbered steps corresponding to the software commands in the napari dock widget (bottom of the
software interface). (B) “Segment a single population” protocol including a minimum number of processing operations. (C) Original image. (D) Gaussian Blur of the
original image. (E)Binary image obtained applying a Threshold to the gaussian blur. (F)DistanceMap applied to the binary image. (G) Seeds (Local Maxima) used to
run the Watershed. (H) Objects labelled by Watershed. The labelled objects can then be measured, and the results exported.
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FIGURE 2 | ZELDA application for the 3D segmentation of two object populations and “Parent-child” relation. (A) ZELDA protocol “Segment two populations and
relate” used to analyze the distribution of viral RNA in infected human cell nuclei. (B)Original 3D data set showing a nuclear staining with DAPI (gray) and an RNA staining
with AlexaFluor 568 (red). (C) The nuclei and the RNA aggregates, individually segmented and (D) the RNA aggregates (children population) labelled according to the
containing nuclei (parent population). (E) Resulting measurements reimported and plotted with the “Data Plotter” protocol.
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FIGURE 3 | Design of a custom image analysis workflow with ZELDA without requiring any scripting knowledge. (A) Choice of the number of steps for the new
protocol to implement a custom image analysis workflow. (B) Drop-down menu showing all the modules implemented in ZELDA. (C) Assignment of an operation to a
specific step of the new protocol. (D) Example of updated JSON database that controls the software layout, once a new protocol is saved. (E) The newly created
protocol GUI available after having restarted ZELDA. (F) “Import and Export Protocols” allows the user to import and export the content of the ZELDA .json
database. Either a new file is created or protocols are appended to the destination database to easily share it with the community.

Frontiers in Computer Science | www.frontiersin.org January 2022 | Volume 3 | Article 7961175

D’Antuono and Pisignano ZELDA 3D Image Analysis Plugin

66

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


FIGURE 4 | ZELDA 2D segmentation and “parent-child” relation benchmarked with ImageJ and CellProfiler. (A) 2D images of BPAE cells stained with DAPI (blue,
cell nuclei), AlexaFluor 488 (green, cytoplasms), andMitoTracker Red (red, mitochondria). (B) Labelling comparison between ZELDA and ImageJ showing an accordance
above the 98% of the pixels for “parent” objects (cell cytoplasms), 92% for “child” objects (mitochondria), and 99% for the parent-child relation. (C)Comparison between
ZELDA and CellProfiler showing a minor accordance still above the 88% of the pixels for “parents”, 82% for “children”, and 82% for the “parent-child” relation.
ZELDA labelling of (D) cell cytoplasms, (E)mitochondria, and (F)masked mitochondria (parent-child relation). ImageJ labelling of (G) cell cytoplasms, (H)mitochondria,
and (I) masked mitochondria (parent-child relation). CellProfiler labelling of (J) Cell cytoplasms, (K) mitochondria, and (L) masked mitochondria (parent-child relation).
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Alternatively, the installation can be done downloading the
repository, navigating to it with the Anaconda prompt and using
the command “pip install -e.” within the downloaded folder.

The plugin widgets have been created using magicgui
(https://github.com/napari/magicgui), while the GUI plots
included in the “Data Plotter” protocol are obtained with
matplotlib.backends.backend_qt5agg (https://matplotlib.org/
2.2.2/_modules/matplotlib/backends/backend_qt5agg.html).

The template for the plugin has been obtained from cookiecutter-
napari-plugin (https://github.com/napari/cookiecutter-napari-plugin).

JSON Database for Modularity of the GUI
and Customization of Image Analysis
Protocols
Once the user has selected a specific base protocol, a JSON file is
used by the plugin to load the right widgets in the GUI.

The “Design a new Protocol” option saves the custom
workflow as a list of widgets that will be sequentially loaded
the next time that the newly created protocol is launched. It will
be visible just after re-launching napari and ZELDA plugin.

RESULTS

ZELDA Protocols as an Easy Way to Run
Image Analysis Workflows for 2D and 3D
Segmentation
ZELDA plugin for napari (“napari-zelda”) makes available to the
end-user the segmentation,measurement, and “parent-child” relation
of two object populations. It ultimately allows to plot the results and
explore the data in the same Graphical User Interface (GUI).

The current version of the plugin includes three different “protocols”
to ease the image analysis of 3D data sets. Each protocol is a set
of individual steps (functions) that return images (as napari
layers), or results (printed plots in .tiff or tables in .csv format).

The first protocol, called “Segment a single population”
(Figure 1A), can be used to segment both the 2D or 3D data
sets. The basic workflow of this protocol (Figure 1B) includes
simple steps, such as Gaussian Blur, Threshold, and Distance Map,
to identify the seed points for the subsequent segmentation of the
objects of interest. The user can then set the “min dist” parameter
in the “Show seeds” function to improve the accuracy of cell
counting, before calling the “Watershed” segmentation (Figures
1C–H). The detected objects can eventually be measured and the
results table automatically saved (Supplementary Figure S2A).

Similar workflows have been previously implemented in useful
tools such as MorphoLibJ (Legland et al., 2016) and in the latest
versions of CellProfiler (McQuin et al., 2018), although with the
limitation of being exclusively applied to the 2D image analysis,
or lacking an embedded and flexible 3D viewer. In contrast,
ZELDA provides an integration of a basic 3D object segmentation
workflow with napari 3D rendering GUI. Notably, in ZELDA the
individual workflow steps are also accessible as single functions
that can be optionally used, or fine-tuned individually, without
having to restart the entire workflow from scratch.

The second protocol, “Segment two populations and relate”
(Figure 2A), implements the segmentation of two populations
of objects in parallel, using the same workflow described
above, with an additional step that allows establishing the
“parent-child” relation between the two object populations
(Figures 2B–D).

To run reproducible image analysis with ZELDA, both
described protocols include a “log” functionality that stores the
parameters used at each step. The log is shown in the GUI and can
be optionally saved as a .txt file, together with the other results
(Supplementary Figure S2B).

Once segmented, measured, and optionally related two object
populations, the “Data Plotter” protocol (Figure 2E) allows to
load a result table, and plot histograms or scatterplots of the
measured properties. The plots are shown directly in the napari
GUI and can be automatically saved as images to a specific folder.
This has the advantage of avoiding the employment of additional
software for data visualization.

Given that ZELDA does not require any coding skill, life
science researchers are hugely facilitated by the integration of
multiple bioinformatics tools in a single GUI.

Modularity of the ZELDA Graphical User
Interface Allows to Easily Customize
Bioimage Analysis Workflows Without Any
Scripting Knowledge
Computer scientists and developers continuously propose new
algorithms to tackle biological problems that frequently require
extensive coding skills. However, users might have the necessity
to reproduce a specific published workflow (such as the one in
Figure 1B), without knowing a scripting language or necessarily
having any background in image analysis. We made this possible
by implementing a method that allows the customization of the
image analysis protocols available in ZELDA. Indeed, by simply
running the fourth option called “Design a New Protocol”, a user
can create a new custom protocol (Figure 3A). Every step of the
base protocols is listed in a JSON database and the relative GUI
widgets (used for the software layout) are available as ready-to-
use modules to build personalized protocols. The different
functions, such as threshold, gaussian blur or distance map
etc., can be chosen in a drop-down menu at specific steps of
the new protocol (Figure 3B). By using the saving option
(Figure 3C), the JSON database will be automatically updated
(Figure 3D), and the ordered series of GUI widgets will be
available the next time that ZELDA plugin will be launched
(Figure 3E). Once developed, custom protocols can be shared
with the community using the “Import and Export Protocols”
option (Figure 3F).

ZELDA Segmentation and Parent-Child
Relation Have the Same Accuracy of
ImageJ and CellProfiler in 2D and 3D Data
Sets, and the Execution Is Twice Faster
In order to assess the accuracy in the segmentation of 2D and 3D
data sets, we compared the results obtained by the ZELDA plugin
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FIGURE 5 | 3D segmentation, “parent-child” relation, and execution time of ZELDA compared to CellProfiler. Z-stacks of mouse kidney tissue showing glomeruli
were used for the benchmark in 3D. (A) DAPI staining used to segment the cell nuclei. (B) Phalloidin used to identify the glomerular structures (C) 3D rendering showing
the merge of DAPI (gray), WGA (green), and phalloidin (red). (D) Nuclei, (E) glomerular structures, and (F)masked nuclei (parent-child relation) labelled by ZELDA in 3D.
(G) Nuclei, (H) glomerular structures, and (I)masked nuclei (parent-child relation) labelled by CellProfiler in 3D (using a pipeline containing only 3D data compatible
modules). (J) Execution time for the same workflow developed as both CellProfiler pipeline and ZELDA protocol, with the goal to segment in 3D and relate parents and
children objects. The boxplots represent the distribution of multiple runs analyzing individual FOVs. For CellProfiler in batch mode, the CPU time has been considered,

(Continued )
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for napari with those generated by two of the most widely used
software in the bioimage field: ImageJ and CellProfiler.

As 2D data sets, we used images of cells (Figure 4A) at a low
confluence (∼30% of the field of view area) with a cytoplasmic
staining to identify parent objects, and a second one for cellular
organelles (children objects), with the final goal of correctly assign
the organelles to the containing cell (parent-child relation).

Intriguingly, ZELDA performed almost equivalently to ImageJ
(Figure 4B) in identifying parent objects (Jaccard index J �
0.987 ± 0.003), child objects (J � 0.920 ± 0.054), and in the
parent-child relation (J � 0.993 ± 0.001). This means that,
assuming ImageJ segmentation as ground truth (Figures
4G–I), ZELDA will correctly label the pixels of an organelle as
belonging to the corresponding cell cytoplasm in 99% of the cases
(Figures 4D–F).

However, the adherence with CellProfiler labelling was slightly
less striking (Figure 4C) although this difference might be due to
the many more parameters available in the CellProfiler GUI, such
as the “declump method” in the “watershed” module etc., that
haven’t been implemented in ZELDA GUI to keep the software
interface and its utilization as simple as possible. Nonetheless, the
agreement on the identification of the parent cytoplasms found
with CellProfiler (Figure 4J) was around 88% of the pixels, while
for both the child objects segmentation and the parent-child
relation (Figure 4K–L) it was ∼82%.

Benchmarking the segmentation of 3D data sets has proven to
be slightly more complicated, since not all the available modules
in CellProfiler support the 3D data processing. For example, in
version 4.2.1 the “smooth” module that operates a Gaussian blur
filter, is available just for the 2D data pipeline, while another one
has to be used for the 3D case. The same holds for morphological
operations such as those executed by the
“ExpandOrShrinkObjects”. Trying to circumvent this lack of
interchangeable 2D/3D functions could result in a more
elaborated and time-consuming construction of the CellProfiler
pipeline. Conversely, the versatile protocols supplied with
ZELDA (Figure 1; Figures 2A–D) allowed the 3D
segmentation and parent-child relation in fewer steps and
about twice quicker than the CellProfiler “Test mode” (Figure 5J).

We then analyzed a collection of z-stacks of mouse kidney
glomeruli, as 3D data sets (Figures 5A–C). In this tissue,
phalloidin staining (Figure 5B) was used for the identification
of the glomerular structures, and DAPI staining (Figure 5A) to
pinpoint the cell nuclei contained in each glomerulus. The
resulting segmentation of the two populations and parent-
child relation obtained by ZELDA (Figures 5D–F) were
compared with the output of a CellProfiler pipeline which
included solely the 3D data compatible modules (Figures 5G–I).

Unfortunately, the labelling agreement between the two
software was reduced with respect to the 2D analysis. A
performance comparison of the 3D segmentation revealed a
variation of the Jaccard index across the z-stack, with
maximum values typically around the mid-slice, where the
staining intensity of the confocal microscopy data set was
stronger (Supplementary Figure S3A). We then considered
the maxima of the Jaccard index across the z-stacks
(Figure 5K), assessing an accordance around 63% for the
parent objects (Jaccard index J � 0.632 ± 0.033), 73% for the
children (J � 0.735 ± 0.032), and of 64% for the parent-child
relation (J � 0.643 ± 0.029) (Supplementary Figure S3B).

We further investigated the reason for the lack of agreement
on 3D data sets labelling between ZELDA and CellProfiler, and
found that the difference was due to the absence of 3D equivalents
for some modules (e.g., the “ExpandOrShrink” morphological
operations), or lack of a unique naming for the 2D and 3D version
of the same method in CellProfiler (e.g., “Gaussian Blur”). Indeed,
pre-processing the z-stacks with the ZELDA and proposing the
resulting smoothed 3D data sets to CellProfiler, successfully
increased the accordance in identifying parents, children, and
parent-child relation above the 99% of the pixels (Figure 5L).

Therefore, ZELDA can represent a faster interactive
alternative to CellProfiler for the exploratory analysis of 3D
data sets.

DISCUSSION

Many tools are available for 2D segmentation, while fewer are able to
process 3D data sets (Schindelin et al., 2012) (McQuin et al., 2018)
(Berg et al., 2019). The main limitation is frequently due to the lack
of a flexible 3D viewer to render the resulting processed images
(segmented volumes/surfaces) or visualize in an easy and
understandable way the overlap between the labels assigned to
each object and the original image. Additionally, many functions
required for a complete 3D analysis workflowmay demand different
levels of background knowledge in coding and image analysis.

Considering the growing request for bioimage analysis tools
and the difficulties encountered by the users, we developed
ZELDA, a plugin for 3D image segmentation, and parent-child
relation for microscopy image analysis in napari (napari
contributors, 2019).

ZELDA plugin has the flexibility of being applicable to
different purposes and data sets, such as the image
measurement of beads to assess microscope resolution
(Figure 1B), the RNA quantification in influenza-infected
human cell nuclei (Figures 2B–D), the identification of

FIGURE 5 | while the blue dot represents the total duration experienced by the end user for the analysis of 9 FOVs (including the wall time). (K) Variation of the Jaccard
index of the segmentation obtained with ZELDA and CellProfiler, around the mid-slice where the signal is stronger. In the 3D case, the maxima of the Jaccard scores
along the Z-stack were used for the benchmarking. Not all the CellProfiler modules are 3D compatible, then the execution of a minimal pipeline may result in over-
segmented structures. The reason was identified to be the lack of a unique name for the same operation in 2D and 3D (“Smooth”), or the absence of 3D equivalents for
somemodules like the “ExpandOrShrink”morphological operations.CellProfilermight be able to process the data sets equivalently to ZELDA but with a longer andmore
complicated pipeline. (L) Increment of agreement on segmentation above the 99% once a pre-processed 3D data by ZELDAwas proposed toCellProfiler, showing how
quickly ZELDA can segment and relate in 3D using less steps than a CellProfiler pipeline.
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cellular compartments and organelle counting in cell culture
samples (Figures 4D–F), or the morphological characterization
of organs and tissues (Figures 5D–F).

The 2D and 3D image analysis workflows that ZELDA
protocols convey (Figure 1A; Figure 2A) do not require an
extensive knowledge of the used algorithms, coding skills, or an
elevated number of “point and click” interactions.

The “Data Plotter” protocol (Figure 2E) enables the data
exploration during the image analysis, favoring the biological
sample comprehension, and potentially highlighting differences
between treatments “on the fly”. Furthermore, the reproducibility
of workflows is sustained by the implementation of the log
(Supplementary Figure S2B) and persistence in memory of
the previously used image analysis parameters (i.e., restarting
the same protocol will show the parameters values used during
the last run).

The implementation of image analysis workflows found
in literature is achievable with a fourth protocol called “Design
a New Protocol” (Figures 3A–C). Without any scripting, users
can manage the available “widgets” to create a custom GUI
(Figure 3E) that can then be saved and shared with the
community (by sharing the JSON database) (Figure 3D).

Nonetheless, through the customization of theGUI allowed by the
fourth protocol, a simply different use of the already available
functionalities can lead to better object segmentation. For
example, including an additional “Threshold” step after the “Get
DistanceMap”, in a newly designed protocol, could help to remove
smaller debris before “Show seeds”. Certainly, the possibility of
rearranging the components of the image analysis workflows, by
using an immediate graphical mode, represents a valuable
contribution as an open-source software to bioimage analysis.

To date, ZELDA presents a minimalist interface with three
basic protocols implementing image analysis workflows, but it
could be easily powered up with additional processing steps to
improve image segmentation (e.g., morphological operators to
moderate under and over-segmentation, a filter module to
exclude segmented objects by intensity or shape descriptors, or
allowing to deconvolve the data set before segmenting it).

Although still unable to process images in batch mode,
ZELDA can find its niche of application as interactive software
since we showed, by benchmarking, that it performs at a
comparable level with ImageJ and CellProfiler in 2D. While in
3D, the segmentation and “parent-child” relation of multi-class

objects is performed with a shorter implementation of the
workflows and twice faster.

In conclusion, ZELDA plugin for napari can accelerate and
facilitate the applications of bioimage analysis to life science
research.
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An Open-Source Whole Slide Image
Registration Workflow at Cellular
Precision Using Fiji, QuPath and
Elastix
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Image analysis workflows for Histology increasingly require the correlation and
combination of measurements across several whole slide images. Indeed, for
multiplexing, as well as multimodal imaging, it is indispensable that the same sample is
imaged multiple times, either through various systems for multimodal imaging, or using the
same system but throughout rounds of sample manipulation (e.g. multiple staining
sessions). In both cases slight deformations from one image to another are
unavoidable, leading to an imperfect superimposition Redundant and thus a loss of
accuracy making it difficult to link measurements, in particular at the cellular level.
Using pre-existing software components and developing missing ones, we propose a
user-friendly workflow which facilitates the nonlinear registration of whole slide images in
order to reach sub-cellular resolution level. The set of whole slide images to register and
analyze is at first defined as a QuPath project. Fiji is then used to open the QuPath project
and perform the registrations. Each registration is automated by using an elastix backend,
or semi-automated by using BigWarp in order to interactively correct the results of the
automated registration. These transformations can then be retrieved in QuPath to transfer
any regions of interest from an image to the corresponding registered images. In addition,
the transformations can be applied in QuPath to produce on-the-fly transformed images
that can be displayed on top of the reference image. Thus, relevant data can be combined
and analyzed throughout all registered slides, facilitating the analysis of correlative results
for multiplexed and multimodal imaging.

Keywords: ImageJ, Fiji, QuPath, WSI, registration, elastix, BigWarp, BigDataViewer

INTRODUCTION

Whole slide imaging (WSI) is the process of acquiring images of tissue sections. It is typically
realized in a line or a tile by tile scanning fashion in order to allow the imaging and visualization
of samples exceeding the field of view of a conventional light microscope setup. Most of the
commercially available systems accommodate at least two modalities: brightfield and
fluorescence imaging. Within the last decade WSI turned out to become more and more
important in pathology (Aeffner et al., 2019; Zarella et al., 2019) as well as in fundamental
research.
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Image processing of WSI images is challenging in many ways,
in particular when aiming to register images from different
modalities. Images often consist of gigapixel 2D planes, and
matching correctly one slide to another usually requires a
deformation more complex than a single affine transformation.
Besides pure technical problems, life scientists face practical
challenges if they want to use published methods. For
instance, a grand challenge of non-linear image registration
has been performed in 2018 (Borovec et al., 2020). However, it
proved very difficult to apply any of the more successful methods,
either because they were closed source or because the necessary
documentation was not readily available. Moreover, very often a
file conversion step is required in order to plug images in these
workflows, and an extra effort is required to get the registration
result in a usable way for downstream analysis. In short, the
quality of the multi-modal registration algorithm is only one
factor among many others influencing the adoption/popularity of
an imaging analysis workflow.

Based on our group’s experience as a microscopy core facility
imaging, the following combination of requirements is until now
not met for non-linear WSI registration: open-source, easy to
install, capable to read and display multiresolution image files
without conversion, capable to freely deform and interactively
display deformed images, giving reasonably fast and accurate
results, and compatible with a modular and powerful analysis
platform.

The individual tasks and requirements mentioned above are
however met in different pieces of software:

• For multiresolution file format reading, the OME
consortium has built a library, Bio-Formats (Linkert
et al., 2010), which can read more than a hundred
microscopy oriented file formats. Some formats are
unfortunately incompatible with Bio-Formats (3D
HISTECH .mrxs) or are not multiresolution (Leica .lif).
In these cases file conversion is unfortunately still required
to be compatible with open source solutions. If one wants to
use open source solutions for data analysis, the output file
format should be carefully considered when deciding to buy
new instruments.

• QuPath (Bankhead et al., 2017) is a very popular and
powerful software for WSI analysis. It supports Bio-
Formats multiresolution API, is user interactive, open-
source, easy to install, and has powerful analysis
capacities, furthermore customizable through scripting.

• Thanks to the ImgLib2 (Pietzsch et al., 2012) library and
BigDataViewer (Pietzsch et al., 2015), the open-source
ImageJ/Fiji (Schindelin et al., 2012) software can
arbitrarily deform, slice and display big images. Among
many other plugins of the BigDataViewer ecosystem,
BigWarp (Bogovic et al., 2016) can be used to perform
manual registration of multiresolution datasets.

• For automated multi-modal registration, many open source
libraries exist. We decided to use the powerful and well-
established elastix library (Klein et al., 2010; Shamonin,
2013). Elastix is well documented and provides flexibility in

terms of registration possibilities, transformation models
(affine, spline, etc.), optimizer settings and resolution.

In the following we present a fast and easy to use workflow for
whole slide image registration. QuPath, a widely used open-
source project for whole slide image display and analysis,
serves as the entry point and can be used for further
downstream analysis after the registration. This workflow is
targeted towards life scientists lowering the entry barrier for
whole slide registration and making it more user-friendly and
reproducible.

RESULTS

As mentioned above, all the core open source elements needed to
build a non-linear WSI registration workflow already exist,
however, they do suffer from a lack of interoperability. For
instance elastix is a C++ library with python wrappers,
without pre-compiled Java wrappers. Moreover, while Fiji and
QuPath are both Java-based software, they are incompatible in
terms of Java versions. It is difficult however to find and allocate
resources in order to make the connections between these
components. Nevertheless, bridging these components is
needed for life scientists, and this work is the result of such an
effort. To bring these components together and provide a
complete WSI non-linear registration workflow, the following
missing components have been identified and implemented:

• A Fiji/BigDataViewer opener for QuPath projects
• Support of Bio-Formats multi-resolution API for
BigDataViewer

• Fiji plugins to bridge elastix and Fiji
• A way to apply, store and reopen the deformation function
which makes the correspondence between coordinates of
registered images.

This work provides these missing pieces and thus closes the
gap to a complete open-source workflow for non-linear WSI
registration. It starts from the opening/display/definition of the
images down to providing modular tools for the analysis in
QuPath. An overview of the workflow is presented in
Figure 1, as well as the locations of the missing components
that were needed to make it work.

In short, all images which need to be registered need to be put
into a single QuPath project, which is then opened in
BigDataViewer. The reference image is used to align and
transform all the other images. The non-reference images will
be referred to as the moving images. Pairs of reference and
moving images are then registered within Fiji, and
transformations are exported to QuPath. The analysis and
correlation between images can be performed in QuPath by
transforming regions either towards the reference or the
moving image. It is also possible to generate an image
combining the reference and registered images into a new
QuPath entry.
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The registration workflow, which happens within Fiji is
described in Figures 2A,B. In brief: for each pair of images
that needs to be registered, the user has to choose the reference
image and then select among 4 (optional) successive registration
steps: rigid manual B.1—affine auto B.2—spline auto B.3 (based
on landmarks)—spline manual B.4.

Step 1. is a manual rigid registration step which is required if the
images are not approximately aligned initially. This may happen
because Bio-Formats uses the stage location of the microscope to

position the images in physical space. If the images to register
originate from the same microscope, keeping this offset may be
helpful. In other cases, there’s a chance that images won’t overlap
at all. The Bio-Formats induced offset can thus be removed at the
start of the workflow, and the user can furthermore rigidly move
the moving image to improve the alignment before resuming the
next steps.

Step 2. consists of an automated affine registration with elastix
(see elastix parameters in Supplementary Appendix 1). Since the

FIGURE 1 |Workflow overview. The set of images to be registered are all put into a single QuPath project. Registrations are performed in Fiji, images are opened
from a QuPath project and each registration result is stored as a file within the Redundant project entry folder. For the analysis, thanks to the registration result found
between two images, regions of interest can be transferred in QuPath from one image to another, in order to generate correlated data. It is additionally possible to create
a new combined image within QuPath. Software components implemented for the workflow are labelled in red. 1: opening QuPath project in BigDataViewer; 2:
registering workflow in Fiji, 3: bridging Fiji and elastix; 4: Exporting of transformation file; 5: transferring object from one image to another; 6: generation of combined
registered images in QuPath.
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images are expected to be very large, this affine registration is
performed on images that are first resampled at 10 µm per pixel
within a rectangular region of the physical space. The moving and
the fixed image may cover different physical areas, as in
Figure 2A. In the user interface, a rectangular region covering
entirely both images is first suggested to the user. This first guess
can be modified interactively and thus modified if necessary.

Step 3. consists of a semi automated spline registration. For this
step, a set of user-defined patches are each registered
automatically in an affine manner (using the same elastix
parameters as step 2). With the default parameters, each patch
is a 500 × 500 µm area resampled at 1 µm per pixel. This xy
sampling is typically sufficient for images from histological slides
where objectives often have a numerical aperture below 1.0. For
an accurate registration, these patches should be content-rich,
and approximately correctly aligned, a condition met if the first
coarse registration is successful. To extend the patches
registration over the whole image, only the location of the
central point (moving/fixed) of each patch is kept to build a

landmark based registration. These points are used to extrapolate
the transformation over the whole slide using B-Splines of the
ImgLib2 library, as in the BigWarp plugin (Bogovic et al., 2016).
We therefore assume a continuity in the deformation field beyond
the user-defined patches. This has two advantages: 1—only sub-
regions of the images have to be loaded, increasing the speed of
the workflow; 2—if the user uses well defined sparse regions, the
registration will be robust to missing tissue regions. Performing
sparse registrations however has a disadvantage: a discontinuous
deformation (for instance with an object split in two shifted rigid
parts) will be ill registered.

Step 4. consists of manual spline correction. This step calls the
BigWarp plugin (Bogovic et al., 2016) with pre-registered images
from the previous steps. If an automated spline registration has
been performed (Step 3), BigWarp is initialized with the
registered landmarks positioned from the previous step. This
allows the user to correct the output of the automated spline, as
well as to add new landmarks to be more precise in some
particular regions, if needed. Providing a way to manually edit

FIGURE 2 | Registration workflow steps and registration accuracy. (A) Overview of the whole slide images used for the registration. Moving image: fluorescent
image, dividing cells labeled with Alexa555. Fixed image: IHC image, dividing cells stained with DAB. (B). All consecutive optional steps of the registration workflow are
used. Images are screenshots of the user interface at these steps. (C). Distribution of landmarks placement error throughout the workflow steps. The x-axis is not linear
after 5 µ in order to display all the distribution. (D). Registration error map during workflow steps of the moving image. One typical region set is shown in panel (E).
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the result of an automated workflow can save a significant
amount of time when the automation quality is not sufficient
for a particular task. This BigWarp manual registration part can
be repeated many times in case several rounds of manual
corrections are needed. In this case, the previous registration is
loaded into BigWarp as the initial state which can be modified
and resaved.

At the end of the workflow, a transformation file defining how
coordinates can be converted from the moving image to the
reference image is stored within the QuPath reference image
entry folder.

In order to demonstrate the performance of this workflow, we
applied these four consecutive steps on a test dataset. It consists of
a section of a fixed mouse duodenum. Dividing cells have been
stained consecutively with two different methods. The
fluorescence based 5-Ethynyl-2′-deoxyuridine (EdU) staining
with click chemistry was followed by a 3,3′-Diaminobenzidine
(DAB) revealing using Anti-Bromodeoxyuridine (BrdU)
antibodies, leading to the immunohistochemistry (IHC) image.
Each staining step required manipulation of the sample (see
materials and methods). This sample requires alignment and
registration because it consists of two multi modal images (one
fluorescent, one IHC) where different zones of the sample were
imaged, with different cameras, and some stitching artefacts are
present. However, note that the exact same cells are imaged in the
different modalities, which is a requirement for this workflow (i.e.
it has not been tested for serial sections). Since the same
(dividing) cells are targeted in both images, we expect a very
good match between the positively detected cells in both
modalities.

To assess the quality of the registration in the different steps of
the workflow we compare against a ground-truth registration
using BigWarp by identifying and placing more than 3,000
landmarks manually, covering the whole slide on identifiable
features, in most of the cases individual cells. Making the ground
truth required around 6 h of work. Note that on average the
uncertainties on the placement of landmarks for the ground truth
is of about 1 µm, leading to some uncertainties even in the
deformation ground truth.

We then assessed the quality of the registration at each step of
the workflow, by computing the distance of these landmarks to
their target location in the ground truth (Figure 2C.). Figure 2D
shows errors map throughout the steps: how far each landmark is
to its ground truth is color coded and displayed in the coordinates
of the moving image. A typical zoomed in region is displayed in
Figure 2E for all successive steps.

In step 1, we can see that a 10 µm shift is present and this is
clearly not precise enough for individual cells to match.
Conversely, as in the ground truth, it is hard to distinguish
meaningful differences when landmarks are less than 2 µm
from their ground truth location.

Based on Figures 2C–E, we can conclude that an automated
affine registration already brings good global positioning, since
the vast majority of landmarks are positioned within 5 µm of
error. The automated spline registration, which has been
performed with 32 manually placed landmarks, greatly
improves the quality of the registration, since 90% of the cells

now have an error below 3 µm. Spending additional time to
manually fix registration mismatch in some regions improves the
overall registration quality further (92% of the cells have an error
below 3 µm). In terms of timing, the automated part of the
workflow (steps 2 and 3) takes around 2 min on a 4 core
entry-level laptop. 5 additional minutes were needed to
perform the corrections during step 4.

Figure 3 summarizes how the registration output can be easily
plugged into QuPath in order to further analyze the registered
images. We first annotated a region hosting most of the dividing
cells in the fluorescent (moving) image. We segmented all cells
(4,393) within this region using the DAPI channel of the
fluorescent image (moving) by using Stardist in its default
versatile 2D fluorescent model (Schmidt et al., 2018; Weigert
et al., 2020). Thanks to the generated transformation file, the
annotations and detections can be transformed and transferred to
their target location in the (fixed) DAB image (Figure 3A). Cell
properties can then be measured and compared between both
images. We choose to segment cells in the fluorescence channel
since it is easier to discriminate cells in the DAPI modality. We
are thus transferring cell regions of interest (ROIs) from the
moving image to the fixed image. Note that the deformation
computed in this workflow is invertible, meaning that it is also
possible to segment cells regions in the fixed image and then
transfer them to the moving image.

For downstream analysis in QuPath, we decided to provide a
way to transform a region of interest from one slide to another.
Since regions of interest are defined with double precision
coordinates, very little precision is lost when transforming
coordinates. Conversely, generating a transformed image in
QuPath creates some interpolation artefacts due to the pixel-
based resampling. However, it may be useful to display
transformed images over the reference image, e.g. for display
and presentation purposes. This can be done with an additional
QuPath extension provided in this workflow, called Image
Combiner Warpy. With this tool, the transformed images can
be overlaid on top of the reference image, based on the transform
files and by using various possible sampling methods. Since this
overlay process creates only one additional QuPath project entry,
using the existing image data, it is executed almost immediately,
with no delay time. If effects due to sampling artifacts do not
matter, the combined image can be used for analysis in QuPath,
including the transformed channels as well as the reference
channel. If computation time and storage space are not an
issue, and availability as a whole slide image file is important,
the combined image project can be fully computed and resaved
from within QuPath, for example as an OME tiff.

In Figure 3B, we assessed how the correlative measurements
performed on cells are varying when each successive step of the
workflow is applied (using transferred ROIs). We expect most
DAB positive cells to be also positive for the fluorescent EdU
stain, since both staining are for dividing cells. If each cell region
is correctly transferred, we expect many double positive cells
(EdU+/DAB+). To decide whether a cell is positive for DAB, we
detected cells in the DAB image and found that a threshold of 0.18
OD in DAB is accurately discriminating dividing cells from non-
dividing ones. We proceeded similarly for the fluorescence image
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and set a threshold of 18 for the mean fluorescence over each
detected cell region. If cell regions are incorrectly transferred, very
little correlation between stains should be observed. Throughout
each step of the workflow we then plot the mean DAB optical
density versus the mean fluorescence EdU intensity per
individual cell. These graphs allow counting cells which are
considered to be dividing cells for both modalities (EdU+/
DAB+), non-dividing in both modalities (EdU−/DAB−), and
which give different outcomes based on the modalities (EdU+/
DAB−) and (EdU−/DAB+).

We assess the distance of a registration to the ground truth by
counting the number of cells which differ in this count (Table 1).
In agreement with the quality of the registration shown in
Figure 2, adding more registration steps reduces the difference

to the ground truth. Relying only on a manual rigid registration is
unsuitable for quantification in this case. The last step in the
workflow (spline manual registration) is only giving a minor
improvement (changing the classification of only 10 cells among
4,300) and might be omitted in some cases.

In summary the comparison of the DAB with the fluorescence
images demonstrate that this workflow is able to reach high
quality registration. Only 1.5% (12 out of 790) of the double
positive cells were missed due to alignment errors.

DISCUSSION AND PERSPECTIVES

This workflow has been tested for the applications achieving
multiplexing by imaging the same sample through several rounds

FIGURE 3 | (A) The EdU fluorescence image (moving image) is annotated and cells are detected thanks to the DAPI stain within a region of interest. Cells detected
in the fluorescence image are transferred to the DAB image (fixed image), using a specific registration result file. Since the transformation is invertible, it would have been
possible to segment cells in the DAB image and transfer cells to the fluorescent image.(B). Each cell property for each image can be measured and combined during
downstream analysis. Scatter plots of 4,393 detected cells, X: mean fluorescence EdU intensity, Y: mean DAB optical density. Each plot corresponds to a specific
transform file, respectively from left to right: - manual annotation of 3,000 + landmarks (ground truth) - manual rigid transformation 1)—manual rigid transformation +
automated affine transformation 2)—all steps in 2) + automated spline transformation 3)—all steps in 3) + manual spline transformation 4). Vertical dashed lines:
fluorescence threshold (18 a.u.) separating EdU + cells from EdU- cells. Horizontal dashed lines: DAB OD threshold (0.18) separating DAB + cells from DAB- cells.

TABLE 1 | Comparison of cell classes depending on registration procedure. Counting of cell DAB/EdU classes (+/+, −/−, +/−, −/+) for the ground truth and for the different
registration methods used (see Figure 3). In parenthesis is shown the excess or deficit of cells being counted when compared to ground truth. A lower number in
absolute value means a result being closer to the one obtained with the ground truth deformation field.

DAB+ / EdU+ DAB- / EdU- DAB+/EdU- DAB-/EdU+

Ground Truth 790 3,353 160 90
1 Manual Rigid 386 (−404) 3,020 (-333) 493 (+333) 494 (+404)
2 (1) + Auto Affine 757 (−33) 3,279 (-74) 234 (+74) 123 (+33)
3 (2) + Auto Spline 767 (−23) 3,332 (-21) 181 (+21) 113 (+23)
4 (3) + Manual Spline 778 (−12) 3,341 (-12) 172 (+12) 102 (+12)

Frontiers in Computer Science | www.frontiersin.org January 2022 | Volume 3 | Article 7800266

Chiaruttini et al. QuPath Fiji WSI Registration Workflow

78

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


of staining. As the physical size of the image and the target
resolution are known, reasonable default parameters for elastix
can be used providing a user interface which is almost parameter
free. This is particularly important as parameter fine tuning is
cumbersome and challenging for non-experts. Omitting this step
clearly lowers the entry barrier for the broader life-science
community.

Until now this workflowhas not been tested for the registration of
serial sections where cellular matching from one slice to the next
cannot be expected. Conversely in its present form this workflow is
not of sufficient precision tomatch small sub cellular structures, such
as membranous organelles. However, due to its modular design, this
workflow can be adapted either by using different alignment
parameters or by using other alignment methods, opening the
way to support other use cases. In particular, elastix is the library
we chose for registrations, but other libraries exist, including ones
which are only available in python. By using PyImageJ (Rueden et al.,
2021), we should be able to integrate cutting edge registration
methods into this workflow.

CONCLUSION

We implemented a workflow for semi-automated non-linearWSI
registration which requires minimal user input and can be
realized in a few minutes per slide. It facilitates the
registration of images for all applications where multiplexing
is achieved via several rounds of staining. The performance is
almost identical to that of a registration workflow based on
manual annotation, but requires far fewer landmarks with the
advantages of omitting the time consuming and tedious task of
finding landmarks. Therefore it can save several hours of human
annotation workload. Thanks to its modular design, it will be
extended in the future to support other registration methods and
other use cases, such as serial sections alignment (between them
or with an atlas) and CLEM.

MATERIALS AND METHODS

Sample used for the demo registration (https://doi.org/10.5281/
zenodo.5674521 : Mouse duodenum fixed in 4% PFA overnight at
4°C, processed for paraffin infiltration using a standard histology
procedure and cut at 4 microns were dewaxed, rehydrated,
permeabilized with 0.5% Triton X-100 in PBS 1x and stained
with Azide - Alexa Fluor 555 (Thermo Fisher) to detect EdU and
DAPI for nuclei. The images were taken using a Leica DM5500
microscope with a PL Fluotar 40X N.A.1.0 oil objective (grayscale
CCD camera: DFC350FXR2, pixel dimension: 0.161 µm). Next,
the slide was unmounted and stained using the fully automated
Ventana Discovery xT autostainer (Roche Diagnostics, Rotkreuz,
Switzerland). All steps were performed on automate with
Ventana solutions. Sections were pretreated with heat using
the CC1 solution under mild conditions. The primary rat anti

BrDU (clone: BU1/75 (ICR1), Serotec, diluted 1:300) was
incubated 1 h at 37°C. After incubation with a donkey anti rat
biotin diluted 1:200 (Jackson ImmunoResearch Laboratories),
chromogenic revelation was performed with DabMap kit. The
section was counterstained with Harris hematoxylin (J.T. Baker)
before a second round of imaging on DM5500 PL Fluotar 40X N.
A.1.0 oil (RGB camera: DFC 320 R2, pixel dimension: 0.1725 µ).
Before acquisition, a white-balance as well as a shading correction
is performed according to Leica LAS software wizard. The
fluorescence and DAB images were converted in ome.tiff
multiresolution file with the kheops Fiji Plugin (Guiet et al.,
2021).

All the tutorials (written and video) necessary to apply the
workflow in practice are accessible in https://c4science.ch/w/
warpy/ .
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We present a novel system for the automatic video monitoring of honey bee foraging

activity at the hive entrance. This monitoring system is built upon convolutional neural

networks that perform multiple animal pose estimation without the need for marking.

This precise detection of honey bee body parts is a key element of the system to

provide detection of entrance and exit events at the entrance of the hive including

accurate pollen detection. A detailed evaluation of the quality of the detection and a

study of the effect of the parameters are presented. The complete system also integrates

identification of barcode marked bees, which enables the monitoring at both aggregate

and individual levels. The results obtained on multiple days of video recordings show

the applicability of the approach for large-scale deployment. This is an important step

forward for the understanding of complex behaviors exhibited by honey bees and the

automatic assessment of colony health.

Keywords: honey bee monitoring, bee counting, pollen detection, pose estimation, convolutional neural networks

1. INTRODUCTION

There is a growing interest in the quantification of behavior in honey bees (Apis Melifera).
One of the major concerns is the dramatic yearly decrease in honey bee populations (Neumann
and Carreck, 2010; Anderson et al., 2011; Huang and Giray, 2012), which has impacted the
agriculture industry in the last few years. Although there are existing hypotheses regarding the
usage of pesticides and urban growth, there are still questions unanswered that require precise
observations to guide possible actions. Furthermore, honey bee colonies exhibit complex self-
regulatory behaviors that are not yet fully understood. This includes how colonies maintain
homeostasis or adapt to environmental changes, automatic adjustment of circadian patterns based
on thermal cycles (Giannoni-Guzmán et al., 2021), thermo-regulation (Kaspar et al., 2018), or the
individual variation in foraging activities in function of the season of the year (Meikle and Holst,
2016). Such studies may benefit greatly from automatic surveillance systems of the hives to detect
both individual and collective behavior continuously over days or even seasons to provide crucial
insights about biological mechanisms that express themselves over such time frames.

Foraging behavior has traditionally been studied through visual inspection of bees marked with
number tags (Wario et al., 2015), which is a very time-consuming and error-prone process, as
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foraging bees usually spend very little time in the ramp before
entering the hive with their payload. The overall count of
entrance and exits can currently be estimated using optical or
mechanical bee counting sensors that detect the passage and
direction of individual bees through gates at the entrance of the
hive (Meikle and Holst, 2016). In that setup, only aggregated
statistics can be obtained, which led to the development of sensor
technology to detect entrance and exits of individuals marked
with Radio-Frequency Identification tags (RFID) (de Souza et al.,
2018).

A complementary approach is to analyze the behavior through
video recordings. The advantage of the video collection at the
colony entrance is that in addition to entrance and exit events,
a much larger set of information is available: payload (pollen),
the identity of bees with markings, morphology and phenotype,
social interactions, gait, etc. This technique is minimally invasive
since it does not require manipulation of the individuals, except
to perform optional marking. One of the main challenges of this
approach is the need for algorithmic processing of the videos
which is not needed in simpler sensor setups. The application
of machine vision to such applications has become in the
last decade a very compelling option due to the improvement
in computational power and artificial intelligence methods
(Branson et al., 2009). The idea is to develop algorithms that
can identify and quantify the behaviors of interest with limited
human intervention. This enables the design of high throughput
systems that can analyze long periods of video recordings
automatically.

Ideally, the observation should happen in the most natural
setup to avoid interfering with the behavior; however, there is
a known trade-off between the complexity of the problem and
the conditions of observation (Robie et al., 2017). As the set-up
becomes as unobtrusive as possible, the complexity of the task
rises, which requires more powerful algorithmic approaches to
address it. This is the case at a normal entrance of a colony,
where there are natural changes of illumination, changing the
number of individuals, and fast moving individuals that make
the problem more challenging. In addition, the entrance ramp
can be very crowded at certain times of the day, which makes it
difficult for traditional background subtraction based algorithms
(Campbell et al., 2008) to detect precisely each individual.

In this study, we introduce a new computer vision system that
leverages recent advances in deep learning to monitor collective
and individual behavior of honey bees at the entrance of their hive
with minimal interference. The rest of this study is organized as
follows. In Section 2, an overview of related study is presented.
The proposed system is presented in Section 3 and evaluated in
Section 4. The main findings and future directions are discussed
in Section 5.

2. RELATED WORK

We first review related studies about the monitoring of honey
bees in the context of foraging analysis, then discuss more general
methodologies for detection, tracking, and characterization of
individual behavior from video.

2.1. Bee Counters and Forager Traffic
Analysis
Bee counting has previously been addressed with the help of
optical counters, RFID techology, and Machine Vision Counters.
Refer to Meikle and Holst (2016) for a detailed review of existing
approaches.

Optical counters consist of small tunnels that force the bees
to pass through them one by one where they cross an optical
beam that triggers a detection. The only crossing is detected,
which limits the information to aggregated counting. Multiple
commercial products exist for this task, such as Hive Mind
Strength monitor, Arnia Remote Hive Monitoring, or Lowland
Electronics’s BeeSCAN and ApiSCAN-Plus, as well as open-
source projects such as https://github.com/hydronics2/2019-
easy-bee-counter.

Radio Frequency Identification (RFID) counters (de Souza
et al., 2018) solve the identification problem by using individual
lightweight radio frequency tags that are placed on the torso
of the bees. Radio frequency detectors detect the entrance or
exit of each tag that is associated with a unique ID. Due to the
limited range of detection, bees are typically guided into tunnels.
Detection is limited to tagged bees and requires the gluing of the
tags on each individual to be monitored.

Machine vision based counters have been explored for about a
decade now. These counters have a simple setup in terms of data
capture (video camera at the entrance) and leave the complexity
of the problem to algorithm development. Among the first ones
to propose such a system, Campbell et al. (2008) detected bees
using background subtraction and modeled the possible motion
in subsequent frames to perform tracking. However, as they
noted, a more detailed model of the bee orientation is necessary
to avoid merging tracks when honey bees interact closely at the
entrance. Similar detection and tracking approach was applied to
flight trajectories in front of the hive by Magnier et al. (2018).
Using stereovision sensors, Chiron et al. (2013) obtained 3D
flight trajectories. Recent study explored approximate forager
traffic quantization from the detection of motion (Kulyukin and
Mukherjee, 2019).

More advanced detectors have incorporated the usage of tags
(Chen et al., 2012; Boenisch et al., 2018). These tags contain 2d
barcodes that can be detected by computer vision algorithms.
Such detection can be used for both the detection of individual
entrance/exit and identification. Compared to RFID, such tag
design is lower cost and more accessible.

In addition to traffic, payload information provides additional
ways to assess the health of the hive, for instance, by having a
precise account of the pollen intake (Frias et al., 2016). The study
of Babic et al. (2016) used low-resolution images and traditional
image processing techniques for detecting pollen. Several
convolutional neural network architectures were evaluated by
Rodriguez et al. (2018a) on a higher resolution dataset of images
of individual honey bees, showing the possibility of accurate
automatic pollen detection. This approach was adapted to
FPGA by Sledevič (2018) for low-cost real-time implementation.
More recently, Marstaller et al. (2019) proposed a CNN
architecture that can detect pollen balls on extracted images of
individual bees.
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2.2. Behavior Quantification From Video
More generally, behavior quantification is an extended field of
research that has led to relevant developments for the monitoring
of diverse animals from video.

Estimation and tracking of pose (position of the body parts)
is a typical first step to classify and characterize actions and
behavior. Even though most of the published study has focused
on human pose estimation (Cao et al., 2017; Güler et al.,
2018), several contributions have targeted animal behavior more
specifically (Mathis et al., 2018; Nath et al., 2019).

Reliable long-term tracking is fundamental for the study
of behavior. For tracking, Cascaded Pose Regression (Dollár
et al., 2010) was applied to track individuals such as Drosophila,
mice, and fish (Kabra et al., 2012). This method relied on an
initial estimate to be refined progressively using a sequence of
regressors. This type of approach is better suited for tracking in
setups where individuals are always visible and captured at a high
frame rate, as it requires an initialization when a new individual
appears in the field of view.

Pose estimation built on top of deep network architectures was
demonstrated to detect body part keypoints reliably in various
animals (Mathis et al., 2018; Nath et al., 2019; Pereira et al., 2019).
These methods however have so far focused on the tracking of
a single animal. A recent exception was the detection and pose
estimation of the honey bee body inside of the hive using a
modified U-net architecture (Bozek et al., 2018). This approach
estimated orientation and used a recursive formulation to guide
detection in subsequent frames. As most bees were visible for
extended periods of time, visual identity models were trained
to solve reidentification when tracks crossed each other or an
individual became occluded for a short amount of time.

Detailed pose estimation for multiple bees at the entrance
of the hive was first shown in Rodriguez et al. (2018b). This

last approach will be evaluated in detail and integrated into a
complete system in this study.

3. MATERIALS AND METHODS

In this study, a complete system for foraging characterization of
honey bee hives using recordings from the video is proposed.
The system consists of the following modules: (1) data collection:
recordings of video using camera capture at the colony entrance,
(2) detection and tracking of honey bee individuals, (3) activity
classification to decide if the bee is leaving, entering, or
walking, and recognize the presence of a pollen payload, (4)
identification of marked bees, (5) activity analysis through
actograms summarizing extended periods of time. The general
architecture is shown in Figure 1. The developed software is
open-source and made available to the community as detailed in
the Data Availability Statement section.

3.1. Data Collection
The video capture system is designed to observe the ramp
through which all foraging bees must pass to exit or enter
the colony. Figure 2 shows the system used in this study.
We used a 4 Mpixels GESS IP camera connected to a video
recorder configured to record continuous H264 video at 8Mbps.
A transparent acrylic plastic cover located on top of the ramp
forces the bees to remain in the focal plane of the camera. To
avoid interfering with the bee biological cycles, only natural light
is used. A white plastic diffuses the natural light received, and
a black mask is put around the camera to reduce the direct
reflections that could be visible on the plastic cover.

The majority of videos used in this study were acquired from
June 25 to June 30, 2017 at the UPR Agricultural Experimental

FIGURE 1 | Overview of the video analysis modules. In green, the base system can be applied uniformly to both unmarked and marked bees to detect all foraging

events and produce aggregated statistics including global information of pollen intake. In orange, the identification module extends the base system to associate

events to tagged bees to produce actograms for detailed analysis of behavior at the individual level.
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Station of Gurabo, Puerto Rico, from 8 a.m.–6 p.m. to take into
account different lighting setups. Each video is 1 h long.

3.2. Pose Estimation
Body pose is defined as a skeleton model combining a set
of body parts with their connections. For honey bees, we
considered five parts including Abdomen, Thorax, Head, AntL
(left antenna), and AntR (right antenna), as shown in Figure 3.
In the evaluation section, we will show an ablation study using
simplified models with 3 parts (abdomen, thorax and head),

2 parts (abdomen and head), and 1 part (either thorax, or
head). In terms of connections, the 5 parts model considers 5
connections: Head-Abdomen, Thorax-Abdomen, Head-Thorax,
Head-AntL, Head-AntR. The simplified models consider the
subset of connections that connect the considered parts.

We use a tracking-by-detection approach, where the
individuals are first detected in each frame independently and
then tracked through time to produce a pose trajectory, which
provides for each individual bee the evolution over time of the
position of their body part.

FIGURE 2 | Video capture system used in the field: (left) overview of the system installed at the entrance of the colony and (right) detail on the entrance. (1) Bee-hive,

(2) camera, (3) entrance ramp, and (4) protection against direct sunlight.

FIGURE 3 | Pose detection model. (a) 5 parts skeleton (Head, Thorax, Abdomen, Left and Right Antenna) and connection used. (b) Confidence map of the abdomen

keypoints used to train the (S) branch. (c) The magnitude of the Part Affinity Field (PAF) of the thorax-abdomen connection used to train the (L) branch. (d)

Convolutional Neural Network architecture used to predict the body part confidence maps and PAFs organized as a feature extraction backbone followed by the two

branches (S) and (L) with iterative refinement stages.
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3.2.1. Architecture of the Pose Detector
The pose estimation module in each frame follows the Part
Affinity Fields (PAF) approach proposed by Cao et al. (2017),
with modifications to take into account the specificity of the
colony entrance videos. The convolutional neural network is
composed of a feature extraction backbone (F) and two pose
detection branches (S,L). Refer to Figure 3d for the architecture
of the network used in this study.

Let us denote F as the feature map produced by the feature
extraction backbone. Following Cao et al. (2017), we used the 10
first convolutional layers of VGG-19 (Simonyan and Zisserman,
2014), pre-trained on ImageNet. The next two layers (conv4_3
and conv4_4) were modified to reduce the dimension from 512
down to 128 while keeping the same 1/8 resolution.

The keypoints branch (S) estimates a set of 2D confidence
maps where each pixel belongs to a particular body part keypoint.
Each confidence map is used to detect keypoints related to a
single type of body part (e.g., head) for all individuals at once. The
PAF branch (L) produces Part-Affinity Field vector maps that are
used to connect body parts of different types. Each PAF is used
to connect a single type of connection (e.g., head-thorax). The
output of both branches is used as input of an inference algorithm
outside of the network that estimates both the keypoints and their
connections, to produce a set of individual body skeletons.

Let us now denote S = (S1, ..., Sj, ..., SJ) the set of J heatmaps,
one per body part, and L = (L1, ..., Lc, ..., LC) the C vector fields
or PAFs, one per connection, considered for the configuration of
the pose for each individual. The prediction of S and L is done
with multiple stages of refinements producing multiple estimates
St and Lt . After a first stage t = 1 that takes as input the features
F, subsequent stages t > 1 refine previous estimates St−1 and
Lt−1 iteratively.

3.2.2. Training
Based on the annotated keypoints, the reference confidence map
S∗j is generated as the combination of a set of gaussian kernels

centered on the x, y position of each annotated part of type
j. Each channel of the (S) branch will be used for a different

part. The reference PAF vector fields L∗j are generated by the

interpolation between two of the keypoints that belong to a
joint. Channels of the (L) branch are organized in pairs of
consecutive channels associated with a single connection. The
reference skeleton model, confidence maps, and PAF fields are
illustrated in Figures 3a–c.

The loss functions at stage t for confidence map j and PAF
c are defined as the weighted mean squared errors

∑

pW(p) ·

||Stj (p)− S∗j (p)||
2
2 and

∑

pW(p) · ||Ltc(p)− L∗c (p)||
2
2, where S

∗
j and

L∗c correspond to synthetic confidence maps and PAFs generated
from the reference keypoints.W(p) is a binary mask defined as 0
for all pixels that do not belong to the bounding box surrounding
the keypoints of any annotated bee. The overall loss function is
defined as the sum of the losses for all stages during training. Only
the output of the last stage is used for inference.

To improve the generalization of the network, we performed
data augmentation in the form of random geometrical
transformations combining rotation, translation, reflection,
and scaling applied to both the input image and associated
reference keypoints. In order to maximize the usage of the
training dataset, all generated images were centered on an
individual, although the size was designed to also include
significant contexts, such as other individuals and backgrounds.

3.2.3. Inference Stage
Once the set of confidence maps and PAFs are computed,
the greedy inference is performed to (i) detect the body-part
keypoints and (ii) group keypoints into skeletons illustrated in
Figure 4.

Keypoints are detected by extracting the local maxima
from the (S) confidence maps and applying non-maximum
suppression with a fixed radius to remove duplicates. The
detection threshold is fixed and only parts with a score higher
than 0.5 are accepted as a hypothesis.

Grouping uses the PAF from the (L) branch to select the most
likely connections by calculating the association score explained
later in Equation (6). All the association candidates (j1, j2) with
valid part types are sorted in descending score Ej1j2 to perform

FIGURE 4 | Examples of bee skeletons reconstructed in the inference stage. (a) Because of the bottom-up greedy association, a partial skeleton can be generated

even when some keypoints are not visible or detected. The use of our modified PAF score also enables the correct associations in crowded areas by constraining both

orientation and length of the connections. (b) Example of incorrect association (in red) between head and abdomen obtained if factor πj1 j2 is ignored when two bodies

are aligned.
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greedy bottom-up association. If a new association conflict with
existing connections with either j1 or j2, it is discarded, else it
is added to the connections. The final skeletons are obtained by
extracting the connected components of all selected connections.

Given that the honey bees at the entrancemay have completely
arbitrary orientations, it is common for two or more individuals
to be aligned. This is unusual in typical videos with humans,
where people do not commonly have connections of the
same type (e.g., abdomen-head) aligned with each other. The
original approach measured the association between two parts by
computing the line integral over the corresponding PAFs or, in
other words, by measuring the alignment of the detected body
parts. We used the distribution of the distance between points to
constrain the connections based on the scale of the honey bees’
bodies. The new PAF score associated with the body parts j1 and
j2 is expressed as:

Ej1 ,j2 =

∫ u=1

u=0
Lc(p(u)) ·

dj2 − dj1
∥

∥dj2 − dj1
∥

∥

πj1j2du (1)

where the point p(u) = (1 − u)dj1 + udj2 moves along the
linear segment between the two body parts for u ∈ [0, 1].
The probability πj1j2 is defined as the empirical probability that
j1 connects with j2 conditioned on their distance

∥

∥dj2 − dj1
∥

∥.
It follows a gaussian distribution specific to each type of
connection, fitted on the training dataset.

The π factor is important in scenarios where PAFs can be
aligned since all individuals share the same PAF channels in
the network. This particular assumption works well for honey
bees, as their body is usually quite rigid, so the variance of
the connection length is small. Figure 4b shows an example of
alignment that leads to the incorrect association if this factor is
omitted.

3.3. Tracking
Once the detections on each frame have been obtained, they
are matched temporally on a frame-by-frame basis using the
Hungarian algorithm (Kuhn, 1955). The cost used for the
Hungarian assignment algorithm is determined by the distance
between detected keypoints in a frame and the predicted
positions from the past. We take into account not only point
to point distance for the thorax but also antennae and head.
Formally, the distance between two bees in consecutive frames
is measured in the following way.

D(bk,i, bk+1,i′ ) =
1

J

J
∑

j=1

δ(dk,i,j, dk+1,i′,j) (2)

where bk,i refers to the set of keypoints for detected bee i in frame
k and dk,i,j indicates the keypoint of part j for that bee, and J is
the number of body parts considered. Finally, the cost δ(d, d′)
between two keypoints:

δ(d, d′) =

{

‖d− d′‖ if both d and d′ were detected

δ0 else
(3)

where δ0 is a fixed misdetection penalty (δ0 = 200 pixels in our
experiments) that is close to the typical distance between two bees
located along with each other.

Once the assignment is done by the Hungarian method, an
unassigned track will be considered a disappeared track and an
unassigned detection in frame i+ 1 will start a new track.

From that point on, detected bees can be associated with a
trajectory index trackId instead of independent indices in each
frame. We will denote by T(i) = (Tk,i,Tk+1,i, ..Tk′,i) the trajectory
with trackId i, starting at frame k, and ending at frame k′. Each
element Tk,i is associated with a detection dk,i, as well as optional
frame levels information such as the presence of pollen or tag.

3.4. Foraging Events Detection and
Labeling
3.4.1. Entrance/Exit Detection
We perform the detection of entrance and exit events using the
starting and ending points of the tracks using the classification
policy illustrated in Figure 5.

First, tracks shorter than 5 frames are discarded. The leaving
and entering behavior is defined by crossing the red line (as
shown in Figure 5). The direction of the track would determine
if it is leaving or entering. Tracks that both start and end in
the middle are considered walking bees. The other two classes
of tracks are those that start and end in the bottom (outside) or
top (inside). These tracks are among those bees that dwell in the
border and enter and exit the field of view of the camera without
actually crossing or entering the center of the ramp. Although
these tracks could be used in the future to assess the level of
crowding of the ramp, they are ignored in this study to focus on
the entrance and exits.

3.4.2. Pollen Classification at Frame and Track Levels
Once the pose estimation is performed, the location of the
keypoints of the head and the tip of the abdomen are used to
precisely crop the image of each individual bee with optional
orientation compensation, as shown in Figure 6. The image
obtained is then passed to a shallow network with two layers
that have previously shown high accuracy in pollen detection
classification (Rodriguez et al., 2018a) to predict the decisions for
each detection in each frame.

Track-level pollen classification is performed by aggregating
the framewise pollen classification using a majority vote.

3.5. Bee Identification Using Tags
Once all bees have been detected and tracked, the individual
identity information can be added to the tracks for those bees
that have been marked with a tag.

The tag detection is performed with the help of the open
source project April Tags (Wang and Olson, 2016). We have
generated the tag25h5 family, which consists of 5 x 5 binary codes
with a minimumHamming distance of 5 between codes, and that
code for 3009 unique tags. The tags are printed on waterproof
paper using a 1,200 dpi laser printer, cut automatically using a
laser cutter, and placed on the torso of the honey bees. The code
used to generate the tag sheets for printing and laser cutting
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FIGURE 5 | Event classification policy based on trajectory endpoints. The entrance to the hive is at the top and the outside world is at the bottom. Red arrows

represent exit events (leaving): these trajectories start inside the ramp and end below the threshold represented by the red line. Green lines represent entrances: these

trajectories start at the bottom and end inside the ramp. Black lines represent ignored trajectories that are the result of tracking interruptions or of bees that dwell in a

single area but never enter nor exit.

FIGURE 6 | Detail of individual bees. (A) Typical frame with a detected pose. (B) Cropped image with thorax centering. (C) Cropped image with thorax centering and

orientation compensation using the head and abdomen axis. (D) Example of bee tagged with a 5× 5 apriltag barcode of the tag25h5 family.

is provided in the generatetagsheet package shared in the Data
Availability section.

In contrast to existing systems for individual monitoring

(Crall et al., 2015) or (Boenisch et al., 2018) that are based

primarily on tag detection, we consider tags as an augmentation

of the trajectories obtained from whole body detection, thus

tracking marked and unmarked bees with the same process.
Given that tags are much smaller than the honey bee themselves,
they can be more easily occluded, and their high-resolution
barcode is more easily impacted by motion blur. For these
reasons, we chose to perform whole bee detection as the main
input for tracking, even for marked bees. Our system, therefore,
relies on the assumption that the framerate is fast enough to track
without ambiguity based on geometric proximity alone (we used

20 frames per second in our experiments). In each frame k, each
trajectory element T(k, i) is then potentially associated with a tag
ID by finding the detected tag whose center is the closest to the
thorax keypoint. In case the distance is larger than a threshold
d > 0, the track is not assigned any tag for this frame. After
association, the most frequent tag ID is selected for each track,
thus augmenting each trajectory with individual identity when
available.

4. RESULTS

The system has been evaluated with respect to two main aspects:
(i) pose detection in individual frames, and (ii) foraging event
detection and classification (entrance/exit, presence of pollen).
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4.1. Performance of Detection and Pose
Estimation
4.1.1. Dataset for Pose Estimation of Honey Bees
As part of the contributions of this study, a honey bee pose dataset
is released. This dataset consists of 270 frames, chosen from a
pool of 10 videos distributed across several days between June
22, 2016 and June 28, 2016, and different times of the day, using
the recording setup described in Section 3.1. Each frame was fully
labeled using 5 key-body points (Head, Thorax, Abdomen, AntL,
and AntR). The dataset contains a total of 1,452 fully labeled bees.
The annotations are stored in COCO format (Lin et al., 2014).

4.1.2. Evaluation Methodology
The evaluation of the algorithm was performed using mean
Average Precision (mAP) as provided by the pose evaluation
package https://github.com/leonid-pishchulin/poseval based on
Insafutdinov et al. (2017). The mAP metric relies on the greedy
assignment of the body pose predictions to the ground truth (GT)
based on the highest PCKh. PCKh-0.5 is the standard metric
used for human pose estimation where a keypoint is correctly
detected if its residual distance to the ground truth is less than
half of the head size (Andriluka et al., 2014). As an equivalent
for honey bee pose estimation, we considered that a key-point is
correctly detected if its residual is less than half of the distance
between thorax and head. We defined a fixed threshold for all
the individual detections of 0.5, thus making sure that only high
confidence keypoint hypotheses were passed to the inference
stage.

The dataset was split into training and validation datasets as
follows: 70% of the data was used for training and the remaining
30% for validation. The frames used for validation were extracted
from videos captured on a different day and at different times
of the day than the training to ensure as much independence
as possible between the datasets. The VGG19 feature extraction
backbone was frozen with weights pre-trained on ImageNet. The
training was performed on the S and L branches using the Adam
optimizer with a learning rate of 1e−4.

Figure 7 shows an overview of the performance for 1, 2, 3,
and 5 parts and 2, 3, 4, 5, and 6 stages models. We trained the
model for 20,000 epochs, and show the mAP averaged between
19,000 and 20,000 epochs. These results are analyzed in the next
subsections.

4.1.3. Effect of the Number of Parts
Figure 7 andTable 1 show that in terms of detectionmAP, higher
scores are obtained with the 5 parts model than the models with
fewer parts. We hypothesize that the higher number of parts
may help the network interpolate poorly detected parts by using
features learned for the detection of its connected parts. This is
supported by the fact that the head part benefits more from the
addition of the antennas, to which it is connected in the 5 parts
model, compared to the thorax, which is not connected to the
antennas in any model.

We also compared our approach with the popular YoloV3
object detector (Redmon and Farhadi, 2018), trained to detect a
bounding box around the thorax. Such a detector could be used
in a two-step approach where each individual is first detected

approximately, before applying a more precise body parts model
on each individual separately. This top-down 2-steps approach
is necessary to apply the body parts models designed for one
individual such as Mathis et al. (2018), Marstaller et al. (2019),
and Pereira et al. (2019). The bounding boxes used for training
were centered on the thorax ground-truth with a fixed size of
150 × 100 pixels. The detector was trained until early stopping
with standard parameters of 9 anchor boxes, 13 x 13 grid size,
and pre-trained weights from Darknet-53. The model used a
standard threshold of 0.5 to discard overlapping anchor boxes.
For testing, the center of the bounding box was used as the
estimate of the thorax location for comparison with keypoint
detection. For these comparisons, we used the implementation
by Zihao Zhang from https://github.com/zzh8829/yolov3-tf2. In
our experiments, Yolo only reaches 79.8 mAP, compared to 97.6
when we train our approach for the detection of only the thorax
part. Based on these results, we did not consider approaches
based on anchor boxes further for the proposed monitoring
system, relying instead on the more precise heatmap based
keypoint detection.

4.1.4. Effect of the Refinement Stages
The refinement stages proposed in Cao et al. (2017) are designed
to increase the accuracy of pose estimation. A rationale is that
due to the difficulty of the task, and the diversity of conditions,
scale, background, part detection, and affinity fields may not be
estimated properly and/or in a consistent way in the first stage.
Recursively refining the part detection and affinity fields was
shown to improve the performance in human pose estimation.
We now explore the effect of the refinement stages for honey bee
detection.

The results from Figure 7 show no clear trend of the
performance in terms of the number of stages. This is confirmed
in Table 2 where mAP performance for all keypoints is shown
in the case of the 5 parts model. In our case, the videos have
a single background and all the animals preserve their scale
with respect to the camera, which could help in obtaining good
performance without the need for extra refinement stages. The
two best performing number of stages are 2 and 6, with a small
decrease of performance for the intermediate number of stages.
Since each additional stage adds 9 extra layers, we, therefore,
decided to limit the model to 2 stages in further experiments,
which allowed us to allocate more models in parallel inside the
GPU and to increase the throughput of the pipeline.

4.2. Performance of Foraging Events
Detection
Foraging events correspond to entrances and exits of honey bees
in the ramp with the potential presence of pollen. We evaluated
the different aspects of their detection as follows: tracking in
Section 4.2.1, entrance/exit detection in Section 4.2.2, and pollen
recognition in Section 4.2.3.

4.2.1. Tracking
For the evaluation of tracking, a video segment of 1,200
frames (60 s) was fully annotated manually. During the manual
annotation, it was identified the intrinsic difficulty of creating
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FIGURE 7 | Mean Average Precision (mAP) for the detection of (top) head and (bottom) thorax. The box plot shows performance mean 19,000 epochs of training.

From left to right, results for Head show training using 1 part (Head), 2 parts (Head, Abdomen), 3 (Head, Abdomen, Thorax), and 5 parts (3 parts + 2 antennas) results

for Thorax show training using 1 part (Thorax), 3 parts (Head, Abdomen, Thorax), and 5 parts (3 parts + 2 antennas). Description of the mAP can be found in Section

4.2.

the groundtruth close to the borders of the field of view, where
individuals are only partially visible and it is not clear where
to stop tracking and how to identity fragmented tracks. For
example, a bee partially leaving the field of viewmay still be visible
enough for a human annotator to keep track with a consistent
identity but only by using uncertain visual cues. For this reason,
all annotations were filtered to keep only detections and track
fragments located in the interval y ∈ [200, 1,000] pixels, which
includes the inside and outside thresholds y = 600 and y =

300. A large portion of the excluded data corresponds to static

bees remaining close to the entrance, or bees walking near the
edge, which are not relevant for entrance/exit detection. The
corresponding dataset contains 6,687 detections assigned to 79
tracks.

The tracking algorithm was configured with a maximum
matching range of 200 pixels. The evaluation was performed
using the package from https://github.com/cheind/py-
motmetrics for multiple object tracker metrics. All ground-
truth tracks were mostly tracked (tracked for more than 80% of
the track length). At the detection level, it was identified 0 false
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TABLE 1 | Summary of the best mAP when training on skeletons composed of 1,

2, 3, and 5 parts and YOLO-v3 on Thorax.

Yolo(%) 1 part*(%) 2 parts(%) 3 parts(%) 5 parts(%)

Head – 96.3 98.7 96.4 99.1

Tip abdomen – – 94.0 96.2 95.0

Thorax 79.8 97.6 – 95.0 98.7

Right antenna – – – – 94.4

Left antenna – – – – 90.4

*Two different models were used for 1 part: one model with the head only, another for

thorax only.

TABLE 2 | Body part detection Performance (mAP) per number of stages.

1 stage

AP(%)

2 stages

AP(%)

3 stages

AP(%)

4 stages

AP(%)

5 stages

AP(%)

6 stages

AP(%)

Head 97.3 98.4 96.5 97.1 96.4 98.2

Tip abdomen 97.6 96.1 92.6 94.6 99.0 99.1

Thorax 96.2 97.0 95.6 97.6 99.2 99.7

Right antenna 90.3 90.7 87.6 84.4 86.1 94.4

Left antenna 86.5 87.7 88.6 85.8 88.1 90.4

positives and 20 misdetections out of 6,687, which generated 10
track fragmentations. A total of 12 identity switches were found,
mostly due to this fragmentation.

In the future, we plan to use visual identity models (Romero-
Ferrero et al., 2018) integrated into more complex predictive
tracking algorithms to reduce such fragmentation and help with
the re-identification of individuals that exit the field of view for a
short time.

4.2.2. Entrances and Exits
We used data captured on June 27, 2017 (10 h of video
from 8 a.m.–6 p.m.) to evaluate entrance and exit detection
performance. Manual annotation was performed on tagged bees
to label each tagged bee track as entering or leaving, ignoring
walking bees. This approach was used to facilitate human
annotation, as the tag could be used by the annotators to make
sure they inspected the behavior of each individual for the
complete interval in which they were in the field of view without
relying on the tracking algorithm itself.

The automatically detected body pose tracks (which does
not rely on the presence of a tag) were augmented with
the information from the manual annotations. The automatic
entrance/exit event classification of these tracks was compared
to the corresponding manual annotation. Automatic detection
could also produce Noise, which would be a track that does not
cross the entrance virtual line.

The confusion matrix in Table 3 shows that overall entrances
perform better than exits. There is a low number of Noise for
entrances too, which seems to be related to the fact that bees
returning to the colony do not typically stay on the ramp, and
enter the colony immediately. For exits, there is a much higher
number of Noise trajectories. Unlike bees that are entering,

TABLE 3 | Confusion matrix of entrance and exit detection. Rows represent the

manual annotation of each corresponding track (groundtruth).

GT\DT Entrance Exit Noise Total

Entrance 99 3 4 106

Exits 3 83 14 102

Each column represents the automatic classification (detection).

exiting bees can spend more time on the ramp, which makes
them vulnerable to track interruption due to misdetection on
any of these frames. These interruptions would warrant an
improvement of the tracking algorithm to reduce interruptions
and with additional re-identification of lost tracks in the future.

4.2.3. Pollen Recognition
We carried out the evaluation of pollen detection at two levels:
first, at the image level using a manually annotated image dataset,
and second, at the event level using manually labeled entrance
events. The image level classifier in both cases follows previous
study (Rodriguez et al., 2018a) discussed in theMethod section.

4.2.3.1. Evaluation of Pollen Recognition at the Image Level
The image dataset consists of 1,550 annotations of pollen (775)
and non-pollen (775) bees from 3 videos, collected at 12 p.m.,
1 p.m. and 2 p.m. on the 22, 23, and 24 of June 2017, respectively.
Each pollen bearing bee entering was annotated only once, as
well as another non-pollen bearing bee in the same frame that
served to balance the dataset with a negative sample taken in
similar conditions. For training and validation, an 80–20 random
split was used. This dataset provides about double the amount of
annotation than a previously released dataset (Rodriguez et al.,
2018a) and will be shared as well.

We used three different methodologies for extraction of the
cropped images of each individual which was fed as input of
the pollen classification network. The first approach, Manual
centering, consists of the extraction of the images based on the
thorax position and creating a box of 450 x 375 pixels around
it. The second one, Manual centering and orientation, uses the
manually annotated position of the head and abdomen to rotate
and center the image so that all extracted 300 x 200 pixels images
are aligned vertically and centered on the midpoint between
head and abdomen. The last approach, Automatic centering
and orientation, was the same as the previous one but used
the detected head and abdomen parts instead of the manually
annotated ones. The groundtruth of pollen labeling was in this
case obtained by matching the manual thorax annotation to the
closest automatic thorax detection.

In the results shown in Table 4, we observe a 3% increased
performance when using orientation compensated images.
Coupled with previous results, which showed that the 5-parts
model performed better than simpler models of detection, this
supports the use of the proposed detection based on a pose
model. which both leverages the annotations of different body
parts to improve detection and provides direct information
to compensate orientation and facilitate the down-stream
analysis such as pollen detection. Pose compensation using
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automatic pose detection obtained slightly better performance
than compensation using manually annotated data. Visual
inspection revealed that human annotation was more imprecise
when annotating such a large amount of frames, while automatic
centering produced slightly more consistent alignment.

4.2.3.2. Evaluation of Pollen Recognition at the Event Level
We used the same three models for image level classification as
in the previous subsection (Manual centering, Manual centering

TABLE 4 | Performance of pollen detection at the image level.

Cropping method Precision(%) Recall(%) F1

Manual centering only 94.58 94.56 0.946

Manual centering + orientation 96.30 96.25 0.963

Automatic centering + orientation 97.26 97.28 0.973

TABLE 5 | Performance of the detection of the event “entrance with pollen.”

Precision(%) Recall(%) F1

Manual centering 59.7 52.0 0.555

Manual centering + orientation 80.1 75.0 0.776

Automatic centering + orientation 81.2 78.1 0.798

and orientation, and Automatic centering and orientation).
Track level classification was performed as explained in the
Methods section.

The results are summarized in Table 5. The best performance
is obtained by using the model with automatic centering and
orientation compensation, followed by manual compensation
with a 2% difference. The automatic compensation makes sure all
the bodies are aligned, thus, facilitating the pollen classification
task. Centering only experienced a higher drop in performance,
since the classifier has the harder task to learn invariance to
orientation during training, which is not needed if orientation
is compensated explicitly. This supports the proposed bottom-up
approach where orientation is estimated as part of the detection
step.

The 81.2% precision corresponds to a mere 21 false positives,
which impact severely the metrics due to the high imbalance
in the dataset (100 positives vs. 1,150 negatives). In terms of
recall, a visual inspection of the errors showed that imperfect
tracking accounts for most of the 22 false negatives presented.
Improving tracking robustness is, therefore, an important aspect
for future study to be able to improve the accuracy of
the estimates.

4.3. Application to Long-Term Monitoring
As a proof-of-concept of the scalability of the approach, the
proposed system was adapted for high-performance computing
platforms and applied on multiple days of videos.

FIGURE 8 | Timeline of foraging events for several tagged bees over the span of 8 days (Middle), with the example of trajectories for bee #1607 (Top) and bee #638

(Bottom). Video analysis was performed from 8:00 to 17:59 each day from June 21 to June 28, 2017. The timeline shows the individual patterns of behavior of each

bee over multiple days. The images show a sampling of event types (entrance, entrance with pollen, exit), luminosity conditions (after sunrise, daylight, before sunset),

and ramp crowding (8–30 bees). The trajectories shown in these plots are based on the center of the body which may be slightly shifted from the tag position.

Frontiers in Computer Science | www.frontiersin.org 11 February 2022 | Volume 3 | Article 76933891

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Rodriguez et al. Video Monitoring of Honey Bees

4.3.1. Computational Complexity Evaluation
Profiling of the code was done on a node at UPR HPCf with the
following specifications: Intel Xeon E5-2630 v4 CPU at 2.20GHz
and 128MBRAM equipped with 1 NVIDIA Tesla P100 GPU card
with 12MB memory. The analysis was performed on a typical
video of the dataset with 72,000 frames (resolution 2,560 x 1,440,
20 fps) resized to 1/4 its original size (640 x 360). The offline
processing could be performed at a speed equivalent to 1̃3.8 fps,
with 88% of the time spent in the detection and 10% in pollen
classification, tracking, and other processing adding negligible
time.

Based on these results, we expect further optimization of
the network architecture (such as replacing the VGG backbone
with a more recent lightweight backbone) and its numerical
implementation should enable real-time processing on GPU
accelerated edge devices to enable deployment directly in the
field.

4.3.2. Multi-Day Dataset
The dataset is composed of 8 days of daylight videos acquired
from 8 a.m.–5 p.m., representing more than 72 h of video. Three
types of events were detected: exit, entrance without pollen, and
entrance with pollen. Figure 8 shows several examples of such
events for a few tagged bees, in relation to the total timeline that
shows the individual behavior.

In this dataset, we used April Tags (Wang and Olson, 2016)
that include error correcting codes. The tags printed from the
tag25h5 family (refer to Figure 6D) appeared with a size of
around 25 × 25 pixels in the video frames. In these conditions,
the identification was relatively unambiguous, as 86% of the
tracks had all their associated tags with the same ID, and only
5% of the remaining tracks (0.7% of all tracks) had the majority
ID account for less than 90% of the associated tags. In more
challenging conditions, the presence of conflicting IDs may be
used to monitor identification errors.

FIGURE 9 | (A) Hourly counts of entrance and exits for 8 consecutive days. Entrances with pollen, overlayed as a separate statistic, appear to not be directly

proportional to the total entrances. The peak at 9 a.m. on 2017/06/25 is due to a temporary misalignment of the camera that occurred during maintenance of the

colony. (B) Hourly counts before (2017/08/17) and after (2017/11/27, 2018/01/07) hurricane Maria show very diverse foraging patterns (refer to text).
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Because the system tracked all bees, with or without a tag,
the global foraging activity of the colony was also measured.
The 3 types of events were counted and aggregated in 1-h
intervals to produce the actograms shown in Figure 9. The
top panel shows results on the same 8 days as in Figure 8.
The bottom panel shows results on three additional days, at
different times of the year including pre- and post-hurricane
Maria (August 2018 and November 2018, respectively). The
automatic detection of foraging patterns aligned with the lower
activity at the end of the summer and the scarce sources
of food that happened after the flora in the island was
impacted by the hurricane. The much higher activity in pollen
foraging observed a few weeks later in January 2018 can be
explained by the rising food sources availability and the ability
of the colony to reproduce, which requires proteins provided
by pollen.

5. DISCUSSION

In this study, we presented a new system for the automatic
surveillance of honey bees at the hive entrance using
machine learning and computer vision and applied them
to implement an end-to-end pipeline that quantifies their
foraging behavior.

First, we presented an adaptation of the Part Affinity Fields
approach for the detection and tracking of honey bees. Results
showed that this tracking-by-detection approach produces high-
quality results in presence of multiple individuals and is a
promising approach to obtain precise estimates of pose for
behavioral studies. We presented an ablation study of this
architecture, showing the effect of the number of stages and the
number of parts in the quality of the detection.

The precise detection of body parts allowed us to create tracks
for all bees, both marked and unmarked while providing the
identity of the marked bees when they appeared. This constitutes
a multi-resolution view of the activity of the colony as specific
behaviors patterns could be assigned to individual marked bees
over long periods of time while capturing the global statistics of
the behavior of unmarked bees.

We also compared several methods for pollen bearing
recognition in honey bees. We concluded that using automatic
alignment from the pose estimation and a convolutional
neural network for image classification improved the accuracy,
supporting the use of a detailed pose model.

These methods were combined to detect and characterize
foraging behavior in honey bees. Application to videos capturing
multiple days, and covering different times of the day and
different parts of the year showed the applicability of the
approach for large-scale offline analysis.

This system constitutes the first complete system that accounts
for the foraging behavior that includes pollen foraging at global
and individual levels. It provides a platform that can be built
upon in the future to account for other behaviors such as fanning,

paralysis (Bailey, 1965), or the presence of parasites such as
varroa-mite (Bjerge et al., 2019). Based on this prototype, we
are currently working on the computational and architectural
optimization necessary to obtain real-time operation in the field.
To scale the approach further, we are also considering extending
re-identification beyond tag recognition. This would benefit from
the availability of detailed pose information extracted by the
system and simplify the logistics of marking a large number of
bees to access individual behaviors.
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We present LABKIT, a user-friendly Fiji plugin for the segmentation of microscopy image

data. It offers easy to use manual and automated image segmentation routines that

can be rapidly applied to single- and multi-channel images as well as to timelapse

movies in 2D or 3D. LABKIT is specifically designed to work efficiently on big image

data and enables users of consumer laptops to conveniently work with multiple-terabyte

images. This efficiency is achieved by using ImgLib2 and BigDataViewer as well as a

memory efficient and fast implementation of the random forest based pixel classification

algorithm as the foundation of our software. Optionally we harness the power of graphics

processing units (GPU) to gain additional runtime performance. LABKIT is easy to install

on virtually all laptops and workstations. Additionally, LABKIT is compatible with high

performance computing (HPC) clusters for distributed processing of big image data.

The ability to use pixel classifiers trained in LABKIT via the ImageJ macro language

enables our users to integrate this functionality as a processing step in automated image

processing workflows. Finally, LABKIT comes with rich online resources such as tutorials

and examples that will help users to familiarize themselves with available features and

how to best use LABKIT in a number of practical real-world use-cases.

Keywords: segmentation, labeling, machine learning, random forest, Fiji, open-source

1. INTRODUCTION

In recent years, new and powerful microscopy and sample preparation techniques have emerged,
such as light-sheet (Huisken et al., 2004), super-resolution microscopy (Hell and Wichmann,
1994; Gustafsson, 2000; Betzig et al., 2006; Hess et al., 2006; Rust et al., 2006), modern tissue
clearing (Dodt et al., 2007; Hama et al., 2011), or serial section scanning electron microscopy (Denk
andHorstmann, 2004; Knott et al., 2008) enabling researchers to observe biological tissues and their
underlying cellular and molecular composition and dynamics in unprecedented details. To localize
objects of interest and exploit such rich datasets quantitatively, scientists need to perform image
segmentation, e.g., dividing all pixels in an image into foreground pixels (part of objects of interest)
and background pixels.

The result of such a pixel classification is a binary mask, or a (multi-)label image if more
than one foreground class is needed to discriminate different objects. Masks or label images
enable downstream analysis that extract biologically meaningful semantic quantities, such as the
number of objects in the data, morphological properties of these objects (shape, size, etc.), or
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tracks of object movements over time. In most practical
applications, image segmentation is not an easy task to solve. It
is often rendered difficult by the sample’s biological variability,
imperfect imaging conditions (e.g., leading to noise, blur, or other
distortions), or simply by the complicated three-dimensional
shape of the objects of interest.

Current research in bio-image segmentation focuses primarily
on developing new deep learning approaches, with more classical
methods currently receiving little attention. Algorithms, such as
StarDist (Schmidt et al., 2018), DenoiSeg (Buchholz et al., 2020),
PatchPerPix (Mais et al., 2020), PlantSeg (Wolny et al., 2020),
CellPose (Stringer et al., 2021), or EmbedSeg (Lalit et al., 2021)
have continuously raised the state-of-the art and outperform
classical methods in quality and accuracy of achieved automated
segmentation. While these approaches are very powerful indeed,
deep learning does require some expert knowledge, dedicated
computational resources not everybody has access to, and
typically large quantities of densely labeled ground-truth data to
train on.

More classical approaches, on the other hand, can also yield
results that enable the required analysis, while often remaining
fast and easy to use on any laptop or workstation. Examples
for such methods range from intensity thresholding and seeded
watershed, to shallow machine learning approaches on manually
chosen or designed features. One crucial property of shallow
techniques, such as random forests (Breiman, 2001), is that they
require orders of magnitude less ground-truth training data than
deep learning based methods. Hence, multiple software tools
pair themwith user-friendly interfaces, e.g., CellProfiler (McQuin
et al., 2018), Ilastik (Berg et al., 2019), QuPath (Bankhead
et al., 2017), and Trainable Weka Segmentation (Arganda-
Carreras et al., 2017). The latter specializes in random forest
classification and is available within Fiji (Schindelin et al., 2012),
a widely-used image analysis and processing platform based on
ImageJ (Schneider et al., 2012) and ImageJ2 (Rueden et al.,
2017). It is, regrettably, not capable of processing very large
datasets due to its excessive demand for CPU memory, leaving
the sizable Fiji community with a lack of user-friendly pixel
classification or segmentation tools that can operate on large
multi-dimensional data.

The required foundations for such a software tool have
in recent years been built by the vibrant research software
engineering community around Fiji and ImageJ2. Specifically,
the problem of handling large multi-dimensional images
has been addressed by a generic and powerful library
called ImgLib2 (Pietzsch et al., 2012). Additionally, a
fast, memory-efficient, and extensible image viewer, the
BigDataViewer (Pietzsch et al., 2015), enables tool developers to
create intuitive and fast data handling interfaces.

Here, we present an image labeling and segmentation
tool called LABKIT. It combines the power of ImgLib2 and
BigDataViewer with a new implementation of random forest
pixel classification. LABKIT features a user-friendly interface
allowing for rapid scribble labeling, training, and interactive
curation of the segmented image. LABKIT also allows users
to fully manually label pixels or voxels in the loaded images.
It can be easily installed in Fiji, and directly called from its

macro programming language. LABKIT additionally features
GPU acceleration using CLIJ (Haase et al., 2020), and can be
used on high performance computing (HPC) clusters thanks to
a command-line interface.

2. IMAGE SEGMENTATION WITH LABKIT

LABKIT’s user interface is built around the
BigDataViewer (Pietzsch et al., 2015), which allows interactive
exploration of image volumes of any size and dimension on
consumer computing hardware (Figures 1A,B). Beyond the
common BigDataViewer features, users have access to a set of
simple drawing tools to manually paint or correct existing labels
on image pixels in 2D and voxels in 3D. Importantly, the raw
data is never modified by any such actions. Pixel and voxel labels
are grouped by classes in individual layers (e.g., background,
nucleus or organelle). Each class is represented by a modifiable
color, and can be used to annotate different types of objects and
structures of interest in the image.

Thanks to the intuitive interface design, users can efficiently
segment their images by manually drawing dense labels on
the entire image (Figure 1C). Labels that are generated with
the drawing tools can directly be saved as images or exported
to Fiji for downstream processing. Dense manual labelings
of complete images or volumes created with LABKIT can be
used to manually segment objects, as was done previously to
mask particles in cryo-electron tomograms of Chlamydomonas
(Jordan and Pigino, 2019).

However, this process is very time consuming and doesn’t
scale well to large data. LABKIT is therefore often used to densely
and manually label a subset of the image data, which is then
used as ground-truth for supervised deep learning approaches.
Published examples include the generation of ground-truth
training data for a mouse and a Platyneris dataset in order to
segment cell nuclei with EmbedSeg (Lalit et al., 2021). LABKIT
is also suggested as a tool of choice for ground-truth generation
by other deep learning methods (Schmidt et al., 2018; Buchholz
et al., 2020; Horlava et al., 2020). Still, manually generating
sufficient amount of ground-truth training labels for existing
deep learning methods remains a cumbersome and tedious task.

In order to create a high quality segmentation while
maintaining low user input, LABKIT features a random
forest (Breiman, 2001) based pixel classification algorithm, with
all feature computations optimized for quick runtimes. Instead
of annotating entire objects, a random forest is trained on a
few pixel labeling per class only. These sparse manual labels,
or scribbles (see Figure 1D, left), are directly drawn by users
over the image. Naturally, scribbles must be drawn on pixels
representative of each class. Once trained, the random forest
classifier enables the generation of a segmentation (dense pixel
classification, see Figure 1D). Two or more classes can be
used to distinguish foreground objects from background pixels.
Figures 2A,B showcase examples of a single foreground and
background classes. If desired, out of focus objects can even
be discarded, for example by making such pixels part of the
background class (Figure 2B, arrowheads). For more complex
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FIGURE 1 | LABKIT allows easy manual labeling and automatic segmentation of large image volumes: (A) Maximum intensity projection of a single time point from a

∼1 TB timelapse of a developing Parhyale embryo imaged live with lightsheet microscopy. (B) LABKIT’s user interface is based on BigDataViewer and allows visualizing

and interacting with large volumes of image data. A slice of the developing Parhyale embryo is shown. (C) Users can label large datasets with dense manual

annotations using LABKIT’s drawing interface. (D) A core feature of LABKIT is the rapid segmentation of large image data using sparse manual labels (scribbles)

combined with random forest pixel classification to automatically produce the final segmentation. Scale bars 100 µm (A), 50 µm (B), and 25 µm (C,D).

segmentation tasks that need to discriminate various visible
structures (e.g., nucleus vs. cytoplasm vs. background) or cell
types (as in Figure 2C), two or more foreground classes can be
used (Figure 2D).

As opposed to deep learning algorithms, random forests
are typically trained in a matter of seconds. Drawing scribbles
and computing the segmentation can therefore conveniently be
iterated due to the efficient parallelization we have implemented,
leading to live segmentation. Live results are computed and
displayed only on the currently visualized image slice in
BigDataViewer to increase the interactivity. Hence, the effect
of additional scribbles (sparse labels) is instantly visible and
users can stop once the automated output of the pixel classifier
reaches sufficient quality. This iterative workflow makes working
with LABKIT very efficient, even when truly large image data
are being processed. BigDataViewer’s bookmarking feature can
additionally be used to quickly jump between previously defined
image regions, thereby allowing validating the quality of the
pixel classifier on multiple areas. Since we use ImgLib’s caching
infrastructure, all image blocks that have once been computed are
kept in memory and switching between bookmarks or browsing
between parts of a huge volume is fast and visually pleasing.
Once sufficiently trained, the classifier can be saved for later
use in interactive LABKIT sessions or in Fiji/ImageJ macros.
The entire dataset can be directly segmented and the results
saved to disk. Recently, sparse labeling combined with random

forest pixel classification in LABKIT was used to segment mice
epidermal cells (Bornes et al., 2021), as well as mRNA foci in
neurons (Arshadi et al., 2021).

Once the image is fully segmented, the generated
segmentation masks can be transferred to label layers and
the drawing tools can now be used to curate them. The goal of
curation is to resolve the remaining errors made by the trained
pixel classifier, such as drawing missing parts, filling holes,
erasing mislabeling and deleting spurious blobs (Figure 3). Label
curation is performed until the curated segmentation is deemed
satisfactory for downstream processing or analysis. LABKIT can
also be used to curate segmentation results obtained by other
methods that are not available within LABKIT, including deep
learning based methods (Jain et al., 2020).

Automated segmentation with LABKIT and the possibility
to quickly curate any automated segmentation result make
LABKIT a powerful tool that can considerably shorten the time
required to generate ground-truth data for training deep learning
approaches. For example, we compared automatic and manual
segmentation with LABKIT on a rather small subset of images
(N=26, see one example in Figure 4A) made publicly available by
the 218 Data Science Bowl (Caicedo et al., 2019). We segmented
all images within 5 min by iterative scribbling and automated
segmentation (see Figure 4B). While many images consisted
of homogeneous nuclei and led to high quality results, images
with heterogeneous nuclei resulted in segmentation errors (see
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FIGURE 2 | Semantic segmentation of microscopy images with LABKIT’s pixel classification: (A) Maximum intensity projection of a confocal stack showing HeLa cells

expressing C1-GFP (left), next to the sparse labeling (scribbles, center) and resulting cell segmentation (right). (B) Bright field microscopy image of E.coli, sparse

labeling discriminating cells and background and the resulting segmentation. Arrowheads show that segmentation of out-of-focus objects can be reduced by

including pixels of such objects in the background class. (C) Fixed mouse liver tissue section stained with immunofluorescence and imaged in multiple channels with a

spinning disk confocal microscope, showing Hepatocyte nuclei stained with antibody against HNF-4α a transcription factor expressed in hepatocytes, hepatocyte

cytoplasm (autofluorescence) and all nuclei stained with DAPI. (D) Labeling and resulting segmentation of the liver tissue section shown in (A), segmenting Hepatocyte

cytoplasm (green), Hepatocyte nuclei (blue), nuclei of non-parenchymal cells (yellow) and sinusoids (magenta). Scale bars 20 µm (A), (C), and 5 µm (B).

arrows in Figure 4B). Such errors include spurious instances
that do not correlate with any object in the original image,
instances that correspond to the fusion of multiple instances,

instances with holes, or even instances that split in two. Such
errors are obviously undesirable and negatively impact the overall
average precision score (AP = 0.72, see Methods for the metrics
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FIGURE 3 | LABKIT labeling tools used for curation: labels generated by

manual dense labeling or automatic segmentation can be efficiently curated

with drawing, filling, erasing, or deletion of entire objects. Scale bar 10 µm.

definition). As described above, all such segmentation errors
can easily be corrected within LABKIT, either by adding sparse
labels corresponding to typical areas with errors, done during
the iterative process, or when they persist by manually curating
the residual errors in the final automated results (Figure 4C).
Curating all 26 images took an additional 10 min and raised the
corresponding average precision to 0.76, a score very close to the
inter-observer distance (AP = 0.78), as shown in Figures 4C,D.
In contrast, manually segmenting all images required more than
an hour (Figure 4D), which is four times longer than scribble-
based pixel classification with LABKIT, followed by full curation
of the results to obtain images of comparable quality.

Hence, whenever LABKIT automated segmentation is by itself
not sufficient, manually curating the results yields ground-truth
data that can be used to train a deep learning method, leading to
higher segmentation quality with less labeling effort.

3. LABKIT PIXEL CLASSIFIER

LABKIT provides a pixel classification algorithm for automatic
segmentation. The algorithm uses a random forest to classify each
pixel independently into user-defined classes (e.g., foreground
and background). Random Forests (Breiman, 2001) are widely
used supervised machine learning methods, and as such must
be trained on a given body of ground-truth labels (pre-
classified example pixels). In LABKIT, the random forest
classifier is trained on manually labeled pixels (scribbles), an
approach similar to ilastik (Berg et al., 2019) or Trainable
Weka Segmentation (Arganda-Carreras et al., 2017). As opposed
to most implementations, LABKIT’s classifier is specifically
optimized to be able to handle very large image data.

In a first step, we compute a feature vector for each labeled
pixel. This is achieved by applying a configurable set of filters
to the given image or images. To this end LABKIT offers a
set of image filters commonly used in image analysis, such
as Gaussian, difference of Gaussians or Laplacian filters. Each
selected filter creates an output image that emphasizes different
features of a given input image. Filter responses for each pixel
are then added to their feature vector. The final feature vectors
of all labeled pixels are paired with their respective ground-truth

FIGURE 4 | Comparing automatic and manual ground-truth generation with

LABKIT: (A) Fluorescence image of nuclei (out of 26 images) extracted from the

2018 Data Science Bowl (Caicedo et al., 2019). (B) Results from LABKIT

automated segmentation of (A) after extracting connected components and

giving each instance a unique pixel value. The arrows point to various

segmentation errors. On the top right corner, the total time necessary to obtain

the corresponding segmentation of all 26 images (including labeling) is

indicated. Below the timing is the average precision (see Methods) as

compared to a dense manual labeling performed by another observer.

(C) Curation of (B) with same post-processing. The arrows point to the

corrected errors mentioned in (B). The timing information includes (B).

(D) Dense manual labeling of (A) and the same post-processing as in (B). No

scale bar was available for the images.

classes, together constituting the training set. This data is then
used to train the random forest, consisting of 100 decision trees,
using the FastRF library (Supek, 2015).

After training, the random forest classifier can predict pixel
classes directly from the feature vector of any given pixel. Hence,
in a final step, we apply the random forest to the feature vectors of
all pixels in the entire body of data, thereby effectively computing
the desired semantic segmentation.

Since computing feature vectors and final random forest
predictions consume by far the most computational resources, it
was crucial to optimize their runtime. To this end, we process
image chunks in parallel, with the chunked memory handling
being supported by ImgLib2 (Pietzsch et al., 2012). Additionally,
we implementedOpenCL kernels, allowing us to benefit from fast
GPU computations (Haase et al., 2020).

4. LIMITATIONS OF THE PIXEL
CLASSIFICATION

The simplicity of the pixel classification algorithm ensures
efficiency, but also exposes it to certain limitations and potential
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FIGURE 5 | Pixel classification failure modes: (A) Image of a contractile vacuole pore in paramecium caudatum acquired with transmission electron microscopy (left),

in which inner pore (blue), cytoplasm (green) and background (magenta) were labeled with scribbles (center). LABKIT’s classifier fails to distinguish background and

inner pore classes (right). Image provided by Richard Allen (Cell Image Library, 38894). (B) Mitotic spindle of a Ptk2 cell expressing GFP-tubulin imaged in wide-field

fluorescence (left). Left and right halves of the mitotic spindle are labeled in different classes (blue and green, respectively), while background is labeled in magenta

(center). LABKIT’s classifier is incapable of discriminating similar structures (right). Image provided by Sophie Dumont and Timothy J. Mitchison (Cell Image Library,

6568). (C) Bright field image of C. elegans (left), labeled with two classes (center): foreground (green) and background (magenta). After applying connected

components analysis to the classification result, contiguous worms belong to the same object (right). Image provided by Fred Ausubel (Broad Bioimage Benchmark

Collection, BBBC010). Scale bars (A) 500 nm, (B) 10 µm, and (C) 500 µm.

failure modes. This mainly comes from the fact that the filter
kernels used to compute the feature vector have limited sizes.
With the default settings in LABKIT, filters respond mostly
to a 16x16 window (2D), meaning that decision about the
class of a given pixel is based on filter responses in a small
neighborhood. A direct consequence is illustrated in Figure 5A,
where LABKIT was used to segment the image of a vacuole
pore in paramecium caudatum (left panel) using three classes:
inner pore (central panel, in blue), vacuole (in green) and
background (in magenta). Because inner pore and background
pixels have similar texture, the classifier cannot tell them apart
and assigns background pixels to the inner pore class, and vice
versa.

All filters used to calculate the feature vectors are designed
to be translation and rotation invariant. Hence, the algorithm
classifies two objects the same way regardless of their position or
orientation in the image. While this is a sensible assumption for
most applications on microscopy data, users should certainly be
aware of this. One potential problem is showcased in Figure 5B,
which shows a mitotic spindle in fluorescence microscopy (left)
and an attempt at assigning each half of the mitotic spindle to a
different class (central panel). Although both sides of the mitotic
spindle are spatially distinct and in different orientations, the
classifier fails at discriminating them (Figure 5B, right).

Furthermore, contiguous objects cannot be separated by the
random forest classifier. This is illustrated in Figure 5C, which
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TABLE 1 | Benchmarking computation speed while segmenting a large biological image on various hardware: the experiment was performed on a laptop with and

without GPU acceleration, and on different numbers of CPU and GPU cluster nodes.

Hardware GPU Run time Speed-up Throughput in gigapixel

Laptop No 4 h 23 min 00 s 1 3.05 / h = 0.05 / min

Laptop Yes 35 min 12 s 7.5 0.38 / min

1 CPU cluster node No 1 h 08 min 10 s 1 0.20 / min

10 CPU cluster nodes No 6 min 15 s 10.9 2.14 / min

50 CPU cluster nodes No 1 min 35 s 43.1 8.45 / min

1 GPU cluster node Yes (2) 8 min 23 s 1 1.60 / min

10 GPU cluster nodes Yes (2) 1 min 03 s 7.9 12.74 / min

In each category, the speed-up is calculated in comparison to the slower entry. Numbers in between parenthesis in the GPU column indicate the number of GPU per cluster node.

shows C. elegans worms imaged in bright-field microscopy
(left panel). While the classifier can correctly distinguish the
worms body from the background, a connected component
analysis applied to the classification result (Figure 5C, right)
leads to multiple worms being fused within the same connected
component. In order to obtain instance segmentation from
such images, manual curation or post-processing, such as
watershed, is necessary to separate the connected objects into
different instances.

Finally it is also important to know that trained random forest
classifier cannot easily be trained on sets of very diverse images.
Deep learning approaches such as Cellpose (Stringer et al., 2021),
in contrast, show much greater potential to generalize well even
when trained on a large and diverse body of microscopy data.

Nonetheless, LABKIT can be used to segment a wide range of
images fast and at high quality. This is true as long as objects are
visibly separated from one another and can be distinguished by
the filter responses LABKIT computes per pixel.

5. SOFTWARE AND WORKFLOW
INTEGRATION

LABKIT’s automatic segmentation is not limited to the dataset
it was trained on. Because the trained classifier can be saved
for later use, it can be applied to similar new images. While
ensuring reproducibility of the results, it also helps maintaining
consistency in the image segmentation. Manually loading both
images and trained classifier in LABKIT for multiple sets of
images is a repetitive task ill-suited for an automated workflow.
Therefore, to simplify the integration into existing workflows
in Fiji, LABKIT can be easily called from the ImageJ macro
language. For instance, a simple macro script can open multiple
datasets and segment each of them using a trained classifier.

Image segmentation can be further accelerated by running
the process on GPUs thanks to CLIJ (Haase et al., 2020).
Once CLIJ is properly set up, GPU acceleration is available
for LABKIT in both graphical interface and macro commands.
GPU processing is particularly beneficial in the case of large
images, for which it allows shortening the lengthy segmentation

tasks. Performing GPU-accelerated segmentation in LABKIT is a
matter of activating a checkbox, and does not present additional
complexity to users.

Some images, however, are far too large to be processed
on a consumer machine in a reasonable amount of time,
if they can be stored at all on such a computer. For such
data, modern workflows resort to the use of HPC clusters,
which are purposely built for high computing performances
with large available memory. LABKIT offers a command line
tool (Arzt, 2021a) allowing advanced users to segment images on
HPC clusters.

The capability of extending LABKIT and re-using
its components is illustrated by integration with the
commercial Imaris software (Oxford Instruments, UK) via
the recently released ImgLib2-Imaris compatibility bridge.
In this context, LABKIT operates directly on datasets that
are transparently shared (without duplication) between
Imaris and ImgLib2 (Pietzsch et al., 2012). These datasets
can be arbitrarily large, as both Imaris and ImgLib2
implement sophisticated caching schemes. In the same
fashion, output segmentation masks are transparently
shared with the running Imaris application, making
additional file import/export steps unnecessary. Importantly,
this functionality can also be triggered and controlled
directly from Imaris to integrate it into streamlined object
segmentation workflows.

6. PERFORMANCE OF LABKIT

In order to process large images on consumer computers,
software packages must be able to load the data in memory,
process it and save the results, all within the constraints of
the machine. In LABKIT, this is achieved by reading only the
portions of the image that are displayed to the user, thanks
to the use of the HDF5 format (Folk et al., 2011) and the
BigDataViewer (Pietzsch et al., 2015). The image is further
processed in chunks using ImgLib2 (Pietzsch et al., 2012).
As a result, LABKIT is capable of processing arbitrarily large
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images and is compatible with GPU acceleration and distributed
computation on HPC clusters.

To illustrate this, we segmented a 13.4 gigapixel image (482 x
935 x 495 x 60 pixels, 25 GB) on a single laptop computer, with
and without GPU, and with different nodes of an HPC cluster
(see Table 1). The image was extracted and 2x down-sampled
from the Fluo-N3DL-TRIF dataset made available for the Cell
Tracking Challenge (Maška et al., 2014; Ulman et al., 2017; Jain
et al., 2020) benchmark competition. Running the segmentation
on the laptop using GPU acceleration sped up the computation
by 7.5 fold, illustrating the benefit of harnessing GPU power
for processing large images. While running computation on an
HPC cluster comes with overhead, increasing the number of CPU
nodes shortens the computation dramatically, reaching a 40-
fold improvement from 1 CPU node to 50. Finally, GPU nodes
on an HPC allow for more parallelization of the computation
and therefore even higher computational speed-up on the
segmentation task, with 10 GPU nodes processing the data in
slightly over a minute.

Furthermore, we trained and optimized a classifier on the
Fluo-N3DL-TRIF dataset (original sampling), the largest dataset
of the Cell Tracking Challenge (training dataset of size 320
GB, evaluation dataset of size 467 GB), and submitted it for
evaluation against undisclosed ground-truth. The segmentation
of both training and evaluation datasets was performed on an
HPC cluster. LABKIT pixel classification ranked as the highest
performing segmentation method on this dataset for all three
evaluation metrics (OPCSB, SEG and DET) (CTC, 2021). More
specifically, LABKIT segmentation obtained the following scores:
OPCSB = 0.895 (0.886 for the second highest scoring entry),
SEG = 0.793 (0.776) and DET = 0.997 (0.997), performing
better than the other entries, including classical (bandpass
segmentation) or deep learning (convolution neural network)
algorithms. As opposed to the deep learning algorithm to which it
was compared, Labkit only used a few hundred pixels as ground-
truth, distributed throughout a small fraction of the training
dataset (7 frames). Finally, LABKIT’s classifier was simply trained
through the LABKIT graphical interface, illustrating its ease
of use.

7. DISCUSSION AND CONCLUSION

LABKIT is a labeling software tool designed to be intuitive
and simple to use. It features a robust pixel classification
algorithm aimed at segmenting images between multiple classes
with very little manual labeling required. Similar to other
tools of the BigDataViewer family (Pietzsch et al., 2015;
Wolff et al., 2018; Hörl et al., 2019; Tischer et al., 2020),
it integrates seamlessly into the SciJava and Fiji ecosystem.
It can be easily installed through Fiji and incorporated into
established workflows using ImageJ’s macro language. The results
of LABKIT’s segmentation can be further analyzed in Fiji
or exported to other software platforms, such as CellProfiler
(McQuin et al., 2018), QuPath (Bankhead et al., 2017), or
Ilastik (Berg et al., 2019).

Manual labeling, in both 2D and 3D, is also made
easy by LABKIT. Other alternatives exist, among which
QuPath (Bankhead et al., 2017) (2D), napari (napari contributors,
2019) or Paintera (Leite et al., 2021). In particular, Paintera is
specifically tailored to 3D labeling of crowded environment, but
at the cost of a steeper learning curve.

LABKIT is compatible with a wide range of image formats
since image data can be loaded directly from Fiji using Bio-
Formats (Linkert et al., 2010). Nonetheless, in order to fully
benefit from LABKIT optimizations for large images, users
must first convert their terabyte-sized images to a file format
allowing high-speed access to arbitrary located sub-regions of the
image. This strategy is also employed by other software, with
the example of Ilastik (Berg et al., 2019). One such format is
HDF5 (Folk et al., 2011), and LABKIT uses in particular the
BigDataViewer HDF5+XML variant. In Fiji, images can easily
be saved in this format using BigStitcher (Hörl et al., 2019)
or Multiview-Reconstruction (Preibisch et al., 2014; Icha et al.,
2016).

In the Cell Tracking Challenge (Ulman et al., 2017; CTC,
2021), LABKIT segmentation outperformed other entries on a
particular dataset, one being a deep learning approach. This
method was designed as part of a cell segmentation and tracking
pipeline on various images, and it is likely that recent and
specialized deep learning segmentation algorithms, such as
StarDist (Schmidt et al., 2018) or CellPose (Stringer et al., 2021),
would perform overall better (Baltissen et al., 2018; Morone
et al., 2020). Yet, the full potential of deep learning algorithms
is only reached when a sufficient amount of ground-truth data is
available, which is too frequently the limiting factor. Generating
ground-truth data for a deep learning method is a tedious
endeavor without the insurance of a perfect segmentation result.
A safer strategy is therefore to first try shallow learning for
segmentation tasks, before even thinking of moving to deep
learning algorithms. In cases where higher segmentation quality
is truly necessary, curated results from shallow learning can be
used to generate the massive amount of ground-truth required
to train a deep learning algorithm. As seen previously, LABKIT
is useful in all these scenarios since it can be used to manually
generate ground-truth annotations or to segment the images
with shallow learning before curating the results in order to use
them as ground-truth for other learning-based algorithms (see
Figure 6).

In the future, we intend to extend LABKIT’s functionalities
to improve manual and automated segmentation. For instance,
we will add a magic wand tool to select, fill, fuse or delete labels
based on the pixel classification. Furthermore, we aim to add new
segmentation algorithms, such as the deep learning algorithm
DenoiSeg (Buchholz et al., 2020) already available in Fiji. In
recent years, novel interactive deep learning approaches have also
been shown to reduce the need for large amounts of densely
labeled ground-truth data. In general, these approaches combine
deep learning with interactive user guidance, for instance clicks
on the extreme points of objects (Maninis et al., 2018), inside-
outside guidance (Zhang et al., 2020), clicks within objects and
boundaries that are iteratively refined (Luo et al., 2021) and
a combination of clicks and squiggles inside objects (Alemi
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FIGURE 6 | LABKIT’s iterative and interactive segmentation used for ground-truth generation: manual labeling, automatic segmentation and curation in LABKIT enable

easy and rapid image segmentation, whose results can be further processed or used as ground-truth for deep-learning classifiers.

Koohbanani et al., 2020). However, these approaches are not
in widespread use in bio-image analysis and for the most part
implemented in Python. LABKIT could potentially serve as an
easy-to-use platform for such methods by implementing their
labeling strategies in the user interface and interfacing their
framework with Java, thereby making them widely accessible
to the biomedical community. LABKIT source code is open
source and can be found online (Arzt, 2021b), together
with its command-line interface (Arzt, 2021a), tutorials and
documentation (Arzt, 2021c).

8. METHODS

8.1. Timing Instance Segmentation
Generation
The dataset consisted of all 256 x 256 images (N = 26) in
the test sample of StarDist (Schmidt et al., 2018), originally
published as part of the 2018 Data Science Bowl (Caicedo et al.,
2019) (subset of stage1_train, accession number BBBC038, Broad
Bioimage Benchmark Collection). The images were loaded in
LABKIT as a stack and sparsely labeled (scribbles). A classifier
was then trained with the default filter settings: "original image,"
"Gaussian blur," "difference of Gaussians," "Gaussian gradient
magnitude," "Laplacian of Gaussian," and "Hessian eigenvalues,"
with sigma values: 1, 2, 4, and 8. The results were saved
and then manually curated using the brush and eraser tools.
Finally, the same original image stack was densely manually
labeled afresh. The total time required to process all images
was measured using a chronometer for i) LABKIT automated
segmentation, including the sparse manual labeling, ii) the
previous step followed by a curation step and iii) dense manual
labeling. In order to evaluate the segmented images, connected

components were computed (4-connectivity) and given unique
pixel values (instance segmentation). Quality metrics scores
were calculated as the average precision with threshold 0.5 as
defined in StarDist (Schmidt et al., 2018). We used dense manual
labeling performed by another observer as reference images, and
computed the metrics score for the results obtained in i), ii),
and iii). The average metrics over the images were calculated as
a weighted average of each individual image, where the weights
were the number of instances in the reference image.

8.2. Speed Benchmark
The dataset was downloaded from the Cell Tracking
Challenge (Ulman et al., 2017) website, and consisted of
the first training dataset of the Fluo-N3DL-TRIF example. The
dataset was down-sampled by a factor 2 in order to reduce its size
and simplify the benchmarking. The dataset was then saved in
the BigDataViewer XML+HDF5 format using BigStitcher (Hörl
et al., 2019). LABKIT was used to draw a few scribbles on both
background and nuclei areas, and to train a random forest
classifier using the default settings. The trained model was then
saved. The LABKIT command line tool was used to run the
benchmark experiment on a Dell XPS 15 laptop (32 MB RAM,
Intel Core i7-6700HQ CPU with 8 cores, GeForce GTX 960M
GPU) and on an HPC cluster, with both CPU (256 GB RAM,
Intel Xeon CPU E5-2680 v3 with 2.5 GHz and 24 cores) and
GPU (512 GB RAM, Intel Xeon CPU E5-2698 v4 with 2.2 GHz
and 40 cores, with two GeForce GTX 1080 GPUs) nodes. The
segmentation results on the HPC were saved in the N5 (Saalfeld,
2017) format to maximize writing speed. Benchmarking included
read/write of image data form disc, optional data transfer to
the GPU, computation of feature images and classification
all together.
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8.3. Cell Tracking Challenge
As in the speed benchmark sample, all Fluo-N3DL-TRIF datasets
(training and evaluation) were converted to BigDataViewer
XML+HDF5 format using the BigStitcher Fiji plugin. This
time, however, no down-sampling was applied to the images.
For training, only frames 0, 1, 10, 20, 40, 50 and 59 from
sequence “01” of the training dataset were used. A few hundred
pixels were labeled as foreground and background. Only nuclei’s
central pixels were labeled as foreground in order to force
the classification algorithm to return segments of smaller size
than the actual nuclei. Thus, segmented nuclei are unlikely to
touch and segmentation errors are minimized. We used the
following filters to train the random forest classifier: "original
image," "Gaussian blur," "Laplacian of Gaussian," and "Hessian
eigenvalues," with sigma values 1, 2, 4, 8, and 16. The filters can
be set in LABKIT’s interface through the parameters menu of
the classifier. The trained classifier was saved and the evaluation
dataset was segmented using the LABKIT command line tool on
an HPC. Since the output of the pixel classification is a binary
mask, we performed a connected component analysis to assign
unique pixel values to the individual segments. Finally, we dilated
the segments to match the size of the nuclei. The dilation was
done in three steps: the first two steps with a three-dimensional
6-neighborhood dilation kernel, then with a 3 x 3 x 3 pixel cube
kernel. The combination of dilation kernels was chosen as to
optimize the SEG score on the training dataset. All metrics scores
were computed by the Cell Tracking Challenge platform.
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Modern microscopy technologies allow imaging biological objects in 3D over a wide

range of spatial and temporal scales, opening the way for a quantitative assessment of

morphology. However, establishing a correspondence between objects to be compared,

a first necessary step of most shape analysis workflows, remains challenging for

soft-tissue objects without striking features allowing them to be landmarked. To address

this issue, we introduce the µMatch 3D shape correspondence pipeline. µMatch

implements a state-of-the-art correspondence algorithm initially developed for computer

graphics and packages it in a streamlined pipeline including tools to carry out all steps

from input data pre-processing to classical shape analysis routines. Importantly, µMatch

does not require any landmarks on the object surface and establishes correspondence in

a fully automatedmanner. Our open-sourcemethod is implemented in Python and can be

used to process collections of objects described as triangular meshes. We quantitatively

assess the validity of µMatch relying on a well-known benchmark dataset and further

demonstrate its reliability by reproducing published results previously obtained through

manual landmarking.

Keywords: bioimage analysis, shape quantification, correspondence, alignment, computational morphometry

1. INTRODUCTION

Recent progress in microscopy technologies and computational imaging enable the acquisition
of large volumes of high-resolution 3D bioimage datasets (Ramirez et al., 2019; Voigt et al.,
2019). This increase in imaging quality and throughput makes it possible to visually investigate
the tri-dimensional morphology of biological systems at the mesoscopic (Hahn et al., 2020) and
microscopic scales (Belay et al., 2021). As a consequence, a growing number of studies focus on
quantitatively describing shape variability in the 3D structure of biological objects as observed in
biological images (Kalinin et al., 2018; Driscoll et al., 2019; Heinrich et al., 2020).

The quantitative comparison of the shape of objects usually requires that a point-to-point
mapping between them, also referred to as correspondence,matching, or registration, is established.
This fundamental task is however in general non-trivial because the number of possible
mappings scales factorially with the size of the object’s surface. The problem of automating
shape correspondence has therefore been extensively studied in computer vision (Van Kaick
et al., 2011), with applications to medical image analysis (Bône et al., 2018) and evolutionary
biology (Martínez-Abadías et al., 2012). Existing 3D shape correspondence methods are however
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overwhelmingly designed for macroscopic, highly-stereotypical
data such as human organs or skeletal scans and do not
translate easily to soft-tissue objects with less predictable
morphological variations, extracted from noisy biological images
at the micro- or mesoscopic scale. Biological entities such as
cells, tissues, and small organisms indeed exhibit a significant
degree of variation in morphology, even within groups of
similar objects (e.g., cell types, organoids, early embryos). In
addition, biological images also generally offer a much lower
signal-to-noise ratio than 3D medical acquisition devices or
object scanners. Object surfaces extracted from bioimages are
thus likely to require extensive “cleaning” prior to shape
analysis. Finally, biological experiments most often involve
large populations of objects, calling for computationally light
and scalable approaches. While several microscopy-specific
methods have been proposed for intensity (volume)-based
registration (Preibisch et al., 2010; Paul-Gilloteaux et al., 2017),
fewer focus on the problem of surface-based registration and
existing ones require either manual intervention (Boehm et al.,
2011) or specific equipment (Horstmann et al., 2018), or rely on
the construction of a shape atlas (Grocott et al., 2016; Toussaint
et al., 2021), limiting their use to collections with small amount
of shape variability.

In this work, we present µMatch (pronouncedmicroMatch), a
3D shape correspondence pipeline tailored to the particularities
of structures as they appear in bioimage data. µMatch
automates the computation of dense correspondence maps
between pairs of 3D mesh surfaces, without the need for
any (pseudo-) landmarks. Mesh surfaces are particularly
convenient representations for computational geometry and
can easily be extracted from segmented voxel data. This input
format is therefore ideally suited to the various operations
needed for correspondence retrieval and general enough to
accommodate a vast range of object geometries, making µMatch
amenable to a wide range of bioimage analysis applications.
We combine state-of-the-art methods initially developed for
graphics and computer vision applications, and package them
into a user-friendly, open-source end-to-end Python pipeline.
In particular, µMatch contains tools to facilitate each steps
required to align collections of 3D shapes of biological objects
described as triangular meshes, ranging from mesh cleaning to
symmetry identification, correspondence map extraction, and
ultimately basic shape analysis. Our pipeline is designed to be
computationally light and is thus amenable to the analysis of large
shape collections.

The paper is organized as follows: in Section 2, we review
the shape correspondence literature that is most relevant
to our work and define the notations used through the
manuscript. We present µMatch in Section 3 and provide
technical details describing each step in the pipeline. We
then quantitatively assess in Section 4 the performance
of µMatch on a biologically-relevant benchmark dataset
for shape correspondence, and demonstrate µMatch’s ability
to recover previously reported morphological differences in
embryonic limb development of wild-type and Apert syndrome
mouse models. Finally, we conclude with a discussion in
Section 5.

2. THE SHAPE CORRESPONDENCE
PROBLEM

2.1. Literature Overview
Biological morphometry historically relies on manually

selected homologous landmarks, defined as anatomically
unambiguous and consistent features of the object of
interest (Bookstein, 1997). Relying on these landmark points
provides an implicit form of sparse correspondence between

objects, which then allows aligning collections of specimen via
Procrustes analysis, a classical strategy consisting of removing
geometrical transformations that do not affect the shape of
an object (specifically, translations, scaling and rotations)
so as to statistically study the extent and nature of shape

differences (Rohlf and Slice, 1990).
Landmark-based morphometry, also called geometric

morphometrics (Dryden and Mardia, 2016), is actively used at
the macroscopic scale in the context of medical imaging (Yeh
et al., 2021), anatomy (Finka et al., 2019), taxonomy (Karanovic
and Bláha, 2019), and plant science (Lucas et al., 2013). However,
when considered at the smaller mesoscopic or microscopic
scales, biological objects such as soft tissues and cells in isolation
rarely possess well-localized and unambiguously-identifiable
features that could reliably act as landmarks, despite having
non-trivial shapes. In geometric morphometrics, the fact
that landmarks are homologous and that they correspond
to the same biological structure or function across different
individuals is relevant (Klingenberg, 2008). For the non-rigid,
featureless objects most often encountered in microscopy, a
more appropriate alternative consists of identifying a dense
(continuous) correspondence that only uses geometry and does
not rely on the existence of a finite set of unique, localized
features derived from functional or evolutionary factors. This
type of approach is successfully used in several frameworks
in 2D (Laga et al., 2014; Phillip et al., 2021). Extending these
methods to 3D shapes is unfortunately challenging when at
all possible, and existing solutions impose strong constraints
on the topology of input objects and on the way they are
parameterized (Srivastava et al., 2010; Koehl and Hass, 2015).
As a result, most 3D shape correspondence workflow involving
objects extracted from bioimages still rely on manually annotated
(pseudo-) landmarks (Boehm et al., 2011; White et al., 2019).

Several algorithms that automatically retrieve a dense
correspondence between 3D surfaces have been proposed by the
computational geometry and computer graphics communities.
Herein it is generally assumed that the shapes to correspond
are near-isometric, meaning that they do not exhibit significant
deformations. This assumption alone unfortunately makes the
vast majority of solutions unsuitable to problems involving
collections of biological objects, where natural individual-
to-individual variability may fully deviate from isometry.
Most popular approaches retrieve a correspondence map
that minimizes a measure of distortion, such as the degree
of stretching or bending, using continuous optimisation
techniques (Schreiner et al., 2004; Sorkine and Alexa, 2007;
Schmidt et al., 2019). These methods however suffer from highly
non-convex energy landscapes composed of many sub-optimal

Frontiers in Computer Science | www.frontiersin.org 2 February 2022 | Volume 4 | Article 777615109

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Klatzow et al. µMatch

local minima, and thus require a relatively good initialization
to converge to a good solution. This problem is circumvented
by Windheuser et al. (2011), in which a global solution is found
using a sophisticated technique to reduce the solution space and
then solve the optimization problem using a linear programming
approach. The latter approach is guaranteed to yield the lowest
distortion mapping and is therefore less likely to suffer from
symmetry problems and possible mis-assignments provided
that an appropriate distortion function is used. Each matching
however then requires hours of processing time even with GPU
speedup, making it poorly scalable to large bioimage datasets.

Another class ofmethods approaches the problem bymapping
each of the objects to correspond into intermediate domains
and then recovers a mapping between these domains. One such
example exploiting the relatively easier task of finding mapping
between intermediate domains is provided by Lipman and
Funkhouser (2009), available at https://github.com/pedrofreire/
shape-matching. There, a conformal parameterisation (i.e., an
angle-preserving mapping of the objects to the plane R2) is used
to flip the problem into searching for conformal automorphisms
of the plane using Möbius transformations. This method,
however, requires good landmarks for initialization and is
restricted to shapes of specific topology. Finally, Ovsjanikov et al.
(2012) take a more abstract approach by using the scalar function
space associated with each object as intermediate domain, in
a strategy referred to as functional mapping. The function
space is defined as the set of all functions from the object’s
surface, represented as a mesh M, to the real numbers, FM =
{

f :M → R
}

. This last technique is particularly interesting for
biological shape correspondence for a number of reasons: firstly,
it reduces 3D correspondence to a linear problem that does not
require initialization; secondly, it is relatively robust to non-
isometry and flexible compared to other continuous approaches
as it imposes few constraints on the input shapes; and finally,
it provides a computationally efficient means of determining
correspondences. For these reasons, we chose to make use of this
approach in the µMatch pipeline.

The above literature overview, and the design of the
µMatch pipeline, focuses solely on surface-based alignment.
An alternative could have been to review and rely on volume-
based alignment methods. Our rationale for choosing a surface-
based strategy instead is as follows. Volume-based alignment
approaches, as implemented for instance in the popular elastix
software (Klein et al., 2009) and commonly used in medical
imaging, are unable to handle objects with significantly different
orientations. Images must then be pre-aligned or a close-enough
initialization must be provided (Miao et al., 2016; Yang et al.,
2017). While medical image data often exhibit small enough
variations in object orientation (due to the acquisition protocols)
and small enough sample variation (due to the nature of the
objects being imaged) for this issue to be addressed with ad-
hoc methods, the extent of sample variation and orientation
difference in biological experiments cannot be known a priori.
In contrast, the performance of surface-based approaches is not
affected by the orientation difference and, as a consequence,
they do not require any pre-alignment step. A further issue with
biological data lies in the anisotropic nature of microscopy image

volumes, making additional steps of interpolation mandatory
when relying on voxels to align and further complicating the
task of volume-based strategies in the case of large orientation
differences. Surface-based methods, as they rely on meshes, have
the advantage of being blind to the anisotropy of the input
data. In addition to these technical aspects, most alignment
algorithms for bioimage analysis originate from medical imaging
in general and neuroimaging in particular, in which surface-
based alignment is now accepted to be superior to volume-based
alignment. Surface-based matching has indeed been shown to
map borders more accurately between brains than volume-based
registration (Brodoehl et al., 2020), further strengthening the case
for a surface-based approach. Finally, since biological images
most often capture objects that purely have a surface signal
(e.g., from membrane stains) and rarely have a conserved inner
structure akin to human organs, the information available for
alignment is overwhelmingly held in the object’s surface, making
it all the more relevant to rely on a surface-based method.

2.2. Notations and Problem Formulation
Through the article, we focus on the problem of establishing
correspondence between 3D biological objects represented as
meshes. We in particular do not study the downstream problems
of object segmentation and voxel set meshing. Obtaining
object segmentation from possibly noisy biological data can be
challenging but is beyond the scope of this paper. This problem
has been extensively studied and several robust state-of-the-art
methods relying on deep learning, such as the popular 3D U-
net (Isensee et al., 2021), are now freely available in user-friendly
softwares (Lucas et al., 2021). Once segmented, voxel sets can
reliably be meshed using classical methods such as the popular
marching cubes algorithm (Lorensen and Cline, 1987), provided
in widely-used 3D image processing Python libraries such as
scikit-image (van der Walt et al., 2014).

Triangular meshes are discrete approximations of 3D surfaces
commonly used as representations for computer graphics and
computational geometry. A mesh M is composed of vertices,
edges, and (triangular) faces to form a continuous but not smooth
surface, due to the presence of sharp edges connecting any two
neighboring faces. A mesh is generally defined by two arrays
of numbers, the first one containing the spatial positions of the
vertices, v ∈ R

nv×3, and the second one the mesh faces, f ∈

N
nf×3. Increasing the number of vertices of a mesh provides

increased resolution and smoothness, at the expense of increased
complexity and memory requirements.

Numerous classical Euclidean operators can be extended to
manifolds, and as a consequence to discretemeshes, including the
gradient ∇ and the Laplacian 1 = ∇2 = ∇ · ∇ operators. The
Laplacian is interesting in particular because its eigenfunctions
(i.e., the functions that are only scaled by the action of the
operator) provide a geometrically informative basis for the scalar
space of the manifold. The Laplace-Beltrami operator is the
generalization of the Laplacian to triangular meshes. For a mesh
of nv vertices, the Laplace-Beltrami operator is represented as a
sparse nv × nv matrix. Because a mesh is not differentiable, such
a discretisation requires care in order to reproduce the expected
behavior of the Laplacian: the most common formalism for doing
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FIGURE 1 | Geodesic path between two points on a surface. A geodesic

corresponds to the shortest path connecting any two arbitrary points on a

mesh. Molar tooth mesh data from Boyer et al. (2011).

is the cotangent Laplace-Beltrami operator (Pinkall and Polthier,
1993), given by

1ij =











cot(αij)+ cot(αji) j ∈ N(i)

−
∑

k1ik i = j

0 otherwise

, (1)

where αij is the angle adjacent to the edge ij, N(i) the connected

neighbors of the ith vertex, and cot the cotangent operator.
The shortest distance between any two points on a mesh is

given by a geodesic path, as illustrated in Figure 1. Formally,
given a triangular meshM with associated metric g, the geodesic
path x parameterized by t ∈ R between two points a and b on the
mesh is defined as

x(t) = argmin
x

∫ b

a

∑

µν

gµν
dxµ

dt

dxν

dt
dt, (2)

where µand ν correspond to coordinates on the mesh.
Two meshes are equivalent if there is a map between them

that preserves the metrics, and therefore the geodesic distances,
on them. The degree of deformation induced by a map can
thus be measured by calculating the extent to which geodesic
distances are altered by the map, captured in the geodesic
matrix GM. The geodesic matrix is constructed by computing
all pairwise geodesic distances such that [GM]ij contains the

geodesic distance between the two vertices i and j on themeshM.
A symmetry of a surface is defined as a self-mapping (i.e.,

automorphism) 9 of the mesh that leaves the geodesic matrix
unchanged, which is formally expressed as 9 :M → M such
that [GM]x,y = [GM]

9(x),9(y) for every x, y ∈ M.

Finally, a correspondence 8 between two meshes is formally
defined as a mapping that assigns each vertex on a first mesh

M1 to each vertex on a second mesh M2 as 8 :M1 → M2. A
functional mapping T :FM1

→ FM2
maps the space of scalar

functions on one mesh (FM1
) to the scalar functional space

on the other (FM2
). As will be extensively discussed through

the paper, the functional mapping provides a useful way of
representing the correspondence between two meshes. In order
to use it, we need a concrete representation in the form of a finite
(k× k) correspondence matrix, denoted as C8.

3. µMATCH PIPELINE

We hereafter detail each step of the µMatch pipeline that
automatically retrieves a one-to-one mapping between pairs of
biological objects which surfaces are represented as triangular
meshes. The considered objects can be of any nature as long
as a mapping reasonably exists between them. To provide
an intuitive, non-biological toy example of what a reasonable
mapping means: while any four-legged animal such as cats and
dogs can plausibly be matched onto one another, they cannot
not be plausibly matched with a snake. It is worth noting that
there is no formal criterion to determine whether two shapes
can meaningfully be put in correspondence, nor for evaluating
the quality of the resulting correspondence in the absence of a
ground truth. The quality of a matching is therefore usually left
to qualitative evaluation.

The µMatch pipeline, summarized in Figure 2, is composed
of three main modules. It starts with a pre-processing stage in
which the meshes are prepared and cleaned and some important
quantities are pre-computed. The second step is the matching
algorithm itself, which exploits the functional mapping strategy.
Finally, the retrieved correspondence map can be further used
for shape analysis. µMatch is implemented in Python 3.7 and
is available at github.com/uhlmanngroup/muMatch. In addition
to the code itself, we also provide sample data and a script
exemplifying the use of the pipeline. For ease of use, all tunable
parameters involved in µMatch are gathered in a .yml file along
with a description of their meaning and range.

3.1. Pre-processing

To make them amenable to processing with µMatch, the
input objects must satisfy a number of technical requirements.
First, each object’s surface must be represented in the form
of a triangular mesh. These meshes must additionally be both
connected andmanifold. Being connected implies that, given any
two vertices in the mesh, it is possible to find a path consisting
of a subset of the mesh edges (i.e., the sides of the faces) that
links the two. The manifold condition imposes that the mesh
must represent a physically realizable continuous surface. More
specifically, it means that each edge in the mesh should be
incident to at most two faces, and that the faces attached to a
vertex should form an open disk or half-disk around the vertex.
An example of non-manifold mesh may involve two parts that
are connected by a single vertex, or the presence of an internal
face. These different notions are illustrated in Figure 3.

In addition, the matching process assumes that the
correspondence map is a bijection, meaning that it defines
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FIGURE 2 | Overview of µMatch. The pipeline, composed of three main steps, automatically retrieves a dense correspondence map between two arbitrary surfaces

of biological objects represented as triangular meshes. Individual substeps are listed in each of the boxes.

FIGURE 3 | Connectivity and manifold properties. Connectivity attributes

expected in a manifold mesh: (A) internal vertex with a full loop of surrounding

faces; (B) boundary vertex with a partial loop of surrounding faces. Two

examples of non-manifold connectivity: (C) sub-meshes connected by only a

single vertex; (D) a single edge shared by more than two triangular faces.

a way to match M1 to M2 as much as a way to match M2

to M1. It is therefore crucial that the pairs of meshes have
the same coverage, which implies that for each point in M1,
a corresponding point exists in M2 and vice versa. Finally, it
is important for all meshes in the collection to be constructed
by sampling as uniformly as possible the object’s surface. This
translates to vertices in the mesh being equally spaced on each
surface, or equivalently to triangular faces having a constant
area. µMatch makes use of a number of geometric quantities
associated with each mesh, including the geodesic matrix and the
Laplace-Beltrami eigen-decomposition introduced in Section 2.2,
that may be adversely affected by a non-uniform sampling.

In µMatch, input meshes are cleaned using PyMeshFix
0.14.1 (Attene, 2010), which offers built-in functionalities
to remove common errors in triangular meshes, including
degenerate and intersecting faces. As a result, output meshes are
manifold and watertight with a single connected component.
Meshes are subsequently resampled to a user-defined number
of vertices N that is smaller or equal than the total number of

vertices in the smallest of the input meshes. Importantly, this
resampling step processes all meshes to have the same number
of vertices regardless of the original number of vertices they
were composed of, relieving users from having to handle this
constraint. The value ofN should be chosen so as to aim at having
fine enough meshes to capture important shape features, while
limiting the number of vertices to what is necessary in order to
avoid overburdening the matching process later.

A final preprocessing step in µMatch, consists of calculating
the geodesic matrix of each input mesh using Lib-igl (Jacobson
and Panozzo, 2018). Although Lib-igl implements the fast
exact geodesic algorithm (Mitchell et al., 1985), it is still
computationally demanding with a run-time of O(N2 logN) and
memory requirement of O(N2), with N the number of vertices in
the mesh. For the sake of computational efficiency, we therefore
provide a custom data preparation script that precomputes the
geodesic matrices for the whole collection of objects and save
them to disk prior to the correspondence pipeline.

3.2. Correspondence
The core of µMatch is a landmark-free dense correspondence
algorithm adapted from Ovsjanikov et al. (2012), Litany et al.
(2017), and Halimi et al. (2019). The correspondence matrix,
describing the final mapping, is built from a collection of feature
descriptors and refined through filtering steps. The overall
workflow is summarized in Figure 4.

3.2.1. Feature Descriptors
Surface matching begins with the calculation of point-wise
feature descriptors, referred to as signature functions. Signature
functions describe the intrinsic geometry of an object and will
therefore return similar values at geometrically similar points
on each mesh to be matched. A number of such descriptors
have been developed and proposed for the specific purpose of
shape correspondence. The first and perhaps most intuitive one
is the Gaussian curvature of the mesh, defined as the product
of the two principal curvatures, calculated at different scales.
More sophisticated techniques include the heat kernel signature
(HKS) (Sun et al., 2009), based on solutions of the classical heat
equation ∂tT = 1T, where 1 is the Laplace-Beltrami operator
andT a temperature. The rough idea behind theHKS is to express
the remaining temperature after some time t for an initial “heat
impulse” fully concentrated at a given point of the mesh. The
HKS can be computed for multiple values of t at each point on
a mesh to generate a collection of feature descriptors. In practice,
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FIGURE 4 | Overview of µMatch’s correspondence workflow. The main elements involved in each steps are listed in the corresponding boxes.

the HKS can be calculated efficiently as

ht(x) =

N
∑

n=0

e−λntφn(x)
2, (3)

where {λi,φi} are the pairs of eigenvalues and eigenvectors of the
Laplace-Beltrami operator (calculated with Lib-igl in µMatch).

The wave kernel signature (WKS) (Aubry et al., 2011) is
closely related to the HKS but instead uses the Schrödinger wave
equation (i∂t+1)ψ = 0, which ordinarily governs the dynamics
of particles in quantummechanics. Unlike HKS, WKS assume an
approximate particle energy and then determines the long time
(i.e., t → ∞) averaged probability distribution for finding the
particle in a particular location on the surface. Sampling these
distributions for different values of particle energy once again
produces a collection of feature descriptors at each point on the
mesh. For fǫ(E) = exp

(

−0.5(ǫ − log(E))2/σ 2
)

, where ǫ is the
particle energy and σ a scale factor set by the difference between
the eigenvalues, it can be shown that the WKS is obtained as

sǫ(x) =

N
∑

n=0

fǫ(λn)
2
φn(x)

2. (4)

Examples of several HKS and WKS, exhibiting these descriptors’
ability to capture geometrically similar features across
comparable objects, are illustrated in Figure 5.

In order to obtain robust and quickly-computed feature
descriptors for use on biological objects exhibiting potentially
subtle shape features, µMatch combines HKS and WKS. In
practice these quantities are calculated using only the eigenvalues
and eigenvectors of the Laplace-Beltrami operator as input,
together with the number of functions desired. The total number
of extracted HKS and WKS signature functions must be greater
or equal as the dimension of the functional space, which
corresponds to the size of the correspondence matrix to extract.
This parameter can be freely adjusted in µMatch and is set to 100
by default.

A final step in the computation of signature functions
consists of passing them through a neural network to improve
their overall quality in a process called deep functional maps.
Following Halimi et al. (2019), µMatch implements a 7-layer
ResNet, which is trained in an unsupervised fashion. Each

layer acts on the signature functions by first taking weighted
linear combinations of the different signature functions and
then passing the result through a non-linear activation function
(ReLU). The weights in the linear combination are adjustable
parameters that are tuned during the training process such
that the output signature functions span the functional space
better and therefore produce correspondence maps with lower
distortion. Note that while the loss is formulated on the geodesic
distance, the neural network is however constrained by the
input signature functions. Minimizing the geodesic distance
between the two inputs therefore amounts to minimizing
distortion subject to aligning the signature functions. As such,
the optimization is carried out on intrinsic shape properties (as
captured by the signature functions) and not on the geodesic
matrix itself. In order to train the network, a subset of the
collection of objects to be put in correspondence must serve as
training set. As ever, the size of the training set is a trade-off
between the ability of the trained network to effectively generalize
and the training time, and there is no universal rule to determine
how many objects should be included for training. In practice,
however, all objects may be used whenever the collection is small.
For collections composed of more than a hundred of meshes, a
representative subset can be chosen as the training set to speed
up computations. We recall that preparing the training set does
not require any manual annotation since the network is trained
in an unsupervised manner. For eachmesh in the training set, the
geodesic matrix, the Laplace-Beltrami eigenvectors, an array area
encoding the area around each vertex, and the feature descriptors
of each mesh are precomputed and saved to a single TensorFlow
.tfrecords file for fast data access.

3.2.2. Assignment Problem
The correspondence matching algorithm used in µMatch is
based on a method known as functional mapping (Ovsjanikov
et al., 2012, 2016) and entirely relies on the computed feature
descriptors. The core principle of functional maps is that any
mapping between two surfaces induces a corresponding linear
mapping between their functional spaces. Formally, this can be
demonstrated as follows. Assuming that two surfaces M1 and
M2 are put in correspondence by a smooth mapping8 :M1 →

M2, one can define a space of scalar functions on the surface
Mν as FMν

=
{

f :Mν → R
}

for ν = 1, 2. These spaces can
be shown to be infinite dimensional linear vector spaces and the
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A

B

FIGURE 5 | Feature descriptors computed in µMatch. A subset of the descriptors computed from the eigen-decomposition of the Laplacian operator are shown in

two different meshes of the TEETH dataset: (A) heat kernel signatures (HKS) for different values of t; (B) wave kernel signatures (WKS) for different values of ǫ. Both

types of descriptors can be observed to behave similarly in corresponding areas of the two meshes. Molar teeth mesh data from Boyer et al. (2011).

smooth mapping 8 thus induces a linear map T8 :FM1
→

FM2
through T8(f ) = f ◦ 8−1, called functional mapping.

The linear map T8 can be represented as a finite correspondence
matrix C8 by choosing a (finite) set of k basis functions on the
vector spacesFM1

andFM2
. The eigenfunctions of the Laplace-

Beltrami operator, {φi}
k
i=1, can be shown to form a complete

orthogonal basis of each respective functional space (Ovsjanikov
et al., 2012) and encode spatial resolution (also referred to as
frequency) when ordered according to their eigenvalues, denoted
{λi}

k
i=1, making their choice geometrically meaningful. Because

only the k first eigenfunctions are selected, they are referred to as
the reduced spectral basis.

A correspondence should first and foremost preserve the
signature functions. Given a set of n feature descriptors for each
mesh, A ∈ R

k×n and B ∈ R
k×n expressed in the reduced

spectral basis, this requirement implies that C8A ≃ B. In the
case of perfect isometry, the functional mapping can be shown to
commute with the Laplace-Beltrami operator such that C8L1 =

L2C8, with Lν the Laplace-Beltrami operator expressed in the
spectral basis of Mν , simply corresponding to a diagonal matrix
of the eigenvalues. Whilst exact equality is no longer true in
the general case, this relation still approximately holds and can
be exploited as a regulariser. The correspondence matrix can be
retrieved by solving the regularized linear least squares problem

C8 = argmin
C

‖CA− B‖2 + ‖δL⊙ C‖2 , (5)

where ⊙ is the Hadamard product and [δL]ij = λ
M2
i −

λ
M1
j , with

{

λ
Mν

µ

}k

µ=1
the eigenvalues of the Laplace-Beltrami

operator onMν .
In the presence of any intrinsic symmetries in the mesh,

a subset of eigenfunctions called the anti-symmetric space
are undistinguishable up to a flip of sign. The signature
functions therefore do not provide sufficient information to
unambiguously determine how this subset of the function space
is mapped between the two meshes. This can lead to parts
of the object being mapped with different orientations, leaving
large tear discontinuities in-between. To solve this, µMatch
implements an additional step after solving (Equation 5) in
order to ensure that the resulting map has low distortion. We
begin by noting that, much like any scalar function can be
decomposed using the spectral basis, so too can any bivariate
function, F :Mν × Mν 7→ R, the result being a k × k array.
Also, given such a bivariate function F on M1 and a mapping
8 :M1 7→ M2, 8 maps F to a bivariate function F8 on M2,
defined by F8(·, ·) = F(8−1(·),8−1(·)). When expressed in
the spectral basis with the correspondence matrix, it reduces
to the matrix product F8 = C8 FCT

8
. The class of bivariate

functions that is particularly interesting for the purpose of shape
correspondence is the geodesic matrix and functions derived
from it. In µMatch, we don’t consider the geodesic matrix
directly, but rather its Gaussian at several scales σ , defined as
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K
Mν

σ = exp(−G2
Mν

/2σ 2), which better encodes neighborhood

information. Thus, we expect

C8K
M1
σ

CT
8
≃ KM2

σ
. (6)

The K
Mν

σ matrices contain off-diagonal entries that provide
information on how different eigenfunctions should relate
to one-another, including for the anti-symmetric ones that
are not captured by the signature functions. In µMatch, a
few fixed values of σ are chosen corresponding to σ ∈

[0.25µ(GM), 0.5µ(GM), 0.75µ(GM)], where µ(GM) is the
mean surface distance defined as

µ(GM) =
1

A2
M

∫

M
GM(x, y) d2x d2y, (7)

for a meshM with geodesic matrix GM and surface area AM.
Decreasing the dimension of the spectral basis, captured by

the number of basis functions k, increases the stability of the
solution of Equation (5). It is therefore better to solve for the
correspondence matrix C8 at relatively low dimension, generally
lying in the range of k = 5 to 12 (µMatch uses k = 8 by
default), and then scale up in a process known as ZoomOut
Upsampling (Melzi et al., 2019). The downside of working at
low dimensions is that much of the off-diagonal information is
lost by the omission of higher frequency components from the

matrices K
Mν

σ . Therefore, in order to retain the high frequency
information that is required for computing the final kmax-

dimensional correspondence matrix, we first compute K
Mν

σ

matrices at the full dimension kmax, and from this derive the
following three reduced (k× k) matrices

[J
(0)

Mν ,σ
]ij = [KMν

σ
]ij, (8)

[J
(1)

Mν ,σ
]ij =

∑kmax

m=k+1
[K

Mν

σ ]im[K
Mν

σ ]mj, (9)

[J
(2)

Mν ,σ
]ij =

∑kmax

m,n=k+1
[K

Mν

σ ]im[K
Mν

σ ]mn[K
Mν

σ ]nj (10)

for i, j ∈
{

1, . . . , k
}

. The reduced matrices J
(1)

Mν ,σ
and

J
(2)

Mν ,σ
capture off-diagonal information related to the first k

eigenfunctions that would otherwise be lost in the k × k version

of K
Mν

σ (corresponding to J
(0)

Mν ,σ
). A k × k correspondence

matrix C
(k)
8

can then be obtained by solving the continuous
optimisation problem

C
(k)
8

= argmin
C

∑

σ

2
∑

i=0

∥

∥

∥
CJ

(i)

M1 ,σ
CT − J

(i)

M2 ,σ

∥

∥

∥

2

F
, (11)

using the solution of Equation (5) as initial value.
The final, full resolution correspondence matrix is obtained

by iteratively increasing k as follows. First, given C
(k)
8
, we solve

for the point-to-point map by computing a transition matrix Q

given as

Q = AM1
φ
(k)

M1
(C

(k)
8
)T(φ

(k)

M2
)T , (12)

and a probability matrix P given as

[P]ij = [Q2]ij/
∑

k

[Q2]ik. (13)

The point-to-point mapping 8 is then retrieved by passing P to
a linear assignment algorithm (Crouse, 2016), which assigns the
indices of vertices of one mesh to those of the other, yielding the
maximum probability point-wise correspondence. Conversely,
given the point-to-point mapping8 :M1 7→ M2, the associated
correspondence matrix of dimension k+ 1 can be computed as

C
(k+1)
8

= (φ
(k+1)

M1
)TAM1

5 φ
(k+1)

M2
, (14)

where AM1
is the mesh mass matrix encoding the area around

each vertex on M1, and φ
(k)

Mν

are matrices which columns

correspond to the first k Laplace-Beltrami eigenvectors of the
meshMν . Finally,5 is the matrix representation of8 given by

[5]ij =

{

1 8(i) = j

0 otherwise
. (15)

ZoomOut Upsampling thus proceeds to alternate between
solving for 5 and C8, incrementing the dimension by one each
time we solve for C8 and repeating until k = kmax, where kmax

is the dimension of the reduced spectral basis, chosen such that it
provides sufficient resolution for an accurate mapping.

3.2.3. Filtering
The occasional assignment errors and discontinuities that may
remain after the correspondence procedure can be filtered
out using a technique known as product manifold filter
(PMF, Vestner et al., 2017). The PMF aims at producing a
bijective and continuous correspondence map by using kernel
density estimation. Assuming a noisy and potentially sparse set of
I correspondences

{

xi → yi
}

i=1,...,I
and a kernel κ (i.e., window

function), the function F :M1 ×M2 → R defined as

F(x, y) =

I
∑

i=1

κ(d(x, xi)) κ(d(y, yi)), (16)

where d is a distance measure (the geodesic distance in our
case). The expression (Equation 16) will be maximized when the
distance between y and yi is similar to that between x and xi for
each i = 1, . . . , I.

A clean mapping 8 : x → y can thus be retrieved when
y maximizes (Equation 16), which can be expressed in matrix

form as Fσ = K
M1
σ (KM2

σ )T, where K
Mν

σ = exp(−G2
Mν

/2σ 2)

and σ = 0.3µ(G) as recommended in Vestner et al. (2017)
(see Equation 7). The matrix F is once again passed to a linear
assignment algorithm to yield a mapping of vertex indices from
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one mesh to the other, as done for the probability matrix P

in Section 3.2.2, to obtain an updated correspondence.
Ultimately, for a pair of meshes fed into the correspondence

pipeline, µMatch returns a correspondence in the form of two
matrices, N1 and N2, where N1 are the indices of vertices on the
first mesh and N2 on the second, such that [N1]n 7→ [N2]n for
each n ∈ N1. These arrays are saved to disk for reuse in the shape
analysis module or outside of µMatch.

3.3. Shape Analysis
3.3.1. Alignment and Statistical Shape Analysis
µMatch allows putting collections of objects in correspondence
in order to computationally retrieve the average shape and
morphological variations within the collection relying on
Procrustes analysis (Kendall, 1989). All objects in the collections
are first centered at the origin and scaled to be of unitary root
mean square norm. An arbitrary object in the collection is then
selected to act as reference, and correspondence maps between
this reference and all other objects in the collection are extracted.
The final step is to find the best alignment of each object in the
collection onto the reference by rotating it. The optimal rotation
angle is retrieved by solving the classical orthogonal Procrustes
problem (Gower and Dijksterhuis, 2004). Once all objects have
been aligned onto the reference, a new reference is obtained
by calculating the mean across the entire collection for each
corresponding points. The whole process is then repeated, now
aligning every shape in the collection to this new reference, and
a new updated mean is computed until convergence. The final
result is taken as mean shape for the collection.

Relying on the mean of the collection and each object aligned
to it, deviations from the mean can be extracted as follows. For
each point on the mean shape, µMatch calculates the standard
deviation of corresponding points across the entire collection.
This results in a scalar function on the reference shape indicating
where morphological variations occur and to which extent, and
can be visualized as a colormap on the mean shape mesh relying
on the vedo visualization library (Musy, 2021). In µMatch, the
script implementing this procedure takes as input a directory
containing a collection of meshes together with a path to their
pre-computed correspondences. The correspondences need only
be calculated between the reference shape and each of the other
shapes in the collection.

3.3.2. Morphing
Once correspondence between two shapes is established, a
continuous morphing between them can be extracted by first
aligning the two shapes via translation and rotation (similar to
the procedure described in Section 3.3.1, but without scaling),
then calculating the geodesic path connecting the two meshes,
and sampling shapes along that path. A geodesic being defined
as the shortest path connecting any two points in a space, its
computation solely requires a notion of distance between points
in that space. In Figure 1, we illustrated a geodesic path on amesh
M, where samples along the path correspond to positions on the
mesh. In the case of morphing, the space of interest is instead that
of surfaces represented by meshes of fixed connectivity meeting
the conditions introduced in Section 3.1: points in the space

correspond to the vertex positions and the distance is determined
by their connectivity. Samples along the resulting path therefore
correspond to meshes. Continuous morphing, going beyond
shape analysis of collections of equivalent samples, is of particular
interest for image-based modeling, for instance in the context of
developmental studies. In Figure 6A, we illustrate as an example
the surfaces of a developing mouse limb bud synthetically
generated by interpolating between a young and an old limb
bud sample. While the older limb bud sample has features (e.g.,
distributions of surface curvature) for which there is no simple
mapping onto the youngest limb bud, the collection of extracted
signature functions (Figures 6B,C) manages to capture the local
arrangement of these geometrical details with respect to the
overall bud shape and allows mapping them to the younger,
smoother limb bud in a qualitatively sensible way. As a result,
the morphing obtained based on this correspondence produce a
visually realistic evolution from one shape onto the other.

Technically, the continuous morphing is obtained following
the algorithm proposed in Kilian et al. (2007). Consider a mesh
M1 with vertices v, edges E, and a vector field X describing the
deformation of M1 onto some other mesh M2. The vector field
X is given by difference vectors between the two meshes and thus
assumes that a correspondence between M1 and M2 has been
calculated. Then, the norm ǫ, defined as

ǫ(X) =
∑

i,j∈E

〈Xi − Xj, vi − vj〉
2, (17)

measures the deformation between the two meshes. In order
to generate a sequence of meshes morphing the meshes onto
one another, the quantity (Equation 17) is minimized through
a multi-scale continuous optimisation procedure, starting with
low mesh resolution and few intermediate steps and sequentially
increasing both. The final geodesic path consists of a set of
intermediate meshes that reflects the continuous deformation of
one surface onto the other.

4. EXPERIMENTS

4.1. Quantitative Validation
In order to quantitatively validate µMatch, we use a teeth scan
dataset originally introduced by Boyer et al. (2011) and available
at www.wisdom.weizmann.ac.il/~ylipman/CPsurfcomp/ and
commonly exploited to assess 3D morphometry algorithms.
The dataset includes 45 meshes corresponding to mandibular
second molars of a variety of prosimian primates and their close
non-primate evolutionary relatives, summarized in Table 2. Each
specimen is annotated with a set of 16 manually-determined
landmarks placed by expert morphometricians that can be
used as ground-truth to assess the quality of an automatically-
retrieved correspondence. Although this dataset is composed
of objects toward the macroscale of the spectrum, it is one of
the rare available resources of biological objects for which a
ground truth sparse correspondence is available and is as such an
excellent candidate for benchmarking. Performance assessment
is then carried out following the Princeton benchmark protocol
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A

B C

FIGURE 6 | Morphing between two objects in correspondence. (A) Computationally retrieved “growth” of a mouse forelimb obtained by interpolating between two

matched meshes of mouse limb buds at early (E10 - E10.5) and late (E11 - E11.5) developmental stages. Meshes in green correspond to samples from the

MOUSE_LIMB dataset, while meshes in blue have been synthetically generated through by interpolating along the geodesic path connecting the green meshes.

Examples of the set of (B) HKS and (C) WKS used to extract the correspondence. Mesh data from Martínez-Abadías et al. (2018).

(Shilane et al., 2004; Kim et al., 2011) by computing the mean
geodesic error (GE) expressed as

GE =
1

A
1/2

M2

16
∑

i=1

GM2

(

8(l1i ), l
2
i

)

, (18)

where
{

l1i
}16

i=1
and

{

l2i
}16

i=1
are the ground-truth landmarks on

M1 and M2, respectively, 8 is the point-to-point mapping,
and GM2

and AM2
are the geodesic matrix and the surface

area of the mesh M2, respectively. The GE therefore measures
how well the main features of the objects have been mapped,
regardless of the amount of deformation there may be elsewhere
on the surface.

Several processing steps of the µMatch correspondence
module (Figure 4), namely the deep functionalmaps and product
manifold filter, aim at improving the final correspondence but
are not strictly necessary. While we do recommend including
them whenever possible, these steps do increase computation
time and the extent of the improvement they will bring cannot
be predicted in general for any arbitrary dataset. To provide
users with an example of the cost and gains involved, we have
quantified the quality of the retrieved correspondence in different

settings, by enabling and disabling the deep functional maps
and product manifold filter in the µMatch pipeline. In Table 1,
we report the average GE between ground-truth landmarks and
correspondence points obtained automatically with µMatch for
the whole dataset. We also indicate the average runtime to
establish correspondence in any given pair. A breakdown of
the average GE by species and the cumulative error curves are
provided in Figure 7A and Table 2, respectively. We observe
the respective merits of the deep functional maps and product
manifold filter to be as follows. The deep functional maps
improve the signature functions but do not impose smoothness
in the final correspondence, resulting in large GE variance. While
the correspondence runtime is not affected by deep functional
maps since the network is trained during preprocessing, a
significant extra amount of compute (∼3 h for this dataset)
is required ahead of the matching itself, impacting the total
duration of the pipeline. In contrast, the product manifold filter
ensures that the final correspondence is smooth and does not
feature major tears or discontinuities, resulting in small GE
variance. It is limited by the correspondence quality that can
be obtained from the original signature functions alone and
doubles the runtime per pair, but as a trade-off requires no
prior computation or training. The combination of the two yields
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TABLE 1 | Summary of results on the TEETH dataset.

No DFM, no PMF DFM, no PMF No DFM, PMF DFM, PMF

Average GE 10.7± 14.8 9.3± 12.8 6.5± 9.5 4.8± 3.8

Average runtime (seconds) 5 5 11 11

The average and standard deviation of the mean geodesic error (GE, Equation 18) between ground truth landmarks and predicted correspondence obtained with µMatch is reported for

different setting including or not the deep functional maps (DFM) and product manifold filter (PMF) steps, along with the average runtime per pair (the complete dataset is composed of

990 unique pairs). The GE is reported in units of normalized geodesic length, with lower values indicating better results. The complete µMatch pipeline corresponds to the last column

(DMF, PMF). Best results for each metrics are highlighted in bold.

TABLE 2 | Per-specie breakdown of results on the TEETH dataset.

Species Human Bonobo Chimpanzee Orangutan Gorilla

# samples 10 4 12 10 9

GE (No DFM, no PMF) 7.4± 12.1 5.8± 8.3 8.3± 12.8 17.0± 21.1 7.0± 9.5

GE (DFM, no PMF) 7.2± 11.9 5.8± 8.3 8.2± 12.7 12.0± 15.7 6.9± 9.3

GE (No DFM, PMF) 3.2± 2.1 3.3± 2.1 3.7± 2.6 11.9± 17.6 4.6± 2.9

GE (DFM, PMF) 3.2± 2.1 3.2± 1.9 3.7± 2.5 5.0± 3.6 4.3± 2.8

For each class, 0.5 × n × (n − 1) unique pairs can be put in correspondence, where n is the number of samples. The average and standard deviation of the mean geodesic error

(GE, Equation 18) between ground truth landmarks and predicted correspondence obtained with µMatch is reported for different setting including or not the deep functional maps

(DFM) and product manifold filter (PMF) steps. The GE is reported in units of normalized geodesic length, with lower values indicating better results. The complete µMatch pipeline

corresponds to the last row (DMF, PMF). Best results for each specie are highlighted in bold.

the best results, as it allows obtaining a smooth correspondence
from improved signature functions. The cost is however a high
runtime per pair for the correspondence itself, and the necessity
to go through an expensive training stage during preprocessing.

Once correspondence has been established between all meshes
in the collection, we carry out a further sanity check by reporting
the geodesic distance, or deformation, given by

δGM1M2
=

∑

i,j

∣

∣

∣

[

GM1

]

i,j∈E
−

[

GM2

]

8(i),8(j)

∣

∣

∣
, (19)

where E is the set of edges of the meshes M1 and M2,
and observing how it compares between the different species
present in the dataset. We hypothesize that samples from
different species will exhibit more shape deviations than
individuals from the same species, and investigate whether
this can be observed in the geodesic distances retrieved after
correspondence established by µMatch. The quantity (Equation
19) is calculated between all pairs in the collection, producing
a n × n matrix δG, with n the number of meshes in the
collection. Each sub-blocks of the matrix corresponding to
the different species can be averaged to produce a reduced
distance matrix, depicted in Figure 7B for the full µMatch
pipeline (with deep functional maps and product manifold filter).
The geodesic distances between species match what would be
expected from their phylogeny: molar surfaces of chimpanzees
and bonobos are highly similar, and also closely resemble human
teeth, while gorilla and orangutan molars are observed to be
morphologically more dissimilar. In addition to their differences
with other species, samples from the orangutan class appear to
be extremely diverse, resulting in a large intra-class distance.
This experiment provides a sanity check assessing the validity

of the algorithms implemented in the µMatch pipeline. We
orient the reader interested in a comparative assessment of the
relative performance of the selected correspondence algorithms
against published alternatives to the original works introducing
functional mapping (Ovsjanikov et al., 2012, 2016).

4.2. Case Study: Joint Shape Analysis of
Embryonic Limbs and Dusp6 Gene
Expression Patterns
In our previous study (Martínez-Abadías et al., 2018), we
performed geometric morphogenesis on a mouse model of
Apert syndrome, in which the Fgfr2 gene contains a mutation
which models the human syndrome. The goal was to explore
whether shape analysis of a gene expression pattern could
suggest the molecular basis of the phenotype. In addition to
analyzing the developing anatomical changes in the limb, we
also analyzed the 3D expression pattern of Dusp6, a gene
whose expression reflects the activity of FGF signaling. This
allowed subtle alterations in the gene expression pattern to be
detected before the anatomical phenotype was apparent, thus
strengthening the idea that altered FGF signaling is directly
responsible for the phenotype. That previous analysis however
depended on manual annotation of 3D landmarks on the data, a
process which was very labor-intensive and taking many weeks
to achieve. Here, we demonstrate that µMatch can be used
to automate this process, jointly quantify the evolution of the
shape of embryonic limb and gene expression pattern over
developmental time without human bias and achieving similar
results in a fraction of the time. We have chosen to reproduce
the results of this study to illustrate the use of µMatch on real
biological data containing objects that differ in size, orientation,
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FIGURE 7 | Validation of µMatch. (A) Cumulative geodesic error curve, reporting the proportion of predicted correspondence with an error (Equation 18) smaller than

a variable threshold, for different setting including or not the deep functional maps (DFM) and product manifold filter (PMF) steps. The complete µMatch pipeline

corresponds to the solid black curve (DMF, PMF). (B) Matrix of average geodesic distance (Equation 19) between species based on the correspondences obtained

with the full µMatch pipeline.

TABLE 3 | Summary of the MOUSE_LIMB dataset.

Early (∼E10) Mid (∼E10.5 to ∼E11) Late (∼E11.5)

Limb Dusp6 Limb Dusp6 Limb Dusp6

Unaffected 12/11 9/5 7/6 6/2 2/3 1/1

Fgfr2 mutant 3/11 6/7 8/8 3/3 7/5 2/5

For each condition, the number of available fore and hind samples of limb surface and

Dusp6 gene expression are indicated. Gene expression patterns are not available for all

limb samples, hence the smaller sample sizes.

and shape, and exhibit a mixture of inter-group and intra-group
variations of morphology.

The dataset we refer to as MOUSE_LIMB, publicly available
at dx.doi.org/10.5061/dryad.8h646s0, contains meshes extracted
from real optical projection tomography scans (Sharpe et al.,
2002) of the limbs and of the Dusp6 gene expression domains of
Apert syndrome (Fgfr2mutants) mouse embryos and unaffected
littermates ranging from E10 to E11.5, where EN stands for N
days after conception. Extracting these meshes requires the raw
image data to be first segmented, a step that can be carried out
by different methods. We refer readers interested in the details
of the segmentation process to the original study (Martínez-
Abadías et al., 2018). The meshes are grouped into forelimbs
and hind limbs of early (∼E10), mid (∼E10.5 to ∼E11) and
late (∼E11.5) developmental periods, according to Table 3. To
process these data, we set the number of vertices N to be
2000, and use default µMatch values, namely a functional space
dimension of k = 100, and 100 computed heat kernel and wave
kernel signatures.

For each age and genetic background group, a template
shape is chosen at random and used to initiate correspondences
with the remaining samples. From the mesh correspondences
obtained with µMatch, a Procrustes alignment of the limbs
surfaces is obtained following the procedure described in
Section 3.3.1, yielding an average limb with an associated
measure of variance at each vertex. Once limb surfaces are

matched, the correspondence can be further used to map internal
processes between them, allowing in particular to compare
Dusp6 gene expression data available for some of the limbs. The
parameters obtained from the limb alignment can then be used
to do a rigid registration of the gene expression patterns. This
is then further refined by iterative closest point alignment (Besl
and McKay, 1992; Chen and Medioni, 1992) and thin plate
spline (TPS) deformation to finely warp the objects onto one
another (Duchon, 1977). To implement the TPS deformation, the
surfaces are first sub-sampled to obtainM control points {cm}

M
m=1

and the warping is obtained as

δ(x) =

M
∑

m=1

ωmψ(‖x− cm‖), (20)

where ψ(r) = r2 log(r) is the thin plate spline kernel. The
coefficients {ωm}

M
m=1 are found by solving for Aω = v, where

[A]ij = ψ(
∥

∥ci − cj
∥

∥) ∀ i, j = 1, . . . ,M and [v]m is the difference
vector between the source and target surface at the control points
m = 1, ...,M. Once the objects have been warped onto one
another in this manner, a simple nearest neighbors search is used
to obtain a correspondence and the shape analysis procedure
described in Section 3.3.1 can be carried out again for the gene
expression data. The resulting average limbs and gene expression
patterns, color-coded according to local variance, are shown in
Figure 8. Following Martínez-Abadías et al. (2018), we display
results for hind limbs of the early and mid-early stages, and fore
limbs of the mid-late and late stages.

In Martínez-Abadías et al. (2018), the limb buds of Fgfr2
mutants from the late period (∼E11.5) were observed to separate
from those of unaffected littermates. During the mid-early
(∼E10.5) and early (∼E10) periods, the limbs of Fgfr2 mutant
mice were however undistinguishable from those of unaffected
specimen. Significant difference inDusp6 gene expression pattern
was observed between Fgfr2mutant animals and their unaffected
littermates for all groups except for the early time period.
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FIGURE 8 | Average limb and Dusp6 gene expression across the MOUSE_LIMB dataset. The averaged surfaces are color-coded according to the local variance (see

colorbars). The geodesic distance between the average shape of the unaffected specimen and Fgfr2 mutant is also reported for the limb and Dusp6 gene expression

pattern.

We recover the same results using µMatch, as illustrated
in Figure 9, demonstrating the validity of the automatically
retrieved correspondence. The difference in shapes was originally
quantified by Procrustes analysis relying on sparse set of semi-
landmarks along the most distal edge and on the dorsal and
ventral sides of the limb (Martínez-Abadías et al., 2018). In
contrast, our approach solves for a dense correspondence, taking
into account the entire object’s surface. The major advantage of
µMicro is that it is entirely landmark-free and fully automated.
Once limb surfaces are put in correspondence, their geodesic
distance can be used to further quantify the extent of their
morphological difference, and the recovered matching used
to also align their corresponding gene expression. As such,
provided that gene expression patterns have been acquired so
as to be appropriately registered inside the limb, comparing the
shape of gene expression patterns does neither require artificial
landmarking nor a separate correspondence map: they instead
get aligned based on their “container.” These results demonstrate
that µMatch can reliably be used on real bioimage data, which
may be noisy, in which samples may exhibit too large variations
in their morphology or orientation to rely on volume-based
alignment, and which may involve extracted meshes of different
numbers of vertices.

5. DISCUSSION AND CONCLUSIONS

We developed µMatch, an automated 3D shape correspondence
pipeline tailored to biological objects that are difficult or

impossible to landmark. The core element of the pipeline is
the correspondence algorithm, which is based on functional
mapping. As such, µMatch relies entirely on automatically-
extracted signature functions that capture the local geometry
of the object’s surface to retrieve an optimal matching. In
addition to the correspondence algoritm itself, µMatch includes
scripts to facilitate the whole workflow, from data pre-processing
(including mesh cleaning and pre-computation of important
quantities to speed up the correspondence process) to basic shape
analysis (including Procrustes analysis and morphing). Since
the input data format required by µMatch, namely triangular
meshes, is very generic, the pipeline can be used for a broad
range of objects. While µMatch has no hard limit on the input
mesh size, larger meshes will result in more computationally
demanding operations and therefore affect execution time. In our
experiments, consideredmeshes were composed of 2,000 to 3,000
vertices (corresponding to 4,000 to 6,000 faces). For much larger
meshes, we recommend to establish a first correspondence at a
lower resolution (i.e., on decimated meshes) and then extending
it to the full sized meshes. As a reference runtime for standard
laptops, establishing correspondence between two meshes of
2,000 vertices took approximately 17 s on a laptop with 16Gb
of RAM, an Intel Core i7 8th Generation CPU (8 cores), and an
Intel Corporation UHD Graphics 620 (rev 07) GPU. µMatch, is
implemented in Python and is freely available on GitHub under
BSD-3 Clause license.

We quantitatively validated µMatch relying on the TEETH
benchmark dataset (Boyer et al., 2011) for which ground
truth correspondence is available. Then, we explored the use
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FIGURE 9 | Analysis of the MOUSE_LIMB dataset based on geodesic distances of aligned objects. Vertex-wise deviations from the average shape are concatenated

for each mesh in the collection, and reduced by principal component analysis. The resulting two largest principal components are plotted for each sample to quantify

the morphological difference between the limbs and Dusp6 gene expression patterns of Fgfr2 mutants and unaffected littermates. The average limb (in yellow) and

Dusp6 gene expression pattern (in blue) for each group is displayed on top.

of µMatch to automate the analysis of a dataset of optical
projection tomography scans of mouse limbs (MOUSE_LIMB
dataset, Martínez-Abadías et al., 2018) and demonstrated that
our pipeline allows retrieving published results. This dataset
also includes gene expression patterns which morphologies
had originally been studied relying on landmarking. We
demonstrated that the limb surface correspondence obtained
with µMatch can be used to align the corresponding gene
expression patterns without the need for any landmarks,
and subsequently characterize their morphological differences.
Although involving rather small sample sizes, this experiment
is a proof-of-principle that the alignments provided by µMatch
can be used to compare the spatial morphology of processes
that are internal to the surfaces being matched. Beyond allowing
to reproduce and automate morphometry from data at the
mesoscopic scale, we hope that µMatch will make it possible
to investigate new shape-related questions at the cellular or
subcellular scale. Being able to reliably put soft-tissue objects
without landmarks in correspondence and use their alignment
to register internal processes is a first step toward atlas-free
registration, which would be useful in many biological studies
involving for instance spatial transcriptomics data.

In addition to enabling the quantitative study of collection
of equivalent 3D shapes, dense correspondence maps also
allow for continuous morphing between meshes. An exciting
future direction of this work is therefore to explore how
µMatch can be used to build spatiotemporal models of
deforming objects. In a biological context, for instance during
development or morphogenesis, complexity will almost always
significantly increase over time, resulting in possibly challenging

correspondence problems between younger, morphologically
simpler surfaces and older ones exhibiting more complex shapes.
Because correspondence is an essential first step toward mining
3D surface data extracted from bioimages, we hope that µMatch
will help enable new avenues in computational morphometry and
modeling for biology and lower the entry cost for life scientists
intending to rely on statistical shape analysis to explore their data.
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From Shallow to Deep: Exploiting
Feature-Based Classifiers for
Domain Adaptation in Semantic
Segmentation
Alex Matskevych, Adrian Wolny, Constantin Pape* and Anna Kreshuk*

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany

The remarkable performance of Convolutional Neural Networks on image segmentation

tasks comes at the cost of a large amount of pixelwise annotated images that have

to be segmented for training. In contrast, feature-based learning methods, such as the

Random Forest, require little training data, but rarely reach the segmentation accuracy

of CNNs. This work bridges the two approaches in a transfer learning setting. We

show that a CNN can be trained to correct the errors of the Random Forest in the

source domain and then be applied to correct such errors in the target domain without

retraining, as the domain shift between the Random Forest predictions is much smaller

than between the raw data. By leveraging a few brushstrokes as annotations in the target

domain, the method can deliver segmentations that are sufficiently accurate to act as

pseudo-labels for target-domain CNN training. We demonstrate the performance of the

method on several datasets with the challenging tasks of mitochondria, membrane and

nuclear segmentation. It yields excellent performance compared to microscopy domain

adaptation baselines, especially when a significant domain shift is involved.

Keywords: microscopy segmentation, domain adaptation, deep learning, transfer learning, biomedical

segmentation

1. INTRODUCTION

Semantic segmentation—partitioning the image into areas of biological (semantic) meaning—is
a ubiquitous problem in microscopy image analysis. Compared to natural images, microscopy
segmentation problems are particularly well-suited for feature-based (“shallow”) machine learning,
as the difference between semantic classes can often be captured in local edge, texture, or
intensity descriptors (Belevich et al., 2016; Arganda-Carreras et al., 2017; Berg et al., 2019).
While convolutional neural networks (CNNs) have long overtaken feature-based approaches in
segmentation accuracy and inference speed, interactive feature-based solutions continue to attract
users due to the low requirements to training data volumes, nearly real-time training speeds and
general simplicity of the setup, which does not require computational expertise.

CNNs are made up of millions of learnable parameters which have to be configured based
on user-provided training examples. With insufficient training data, CNNs are very prone to
overfitting, “memorizing” the training data instead of deriving generalizable rules. Strategies to
suppress overfitting include data augmentation (Ronneberger et al., 2015), incorporation of prior
information (El Jurdi et al., 2021), dropout and sub-network re-initialization (Han et al., 2016; Taha
et al., 2021) and, in case a similar task has already been solved on sufficiently similar data, domain
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adaptation, and transfer learning. In the latter case, the network
exploits a large amount of labels in the so called “source” domain
to learn good parameter values for the task at hand, which are
further adapted for the unlabeled or sparsely labeled “target”
domain through unsupervised or weakly supervised learning.
For microscopy images, the adaptation is commonly achieved
by bringing the distributions of the source and target domain
data closer to each other, either by forcing the network to learn
domain-invariant features (Long et al., 2015; Roels et al., 2019;
Liu et al., 2020) or by using generative networks and cycle
consistency constraints (Zhang et al., 2018; Chen et al., 2019;
Januszewski and Jain, 2019). Alternatively, the domain shift can
be explicitly learned in a part of the network (Rozantsev et al.,
2018). In addition to labels in the source domain, pseudo-labels
in the target domain are often used for training (Choi et al.,
2019; Xing et al., 2019). Pseudo-labels can be computed from the
predictions of the source domain network (Choi et al., 2019) or
predictions for pixels similar to source domain labels (Bermúdez-
Chacón et al., 2019).

In contrast, Random Forest (RF), one of the most popular
“shallow” learning classifiers (Breiman, 2001), does not overfit on
small amounts of training data and trains so fast that in practice
no domain adaptation strategies are applied—the classifier is
instead fully retrained with sparse labels in the target domain.
However, unlike a CNN, it cannot fully profit from large amounts
of training data. The aim of our contribution is to combine
the best of both worlds, exploiting fast training of the Random

FIGURE 1 | (A) Training on the source dataset: many Random Forests are trained by subsampling patches of raw data and dense groundtruth segmentation. Random

Forest predictions are used as inputs and groundtruth segmentation as labels to train the Prediction Enhancer CNN to improve RF segmentations. (B) Domain

adaptation to the target dataset: a RF is trained interactively with brushstroke labels. The pre-trained PE is applied to improve the RF predictions. Optionally, PE

predictions are used as pseudo-labels to train a segmentation network for even better results with no additional annotations, but using a larger computational budget.

Forest for domain adaptation and excellent performance of
CNNs for accurate segmentation with large amounts of training
data. We use the densely labeled source domain to train many
Random Forests for segmentation and then train a CNN for
Random Forest prediction enhancement (see Figure 1). On the
target domain, we train a new Random Forest from a few
brushstroke labels and simply apply the pre-trained Prediction
Enhancer (PE) network to improve the probability maps. The
enhanced predictions are substantially more accurate than the
Random Forest or a segmentation CNN trained only on the
source domain. Furthermore, a new CNN can be trained using
enhanced predictions as pseudo-labels, achieving an even better
accuracy with no additional annotation cost. Since the Prediction
Enhancer is only trained on RF probability maps, it remains
agnostic to the appearance of the raw data and can therefore
be applied to mitigate even very large domain gaps between
source and target datasets, as long as the segmentation task itself
remains similar. To illustrate the power of our approach, we
demonstrate domain adaptation between different datasets of the
same modality, and also from confocal to light sheet microscopy,
from electron to confocal microscopy and from fluorescent light
microscopy to histology. From the user perspective, domain
adaptation is realized in a straightforward, user-friendly setting
of training a regular U-Net, without adversarial elements or task
re-weighting. Furthermore, a well-trained Prediction Enhancer
network can be used without retraining, only requiring training
of the Random Forest from the user. Our Prediction Enhancer
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networks for mitochondria, nuclei, or membrane segmentation
tasks are available at the BioImage Model Zoo (https://bioimage.
io) and can easily be applied to improve predictions of the
Pixel Classification workflow in ilastik or of the Weka Trainable
Segmentation plugin in Fiji.

2. METHODS

Our approach combines the advantages of feature-based and
end-to-end segmentation methods by training a Prediction
Enhancer network to predict one from the other. On the target
dataset, retraining can be limited to the feature-based classifier as
its predictions—unlike the raw data—do not exhibit a significant
domain shift if the same semantic classes are being segmented. In
more detail, we propose the following sequence of steps (see also
Figure 1):

1. Create training data for the Prediction Enhancer CNN by
training multiple Random Forests on random samples of the
densely labeled source domain.

2. Train the Prediction Enhancer using the RF predictions as
input and the ground-truth segmentation as labels.

3. Train a Random Forest on the target dataset with a
few brushstroke labels and use the pre-trained Prediction
Enhancer to improve the predictions.

4. Use the improved predictions as pseudo-labels to train a CNN
on the target dataset. This step is optional and trades improved
quality for the computational cost of training a CNN from
scratch.

Note that the Prediction Enhancer only takes the predictions of
the Random Forest as input. Neither raw data nor labels of the
source dataset are needed to apply it to new data. Our method
can therefore be classified as source-free domain adaption, but the
additional feature-based learning step allows us to avoid training
set estimation or reconstruction, commonly used in other source-
free or knowledge distillation-based approaches like Du et al.
(2021) and Liu et al. (2021). At the same time, we can fully
profit from all advances in the field of pseudo-label rectification
(Prabhu et al., 2021; Wu et al., 2021; Zhang et al., 2021; Zhao
et al., 2021), applying those to pseudo-labels generated by the
PE network.

2.1. Prediction Enhancer
The Prediction Enhancer is based on the U-Net architecture
(Ronneberger et al., 2015). To create training data, we train
multiple Random Forests on the dense labels of the source
domain, using the same pixel features as in the ilastik pixel
classification workflow (Berg et al., 2019). To obtain a diverse
set of shallow classifiers we sample patches of various size and
train a classifier for each patch based on the raw data and dense
labels. Typically, we train 500–1,000 different classifiers. Next, we
train the U-Net following the standard approach for semantic
segmentation, using Random Forest predictions (but not the raw
data) as input and the provided dense labels of the source domain
as the groundtruth. To create more variability, we sample from
all previously trained classifiers. We use either the binary cross
entropy or the Dice score as loss function.

Segmentation of a new dataset only requires training a single
Random Forest; its predictions can directly be improved with
the pre-trained Prediction Enhancer. Here, we use ilastik pixel
classification workflow, which enables training a Random Forest
interactively from brushstroke user annotations.

2.2. Further Domain Adaptation With
Pseudo-Labels
The Prediction Enhancer can improve the segmentation results
significantly, as shown in Section 3. However, it relies only on
the Random Forest predictions, and can thus not take intensity,
texture or other raw image information into account. To make
use of such information and further improve segmentation
results, we can use the predictions of the Enhancer as pseudo-
labels and train a segmentation U-Net on the target dataset. We
use either Dice score or binary cross entropy as loss and make
the following adjustments to the standard training procedure to
enable training from noisy pseudo-labels:

• Use the RF predictions as soft labels in range [0, 1] instead of
hard labels in {0, 1}.
• Use a simple label rectification strategy to weight the per-pixel

loss based on the prediction confidence (see Section 2.2.1).
• In the final loss, add a consistency term similar to Tarvainen

and Valpola (2017) that compares the current predictions to
the predictions of the network’s exponential moving average
(see Section 2.2.2).

2.2.1. Label Rectification
Label rectification is a common strategy in self-learning-
based domain adaptation methods, where predictions from the
source model are used as pseudo-labels on the target domain.
Rectification is then used to correct for the label noise. Several
strategies have been proposed, for example based on the distance
to class prototypes in the feature space (Zhang et al., 2021) or
prediction confidence after several rounds of dropout (Wu et al.,
2021).

Here, we adopt a simple label rectification strategy based on
the prediction confidence to weight the pseudo-labels y:

ŷk = ωk yk, (1)

where k is the class index. The pseudo labels yk correspond to
the predictions of the Prediction Enhancer and are continuous
in the range [0, 1]. For the case of foreground/background
segmentation k ∈ {0, 1} and we define the per-pixel weight for
the foreground class as

ω1 = 1− abs(p1 − η1). (2)

Here, p1 is the foreground probability map predicted by the
segmentation network and η1 a scalar value, defined as the
exponentially weighted average computed over the foreground
mask S:

η1 ← λ η1 + (1− λ) ∗ mean(S),

where S = {p1(x)|x ∈ X and y1(x) > 0.5}. (3)
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Here,X is the set of all pixels in the input image.We set λ = 0.999
in all experiments. The weight ω0 for the background class is
computed in the same manner.

2.2.2. Consistency Loss Term
For training with pseudo-labels we introduce a consistency term
in the loss function, which is based on the “Mean Teacher”
training procedure for semi-supervised classification (Tarvainen
and Valpola, 2017). The loss term compares the output of
the network f with the output of the network g, defined as
the exponential moving average (EMA) of f . This method
promotes more consistent predictions across training iterations.
We make use of this method for training a segmentation
network (parameterized by θf ) from pseudo-labels. Its EMA, g
is parameterized by

θg ← αθg + (1− α)θf , (4)

where we set the smoothing coefficient α to 0.999 following
(Tarvainen and Valpola, 2017).

Given that we are comparing the per pixel predictions of the
current network and its EMA, we use the loss function that is
also employed for comparing to the pseudo labels: we either use
the Dice loss

LDice,c(pf , pg) =
2
∑N

i pf ,i pg,i
∑N

i p2
f ,i
+

∑N
i p2g,i

(5)

or the binary cross entropy loss

LBCE,c(pf , pg) =
1

N

N
∑

i

pg,ilog(pf ,i)+ (1−pg,i)(1− log(pf ,i)). (6)

Here x denotes the input image, pf = f (x), pg = g(x), and N is
the number of pixels. The combined loss function is

L
full
R = LR + LR,c, (7)

where R is either Dice or BCE. The term LR compares the output
from f with pseudo-labels defined in Equation 1 and LR,c is the
consistency term.

3. RESULTS

3.1. Data and Setup
We evaluate the proposed domain adaptation method on
challenging semantic segmentation problems, including
mitochondria segmentation in Electron Microscopy (EM),
membrane segmentation in electron, and light microscopy (LM)
as well as nucleus segmentation in LM. Table 1 summarizes all
datasets used for the experiments. Table A1 lists the data size as
well as the train, validation, and test splits for all datasets.

Some of the datasets we use represent image stacks and could
be processed as 3D volumes with different levels of anisotropy.
We choose to process them as independent 2D images instead
to enable a wider set of source/target domain pairs. If not noted
otherwise, training from pseudo-labels is performed using the
consistency loss term and label rectification (Equation 7). We
use a 2D U-Net architecture (Ronneberger et al., 2015) with
64 features in the initial layer, four downsampling/upsampling
levels and double the number of features per level for all
networks. The network and training code is based on the PyTorch
implementation from Wolny et al. (2020). For all training runs
we use the Adam optimizer with initial learning rate of 0.0002,
weight decay of 0.00001. Furthermore, we decrease the learning
rate by a factor of 0.2 if the validation metric is not improving
for a dataset dependent number of iterations. We use binary
cross entropy as a loss function for the mitochondria (Section
3.2) and nucleus (Section 3.4) segmentation and dice loss for the
membrane segmentation (Section 3.3).

3.2. Mitochondria Segmentation
We first perform mitochondria segmentation in EM. We train
the Prediction Enhancer on the EPFL dataset (the only FIB/SEM
dataset in the collection) and then perform source-free domain

TABLE 1 | The datasets used in the experiments.

Name EPFL VNC MitoEM-R MitoEM-H Kasthuri CREMI

(A) ELECTRON MICROSCOPY DATASETS USED IN THE EXPERIMENTS.

Organism/tissue Mouse/hippocampus Fruitfly/ventral nerve cord Rat/cortex Human/cortex Mouse/cortex Fruitfly/brain

Modality FIBSEM ssTEM sbEM sbEM ssTEM ssTEM

Tasks Mitochondria Mitochondria, membranes Mitochondria Mitochondria Mitochondria Membranes

Resolution 5 × 5 × 5 nm 45 × 5 × 5 nm 30 × 8 × 8 nm 30 × 8 × 8 nm 30 × 3 × 3 nm 40 × 4 × 4 nm

References Lucchi et al., 2013 Gerhard et al., 2013 Wei et al., 2020 Wei et al., 2020 Kasthuri et al., 2015 cremi.org

Name Root Ovules DSB-FL Monuseg

(B) LIGHT MICROSCOPY DATASETS USED IN THE EXPERIMENTS.

Organism/tissue Arabidopsis/lateral root Arabidopsis/ovules Various/nuclear stain Human/kidney

Modality Lightsheet Confocal Fluorescence Histopathology

Tasks Membranes Membranes Nuclei Nuclei

Resolution 0.25×0.1625×0.1625 µm 0.235×0.075×0.075 µm

References Wolny et al., 2020 Wolny et al., 2020 Caicedo et al., 2019 Kumar et al., 2019
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adaptation on the VNC, MitoEM-R, MitoEM-H, and Kasthuri
datasets. For domain adaption, the Random Forest for initial
target prediction is trained interactively in ilastik using a separate
train split. The RF predictions are then improved by the PE and

TABLE 2 | Results for mitochondria segmentation in EM.

Model/Dataset EPFL VNC MitoEM-R MitoEM-H Kasthuri

Source net 0.933 0.695 0.738 0.591 0.723

Y-Net – 0.713 0.781 0.678 0.0

RF 0.625 0.647 0.511 0.338 0.590

PE 0.824 0.840 0.705 0.624 0.778

Pseudo-label net – 0.884 0.793 0.751 0.834

Target net 0.933 0.891 0.939 0.920 0.942

Quality is measured by the F1-score of the mitochondria prediction (higher is better). EPFL

dataset is used as the source for domain adaptation by the Y-Net, Prediction Enhancer

(PE), and Pseudo-label net. Best result is shown in bold.

the improved predictions are used as pseudo-labels for a U-Net
trained from scratch (Pseudo-label Net). We compare to direct
predictions of a U-Net trained for Mitochondria segmentation
on the source domain EPFL (Source Net) and to the Y-Net (Roels
et al., 2019), a different method for domain adaptation, which is
unsupervised on the target domain, but not source-free. We also
indicate the performance of a U-Net trained on the target dataset
as an estimate of the upper bound of the achievable performance
(a separate train split is used).

Table 2 summarizes the resulting F1 scores (higher is better)
for the source dataset and all target datasets. The Enhancer
improves the Random Forest predictions significantly on all
target datasets and the CNN trained from pseudo-labels
further improves the results. The pseudo-label CNN always
performs better than the source network or the Y-Net, which
fails completely for the Kasthuri dataset where the domain
gap is particularly large. Figure 2 shows an example of the
improvements from RF to PE and PE to Pseudo-label Net.

For the mitochondria segmentation task we also check if
training the PE on multiple source datasets improves results.

FIGURE 2 | Mitochondria predictions of the Random Forest trained in ilastik, Prediction Enhancer, and Pseudo-label CNN (“Segmentor”) as well as the groundtruth

segmentation, on the MitoEM-H dataset. The Enhancer was pre-trained on the EPFL dataset; EPFL raw data shown under Source.
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Table 3 shows that this is indeed the case, especially for the
Kasthuri dataset.

3.3. Membrane Segmentation
We perform membrane segmentation both in EM and LM data.
Obtaining a (semantic) membrane segmentation is often the first
step in methods for instance segmentation of neurons or cells
as direct prediction of an instance segmentation with a CNN
is highly non-trivial due to the label invariance problem. As a
consequence we are interested in the quality of the final instance
segmentation, not the intermediate boundary segmentation, in
these experiments and set up a up a Multicut based post-
processing procedure similar to Beier et al. (2017) to obtain
instances from the boundary predictions. We then evaluate the
instance segmentation using the Variation of Information (Meilă,
2003). Direct evaluation of the boundary predictions via the
F1-score is often not indicative of the quality of the resulting
instance segmentation due to the large influence of relatively
small prediction errors, such as holes (Arganda-Carreras et al.,
2015). For the Variation of Information lower values correspond
to a better segmentation.

In EM we perform boundary segmentation of neural tissue
using the VNC dataset as source and three different datasets
from the CREMI challenge (cremi.org) as target. Table 4 shows
that the PE significantly improves the RF predictions for all
three target datasets. The network trained on pseudo-labels
can further improve results, especially for CREMI B and C,
which pose a more challenging segmentation problem due to
more irregular and elongated neurites compared to CREMI
A. Both PE and Pseudo-label Net perform significantly better

TABLE 3 | Mitochondria segmentation results for PE trained on multiple source

datasets.

Source EPFL VNC MitoEM-R MitoEM-H Kasthuri

EPFL 0.811 0.786 0.627 0.505 0.612

EPFL, VNC 0.806 0.818 0.642 0.515 0.672

EPFL, VNC

MitoEM-R, MitoEM-H
0.833 0.832 0.675 0.586 0.720

The left column indicates the source datasets, quality is measured with the F1 score.

TABLE 4 | Results for boundary segmentation in EM.

Model/Dataset CREMI A CREMI B CREMI C

Source net 1.031 2.089 1.925

RF 1.092 2.231 1.797

PE 0.856 2.107 1.756

Pseudo-label net 0.840 1.806 1.593

Target net 0.559 0.739 1.055

Quality is measured by the Variation of Information (lower is better) after instance

segmentation via Multicut post-processing. Source Net and PE are trained on the VNC

dataset and then applied to the three target datasets CREMI A, B, and C. RF is trained

interactively with ilastik on each target dataset. Best result is shown in bold.

than a segmentation network trained on the source dataset. The
segmentation results of a segmentation network trained on a
separate split of the target dataset are shown to indicate an upper
bound of the segmentation performance. Figure 3 shows the
improvement brought by the PE and the Pseudo-label Net on an
image from CREMI C.

In LM we perform boundary segmentation of cells in
a confocal microscopy image stack of Arabidopsis thaliana
ovule tissue. We use a light-sheet microscopy image stack of
Arabidopsis root tissue as source data. Note that we downsample
the Ovules dataset by a factor of 2 to match the resolution of the
Root dataset (see Table 1B). The results are shown in the “Root
(LM)” column in Table 5. The PE significantly improves the RF
results and pseudo-label training improves them even further. In
this case the quality of the pseudo-label net almost reaches the
target network. Note that the overall quality of results reported
here is inferior compared to the results reported in Wolny et al.
(2020). This can be explained by the fact that all models only
receive 2D input, whereas the state-of-the-art uses 3D models.

We also experiment with a much larger domain shift and
apply a PE that was trained on the EM dataset CREMI A as
source. The results are shown in the “CREMI (EM)” column in
Table 5. As expected, transfer of the source network fails, because
it was trained on a completely different domain. However, the PE
successfully improves RF predictions. The fact that the PE only
receives the RF predictions as input enables successful transfer
in this case; while the image data distribution is very different in
source and target domain, RF probability maps look sufficiently
similar. Furthermore, the resolution of the two domains differs
by almost three orders of magnitude. However, the size of
the structures in pixels is fairly similar, enabling successful
domain adaptation. Figure 4 shows RF, PE and Pseudo-label Net
predictions next to the source and target domain data. In this
case, training with pseudo-labels does not improve the result,
probably because the predictions get smoothed significantly
compared to the PE, as can be seen in the figure.

3.4. Nuclei Segmentation
As another example of cross-modality adaptation, we perform
nucleus segmentation between fluorescence microscopy images
from Caicedo et al. (2019) (DSB-FL) and histopathology images
of the human kidney from Kumar et al. (2019) (Monuseg).
Table 6 shows the results for using Monuseg as source and
DSB-FL as target (column “DSB-FL”) and vice versa (column
“Monuseg”). The Enhancer and pseudo-label training offer a
modest improvement for the transfer from Monuseg to DSB-
FL. For the transfer in the opposite direction the Enhancer yields
inferior results compared to ilastik predictions and consequently
also inferior results for pseudo-label training. This observation
can be explained by the fact that the images in the DSB-FL
dataset were acquired with different microscopy modalities and
resolutions, resulting in significantly different nuclei sizes across
the dataset. In contrast, the size of nuclei in the Monuseg dataset
is uniform and closest to the smallest nuclei in DSB-FL. We
identify this behavior as a limitation of our method and further
investigate the results in Table 9.
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FIGURE 3 | Boundary predictions of the Random Forest trained in ilastik, Prediction Enhancer, and Pseudo-label Net, as well as the groundtruth segmentation, on the

CREMI C dataset. The Enhancer was pre-trained on VNC, VNC raw data shown under Source.

TABLE 5 | LM-Boundaries and cross modality experiments: Variation of

Information after applying graph partitioning (Multicut) to the boundary predictions.

Model/Source Root (LM) CREMI (EM)

Source net 1.782 3.257

RF 1.891 1.891

PE 1.576 1.605

Pseudo-label net 1.563 1.834

Target net 1.561 1.561

Best result is shown in bold.

3.5. Ablation Studies
In the following, we perform ablation studies to determine the
impact of some of our design choices on the overall performance
of the method.

First, we investigate if the consistency loss (CL, Equation 6)
and label rectification (LR, Equation 1) improve the accuracy
obtained after pseudo-label training. We perform pseudo-label

training for mitochondria segmentation on the VNC and
MitoEM-R datasets using the PE trained on VNC to generate the
pseudo-labels.We perform the training without anymodification
of the loss, adding only CL, adding only LR and adding both
CL and LR. The results in Table 7 show that both CL and LR
improve performance on their own. Combining them leads to an
additional small improvement on VNC and to a slight decrease
in quality on MitoEM-R.

Using the same experiment setup, we also investigate whether
using the PE enhancer for generating the pseudo-labels is actually
beneficial compared to using the RF trained on target or using the
source network. Table 8 shows that using the PE for pseudo-label
generation significantly improves over the two other approaches.
We have also studied the influence of the size of the Random
Forests used for training the PE, but found that it did not have a
significant influence on PE performance. SeeTable A2 for details.

3.6. Limitations
The high number of layers, their interconnections and especially
skip-connections between them allow the U-net to implicitly
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FIGURE 4 | Boundary predictions of the Random Forest trained in ilastik, Prediction Enhancer, and Pseudo-label Net, as well as groundtruth segmentation, on the

Ovules dataset. The Enhancer was pre-trained on CREMI A, CREMI A raw data shown under Source.

TABLE 6 | Results of nucleus segmentation.

Source Method/Target DSB-FL Monuseg

Ilastik 0.856 0.601

DSB-FL Source net – 0.014

Enhancer – 0.620

Pseudo-label net – 0.654

Monuseg Source net 0.001 –

Enhancer 0.669 –

Pseudo-label net 0.730 –

Target net 0.936 0.721

DSB-FL columns shows results for domain adaptation from Monuseg (Histopathology) to

DSB-FL (Fluorescence), Monuseg column shows the opposite. The segmentation quality

is measured by the F1 score, best result shown in bold.

learn a strong shape prior for the objects of interest. This effect
is exacerbated in our Prediction Enhancer network as it by
design does not observe the raw pixel properties and has to

TABLE 7 | Results of pseudo-label network training using different loss functions.

Method/Dataset VNC MitoEM-R

PE 0.840 0.705

Pseudo-labels 0.869 0.768

Pseudo-labels + CL 0.877 0.788

Pseudo-labels + LR 0.869 0.798

Pseudo-labels + CL + LR 0.884 0.793

Mitochondria segmentation with EPFL as source dataset and VNC, MitoEM-R as target

datasets. Segmentation accuracy is measured by the F1 score, best result shown in bold.

exploit shape cues even more than a regular segmentation U-net.
While this effect is clearly advantageous for same-task transfer
learning, it can lead to catastrophic network hallucinations if very
differently shaped objects of interest need to be segmented in the
target domain. To illustrate this point, we show the transfer of
a PE learned for mitochondria on the EPFL dataset to predict
boundaries on the VNC dataset and vice versa in Figure 5. The
PE amplifies/hallucinates the structures it was trained on while
suppressing all other signal in the prediction.

Frontiers in Computer Science | www.frontiersin.org 8 March 2022 | Volume 4 | Article 805166131

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Matskevych et al. From Shallow to Deep

Besides the hallucinations observed in the case of very
different shapes of objects in source and target, the size
distribution of objects also matters. In Section 3.4, we have
investigated transfer between nuclei imaged in histopathology
and fluorescence microscopy and observed that the Enhancer
yields inferior results for the transfer from histopathology to

TABLE 8 | Results of pseudo-label network training using RF, Source Network,

and PE for label generation.

Pseudo-labels VNC MitoEM-R

RF 0.546 0.648

RF w/ CL + LR 0.584 0.656

Source Net 0.707 0.754

Source Net w/ CL + LR 0.794 0.765

PE 0.869 0.768

PE w/ CL + LR 0.884 0.793

Mitochondria segmentation with EPFL as source dataset and VNC, MitoEM-R as target

datasets. Segmentation quality is measured by the F1 score, best result shown in bold.

fluorescence. This can possibly be explained by the fact that the
fluorescence dataset contains images of different modalities and
resolution, in which the nuclei appear in different sizes. In some
of the images the nuclei are small and have a similar average
size as in the histopathology dataset, in another one they are
of medium size and in yet another of much larger size. We
have split the fluorescence dataset into these three modalities
(“Small,” “Medium,” “Large”) and list the corresponding results
inTable 9. The quality of the Enhancer and pseudo-label network
predictions drops dramatically for large nuclei sizes, bringing us
to hypothesize that such a significant difference in object size
constitutes a domain shift ourmethod cannot easily address, even
if the underlying problem is so simple it can almost be solved by
the Random Forest alone.

A further potential limitation for our method are systematic
differences between the error characteristics of the shallow
classifiers used for training on the source dataset and the Random
Forest used during inference on the target dataset. We set up
a synthetic experiment to investigate this case and train the
Enhancer using a mixture of the Random Forest predictions
and ground-truth labels as input. Table 10 shows the results

FIGURE 5 | Failure case: different segmentation tasks in source and target datasets. (A) Domain adaptation of a PE trained for mitochondria segmentation on the

EPFL dataset to boundary prediction task on the VNC dataset. (B) Domain adaptation of a PE trained for boundary prediction on the VNC dataset to mitochondria

segmentation task on the EPFL dataset.
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TABLE 9 | F1-scores for nucleus segmentation in fluorescence microscopy

images.

Method/Nucleus size All Small Medium Large

Ilastik 0.856 0.801 0.851 0.936

Enhancer 0.670 0.784 0.707 0.485

Pseudo-label net 0.730 0.805 0.776 0.592

We split the dataset into three subsets based on the mean nucleus size per image and

obtain 22 images with small nuclei, 12 with medium sized nuclei, and 16 with large nuclei.

“All” is referring to the average score for all images and is the same as reported in Table 6.

TABLE 10 | The quality of Enhancer predictions on the target data when trained

on a mixture of random-forest and ground-truth label on source.

Mixture/Dataset (Metric) MitosVNC (F1) MembranesCremiB (VoI)

RF0%GT100% 0.521 3.113

RF25%GT75% 0.635 2.828

RF50%GT50% 0.697 2.423

RF75%GT25% 0.670 2.032

RF100%GT0% 0.840 2.107

ilastik 0.647 2.23

For the mitochondria segmentation task we use EPFL as source and VNC as target, the

quality is measured by the F1-Score (higher is better). For the membrane segmentation

task we use VNC as source and CremiB as target, the quality is measured by the Variation

of Information after Multicut segmentation (lower is better). “ilastik” denotes the quality of

the Random Forest predictions used on the target, which were obtained by interactive

training in ilastik. Best result is shown in bold.

for mitochondria prediction using EPFL as source and VNC
as target (cf. Section 3.2) as well as for membrane predictions
using VNC as source and CremiB as target (cf. Section 3.3).
For both experiments we present the Enhancer network with a
weighted linear combination of the smoothed groundtruth and
the Random Forest predictions during training and tune the
weight coefficient between 0 and 100%. For reference we also
report the performance of the ilastik Random Forest that is being
“enhanced” on the target dataset. We observe that the prediction
quality of the Enhancer is significantly better when trained with
a large contribution the Random Forest predictions or from
pure Random Forest predictions. We conclude that systematic
differences in the errors on source and target, especially if the
error rate is significantly lower on source, negatively affect the
accuracy of our method.

4. DISCUSSION

We have introduced a simple, source-free, weakly supervised
approach to transfer learning in microscopy which can overcome
significant domain gaps and does not require adversarial
training. In our setup, the feature-based classifier which is
trained from sparse annotations on the target domain acts
as an implicit domain adapter for the Prediction Enhancer
network. The combination of the feature-based classifier and the
prediction enhancer substantially outperforms the segmentation

CNN trained on the source domain, with further improvement
brought by an additional training step where the Enhancer
predictions on the target dataset serve as pseudo-labels. Since the
Enhancer network never sees the raw data as input, our method
can perform transfer learning between domains of drastically
different appearance, e.g., between light and electron microscopy
images. By design, this kind of domain gap cannot be handled
by unsupervised domain adaptation methods which rely on
network feature or raw data alignment. Furthermore, even for
small domain gaps and in presence of label rectification strategies,
pseudo-labels produced by the Prediction Enhancer lead to much
better segmentation CNNs than pseudo-labels of the source
network. We expect these results to improve even further with
the more advanced label rectification approaches which are now
actively introduced in the field.

Themajor limitation of our approach is the dependency on the
quality of the feature-based classifier predictions. We expect that
in practice users will train it interactively on the target domain,
which already produces better results than “bulk” training: in our
mitochondria segmentation experiments, also shown in Table 2,
there was commonly a 1.5- to 2-fold improvement in F1-score
between interactive ilastik training in the target domain and
RF training in a script without seeing the data. In general, the
performance of the Prediction Enhancer will lag behind the
performance of a segmentation network trained directly on the
raw data with dense groundtruth labels except for very easy
problems that can be solved by the RF to 100% accuracy. In a
way, the Random Forest acts as a lossy compression algorithm
for the raw data, which reduces the discriminative power for
the Enhancer. However, the pseudo-label training step can again
compensate for the “compression” as it allows to train another
network on the raw data of the target domain, with pseudo-labels
for potentially very large amounts of unlabeled data.

We have also investigated further limitations of our method
and found that it is only applicable if the shape and size
distribution of objects in the source and target datasets are
sufficiently similar. If this is not the case, the accuracy of our
method will drop and, in case of dramatic differences between
objects of interest, such as membranes vs. mitochondria, it may
even hallucinate structures of similar shape as found in the source
data. Furthermore, our method relies on the fact that the data
distribution of the Random Forest predictions is closer than the
raw data distribution between source and target dataset. Given
that we always use the same convolutional filter banks for feature
computation, the Random Forests on source and target share
the same inductive bias and this assumption will most of the
time hold up when segmenting the same semantic class (with
similar shape and size distributions). However, in some cases
systematic differences between Random Forest predictions on
source and target may still exist, for example if the source data
has much higher signal-to-noise ratio and thus presents an easier
segmentation problem. In this case the segmentation accuracy of
our method will suffer despite close shape and size distribution.

For simplicity, and also to sample as many source/target pairs
with full groundtruth as possible, we have only demonstrated
results on 2D data, in a binary foreground/background
classification setting. Extension to 3D is straightforward and
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would not require any changes in our method other than
accounting for potentially different z resolution between source
and target datasets. Extension to multi-class segmentation would
only need a simple update to the pseudo-label training loss.

In future work, we envision integration of our approach with
other pseudo-label training strategies. Furthermore, as pseudo-
label training can largely be configured without target domain
knowledge, we expect our method to be a prime candidate for
user-facing tools which already include interactive feature-based
classifier training.
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APPENDIX

Data and Setup

TABLE A1 | The number of samples used for train, validation and test splits as well as the size of one of the sample in pixels.

Name EPFL VNC MitoEM-R MitoEM-H Kasthuri CREMI

(A) DATA SIZES AND SPLITS USED FOR THE ELECTRON MICROSCOPY DATASETS

Train samples 165 1 1 1 1 3

Size train samples 165 × 768 × 1,024 12 × 1,024 × 1,024 300 × 4,096 × 4,096 300 × 4,096 × 4,096 75 × 1,613 × 1,463 90 × 1,250 × 1,250

Val samples 1 1 1 1 1 3

Size val samples 40 × 768 × 1,024 4 × 1,024 × 1,024 100 × 4096 × 4,096 100 × 4,096 × 4,096 10 × 1,613 × 1,563 10 × 1,250 × 1,250

Test samples 1 1 1 1 1 3

Size test samples 125 × 768 × 1,024 4 × 1,024 × 1,024 100 × 4,096 × 4,096 100 × 4,096 × 4,096 75 × 1,553 × 1,334 25 × 1,250 × 1,250

Name Root Ovules DSB-FL Monuseg

(B) DATA SIZES AND SPLITS USED FOR THE LIGHT MICROSCOPY DATASETS

Train samples 30 42 435 4

Size train samples 355 × 505 × 1,320 340 × 1,035 × 992 325 × 360 1,000 × 1,000

Val samples 2 2 12 1

Size val samples 343 × 535 × 1,165 374 × 1,014 × 1,089 330 × 375 1,000 × 1,000

Test samples 4 6 50 1

Size test samples 373 × 493 × 1,378 373 × 1,200 × 1,094 345 × 390 1,000 × 1,000

Note that we give the averaged sizes in case the size of samples differs across the dataset.

Influence of Number of Random Forests
Here, we study the influence of the number of trees per Random
Forest on the Enhancer. We train the Enhancer from RF
predictions where each Forest contains 50, 100, 150 or a number
of trees drawn randomly from the range 50 to 150. Table A2
shows the results for the same data as used in Section 3.2 where
we have used 100 trees per RF. Note that the results do not
directly correspond to any of the results in Table 2where we have
used further refined target RFs. Here, we observe that the quality
of the enhancer is not systematically influenced by the number
of trees.

TABLE A2 | F1-scores of the prediction enhancer trained on RF predictions with

different numbers of trees for mitochondria segmentation.

EPFL VNC MitoEM-R MitoEM-H Kasthuri

50 trees 0.809 0.770 0.607 0.492 0.652

100 trees 0.811 0.786 0.627 0.505 0.612

150 trees 0.811 0.791 0.614 0.504 0.619

50–150 trees 0.814 0.802 0.634 0.525 0.595

EPFL is the source dataset.
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Techniques to acquire and analyze biological images are central to life science. However,

the workflow downstream of imaging can be complex and involve several tools, leading

to creation of very specialized scripts and pipelines that are difficult to reproduce by other

users. Although many commercial and open-source software are available, non-expert

users are often challenged by a knowledge gap in setting up analysis pipelines and

selecting correct tools for extracting data from images. Moreover, a significant share

of everyday image analysis requires simple tools, such as precise segmentation, cell

counting, and recording of fluorescent intensities. Hence, there is a need for user-friendly

platforms for everyday image analysis that do not require extensive prior knowledge

on bioimage analysis or coding. We set out to create a bioimage analysis software

that has a straightforward interface and covers common analysis tasks such as object

segmentation and analysis, in a practical, reproducible, and modular fashion. We

envision our software being useful for analysis of cultured cells, histological sections,

and high-content data.

Keywords: bioimage analysis, software, segmentation, concave point, intensity measurement, toolbox

INTRODUCTION AND RELATED WORK

Analysis of biological processes in quantitative manner through image acquisition has become a
widespread technique used across life sciences (Danuser, 2011). Several computational methods
have been created to analyze various aspects of biological imaging data, as demonstrated by
the numbers of different software available (Levet et al., 2021). Recently, biological questions
and bioimaging have become increasingly multifaceted, and can thus lead to generation of vast
quantities of data and to development of complex and often custom-made scripts and pipelines
(Meijering et al., 2016). There are various efforts and new processing tools created to tackle this
issue, including use of artificial intelligence (AI) and deep learning (DL) assisted methods (Litjens
et al., 2017; Gomez-de-Mariscal et al., 2021; Hallou et al., 2021; Szkalisity et al., 2021; von Chamier
et al., 2021). However, many of these tools require advanced computational expertise or knowledge
in bioimage analysis limiting their use. Nevertheless, bioimage analysis tasks routinely performed
in life science laboratories require basic tools, including accurate object segmentation, intensity
measurements and object classification. Users without in-depth expertise on bioimage analysis
or computer sciences are also often challenged by knowledge gap in creating complex analysis
pipelines or reproducing custom-made pipelines generated by other users (Carpenter et al., 2012).
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Different open-source software including ImageJ, CellProfiler,
Icy, QuPath, and Ilastik (Carpenter et al., 2006; de Chaumont
et al., 2012; Schindelin et al., 2012; Schneider et al., 2012;
Bankhead et al., 2017; Berg et al., 2019) already aim for
straightforward analysis of specific bioimage data. ImageJ and
CellProfiler are perhaps the most established and widely used
image analysis software (Levet et al., 2021). ImageJ, and
especially the Fiji distribution of ImageJ, contain various plug-
ins and scripts for image visualization, processing, and analysis.
Advanced users can readily customize their analysis tools via
scripting, and the analyses can be further automated by users
recording their ownmacros (Schneider et al., 2012), which enable
replicating the analysis features later. Fiji includes several plug-
ins, which are additions to the software and often created for
specialized analysis, such as for tracking of objects or image
processing (Schindelin et al., 2015). While the available number
of tools for ImageJ is large, the choice of appropriate tool
and parameters, and how they are combined in pre- and post-
processing, can be challenging. CellProfiler, in turn is more
modular in its functions, and thus users can easily create specific
analysis pipelines (Carpenter et al., 2006). However, we found
that whereas efficient and reproducible use of these and other
software is uncomplicated for the expert users, there is still a need
for user-friendly software with easy access to bioimage analysis
for novice users. Thus, we sought to develop a software with an
intuitive graphical user-interface, which is easy to operate, and
performs the most common bioimage analysis tasks accurately in
a reproducible andmodular fashion. Special attention was paid to
streamlining the combination of segmentation, cell counting, and
fluorescent intensities measurement, while providing support for
both small and large data sets. We wanted to provide users
with automated protocols including all analysis stages from
pre-processing to the numerical results, that could seamlessly
combine further analysis in a preferred spread sheet program,
and designed the software to contain a wizard feature, which aims
to suggest a suitable protocol for the analysis to help users select
the right tools.

METHODS

Overview
The software is based on Java and presents a graphical user
interface. Themain software window is divided into the left panel
listing all the imported images and their layers, a zoomable main
image panel, a separate zoom image panel for viewing image
details, and a right tabbed panel, containing method parameters
and execution, result panel, and a histogram panel (Figure 1).
Additional information on the usage of the available filters,
protocols, and user interface components and are displayed on
the status bar during mouse hover.

The main functionality is achieved through three main
components: filters, protocols, and counters. Filters are
implementations of general-purpose image processing tools,
such as thresholding, gamma and illumination correction,
blurring, edge detection, and morphological operations. Filters
accept and produce one input and output image. Filters can
be used by the user manually, and they are widely utilized

internally by the protocols. Protocols are combinations of
various subsequently executed filters, additional supplementary
code, and a final counter. They provide a full method for
processing a series of images for a specific task, such as tissue or
nucleus detection and extract numerical data. They accept and
can produce one or more input and output images. Counters
are special functions for outputting only numerical data from
the images into a results table, which can be further saved
as TSV or opened in Excel. Full list of available filters and
protocols with usage descriptions are available in the user guide
(See availability).

Functionality
Various protocols are available via the wizard feature, which aims
to suggest a suitable method by asking the user questions about
the images and the task the user wants to execute. The protocols
and their main settings have been organized into a decision tree,
utilized by the wizard (Figures 2A,B). Relevant questions from
the tree with example images and explanations are presented to
the user in a simple “yes or no”-format, and a suitable protocol
and settings are selected based on the combination of these
choices (Figures 2B,C). This eliminates the need to combine
filters or search for the suitable methods manually.

Parameters, such as nucleus size, background, radiuses and
thresholds required for the protocols are estimated automatically
on the go, and the protocol setup requires mainly user interaction
related to the input images, and subjective values and preferences
such as the desired sensitivity, or removal of dividing cells.
Protocols are suitable for both small and large-scale analyses
and feature memory mapping and multithreading for efficiently
handling a large number of images. There is also a separate
batch processing mode for processing several images without
importing them before processing.

Most of the common scientific image file formats are
supported by Tonga, as the software uses the Bio-Formats
importer by Open Microscopy Environment (OME) (Linkert
et al., 2010). No knowledge of image formats is required from
the user, and the software internally handles imported files
as either 32-bit ARGB-images (8 bits per channel), or as 16-
bit colored grayscale images, converting them as necessary
without user interaction. As the software is currently aimed for
2D images, three-dimensional Z-stack images are automatically
converted into average intensity Z-projections. Imported images
are displayed to the user as a list (Figure 1A; no 2–3), and each
image further consist of separate layers, including all fluorescence
channels, as well as processed versions of the image produced by
the user via filters or protocols. Images can be viewed separately,
or as a combined stack image. Any output from the filters or
protocols is appended to the list of layers for the image, allowing
user to compare the output to the original picture and return to
the previous steps.

Protocols
Presently Tonga offers basic protocols for nuclei detection,
overlapping and touching nuclei separation, and intensity
measurements from fluorescence images, and analysis of tasks
such as cell positivity, dye intensity, double-staining intensity,

Frontiers in Computer Science | www.frontiersin.org 2 March 2022 | Volume 4 | Article 777458138

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Ritchie et al. Bioimage Analysis Toolbox “Tonga”

FIGURE 1 | Overview of the Tonga user-interface. (A) Main user-interface of Tonga. 1: Main image panel, 2: List of imported images, 3: List of layers (channels and

processed versions of images) 4: Zoom panel, 5: Tab panel. Dropdown menus for lauching filters, protocols and counting functions. (B) Examples of the content of

the Protocols, Filters, and Results Tab panels.

and intensity around the nucleus. Description of the protocol
steps and basic principles is presented below. Technical details
are available together with the source code, and the usage of the
protocols is described in the user guide (See availability).

Nucleus Detection
Tonga proceeds in nucleus detection in three major steps by
combining area detection and concave point detection (Zafari
et al., 2017) with a concave point pairing algorithm and
secondary mask creation. First, a binarized mask is created from
the original image using a series of difference of Gaussians

(DoG) edge detection with various radiuses, attempting to
identify only the area where the target objects are, and remove
majority of the background. Second, the edges of these detected
areas are traced and any concave points forming sharp corners
are detected. The detected concave points are then connected
to each other with lines, utilizing information of the angle
and direction of the concave point, as well as the location,
proximity, parallelity, and sharpness of the other concave
points in attempt to determine where the cells most likely
overlap. The masks are cut along these connected lines to
separate overlapping objects into individual nuclei. Ultimately,
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FIGURE 2 | Overview of the wizard feature. (A) Wizard can be found and launched from the menu bar. (B) Example of one branch of the wizard decision tree, starting

point indicated by red arrow. (C) Examples of the wizard window helping to select suitable protocol to use. Selections for the analysis made by the user are listed in

the box on the right (highlighted with red box in the right image).

the obtained masks are compared back to the original image, in
attempt to detect any inconsistencies on the edges, improve mask
accuracy, smoothen the mask, and remove unwanted structures,
such as additional nuclear structures such as micronuclei
and holes caused by nucleoli (Kwon et al., 2020). Dividing
and dead cells are removed, per user choice, by detecting
nuclei with deviant texture and morphology compared to the
other nuclei.

Measurements
The final adjusted mask is used as the nucleus area and compared
to the original image for intensity measurements, reported as the
average intensity and as the total sum. Background is estimated
using an average measurement from one or more areas in
the image, which do not produce any signal during the object
detection, due to minimal intensity differences. Cell positivity is
based on a user-set protocol parameter on the level of intensity
required to consider a cell positive.

Modularity
As internally protocols function with an input-output principle
by calling existing filters, counters, or other protocols, together
with supplementary code, creation of new protocols for various

purposes requires only minor code modifications. Implementing
new filters also requires minimally only the code which returns
an output image array, as the filters share the common internal
basic structure, and are executed independently from each
other. Indeed, one of the future areas of development in the
software is to enable users to extend the software functionality
by creating new protocols and loading new filter or counter
classes dynamically.

Cell Culture and Immunofluorescence
Staining
To generate authentic cell culture data to test our segmentation
and intensity measurement data, MCF7, T47D and SKBR-3
breast cancer cell lines (Holliday and Speirs, 2011) (all from
ATCC) were cultured on glass coverslips for 24–48 h. Samples
were fixed with 4% PFA for 10min at room temperature.
After fixation, cells were washed with PBS and permeabilized
with 0.5% Triton-X (Sigma) in PBS for 10min. Next, samples
were washed twice with PBS and non-specific binding sites
were blocked with 10% FCS in PBS for 60min and incubated
120min at RT with primary antibody (ERα, Santa Cruz 1:100)
diluted in blocking solution. Following incubation, samples
were washed three times with PBS and then incubated for
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60min at RT with appropriate Alexa Fluor 594 secondary
antibody (Life Technologies). Finally, samples were washed
for 3 times with PBS followed by counterstaining of nuclei
with Hoechst33342 (Sigma). For detection of proliferating cells,
cells were treated with 10µM 5-ethynyl-2′-deoxyuridine (EdU)
for 2 h and thereafter fixed with 4 % PFA. Immunostaining
to detect EdU positive cells was performed using Click-IT
EdU Alexa Fluor 647 Imaging Kit (ThermoFisher) according
to manufacturer’s instructions. Before mounting, nuclei were
counterstained with Hoechst.

Imaging and Quantitation
Imaging of the stained coverslips was performed using Leica
DM5000b microscope with 20× objective and 2,048 × 2,048,
0.27 µm/pixel resolution. To test our segmentation method,
we prepared MCF7, T47D, and SKBR-3 breast cancer cells
stained with Hoechst for counting of nuclei. Two independent
human observers counted the nuclei in total of 12 independent
images using the Cell Counter function in Fiji. For MCF7 and
T47D cells, the nuclei were also classified as either interphase
nuclei, or as condensed and small nuclei indicative of mitotic or
apoptotic cells.

Comparison With Watershed and StarDist

Segmentation in ImageJ
For comparison with watershed segmentation, the images were
first pre-processed with illumination correction in Tonga, and
then segmented in ImageJ 1.53c by binarizing them with
global thresholding and then processing with the watershed
operation. For comparison with StarDist segmentation (Schmidt
et al., 2018), original RGB images were converted to 8-bit
images in ImageJ 1.53c and then processed with the StarDist
ImageJ/Fiji plugin (https://imagej.net/StarDist) using the built-in
versatile (fluorescent nuclei) model and default settings for post-
processing. Processed images were transferred back to Tonga,
and any objects touching the images edges or being smaller than
500 pixels (MCF7), 300 pixels (T47D), or 100 pixels (SKBR-3)
were removed. The number of segmented areas was counted
using the object counter tool in Tonga. Finally, the number of
dead and dividing cells estimated by Tonga was subtracted from
the total number of objects, to get the number of interphase
nuclei. Bland-Altman plots of the results was calculated and
drawn in Prism 9.

RESULTS

To demonstrate the usage and accuracy of the automated
protocols available in Tonga, we applied segmentation, nuclear
counting, stain positivity, and staining intensity protocols to
various data sets, and compared the results visually or either
to the ground truth numbers or other available methods
outside Tonga.

The nuclear segmentation protocol in Tonga was
demonstrated by analyzing a nuclear count of a set of MCF7,
T47D, and SKBR-3 breast cancer cells (Holliday and Speirs, 2011)
by Tonga and two independent human observers (Figure 3A).
The nuclear counts obtained with Tonga differed 0.1–8% from

the observer average, showing good consistency across the
image set (Supplementary Figures 1A,B). We additionally
demonstrated the segmentation protocol in Tonga using
fluorescence images from a publicly available, ground truth
annotated data set prepared for testing nuclear segmentation
methods (Kromp et al., 2020). The data set includes 2D
fluorescence images of cell lines and cultured primary cells with
varying level of overlapping cells. We segmented 29 images with
normal nuclei from the collection using Tonga and compared
the number of nuclei against the ground truth annotations of the
data sets (Figure 3B). For a fair comparison, we used the same
criteria for nuclei to be included as in the original work (Kromp
et al., 2020), and excluded any nuclei excluded in the ground
truth annotations, as well as nuclei which appeared dead or
dividing. We found that difference between the ground truth and
Tonga was between 0 and 6% across the data set, demonstrating
suitability of the nuclear segmentation and counting protocols
on various data sets and cell types.

To compare the Tonga segmentation protocol with other
existingmethods, we analyzed our own data set using widely used
watershed-based segmentation with binary thresholding, as well
as with state-of-the-art StarDist segmentation method (Schmidt
et al., 2018; Supplementary Figures 1A,B). For unbiased
comparison of only clustered cells, we removed cells with
condensed nuclei and micronuclei from the images. We detected
no systemic differences or bias in nuclear count with Tonga
compared to watershed method or to StarDist when comparing
the difference between the methods using a Bland-Altman plot
(Supplementary Figure 1C). We additionally segmented the
Kromp et al. (2020), data set with both Tonga and StarDist to
further compare these methods. This data set was also segmented
in a similar fashion by Tonga and StarDist, especially when
examining clustered nuclei (Supplemental Figures 1D,E). Thus,
we conclude that the Tonga segmentation protocol functions
comparably to both earlier and state-of-the art methods.

Detection of apoptotic and dividing cells largely depends
on size and morphology of the nuclei that can vary between
different cell types, yet condensed nuclei are indicative of both
processes. Condensed nuclei can be removed from or included
in the segmentation and counting as per user choice. We
demonstrated using theMCF7 cell line that condensed nuclei can
be accurately recognized in Tonga using an automated protocol
(Figure 3C). The final numeric output from the segmentation
and counting protocols is displayed to the user in the Results table
(Figure 3D).

Next, we demonstrated intensity measurements in nuclei
in conjunction to nuclear segmentation of nuclei. Measuring
of immunofluorescence staining intensity can be used for
instance to quantitate number of positive or negative cells
in a population, and thus we analyzed MCF7 cells treated
with EdU as indication of proliferation (Figure 4A). Images
were first segmented using the Hoechst nuclear stain channel,
whereafter an intensity threshold on channel with background
corrected EdU staining was set manually to determine, which
nuclei were positive. Cells exhibiting staining intensity below
the selected threshold were determined negative, and above
the threshold positive (Figure 4A, marked in gray and white,
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FIGURE 3 | Nuclear segmentation protocols. (A) Example images of MCF7 and T47D breast cancer cells with nuclear stain (Hoechst) and corresponding

segmentation masks by Tonga. Graph shows quantitation of round nuclei in 12 independent images. Counting was performed manually by two observers, and

compared to count by Tonga. (B) Example images of Kromp et al. (2020) data set and the final segmentation results created in Tonga. Graph shows nuclear count of

29 images by Tonga compared to the ground truth. (C) Example image of MCF7 with nuclear stain (Hoechst). Dividing and apoptotic cells indicated by orange

arrowheads in the original image are removed from the final results. (D) Numeric output from the nuclear segmentation protocol shown in the results tab.

respectively). When comparing the segmentation mask and
original image, it is clear the precision of the original
segmentation mask is critical for accurate determination of
positive and negative cells (Figure 4A). Furthermore, the masks

generated by the segmentation protocol appear in the list of
layers in the software, which makes it straightforward for the
users to examine the data and compare it to the original
images.
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FIGURE 4 | Intensity measurement protocols. (A) MCF7 cells stained with nuclear stain (Hoechst) and to detect EdU (white) incorporated cells. To quantitate EdU

positive cells, nuclei are segmented using the Hoechst channel and a threshold is set to determine positive staining. In final results image nuclei that are negative for

EdU staining are marked gray, and positive nuclei white. Comparison to original image shows overlay of segmentation mask marked with positive (red) and negative

(blue) nuclei (B) MCF7 cells immunostained with ERα antibody (red), segmented using nuclear stain channel (Hoechst) and measured for intensity of the staining.

Immunofluorescence intensity is indicated with the color slider (white–low intensity, red–high intensity). (C) Numeric output of the intensity measurement protocol

shown in the results tab.

Combination of segmentation and measuring of
immunofluorescence staining intensity can also be used to
quantitate the full dynamic range of a nuclear stain (Figure 4B).
To establish this with our method, MCF7 cells, known to exhibit
positive staining (Comsa et al., 2015), were immunostained with
antibody against estrogen receptor a (ERα). From the images,
nuclei were segmented using the Hoechst channel, and intensity
measured from the channel with ERα staining and taking into
consideration both the stain intensity and the area of the nucleus.

The final mask shows the segmented nuclei overlaid with color
ranging from white to red, indicative of the immunostaining
intensity (white—low, red—high; Figure 4B), and the final
numeric results are displayed in the results-table (Figure 4C).
Our results show that the color corresponds accurately with the
brightness of the staining in the original image. These examples
demonstrate the suitability of the automated protocols in Tonga
for recording immunostaining intensity within nuclei either for
quantitative or qualitative analysis.
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DISCUSSION

Being user-friendly, modular, and validated are among the key
components for a bioimage analysis program to be widely usable
for the bioscience community (Carpenter et al., 2012; Levet et al.,
2021). Here we describe a validated open-source image analysis
software Tonga, which we have developed with the purpose of
being practical for everyday image analysis tasks. We paid special
attention to the user interface being intuitive, thus making the
software straightforward to use and accessible also for users
without in-depth knowledge of image analysis. We additionally
aimed to develop the software modular and automatic, that
combining different analysis tasks would be uncomplicated and
analyses would require minimal set up. Therefore, we added the
Wizard feature, which helps users to choose the right protocol for
their analyses.

We acknowledge there are several excellent open-source
software available for variety of complex image analysis tasks
(Levet et al., 2021). When developing our software, we especially
concentrated on constructing a toolbox for everyday image
analysis needs of users that often include segmentation and
recording intensity measurements from immunofluorescence
images. We show that the protocols we have developed for these
analysis work equally well compared to for instance watershed
-based algorithms and to deep-learning based methods such as
StarDist (Schmidt et al., 2018), especially when nuclei are located
close to each other or in aggregates. Moreover, we show our
protocols can be effectively used to detect dead and dividing cells
and used together with measurement of immunofluorescence
staining intensity.

In the future we aim to expand the toolbox with other
protocols, including detection and segmentation of tissues
and measurement of fluorescence and histochemical stain
intensity from histological slides, as well as object detection
and segmentation from phase contrast images. The latter would
provide analysis tools for example for organoid cultures, and for
smaller particles such as organelles within the cell. Furthermore,
we are planning to enable a feature in Tonga, where users
can integrate their own filters and protocols as a part of the
software, to better customize pipelines for their specific needs.
As Tonga can analyze several images at a given time, we
envision it will be advantageous for large scale image analyses,
but also for quick analysis of smaller scale set-up experiments.
We believe that the existing features, as well as the future

modifications, enable users of different levels operate the system

effectively leading to improved access to image analyses and
data reproducibility.

DATA AVAILABILITY STATEMENT

A compiled software packages for both Windows and MacOS, as
well as the full Java source code of Tonga and all the protocols
described in this manuscript are available in GitHub (https://
github.com/avritchie/tonga). The user guide for the software
is also available in GitHub (https://github.com/avritchie/tonga/
wiki). Java version 9 or later is required to run Tonga.
The examples shown in this manuscript were made with the
development version of the software (0.1.2).

AUTHOR CONTRIBUTIONS

AR, PK, and JE conceptualized and designed the study. AR did
primary code development. AR, SL, and JE contributed to the
experiments in the manuscript. All authors contributed to the
text. All authors contributed to the article and approved the
submitted version.

FUNDING

We acknowledge the following sources: Academy of Finland
(266869, 304591, and 320185), the Swedish Research Council
2018-03078, Cancerfonden 190634, the Jane and Aatos Erkko
Foundation and the Cancer Foundation Finland (PK), and the
Finish Cultural Foundation (JE).

ACKNOWLEDGMENTS

The authors would like to thank all the members of the
Katajisto laboratory for discussions and feedback regarding the
manuscript. Imaging was performed at the Light Microscopy
Unit, Institute of Biotechnology, supported by HiLIFE and
Biocenter Finland.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcomp.
2022.777458/full#supplementary-material

REFERENCES

Bankhead, P., Loughrey, M. B., Fernandez, J. A., Dombrowski, Y., McArt, D. G.,

Dunne, P. D., et al. (2017). QuPath: Open source software for digital pathology

image analysis. Sci. Rep. 7, 16878. doi: 10.1038/s41598-017-17204-5

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C.,

et al. (2019). ilastik: interactive machine learning for (bio)image analysis. Nat.

Methods 16, 1226–1232. doi: 10.1038/s41592-019-0582-9

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H.,

Friman, O., et al. (2006). CellProfiler: image analysis software for

identifying and quantifying cell phenotypes. Genome Biol. 7, R100.

doi: 10.1186/gb-2006-7-10-r100

Carpenter, A. E., Kamentsky, L., and Eliceiri, K. W. (2012). A call for bioimaging

software usability. Nat. Methods 9, 666–670. doi: 10.1038/nmeth.2073

Comsa, S., Cimpean, A.M., and Raica,M. (2015). The story ofMCF-7 breast cancer

cell line: 40 years of experience in research. Anticancer Res. 35, 3147–3154.

Danuser, G. (2011). Computer vision in cell biology. Cell 147, 973–978.

doi: 10.1016/j.cell.2011.11.001

de Chaumont, F., Dallongeville, S., Chenouard, N., Herve, N., Pop, S.,

Provoost, T., et al. (2012). Icy: an open bioimage informatics platform for

extended reproducible research. Nat. Methods 9, 690–696. doi: 10.1038/nmet

h.2075

Gomez-de-Mariscal, E., Garcia-Lopez-de-Haro, C., Ouyang, W., Donati, L.,

Lundberg, E., Unser, M., et al. (2021). DeepImageJ: a user-friendly environment

Frontiers in Computer Science | www.frontiersin.org 8 March 2022 | Volume 4 | Article 777458144

https://github.com/avritchie/tonga
https://github.com/avritchie/tonga
https://github.com/avritchie/tonga/wiki
https://github.com/avritchie/tonga/wiki
https://www.frontiersin.org/articles/10.3389/fcomp.2022.777458/full#supplementary-material
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1186/gb-2006-7-10-r100
https://doi.org/10.1038/nmeth.2073
https://doi.org/10.1016/j.cell.2011.11.001
https://doi.org/10.1038/nmeth.2075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Ritchie et al. Bioimage Analysis Toolbox “Tonga”

to run deep learning models in ImageJ. Nat. Methods 18, 1192–1195.

doi: 10.1038/s41592-021-01262-9

Hallou, A., Yevick, H. G., Dumitrascu, B., and Uhlmann, V. (2021). Deep learning

for bioimage analysis in developmental biology. Development 148, dev199616.

doi: 10.1242/dev.199616

Holliday, D. L., and Speirs, V. (2011). Choosing the right cell line for breast cancer

research. Breast Cancer Res. 13, 215. doi: 10.1186/bcr2889

Kromp, F., Bozsaky, E., Rifatbegovic, F., Fischer, L., Ambros, M., Berneder, M.,

et al. (2020). An annotated fluorescence image dataset for training nuclear

segmentation methods. Sci. Data 7, 262. doi: 10.1038/s41597-020-00608-w

Kwon, M., Leibowitz, M. L., and Lee, J. H. (2020). Small but mighty: the causes

and consequences of micronucleus rupture. Exp. Mol. Med. 52, 1777–1786.

doi: 10.1038/s12276-020-00529-z

Levet, F., Carpenter, A. E., Eliceiri, K. W., Kreshuk, A., Bankhead, P., and Haase, R.

(2021). Developing open-source software for bioimage analysis: opportunities

and challenges. F1000Res 10, 302. doi: 10.12688/f1000research.52531.1

Linkert, M., Rueden, C. T., Allan, C., Burel, J. M., Moore, W., Patterson, A., et al.

(2010). Metadata matters: access to image data in the real world. J. Cell Biol.

189, 777–782. doi: 10.1083/jcb.201004104

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M.,

et al. (2017). A survey on deep learning in medical image analysis.Med. Image

Anal. 42, 60–88. doi: 10.1016/j.media.2017.07.005

Meijering, E., Carpenter, A. E., Peng, H., Hamprecht, F. A., and Olivo-Marin,

J. C. (2016). Imagining the future of bioimage analysis. Nat. Biotechnol. 34,

1250–1255. doi: 10.1038/nbt.3722

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,

et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat.

Methods 9, 676–682. doi: 10.1038/nmeth.2019

Schindelin, J., Rueden, C. T., Hiner, M. C., and Eliceiri, K. W. (2015). The ImageJ

ecosystem: An open platform for biomedical image analysis.Mol. Reprod. Dev.

82, 518–529. doi: 10.1002/mrd.22489

Schmidt, U., Weigert, M., Broaddus, C., and Myers, G. (2018). “Cell detection

with star-convex polygons,” in International Conference on Medical Image

Computing and Computer-Assisted Intervention (MICCAI). Granada, 265–273.

doi: 10.1007/978-3-030-00934-2_30

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH image to

ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/nmet

h.2089

Szkalisity, A., Piccinini, F., Beleon, A., Balassa, T., Varga, I. G., Migh, E., et al.

(2021). Regression plane concept for analysing continuous cellular processes

with machine learning. Nat. Commun. 12, 2532. doi: 10.1038/s41467-021-2

2866-x

von Chamier, L., Laine, R. F., Jukkala, J., Spahn, C., Krentzel, D., Nehme,

E., et al. (2021). Democratising deep learning for microscopy with

ZeroCostDL4Mic. Nat. Commun. 12, 2276. doi: 10.1038/s41467-021-2

2518-0

Zafari, S., Eerola, T., Sampo, J., Kälviäinen, H., and Haario, H. (2017).

“Comparison of concave point detection methods for overlapping convex

objects segmentation,” in Scandinavian Conference on Image Analysis

SCIA 2017: Image Analysis (Tromsø), 245–256. doi: 10.1007/978-3-319-59

129-2_21

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ritchie, Laitinen, Katajisto and Englund. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computer Science | www.frontiersin.org 9 March 2022 | Volume 4 | Article 777458145

https://doi.org/10.1038/s41592-021-01262-9
https://doi.org/10.1242/dev.199616
https://doi.org/10.1186/bcr2889
https://doi.org/10.1038/s41597-020-00608-w
https://doi.org/10.1038/s12276-020-00529-z
https://doi.org/10.12688/f1000research.52531.1
https://doi.org/10.1083/jcb.201004104
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1038/nbt.3722
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1002/mrd.22489
https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/s41467-021-22866-x
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1007/978-3-319-59129-2_21
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Methods and Tools for Bioimage Analysis
	Table of Contents
	Editorial: Methods and Tools for Bioimage Analysis
	Author Contributions
	Acknowledgments

	A Workflow for Rapid Unbiased Quantification of Fibrillar Feature Alignment in Biological Images
	1 Introduction
	2 Materials and Methods
	2.1 Biological Images
	2.2 Synthetic Data
	2.3 Pre-Processing
	2.4 Comparison With Other Available Alignment Tools
	2.5 Statistical Analysis
	2.6 Implementations

	3 Results
	3.1 Measuring Alignment
	3.1.1 Local Alignment
	3.1.2 Order Parameter Calculation

	3.2 Investigating the Optimal Alignment Length Scale Between Two Samples
	3.3 Evaluating the Length Scale Decay in Alignment
	3.4 Filtering Input for Alignment Analysis
	3.5 Extracting Kinetics of Organization From Live Imaging
	3.6 Comparing With Other Available Algorithms
	3.7 Implementing a Streamlined Software for Measuring Alignment
	3.7.1 Mandatory Parameters
	3.7.2 Optional Parameters


	4 Discussion
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Automated Deep Lineage Tree Analysis Using a Bayesian Single Cell Tracking Approach
	1 Introduction
	2 Methods and Materials
	2.1 Image Acquisition
	2.1.1 Automated Widefield Microscopy
	2.1.2 Cell Culture Conditions
	2.1.3 Time-Lapse Movie Acquisition

	2.2 Software Implementation
	2.2.1 Image Processing
	2.2.2 Data Visualisation Tools

	2.3 Cell Tracking Pipeline
	2.3.1 Cell Instance Segmentation
	2.3.2 Cell State Classification
	2.3.3 Tracklet Linking Using a Bayesian Belief Matrix
	2.3.4 Global Track Optimization


	3 Results
	3.1 Bayesian Cell Tracking Approach
	3.1.1 Cell Detection Performance
	3.1.2 Trajectory Following Accuracy
	3.1.3 Lineage Tree Reconstruction Fidelity
	3.1.4 Cell Division Correctness
	3.1.5 Manual Tree Re-Assembly

	3.1.6 Tracking Effectiveness
	3.2 Single Cell Cycling Duration Analysis
	3.2.1 Heterogeneity in Cell Cycling Durations
	3.2.2 Cell Cycle Duration Correlations in Deep Lineages


	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Diffusion State Transitions in Single-Particle Trajectories of MET Receptor Tyrosine Kinase Measured in Live Cells
	Introduction
	Methods
	Data Acquisition
	Single-Molecule Localization
	Single-Particle Tracking
	Diffusion State Analysis
	Transition Counting
	Statistical Analysis
	Simulations
	Availability

	Results
	Extraction of Different Diffusion States Within Single-Molecule Trajectories
	MET Receptor Activation With InlB Changes Diffusion State Transitions Between Segments

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Image Processing Filters for Grids of Cells Analogous to Filters Processing Grids of Pixels
	1 Introduction
	2 Methods
	3 Discussion
	4 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	SynActJ: Easy-to-Use Automated Analysis of Synaptic Activity
	Introduction
	Availability and Implementation
	Results
	Discussion
	Methods
	Preparation of Hippocampal Neuronal Cultures
	Live Imaging
	Manual Image Analysis
	Automatic Image Analysis
	Automatic Data Analysis
	Comparison of Manual and Automatic ROIs
	Statistics

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	ZELDA: A 3D Image Segmentation and Parent-Child Relation Plugin for Microscopy Image Analysis in napari
	Introduction
	Materials and Methods
	Image Acquisition
	Object Segmentation, Measurements, and Results Export
	Graphical User Interface Design, Plugin Development, Installation, and Execution
	JSON Database for Modularity of the GUI and Customization of Image Analysis Protocols

	Results
	ZELDA Protocols as an Easy Way to Run Image Analysis Workflows for 2D and 3D Segmentation
	Modularity of the ZELDA Graphical User Interface Allows to Easily Customize Bioimage Analysis Workflows Without Any Scripti ...
	ZELDA Segmentation and Parent-Child Relation Have the Same Accuracy of ImageJ and CellProfiler in 2D and 3D Data Sets, and  ...

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	An Open-Source Whole Slide Image Registration Workflow at Cellular Precision Using Fiji, QuPath and Elastix
	Introduction
	Results
	Discussion and Perspectives
	Conclusion
	Materials and Methods
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Automated Video Monitoring of Unmarked and Marked Honey Bees at the Hive Entrance
	1. Introduction
	2. Related Work
	2.1. Bee Counters and Forager Traffic Analysis
	2.2. Behavior Quantification From Video

	3. Materials and Methods
	3.1. Data Collection
	3.2. Pose Estimation
	3.2.1. Architecture of the Pose Detector
	3.2.2. Training
	3.2.3. Inference Stage

	3.3. Tracking
	3.4. Foraging Events Detection and Labeling
	3.4.1. Entrance/Exit Detection
	3.4.2. Pollen Classification at Frame and Track Levels

	3.5. Bee Identification Using Tags

	4. Results
	4.1. Performance of Detection and Pose Estimation
	4.1.1. Dataset for Pose Estimation of Honey Bees
	4.1.2. Evaluation Methodology
	4.1.3. Effect of the Number of Parts
	4.1.4. Effect of the Refinement Stages

	4.2. Performance of Foraging Events Detection
	4.2.1. Tracking
	4.2.2. Entrances and Exits
	4.2.3. Pollen Recognition
	4.2.3.1. Evaluation of Pollen Recognition at the Image Level
	4.2.3.2. Evaluation of Pollen Recognition at the Event Level


	4.3. Application to Long-Term Monitoring
	4.3.1. Computational Complexity Evaluation
	4.3.2. Multi-Day Dataset


	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

	LABKIT: Labeling and Segmentation Toolkit for Big Image Data
	1. Introduction
	2. Image Segmentation With LABKIT
	3. LABKIT Pixel Classifier
	4. Limitations of the Pixel Classification
	5. Software and Workflow Integration
	6. Performance of LABKIT
	7. Discussion and Conclusion
	8. Methods
	8.1. Timing Instance Segmentation Generation
	8.2. Speed Benchmark
	8.3. Cell Tracking Challenge

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	μMatch: 3D Shape Correspondence for Biological Image Data
	1. Introduction
	2. The Shape Correspondence Problem
	2.1. Literature Overview
	2.2. Notations and Problem Formulation

	3. μMatch Pipeline
	3.1. Pre-processing
	3.2. Correspondence
	3.2.1. Feature Descriptors
	3.2.2. Assignment Problem
	3.2.3. Filtering

	3.3. Shape Analysis
	3.3.1. Alignment and Statistical Shape Analysis
	3.3.2. Morphing


	4. Experiments
	4.1. Quantitative Validation
	4.2. Case Study: Joint Shape Analysis of Embryonic Limbs and Dusp6 Gene Expression Patterns

	5. Discussion and Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	From Shallow to Deep: Exploiting Feature-Based Classifiers for Domain Adaptation in Semantic Segmentation
	1. Introduction
	2. Methods
	2.1. Prediction Enhancer
	2.2. Further Domain Adaptation With Pseudo-Labels
	2.2.1. Label Rectification
	2.2.2. Consistency Loss Term


	3. Results
	3.1. Data and Setup
	3.2. Mitochondria Segmentation
	3.3. Membrane Segmentation
	3.4. Nuclei Segmentation
	3.5. Ablation Studies
	3.6. Limitations

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix
	Data and Setup
	Influence of Number of Random Forests


	``Tonga'': A Novel Toolbox for Straightforward Bioimage Analysis
	Introduction and Related Work
	Methods
	Overview
	Functionality
	Protocols
	Nucleus Detection
	Measurements

	Modularity
	Cell Culture and Immunofluorescence Staining
	Imaging and Quantitation
	Comparison With Watershed and StarDist Segmentation in ImageJ


	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover



