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Editorial on the Research Topic

The Neurovascular Unit as a Potential Biomarker and Therapeutic Target in

Cerebrovascular Disease

INTRODUCTION

The brain is one of the most metabolically demanding organs—it requires 20% of the body’s
energy supply yet forms only 2% of the body’s weight. Therefore, brain activity is supported by
a dynamically regulated supply of blood and, hence, energy substrates through the cerebrovascular
network. Furthermore, the post-mitotic nature of neurons and their longevity makes the brain very
sensitive to extracellular perturbations. Thus, the cerebrovasculature also has to be specialized to
minimize perturbations of the brain microenvironment, a property mediated by the blood-brain
barrier that is formed by the neurovascular unit (NVU).

The NVU is a multicellular structure formed by neurons, glia and vascular cells. The NVU is
fundamental to the distribution of cerebral blood flow, regulation of extracellular homeostasis and,
as recently shown, waste clearance from the brain. Therefore, the NVU represents a pivotal point
of vulnerability for the brain. In this Research Topic, 12 contributing articles address the potential
of the NVU and provide evidence demonstrating the importance of the NVU as a biomarker and
therapeutic target for cerebrovascular disease.

PHYSIOLOGICAL PARAMETERS OF THE NVU AS BIOMARKERS

AND TARGETS FOR THERAPEUTIC INTERVENTION

It is important to first understand the structure and function of the healthy NVU to
identify abnormal events and therapeutic targets. Shaw et al. provide a thorough and detailed
characterization of the cerebrovascular bed, highlighting differences in its structure and function as
it branches from penetrating arterioles to capillaries. Using immunohistochemistry and by assessing
vasomotion along the vascular tree in awake mice via two-photon microscopy, they provide novel
data characterizing points of contractility, angiogenic capacity, and vasodilatory potential across the
vascular tree and branch points (Shaw et al.). The differences in vasodilatory response across the
vascular tree are also highlighted in the study by Rosehart et al., in which they show that stimulation
of capillaries with prostaglandin E2 elicits vasodilation of upstream arterioles. This was blunted in a
model of small vessel disease, suggesting a reduction in capillary-to-arteriole signal propagation as
a potential mechanism for the pathologies associated with cerebral small vessel disease, while also
suggesting a new biomarker for NVU dysfunction (Rosehart et al.).
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Specific modifiable physiological parameters of the NVU
are also highlighted within this Research Topic. Inhibitors of
carbonic anhydrases, the pH regulating enzymes, can protect the
NVU in stroke and Alzheimer’s disease, as reviewed by Lemon
et al. Hayes et al. provide novel data on another parameter, the
neuroprotective hormone insulin-like growth factor-1 (IGF-1),
demonstrating a difference in vulnerability to glutamate-induced
toxicity across different cell types of the NVU when IGF-1
is inhibited.

Together, these data highlight multiple structural and
functional points within the NVU that may potentially serve as
targets for therapeutic intervention. The differential regulation at
the various vascular segments and the transitional zones between
them in the vascular tree is also noteworthy; each segment could
be differently affected during disease, or be targeted for therapy.

NVU RISK FACTORS AND BIOMARKERS

ACROSS THE LIFESPAN

The biomarker and target potential of the NVU across the
lifespan is another key focus of this topic. In an opinion piece,
Beishon and Panerai emphasize the importance of mid-life
therapeutic targeting and lifestyle alterations targeting known
risk factors for dementia. The comprehensive review by Ouellette
and Lacoste highlights the shared vascular abnormalities
associated with neurodevelopmental and neurodegenerative
disorders, despite their distinct clinical presentation at different
life stages.

Lecordier et al. provide a detailed review of early risk factor
events for NVU dysfunction leading to dementia, highlighting
triggering pathological events. They specifically underscore the
importance of air pollution as a risk factor for dementia, and
provide a detailed summary of its impact on NVU components
(Lecordier et al.). Exercise is suggested to reduce cerebrovascular
disease and alleviate the risk for developing dementia. Ohtomo
et al. report that, in a model of chronic hypoperfusion, exercise
was able to alleviate fewer behavioral deficits in middle aged mice
compared to their previous study on young mice, suggesting the
value of early lifestyle interventions. Altogether, these reports
showcase the potential of the NVU as a biomarker and the
importance of protecting NVU function across the lifespan.

CLINICAL BIOMARKERS OF DISEASE

OUTCOME AND PROGRESSION

The significance of using the NVU, or the pathologies associated
with it, as a biomarker and therapeutic target in the clinical
setting is also emphasized in this Research Topic. A systematic
meta-analysis by Wang et al. demonstrates the role of cerebral
small vessel disease in negative prognosis following intravenous
thrombolysis treatment for acute ischemic stroke, highlighting
the value of NVU pathology in predicting treatment outcomes.

In addition, Monteiro et al. report a reduction in
neurovascular coupling in patients with hypertension while
hypercapnic hyperemia is preserved, prior to detectable
cerebral small vessel disease. This impairment was further
exacerbated when hypertension was comorbid with diabetes,

suggesting that NVU dysfunction may contribute to the cerebral
effects of chronic hypertension and diabetes (Monteiro et
al.). Staszewski et al. provide further support for the NVU
as a biomarker for disease progression, demonstrating that
decreases in cerebrovascular reactivity are measurable over a 24
month follow-up period in patients with small vessel disease,
irrespective of initial radiological disease assessment.

Lastly, Ren et al. suggest that disruptions in the glymphatic
system, a hypothesized route of paravascular waste clearance,
may be the cause of, and serve as a biomarker for, peri-operative
neurocognitive disorder. Their review highlight anesthesia choice
and management as potentially modifiable risk factors for peri-
operative neurocognitive disorder (Ren et al.).

CONCLUSION AND FUTURE DIRECTIONS

This Research Topic provides both preclinical and clinical
evidence of the importance of the NVU as a contributor to
cerebrovascular disease and, thus, a therapeutically targetable
fulcrum, while underscoring its value as an accessible biomarker
for disease etiology and progression. The additional targeting
of co-morbidities and detrimental lifestyle risk factors that
lead to NVU dysfunction, which change over the lifespan,
are also essential for disease management. It is clear that
further characterization of the NVU, including its functions
in health and different pathological contexts, and how it
is modified by lifestyle choices and comorbid conditions,
are all important avenues for future work. Findings from
such studies may suggest potential therapeutic targets for
cerebrovascular diseases, and may even be applicable to related
dementia conditions.
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Perioperative neurocognitive disorder (PND) frequently occurs in the elderly as a severe

postoperative complication and is characterized by a decline in cognitive function

that impairs memory, attention, and other cognitive domains. Currently, the exact

pathogenic mechanism of PND is multifaceted and remains unclear. The glymphatic

system is a newly discovered glial-dependent perivascular network that subserves a

pseudo-lymphatic function in the brain. Recent studies have highlighted the significant

role of the glymphatic system in the removal of harmful metabolites in the brain.

Dysfunction of the glymphatic system can reduce metabolic waste removal, leading

to neuroinflammation and neurological disorders. We speculate that there is a causal

relationship between the glymphatic system and symptomatic progression in PND. This

paper reviews the current literature on the glymphatic system and some perioperative

factors to discuss the role of the glymphatic system in PND.

Keywords: glymphatic system, postoperative complications, postoperative neuropathy, postoperative cognitive

dysfunction, perioperative neurocognitive disorders

INTRODUCTION

Perioperative neurocognitive disorder (PND), which encompasses delirium and postoperative
cognitive dysfunction, commonly occurs in the elderly after anesthesia and surgery. Previously, all
forms of postoperative cognitive impairments were called “postoperative cognitive dysfunction,”
but more recently, the use of “perioperative neurocognitive disorder” is recommended as an
overarching term for cognitive impairment identified in the preoperative or postoperative period
(Evered et al., 2018a). This change aligns PND with the phenotypically similar neurocognitive
diagnoses listed in the Diagnostic and Statistical Manual of Mental Disorders, version 5, such as
Alzheimer’s disease (AD) (Evered et al., 2018a). Furthermore, PND has emerged as a significant
global public health issue that leads to more extended in-hospital stays, higher hospitalization costs,
and higher mortality rates (Yang and Terrando, 2019). The risk factors for PND are multifaceted,
which might be related to anesthetic management, tissue damage, surgery duration, psychological
stress, and genetic susceptibilities (Subramaniyan and Terrando, 2019; Eckenhoff et al., 2020). As
the elderly population continues to increase, the number of cases of PND will continue to rise. The
incrementally growing prevalence forces researchers to explore the mechanisms underlying the
pathogenesis of PND and to seek optimal prevention and treatment measures (Evered and Silbert,
2018; Berger et al., 2019).

Preclinical and clinical studies support the notion that neuroinflammation plays a significant
role in the pathogenesis of PND (Nathan, 2019; Yang et al., 2019, 2020). Trauma experienced
during surgery triggers the release of endogenous factors known as damage-associated molecular

7
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patterns that can activate immune cells such as neutrophils
and monocytes, promote pro-inflammatory cytokines, and
subsequently cause systemic inflammation (Huber-Lang et al.,
2018). Uncontrolled systemic inflammation is associated with
a compromised blood-brain barrier (BBB). BBB impairment
promotes immune cell movement and pro-inflammatory
cytokines from the blood into the brain parenchyma, triggering
neuroinflammation and ultimately leading to postoperative
cognitive impairment (Abrahamov et al., 2017; Yang et al.,
2017, 2020). Microglia, the resident immune cells of the central
nervous system (CNS), perform “immune surveillance,” and
survey their assigned brain regions (Kettenmann et al., 2011).
In addition, with prolonged systemic inflammation, microglia
start to develop an activated phenotype characterized by an
increase in pro-inflammatory mediators, such as interferon-γ,
interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and reactive
oxygen species (Liu L. R. t al., 2020). Pro-inflammatory factors
released by microglia such as IL-1α and TNF contribute to
the subsequent activation of astrocytes and further promote
neuroinflammation (Liddelow et al., 2017; Liu L. R. t al., 2020).
Complement system activation is another essential inflammatory
response that is activated by surgically triggered damaged-
associated molecular patterns. For example, the deposition of the
C-reactive protein, a biomarker for delirium, can activate and
regulate the classical complement pathway, thereby contributing
to dysregulated inflammation. Blocking the complement cascade
(e.g., complement C3 gene deficiency and selective complement
inhibitor for complement C3) improves neuroinflammation and
functional outcomes of PND (Alawieh et al., 2018) also suggests
the contribution of neuroinflammation in PND.

Several studies have shown that the pathological mechanism
of PND is similar to that of AD (Evered et al., 2016; Gerlach
and Chaney, 2018). It was also demonstrated that a significant
accumulation of amyloid-β (Aβ) and tau in the brain parenchyma
after anesthesia and surgery (Terrando et al., 2011). Moreover,
increased Aβ and tau in the cerebrospinal fluid (CSF) have been
reported in patients after surgery (Evered et al., 2018b), which
are risk factors for PND (Xie Z. et al., 2013; Evered et al.,
2016; Cunningham et al., 2019). The accumulation of Aβ and
tau induces neuroinflammation, leading to glial activation, pro-
inflammatory factor release, and neuronal damage (Calsolaro
and Edison, 2016).

The glymphatic system is a recently discovered waste removal
system that utilizes a unique perivascular channel system formed
by astrocytes (Iliff et al., 2012; Benveniste et al., 2017; Zhang
C. et al., 2018). Although the glymphatic system contributes
to the delivery of nutrients, specifically glucose, its most
influential and recognized function is to clear extracellular
metabolites and waste products from the parenchyma into
the CSF (Abbott et al., 2018; Nedergaard, 2013; Simon and
Iliff, 2016). Since its discovery, researchers have proposed that
waste or protein aggregates induced by glymphatic dysfunction
are associated with neurodegenerative diseases, including AD
(Tarasoff-Conway et al., 2015; Harrison et al., 2020; Nedergaard
and Goldman, 2020). Given the characteristics of the glymphatic
system and the complexity of possible changes during the
perioperative stage, we herein speculate a causal relationship

between the glymphatic system and symptomatic progression
in PND. Glymphatic dysfunction in the perioperative period,
which leads to waste accumulation, could trigger or exacerbate
neuroinflammation and eventually lead to cognitive dysfunction.
Through this review, we discuss the function and driving
mechanism of the glymphatic system, outline the current
evidence to illustrate the impact of anesthesia and surgery on the
glymphatic system, and emphasize the viewpoint that glymphatic
dysfunction is involved in the pathogenesis of PND.

GLYMPHATIC PATHWAY

The glymphatic system is a perivascular network that subserves
a pseudo-lymphatic function throughout the brain (Figure 1).
Iliff et al. named this brain-wide fluid transport pathway the
glial-associated lymphatic system or glymphatic system due to
its dependence on glial water flux and the lymphatic function of
the brain (Iliff et al., 2012). As the macroscopic waste clearance
system of the CNS, the glymphatic system’s fundamental role
is to eliminate soluble proteins and metabolites, including Aβ

and tau, based on the evidence that 40%−80% of neurotoxic
compounds can be cleared from the CNS via this system (Iliff
et al., 2012). The neurotoxic compound clearance process within
the glymphatic system is described as a 3-step serial process
(Benveniste et al., 2019b). First, CSF is continuously transported
from the subarachnoid space and Virchow-Robin space to the
peri-arterial spaces in a bulk-flow driven manner; subsequently,
CSF is propelled from the peri-arterial compartment into the
interstitial fluid (ISF) space. The convection and mixing of CSF
and ISF are facilitated by aquaporin 4 (AQP4) in the dense and
complex brain parenchyma. Ultimately, CSF-ISF fluidmixes with
interstitial waste solutes and is subsequently transported to the
perivenous space, from the meningeal lymphatic vessels to the
lymphatic vessels and circulatory system (Plog and Nedergaard,
2018).

AQP4 is required to maintain the glymphatic function and is
abundantly expressed in the end-feet of astrocytes that surround
arteries and veins. It is also anchored to the astrocyte membrane
by the carboxyl terminus of α-syntrophin. Syntrophin-dependent
AQP4 mediates the bidirectional transport of water across
the brain-blood interface (Amiry-Moghaddam et al., 2003). As
a bidirectional channel, the effects of AQP4 on glymphatic
function may be diverse and require further investigation.
Although the role of AQP4 in promoting ISF clearance is
debated, a large body of evidence suggests that it facilitates CSF
movement from perivascular spaces into the interstitial space and
activates flushing of ISF (Smith et al., 2017). Studies on different
strains of AQP4-knockout mice have suggested that AQP4 is
necessary for the rapid movement of CSF from the perivascular
space into the ISF and through the brain (Mestre et al., 2018a).
Moreover, AQP4 reduces the resistance to CSF movement from
the periarterial space into the interstitium and subsequently from
the interstitium into the perivenous space (Groothuis et al.,
2007). The flow of CSF via the glymphatic pathway is an essential
part of the CNS that eliminates metabolic waste products, such
as Aβ and lactic acid, from deep inside the brain and delivers
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FIGURE 1 | (A) The glymphatic system is a perivascular channel formed by astrocyte end-feet throughout the brain. CSF enters the brain parenchyma through the

periarterial space, exchanges with ISF, and finally exits through the perivenous space. Rapid exchange of CSF within ISF is facilitated by AQP4, which is anchored to

the astrocytic end-feet. Interstitial solutes, including protein waste, are drained from the brain with CSF through the perivenous space and via the meninges and

cervical lymphatics. (B) Dysfunction of the perioperative glymphatic system. Perioperative anesthetic drugs can cause hemodynamic changes that reduce arterial

pulsation mechanism change and decrease the inflow of the glymphatic system. Surgically induced systemic inflammation can cause blood-brain barrier opening and

glymphatic system damage, leading to neuroinflammation and decreased waste clearance. Both the entry of peripheral inflammatory substances and the

accumulation of protein wastes in the brain, such as Aβ accumulation and folding, can activate astrocytes and microglia and trigger neuroinflammation.

Neuroinflammation can worsen the damage to the function and structure of the glymphatic system. Forceful expiration, positive pressure ventilation, and prone

position can cause a decrease in venous return, leading to a decrease in CSF clearance. Pain, preoperative stress, and sleep disturbances can affect both CSF inflow

and clearance. Glymphatic dysfunction can lead to a more significant accumulation of protein and waste products, which can trigger neuroinflammation and lead to

PND. PVC, Perivascular space.

nutrients, such as glucose, or therapeutic drugs to the brain
parenchyma. This CSF circulation differs from typical lymphatic
vessels and acts as a pseudo-lymphatic drainage within the CNS.
Therefore, more recently, alternative CSF circulation in the brain
has been proposed as a glymphatic circulation (Benveniste et al.,
2019b).

THE DRIVING MECHANISM OF

GLYMPHATIC SYSTEM

Arterial Vascular Pulsation
Unlike other peripheral organs, limited tissue compliance of
the rigid skull facilitates the propagation of arterial pressure
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FIGURE 2 | In this model, the glymphatic system resides at the intersection of a broad scope of perioperative risk factors, which share an association with diminished

brain waste clearance. Individual factors are preexisting impairments in glymphatic function prior to surgery; anesthetic and surgical factors are associated with a

dramatic decline in perioperative glymphatic function, compromising the glymphatic system and exacerbating the progression of preexisting disease. Glymphatic

system dysfunction, in turn, contributes to protein aggregation and misfolding, leading to neuroinflammation, neurodegeneration, and ultimately PND.

pulsations throughout the brain, resulting inmeasurable pulsatile
blood flow and venous outflow in the microvasculature (Shi
et al., 2020). This cardiac pulsation along the entire vascular
bed is believed to be the most critical physical mechanism
for glymphatic propulsion, facilitating CSF movement in the
glymphatic system (Kyrtsos and Baras, 2015; Kiviniemi et al.,
2016; Hablitz et al., 2020). Cardiovascular pulsation is also the
fastest driving mechanism of the glymphatic system, originating
in the basal peri-arterial spaces around the Willis’s circle and
extending centrifugally toward the cerebral cortex (Kiviniemi
et al., 2016). The dynamic source is mainly due to the oscillation
of the arterial wall caused by the heartbeat, which produces a
net flow consistent with the blood flow direction and the same
frequency as the cardiac cycle (Iliff et al., 2013; Kiviniemi et al.,
2016). Each cardiac cycle involves a fast expansion of the artery
wall, followed by a slow contraction. The bulk flow rate of
CSF, calculated by CSF viscosity and the shape, cross-sectional
area, and length of the vessels, is proportional to the hydraulic
pressure drop along the vessels and inversely proportional to the
hydraulic resistance (Thomas, 2019). The combined effects of
diffusion and advection also play a role in clearing solutes from
the brain (Thomas, 2019). The arterial wall pressure generates
the hydraulic pressure of the CSF, which allows CSF to be
delivered to the brain via the glymphatic system, a process
in which the contractility of the vessel wall or the slow wave
of vasomotor tension also plays an important role (Kiviniemi
et al., 2016). Any reduction in vessel wall contractibility or

slow contraction in vasomotor tone increases backflow and
decreases net flow in the glymphatic system (Mestre et al.,
2018b). CSF flow may be mechanically regulated by pressure
differences, which may be a neurophysiological regulatory
mechanism. For example, astrocyte calcium activity has been
shown to propagate along blood vessels as waveforms and
regulate water permeability and ion exchange in the perivascular
space (Rangroo Thrane et al., 2013). Additionally, intracranial
pressure and heart rate are related to cardiac pulsation and
affect glymphatic function. Increased intracranial pressure (ICP)
decreases the mean arterial pressure and impairs the function
of the glymphatic system (Chen et al., 2018), while glymphatic
influx correlates negatively with heart rate (Hablitz et al.,
2019).

Research has shown that the glymphatic cross-section is a
non-concentric elliptical space outside the vessel, which provides
the least hydraulic resistance (Tithof et al., 2019). This cross-
section model is quite different from the usual circular annulus
models, which assume that the small arteries are located in
the center of the space (Mestre et al., 2018b; Thomas, 2019).
Moreover, Mestre et al. have shown that the glymphatic system
infrastructure around pial arteries is 10 times larger in vivo than
previous estimates after fixation based on electron microscope
images (Tithof et al., 2019). As such, the glymphatic system offers
much less viscous resistance to CSF flow than previously thought.
These results also demonstrate the importance of further in vivo
studies on the glymphatic system.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 June 2021 | Volume 13 | Article 65945710

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ren et al. Glymphatic Function and Perioperative Neurocognition

Respiratory Forces
Advances in imaging and computational techniques have
demonstrated that the respiratory mechanism is another
important process that dominates the perivenous space
(Kiviniemi et al., 2016). Although the respiratory force is not
the primary driver of CSF flow, it is a modulating factor that
supplements cardiac pulsation (Dreha-Kulaczewski et al., 2015).
Respiratory dynamics are related to extreme low-frequency
vasomotor oscillations during perivenous fluid movements
(Kiviniemi et al., 2016). A study using magnetic resonance spin
labeling in humans showed that CSF movement was enhanced
during deep inhalation and was inhibited during deep exhalation
(Yamada et al., 2013). A possible explanation is that forced
inspiration causes blood to be drawn from the brain through
the veins into the thorax, resulting in a decrease in intracerebral
venous pressure, an expansion of the perivenous space, and an
increase in CSF outflow from the perivenous space into the brain.
Moreover, small but rapid CSF movement was observed during
breath-holding, which is thought to reflect cardiac pulsations
(Yamada et al., 2013). Alternatively, exhalation reduces venous
outflow from the brain in a low-pressure venous drainage system
(Kiviniemi et al., 2016). Additionally, respiration produces
lower-frequency ICP oscillations and hydraulic pressure changes
(Dreha-Kulaczewski et al., 2015).

Circadian Regulation
Sleep is essential for the maintenance of healthy brain functions.
Hence, early research suggests that glymphatic clearance is
mainly associated with the sleep-wake cycle (Xie L. et al., 2013).
Studies in rodents have shown that CSF absorption in the
perivascular space and ISF flushing increase during sleep (Xie
L. et al., 2013). Glymphatic activity is regulated by circadian
regulation, with a daily rhythm that peaks at midday when
mice are mostly likely to sleep (Hablitz et al., 2020). Similarly,
glymphatic activity was more significant at night than during
the day in patients administered with gadolinium as a CSF
tracer to evaluate glymphatic function (Eide and Ringstad, 2019).
The mechanism by which the circadian rhythm of the brain
regulates glymphatic activity remains unclear. Circadian neural
activities can be detected with an electroencephalogram (EEG)
device (Dijk, 1999). Overnight EEG has shown that delta (1–
4Hz) power and sigma (12–15Hz) power are high during non-
rapid eye movement (NREM) sleep and low during rapid eye
movement (REM) sleep. In contrast, beta (23–30Hz) power
is higher in REM sleep than in NREM sleep, except for an
artifactual peak during cycle 2. EEG activity that resembles
sleep or wakefulness tightly correlates to the glymphatic influx
(Hablitz et al., 2019). The brain’s waste clearance mainly occurs
during the NREM stage, while the CSF influx was strongly
suppressed during wakefulness (Hablitz et al., 2019, 2020). Sigma
power during NREM fluctuates reciprocally with delta, becoming
high when delta is low and low when delta is high (Campbell,
2009). It has been demonstrated that either high delta rhythm
or slow oscillation (<1Hz), which is a characteristic of NREM
sleep, is positively correlated with the glymphatic function,
while beta power that resembles wakefulness is negatively
correlated with the glymphatic function (Hablitz et al., 2019). The

underlying relationships between EEG power and glymphatic
activity remains unclear. A recent study has revealed a coherent
pattern of oscillating electrophysiological, hemodynamic, and
CSF dynamics during NREM sleep (Fultz et al., 2019). These
results suggest that neural activity may affect the function
of the glymphatic system through hemodynamic circadian
rhythms (Figure 2). Lactate concentration in the brain also
closely corresponds to EEG activity and is considered the best
metabolic biomarker of the sleep-wake cycle (Lundgaard et al.,
2017). Lactate concentration decreases during the transition
from wakefulness to sleep, leading to an expansion of the
extracellular space and a decrease in intra-tissue resistance
results, contributing to faster CSF influx into the interstitium and
finally solute efflux.

GLYMPHATIC FUNCTION AFFECTED BY

ANESTHETICS

Currently, most animal experiments on glymphatic function
are performed by applying anesthetic drugs to simulate the
sleep state. The effect of anesthetics cannot be ignored when
studying the effect of sleep on glymphatic function. Currently,
limited research has been conducted to investigate the effects of
anesthetics or sedatives on the rodent glymphatic system. A study
demonstrated that inhaled isoflurane (2–2.5%) inhibited CSF
circulation and waste clearance in the brain (Gakuba et al., 2018).
This result indicates that inhaled isoflurane inhibited glymphatic
function, especially at a high dose (3%) (Gakuba et al., 2018).
This research also showed that ketamine, a common intravenous
anesthetic, also inhibited glymphatic activity at an intraperitoneal
dose of 150 mg·kg−1 in mouse models (Gakuba et al., 2018).
The inhibitory effect of ketamine on glymphatic function could
be reversed using a combination of ketamine and 10 mg·kg−1

of xylazine (Gakuba et al., 2018). However, Xie et al. previously
found that ketamine (100 mg·kg−1) combined with xylazine (20
mg·kg−1) significantly increased the influx of the CSF tracer in
all mice analyzed (Xie L. et al., 2013). The opposite effects of
the two different anesthetic regimens require further study. One
possible explanation is whether ketamine inhibits or increases
lymphatic inflow, depending on the dose of ketamine and its
combination with xylazine, an α2-adrenergic agonist and an
analog of clonidine used as a sedative and analgesic in animals.
Xylazine increases glymphatic CSF influx and may remedy the
impairment of ketamine use in the glymphatic system (Gakuba
et al., 2018).

Dexmedetomidine (DEXM) is another α2-adrenergic agonist
widely used for anesthesia or sedation in clinics and has also
been shown to enhance glymphatic function in animal research
(Lilius et al., 2019a). Recently, Ozturk et al. reported that DEXM
supplemented with low-dose isoflurane increased glymphatic
transport compared to that of isoflurane only (Ozturk et al.,
2021). DEXM has also been shown to increase the delivery
of intrathecally administered drugs, such as oxycodone and
naloxone, by increasing glymphatic flow (Lilius et al., 2019b).

Propofol is a widely used intravenous anesthetic in humans
with anti-inflammatory (Ren et al., 2014) and neuroprotective
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properties (Miller et al., 2018). Recent studies have found that
propofol can increase glymphatic activity (Gakuba et al., 2018).
Pentobarbital has also been shown to significantly increase
glymphatic function in animal models (Hablitz et al., 2019),
although benzodiazepines have mainly been replaced by human
anesthesia. Other anesthetics used in animal anesthesia such
as α-chloralose and avertin inhibit CSF tracer influx in the
glymphatic pathway (Hablitz et al., 2019). Therefore, glymphatic
function is affected by the dose, type, and combination of
anesthetics. Although the exact mechanisms underlying these
preclinical experiments remain unclear, they may provide
valuable information for studying the functional effects of the
glymphatic system during clinical anesthesia (Table 1).

Interestingly, these animal studies on glymphatic dysfunction
agree with those of clinical studies on PND. Anesthetics
are a risk factor for postoperative cognitive decline or
neuropathological changes (Schenning et al., 2016). It has
been confirmed that inhaled anesthetics, such as isoflurane
or sevoflurane, have more chance of causing postoperative
cognitive dysfunction (Ologunde and Ma, 2011; Hu et al.,
2014), whereas some intravenous anesthetics, such as DEXM
and propofol, cause slight harm or even improve perioperative
cognitive function (Miller et al., 2018). Anesthetics that have
a significant inhibitory effect on the glymphatic system are
more likely to cause perioperative cognitive impairment, whereas
some anesthetics that enhance glymphatic function are less
likely to cause cognitive impairment. The effects of ketamine
on the glymphatic system and postoperative cognition have
been controversial (Morrison et al., 2018). DEXM enhances
glymphatic function and has also been shown to prevent
postoperative delirium and cognitive dysfunction caused by
inhaled anesthetics in elderly patients (Zhang et al., 2018).
Therefore, anesthetics may affect postoperative brain function
by affecting the glymphatic function. Currently, the mechanisms
underlying the effects of anesthetics on glymphatic function
remain unclear. Further clinical research is necessary to
determine the optimal variety, dose, and combination of
anesthetics and drugs to reduce glymphatic function impairment
during anesthesia.

THE UNDERLYING MECHANISM OF

ALTERED GLYMPHATIC FUNCTION

DURING INTRAOPERATIVE ANESTHESIA

MANAGEMENT

The mechanisms that regulate glymphatic function under
normal physiological conditions include arterial pulsatility,
respiration, and neural activity. However, these mechanisms
may be disrupted during anesthesia, including general
anesthesia and spinal anesthesia (Scott, 2018). During
clinical anesthesia, the heart rate, blood pressure, and
arterial pulsation are significantly changed, and spontaneous
negative pressure respiration is replaced with positive
pressure ventilation. The arousal mechanism is also
significantly suppressed during general anesthesia (Schiff,
2020). Anesthesia-induced pathological processes, such as

the breakdown of glymphatic CSF-ISF exchange, have been
linked to disease initiation and progression. As a result,
the impact of anesthesia on glymphatic function needs to
be considered.

Cardiac Pulsation Mechanism Change
The sympathetic, stellate ganglion, and subcutaneous
sympathetic nerves are all suppressed by most anesthesia
types, including general, neuraxial, epidural, and lumbar
anesthesia. Anesthesia suppresses blood pressure and heart
rate by causing dose-dependent vasodilation or vasoplegia.
Hypotension occurs due to anesthesia-induced reduction in
heart rate, vasodilation, reduced afterload, and circulating
volume. Furthermore, a lower heart rate has a strong positive
association with glymphatic influx (Hablitz et al., 2019).
Currently, there is no research on the relationship between
hypotension and glymphatic activity. Mestre et al. found that
the jerky and irregular reversal of microparticle flow caused
by increased arteriole stiffness and pulsation amplitude in
distal vessels during hypertension reduced perivascular pump
dynamics and decreased net CSF flow and waste clearance in
the perivascular space (Mestre et al., 2018b). Additionally, CSF
production is related to sympathetic or adrenergic receptor
activity. Increased sympathetic tone inhibits carbonic anhydrase
associated with the choroidal epithelium and likely reduces CSF
production and glymphatic circulation (Damkier et al., 2013;
Benveniste et al., 2017). Recently, Liu et al. also reported that
CSF production was increased by a combination of α1-, α2-, and
non-selective β-adrenergic receptor antagonists, as well as some
anesthetics, including isoflurane, ketamine, and xylazine (Liu G.
et al., 2020).

Perioperative hemodynamic optimization is crucial for
improving outcomes after surgery and anesthesia. Anesthesia
management often includes the administration of catecholamine
vasoactive drugs such as norepinephrine, dopamine, and
phenylephrine to maintain stable hemodynamics throughout
surgery (Foss and Kehlet, 2019). Norepinephrine, a central
regulator, also inhibits glymphatic transport (Jessen et al., 2015).
However, Iliff et al. demonstrated that dobutamine increased the
pulsatility of the penetrating artery by 60% and enhanced the
glymphatic influx (Iliff et al., 2013). Furthermore, catecholamines
can modulate astrocyte function and signaling to regulate the
glymphatic system (Fuxe et al., 2015). The astrocytic dopamine
and adrenergic receptor subtypes are significant drug targets
in neurological and psychiatric diseases (Fuxe et al., 2015).
Norepinephrine and dobutamine also work together to affect
glymphatic function by acting on fluid availability and convective
fluxes through various mechanisms. Therefore, catecholamines
may be the primary regulators of solute clearance from the brain.

Theoretically, any changes in cardiovascular parameters
induced by anesthesia can impair the cardiac pulsation
mechanism, resulting in waste accumulation. Hence,
understanding the processes contributing to pulsatility and
how these components drive waste clearance by the glymphatic
system continues to evolve. Further research is needed to
determine the most appropriate management of glymphatic
function during clinical anesthesia.
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TABLE 1 | The effect of verified factors on glymphatic system.

Classification Perioperative factors Glymphatic function Classification Perioperative factors Glymphatic function

Anesthetic factors Neurotoxicity Impair (Rangroo Thrane

et al., 2013)

Cardiovascular factors Acute hypertension Impair (Mestre et al., 2018b)

Chronic hypertension Impair (Mortensen et al.,

2019; Koundal et al., 2020)

Isoflurane (2–2.5%) Inhibit (2–2.5%) (Gakuba

et al., 2018)

Heart rate Negative correlation (Hablitz

et al., 2019)

Sevoflurane Enhance (2.5%) (Gao et al.,

2019)

Dobutamine Enhance (Iliff et al., 2013;

Yamada et al., 2013)

Dexmedetomidine Enhance (20mg.kg−1; ip)

(Hablitz et al., 2019; Lilius

et al., 2019a)

Norepinephrine Inhibit (Jessen et al., 2015)

Xylazine Enhance (Hablitz et al.,

2019)

Surgical factors Neuroinflammation Impair (Yu et al., 2019)

Ketamine Inhibit (150mg.kg−1 )

(with xylazine, 10mg.kg−1 )

(Gakuba et al., 2018)

Position lateral > supine > prone

(Lee et al., 2015)

Enhance (100mg.kg−1 )

(with xylazine 20mg.kg−1 )

(Hablitz et al., 2019)

Sleep disturb Impair (Nedergaard and

Goldman, 2020).

Propofol Enhance (Gakuba et al.,

2018)

BBB damage Impair (Meng et al., 2019;

Yu et al., 2019)

Pentobarbital Enhance (60mg.kg−1; ip)

(Hablitz et al., 2019)

Postoperative Pain Impair (Chouchou et al.,

2014)

α-chloralose Inhibit (80mg.kg−1; ip)

(xylazine Hablitz et al., 2019)

Perioperative Stress Impair (Wei et al., 2019)

Avertin Inhibit (120mg.kg−1; ip)

(Hablitz et al., 2019)

Individual factors Preclinical stage of AD Impair (Masters et al., 2015)

Arouse stage Wake Inhibit (Xie L. et al., 2013;

Eide and Ringstad, 2019)

Neurovascular diseases Impair (Riba-Llena et al.,

2018)

Sleep Enhance (Xie L. et al., 2013;

Alawieh et al., 2018)

Aging Impair (Iliff et al., 2013)

EEG Beta power inhibit (Hablitz

et al., 2019)

Apo E gene Impair (Mentis et al., 2020)

Delta power enhance

(Hablitz et al., 2019)

AQP4 gene Impair (Hubbard et al.,

2018).

Respiration Free breathing N/A Chronic hypertension Impair (Mestre et al., 2018b;

Riba-Llena et al., 2018)

Deep inhalation Enhanced

(Dreha-Kulaczewski et al.,

2015)

Diabetes Impair (Zhang et al., 2014;

Jiang et al., 2017)

Mechanical ventilation N/A Other factors Intracranial pressure Increase will impair

(Dreha-Kulaczewski et al.,

2015)

Respiration Changes
During experimental testing in mouse or rat models described
above, spontaneous respiration was inhibited but still preserved
in research involving the glymphatic system. Spontaneous
respiration in anesthetized animals is very different from that
in controlled or assisted respiration under clinical anesthesia.
During clinical anesthesia, positive-pressure mechanical
ventilation is often used to replace spontaneous respiration.
Mechanical ventilation differs from spontaneous breathing
in terms of physiology, and its effect on glymphatic system
transport in the brain is currently unknown. Ventilators are

inspiratory assist devices that deliver tidal breath under positive
pressure. Positive pressure ventilation, including positive end-
expiratory pressure, may increase intrathoracic pressure and
reduce venous return, subsequently causing increased ICP (Chen
et al., 2018). Positive pressure ventilation also reduces cerebral
perfusion pressure due to increased ICP and decreased mean
arterial pressure (Chen et al., 2018). It has been hypothesized
that ventilation impairs respiration, causing waste accumulation
in the brain.

Although the administration of local anesthetics through the
spinal or epidural canal can provide anesthesia without the need
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for mechanical ventilation, there are still additional effects on the
sympathetic nervous system, parasympathetic nervous system,
and motor control, resulting in respiratory impairment (Wink
et al., 2016). Theoretically, these changes impair the function of
the glymphatic system. Some respiratory parameters, such as tidal
volume, frequency, and airway pressure, have not been studied in
relation to glymphatic activity.

Preclinical and clinical evidence suggests that mechanical
ventilation induces adverse neurocognitive effects (Wang
et al., 2015). It is estimated that 70–100% of critically ill
patients have cognitive impairment after mechanical ventilation,
and 20% of patients still have cognitive impairment 5 years
later (Herridge et al., 2016; Bilotta et al., 2019). In patients
with COVID-19, delirium/neurological disorders are clearly
correlated with prolonged mechanical ventilation (Alonso-Lana
et al., 2020; Helms et al., 2020). However, the mechanism
by which mechanical ventilation affects the incidence of
postoperative cognitive disorder remains unclear. The discovery
of this novel glymphatic pathway may provide clues for future
research. Evaluating perioperative glymphatic function might
provide new insights for understanding the pathophysiological
mechanisms underlying cognitive decline during clinical
anesthesia and surgery.

Arousal Regulation Mechanism Altered by

Anesthesia
Some studies have demonstrated that arousal state correlates
with the glymphatic system (Hablitz et al., 2019), while the
arousal state also reflects “depth of anesthesia” in clinical settings
(Shalbaf et al., 2015). The arousal state is closely related to
hemodynamic rhythms such as blood pressure, heart rate,
and blood oxygenation level-dependent signals, which affect
glymphatic function (Fultz et al., 2019). The depth of anesthesia
can affect not only the hemodynamics but also the arousal
mechanism. Therefore, there may be a relationship between
anesthesia depth and glymphatic function (Shalbaf et al., 2015).
General anesthesia is characterized by the suppression of central
arousal controlled by the locus coeruleus and noradrenergic tone
(Brown et al., 2010). Norepinephrine release is reduced when
anesthesia suppresses sympathetic nerve activity. It has been
confirmed that noradrenergic blockade or reduction produces
the same changes in ISF volume fraction in the glymphatic system
(Xie L. et al., 2013).

However, accurate estimation of the depth of anesthesia
remains an important issue in clinical or animal anesthesia. Non-
invasive EEG or evoked potential indices, such as the bispectral
index, narcotrend index, state entropy, and response entropy, for
monitoring anesthesia depth are widely used in clinical research.
High EEG delta power is positively associated with glymphatic
activity, while beta power is negatively corelated in animal
models (Hablitz et al., 2019). When bispectral index-guided
deep anesthesia is used in geriatric anesthesia, postoperative
delirium and cognitive decline in elderly surgical patients are
reduced (Deschamps et al., 2019; Miao et al., 2019). Therefore,
intraoperative indicators for monitoring anesthesia depth are
clinically significant for research about the relationship between

glymphatic function and PND. Insufficient anesthesia can
cause physiological and psychological injuries, whereas overdose
anesthesia may induce hemodynamic disturbances. Therefore,
monitoring the depth of anesthesia may also prevent impairment
of the glymphatic system and cognition due to inadequate or
excessive anesthesia.

Astrocytes and AQP4 Function Changes
The use of in vivo two-photon imaging demonstrated that
calcium signaling in astrocytes is associated with the selective
transport of small lipophilic molecules and rapid ISF movement
throughout the glymphatic system (Rangroo Thrane et al.,
2013). A recent study found that glymphatic flow is regulated
by fluid shear stress produced by perivascular CSF or ISF
dynamics, which are capable of mechanically opening NMDA
receptors and producing increased Ca2+ currents in cultured
astrocytes (Maneshi et al., 2017). General anesthetics, especially
ketamine, inhibit NMDA receptors and reduce Ca2+ signaling
(Duman et al., 2019), likely to regulate glymphatic function
through this mechanism. The anesthetic sevoflurane induces
changes in astrocyte morphogenesis by downregulating
ezrin, an actin-binding membrane-bound protein, in addition to
disrupting astrocyte Ca2+ currents acutely and chronically (Zhou
et al., 2019). Moreover, brain surgery such as cisterna magna
puncture can cause spontaneous frequent but asynchronous
astrocytic Ca2+ signaling and impair glymphatic lipid transport,
consequently increasing intracellular lipid accumulation
(Rangroo Thrane et al., 2013).

AQP4 colocalizes the inwardly rectifying potassium channel
Kir4.1 and contributes to the coupled influx of water and K+ after
neuronal activity (Jo et al., 2015). Accordingly, some anesthetics
can impair AQP4 function by blocking potassium channels
(Ou et al., 2020), leading to glymphatic function changes.
In recent studies, 2.5% sevoflurane has also been shown to
increase glymphatic function by upregulating AQP4 expression
in astrocytes (Gao et al., 2019). Changes in AQP4 expression and
depolarization are functionally relevant to the glymphatic system
and cognition (Hubbard et al., 2018).

GLYMPHATIC FUNCTION AFFECTED BY

SURGERY

Persistent systemic inflammation caused by surgery can disrupt
the integrity of the BBB (Vacas et al., 2014; Hughes et al.,
2016; Bi et al., 2017; Wang et al., 2017; Ni et al., 2018;
Verheggen et al., 2018). The BBB is a complex functional
and anatomical system that prevents the entry of neurotoxic
plasma elements, blood cells, and pathogens into the brain. It is
comprised of endothelial cells, perivascular microglia, pericytes,
neurons, and astrocytic end-feet (Sweeney et al., 2019). Tight
junction proteins located between adjacent endothelial cells
include claudins, tricellulin, occludin, and zonula occludens
(Sweeney et al., 2019). Acute endothelial dysfunction caused
by surgically induced systemic inflammation may lead to BBB
disorders (Plog et al., 2015; Ekeloef et al., 2017). Inflammation
after laparotomy can decrease the levels of tight junction
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proteins such as claudin, β-catenin, occludins, and ZO-1, all of
which can contribute to tight junctions and BBB permeability
(Yang et al., 2017). Moreover, astrocytes are easily activated
by postoperative inflammatory cytokines such as TNF-α, IL-
1β, IL-6, complement C3, and high mobility group box-1,
which can subsequently damage the integrity of the BBB,
especially in the hippocampus (He et al., 2012; Jin et al., 2014;
Xiong et al., 2018). Activated astrocytes can also encourage
tissue proliferation, resulting in scar-like perivascular barriers
(Voskuhl et al., 2009). The endothelial cell membrane and the
BBB close junctions comprise the vascular components of the
glymphatic system, while the avascular components consist of
astrocyte end-feet integrated with glia-line boundaries between
the neuropil and axon tract regions (Plog and Nedergaard, 2018).
Therefore, systemic inflammation influences the function of the
glymphatic system based on the evidence that the structure and
function of the glymphatic system are closely related to that
of the BBB (Verheggen et al., 2018). Notably, a recent study
found that lipopolysaccharide-induced systemic inflammation
reduced perivascular CSF tracer flow and penetration into the
parenchyma (Manouchehrian et al., 2021). These observations
may be beneficial for our understanding of the role of systemic
inflammation in glymphatic clearance.

How the Surgical Position Influences

Glymphatic Transport
Researchers have studied the effects of body position on
glymphatic function and Aβ clearance using optical imaging,
CSF radiotracers, and fluorescent tracers in the brains of
anesthetized rodents. According to previous studies, glymphatic
transport is most effective in the lateral position, inferior in
the supine position, and least efficient in the prone position
(Lee et al., 2015). Thus, it is clear that postural or gravitational
factors also exert regulatory control over the glymphatic
pathway. Thus, we speculate that in postures with the head
down, minor changes in CSF pressure, such as ICP and
hydrostatic pressure, increase due to gravity; tissue pressure
or vascular function could alter the shape of perivascular
spaces and accelerate glymphatic drainage problems, impairing
cognitive function.

Although PND was initially described as a complication after
cardiac surgery, many recent studies have found that some
patients undergoing non-cardiac surgeries, such as orthopedic
surgery, also suffered cognitive decline (Evered and Silbert, 2018).
Due to the various types of surgery, surgical posture may be
an essential but overlooked factor in these studies. Some prone
surgeries, particularly spine surgery, may cause postoperative
cognitive impairment (Kim et al., 2016; Ezhevskaya et al.,
2019). Furthermore, Trendelenburg, a supine position used in
laparoscopic surgery in which the patient’s head is lower than the
feet, can result in postoperative cognitive decline. This position
could increase intra-abdominal pressure, reduce cerebral venous
outflow, and impair lymphatic function, similar to positive
pressure ventilation or positive end-expiratory pressure (Maerz
et al., 2017). Some studies have even demonstrated that sleeping
in the supine position has been shown to reduce cognitive

function in healthy volunteers, while sleeping in the upright
position did not affect the participants (Muehlhan et al., 2014).
According to studies on posture and glymphatic function, the
surgical position can worsen the cognitive impairment, especially
in prolonged surgeries, including cardiac surgery. Understanding
the effects of different body postures on the glymphatic clearance
pathway may be necessary for interpreting the procedure
of PND.

Perioperative Sleep Disorder Leads to

Glymphatic Dysfunction
The clearance of the glymphatic system is closely related to
the sleep-wake cycle, with sleep promoting faster metabolite
removal (Xie L. et al., 2013). However, perioperative sleep is
frequently disrupted by many factors, including postoperative
pain, environmental and surgical stress, anesthesia, and other
factors that lead to discomfort (Whitlock et al., 2017; Su and
Wang, 2018). Postoperative sleep disruptions manifest as sleep
fragmentation and reduced slow-wave and REM sleep durations
(Chouchou et al., 2014). In particular, REM sleep disorder may
significantly negatively affect postoperative cognition (Lazic et al.,
2017). Subsequently, the glymphatic system is impaired and
degrades with sleep disturbances (Nedergaard and Goldman,
2020). After a night of sleep deprivation, protein Aβ levels
in the thalamus and medial temporal structures are also
elevated in healthy individuals (Shokri-Kojori et al., 2018).
Moreover, sleep disruption increases the neuronal activity and
generates more waste products, including lactate, which are
exported via glymphatic fluid transport (Lundgaard et al.,
2017).

Postoperative pain remains a significant health care issue
that disturbs sleep in the postoperative period, and sleep
disturbances may, in turn, exacerbate postoperative pain
(Chouchou et al., 2014). Anesthesia is substantially different
from natural sleep, sometimes interfering with the circadian
rhythm and disrupting the sleep cycle, subsequently affecting
glymphatic clearance (Lazic et al., 2017). Additionally, surgical
and environmental stress appears to be a significant cause
of sleep disruptions during peri-operation (Xu et al., 2016),
and chronic stress via glucocorticoid signaling impairs
AQP4-mediated glymphatic transport (Wei et al., 2019).
This evidence suggests that cognitive decline in patients
with sleep disorders may be caused by decreased waste
removal and increased waste accumulation in the brain due to
glymphatic dysfunction.

Currently, in animal models of glymphatic function, sleep
is simulated by anesthesia or sleep deprivation. Owing to
technical limitations, it is difficult to perform such experiments
on naturally sleeping mice (Xie L. et al., 2013). According to
some studies, the effects of sleep and general anesthesia on the
glymphatic system are equivalent (Xie L. et al., 2013; Benveniste
et al., 2019a). However, anesthesia and natural sleep outcomes
remain markedly different; anesthesia can affect hemodynamics,
interfere with the biological clock, and disrupt the sleep cycle
(Lazic et al., 2017). Thus, the impact of anesthesia on the
glymphatic system needs to be investigated further.
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WHY SOME PATIENTS ARE SUSCEPTIBLE

TO PND

Notably, the adverse cerebral effects of anesthesia were primarily
reported in the elderly (Bedford, 1955; Berger et al., 2015).
It is not yet fully understood why elderly patients are highly
susceptible to PND, while young people who undergo surgery
rarely develop it (Hu et al., 2020). Researchers have discovered
some PND-susceptible patients with preoperative disease, such
as preclinical AD (Xu et al., 2014), hyperglycemia (Zhang et al.,
2014), cerebral microemboli (Wang et al., 2020), and other
underlying neurovascular diseases or neurodegeneration (Wang
et al., 2020). These preoperative diseases may share common
underlying mechanisms and contribute to neurocognitive
dysfunction or dementia. With advances in imaging technology,
it has been found that these diseases have glymphatic impairment
(Gaberel et al., 2014; Kress et al., 2014; Kyrtsos and Baras, 2015;
Jiang et al., 2017; Hadjihambi et al., 2019). A theory states
that susceptible patients with PND and aging have preexisting
glymphatic dysfunction but progresses slowly without significant
cognitive impairment (Bolte et al., 2020). Perioperative risk
factors exacerbate the preexisting glymphatic damage beyond the
compensatory limit, resulting in significant cognitive changes
in these individuals. AD is a progressive neurodegenerative
disorder characterized by gradual cognitive decline, which is
characteristic of extracellular Aβ deposition and intracellular
accumulation of hyperphosphorylated tau (Long and Holtzman,
2019). Patients in the preclinical stage of AD, particularly those
with APOE4 genetic risk factors (Mentis et al., 2020), already
have Aβ accumulation and impaired glymphatic clearance,
but no clinically detectable symptoms of cognitive impairment
(Masters et al., 2015). Moreover, aging is associated with
degenerative changes in the brain’s structure and function,
such as reduced cerebrovascular pulsatility, depolarized or
downregulated AQP4, and sleep deprivation, which impair
glymphatic function (Zeppenfeld et al., 2017). Glymphatic
dysfunction may result in the deposition of toxic solutes
(including amyloid) in the aging brain, which exacerbates
glymphatic dysfunction and creates a vicious cycle (Iliff et al.,
2013). Vascular dementia is caused by many neurovascular
diseases, including hypertension, ischemic stroke, traumatic
brain injury, and microinfarcts, which significantly impair
arterial CSF pulsation and glymphatic clearance (Riba-Llena
et al., 2018). Diabetes can also impair cardiac pulsation due to
pathological changes in the vascular endothelium (Jiang et al.,
2017).

Due to technical limitations, few previous studies have used
non-invasive methods to investigate glymphatic function in
humans, particularly hospitalized surgical patients susceptible
to PND. Recent advances in imaging, such as real-time
MRI (Ding et al., 2018), ultra-fast MRI (Kiviniemi et al.,
2016), and gadolinium-based contrast agents enhanced MRI
(Ringstad et al., 2018; Deike-Hofmann et al., 2019), will provide
a sensitive and non-invasive tool for assessing glymphatic
function in clinical trials. Notably, it is essential to develop
intraoperative monitoring tools for glymphatic function. A new
method of measuring human glymphatic function that uses

near-infrared spectroscopy has been developed for long-term
monitoring of brain function, which is highly compatible with
perioperative monitoring (Myllylä et al., 2018). These non-
invasive methods may help translate glymphatic measurements
from the laboratory to the clinic (Jiang, 2019). Advances in
technology will yield new and valuable information about
the glymphatic system, providing a quantitative map for the
diagnosis, monitoring, and prognosis of neurological disorders,
including PND.

CONCLUSION AND PERSPECTIVE

Recent discoveries concerning the glymphatic system anatomy
and mechanisms have contributed to a better understanding of
CSF circulation and waste removal. Furthermore, the glymphatic
system has an immune function and may affect the onset and
progression of PND, either directly or indirectly. Because clinical
research on perioperative glymphatic changes is still lacking,
scientists and clinicians, particularly gerontologists, neurologists,
psychiatrists, anesthesiologists, and surgeons, can collaborate to
uncover the etiological mechanisms of perioperative glymphatic
changes. The glymphatic concept may provide a strategic
breakthrough in rethinking, treating, and, most importantly,
preventing PND.

Human studies exploring the physiological and pathological
mechanisms between the glymphatic system and brain cognition
over time have greatly improved our knowledge; however,
some key issues still need to be addressed by future research.
First, the definition of normal or healthy glymphatic function
may be one of the biggest challenges. A simpler and quicker
intraoperative monitoring method remains to be developed. A
better description of glymphatic dynamics will help demarcate
“normal” and “abnormal” glymphatic function in humans and
identify preventive strategies for PND. Second, perioperative
factors such as anesthetic type, intraoperative hemodynamics,
surgery position, surgical inflammation, and previous health
status may confound research on the glymphatic system and
PND. Cross-sectional clinical studies have demonstrated specific
changes in the glymphatic transport of patients susceptible
to neurological diseases, which is helpful in predicting
the incidence of PND. Third, more clinical studies should
be conducted instead of purely animal studies. Although
association analysis may provide critical information for
cause-effect deductions, correlation does not necessarily mean
causation. Fourth, basic research targeting the perioperative
glymphatic system in PND merits optimization; specifically,
appropriate model systems should be carefully selected. Finally,
the translation of basic research results into clinically relevant
effects in humans should be expedited. Most data on the
role of the glymphatic system are based on animal studies.
Preclinical animal studies frequently result in unexpected
failures during clinical transition due to unidentified reasons.
Alternatively, future therapeutic interventions will likely be
based on individual factors due to significant differences
in anatomical variation and disease complexity among
human populations.
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Objective: The aim of this study was to perform a systematic review and meta-analysis
to assess whether cerebral small vessel disease (CSVD) on neuroimaging of patients
with acute ischemic stroke (AIS) treated with intravenous thrombolysis (IVT) is associated
with an increased risk of hemorrhagic transformation (HT), symptomatic intracranial
hemorrhage (sICH), and poor functional outcome (PFO).

Methods: A thorough search of several databases was carried out to identify
relevant studies up to December 2020. We included studies of patients with AIS and
neuroimaging markers of CSVD treated with IVT. The primary outcome was HT, and the
secondary outcomes were sICH and 3-month PFO. The quality of the studies involved
was evaluated using the Newcastle–Ottawa Scale (NOS). The meta-analysis with the
fixed effects model was performed.

Results: Twenty-four eligible studies (n = 9,419) were pooled in the meta-analysis. All
included studies were regarded as high quality with the NOS scores of at least 6 points.
The meta-analysis revealed associations between the presence of CSVD and HT, sICH,
and the 3-month PFO after IVT. Compared with no CSVD, the presence of CSVD was
associated with an increased risk of HT (OR: 1.81, 95% CI: 1.52–2.16), sICH (OR: 2.42,
95% CI: 1.76–3.33), and 3-month PFO (OR: 2.15, 95% CI: 1.89–2.44). For patients with
AIS complicated with CSVD, compared with a CSVD score of 0–1, a CSVD score of 2–4
was associated with an increased risk of HT (OR: 3.10, 95% CI: 1.67–5.77), sICH (OR:
2.86, 95% CI: 1.26–6.49), and 3-month PFO (OR: 4.58, 95% CI: 2.97–7.06).
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Conclusion: Patients with AIS complicated with neuroimaging markers of CSVD are at
increased risk of HT and 3-month PFO after IVT. However, it is still necessary to clarify
the exact role of CSVD in the occurrence, development, and prognosis of AIS.

Systematic Review Registration: www.ClinicalTrials.gov, identifier CRD4202123
3900.

Keywords: cerebral small vessel disease, acute ischemic stroke, intravenous thrombolysis, hemorrhagic
transformation, neuroimaging markers

INTRODUCTION

Stroke is the second leading cause of death worldwide, leading to
death in 5.5 million people and affecting 13.7 million each year.
Ischemic stroke accounts for 70% of all patients with stroke. The
2016 Global Burden of Disease Study data that were published in
2019 suggest that one in four adults is reported to be at risk of
having a stroke in their lifetime (GBD 2016 Stroke Collaborators,
2019; Lindsay et al., 2019).

Cerebral small vessel disease (CSVD) is a widespread
cerebrovascular disease with specific neuroimaging
characteristics (Chen et al., 2019). With the development of
neuroimaging technology, the brain imaging of more patients
with acute ischemic stroke (AIS) has detected the neuroimaging
markers of CSVD such as cerebral microbleed (CMB), white
matter hyperintensity (WMH), lacunar infarction (LI), and
enlarged perivascular space (EPVS) (Curtze et al., 2016; Chen
et al., 2019). CSVD accounts for 25% of cases of AIS, and it
affects cognitive function, gait disturbance, swallowing, and
other functions (Pantoni, 2010).

Studies have shown that CSVD may be a risk factor for
intracranial hemorrhage, but none of these studies have a clear
determinism (Emberson et al., 2014; Jickling et al., 2014; Pang
et al., 2019). Hemorrhagic transformation (HT) occurs in 10–
40% of patients with ischemic stroke and is a major complication
of intravenous thrombolysis (IVT) (Terruso et al., 2009; Beslow
et al., 2011; Jickling et al., 2014). HT can be divided into
symptomatic and asymptomatic according to the deterioration
of neurological function, both of which worsen the prognosis
of stroke, especially in cognitive and neurological functions
(Dzialowski et al., 2007; Park et al., 2012). Most patients with AIS
complicated with CSVD have no obvious clinical symptoms at the
initial stage, which are easy to be ignored by doctors. Therefore,
for patients with AIS complicated with CSVD, HT, symptomatic
intracranial hemorrhage (sICH), and poor functional outcome
(PFO) after IVT have gradually attached the attention of medical
researchers (Liu X.Y. et al., 2019). Different subtypes of CSVD
may have different effects on HT and clinical prognosis after IVT
in patients with AIS, and different subtypes of CSVD often coexist
in the same patients with AIS.

Several recent studies have explored the relationship between
these neuroimaging markers of CSVD and clinical outcomes after
IVT in patients with AIS (Drelon et al., 2020; Liu X. et al.,
2020). Previous meta-analyses have investigated the increased
risk of CSVD for HT and PFO in patients with AIS (Charidimou
et al., 2016; Tsivgoulis et al., 2016; Wang et al., 2017). However,

these studies are mainly limited to a particular subtype of CSVD,
and some patients receive endovascular treatment. Whether
the existence of neuroimaging markers of CSVD affects the
HT, sICH, and PFO of patients with AIS after IVT is still a
controversial issue. Therefore, we performed a systematic review
and meta-analysis to evaluate whether CSVD on neuroimaging of
patients with AIS treated with IVT is associated with an increased
risk of HT, sICH, and PFO.

METHODS

This systematic review and meta-analysis was performed in
accordance with the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) guidelines.

Search Strategy
We systematically searched the MEDLINE, Cochrane Library,
Embase, CNKI, VIP, and WANFANG databases from inception
to December 2020 to find relevant studies. The articles were not
restricted based on the language of publication. The details of
the search strategy are presented in Supplementary Appendix 1.
Two authors (i.e., WYQ and YXT) scanned the titles and abstracts
to find the articles that were most relevant to this study; then,
the full texts of the relevant articles were examined, and the final
decision on inclusion was made by consensus.

Selection Criteria
Types of Studies
We included cohort studies (i.e., prospective and retrospective) in
which patients with AIS or suspected AIS were treated with IVT.
The relationship between neuroimaging markers of CSVD and
clinical outcomes was assessed. All eligible trials were published
in full text without language restrictions.

Types of Participants
We considered trials that included IVT-treated patients with AIS
or patients who were treated with IVT for suspected ischemic
stroke. The diagnosis of AIS meets the WHO diagnostic criteria
(No authors listed, 1989), and participants were confirmed
by CT or MRI. The diagnosis points of AIS are as follows:
(1) acute onset, (2) focal neurological deficit, (3) responsible
lesions appearing on imaging or symptoms lasting more than
24 h, and (4) excluding cerebral hemorrhage by brain CT/MRI.
Trials involving patients treated with endovascular therapy
were excluded. Cerebral imaging had to be performed for the
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visualization of CSVD. CMB, WMH, LI, and EPVS can all be
detected on MRI (Chen et al., 2019). CMB is defined as a
small, round, or oval hypointense lesion that can be shown on
T2∗-weighted gradient recalled echo (GRE) and susceptibility-
weighted imaging (SWI) (Wardlaw et al., 2013). WMH is
an imaging description of white matter demyelination, it is
hyperintense on T2-weighted image (T2WI) and fluid-attenuated
inversion recovery (FLAIR) sequences on MRI, and it can also
be shown on CT, but the range of lesions shown on CT may
not be ideal (Wardlaw et al., 2013; van Leijsen et al., 2018). LI
is a hyperintense area with the largest lesion diameter less than
20 mm on the axial plane of the FLAIR sequence (Wardlaw et al.,
2013). Generally, the diameter of the perivascular space is less
than 2 mm, the EPVS can extend to a diameter of 2–4 mm,
and it can be detected on MRI (Chen et al., 2019). To expand
the scope of the study, WMH detected on CT is also included
(Charidimou et al., 2016).

Primary Outcome Assessments
The primary outcome for the systematic review was the
occurrence of HT. There are many types of HT diagnostic criteria,
such as the European Cooperative Acute Stroke Studies (ECASS)
(Fiorelli et al., 1999; Larrue et al., 2001; Hacke et al., 2008) and the
National Institute of Neurological Disorders and Stroke (NINDS)
(No authors listed, 1997). The diagnosis points of ECASS are
as follows: (1) hemorrhagic infarction (HI): there was a small
spot-like hemorrhage along the edge of the infarct and sheet-like
non-massive bleeding or multiple fused spot-like hemorrhages in
the infarct area and (2) parenchymal hematoma (PH): hematoma,
i.e., bleeding with slight or obvious space-occupying effect or
bleeding away from the infarct. The main points of the diagnosis
of NINDS are as follows: (1) HI: different low-density/high-
density foci with punctate or blurred borders in the acute infarct
can be tested on CT and (2) PH: typical homogeneous high-
density lesions with clear boundaries, with or without cerebral
edema or space-occupying effects, can be tested on CT.

Secondary Outcome Assessments
The secondary outcomes included the occurrence of sICH, and
sICH was defined by the scores on the ECASS (Fiorelli et al., 1999;
Larrue et al., 2001; Hacke et al., 2008), NINDS (No authors listed,
1997), and Safe Implementation of Thrombolysis in Stroke-
Monitoring Study (SITS-MOST) (Rha et al., 2014). The 3-month
PFO was defined as a Modified Rankin Scale (mRS) score > 2.
The relationships among HT, sICH, 3-month PFO, and the total
burden of CSVD (by using the Total Burden Rating Scale of
CSVD) were also examined. The diagnosis points of ECASS
are as follows: bleeding is seen on CT, and the increase in the
National Institute of Health Stroke Scale (NIHSS) score is ≥ 4
points. The diagnosis points of NINDS are as follows: bleeding
on CT, accompanied by neurological decline. The main points
of diagnosis of SITS-MOST are as follows: the infarct area or
remote area PH is seen on CT, the NIHSS score increased by 4
points or more compared with the minimum level of 24 h after
admission, and bleeding caused death. The mRS can assess the
complete independent living ability of patients with stroke, where
a score of 0 means asymptomatic and the higher scores indicate

a worse prognosis (i.e., a score of 6 indicates death). The concept
of the total burden of CSVD was proposed by Staals et al. (2014),
who developed a scale to quantitatively evaluate the cumulative
effect of CSVD throughout the whole brain. The total score of the
scale ranges from 0 to 4 points, and the higher the score, the more
serious the CSVD.

Data Extraction
We used a preset electronic collection form to extract the basic
characteristics of the studies, such as study design, first author,
year of publication, country, sample size, age, sex, imaging
method, type of neuroimaging markers of CSVD (i.e., CMB,
WMH, LI, and EPVS), the definition of HT and sICH, the
total burden of CSVD, and clinical outcome. The number of
patients with neuroimaging markers of CSVD and the number
of outcome events in each study were extracted, and conversion
was performed when studies were reported as a percentage. When
a study reported the relationship between different subtypes of
CSVD and outcomes, the data were extracted separately.

Quality Assessment
Two reviewers independently assessed each study for quality
using the Newcastle–Ottawa Scale (NOS) (Wells et al., 2013),
which mainly contains three domains as follows: (1) selection, (2)
comparability, and (3) outcome. The selection domain included
the representativeness of the exposed cohort, selection of non-
exposed cohort, ascertainment of exposure, and demonstration
that the outcome of interest was not present at the beginning of
the study. The comparability domain included the comparability
of cohorts based on the design or analysis. Outcomes included
the assessment, long enough follow-up for outcomes to occur,
and adequacy of follow-up of cohorts. The maximum score of
the NOS was 9 points, and a score ≥ 6 indicated a high-quality
study. Disagreements in the studies were resolved by senior
researchers. The details of the quality assessment can be found
in Supplementary Appendix 2.

Statistical Analyses
We used RevMan software version 5.3 and Stata MP software
version 14.0 for all the statistical analyses. The meta-analysis
was used to calculate the combined odds ratio (OR) and
the corresponding 95% CI to quantify the strength of the
association between the presence and severity of CSVD and
HT, sICH, and 3-month PFO after IVT. The total burden
of CSVD was divided into two groups, namely, 0–1 and 2–
4 points. We tested for heterogeneity between trial results
using the I2 statistic (Higgins et al., 2003) (when P ≤ 0.1
and I2

≤ 25% indicated low heterogeneity, 25% < I2
≤ 50%

indicated moderate heterogeneity, and I2 > 50% indicated
significant heterogeneity). The fixed effects model was used when
heterogeneity between studies was not detected; otherwise, the
random effects model was used.

To explore the factors associated with heterogeneity, the
subgroup analysis according to different types of CSVD (i.e.,
CMB, WMH, LI, and EPVS) was performed to explore the
impact of different types on the outcome. The sensitivity analysis
was used to analyze whether the conclusion was stable, and we
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FIGURE 1 | Flow diagram of the search process and study selection.
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TABLE 1 | Characteristics of the studies in the meta-analysis.

Author (year) Period Country Study design Sample Mean/Median Age(y) Gender
(Female/male)

CVSD Clinical outcomes Imaging method Time-HT/sICH NOS

Moriya et al. (2013) 2007.11–
2011.12

Japan Prospective 71 73 ± 10 21/50 CMB HT(NINDS) T2*-GRE(1.5T), FLAIR,
DWI, T1WI, T2WI

Between days 4 and 7
after admission

6

Capuana et al.
(2020)

NA Italy Retrospective 434 68.3 ± 13.5 170/264 CMB HT(ECASS II)
sICH(ECASS)

T2*-GRE(1.5T), T1WI,
T2WI, FLAIR, DWI, PWI,
3d-TOF-MRA

Within 24 h after IVT 8

Liu et al. (2019b) 2016.08–
2018.07

China Prospective 218 65.79 ± 11.99 144/74 The total
burden of
CSVD, WMH

PFO T2*-GRE (-), FLAIR, T2WI,
T1WI, DWI, 3d-TOF-MRA

/ 8

Wen et al. (2019) 2016.09–
2019.01

China Retrospective 326 Good outcome:65 ± 12
Poor outcome: 70 ± 12

117/209 WMH PFO T1WI, T2WI, FLAIR / 8

Liu L. et al. (2019) 2017.01–
2019.01

China Retrospective 175 67 ± 11 62/113 The total
burden of
CSVD

PFO, HT (ECASSII),
sICH (ECASSII)

DWI, FLAIR, SWI, MRA Within 24 h after IVT 8

Liu X.Y. et al. (2019) 2016.08–
2018.01

China Retrospective 154 66.00 (59.00, 74.25)
(Median;Interquartile range)

51/103 The total
burden of
CSVD, CMB,
Li, CMB, LI

HT(ECASSII),
sICH(NINDS)

T1WI, T2WI, FLAIR, DWI Within 24 h after IVT 6

Chacon-Portillo
et al. (2018)

2011.01–
2015.12

America Retrospective 292 62.8 ± 15.3 151/141 CMB sICH (NINDS),
HT(ECASSII)

T1WI, T2WI, DWI, SWI Within 24 h after IVT 6

Nagaraja et al.
(2018)

2009.01–
2013.12

America Retrospective 366 67 ± 15 168/198 CMB HT (ECASSI) T2*-GRE(1.5T), DWI,
FLAIR, CT (HT)

At 18–36 h after IVT 6

Liu et al. (2018) 2013.06–
2017.05

China Retrospective 97 66.6 ± 9.1 29/68 WMH PFO, HT(ECASSII) DWL, FLAIR, MRA-, CT
(HT)

Within 24 h after IVT 8

Liu et al. (2017) 2014.01–
2017.03

China Retrospective 78 WMH: 73.7 ± 6.7
No WMH:61.3±10.6

24/54 WMH, LI PFO, HT(ECASSII),
sICH (ECASSII)

T1WI, FLAIR, DWI, MRA Within 24 h after IVT 8

Yan et al. (2015a) 2009.06–
2015.06

China Retrospective 449 66.8 ± 12.9
SICH: 73 (64, 79)

151/298 CMB PFO, HT(ECASSII),
sICH(ECASSII)

SWI Within 24 h after IVT 7

Curtze et al.
(2015a)

2001.12–
2014.02

UK Retrospective 2481 No SICH:69 (60, 77)
(Median; Interquartile range)

1,074/1,407 WMH sICH(ECASSII) CT At 24 h post IVT 6

Dannenberg et al.
(2014)

2008.01–
2013.08

Germany Prospective 326 76 (68, 84) (Median;
Interquartile range)

167/159 CMB sICH(ECASSIII) T2*-GRE(3T), DWI Within 36 h after IVT 8

(Continued)
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TABLE 1 | Continued

Author (year) Period Country Study design Sample Mean/Median Age(y) Gender
(Female/male)

CVSD Clinical outcomes Imaging method Time-HT/sICH NOS

Yan et al. (2014) 2009.06–
2013.05

China Retrospective 225 66.29 ± 13.01 73/152 CMB HT(ECASSII) FLAIR, DWI, PWI, SWI,
MRA

Within 24 h after IVT 8

Zheng et al. (2012) 2006.07–
2011.10

China Retrospective 175 68 ± 10 70/105 WMH HT(ECASSII) CT, T2WI, FLAIR Within 24 h after IVT 7

Kakuda et al.
(2005)

2001.04–
2005.01

America,
Canada,
Belgium

Prospective 70 71 ± 29 39/31 CMB HT(ECASS)
sICH(ECASS)

GRE(1.5T), DWI, PWI,
MRA, T1WI

At 3–6 h after IVT and
at day 30

8

Derex et al. (2004) 2001.05–
2002.08

France Retrospective 44 63.2 ± 14.1 21/23 CMB HT(NINDS),
sICH(NINDS)

T2*-GRE(1.5T), CT(HT,
SICH)

At day 7 6

Yan et al. (2015a) 2009.06–
2014.02

China Retrospective 333 66.15 ± 13.02 110/223 CMB HT(ECASSII), PFO GRE(3.0T), DWI, SWI At 24 hours post IVT 6

Dong and Xia
(2018)

2015.01–
2016.12

China Prospective 56 69.26 ± 2.25 25/31 CMB HT(ECASS) T1WI, T2WI, T2FLAIR,
DWI, MRA, SWI

At 24 hours post IVT 6

Zhang and Zhang
(2018)

2015.07–
2016.07

China Retrospective 206 CMB: 63.2 ± 9.5
NO CMB: 61.5 ± 9.0

83/123 CMB sICH(SITS-MOST),
PFO

T2*-GRE(-), T1WI, T2WI,
DWI

NA 6

Huang (2017) 2010.01–
2016.01

China Retrospective 100 18–80 42/58 CMB HT(ECASSI) SWI, CT(HT) At 24 hours post IVT 6

Zhuo et al. (2020) 2012.03–
2018.01

China Retrospective 178 62.3 ± 10.5 53/125 CMB, LI PFO T1WI, T2WI, DWI, FLAIR,
SWI

/ 8

Xue et al. (2017) 2012.01–
2015.06

China Prospective 80 56 ± 12 22/58 CMB HT(ECASSII) DWI, MRA, SWI At 24 ± 12 hours post
IVT

6

Curtze et al.
(2015b)

2001.12–
2014.02

UK Retrospective 2485 78 (72–83) 1076/1409 WMH PFO CT / 6

CMB, cerebral microbleed; WMH, white matter hyperintensity; LI, lacunar infarction; The total burden of CSVD, the total burden of cerebral small vessel disease; NA not available; HT, hemorrhagic transformation; sICH,
symptomatic intracranial hemorrhage; PFO, poor functional outcome; ECASS, European Cooperative Acute Stroke Studies; SITS-MOST, safe implementation of thrombolysis in stroke-monitoring study; NINDS, the
National Institute of Neurological Disorders and Stroke; T1WI, T1 Weighted Image; T2WI, T2 Weighted Image; FLAIR, Fluid attenuated inversion recovery; SWI, susceptibility-weighted imaging; T2*-GRE, T2*-weighted
gradient-recalled echo; DWI, Diffusion-Weighted Imaging; PWI, Perfusion-Weighted Imaging; CT, Computed Tomography; MRA, Magnetic Resonance Angiography; 3d-TOF-MRA, 3D time-of-flight Magnetic Resonance
Angiography; CT (HT, sICH), CT was used to detected HT, sICH.
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FIGURE 2 | Forest plot showing the Impact of CSVD on HT (Liu, XYv 2019 and Liu, XY R© 2019 are from Liu et al. (2019a); Liu, XY¥ 2019 represents the data of LI in
this study, and Liu, Y∗ 2019 represents the data of CMB in this study).

eliminated each study one by one to explore its influence on the
conclusion. We planned to use funnel plots to visually observe
the possibility of reporting bias and combined the Egger’s test to
detect publication bias (Egger et al., 1997). Two-sided P ≤ 0.05
was considered statistically significant.

RESULTS

Review of the Literature
Our initial search yielded 14,295 potentially related studies. Of
note, 282 studies were excluded because they were duplicates,
13,792 were excluded based on titles and abstracts, and 197 were
excluded after a full-text reading revealed that the studies did not
meet the inclusion criteria. Finally, for a total of 9,419 patients,
24 studies (Derex et al., 2004; Kakuda et al., 2005; Zheng et al.,
2012; Moriya et al., 2013; Dannenberg et al., 2014; Yan et al., 2014,
2015a,b; Curtze et al., 2015a,b; Liu et al., 2017, 2018; Huang, 2017;
Xue et al., 2017; Chacon-Portillo et al., 2018; Nagaraja et al., 2018;
Dong and Xia, 2018; Zhang and Zhang, 2018; Liu L. et al., 2019;
Liu et al., 2019a; Liu L. et al., 2019; Wen et al., 2019; Capuana
et al., 2020; Zhuo et al., 2020) meeting the criteria were included.
The selection process is shown in Figure 1. These studies were
cohort studies published from the year 2004 to 2020 and included
6 prospective and 18 retrospective studies. Among them, 17
studies evaluated HT, 11 studies mentioned sICH, and 10 studies
assessed 3-month PFO. Three of these studies reported separate
associations with the total burden of CSVD. In the included
studies, the neuroimaging markers of CSVD included cerebral
CMB, WMH, and LI, and no studies related to EPVS were found.
The characteristics of these studies are shown in Table 1.

Neuroimaging Markers of CSVD and HT
Sixteen studies evaluated the relationship between neuroimaging
markers of CSVD and HT. The pooled overall rate of HT after
IVT was 24.9% in the entire population. The pooled rate was
30.8% of patients in the CSVD presence group vs. 21.9% of
patients in the group without CSVD presence. The total number
of participants was 3,155 patients. Compared with no CSVD,
the presence of CSVD was associated with an increased risk of
HT (OR: 1.81, 95% CI: 1.52–2.16) (Figure 2). The heterogeneity
between studies was not significant (I2 = 29%, P = 0.13). The
risk of HT after IVT was higher in patients with CSVD than in
patients without CSVD on neuroimaging.

In subgroup analyses, the influence of CSVD on HT showed
a few changes when the studies were stratified according to
the type of CSVD (Figure 3). Twelve studies (50%) reported
the relationship between CMB and HT, three studies (12.5%)
evaluated the association between WMH and HT, and one study
(4.2%) mentioned the relationship between CMB and HT as well
as LI and HT. Compared with no CMB, the presence of CMB
was associated with an increased risk of HT (OR: 1.72, 95% CI:
1.43–2.08), and moderate heterogeneity was observed (I2 = 38%,
P = 0.08). Compared with no WMH, the presence of WMH was
associated with an increased risk of HT (OR: 2.54, 95% CI: 1.39–
4.64), and there was no heterogeneity (I2 = 0, P = 0.62). An
estimate specific for LI and HT was provided in only one study
(OR: 2.91, 95% CI: 0.93–9.11).

We performed the sensitivity analyses to explore whether
the change in the inclusion criteria of studies influenced the
robustness of the combined results. We recalculated the pooled
OR by excluding each individual study in turn. The range of
the combined ORs was from 1.75 (95% CI: 1.46–2.09) to 1.89
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FIGURE 3 | Forest plot of subgroup analysis showing the impact of subtypes of CSVD on HT.

(95% CI: 1.56–2.30) when the studies of Dong and Xia (2018)
and Yan et al. (2015a) were excluded. The results showed that
no individual study significantly affected the pooled effect size.
Furthermore, the funnel plots (Figure 4) and the Egger’s test
(t = 1.88, P = 0.079) indicated no publication bias.

Neuroimaging Markers of CSVD and
sICH
Nine studies reported the relationship between neuroimaging
markers of CSVD and sICH. The pooled overall rate of sICH
after IVT was 4.3% in the entire population. The pooled rate
was 6.4% of patients in the CSVD presence group vs. 2.7% of
patients in the group without CSVD presence. The total number
of participants was 4,285 patients. Compared with no CSVD, the
presence of CSVD was associated with an increased risk of sICH
(OR: 2.42, 95% CI: 1.76–3.33) (Figure 5). The heterogeneity was

not detected (I2 = 0%, P = 0.49). The risk of sICH after IVT was
found to be higher in patients with evidence of CSVD than in
patients without CSVD on neuroimaging.

In subgroup analyses, different types of CSVD had slightly
different effects on sICH (Figure 6). Seven studies (29.2%)
reported the relationship between CMB and sICH, only two
studies (8.3%) evaluated the association between WMH and
sICH, and no study mentioned the correlation between LI and
sICH. Compared with no CMB, the presence of CMB was
associated with an increased risk of HT (OR: 2.86, 95% CI: 1.63–
5.02), and low heterogeneity was observed (I2 = 5%, P = 0.39).
Compared with no WMH, the presence of WMH was associated
with an increased risk of sICH (OR: 2.27, 95% CI: 1.54–3.33), and
there was no heterogeneity (I2 = 0%, P = 0.61).

We performed the sensitivity analyses to explore whether the
outcome was stable. We recalculated the pooled OR by excluding
each individual study in turn. The range of the combined OR
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FIGURE 4 | Funnel plot and Egger’s test of studies evaluating the association between CSVD and HT.

FIGURE 5 | Forest plot showing the impact of CSVD on sICH.
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FIGURE 6 | Forest plot of subgroup analysis showing the impact of subtypes of CSVD on sICH.

was from 2.28 (95% CI: 1.64–3.16) to 2.92 (95% CI: 1.72–4.96)
when the studies of Dannenberg et al. (2014) and Curtze et al.
(2015a) were excluded. The results suggested that no individual
study significantly affected the pooled effect size. The funnel plots
(Figure 7) and the Egger’s test (t = 0.22, P = 0.833) indicated no
evidence of publication bias.

Neuroimaging Markers of CSVD and
3-Month PFO
Nine studies investigated the relation between neuroimaging
markers of CSVD and PFO. The pooled overall rate of 3-month
PFO after IVT was 38.8% in the entire population. The pooled
rate was 45.8% of patients in the CSVD presence group vs.
31.6% of patients in the group without CSVD presence. The
total number of participants was 4,626, and compared with no
CSVD, the presence of CSVD was associated with an increased
risk of 3-month PFO (OR: 2.15, 95% CI: 1.89–2.44) (Figure 8).
The heterogeneity between studies was moderate (I2 = 40%,
P = 0.08). The results showed that patients with evidence of
CSVD were at higher risk for PFO after IVT than patients without
neuroimaging evidence of CSVD.

In subgroup analyses, the influence of CSVD on PFO showed
some changes when studies were stratified according to the
type of CSVD (Figure 9). Three studies (12.5%) reported
the relationship between CMB and PFO, four studies (16.7%)
evaluated the association between WMH and PFO, one study
(4.2%) mentioned the relationship between CMB and PFO as well
as LI and PFO, and one study (4.2%) reported the association

between WMH and PFO as well as between LI and PFO.
Compared with no CMB, the presence of CMB was associated
with an increased risk of 3-month PFO (OR: 1.65, 95% CI: 1.29–
2.10), and no heterogeneity was observed (I2 = 0%, P = 0.83).
Compared with no WMH, the presence of WMH was associated
with an increased risk of 3-month PFO (OR: 2.32, 95% CI: 1.99–
2.71), and there was significant heterogeneity (I2 = 55%, P = 0.07).
Compared with no LI, the presence of LI was associated with
an increased risk of 3-month PFO (OR: 3.18, 95% CI: 1.74–
5.83). There was no evidence of substantial heterogeneity among
studies (I2 = 0%, P = 0.74).

The sensitivity analysis was carried out to explore the
robustness of our analysis, and we recalculated the pooled OR
by excluding each individual study in turn. The range of the
combined ORs was from 2.06 (95% CI: 1.69–2.52) to 2.21 (95%
CI: 1.93–2.52) when the studies of Curtze et al. (2015b) and
Yan et al. (2015a) were excluded. The results showed that no
individual study significantly affected the pooled effect size. The
funnel plots (Figure 10) and the Egger’s test (t = 0.69, P = 0.508)
showed no evidence of publication bias.

The Total Burden of CSVD
Three studies were related to the total burden of CSVD, among
which one explored the relationship between the total burden of
CSVD and HT, sICH, and PFO (Figure 11). One study (4.2%)
reported the relationship between the total burden of CSVD
and HT as well as sICH, and one study (4.2%) investigated the
association between the total burden of CSVD and PFO. We
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FIGURE 7 | Funnel plot and Egger’s test of studies evaluating the association between CSVD and sICH.

calculated pooled ORs of HT, sICH, and PFO for 2–4 CSVD
scores vs. 0–1 CSVD scores. Compared with a CSVD score of 0–
1, a CSVD score of 2–4 was associated with an increased risk of
HT (OR: 3.10, 95% CI: 1.67–5.77), and no heterogeneity could be
found (I2 = 0%, P = 0.80). Compared with a CSVD score of 0–1, a
CSVD score of 2–4 was associated with an increased risk of sICH
(OR: 2.86, 95% CI: 1.26–6.49), and there was no heterogeneity
(I2 = 0%, P = 0.52). Compared with a CSVD score of 0–1, a CSVD
score of 2–4 was associated with an increased risk of 3-month
PFO (OR: 4.58, 95% CI: 2.97–7.06), and there was no evidence of
substantial heterogeneity among studies (I2 = 0%, P = 0.44).

DISCUSSION

By using the systematic review and meta-analysis of these studies
on the evidence of neuroimaging markers of CSVD, we observed
that neuroimaging markers of CSVD (i.e., CMB, WMH, LI, and
EPVS) represented an important indicator of a higher risk of

HT, sICH, and 3-month PFO after IVT in patients with AIS.
In addition, we found that a CSVD score of 2–4 (i.e., the Total
Burden Rating Scale of CSVD) was a potential risk indicator for
incidents. Our meta-analysis confirmed the association between
the presence of neuroimaging markers of CSVD and the risk
of HT and PFO after IVT. At present, there are many reports
on the relationship between various subtypes of CSVD and
HT and clinical prognosis after IVT in patients with AIS, but
no definite conclusion has been reached. To the best of our
knowledge, our study is the first to systematically evaluate the risk
of HT and clinical prognosis in patients with AIS combined with
neuroimaging markers of CSVD after IVT.

Cerebral small vessel disease is a widespread cerebrovascular
disease that mainly manifests in CMB, WMH, LI, and EPVS
on imaging. It mainly affects the perforation of small arteries,
capillaries, and venules. The increased risk of HT and PFO
in patients with AIS with CSVD after IVT may be related to
the following mechanisms: First, the changes in blood pressure
variability may have an effect on the increased risk. Studies
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FIGURE 8 | Forest plot showing the impact of CSVD on 3-month PFO. (Liu, Y# 2017 and Liu, Y* 2017 are from Liu, Y 2017 (Liu et al., 2017); Liu, Y# 2017
represents the data of WMH in this study, and Liu, Y* 2017 represents the data of LI in this study; both Zhuo Z* 2020 and Zhuo Zφ 2020 are from Zhuo et al. (2020);
Zhuo Z* 2020 represents the data of LI in this study, and Zhuo Zφ 2020 represents the data of CMB in this study).

FIGURE 9 | Forest plot of subgroup analysis showing the impact of subtypes of CSVD on 3-month PFO.

Frontiers in Aging Neuroscience | www.frontiersin.org 12 July 2021 | Volume 13 | Article 69294232

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-692942 July 12, 2021 Time: 19:19 # 13

Wang et al. Impact of CSVD on AIS

FIGURE 10 | Funnel plot and Egger’s test of studies evaluating the association between CSVD and 3-month PFO.

have shown that increased blood pressure variability is closely
related to the progression of CSVD, and increased blood pressure
variability means increased blood pressure fluctuations, which
increases the difficulty of maintaining the steady state of blood
supply to the brain. The occurrence of hypoperfusion is more
frequent (de Heus et al., 2020), which may be related to the
occurrence of HT. Second, the destruction of the permeability
of the blood–brain barrier, neuroimaging, and cerebrospinal
fluid analysis indicate that leakage of the blood–brain barrier
is a common feature of CSVD (Farrall and Wardlaw, 2009).
When the permeability of the blood–brain barrier is broken,
serum proteins and toxic effects will penetrate brain tissue, which
may explain the complicated brain edema and poor functional
prognosis in patients with AIS after IVT. Finally, the decrease
in cerebral blood flow and vascular reactivity, the decrease in
cerebral blood flow, and the decrease in vascular reactivity are
related to CMB, WMH, LI, and EPVS (Gregg et al., 2015; Blair
et al., 2016; Staszewski et al., 2019; Wang et al., 2020; Zhang et al.,
2020). A previous meta-analysis of the cross-sectional studies
revealed that patients with WMH had decreased cerebral blood
flow (Shi et al., 2016), which may explain the PFO of patients
with AIS after IVT. However, It is worth noting that IVT is still

the standard treatment for patients with AIS within 4.5 h of onset
(Powers et al., 2019). Although there is a 2–7% risk of sICH after
IVT treatment, the risk of disability or death is absolutely reduced
by 10% at 3 months (Turc et al., 2014). There is currently no
research to prove that CSVD is an absolute contraindication for
IVT in the treatment of AIS, several studies have shown that LI
will benefit from IVT (Eggers et al., 2017; Matusevicius et al.,
2019). Therefore, we cannot arbitrarily regard the neuroimaging
markers of CSVD as an absolute contraindication for IVT based
on the results obtained in our study.

Different subtypes of CSVD may have different effects on HT
and the clinical prognosis of patients with AIS after IVT. Several
meta-analyses have studied the prognosis of patients with CMB
and WMH. Our results are consistent with a recent meta-analysis
including 11 studies, which reported that WMH significantly
increased the incidence of sICH after IVT and showed that
the combined incidence of WMH and sICH was 1.55, and the
OR for WMH and 3- to 6-month PFO was 2.02 (Charidimou
et al., 2016). However, a previous updated meta-analysis on a
similar topic was performed by Wang et al. (2017) including
11 studies with 2,702 patients and showed that CMB presence
was not significantly associated with an increased risk of sICH.
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FIGURE 11 | Forest plot showing the impact of CSVD score on HT, sICH and 3-months PFO.

Compared with the previous meta-analysis, our results did not
find such a connection. There are three possible reasons for this
difference in the results. First, our study has a large sample size,
including 24 articles (9,419 patients), and strict inclusion and
exclusion criteria, while the earlier study only included 11 articles
(2,702 patients). Second, in our study, the included patients with
neuroimaging markers of CSVD could be tested by a variety of
imaging methods, such as T1-weighted image (T1WI), T2WI,
diffusion-weighted imaging (DWI), SWI, T2∗-GRE, while in a
previous study (Wang et al., 2017), only SWI and T2∗-GRE were
included in the imaging methods. Third, our results had low
heterogeneity compared with previous studies (Charidimou et al.,
2016; Wang et al., 2017).

Our study has the following strengthens. First, our study is
the earliest to systematically evaluate the risk of HT and PFO
in patients with AIS combined with the neuroimaging markers
of CSVD after IVT. Second, we applied rigorous methodological
standards, performed a systematic search, included a large
sample size, and conducted an in-depth analysis of different
subgroups. Our study also has some limitations as follows. First,
there are differences in neuroimaging methods, both CT and
MRI, which may affect the diagnosis of CSVD. Although the

range of lesions shown on CT may not be ideal to expand
the sample size, CT is also used to detect WMH. This may
have a slight impact on the results of our study. However,
we found that in previous studies, the application of CT
to detect WMH was also be used for research (Charidimou
et al., 2016). Second, the IVT protocol is different, and the
baseline characteristics of the patient, such as previous use
of anticoagulant drugs and repeated strokes, will affect the
outcome. Third, the definitions of HT and sICH are different
in each study. Although all we included are defined by standard
criteria, they may still affect the results. However, in previous
studies, the different definitions of HT and sICH, respectively,
were combined for analysis (Charidimou et al., 2016; Wang
et al., 2017). Fourth, in our study, in the subgroup analysis of
CSVD and 3-month PFO, the presence of WMH was associated
with the increased risk of 3-month PFO, and there was a
significant heterogeneity. We found that the heterogeneity was
observed from the study of Liu L. et al. (2019) probably
due to the inclusion of participants, they excluded patients
who had a premorbid mRS score > 2. Finally, there were
no studies with EPVS, and only three studies mentioned the
overall burden of CSVD.
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CONCLUSION

Our results indicate that patients with AIS complicated with
the neuroimaging markers of CSVD are at an increased risk of
HT and 3-month PFO after IVT. Our study strengthened the
correlation between the neuroimaging markers of CSVD and the
adverse outcome of AIS after IVT. However, it is undeniable
that these patients can still benefit from IVT in some aspects.
Therefore, it cannot be simply considered that the neuroimaging
markers of CSVD are a contraindication for IVT in patients with
AIS. It is still necessary to clarify the exact role of CSVD in the
occurrence, development, and prognosis of AIS.
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INTRODUCTION

Dementia is a burgeoning public health crisis, with 50 million people currently affected worldwide
(Prince et al., 2015). As the population ages, this figure is set to rise dramatically by 40% over the
next 12 years (Prince et al., 2015). Dementia is an umbrella term for several disorders which result in
the progressive loss of memory or other cognitive functions (Scott and Barrett, 2007). It remains an
incurable disease, and current therapeutics have limited efficacy at slowing disease progression for
one third of patients (Rockwood et al., 2008). Of the dementia sub-types, Alzheimer’s disease (AD)
remains the most prevalent, accounting for ∼60–70% cases (Alzheimer’s-Society, 2016). Vascular
dementia (VaD) is the second most common form and is responsible for ∼20% of cases, with a
further 10% being a combination of these two diseases (Alzheimer’s-Society, 2016). However, in
practise these distinctions are somewhat arbitrary given the significant overlap in altered vascular
structure and function in both of these major sub-types (Kalaria and Ballard, 1999). At least
30% of patients with AD have evidence of cerebrovascular disease on post-mortem examination,
and almost all have evidence of cerebral amyloid angiopathy, microvascular degeneration, and
white matter lesions (Kalaria and Ballard, 1999). Similarly, one-third of patients with VaD exhibit
pathology consistent with AD (e.g., hippocampal or temporal lobe atrophy) (Kalaria and Ballard,
1999). Longitudinal studies have demonstrated that vascular risk factors (e.g., hypertension),
significantly increase the risk of both AD and VaD (Rius-Pérez et al., 2018). In genetically at-risk
individuals positive for apolipoprotein E4 (APOE4), atherosclerosis can increase the risk of AD
by three-fold (Hoffmann et al., 2010). This article provides an opinion on the current evidence on
the role of the neurovascular unit in dementia, for further information, several recent reviews are
available on this topic (Nelson et al., 2016; Kisler et al., 2017).

AMYLOID CASCADE HYPOTHESIS

A number of mechanistic models have been proposed to understand the pathological basis
of AD. The amyloid cascade hypothesis gained increasing traction over the last few decades,
having dominated the research sphere (Morris et al., 2014). Amyloid-based biomarkers have been
incorporated into a number of diagnostic guidelines (Jack et al., 2018), and the histopathological
(gold standard) diagnosis of AD includes the presence of amyloid plaque and neurofibrillatory
tangles (Deture and Dickson, 2019). However, despite decades of research into this hypothesis,
and several large trials of amyloid based drugs, none have demonstrated efficacy warranting their
widespread use in clinical practise (Morris et al., 2014). Only tramiprosate, a selective anti-oligomer
agent, has demonstrated potential benefit for a sub-group of APOE4 positive individuals with
early AD and is currently under investigation in a phase three trial (Tolar et al., 2020). These
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findings have raised several questions around the amyloid
cascade hypothesis. Firstly, the lack of efficacy for amyloid-based
targets may suggest amyloid is a by-product rather than causative
agent of the disease process. This is supported by the finding
that amyloid deposition commonly occurs in cognitively healthy
older adults, and plaque burden does not correlate well with
the level of cognitive deficit (Morris et al., 2014). In contrast,
synaptic loss, microglial activation, neurofibrillatory tangles, and
cerebral blood flow correlate better with disease severity in AD
(Rius-Pérez et al., 2018). Secondly, the potential efficacy in a sub-
group of early AD (Tolar et al., 2020) suggests that amyloid is a
late occurrence in the disease process, at which stage irrevocable
damage and cognitive decline has ensued. Furthermore, only
patients with a strong genetic risk may benefit from these
therapies (Tolar et al., 2020), limiting the wider applicability of
these drugs. These unanswered questions have thus stimulated
the search for earlier potential therapeutic targets, particularly
those which are identifiable at earlier stages, preceding the
development of cognitive decline and amyloid deposition.

VASCULAR CASCADE HYPOTHESIS

The vascular cascade hypothesis postulates that early disruption
of vascular mechanisms as a result of sustained vascular
risk factors and poor lifestyle habits, results in a state of
chronic hypoperfusion (Rius-Pérez et al., 2018). This leads
to the development of blood brain barrier breakdown, tau
hyperphosphorylation, and amyloid deposition (Nelson et al.,
2016). The blood brain barrier is essential to maintain a tightly
controlled environment, and contributes to the clearance of
amyloid-beta (Rius-Pérez et al., 2018). BBB dysfunction has been
demonstrated to occur in the hippocampus with normal ageing
(Montagne et al., 2015), early AD (Nation et al., 2019), and
in APOE4 positive individuals (Montagne et al., 2020). As a
result, amyloid deposition damages the cerebrovasculature, both
structurally and functionally, therefore worsening hypoperfusion
in a cyclical fashion (Nelson et al., 2016). These findings led to the
development of the two-hit hypothesis, where the vascular insult
represents the first “hit” to the system, followed by the amyloid
or second “hit,” with the two processes subsequently interacting
in a dynamic manner to worsen hypoperfusion, increase tau
hyperphosphorylation, and promote amyloid deposition (Nelson
et al., 2016). Importantly, the vascular hit is thought to occur
earlier in the disease process (Hays et al., 2016). This notion
is supported by longitudinal studies of ageing demonstrating
that alterations in cerebral haemodynamics are detectable in
cognitively intact older adults, and are predictive of future
dementia risk (Wolters et al., 2017).

THE NEUROVASCULAR UNIT IN

DEMENTIA

The neurovascular unit is formed by the neurone and its
supporting cells (astrocytes, endothelial cells, pericytes, and
smooth muscle cells) (Iadecola, 2017). They are closely related
both structurally and functionally to ensure the tight coupling of

neuronal activity and cerebral blood flow, termed neurovascular
coupling (NVC) (Iadecola, 2017). This is achieved through
feedforward and feedback mechanisms as a result of the release
of active metabolites and chemical mediators (Hosford and
Gourine, 2019). De-coupling of these processes has been shown
to occur in animal models of AD (Girouard and Iadecola,
2006). Human studies have demonstrated conflicting findings of
both increased (Corriveau-Lecavalier et al., 2019), and decreased
(Beishon et al., 2018) vascular responses to cognitive stimulation.
These opposing findings may reflect compensatory mechanisms
occurring early in the disease process, vs. the failure of these
mechanisms at later stages (Merlo et al., 2019).

Therefore, deficiencies occurring in one or more components
of the NVU threaten this tightly coordinated system. Inadequate
matching of perfusion to neuronal activity will fail to clear the
active metabolites generated by a resource intensive process, the
accumulation of which can result in neurotoxicity (Girouard
and Iadecola, 2006). Furthermore, inadequate perfusion will
limit the provision of oxygen and glucose, essential for optimal
neuronal function and cell signalling, thus limiting the capacity
for cognitive function (Girouard and Iadecola, 2006).

THE NVU AS A BIOMARKER AND

THERAPEUTIC TARGET IN DEMENTIA

As a result of these findings, increasing interest in the NVU
as both a biomarker and therapeutic target has emerged. A
number of neuroimaging based methods have been used to
detect abnormalities in cerebral haemodynamics occurring in
healthy, mildly impaired, or established dementia (Hays et al.,
2016). A number of neuroimaging based biomarkers have been
investigated, and can be broadly divided into portable and
non-portable based techniques. Portable techniques have the
advantage of providing a simple, bedside measurement with
excellent temporal resolution and continuous monitoring of
haemodynamic measures (Panerai, 2009; Balardin et al., 2017).
Studies measuring metabolic changes, as a proxy for perfusion,
have demonstrated good sensitivity and specificity to differentiate
stable and progressive forms of mild cognitive impairment (MCI)
(Henderson, 2012; Marcus et al., 2014). However, many of these
techniques remain confined to the research domain, and are only
recommended where the diagnosis remains uncertain (National
Institute for Health Care Excellence, 2018).

In terms of vascular targets, the majority of research has
focussed on currently available treatments to modify vascular
risk, such as antihypertensive drugs (Bhat, 2015). Given the
extensive evidence supporting a role for vascular mechanisms
in the development of AD, modification of vascular risk is an
attractive and amenable target. However, to gain benefit, these
factors are likely to need controlling in mid-life given that
these risks translate into cognitive decline over a sustained and
longer period (Livingston et al., 2020). Furthermore, the role for
vascular risk, and particularly blood pressure reduction, remains
uncertain for people with established dementia (Harrison et al.,
2016). A recent Cochrane review found limited evidence to
support antihypertensive withdrawal in dementia, and may
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result in increased cardiovascular events (Jongstra et al., 2016).
Data from observational studies suggest cerebral autoregulation
remains intact in MCI and dementia (De Heus et al., 2018),
and a recent study demonstrated improved hippocampal CBF
in patients with dementia treated with nilvadipine (Jong et al.,
2019). The RADAR trial is currently ongoing, and will investigate
the effects of losartan in mild to moderate AD on brain
atrophy, white matter hyper intensities, and cerebral blood
flow (Kehoe et al., 2018). Recently, interest has been gaining
momentum on the effects of lifestyle interventions (exercises,
diet, cognitive intervention) on cerebrovascular function, and
whether multi-modal interventions can promote vascular brain
health. In two recent systematic reviews (Beishon et al.,
2020), cognitive training has been demonstrated to alter brain
volumes and functional connectivity in MCI and dementia,
but few studies have specifically investigated their effects on
vascularmechanisms. Finally, novel therapeutic targets have been
proposed around the various components of the NVU (Zlokovic,
2011). Vasculoprotective agents that target blood brain barrier
function (e.g., activated protein C) and promote integrity are
promising (Zlokovic, 2011). Similarly, mediators that promote
angiogenesis (vascular endothelial growth factor) or improve
amyloid-beta clearance (insulin like growth factor) may also be
beneficial (Zlokovic, 2011).

DISCUSSION

In summary, vascular mechanisms play a key role in
development and progression of cognitive dysfunction.
Importantly, disruption to vascular physiology occurs early in
the disease process, providing a potential target to prevent or
delay the onset of dementia. Despite this breadth of evidence
demonstrating both structural and functional damage to the
cerebrovascular system in early dementia, few vascular targets
have been the subject of large-scale randomised controlled trials.
Disappointingly, in a recent review, few trials employed agents
or targets of vascular dysfunction (Huang et al., 2020). This
suggests more work is needed in both animal models to identify
potential targets, and in patients to take these targets to clinical
trials. Importantly, the identification of new targets has been
hampered by a lack of translation between animal models and
clinical trials (Cavanaugh et al., 2014). Current transgenic animal
models of AD most closely represent inherited forms of AD,
which are not the dominant phenotype seen in clinical practise

(Cavanaugh et al., 2014). These models will have a bias towards
amyloid-based pathology, and may not reflect the alterations
to vascular structure and function seen in humans, particularly
with late-onset AD. Furthermore, the amyloid pathology in
animal models does not correlate well with that seen in humans,
suggesting there are key differences in the pathological basis
of AD development between species (Cavanaugh et al., 2014).
BBB dysfunction has been demonstrated in animal models
of AD (Montagne et al., 2017), but amongst genetic-based
models which may be pathologically distinct from late onset
AD seen clinically. In addition to drug-based targets, research
is urgently needed to clarify the role of lifestyle interventions
on cerebrovascular disease in dementia risk reduction and
treatment. Lifestyle interventions are resource intensive, and
can be physically and mentally demanding for people with
dementia to undertake. The Finnish Geriatric Intervention Study
to Prevent Cognitive Impairment and Disability (FINGER)
randomised at-risk older adults to an intensive programme of
diet, exercise, cognitive training, and vascular risk monitoring,
lasting 2 years (Ngandu et al., 2015). The trial found small
benefits to cognitive function in the intervention group, with
a drop-out rate of ∼12% (Ngandu et al., 2015). Given that
benefits to cognitive function tend to be small, and the long
trajectory to cognitive decline, cerebrovascular biomarkers as a
surrogate for clinical outcome measures could be beneficial in
reducing the durations required for clinical trials to demonstrate
effectiveness. However, limited information is available on the
effects of such multi-modal interventions on cerebrovascular
function, and their relationship to longer term clinical outcomes.
Future trials of lifestyle interventions would benefit from the
addition of cerebrovascular outcomes to understand the effects
on vascular structure and function, which could contribute to
the identification of novel therapeutic targets.
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Prostaglandin E2 (PGE2) has been widely proposed to mediate neurovascular coupling
by dilating brain parenchymal arterioles through activation of prostanoid EP4 receptors.
However, our previous report that direct application of PGE2 induces an EP1-
mediated constriction strongly argues against its direct action on arterioles during
neurovascular coupling, the mechanisms sustaining functional hyperemia. Recent
advances have highlighted the role of capillaries in sensing neuronal activity and
propagating vasodilatory signals to the upstream penetrating parenchymal arteriole.
Here, we examined the effect of capillary stimulation with PGE2 on upstream arteriolar
diameter using an ex vivo capillary-parenchymal arteriole preparation and in vivo cerebral
blood flow measurements with two-photon laser-scanning microscopy. We found that
PGE2 caused upstream arteriolar dilation when applied onto capillaries with an EC50

of 70 nM. The response was inhibited by EP1 receptor antagonist and was greatly
reduced, but not abolished, by blocking the strong inward-rectifier K+ channel. We
further observed a blunted dilatory response to capillary stimulation with PGE2 in
a genetic mouse model of cerebral small vessel disease with impaired functional
hyperemia. This evidence casts previous findings in a different light, indicating that
capillaries are the locus of PGE2 action to induce upstream arteriolar dilation in the
control of brain blood flow, thereby providing a paradigm-shifting view that nonetheless
remains coherent with the broad contours of a substantial body of existing literature.

Keywords: functional hyperemia, cerebral small vessel diseases, CADASIL, microcirculation, neurovascular
coupling, potassium channel, prostaglandin E2, epidermal growth factor receptor

INTRODUCTION

As a leading cause of stroke and dementia, cerebral small vessel diseases (SVDs) pose a horrendous
threat to the elderly population (Pantoni, 2010; Wardlaw et al., 2019). Despite their major
contribution to age-related vascular cognitive impairment and disability (Iadecola et al., 2019),
the disease processes and key biological mechanisms underlying these disorders remain largely
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unknown. Moreover, there are no specific treatments outside the
management of vascular risk factors and use of anti-platelets
after ischemic stroke. However, accumulating experimental
evidence suggests that functional alterations in the cerebral
microcirculation have early and deleterious consequences on
functional hyperemia—the ability of the brain to increase local
blood flow in response to local increases in neuronal activity
(Huneau et al., 2018; Iadecola et al., 2019).

Cerebral Autosomal Dominant Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy (CADASIL) is the most
common genetic form of cerebral SVDs. Remarkably, CADASIL
includes all clinical and MRI manifestations of sporadic SVDs,
hence offering a lens through which to view more common
forms of sporadic SVDs (Chabriat et al., 2009). Both CADASIL
patients and the TgNotch3R169C mouse model, hereafter referred
to as SVD mice, exhibit deficits in functional hyperemia at an
early stage of the disease progression (Joutel et al., 2010; Huneau
et al., 2018). We have recently demonstrated that activation
of the epidermal growth factor receptor (EGFR) by its ligand
heparin-binding EGF-like growth factor (HB-EGF) ameliorates
the cerebral vascular deficits of the SVD mouse—including
impaired functional hyperemia (Capone et al., 2016; Dabertrand
et al., 2021). Part of this effect is mediated by reenabling capillary-
to-arteriole signaling during the neurovascular coupling that
underpins functional hyperemia (Dabertrand et al., 2021). In
physiological conditions, action potentials increase extracellular
K+ concentration which activates the strong inward-rectifier K+
(Kir2.1) channel in capillary endothelial cells (cECs). This creates
a hyperpolarizing signal that rapidly propagates to upstream
arterioles, driving vasodilation and local hyperemia (Longden
et al., 2017; Harraz et al., 2018a; Moshkforoush et al., 2020).
This mechanism is vulnerable to pathology, and we recently
demonstrated that SVD lowers the synthesis of the phospholipid
PIP2, which prevents Kir2.1 channels from acting as sensors of
increases in external K+ (Dabertrand et al., 2021). Strikingly, we
showed that both HB-EGF and systemic injection of exogenous
PIP2 improved functional hyperemia deficits in SVD mice by
restoring capillary-to-arteriole signaling.

Functional hyperemia is a vital process controlled by multiple
mechanisms that provide layers of redundancy, and thus
neurovascular coupling agents other than K+ ions have been
postulated (Attwell et al., 2010; Kaplan et al., 2020). Among these,
prostaglandin E2 (PGE2), produced by cyclooxygenase-2 (COX-
2) from arachidonic acid, has been widely proposed to be released
from excitatory neurons to relax arteriolar smooth muscle cells
(SMCs) by activation of the GS protein-coupled prostanoid
EP4 receptor and subsequent cyclic adenosine monophosphate-
dependent pathway (Zonta et al., 2002; Takano et al., 2005;
Gordon et al., 2008; Attwell et al., 2010; Lacroix et al., 2015).
Yet, this interpretation appears incompatible with our previous
demonstration that PGE2 causes constriction, rather than
dilation, when applied directly to isolated cortical arterioles—
an effect that occurs via activation of the Gq protein-coupled
prostanoid EP1 receptor (Dabertrand et al., 2013). Consistent
with these observations, the EP1 receptor is robustly expressed
not only in the arteriolar SMCs, but also in cECs of the brain
microcirculation (Vanlandewijck et al., 2018). We therefore

hypothesized that PGE2 contributes to neurovascular coupling
by initiating a vasodilatory signal from the capillaries to the
upstream parenchymal arterioles, rather than by targeting SMCs
directly. Using a combination of ex vivo and in vivo approaches,
we report that capillary stimulation with PGE2 induces upstream
arteriolar dilation and increases blood flow in vivo. Consistent
with defective functional hyperemia, we further show that PGE2-
induced capillary-to-arteriole signaling is blunted in the SVD
mouse model and can be rescued by HB-EGF.

MATERIALS AND METHODS

Animals
All experimental protocols used in this study were approved by
the Institutional Animal Care and Use Committee (IACUC) of
the University of Colorado, Anschutz Medical Campus. Adult
(2–3 months old) male C57/BL6J mice (Jackson Laboratories,
United States), were housed on a 12-h light:dark cycle with
environmental enrichment and free access to food and water.
TgNotch3WT (WT) and TgNotch3R169C (SVD) lines have been
previously described (Joutel et al., 2010) and were used at
6 months of age in order for the TgNotch3R169C mice to
develop the SVD phenotype, and for consistency with our
previous studies (Dabertrand et al., 2015, 2021; Capone et al.,
2016; Fontaine et al., 2020). All mice were euthanized by i.p.
injection of sodium pentobarbital (100 mg/kg) followed by
rapid decapitation.

Ex vivo Capillary-Parenchymal Arteriole
Preparation
The CaPA preparation was obtained as previously described
(Longden et al., 2017; Rosehart et al., 2019) by dissecting
intracerebral arterioles arising from the M1 region of the
middle cerebral artery, leaving the attached capillary bed intact.
Arteriolar segments were cannulated on glass micropipettes with
one end occluded by a tie and pressurized using a Living Systems
Instrumentation (United States) pressure servo controller with
a mini peristaltic pump. The ends of the capillaries were
then sealed by the downward pressure of an overlying glass
micropipette. CaPA preparations were superfused (4 mL/min)
with prewarmed (36◦C ± 1◦C), gassed (5% CO2, 20% O2,
and 75% N2) artificial cerebrospinal fluid (aCSF) for at least
30 min. The composition of aCSF was 125 mM NaCl, 3 mM
KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 1 mM MgCl2,
4 mM glucose, 2 mM CaCl2, pH 7.3 (after aeration with 5%
CO2). Application of pressure (40 mmHg) to the cannulated
parenchymal arteriole segment in this preparation pressurized
the entire tree and induced myogenic tone in the arteriolar
segment. Only viable CaPA preparations, defined as those
that developed pressure-induced myogenic tone greater than
15%, were used in subsequent experiments. Arteriolar viability
was validated by bath-applying NS309 (1 µM), which causes
an endothelial-dependent vasodilation through activation of
small- and intermediate-conductance, Ca2+-sensitive K+ (SK
and IK, respectively) channels, or the thromboxane receptor
agonist U46619 (1 µM), which causes robust vasoconstriction.
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Dilatory responses of the attached arteriole segment to K+
and PGE2 were obtained by applying aCSF containing 10 mM
K+ or PGE2 onto capillary extremities by pressure ejection
from a glass micropipette (tip diameter, ∼5 µm) attached
to a Picospritzer III (Parker, United States) at ∼5 psi for
20 s. The dose-responses were performed using pipettes filled
with the different concentrations of PGE2 and testing them
sequentially starting with the lowest concentration. Contrary
to arteriolar endothelial cells, cECs do not express functional
IK and SK channels and spatial restriction of the drugs
applied onto the capillary ends was validated by the lack
of response to local stimulation with NS309 (1 µM), as
previously described (Rosehart et al., 2019). In some control
experiments, K+ and PGE2 were applied directly to the
arteriole segment and the other drugs were applied via the
bath perfusion. The luminal diameter of the parenchymal
arteriole was acquired at 15 Hz using a CCD camera and
IonWizard 6.2 edge-detection software (IonOptix, United States).
Two regions were simultaneously recorded, zone 1 where
the capillary tree sprouted from of the arteriole and zone 2
located 250 µm upstream of this, and diameter from both of
these sites was averaged unless noted otherwise. Changes in
arteriolar diameter were calculated from the average luminal
diameter measured over the last 10 s of stimulation and were
normalized to the maximum dilatory responses in 0 mM
Ca2+ bath solution at the end of each experiment using the
following equation: [(change in diameter)/(maximal diameter-
initial diameter)]× 100.

In vivo Imaging of Cerebral
Hemodynamics
As previously described (Longden et al., 2017), mice were
anesthetized with isoflurane (5% induction and 2% maintenance)
during the surgical procedure. The skull was exposed, cleaned,
and a stainless-steel head plate was attached with a mixture
of dental cement and superglue. Isoflurane was replaced with
α-chloralose (50 mg/kg) and urethane (750 mg/kg) during
recording. FITC-dextran (2000 kDa) was injected via the retro-
orbital sinus to visualize the cerebral vasculature and for contrast
imaging of RBCs. A penetrating arteriole, identified by the
direction of the RBCs flowing into the brain, was followed
and a downstream capillary was selected for study in cortical
layers 2 or 3. A pipette was then maneuvered into the brain
and positioned adjacent to the capillary under study, and aCSF
containing, or not, 1 µM PGE2 was ejected (200–300 ms,
8 ± 1 psi, ∼4 picoliters). The ejected volume was monitored
by including 0.2 mg/mL tetramethylrhodamine isothiocyanate
(TRITC; 150 kDa)-labeled dextran in the pipette (Figure 1E).
RBC flux data were collected by line scanning at 5 kHz. Images
were acquired using a Zeiss LSM-7 multiphoton microscope
(Zeiss, United States) equipped with a 20x Plan Apochromat
1.0 N.A. DIC VIS-IR water-immersion objective and coupled
to a Coherent Chameleon Vision II Titanium-Sapphire pulsed
infrared laser (Coherent, United States). FITC and TRITC were
excited at 820 nm, and emitted fluorescence was separated
through 500–550 and 570–610 nm bandpass filters, respectively.

Reagents
HC030031, HC067047, PGE2, NS309, and SC51322 were
purchased from Tocris Bioscience (United States); All other
chemicals and reagents were obtained from Sigma-Aldrich
(United States). The vehicle for HB-EGF solutions was 0.2-µm–
filtered PBS containing 0.1% BSA.

Statistical Analysis
Data in figures and text are presented as means ± standard
error of the mean (SEM). Statistical testing was performed
using GraphPad Prism 8 software. All data passed the
Kolmogorov–Smirnov test for normality. Statistical significance
was determined using one-way analysis of variance (ANOVA)
followed by Tukey’s post hoc test, unless otherwise stated.

RESULTS

To investigate the effect of capillary stimulation with PGE2 on
upstream arteriolar diameter, we used our previously developed
ex vivo capillary-parenchymal arteriole (CaPA) preparation that
allows to apply vasoactive substances at specific points along
the arteriole-capillary continuum by pressure ejection (Longden
et al., 2017; Rosehart et al., 2019). Consistent with our previous
report that PGE2 acts as a vasoconstrictor (Dabertrand et al.,
2013), local application of 1 µM PGE2 directly on the arteriolar
segment caused a decrease in diameter (Figures 1A–C). In
contrast, and as expected (Longden et al., 2017; Dabertrand
et al., 2021), 10 mM K+ also applied on the arteriole caused
a robust dilation. Interestingly, either 10 mM K+ or 1 µM
PGE2 caused upstream dilations when applied onto capillary
extremities and the amplitudes of these were virtually identical
(56.2% ± 3.9% and 47.8% ± 4.2%, respectively) (Figures 1A–
C and Supplementary Movie 1). However, the kinetics of
the responses appear significantly different with slower onset
(5.27± 1.35 s) and time to peak (9.65± 1.5 s) for PGE2 compared
to K+ responses, (1.7± 0.4 s and 3.87± 1.13 s, respectively).

We next tested the effect of increasing concentrations of
PGE2 locally applied to the arteriolar segment and observed
a concentration-dependent constriction with a calculated EC50
of 145 nM (Figure 1D). The arteriolar dilation in response
to capillary stimulations with PGE2 was also concentration-
dependent with a calculated EC50 of 70 nM and a maximal
response at 1 µM, and thus we chose to use the latter
concentration throughout the study for capillary stimulation
(Figure 1E and Supplementary Movie 1). Finally, we tested the
effect of a modest concentration of PGE2 (500 nM) applied via the
bath perfusion, hence stimulating both the capillary ends and the
arteriolar segment, and measured a small but clear constriction
(Figures 1F,G).

In our initial report of capillary-to-arteriole electrical signaling
(Longden et al., 2017), we identified the cEC strong inward-
rectifier K+ channel, Kir2.1, as the molecular cornerstone
of the capillary-to-arteriole electrical mechanism elicited by
capillary stimulation with 10 mM K+. Increasing extracellular
K+ concentration from 3 to 10 mM activates Kir2.1 channels
in cECs, which induces a regenerative hyperpolarization that

Frontiers in Aging Neuroscience | www.frontiersin.org 3 August 2021 | Volume 13 | Article 69596544

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-695965 August 9, 2021 Time: 12:36 # 4

Rosehart et al. PGE2 as a Neurovascular Coupling Agent

FIGURE 1 | PGE2 causes upstream arteriolar dilation when applied onto capillaries. (A) Pipette positions for arteriole stimulation (left, 5 orange arrow) and capillary
stimulation (right, purple arrow) in CaPA preparations. (B) Representative trace of arteriolar diameter showing effects of pressure ejection of 10 mM K+ or 1 µM
PGE2 onto arteriole (P1, orange dot) and capillaries (P2, purple triangle). (C) Summary data from 6 mice (n.s., not significant; ****P < 0.0001, one-way ANOVA,
Tukey’s test). (D) Concentration-response curve produced by locally applying PGE2 to the arteriolar segment over a concentration range of 1 nM to 3 µM (5 mice).
An EC50 of 145 nM was calculated from the non-linear regression curve. (E) Concentration-response curve produced by locally applying PGE2 to capillary
extremities over a concentration range of 1 nM to 3 µM (8 mice). An EC50 of 70 nM was calculated from the non-linear regression curve. (F) Representative trace of
arteriolar diameter showing effects of bath application of 500 nM PGE2. (G) Summary data from 5 mice.
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FIGURE 2 | Kir channel blocker Ba2+ (30 µM) inhibits the propagation, not
the initiation, of the PGE2-induced upstream arteriolar dilation. (A) Micrograph
showing Zone 1 and Zone 2 positions for arteriolar diameter recording during
capillaries stimulation (black arrow) with 1 µM PGE2. (B) Representative
traces of arteriolar diameter at zone 1 and zone 2 showing the effect of 30 µM
bath-applied Ba2+ on PGE2-induced upstream dilation. (C) Summary data
from 5 mice (n.s., not significant; **P < 0.01, ***P < 0.001, one-way ANOVA,
Tukey’s test).

travels retrogradely to dilate the upstream arteriole. Consistent
with this model, 30 µM Ba2+—which, among the inward rectifier
K+ channels expressed in the microcirculation, preferentially
blocks Kir2 channels (Longden and Nelson, 2015)—completely
abolished the arteriolar dilation in response to capillary-applied
10 mM K+. Therefore, we tested the effect of Ba2+ on arteriolar
dilation induced by capillary stimulation with PGE2. Arteriolar
diameter was recorded at two distinct zones: zone 1 was placed
at the branching of the transitional segment from the arteriole
and zone 2 was located 250 µm upstream of this (Figure 2A).
PGE2 locally applied onto capillaries led to similar dilatory
responses in zone 1 (49.1% ± 5.5%) and zone 2 (48.2% ± 2.9%)
(Figures 2B,C). Remarkably, bath application of 30 µM Ba2+

decreased upstream arteriolar dilation at zone 1 in response to
capillary stimulation with PGE2 by 63% and virtually eliminated
dilation at zone 2. The onset of the remnant dilation observed
at zone 1 was unchanged by Ba2+ (5.27 ± 1.35 s 6.49 ± 2.81 s).
Taken together, these data suggest that the Kir2.1 channel is not
required to initiate PGE2-induced upstream arteriolar dilation,
but rather participates in the amplification and propagation of
the vasodilatory signal, as evidenced by the difference between
zone 1 and zone 2.

To investigate the mechanistic underpinnings of the capillary-
to-arteriole signaling induced by PGE2, we first superfused the
ex vivo CaPA preparation with 1 µM SC51322, a prostanoid
receptor antagonist specific for the EP1 receptor. SC51322
abolished the response to PGE2, while the dilation induced by

FIGURE 3 | Activation of capillary EP1 receptor initiates PGE2-induced
upstream dilation independently of TRPV4 and TRPA1 channels.
(A) Representative traces of arteriolar diameter showing effects of pressure
ejection of PGE2 1 µM onto capillaries in absence or presence of SC51322
(1 µM, EP1 antagonist), HC067047 (1 µM, TRPV4 antagonist), and
HC030031 (3 µM, TRPA1 antagonist). (B) Summary data from 5 to 8 mice
(n.s., not significant; ***P < 0.001, one-way ANOVA, Dunnett’s test).

10 mM K+ remained intact (Figures 3A,B). This observation
suggests that PGE2 acts through activation of G protein-coupled
receptors of the Gq/11 subtype (GqPCR) and subsequent Ca2+

signaling. Depletion of plasma membrane phosphatidylinositol
4,5-bisphosphate (PIP2) following GqPCR activation is known to
stimulate transient receptor potential (TRP) channels, a major
pathway for extracellular Ca2+ influx (Kim et al., 2008; Harraz
et al., 2018b). Moreover, recent work by Thakore et al. (2021)
has revealed that activation of TRPA1 channel in cECs can
initiate a biphasic, propagating retrograde signal that dilates
upstream parenchymal arterioles during functional hyperemia.
However, the TRPA1 antagonist HC030031 at 3 µM had no
effect on the dilation induced by capillary stimulation with PGE2
(Figures 3A,B). Inhibition of TRPV4, another Ca2+-permeable
TRP channel expressed by cECs (Harraz et al., 2018b), with 1 µM
HC067047 also did not impact the effect of PGE2 (Figures 3A,B).
These results suggest that PGE2 induces upstream arteriole
dilation via activation of the EP1 receptor but independently of
TRPV4 and TRPA1 channels.

We then tested the ability of PGE2 to dilate upstream
arterioles in vivo by measuring capillary red blood cell (RBC)
flux with two-photon laser-scanning microscopy. Fluorescein
isothiocyanate (FITC)-labeled dextran was used to visualize the
cortical microcirculation and a pipette containing 1 µM PGE2
was maneuvered into the brain through a cranial window and
positioned next to a capillary of interest (Figure 4A). Pressure
ejection (8± 1 psi) for up to 300 ms of PGE2 evoked a significant
increase in capillary RBC flux (1 = 12 ± 4 RBCs/s) consistent
with the notion that the mechanisms we observed in CaPA
preparations are also at play in the intact system (Figures 4B–D).
In contrast, ejection of aCSF vehicle had no effect on capillary
RBC flux (Figure 4E). To determine whether PGE2 also causes
upstream dilation we next performed experiments in which we
imaged at the parenchymal arteriole-transitional zone junction
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FIGURE 4 | PGE2 causes capillary hyperemia in vivo. (A) Micrograph of mouse cortical vasculature showing a micropipette containing PGE2 and TRITC-dextran
(yellow) in close apposition to a capillary (FITC-dextran, purple). (B) Red blood cell (RBC) flux was measured by high-frequency line scanning over a period of 1 min
at baseline (top panel) and after application of 1 µM PGE2 (lower panel) onto a capillary. RBCs appear as black streaks in plasma (purple). (C) Average traces (black
line) plus SEM (gray lines) showing the increase in RBC flux to PGE2. The dip immediately following the ejection of PGE2 is caused by momentary pressure on the
capillary wall. (D) Summary data of RBC flux showing significant hyperemia following capillary stimulation with 1 µM PGE2 (n = 14 experiments, 6 mice, *P < 0.05,
paired Student’s t-test). (E) In contrast, ejection of aCSF vehicle onto capillaries had no effect on RBC flux (n = 9 experiments, 5 mice, P > 0.05, paired Student’s
t-test). (F) Overlay showing the diameter of a penetrating arteriole and the transitional segment to the capillary bed at baseline (green) and after PGE2 ejection onto a
downstream capillary (magenta). The upstream dilation was most prominent in the region highlighted by the white arrowheads. (G) Summary data showing upstream
dilation to capillary ejection of PGE2 (n = 5 experiments, 4 mice, **P < 0.01, paired Student’s t-test). (H) In contrast, simultaneous stimulation of both capillaries and
arterioles with PGE2 in vivo led to constriction (n = 7 experiments, 3 mice, **P < 0.01, paired Student’s t-test).

(Figure 4F). Here, we found that ejection of 1 µM PGE2
selectively onto capillaries routinely produced a small upstream
dilation (Figures 4F,G and Supplementary Movie 2). In contrast,
if we applied PGE2 onto both capillaries and arterioles in vivo by
increasing the duration of ejection, causing spread of the ejected
solution to the upstream arteriole along a paravascular route, we
observed constriction (Figure 4H), consistent with our ex vivo
data. As expected, ejection of aCSF vehicle alone had no effect on
upstream arteriolar diameter (12.95± 0.57 µm baseline diameter
vs. 12.96± 0.8 µm after aCSF ejection, n = 6 experiments, 3 mice,
P = 0.97, paired Student’s t-test).

Finally, we investigated the effect of SVD on PGE2-initiated
capillary-to-arteriole signaling. Ex vivo stimulation of capillaries
from SVD mice with PGE2 induced an upstream arteriolar

dilation that was 58% smaller at Zone 1 and 64.8% smaller at
Zone 2 compared with that in TgNotch3WT control (WT) mice,
revealing attenuated PGE2-mediated signaling (Figure 5). The
difference between zone 1 and 2 dilations were not significant. We
previously reported that activation of the epidermal growth factor
receptor (EGFR) by its ligand heparin-binding EGF-like growth
factor (HB-EGF) ameliorates the cerebral vascular deficits of the
SVD mouse—including neurovascular coupling and functional
hyperemia deficits (Capone et al., 2016; Dabertrand et al., 2021).
We then directly tested the effect of HB-EGF on PGE2-induced
upstream vasodilation in ex vivo preparations from SVD mice.
Bath-applied 30 ng/mL HB-EGF dramatically enhanced the
upstream arteriolar dilation induced by capillary stimulation
with PGE2, increasing the average dilation from 19.8% ± 1% to
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FIGURE 5 | In the SVD mouse model, blunted upstream arteriolar dilation in response to capillary stimulation with PGE2 is completely restored by bath application of
30 ng/ml HB-EGF. (A) Cartoon showing Zone 1 and Zone 2 positions for arteriolar diameter recording during capillaries stimulation with 1 µM PGE2.
(B) Representative traces of arteriolar diameter showing the effect of pressure ejection of PGE2 1 µM onto capillaries in absence or presence of 30 ng/ml HB-EGF in
a preparation from SVD mouse model. (C) Summary data from 5 to 6 mice (n.s., not significant; **P < 0.01, ***P < 0.001, one-way ANOVA Dunnett’s test).

FIGURE 6 | Proposed mechanism involving PGE2 during functional
hyperemia and its inhibition in cerebral small vessel disease (CADASIL).
Intracellular increases in Ca2+ caused by phospholipase C activation during
EP1 signaling triggers a propagating vasodilatory signal that is amplified by Kir
channel in the transitional segment region. CADASIL, which lowers the pool of
phospholipase C substrate PIP2, would limit the synthesis of the second
messenger IP3, resulting in a reduced PGE2-evoked upstream dilation during
functional hyperemia.

48.7%± 4.3% at Zone 1, and from 16.8%± 1.4% to 45.3%± 5.1%
at Zone 2 (Figure 5 and Supplementary Movie 3). HB-EGF
completely restored PGE2-induced upstream dilation, abolishing
the differences measured between WT and SVD animals.

DISCUSSION

Our progress in understanding functional hyperemia in
health and disease has been hampered by large gaps in
our comprehension of the mechanism underlying this

basic physiological response—and persistent controversies
surrounding it (Kaplan et al., 2020). Our recent work identified
Kir2.1 channels in cECs as the molecular cornerstone initiating
and propagating a retrograde hyperpolarizing vasodilatory signal
from capillaries to arterioles (Longden et al., 2017; Harraz et al.,
2018a; Moshkforoush et al., 2020; Dabertrand et al., 2021). The
present study extends this capillary-based paradigm, providing
support for a new signaling modality that posits a central
role for the GqPCR EP1 receptor in mediating PGE2-induced
vasodilatory signal that propagates upstream to cause dilation
of feeding parenchymal arterioles (Figure 6). Importantly, these
findings hold the promise of resolving controversies surrounding
how PGE2, a widely proposed mediator of neurovascular
coupling (Zonta et al., 2002; Takano et al., 2005; Gordon et al.,
2008; Attwell et al., 2010; Watkins et al., 2014), can promote
functional hyperemia despite evidence that it directly constricts
arterioles (Dabertrand et al., 2013).

Our observations raise the immediate question of which effect
of PGE2, capillary-mediated vasodilation or direct arteriolar
constriction, predominates during neurovascular coupling. We
calculated an EC50 of 145 nM for the PGE2-induced constriction
of the parenchymal arteriole, while the vasodilation induced
by capillary stimulation displayed an EC50 of 70 nM. In
our experimental conditions, a simultaneous stimulation of
capillaries and the arteriole with 500 nM PGE2 led to a
constriction, suggesting that the arteriolar effect prevails when
both vascular segments are exposed to PGE2. A possible
explanation for these observations is that the microvascular
response to PGE2 has a kinetic component in which the fast
constriction predominates over the slower capillary-mediated
response. However, this stimulation via the bath perfusion likely
does not reflect in vivo conditions. Accordingly, we tested the
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effect of increasing our ejection duration in vivo such that
PGE2 not only stimulated the targeted capillaries but also spread
upstream to the arteriole. Here too this maneuver produced
arteriolar constriction, again suggesting that this response will
predominate when the arteriole is exposed directly to PGE2.
Since the dense capillary network within the brain lies in close
proximity to all neurons (Nishimura et al., 2007; Blinder et al.,
2013), it is expected that cECs are the primary sensors of
neuronal activity and any neurally derived PGE2. Therefore, the
vasodilatory effect would be expected to predominate during
neurovascular coupling in physiological conditions and our
data suggest that this occurs through local exposure of the
capillaries to PGE2. However, a variety of brain conditions,
including ischemia and neurodegeneration (Minghetti, 2004), are
known to up-regulate COX-2 expression in excitatory neurons
which results in an EP1-dependent neurotoxicity of PGE2
(Kawano et al., 2006). In this pathological situation, higher PGE2
concentrations could lead to arteriolar constriction and then
contribute to PGE2 neurotoxicity by limiting local blood supply.

Neuronal activation leads to rapid increases in blood
flow within, and on the surface, of the brain. Hillman and
colleagues elegantly provided evidence for involvement of the
endothelium in stimulus-evoked, conducted vasodilation from
the brain parenchyma to arterioles and pial arteries in vivo
(Chen et al., 2014). Our previous study on neurovascular
coupling demonstrated how capillary endothelium is capable of
transmitting an electrical signal to cause upstream vasodilation
in support of functional hyperemia (Longden et al., 2017).
We showed that activation of the Kir2.1 channel in cECs by
extracellular K+ ions propagates a regenerative hyperpolarization
from cell-to-cell up to the feeding arteriole to cause vasodilation
(Longden et al., 2017; Harraz et al., 2018a; MacMillan and
Evans, 2018). Interestingly, recent work from Thakore et al.
(2021) showed that 4-hydroxynonenal (4-HNE), an endogenous
product of lipid peroxidation, activates transient receptor
potential ankyrin 1 (TRPA1) channel in cECs to cause upstream
arteriolar dilation during functional hyperemia. These recent
findings introduce the concept that a slowly propagating short-
range Ca2+ signal is initiated in the capillary endothelium
and converted into the fast-propagating hyperpolarization
that causes dilation of upstream arterioles. The conversion
is proposed to occur in the transitional region between the
capillaries and the arteriole (Ratelade et al., 2020) by activation
of the small- and intermediate-conductance Ca2+-activated
K+ channels (SK and IK, respectively) and amplification of
the hyperpolarization by Kir channel (Thakore et al., 2021).
The transitional region refers to the first segment sprouting
out of the arteriole, visible on Figure 1 micrographs, while
local stimulations are applied onto the 3rd and 4th order
capillary branches after the transitional region. A vast body
of literature reports (de Wit et al., 1999; Domeier and Segal,
2007; Bagher and Segal, 2011) supports the concept that a
propagating Ca2+ signal is capable of acting through IK/SK
channels, which are not present in cECs (Longden et al.,
2017) but are expressed by transitional and arteriolar ECs
(Hannah et al., 2011; Thakore et al., 2021). The generated
hyperpolarizing signal is further amplified via Kir channel

activation (Sonkusare et al., 2016) and conveyed through
myoendothelial junctions to adjacent SMCs. In the dilation
induced by capillary stimulation with PGE2, inhibition of the
Kir2.1 channel with Ba2+ had a profound effect, particularly
measurable on the propagation of the dilation, which is
consistent with the biphasic propagative model proposed
by Thakore et al. (2021). Interestingly, inhibition of TRPA1
channels did not prevent PGE2 from causing upstream
dilation, suggesting a different initiation mechanism, likely
involving Gq protein activation and inositol trisphosphate
(IP3)-mediated Ca2+ release, as opposed to direct Ca2+

entry across the plasma membrane. Our previous work
also highlighted the role of GqPCR activation in breaking
down phosphatidylinositol 4,5-bisphosphate (PIP2), resulting
in decreased Kir2.1 channel activity and increased open
probability of the Ca2+/Na+-permeable TRPV4 channel
(Harraz et al., 2018a,b, 2020). However, blocking TRPV4
channels had no effect on the dilation induced by PGE2
either. Given these data, we propose that EP1-initiated
IP3-dependent Ca2+ signals arriving in the transitional
segment activate endothelial IK/SK channels, and the ensuing
membrane potential hyperpolarization activates Kir channels,
converting the incoming Ca2+ signal into a Kir-dependent
hyperpolarizing signal. The characterization of such a Ca2+

signal will require more extensive investigation, but the
vasodilation induced by capillary stimulation with PGE2 is
clearly central to the postulated role of this molecule as a
neurovascular coupling agent.

Cerebral SVDs have emerged as a central link between
two major co-morbidities. They account for more than 30%
of strokes worldwide and at least 40% of dementia cases
(Pantoni, 2010; Iadecola, 2013). CADASIL is caused by dominant
mutations in the NOTCH3 receptor, expressed by SMCs and
pericytes, that stereotypically lead to the extracellular deposition
of the NOTCH3 ectodomain (NOTCH3ECD), which recruits and
aggregates other proteins on vessels, ultimately forming deposits
termed granular osmiophilic material (GOM) (Joutel et al.,
2000, 2016; Chabriat et al., 2009). One of these proteins is the
tissue inhibitor of metalloproteinases 3 (TIMP3), which directly
complexes with NOTCHECD and abnormally accumulates in
the extra cellular matrix of brain vessels in patients and
mice with CADASIL (Monet-Leprêtre et al., 2013). A deficit
in CBF hemodynamics, including functional hyperemia, is an
early disease manifestation in patients (Chabriat et al., 2000;
Pfefferkorn et al., 2001; Liem et al., 2009; Huneau et al., 2018)
and a prominent feature of the well-established TgNotch3R169C
CADASIL mouse model used in the present study (Joutel et al.,
2010; Capone et al., 2016; Dabertrand et al., 2021). Our recent
work indicates that TIMP3 effects on cerebrovascular reactivity
are attributable to inhibition of ADAM17 and subsequent
suppression of EGFR signaling by inhibition of ectodomain
shedding of its ligand HB-EGF (Dabertrand et al., 2015, 2021;
Capone et al., 2016).

Consistent with this model, we previously found
that EGFR activation with exogenous soluble HB-EGF
restores cerebral arterial tone and functional hyperemia
(Dabertrand et al., 2015, 2021; Capone et al., 2016). Here, we
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found that PGE2-induced dilation was impaired in the CADASIL
mouse model and fully restored by HB-EGF.

We previously identified two downstream consequences of
the suppressed TIMP3-ADAM17-EGFR signaling module: (i)
the upregulation of voltage gated K+ (KV1.5) channels in the
arteriolar SMCs (Dabertrand et al., 2015; Capone et al., 2016);
and (ii) the partial inhibition of Kir2.1 channels in cECs, but
not in arteriolar ECs and SMCs (Dabertrand et al., 2021).
Here, we report a third consequence: the disruption of PGE2-
induced capillary-to-arteriole signaling, reinforcing the concept
that extracellular matrix alterations have profound impacts
on cerebrovascular dynamics in SVDs. Using computational
modeling, we previously investigated the impact of KV channel
upregulation on membrane potential dynamics in the context
of concurrent activation of myocyte Kir channels (Koide et al.,
2018). Interestingly, while these analyses showed that a higher KV
channel current density would reduce the membrane potential
range over which Kir channels can be activated to cause and
propagate dilation, the more hyperpolarized resting membrane
potential (9 mV) actually facilitates Kir channel activation.
Thus, arterioles from the CADASIL mouse model would still
hyperpolarize and dilate in response to Kir channel opening, as
observed experimentally (Dabertrand et al., 2015; Koide et al.,
2018), but at the cost of a smaller vasodilatory reserve. At the
capillary level, we previously described, and modeled, how a
50% reduction in cECs Kir2.1 current is sufficient to completely
abolish the capillary-to-arteriole electrical signaling in response
to 10 mM K+ (Harraz et al., 2018a; Moshkforoush et al., 2020),
and then strongly reduces functional hyperemia in the CADASIL
mouse model (Dabertrand et al., 2021). We attributed this
endothelial dysfunction to a reduced cEC metabolism caused
by inhibition of the EGFR pathway (Dabertrand et al., 2021).
The resulting lower ATP/ADP ratio in CADASIL compared to
WT cECs decreases the synthesis of PIP2 and its availability to
act as an essential cofactor for Kir2.1 channel—hence reducing
the channel activity (Huang et al., 1998; Hansen et al., 2011;
Harraz et al., 2018a, 2020). Of particular note, PIP2 is also
a substrate for phospholipase C during EP1 signaling, and a
reduced pool of PIP2 would certainly limit the synthesis of the
second messenger IP3, which mobilizes Ca2+ from endoplasmic
reticulum stores through its action on its cognate receptor.
The observation that HB-EGF restores both Kir2.1- and PGE2-
initiated signaling is consistent with this concept. The impact
of CADASIL on neurovascular coupling is thus multifaceted,
involving disruption of two different propagating signals sharing
connections to the EGFR pathway in cECs, and Kir channel
activation in the transitional and arteriolar segments.

We have made major progress in establishing potential
contributing mechanisms to cerebral hemodynamics impairment
observed at an early stage of CADASIL, a Mendelian paradigm
of SVDs (Chabriat et al., 2009) and the most common
hereditary cause of stroke (Pantoni, 2010) and dementia (Schmidt
et al., 2012). Here we demonstrate that functional hyperemia
deficits in this SVD involve a PGE2-initiated capillary-to-
arteriole signal that is normally regulated by the TIMP3-
ADAM17-EGFR signaling module. Furthermore, the evidence
that PGE2 induces arteriolar dilation via capillary stimulation

has the potential to reconcile disparate findings in neurovascular
studies. Our mechanistic studies thus lay the groundwork
for novel targeted strategies for treating CADASIL and other
cerebrovascular diseases.
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Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in
the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological
conditions in which the decline of cognitive functions, including executive functions,
is associated with structural and functional alterations in the cerebral vasculature.
Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease
(cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular
functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling
dysfunction, and inflammation. Accumulation of neurovascular impairments over time
underlies the cognitive function decline associated with VaD. Furthermore, several
vascular risk factors, such as hypertension, obesity, and diabetes have been shown to
exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly,
air pollution constitutes an underestimated risk factor that triggers vascular dysfunction
via inflammation and oxidative stress. The review summarizes the current knowledge
related to the pathological mechanisms linking neurovascular impairments associated
with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution,
to VaD etiology and progression. Furthermore, the review discusses the major challenges
to fully elucidate the pathobiology of VaD, as well as research directions to outline new
therapeutic interventions.

Keywords: vascular dementia (VaD), stroke, cerebral small vessel disease (cSVD), neurovascular abnormalities,
blood-brain barrier, neuroinflammation, air pollution

INTRODUCTION

Dementia affects nearly 50 million people worldwide, and the World Health Organization (WHO)
estimates that this number will triple by 2050 (Patterson, 2018). Dementia is a heterogeneous
neurodegenerative pathology that encompasses Alzheimer’s disease (AD), vascular dementia
(VaD), Lewy body dementia (LBD), frontotemporal dementia (FTD), and Parkinson’s disease (PD).
Although the overall prevalence of dementia is higher in agingmen, its severity is more pronounced
in aging females, a disparity that might implicate sex hormones (Appelros et al., 2009; Podcasy and
Epperson, 2016; Poorthuis et al., 2017). VaD comes just after AD as a main cause of dementia,
accounting for approximately 15–20% of dementia cases in the Western countries and could reach
up to 30% in Asia and developing countries (Rizzi et al., 2014). Vascular deficiencies are now
considered relevant contributors to mixed dementia (MxD), which accounts for 25–35% of all
dementia cases (Jellinger, 2007; Rosa et al., 2020).
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The Vascular Impairment of Cognition Classification
Consensus Study (VICCCS) defines VaD as ‘‘clinically significant
deficits in at least one cognitive domain comprising sensation,
perception, motor skills and construction, attention and
concentration, memory, executive functioning, processing speed
and language/verbal speed, that are of sufficient severity to
cause severe disruption of activities of daily living’’ (Sachdev
et al., 2006; Andrianopoulos et al., 2017; Skrobot et al., 2018).
The cognitive functions are assessed through the Montreal
Cognitive Assessment Test which evaluates five cognitive
domains; executive function, attention, memory, language,
and visuospatial function (Pendlebury et al., 2012; Skrobot
et al., 2018; Iadecola et al., 2019). Diagnosis of VaD is
divided into two major research fields; cognitive tests and
neuroimaging. Indeed, the diagnosis does not rely only on
memory impairments, but it is supported by the presence of
diverse cognitive deficits accompanied by diagnostic imaging
evidencing cerebrovascular abnormalities such as brain atrophy,
white matter hyperintensities, infarcts, and hemorrhages.
Accordingly, four different subtypes arise: post-stroke dementia
(PSD) in which dementia appears 6 months after stroke,
subcortical ischemic vascular dementia (SIVaD), multi-infarct
dementia, and MxD (Skrobot et al., 2018). The cognitive deficits
associated with VaD are caused by structural and functional
vascular abnormalities that are exacerbated with age. These
abnormalities promote the emergence of chronic alterations
in the neurovascular functions that underlie the etiology of
cognitive decline observed in VaD (Figure 1).

VaD is tightly associated with several risk factors that
can be categorized into four groups, which comprise: (i)
cerebrovascular disease-related factors; (ii) atherosclerotic
factors, such as smoking, myocardial infarction, diabetes
mellitus, and hyperlipidemia; (iii) demographic factors, such as
age, biological sex and education; and (iv) genetic factors, such as
the emergence of mutations leading to vascular encephalopathies
(Ritchie and Lovestone, 2002; Gorelick, 2004). Noteworthy, these
vascular risk factors are now being recognized as clinical risk
factors for AD pathology (O’Brien and Markus, 2014; Figure 1).

The cerebrovascular disease-related factors include cerebral
tissue loss volume, bilateral cerebral infarction, strategic
infarction, and white matter disease (WMD; Ritchie and
Lovestone, 2002; Gorelick, 2004). Furthermore, hypertension
was shown to be associated with larger white matter and
smaller brain volumes, silent or strategical subcortical or
cortical infarcts, and loss of volume in the thalamus or
temporal lobe that are critical for cognitive functions (Ritchie
and Lovestone, 2002; Gorelick, 2004). While age remains a
principal risk factor for dementia, the presence of familial
dementia history, and the epsilon 4 allele of apolipoprotein E
(ApoE)4 susceptibility gene were recognized as an important risk
factor for VaD (Ritchie and Lovestone, 2002; Gorelick, 2004).
In addition, variables such as the female sex, various types of
infection of lipid concentrations, history of head injury, head
circumference, hormone replacement therapy (HRT), as well as
thyroid dysfunction and preceding history of depression could
interact with ApoE genotype and hence increase the risk of
dementia (Ritchie and Lovestone, 2002; Gorelick, 2004). The

genetic factors include vascular encephalopathies such as cerebral
autosomal dominant arteriopathy with subcortical infarcts and
leukoencephalopathy (CADASIL), autosomal recessive cerebral
arteriopathy with subcortical infarcts and leukoencephalopathy
(CARASIL), and potentially ApoE4 (Ritchie and Lovestone,
2002; Gorelick, 2004). Recently, environmental factors, namely
air pollution, have been shown to constitute an important, yet
underestimated, risk factor for dementia, inducing VaD and AD
(Azarpazhooh and Hachinski, 2018; Béjot et al., 2018). Indeed,
numerous studies have demonstrated that the elevated levels of
air pollutants are directly linked to brain chronic inflammation
and neurodegenerative diseases (Campbell et al., 2005; Schwartz
et al., 2005; Calderón-Garcidueñas et al., 2007; Hartz et al.,
2008; Block and Calderón-Garcidueñas, 2009; Mills et al., 2009;
Rozemuller et al., 2012; Paul et al., 2019). Among air pollutants,
ultrafine particles (UFPs) are particularly deleterious due to
their ability to reach the brain where they act as inflammatory
triggers and neurotoxins (Block and Calderón-Garcidueñas,
2009; Hameed et al., 2020).

As mentioned, VaD prevalence is strongly linked to
cerebrovascular diseases, which essentially include stroke and
cerebral small vessel disease (cSVD; Grinberg and Thal, 2010;
Gorelick et al., 2011; Jellinger, 2013). Indeed, one patient in
10 has a stroke before developing a form of dementia that is not
related to AD. In turn, cSVD was found in up to 62% of patients
diagnosedwith VaD, outlining a strong correlation between these
pathologies (Gorelick et al., 2011; Venkat et al., 2015; van Veluw
et al., 2017; Shih et al., 2018; Iadecola et al., 2019). Stroke and
cSVD are characterized by the dysfunction of the neurovascular
unit, which anatomically comprises sealed endothelial cells
forming the blood-brain barrier (BBB), perivascular cells that
include pericytes, and vascular smooth muscle cells (VSMCs),
astrocytes, microglia, and neurons (Hermann and ElAli, 2012).
The neurovascular unit integrates signals from the different
neighboring cells to generate critical functions that include
BBB maintenance, neurovascular coupling, vascular stability,
and immunomodulation (Zlokovic, 2011; Hermann and ElAli,
2012). Neurovascular functions are impaired after stroke and
cSVD leading to BBB dysfunction, neurovascular uncoupling,
hypoperfusion, inflammation, and loss of neurons (Zlokovic,
2008, 2011; Guo and Lo, 2009; Moskowitz et al., 2010). These
pathological events are at the origin of ischemic and hemorrhagic
lesions, which strongly correlate with the cognitive deficits
observed in VaD.

Despite being the second most common form of dementia
after AD, little is known about the molecular and cellular
mechanisms underlying the pathobiology of VaD. This gap in
the literature is mainly due to disease heterogeneity in the
clinical setup and the lack of an optimal experimental model
that can accurately replicate most of the pathological events
underlying the etiology and progression of the different forms
of VaD. It is now established that accumulation of brain lesions
over time mediated by neurovascular impairments constitutes
a major contributor to the pathobiology of VaD in the elderly
(Venkat et al., 2015; Corrada et al., 2016; Ince et al., 2017;
Summers et al., 2017; van Veluw et al., 2017; Shih et al., 2018).
The review summarizes the current knowledge related to the
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pathological mechanisms underlying the pathobiology of VaD
with an emphasis on stroke, cSVD and risk factors with a focus
on air pollution. We will discuss the challenges and research
directions that might help in a better understanding of VaD
pathobiology, thereby outlining new therapeutic interventions.

MAJOR RISK FACTOR-MEDIATED
MECHANISMS IMPLICATED IN VAD
PATHOBIOLOGY

Stroke-Related Dementia
Ischemic or hemorrhagic strokes trigger major
pathophysiological mechanisms that underlay VaD (Mijajlović
et al., 2017). Indeed, epidemiological studies indicate that
stroke history doubles the risk of dementia in the elderly
(<65 years) and increases the incidence of early mortality
(Savva and Stephan, 2010). Approximately 10% of patients
exhibit signs of dementia before their first cerebrovascular
accident, and another 10% manifest cognitive deficits soon
after their first event (Desmond et al., 2002; Pendlebury and
Rothwell, 2009). Particularly, recurrent stroke events raise the
prevalence of dementia to 30%, constituting the most prominent
causal factor of the disease (Pendlebury and Rothwell, 2009).
Noteworthy, an examination of the association between stroke
rates and dementia in the frame of the National Long-Term Care
Survey (NLTCS) between 1984–2001 reported that the elevated
incidence of post-stroke dementia is related to increased patient
survival, due to clinical improvements in stroke management
(Ukraintseva et al., 2006). Assessment of the neuropsychological
parameters revealed that deterioration of the executive functions,
abstraction, visual memory, and visuoconstruction constitute
some of the most critical long-term cognitive disabilities
observed in stroke patients (Sachdev et al., 2004). In contrast,
praxis-gnosis, working memory, and language have been shown
to be impacted to a lesser extent (Sachdev et al., 2004). The
Sydney Stroke Study disclosed that in 50–85 years old patients
diagnosed with VaD, the stroke volume and premorbid function
were the most significant determinants of cognitive deterioration
following the initial insult (Sachdev et al., 2006). It is remarkable
to notice that in the last decade, stroke incidence increased by
23% in young adults aged between 35 and 50 years, especially
because of the unhealthy lifestyle that meaningfully increased
the rate of risk factors in this population, including smoking,
hypertension, and obesity (Ekker et al., 2019; George, 2020). Due
to the advances in acute stroke care, young stroke patients live
longer and thus are at high risk of developing dementia at later
stages (Pinter et al., 2019).

BBB Dysfunction
Hallmark of stroke pathophysiology (Yang et al., 2019),
BBB dysfunction constitutes a pivotal factor implicated in
the initiation and exacerbation of the cascade of events
leading to dementia (Zlokovic, 2011; Sachdev et al., 2014;
Noe et al., 2020). Following primary injury, BBB breakdown
allows the uncontrolled infiltration into the brain of blood-
borne molecules, including plasma proteins, metabolites,
neurotoxic compounds, and peripheral immune cells that

contribute to secondary injury progression via edema formation,
neuroinflammation, and glial reactivity (Halder and Milner,
2019; Koizumi et al., 2019) that aggravate the initial neurological
deficits (Khanna et al., 2014; Jiang et al., 2018). The experimental
findings indicate that acute BBB impairment is widely mediated
by early inflammatory mediators, such as cytokines and
chemokines, as well as oxidative stress, including reactive oxygen
species (ROS) and reactive nitrosative species (RNS; Yang et al.,
2019). The action of these substrates is further potentiated by
matricellular proteins, proteoglycans, and metalloproteinases
(MMPs) secreted in the extracellular space (Jones and Bouvier,
2014). Experimental and clinical studies revealed that MMP-9
significantly contributes to long-term BBB breakdown in
several brain disorders, namely stroke and neurodegenerative
diseases (Barr et al., 2010; Montagne et al., 2017; Underly et al.,
2017; Figure 2).

Upon ischemic stroke, MMP-9 is secreted by the cells
forming the neurovascular unit via regulation of the extracellular
signal-regulated kinase-(ERK)-1/2) and the signal transducer
and activator of transcription (STAT)-3 pathways, leading to
the degradation of basal lamina/extracellular matrix (ECM)
proteins, and the recruitment and extravasation of peripheral
immune cells (Nishikawa et al., 2018; Jäkel et al., 2020).
Interestingly, human brain studies showed that MMP-9 is
implicated in the degradation of type IV collagen at the
basal lamina, resulting in hemorrhagic transformations (Rosell
et al., 2006, 2008), enhanced leukocyte infiltration, and poor
neurological outcomes (Kim et al., 2016). In parallel, studies
employing MMP-9−/− mice showed that leukocyte-derived
MMP-9 plays an essential role in mediating BBB dysfunction
and is associated with elevated leukocyte transmigration that
exacerbates the inflammatory signaling in the acute phase of
stroke (Gidday et al., 2005). Furthermore, photothrombotic
mouse models of cerebral ischemia have reported that BBB
permeability at the level of the capillary is governed by pericytes
exhibiting MMP-9 activation, which was later neutralized by
specific MMP-9 inhibition (Underly et al., 2017). Elevated
MMP-9 activity has been also reported to be associated
with increased brain edema and IgG extravasation after
ischemia in hyperlipidemic mice (ElAli et al., 2011). These
observations indicate that hyperlipidemia exacerbates stroke-
mediated BBB dysfunction, which could eventually aggravate
dementia (Figure 2).

On an important note, stroke-inducedMMP-9 expression has
risen as an informative prognostic marker for a poor neurological
outcome, increased mortality, and the emergence of typical signs
of dementia (Zhong et al., 2017). Clinical investigations disclosed
that high MMPs expression correlates with increased levels of
albumin cerebrospinal fluid (CSF) in patients with vascular
cognitive impairment (VCI) derived from SIVD, multiple
strokes, and leukoaraiosis (Candelario-Jalil et al., 2011). In
parallel, independently of the presence of vascular risk factors,
elevated serum MMP-9 levels are associated with mild (25.6%
of patients) and severe (27.4%) cognitive impairment 3 months
following stroke according to theMini-Mental State Examination
and Montreal Cognitive Assessment (Zhong et al., 2018).
Moreover, high MMP-9 levels in patients with cardioembolic
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stroke involving the middle cerebral artery (MCA) territory
are related to large infarct volumes and poor behavioral scores
based on the National Institutes of Health Stroke Scale (NIHSS;
Montaner et al., 2001). Otherwise, the strong correlation between
MMP-9 expression and the hyperintense acute reperfusion injury
marker (HARM) has led to consider this protein as a revealing
marker for BBB disruption (Barr et al., 2010). Furthermore,
increased MMP-9 activity has been detected in the frontal and
parietal cortex of postmortem human brains diagnosed with AD
and patients exhibiting cognitive deficits (Bruno et al., 2009).
MMP-9 enhanced expression is also notable in the CSF of AD
patients, directly correlated with T-tau and P-tau levels (Stomrud
et al., 2010). Importantly, a longitudinal study (4–10 years)
enrolling AD and VaD patients revealed higher MMP-9 levels in
the CSF of VaD patients compared to AD or controls (Adair et al.,
2004). These findings imply that assessment of MMP-9 levels
might constitute a potential strategy to distinguish between the
different types of dementia.

Cell-based assays have demonstrated that exposure of
pericytes to amyloid-β (Aβ)42 induced MMP-9 activity, which in
turn ameliorated protein aggregation (Schultz et al., 2014). This
outlines the presence of a direct pathological link between the
molecularmarkers of dementia andMMP-9 activity, even though
MMP-9 is an active substrate for Aβ degradation (Hernandez-
Guillamon et al., 2015). Overall, current evidence suggests
that MMP-9-mediated BBB dysfunction following stroke may
constitute an early pathological mechanism that initiates the
neurodegenerative cascades leading to cognitive deficits over
time. Although MMP-9 inhibition has been proposed as a
therapeutic strategy to attenuate BBB breakdown after cerebral
ischemia (Dong et al., 2009; Chaturvedi and Kaczmarek, 2014),
animal studies showed that MMP-9 is required for neurovascular
remodeling and adaptation in the chronic phase after stroke
(Zhao et al., 2006). Furthermore, MMP-9 is implicated in the
clearance of various misfolded proteins involved in several
neurodegenerative diseases, such as Aβ (Hernandez-Guillamon
et al., 2015). The current knowledge implies that MMP-9 impact
on BBB breakdown and neurodegeneration is time and context-
dependent, which entails a contextualized modulation of protein
expression/activity to preserve BBB integrity and attenuate
cognitive deficits associated with stroke.

Post-stroke Neuroinflammation
Evidence obtained from AD studies outlined an important
pathological link among chronic neuroinflammation, vascular
damage, and cognitive decline in aged patients (Rhodin
and Thomas, 2001; Kinney et al., 2018). Importantly, the
neuroinflammatory responses associated with AD could
be observed as well in other forms of dementia, including
frontotemporal dementia (FTD; Bevan-Jones et al., 2020),
PD (Caggiu et al., 2019), and VaD (Iadecola, 2013).
Neuroinflammation plays a critical role in modulating tissue
injury and repair after stroke. This process integrates various
molecular and cellular mechanisms that comprise the release
of inflammatory and oxidative stress mediators, glial reactivity,
and peripheral immune cell activation and extravasation
(Guruswamy and ElAli, 2017; Dzyubenko et al., 2018; Jayaraj

et al., 2019). In this regard, uncontrolled microglial activation
and the subsequent release of proinflammatory cytokines
after stroke (Zhao et al., 2017) are strongly associated with
demyelination and axonal loss (Sachdev et al., 2004).

It has been reported that in a rodent model of cerebral
hypoperfusion, microglial activation via the complement (C)3-
C3aR pathway, which is implicated in myelin phagocytosis,
resulted in learning and memory deficits (Zhang et al., 2020).
Interestingly, the cognitive impairments were attenuated by the
genetic deletion of c3ar1 or via the administration of SB290157,
a potent C3aR antagonist (Zhang et al., 2020). Similarly,
experimental investigations using cerebral ischemia have shown
that fingolimod (FTY720), a potent agonist of sphingosine
1 phosphate (S1P), induced a microglial anti-inflammatory
phenotype (M2 phenotype) through the activation of STAT-3
signaling pathway (Qin et al., 2017). Modulating microglial
activation to adopt a protective M2 phenotype resulted in
enhanced oligodendrocytogenesis and white matter integrity,
and reduced cognitive deficiencies associated with working
memory (Qin et al., 2017). Induction of severe chronic cerebral
hypoperfusion (SCCH) in APP/PS1 mice that overproduced Aβ

accelerated spatial learning and memory decline in 4-month
adult animals. This was correlated to the accumulation of
parenchymal Aβ plaques in the hippocampus and diminished
activity of the ERK-1/2 pathway. APP/PS1 mice subjected to
SCCH had higher levels of patrolling monocytes in peripheral
blood. Interestingly, this model revealed that SCCH reduces
microglial interaction with Aβ plaques in the hippocampus,
denoting a reduced capacity for Aβ clearing in the brain
parenchyma (Bordeleau et al., 2016). Alternatively, the release
of prostaglandins, which act as inflammatory mediators upon
stroke, has been shown to be associated with exacerbated Aβ-
mediated cognitive decline and impaired synaptic plasticity
(Kotilinek et al., 2008; Figure 2).

Loss of white matter integrity by hyper-reactive ramified
and amoeboid microglia was also found in the posterior
cingulate cortex of post-mortem brains of patients diagnosed
with Down syndrome who are at higher risk of developing AD
neuropathology (Martini et al., 2020). Furthermore, microglia
in post-mortem AD brains exhibit accelerated aging and
transcriptional alterations associated with the isoforms of ApoE,
a protein broadly related to both dementia and cardiovascular
disease (Srinivasan et al., 2020). In this regard, findings from
subarachnoid hemorrhage in mice indicate that ApoE mediates
protective effects following injury by inducing M1 microglial
quiescence (Pang et al., 2018), suggesting that adequate lipid
metabolism modulates neuroinflammation. Functional human
brain investigations using positron emission tomography (PET)
coupled to 11C-PK11195, which is an in vivomarker of activated
microglia, have unraveled a progressive microglial activation
and neuroinflammation, which were correlated with long-term
(14 to 16 months) cognitive decline in AD patients (Malpetti
et al., 2020). In this regard, activated microglia exhibiting a
pro-inflammatory neurotoxic phenotype (M1 phenotype) trigger
the activation of pro-inflammatory astrocytes (A1 astrocytes)
via tumor necrosis factor (TNF)-α, interleukin (IL)-1α, and
C1q cytokines (Liddelow et al., 2017). In turn, A1 reactive
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astrocytes exacerbate oligodendrocyte and neuronal death
(Liddelow et al., 2017).

In line with these findings, an exaggerated astrocyte reactivity
has been related to dementia and cognitive decline (Jo et al.,
2014; Csipo et al., 2020). The evidence suggests that morbid
neuroinflammatory responses maintained by A1 reactive
astrocytes could result in mediating brain injury or age-related
neurodegeneration and cognitive deficits. For instance,
hippocampal astrocytes are susceptible to the upregulation
of inflammatory-related genes and pathways, such as C3 and
C4b, C-X-C motif chemokine ligand (CXCL)-10, and the
peptidase inhibitor serine protease inhibitor A3N (SERPINA3N;
Clarke et al., 2018). Interestingly, in a mouse model of familial
Danish dementia (FDD), abundant A1 reactive astrocytes were
detected in the brain, which correlated with the appearance of
cerebral amyloid angiopathy (CAA), a disease characterized by
the deposition of Aβ within the cerebral vasculature and a major
risk of VaD. In this context, an increased number of astrocytes
was observed in perivascular zones, accompanied by numerous
cell branches and enhanced glial fibrillary acid protein (GFAP)
expression (Taylor et al., 2020; Figure 2).

Several approaches have demonstrated that the usage
of anti-inflammatory strategies could attenuate cognitive
deficits associated with dementia. For instance, activation
of the cannabinoid receptor 2 (CB2R) using different agonists
promoted memory restitution through the reduction of oxidative
stress and mitochondrial dysfunction (Jayant and Sharma, 2016).
In line with these findings, cell-based assays have shown that
CB2R activation stimulated the microglial release of IL-10,
a key anti-inflammatory cytokine, via activation of ERK1/2,
c-Jun N-terminal kinase (JNK), and mitogen-activated protein
kinases (MAPKs) pathways, accompanied by the inhibition of
the nuclear factor-κB (NF-κB) pathway (Correa et al., 2010).
Likewise, administration of the CB2R agonist paeoniflorin (PF)
ameliorated memory and learning deficits in mice, accompanied
by induction of M2 cells and the release of anti-inflammatory
mediators, such as transforming growth factor (TGF)-β1,
and IL-10, instead of pro-inflammatory ones, such as TNF-
α, IL-1β, and IL-6. This phenotypic switch is driven by the
enhanced activity of phosphoinositide-3-kinase (PI3K/AKT)
anti-inflammatory pathway and the inhibition of the mammalian
target of rapamycin (mTOR)/NF-κB pro-inflammatory signaling
(Luo et al., 2018). Experimental findings indicate that the
inhibition of mTOR attenuated cognitive deficits, which were
accompanied by a restoration of M1/M2 microglia phenotypic
switch following cerebral hypoperfusion (Chen et al., 2016).

Remarkably, in a rodent model of VaD, it has been shown
that acupuncture could attenuate inflammation by reducing
TNF-α and Toll-like receptor (TLR)4 expression in microglia,
and suppressing the myeloid differentiation factor (MyD88)/NF-
κB pathway (Wang et al., 2020). Furthermore, pharmacological
administration of PLX5622, a potent inhibitor of colony
stimulating factor-1 receptor (CSF-1R) that is required for
microglial cell survival, improved short-termmemory in a rodent
model of induced hypertension. This effect was accompanied by
controlled microglia reactivity and preservation of BBB integrity
(Kerkhofs et al., 2020). It has also been demonstrated that

depletion of microglia viaCSF1R inhibition prevented Aβ plaque
development in the hippocampus of a mouse model of AD
(Spangenberg et al., 2019). Attenuation of microglial reactivity
via blockage of CCL-5 signaling also preserved BBB integrity in
the context of systemic inflammation (Haruwaka et al., 2019).
Taken together, there is strong evidence associating chronic
uncontrolled neuroinflammatory responses after stroke to the
emergence of long-term cognitive disabilities and dementia,
mediated essentially bymicroglial reactivity. Therefore, strategies
aiming to modulate microglial response by stimulating a
protective phenotype might constitute a potential approach to
attenuate VaD occurrence after stroke.

Stroke-Mediated Proteinopathies
Accumulation of Aβ in the brain constitutes a hallmark of AD
pathogenesis (Chen et al., 2017). Early studies using human
post-mortem brains revealed that amyloid precursor protein
(APP) is not implicated exclusively in AD pathology, and its
expression is as well induced in the brain after stroke (Cochran
et al., 1991; Jendroska et al., 1997). For instance, mutant mice
overexpressing APP exhibited a substantial reduction of cerebral
blood flow (CBF) accompanied by larger infarcts after stroke,
suggesting that APP exacerbated ischemic injury by impairing
structural and functional vascular integrity (Zhang et al., 1997).
Moreover, it has been shown that cerebral ischemia promotes
APP deposition in the lesion core, the perilesional regions, as well
as in the white matter areas exhibiting myelin loss (Nihashi et al.,
2001; Zhan et al., 2015).

Endothelin (ET)-1 is a powerful vasoconstrictor synthesized
by endothelial cells and reactive astrocytes, which have been
shown to be implicated in ischemic stroke pathobiology as
well as Aβ deposition. Examination of post-mortem human
brains showed strong ET-1 expression in reactive astrocytes
surrounding Aβ plaques (Hung et al., 2015). Furthermore, ET-1
overexpression in the acute phase after stroke has been involved
in BBB disruption, glial reactivity, and neuronal death. Indeed,
mutant mice exhibiting astrocytic ET-1 overexpression (GET-
1 mice) experience severe memory and spatial learning deficits,
associated with the upregulation of cleaved caspase-3, TNF-
α, and IL-1β (Thiel et al., 2014; Hung et al., 2015). Using
cell-based assays, ET-1 overexpression in reactive astrocytes
has been shown to amplify Aβ production (Hung et al.,
2015). Aβ accretion contributes to the development of cognitive
deficits by impairing the receptor for advanced glycation
endproducts (RAGE)-mediated Aβ clearance, which exacerbates
inflammation, oxidative stress, and neurodegeneration (Min
et al., 2020). These findings indicate that ET-1 upregulation
after ischemic stroke is tightly associated with Aβ production
and deposition and has considerable effects on excitotoxicity
and BBB integrity. Furthermore, comorbid models of Aβ

toxicity and cerebral ischemia have reported that Aβ deposition
exacerbates ischemic damage. This condition leads to ventricular
enlargement and striatal atrophy, morphological alterations in
microglia, increased production of inflammatory mediators and
enhanced glial communication via the gap junction proteins
connexin (CX)-43. These observations are particularly important
as ventricular enlargement was associated with deposition of
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neurofibrillary tangles and Aβ plaques, directly implicated in
the pathogenesis of various forms of dementia (Amtul et al.,
2015). Furthermore, evidence indicates that the interactions
among lipoprotein-associated triggering receptor expressed on
myeloid cells (TREM) 2 and apolipoproteins are involved in
modulating microglia-mediated Aβ phagocytosis (Yeh et al.,
2016), thus suggesting that Aβ clearance is associated with
lipid metabolism (Figure 2). Likewise, it has been shown that
exogenous administration of Aβ triggers tau phosphorylation
and magnifies learning and memory deficits in animals subjected
to cerebral ischemia (Song et al., 2013).

Finally, the generation of RNS, including peroxynitrite,
revealed by the formation of 3-nitrotyrosine (3-NT), is increased
in perivascular astrocytes and microglial cells after Aβ42
injection, strongly correlating with BBB leakage (Ryu and
McLarnon, 2006). These findings suggest that Aβ pathology
could trigger the release of reactive nitrogen species in astrocytes,
directly undermining cerebrovascular integrity. Moreover, it
has been demonstrated that Aβ binding to RAGE induces
ROS production leading to loss of the tight junction proteins
claudin-5, occludin, and zonula occludens (ZO)-1, as well as
deficient endothelial cell function (Carrano et al., 2011). Overall,
this bidirectional pathological crosstalk implies that exacerbated
cognitive decline strongly emerges when cerebral injury and Aβ

toxicity occur comorbidly.

cSVD
cSVD comprises numerous pathologies impacting cerebral
arteries, arterioles, venules, and capillaries, which are associated
with diverse pathological and etiological processes (Østergaard
et al., 2016; Staszewski et al., 2017; Li et al., 2018; Parkes et al.,
2018). Six different types of cSVD are classified according to
their etiology (Pantoni, 2010; Li et al., 2018). Atherosclerosis
and sporadic and hereditary CAA are the most frequent forms.
Recent reports outlined a significant increase in the number of
genetic microangiopathies distinct from CAA such as CADASIL
or Fabry’s disease (Razvi and Bone, 2006; Ballabio et al.,
2007; Dichgans, 2007; Hara et al., 2009). Microangiopathies
caused by inflammation or mediated by immunity are rare
and characterized by the presence of inflammatory cells within
the vasculature (Jennette and Falk, 1997), generally caused
by mechanisms associated with systemic pathologies. Venous
collagenosis is a pathologic thickening of the wall of veins and
venules that are located near the lateral ventricles, thus leading
to a smaller lumen and sometimes to an occlusion (Figure 2).
Finally, post-radiation angiopathies are a side effect of cerebral
irradiation that appears a few months to years after treatment.
These angiopathies mainly affect small vessels of the white matter
associated with fibrinoid necrosis, resulting in an increased
thickness of the walls accompanied by a reduced diameter, which
jointly could lead to a thrombotic occlusion (Dropcho, 1991).

cSVD Associated Parenchymal Pathology
cSVD refers to various and complex pathological and etiological
processes. Therefore, the clinical manifestations depend on
both the cause of the pathology and the affected brain
territory. Among the most common symptoms are stroke-related

manifestations, progressive cognitive deterioration, VaD, gait
disturbance, sphincter dysfunction, and psychiatric disorders
(van der Flier et al., 2005; Pantoni, 2010; Del Bene et al., 2013;
Li et al., 2018; de Laat et al., 2011). cSVD is thought to constitute
the major cause of vascular cognitive deficits and are responsible
for up to 45% of dementia cases (Shi andWardlaw, 2016; Li et al.,
2018). Cognitive deficits are associated with impaired executive
functions, decline in memory and attention, regression in verbal
fluency, and delayed recall. These symptoms are accompanied by
others that are not specific, including dizziness, trouble sleeping,
tinnitus, and hearing loss. Moreover, neuropsychiatric symptoms
can be observed, including hallucinations, agitation, depression,
anxiety, disinhibition, apathy, irritability, and changes in
appetite. Most of these manifestations are often accompanied by
brain microbleeds. Cerebral microangiopathies are accountable
for up to 20–30% of ischemic stroke as well as a considerable
proportion of hemorrhage and encephalopathies caused by
emboli, thrombosis, or stenosis of the vessel (Cai et al., 2015; Shi
and Wardlaw, 2016; Regenhardt et al., 2019).

In addition to the cerebrovascular pathologies, cSVD
exhibits a unique parenchymal pathology characterized by small
subcortical infarcts, lacunar stroke, microbleeds, white matter
hyperintensities (WMH), enlarged perivascular spaces, and brain
atrophy detectable in imaging (van der Flier et al., 2005; de
Laat et al., 2011; Del Bene et al., 2013; Wardlaw et al., 2013;
Li et al., 2018; Regenhardt et al., 2018; Das et al., 2019).
Small subcortical ischemic stroke is the result of severe tissue
ischemia caused by the occlusion of a perforating arteriole.
Patients either have typical stroke symptoms or a lesion visible
only using neuroimaging approaches (Wardlaw et al., 2013; Li
et al., 2018). Lesions can be anywhere in the brain and are
round or ovoid and less than 20 mm in diameter (Smith et al.,
2012; Brundel et al., 2012; van Veluw et al., 2017; Hartmann
et al., 2018). They appear hyperintense in a diffusion-weighted
image (DWI), hypointense on the map of apparent diffusion
coefficients, and normal to hyperintense in fluid-attenuated
inversion recovery (FLAIR)/T2 imaging (Okazaki et al., 2015;
Potter et al., 2015; Li et al., 2018). DWI is the most sensitive
technique currently used to detect ischemia a few hours after
stroke onset. Recent infarcts will form a cavity characterized
by morphological changes that include a reduction in volume
and diameter within 90 days of the onset of the infarction
(Moreau et al., 2012; Potter et al., 2015; Li et al., 2018). These
infarcts can evolve in three different ways, namely lacuna, WMH
without cavitation T2-weighted sequence, and finally, they could
disappear without visible consequences in conventionalmagnetic
resonance imaging (MRI). When a recent small subcortical
ischemic stroke resolves into lacuna, it actually forms a fluid-
filled cavity called a lacunar stroke and represents 40% of
acute ischemic strokes. Lacunar insults are divided in two
different categories; cavitated old infarcts and incomplete infarcts
(Fisher, 1965; Lammie et al., 1998; Regenhardt et al., 2018). Old
infarcts are pan-necrotic cavitation with scattered macrophages
whereas incomplete infarcts are described as exhibiting loss of
neurons and oligodendrocytes associated with invading CD68+

macrophages and reactive microglia in addition to reactive
astrocytes that are found inside and around the lesion site
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(Merino and Hachinski, 2000; Brundel et al., 2012; Regenhardt
et al., 2018).

The vascular damage can also develop into BBB leakage
or cerebral microbleeds, which appear as small, round, and
homogeneous hypointense foci on T2-weighted MRI and are
mostly asymptomatic. They originate essentially from the
rupture of a precapillary arteriole and are usually associated
with vascular risk factor exposition or vascular Aβ deposition
(Cordonnier et al., 2007; De Silva and Faraci, 2016; Shi
and Wardlaw, 2016; Toth et al., 2017). The rupture is
caused by various factors such as age, hypertension, cerebral
ischemia, dementia, and cerebral amyloid angiopathy (CAA),
and participates in cognitive deficits, dementia, and transient
neurological deficits (Martinez-Ramirez et al., 2014; Shi and
Wardlaw, 2016; Li et al., 2018). Microbleeds trigger proliferation
and migration of microglia and astrocytes as well as monocyte
recruitment (Liddelow et al., 2017). The immune cells release
various inflammatory factors that impair neuronal function, as
well as neurotransmitters that may be neurotoxic and interfere
with neuronal circuitry to promote cognitive decline (Tancredi
et al., 2000; Beattie et al., 2002; Rosidi et al., 2011; Donzis and
Tronson, 2014).

The cerebral white matter is composed of myelinated
axons, myelinating oligodendrocytes, oligodendrocyte precursor
cells (OPCs), astrocytes, and microglia (Hase et al., 2018).
WMH is common in older people and is a typical feature
of cerebral microangiopathies, which are associated with BBB
disruption, small white matter infarcts, glial activation, loss
of oligodendrocytes, and demyelination caused by chronic
diffuse hypoperfusion associated with a reduced CBF (Prins
and Scheltens, 2015; Li et al., 2018). WMH is generally located
within the white matter including the pons and brainstem but
also in the deep gray matter. It is distributed symmetrically
and bilaterally and appears hyperintense on FLAIR or T2 MRI.
Importantly, WMH triples the risk of stroke, doubles the risk of
dementia, and substantially increases the risk of death (Debette
and Markus, 2010; Pantoni, 2010; Shi and Wardlaw, 2016).
Symptoms develop insidiously and are associated essentially with
cognitive impairments, dementia, and depression (Debette and
Markus, 2010; Pantoni, 2010; Shi and Wardlaw, 2016).

The perivascular space is an extension of the subarachnoid
space that surrounds the brain microvasculature. It is a liquid-
filled space that cannot be detected by conventional imaging in
a physiological context. When this space is widened, it often
appears hyperintense on T2MRI, hypointensity on T1 weighting,
and sometimes hypointense on FLAIR (Aribisala et al., 2013; Shi
and Wardlaw, 2016; Li et al., 2018). Finally, brain atrophy refers
to a diminished brain volume on neuroimaging characterized by
symmetrical or asymmetrical decreased total volume, increased
ventricular volumes, enlarged superficial sulci, and decreased
specific gray or white matter volumes (Mok et al., 2011). One
main region affected is the hippocampus and is associated with
cognitive decline (Muller et al., 2011; Jokinen et al., 2012).

Atherosclerosis
Atherosclerosis is an age-related condition that constitutes a
major risk factor for cerebral microangiopathies. As its severity

is increased by diabetes and hypertension, it is also called
hypertensive microangiopathy (Tan et al., 2017; Li et al., 2018;
Ter Telgte et al., 2018). The risk factors for atherosclerosis
are also hyperlipidemia, smoking, and moderate to severe
sleep apnea (Østergaard et al., 2016; Cannistraro et al., 2019).
Atherosclerosis is characterized by a chronic inflammation
associated with the deposition of low-density lipoproteins
(LDL) within the vasculature, leading to its internalization
by endothelial cells (Tabas et al., 2015), and resulting in
the thickening and hardening of the arterial walls (Lusis,
2000; Shabir et al., 2018). Upon deposition, LDL undergoes
oxidation by ROS to form oxidized (ox)-LDL, which further
exacerbates the inflammatory response within the vasculature
(Tabas et al., 2007). Indeed, by binding to vascular cell adhesion
molecule (VCAM)-1 and P-selectin, monocytes can infiltrate
the intima and differentiate into macrophages to engulf ox-LDL
(Chistiakov et al., 2016). Macrophages, which are now called
foam-cells due to the intracellular accumulation of lipids (Spann
et al., 2012), accumulate and form stable fatty-streaks into
the intima, and cells can calcify over time to slowly occlude
the vessel (Alexander and Owens, 2012; Chistiakov et al.,
2017). These pathological events occur in large to medium
size arteries and lead to microbleeds, microinfarcts, as well
as lipohyalinosis, characterized by the deposition of hyaline
into the walls of connective tissue (Gorelick et al., 2011). This
aspect is specific to the brain due to inflammation caused
by ROS, ox-LDL, and gliosis involving astrocytes, OPCs, and
microglia (Caplan, 2015). Lipohyalinosis fosters the infiltration
of monocytes and T helper (TH)-1 lymphocytes that amplify
the production of inflammatory mediators, such as TNF-
α and interferon (INF)-γ (Stemme et al., 1995; Frostegård
et al., 1999). Moreover, the assembly of inflammasomes can
be promoted through the activation of nucleotide-binding
oligomerization domain (NOD)-like receptor protein (NLRP)-
3, stimulated by the formation of cholesterol crystals, caspase-1
and apoptosis-associated speck-like protein containing (ASC),
caspase activation and recruitment domain (CARD; Weber
and Noels, 2011). This results in IL-1β release, which in turn
stimulates the release of IL-6 and C-reactive protein (CRP),
implicated in the pathogenesis of atherosclerosis and thrombosis
(Ridker et al., 2017; Figure 2).

Besides, the elevated levels of LDL combined with the low
levels of high-density lipoprotein (HDL) play an important
role in the pathogenesis of atherosclerosis and constitute as
well a major risk factor for VaD (Hao and Friedman, 2014;
Georgakis et al., 2020). Indeed, HDL exerts a protective role
through its antioxidant properties and mediates beneficial effects
on platelets and endothelial function, thus on coagulation and
inflammation (Bandeali and Farmer, 2012). Furthermore, HDL
interacts with triglyceride-rich lipoproteins, attenuating their
deferential effects (Bandeali and Farmer, 2012). Moreover, it
could contribute to the removal of cholesterol excess from
the brain microvasculature through ApoE and heparin sulfate
proteoglycans (Mulder and Terwel, 1998). HDL counteracts
the inhibition of vessel relaxation caused by ox-LDL and
decreases LDL peroxidation which affects cellular function and
impairs membrane-bound receptors and enzymes (Braughler
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and Hall, 1992; Matsuda et al., 1993). Importantly, the impact of
hyperlipidemia seems to be differentially modulated depending
upon biological sex. Indeed, a recent study shows that females
exhibit greater expression of genes related to neuroprotection
in response to lipid stress compared to age-matching males
(Nuthikattu et al., 2020). Finally, lipid derivatives are now
being under the scope of researchers who are trying to unravel
novel biomarkers to better understand and diagnose VaD
pathology. Indeed, in an interesting recent study that aimed
to discover lipid biomarkers in the context of VaD, it has
been reported that patients with dementia exhibit low levels
for ceramides, cholesterol esters, and phospholipids, and high
levels of glycerides compared to controls (Liu et al., 2020). These
observations indicate that lipid derivatives could indeed be used
as novel diagnostic and prognostic biomarkers in VaD. However,
more research is needed in this direction to validate the use of
lipid derivatives as diagnostic and prognostic biomarkers in VaD.

Vascular damage caused by atherosclerosis can lead to
microatheromas, microaneurysms, and even stenosis or
obstruction of the vessel, impairing the mechanisms of
blood flow autoregulation and leading to chronic cerebral
hypoperfusion (Pantoni, 2010; Li et al., 2018). Importantly,
occlusion of the cerebral arteries results in local ischemia or
lacunar infarction (Kraft et al., 2017; Ter Telgte et al., 2018),
while stenosis and hypoperfusion in the white matter cause
incomplete ischemia lesions evidenced by neuroimaging as white
matter hyperintensity (Rigsby et al., 2007). When the pathology
affects the cerebral arterioles <50 µm in diameter, it is called
small cerebrovascular atherosclerosis (Li et al., 2018).

Sporadic and Hereditary CAA
CAA is a chronic degenerative disease characterized by the
loss of VSMCs and the accumulation into the vessel wall of
eosinophilic hyaline material composed of soluble Aβ40 (Attems
et al., 2011; Charidimou et al., 2017). CAA affects 50–60% of
the elderly population affected by dementia, including 85–95%
of AD cases (Sacco, 2000; Jellinger, 2002; Thal et al., 2003;
Keage et al., 2009; Charidimou et al., 2017; Zhang et al., 2017;
Li et al., 2018). The initial cognitive deficits associated with
VaD could be explained by the particular sensitivity of the
hippocampus and the cortex to CAA (Arvanitakis et al., 2011; Li
et al., 2018). CAA is associated with changes in basal membrane
(BM) composition and morphology that could predispose Aβ

accumulation in the vessel even though the mechanism is not
yet fully understood (Perlmutter et al., 1990, 1991; Su et al.,
1992; Morris et al., 2014; Howe et al., 2020). Among the
reported changes are BM thickening and degeneration, abnormal
heparan sulfate proteoglycans (HSPGs) deposits, and irregular
vasculature accompanied by increased collagen IV, fibronectin,
agrin, and perlecan expression (Berzin et al., 2000; Farkas et al.,
2000; Bourasset et al., 2009; Gama Sosa et al., 2010; Keable
et al., 2016; Lepelletier et al., 2017; Magaki et al., 2018; Singh-
Bains et al., 2019). Furthermore, vascular functional impairments
are featured by BBB dysfunction caused by loss of endothelial
cells, deregulation of mural cells mediated by oligomeric Aβ

accumulation, as well as induction of astrocytosis with dystrophic
endfeet surrounding BM Aβ deposits (Shimizu et al., 2009; de

Jager et al., 2013; Giannoni et al., 2016; Yang et al., 2017; Magaki
et al., 2018; Nortley et al., 2019). Two possible mechanisms for
Aβ deposition have been proposed: (i) release of vascular Aβ

from VSMCs directly into the vessel wall; and (ii) release of
parenchymal Aβ by neurons which deposits afterward into the
vessel wall (Davis et al., 2004; Herzig et al., 2004; Vidal et al.,
2009; ElAli et al., 2013). In both cases, the protein accumulates
due to a poor clearance towards the periphery (Davis et al.,
2004; Herzig et al., 2004; Vidal et al., 2009; ElAli et al.,
2013). Insufficient Aβ clearance can impair perivascular drainage
pathways or diminish the ATP binding cassette subfamily
B member-1 (ABCB1) and low-density lipoprotein receptor-
related protein (LRP)1, a specialized endothelial-mediated active
transport system implicated in Aβ mobilization from the
brain into the blood circulation, namely (Deane et al., 2004;
Herzig et al., 2006; Weller et al., 2008; Hawkes et al., 2011).
Interestingly, LRP1 plays an important role in protecting against
neurodegeneration. Indeed, LRP1 downregulation doesn’t only
affect Aβ clearance but causes as well BBB breakdown through
activation of MMP-9, thus leading to loss of neurons and
cognitive deficits (Nikolakopoulou et al., 2021). Furthermore,
recent evidence reveals that vascular Aβ could be engulfed and
eliminated by circulating patrolling monocytes, which act as the
housekeeper vascular homeostasis by surveying endothelial cells
(Auffray et al., 2007; Carlin et al., 2013; Michaud et al., 2013;
Thériault et al., 2015). In this regard, it has been demonstrated
that patrolling monocytes located at the luminal wall internalize
Aβ microaggregates that are diffusing from the parenchyma
into the blood. Unfortunately, patrolling monocyte ability to
phagocyte vascular Aβ in AD is defective, resulting in an
overall increase of highly toxic Aβ40 and Aβ42 oligomers (Hallé
et al., 2015; Gu et al., 2016). Moreover, chronic mild cerebral
hypoperfusion impairs BBB functional properties and promotes
the accumulation of circulating Aβ into the vessel wall, which
initiates the cascade of parenchymal Aβ deposition (ElAli et al.,
2013). Aβ accumulation and BM rearrangement trigger BBB
breakdown, endorsing the formation of perivascular edema and
the infiltration of toxic blood-derived substrates into the brain,
which in turn contribute to the exacerbation of localized injuries
and enlargement of the perivascular space (Holland et al., 2008;
Hartz et al., 2012; Wardlaw et al., 2013; Li et al., 2018; Figure 2).

The overwhelming evidence is suggesting that the here
mentioned vascular abnormalities leading to dementia reported
in CAA occur as well in different forms of dementia, including
AD and LBD (Salat et al., 2006; Okamoto et al., 2010;
Soontornniyomkij et al., 2010; Arvanitakis et al., 2011; Love et al.,
2014; Martinez-Ramirez et al., 2014; Reijmer et al., 2016; Li et al.,
2018). This form of cSVD can be sporadic or of a genetic origin.
For instance, a syndrome called hereditary brain hemorrhage
with amyloidosis (HBHA) is associated with a mutation in the
APP gene. This syndrome results in the deposition of misfolded
amyloid fibrils in the walls of cerebral arterioles, which in
turn activates a cascade of events leading to the development
of CAA. The clinical phenotype develops between the ages of
45–65 years and is associated with intracerebral hemorrhages,
WMH, multifocal lesions of a hemorrhagic and ischemic nature
(Kamp et al., 2014; Marini et al., 2020). The presence of ApoE4
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allele, which constitutes the main risk factor for AD, has also
been demonstrated to constitute an important risk factor for this
form of cSVD (Hermann and ElAli, 2012). ApoE4 is a lipid-
binding protein which plays an important role in lipoprotein
metabolism as well as transport of triglycerides and cholesterol
(Hirsch-Reinshagen et al., 2009). It binds to LDL, very-low-
density lipoprotein (VLDL) debris, and some HDL via LRP (Bu,
2009; Leduc et al., 2010). ApoE4 can form complexes with Aβ

and impairs Aβ through LRP thus attenuating its clearance and
subsequently leading to its accumulation in the brain (Cho et al.,
2001; Verghese et al., 2013). Moreover, ApoE4 increases the
formation of Aβ oligomers, which are now well established to
constitute the most neurotoxic form of Aβ (Hashimoto et al.,
2012; Youmans et al., 2012). Interestingly, human pericytes
of the prefrontal cortex and hippocampus of ApoE4 carriers
exhibit increased activation of nuclear factor of activated T-cells
(NFAT), which might account for CAA occurrence (Blanchard
et al., 2020; Figure 2).

Moreover, non-APP sources of CAA exist and are caused by
mutations of the BRI2 [i.e., integral membrane protein (ITM)2B]
gene, essentially a codon stopmutation. Indeed, processing of the
mutated form of BRI2 protein leads to the generation of 34-mer
amyloid Bri (ABri) and amyloid Dan (ADan) peptides that
accumulate in the brain, either to the ABri amyloid subunit or
the AD amyloidogenic fragment. ABri and ADan are responsible
for the Familial British (FBD) and Danish (FDD) dementia
characterized among other pathological features by severe CAA
(Vidal et al., 1999, 2000; Yamada and Naiki, 2012).

Genetic cSVD
Mutations in specific genes constitute the third most common
cause of cSVD, amongwhich themutation of the neurogenic locus
notch homolog protein (NOTCH)3 gene is the better characterized
(Cannistraro et al., 2019; Marini et al., 2020). NOTCH3 is
a member of the transmembrane receptor NOTCH family,
which is critically involved in developmental patterning, cell fate
decisions, regulation of cell survival, and proliferation (Kopan
and Ilagan, 2009; Bray, 2016; Baron, 2017; Hosseini-Alghaderi
and Baron, 2020). During adulthood, NOTCH3 regulates stem
cells and their lineages to promote tissuemaintenance and repair.
NOTCH3 is expressed by VSMCs and pericytes and plays a
key role in regulating the crosstalk between the mural and
endothelial cells. It controls the vascular tone and flow-mediated
dilation via the modulation of the Ras homolog family member
A (RHOA)/ Rho-associated protein kinase (ROCK) pathway in
cerebral arteries (Joutel et al., 2000; Belin de Chantemèle et al.,
2008; Li et al., 2009; Marini et al., 2020). However, the role of
NOTCH3 is not restricted to the vasculature, since it is expressed
in neural stem cells and is implicated in neuronal differentiation
(Alunni et al., 2013; Kawai et al., 2017).

A mutation in the NOTCH 3 gene is responsible for
CADASIL, the most common autosomal dominant inherited
cSVD (Louvi et al., 2006; Di Donato et al., 2017; Hosseini-
Alghaderi and Baron, 2020; Marini et al., 2020). NOTCH3 gene
is affected essentially by missense mutations that lead to an
odd number of cysteine residues located in the extracellular
domain of the encoded receptor, and is associated with an early

accumulation of the receptor’s extracellular domain containing
aggregates in small vessels (Joutel et al., 2000, 2001; Monet-
Leprêtre et al., 2013; Yamamoto et al., 2013). The function
and activity of the NOTCH3 receptor are differently impacted
by the mutations. However, the accumulation of extracellular
domain containing aggregates in small vessels leads to mural cell
degeneration via apoptosis or impaired proliferation (Joutel et al.,
2000, 2001; Monet-Leprêtre et al., 2013; Yamamoto et al., 2013).
Furthermore, the mutation itself causes profound morphological
changes in pericytes, associated with dysfunctional mitochondria
that could lead to oxidative and phosphorylation deficiencies,
secondary lysosomes, and large cytoplasmic vesicles that result
in cellular injury and autophagic apoptosis (de la Peña et al.,
2001; Gu et al., 2012). This cascade of events cause neurovascular
unit dysfunction characterized by detachment of astrocytic
endfeet, destabilization of the vasculature, deregulation of
vascular contractility, leakage of the BBB, and infiltration of
toxic blood-born components into the brain parenchyma due
to the decreased endothelial adherens junction protein, thus
jointly resulting in diminished reactivity to CO2 (Ghosh et al.,
2015; Figure 2).

Pericytes and endothelial cells are intimately interconnected
through peg-and-socket junctions, which degenerate upon
NOTCH3 mutations. For instance, endothelial cells exhibit
degenerative features, such as selective death or swelling, causing
vessel stenosis or occlusion (Dziewulska and Lewandowska,
2012). Deregulation of pericyte-endothelial cells crosstalk causes
cerebrovascular dysfunction that comprises reduced vascular
density and impaired CBF (Tuominen et al., 2004; Lacombe
et al., 2005; Miao et al., 2006; Gu et al., 2012; De Guio et al., 2014;
Liu X.-Y. et al., 2015; Ihara and Yamamoto, 2016; Ping et al.,
2019). Moreover, chronic cerebral hypoperfusion resulting from
cerebrovascular dysfunction exacerbates pericyte degeneration,
reduces pericyte coverage for the capillaries, and subsequently
increases BBB permeability leading to white matter impairments
and neuronal loss (Ueno et al., 2002; Bell et al., 2010; Montagne
et al., 2018; Liu et al., 2019; Nikolakopoulou et al., 2019). BBB
breakdown allows the infiltration into the parenchyma of toxic
blood-born metabolites that accumulate around the vasculature,
thus inducing macrophage, microglia, and T-cells activation
and recruitment, which jointly promote axonal degeneration
(Davalos et al., 2012; Ryu et al., 2015). Neuronal loss is mainly
provoked by the secretion of pro-inflammatory mediators
and the generation of ROS and RNS by pericytes within
the perivascular space, which further exacerbates leukocyte
adhesion and infiltration as well as microglial cell activation
(Matsumoto et al., 2018; Erdener and Dalkara, 2019). Finally,
the structural lesions within the white matter are worsened by
the release of pericyte-derived bone morphogenetic protein
(BMP)-4, which promotes astrogliosis (Uemura et al., 2018,
2020). Evidence of these pathological events could be detected
using imaging approaches that indicate WMH, ischemic
manifestations, subcortical hemorrhages, and microbleeds.
A new sensitive assay was recently developed allowing
pericyte injury detection in the CSF, a new technology that
could serve as a diagnostic tool for WMD (Sweeney et al.,
2020).
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FIGURE 1 | Scheme illustrating the continuum of risk factors that contribute to VaD etiology. VaD emerges as a conjunction of various risk factors affecting vascular
homeostasis, namely cerebrovascular diseases, atherosclerosis, genetic and environmental factors. VaD diagnosis is based on the evaluation of cognitive
deficiencies combined with neuroimaging to detect underlying vascular alterations. VaD, vascular dementia; CADASIL, cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy; CARASIL, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy; cSVD,
cerebral small vessel disease. Created with BioRender.com.

CADASIL develops gradually over time and the earliest
symptoms appear on average around 30 years of age, usually
10 years earlier in women than men, and are manifested as
migraines with aura (Guey et al., 2016; Di Donato et al., 2017).
The migraine could also manifest with atypical attacks with
basilar, hemiplegic, or prolonged aura and a few patients can
even develop very severe attacks leading to confusion, fever,
meningitis, or even coma that can mimic encephalopathy (Schon
et al., 2003; Vahedi et al., 2004; Ragno et al., 2013; Tan and
Markus, 2016; Drazyk et al., 2019). Adults between the age of
20 and 65 years are subject to transient ischemic attacks and
stroke (Lesnik Oberstein et al., 2001). CADASIL is associated as
well with some psychiatric manifestations, which include mood
disturbances, severe depression, and schizophrenia (Lågas and
Juvonen, 2001; Valenti et al., 2008, 2011; Noh et al., 2014; Ho
and Mondry, 2015; Di Donato et al., 2017). Finally, 40% of
symptomatic cases report apathy which drastically impacts the
quality of life of CADASIL patients (Reyes et al., 2009). The final
stage of CADASIL progression is dementia, but cognitive decline
starts years before (Brookes et al., 2016).

A recessive form of CADASIL exists under the name of
CARASIL. This form of hereditary cSVD is caused by the
mutation of the high-temperature requirement A serine peptidase
1 (HTRA1) gene which has two major functions, degrading

various substrates and inhibiting TGF-β1 signaling pathway that
is involved in various processes namely angiogenesis and BBB
formation via pericyte-endothelial cell crosstalk (Oka et al., 2004;
Hara et al., 2009; Shiga et al., 2011; Akhtar-Schaefer et al., 2019;
Kandasamy et al., 2020). HTRA1 is expressed in various brain
cells comprising endothelial cells and VSMCs (De Luca et al.,
2003; Oka et al., 2004; Campioni et al., 2010; Tennstaedt et al.,
2012; Tiaden and Richards, 2013). Loss of HTRA1 function
results in increased TGF-β1 availability and thereby signaling,
leading to vascular fibrosis and extracellular matrix synthesis,
which jointly cause microvascular degeneration, CBF reduction,
and neurogenesis alterations (Wyss-Coray et al., 2000; Tarkowski
et al., 2002; Gaertner et al., 2005; Yamamoto et al., 2011; Zhang
et al., 2012; Martinez-Canabal et al., 2013; Beaufort et al., 2014;
Friedrich et al., 2015). Moreover, the mutation has been shown to
be associated with impaired pericyte proliferation, accumulation
of protein within the vessel walls, MMPs activity, and BBB
permeability (Joutel et al., 2016; Baron-Menguy et al., 2017;
Ikawati et al., 2018; Marini et al., 2020). Cognitive decline begins
early compared with CADASIL, as well as gait disturbances,
lower back, pain and alopecia (Shiga et al., 2011; Marini et al.,
2020).

Fabry’s disease is an X-inherited rare disorder that belongs
to the family of lysosomal storage diseases and is caused by a
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FIGURE 2 | Scheme illustrating the mechanisms underlying VaD pathobiology. Several vascular risk factors are implicated in orchestrating pathological responses
leading to VaD: (i) BBB breakdown involves the impairment of TJs and degradation of BM formed by ECM proteins via MMP-9 activity. Plasma MMP-9 levels
constitute an effective prognostic marker for a poor neurological outcome; (ii) Post-stroke neuroinflammation comprises extravasation of peripheral immune cells and
secretion of inflammatory mediators (e.g., CRP, TNF-α, IL-1β, IL-6, IFN-γ), as well as ROS generation and glial activation, accompanied by cerebral Aβ aggregation;
(iii) Atherosclerosis comprises the accumulation of lipids and the calcification of immune cells into the intima, leading to vessel occlusion and hypoperfusion. This
condition is associated with the generation of ROS that causes chronic inflammation; (iv) CAA is associated with the degeneration of VSMCs and vascular Aβ

aggregation due to impaired clearance; (v) CADASIL is associated with NOTCH3 aggregation, causing endothelial cell swelling and pericyte degeneration and
subsequently CBF impairment; and (vi) Exposure to air pollution, which implies PM infiltration into the brain, exacerbates BBB breakdown and neuroinflammation.
VaD, vascular dementia; BBB, blood-brain barrier; TJs, tight junctions; BM, basement membrane; ECM, extracellular matrix proteins; MMP-9, matrix
metalloproteinase-9; CRP, C-reactive protein; TNF-α, tumor necrosis factor-α; IL-1β/6, interleukin-1β/6; IFN-γ, interferon-γ; ROS, reactive oxygen species; Aβ,
amyloid-β; CAA, cerebral amyloid angiopathy; VSMCs, vascular smooth muscle cell; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts
and leukoencephalopathy; NOTCH3, neurogenic locus notch homolog protein-3; CBF, cerebral blood flow; PM, particulate matter; GLUT1, glucose transporter-1;
ABCB1, ATP binding cassette subfamily B member-1; VCAM, vascular cell adhesion protein; ICAM, intercellular adhesion molecule; TLR4, Toll like receptor-4;
TREM2, triggering receptor expressed on myeloid cells-2; GFAP, glial fibrillary acidic protein; RAGE, receptor for advanced glycation endproducts; ET-1,
endothelin-1; iNOS, inducible nitric oxide synthase; OPC, oligodendrocyte progenitor cell. Created with BioRender.com.

mutation in the α-galactosidase (GAL)A gene that encodes for α-
GAL enzyme that plays a key role in sphingolipid metabolism
(El-Abassi et al., 2014). The mutation causes deficiencies in α-
GAL activity that results in the accumulation of sphingolipids
in various organs and tissues including the vessels (Rolfs et al.,
2013). The cerebrovascular complications in Fabry’s disease arise
from peripheral neuropathy and are associated with mild to
severe headache, vertigo, transient ischemic attacks, ischemic
stroke, intracerebral hemorrhage, and VaD (Okeda and Nisihara,
2008). Furthermore, deposition of toxic metabolites within
the vasculature and VSMCs lead to ischemia, vessel stenosis,
occlusion, and dilation with local changes in CBF (Shimotori
et al., 2008). The disease is more severe in men compared
to women and is often present with infantile neuropathy,
gastrointestinal symptoms, corneal opacity, hearing loss, and

angiokeratoma (Sims et al., 2009; Schiffmann, 2015; Marini
et al., 2020). Brain structural damage and symptoms exacerbate
with age.

Collagen IV, which exists as a heterodimer derived from the
transcription of COL4A1 and COL4A2 genes, is an essential
component of the vascular BM. Mutations in these two
genes are associated with microangiopathies in several organs
(Germain et al., 2019; Marini et al., 2020). More precisely,
COL4A1 mutation is responsible for ocular, renal, muscular,
and cerebral deficits (Vahedi and Alamowitch, 2011; Marini
et al., 2020). Furthermore, cerebral microangiopathies have been
shown to affect half of the carriers of this mutation. WMH,
dilation of the perivascular spaces, lacunar infarctions, and
microbleeds have been reported as well (Vahedi andAlamowitch,
2011). Pontine autosomal dominant microangiopathy and
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leukoencephalopathy (PADMAL) syndrome is a specific form
of cerebral microangiopathies associated with the COL4A1
mutation (Verdura et al., 2016), and is associated with an
overexpression of the gene with the absence of protein
misfolding. Patients with this syndrome have dysarthria, ataxia,
and stroke as well as mood disorders and dementia. On the
other hand, COL4A2 mutation is associated with an increased
prevalence of lacunar ischemic stroke and deep intracerebral
hemorrhages (Verdura et al., 2016). In contrast to COL4A1
mutation, COL4A2 mutation impairs the trimerization of
collagen IV due to defects in the α-helix structure, which cause
BM instability, loss of vascular wall integrity, and increased
BBB permeability, mediated by the intra- and extracellular
accumulation of deficient collagen IV (Kuo et al., 2012;
Meuwissen et al., 2015; Verdura et al., 2016; Zhang et al., 2017;
Malik et al., 2018; Germain et al., 2019).

Forkhead Box C1 (FOXC1) is highly expressed in pericytes. Its
expression plays an important role in controlling endothelial cell
proliferation and vascular stability. FOXC1mutation reproduces
some of the events reported upon COL4A1 mutation, especially
the ischemic infarctions, and cerebral microangiopathies that
lead to WMH, which are visible in neuroimaging (French et al.,
2014). The retinal vasculopathy with cerebral leukodystrophy
(RVCL) syndrome includes three pathological conditions: (i)
cerebral retinal vasculopathy (CRV); (ii) hereditary vascular
retinopathy (HRV); and (iii) hereditary endotheliopathy with
retinopathy, nephropathy, and stroke (HERNS). Patients with
these syndromes possess a mutation in three prime repair
exonuclease (TREX)-1 that encodes for a DNA exonuclease
(Stam et al., 2016). This mutation causes a defect in apoptosis
and INF signaling (Rice et al., 2015; Marini et al., 2020). All
characteristics of the cerebral microangiopathies are found in
RVCL patients who report the following symptoms: neurological
deficits, migraines, cognitive deficits, psychiatric disorders, and
seizures (Stam et al., 2016; Marini et al., 2020).

Environmental Risk Factors: Air Pollution
The increasing interaction with the environmental risk factors
associated with human activities has a significant impact on
health due to the exposure to various hazardous pollutants.
Currently, environmental factors are directly implicated in
the etiology and progression of diverse pathologies, including
brain diseases. Indoor and outdoor air pollution is among the
environmental factors that play a particularly important role
in the deterioration of vascular health (Block and Calderón-
Garcidueñas, 2009). Indeed, air pollution, which is defined as
the release of an amalgam of pollutants into the atmosphere,
has been reported to increase the prevalence of cardiovascular,
cerebrovascular, and respiratory diseases, as well as cancer
(Campbell et al., 2005; Schwartz et al., 2005; Calderón-
Garcidueñas et al., 2007; Hartz et al., 2008; Block and Calderón-
Garcidueñas, 2009; Mills et al., 2009; Rozemuller et al., 2012;
Cho et al., 2018; Paul et al., 2019). Epidemiological studies
have indicated that nearly one-third of the global stroke
burden and about one-fifth of the global dementia burden,
including VaD, are attributable to air pollution (Feigin et al.,
2016; Azarpazhooh and Hachinski, 2018; Béjot et al., 2018).

Furthermore, numerous studies have outlined a link between
high levels of air pollutants, chronic brain inflammation, and
neurodegeneration (Campbell et al., 2005; Schwartz et al., 2005;
Calderón-Garcidueñas et al., 2007; Hartz et al., 2008; Block and
Calderón-Garcidueñas, 2009; Mills et al., 2009; Rozemuller et al.,
2012; Paul et al., 2019). These effects are mainly attributable to
the exposure to fine particulate matter (PM), and more precisely
to PM of 2.5 microns or less in diameter (PM2.5). Indeed, the
experimental findings have indicated that UFPs could reach the
brain through different routes, including the intranasal cavity,
where they act as an inflammatory mediators, thus deregulating
the function of cells forming the neurovascular unit (Oberdörster
et al., 2004; Peters et al., 2006). In particular, exposure to PM
leads to impaired olfactory function, one of the initial atypical
symptoms that emerge in individuals affected by different forms
of dementia (Campbell et al., 2005; Schwartz et al., 2005;
Calderón-Garcidueñas et al., 2007; Hartz et al., 2008; Block and
Calderón-Garcidueñas, 2009; Mills et al., 2009; Rozemuller et al.,
2012; Paul et al., 2019). The correlation between air pollution
and dementia, including VaD and AD, was highlighted in
various epidemiological studies relying mostly on cohort studies
in polluted regions (Åström et al., 2021). The Betula cohort
revealed an association of dementia incidence, AD in particular,
with traffic-related air pollution (TRAP; Oudin et al., 2019).
Moreover, studies have found that exposure of the elderly to air
pollution, notably PM10 and PM2.5 was associated with cognitive
decline (Wu et al., 2015). In an interesting case-control study, it
was reported that elevated long-term PM10 levels were associated
with a significantly increased risk of AD and VaD prevalence in
the elderly. A dose-response relationship between PM10 exposure
and the risk of AD and VaD was reported (Wu et al., 2015).

Impact on Endothelial Functions
Various studies have investigated the impact of air pollutants,
and more specifically PM, on endothelial functions. For instance,
exposure of isolated rat brain capillaries to diesel exhaust
particles (DEP) altered BBB function through oxidative stress
generation and proinflammatory cytokine production, which
jointly induced the expression of adhesion molecules that
exacerbate infiltration of immune cells into the brain (Hartz
et al., 2008). Exposure to DEP deregulated the expression of
several transporters and receptors that are critically involved
in BBB functionality namely ABCB1, multidrug-resistance
associated proteins (MRP)1, MRP2, MRP4, breast cancer
resistance protein (BCRP), glucose transporter (GLUT)1, and the
metabolizing enzyme glutathione S-transferase (GST)π (Hartz
et al., 2008). Several reports have demonstrated an increased
BBB permeability following exposure to a mixed vehicular
emission, translated essentially by deregulation of the TJs
(Rojas et al., 2011; Oppenheim et al., 2013; Bernardi et al.,
2021). For instance, human brain microvascular endothelial
cells in culture exposed to nanoparticles of aluminum oxide
exhibit reduced cell viability, altered mitochondrial function,
increased oxidative stress, and diminished expression of the
TJs proteins claudin-5 and occludin (Chen et al., 2008; Block
and Calderón-Garcidueñas, 2009). Interestingly, epidemiological
studies have outlined a strong correlation between air pollution
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and neuroinflammation in highly exposed residents (Calderón-
Garcidueñas et al., 2008). Indeed, these studies reported an
upregulation of some inflammatory markers, such as expression
of cyclooxygenase (COX)-2 and IL-1β, as well as infiltration
of immune cells into the olfactory bulb (OB), frontal cortex,
substantia nigrae, and vagus nerves (Calderón-Garcidueñas et al.,
2008). Importantly, most of the inflammatory responses were
concentrated at the vasculature translated by activation of NF-
κB pathway in brain endothelial cells, accompanied by oxidative
stress, Aβ42 immunoreactivity, trafficking of inflammatory cells
into the perivascular space, and an altered BBB (Calderón-
Garcidueñas et al., 2008). In line with these observations,
direct exposure of brain endothelial cells in culture to PM2.5
deregulated TJs and increased permeability and monocyte
transmigration across the endothelial monolayer (Liu F. et al.,
2015). In addition, exposure to both PM2.5 and PM10 induced
the activation of endothelial cells accompanied by an enhanced
adhesion of U937 monocytic cells to the endothelial monolayer
(Montiel-Dávalos et al., 2007). Interestingly, exposure to PM2.5
also induced ICAM-1 expression, whereas exposure to PM10
induced expression of E-selectin and P-selectin (Montiel-Dávalos
et al., 2007; Figure 2).

In vivo experiments in which mice were exposed to a mixed
vehicular emission, a combination of gasoline and diesel engine
exhausts, the animals exhibited altered BBB integrity through
the deregulation of the TJs protein, namely claudin-5 and
occludin (Oppenheim et al., 2013). This was accompanied by an
augmentation of inducible nitric oxide synthase (iNOS) levels,
an increase in the production of IL-1β in the parenchyma,
and deregulation of ABCB1 transport activity (Oppenheim
et al., 2013). Moreover, exposure to PM in vitro and in vivo
has been shown to stimulate the re-localization of the TJs
protein ZO-1 from the cell membrane and reduce its protein
level (Wang et al., 2012). Importantly, PM mediated the
intracellular mobilization of calcium (Ca2+) dependently upon
ROS, activating calpain that is implicated in ZO-1 degradation
and disruption of the endothelial barrier (Wang et al., 2012).
Using a 3D human in vitro BBB model, indoor nanoscale
particulate matter (INPM) was shown to translocate across the
BBB and accentuate inflammation by inducing ROS (Li et al.,
2020). This induction was followed by abnormal nuclear reactor
factor (NRF)-2 expression and a disruption of the kelch ECH
associating protein (KEAP)-1/antioxidant response elements
(ARE) pathway which is involved in supporting cells to overcome
stress (Li et al., 2020). Interestingly, exposure of rodents to urban
PM increased the levels of ET-1 mRNA and reduced TNF-α
mRNA levels in the cerebral hemisphere and the pituitary gland.
These results suggest that the cerebrovascular effects of urban
pollutants are associated with the modulation of gene expression
involved in the regulation of vasoconstriction in the brain and
pituitary gland (Benatti et al., 1993; Thomson et al., 2007).

Exposure to PM2.5 has been shown to increase the prevalence
of carotid artery stenosis (CAS), a well-established risk factor for
ischemic stroke, correlating with an increased BBB permeability
(Newman et al., 2015; Szarmach et al., 2017). In line with
these observations, a strong association between air pollution
with systemic brain inflammation was revealed in children

living in polluted areas, associated with short-term memory
deficits, prefrontal WMH, and BBB disruption (Calderón-
Garcidueñas et al., 2016). The same study reported a leaking
vascular network, degeneration of pericytes, VSMCs, and
endothelial cells, thickening of the BM, and reduced perivascular
astroglial coverage in the prefrontal white matter of dog
brains (Calderón-Garcidueñas et al., 2016). Exposure to PM2.5
has been demonstrated as well to accelerate atherosclerosis
development through induction of vascular dysfunction as well
as promotion of coagulopathies, which were accompanied by
a strong inflammatory response and lipid abnormalities (Liang
et al., 2020). Finally, exposure of ApoE-deficient mice to TRAP,
mixed vehicle emissions, induced the cerebral expression of
ICAM-1 and the release of pro-inflammatory mediators, such as
TNF-α and IL-1β (Adivi et al., 2021).

Impact on the Dynamics of Astrocytes and
Oligodendrocytes
Evidence indicates that astrocytes respond to PM in a context-
dependent manner (Allen et al., 2014). For instance, early
postnatal exposure to ambient UFPs decreased GFAP
immunoreactivity in male subjects and increased GFAP
expression as well as other neuroinflammation markers in
females (Allen et al., 2014). Exposure of male and female
rodents during gestation and early postnatal development to
TRAP attenuated astrogliosis specifically in the dentate gyrus
(DG) associated with reduced GFAP immunoreactivity, which
remained unchanged in CA1 and CA3 regions (Patten et al.,
2020). Previous findings have shown that maternal exposure
to carbon black nanoparticles (CB-NP) induced astrogliosis in
the cortex of rodents, affecting the interaction of the astrocyte
endfeet with the endothelium and perivascular macrophages
(Onoda et al., 2017). Interestingly, intranasal delivery of PM2.5
to male rodents subjected to ischemic stroke exacerbated
astrocytic reactivity via GFAP activation and iNOS induction,
aggravating post-stroke neurobehavioral impairments (Chen
et al., 2016). In line with these results, rodents exposed to
PM for a prolonged period exhibited altered neuronal and
astrocytic functions via impairment of mitochondrial activity
(Araújo et al., 2019). Likewise, exposure of rodents to natural air
pollution sources, such as volcanic-derived particles, increased
GFAP immunoreactivity in astrocytes (Camarinho et al., 2019;
Navarro et al., 2021). Moreover, exposure of rodents to low
doses of CB-NP induced endoplasmic reticulum (ER) stress in
perivascular macrophages and reactive astrocytes, specifically
around the vasculature of offspring animals, associated with
the accumulation of β-sheet rich misfolded proteins (Onoda
et al., 2020). Cell-based assays have shown that exposure of
astrocytes to PM activated janus kinase (JAK)-2/STAT-3 and
p38/JNK/ERK pathways in reactive astrocytes triggering iNOS
induction and IL-1β production (Li et al., 2016). In this regard,
PM has been reported to increase the expression and release of
proinflammatory mediators through activation of the NF-κB
signaling pathway (Li et al., 1999; Gómez-Budia et al., 2020).

Furthermore, exposure to UFPs altered adult OPCs turnover
and survival of mature oligodendrocytes (OLs), accompanied
by increased oxidative stress and decreased total antioxidant
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capacities (TAC) that impair the remyelination capacity of the
brain (Kim J. Y. et al., 2020). Furthermore, prenatal exposure
to concentrated ambient particles (CAPs), which were defined
as UFPs, promoted a premature maturational shift in OLs in
the corpus callosum (CC), followed by hypermyelination (Klocke
et al., 2018). Interestingly, females showed significant alterations
in oligodendrocytogenesis in the CC (Klocke et al., 2018).
Finally, in a mouse model of lysolecithin-induced demyelination
of the subcortical white matter, exposure to PM2.5 hampered
remyelination and disrupted oligodendroglia differentiation
(Parolisi et al., 2021).

Impact on Microglial Reactivity and Consequences
on Neurons
In response to air pollution, microglia are activated through
the upregulation of several proinflammatory mediators that
affect neuronal function (Gómez-Budia et al., 2020). Microglia
respond to air pollution by adopting an amoeboid shape in vitro
(Cole et al., 2016; Roqué et al., 2016; Mumaw et al., 2017), as
well as in vivo (Araújo et al., 2019). Indeed, mice exposed to
DEP exhibited reduced adult neurogenesis through activation
of microglia (Coburn et al., 2018). In contrast, attenuating
microglial reactivity hampered neuroinflammation and oxidative
stress (Coburn et al., 2018). Cell-based assays showed that
exposure of BV-2 immortalizedmicroglial cell to PM2.5 increased
mRNA expression of various proinflammatory markers, namely
IL-6, IL-1β, TNF-α, iNOS, COX-2, TREM2, and TLR2/4,
while reducing mRNA expression of key anti-inflammatory
markers, such as IL-10 and Arginase (ARG)-1 (Kim R.-E. et al.,
2020). In parallel, exposure of rodents to DEP for a long
period triggered the activation of microglia in the nuclei of
the solitary tract (NTS), accompanied by ER dilation and
mitochondrial vacuolization in the medulla, hence outlining
structural alterations of the neuronal network (Chen et al., 2021).
Interestingly, rodents exposed to DEP for a long period showed
an induced ionized calcium-binding adaptor molecule (IBA)-
1 expression in the brain (Levesque et al., 2011). Interestingly,
microglial reactivity was accompanied by an increased mRNA
expression of TNF-α, IL-6, and macrophage inflammatory
protein (MCP)-1α in the midbrain, cortex, and OB, while IL-
1β was expressed particularly in the midbrain (Levesque et al.,
2011). Mice exposed to PM also triggered the induction of
mRNA expression of TLR4, MyD88, TNF-α, and tumor necrosis
factor receptor (TNFR)-2 in microglia (Woodward et al., 2017a).
Activation of the latter was further confirmed through an
increased intracellular expression of inflammatory mediators,
such as COX-2, NF-κB, prostaglandin E2 (PGE2), and iNOS
both in vitro and in vivo (Babadjouni et al., 2018; Chen et al.,
2018). Using cell-based assays, TNF-α induction in microglia
upon PM exposure inhibited neurite outgrowth (Cheng et al.,
2016). Inhibition of NRF-2 activity prior to exposure of BV-2
microglial cells to PM2.5 attenuated cell viability, induced ROS
generation, and stimulated NF-κB pathway, outlining NRF-2 role
in mitigating PM deleterious effects (Chen et al., 2018).

Importantly, in vivo experiments showed that exposure
to DEP in TREM2−/− mice accentuated IL-1β expression
(Greve et al., 2020). PM has been demonstrated to impact

neuron-glial crosstalk. Acute exposure of adult mice to PM2.5
increased the levels of lipoperoxidation and proinflammatory
cytokines in the brain and activated microglia, accompanied
by reduced neurogenesis in the subgranular zone (SGZ) and
subventricular zone (SVZ; Bernardi et al., 2021). Neuronal cell
cultures exhibited reduced viability upon exposure to PM2.5
associated with increased release of glutamate (Liu F. et al.,
2015). Prior treatment of cells with the N-methyl-D-aspartate
(NMDA) receptor mitigated PM2.5-mediated neuronal loss
(Liu F. et al., 2015). Moreover, neuronal cultures displayed
dopaminergic neurotoxicity upon exposure to DEP only in
presence of microglia, which was associated with elevated
levels of ROS (Block et al., 2004). Co-culture of neurons
and microglia exposed to PM2.5 in presence of oligomeric
oAβ exacerbated IL-1β and ROS release aggravating oAβ-
induced neuronal injury and inflammation (Wang et al.,
2018). PM have been shown to directly impact neuronal
function. For instance, exposure of rodents to nano PM caused
hippocampal neurite atrophy and decreased expression of
myelin basic protein (MBP), accompanied by increased TNF-
α mRNA expression (Woodward et al., 2017b). In this regard,
epidemiological studies have outlined a strong correlation
between the levels of PM in air and neuronal chromatolysis
and satellitosis in exposed dogs, associated with cortical
neurons degeneration, and neurofibrillary tangle formation
(Calderón-Garcidueñas et al., 2002).

Interestingly, epidemiological studies comprising elderly
women revealed that residence in places contaminated with
high levels of fine PM increases the risks for global cognitive
decline and all-cause of dementia by 81 and 92%, respectively,
with stronger adverse effects in ApoE4 carriers (Cacciottolo
et al., 2017). Experimental findings obtained from female AD
mouse models (5xFAD; Familial AD) expressing either ApoE3 or
ApoE4 mice that were exposed to urban nano PM for 15 weeks
showed increased Aβ plaques and soluble Aβ oligomers, which
were associated with neuronal changes in the hippocampus
(Cacciottolo et al., 2017). These findings were confirmed in vitro
upon exposure of neuroblastoma cells (N2a-APP/swe) to nano
PM translated by an enhanced pro-amyloidogenic processing
of the APP, explaining the elevated cerebral Aβ production
(Cacciottolo et al., 2017). Furthermore, long-term exposure to
ambient air pollution was found to be associated with rapid
cognitive decline in aged adults, where ApoE4 carriers exhibited
the fastest cognitive decline (Kulick et al., 2020; Figure 2).

Further in vivo experimental investigations implicating
exposure to TRAP nano PM showed an increased production
of Aβ peptides, associated with oxidative damage (Cacciottolo
et al., 2020). Indeed, exposure of J20-APPswe mice, an AD
mouse model, to nano PM for 150 h revealed exacerbated
lipid oxidation and pro-amyloidogenic processing of APP in
lipid raft fractions compared to controls (Cacciottolo et al.,
2020). These observations were further confirmed in vitro using
N2a-APPswe cells exposed to nano PM (Cacciottolo et al.,
2020). Importantly, the link between air pollution and HDL
was highlighted in the Multi-Ethnic Study of Atherosclerosis
Air Pollution (MESA Air) study showing that exposure to
air pollution was significantly associated with low levels of
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HDL (Bell et al., 2017). In this regard, ApoE-deficient mice
exposed for 2 weeks to DEP, exhibited high systemic pro-oxidant
effects associated with dysfunctional HDL (Yin et al., 2013).
These observations would indicate that PM exposure could be
responsible for the attenuated HDL protective effects against
atherosclerosis (Yin et al., 2013).

CONCLUSION AND PERSPECTIVES

Through this review, we aimed to highlight the structural
and functional neurovascular alterations underlying VaD
pathobiology. The epidemiological, clinical, and experimental
investigations are indicating that the long-term outcomes of early
pathophysiological events impacting neurovascular functions
upon cerebrovascular disorders have major consequences on
imitating a cascade of events that lead to VaD. Moreover,
the recent findings are outlining air pollution as a major
vascular risk factor that is directly implicated in promoting
neurovascular impairments associated with VaD. Given the
heterogeneity of cerebrovascular disorders, which include stroke,
genetic and sporadic microangiopathies, combined with the
diverse effects of environmental factors, a better understating
of the short- and long-term remodeling processes at the
neurovascular unit is urgently required to allow getting
new insights into VaD pathobiology. Such knowledge will
allow the identification of key ‘‘targetable’’ mechanisms for
therapeutic purposes.

Recent findings are suggesting that BBB disruption occurs
in some cases for a prolonged period beyond the acute and
subacute phases after stroke (Bernardo-Castro et al., 2020).
A prolonged, yet subtle, disruption of the BBB could trigger
a cascade of events that lead to VaD. For instance, high
expression levels ofMMPs, themainmediator of BBB disruption,
are significantly associated with cognitive deficits (Yang and
Rosenberg, 2011). However, targeting MMPs is a double-
edged sword as while preserving the BBB in the acute and
sub-acute phase, its inhibition impairs neurovascular adaptation
in the chronic phase, thus impeding brain plasticity (Yang and
Rosenberg, 2011). More promising appears to be the inhibition
of beta-site APP cleaving enzyme (BACE)1 that seems to
protect endothelial cell integrity in the context of CADASIL and
AD (Chacón-Quintero et al., 2021). In the same way, rodent
models of aging suggest that the mitochondrial overexpression
of catalase improves diminish vascular impairment and benefits
neurovascular coupling (Csiszar et al., 2019).

On the other hand, uncontrolled post-stroke
neuroinflammation, especially excessive microglial activation, is
associated with cognitive deficits (Guruswamy and ElAli, 2017;
Gefen et al., 2019; Jayaraj et al., 2019; Zhang et al., 2021). In
this regard, strategies aiming to mitigate neuroinflammation
via modulation of microglia could attenuate cognitive decline
related to stroke (Guruswamy and ElAli, 2017; Dzyubenko et al.,
2018; Jayaraj et al., 2019). In this regard, evidence suggests
that the prominent microglial regulator, insulin-like growth
factor (IGF)-1, reduces gliosis while preserving brain volume
and myelination, as well as motor performance and memory
when administered intranasally in aged mice (Farias Quipildor

et al., 2019). Efficient immunomodulatory approaches capable of
fine-tuning microglial activation are still to be developed.

Importantly, the emergence and turnover of stroke-mediated
proteinopathies are associated with BBB disruption and
neuroinflammation. Although the role of cSVD is critically
important in the etiology of VaD, there is still a huge gap
in the literature as to our understanding of the underlying
mechanisms. This is due to the fact that the current knowledge is
obtained either from genetic or non-clinically relevant sporadic
animal models. Indeed, the majority of cSVD cases are sporadic
and associated with diverse risk factors, as such, it is critically
important to develop animal models that replicate some of
the pathological features associated with VaD. However, the
overwhelming findings indicate the loss-of-function on the local
cerebrovascular network caused a central role in initiating a
pathological cascade of events that lead to altered neuro-glial
functions, and thus subsequently dementia (Rouhl et al., 2012;
Shoamanesh et al., 2015; Fu and Yan, 2018; Li et al., 2018; Jian
et al., 2020).

Air pollution has emerged as a significant risk factor for
cerebrovascular and neurodegenerative disorders (Wu et al.,
2015; Åström et al., 2021). It is becoming clear that exposure to
PM, one of the most deleterious air pollutants, increases the risk
of chronic neuroinflammation that leads to dementia (Wu et al.,
2015; Åström et al., 2021). Cell-based assays have demonstrated
that PM acts as a powerful inflammatory and oxidative stress
mediator in various brain cell types. Interestingly, PM exposure
seems to amplify the pathological responses underlying VaD
pathobiology. Although the impact of PM on neurovascular
functions is evidenced in vitro, little is known about its role
in mediating neurovascular impairments in vivo. Future studies
should consider investigating the consequences of PM exposure
as a comorbid condition in the design of preclinical experiments.

As previously mentioned, besides PM, various modifiable
vascular risk factors are recognized to impact VaD. For
instance, stroke and cSVD share common risk factors such
as hypertension, atherosclerosis, obesity, atrial fibrillation,
diabetes, dyslipidemia, high homocysteine, metabolic syndrome,
smoking, as well as cardiac and carotid arterial disease
(Barnes and Yaffe, 2011; O’Brien and Thomas, 2015; Kalaria
et al., 2016; Tariq and Barber, 2018). Given their central
role, various preventive approaches have been developed and
adopted to attenuate the impact of this triad of vascular
on VaD. Such approaches are exemplified by the landmark
multidomain Finnish Geriatric Intervention Study to Prevent
Cognitive Impairment and Disability (FINGER), which has
been shown to enhance all cognitive sub-domains through
a multidomain lifestyle intervention that include dietary
counseling, physical exercise, cognitive training, and vascular
and metabolic risk monitoring for a period of 2 years
(Ngandu et al., 2015; Kivipelto et al., 2020). Furthermore,
knowing the detrimental role of high blood pressure in VaD
prevalence, the Systolic Blood Pressure Intervention Trial
(SPRINT) and its sub-study the Memory and Cognition in
Decreased Hypertension (MIND) were established with an
emphasis on investigating the consequences of lowering systolic
blood pressure. Although the incidence of dementia was not
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improved, the trial reported a reduction of mild cognitive
impairment (MCI) and MCI composite in subjects with lower
blood pressure. Interestingly, these observations were associated
with a reduction of WM lesion volumes (Kjeldsen et al.,
2018; Peters et al., 2019). Despite that, each trial discloses
important limitations, yet the impact of modifying main VaD
risk factors was shown to allow the development of efficient
interventions. Further research is needed for longer periods
with a more representative population to lessen the limitations
and improve the efficiency of interventions aiming to attenuate
dementia prevalence.

Finally, a deep analysis of the current scientific knowledge
outlines brain pericytes as a major effector in the pathobiology
of VaD. Through their spatial localization, pericytes play a
central role in integrating and processing signals from their
milieu to generate critical neurovascular functions, which include
BBB maintenance, CBF modulation, vascular stabilization, and
immunomodulation (Zlokovic, 2011; Hermann and ElAli, 2012).
Following a stroke, pericytes undergo cell death at the ischemic
core and get activated in the peri-lesion site where they
detach from the vasculature (Zlokovic, 2011; Hermann and
ElAli, 2012). Importantly, it has been reported that even after
successful recanalization, pericytes located at the peri-lesion
site remain contracted impeding the capillary microcirculation,
which leads to vascular constriction and chronic hypoperfusion
(Dalkara, 2019). Moreover, microcirculation of the white matter
was disrupted upon pericyte degeneration leading to the
accumulation of toxic blood-derived fibrotic deposits within
the vasculature, which promotes vascular fibrosis, accompanied
by a reduction in the regional CBF (Montagne et al., 2018).
These changes are supposed to be directly implicated in
the pathogenesis of diffuse WMD associated with loss of

oligodendrocytes and subsequently myelinated axons (Montagne
et al., 2018). The findings indicate that pericyte degeneration
plays a major role in the pathogenesis, and thereby therapies,
of WMD associated with cSVD (Montagne et al., 2018).
Furthermore, the generation of pericytes is translated by elevated
levels of the soluble-platelet derived growth factor receptor
(PDGFR)β (sPDGFRβ) in the CSF, strongly correlating with BBB
breakdown, CBF reduction, and cognitive decline (Sweeney et al.,
2020). Therefore, decoding the pericyte reactivity to stressors
related to the vascular risk factors constitutes a promising avenue
that might lead to achieving major breakthroughs in getting
new mechanistic insights in the pathobiology of VaD and in
developing novel therapeutic interventions.
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The mechanistic link between hypertension, diabetes and cerebral small vessel disease

(CSVD) is still poorly understood. We hypothesized that hypertension and diabetes

could impair cerebrovascular regulation prior to irreversibly established cerebrovascular

disease. In this study, 52 hypertensive patients [54% males; age 64 ± 11 years; 58%

with comorbid diabetes mellitus (DM)] without symptomatic cerebrovascular disease

underwent transcranial Doppler (TCD)monitoring in themiddle (MCA) and posterior (PCA)

cerebral arteries, to assess vasoreactivity to carbon dioxide (VRCO2) and neurovascular

coupling (NVC). 1.5T magnetic resonance imaging was also performed and white matter

hyperintensity volume was automatically segmented from FLAIR sequences. TCD data

from 17 healthy controls were obtained for comparison (47% males; age 60 ± 16 years).

Hypertensive patients showed significant impairment of NVC in the PCA, with reduced

increment in cerebral blood flow velocity during visual stimulation (22.4 ± 9.2 vs. 31.6 ±

5.7, p < 0.001), as well as disturbed NVC time-varying properties, with slower response

(lower rate time: 0.00± 0.02 vs. 0.03± 6.81, p= 0.001), and reduced system oscillation

(reduced natural frequency: 0.18 ± 0.08 vs. 0.22 ± 0.06, p < 0.001), when compared

to controls. VRCO2 remained relatively preserved in MCA and PCA. These results were

worse in hypertensive diabetic patients, with lower natural frequency (p = 0.043) than

non-diabetic patients. White matter disease burden did not predict worse NVC. These

findings suggest that hypertensive diabetic patients may have a precocious impairment

of NVC, already occurring without symptomatic CSVD. Future research is warranted to

evaluate whether NVC assessment could be useful as an early, non-invasive, surrogate

marker for CSVD.

Keywords: hypertension, diabetes mellitus, neurovascular coupling (NVC), transcranial doppler (TCD), cerebral

small vessel disease
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INTRODUCTION

Cerebral small vessel disease (CSVD) has an enormous impact
on public health worldwide (GBD 2017 Causes of Death
Collaborators, 2018). It accounts for 25% of ischemic strokes
and most hemorrhagic strokes and is the second leading cause
for cognitive decline (Sudlow and Warlow, 1997; Iadecola et al.,
2019).

Hypertension (HT) is the major vascular risk factor (VRF)
for CSVD. Alongside HT, diabetes mellitus (DM) is a recognized
VRF implicated in CSVD (Brundel et al., 2012; Liu et al., 2018).

While other etiologies for stroke are fairly well-studied,
the pathophysiology and causality of CSVD are still poorly
understood. Many of its manifestations are clinically silent
until the development of clinical consequences, with stroke,
cognitive decline, and gait impairment, limiting disease-specific
preventive strategies (Pantoni, 2010). Also, CSVD radiological
markers and clinical manifestations seem to be dissociated, for
reasons not fully explained (Sorond et al., 2011; Jokumsen-Cabral
et al., 2019). Biomarkers for the events predating irreversible
damage could be key for better clinical management and pre-
symptomatic preventive measures.

There is evidence of neurovascular dysfunction in CSVD and
it may precede clinical and imaging manifestations (Wardlaw,
2010; Freeze et al., 2018; Castro et al., 2020). Very few studies
have investigated neurovascular coupling (NVC) in HT, mostly
using imaging modalities. Transcranial Doppler (TCD) is a non-
invasive method that allows the monitoring of microvascular
hemodynamic functional integrity (Claassen et al., 2016;Malojcic
et al., 2017).

We aimed to study cerebrovascular regulation by TCD
in hypertensive and diabetic patients without major CSVD-
related impairment as a possible surrogate marker for
the future development of symptomatic CSVD, to help
guide therapies aimed at the cerebral microcirculation and
neurovascular unit.

MATERIALS AND METHODS

Study Subjects
A cross-sectional observational study was conducted in a
University Hospital. Hypertensive patients were recruited
from the hospital’s Hypertension Unit. Exclusion criteria
were previous stroke or other significant brain pathology
(dementia by clinical criteria, brain tumor, traumatic brain
injury, previous cerebral infection or neurodegenerative disease),
severe/unstable disease, contraindication for magnetic resonance
imaging (MRI), inadequate acoustic temporal bone window,
extra- or intracranial artery stenosis >50% and incapability
to collaborate or to give informed consent. TCD data from
healthy controls of similar age and gender were obtained
from previous studies performed with the same protocol
(Jokumsen-Cabral et al., 2019).

The local ethics committee approved the study protocol,
which followed the tenets of the Declaration of Helsinki. Written
informed consent was obtained.

Clinical Evaluation
Participant’s clinical and demographic data were recorded.
Vascular comorbidities were summarized into a vascular
comorbidity score (VCS), including HT, DM, dyslipidemia,
tobacco usage, chronic heart failure, coronary heart disease,
arrhythmias, peripheral artery disease, and nephropathy.
These conditions were scored as present (1 point) or absent
(0 points), for a score ranging from 0 to 9 (Mossello et al.,
2015). All participants underwent cervical and transcranial
Doppler ultrasound (Philips iu22, The Nederlands) to exclude
hemodynamically significant vessel pathology. The patients
underwent routine 24-h ambulatory blood pressure monitoring
(Spacelabs 90207, Redmond, Washington, USA). The mini-
mental state examination (MMSE) and the Montreal cognitive
assessment (MoCA) were used to screen for dementia. The
patients were evaluated by an ophthalmologist, and all
had normal binocular visual acuity, allowing for the TCD
dynamic testing.

Monitoring Protocol
Evaluations were conducted in a dim-lighted, quiet room
(≃22◦C), in a supine position. Cerebral blood flow velocity
(CBFV) was continuously recorded in the M1 segment of the
right middle cerebral artery (MCA) and the P2 segment of
the left posterior cerebral artery (PCA), with 2-MHz TCD
probes secured with a headframe (Doppler BoxX, DWL, Singen,
Germany), in order to simultaneously obtain data from both
arterial territories (Azevedo et al., 2012). Continuous non-
invasive arterial blood pressure (BP) was measured with the
Finometer (FMS, Amsterdam, The Netherlands). Heart rate was
assessed with a three-lead electrocardiogram. End-tidal carbon
dioxide (EtCO2) was recorded by capnography (Respsense
Nonin, Amsterdam, The Netherlands). Data was synchronized
and digitally stored at 400Hz with Powerlab (AD Instruments,
Oxford, UK) for offline analysis. After resting for 20min, the
vasoreactivity to carbon dioxide (VRCO2) and NVC protocols
were performed, as described below. CBFV envelopes were
continuously registered and analyzed offline.

VRCO2
Participants were monitored through successive 2-min steps of
resting, inhalation of a mixture of 5% CO2 and 95% O2 mixture
(EtCO2 7–10 mmHg above baseline), resting (room air, until
normocapnia) and hyperventilation (EtCO2 7–10 mmHg below
baseline). VRCO2 was calculated as the slope of the relationship
between EtCO2 average values plotted against those of relative
CBFV achieved at the three stages, expressed as % mean CBFV
per mmHg EtCO2 (Madureira et al., 2017).

NVC
NVC was assessed in the PCA territory by a visual paradigm
consisting of 10 cycles, each with a 20s resting phase (eyes closed)
and 40 s stimulating phase (flickering checkerboard) at 10Hz
(Rosengarten et al., 2001a). The 5s of stable measurement prior
to stimulation were used as the baseline (Rosengarten et al.,
2001a). All cycles were synchronized and averaged. Peak systolic
data was used because it is less prone to artifacts (Rosengarten
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et al., 2001b). Maximal systolic CBFV change was obtained to

calculate the overshoot parameter as maximumCBFV−baselineCBFV
baselineCBFV

×

100%.[12] The systolic CBFV curve was modeled into a second
order linear system to describe the dynamics of NVC response

in time according to the equation G(s)= K × (1 + Tvs)
s2
ω2+2ξ∗ s

ω
+1

, where “K”

stands for gain, “Tv” for rate time, “ω” for natural frequency, and
“ξ” for attenuation (Rosengarten et al., 2001a). All the parameters
of the equation were determined by the least squares method.
The sum of the squared residuals and the χ2 were also calculated
to ensure the goodness of fit into the real measured values, as
provided by the lsqnonlin function. Gain describes the relative

FIGURE 1 | Automatic segmentation of WMH (A) Raw data; (B) Probability map of WMH; (C) Binarized results of WMH (values above 0 were considered WMH).

Frontiers in Aging Neuroscience | www.frontiersin.org 3 October 2021 | Volume 13 | Article 72800782

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Monteiro et al. Neurovascular Coupling Impairment in Hypertension

CBFV difference between rest and steady-state level during visual
stimulation; rate time indicates the initial steepness of the CBFV
increase; natural frequency represents the oscillatory properties
of the system; and attenuation describes dampening and tonus
features, such as elastic properties of the vessel wall (Rosengarten
et al., 2003). For this specific test, the MCA recordings were used
as a control to detect non-specific changes in CBFV during the
visual stimulation task.

MRI Imaging
Forty-six patients were eligible and agreed to undergo cerebral
MRI (Siemens Aera 1.5T). Of these, data from 6 patients were
excluded for lack of quality for the evaluations. White matter
hyperintensity (WMH) volumes normalized by intracranial
volume were derived from the T2-weighted fluid-attenuated
inversion recovery sequences collected in the sagittal plane.
Voxels resolution was 1 x 1 x 1, slices = 256, FOV = 256mm,
TR = 5000ms, TE = 336ms, TI = 1800ms (Figure 1). Briefly,
WMH masks were created using the Lesion Segmentation
Algorithm (LPA, 1) from the Lesion Segmentation Toolbox for
SPM12 in MATLAB R2018a. Following an initial segmentation
of the FLAIR image, probability maps were binarized using
AFNI (2,3, v21.0.15) command 3dcalc. Resulting segmentations
were quality-checked for sufficient accuracy and volumes were
calculated using Freesurfer (v7.1) command mri_segstats.

Additional signs of CSVD were evaluated by an experienced
vascular Neurologist to further characterize the CSVD in the
patient cohort. Enlarged perivascular spaces (PVS) were defined
as small (<0.3mm) punctate or linear (if perpendicular
or longitudinal to the plane of the scan, respectively)
hyperintensities on T2 images in the basal ganglia (BG)
and centrum semiovale (CS) (Potter et al., 2015). The PVS
burden was then stratified into three groups: <11, 11–20 and
>20 (Lau et al., 2017). Lacunes were defined as rounded or ovoid
lesions >3mm and <20mm in diameter in the BG, internal
capsule, CS or brainsteam, with CSF density on T2 images
(Wardlaw et al., 2013). Cerebral microbleeds were defined as
round, hypodense lesions <10mm on susceptibility weighted
imaging collected in the axial plane (slice thickness 2mm, slices
= 256, FOV = 230mm, TR = 49ms, TE = 40ms), according to
the guidelines (Greenberg et al., 2009).

Statistical Analysis
Normality was determined using the Shapiro–Wilk test and
analysis of skewness. Data with high asymmetry was normalized
using logarithmic transformation. Homogeneity of variances
was tested for each analysis. Baseline characteristics were
compared using the independent sample t-test and χ2-test.
Mixed ANOVA or ANCOVA (for PCA) were used to compare
hemodynamic data. Subgroup analyses were performed using
univariate ANOVA, with Bonferroni post-hoc tests. The partial
eta squared (ηp²) was used as a measure of effect size: ηp²
> 0.14 indicates a large effect, ηp² >0.06 indicates a medium
effect and ηp² > 0.01 indicates a small effect (Cohen, 1998).
Age and gender were used as covariates in the ANOVA and
ANCOVA comparisons. Supplemental analysis using body mass
index (BMI) and VCS as covariates (plus age and gender) were

also performed. Patients were dichotomized by the median value
of WMH volume to compare the results of VRCO2 and NVC in
the PCA between the twoWMH burden groups. Subgroups were
compared using the independent sample t-test.

Values of p < 0.05 were considered significant.

RESULTS

Fifty-two hypertensive patients were evaluated and TCD data
from 17 healthy controls were used. Baseline characteristics are
reported in Table 1. Supplementary File 1 depicts the burden of

TABLE 1 | Demographics and baseline characteristics.

Participant characteristics Patients Controls p value*

Age, years (mean ± SD) 64 ± 11 60 ± 16 0.376

Male, n (%) 28 (54) 8 (47) 0.627

BMI, kg/m2 (median ± IQR) 29 ± 5 25 ± 4 <0.001

Diabetes Mellitus, n (%) 30 (58) 0 (0)

VCS, n (%)

0 0 (0) 17 (100)

1 2 (4) 0 (0)

2 5 (10) 0 (0)

3 22 (42) 0 (0)

4 13 (25) 0 (0)

5 8 (15) 0 (0)

6 2 (4) 0 (0)

HT duration, years (median ± IQR) 17 ± 6 0 (0)

Chronic medication

No. antihypertensives (median ± IQR) 3 ± 2 0 (0)

ACEI/ARB, n (%) 48 (92) 0 (0)

Diuretics, n (%) 39 (75) 0 (0)

CCB, n (%) 37 (71) 0 (0)

BB, n (%) 14 (27) 0 (0)

Alpha2-agonists, n (%) 4 (8) 0 (0)

Antiplatelets, n (%) 14 (27) 0 (0)

Statins, n (%) 40 (77) 0 (0)

Cognitive parameters (median ± IQR)

Education, years 4 ± 5

MMSE 28 ± 3

MoCA 22 ± 5

ABPM, mmHg (median ± IQR)

24-h systolic BP 130 ± 15 - -

24-h diastolic BP 78 ± 13 - -

24-h pulse pressure 57 ± 16 - -

Finapres BP, 5min (mean ± SD)

Systolic BP 136 ± 24 109 ± 25 <0.001

Diastolic BP 62 ± 17 50 ± 14 0.035

Mean BP SP, mmHg2 (median ± IQR) 9 ± 24 7 ± 8 0.007

EtCO2, mmHg (median ± IQR) 36 ± 4 38 ± 3 0.553

*Values were obtained using the t-test or the χ2-test. ABPM, ambulatory blood pressure

monitoring; BMI, body mass index; BP: blood pressure; EtCO2, end-tidal carbon dioxide;

IQR, interquartile range; SD, standard deviation; SP, spectral power; VCS, vascular

comorbidity score. Bold values of statistically significant p values (p < 0.05).
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PVS, microbleeds and lacunes in the patient group. Most patients
had low burden of PVS in the BG (55.0%) and CS (65.0%).
Nine patients (22.5%) presented lacunes and four patients (10%)
presented microbleeds.

Cerebral Hemodynamics and VRCO2
Baseline CBFV and CBFV variability (spectral power) were
similar in patients and controls (Table 2). VRCO2 in either
territory (PCA or MCA) was similar between groups and

showed no change after adjusting for both VCS and BMI
(Supplementary File 2).

There were no differences in VRCO2 between hypertensive
non-diabetics (HT-nDM), hypertensive diabetics (HT-DM) and
controls (Table 3). Those results did not change significantly after
controlling for BMI or VCS (Supplementary File 3).

NVC
NVC in the PCA territory was significantly altered in
HT patients, with smaller increases in CBFV during visual

TABLE 2 | Cerebral hemodynamics, VRCO2 and NVC: patients vs. controls, controlling for age and gender.

Patients Controls Artery Group Interaction

MCA PCA MCA PCA p value* p value* p value*

Cerebral hemodynamics

Mean CBFV (cm/s) 47.6 ± 13.4† 31.4 ± 8.2† 52.4 ± 16.5† 29.1 ± 10.1† 0.044 0.925 0.161

MFV SP (cm/s2) 3.3 ± 5.0‡ 2.5 ± 4.7‡ 3.8 ± 4.3‡ 2.3 ± 3.1‡ 0.976 0.770 0.119

VRCO2 (%/mmHg CO2) 1.4 ± 0.5† 0.9 ± 0.4‡ 1.7 ± 0.6† 1.0 ± 0.7‡ 0.107 0.588# 0.437

Neurovascular coupling

Overshoot§ systolic CBFV (%) 22.4 ± 9.2† 31.6 ± 5.7† <0.001

Modeled parameters

Gain (%) 14.0 ± 7.1† 17.3 ± 4.8† 0.118

Natural frequency (Hz) 0.18 ± 0.08‡ 0.22 ± 0.06‡ <0.001

Attenuation (a.u) 0.4 ± 0.4‡ 0.4 ± 0.4‡ 0.374

Rate time (s) 0.00 ± 0.02‡ 0.03 ± 6.81‡ 0.001#

*Two-factor mixed-design ANOVA for the interaction between group variable (patients vs. controls) and arterial territory (MCA vs. PCA), controlling for age and gender. For NVC, values

were obtained using an ANCOVA. Effect size: rate time ηp² = 0.174, natural frequency ηp² = 0.237 and overshoot systolic CBFV ηp² = 0.186. ||gender significantly interfered with

the model; #age significantly interfered with the model;
†
Values are presented as mean ± standard deviation.

‡
Values are presented as median ± interquartile range. §Maximal CBFV

increase during visual stimulation. a.u., arbitrary units; CBFV, cerebral blood flow velocity; VRCO2, vasoreactivity to carbon dioxide; MFV SP, median flow velocity spectral power; MCA,

middle cerebral artery; PCA, posterior cerebral artery. Bold values of statistically significant p values (p < 0.05).

TABLE 3 | Cerebral hemodynamics, VRCO2 and NVC: controls vs. HT-nDM vs. HT-DM patients, controlled for age and gender.

HT-nDM HT-DM Controls Group HT-

nDM vs.

Controls

HT-DM

vs.

Controls

HT-

nDM vs.

HT-DM

MCA PCA MCA PCA MCA PCA p value* p value* p value* p value*

Cerebral hemodynamics

Mean CBFV (cm/s)† 47.0 ± 14.1 33.4 ± 8.4 48.0 ± 13.2 30.0 ± 7.8 52.4 ± 16.5 29.1 ± 10.1 0.993

MFV SP (cm/s2)‡ 3.1 ± 4.7 2.6 ± 5.0 3.7 ± 7.0 2.5 ± 5.0 3.8 ± 4.3 2.3 ± 3.1 0.921

VRCO2 (%/mmHg CO2)
† 1.4 ± 0.6 1.2 ± 0.7 1.4 ± 0.5 0.8 ± 0.3 1.7 ± 0.6 1.1 ± 0.4 0.676#

Neurovascular coupling

Overshoot§ systolic CBFV (%)† 25.1 ± 8.6 20.7 ± 9.3 31.6 ± 5.7 <0.001 0.080 <0.001 0.248

Modeled parameters

Gain (%)† 13.9 ± 5.1 14.1 ± 8.2 17.3 ± 4.8 0.283

Natural frequency (Hz) † 0.19 ± 0.04 0.16 ± 0.05 0.23 ± 0.06 <0.001# 0.052 <0.001 0.043

Attenuation (a.u)† 0.4 ± 0.3 0.4 ± 0.3 0.5 ± 0.2 0.327#

Rate time (s)‡ 0.00 ± 0.00 0.00 ± 0.26 0.03 ± 6.81 0.005# 0.012 0.011 1.000

*Two-factor mixed-design ANOVA for the interaction between group variable (HT-DM vs. HT-nDM vs. controls) and arterial territory (MCA vs. PCA), controlling for age and gender, with

Bonferroni post-hoc. For NVC, values were obtained using an ANCOVA. Effect size: rate time ηp² = 0.174, natural frequency ηp² = 0.313 and overshoot systolic CBFV ηp² = 0.22.
†
Values are presented as mean ± standard deviation.

‡
Values are presented as median ± interquartile range. §Maximal CBFV increase during visual stimulation. ||gender significantly

interfered with the model. #age significantly interfered with the model. a.u., arbitrary units; CBFV, cerebral blood flow velocity; HT-DM, hypertensive diabetic; HT-nDM, hypertensive non-

diabetic; MCA, middle cerebral artery; MFV SP, median flow velocity spectral power; PCA, posterior cerebral artery; VRCO2, vasoreactivity to carbon dioxide. Bold values of statistically

significant p values (p <0.05).
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stimulation (p < 0.001) and disturbed NVC time-varying
properties, with lower natural frequency (p < 0.001) and
lower rate time (p = 0.001) (Table 2; Figure 2). These
results remained similar when adjusting for BMI and VCS,
although the overshoot systolic CBFV was over the limit of
statistical significance when adjusting for the VCS (p = 0.065)
(Supplementary File 2).

NVC results were worse in HT-DM than HT-nDM
(Table 3). For the overshoot systolic CBFV and for natural
frequency, only patients with both comorbidities showed

significant differences when comparing to controls. HT-
DM showed lower natural frequency than non-diabetic
patients (p = 0.043). When controlling for VCS, natural
frequency was also worse in both HT-nDM (p = 0.020) and
HT-DM (p = 0.002) when comparing to controls, with the
worst results for HT-DM (HT-nDM vs. HT-DM, p=0.011)
(Supplementary File 3).

Figure 3 represents the evoked systolic CBFV responses in the
PCA and MCA during the visual stimulation in one HT subject,
to demonstrate the individual NVC responses.

FIGURE 2 | (A) Group-averaged evoked systolic CBFV responses during visual stimulation with the flickering checkerboard; (B) Blood pressure (BP) and heart rate

(HR) during visual stimulation with the flickering checkerboard. Gray lines represent healthy controls and black lines represent HT patients (thin lines: measured

responses, thick lines: modeled blood flow data).
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FIGURE 3 | Evoked systolic CBFV responses in the PCA and MCA during visual stimulation with the flickering checkerboard in one HT patient. The black lines

represent the PCA response (thin lines: measured responses, thick lines: modeled blood flow data) and the gray lines represent the MCA measured response, used as

a control.

TABLE 4 | NVC and VRCO2 in relation to the WMH volume in hypertensive patients.

WMH volume*

MCA PCA

≤ 0.14 > 0.14 p value ≤ 0.14 > 0.14 p value

VRCO2 (%/mmHg CO2) 1.6 ± 0.5 1.2 ± 0.5 0.004 1.0 ± 0.6‡ 0.8 ± 0.5‡ 0.006

Neurovascular coupling

Overshoot§ systolic CBFV, (%) - - - 23.4 ± 10.0† 21.8 ± 8.8† 0.573

Gain (%) - - - 11.7 ± 11.1‡ 14.6 ± 7.9‡ 0.297

Natural frequency (Hz) - - - 0.2 ± 0.0† 0.2±0.1† 0.432

Attenuation (a.u) - - - 0.4 ± 0.3† 0.4 ± 0.2† 0.891

Rate time (s) - - - 0.0 ± 1.2‡ 0.0 ± 0.0‡ 0.169

*Dichotomized by median values. p values were obtained using the t-test.
†
Values are presented as mean ± standard deviation;

‡
Values are presented as median ± interquartile

range. §Maximal CBFV increase during visual stimulation. a.u., arbitrary units; CBFV, cerebral blood flow velocity; MCA, median cerebral artery; PCA, posterior cerebral artery; VRCO2,

vasoreactivity to carbon dioxide; WMH, white matter hyperintensities. Bold values of statistically significant p values (p < 0.05).

Association With White Matter
Hyperintensities
As shown in Table 4, VRCO2 was lower in the higher burden
group in both the MCA (p = 0.004) and the PCA (p = 0.007).
NVC parameters did not differ in both groups.

DISCUSSION

Our study shows that NVC was significantly impaired in
hypertensive patients, with reduced CBFV increase and altered
time behavior hemodynamic evoked response during visual
stimulation. Moreover, NVC tended to be worse in the DM

subgroup. VRCO2 remained relatively preserved. These results
did not change when adjusting for other vascular risk factors. The
novel finding is that the natural frequency seems to be the most
sensitive parameter for discriminating abnormal NVC in these
patients. Rosengarten and colleagues reported that this parameter
had the lowest SD of the modeled parameters, thus having the
potential for better differentiating between normal and abnormal
NVC, but its capacity to identify vascular response dysfunction in
disease settings needed to be studied (Rosengarten et al., 2001a).
Our results seem to point toward natural frequency as a possible
marker for NVC dysfunction in hypertension and diabetes.

Overall, the white matter disease (WMD) burden was low
in the patient cohort. The NVC results were similar between
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higher and lower WMD burden groups, while higher burden
patients showed worse VRCO2. It has been recently reported
that reduced VRCO2 precedes the development of WMH (Sam
et al., 2016), which could help explain the difference between
the disease burden groups. Similar NVC with higher and lower
WMH volume has been previously reported (Sorond et al.,
2013). Although WMH volume predicts an increased risk of
stroke and cognitive decline, the clinical expression seems to
vary (Sorond et al., 2011). Moreover, silent markers of CSVD
are frequently detected on the MRI of older individuals without
cognitive impairment (Vernooij et al., 2009; Debette andMarkus,
2010). Thus, besides macrostructural changes, other modalities
reflecting microstructural integrity and function, such as TCD
dynamic studies, may provide additional information to further
stratify patients at risk.

Neurovascular Unit at the Core of Target
Brain Damage in Hypertension
Our results showed a significantly reduced PCA CBFV
magnitude response and altered time behavior of reactive
hyperemia during visual stimulation in HT patients, especially
when diabetes was an added comorbidity. These findings
indicate disturbed NVC in these patients’ PCA cortical territory,
independently of established WMD, as was observed by other
groups (Birns et al., 2009; Purkayastha et al., 2014). The decreased
CBFV during visual stimulation reflects less robust functional
hyperemia, causing failure to meet the metabolic demands and
neuronal damage (Iadecola et al., 2019).

The reduced overshoot systolic CBFV in the patient group was
not accompanied by a reduction in the modeled parameter gain.
This could reflect lack of statistical power to detect the differences
between the groups, since the mean gain was lower in the patient
group. In addition, it has been demonstrated that the overshoot
of systolic CBFV is significantly influenced by not only gain, but
also rate time and attenuation (Rosengarten et al., 2001a). Hence,
the parameter gain and the overshoot systolic CBFV may not be
perfectly matched.

These results are in line with studies on genetically determined
CSVD. CADASIL patients demonstrated less robust functional
hyperemia in the PCA during visual stimulation, with changes
in time dynamics, very similar to our findings (Jokumsen-Cabral
et al., 2019). Comparable NVC dysfunction in the posterior
circulation was shown in Fabry patients (Azevedo et al., 2012;
Castro et al., 2020). Both diseases are characterized by abnormal
material deposition in the vessel walls (Baudrimont et al., 1993;
Rombach et al., 2010). Interestingly, amyloid deposition also
seems to cause NVC impairment (Iadecola and Davisson, 2008;
Brickman et al., 2015), and HT appears to have a role in
promoting amyloid deposition, thus working synergistically to
worsen CSVD and cognitive decline (Iadecola and Davisson,
2008).

Chronic HT leads to structural (mal)adaptations in the
cerebral circulation, with remodeling of the cerebral arteries
and arterioles. This remodeling involves smooth muscle
cell hypertrophy and hyperplasia, increased deposition of
extracellular matrix components and degenerated smooth

muscle (lipohyalinosis) and fibrinoid necrosis, leading to
arterial stiffening and loss of elasticity (Iadecola and Gottesman,
2019). These changes in the proximal resistance arteries
cause substantial burden on the vulnerable downstream
microcirculation, promoting pressure-induced oxidative stress
to the endothelial cells and neuroinflammation (Ungvari et al.,
2021). In experimental models, HT results in impairment of
endothelium mediated neurovascular coupling responses, in
part resulting from this oxidative stress and neuroinflammation
(Iadecola and Gottesman, 2019; Ungvari et al., 2021). Hence, the
structural changes induced by HT play an important role in the
loss of functional integrity of the neurovascular unit. Natural
frequency is assumed to represent the tonus and the speed of the
system (Rosengarten et al., 2003), which would be altered by the
increased rigidity of the vessels and endothelial dysfunction, and
our results show that this parameter was the most sensitive in
differentiating patients from controls.

Less effective NVC in the MCA territory has been associated
with significant cognition, balance, and walking velocity changes
in the elderly (Sorond et al., 2011; Purkayastha et al., 2014).
Despite the presence and burden of WMD, normal NVC was
associated with preserved walking speed, while slower walking is
one of the earliest manifestations of CSVD. Further prospective
work could use NVC for predicting symptomatic CSVD.
Curiously, cocoa and deferoxamine have been demonstrated
to reverse some of these changes suggesting the possibility
for pharmacological modulation of the neurovascular function
(Sorond et al., 2013, 2015).

Additional Contribute From Diabetes
Mellitus
Comorbid diabetes associated with increased cerebrovascular
dysfunction. NVC was worse in this subgroup of hypertensive
patients, particularly in its oscillatory properties (natural
frequency), in accordance to previous studies in early type
1 DM (Rosengarten et al., 2002). This might signify higher
rigidity of the small arteries due to the accumulation of
advanced glycated by-products. In fact, type 2 DM patients
have particularly high incidence of lacunar stroke (van Harten
et al., 2006; Brundel et al., 2014). Diabetes induced chronic
vascular changes include not only macrovascular disorders, such
as cardiovascular and cerebrovascular large vessel disease, but
also microvascular disorders, with nephropathy, retinopathy and
neuropathy (Chawla et al., 2016). Furthermore, studies have
implicated DM as a risk factor for cognitive impairment, which
may be related to CSVD. However, the mechanism by which
cognitive decline occurs and whether it can be explained by
dysfunction of the neurovascular unit remains to be elucidated
(Mogi and Horiuchi, 2011). The sympathetic nervous system
seems to attenuate the cerebrovascular response to hypercapnia,
suggesting a direct effect on the cerebral vasculature (Jordan et al.,
2000). NVC is also affected by autonomic dysfunction (Azevedo
et al., 2011). Thus, differences in DM vs. nDM hypertensive
patients could be related to DM associated dysautonomia in
CSVD.
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Overall, our study further supports cerebrovascular dynamics
dysfunction as a major player in explaining the relationship
between increased VRF burden and CSVD manifestations,
independently of macroscopic white matter lesions.

Limitations
We acknowledge several methodological limitations. Due to
the cross-section design, our study cannot provide evidence to
support cerebrovascular dysfunction as an early predictor of
CSVD. However, these patients had well-controlled HT, based
on average ABPM values, with no clinical manifestations of
cerebrovascular disease. All the patients were referred to the
Hypertension Unit due to severe or difficult to manage HT, and
we do not know the duration of the untreated disease, which
could impact the degree of microvascular dysfunction.

Although the patient group’s sample size is relatively large
for hemodynamic physiology studies, this is an exploratory
study and must be validated in larger, multicenter cohorts.
Also, the control group is relatively small, not exactly age-
and gender-matched, and the differences in comorbidities
between the two groups can be potential confounders to the
observed differences. Besides HT and DM, already discussed,
other vascular comorbidities have been associated with the
development of CSVD. Dyslipidemia plays an important role in
the development of large vessel disease and stroke, but its role in
CSVD is still controversial (Tsai et al., 2018). However, animal
studies have demonstrated cerebral autoregulation impairment
with hyperlipidemia and a relationship between hyperlipidemia
and the development of CSVD (Ayata et al., 2013; Kraft et al.,
2017). Obesity has been demonstrated to have an impact in
the development of CSVD (Yamashiro et al., 2014), and it
has been shown to affect cerebral vasoreactivity (Selim et al.,
2008). Smoking appears to worsen the effects of hypertension
in the cerebral microvasculature (Hara et al., 2019), and there
is impaired neurovascular coupling in the PCA of young
chronic smokers (Olah et al., 2008). Chronic heart failure
can affect cerebral autoregulation, reduce cerebral blood flow
(CBF) and has been shown to affect NVC in the PCA (Aires
et al., 2020; Ovsenik et al., 2021). The prevalence of CSVD is
higher in patients with coronary artery disease (Berry et al.,
2019), and it has been identified as an independent risk
factor for vascular dementia (Gorelick et al., 2011). It was
recently demonstrated that aTrial fibrillation reduces cerebral
autoregulation and impairs neurovascular coupling responses to
visual stimulation (Junejo et al., 2020). There is evidence that
peripheral artery disease is associated with white matter disease
and the development of vascular dementia (Bots et al., 1993;
Gorelick et al., 2011). In patients with ischemic stroke, impaired
renal function correlated with worse dCA and associated with
an increased risk of hemorrhagic transformation (Castro et al.,
2018). However, in addition to adjusting for age and gender,
adjusting for the vascular comorbidities did not modify the
results significantly.

Hypertension affects cerebral small vessels heterogeneously,
and MRI seems the logical choice for its superior spatial
resolution. However, MRI VRCO2 protocols are more prone
to failure (Moreton et al., 2018), expensive and not as

standardized as TCD (Malojcic et al., 2017). Moreover, TCD
offers extraordinary time resolution (∼5ms) for studying the
time behavior of CBFV activation in downstream cortical
microvasculature. There are also inherent limitations for
continuous blood flow monitoring by TCD, namely, providing
a measure of blood flow velocity and not flow. However,
the former is an adequate surrogate for the latter as long
as the insonated artery diameter remains constant. Since data
were acquired in a supine position and relied on spontaneous
measurements, changes in artery diameter are not anticipated for
NVC.Nevertheless, it has been demonstrated that with increasing
partial pressure of arterial CO2 there is noticeable increase in
vessel diameter, which could lead to underestimation of cerebral
blood flow in the VRCO2 protocol (Coverdale et al., 2014).

We did not report the presence of cortical microinfarcts
(CMI) in this study, despite having been found in cohorts of
hypertensive patients (although not consistently) and despite
their importance in cognitive decline (van Veluw et al., 2017).
We did not detect CMI upon visual inspection of the MRI scans.
However, the protocols for detecting CMI are mostly validated
in 3T MRI scanners (Coverdale et al., 2014), and our 1.5T scan
protocol is underpowered for their detection.

In conclusion, neurovascular coupling, and more specifically
the modeled parameter natural frequency, seems to be
particularly affected in hypertension and diabetes and could
be useful as an early biomarker for microvascular dysfunction,
future irreversible vascular damage, and cognitive decline.
Additionally, our study supports TCD dynamic tests as useful
tools for better understating microvascular damage associated
with these diseases, but future research is warranted to confirm
these results.
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Objectives: Endothelial dysfunction (ED) has been linked to the pathogenesis of cerebral

small vessel disease (SVD). We aimed to assess ED and cerebrovascular reactivity (CVR)

in the patients with a diversemanifestation of SVD, with similar and extensive white matter

lesions (WMLs, modified Fazekas scale grade ≥2), compared with a control group (CG)

without the MRI markers of SVD, matched for age, gender, hypertension, diabetes, and

to evaluate the change of CVR following 24 months.

Methods: We repeatedly measured the vasomotor reactivity reserve (VMRr) and

breath-holding index (BHI) of the middle cerebral artery (MCA) by the transcranial Doppler

ultrasound (TCD) techniques in 60 subjects above 60 years with a history of lacunar

stroke (LS), vascular dementia (VaD), or parkinsonism (VaP) (20 in each group), and in 20

individuals from a CG.

Results: The mean age, frequency of the main vascular risk factors, and sex distribution

were similar in the patients with the SVD groups and a CG. The VMRr and the BHI

were more severely impaired at baseline (respectively, 56.7 ± 18% and 0.82 ± 0.39)

and at follow-up (respectively, 52.3 ± 16.7% and 0.71 ± 0.38) in the patients with SVD

regardless of the clinical manifestations (ANOVA, p > 0.1) than in the CG (respectively,

baseline VMRr 77.2 ± 15.6%, BHI 1.15 ± 0.47, p < 0.001; follow-up VMRr 74.3 ±

17.6%, BHI 1.11 ± 0.4, p < 0.001). All the assessed CVR measures (VMRr and BHI)

significantly decreased over time in the subjects with SVD (Wilcoxon’s signed-rank test

p = 0.01), but this was not observed in the CG (p > 0.1) and the decrease of CVR

measures was not related to the SVD radiological progression (p > 0.1).

Conclusions: This study provided evidence that the change in CVR measures is

detectable over a 24-month period in patients with different clinical manifestations of

SVD. Compared with the patients in CG with similar atherothrombotic risk factors, all the

CVR measures (BMRr and BHI) significantly declined over time in the subjects with SVD.

The reduction in CVR was not related to the SVD radiological progression.

Keywords: neurovascular unit (NVU), cerebral small vessel disease, cerebrovascular reactivity (CVR), endothelial

dysfunction, neurovascular coupling
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BACKGROUND

Small vessel disease (SVD) is one of the most important
cerebral microangiopathy, responsible for the majority of
lacunar stroke (LS), vascular dementia (VaD), and parkinsonism
(VaP) cases (Pantoni, 2010). The basic mechanism of the
cerebral vessels alterations in the SVD is linked to endothelial
dysfunction (ED), but whether ED only reflects the load
of atherothrombotic risk factors or if it is specific to SVD
has not been clearly defined (Forsberg et al., 2018). The
neurovascular unit (NVU) concept accentuates the symbiotic
association between brain cells, cerebral blood vessels, and
subsequently cerebral blood flow (CBF) (Muoio et al., 2014).
The endothelium and vascular smooth muscle within the NVU
forms the basis of blood-brain-barrier (BBB), and contribute to
the neurovascular coupling that is the response of the cerebral
vessel to the changes in neural activity (Attwell et al., 2010).
The SVD is a dynamic and progressive pathology involving
variable components of NVU and BBB, however, the long-term
clinical effects and outcomes usually differ between patients
(Kisler et al., 2017). The recent studies have shown that the
signaling pathways in the NVU control diverse processes, e.g.,
blood clotting and CBF, nevertheless it is not known precisely
how CBF dysregulation translate to the disorders associated
with neurovascular dysfunction, such as SVD. Cerebrovascular
reactivity (CVR) is a measure of the capability of adaptive
changes to vasodilatory stimuli (e.g., change in pCO2 due to CO2

inhalation, voluntary apnea, hyperventilation, or acetazolamide),
and reflects the compensation of the collateral flow, therefore it
can be used to indirectly assess and monitor the sequences of
cerebral ED and the progression of vascular disease (Lavi et al.,
2006). The reduced CVR indicates the impairment of NVU and
regulatory mechanisms of CBF which result in neurovascular
uncoupling. There are no biological markers to accurately assess
brain vasoreactivity; however, CVR can be evaluated by various
tools, such as single photon emission computed tomography
(SPECT), PET, variousMRI techniques, and transcranial Doppler
ultrasound (TCD) (Terborg et al., 2000). Currently, one of
the most widely used methods to measure the CVR is MRI,
and it offers advantages over the use of radiolabeled products
while maintaining regional specificity (Sleight et al., 2021).
Though no direct anatomical information can be obtained,
TCD permits for the evaluation of mean flow velocity (MFV)
changes in the major cerebral arteries after a vasodilative
stimulus and it provides complementary information of the brain
hemodynamics (Ringelstein et al., 1988; Ebrahim et al., 2019;
Burley et al., 2021a). The results of the TCD examination (MFV
and pulsatility index) and the ventilation tests correlate with
those obtained by other methods, and the value of TCD in
the evaluation of CVR impairment, e.g., in the asymptomatic
or symptomatic individuals with the brain white matter lesions
(WMLs) has been established (Maeda et al., 1993; Marcos et al.,
1997; Ghorbani et al., 2015; Fu et al., 2019). The assessment of
CVR can be achieved with the bilateral recording of MFV in
the middle cerebral artery (MCA) with acceptable reproducibility
and inter-rater reliability using carbogen inhalation (McDonnell
et al., 2013). Recently, we have found that the cerebral vasodilator

responses to breath hold and hyperventilation were abnormal in
the patients with VaD, LS, and VaP caused by SVD, and they were
severely impaired when compared with the controls matched for
the main vascular risk factors and free from the cerebrovascular
events (Staszewski et al., 2019). Most of the studies assessing
CVR in SVD did not evaluate the CVR changes over time or
had unmatched control groups (CGs) (Thrippleton et al., 2018).
Therefore, our study aimed to investigate the CVR changes
over 24 months in the subjects with diverse manifestations of
SVD (LS, VaD, and VaP), with similar and extensive radiological
burdens of the disease and compare with a carefully selected CG
without MRI markers of SVD, free of cerebrovascular events, and
matched for major vascular comorbidities.

MATERIALS AND METHODS

Participants
We analyzed the patients from the SHEF-CSVD Study in which
the baseline and follow-up CVR and MRI imaging could be
evaluated (Staszewski et al., 2013). The study protocol with
detailed selection criteria and methodology has been described
previously (Staszewski et al., 2019).

In brief: the SVD group consisted of ambulatory subjects
above 60 years, enrolled between December 2011 and September
2015, with established LS (according to the OCSP criteria), VaP,
or VaD (according to the Hurtig or NINDS-AIREN criteria)
(Chui et al., 1992; Hurtig, 1993; Zijlmans et al., 2004). The
patients with MRI contraindications, non-SVD-related WMLs,
strategic single-infarct dementia, or post-stroke VaP or VaD,
recurrent LS, carotid artery stenosis ≥50%, atrial fibrillation,
chronic kidney disease (CKD) requiring dialysis, life expectancy
<6 months, and recent head trauma were not included. To
maximize the statistical power, we decided to analyze the equal
groups of subjects and we recruited the consecutive patients with
VaP and matched them in a 1:1 ratio with VaD, LS patients,
and CG (without known cerebrovascular disease or dementia)
according to sex, age (±5 years), and the presence of diabetes
and hypertension. The signs of SVD are often seen in MRI
in cognitively healthy elderly, and they are highly age-related.
The studies showed that the WMLs are detected in 30–90%
of cognitively healthy elderly (mean 72–74 years), therefore to
maximize the homogeneity of the studied groups, we included
only controls with no radiological signs of SVD in MRI (Fazekas
0) and the patients with SVD with extensive WMLs (Fazekas
grade 2 or 3) (Longstreth et al., 2005; Gustavsson et al., 2015).

Of the 139 screened subjects (101 patients with SVD and 38
controls), 59 were excluded (18 controls, 15 LS, 9 VaD, and 17
VaP) due to inadequate acoustical bone window at the baseline
(n = 16), the radiological markers of SVD in controls at baseline
MRI examination (n = 3), withdrawal of consent during follow-
up (n= 7), lack of follow-up MRI (n= 22), or TCD examination
(n = 11). The patients with SVD and incomplete follow-up data
(n = 30) had similar mean age (70.2 ± 7.6 vs. 72.6 ± 6.9, p =

0.14) and the baseline SVD score (2.1 ± 0.6 vs. 2 ± 0.6, p =

0.6) comparing with those included to the final analysis, however,
more men dropped-out in comparison with women (48 vs. 9%, p
< 0.01). The most common reported reason for lack of follow-up
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was that the subjects felt asymptomatic or did not tolerate well to
the baseline MRI or TCD examination. Finally, the study group
comprised 60 patients with newly diagnosed symptomatic SVD
(20 per group: VaP, VaD, and LS) and 20 controls. All the patients
were functionally independent (modified Rankin Scale, mRS ≤

3 and total Barthel Index ≥ 80) and without severe dementia
(Mini-Mental State Examination, MMSE ≥ 12) (Schulc et al.,
2015).

Study Procedures
All the patients signed informed consent before entering the
study. The consent has been obtained prior to any study specific
procedures. All the patients had TCD and MRI examinations
performed at baseline and the 24-month follow-up visit (mean
23.1 ± 4 months; LS 22.5 ± 3; VaP 21.5 ± 4.6; VaD 23.3 ± 3.4;
CG 23.6± 2; and ANOVA p= 0.28).

Ultrasound Examinations

The determination of the cerebrovascular reserve capacity is
based on the ability of the intracranial arterioles to dilate. The
CO2 tests assume the correlation among the CBF, the CO2

partial pressure, and the flow velocity in the basal cerebral
arteries, and the reduction or elevation of pCO2 leads to a
decrease or increase in MFV. Since TCD measures flow velocity
in the large arteries, this reflects flow in the combined gray and
white matter. The TCD study included evaluation of both the
MCAs with 2-MHz probes (Companion III, Nicolet) in fixed
positions according to the standard protocol (Settakis et al.,
2002). The MFV values were averaged, and the interhemispheric
differences for mean MFV did not exceed 15%. The recordings
were considered acceptable when the velocities of blood flow
could be detected bilaterally, and with a clear envelope of the
MFV spectrum during the entire cardiac cycle. The CVR was
measured as the breath-holding index (BHI), the ratio of the
percentage MFV increase during hypercapnia, and vasomotor
reactivity reserve (VMRr), the percentage change in MFV
from hypo- to hypercapnia (Tsivgoulis and Alexandrov, 2008).
Basing on the Markus and Harrison procedure, we measured
the baseline MFV (baseMFV) following 10min of rest with
normal breathing (normocapnia), the minimal MFV value
(minMFV) following 2min of hyperventilation (hypocapnia),
and the MFV value (maxMFV) subsequent to 30 s of breath
holding (hypercapnia) and followed by a period of 4min of
normal breathing of room air (Markus and Harrison, 1992).
To achieve the most reproducible results before proceeding
to the definitive recording, the participants were trained to
perform all the procedures correctly. All of them were able to
hyperventilate and hold their breath for the required period. The
exact length of breath-holding ranged from 29.8 to 30.5 s at the
baseline and 30.1 to 30.3 s at follow-up, and it did not differ
between the study groups (ANOVA, p > 0.1). The end-tidal CO2

(etCO2) concentration was monitored by capnograph (PC900A,
Creative Medical, Shenzhen, China) during the examination.
Blood pressure (BP) and heart rate (HR) were measured prior to
and following the tests. Although McDonnell et al. found higher
intra-rater reliability for the TCD measurements taken while the
patients were sitting, we performed TCD examination in all the

subjects in the supine position in accordance with our standard
protocol (McDonnell et al., 2013). Ultrasound examination was
performed under the standardized conditions (same quiet room
and time of the day; no sleep deprivation and no medication
intake for at least 6 h were allowed) by a single experienced TCD
sonographer unaware of the diagnosis of the subjects. All the
patients with LS had the study procedures performed at least 3
weeks (mean 24± 2 days) after their index strokes.

MRI Evaluation (GE Healthcare 1.5 T Scanner, IL,

USA)

The images were evaluated for the presence of acute LS, lacunes,
deepWMLs (dWMLs), or periventricular (pWMLs), microbleeds
(MBs), and enlarged perivascular spaces (PVS) according to the
STRIVE guidelines and visual SVD scale (Wardlaw et al., 2013;
Staals et al., 2014). The simple modified Fazekas rating scale was
used to estimate the extent of pWMLs and dWMLs (Fazekas
et al., 1987; Inzitari et al., 2009). The mild white matter lesions
(Fazekas grade 1) were defined as the punctate lesions in the
deep white matter with a maximum diameter of 9mm for every
single lesion and 20mm for grouped lesions. The moderate white
matter lesions (grade 2) were defined as early confluent lesions
of 10–20mm for single lesions and >20mm for grouped lesions
in any diameter, with no more than connecting bridges between
the individual lesions. Severe white matter lesions (grade 3) were
defined as single lesions or confluent areas of hyperintensity
of 20mm or greater in any diameter. The presence of each
of the four MRI markers for SVD (WMH, lacunes, cerebral
microbleeds, and perivascular spaces) was counted to retrieve a
total SVD score (ranging from 0 to 4). One point on the visual
SVD scale was awarded if confluent deep WMLs (Fazekas grade
2 and 3) or irregular periventricular hyperintensities extending
into the deep white matter (Fazekas grade 3) were present
or when one or more lacunes or MBs were present; 1 point
was awarded if moderate (10–25) to extensive (>25) enlarged
PVS were present (Kim et al., 2008). The presence of each
marker produced a score of a minimum 0 and a maximum of
4, representing the total MRI load of SVD. At baseline MRI
assessment, all the patients with SVD had at least Fazekas grade 2
WMLs, and controls did not have radiological markers of SVD in
MRI. The visual rating of SVD radiological progression expressed
by the WMLs progression or development of new lacunes was
performed at a follow-up visit. As proposed by Prins et al., the
WMLs progression and lacunes were rated on the FLAIR images
and the presence or absence of progression was rated in the three
periventricular regions, basal ganglia, infratentorial region, and
four subcortical white matter regions (Prins et al., 2004). The
images were reviewed by a neuroradiologist (E.S.) blinded to the
clinical data.

Atherothrombotic Risk Evaluation

The vascular comorbidities were defined according to the
current standards and evaluated based on the available medical
data, physical examinations, widespread histories, and routine
laboratory tests performed at baseline (Alberti et al., 2009;
Goblirsch et al., 2013).
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Statistical Analysis
All the demographic data were summarized, tabulated, and
verified for normality with the Shapiro–Wilk test, and the
homogeneity of the variances was assured by Levene’s test.
Categorical and continuous data are presented as frequencies
or means ± SD and analyzed using Fisher’s exact tests,
the chi-square test, paired t-tests, or non-parametric tests
where appropriate.

The associations betweenMRI progression with CVR changes
over time in the studied groups were compared using a linear
mixed model. The model included study group (SVD, CG), Time
(Baseline, Follow-up), MRI (progression, no progression), and

a Time∗Group∗MRI interaction for fixed effects. The subject
variable was specified to assess possible individual variability. Per
group, theWilcoxon’s signed-rank test was performed to evaluate
the differences between CVR and other hemodynamic measures
at the baseline and at follow-up visits. One-way ANOVA and chi-
square tests were used to compare data between the study groups
with post-hoc Tukey’s honestly significant difference (HSD) tests
for comparisons among the SVD subgroups. The effect sizes
for the group differences were analyzed with partial eta squared
(η2

p) reflecting the proportion of the total variance attributable
to the effect (and considered small if 0.01, moderate around
0.06, and high if >0.13). A probability value of p < 0.05 was

TABLE 1 | Main characteristics of the study population at baseline.

Variable SVD (n = 60) LS (n = 20) VaP (n = 20) VaD (n = 20) CG (n = 20) p#

Demographics

Age (y)* 72.6 (±6.9) 71.7(±7.7) 73.8 (±6.2) 72.2 (±6.8) 71.9 (±3.2) 0.7

Female gender (%)* 30 (50) 10 (50) 10 (50) 10 (50) 10 (50) 1

Vascular risk factors

Hypertension (%)* 54 (89) 18 (90) 18 (90) 18 (90) 18 (90) 1

Diabetes (%)* 30 (50) 10 (50) 10 (50) 10 (50) 10 (50) 1

CAD (%) 22 (37) 8 (40) 7 (35) 7 (35) 7 (35) 0.2

Current smoking (%) 22 (37) 7 (35) 6 (30) 9 (45) 8 (40) 0.5

Hyperlipidemia (%) 45 (75) 15 (75) 16 (80) 14 (70) 15 (75) 0.8

CKD (%) 8 (13) 2 (10) 2 (10) 4 (20) 3 (15) 0.3

PS (%) 28 (46) 10 (50) 10 (50) 8 (40) 8 (40) 0.8

Obesity (BMI>30) 17 (28) 6 (30) 6 (30) 5 (25) 6 (30) 0.8

Examination findings

Homocysteine (µmol/l) 14.4 ± 6.1 13.2 ± 3.7 18.1 ± 8.3 12.03 ± 3.5 13.1 ± 2.7 0.01

hsCRP (mg/dL) 0.55 ± 0.9 0.56 ± 1.02 0.64 ± 0.9 0.46 ± 0.8 0.16 ± 0.17 0.2

Uric acid (mg/dL) 5.4 ± 1.5 5.8 ± 1.6 5.5 ± 1.3 4.8 ± 1.5 4.6 ± 1.3 0.05

eGFR (ml/min/1.73 m2) 78.8 ± 24.1 77.1 ± 29 72.3 ± 22.8 87 ± 17.2 95 ± 16 0.01

HbA1c (%) 6.2 ± 1.03 6.3 ± 1.2 5.9 ± 0.5 6.3 ± 1.2 5.9 ± 0.1 0.26

FG (mg/dL) 120.1 ± 43.2 128.8 ± 48.6 112.8 ± 32.3 120.6 ± 47.2 106.3 ± 18.7 0.21

LDL (mg/dL) 108.4 ± 37.8 97.1 ± 35.5 110.6 ± 36.6 116.5 ± 40.4 122.8 ± 41.8 0.22

HDL (mg/dL) 52.2 ± 17 46.7 ± 10 55.2 ± 16.9 54.1 ± 22.5 60.9 ± 19.3 0.12

TG (mg/dL) 124.5 ± 57.9 125.6 ± 60.1 132.1 ± 64.2 115.5 ± 50 115.1 ± 39 0.7

TC (mg/dL) 185.2 ± 48.1 166.8 ± 39.5 194.4 ± 54.7 193.4 ± 54.7 198.7 ± 31.7 0.1

BMI 26.4 ± 5.6 27.7 ± 7.6 25.1 ± 4 26.3 ± 4.5 27.8 ± 3.8 0.3

MRI examination

SVD score (mean ± SD) 2 ± 0.6 2.2 ± 0.7 2 ± 0.6 2.1 ± 0.6 0 <0.01

Fazekas pWMLs (mean ± SD) 1.45 ± 0.9 1.5 ± 1.1 1.4 ± 1 1.5 ± 0.7 0 <0.01

Fazekas dWMLs (mean ± SD) 1.6 ± 0.9 1.7 ± 1.1 1.5 ± 0.8 1.7 ± 0.9 0 <0.01

Vascular treatment

Statin treatment (%) 45 (75) 15 (75) 16 (80) 14 (70) 15 (75) 0.8

ACEI (%) 15 (25) 6 (30) 4 (20) 5 (25) 7 (35) 0.6

Beta blocker (%) 22 (37) 8 (40) 7 (35) 7 (35) 7 (35) 0.2

ARB (%) 19 (32) 6 (30) 7 (35) 6 (30) 7 (35) 0.4

Calcium channel blocker (%) 23 (38) 9 (40) 7 (35) 7 (35) 7 (35) 0.4

Diuretics (%) 12 (20) 4 (20) 3 (15) 5 (25) 4 (20) 0.2

Values represent the means ( ± SD) for continuously distributed data or the numbers (%) for categorical data.

*Matched factors; #ANOVA and χ2 difference between the groups p < 0.05 compared with CG according to Tukey’s honestly significant difference (HSD) test.

SVD, cerebral small vessel disease; LS, lacunar stroke; VaD, vascular dementia; VaP, vascular parkinsonism; CG, control group; CAD, coronary artery disease; BMI, body mass

index; FG, fasting glucose; PS, polymetabolic syndrome; CKD, chronic kidney disease; IMT, intima-media thickness; ACEI, angiotensin-converting-enzyme inhibitors, ARB, angiotensin

receptor blockers.
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considered significant, all the analyses were made using the
PQStat 1.8.0 software.

The study has been approved by the Internal Revision
Board (Wojskowy Instytut Medyczny, 46/WIM/2010)
and it was conducted in accordance with the Declaration
of Helsinki.

RESULTS

The studied cohort consisted of 80 older adults (mean 72.4± 6.2
years) of both sexes (50% women). The baseline characteristic
of the studied cohort is provided in Table 1. The prevalence of
the main comorbidities was similar in groups, but there were
some differences in the laboratory examination findings: the
CG had lower concentrations of homocysteine, showed a trend
toward lower concentration of uric acid, and had higher levels
of estimated glomerular filtration rate (eGFRs) comparing with
other subjects. The SVD subgroups had a similar prevalence of
vascular risk factors and treatment use, laboratory, and MRI
findings (Fazekas grade 3 was scored by 80% LS, 80% VaD, and
75% VaP subjects; p= 0.7). The mean etCO2 concentrations and
systolic blood pressure (SBP), diastolic blood pressure (DBP),
and heart rate (HR)measures during hyperventilation and breath
holding did not differ between the CG and the SVD group,
and they were also similar between the SVD subgroups. In
addition, these variables did not significantly differ between the
baseline and follow-up assessments (Wilcoxon’s sign rank test,
p > 0.1). The reproducibility measurements of VMRr and BHI
were performed in a sample of 12 individuals (four from CG,

eight with LS). The intraclass correlation coefficient for the two
consecutive measurements was 0.90; p< 0.01 for VMRr and 0.88;
p < 0.01 for BHI.

Vasomotor reactivity reserve and the BHI were more severely
impaired at the baseline and at follow-up assessments in
the patients in the SVD groups (regardless of the clinical
spectrum of the disease) than in the CG (Table 2). The size
effect of the difference was similar in all comparisons (eta-
squared ranged between 0.25 and 0.29). For better visualization,
the CVR change in the individual subjects is shown in
(Supplementary Figures 1, 2).

Vasomotor reactivity reserve and the BHI were significantly
lower in diabetic patients with SVD vs. diabetic controls at
the two timepoints (baseline VMRr: 55.8 ± 16 vs. 74 ± 18%,
respectively, p < 0.001; BHI: 0.79 ± 0.39 vs. 1.1 ± 0.3, p =

0.02; follow-up VMRr 52.7 ± 15 vs. 71.2 ± 20, p < 0.01; BHI:
0.72 ± 0.4 vs. 1.04 ± 0.5, p < 0.01 and the difference was also
significant between the non-diabetic subjects from SVD group vs.
CG (respectively; baseline VMRr: 54.2 ± 18.4 vs. 79.9 ± 13.7, p
< 0.001; BHI: 0.78 ± 0.39 vs. 1.16 ± 0.55, p = 0.01; follow-up
VMRr 52.1± 18 vs. 76.8 ± 14.9%, p < 0.01; BHI: 0.70 ± 0.35 vs.
1.15± 0.2; p < 0.001).

Both the assessed CVR measures (VMRr and the BHI)
significantly declined over time in the subjects with SVD
(Wilcoxon’s signed-rank test, p = 0.01), however, there
was no significant decline of VMRr and BHI in CG over
24 months of observation (Wilcoxon’s signed-rank test p
> 0.1) (Figure 1). The mean VMRr and BHI values were
also similar at the baseline and follow-up measurements

TABLE 2 | Basal and follow-up characteristics and vasodilatation responses of cerebral arteries in all the subjects.

Variable SVD (n = 60) LS (n = 20) VaP (n = 20) VaD (n = 20) CG (n = 20) p#

Baseline measures

MFV (cm/s) 41.5 ± 12* 43.9 ± 15 42 ± 9.5 38.4 ± 10.4* 46.8 ± 8.7 0.03

VMRr (%) 56.7 ± 18.4* 55.4 ± 18.6* 55.1 ± 15.2* 54.2 ± 18.7* 77.2 ± 15.6 <0.001

BHI 0.82 ± 0.39* 0.86 ± 0.4* 0.77 ± 0.28* 0.71 ± 0.4* 1.15 ± 0.47 <0.001

Resting SBP, mmHg 127.2 ± 17.2 130.1 ± 16.2 126.1 ± 11.1 125.2 ± 16 124 ± 19 0.2

Resting DBP, mmHg 73.4 ± 10.1 72.4 ± 13.2 73.2 ± 12.4 74.4 ± 11 74.1 ± 8 0.7

Resting HR, beats/min 76.8 ± 6.6 76.8 ± 4.7 75.2 ± 8.2 78.3 ± 6.6 72.1 ± 6.1 0.8

Delta etCO2 HV (%) 1.3 ± 0.15 1.4 ± 0.4 1.3 ± 0.2 1.1 ± 0.7 1.4 ± 0.5 0.6

Delta etCO2 BH (%) 1.2 ± 0.1 1.3 ± 0.2 1.3 ± 0.6 1.1 ± 0.6 1.2 ± 0.4 0.8

Follow-up measures

MFV (cm/sek) 35.2 ± 11.2* 37.1 ± 15.6 34.3 ± 9.2* 34.2 ± 8.3* 43.1 ± 8.2 0.06

VMRr (%) 52.3 ± 16.7* 54.4 ± 17.9* 49.3 ± 11.5* 53.2 ± 19.7* 74.3 ± 17.6* <0.001

BHI 0.71 ± 0.38* 0.72 ± 0.5* 0.71 ± 0.24* 0.69 ± 0.4* 1.11 ± 0.4* <0.001

Resting SBP, mmHg 124.8 ± 13.9 127.2 ± 17.1 125.3 ± 9.8 122.1 ± 15 127 ± 9 0.3

Resting DBP, mmHg 76.3 ± 11 74.1 ± 14.1 78.1 ± 7.7 76.7 ± 11 74.2 ± 10 0.6

Resting HR, beats/min 73.9 ± 2.2 72.6 ± 3 75.2 ± 1.2 74.1 ± 2.4 70 ± 10.5 0.2

Delta etCO2 HV (%) 1.23 ± 0.6 1.3 ± 0.7 1.2 ± 0.5 1.2 ± 0.6 1.9 ± 0.7 0.3

Delta etCO2 BH (%) 1.16 ± 0.7 1.1 ± 0.8 1.1 ± 0.4 1.3 ± 0.4 1.2 ± 0.7 0.8

#ANOVA difference between the groups, *p < 0.05 compared with the CG.

SVD, cerebral small vessel disease; LS, lacunar stroke; VaD, vascular dementia; VaP, vascular parkinsonism; CG, control group; MFV, mean flow velocity; BHI, breath holding index;

VMRr, vasomotor reactivity reserve; PI, pulsatile index; RI, resistance index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate.

1 etCO2HV, 1 end-tidal CO2 during hyperventilation; 1 etCO2 BH, 1 end-tidal CO2 during breath holding.
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FIGURE 1 | Comparison of baseline and follow-up cerebrovascular reactivity (CVR) measures (VMRr [vasomotor reactivity reserve] and breath-holding index [BHI]) in

all subjects from cerebral small vessel disease (SVD) and control group (CG). SVD, cerebral small vessel disease; VMRr, vasomotor reactivity reserve; BHI,

breath-holding index.

among the patients with LS, VaD, and VaP (ANOVA,
p > 0.1).

Radiological progression during the study was observed in 28
of the 80 subjects (35%): significantly more often (p = 0.03) in
the SVD subjects (n = 25 [42%]: eight subjects from LS [40%]
group, eight with VaD [40%], and nine with VaP [45%], with no
difference between the SVD groups [ANOVA p > 0.1]) than in
the CG (n = 3; 15%). During the follow-up, only 4/80 patients
(5%) experienced lacunar stroke (two patients from LS group and
two from VaD group), no other vascular events were observed.
Although in patients with SVD who experienced radiological
progression, all the CVR measures were considerably impaired
at the baseline and follow-up assessments compared with the no
progression group (respectively, baseline VMRr 43.3± 13.2% vs.
63.3 ± 14.9%, p < 0.001; eta-square 0.33; baseline BHI 0.63 ±

0.39 vs. 0.9 ± 0.36, p < 0.001; eta-square 0.12; follow-up VMRr
41.2± 13.4% vs. 60.3± 14%, p< 0.001; eta-square 0.32; BHI 0.52
± 0.24 vs. 0.84± 0.39, p < 0.001; eta-square 0.19), no significant
decrease of CVR measures was observed during 24 months of
observation (Wilcoxon’s signed-rank test, p > 0.1) (Figure 2).
These data did not change significantly when we analyzed all the
patients (SVD and CG) with the radiological progression vs. no
progression group (respectively, baseline VMRr 45.4 ± 14.1%

vs. 68.6 ± 16.9%, p < 0.001; baseline BHI 0.65 ± 0.37 vs. 1.0
± 0.42, p < 0.001; follow-up VMRr 43.1 ± 14.3% vs. 65.7 ±

16.9%, p < 0.001; BHI 0.55 ± 0.24 vs. 1.0 ± 0.47, p < 0.001)
and there was also no significant decrease of CVR measures
over time of observation (Wilcoxon’s signed-rank test, p > 0.1).
No interaction between CVR measures, time of assessment, and
radiological progression in the SVD group were observed in the
fixed linear analysis (Table 3).

DISCUSSION

This prospective study performed in symptomatic SVD has
shown that the change in CVR measures is detectable following
a 24-month period and that 42% of patients with SVD
demonstrated radiological progression. We also confirmed that
the cerebral vasoreactivity measures decreased in SVD regardless
of the clinical manifestation of the disease. On the opposite,
we did not demonstrate a significant CVR decrease in the
subjects from CG who were neurologically asymptomatic, had
no radiological markers of SVD in the baseline MRI, but who
shared similar atherothrombotic risk factors as the SVD group.
Although patients with SVD and radiological progression had
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FIGURE 2 | Comparison of baseline and follow-up CVR measures (VMRr and BHI) in SVD subjects with (n = 25) and without radiological progression (n = 35). VMRr,

vasomotor reactivity reserve; BHI, breath-holding index.

TABLE 3 | Association among the cerebral small vessel disease (SVD), assessment time point, and MRI progression on the cerebrovascular reactivity (CVR) measures.

95% CI

Dependent variable Fixed factor(s) B SE t P* Lower limit Upper limit

BHI

Time −0.01 0.05 −0.01 0.90 −0.11 0.11

SVD −0.47 0.11 −4.26 <0.01 −0.69 −0.25

MRI progression −0.60 0.22 −2.70 0.01 −1.04 −0.16

Time*SVD 0.05 0.07 0.55 0.50 −0.20 0.38

Time*MRI progression 0.08 0.18 1.20 0.24 −0.15 0.59

SVD*MRI progression 0.29 0.24 1.23 0.22 −0.18 0.77

Time*SVD*MRI progression −0.02 0.16 −0.13 0.80 −0.34 0.30

VMRr

Time −3.90 2.60 −1.40 0.20 −9.20 1.30

SVD −27.10 4.34 −6.20 <0.01 −35.70 −18.50

MR progression −28.80 9.20 −3.10 0.01 −47.10 −10.50

Time*SVD 7.05 3.23 2.13 0.20 −0.20 5.97

Time*MRI progression 9.04 6.80 1.32 0.20 −4.50 22.60

SVD*MRI progression 9.80 9.90 0.90 0.30 −9.98 29.60

Time*SVD*MRI progression −10.07 7.40 −1.35 0.17 −24.80 6.70

*Linear mixed effects model.

BHI, breath holding index; VMRr, vasoreactivity reserve; SVD, small vessel disease.
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TABLE 4 | Major transcranial Doppler ultrasound (TCD) studies assessing CVR in sporadic small vessel disease populations.

References Study population CVR assessment Results

Molina et al. (1999) 46 patients with lacunar stroke

and 46 CG

Acetazolamide test Significant CVR reduction in SVD group

Terborg et al. (2000) 46 patients with SVD and 13 CG Ventilation tests;

NIRS

Significantly reduced VMR in TCD and NIRS assessments in severe

SVD; a good correlation between the validity of TCD and NIRS

Kidwell et al. (2001) 55 patients with SVD PI Correlation between PI and severity of SVD ; PI cut points allowed

discrimination of PVH with 89% sensitivity and 86% specificity and

discrimination of DWMH with 70% sensitivity and 73% specificity.

Pánczél et al. (2002) 25 patients with lacunar stroke,

20 patients with leukoaraiosis

and 35 CG

Tilting, ventilation,

and acetazolamide

tests

CVR in BA and MCA territory was impaired in hypercapnia in SVD; no

significant differences between CVR measures in BA and MCA territory

in acetazolamide test; significantly higher VRCO2 in MCA vs BA

measurements

Ghorbani et al. (2015) 56 patients with SVD and 48 CG PI Good correlation between PI and SVD radiological manifestations:

- In PVH with PI cut-off = 0.83, the sensitivity 90% and specificity 98%

- In DWMH with PI = 0.79, the sensitivity 75% specificity 87.5%

- In lacunar stroke with PI = 0.80, the sensitivity 73% and

specificity 90%.

- In PH with PI = 0.69, the sensitivity 92% and specificity 87.5%.

- In PVH+ DWMH+ lacunar with PI = 0.83, the sensitivity 90% and

specificity 96%.

Nam et al. (2020) 206 patients with lacunar stroke PI PI was positively associated with the WMHs volume and the presence

of old lacunar infarcts.

TCD, transcranial Doppler ultrasound; PI, pulsatile index; MRI, magnetic resonance imaging; SVD, cerebral small vessel disease; CG, control group; PVH, preventricular hyperintensity;

DWMH, deep white matter hyperintensity; CVR, cerebrovascular reactivity; BA, basilar artery; MCA, middle cerebral artery; VRCO, ventilatory response to CO2; PH, pontin hyperintensity;

NIRS, near-infrared spectroscopy; CT, computed tomography.

severely impaired CVR at the baseline and follow-up comparing
with the subjects with no MRI progression, there was no
significant interaction between that CVR decline and risk of
radiological progression.

Besides of growing evidence of MRI techniques which
increasingly play a more important role as a non-invasive tool
capable to assess the cerebral reserve capacity in combination
with a vascular challenge, the vasomotor reactivity testing with
TCD is still a gold diagnostic standard and it has been proved
to assess CBF and indirectly monitor the function of ED in
patients with cerebral microangiopathy (Kozera et al., 2009;
D’Andrea et al., 2016). The TCD studies demonstrated that
CVR is negatively correlated with the duration of hypertension,
patient age, and history of cerebrovascular events (Fujishima
et al., 2001; Kozera et al., 2010). Some older studies using
SPECT or Xenon CT techniques revealed that LS, particularly
with leukoaraiosis was associated with the reduced CBF in the
white matter and cortex in the subjects with severe WMLs,
while the studies on VaD consistently showed reductions in
both the white and gray matter (Markus et al., 2000). Many
studies investigated CBF in the patients with SVD using TCD
techniques, and in line with our data, the majority of them
revealed impaired CBF comparing with the healthy controls
in the patients with symptomatic and asymptomatic LS, more
marked in multiple comparing with single infarcts and a
reduction in reactivity that was correlated with the degree of
leukoaraiosis (Table 4) (Maeda et al., 1993; Molina et al., 1999;
Terborg et al., 2000). There is, however, a lack of studies on
the dynamic CVR changes over time, especially in SVD, and
in well-characterized SVD populations, e.g., in rarely studied
patients with VaD and VaP. As SVD is a wide term and

it is used to describe the different disease processes ranging
from asymptomatic WMLs in normal individuals through to
the symptomatic SVD subjects, as we aimed in the presented
report, our data added some further evidence that cerebral
ED occurs and progresses in patients with LS, VaD, or VaP
due to SVD, even if they had well-controlled hypertension
(according to the baseline and follow-up BP measurements).
Interestingly, a similar trend was not observed in CG with
comparable atherothrombotic risk factors (age, sex, diabetes,
hypertension, obesity, and smoking), and this may suggest
that other vascular factors or duration of exposure to vascular
risk factors in SVD are more important and responsible for a
continuous decline in the CVR (Muoio et al., 2014). For example,
the studies on patients with cerebrovascular disease showed that
the reduction in vasodilatory capacity in asymptomatic carotid
disease can predispose for the development of cerebrovascular
disease (Silvestrini et al., 2000). In 2020, Soman et al. (2020)
using arterial spin labeling MRI to evaluate which cardiovascular
risk factors alter the CVR found that higher SBP, chronic kidney
disease, history of past stroke, and hypercholesterolemia are
responsible for the impaired CVR. Although the controls and
patients with SVD in our study were well-balanced with the main
comorbidities, we did not control other important risk factors
of SVD. For instance, chronic poor sleep patterns, depression,
prediabetes, and unhealthy diet (dietary salt) can impact the
endothelial function through immune influences (Hakim, 2019).
Of notice, the Oxford Vascular (OXVASC) Study importantly
showed that premorbid hypertension in midlife correlated more
strongly with the global SVD burden than a single blood pressure
measurement or a known history of hypertension (Lau et al.,
2018).
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Whether the progressive decrease of CVR is specific to
the progressive nature of SVD is unknown (Stevenson et al.,
2010). Importantly, we showed that there was no difference in
the CVR at the baseline and follow-up assessments between
the SVD clinical subgroups and this finding possibly could
be related to similar WMLs burden or comparable prevalence
of comorbidities. We also observed that the subjects with
radiological progression had the most impaired CVR at baseline
which, however, did not significantly decrease over time. These
findings may indicate that MRI progression in that group may
be related to the baseline severe CVR impairment or other
factors, e.g., inflammatory or prothrombotic. It is also possible
that the TCD measures are less sensitive to the more subtle
changes, particularly in the white matter flow. Our results
are, however, opposite to a large study in 628 asymptomatic
individuals (mean 69 years) with WMLs which showed a
progressive reduction in the CBF velocity measured using TCD
as WMLs severity increased (Tzourio et al., 2001). Some similar
data were demonstrated by Sam et al., who established areas
of reduced CVR that preceded the development of WMLs by
advanced MRI techniques, suggesting that CVR impairment
contributes to the development and progression of SVD (Sam
et al., 2016). On the opposite, in a PROSPER trial of statin
therapy that investigated 390 individuals with cardiovascular
risk factors, there was no association between CBF and the
prevalence of WMLs at baseline, a decline of CBF, and risk
of development of deep WMLs (Ten Dam et al., 2007). Our
results are also in line with the study that showed significantly
reduced CVR in LS than in the CG, which, however, could
not be explained by the main atherothrombotic risk factors
(Deplanque et al., 2013). It is important to appreciate that
cerebral reactivity and autoregulation are not fully understood,
although the neurogenic, metabolic, or myogenic factors were
proposed. Of notice, CO2-CVR is only one of the several
mechanisms of cerebral autoregulation, thus preserved CO2-
CVR does not imply intact cerebral autoregulation (Klinzing
et al., 2021). Therefore, CVR impairment could be due to
different mechanisms, e.g., related to genetic factors or BBB
dysfunction, resulting in microvascular dysfunction (Zlokovic,
2011). Some important aspects of the present study related to
the patients with VaD and VaP should be underlined as these
subjects probably share SVD pathology with neurodegenerative
disease, and it is not established whether the microvascular
changes reflect the diminished demand caused by the advanced
neurodegeneration or whether SVD precedes and contributes to
the neurodegeneration. For example, impaired cerebrovascular
reserve capacity and vasoreactivity (identified using TCD along
with the BHI) was found in the patients with mild cognitive
impairment, Alzheimer’s disease, and Parkinson’s disease without
severe underlying atherosclerosis (Shim et al., 2015; Urbanova
et al., 2018). Although the contribution of CVR impairment to
the pathogenesis of neurodegenerative diseases is not certain, it
might be suspected that a reduced cerebrovascular reserve is an
additional deteriorating factor in the neurodegeneration (Ojeda
et al., 2017). One unanswered key question is that whether any
reductions in the CBF are primary, or merely occurs secondary
to the brain damage as due to vaso-neuronal coupling, the

reductions in brain metabolism are associated with reduced CBF
(Markus et al., 2014).

Most studies in the literature have demonstrated the
differences in CBF between the groups of patients with SVD
and controls, with very few studies addressing the sensitivity and
specificity of these parameters in TCD and MRI examinations
(Panerai, 2009). The large variations in CVR across the patients
and between different sessions of the same subject are often
observed in the TCD and MRI studies, which hamper the
ability of these measures in monitoring disease progression (Hou
et al., 2020). It should be especially stressed that there are
concerns with the application of the BHI as the relationship
between breath-hold length and the pCO2 stimulus remains
unclear and this test has low reproducibility and high variability
(Alwatban et al., 2018; Koep et al., 2020). The latest studies
showed that the blood oxygenation level dependentMRI (BOLD-
MRI) method is most reliable and reproducible because it has
the advantage of mapping the whole brain with good spatial
resolution, allowing investigation of CVR regional distribution
(Leoni et al., 2012). Despite the relationships between the
baseline CBF measures from TCD and MRI, the current
studies showed no direct correlations between the CVR metrics
calculated from TCD andMRI-BOLDmeasures during a 5%CO2

challenge (Burley et al., 2021b). These variations in the CVR
measures in different imaging modalities are important as they
significantly reduce the statistical power to detect the pathology-
related differences, preclude personalized determination of
abnormalities, and challenge the validity of comparing CVR
metrics across the studies.

Our study has several limitations, and the data should
be cautiously interpreted owing to the single-center design
and a small number of subjects included that may introduce
bias. Even if we analyzed a relatively homogeneous cohort
and highly selected SVD sample of patients, it should be
considered a hypothesis-generating pilot study, because it may
be less representative of the overall SVD population. However,
the majority of the TCD studies on CVR in subjects with
SVD had low patient numbers or controls (Table 4). Although
the patients were prohibited from taking any drugs before
the examinations, some medications could have affected the
dilatory responses of the arteries. In future studies, additional
research may be needed to determine the effect of treatment
as a function of CBF on the prognosis of patients. The other
limitations are that we used 1.5 Tesla MRI which potentially
limited the accuracy of the radiological assessment, and we
did not account for etCO2 for calculating the CVR. This
could have influenced the results and limit the generalizability
and reproducibility of the study, since PaCO2 has a marked
influence on CBF and autoregulation, evaluations could be
compromised in situations where significant changes in PaCO2

are undetected (Panerai et al., 1999). However, in our study, no
significant difference between the subgroups and between the
baseline and follow-up etCO2 measures were noticed. Despite
the multitude of alternatives to the gas challenges, existing
literature lacks definitive conclusions regarding the best practices
for the vasoactive modulation and associated analysis protocols
for the TCD studies resulting in numerous metrics of cerebral
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autoregulation (Valdueza et al., 2008; Sanders et al., 2018).
Regardless of methodology, an assessment of cerebrovascular
autoregulation is prone to moderate noise and artifact, with low
reliability and reproducibility (Lee et al., 2020). In our study,
CVR was assessed using TCD which additionally suffers from
a limited field of view comparing with the MRI techniques
and thus it may be less reflective of the local changes in the
tissue blood supply. However, due to limited access and the
high cost of MRI examination, the non-invasive, bedside, and
acceptable repeatable assessments using TCD, it remains still the
most utilized tool to study the CBF regulation in humans. As
different techniques have low correlations and target different
parts of the vascular tree, they should, however, be regarded
as complementary and they are recommended to be used
together (Purkayastha and Sorond, 2012; Burley et al., 2021b).
Another important limiting factor is that the hemodynamic
effect of breath holding is lower than that of CO2 inhalation
or acetazolamide injection, therefore the validity of our results
should be confirmed in the future (Marcic et al., 2021). The TCD
measurements are limited to the large basal arteries and can only
provide an index of global rather than local CBF velocity, and
it is highly operator dependent. However, all the TCD tests in
our study were carried out by a single certified examiner who
has 15 years of experience working with TCD, and thus we have
minimized a possible interpersonal difference depending on the
experience of the examiner.

The present study has, however, some important strengths.
To the best of our knowledge, no data have been published
on repeatedly assessed CVR measures over 24 months of
observation in a well-phenotyped cohort of patients with
SVD with extensive radiological markers of SVD. Ours is
the first study to investigate all CVR by TCD in a wide
range of participants, such as normal controls and patients
with LS, VaD, and VaP. Our findings of impaired and
progressive CVR alterations in the SVD subjects are important
as this mechanism could contribute to exacerbating the clinical
condition and may constitute a potential line of research
for the treatment. A better understanding of the variations
in CVR is of importance in both clinical and basic science
applications (Hou et al., 2020). The majority of data on CVR
are derived from the studies on individuals with asymptomatic
WMLs, therefore, our study, which included homogenous
groups of symptomatic SVD subjects, is important (Blair et al.,
2016).

In conclusion, we provided further evidence that cerebral ED
occurs and progresses over time in the patients with different
clinical manifestations of SVD, however, we did not observe
a significant CVR difference between the subjects with SVD
and radiological progression comparing with no progression
group and no significant CVR alterations over time in the CG
who were neurologically asymptomatic and who shared similar
comorbidities to the SVD group. The longitudinal studies with
larger sample sizes are needed to definite the causal conclusions
and confirm these findings.
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Structural and functional integrity of the cerebral vasculature ensures proper brain
development and function, as well as healthy aging. The inability of the brain to store
energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients
from the blood stream for matching colossal demands of neural and glial cells. Key
vascular features including a dense vasculature, a tightly controlled environment, and
the regulation of cerebral blood flow (CBF) all take part in brain health throughout life.
As such, healthy brain development and aging are both ensured by the anatomical and
functional interaction between the vascular and nervous systems that are established
during brain development and maintained throughout the lifespan. During critical periods
of brain development, vascular networks remodel until they can actively respond to
increases in neural activity through neurovascular coupling, which makes the brain
particularly vulnerable to neurovascular alterations. The brain vasculature has been
strongly associated with the onset and/or progression of conditions associated with
aging, and more recently with neurodevelopmental disorders. Our understanding
of cerebrovascular contributions to neurological disorders is rapidly evolving, and
increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier
(BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that
although neurodevelopmental and neurodegenerative disorders express different clinical
features at different stages of life, they share similar vascular abnormalities. In this review,
we present an overview of vascular dysfunctions associated with neurodevelopmental
(autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative
(multiple sclerosis, Huntington’s, Parkinson’s, and Alzheimer’s diseases) disorders, with
a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the
impact of early vascular impairments on the expression of neurodegenerative diseases.

Keywords: cerebrovascular abnormalities, neurodevelopment and intellectual disabilities, aging,
neurodegeneration, cerebral blood flow, angiogenesis, blood-brain barrier
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INTRODUCTION

The human brain contains approximately 100 billion vessels
(∼600 km), all of which are critical for the delivery of nutrients
and oxygen to neural cells (Quaegebeur et al., 2011). Although
the brain accounts for only 2% of the body’s mass, it consumes
about a quarter of the body energy produced at rest (Attwell
et al., 2010). This colossal energy consumption is elemental
to maintain normal functioning of the brain. Such energy
requirements make the brain heavily reliant on key vascular
features: (i) a dense vasculature to sustain adequate perfusion,
(ii) a functional blood-brain barrier (BBB) to maintain brain
homeostasis, and (iii) the proper regulation of cerebral blood
flow (CBF) to match metabolic demands (Figure 1). Thus, a
healthy brain vasculature is essential to support neural cells and
ensure normal brain maturation, function and aging (Attwell and
Laughlin, 2001; Girouard and Iadecola, 2006; Andreone et al.,
2015; Lacoste and Gu, 2015). This is accomplished in part via
neurovascular coupling (NVC) mechanisms that regulate CBF to
support energetic demands of brain cells (Hamel, 2006; Attwell
et al., 2010; Kaplan et al., 2020). While most studies are describing
neurovascular signaling at the level of the microvasculature,
other vascular segments have received very little attention. There
is evidence suggesting that different vascular segments play
different roles during vascular responses which is involved in
maintaining brain homeostasis. The concept of heterogeneous
vascular modules has been extensively reviewed in Schaeffer and
Iadecola (2021).

The close anatomical apposition between the nervous and
vascular systems supports a functionally integrated network
(Attwell et al., 2010; Lecrux and Hamel, 2011; Hillman, 2014;
Huneau et al., 2015; Kaplan et al., 2020). This involves
modulating vascular tone by secretion of vasoconstrictor and
vasodilator molecules. Initially, it was proposed that local
metabolic factors released by neurons modulate local CBF
(Sherrington, 1890; Friedland and Iadecola, 1991). Since then,
several studies have introduced other cellular mediators of NVC
which altogether form the neurovascular unit (NVU). This
anatomical substrate of NVC indeed involves a multicellular
system consisting of neurons, pericytes, smooth muscle cells,
astrocytes, microglia and endothelial cells (ECs) that together
orchestrate CBF, and thus brain function (Attwell et al.,
2010; Andreone et al., 2015; Grubb et al., 2021; Figure 1).
The cerebral cortex is innervated by projection neurons
that release neurotransmitters including, but not limited to,
acetylcholine, noradrenaline, serotonin and glutamate, involved
in the regulation of vessel diameter (Sandoo et al., 2010).
Pericytes, while having debated roles in NVC, possess contractile
properties and regulate blood flow around capillaries (Attwell
et al., 2010, 2016; Fernandez-Klett and Priller, 2015; Sweeney
et al., 2018; Watson et al., 2020; Hartmann et al., 2021). Capillary
pericytes are α-smooth muscle actin (SMA)-negative and only
partially cover the vessel, while ensheathing pericytes are α-SMA-
positive, occupy proximal branches of penetrating arteriole
offshoots, and fully cover the vessels. However, they are classified
as different from smooth muscle cells as they display an ovoid cell
body (Grant et al., 2019). Vascular smooth muscle cells (SMCs),

found on intracerebral arterioles and arteries, are absent from
intracerebral capillaries. These cells are short, densely packed,
ring-shaped, and essential for regulating vessel tone (Lacoste and
Gu, 2015; Frosen and Joutel, 2018; Grant et al., 2019). Astrocytes
occupy a critical position between blood vessels and neurons.
They can modulate vessel tone via receptor-mediated increase
in astrocytic Ca2+, resulting in the release of astrocyte-derived
prostaglandins (PGE2), nitric oxide (NO), epoxyeicosatrienoic
acids (EETs), glutamate, or adenosine, all of which can alter
vascular diameter and tone (Attwell et al., 2010; Cauli and Hamel,
2010; Filosa and Iddings, 2013; Harada et al., 2015; Haidey et al.,
2021), as reviewed in detailed elsewhere (Filosa and Iddings,
2013; Howarth, 2014; MacVicar and Newman, 2015; Mishra,
2017; McConnell et al., 2019; Stackhouse and Mishra, 2021).
Whereas microglia are the main regulators of inflammatory
processes in the brain, their role in NVC is not well defined.
However, recently, they were suggested as essential in regulating
CBF during neural activation (Császár et al., 2021). Brain ECs
have unique morphological and functional features such as a
lack of fenestration, the presence of tight junctions between
cells, a low number of pinocytic vesicles that limit transcytosis,
hence forming the first limiting layer of the BBB (Reese and
Karnovsky, 1967; Stamatovic et al., 2008; Rizzo and Leaver, 2010;
Salmina et al., 2014; Andreone et al., 2015). This highly selective
barrier promotes a tightly regulated brain homeostasis to ensure
proper neuronal function, protecting the brain from toxins,
pathogens, inflammation, and injury (Weiss et al., 2009; Larsen
et al., 2014; Daneman and Prat, 2015; Van Dyken and Lacoste,
2018). Furthermore, brain ECs regulate vascular tone by releasing
vasodilators including endothelial-derived NO, endothelium-
derived EETs, PGE2 and prostacyclin, as well as vasoconstrictors
such as endothelin-1, thromboxane A2 and prostaglandin F2α

(Mohan et al., 2012; Filosa and Iddings, 2013; Andreone et al.,
2015; Kisler et al., 2016, 2017; Dabertrand et al., 2021). While
the endothelium regulates vascular permeability and tone, it is
also the main target of small vessel disease (SVD), which refers
to a pathological process that damages arterioles, venules and
brain capillaries. SVD has a major impact on CBF and cognition
(Hakim, 2019). The NVU as a whole is also responsible for
maintaining BBB integrity (Abbott et al., 2006; Zlokovic, 2008;
Daneman, 2012; Kadry et al., 2020). Alterations in vascular
patterning, CBF and BBB, either during development or later
in life, contribute to the onset and/or progression of early- or
late-onset neurological disorders (Figure 2).

Well-balanced vascular and neuronal interactions are required
to support brain function from early life. The shared spatial and
temporal patterns of vascular and neuronal networks suggest an
integrative role for vessels in neural development, and vice versa
(Gu et al., 2005; Carmeliet and Jain, 2011; Andreone et al., 2015;
Lacoste and Gu, 2015). Neurovascular crosstalk, which initially
takes place during embryogenesis, supports the rising oxygen
and nutrient demand of immature neurons as they require
extensive energy to maintain normal course of development (De
Filippis and Delia, 2011). The increased energy consumption
by neurons creates a hypoxic environment acting as a signal
for boosting blood vessel production to upsurge delivery of
oxygen and metabolic substrates to the brain (Stone et al., 1995;
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FIGURE 1 | Summary of structures and functions of the neurovascular unit (NVU). The anatomical substrate for regulation of cerebral blood flow and the blood-brain
barrier is a multicellular system consisting of neurons, pericytes, smooth muscle cells, astrocytes and endothelial cells known as the NVU. (A) Intracerebral capillaries
lack vascular smooth muscle cells but are partly covered by contractile pericytes. (B) At the level of intracerebral arterioles, the endothelium is fully covered by a
single layer of vascular smooth muscle cells, which provide contractile properties to the arteriole. Astrocytes send their processes called endfeet around both
capillaries and arterioles, providing support as well as a functional connection to surrounding parenchyma. (C) Summary of functions of the blood-brain barrier and
neurovascular coupling. Arrows point to neurovascular unit components. Figure made using BioRender.

Lacoste and Gu, 2015; Peguera et al., 2021). Hypoxia initiates
vessel ingression into deep brain structures, followed by usage
of vascular patterning cues (Lacoste and Gu, 2015; Tata et al.,
2015; Tata and Ruhrberg, 2018; Okabe et al., 2020). Comparably,
ECs instruct neural progenitors into dividing, differentiating
or migrating through release of paracrine signals that regulate
neuronal development in vascular niches (Hogan et al., 2004;
Shen et al., 2004; Daneman et al., 2009; Goldman and Chen, 2011;
Delgado et al., 2014; Lacoste and Gu, 2015; Licht and Keshet,
2015; Walchli et al., 2015; Tata and Ruhrberg, 2018; Peguera
et al., 2021). Moreover, neuronal activity plays important roles
in modulating postnatal brain angiogenesis (Lacoste et al., 2014;
Whiteus et al., 2014; Biswas et al., 2020). As the brain matures,
vascular networks remodel until the system consists of an
extensive network that actively regulates blood flow to adequately
sustain energy demands. The functional relationships between
neurons and blood vessels ensures that NVC mechanisms
progressively develop (Lacoste and Gu, 2015; Coelho-Santos and
Shih, 2020). NVC becomes fully functional ∼3–4 weeks after
birth in rodents, and 7–8 weeks in humans (Yamada et al., 2000;
Muramuto et al., 2002; Kozberg et al., 2016).

These vascular features can become defective early in life,
affecting brain maturation. Vascular susceptibilities can also

emerge later in life, taking part in neurodegenerative processes.
Indeed, NVU deficits play a role in both early- and late-onset
neurological disorders (Figure 2). Mounting evidence shows that
vascular impairments contribute to the pathophysiology
of neurological conditions throughout life, including
neurodevelopmental, metabolic, and neurodegenerative
disorders (Nicolakakis and Hamel, 2011; Van Dyken and
Lacoste, 2018; McConnell et al., 2019; Ouellette et al., 2020;
Sharma and Brown, 2021). This suggests the existence of
a vascular continuum between developmental conditions and
illnesses of aging, which will be the focus of this review (Figure 3).
A better understanding of mechanisms and key players involved
in cerebrovascular impairments may lead to transformative
therapeutic strategies at different stages of life.

CEREBROVASCULAR DEFICITS
ASSOCIATED WITH
NEURODEVELOPMENTAL DISORDERS

Neurodevelopmental disorders are considered a group of
conditions with onset/diagnosis during infancy, childhood, or
adolescence (Morris-Rosendahl and Crocq, 2020). They are
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FIGURE 2 | Factors affecting the brain vasculature and leading to neurological conditions. The brain, which has elevated metabolic needs but poor energy storage,
is highly dependent on a continuous supply of nutrients and oxygen from the blood stream, and is thus dependent on the integrity of its vasculature. Vasculature of
the brain is the most complex and dense in the human body. Yet, it is maintaining a very fragile equilibrium and is the target of numerous pathological conditions that
affect neuronal maturation and function. Figure made using BioRender.

defined by impairments in motor, social, cognitive, academic,
and/or occupational functioning. Most studies focused on the
neuronal contributions to these disorders; however, concomitant
vascular impairments are starting to emerge (Ouellette et al.,
2020). Here, we highlight vascular impairments identified in
autism spectrum disorders (ASD) and schizophrenia.

Vascular Links to Autism Spectrum
Disorders
ASD are pervasive neurodevelopmental disorders associated with
social interaction deficits, speech and language impairments, as
well as repetitive behaviors and restricted interests (Vijayakumar
and Judy, 2016). These disorders have a prevalence of 1–
2% in the general population and affect four times more
boys than girls (Hogan et al., 2004; Daneman et al., 2009).
Individuals with ASD show atypical behaviors associated with
visual attention, imitation, social responses, and motor control
by 12 months of age. By the age of 3, a child can be efficiently
diagnosed with ASD (Park et al., 2016). While the underlying
causes of ASD are enigmatic, both environmental and genetic
origins have been found, leading to the identification of gene
mutations within the ASD population (Hogan et al., 2004;

James et al., 2009; Emerson et al., 2017). Although most studies
have been neurocentric, ASD are now being associated with
vascular vulnerabilities.

Altered Cerebral Blood Flow in Autism Spectrum
Disorders
Neuroimaging techniques can map changes in CBF or blood
oxygenation during various activities. Morphological and
functional investigations using functional magnetic resonance
imaging (fMRI), positron emission tomography (PET), single-
photon emission computed tomography (SPECT), or Arterial
Spin Labeling (ASL) are used to measure CBF changes in ASD
children. CBF disruptions have been demonstrated in ASD
patients when compared to healthy controls in different regions
of the brain (Bjørklund et al., 2018). It has also been suggested
that perfusion alterations are more pronounced in older children
diagnosed with ASD. Cerebral hypoperfusion has been detected
in nearly 75% of ASD children (Zilbovicius et al., 2000). As
CBF impacts the delivery of oxygen and nutrients to neurons,
hypoperfusion in ASD children has been associated with key
ASD-related behaviors such as language deficits, impaired
executive function and abnormal responses to sensory stimuli,
as well as difficulty in facial perception (Siegel et al., 1992;
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FIGURE 3 | Summary of vascular links to neurological disease throughout life.

Chiron et al., 1995; Ohnishi et al., 2000; Burroni et al., 2008;
Reynell and Harris, 2013; Bjørklund et al., 2018; Yerys et al.,
2018). These behaviors correlate with abnormal regional cerebral
blood flow (rCBF) in the bilateral insula, superior temporal gyri
and left prefrontal cortices, medial temporal lobe, supramarginal
gyrus, right fusiform gyrus, and dorsal anterior cingulate cortex
(Ohnishi et al., 2000; Zilbovicius et al., 2000; Burroni et al.,
2008; Jann et al., 2015; Yerys et al., 2018). Studies are attempting
to ameliorate these behavioral abnormalities using hyperbaric
oxygen treatment (HBOT) to counteract cerebral hypoperfusion
in children with ASD. There is some evidence that children
who undertook 40 HBOT sessions of 60 min each showed
improvements on selected psychosomatic parameters in the
Autism Treatment Evaluation Checklist (ATEC) and Childhood
Autism Rating Scale (CARS) (Kostiukow and Samborski, 2020).
Currently, there is insufficient evidence to support the use of
HBOT to treat children with ASD as there are many contradicting
studies claiming no improvement in behaviors. Nevertheless,
each study followed different protocols, consisted of patients
with a large spectrum of behavioral impairments, and some
lacked proper control groups, which could explain discrepancies.
More research is required to determine if specific groups of
children could benefit from HBOT treatment (Rossignol et al.,
2012; Sakulchit et al., 2017).

ASL-based measurements of cerebral perfusion showed
that children with ASD presented a pattern of widespread
hyperperfusion in frontotemporal regions including medial
orbitofrontal cortex, bilateral inferior frontal operculum,
left inferior/middle temporal gyrus and the right precentral
gyrus (Jann et al., 2015). The medial orbitofrontal cortex
is known to have extensive connections with the limbic
system involved in socio-emotional cognition. Furthermore,
hyperperfusion was detected throughout the frontal white
matter and subcortical gray matter in ASD children,
which correlated positively with severity of social deficits
(Peterson et al., 2019). As shown by these studies, CBF
abnormalities appear linked to clinical manifestations. Although
opposing observations of CBF in ASD patients were reported,

these further support the complexity of these disorders
(Jann et al., 2015).

Neurovascular coupling alterations were also observed in
ASD patients. Hemodynamic responses in children with ASD
during a color-word task were significantly lower than the control
group, especially in the dorsolateral prefrontal cortex (Uratani
et al., 2019). Conversely, children displayed no difference in
hemoglobin concentrations in the prefrontal cortex during a
letter fluency task, while adults showed reduced responses
(Kawakubo et al., 2009). Despite inter-study variability, there
seems to be a consensus on the impact of altered CBF on the
expression of behavioral impairments (Zilbovicius et al., 2000;
Jann et al., 2015). But as ASD are heterogeneous, with various
behavioral traits, genetic causes, medical co-morbidities and
medications, these variables may have impacted neuroimaging
results, which led to inconsistencies. Importantly, these studies
take an important step toward the identification of key players
in ASD pathophysiology, opening new opportunities for early
diagnosis and treatment.

The relationship between CBF alterations and symptom
profiles in ASD children provides insight into disease
mechanisms that can be tested in animal models. As most
pre-clinical studies have also focused on the neuronal aspects of
ASD, very few have considered vascular contributions to these
disorders in laboratory models. Recent studies using different
ASD mouse models have reported alteration in CBF. A study by
Abookasis et al. (2018) using inbred Black and Tan Brachyury
(BTBR) T+tf/J reported decreased CBF in mutant mice using
laser speckle imaging and laser Doppler flowmetry (LDF).
Subsequently, work by Ouellette et al. (2020) using the 16p11.2
deletion mouse model of ASD (16p11.2df /+; Horev et al., 2011)
demonstrated an increase in resting CBF as well as neurovascular
uncoupling in adult (P50) 16p11.2df /+ mice compared to WT
littermates using a combination of ultrasound imaging and
LDF. No difference in CBF or NVC were observed between
younger (P14) mutant and control mice (Ouellette et al., 2020).
Results from this study in 16p11.2df /+ mice revealed the cause
of these functional cerebrovascular impairments: an endothelial
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deficit. While normal vascular smooth muscle cell function was
measured, defective endothelium-dependent vasodilation was
found ex vivo following exposure to specific vasomodulators
(Ouellette et al., 2020). This suggests that endothelial health
plays an important role in the etiology of the 16p11.2 deletion
ASD syndrome. Understanding the molecular and cellular
factors that mediate CBF alterations in ASD could help design
rescue approaches in animal models, as well as therapeutic
approaches down the line.

Since MRI studies rely on Blood Oxygen Level Dependent
(BOLD) signals as surrogates for neuronal activity (Hillman,
2014; Howarth et al., 2021; Moon et al., 2021), it is possible
that changes in rCBF reflect changes in underlying neuronal
activity. For instance, cerebral cortex hypoperfusion in ASD
patients could reflect lower metabolic demands (Schifter et al.,
1994). In the case 16p11.2df /+ mice, however, it is interesting
to note that a neurovascular uncoupling was measured, with
enhanced neuronal activation yet reduced vascular responses to
whisker stimulations, which led to the discovery of endothelium-
dependent deficits (Ouellette et al., 2020).

Altered Blood-Brain Barrier and Angiogenesis in
Autism Spectrum Disorders
Cerebral vessels are central for the maintenance of brain
homeostasis, sustaining proper neuronal function, and providing
an effective protection against toxins and pathogens (Profaci
et al., 2020). The BBB consists of specialized ECs lining the
vessel wall to separate the peripheral blood from cerebral tissue.
Brain (central) ECs are distinct from peripheral ECs, as they
produce specific proteins to control the flux (entry and exit)
of metabolites across vessels, to maintain low rates of trans-
endothelial vesicular transport, and to form tight junctions to
limit the para-cellular flow of material between adjacent ECs
(Andreone et al., 2015; Chow and Gu, 2015; Kealy et al., 2020).
Alterations in the BBB are at the core of the onset and/or
progression of numerous neurological disorders (Daneman
and Prat, 2015; Van Dyken and Lacoste, 2018; Profaci et al.,
2020). Only few studies have investigated the components of
the BBB in the context of ASD. Children diagnosed with
ASD have been associated with reduced levels of adhesion
molecules such as soluble Platelet Endothelial Cell Adhesion
Molecule-1 (PECAM-1, or CD31) and P-selectin. Since these
molecules are essential to modulate BBB permeability through
signaling and leukocyte infiltration, it suggests that crucial BBB
components may be at play in ASD pathophysiology (Onore
et al., 2012). Furthermore, a post-mortem study, with a small
sample size, demonstrated altered BBB integrity in ASD with
increased gene expression of matrix metalloproteinase (MMP)-
9 (Fiorentino et al., 2016). Studies have shown that MMP-9
regulates cell proliferation, adhesion, degradation of laminin and
collagen, angiogenesis, oxidative injury, and is implicated in BBB
breakdown (Lepeta and Kaczmarek, 2015; Turner and Sharp,
2016). Additionally, important components of BBB integrity
displayed altered expression in ASD patients, including claudin-
5 (CLDN5) and claudin-12 (CLDN12), as well as tricellulin
(MARVD2), a component of tight junctions involved in decreased
permeability to macromolecules in brain ECs (Fiorentino et al.,

2016). In an older study, a small subset of ASD participants
demonstrated higher levels of autoantibodies against brain ECs
in the serum compared to typically developing individuals,
suggesting an impact on the BBB (Connolly et al., 1999). Animal
models have facilitated the study of BBB integrity in ASD. In a
valproic acid rat model of autism, increased BBB permeability to
Evans blue was found in the cerebellum, a phenotype attenuated
by treatment with memantine, an NMDA receptor modulator.
This BBB alteration was also attenuated using minocycline
(antibiotic) and agomelatine (melatonin receptor) treatment
(Kumar et al., 2015; Kumar and Sharma, 2016). Animal studies
have investigated transendothelial transport mechanisms in ASD
mouse models. Tarlungeanu et al. (2016) demonstrated that the
large neutral amino acid transporter (LAT1, Slc7a5) localized at
the BBB to maintain normal levels of brain branched chain amino
acid (BCAA) was required for neurotypical development. Mice
harboring an endothelial-specific deletion of Slc7a5 (Slc7a51EC)
displayed behaviors reminiscent of ASD, including motor
dysfunctions consistent with a study in human patients harboring
the constitutive mutation (Novarino et al., 2012; Tarlungeanu
et al., 2016). Interestingly, administration of BCAA rescued ASD-
like behaviors in Slc7a51EC mice (Tarlungeanu et al., 2016).

Recently, a post-mortem analysis of brain tissue from
individuals diagnosed with ASD revealed significantly higher
levels of markers associated with pericytes, as well as increased
vascular tortuosity, indirectly suggesting impairments in
angiogenesis, a process through which new blood vessels
are formed (Azmitia et al., 2016). A more recent study in
16p11.2df /+ mice revealed impaired cerebral angiogenesis
in young (P14) 16p11.2df /+ male mice compared to sex-
/age-matched littermates, a phenotype which was absent in
adult mice. Defective angiogenic activity was also measured
using primary brain ECs from P14 16p11.2df /+ males or ECs
derived from human-induced pluripotent stem cells (hiPSCs)
of 16p11.2 deletion carriers (Ouellette et al., 2020). Moreover,
RNA-sequencing analysis of 16p11.2df /+ mouse brain EC
transcriptome revealed changes in the expression of genes
involved in angiogenesis (e.g., Grem1, Apln, Angpt2), while
key genes involved in BBB regulation (e.g., Pecam1, Mfsd2a,
Cldn5, Slc2a1) were not affected by the 16p11.2 deletion
(Ouellette et al., 2020). Finally, this study generated a mouse
model with endothelial-specific 16p11.2 haploinsufficiency
which recapitulated ASD-related phenotypes, revealing a causal
relationship between endothelial dysfunction and neuronal
aspects of the 16p11.2 deletion syndrome (Ouellette et al., 2020).

Overall, these studies allude to the contribution (structural
and functional) of a defective BBB and NVU in ASD, with an
important role for endothelial impairments.

Vascular Links to Schizophrenia
Schizophrenia is a debilitating neurodevelopmental disorder
affecting ∼1% of the population. It is associated with behavioral
and cognitive symptoms that arise progressively. Memory
and attention deficits appear in childhood, while positive
symptoms (psychotic episodes) and negative symptoms (social
and motivational deficits) emerge later in adolescence or early
adulthood (Stachowiak et al., 2013). Although the incidence of
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schizophrenia is higher in men, women have a slightly later
disease onset (Gogtay et al., 2011; Ochoa et al., 2012). While
the behavioral aspects of schizophrenia have been described,
the causes of this disorder are poorly known. As in ASD, both
genetic and environmental origins are involved. Schizophrenia
has been associated with genes essential for a wide range
of functions including neuronal connectivity and patterning
of brain structures, cell proliferation and differentiation, as
well as cytoskeleton reorganization (Stachowiak et al., 2013;
Clifton et al., 2019). As in most neurological disorders, the
implication of neuronal alterations has been extensively studied,
but research on vascular impairments in schizophrenia is
starting to emerge.

Altered Cerebral Blood Flow in Schizophrenia
Cognitive impairments are often present before the first psychotic
episode in patients with schizophrenia (Keefe and Harvey, 2012;
Schuepbach et al., 2016) and deficits in executive functions are
often parallel to changes in CBF. Several studies have linked
altered CBF with schizophrenia-related symptoms (Sabri et al.,
1997; Malaspina et al., 1999, 2004; Pinkham et al., 2011; Fujiki
et al., 2013; Schuepbach et al., 2016; Stegmayer et al., 2017;
Zhu et al., 2017). Interestingly, the manifestations of negative
or positive symptoms correlate with different rCBF changes.
In a study by Pinkham et al. (2011), CBF of 30 schizophrenia
patients was measured using ASL perfusion MRI, which revealed
a positive correlation between increased severity of positive
symptoms and higher CBF in the cingulate and superior frontal
gyri, but decreased CBF in precentral and middle frontal gyri.
Patients who presented with severe negative symptoms also
displayed reduced CBF in the superior temporal gyrus bilaterally,
cingulate and left middle frontal gyri (Malaspina et al., 2004;
Scheef et al., 2010; Pinkham et al., 2011; Liu et al., 2012).
Most studies investigating CBF alterations in schizophrenia
considered perfusion rates from medicated patients, and a small
number of studies have measured CBF rates in neuroleptic-naïve
patients. Using ASL in non-medicated patients, the schizophrenia
group displayed resting-state hypoperfusion in the frontal lobes,
anterior and medial cingulate gyri, as well as in the parietal
lobes, while increased perfusion was measured in the cerebellum,
brainstem and thalamus (Scheef et al., 2010). Sabri et al.
(1997) measured rCBF using SPECT in non-medicated patients
that have experienced positive symptoms, revealing that rCBF
values varied depending on the severity of positive symptoms.
Hyperperfusion was detected in the frontal, anterior cingulate as
well as in both parietal and temporal cortices in patients who had
scored high in severity for formal thought disorder (disturbance
of the organization and expression of thought). In contrast,
patients who scored high for delusions, hallucinations or distrust,
with low scores for formal thought, displayed hypoperfusion in
the same brain regions. No difference in rCBF was identified
between control and schizophrenia groups after treatment
(Andreasen et al., 1997; Sabri et al., 1997; Horn et al., 2009).
Recent studies have detected hyperperfusion and hypoperfusion
in brain regions from individuals with hallucinations. For
instance, CBF increase was found in the right superior temporal
gyrus and caudate nucleus, while CBF decrease was found

bilaterally in the occipital and left parietal cortices (Zhuo et al.,
2017). In another study, patients were classified based on the
severity of three behavioral dimensions (language, affectivity, and
motor) according to the Bern Psychopathology scale. Patients
with altered affectivity were associated with increased CBF
in the amygdala, while changes in language dimension were
linked to increased CBF in Heschl’s gyrus (Stegmayer et al.,
2017). While schizophrenia is classified as a neurodevelopmental
disorder, its symptoms persist with age. Studies have identified
significant bilateral temporal hypoperfusion related to aging
and disease course. It has been suggested that this decrease
in CBF with aging is paralleled with the degenerative changes
observed in patients with schizophrenia (Schultz et al., 2002;
Kawakami et al., 2014).

The polygenic risk of schizophrenia is an important
dimension of this syndrome, and changes in CBF have been
identified in patients diagnosed for either familial or sporadic
schizophrenia. Sporadic schizophrenia patients were associated
with hypofrontality (left frontal gyrus, orbitofrontal cortex,
anterior cingulate, and paracingulate cortices), while familial
schizophrenia patients had left temporoparietal hypoperfusion
(posterior Sylvian fissure at the superior and inferior parietal
lobules, angular, and supramarginal gyri). In both groups,
positive symptoms are often associated with increased rCBF in
the parahippocampal gyrus, cerebellum, and pons (Malaspina
et al., 2004). Sporadic patients showed additional hyperperfusion
in the fusiform gyrus, and familial patients the hippocampus,
dentate, amygdala, thalamus, and putamen (Malaspina et al.,
2004). In addition, the prefrontal cortex in schizophrenia has
been associated with deficits of pericapillary oligodendrocytes,
which could contribute to changes in CBF (Vostrikov et al., 2008;
Uranova et al., 2010). Altogether, these studies support the idea
that altered CBF is involved in schizophrenia pathophysiology.

In addition to studies investigating resting state CBF, there is
evidence of altered NVC in schizophrenia whereby many reports
demonstrate reduced hemodynamic response, reflecting reduced
neuronal activity during processing of cognitive tasks, especially
in the lateral prefrontal cortex and temporal regions (Ford et al.,
1999, 2005; Mathalon et al., 2000; Carter et al., 2001; Hanlon et al.,
2016; Pu et al., 2016). As with CBF reports, there are inconsistent
hemodynamic responses associated with schizophrenia since
increased hemodynamic responses in hippocampus, thalamus
and prefrontal cortex have been identified (Tregellas et al.,
2007). These conflicting results are translating to rodent
models of schizophrenia whereby some models have revealed
overall hypofrontality, hypoperfusion in the hippocampus or
hyperperfusion in the somatosensory cortex (Finnerty et al., 2013;
Song et al., 2013; Drazanova et al., 2019).

Altogether, these studies support the idea that altered
CBF regulation is involved in schizophrenia pathophysiology.
Moreover, it appears critical to consider the polygenic risk of
disease, the category and severity of symptoms, as well as the
age of patients when comparing CBF rates in schizophrenia.
Although many studies have detected altered CBF using
various methods, results thus far remain conflicting based
on various stages of disease and pharmacological treatment
(Drazanova et al., 2019).
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Altered Blood-Brain Barrier and Angiogenesis in
Schizophrenia
A dysfunctional BBB has been reported in schizophrenia,
with increased permeability to damaging proteins (Müller
and Ackenheil, 1995; Shcherbakova et al., 1999; Crockett
et al., 2021). Studies are starting to decipher changes in cells
associated with the BBB (for a detailed review, see Carrier
et al., 2020). Briefly, evidence of schizophrenia-associated
microvascular abnormalities in the neocortex include thickening
and deformation of basal lamina, vacuolation of cytoplasm in
ECs, basal lamina and astrocytic end-feet, swelling of astrocyte
end-feet, activation of microglial cells in the prefrontal and visual
cortex, as well as atypical vascular arborization (Uranova et al.,
2010; Carrier et al., 2020).

Moreover, specific mutations are associated with
schizophrenia, including alterations in the 22q11.2 deletion
syndrome (22qDS) -strongest monogenic risk allele for this
disorder, and polymorphisms in claudin-5, a densely expressed
tight junction molecule (Gur et al., 2017; Greene et al., 2018;
Carrier et al., 2020) altogether revealing barrier dysfunction
in schizophrenia patients (Greene et al., 2018; Crockett et al.,
2021). Post-mortem brain sections from 22qDS patients and
animal models of 22qDS both demonstrate reduced claudin-
5 expression in the BBB, which in turn compromised BBB
function (Nishiura et al., 2017; Guo et al., 2020; Crockett et al.,
2021; Usta et al., 2021). Additionally, altered levels of vascular
endothelial (VE)-cadherin and occludin in ECs were identified
in schizophrenia. These molecules regulate adherence of ECs and
restrict movement of substances across the BBB (Cai et al., 2020).
Furthermore, BBB hyperpermeability has been associated with
another risk allele for schizophrenia. NDST3, expressed in the
brain, encodes an enzyme involved in the metabolism of heparan
sulfate, a component of basal lamina extracellular matrix that is
required for BBB integrity (Khandaker et al., 2015).

Studies have documented primary vascular endothelial
dysfunction in schizophrenia. Individuals carrying MTHER
T and/or COMT Val risk allele have been associated with
cerebrovascular endotheliopathy, as well as lower frontal
executive functions (Grove et al., 2015). While endothelial
dysfunction is possibly associated with schizophrenia, many
studies are using peripheral endotheliopathy as a surrogate
marker for endothelial dysfunction. For example, studies are
using non-invasive peripheral arterial tonometry (RH-PAT) to
assess peripheral arteriole endothelial-dependent vasodilation
and revealed impaired peripheral arterial vasodilation in
schizophrenia (Ellingrod et al., 2011; Burghardt et al., 2014).
Notably, brain ECs have unique properties to maintain BBB
integrity and brain homeostasis. Although altered endothelial
function was found in the periphery, it does not represent
a definite marker of brain (central) endothelial dysfunction.
A critical regulator of angiogenesis, vascular endothelial growth
factor (VEGF), and its receptor (VEGFR2) have been found
upregulated in the prefrontal cortex of individuals diagnosed with
schizophrenia (Hino et al., 2016). Findings of elevated VEGF
could also be linked to vascular hyperpermeability, as VEGF not
only regulates angiogenesis but increases BBB leakage (Mayhan,
1999; Zhang et al., 2000). Conversely, a different group revealed

that a decreased production of VEGF predisposed individuals to
develop this disorder and contributed to the severity of symptoms
(Saoud et al., 2021). Another study investigated the impact of
hiPSC-derived neural stem cells from schizophrenia patients on
angiogenesis (Casas et al., 2018). This study found an imbalance
in the expression and secretion of several angiogenic factors and
non-canonical neuro-angiogenic guidance cues from neural stem
cells from schizophrenic patients. Conditioned media from these
cells induced impaired angiogenesis as evidenced by reduced
number of sprouts and tubes formed in in vivo and in vitro
models, as well as decreased neural stem cell migration compared
to control conditioned media (Casas et al., 2018).

CEREBROVASCULAR DEFICITS
ASSOCIATED WITH
NEURODEGENERATIVE DISORDERS

CNS disorders are dichotomized as early onset
neurodevelopmental disorders and late-onset neurodegenerative
diseases (Taoufik et al., 2018). Neurodegenerative diseases
consist of a group of heterogeneous disorders characterized
by the progressive degeneration of structure and function in
the CNS (Gitler et al., 2017). Although neurodegenerative and
neurodevelopmental disorders are differentially classified, an
accumulating body of work demonstrates significant similarities
between these two groups of conditions. Here below, we cover
cerebrovascular impairments reported in four neurodegenerative
diseases that emerge throughout lifespan: multiple sclerosis
(MS), Huntington’s disease (HD), Parkinson’s disease (PD), and
Alzheimer’s disease (AD).

Vascular Links to Multiple Sclerosis
MS is a chronic autoimmune disease of the CNS, occurring
when the immune system attacks its own nerve fibers and
myelin sheaths (D’Haeseleer et al., 2013). The pathological
hallmark of MS consists of perivenular inflammatory lesions,
leading to demyelinating plaques and diffuse axonal degeneration
throughout the CNS (Dobson and Giovannoni, 2019). It is
characterized by the infiltration of T cells reactive against myelin
in the CNS (Schwartz and Kipnis, 2005). This demyelinating
disease has key features including inflammation, BBB disruption
and neurodegeneration. MS has a prevalence of 0.5–1.5 per
100,000 individuals, whereby women are three times more
affected than men (Harbo et al., 2013). The age of MS onset
is situated between 20 and 40 years of age (Ortiz et al., 2014).
General symptoms related to MS include, but are not limited to,
tremors, lack of coordination as well as weakness in limbs. There
are various types of MS including relapsing-remitting MS (RR-
MS), secondary progressive MS (SP-MS) and primary progressive
MS (PP-MS). RR-MS consists of unpredictable relapses or
inflammatory flare-ups during which new symptoms appear or
existing ones worsen (Adhya et al., 2006). Most people with
RR-MS, transition to a disease phase known as SP-MS. In this
phase, there is progressive worsening and fewer relapses. Active
lesions with profound lymphocytic inflammation are mostly
found in RR-MS (Dobson and Giovannoni, 2019). PP-MS is
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considered as a slow accumulation of disability without defined
relapses. In this case, PP-MS is associated with an inactive
lesion core surrounded by activated microglia and macrophages
(Dobson and Giovannoni, 2019).

Altered Cerebral Blood Flow in Multiple Sclerosis
MS has been associated with functional cerebrovascular
abnormalities including decreased cerebral perfusion and
reduced CNS venous blood drainage, known as chronic
cerebrospinal venous insufficiency (D’Haeseleer et al., 2011).
SPECT, PET, and ASL imaging studies have reported decreased
CBF in both gray and white matter of MS patients (Ge et al., 2005;
D’Haeseleer et al., 2011). Widespread cerebral hypoperfusion
has been revealed in SP-MS, RR-MS and PP-MS patients, while
an ischemic threshold was not reached (Adhya et al., 2006; Ota
et al., 2013; Monti et al., 2018). Gray matter hypoperfusion
in MS suggests a reduction of metabolism due to the loss of
cortical neurons (Peruzzo et al., 2013). Furthermore, studies
have reported that CBF is globally impaired in normal appearing
white matter (NAWM) of patients with early RR-MS (Law et al.,
2004; Adhya et al., 2006). Of note, CBF was generally lower
in PP-MS than in RR-MS in the periventricular and frontal
white matter (Adhya et al., 2006). In the contrary, other studies
have measured elevation of CBF and cerebral blood volume
(CBV) in NAWM of patients with early RR-MS several weeks
before signs of increased BBB permeability (Wuerfel et al.,
2004). Although studies on different types of MS revealed
changes in CBF, general active demyelinating lesion regions are
associated with hyperperfusion while the more stable forms show
hypoperfusion (Monti et al., 2018). Decreased CBF in cerebral
NAWM, thalamus, and putamen was identified in patients whose
symptoms emerged within the first 5 years of onset. This suggests
that CBF alterations are present in the very early stages of the
disease (Varga et al., 2009). Different mechanisms have been
proposed to explain hypoperfusion in MS. A study suggested
that decreased CBF is secondary to axonal degeneration, which
leads to a decreased metabolic demand (Saindane et al., 2007).
However, this hypothesis is yet to receive experimental support.
A second mechanism that has been proposed is an impaired
energy metabolism of astrocytes (De Keyser et al., 1999). In
MS, astrocytes are deficient in β2-adrenergic receptors which
regulate high energy-consuming activities, such as glycogenolysis
and phosphocreatine metabolism (De Keyser et al., 1999).
Reduced energy production in astrocytes could be contributing
to altered CBF. A third mechanism suggested was increased
release of vasoconstrictor endothelin-1 (ET-1) from reactive
astrocytes, found in a post-mortem study on white matter
samples of RR-MS patients (D’Haeseleer et al., 2013; Hostenbach
et al., 2019). Hence, elevated levels of ET-1 could be involved
in dysregulating CBF in MS. Interestingly, administration of
ET-1 antagonist Bosentan restored CBF to control levels in MS
patients (D’Haeseleer et al., 2013).

Impaired cerebral vascular reactivity was evidenced in MS
patients exposed to hypercapnia, which has been suggested
to contribute to neuronal death identified in this disorder
(Marshall et al., 2014). This global deficit is thought to be
associated with elevated levels of NO reported in MS (Trapp

and Stys, 2009; Juurlink, 2013). These studies suggest that the
overproduction of NO may desensitize endothelial and smooth
muscle cell function, causing decreased vasodilatory capacity
and limited blood supply for neurons that perform demanding
tasks. Increased NO in MS may lead to neuronal activity-
induced hypoxia leading to neurodegeneration (Marshall et al.,
2014). Interestingly, high inflammatory MS lesion load has been
associated with increased CBF. Therefore, perfusion changes
may be sensitive to active inflammation (Bester et al., 2015).
However, it remains unclear whether abnormal perfusion in
MS is a precursor of lesions or occurs independently of lesion
development (Marshall et al., 2014).

Notably, MS has been associated with cerebral SVD. It was
demonstrated that younger MS cases are more severely impacted
by cerebral SVD compared to older individuals (Geraldes et al.,
2020). This suggests that the interaction between MS and cerebral
SVD is affected by age, an assumption still under investigation
(Geraldes et al., 2020).

Altered Blood-Brain Barrier and Angiogenesis in
Multiple Sclerosis
BBB dysfunction is considered a major hallmark of MS and is
deemed a trigger of disease onset (McQuaid et al., 2009; Cramer
et al., 2014). Intense focal disruption of the BBB associated
with inflammation (identified by gadolinium-enhanced MRI at
acute and chronic MS lesion sites; Saade et al., 2018) and
diffuse extensive BBB disruption with a long-term pathological
activity, are both found in MS patients (Bennett et al., 2010).
Hyperpermeability of the BBB was evidenced by leukocyte
passage across the BBB (Cramer et al., 2014). Increased BBB
leakage was associated with decreased expression of tight junction
proteins in brain capillary ECs in patients with active lesions,
inactive lesions, as well as NAWM associated with fibrinogen
leakage (Kirk et al., 2003; McQuaid et al., 2009; Bennett et al.,
2010). More specifically, dysregulation of tight junction adaptor
protein ZO-1, occludin and claudin-5 have been reported in both
primary progressive and secondary progressive disease states
(Kirk et al., 2003; Leech et al., 2007). Experimental autoimmune
encephalomyelitis (EAE) in rodents is a disease model with
clinical and pathological characteristics relevant to the study of
MS. This model revealed reorganization of ZO-1 and actin in
the presence of inflammatory factors in vitro, associated with
increased permeability of an endothelial monolayer (Bennett
et al., 2010). The EAE model also revealed increased expression
of VEGF in ECs, astrocytes, monocytes and activated TH1
lymphocytes, all of which contribute to BBB permeability
during the early phase of disease, while decreased expression
VEGF was evident in the late phase (Girolamo et al., 2014).
The increase in VEGF expression was also found in the
brain of MS patients (Girolamo et al., 2014). Furthermore,
junctional adhesion molecule-A, a component of tight junctions,
was found abnormally distributed in active and inactive MS
lesions, although adherent junction proteins were normally
expressed and localized in MS tissue (Padden et al., 2007). In
addition, levels of PECAM-1 were found increased in active
gadolinium-enhancing MS lesions (Ortiz et al., 2014). While
BBB leakage is evident in MS, the complex network of cellular
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and molecular players that lead to this dysfunction have yet
to be fully understood. Targeting BBB defects in MS represent
a therapeutic opportunity, for instance with MMP inhibitors,
interferons, and corticosteroids (Minn et al., 2002; Ross et al.,
2004; Pardridge, 2012; Ortiz et al., 2014). However, no current
therapy addresses BBB deficits (Ortiz et al., 2014). For more
details on BBB dysfunction in MS, the following reviews can
be consulted (Girolamo et al., 2014; Kamphuis et al., 2015;
Xiao et al., 2020).

ECs proliferation as well as an increase in vascular network
density has been reported (Ludwin, 2006; Holley et al., 2010).
Increased angiogenesis was suggested to contribute to disease
progression as well as remission after relapses (Papadaki et al.,
2014). In addition to increased VEGF levels, VEGFR2 is also
expressed on ECs in active MS lesions (Seabrook et al., 2010).
Other molecules, such as basic fibroblast growth factor, were
increased in MS patients and involved in angiogenesis (Su et al.,
2006). MS patients with activated lesions and NAWM show blood
vessels with a glomeruloid morphology, hemorrhages and vessel
wall hyalinization (Girolamo et al., 2014). Immunosuppressive
therapies have been used in aggressive MS as they not only
impact neuroinflammation but also have an anti-angiogenic
effect. Further research is warranted to elucidate the vascular
links to MS and identify new therapeutic targets, as disease
modifying drugs have unfortunately little to no impact on MS
progression (Girolamo et al., 2014).

Vascular Links to Huntington’s Disease
HD is an hereditary, autosomal dominant and neurodegenerative
disorder (Davenport, 1915; Wasmuth et al., 1988; Bano et al.,
2011) leading to altered muscle coordination and declined mental
abilities (Paulsen, 2011; Ha and Fung, 2012). An expansion
of trinucleotide CAG repeats on chromosome 4 within the
Huntingtin gene (HTT) results in the production of an altered
Huntingtin (Htt) protein which accumulates in specific brain
regions. Aggregation of mutant Htt (mHtt) leads to increased
neurotoxicity (Zheng and Diamond, 2012), particularly in
subcortical brain structures such as the neostriatum (caudate
and putamen) where GABAergic medium-spiny neurons are
particularly vulnerable (Sieradzan and Mann, 2001; Walker, 2007;
Ross and Tabrizi, 2011; Drouin-Ouellet et al., 2015; McColgan
and Tabrizi, 2018). At the cellular level, mHtt results in neuronal
dysfunction and death through disrupted mechanisms involved
in proteostasis, transcription and mitochondrial function as well
as toxicity from the mutant protein (McColgan and Tabrizi,
2018). Worldwide, 2.71 per 100,000 individuals suffer from
HD (Rawlins et al., 2016; Kounidas et al., 2021). Both men
and women are affected equally, and heterogeneous symptoms
emerge at around 40 years of age. However, functional and
structural brain alterations emerge a decade before symptoms
manifest (Snowden, 2017). Carriers of CAG repeat expansions
in HTT can be identified decades before clinical manifestation,
allowing researchers to identify possible biomarkers in the
premanifest stage of HD (preHD). With this comes the
increasing interest to study cerebrovascular abnormalities in HD
(Snowden, 2017).

Altered Cerebral Blood Flow in Huntington’s Disease
HD-related perfusion deficits have been mostly associated with
cerebral hypoperfusion (Reid et al., 1988; Sotrel et al., 1991;
Hasselbalch et al., 1992; Harris et al., 1999; Deckel and Duffy,
2000; Wild and Fox, 2009). There is evidence of reduced CBF
in the basal ganglia in early HD, prior to gross structural
changes and to motor symptoms. In these cases, severity of
cortical hypoperfusion correlated with decreased functional
capabilities (Sax et al., 1996; Harris et al., 1999). In preHD
patients, classified as either near or far from motor symptom
onset, displayed altered rCBF by MR-based perfusion imaging.
Participants with preHDfar and preHDnear had lower rCBF
in the medial prefrontal cortex and increased rCBF in the left
precuneus. Of note, structure and function of the precuneus and
hippocampus can be abnormal in very early HD (Feigin et al.,
2006). PreHDnear participants had additional regions showing
altered rCBF, including hypoperfusion in the medial and lateral
prefrontal cortex and hyperperfusion in the right hippocampus
(Wolf et al., 2011).

While resting CBF is affected, early manifest and premanifest
HD patients also display altered neurovascular coupling during
visual stimulation (Klinkmueller et al., 2021). After HD onset,
a significant hypoperfusion in the HD group was identified in
most of the cerebral cortex. During problem-solving activities,
such as solving a maze or resting their eyes open while
looking at a modified maze, patients with HD showed increased
CBF in the caudate nucleus (Deckel and Duffy, 2000; Deckel
et al., 2000). Following physical activity, HD patients were
associated with CBF hyperperfusion compared to the control
group (Steventon et al., 2020).

Animal models of HD (e.g., gene knock-in of a human
exon 1 CAG140 expansion repeat) also revealed altered rCBF.
In mice as in humans, different brain regions displayed either
hypoperfusion (basal ganglia motor circuit, hippocampus and
prefrontal area) or hyperperfusion (cerebellar-thalamic and
somatosensory regions). This altered CBF was apparent at a
presymptomatic stage (Wang et al., 2016).

While CBF is starting to emerge as a biomarker for HD,
mounting evidence supports the utilization of CBV as an
additional metric. Several studies have reported elevated CBV in
preHD patients (Hua et al., 2014; Liu et al., 2020). In addition,
there is evidence of increased CBV in cortical gray matter after
HD onset (Drouin-Ouellet et al., 2015), suggesting that arteriolar
CBV may be a sensitive biomarker for premanifest HD (Hua
et al., 2014; Liu et al., 2020). From these studies it was suggest
that imaging of CBF may be used to detect widespread functional
abnormalities in HD, and possibly predict HD symptoms onset
during premanifest stages.

Altered Blood-Brain Barrier and Angiogenesis in
Huntington’s Disease
Increases in vessel density, BBB permeability and VEGF-A
release were observed in HD patients and animal models of
HD (Steventon et al., 2020). There is evidence that BBB leakage
increases alongside disease progression (Drouin-Ouellet et al.,
2015). Despite these observations, there seems to be discrepancies
between mouse models of HD. For instance, the BACHD
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transgenic mice, a well-known model of HD expressing the full-
length mutant human HTT, failed to develop BBB breakdown
at 12 months of age despite robust motor deficits (Lin et al.,
2013; Mantovani et al., 2016). BBB dysfunction in HD patients
has been associated with decreased tight junction molecules
such as occludin and claudin-5 (Drouin-Ouellet et al., 2015).
Moreover, other markers associated with BBB permeability,
including hepatocyte growth factor, interleukin-8 and tissue
inhibitor of MMP-1, were found elevated in HD patients
(Drouin-Ouellet et al., 2015). A transgenic mouse model of HD
(R6/2 mice) confirmed elevated tight junction molecules similar
to HD patients. The R6/2 mouse model of HD is the most
commonly studied and harbors a mutant Htt with CAG repeat
expansion in exon 1 (Li et al., 2005). R6/2 mice also displayed
increased transcytosis and paracellular transport across the brain
endothelium compared to control mice (Drouin-Ouellet et al.,
2015). In R6/2 mice, tight junction imbalance and perturbed BBB
homeostasis were perceptible at very early stage of the disease, in
absence of symptoms (Di Pardo et al., 2017). At the structural
level, mHtt aggregates were found in the basal membrane of
cerebral blood vessels in HD patients (Drouin-Ouellet et al.,
2015). Interestingly, mHtt aggregates were localized in ECs,
smooth muscle cells and perivascular macrophages, consistent
with observations in R6/2 mice.

Further research is needed to determine BBB impairments
in preHD patients. Lim et al. (2017) reported that iPSCs-
derived brain microvascular endothelial cells (BMECs) from
HD patients exhibit increased angiogenesis and altered barrier
properties associated with elevated transcytosis and paracellular
permeability. An increased and unregulated angiogenic activity
may lead blood vessels to become more permeable with a
potential role in neurovascular dysfunction in HD. RNA-seq
analysis revealed a significant number of affected gene that
regulate both clathrin- and caveolin- mediated endocytosis,
which could lead to changes in endo- and transcytosis across
the brain endothelium. These genes include FABP4, DYNAMIN,
and FILAMIN that play a role in vesicle formation and scission.
In addition, higher levels of transcytosis-related genes such
as CAV1 was detected in HD iPSCs-derived BMECs that also
displayed impaired Wnt/β-catenin signaling (Lim et al., 2017).
The Wnt/β-catenin pathway is essential for regulation of cell
proliferation, cell determination and tissue homeostasis (Silva-
Garcia et al., 2019). Furthermore, astrocytes from both HD
patients and mouse models were associated with higher levels of
VEGF-A, which may trigger proliferation of ECs and contributes
to neurovascular changes in HD (Hsiao et al., 2015). Of note,
sustained delivery of VEGF into the rat striatum via injectable
hydrogels was neuroprotective in a lesioned model of HD;
VEGF implants significantly protected against the quinolinic
acid-induced loss of striatal neurons (Emerich et al., 2010).
Moreover, neuroprotection induced by inhibition of hypoxia
inducible factor (HIF) prolyl-4-hydroxylases in HD mice has
been correlated with enhanced VEGF expression (Niatsetskaya
et al., 2010). In post-mortem tissue, cerebral blood vessel density
was greater in HD patients while no differences in diameter
of small- or medium sized blood vessels have been observed
(Drouin-Ouellet et al., 2015). Post-mortem tissue of HD patients

revealed a higher proportion of small compared to medium-sized
blood vessels in the putamen, an effect occurring in parallel with
putamen degeneration. Notably, altered density of small blood
vessels in HD patients was consistent with the R6/2 mouse model
when brain vascular anomalies were restricted to smaller vessels
(Drouin-Ouellet et al., 2015; St-Amour et al., 2015).

Vascular Links to Parkinson’s Disease
PD is the second most common neurodegenerative disorder after
AD (Antony et al., 2013). It is characterized by the progressive
degeneration of the nigrostriatal system, resulting in rigidity,
bradykinesia, postural instability, and resting tremor (Antony
et al., 2013; Pagano et al., 2016). The most affected cells are
dopaminergic neurons from the substantia nigra pars compacta
(SNc). The pathological hallmark of PD is the formation of Lewy
bodies containing aggregated α-synuclein (Hijaz and Volpicelli-
Daley, 2020). While increasing age is a risk factor for PD,
the average age of onset is after 60 years old (Hindle, 2010;
Parkinson Canada, 2010). The etiology of PD is multifactorial
where genetics (familial PD) and environmental (sporadic PD)
factors take part in disease onset (Klein and Westenberger, 2012).
Familial PD accounts for 10–15% of all PD cases whereas the
remainder is classified as sporadic PD (Verstraeten et al., 2015).
Genetically linked PD is inherited in an autosomal dominant
or recessive fashion (Ball et al., 2019). Research has identified
seven causal genes for familial PD including phosphatase and
tensing homolog-induced Kinase-1 (PINK1), Parkinson protein
7 (PARK7), parkin RBR E3 ubiquitin protein ligase (PARK2),
vacuolar protein sorting-associated protein 35 (VPS35), alpha-
synuclein (SNCA), glucocerebrosidase (GBA) and leucine-rich
repeat Kinase 2 (LRRK2) (Verstraeten et al., 2015; Kalinderi et al.,
2016; Ball et al., 2019). Conversely, sporadic PD may develop
from gene-environment interactions (Benmoyal-Segal and Soreq,
2006). Environmental factors associated with PD includes but are
not limited to pesticides, heavy metals, and illicit drugs (Kwakye
et al., 2017). Notably, individuals may respond differently to
environmental factors which results in diverse symptomology of
PD, thus adding to the complexity of the disease (Ball et al., 2019).

Altered Cerebral Blood Flow in Parkinson’s Disease
Using non-invasive MRI in an heterogeneous PD patient
population, studies revealed decreased CBF in the frontal, parietal
and occipital areas, more specifically the posterior parieto-
occipital cortex, cuneus, middle frontal gyri, putamen, anterior
cingulate and post- and pre-central gyri (Kamagata et al., 2011;
Melzer et al., 2011; Fernandez-Seara et al., 2012; Madhyastha
et al., 2015). A study by Fernandez-Seara et al. (2012) reported
a 20–40% decrease in CBF in PD patients compared to a control
group. Studies are trying to determine if CBF changes are related
to the presence of dementia in PD, or if it can be considered as a
biomarker. Derejko et al. (2006) used SPECT in PD patients with
dementia and demonstrated left temporo-parietal hypoperfusion
compared to the group without dementia. This suggested
that CBF differences between PD patients with or without
dementia could represent a clinical biomarker for discriminating
PD patients (Derejko et al., 2006). Another study revealed
hypoperfusion in PD patients without dementia in posterior
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cortical regions (posterior cingulate/precuneus) compared to
healthy individuals (Syrimi et al., 2017). Hypoperfusion was
positively correlated with global cognitive performance and the
level of motor impairment (Madhyastha et al., 2015; Syrimi et al.,
2017). Melzer et al. (2011) and Fernandez-Seara et al. (2012)
reported CBF reduction with parietal cortex thinning in mild
PD patients without dementia and proposed that CBF alterations
occur in the early stages of PD.

Although studies have identified hypoperfusion in PD
patients, the mechanisms underlying these changes are unknown
(Biju et al., 2020). One study used a mouse model of PD
(α-synuclein transgenic mice), which overexpress human WT
α-synuclein. α-synuclein pathology develops before clinical
symptoms and is present in both sporadic and familial forms.
Using ASL-MRI analysis in this PD mouse model, authors
reported a 36.6% reduction in cortical CBF in mutant mice
accompanied by motor coordination impairments and olfactory
bulb atrophy/dysfunction (Biju et al., 2020).

Altered Blood-Brain Barrier and Angiogenesis in
Parkinson’s Disease
The association of PD with altered vascular function has led
studies to investigate possible players contributing to BBB (Al-
Bachari et al., 2020). In animal studies, BBB disruption in
the SNc has been reported (Barcia et al., 2005; Rite et al.,
2007; Chao et al., 2009). While human studies investigating
BBB in PD patients are sparse, there is evidence of BBB
dysfunction with increased permeability in the post commissural
putamen of PD patients (Kortekaas et al., 2005; Gray and
Woulfe, 2015). Wardlaw et al. (2008) and Al-Bachari et al.
(2020) revealed increased leakage of the BBB in PD using ASL
and dynamic contrast enhanced -MRI (DCE-MRI). Authors
compared PD patients with two other control groups: one
with and one without known cerebrovascular disease. This
comparison could determine if BBB changes are attributable
to co-existing cerebrovascular disease in an aging population,
or if a pattern of BBB alteration is specific to PD. Authors
reported increased BBB leakage in the group with cerebrovascular
disease compared to the group without cerebrovascular disease
in regions previously associated with PD, including the
substantia nigra, white matter, and posterior cortical regions
(Al-Bachari et al., 2020).

Accumulation of α-synuclein in ECs may also contribute to
BBB dysfunction and increased permeability (Elabi et al., 2021).
Higher number of EC nuclei was found in the SNc of PD patients
(Faucheux et al., 1999). Other EC dysfunctions were reported,
such as down regulation of tight junction proteins (Kuan
et al., 2016). In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) mouse model of PD, down-regulation of tight junction
protein ZO-1 and BBB leakage were measured in the substantia
nigra (Patel et al., 2011). There is also evidence of string vessel
formation in brain capillaries from human PD. String vessels are
described as collapsed basement membrane without endothelium
and no circulatory function. An altered basement membrane was
also observed in PD mice (Yang et al., 2015). VEGF, a prominent
growth factor promoting angiogenesis and BBB permeability,
was upregulated in the substantia nigra, but not the striatum, of

PD patients, while animal models of PD displayed parkinsonian
traits following administration of exogenous VEGF into the
substantia nigra (Barcia et al., 2005; Wada et al., 2006; Rite et al.,
2007).

Guan et al. (2013) reported vascular degeneration in human
PD, with formation of endothelial clusters, capillary network
damage, and loss of capillary connections in the substantia nigra
and brain stem nuclei. Authors found a larger vessel size in PD
patients, while capillaries were shorter in average length, less in
number and had fewer branches. These observations were also
confirmed in an MPTP mouse model of PD (Guan et al., 2013;
Sarkar et al., 2014). Furthermore, ultrastructural abnormalities
were identified in cerebro-cortical microvessels of PD patients,
including basement membrane thickening, vacuolization and
pericyte degradation (Farkas et al., 2000). Structural alterations
of the basement membrane can lead to pathophysiological
consequences including compromised nutrient transport and
cognitive disturbances (Farkas et al., 2000). Recently, a PD
mouse model of α-synuclein overexpression was associated with
altered vascular density at different stages of the disease (Elabi
et al., 2021). The study reported that 8 month-old animals
had increased vessel density compared to control mice, while
13 month-old PD mice displayed decreased vessel density,
suggesting compensatory angiogenesis in the younger group
(Elabi et al., 2021). Increased angiogenesis is considered an
adaptative response to pathological conditions and is regulated by
basement membrane proteins and their integrin receptors. These
studies postulate that immature nascent vessels in PD could
contribute to increased BBB permeability, as reviewed recently
(Bogale et al., 2021).

Vascular Links to Alzheimer’s Disease
AD accounts for 60–80% of all diagnoses of dementia
(Alzheimer’s Association, 2021). This progressive and debilitating
neurodegenerative disease manifests with memory, attention,
executive, visuospatial and perceptual impairments. AD is not
only characterized by amyloid deposition, neuroinflammation,
neurodegeneration and cognitive deficits, but also by
cerebrovascular pathology. Indeed, an inadequate brain
perfusion has been identified as an early event in the development
and progression of AD (Nicolakakis and Hamel, 2011). The risk
of developing AD is increased by age-associated vascular diseases
such as hypercholesterolemia, hypertension, ischemic stroke,
and diabetes (Kalaria, 1996; Roher et al., 2003; Casserly and
Topol, 2004; Gorelick, 2004; Luchsinger et al., 2005). The AD
brain is characterized by increased levels of soluble and insoluble
amyloid-beta peptide (Aβ), derived from the amyloid protein
precursor (APP), neurofibrillary tangles of hyperphosphorylated
tau protein, neurodegeneration and neuroinflammation, and also
linked with a cerebrovascular pathology (Selkoe, 2002; Iadecola,
2004; Querfurth and LaFerla, 2010). The latter is identified
post-mortem by Aβ deposition in brain vessels (cerebral amyloid
angiopathy, CAA), Aβ-induced oxidative stress, and alterations
of the vessel wall that included fibrosis and degeneration of ECs
(Buee et al., 1994; Vinters et al., 1994; Zarow et al., 1997; Farkas
and Luiten, 2001; Humpel and Marksteiner, 2005). Various
mouse models of AD have been developed, most mimicking

Frontiers in Aging Neuroscience | www.frontiersin.org 12 October 2021 | Volume 13 | Article 749026114

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-749026 October 13, 2021 Time: 15:39 # 13

Ouellette and Lacoste Cerebrovascular Disease Throughout Life

the overproduction of Aβ through transgene expression of
mutated human APP (hAPP) combined or not with the
amyloidogenic presenilin (PS1) or the pathologic tau (Mucke
et al., 2000; Oddo et al., 2003; Gotz and Ittner, 2008). These
models recapitulate AD’s cerebrovascular pathology in addition
to the cognitive deficits, senile plaques, Aβ-induced oxidative
stress, neuroinflammation, cholinergic denervation, synaptic
failure, and cerebral hypometabolism (Hsia et al., 1999; Palop
et al., 2003; Aucoin et al., 2005; Tong et al., 2005; Nicolakakis
et al., 2008; Iturria-Medina et al., 2016; Love and Miners, 2016;
Liu et al., 2018; Czako et al., 2020). It is in fact estimated that
up to 45% of all dementias worldwide are partly, or wholly, due
to age-related SVD of the brain (Montagne et al., 2016; Clancy
et al., 2021). This suggests that AD and vascular dementia share
common grounds, which complicates their stratification. As
such, it is of utmost importance to improve our understanding
of vascular underpinnings of AD (Willis and Hakim, 2013).
Clinical studies that attempted to reduce plaque load by blocking
Aβ production, removing Aβ with antibodies, or preventing tau
phosphorylation, have all failed to alleviate AD symptoms (Korte
et al., 2020). However, mounting evidence demonstrates that
the brain vasculature is the missing link (Sweeney et al., 2019).
Early cerebrovascular dysfunction in AD leads to decreased
Aβ clearance, vascular oxidative stress, inflammatory damage
and impaired BBB function (Zlokovic, 2005). Here below
we will succinctly describe vascular underpinnings of AD,
from alterations in CBF to BBB dysfunction, topics that have
been extensively reviewed elsewhere (Bell and Zlokovic, 2009;
Zlokovic, 2011; Hamel, 2015; Hays et al., 2016; Nelson et al.,
2016; Kisler et al., 2017; Korte et al., 2020; Solis et al., 2020;
Soto-Rojas et al., 2021).

Cerebral Blood Flow Alterations in Alzheimer’s
Disease
Numerous investigations on individuals diagnosed with AD
observed reduced CBF (Prohovnik et al., 1988; Montaldi et al.,
1990; Bressi et al., 1992; O’Brien et al., 1992; Smith et al., 1992;
Minoshima et al., 1997; Mattsson et al., 2014; Mielke et al.,
2014; Smith and Verkman, 2018). CBF decline can be detected
prior to cognitive decline, but also before plaque deposition.
The accumulation of soluble Aβ prior to plaque deposition
has early pathogenic consequences in AD (Suo et al., 1998).
Studies have demonstrated increased levels of soluble amyloid
species including Aβ1−40 and Aβ1−42 in AD cases compared
to age-matched controls (Suo et al., 1998; Smith and Greenberg,
2009). Both soluble Aβ1−40 and Aβ1−42 have been associated to
abnormal vascular reactivity in the absence of plaque deposition
or vessel wall dysfunction (Smith and Greenberg, 2009; Dietrich
et al., 2010). In particular, studies have revealed that application
of exogenous Aβ1−40 to mouse neocortex in vivo, or to healthy
bovine blood vessels ex vivo, leads to endothelium-dependent
vasoconstriction (Thomas et al., 1996; Niwa et al., 2000). In
addition, increased levels of soluble amyloid species (Aβ1−40
and Aβ1−42) are associated with significantly reduced CBF,
increased cerebral vascular resistance, decrease myogenic and
vasodilator responses (Suo et al., 1998; Dietrich et al., 2010),
where Aβ1−42 is equally potent to Aβ1−40 except at a higher

concentration (Dietrich et al., 2010). Soluble Aβ impacts vascular
function through increased production of reactive oxygen
species (ROS). The reaction of ROS superoxide and excess NO
produces peroxynitrite. Peroxynitrite is commonly known as a
toxic oxidant which contributes to endothelial dysfunction, a
mechanism relevant to AD but also to other neuroinflammatory
and metabolic conditions (Beckman et al., 1990; Paris et al.,
1998; Tan et al., 2004; Dietrich et al., 2010; Kelleher and Soiza,
2013; Salisbury and Bronas, 2015; Incalza et al., 2018). Both
Aβ1−40 and Aβ1−42 have been shown to acutely increase ROS
production in cultured rat cerebral microvascular endothelial
and smooth muscle cells in a dose dependent manner (Dietrich
et al., 2010). Interestingly, this response was inhibited by the ROS
scavenger MnTBAP (Dietrich et al., 2010). Notably, Aβ1−40 is
the predominant isoform found in cerebral vessel walls and is
commonly associated with vascular deposits in CAA, which will
be discussed later, while Aβ1−42 is the major isoform deposited
in senile plaques (Suo et al., 1998). Although this concept is still
controversial, it is thought that Aβ1−42 acts as a “seed” which
initiates the formation of vascular Aβ deposit in CAA (McGowan
et al., 2005; Gireud-Goss et al., 2020).

Following Aβ deposition, reduction of CBF was found in
the frontal, parietal and temporal cortices from individuals
carrying Apolipoprotein E4 (APOE4) gene, most prevalent
genetic risk factor for AD (Thambisetty et al., 2010; Michels
et al., 2016). In addition, ApoE4 allele carriers displayed
early impairments in cerebrovascular reactivity to a memory
task (Suri et al., 2015). BOLD-fMRI, which uses blood flow
changes as a surrogate to neuronal activity, detected decreased
activation in areas engaged during naming and fluency tasks
in AD patients compared to individuals with no risk factors
(Smith et al., 1999). Decreased BOLD-fMRI responses to
different cognitive tasks in early stage of AD are region-specific
(Kisler et al., 2017). Most studies investigating perfusion in
AD reported either CBF or CBV alterations. However, CBF
alterations appear before CBV deficits during AD progression
(Lacalle-Aurioles et al., 2014).

Decreased CBF is associated with poor cognitive function,
and evidence suggested that lower CBF is linked with faster
cognitive decline in patients with AD (Benedictus et al., 2017).
Zheng et al. (2019) investigated rCBF, functional activity and
connectivity in AD by combining resting-state BOLD fMRI and
ASL techniques. ASL revealed decreased rCBF in AD patients in
the left posterior cingulate cortex, bilateral dorsolateral prefrontal
cortex, left interior parietal lobule, right middle temporal gyrus,
left middle occipital gyrus and left precuneus. In addition, they
revealed decreased connectivity between regions in AD patients,
which was associated with impaired cognitive performances
(Alsop et al., 2000; Zheng et al., 2019). Brain regions affected
by a reduction of CBF in AD patients (parietal, frontal,
temporal and occipital cortices) are associated with cognitive
impairment in all domains (language, global cognition, memory,
attention, executive functioning and visuospatial functioning)
(Leeuwis et al., 2017).

Blood flow reductions have also been identified in early
preclinical AD, before Aβ plaque deposition (Nicolakakis and
Hamel, 2011; Iturria-Medina et al., 2016; Szu and Obenaus, 2021).
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Early reduction of CBF has been reported in mouse models of
AD, such as mice overexpressing mutant forms of APP (Niwa
et al., 2002; Ongali et al., 2010; Lacoste et al., 2013) and in mice
expressing the ApoE4 gene allele (Lin et al., 2017). In some brain
areas, CBF reduction can reach over 50%. This CBF reduction
has been associated with cognitive changes in mice, including a
loss of ability to sustain attention (Marshall et al., 2001). Both
ApoE4 transgenic and APP/PS1 mice revealed CBF reduction
prior to neuronal and synaptic dysfunctions (Guo et al., 2019;
Montagne et al., 2021).

While decreased CBF in AD is widely accepted, studies are
only starting to identify underlying mechanisms, for example
the involvement of pericytes. Pericytes have been linked to
hypoperfusion and increased capillary constriction in AD (Bell
et al., 2010; Korte et al., 2020). Pericyte-deficient transgenic
mice with no Aβ pathology develop early CBF reduction in the
gray matter, even with normal neuronal activity, endothelial-
dependent vasodilation, astrocyte number and blood vessels
coverage (Bell et al., 2010; Kisler et al., 2017). As these pericyte-
deficient mice age, neuronal dysfunction and degeneration start
to emerge. Another underlying mechanism was reported by
Cruz Hernandez et al. (2019), demonstrating that capillaries
become blocked by neutrophils, while another study revealed
increased formation of occlusive thrombi in AD mice (Cortes-
Canteli et al., 2019). Inhibiting neutrophils adhesion using
an antibody against neutrophil-specific protein Ly6G in the
APP/PSI mouse model led to rapid improvements in CBF
(Cruz Hernandez et al., 2019). In a follow-up study, the same
group assessed the impact of one treatment of anti-Ly6G on
short-term memory function and reported increased CBF by
17% in 21–22 months old APP/PSI mice. Furthermore, they
suggested that increased CBF improved cognition into late
stages of AD mice (Bracko et al., 2020). Reduced neurovascular
coupling and cerebrovascular reactivity have also been reported
in AD mice (Girouard and Iadecola, 2006; Tong et al., 2019).
Recently, impaired capillary endothelial inward rectifying Kir2.1
channel, playing a role in mediating blood delivery, has been
associated with AD (Mughal et al., 2021). In a model of
familial AD (5xFAD) where Kir2.1 channel function is impaired,
systemic administration of the co-factor phosphatidylinositol
4,5-bisphosphate (PIP2), required for Kir2.1 activity, led to
increased CBF and functional neurovascular coupling in 5xFAD
mice (Mughal et al., 2021).

AD patients are often (80–90%) diagnosed with CAA, a
vessel disorder (Gireud-Goss et al., 2020) and an important risk
factor for intracerebral hemorrhage and cognitive impairment
(Reijmer et al., 2016). CAA consist of vascular amyloid deposits
similar to senile plaques in AD (Kumar-Singh et al., 2005).
Neuropathological studies have revealed that CAA affects the
outer leptomeningeal vessels on the surface of the brain
as well as distal intraparenchymal arteries, arterioles, and
capillaries (Gireud-Goss et al., 2020; Howe et al., 2020). APP23
mouse model and human AD brain revealed an association
between CAA-related capillary occlusion with CBF disturbances,
hypoperfusion, detected by magnetic resonance angiopathy
(MRA), which could explain in part the changes in CBF measured
in AD patients (Thal et al., 2009; Milner et al., 2014). As in AD,

patients with CAA have been linked to altered hemodynamics
during visual stimulation as evidenced by reduced amplitude
of BOLD response (Smith et al., 2008; Dumas et al., 2012;
Switzer et al., 2020).

Altered Blood-Brain Barrier and Angiogenesis in
Alzheimer’s Disease
Early signs of BBB leakage in AD have been detected
before dementia onset (Montagne et al., 2016). Neuroimaging
techniques have evidenced BBB breakdown in AD in gray and
white matter brain regions (Montagne et al., 2016; van de Haar
et al., 2016). Aβ and tau pathologies contribute to increased
BBB permeability in AD patients and mouse models (Park et al.,
2011; Sagare et al., 2013; Alata et al., 2015). Several players
involved in Aβ clearance, and closely related to the BBB, are
reduced in AD patients, including phosphatidylinositol-binding
clathrin assembly protein (PICALM, allows for Aβ exocytosis
across the luminal part of the BBB), P-glycoprotein (expressed
on both sided of the BBB) and glucose transporter (GLUT)1
(Mooradian et al., 1997; Chiu et al., 2015; Zhao et al., 2015). AD
brain microvessel show diminished expression of LRP1, a major
Aβ clearance receptor at the BBB (Deane et al., 2004; Donahue
et al., 2006). LRP1 is an ApoE receptor and is expressed at the
abluminal side of brain ECs and mediates the internalization of
soluble Aβ (Deane et al., 2004). Endothelium-specific deletion
of LRP1 leads to the acceleration of Aβ pathology in APP-
overexpressing APPsw/0 mice (Storck et al., 2016). Moreover,
studies have demonstrated low levels of GLUT1 in AD brain
endothelium, which alters glucose transport (Kalaria and Harik,
1989; Simpson et al., 1994).

Several features lead to increased BBB permeability in AD,
including reduced expression of tight junctions, perivascular
accumulation of blood-derived products, degeneration of
pericytes and ECs, as well as infiltration of circulating
leukocytes (Sweeney et al., 2018; Huang et al., 2020). It was
demonstrated that Aβ disrupts tight junctions and increases
vascular permeability by suppressing expression of ZO-1,
claudin-5 and occludin while increasing expression of MMP-2
and MMP-9 (Kook et al., 2012; Blair et al., 2015; Wan et al., 2015;
Huang et al., 2020). Isolated rat cerebral cortical ECs treated
with Aβ1−42 displayed decreased expression of occludin and
redistribution of claudin-5 and ZO-2 in the cytoplasm while
in untreated cells, both claudin-5 and ZO-2 were distributed
along the plasma membrane at cell-cell contacts (Marco and
Skaper, 2006). In addition, studies have reported leakage of
blood-derived proteins (fibrinogen, thrombin, albumin, and
IgG) around capillaries from post-mortem brain tissue in the
prefrontal and entorhinal cortex as well as in hippocampus of
AD patients (Ryu and McLarnon, 2009; Hultman et al., 2013;
Sengillo et al., 2013). Furthermore, animal studies revealed
that lacking pericyte-derived soluble factors, required for a
healthy endothelium, can contribute to endothelial degeneration
in AD (Bell et al., 2010). Finally, mouse models of AD have
demonstrated that pericyte reduction is associated with BBB
dysfunction as well as accelerated buildup of Aβ and tau
pathology (Sagare et al., 2013). In human studies, there is also
evidence of pericyte loss in the hippocampus and cortex of AD
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patients due in part to prolonged exposure to Aβ peptides (Sagare
et al., 2013; Sengillo et al., 2013; Huang et al., 2020). Of note,
pericytes play a role in Aβ clearance by internalizing different Aβ

peptides using the LRP1 pathway (Sagare et al., 2013).
Evidence of reduced capillary length and basement membrane

changes in AD patients have been reported (Salloway et al.,
2002; Sengillo et al., 2013; Halliday et al., 2016). It was shown
that AD patients display abnormal angiogenesis due to low
expression of MEOX2, a regulator of vascular differentiation,
as well as premature pruning of capillary networks resulting in
reductions of CBF (Wu et al., 2005; Grammas, 2011). Endothelial
degeneration including reduction of EC thickness, length and
density of blood vessels were reported in brain tissue from AD
patients (Sweeney et al., 2018). An increase of pro-angiogenic
factors in the AD brain, without the increase in vasculature,
was also reported (Grammas, 2011). Notably, the increased
Aβ species and plaques in AD have anti-angiogenic effects
(Parodi-Rullan et al., 2020), and impaired angiogenesis was
identified in transgenic AD mice (Grammas, 2011). Emerging
evidence suggest that dysfunction of the VEGF-A/VEGFR2
pathway may play an aggravating role in neurodegeneration
and AD. For instance, sustained brain delivery of VEGF via
injectable hydrogels was protective against quinolinic acid-
induced neurodegeneration (Emerich et al., 2010), and low VEGF
levels have been associated to another debilitating neurological
disorder, spinocerebellar ataxia type 1 (Cvetanovic et al., 2011).
Aβ acts as an antagonist of VEGF signaling via sequestration
of VEGF-A in senile plaques, and also via inhibition of
VEGFR2 tyrosine phosphorylation (Patel et al., 2010). Moreover,
implantation of VEGF secreting microcapsules on the cerebral
cortex of APP/PS1 mice attenuated both brain Aβ burden and
cognitive impairments (Spuch et al., 2010). Whether impaired
neural perfusion and increased neurotoxicity in AD correlate to
a loss of VEGF function, and whether VEGF overexpression is
neuroprotective in transgenic AD mice remains to be explored.

CAA is associated with increased BBB permeability and
arterial stiffness (Magaki et al., 2018; Gireud-Goss et al.,
2020). Aβ deposition in CAA has been found to occur on
the cerebrovascular basement membrane of arteries, arterioles
and on the basal lamina of capillaries as shown by electron
microscopy (Gireud-Goss et al., 2020). Moreover, ultrastructural
studies of CAA demonstrated a thinned endothelium, shrinkage
and degeneration of ECs, as well as vessel occlusion, all of which
can lead to CBF disturbances and microinfarcts (Attems and
Jellinger, 2004; Thal et al., 2009; Magaki et al., 2018). Tight
junction proteins in CAA-laden vessels are found decreased
(Tai et al., 2010). After exposure to exogenous Aβ, human ECs
showed decreased expression of occludin, while post-mortem
brain tissue of CAA patients revealed decreased expression
of claudin-5, ZO-1, CD31 and basement protein collagen IV
(Tai et al., 2010; Carrano et al., 2011; Magaki et al., 2018).
In addition, CAA patients displayed increased expression of
MMP-2 and MMP-9, which may lead to basement membrane
degradation and increased BBB permeability (Carrano et al.,
2011). In the Tg2576 mouse model of CAA, BBB integrity
was compromised due to decreased expression of claudin-5
and claudin-1 (Carrano et al., 2011). Moreover, TgSwDI mice,

another model of CAA, revealed spontaneous hemorrhage and
loss of BBB integrity (Davis et al., 2004). Soluble Aβ1−40,
predominant amyloid isoform in vessel walls, also leads to tight
junction redistribution at the BBB and decreased transendothelial
electric resistance (Hartz et al., 2012; Gireud-Goss et al., 2020).
Understanding the impact of Aβ in CAA and AD is essential for
slowing cerebrovascular disease progression.

ADDITIONAL REMARKS: VASCULAR
DEFICITS IN DOWN SYNDROME,
TRAUMATIC BRAIN INJURY AND
DEPRESSION

In addition to neurodevelopmental disorders discussed earlier in
this review, Down syndrome (DS), which results from trisomy
of human chromosome 21, is a cause of early onset Alzheimer’s
disease-dementia (AD-DS) (Ballard et al., 2016; Tosh et al., 2021).
Two-thirds of individuals with DS will develop dementia by the
age of 65 (Tosh et al., 2021). The onset of AD in DS patients
parallels the development of the classic brain pathological lesions
seen in AD patients without DS (Salehi et al., 2016). DS and
AD disorders have genetic similarities, as individuals with DS
possess a triplication of the gene encoding APP, while patients
with familial AD have an extra copy of the APP gene (Salehi et al.,
2016). In rodent studies of DS-AD, triplication of chromosome
21 genes other than APP demonstrated increased Aβ aggregation
deposition and cognitive deficits (Wiseman et al., 2018). A recent
study, focused on a model of DS comprising of a mutation in
a Down syndrome critical region (Hsa21) on chromosome 21
encompassing 21q21–21q22.3 (Li et al., 2016; Tosh et al., 2021).
This study crossed an Hsa21 mouse model of DS with partial
trisomies other than APP with a transgenic APP mouse model
and revealed that an additional copy of genes of the Hsa21
region modulates APP/Aβ biology, including Aβ aggregation
and mortality (Tosh et al., 2021). Despite striking similarities
between AD and DS in terms of genetics and symptoms onset,
neurovascular impairments in DS have been largely overlooked.
As such, studies aimed at elucidating vascular abnormalities in
DS represent an unmet clinical need.

Early vascular insults following a traumatic brain injury (TBI)
can also increase the risk of late-onset neurological diseases
(Brett et al., 2021). TBI is a significant public health problem
associated with long-term disabilities. Early chronic TBI may lead
to secondary injury with pathophysiological changes similar to
those observed in neurodegenerative diseases (Impellizzeri et al.,
2016). For instance, neuroinflammation plays a fundamental
role in TBI, including reactive microglia and astrocytes, as
well as release of pro-inflammatory cytokines and chemokines
that may hinder the brain’s ability to repair itself and lead
to neurodegeneration following prolonged activation of these
processes (Impellizzeri et al., 2016; Brett et al., 2021). Severe or
repeated mild TBI can initiate long-term neurodegeneration with
signs of AD (Mendez, 2017). For example, various contact-sport
players developed TBI-associated dementia or parkinsonism
years after retiring. TBI can induce acute BBB disruption through
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TABLE 1 | Major altered features associated with CBF, BBB, and angiogenesis in neurodevelopmental and neurodegenerative disorders.

Disorder Key features Selected references

ASD

Altered CBF – Widespread cerebral hypoperfusion in 75% of ASD children
associated with language deficits, impaired executive function and
abnormal response to sensory stimuli.

– Hyperperfusion identified in frontotemporal regions.
– Reduced hemodynamic responses.
– Cerebral hypoperfusion also identified in rodent models of ASD.
– Increased resting CBF and decreased NVC in an adult mouse

model of ASD associated with endothelial dysfunction.

Ohnishi et al., 2000; Zilbovicius et al., 2000; Burroni
et al., 2008; Reynell and Harris, 2013; Jann et al.,
2015; Ouellette et al., 2020; Uratani et al., 2019

Altered BBB and angiogenesis – Reduced level of adhesion molecules (CD31 and P-selectin).
– Increased MMP-9 which regulates cell proliferation, adhesion,

angiogenesis, oxidative injury and BBB breakdown.
– Altered expression of claudin-5 and claudin-12.
– Increased BBB permeability and impaired angiogenesis in animal

models.
– Reduced angiogenesis found in a mouse model of ASD.

Onore et al., 2012; Kumar et al., 2015; Azmitia et al.,
2016; Fiorentino et al., 2016; Turner and Sharp, 2016;
Ouellette et al., 2020

Schizophrenia

Altered CBF – Increased CBF in the cingulate gyrus and superior frontal gyrus
associated with positive symptoms.

– Negative symptoms associated with hypoperfusion in the superior
temporal gyrus bilaterally and left middle frontal gyrus.

– rCBF alterations depend on severity of positive symptoms.
– Increased CBF in the right superior temporal gyrus and caudate

nucleus.
– Decreased CBF in the occipital and left parietal cortices.
– Altered NVC including reduced amplitude of response and delayed

hemodynamics.

Sabri et al., 1997; Carter et al., 2001; Schultz et al.,
2002; Malaspina et al., 2004; Ford et al., 2005;
Pinkham et al., 2011; Liu et al., 2012; Kawakami et al.,
2014; Pu et al., 2016; Zhuo et al., 2017

Altered BBB and angiogenesis – Increased BBB permeability.
– Thickening and deformation of basal lamina, vacuolation of EC

cytoplasm, swelling of astrocyte end-feet, activation of microglial
cells and atypical vascular arborization in prefrontal and visual
cortices.

– Decreased claudin-5 expression, altered level of VE-cadherin and
occludin in ECs.

– Impaired angiogenesis and VEGF upregulation in the prefrontal
cortex linked to vascular hyperpermeability.

Grove et al., 2015; Hino et al., 2016; Casas et al.,
2018; Carrier et al., 2020; Cai et al., 2020; Guo et al.,
2020; Crockett et al., 2021; Usta et al., 2021

MS

Altered CBF – Hypoperfusion in SP-MS, RR-MS and PP-MS patients.
– Active demyelinating lesions associated with hyperperfusion and

stable lesions linked to hypoperfusion.
– CBF alterations present in early stages of disease.
– Impaired cerebral vascular reactivity leads to neuronal death.
– Overproduction of NO desensitize EC and smooth muscle cell

function, leading to decreased vasodilatory capacity and limited
blood supply to neurons.

Ge et al., 2005; Varga et al., 2009; D’Haeseleer et al.,
2011; Ota et al., 2013; Marshall et al., 2014; Bester
et al., 2015; Monti et al., 2018; Hostenbach et al., 2019

Altered BBB and angiogenesis – BBB hyperpermeability.
– Decreased expression of TJ proteins (ZO-1, occludin and claudin-5)

in ECs in patients with active and inactive lesions.
– Rodent model of MS show increased expression of VEGF in ECs,

astrocytes and monocytes.
– Increased vascular network density and angiogenesis.

Kirk et al., 2003; Bennett et al., 2010; Holley et al.,
2010; Cramer et al., 2014; Girolamo et al., 2014;
Papadaki et al., 2014

HD

Altered CBF – Altered CBF prior to structural changes and motor symptoms.
– Cerebral hypoperfusion in the basal ganglia, medial and lateral

prefrontal cortex.
– Cerebral hyperperfusion in the cerebellar-thalamic and

somatosensory regions.
– Altered neurovascular coupling during visual stimulation.

Hasselbalch et al., 1992; Sax et al., 1996; Deckel and
Duffy, 2000; Wang et al., 2016; Klinkmueller et al., 2021

(Continued)
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TABLE 1 | (Continued)

Disorder Key features Selected references

Altered BBB and angiogenesis – Increased vessel density, BBB leakage and VEGF-A release.
– Decreased TJ molecules including occludin and claudin-5.
– Rodent model of HD revealed increased transcytosis and

paracellular transport in brain ECs with TJ imbalance.
– mHtt aggregates localized in ECs, smooth muscle cells and

perivascular macrophages.
– iPSCs-derived HD BMECs show increased angiogenesis, altered

barrier properties and impaired Wnt/β-catenin signaling.

Steventon et al., 2020; Drouin-Ouellet et al., 2015; Di
Pardo et al., 2017; Lim et al., 2017

PD

Altered CBF – Decreased CBF in frontal, parietal and occipital areas.
– PD patients with dementia show left temporo-parietal

hypoperfusion.
– PD patients without dementia display hypoperfusion in the posterior

cortical regions.
– Hypoperfusion is positively correlated with cognitive performance

and motor impairment.

Derejko et al., 2006; Kamagata et al., 2011;
Fernandez-Seara et al., 2012; Madhyastha et al., 2015;
Syrimi et al., 2017

Altered BBB and angiogenesis – BBB disruption in the SNc with increased permeability in the
post-commissural putamen.

– Down regulation of TJ proteins (ZO-1) and higher number of EC
nuclei in the SNc.

– String vessel formation in brain capillary networks.
– Upregulation of VEGF, and parkinsonian traits following VEGF

administration in rodent models.
– Formation of endothelial clusters, capillary network damage, loss of

capillary connections in the SN, basement membrane thickening,
vacuolization, and pericyte degradation.

Farkas et al., 2000; Barcia et al., 2005; Kortekaas et al.,
2005; Wada et al., 2006; Rite et al., 2007; Chao et al.,
2009; Patel et al., 2011; Guan et al., 2013; Yang et al.,
2015; Kuan et al., 2016

AD

Altered CBF – Reduced CBF prior to cognitive decline and plaque deposition.
– Soluble Aβ1−40 and Aβ1−42 are associated with abnormal vascular

reactivity and decreased myogenic responses in absence of plaque
deposition.

– Hypoperfusion detected following Aβ deposition in the frontal,
parietal and temporal cortices and poor cognitive function.

– BOLD-fMRI detected decreased activation in regions involved in
naming and fluency tasks.

– Hypoperfusion identified in rodent models overexpressing mutant
forms of APP.

– Rodent models show reduced NVC and cerebrovascular reactivity.
– Parallel diagnosis of CAA linked with altered hemodynamics,

capillary occlusion and hypoperfusion.

Montaldi et al., 1990; Bressi et al., 1992; Smith et al.,
1999; Marshall et al., 2001; Girouard and Iadecola,
2006; Smith and Greenberg, 2009; Dietrich et al.,
2010; Ongali et al., 2010; Dumas et al., 2012; Lacoste
et al., 2013; Mattsson et al., 2014; Milner et al., 2014;
Benedictus et al., 2017; Smith and Verkman, 2018

Altered BBB and angiogenesis – Aβ and tau pathologies contribute to BBB breakdown, reduced
expression of TJ (ZO-1, claudin-5, occludin) and degeneration of
pericytes and ECs.

– Brain microvessel with diminished expression of LRP1.
– Reduced level of GLUT1 in brain endothelium.
– Reduced capillary length with basement membrane alterations.
– Abnormal angiogenesis related to low expression of MEOX2.
– Reduced EC thickness, and lower length/density of blood vessels.
– Dysfunction of the VEGF-A/VEGFR2 pathway aggravates

neurodegeneration.
– Rodent models show pericyte loss.
– Aβ deposition in CAA linked to decreased TJ proteins, increased

expression of MMP-2 and MMP-9, thinned endothelium,
degeneration of ECs and leaky BBB.

Kalaria and Harik, 1989; Simpson et al., 1994; Emerich
et al., 2010; Tai et al., 2010; Grammas, 2011; Carrano
et al., 2011; Sagare et al., 2013; Halliday et al., 2016;
Montagne et al., 2016; van de Haar et al., 2016; Magaki
et al., 2018; Sweeney et al., 2018; Huang et al., 2020

Selected references are displayed. Aβ, β-amyloid peptide; AD, Alzheimer’s disease; APP, amyloid precursor protein; ASD, autism spectrum disorders; BBB, blood
brain barrier; BMECs, brain microvascular endothelial cells; BOLD-FMRI, blood oxygen level dependent imaging-functional magnetic resonance imaging; CAA, cerebral
amyloid angiopathy; CBF, cerebral blood flow; ECs, endothelial cells; GLUT1, glucose transporter 1; HD, Huntington’s disease; iPSC, induced pluripotent stem cells;
LRP1, low-density lipoprotein receptor-related protein 1; MEOX2, Mesenchyme Homeobox 2; mHtt, mutant huntingtin; MMP, matrix metalloproteinases; MS, multiple
sclerosis; NO, nitric oxide; NVC, neurovascular coupling; PD, Parkinson’s disease; PP-MS, primary progressive-multiple sclerosis; rCBF, regional cerebral blood flow;
RR-MS, relapsing remitting-multiple sclerosis; SN, substantia nigra; SNc, substantia nigra pars compacta; SP-MS, secondary progressive-multiple sclerosis; TJ, tight
junctions; VE-cadherin, vascular endothelial cadherin; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; Wnt/β-catenin,
Wingless-related integration site β- catenin; ZO-1, Zonula occludens-1.
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vascular shear stress, hemorrhages, edema, alterations in CBF
and chronic inflammation, which is known to contribute to
Aβ deposition and tau pathology (Iadecola, 2013; De Silva and
Faraci, 2016). Autopsies of TBI patients show diffuse Aβ plaques
similar to those identified in AD, as reviewed by Perry et al.
(2016). The formation of Aβ in perivascular spaces following
TBI may lead to an injury cascade consisting of cerebrovascular
damage, oxidative stress and ECs dysfunction (Ramos-Cejudo
et al., 2018). Interestingly, alterations in EC survival, BBB
integrity and neuroinflammation are considered early events
after TBI, all of which are characteristic of cerebrovascular
damage involved in the progression of AD and impairment of
Aβ clearance. Thus, these early vascular impairments promote
the onset of neurodegenerative diseases (Ramos-Cejudo et al.,
2018). Considering early vascular injuries in TBI, biomarker
studies are integrating a variety of neuroimaging and molecular
techniques to better understand the incidence of cerebrovascular
dysfunction and the onset of neurodegenerative diseases, and
therapeutic investigations have looked at ways to improve
cerebrovascular function (Graham and Sharp, 2019; Martinez
and Stabenfeldt, 2019).

One of the leading causes of mental illness worldwide,
depression, has a tremendous impact on psychosocial behaviors
and vascular health (Knight and Baune, 2017; Menard et al.,
2017). Chronic stress is the primary environmental risk factor
for depression. The nucleus accumbens (NAc) is one of
the main players in regulating stress response (Russo and
Nestler, 2013). Menard et al. (2017) have demonstrated that
chronic social stress induces BBB leakiness in the NAc of
mice, which leads to circulating proinflammatory mediators
and depression-like behaviors such as helplessness, social
avoidance and anhedonia. As seen in neurodevelopmental and
neurodegenerative disorders, the increase in BBB permeability
in the rodent model of chronic social stress was facilitated
by the loss of tight junction protein claudin-5 (Menard
et al., 2017). Furthermore, stress-induced BBB permeability
has been linked to inflammation of the endothelium and
up-regulation of an epigenetic repressor, hdac1, which is
involved in reducing claudin-5 expression and loosening of
tight junctions (Dudek et al., 2020). Consequently, these studies
are highlighting mechanisms by which chronic stress impacts
vascular health, which could have long-term consequences on
brain maturation and aging.

The vascular system, as any other system, undergoes aging. It
has been hypothesized that vascular aging leads to a progressive
functional deterioration (Grunewald et al., 2021). During aging,
the brain vasculature undergoes several changes including
decreased capillary density, attenuation of neovascularization
potential, increased BBB permeability and decreased CBF as
reviewed in Watanabe et al. (2020) and Banks et al. (2021).
A suggested mechanism of typical vascular aging consist of
the inability of VEGF to replenish vessel loss. The mechanisms
by which VEGF is involved in vascular aging are unknown.
However, mice treated with VEGF have been shown to live
longer, with extended multiorgan functionality (Grunewald
et al., 2021). Furthermore, aging is associated with several
vascular changes including aortic stiffness which has been

linked to reduced blood flow in tissues leading to increased
neuroinflammation and neurodegeneration later in life (Moore
et al., 2021). Therefore, age-related changes in key vascular
features may predispose to age-associated diseases (Banks et al.,
2021). Improving early pathological conditions by protecting
the brain vasculature is essential in preventing or modulating
disease progression.

CONCLUSION

Vascular risk factors and co-morbidities take part in disease
onset and/or exacerbate disease progression (Sweeney et al.,
2018; Clancy et al., 2021). When it comes to alterations
in CBF, BBB, and vascular patterning, neurodevelopmental
and neurodegenerative disorders share interesting similarities
(Table 1). While these disorders are siloed, mainly due to the
age of onset, the commonalities in vascular alterations force
to question the implication of early life vascular impairments
on the expression of age-related neurodegenerative diseases.
The vascular implications in middle-aged autistic adults have
been largely overlooked, 10% of individuals diagnosed with
ASD age between 40 and 60 years old will develop dementia,
including AD within 15 years (Plana-Ripoll et al., 2019). In
addition, there is a high frequency of parkinsonism among
older ASD patients (Starkstein et al., 2015). The impact
of altered brain perfusion and BBB integrity in ASD may
contribute to the onset of neurodegenerative diseases due to
the continuous vascular impairments associated with these
diseases. Likewise, schizophrenia is associated with an elevated
risk for developing Alzheimer’s and Parkinson’s diseases as they
share core features including white matter abnormalities and
cognitive deficits (Ribe et al., 2015; Kochunov et al., 2021;
Kuusimaki et al., 2021).

Since fast-growing evidence demonstrates the role of early
vascular impairments in the onset and/or progression of
numerous neurological conditions, more work is needed to
identify therapeutic targets to promote healthy cerebrovascular
maturation and aging, as well as hinder the progression of
age-related dementia and neurodegeneration. This is primordial
considering recent findings that ECs show limited turnover
compared to other cells in the human body (Sender and Milo,
2021). For instance, it was estimated that the turnover rate
of ECs is 0.1% per day, as opposed to much higher rates
for erythrocytes (65%), neutrophils (18%) or gastrointestinal
epithelial cells (12%). In addition, the turnover rates of cellular
mass in the human body were estimated at 0.4% for ECs, 4% for
skin cells and adipocytes, and 42% for gastrointestinal epithelial
cells (Sender and Milo, 2021). Hence, as ECs are long-lived,
they may carry on early structural and functional impairments
into adulthood and throughout aging, altering organ function
in the long term. This concept emphasizes the importance
of infant screening for cerebrovascular abnormalities, and of
continuous management of vascular risk factors during lifespan.
As such, the vascular continuum between neurodevelopmental
and neurodegenerative disease should represent a growing focus
in modern neuroscience (Figure 3).
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The Neurovascular Unit (NVU) is an important multicellular structure of the central
nervous system (CNS), which participates in the regulation of cerebral blood flow
(CBF), delivery of oxygen and nutrients, immunological surveillance, clearance, barrier
functions, and CNS homeostasis. Stroke and Alzheimer Disease (AD) are two
pathologies with extensive NVU dysfunction. The cell types of the NVU change in both
structure and function following an ischemic insult and during the development of AD
pathology. Stroke and AD share common risk factors such as cardiovascular disease,
and also share similarities at a molecular level. In both diseases, disruption of metabolic
support, mitochondrial dysfunction, increase in oxidative stress, release of inflammatory
signaling molecules, and blood brain barrier disruption result in NVU dysfunction, leading
to cell death and neurodegeneration. Improved therapeutic strategies for both AD
and stroke are needed. Carbonic anhydrases (CAs) are well-known targets for other
diseases and are being recently investigated for their function in the development of
cerebrovascular pathology. CAs catalyze the hydration of CO2 to produce bicarbonate
and a proton. This reaction is important for pH homeostasis, overturn of cerebrospinal
fluid, regulation of CBF, and other physiological functions. Humans express 15 CA
isoforms with different distribution patterns. Recent studies provide evidence that CA
inhibition is protective to NVU cells in vitro and in vivo, in models of stroke and AD
pathology. CA inhibitors are FDA-approved for treatment of glaucoma, high-altitude
sickness, and other indications. Most FDA-approved CA inhibitors are pan-CA inhibitors;
however, specific CA isoforms are likely to modulate the NVU function. This review will
summarize the literature regarding the use of pan-CA and specific CA inhibitors along
with genetic manipulation of specific CA isoforms in stroke and AD models, to bring
light into the functions of CAs in the NVU. Although pan-CA inhibitors are protective
and safe, we hypothesize that targeting specific CA isoforms will increase the efficacy
of CA inhibition and reduce side effects. More studies to further determine specific CA
isoforms functions and changes in disease states are essential to the development of
novel therapies for cerebrovascular pathology, occurring in both stroke and AD.

Keywords: Alzheimer’s disease, stroke, carbonic anhydrase (CA), neurovascular unit (NVU), cerebrovascular
pathology, amyloid beta, inflammation, mitochondria
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INTRODUCTION

Neurovascular dysfunction is an important, early and causative
event in the pathogenesis of both Alzheimer’s disease (AD) and
Stroke (Iadecola, 2010, 2017; Hachinski et al., 2019; Sweeney
et al., 2019a; Freitas-Andrade et al., 2020; Zlokovic et al.,
2020). Indeed, the Neurovascular Unit (NVU) has recently
gained a lot of momentum as a pharmacological target in
cerebrovascular pathologies and neurodegeneration (Iadecola,
2017; Sweeney et al., 2019a; Zlokovic et al., 2020). The NVU is
a functional multicellular structure composed of blood vessels
and different cell types surrounding them within the central
nervous system (CNS), and is instrumental in regulating CNS
homeostasis (Andreone et al., 2015; Iadecola, 2017; Sweeney
et al., 2019b; Freitas-Andrade et al., 2020). Important functions
of the NVU include regulation of cerebral blood flow (CBF) and
immunological surveillance, amongst others (Andreone et al.,
2015; Cortes-Canteli and Iadecola, 2020; Freitas-Andrade et al.,
2020). NVU dysfunction is observed in aging, AD and following
neurological pathologies such as stroke (Iadecola, 2017; Cortes-
Canteli and Iadecola, 2020; Freitas-Andrade et al., 2020; Sarvari
et al., 2020) and traumatic brain injury (Xing et al., 2012; Lok
et al., 2015), among others.

Stroke and dementia are the two most common neurological
disorders. They confer risks for each other and share some,
mostly modifiable, risk factors. Having a stroke doubles the
chance of developing dementia (Savva and Stephan, 2010; Kuźma
et al., 2018). Therefore, preventing stroke through management
of hypertension and other risk factors could also decrease the
incidence of dementia (Kuźma et al., 2018; Hachinski et al., 2019).

AD is the most common form of dementia and has been
historically characterized by extracellular amyloid beta (Aβ)
plaques and intracellular hyperphosphorylated tau tangles in
specific brain regions (Day et al., 2015; Castillo-Carranza et al.,
2017; Cortes-Canteli and Iadecola, 2020; Ojo et al., 2021).
Interestingly, Aβ and tau intermediate aggregation species,
such as oligomers, have been shown to have toxic effects
on multiple cell types of the NVU (Fossati et al., 2010,
2012b; Parodi-Rullán et al., 2019; Canepa and Fossati, 2020).
This toxicity, in association with the contribution of impaired
clearance of undesired material from the brain, may lead to
neurodegeneration and cognitive decline (Fossati et al., 2012b;
Boland et al., 2018; Da Mesquita et al., 2018; Nortley et al.,
2019; Provensi et al., 2019; Braun and Iliff, 2020; Carare
et al., 2020; Cortes-Canteli and Iadecola, 2020; Nedergaard and
Goldman, 2020; Parodi-Rullán et al., 2020; Quintana et al., 2021).
Importantly, up to 90% of AD patients also present with cerebral
amyloid angiopathy (CAA), defined as Aβ deposition around
the brain vasculature and/or within the vessel walls (Iadecola,
2017; Sweeney et al., 2019a; Zlokovic et al., 2020). CAA is also
common in the non-demented elderly population and constitutes
an important contributor to NVU dysfunction in both normal
aging and AD (Provensi et al., 2019; Cortes-Canteli and Iadecola,
2020; Ojo et al., 2021).

Stroke is classically defined as a neurological damage
attributed to an acute focal injury of the CNS by a vascular
cause, including cerebral infarction, intracerebral hemorrhage

(ICH), and subarachnoid hemorrhage (SAH), and is a major
cause of disability and death worldwide (Sacco et al., 2013).
The most common type of stroke is Ischemic Stroke (IS) which
occurs when atherosclerotic plaques and fatty deposits cause
vascular occlusions, interrupting blood flow in the brain. The
blood vessel most commonly occluded is the middle cerebral
artery (Kuriakose and Xiao, 2020). When IS occurs, it promptly
causes multiple detrimental cerebral injuries due to both the
lack of oxygen and glucose, as well as the associated pro-
inflammatory signaling (Faraco et al., 2007; Freitas-Andrade
et al., 2020; Kuriakose and Xiao, 2020; Sarvari et al., 2020).
Following this event, there is a reperfusion injury phase, which
occurs when oxygen and CBF are restored (Faraco et al., 2007;
Freitas-Andrade et al., 2020; Sarvari et al., 2020). Another type of
stroke is hemorrhagic stroke (HS), which occurs when a blood
vessel, providing blood to the brain, ruptures (Corraini et al.,
2017; Sarvari et al., 2020). HS is characterized by greater lesion
volume, higher intracranial pressure and induce more severe
brain injury than IS. Importantly, IS and HS affect different brain
regions (Corraini et al., 2017).

Shared risk factors between AD and stroke are reduced
CBF, cardiovascular diseases and age (Sarvari et al., 2020;
Ojo et al., 2021). Cardiovascular risk factors like obesity,
diabetes, hypertension and atherosclerosis have been
observed to exacerbate cerebrovascular pathology as well as
neurodegeneration, including AD (Girouard and Iadecola, 2006;
de Bruijn and Ikram, 2014; Cortes-Canteli and Iadecola, 2020;
Sarvari et al., 2020). The common underlying mechanisms
involved in both AD and stroke include neuroinflammation,
mitochondrial dysfunction, cell death, and blood brain barrier
(BBB) dysregulation, indicating that the NVU is a target for both
diseases (Fossati et al., 2012b; Alluri et al., 2014; Sekerdag et al.,
2018; Eldahshan et al., 2019; Provensi et al., 2019; Parodi-Rullán
et al., 2020). A vast amount of research has been invested into
discovering new treatments for AD and stroke. In AD, this has
recently led to the controversial FDA-approval of aducanumab
(Ferrero et al., 2016; Sevigny et al., 2017; Knopman et al., 2021).
However, more research needs to be done to develop successful
disease-modifying therapies for both disorders. The scientific
community is particularly encouraging the study of repurposed
drugs, approved by the FDA for other disorders, which could
be beneficial for AD and stroke, while allowing more rapid
translation to clinical trials.

This review will introduce the idea of potentially repurposing
carbonic anhydrase inhibitors (CAIs), many of which are
already FDA-approved for other indications, for prevention of
cerebrovascular and neurovascular pathology in AD and stroke
and highlight the impact of carbonic anhydrase (CA) modulation
in these two dominant neurological disorders.

CAs are a family of zinc metalloenzymes which catalyze the
reversible hydration of carbon dioxide to produce bicarbonate
and a proton (CO2 + H2O↔ HCO3

−
+ H+) (Supuran, 2011;

Mishra et al., 2020). This chemical reaction is essential for
many physiological processes, such as pH and ion homeostasis,
carbon dioxide transport, electrolyte secretion, gluconeogenesis,
lipogenesis, and ureagenesis, water and sodium reabsorption in
the kidney, bone reabsorption and calcification, cerebrospinal
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fluid formation and turnover, amongst other processes (Provensi
et al., 2019; Zamanova et al., 2019; Mishra et al., 2020). CAs
have been studied as a well-known pharmacological target for
many peripheral and CNS disorders (Bradwell et al., 1992; Ilies
et al., 2004; De Simone and Supuran, 2007; Supuran, 2008, 2018;
Akocak and Ilies, 2014; Provensi et al., 2019; Zamanova et al.,
2019; Mishra et al., 2020). Interestingly, many recent studies
revealed a common goal to further elucidate CAs involvement in
both AD and stroke.

Humans have 15 CA isoforms, all with different expression
patterns at a tissue and cellular level (Supuran, 2011; Provensi
et al., 2019; Zamanova et al., 2019; Mishra et al., 2020). Many
of these isoforms are expressed within the NVU and it has
been hypothesized that each is involved in different functions
(Draghici et al., 2014; Rasmussen and Boedtkjer, 2018; Provensi
et al., 2019; Zamanova et al., 2019). It is known that some
isoforms are extracellular, anchored to the plasma membrane
(CA-IV, CA-IX, and CA-XII, CA-XIV), while others are cytosolic
(CA-I, CA-II, CA-III, CA-VII, CA-XIII), two are found in the
mitochondria (CA-VA and CA-VB) (Boriack-Sjodin et al., 1995;
Nishimori et al., 2005), some are acatalytic isoforms (CA-VIII,
CA-X, and CA-XI) (Aspatwar et al., 2014), and one isoform is
secreted in saliva (CA-VI) (Nishimori et al., 2007; Alterio et al.,
2012; Patrikainen et al., 2014; Provensi et al., 2019; Zamanova
et al., 2019; Mishra et al., 2020). CA function has been linked
to AD pathology as well as stroke, but the specific isoforms and
the pathological mechanisms involved are not fully understood
(Wang et al., 2009; Draghici et al., 2014; Fossati et al., 2016;
Pollard et al., 2016; Solesio et al., 2018; Mishra et al., 2020). The
determination of each CA isoforms’ role in health and disease
should be a priority for the development of novel and effective
therapies in cerebrovascular pathology (Provensi et al., 2019;
Mishra et al., 2020).

CAIs were developed first as diuretics and have become
valuable in treating glaucoma, cerebral edema, epilepsy, as well
as high altitude sickness (Mincione et al., 2007; Supuran, 2008;
Ritchie et al., 2012; Akocak and Ilies, 2014; Zamanova et al., 2019;
Mishra et al., 2020). The FDA-approved CAIs methazolamide
(MTZ) and acetazolamide (ATZ) are the most studied pan-CAIs.
Their activity in the NVU will be one of the focuses of this review.
Other FDA-approved CAIs such as topiramate, which has some
selectivity for the mitochondrial CA-VA and CA-VB isoforms,
along with compounds with selectivity for CA-IX and CA-XII will
also be discussed (Scozzafava et al., 2000; Supuran, 2012; Andring
et al., 2020; McDonald et al., 2020). MTZ and ATZ, along with
topiramate, have been observed to have protective properties on
cerebrovascular pathology, as well as on mitochondria function,
an important target for NVU integrity (Wang et al., 2009; Price
et al., 2012; Fossati et al., 2016; Solesio et al., 2018; Salameh
et al., 2019). A substantial amount of literature on the FDA-
approved pan-CAIs indicates that they are safe and can pass the
BBB. However, the development of new compounds targeting
specific isoforms may improve the efficacy and reduce side
effects of the already existing pan-CAIs (Provensi et al., 2019;
Mishra et al., 2020).

This review will first illustrate the basic structure and functions
of the cells composing the NVU, specifically describing how

they become dysfunctional in stroke and AD. We will then
discuss the properties of multiple CA isoforms and highlight the
available evidence showing how CA inhibition may be protective
toward multiple dysregulated mechanisms in NVU-composing
cells, pointing to CAs as potential targets for both stroke and AD
therapy (Provensi et al., 2019; Mishra et al., 2020).

THE NEUROVASCULAR UNIT:
FUNCTION AND DYSFUNCTION IN
STROKE AND ALZHEIMER’S DISEASE

The Neurovascular Unit
The cell types that constitute the NVU (depicted in Figure 1)
and collaborate to perform its functions are endothelial cells
(ECs), pericytes, smooth muscle cells (SMCs), astrocytes, and
microglia (Iadecola, 2017; Freitas-Andrade et al., 2020), which are
functionally or physically connected to neurons (Andreone et al.,
2015; Cortes-Canteli and Iadecola, 2020; Freitas-Andrade et al.,
2020). The NVU is the morpho-functional unit including the
BBB, which is important for the transport of nutrients and oxygen
from the systemic circulation to the brain, for the clearance of
toxic waste from the CNS, for the connection between blood flow
and neuronal function, as well as for forming a physical barrier to
prevent the entrance of pathogens and other harmful entities into
the CNS (Sarvari et al., 2020).

Endothelial Cells
ECs are essential components of the blood vessel wall.
Cerebrovascular ECs form tight and adherent junctions with
each other to limit the entry of molecules and cells from the
peripheral circulation into the CNS (Reese and Karnovsky,
1967). Transporters expressed on the plasma membrane of
ECs specifically regulate what enters and exits the CNS. For
example, glucose enters the brain exclusively via transporters,
despite the brain being a highly metabolic organ responsible
for up to 25% of total glucose consumption in the body (Tang
et al., 2017; Parodi-Rullán et al., 2019). ECs also regulate blood
flow by releasing vasodilators and vasoconstrictors, such as
nitric oxide (NO) and endothelin-1, respectively (Morikawa
et al., 1994; Biernaskie et al., 2001; Freitas-Andrade et al.,
2020). Due to the fact that mitochondria are very abundant in
cerebrovascular ECs (Oldendorf et al., 1977; Sarvari et al., 2020),
these cells are particularly sensitive to oxygen deprivation (Pun
et al., 2009; Freitas-Andrade et al., 2020). Hence, pathological
conditions which cause oxygen-glucose deprivation (OGD) and
prompt excessive reactive oxygen species (ROS) production
trigger cerebral endothelial dysfunction, cell death and BBB
breakdown (Schreibelt et al., 2007; Pun et al., 2009; Lochhead
et al., 2010; Ghiso et al., 2014; Fossati et al., 2016; Parodi-
Rullán et al., 2019; Freitas-Andrade et al., 2020), pointing to
the mitochondria as critical targets for EC function and BBB
integrity. Efficient communication and exchange of materials
between ECs and other cell types of the NVU is essential for CNS
homeostasis (Andreone et al., 2015; Freitas-Andrade et al., 2020;
Sarvari et al., 2020).
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FIGURE 1 | The neurovascular unit. Drawing depicting the cell types that make up the NVU within brain capillaries. Brain capillaries are surrounded by pericytes, as
shown in this figure, while arteries and arterioles are surrounded by SMCs. Other important cells associated with blood vessels and important for BBB and
neurovascular functions, also represented in this drawing, are astrocytes and microglia. ECs, endothelial cells; SMCs, smooth muscle cells; BBB, blood brain barrier;
NVU, neurovascular unit; MCs, microglia cells, BM, basement membrane.

Cerebrovascular dysfunction has been observed in both AD
and IS (Fossati et al., 2010, 2012a,b; Guo et al., 2010; Lochhead
et al., 2010; Jiao et al., 2011; Shin et al., 2016; Freitas-Andrade
et al., 2020; Parodi-Rullán et al., 2020; Quintana et al., 2021).
Aging, as well as cardiovascular risk factors, such as hypertension
and diabetes, contribute to cerebrovascular pathology (Huang
et al., 1995; Girouard and Iadecola, 2006; Price et al., 2012;
Cortes-Canteli and Iadecola, 2020; Ojo et al., 2021). The
reduction of tight junction proteins such as zona occludin-1 (ZO-
1) and occludin is observed in models of stroke and AD (Marco
and Skaper, 2006; Jiao et al., 2011; Engelhardt et al., 2014; Freitas-
Andrade et al., 2020; Parodi-Rullán et al., 2020). An increase
in adhesion molecules expression, such as intercellular adhesion

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1), is observed in stroke, and recently, has been also
associated with AD (Cruz Hernández et al., 2019; Sarvari et al.,
2020). The reduction of tight junction proteins and the increase
in adhesion molecules triggers the recruitment of peripheral
immune cells into the brain and may be due to endothelial
activation by danger associated molecular patterns (DAMPs),
such as low glucose and oxygen, and aggregated proteins, like
Aβ and hyperphosphorylated tau (Canepa and Fossati, 2020;
Freitas-Andrade et al., 2020; Sarvari et al., 2020). An increase
in BBB permeability allows peripheral substances to enter the
CNS, leading to neuroinflammation and oxidative stress (Pun
et al., 2009; Turner and Sharp, 2016; Yang et al., 2019). Increased
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oxidative stress in ECs exacerbates mitochondrial dysfunction,
leading to apoptosis (Lochhead et al., 2010; Fossati et al., 2012b,
2016; Solesio et al., 2018; Parodi-Rullán et al., 2019). During both
ischemic injury and AD, ECs have been observed to decrease
NO production, causing dysregulation of CBF (Morikawa et al.,
1994; Biernaskie et al., 2001; Girouard and Iadecola, 2006;
Austin et al., 2013; Parodi-Rullán et al., 2019; Freitas-Andrade
et al., 2020). Interestingly, in endothelial nitric oxide synthase
(e-NOS) knockout (KO) mice, deficiency of NO reduces the
ability of ECs to neutralize ROS enhancing oxidative stress and
neuroinflammation, likely exacerbating AD pathology (Austin
et al., 2013). Accordingly, in models of AD and stroke, EC
dysfunction has been shown to enhance neuroinflammation
by increasing the production of ROS and enhancing BBB
permeability, amongst other cellular mechanisms (Parodi-Rullán
et al., 2019, 2020; Yang et al., 2019).

Pericytes and Smooth Muscle Cells
Pericytes and SMCs surround ECs within the vascular walls,
wrapping around capillaries and arterioles/arteries, respectively.
Both cell types have a vital role in the regulation of CBF and BBB
integrity (Sagare et al., 2013; Hall et al., 2014; Freitas-Andrade
et al., 2020). These cells regulate blood flow mainly through their
contraction or dilation, which control the diameter of the blood
vessel (Hall et al., 2014; Freitas-Andrade et al., 2020). Recently,
the role of blood vessels in the clearance of CNS interstitial
fluid and proteins has been thoroughly investigated (Aldea et al.,
2019; Carare et al., 2020). Intramural periarterial drainage (IPAD)
has been hypothesized as a route to drain the brain interstitial
fluid and soluble proteins from the CNS into the cervical lymph
nodes, by traveling along the capillaries and arterioles in the
opposite direction of blood flow, within the basement membrane
of the brain vasculature. The contraction of SMCs provides the
motive force for IPAD (Carare et al., 2008; Aldea et al., 2019).
This system is dysregulated in models of CAA and aging (Ojo
et al., 2021). Another brain clearance pathway, the glymphatic
system, has been observed to import cerebrospinal fluid along
periarterial space and export interstitial fluid along perivenous
spaces, in perivascular tunnels, formed by astroglial cells. This
pathway has been proposed to be important in the clearance and
regulation of toxic proteins in the brain such as tau and Aβ, and
to be mediated by astrocytic aquaporin-4 (AQP4) (Braun and
Iliff, 2020; Nedergaard and Goldman, 2020). Interestingly, the
glymphatic system is most efficient during sleep (Boespflug and
Iliff, 2018; Mestre et al., 2020).

During both stroke and AD, pericytes are observed to detach
from the BBB (Sagare et al., 2013; Freitas-Andrade et al., 2020).
In an AD mouse model, pericyte loss was observed to exacerbate
AD pathology (Sagare et al., 2013). The loss of pericytes decreases
vascular stability and decreases the ability for the NVU to
regulate CBF (Sagare et al., 2013; Hall et al., 2014). On the
other hand, a recent study concluded that Aβ induces pericyte-
mediated capillary constriction, reducing CBF (Nortley et al.,
2019). Pericytes have been observed to endure damage in models
of diabetes as well as obesity, which are both risk factors of
AD and IS (Price et al., 2012; Shah et al., 2013a). In cats
exposed to hypoxia, pericytes exhibited detachment from the

microvasculature (Gonul et al., 2002). Along with dysregulation
of CBF in models of AD and stroke, pericyte and SMC loss also
contribute to impaired clearance in models of AD and CAA
(Sagare et al., 2013; Aldea et al., 2019; Carare et al., 2020; Kim
et al., 2020; Ojo et al., 2021).

Astrocytes
Astrocytes are essential cells for the NVU and provide a physical
connection between blood vessels and neurons (Iadecola and
Nedergaard, 2007; Braun and Iliff, 2020). Astrocytic end-feet
wrap the blood vessels, helping to stabilize EC tight junctions
and regulate CBF (Iadecola and Nedergaard, 2007). Astrocytes
play a key role in providing metabolic and physical support to
the CNS, along with the regulation of CBF, as well as brain
clearance (Freitas-Andrade et al., 2020). AQP4 is a membrane
protein that functions in water exchange within the CNS. In
healthy individuals, AQP4 is a membrane channel localized at
the astrocytic end feet, and it is important for clearance of toxic
solutes from the brain (Smith et al., 2019). It is hypothesized
that AQP4 is a part of the glymphatic system, mediating fluid
exchange and the drainage of proteins, as well as the elimination
of liquid from the CNS (Iliff et al., 2012; Boland et al., 2018;
Braun and Iliff, 2020; Mestre et al., 2020). Despite the differential
contributions of the glymphatic system and the IPAD pathway
to the clearance of cerebral fluids and waste material are not
completely grasped, it is accepted that astrocytes play a pivotal
role in the exchange of fluids, based on studies showing that,
in AQP4 KO mice, cerebrospinal fluid influx as well as CNS
clearance were decreased (Iliff et al., 2012; Braun and Iliff, 2020).
Another essential function of astrocytes is glutamate uptake and
release, which is very important for the maintenance of CNS
homeostasis (Dejakaisaya et al., 2021; van Putten et al., 2021;
Verkerke et al., 2021). Astrocytes also have a critical role in the
brain antioxidant system maintenance and in the production of
glutathione, an important modulator of oxidative stress and aging
(Bains and Shaw, 1997; Venkateshappa et al., 2012; Howarth
et al., 2017; Verkerke et al., 2021).

In AD, astrocytes lose their polarization, detach from the BBB,
become reactive and release inflammatory cytokines (Liddelow
et al., 2017; Sweeney et al., 2019b; Cortes-Canteli and Iadecola,
2020). The crosstalk between astrocytes and microglia needs
further understanding, although it has been extensively shown
that they modulate each other’s activation state (Joshi et al., 2019;
McConnell et al., 2019; McAlpine et al., 2021). Astrocytes have
also been reported to lose their expression of AQP4 early in
AD (Smith et al., 2019). Differently, in stroke, AQP4 expression
correlates with cerebral edema, increasing neuronal damage
(Manley et al., 2000). In IS, astrogliosis is very significant due to
the presence of DAMPs during the initial/acute phase, as well as
the secondary/later phase of injury. A major indicator of gliosis
is an increase in the expression of glial fibrillary acidic protein
(GFAP) by astrocytes, observed in stroke as well as AD models
(Pekny and Lane, 2007; Oeckl et al., 2019; Freitas-Andrade
et al., 2020). Upon ischemic injury, neurovascular coupling is
lost, together with astrocyte mediated CBF (McConnell et al.,
2019; Freitas-Andrade et al., 2020). This results in a loop of
metabolic stress and inflammation, worsening mitochondrial
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dysfunction in vascular cells, and ultimately leading to BBB
breakdown (Girouard and Iadecola, 2006; Freitas-Andrade et al.,
2020; Radenovic et al., 2020; Sarvari et al., 2020).

Microglia
Although not directly attached to ECs, microglia mediate BBB
integrity (Eldahshan et al., 2019; Freitas-Andrade et al., 2020).
They are considered the resident immune cells of the CNS,
able to phagocytize neurotoxic substances, and, more recently,
they have also been reported to participate in a series of
cerebral homeostatic functions, including synaptic plasticity
and brain development (Badimon et al., 2020; Willis et al.,
2020). There are two well-studied activation phenotypes of
microglia, referred as M1 and M2, which are classified as being
pro-inflammatory and anti-inflammatory, respectively. The M1
phenotype is detrimental to the BBB, causing dysregulation of the
NVU, while the M2 facilitates the endocytosis and the clearance
of toxic substances and dying cells, limiting the amount of
oxidative stress and promoting a more suitable environment for
regeneration/healing, following CNS injury (Tang and Le, 2016;
Freitas-Andrade et al., 2020; Jiang et al., 2020). Recently, a protein
highly expressed in microglia, triggering receptor expressed on
myeloid cells-2 (TREM2), has been observed to protect from
neurodegeneration in models of AD. TREM2 is hypothesized to
be neuroprotective, associated with the M2 phenotype, although
there are variants that increase the likelihood of developing AD
(Ulland and Colonna, 2018; Gervois and Lambrichts, 2019; Zhou
et al., 2020). The protective mechanisms of TREM2 have also
been observed in IS (Gervois and Lambrichts, 2019).

Following IS or HS, microglia transition into a reactive state,
causing the release of pro-inflammatory cytokines, exacerbating
neuroinflammation and neurovascular dysfunction (Eldahshan
et al., 2019). Microglia activation is also observed in models of
AD and is now considered one of the major hallmarks of the
disease (Villegas-Llerena et al., 2016). Inflammasome activation
has been observed to occur in aging, neurodegeneration, as well
as in stroke (Mohamed et al., 2015; Liddelow et al., 2017; Hu et al.,
2019; Yang et al., 2019). In the brain, inflammasome activation
occurs in many different cell types. Particularly, microglia, being
the most sensitive cells to pathogen associated molecular patterns
(PAMPs) and DAMPs, trigger the activation of caspase-1 and the
release of cytokines IL-1β along with IL-18 (Hu et al., 2019). The
cytokine receptors on vascular cells are then activated, triggering
detrimental processes which cause NVU dysfunction and
disruption of neurovascular coupling (Eldahshan et al., 2019).
Among other cells, microglia have also been observed to secrete
metalloproteases (MMPs), such as matrix metallopeptidase-2
(MMP-2) and matrix metallopeptidase-9 (MMP-9), which have
been reported to be activated in AD and IS, degrading the
basement membrane, therefore increasing BBB permeability and
NVU dysfunction (Lorenzl et al., 2003; Hernandez-Guillamon
et al., 2010; Yang and Rosenberg, 2015; Turner and Sharp, 2016;
Montaner et al., 2019; Freitas-Andrade et al., 2020; Sarvari et al.,
2020; Carcel-Marquez et al., 2021).

Basement Membrane
The basement membrane is an essential part of the BBB and
is composed of numerous proteins such as laminins, collagen,

nidogen, and heparin sulfate proteoglycans (Carare et al., 2020).
The different proteins that make up the basement membrane
are secreted by the cell types composing the NVU such as ECs,
pericytes and astrocytes. These different proteins support cell-
cell interactions, and thus BBB integrity (Carare et al., 2020;
Freitas-Andrade et al., 2020).

Destruction of the basement membrane is severely apparent
after middle cerebral artery occlusion (MCAO) (Sarvari et al.,
2020). This degeneration occurs through different mechanisms
of neuroinflammation such as ROS production as well as MMP
secretion (Mohamed et al., 2015; Yao, 2019; Freitas-Andrade
et al., 2020). Furthermore, the secretion and activation of MMPs
interferes with the composition of the BBB, causing it to become
leaky, and further exacerbating already existing oxidative stress
and neuroinflammation (Fujimura et al., 1999; Hernandez-
Guillamon et al., 2010; Montaner et al., 2019; Kang and Yao,
2020). Basement membrane composition and structure has also
been observed to change in models of CAA (Morris et al., 2014).

Neurons
Blood vessel-coupled-neurons communicate with ECs and other
cells of the NVU to modulate vascular structure, dilation or
constriction, and to provide nutrients based on neuronal need
(Andreone et al., 2015; Iadecola, 2017; Kaplan et al., 2020).
Neurovascular coupling is essential to maintain the proper influx
of nutrients and the proper efflux of toxic waste from the brain
(Girouard and Iadecola, 2006; Andreone et al., 2015; Kaplan
et al., 2020). Neuronal activity has been observed to participate
in both angiogenesis and neurovascular coupling (Girouard and
Iadecola, 2006; Huneau et al., 2015).

Upon CNS injury and cell death of NVU cells, dysregulation
of neurovascular coupling occurs (Iadecola, 2017; Sweeney et al.,
2019a; Freitas-Andrade et al., 2020; Kaplan et al., 2020). The
absence of communication between the CNS and the systemic
blood circulation ultimately leads to metabolic failure, oxidative
stress, mitochondrial dysfunction and synaptic loss (Freitas-
Andrade et al., 2020; Kaplan et al., 2020). It is therefore
conceivable that, when cerebrovascular integrity and function are
preserved, neurodegeneration is less severe and CNS homeostasis
is better maintained.

CARBONIC ANHYDRASES

CAs are a family of zinc metalloenzymes catalyzing the reversible
reaction CO2 + H2O 
 HCO3

−
+ H+. All four species in this

chemical reaction are essential for CNS homeostasis. Therefore,
it is expected that CAs influence CNS and further NVU
function. The CO2 hydration reaction can occur spontaneously
(uncatalyzed), but the reaction rate is too slow for the dynamic
of living cells. Consequently, CA is ubiquitously spread in all
living organisms, including humans, where it accelerates this
reaction millions of times, making the interconversion of CO2
and HCO3

− almost instantaneous. In humans, there are 15 CA
isoforms, either acatalytic (CA-VIII, CA-X, and CA-XI) with
exact function presently unknown, or catalytically active. The
latter are found in the subcellular locations where CO2/HCO3

−

interconversion is required, from the site of production in
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the mitochondria (mitochondrial CA-VA and CA-VB), moving
into the cytosol (CA-I, CA-II, CA-III, CA-VII, CA-XIII), then
to the plasma membrane (CA-IV, CA-IX, CA-XII, CA-XIV)
and finally extracellularly (CA-VI secreted in saliva (Supuran,
2008; Zamanova et al., 2019; Mishra et al., 2020). As genetic
manipulation and selective inhibitors (Supuran et al., 1998;
Ilies et al., 2003; Smaine et al., 2007; Supuran, 2008; Güzel
et al., 2009; Winum et al., 2009; Alterio et al., 2012; Akocak
et al., 2016; Angeli et al., 2020) have become more available,
there has been an increase in studies to determine the cell-
specific function of different CA isoforms (Ghandour et al., 1992;
Sly and Hu, 1995; Kida et al., 2006; Pan et al., 2006, 2012;
Imtaiyaz Hassan et al., 2013; Shah et al., 2013b; Akocak and
Ilies, 2014; Angeli et al., 2017; Waheed and Sly, 2017; Haapasalo
et al., 2020; Mishra et al., 2020). One of the most ubiquitously
expressed and catalytically active isoform is CA-II, having a
turnover rate for CO2 hydration approaching diffusion limit
(Kcat = 1.4 × 106 s−1). It is a cytosolic enzyme and has the
widest distribution in the human body, being expressed in cells
from virtually every tissue or organ. In the brain, it is found in
large amounts in oligodendrocytes and epithelium of the choroid
plexus. Subjects suffering from CA-II deficiency syndrome,
a human autosomal recessive disorder, display osteopetrosis,
bone fragility, renal tubular acidosis, and, importantly, cerebral
calcification and cognitive defects, developmental delay and
usually a short stature (Sly and Hu, 1995; Supuran, 2008;
Zamanova et al., 2019; Mishra et al., 2020). This isoform
has been observed to translocate to the mitochondria, upon
aging and neurodegeneration in a Purkinje cell degeneration
mouse model (Pollard et al., 2016). This study also showed that
C. elegans exposed to CA-II have a shorter lifespan, suggesting
that high CA-II levels are involved in cell life/cycle-limiting
mechanisms. Future studies need to further elucidate why and
how this occurs.

CA-I isoform was first identified in red blood cells, where
is five to six times more abundant than CA-II, although it has
only about 15% of the CA-II activity (Supuran, 2008; Zamanova
et al., 2019; Mishra et al., 2020). CA-I is the most abundant
non-hemoglobin protein in erythrocytes and, together with
CA-II, contributes to equilibration of dissolved CO2/HCO3

−

pools in blood and maintains the pH blood homeostasis, also
facilitating the CO2 transport from brain and metabolizing
tissues to lungs (Sly and Hu, 1995; Supuran, 2008; Zamanova
et al., 2019; Mishra et al., 2020). CA-I is hypothesized to
contribute to cerebral edema due to the observation that CA-
I is increased in the brain following HS (Guo et al., 2012).
One of the most important cytosolic isozymes in the brain
is CA-VII, a fast isozyme (Kcat = 9.5 × 105 s−1), found
especially in the neurons of hippocampus, together with CA-
II. Interestingly, CA-VII is not found in glial cells, which
contain just CA-II in the cytosol. Besides CNS, CA-VII is
found in skeletal muscles, stomach, duodenum, liver, colon
(Sly and Hu, 1995; Supuran, 2008; Zamanova et al., 2019;
Mishra et al., 2020). In the brain, Kaila’s group has shown
that CA-VII acts as a molecular switch in hippocampal CA1
pyramidal neurons in the development of synchronous gamma-
frequency firing in response to high-frequency stimulation. This

finding makes CA-VII an important modulator of long-term
potentiation, synaptic plasticity, memory, and learning processes
(Ruusuvuori et al., 2004). The same group, using a novel CA-
VII (Car7) KO mouse model, as well as a CA-II (Car2) KO,
and a CA-II/VII double KO mouse models, has shown that
in mature hippocampal pyramidal neurons CA-VII and CA-
II isozymes enhance bicarbonate-driven GABAergic excitation
during intense GABAA-receptor activation. The expression of
these two cytosolic isozymes was detected at a very early age
in the animals (10- and 20-days post-birth), pointing toward
CA-VII and CA-II being key molecules in age-dependent
neuronal pH regulation (Supuran, 2008; Ruusuvuori et al., 2013;
Ruusuvuori and Kaila, 2014; Zamanova et al., 2019; Mishra et al.,
2020).

Membrane-bound isozymes also play an important role in the
brain, especially for the regulation of extracellular pH (Chesler,
2003; Shah et al., 2005). Thus, the phosphatidylinositol glycan
(GPI)-anchored isozymes CA-IV (Stams et al., 1996) is a fast
isozyme (Kcat = 1.1 × 106 s−1) found on the plasma face of the
cortical capillaries. It is more resistant to inhibition by halide
ions than CA-II, being adapted to perform the CO2/HCO3

−

interconversion in the extracellular space that contains a higher
concentration of Cl− ions than the cytosol. The isozyme is also
expressed in the choriocapillaries of the eye, in skeletal and
cardiac muscles, lungs, kidneys, gastrointestinal and reproductive
tracts (Sly and Hu, 1995; Supuran, 2008; Zamanova et al., 2019;
Mishra et al., 2020). Another isoform localized within the plasma
membrane is CA-IX, a transmembrane isozyme, possessing an
N-terminal proteoglycan domain, the catalytic domain, a single-
pass transmembrane region, and an intracellular tail. It is a
dimeric protein with a low expression pattern in most organs,
except for the digestive system (largest amount) and CNS, where
it can be found mainly in the ventricular-lining cells and in
the choroid plexus (Saarnio et al., 1998; Hilvo et al., 2008;
Supuran, 2008; Alterio et al., 2009; Pastorek and Pastorekova,
2015; Zamanova et al., 2019; Mishra et al., 2020). The expression
of CA-IX is up-regulated in hypoxia by the transcription factor
hypoxia inducible factor-1 (HIF1α) and is associated with the
Warburg effect in cancer pathology (Ivanov et al., 2001; Supuran,
2008; Pastorek and Pastorekova, 2015; Shabana and Ilies, 2019).
In models of glioblastoma, CA-IX has been observed to increase
cell migration, motility, and adhesion in monocytes (Huang et al.,
2020). Currently, a compound partially selective to inhibit for
CA-IX, referred to as SLC-0111, is in clinical trials, and it is
likely it would operate as a therapy for multiple cancers, including
glioblastoma (Boyd et al., 2017; Ilies and Winum, 2019; Shabana
and Ilies, 2019; McDonald et al., 2020). This isoform has also
been suggested to be involved in heart fibrosis in a rat cardiac
ligation model (Vargas et al., 2016). Interestingly, in humans,
CA-IX is expressed also within atherosclerotic plaques, where
it is suggested to be a marker of necrotic tissue (Demandt
et al., 2021). Recent studies provided evidence that CA-IX
likely exacerbates cerebral ischemia outcomes (Mishra et al.,
2020). CA-XII is another medium-fast (Kcat = 4.2 × 105 s−1),
membrane-bound isozyme, similar in general structure with CA-
IX, but without the proteoglycan domain. It is also dimeric,
with the two active sites oriented toward the extracellular milieu
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(Ivanov et al., 1998; Türeci et al., 1998; Whittington et al.,
2001). It is found in many hypoxic tumors, alongside CA-
IX, including gliomas, hemangioblastomas, and meningiomas.
However, opposite to CA-IX, CA-XII is highly expressed in
many normal tissues including breast epithelium and non-
pigmented ciliary epithelial cells of the eye, in brain (small
peripheral capillaries), esophagus, pancreas, colon, rectum,
kidney, prostate, ovary, testis, endometrium, sweat glands. CA-
XII was shown to play a key role in epithelial cell electrolyte
homeostasis via activation of the ductal Cl−/HCO3

− exchanger
AE2, and association with Na+/HCO3

− cotransporter kNBC1
(Proescholdt et al., 2005; Purkerson and Schwartz, 2007; Supuran,
2008; Hong et al., 2015; Waheed and Sly, 2017; Zamanova
et al., 2019; Mishra et al., 2020). The membrane-bound isozyme
CA-XIV possesses an extracellular catalytic domain, a single
transmembrane helix, a short intracellular polypeptide segment,
and has a moderate catalytic activity. It is highly expressed in the
kidney, retina and the heart, as well as in brain, skeletal muscles,
liver, and lungs. It was reported that CA-XIV is interacting with
bicarbonate transporters and is involved in acid–base balance
in muscles and erythrocytes in response to chronic hypoxia,
and hyperactivity of the heart (Mori et al., 1999; Supuran,
2008; Mboge et al., 2018; Zamanova et al., 2019; Mishra et al.,
2020).

The mitochondrial isoforms CA-VA and CA-VB are
isozymes with medium-high activity (KcatVA = 2.9 × 105 s−1,
KcatVB = 9.5 × 105 s−1), important for gluconeogenesis,
lipogenesis, ureagenesis, and other anabolic pathways. They
supply HCO3

− to pyruvate carboxylase during gluconeogenesis
and lipogenesis pathways, and to carbamoyl phosphate
synthetase in ureagenesis pathway. CA-VA is found mainly
in the liver, while CA-VB is found in skeletal and heart muscles,
kidneys, pancreas, gastrointestinl tract, brain and spinal cord
(Shah et al., 2000; Supuran, 2008; Scozzafava et al., 2013;
Zamanova et al., 2019; Mishra et al., 2020). Due to their
involvement in these anabolic pathways, they have been studied
in models of obesity and type 2 diabetes (De Simone and Supuran,
2007; Supuran, 2012; Scozzafava et al., 2013; Salameh et al., 2019;
Mishra et al., 2020). The function of CA-V and the difference
between CA-VA and CA-VB isoforms has been examined by
analyzing the phenotypical differences between CA-VA and CA-
VB KO, as well as the double KO mouse models, indicating their
role in ammonia detoxification (Shah et al., 2013b). The function
of CA-V in the brain is extremely understudied, however, CA-VA
has been reported to be expressed in both neurons and glial cells
(Ghandour et al., 2000). Interestingly, the effect of CA-V has
been also investigated in cerebral pericytes (Price et al., 2017). It
has been observed that silencing of both isoforms protect against
high-glucose-induced cell death and ROS production, CA-VA
to a more significant degree (Price et al., 2017), confirmed also
by increased oxidative stress and apoptosis in models of CA-VA
over expression (Price et al., 2017).

Although extensive studies reported the multiple functions
of the different CA isoforms in a variety of tissues, further
investigation regrading CAs cell-specific expression/activity,
especially within the CNS, and in CNS disorders, is needed.
In particular, CAs impact on cerebrovascular dysregulation
occurring during IS and AD must still be elucidated. It is

therefore crucial to identify the cell- and isoform-specific roles,
and to design isoform-selective inhibitors, which may be likely to
ameliorate the cell/tissue specificity and to decrease the observed
side effects of the FDA-approved pan-CAIs (Provensi et al., 2019;
Zamanova et al., 2019; Mishra et al., 2020).

Below, we summarize the available literature highlighting
the positive effects of CA inhibition on neurovascular
dysfunction in stroke-, AD-, CAA-, and diabetes-induced
cerebrovascular pathology.

Carbonic Anhydrase Inhibitors and
Cerebrovascular Pathology
CAIs have been studied for decades (Maren, 1967; Bertini and
Luchinat, 1983; Silverman and Lindskog, 1988; Supuran et al.,
2003; Krishnamurthy et al., 2008; Supuran, 2008; Winum et al.,
2009; Alterio et al., 2012; Akocak and Ilies, 2014; McKenna and
Supuran, 2014; Supuran and Winum, 2015; Ilies and Winum,
2019; Angeli et al., 2020; Supuran and Capasso, 2020). They
were first developed as diuretics due to their function on the
reabsorption of sodium and water within the kidney (DuBose,
1984; Purkerson and Schwartz, 2007; Supuran, 2018), and are
currently used to treat glaucoma as they decrease intraocular
pressure, and for the prevention of high altitude sickness
(Bradwell et al., 1992; Mincione et al., 2007; Ritchie et al.,
2012), as they diminish pulmonary vasoconstriction, increase
CBF likely controlling cerebral oxygenation, and reduce cerebral
edema (Mishra et al., 2020). However, the molecular mechanism
responsible for the effects of CAIs, including some of the most
used pan-CAIs such as ATZ and MTZ, are multiple, and still
under investigation.

MTZ, for example, was recognized as one of a few compounds
that had the ability to inhibit cytochrome c release from the
mitochondria under oxidative stress (Wang et al., 2008). Over
1000 compounds of the NINDS drug library were first screened in
isolated mitochondria from mouse liver and further confirmed in
striatal cells in models of Huntington’s disease. MTZ, inhibiting
cytochrome c release from challenged mitochondria, also resulted
in the reduction of caspase-9 and caspase-3 activation (Wang
et al., 2008; Fossati et al., 2016; Sekerdag et al., 2018). Following
this study, FDA-approved CAIs such as MTZ, ATZ, topiramate
and more recently developed non-FDA approved selective
inhibitors, are starting to be applied in models of cerebrovascular
pathology, ischemia, CAA and AD, and their positive effects
have been attributed, at least in part, to their ability to prevent
mitochondrial dysfunction in cerebrovascular cells (Wang et al.,
2009; Shah et al., 2013a; Fossati et al., 2016; Solesio et al., 2018).

CA inhibition has been shown to contribute to
cerebrovascular tone during transient phases of pH change,
but not in steady-state conditions, in rat arteries (Rasmussen and
Boedtkjer, 2018). This study used two different CAIs, ATZ and
4-aminomethylbenzenesulfonamide (AMB). It was revealed that
only the pan-CAI ATZ, potent against most of intracellular CA
isozymes, had an effect on intracellular acidification mechanisms.
Based on the observed results, it was concluded that intracellular
CAs are responsible for modifying the rate of intracellular
pH and vascular tone within the arteries (Rasmussen and
Boedtkjer, 2018). Other studies have observed the vasodilator
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abilities of ATZ, such as increased NO production leading to
increased blood flow in the cortex of rats (Tuettenberg et al.,
2001). It is likely that the production of NO is not the only
mechanism by which ATZ mediates vasodilation (Kiss et al.,
1999). Systemic administration of ATZ has also been widely
used as a short test to increase CBF in human studies (Okudaira
et al., 1995; Grossmann and Koeberle, 2000; Russell et al., 2008).
Interestingly, its stimulatory effect on CBF is reduced in patients
with AD or vascular dementia compared to healthy controls
(Stoppe et al., 1995; Pavics et al., 1999).

Carbonic Anhydrase Inhibition in Models
of Ischemic Stroke
The neuroprotective effects of MTZ, in both in vitro and
in vivo models of ischemic injury, displayed in Table 1,
were first explored by Wang et al. (2009). Exposing primary
cortical neurons to OGD and H2O2 resulted in necrosis, which

TABLE 1 | CA inhibition in models of IS.

Model Mechanism CA
Inhibitor/Isoform

References

Mouse primary
cortical neurons

Inhibition of OGD
induced necrosis

MTZ Wang et al.,
2009

Inhibition of OGD
induced mitochondria
mediated apoptosis

Inhibition of OGD
induced inflammasome

activation

C57BL/6J
Mouse pMCAO

Reduction of infarct size MTZ Wang et al.,
2009Improvement of

neurological score

Reduction of caspase 3
activation

Decrease of
cytochrome C release

Wistar rat
tMCAO

Decrease of infarct size ATZ Han et al., 2020

Reduction of AQP4
expression

Reduction of brain
water content and

sodium accumulation

Sprague
dawley rat
pMCAO

Improvement of
neurological score

CA-VII inhibition,
CA-IX/XII inhibition

Di Cesare
Mannelli et al.,

2016Reduction of infarct size ATZ, CA-IX/XII
inhibition

Rat
hippocampal
slices

Inhibition of OGD
induced anoxic
depolarization

ATZ, CA-IX
inhibition, CA-XII

inhibition

Dettori et al.,
2021

Wistar rats
pMCAO

Reduction of infarct size ATZ, CA-IX/-XII
inhibition

Dettori et al.,
2021Improvement of

neurological score

Attenuation of microglia
activation

MTZ, Methazolamide; ATZ, Acetazolamide; HS, hemorrhagic stroke; p/Tmcao,
permanent/transient middle cerebral artery occlusion; CA, carbonic anhydrase;
AQP4, Aquaporin-4; OGD, oxygen glucose deprivation.

was rescued by MTZ treatment. Similarly, OGD increased
cytochrome c release and apoptosis inducing factor (AIF) release
from the mitochondria, as well as the activity of caspase-3 (Wang
et al., 2009), and MTZ attenuated these effects (Wang et al.,
2009), suggesting that MTZ does not only prevent necrosis, but
also mitochondria-mediated apoptosis, induced by OGD. In the
same study, primary cortical neurons exposed to OGD presented
inflammasome activation, measured by the activation of caspase-
1 and release of IL-1β. MTZ inhibited both IL-1β release as
well as caspase-1 activation in vitro (Wang et al., 2009). This
finding supports the hypothesis that CAs may mediate both
apoptotic and inflammatory mechanisms. In a mouse model of
MCAO, MTZ-treated mice (20 mg/kg) had a smaller infarct size,
improved neurological score, and decreased cytochrome c release
and caspase-3 activation, compared to non-treated mice (Wang
et al., 2009). A more recent study performed in rats determined
the effectiveness of ATZ alone, as well as in conjugation with
head-down tilt, a way to physically promote CBF, in a transient
MCAO rat model. The results indicated that ATZ was protective
following transient MCAO, significantly decreasing infarct size
(Han et al., 2020). Furthermore, ATZ reduced AQP4 expression,
compared to rats with no treatment, suggesting a reduction in
brain edema (Han et al., 2020). In a rat model of permanent
MCAO, ATZ was used in comparison with selective inhibitors
for CA-VII, CA-IX, and CA-XII to determine whether these

TABLE 2 | CA inhibition in models of HS.

Model Mechanism CA
Inhibitor/Isoform

References

Sprague-
dawley rats
intracaudate
blood injection

Improvement of
neurological outcome

ATZ Guo et al.,
2012

Reduction of
neuronal death

Exacerbation of brain
water content

CA-I injection Guo et al.,
2012

Increase
neurodegeneration

Mouse primary
cortical neurons

Inhibition of
blood/hemoglobin
induced cell death

MTZ Li et al., 2016

Inhibition of
blood/hemoglobin

induced ROS
production

C57BL/6J Mice
SAH

Reduction in
caspase-3 activation

and cell death in
hippocampus/cortex

MTZ Li et al., 2016

Improvement in
neurological outcome

New Zealand
White Rabbits
SAH

Reduction of
neurodegeneration/

apoptosis in
hippocampus

Topiramate Seçkin et al.,
2009

ATZ, acetazolamide; MTZ, methazolamide; CA-I, carbonic anhydrase-1; SAH,
subarachnoid hemorrhage; ROS, reactive oxygen species.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 November 2021 | Volume 13 | Article 772278141

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-772278 November 10, 2021 Time: 12:19 # 10

Lemon et al. Carbonic Anhydrases and Neurovascular Dysfunction

isoforms are involved in the pathology. Interestingly, the pan-
CAI ATZ did not improve neurological score 24 h following
occlusion, however, the CAI with selectivity for CA-VII, as well
as the compound more selective for membrane isoforms CA-
IX and CA-XII, improved the neurological deficits observed
in the occluded untreated rats. In the group treated with
the CA-IX/CA XII potent and medium selective inhibitor, 6-
(benzyloxy)benzo[d]thiazole-2-sulfonamide (BBT), infarct size
was significantly reduced, while no reduction was observed

TABLE 3 | CA inhibition in models of AD and CAA.

Model Mechanism CA
Inhibitor/Isoform

References

hCMEC/D3 Inhibition of Aβ induced
DNA fragmentation

MTZ, ATZ Fossati et al.,
2010; Solesio
et al., 2018Inhibition Aβ induced of

cytochrome c release

Inhibition of Aβ induced
H2O2 production

Inhibition of Aβ induced
caspase-9 activity

Human primary
brain SMC

Inhibition of Aβ induced
DNA fragmentation

MTZ Fossati et al.,
2010

Inhibition Aβ induced of
cytochrome c release

Normal Human
Astrocytes

Inhibition of Aβ induced
DNA fragmentation

MTZ Fossati et al.,
2016

Human Glioma
M059K

Inhibition of Aβ induced
DNA fragmentation

MTZ Fossati et al.,
2016

Inhibition Aβ induced of
cytochrome c release

Inhibition of Aβ induced
H2O2 production

Inhibition of Aβ induced
caspase-9 activity

Human
Neuroblastoma
(SHSY5Y)

Inhibition of Aβ induced
DNA fragmentation

MTZ, ATZ Fossati et al.,
2016; Solesio
et al., 2018Inhibition Aβ induced of

cytochrome c release

Inhibition of Aβ induced
H2O2 production

Inhibition of Aβ induced
caspase-9 activity

Activation of Nrf2 MTZ Sotolongo
et al., 2020

Rat primary cortical
neurons

Activation of Nrf2 MTZ Sotolongo
et al., 2020

C57BL/6 Mice Aβ

hippocampal
injection

Inhibition of caspase-3
activation

MTZ Fossati et al.,
2016

Increase of NeuN
expression in
hippocampus

Reduction of
caspase-3 activation in

reactive microglia

hCMEC/D3, human cerebral microvasculature endothelial cells; Aβ, amyloid-beta;
MTZ, methazolamide; ATZ, acetazolamide; SMC, smooth muscle cell; SHSY5Y,
human neuroblastoma cells; MO59K, glioblastoma cell line; Nrf2, nuclear factor
erythroid 2-related factor.

in the CA-VII inhibitor group. However, rats treated with
50 mg/kg of ATZ also displayed diminished infarct volume. This
study suggests that CA-IX and possibly CA-XII may exacerbate
neuronal loss along with neurological and vascular deficits,
following ischemic insult (Di Cesare Mannelli et al., 2016).
Very recently, another study evaluated different CA-selective
inhibitors, in both in vitro and in vivo models of IS (Dettori et al.,
2021). This study analyzed a new generation of CAIs, which are
lipophilic and selective for the hypoxia-associated (CA-IX and
CA-XII) and cytosolic (CA-II and CA-I) isoforms. Importantly,
ATZ was used as a reference compound at a much lower dose
in this study (4.4 mg/kg). In vitro, the lipophilic CAIs and ATZ
protected against OGD-induced anoxic depolarization, providing
mechanistic information. In vivo, the CAIs reduced infarct
volume, neurological deficits, neuronal damage and microglial
activation (Dettori et al., 2021). This study also measured TNF-
α and Il-10 plasma levels, showing differences between the sham
surgery and the occluded groups, without any affect in the
treated groups, likely due to the short time window of treatment
(24-h). As proposed in the discussion, it is possible that, with
a longer treatment, CA inhibition may mediate inflammatory
pathways (Bulli et al., 2021; Dettori et al., 2021). Indeed, CAs
have been also associated with inflammatory pathologies, such
as rheumatoid arthritis and cancer metastasis (Supuran, 2008;
Alver et al., 2011; Liu et al., 2012). Overall, both MTZ and ATZ
are protective in models of IS, however, the development of CA-
IX and potentially CA-XII inhibitors may be beneficial for the
treatment of both neurological and vascular disorders, following
IS. The protective mechanisms observed following CA inhibition
in models of IS, summarized in Table 2, seem to be superior with
compounds selective for membrane-bound isoforms CA-IX and
CA-XII (Bulli et al., 2021).

Carbonic Anhydrase Inhibition in Models
of Hemorrhagic Stroke
The protective mechanisms of CA inhibition in models of HS
are summarized in Table 2. Inhibition of CA reduced brain
injury after ICH in Sprague-Dawley rats (Guo et al., 2012). This
study focused on CA-I, which is highly expressed in red blood
cells. Upon intracaudate injection of blood, CA-I levels were
increased in the ipsilateral basal ganglia, for as long as 3 days post-
injection. Moreover, following intracaudate injection of CA-I,
increased brain water content, microglial activation and neuronal
cell death were detected, suggesting that CA-I expression may
contribute to cerebral edema and neuroinflammation. ATZ-
treated rats exhibited reduced perihematomal edema, as well as
sodium accumulation, together with decreased neuronal deficits
(Guo et al., 2012). However, the cellular mechanisms responsible
for the effects of CA-I on BBB integrity require further
investigation. Lately, the scientific community is beginning to
hypothesize that CA-I, in both the retina and brain, contributes
to vascular permeability, suggesting that specific inhibitors
of CA-I could be beneficial to minimize NVU dysfunction,
and thus neuroinflammation around the barrier (Gao et al.,
2007). Furtherly, in a SAH mouse model, mice treated with
the pan-CAI, MTZ, had decreased caspase-3 activation and
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apoptosis in the hippocampus and cortex, compared to the
non-treated group, ameliorating neurological deficits (Li et al.,
2016). In primary cortical neurons, MTZ reduced hemoglobin
and blood induced cell death along with production of ROS
(Li et al., 2016). Topiramate, another CAI active on multiple
CA enzymes, including CA-V, reduced SAH injury in rabbits
(Seçkin et al., 2009).

Carbonic Anhydrase Inhibition in Models
of Alzheimer’s Disease and Cerebral
Amyloid Angiopathy
Recently, the effects of CA inhibition on mitochondrial and
neurovascular cell function have been tested in models of
amyloidosis (Table 3). In AD and CAA, Aβ toxic aggregates
accumulate around and within the cerebral vessel walls, as
well as in parenchymal plaques in specific brain regions,
such as the hippocampus and cortex (Ghiso et al., 2014;
Cortes-Canteli and Iadecola, 2020). Our lab has shown
that Aβ oligomers and protofibrils induce cytochrome c
release from the mitochondria in multiple cell types of the
NVU, including ECs and SMCs, neurons and glial cells,
leading to caspase activation and cell death (Fossati et al.,
2010, 2012a,b, 2016; Parodi-Rullán et al., 2020). In all of
these neurovascular cell types, MTZ reduced mitochondrial
mediated cell death triggered by Aβ (Fossati et al., 2010,
2016). Moreover, MTZ attenuated caspase-3 and caspase-
9 activation in ECs, neuronal and glial cells in vitro, as

well as caspase-3 activation in vivo (Fossati et al., 2016;
Solesio et al., 2018). In an in vivo study, Aβ was injected
into the hippocampus of wild-type mice, in the presence
or absence of a previous intraperitoneal MTZ injection.
Interestingly, MTZ treatment attenuated the activation of
caspase-3 in microglia and increased the amount of NeuN
positive neurons within the hippocampus, indicating that MTZ
treatment had a protective effect against neurodegeneration
following Aβ-injection (Fossati et al., 2016). To elucidate the
specific mechanisms responsible for these protective effects,
our group showed that Aβ-induced mitochondrial dysfunction,
mitochondrial membrane depolarization, cytochrome C release,
and H2O2 production were attenuated in neuronal and ECs,
not only by MTZ, but also by ATZ, which was effective at
lower concentrations (Solesio et al., 2018). Moreover, both
ATZ and MTZ inhibited caspase-9 activation caused by Aβ

in cerebrovascular EC, and the resulting apoptosis (Solesio
et al., 2018). MTZ has been also observed to increase the
activation of nuclear factor-related factor 2 (Nrf2), in models
of high-altitude sickness and more interestingly, in human
neuroblastoma cells and primary cortical neurons challenged
with Aβ in vitro (Lu et al., 2020; Sotolongo et al., 2020).
Nrf2-activation by MTZ increased the activity of antioxidant
enzymes, such as superoxide dismutase-1 and heme-oxygenase-1,
pointing to the potential downstream effects of MTZ (Sotolongo
et al., 2020). These studies support the hypothesis that CA
inhibition is protective to multiple cell types of the NVU,
in models of amyloidosis, and highlight the necessity to test

TABLE 4 | CA isoforms in CNS and cerebrovascular pathology.

CA isoform Cellular localization Cell type/Brain area Cellular function Neurological disorder References

CA-I Cytosol Red blood cells -pH homeostasis in the blood
-Edema/sodium accumulation

in the brain

IH Guo et al., 2012

CA-II Cytosol -Epithelium of choroid plexus
-Glial Cells -Neurons

-Intracellular ion homeostasis
-Cell-life/life cycle

Loss of expression
associated with cognitive

abnormalities

Sly and Hu, 1995; Mishra
et al., 2020

CA-III Cytosol MCA N/A N/A Rasmussen and Boedtkjer,
2018

CA-IV Plasma membrane -Cortical capillaries -MCA Extracellular pH N/A Chesler, 2003; Shah et al.,
2005; Rasmussen and

Boedtkjer, 2018

CA-VA Mitochondria -Cerebrovascular pericytes
-Neurons -Glial cells

-High-glucose induced
Apoptosis -High-glucose

induced ROS production -Cell
viability -Biogenesis reactions

Type-2 Diabetes induced
cerebrovascular pathology

Ghandour et al., 2000;
Patrick et al., 2015; Price

et al., 2017

CA-VB Mitochondria -Cerebrovascular pericytes
-MCA -CNS cells

Cell Viability Type-2 Diabetes induced
cerebrovascular pathology

Price et al., 2017;
Rasmussen and Boedtkjer,
2018; Mishra et al., 2020

CA-VII Cytosol Hippocampal neurons -Gamma-frequency firing
-Long-term potentiation

Epilepsy Ruusuvuori et al., 2004,
2013

CA-IX Plasma membrane -Glioblastoma -Choroid plexus
-Ventricular linings

-Extracellular pH -Monocyte
adhesion/cell migration -Tumor

progression

Glioblastoma-IS Di Cesare Mannelli et al.,
2016; Huang et al., 2020;

Mishra et al., 2020

CA-XII Plasma membrane -Glioblastoma -Peripheral
capillaries -MCA

Extracellular pH Glioblastoma Proescholdt et al., 2005;
Rasmussen and Boedtkjer,

2018

CA, carbonic anhydrase; MCA, middle cerebral artery; IH, intracerebral hemorrhage; IS, ischemic stroke.
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these and/or isoform-specific compounds in clinical trials for
AD and CAA. New studies currently performed in our lab
are also confirming the positive effects of CAIs on cognitive
performance in mouse models of amyloidosis (Angiulli et al.,
2018). Additional studies are in process to investigate chronic
treatments with pan-CAIs in multiple models of CAA and AD,
in parallel with the assessment of specific isoform inhibitors,
to further elucidate the role of different CA isoforms in AD
and CAA pathology.

Interestingly, although CAIs are proving to be beneficial in
preventing CAA and AD pathology, CA activators have also
showed beneficial effects for memory retention in acute models
(Ilies et al., 2002; Canto de Souza et al., 2017; Sanku et al.,
2018; Provensi et al., 2019; Blandina et al., 2020; Schmidt
et al., 2020). These findings point to a relevant role of CA
enzymes in the modulation of multiple pathways in contextual
fear memory extinction, neurodegenerative and neurovascular
pathology. They also highlight the need for a careful and
specific modulation of CA enzyme’s activity, and for a further
understanding of the effects of each isoform in different brain
areas, cell types, and pathological conditions.

Carbonic Anhydrase Inhibition in Models
of Diabetes-Induced Cerebrovascular
Pathology
Some studies have also explored the specific inhibition of the
mitochondrial isoforms CA-VA and CA-VB, which recently
gained interest for their role in the prevention of cerebrovascular
pathology, in different models of diabetes (Price et al., 2012,
2017; Shah et al., 2013a), which contributes to AD and stroke
pathogenesis (Kuźma et al., 2018; Cortes-Canteli and Iadecola,
2020; Freitas-Andrade et al., 2020; Zlokovic et al., 2020). In
a streptozotocin induced diabetic CD-1 mouse model it was
reported that topiramate treatment for 3 weeks increased the
levels of glutathione and reduced oxidative stress in the brain.
It was also observed that diabetes-induced loss of cerebral
pericytes was attenuated by topiramate (Price et al., 2012).
The same group confirmed these mechanisms in the brains of
CA-V double KO mice, where increased levels of glutathione
and decreased oxidative stress was observed compared to wild-
type (Price et al., 2012). Hyperglycemia-treated cerebrovascular
pericytes increased ROS production, as well as the rate of

FIGURE 2 | AD and stroke share common risk factors and pathological mechanisms. This figure aims to emphasize the multiple CAIs, as well as point out specific
CA isoforms that have been observed to modulate cerebrovascular pathology in models of AD or stroke. Age, cardiovascular risk factors and hypoperfusion are all
common risk factors between AD and stroke. Both AD and stroke exhibit NVU dysfunction, accompanied by many common molecular mechanisms, such as
mitochondrial dysfunction, vascular, and neuronal cell death, neuroinflammation, and BBB dysfunction. If these mechanisms are causes or effects of neurovascular
dysfunction is still a hotly debated issue. Despite the differences in the advanced pathological manifestations of the two diseases, stroke does increase the risk of
dementia, suggesting that targeting their common risk factors and molecular mechanisms could ultimately mitigate the development of cerebrovascular pathology in
both disorders, protecting brain health and CNS homeostasis. ATZ, Acetazolamide; MTZ, methazolamide; BBB, blood brain barrier; NVU, neurovascular unit; CNS,
central nervous system; CA, carbonic anhydrase; AD, Alzheimer’s disease; CAIs, carbonic anhydrase inhibitors. This figure was created with BioRender.com.
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mitochondrial respiration. The inhibition of CA (particularly
CA-V), with topiramate, reduced ROS production (Shah et al.,
2013a). Although topiramate has a high inhibitory activity
on the CA-V isoforms, it also has affinity for the other
isoforms, as well as multiple off-target effects in the brain,
as shown by studies that analyzed topiramate’s functions on
GABA and glutamate receptors (Johnson, 2005; Mao et al.,
2015). Ideally, more specific inhibitors should be developed to
further investigate the functions of CA-VA/B. The same group
used a plasmid to overexpress CA-VA in cerebral pericytes
exposed to high-glucose to confirm the hypothesized molecular
mechanisms involving CA-VA, such as ROS production and cell
death, observing that topiramate was protective against these
mechanisms (Patrick et al., 2015). As a proof of concept, the same
group genetically knocked down CA-VA and CA-VB in cerebral
pericytes (Price et al., 2017). CA-VA and CA-VB knockdown
improved cell viability, compared to the control, when exposed
to hyperglycemia, although the specific knockdown of CA-VA
was even more effective than CA-VB knockdown in decreasing
ROS production and apoptosis, in a hyperglycemic environment
(Price et al., 2017). These studies reveal potential differences
between CA-VA and CA-VB function in brain pericytes, which
need further investigation. In a streptozotocin induced diabetic
mouse model, cerebrovascular pathology was also characterized
using electron microscopy. The breakdown of the BBB and
its dysfunction was attenuated by topiramate treatment in vivo
(Salameh et al., 2016). More recently, a study using a high-fat-
induced diabetes mouse model, focused on the disruption of the
hippocampal BBB. BBB tight junction proteins, such as ZO-1 and
claudin-12, were reduced with a high-fat diet, while topiramate
treatment increased their expression, along with the attenuation
of oxidative stress (Salameh et al., 2019).

CONCLUSION

The NVU is an important functional structure of the CNS,
and its failure participates in the development of AD,
vascular dementias, and exacerbates stroke outcomes. Multiple
pathological and cellular mechanisms leading to NVU pathology
need clarification, and new therapeutic strategies should be
further investigated and developed. As scientific techniques
improve, the ability to understand the functions of this unit
increases. Recent studies support that CA inhibition is protective
to the NVU, and the role of these enzymes should be further
investigated. Table 4 emphasizes the CA isoforms that have
been discussed throughout the review, their cellular localizations,
their association with specific neurological disorders, and their

expression in neurovascular cells. Clarifying how the cells of
the NVU interact with each other, as well as the roles of CAs
within each cell type, is critical for targeting cerebrovascular
pathology in IS, AD, as well as other neurogenerative diseases.
The pan-CAIs MTZ and ATZ, as well as topiramate, have shown
protective effects in models of stroke, cerebrovascular pathology,
type II diabetes, and AD, summarized in Figure 2. Although
these compounds are FDA-approved, facilitating translation to
clinical trials, these CAIs are not specific drugs. Isoform-specific
CAIs are of increasing interest, as 15 isoforms with different
functions and localizations have been identified in humans.
Further preclinical and clinical studies to assess the efficacy of
CA inhibition in AD as well as IS are essential. To confirm the
role of specific CA isoforms as pharmacological targets, genetic
studies, such as isoform KO and knock in in different NVU cell
types, would be beneficial. Overall, the studies discussed above
provide evidence for CAs as important potential mediators and
targets in neurovascular pathology for AD, stroke and related
cerebrovascular disorders.
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The age-related reduction in circulating levels of insulin-like growth factor-1 (IGF-
1) is associated with increased risk of stroke and neurodegenerative diseases in
advanced age. Numerous reports highlight behavioral and physiological deficits in
blood-brain barrier function and neurovascular communication when IGF-1 levels are
low. Administration of exogenous IGF-1 reduces the extent of tissue damage and
sensorimotor deficits in animal models of ischemic stroke, highlighting the critical role
of IGF-1 as a regulator of neurovascular health. The beneficial effects of IGF-1 in the
nervous system are often attributed to direct actions on neurons; however, glial cells
and the cerebrovasculature are also modulated by IGF-1, and systemic reductions
in circulating IGF-1 likely influence the viability and function of the entire neuro-glio-
vascular unit. We recently observed that reduced IGF-1 led to impaired glutamate
handling in astrocytes. Considering glutamate excitotoxicity is one of the main drivers
of neurodegeneration following ischemic stroke, the age-related loss of IGF-1 may
also compromise neural function indirectly by altering the function of supporting glia
and vasculature. In this study, we assess and compare the effects of IGF-1 signaling
on glutamate-induced toxicity and reactive oxygen species (ROS)-produced oxidative
stress in primary neuron, astrocyte, and brain microvascular endothelial cell cultures.
Our findings verify that neurons are highly susceptible to excitotoxicity, in comparison
to astrocytes or endothelial cells, and that a prolonged reduction in IGFR activation
increases the extent of toxicity. Moreover, prolonged IGFR inhibition increased the
susceptibility of astrocytes to glutamate-induced toxicity and lessened their ability
to protect neurons from excitotoxicity. Thus, IGF-1 promotes neuronal survival by
acting directly on neurons and indirectly on astrocytes. Despite increased resistance
to excitotoxic death, both astrocytes and cerebrovascular endothelial cells exhibit acute
increases in glutamate-induced ROS production and mitochondrial dysfunction when
IGFR is inhibited at the time of glutamate stimulation. Together these data highlight
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that each cell type within the neuro-glio-vascular unit differentially responds to stress
when IGF-1 signaling was impaired. Therefore, the reductions in circulating IGF-1
observed in advanced age are likely detrimental to the health and function of the entire
neuro-glio-vascular unit.

Keywords: astrocytes, endothelial cells, neurotoxicity, somatomedin C, reactive oxygen species

INTRODUCTION

Aging is a primary risk factor for a number of diseases and
pathologies, including stroke, which is recognized as one of the
leading causes of death and disability globally (Johnson et al.,
2016; Benjamin et al., 2019). Ischemic stroke is particularly
devastating as the long-term phenotypic deficits in cognitive
behavior and sensorimotor function build in the days following
the insult, even if blood flow to the ischemic tissue is restored [as
reviewed by George and Steinberg (2015)]. Ischemia precipitates
cellular damage in the brain within minutes, as the loss of
blood flow induces metabolic and oxidative stress in the energy-
demanding neurons, and nearby glial and cerebrovascular cells.
Immediate restoration of blood flow is critical, as the length of
ischemia correlates with the extent of tissue damage (Terasaki
et al., 2014). To date, the most effective ischemic stroke therapy
is fibrinolytic breakdown of the clot with administration of
tissue plasminogen activator. Unfortunately, this therapy is time-
restricted and requires confirmation of ischemic vs hemorrhagic
manifestation, which restricts clinical utility and has limited
its use to around 5% of stroke patients each year (National
Institute of Neurological Disorders and Stroke rt-Pa Stroke
Study Group, 1995). Longitudinal observation-based clinical
assessments have identified multiple possible biomarkers of
stroke risk and severity, including insulin-like growth factor-1
(IGF-1), which may serve as a point of therapeutic intervention
in the days surrounding insult (Katzan et al., 2000; California
Acute Stroke Pilot Registry Investigators, 2005; Qureshi et al.,
2005; Kleindorfer et al., 2008).

Insulin-like growth factor-1 is a pleiotropic neuroendocrine
modulator that has been assessed in both clinical and preclinical
studies of stroke [as reviewed by Hayes et al. (2021)]. Both
humans and rodents exhibit age-related circulating declines of
IGF-1 (O’Connor et al., 1998; Sonntag et al., 2013). IGF-1
levels decline in advanced age, and the extent of this decline
is associated with increased risk of stroke incidence, increased
mortality, and worsened functional outcomes post-stroke in
humans (Johnsen et al., 2004; De Smedt et al., 2011; Tang
et al., 2014; Armbrust et al., 2017; Saber et al., 2017). Moreover,
altered IGF-1 levels are also associated with increased risk of
multiple age-related neuropathologies marked by neurovascular
distress, excitotoxicity, and oxidative stress (Watanabe et al.,
2005; Sonntag et al., 2013; Ghazi Sherbaf et al., 2018; Gubbi
et al., 2018). While many studies associate reduced IGF-1 with
increased neurodegeneration, some clinical studies of dementias
and stroke see increased IGF-1 levels at the start of pathology,
which may be an attempted compensatory mechanism designed
to protect the brain (Gubbi et al., 2018; Castilla-Cortazar et al.,
2020). Preclinical studies suggest that IGF-1 plays a causal role

in the stroke risk and recovery processes by directly regulating
cell damage during ischemia [as reviewed by Hayes et al. (2021)].
IGF-1 supplementation in rodent models of middle cerebral
artery occlusion and photothrombotic stroke reduces the size
of infarcted tissue and the accompanying sensorimotor deficits,
even when administered in the days after insult (Liu et al.,
2001; Bake et al., 2014, 2016; Parker et al., 2017; Serhan et al.,
2019; Hayes et al., 2021). Because IGF-1 regulates numerous
cells throughout the body, the cellular mechanism by which
IGF-1 protects viability and function in the brain remains
unclear. It is commonly inferred that the beneficial effects of
IGF-1 are mediated by direct regulation of neurons. However,
neurons, astrocytes, endothelial cells, and perivascular cells
each express the receptor for IGF-1, IGFR. Together, these
cells work to compose the neurovascular unit (also known as
neuro-glio-vascular unit) which tightly coordinates physiological
responses within the nervous system and is a central target
for dysfunction in neurodegenerative diseases and pathologies
(Stanimirovic and Friedman, 2012). Additional work is needed
to tease apart the impact of each cell type when exogenous IGF-1
is administered to protect against the damage induced by stroke
and neurodegenerative diseases.

Animal models of circulating IGF-1 deficiency exhibit
impaired neurovascular coupling, compromised blood-brain
barrier integrity, and increased prevalence of micro hemorrhages
(Toth et al., 2015; Tarantini et al., 2016b, 2017, 2021a; Hayes
et al., 2021). Increased reactive oxygen species (ROS) production,
increased inflammation, and reduced glutamate and glucose
handling machinery accompany the loss of circulating IGF-
1 in these models (Toth et al., 2015, 2017). Together, these
data suggest that the age-related reduction in IGF-1 likely leads
to severe consequences on the structure and function of the
neuro-glio-vascular unit. Indeed, in vitro studies have highlighted
roles for IGF-1 in promoting specific functions of each cellular
component of the neuro-glio-vascular unit. Pharmacological and
genetic manipulations of IGF-1 alter the viability and oxidative
stress levels of cultured neurons (Wang et al., 2014; Li et al.,
2017; Chen et al., 2019). Additionally, IGF-1 signaling in brain
vascular endothelial cell cultures promotes angiogenesis and
tight-junction formation/integrity (Lopez-Lopez et al., 2004;
Bake et al., 2016; Higashi et al., 2020). Genetic reductions
of IGFR specifically in endothelial cells impairs stimulation-
induced cerebral blood flow, indicating that the loss of IGF-1
signaling in one component of the neurovascular unit results
in phenotypic changes commonly observed in the aged brain
(Tarantini et al., 2021b). We recently reported that deficiency in
IGF-1 signaling in astrocytes impairs glutamate handling in vitro
and in vivo, by reducing glutamate transporter expression and
availability at the cell surface (Prabhu et al., 2019). Although
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there are thought to several key drivers to aging pathologies
and disease, glutamate over excitation is a central contributor
to tissue damage following ischemic stroke (Choi and Rothman,
1990; Moskowitz et al., 2010), it is likely that the age-related
loss of IGF-1 may compromise the neuro-glio-vascular unit
by weakening the glutamate-buffering capabilities of astrocytes
which ultimately exacerbates calcium imbalances, mitochondrial
dysfunction, and oxidative stress. While the aforementioned
studies highlight the ability of IGF-1 to regulate neurons,
astrocytes, and brain-derived endothelial cells, each of these
studies was performed under varied conditions. A comparative
approach is needed to better-understand how the age-related
loss of IGF-1 influences cells within the neuro-glio-vascular
unit. Thus, we exposed individual cell cultures and co-cultures
to excitotoxic levels of glutamate when IGF-1 signaling was
impaired. This approach allows for determination of the cellular
mechanism(s) by which IGF-1 exerts its protective effects during
ischemic stroke-induced stressors. In addition, it highlights cell-
specific responses to a common driver of neuronal dysfunction-
glutamate excitotoxicity- which has applications to numerous
age-related neurodegenerative disease states.

MATERIALS AND METHODS

Animals
All procedures were approved by the Institutional Animal
Use and Care Committees of the University of Mississippi,
and performed in accordance with their approved guidelines.
Timed-pregnant Sprague Dawley rats (16–18 days postictal
plug) were purchased (Envigo) and were temporarily housed
in 19 × 11.5 × 11 inch polycarbonate cages until the time
of euthanasia. Rats were given access to standard rat chow
(Teklad 7001) and water ad libitum. At the time of euthanasia,
pregnant dams were anesthetized with isoflurane and cervical
dislocation was completed. Embryonic pups (E17–19) were
excised and rapidly decapitated. Due to the non-proliferative
nature of neurons, the number of cells needed seeded per well,
and the replication of results across multiple primary cell culture
preparations, multiple pregnant dams were needed for these
studies (approximately 7). The average litter size of a Sprague
Dawley female is 10–11 pups, and cerebral tissues of all pups were
pooled at the time of euthanasia. Isolated embryonic rat pups
were not separated based on sex; thus, our studies are indicative
of cell responses from both sexes combined. To reduce animal
number, astrocytes and neurons were both cultured from the
pooled tissues at the same time, in varying selection medias, as
described below.

Neuron Cultures
Primary rat neuron cultures were established following
previously described protocols (Ashpole and Hudmon,
2011). Cell culture dishes and coverslips were coated with
Poly-D-Lysine (PDL; Sigma P6407) for at least 2 h at 37◦C in a
humidified incubator containing 5% CO2. Individual cultures
were plated in 96-well plates, while 15 mm glass coverslips were
used to plate neurons for the triple co-cultures. Following PDL

coating, cell culture surfaces were washed with 1X PBS (Gibco
10010-023) and dried. Primary neuronal cultures were derived
from the cortex and hippocampus of E17-19 Sprague Dawley
rat pups. External cerebrovasculature was removed, the tissue
was minced and subsequently enzymatically and mechanically
digested with papain (Worthington Biochemical Corporation,
LS003126) and glass-blown pipettes, respectively. Dissociated
cells were pelleted with centrifugation (500–1,000 g, 5 min) and
suspended in neuron growth media [Neurobasal medium (Gibco
21103-049) containing B27 (Life Technologies, 17504044),
penicillin/streptomycin (10 units/mL; Life Technologies,
15140122), and 1x L−glutamine (250303-081)] with a target
density of 2,500,000/mL. As neurons are non-dividing, the
density of cells plated is indicative of the density at the time of
experimentation; less than 10% of the cells in these cultures are
GFAP + or IBA + positive, indicating they are predominantly
neurons (Ashpole and Hudmon, 2011). Partial media changes
occurred every 3–4 days post seeding to replenish nutrients
and remove debris.

Astrocyte Cultures
Tissue from male and female rat pups was isolated, digested,
and pelleted following the methodology described above for
neuron cultures, and neurons and astrocytes were derived from
the same isolated tissues. To promote astrocyte selection after
digested tissue was centrifuged, cell pellets were suspended in
astrocyte growth media containing Neurobasal medium (Gibco
21103-049) with 10% fetal bovine serum (Corning 35-010-
CV), penicillin/streptomycin (10 units/mL; Life Technologies,
15140122), and 1x L−glutamine (250303-081). Cells were plated
on PDL-coated 10 cm dishes and media was completely
exchanged the day following plating. To further select for
astrocytes, the cells were sub-cultured every 3–4 days (90–
100% confluent). For this, the growth media was removed,
cells were washed with 1X PBS, and 0.05–0.25% of Trypsin-
EDTA 1X (Gibco 25200-072) was added. To avoid excess
debris, trypsin was applied twice during the first passage- once
for 2 min to dislodge neurons and microglial cells from the
upper layer (vacuumed off), and a second time to release the
astrocytes underneath. Once the astrocytes dislodged, the cells
were centrifuged (1,000 × g; 5 min) and suspended in growth
medium for further plating. All astrocyte cultures were passaged
multiple times prior to experimentation (as described above), and
the growth rate was continuously monitored to determine if cells
were exhibiting replicative senescence. Cells were not passaged
more than 6 times to avoid confounds of senescent phenotypes.
The resulting cultures are >90% GFAP+, indicating they are
astrocytes (Prabhu et al., 2019).

Endothelial Cell Culture
Rat brain microvascular endothelial cells (RBMVECs) and
medium were purchased from Cell Applications Inc. (San Diego)
and cultured following the manufacturer’s guidelines. A single
vial of RBMVEC were used to conduct all included studies.
RMBVEC were continually passaged and 20% of cells were frozen
at each passage throughout the study for replicate, follow-up,
and future studies to reduce variance from a different lot of cells
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originally isolated. In brief, cells were grown on a T-75 flasks
pre-coated with Cell Attachment Factor Solution (123-100, Cell
Applications), in 15 mL of RBMVEC growth medium (R819-
500). Growth medium was changed 24 h after initial seeding,
and cells were sub-cultured every 4–6 days or when at 80–
100% confluency. Media was changed every other day. RBMVECs
were passaged using the same protocol as astrocytes, using the
proprietary trypsin solution (Cell Applications Inc).

Co-cultures
Triple cultures were developed by plating primary neurons on
glass coverslips, RBMVECs on transwell inserts, and astrocytes
on the surface of a multi-well plate. Astrocytes were cultured
and passaged at least 1 week prior to combination with the
other cells, to allow for selection of astrocytes away from
neurons and microglial cells. Neurons were also cultured 7–
8 days prior to combination and experimentation, to allow
for development/expression of ionotropic glutamate receptors
(GluNR) responsible for excitotoxic signaling. Coverslips were
elevated off the surface of the multi-well plate and astrocytes
were seated in the outer 1/3 of the wells. The media on all
3 cell types was exchanged for neuron growth media 24 h
prior to combination of the co-cultures to allow for uniformity
between media types.

Cells Treatments
Glutamate stimulation was performed using L-glutamic acid and
glycine (FisherScientific) in a ratio of 10:1 glutamate:glycine
diluted from a PBS stock solution. Increasing concentrations of
glutamate were prepared in the appropriate cell growth media,
and administered as a 2x solution to the cells plated in their
respective media (final concentration 1x upon application). Cells
were incubated for 1 h at 37◦C. Following treatment, glutamate
media was removed, cells were washed in fresh growth media
twice, and incubated in new growth media until the designated
time point. All cell viability studies were conducted 24 h after cells
were stimulated with glutamate. All other study time points are
described in the respective sections. In one experimental series,
media lacking the B-27 supplement was administered 24 h prior
to glutamate stimulation.

Stock solutions of picropodophyllin toxin (PPP; Sigma T-
9576) and MK-801 (Sigma M107) were prepared in dimethyl
sulfoxide (DMSO; Fisher BP321-100) and administered to
cells at concentrations and time-points described. Treatment
groups were block randomized to ensure equal sampling.
Individual wells in the multi-well plates were treated as
independent samples; and assays with neurons and astrocytes
were further repeated across multiple tissue preparations to
verify reproducibility of findings in cells isolated from separate
rat pup litters.

Cell Viability
Following treatments, cell viability/cytotoxicity was quantified
using Live:Dead viability/cytotoxicity kit (Thermo Fisher
Scientific L3224). Calcien-AM and ethidium homodimer were
diluted (1:1000-2000; 1:500-1000) were diluted in PBS. Growth
media was removed and cells were washed with 1X PBS prior

to adding the live/dead labels. After 20 min of incubation, cells
were imaged on the Nikon Ti2-E HCA inverted fluorescent
microscope using the JOBS automated image acquisition
(Nikon). Magnification was set to 200x (20x, extra-long working
distance objective) and samples were excited with the LED
Triggered acquisition exposures using excitation/emission filters
for 470-FITC and 540-TRITC. The JOBS program selected 6
fields at random per well for imaging, and the total number of
live and dead cells were quantified in 2–3 images using the Nikon
Elements Cell Analysis plug-in features. The total number of
cells and percent toxicity were calculated by observers blinded to
treatment groups.

Reactive Oxygen Species Quantification
Following treatment, ROS production was quantified in
astrocytes and endothelial cells. Media was removed, and
cells were washed with 1X PBS. Cells were then loaded with
3 µM of 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA;
Thermofisher, D399) for 20 min and incubated at 37◦C in a
humidified incubator containing 5% CO2. DCFDA was then
imaged using the FITC filter on the Nikon Ti2-E microscope
as described above. Six images at random through the JOBS
interface and 4–6 non-adjacent cells per field were selected at
random to be quantified by a blinded observer. DCFDA intensity
of each cell was normalized to the background of that image.

Seahorse
Cells were seeded on the XFe96 growth plates 2–3 days prior
to extracellular efflux assessment. Treatments were administered
at the desired time points and mitochondrial response was
assessed using the Cell Mito Stress Test, per manufacturer
recommendations. The sensor cartridge was hydrated in water
overnight at 37◦C and then equilibrated with the recommended
equilibration buffer. Oligomycin (1.5 µM), FCCP (1 µM), and
rotenone (0.5 µM) were loaded into the sensor plates and
injected into the wells by the XFe/XF Seahorse system. Basal
and maximal respiration, as well as proton leak were auto-
calculated by the Seahorse program using an average of 3
readings per stage.

Data Analysis
Statistical analysis and graphical analyses were performed using
Sigma Plot version 14 software and R studio. One-way and two-
way ANOVAs was used when appropriate (defined in the figure
legend). Post hoc comparisons were selected based upon the
experimental question and fulfillment of normality and equal
distribution. Details for each are provided in figure legend.
All data were expressed with mean ± standard error. Sample
sizes were estimated using previous variance observations with
these experimental methodologies. With β = 0.8, n = 4–6 was
required to achieve power for most studies. F values for two-
way ANOVAs are described in the results and main effects are
noted in figures with a pound sign (#). For all studies, p < 0.05
was used as the statistical significance value and denoted using an
asterisk (∗).
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FIGURE 1 | IGF-1 protects against excitotoxicity in glutamate-sensitive neurons. (A) Representative images of neurons (left two panels), astrocytes (middle two
panels), and rat brain microvascular endothelial cells (right two panels) stained with live (green)/Dead (red) viability/cytotoxicity indicator dyes 24 h after stimulation
with control or 100 µM glutamate, as indicated. Scale bar represents 100 µm. (B) Average toxicity in neurons 24 h after treatment (n = 8 wells/group). A one-way
ANOVA with post hoc Bonferroni was used for statistical comparisons; *indicates significant difference between the delineated bars. (C) Average toxicity of cells 24 h
after acute treatment with both 0.5 µM PPP and increasing concentrations of glutamate (n = 4–8 wells/group). A two-way ANOVA was employed with glutamate
concentrations and PPP-treatment serving as factors. No significant differences were observed. Graph color code: black circles = vehicle-treated neurons; green
circles = PPP-treated neurons; red boxes = vehicle-treated astrocytes; dark gray boxes = PPP-treated astrocytes; blue triangles = vehicle-treated rat brain
microvascular endothelial cells (RBMVEC); and light gray triangles = PPP-treated RBMVEC. All data are presented as mean ± SEM.

RESULTS

Insulin-Like Growth Factor-1 Protects
Against Excitotoxicity in Neurons
To determine if inhibition of IGF-1 signaling differentially
affects the glutamate sensitivity of cells within the neuro-glio-
vascular unit, cultures of neurons, astrocytes, and microvascular
endothelial cells were established. Primary cerebral neurons
were isolated from embryonic rat pups (male and female
combined) and grown in culture for 8–10 days. Primary neurons
at this stage of development are sensitive to excitotoxicity
when exposed to high concentrations of glutamate and glycine,
due to overactivation of ionotropic GluNR. As expected,
acute treatment of neurons with 100 µM glutamate/10 µM
glycine (termed glutamate stimulation throughout) resulted in
a significant increase in cellular toxicity 24 h after stimulation
(Figures 1A,B; p < 0.001 vs unstimulated). Co-administration
of the GluNR antagonist MK-801 prevented excitotoxicity
(Figure 1B; p < 0.001 vs glutamate stimulated control).
Administration of exogenous 100 nM IGF-1 at the time
of stimulation also prevented excitotoxicity (p = 0.019 vs
glutamate stimulated control), consistent with previous reports.

No differences in the total number of neurons per field were
noted following treatment (Supplementary Figure 1A).

The neuronal growth media contains a supplement (B27) that
has a high concentration of insulin, which can cross-talk and
activate IGFR. Thus, to better determine the protective effects
of IGF-1 signaling, the excitotoxicity profile was again assessed
without B27 present. No change in baseline levels of toxicity
were observed between control neurons with and without B27,
and glutamate stimulation still significantly increased toxicity in
the absence of B27 (Figure 1B; p = 0.002 vs –B27 unstimulated
control). Once more, exogenous IGF-1 prevented excitotoxicity
(Figure 1B; p = 0.003 vs –B27 glutamate stimulated control).

To more specifically assess the impact of reducing IGF-
1 signaling, the extent of excitotoxicity when IGFR was
pharmacologically inhibited was then examined. For this,
picropodophyllotoxin (PPP), a known small molecule inhibitor
of the IGFR receptor kinase activity, was co-administered at
the time of glutamate stimulation and toxicity was measured
24 h later. Surprisingly, PPP did not shift the concentration-
dependence or maximal extent of glutamate toxicity in cultured
neurons (Figure 1C). A two-way ANOVA revealed a significant
effect of glutamate concentration (F = 13.759, p < 0.001), but no

Frontiers in Aging Neuroscience | www.frontiersin.org 5 November 2021 | Volume 13 | Article 751304156

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-751304 November 17, 2021 Time: 14:16 # 6

Hayes et al. IGF-1 Differentially Modulates Neurogliovascular Unit

significant effect of PPP treatment (F = 2.598, p = 0.111), and
no significant interaction between the two factors (F = 0.506,
p = 0.827).

Astrocytes and microvascular endothelial cells are not as
sensitive to glutamate as neurons as no change in toxicity was
observed across all glutamate concentrations (Figures 1A–C).
Similarly, no increase in sensitivity was observed with IGFR
inhibition at the time of glutamate stimulation (Figure 1C).

Prolonged IGFR Inhibition Increases
Astrocytic Sensitivity to Glutamate
The lack of effect with pharmacological inhibition of IGFR
in Figure 1C was inconsistent with the protective effects of
exogenous IGF-1 in Figure 1B. However, co-administration of
PPP at the time of glutamate could have temporal confounds that
limit interpretation. Thus, we next administered PPP 24 h prior to
glutamate stimulation to better mimic the prolonged loss of IGFR
signaling observed in aging. Prolonged IGFR inhibition with
0.5 µM PPP did not lead to difference in neuronal excitotoxicity
(F = 0.255, p = 0.615), but did lead to differences in astrocyte
viability (F = 6.677, p = 0.011; Figures 2A,B). Within group
comparisons did not unveil a specific concentration of glutamate
that PPP treatment significantly worsened, thus it is assumed that
IGFR inhibition led to modest reductions in cell viability across
all glutamate treatments.

No changes in endothelial cell viability were observed with
prolonged IGFR inhibition; however, a pronounced reduction
in total cell number was noted when microvascular endothelial
cells were treated with 0.5 µM PPP (F = 117.942, p < 0.001;
Figure 2C). A significant difference within unstimulated controls
with PPP pre-treatment was detected (p < 0.001), and this
effect persisted across all glutamate concentrations. Thus, no
main effect of, or interaction with, glutamate concentration was
observed in the treated microvascular endothelial cells.

The change in endothelial cell number prompted further
analyses of neuron and astrocyte counts with treatment. Similar
reductions in astrocyte count were observed with 0.5 µM PPP
treatment (F = 73.322, p < 0.001; Figures 2A–C). Glutamate
concentration did not alter astrocyte count nor interact with the
PPP effect. Main effects of both glutamate concentration and
PPP treatment on total neuron count were detected (F = 3.309,
p = 0.004; F = 7.835, p = 0.006, respectively). Post hoc comparisons
within groups revealed that the only significant difference within
the PPP vs vehicle treatments was the drop in total cell number
at 200 µM glutamate (p = 0.012), likely an indication of dead
cells washed away during the staining process at this high
concentration of glutamate.

When the concentration of PPP was increased to 5 µM,
significant differences in neuron and astrocyte survival were
observed (Figure 2D). Both glutamate concentration and
PPP treatment had significant main effects on neurotoxicity
(F = 4.272, p < 0.001; F = 12.565, p < 0.001, respectively).
However, no interaction between the two factors was detected
(F = 0.732; p = 0.646). Within group comparisons revealed
significant increases in neurotoxicity when neurons pre-treated
with 5 µM PPP were stimulated with 50 and 200 µM glutamate

(p = 0.048 and p = 0.006, respectively). No baseline differences
in toxicity amongst unstimulated controls treated with vehicle or
PPP were observed (p = 0.751). A significant reduction in total
neuron number was observed with 5 µM PPP treatment and
with glutamate (F = 49.058, p < 0.001; F = 2.878, p = 0.009,
respectively; Figure 2E). No significant interactions between
the factors was detected (F = 0.932, p = 0.485). Within factor
comparisons showed decreased cell number within PPP-treated
neuron cultures stimulated with ≥12.5 µM glutamate, again
suggesting potential loss of dead cells during the staining process
since neurons are non-mitotic.

Prolonged IGFR inhibition in astrocytes also resulted in
main effects of glutamate concentration and PPP treatment
on the levels of cytotoxicity (F = 157.321, p < 0.001;
F = 2.209, p = 0.039, respectively; Figure 2D). Moreover, a
significant interaction between glutamate concentration and
PPP treatment was also observed (F = 2.743, p = 0.011).
Within factor comparisons revealed significant increases in
PPP-pretreated astrocytes stimulated with ≥6 µM glutamate,
suggesting that while astrocytes display increased resistance
to glutamate toxicity under control conditions, the loss of
IGF-1 signaling predisposes astrocytes to excitotoxic stress.
A significant reduction in astrocyte cell number was also
observed with 5 µM PPP treatment (F = 257.893, p < 0.001),
across all glutamate concentrations. Main effect differences
for glutamate concentration did not reach significance
(F = 1.882, p = 0.079), nor did interactions between factors
(F = 2.071, p = 0.052). Prolonged treatment with another
IGFR inhibitor, NCP-ADW742, also increased susceptibility
to glutamate excitotoxicity and reduced astrocyte cell number
(Supplementary Figures 1B,C). Baseline toxicity levels and cell
numbers were observed with administration of supplemental
IGF-1 prior to glutamate stress (Supplementary Figures 1B–E),
indicating that the prolonged loss of IGF-1 predisposes astrocytes
to glutamate toxicity, despite their typical resistance to the stress.

Similar to the before no differences in endothelial cell toxicity
were observed across any treatment groups, but 5 µM PPP
did reduce cell number across all glutamate concentrations
(F = 538.084, p < 0.001; Figure 2E). Again, this suggests that
while IGFR inhibition did not predispose endothelial cells to
glutamate toxicity, it likely reduces cell division.

Astrocytes Fail to Protect Neurons When
IGFR Is Inhibited
Cells within the neuro-glio-vascular unit coordinate to create
an optimal microenvironment, by releasing growth mediators,
buffering stressors, and regulating nutrient supply. Thus, we
next assessed whether co-cultures of endothelial cells, neurons,
and astrocytes would exhibit differences in glutamate sensitivity
when IGFR is inhibited. As anticipated, 100 µM glutamate
did not significantly increase neurotoxicity in the presence of
astrocytes and endothelial cells, nor did acute co-administration
of 0.5 µM PPP with 100 µM glutamate (p = 0.139; Figure 3A). No
differences in astrocyte or endothelial cell toxicity were observed
in these acute treatments (Figures 3B,C).
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FIGURE 2 | Prolonged IGFR inhibition increases astrocytic sensitivity to glutamate and reduces astrocyte and endothelial cell number. (A) Representative images of
astrocytes stained with live (green)/Dead (red) viability/cytotoxicity indicator dyes. From left to right: unstimulated control, glutamate-stimulated vehicle-treated,
unstimulated 0.5 µM PPP-treated, unstimulated 5 µM PPP, and glutamate-stimulated 5 µM PPP. Scale bar represents 100 µm. (B) Average toxicity and (C) average
cell number per well of cells pre-treated with 0.5 µM PPP, and subsequently stimulated with increasing concentrations of glutamate, 24 h after stimulation.
(D) Average toxicity and (E) average cell number per well of cells pre-treated with 5 µM PPP, and subsequently stimulated with increasing concentrations of
glutamate, 24 h after stimulation. All data are presented as mean ± SEM, n = 5–8 wells/treatment group. A two-way ANOVA was employed with glutamate
concentrations and PPP-treatment serving as factors. Cell types were each analyzed independently. # indicates a significant main effect within that cell type. Post
hoc Holm-Sidak tests were used for pairwise multiple comparisons. *indicates a significant difference between PPP-treatment and vehicle-treatment within a given
glutamate concentration. Graph color code: black circles = vehicle-treated neurons; green circles = PPP-treated neurons; red boxes = vehicle-treated astrocytes;
dark gray boxes = PPP-treated astrocytes; blue triangles = vehicle-treated rat brain microvascular endothelial cells (RBMVEC); and light gray triangles = PPP-treated
RBMVEC.

When astrocytes alone were pre-treated with 5 µM PPP and
then combined with neurons and endothelial cells for glutamate
stimulation, a significant increase in neurotoxicity was observed
(p = 0.007 vs control) (Figure 3D). No differences in toxicity or
cell number were noted in either the astrocytes or endothelial

cells within the triple cultures (Figures 3E,F and Supplementary
Figures 1D–F). Together these data suggest that a reduction
of IGFR signaling in astrocytes impairs their ability to buffer
glutamate and protect neurons from overexcitation, even when
in the presence of endothelial cells.
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FIGURE 3 | Astrocytes fail to protect against excitotoxicity when IGFR is inhibited. Average cell death 24 h after triple cultures of neurons (A), astrocytes (B), and
endothelial cells (C) were co-administered 0.5 µM PPP and 100 µM glutamate for 1 h (n = 6–8 wells/group). One-way ANOVA failed to detect differences in any of
the treatment groups. (D–F) Astrocytes were pre-treated with 5 µM PPP for 24 h prior to combining with endothelial cells and neurons for a triple culture system.
Average cell death in the neurons (D), astrocytes (E), and endothelial cells (F) after stimulation with 100 µM glutamate for 1 h (n = 5–8 wells/group). One-way
ANOVAs with post hoc Bonferroni comparison was used for statistical analyses. *indicates significant difference between control and PPP-treated
glutamate-stimulated neurons. All data are presented as mean ± SEM, n = 5–8 wells/treatment group.

Astrocytic and Endothelial Reactive
Oxygen Species Levels Are Elevated by
IGFR Inhibition and Glutamate
Stimulation
While acute co-administration of 0.5 µM PPP and glutamate
did not increase toxicity in astrocyte or endothelial cultures,
alterations in metabolic function and oxidative stress may
still occur with this stressor. Thus, astrocytes and endothelial
cells were treated with 100 µM glutamate alone, or in
conjunction with 0.5 µM PPP, and the production of ROS
was quantified at various time points following treatment.
Astrocytic ROS production increases in the hours following
glutamate stimulation (Figure 4A). Significant effects of both

time and treatment were observed (F = 185.57, p < 0.001;
F = 3.187, p = 0.027, respectively), as well as an interaction
between both factors (F = 4.586, p < 0.001). 5 h post-
treatment, vehicle treated and PPP-treated astrocytes stimulated
with glutamate showed significant increases in ROS levels
over unstimulated controls (both p < 0.001 vs unstimulated
control). Moreover, co-administration of PPP and glutamate
resulted in significantly increased ROS levels than glutamate
stimulated controls (p = 0.014), suggesting that the extent
of glutamate-induced ROS production was exacerbated by
IGFR inhibition. 5 h after glutamate stimulation with another
IGFR inhibitor, NVP-ADW742, also significantly increased ROS
(Supplementary Figure 2A), indicating the effect is not limited
to PPP. Additional analysis of mitochondrial bioenergetics at
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this time point revealed that glutamate stimulation decreased
maximal extracellular acidification rates, while PPP + glutamate
decreased extracellular acidification and oxygen consumption
rates, suggesting changes in both glycolysis and oxidative
phosphorylation (Supplementary Figure 2B). No differences in
basal respiration rates were noted with any of the treatments
(Supplementary Figure 2B).

Similar to astrocytes, brain-derived microvascular endothelial
cells showed increased ROS production 5 h after 0.5 µM
PPP was co-administered with 100 µM glutamate (Figure 4B).
A main effect treatment was observed (F = 5.287, p = 0.004).
While glutamate alone did not increase ROS production in
the endothelial cells (p = 0.945), a significant increase in
ROS was seen in cells treated with PPP + glutamate vs
unstimulated control (p = 0.02), and vs glutamate-stimulated
control (p = 0.004).

Additional analyses of ROS levels 24 h following treatment
revealed differential recovery from acute IGFR inhibition and
glutamate stimulation. Astrocytes do not show increased ROS at
24 h with 100 µM glutamate or 100 µM glutamate + 0.5 µM
PPP treatment (Figure 4C). In fact, ROS levels were significantly
reduced in glutamate-stimulated PPP-treated astrocytes vs
unstimulated controls (p = 0.024) and PPP treatment was
trending (p = 0.053 vs control). Endothelial cells continue to
show increased ROS levels long after the acute exposure to
100 µM glutamate + 0.5 µM PPP (p = 0.013 vs unstimulated
control; Figure 4D), suggesting that IGFR inhibition at the
time of glutamate stimulation increases endothelial ROS levels
long-term. Note, this was with acute PPP treatment, at a time
point in which no differences in endothelial cell toxicity was
observed (Figure 1C).

DISCUSSION

The age-related loss of IGF-1 has been linked to cognitive
impairment, neurodegeneration, and increased susceptibility
ischemic stroke and other neurovascular pathologies (Sonntag
et al., 2013; Ashpole et al., 2015b). These deficits often come
as a disconnect from the enhanced longevity observed in
animal models of IGF-1 deficiency. While early-life reductions
in circulating IGF-1 do lead to increased lifespan, reduced IGF-
1 in advanced age has multiple consequences in animal models
as it increases sarcopenia, bone frailty, learning and memory
deficits, and cerebrovascular dysfunction (Ashpole et al., 2015a,
2016, 2017; Toth et al., 2015; Tarantini et al., 2016a, 2021a;
Farias Quipildor et al., 2019). For example, IGF-1 deficiency in
mice decreases stimulation-evoked cerebral blood flow, blood
brain barrier integrity, and the strength and flexibility of
cerebral arteries. IGF-1 deficiency also impairs the production
and release of vasomediator eicosanoids from astrocytes, alters
endothelial nitric oxide production, and increases susceptibility
to hypertension-induced microhemorrhages (Toth et al., 2015;
Tarantini et al., 2017, 2021a; Fulop et al., 2019). Considering this,
it is not surprising that IGF-1 has long-been implicated in the risk
and severity of ischemic stroke. As described earlier, clinical and
preclinical evidence highlight inverse correlation (and causation

in animal models) between IGF-1 and the risk/outcome of
ischemic stroke (Hayes et al., 2021).

While recent studies are beginning to shed light on the impact
of IGF-1 on neurovascular communication in advanced age, there
remains a significant gap in our understanding of how individual
cell types that normally coordinate signaling together within the
neurovascular unit each respond to reduced IGF-1 signaling. In
this study, we aimed to compare the effects of IGF-1 deficiency
on the cellular responses to high levels of extracellular glutamate.
As the predominant excitatory neurotransmitter in the brain,
glutamate induces depolarization and initiates multiple calcium
signaling cascades. During periods of ischemia or proteotoxic
stress, neurons experience energy imbalances and ionic stressors
that ultimately lead to terminal depolarization and the dumping
of glutamate stores, inflammatory mediators, and oxidative
stressors into the extracellular space, which expands the region of
distress and malfunction [as recently reviewed (Choi, 2020)]. This
excitotoxic cascade is one of the drivers of neuronal loss and glial
activation in ischemic stroke and neurodegenerative diseases.
Thus, understanding how the loss of IGF-1 alters the glutamate
response of neurons, astrocytes, and endothelial cells within
the neurovascular unit provides much-needed information on
potential cellular mechanisms by which IGF-1 deficiency in
advanced age influences health and function of the brain.

Recent evidence from our laboratory indicated that IGFR
inhibition reduced the ability of astrocytes to buffer extracellular
glutamate by decreasing glutamate transporter availability
(Prabhu et al., 2019). Therefore, in this study, we hypothesized
that maintenance of IGF-1 signaling in astrocytes is necessary
for neuroprotection from glutamate excitotoxicity. We also
hypothesized that maintenance of IGF-1 signaling in neurons
was essential for limiting overexcitation, as other studies have
shown exogenous IGF-1 can protect against excitotoxicity and
oxidative stress (Wang et al., 2014; Li et al., 2017; Chen
et al., 2019). Our results indicate that while exogenous IGF-
1 can protect neurons from glutamate, acute and prolonged
loss of IGFR signaling does not exacerbate neuronal death in
cultures of pure neurons. Interestingly, inhibition of IGF-1R
not only impairs the neuroprotective capabilities of astrocytes,
it predisposes astrocytes to glutamate toxicity as well. It is
unclear what the mechanism for this enhanced sensitivity may be.
Perhaps the lack of glutamate transporter availability with IGF-1
signaling deficiency resulted in increased GluNR activation in the
astrocytes as well, since astrocytes are known to express a variety
of ionotropic and metabotropic GluNRs (Serrano et al., 2008;
Lalo et al., 2011; Bradley and Challiss, 2012; Ceprian and Fulton,
2019). If this were the case, the astrocytes could be experiencing
intracellular calcium imbalances and oxidative stress, which have
both been shown to increase astrocyte toxicity in response to
other stressors.

As mentioned, reductions in IGF-1 in the brain increase ROS
levels and mitochondrial dysfunction. We observed significant
increases in ROS production in both astrocytes and endothelial
cells when IGFR was inhibited at the time of glutamate
stimulation. We chose to focus our experimental design on these
two cell types and this acute treatment because it did not lead to
any changes in observed toxicity. Oxidative stress is expected in
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FIGURE 4 | Astrocytic and endothelial ROS levels are elevated by IGFR inhibition and glutamate stimulation. Average ROS levels in pure cultures of astrocytes (A) or
endothelial cells (B) co-treated with 0.5 µM PPP and 100 µM glutamate for 1 h, and subsequently measured 1, 2, and 5 h after treatment. Four cells were selected
at random per field, with 3 fields per well, and 8–10 wells per treatment group. Background intensity within each image was measured and used to normalize.
A two-way ANOVA was employed with both time and treatment as factors, and a post hoc Holm-Sidak was used to compare within groups. * indicates a significant
effect of treatment at that time. Average ROS levels in pure cultures of astrocytes (C) or endothelial cells (D) co-treated with 0.5 µM PPP and 100 µM glutamate for
1 h, and subsequently measured 24 h after treatment. Four cells were selected at random per field, with 3 fields per well, and 4–8 wells per treatment group.
A one-way ANOVA with post hoc Dunnett’s test was used for statistical comparisons to control. * indicates a significant effect vs control. All data are presented as
mean ± SEM.

neurons that are dying from excitotoxicity, but neither astrocytes
nor endothelial cells were sensitive to glutamate when IGFR was
acutely inhibited. The increased ROS levels in both cell types
indicates that the cells were indeed undergoing a stress response
with the combined treatment. While it could be inferred that the
ability of astrocytes to return ROS levels back to baseline by 24 h
may contribute to their increased resistance to excitotoxic stress,
there is a disconnect in the endothelial cells that likely renders this
to be more complicated. Perhaps an increase in endothelial cell
toxicity would have been observed at later time points. Further

studies on the underlying mechanism(s) and consequence(s) of
these observations are needed.

Combined triple cultures of neurons, astrocytes, and
endothelial cells highlighted a few distinct responses to glutamate
and IGFR inhibition than the individual cultures of each
cell type. First, the same concentration of glutamate that led
to significant increases in neurotoxicity within pure neuron
cultures failed to induce toxicity within the triple culture. This
was an expected outcome, as astrocytes are known to buffer
glutamate and co-cultures of neurons and astrocytes have
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been shown to reduce the extent of neurotoxicity (Choi et al.,
1987; Rosenberg et al., 1992). Second, and more interestingly,
prolonged IGFR inhibition in astrocytes prior to glutamate
stimulation did not increase the toxicity of astrocytes nor
decrease the total cell number of astrocytes within the triple
cultures. These effects were pronounced in pure astrocyte
cultures, suggesting that co-culturing astrocytes with neurons
and endothelial cells afforded them protection against the
stressors of IGFR deficiency/glutamate stimulation. Additional
studies examining ROS levels, inflammatory mediators, and
growth factor production and release with triple cultures exposed
to these same stressors may be warranted.

In our recent study examining glutamate uptake in astrocytes,
we utilized similar concentrations of the pharmacological
inhibitor PPP and did not observe a significant reduction in
total cell number. Thus, we were surprised to see a reduction in
astrocyte count here. However, in that study, cells were treated
when at or close to confluence, which was evident in DAPI-
stained microscopy images accompanying those data (Prabhu
et al., 2019). In the current study, we aimed to treat at 75%
confluence in order to avoid stress of over-growth, however,
microscopic live/dead staining analysis showed that even the
vehicle-treated controls were not at this level of confluence even
24 h after treatment. Thus, the reduction in cell number observed
in pure cultures of astrocytes and endothelial cells was likely due
to changes in cell division and growth with IGF-1 deficiency.
Nevertheless, it is interesting that the reduction in astrocyte
number with prolonged IGFR inhibition was restricted to the
pure cultures, and not the triple cultures.

The complication of cell proliferation also limited our ability
to utilize genetic approaches in our in vitro studies. IGF-1 is a
primary growth factor with autocrine and paracrine functions,
and genetic reductions that alter cell proliferation make it
difficult to control studies of neuroendocrine hormones. We
originally aimed to include siRNA and/or cell-specific knock-outs
using our inducible cell-specific IGFR knock-out lines. However,
due to obvious insufficient cell proliferation caused by siRNA
transfection/transduction (both approaches were attempted) as
well as Cre-recombinase induced knock-outs, we concluded that
the significant reductions in cell number would confound results.
Astrocyte count following knock-out with siRNA or with 4-
OH-tamoxifen-induced recombination was less than 50% of that
observed in the control-treated wells (siRNA vector transfected
or vehicle-treated). Hence, pharmacological interventions were
utilized to address our central question of how the loss of
IGF-1 impacts the major cells of the neurogliovascular unit.
While exogenous IGF-1 was added in a few studies here,
the growth media of the cells contains insulin and IGF-1 at
concentrations known to promote growth and development, thus
pharmacological inhibitors were selected to more specifically
reduce IGFR signaling. Alternative studies could alter the density
of seeded cells to account for the loss in proliferation with knock-
out, however, compensatory changes in other growth receptors
(GH, InsR, etc.) and IGF-1 binding proteins will also need to be
examined as they are known to occur with IGF-1 manipulations
in vivo (Ashpole et al., 2015b).

Our comparative study is limited by not including additional
cells found within the brain and blood-brain barrier. For
example, pericytes not only serve as a protective layer of the blood
brain barrier, they regulate blood capillary diameter within the
brain by dilating and relaxing in response to glutamate (Kisler
et al., 2017, 2020; Brown et al., 2019). Because of this, pericytes
are important during ischemic reperfusion as they can assist with
restoring flow of oxygen and glucose to the ischemic tissue (Yang
et al., 2017; Khennouf et al., 2018; Sun J. et al., 2020). Little is
known about the influence of IGF-1 on pericytes within the brain,
and additional studies on how IGF-1 may influence pericytic
glutamate response are needed.

Additionally, microglia are known to respond to excitotoxic
insult, ischemia, and reperfusion. In fact, microglia have been
implicated in the exacerbation of damage following glutamate
excitotoxicity and ischemic stroke, due to increased production
of ROS and pro-inflammatory mediators (Ma et al., 2017; Qin
et al., 2019; Lian et al., 2020). At the same time, microglia also play
an important protective role following tissue stroke damage, so
the duality of their contribution to physiology/pathophysiology
cannot be over-simplified to just a negative contribution to
damage (Ma et al., 2017; Qin et al., 2019; Marino Lee et al.,
2021). The age-related loss of circulating IGF-1 is associated
with increased microglial activation, neuroinflammation, and
susceptibility to a compromised blood-brain barrier. The
relationship between IGF-1 and microglial activation is not
limited to temporal correlations, as there are numerous studies
that highlight IGF-1 directly regulates the structure and function
of microglia. Exogenous IGF-1 alters phenotypic activation states
and reduces microglial-associated production and release of
tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-
1β), inducible nitric oxide synthase (iNOS), and ROS (Park
et al., 2011; Grinberg et al., 2013). Administration of IGF-
1 following ischemic and/or hemorrhagic stroke attenuates
microglial activation, inflammation, and ROS (Serhan et al.,
2020; Sun Z. et al., 2020). Considering this, we expect that
reductions in IGF-1 signaling within our cell culture system
would also promote pro-inflammatory and oxidative stress
phenotypes, which would further neuronal death. However,
one study highlights that microglial presence in tri-cultures
are neuroprotective and reduces neurons loss and astrocyte
hypertrophy even though the presence of microglia increased
inflammatory cytokine production compared to cell culture
without microglia (Goshi et al., 2020). Future studies of ischemic
and excitotoxic stressors should take microglial contributions
into account while controlling for the natural migratory
phenotype microglia display following activation, as results may
be confounded by increased basal levels of neuroinflammatory
stress (which often show an activated phenotype in culture).

Transitioning to an in vivo system would circumvent concerns
regarding the lack of including all cell types present in the cerebral
tissue within our co-culture models; however, the intricacies of
timed, cell-specific manipulations make in vivo models difficult,
particularly when trying to assess effects without developmental
compensation interference. Inducible transgenic animals for each
cell type are needed to rigorously assess the effects of the loss
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of IGF-1 in adulthood on each component of the neuro-glio-
vascular unit. We previously established an inducible astrocyte-
specific transgenic mouse model, and identified that glutamate
handling machinery was reduced in the brains of these mice,
which served as a rationale for studying glutamate excitotoxicity
here (Prabhu et al., 2019). A recent study highlighted changes
in neurovascular coupling when IGFR signaling was targeted in
adult microvascular endothelial cells (Tarantini et al., 2021b).
Thus, inducible models of astrocytic and endothelial cell IGFR
knock-outs are available. Our singular and co-culture in vitro
studies allow us to begin to delineate and compare the responses
of specific cells without the confounds of other variables like
paracrine compensation or pharmacological drug delivery or
metabolism in one cell type over another. Further side-by-side
comparisons of excitotoxic or ischemic damage in mice with
inducible IGFR knock-out in neurons, astrocytes, endothelial
cells, pericytes, and microglia would confirm the role for IGF-
1 regulation of each cell, while also revealing other potential
changes in physiology and pathophysiological responses in
the intact brain.

Together, our study highlights that cell types within the
neurovascular unit differentially respond to IGF-1 signaling.
Despite differences in baseline susceptibility to glutamate, both
neurons and astrocytes are both protected from excitotoxicity by
IGF-1. Growth and division of endothelial cells and astrocytes
are both influenced by IGF-1, however, endothelial cells remain
resistant to glutamate toxicity even when IGF-1 signaling is
reduced. The resistance of these supporting cells does not mean
there are no consequences of reduced IGF-1 signaling in the time
of glutamate stress, as both astrocytes and endothelial cells show
signs of oxidative stress in the hours following exposure. The
combination of neuron, astrocyte, and endothelial cells in culture
afforded astrocytic protection from IGF-1 deficiency/glutamate
stress but also highlighted a failure in the ability of astrocytes to
protect the nearby neurons. Thus, the age-related loss of IGF-1
likely impairs the function and vitality of the entire neurovascular
unit by differentially exerting stressors on neurons, endothelial
cells, and astrocytes.
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Supplementary Figure 1 | Additional assessments of total cell number. (A)
Average number of neurons per field 24 h after treatment. One-way ANOVA
revealed no difference between means. (B–D) Astrocytes were pre-treated with
5 µM PPP for 24 h prior to combining with endothelial cells and neurons for a
triple culture system. Average number of cells per field in the neurons (B),
astrocytes (C), and endothelial cells (D) cultures after stimulation with 100 µM
glutamate for 1 h (n = 5–8 wells/group). One-way ANOVA revealed no difference
between means, and the p value of the ANOVA is listed for each. All data are
presented as mean ± SEM. (E) Average astrocyte viability 24 h after 100 µM
glutamate stimulation. Prior to stimulation, the cells were pre-treated with vehicle,
5 µM NVP-ADW742, or 100 nM IGF-1 for 24 h (n = 6–8 wells/group). (F) Average
astrocyte cell count following treatment with vehicle, 5 µM NVP-ADW742, or
100 nM IGF-1 (n = 6–8 wells/group).

Supplementary Figure 2 | Astrocyte ROS and mitochondrial stress. (A) Average
ROS levels 5 h after pure cultures of astrocytes treated with 0.5 µM
NVP-ADW742 and 100 µM glutamate. Data were not normally distributed, so a
Tukey’s post hoc comparison was utilized following One-way ANOVA; ∗ indicates
a significant difference compared to vehicle (n = 10 wells/group). (B) Average
oxygen consumption rate (y axis) and extracellular acidification rate (x axis) in
astrocytes treated with vehicle control, 100 µM glutamate, or 100 µM
glutamate + 0.5 µM PPP for one hor. Measurements occurred 5 h after treatment.
Maximal respiration is grouped in the top right 3 points, and basal respiration is
grouped in the bottom left 3 points. A one-way ANOVA was used for each
comparison of maximal OCR, maximal ECAR, basal OCR, and basal ECAR. Post
hoc Dunnett’s test vs vehicle control was used when relevant. ∗ indicates
significant difference in OCR, and # indicates significant difference in ECAR. All
data are presented as mean ± SEM, n = 7–8 wells/group.
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Clinical and basic research suggests that exercise is a safe behavioral intervention
and is effective for improving cognitive function in cerebrovascular diseases, including
subcortical ischemic vascular dementia (SIVD). However, most of the basic research
uses young animals to assess the effects of exercise, although SIVD is an age-related
disease. In this study, therefore, we used middle-aged mice to examine how treadmill
exercise changes the cognitive function of SIVD mice. As a mouse model of SIVD,
prolonged cerebral hypoperfusion was induced in 8-month-old male C57BL/6J mice by
bilateral common carotid artery stenosis. A week later, the mice were randomly divided
into two groups: a group that received 6-week treadmill exercise and a sedentary group
for observation. After subjecting the mice to multiple behavioral tests (Y-maze, novel
object recognition, and Morris water maze tests), the treadmill exercise training was
shown to only be effective in ameliorating cognitive decline in the Y-maze test. We
previously demonstrated that the same regimen of treadmill exercise was effective in
young hypoperfused-SIVD mice for all three cognitive tests. Therefore, our study may
indicate that treadmill exercise during cerebral hypoperfusion has only limited effects on
cognitive function in aging populations.

Keywords: aging, behavior, cognitive function, mouse, subcortical ischemic vascular dementia, treadmill exercise

INTRODUCTION

Physical activity helps to promote and maintain brain health, including memory retention and
cognitive performance. Research has shown that increased physical activity both prevents and
ameliorates multiple brain diseases, including subcortical ischemic vascular dementia (SIVD).
SIVD is the most common form of vascular cognitive impairment and dementia (VCID)
(Erkinjuntti et al., 2000a,b). SIVD patients typically suffer from peri-ventricular white matter
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degeneration that leads to stepwise development of neurological
deficits and loss of executive function, such as difficulties with
working memory (Roman et al., 2002; Roh and Lee, 2014; Prins
and Scheltens, 2015; Wallin et al., 2018). Although SIVD is
expected to become more prevalent as the population ages, to
date, there are no clinically effective drugs.

There is an emerging body of evidence suggesting that patients
with mild VCID perform better at cognitive functioning tests
after aerobic exercise (Liu-Ambrose et al., 2016). However, there
is a lack of basic data in experimental models that supports
the efficacy of exercise for preventing SIVD/VCID progression.
Recently, we reported that treadmill exercise improved cognitive
function and increased the number of oligodendrocyte precursor
cells (OPCs) in the white matter of hypoperfused-SIVD mice
(Ohtomo et al., 2020). Nevertheless, an important question
remains; although aging is a major risk factor for SIVD, and
the majority of SIVD patients are elderly, no reports to date
have examined the efficacy of exercise in aged SIVD mice.
Therefore, in this study, we asked whether treadmill exercise
alleviates cognitive decline by cerebral hypoperfusion in 8-
months old mice.

MATERIALS AND METHODS

Overall Experimental Design
In this mouse model of SIVD, cognitive function (working
memory, cognitive memory, and special learning) is known
to decline in 4 weeks, presumably due to rarefaction of the
white matter (Shibata et al., 2004, 2007; Ihara and Tomimoto,
2011; Yang et al., 2016; Ohtomo et al., 2020; Takase et al.,
2021). Our intervention was a 6-week treadmill training which,
according to our hypothesis, would slow cognitive decline and
ameliorate the deterioration in performance over time. We
hypothesized this because this treadmill protocol was shown to
be effective in multiple CNS disease models, including young
hypoperfused-SIVD mice (Ohtomo et al., 2020; Kinoshita et al.,
2021). In this study, we conducted two experiments; Experiment
1 was for Y-maze test, and Experiment 2 was for novel object
recognition test (NORT) and Morris water maze test (Figure 1).
In both experiments, after the Sham or bilateral common carotid
artery stenosis (BCAS) surgery on day 1, treadmill training
occurred from day 8 to day 47 in the training group. Mice
in the sedentary group were placed on the treadmill for an
equivalent amount of time, but without running. In addition to
the memory assessment, we also conducted immunohistological
and biochemical analyses using mouse brain sections prepared
from the mice in Experiment 1. For Experiment 1, 33 mice were
used, and 6 mice (5 mice of the BCAS/Sedentary group and 1
mouse of the BCAS/Treadmill group) were excluded due to death
or unhealthy conditions. For Experiment 2, 34 mice were used,
and 6 mice were excluded due to dead or unhealthy conditions.

Prolonged Cerebral Hypoperfusion
Model (BCAS Mice)
All performed experiments followed an institutionally approved
protocol in accordance with the National Institutes of Health

Guide for the Care and Use of Laboratory Animals and the
law for the humane treatment and management of animals.
Eight-month-old male C57BL/6J mice (Jackson Laboratory,
United States) were housed in a specific pathogen-free
conditioned 12-hour light/dark cycle room with free access
to food and water throughout the experiment. After a week-
long habituation period in our animal facility, mice were
randomly selected to have a microcoil (0.18 mm diameter;
Samini, Japan) applied to bilateral common carotid arteries
for the induction of chronic cerebral hypoperfusion. The
surgical procedure was performed as previously described
(Shibata et al., 2004; Ohtomo et al., 2020). A control group
received sham operation (after exposing bilateral common
carotid arteries, the cervical incision was closed without
coil application).

Treadmill Training Protocol
Sham or BCAS-operated mice were randomly divided into a
sedentary group and a training group. The training group
was forced to run on a treadmill device (Exter 3/6 Treadmill,
Columbus Instruments, United States) for 6 weeks (in the early
afternoon, 5 days a week on weekdays). Running speed suitable
for exercise was determined from our previous studies that
demonstrated protective effects against brain injury (Ohtomo
et al., 2020; Kinoshita et al., 2021), beginning with a speed of
2 m/min, with an increase of 2 m/min every 2 min, until a
maximum speed of 10 m/min was reached. The length of the
total exercise was initially set at 20 min and increased daily by
10 min up to 60 min for familiarization, as shown in Figure 1.
The sedentary group was placed on the device without running
for the same amount of time as the training group. Mice were
always placed in the same lane throughout the experiment.

Evaluation of the Muscle Fibers of
Gastrocnemius Muscles
On day 49, the right gastrocnemius muscle was excised from
randomly selected BCAS/Sedentary (N = 10) or BCAS/Treadmill
(N = 10) mice from Experiment 1, under anesthesia with
isoflurane before transcardial perfusion. Muscles perpendicularly
embedded to Cryomold (Sakura Finetek USA, United States)
with Tissue-Tek R© (Sakura Finetek USA) were quickly frozen
by liquid nitrogen and kept at −80◦C until use. Five samples
were randomly selected from each study group, and 10 µm-
thick frozen sections were made using cryostat CM1520 (Leica,
Germany). Sections were then fixed with −20◦C methanol
for 10 min and stained with Hematoxylin 2 (Thermo Fisher
Scientific) and Eosin-Y (Thermo Fisher Scientific) according to
the manufacturer’s instructions. Stained sections were observed
with ECLIPSE Ti-S (Nikon, Japan) and scanned with RetigaTM

2000R Fast 1394 Digital Camera (QImaging, Canada). Then, a
cross-sectional area of 50 muscle fibers per mouse was measured
by using ImageJ1. To compare the area distribution of the muscle
fibers between the groups, a histogram was drawn using PRISM R©

7 (GraphPad Software, United States).

1https://imagej.nih.gov/
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FIGURE 1 | Schematic overview of this study. Two experiments were conducted to examine the effects of treadmill exercise on the cognitive function of middle-aged
hypoperfused SIVD-mice. BCAS mice were separated into 2 groups (Sedentary vs. Treadmill) 7 days after the surgery. Following a week-long habituation period
(from day 8 to day 12), mice in the treadmill group were placed on a treadmill, on which they were obligated to run for 60 min/day at a maximum speed of 10 m/min
on weekdays for 5 weeks. Y-maze was conducted 2 times, on day 13 and day 48 (Experiment 1). NORT was conducted 2 times, on day 48 (Experiment 2). The
Morris water maze was conducted between days 50–55 (Experiment 2).

Y-Maze
After the first and sixth week of exercise (day 13 and day 48), mice
were tested for spontaneous alternation behavior with Y-maze
between 6 AM and 9 AM. Our approach in conducting the
Y-maze test multiple times in the same mouse was justified by
the papers that the retention memory within the Y-maze task
may not last longer than a few hours (Dellu et al., 2000; Fu et al.,
2017). Each mouse was placed in the arm of symmetrical Y-maze
apparatus to freely explore the maze for 8 min. The task was
videotaped, and the sequence and the total number of arm entries
were manually recorded later in a blinded manner. An arm entry
was confirmed when bilateral hind paws were placed inside the
arm. Arms were washed with 70% Ethanol between each test.
Percentage of alternation was calculated as follows: number of

triads containing entries into 3 different arms/(total number of
arms entered −2) × 100.

NORT
Mice were tested for recognition memory by NORT between 8
AM and 1 PM on day 48. At first, the mice were habituated
in an empty cage for 10 min before training. During training,
they experienced 5-min exposure to 2 identical plastic blocks 2
times. After 30 min, they were then presented with 2 different
plastic blocks (one of the original blocks replaced by a new block)
for 5 min. The mouse behavior was videotaped and manually
assessed in a blinded manner. Object recognition was scored by
the total time spent either sniffing or touching the object. The
performance of recognition memory was evaluated by the ratio
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FIGURE 2 | Result of cognitive function test from Experiment 1. (A,B) Body weight transition of mice (A), and temporal body weight change of mice (B). There was
no significant difference between the 2 groups (BCAS/Sedentary vs. BCAS/Treadmill). Data are expressed as mean ± SD. (C,D) Weight of gastrocnemius muscle
(percentage of body weight) (C) and distribution of the area of muscle fibers (D) at day 49. There was no significant difference between the 2 groups
(BCAS/Sedentary vs. BCAS/Treadmill). Data are expressed as mean ± SD. (E,F) Change in alternation (an index of working memory) in Y-maze test before and after
the training period (E) and change in the number of arm entries in Y-maze test before and after the training period (F). There was a significant difference in the
increment of alteration between the 2 groups (BCAS/Sedentary vs. BCAS/Treadmill) (*P < 0.05, Mann-Whitney U test). Data are mean ± SD.
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of the time spent on the new object to the total time spent on
2 objects (Ohtomo et al., 2020). Five mice were excluded from
analysis due to lack of interest toward the objects (e.g., those mice
did not sniff or touch the 2 objects).

Morris Water Maze Test
On days 50–55, mice were tested with Morris water maze to
evaluate spatial learning and memory as previously described
(Ohtomo et al., 2020). In brief, mice had to find a hidden (2 cm
under the water surface) escape platform (diameter: 11.5 cm)
which was placed in the northeastern quadrant of a circular pool
(diameter: 110 cm) filled with opacified water kept at 25◦C. In
the acquisition phase, mice performed 4 trials per day from a
random starting position for 5 consecutive days, with a maximum
trial duration of 60 s. To test spatial memory, the platform was
removed, and 60-second probe trials were performed on day 54
(4 h after the last acquisition test) and day 55 (4 h after the last
acquisition test). Escape latency to find the hidden platform and
number of entries into quadrants were examined using ANY-
maze video tracking software (Stoelting Co., United States). Due
to passive floating behavior in the water, 2 mice were excluded
from analysis (one from the BCAS/Sedentary, and the other from
the BCAS/Treadmill group). For the Sham/Sedentary group, we
randomly picked 10 mice out of 12 Sham/Sedentary mice for the
Morris water maze test due to time scheduling issues.

Western Blot Analysis
Mouse brains were removed following transcardial perfusion
with 40 mL PBS (0.1 M), quickly frozen in dry ice, and kept
at -80◦C until use. Frozen brains were thawed to a semi-
frozen state, and three 2 mm-thick coronal sections were
obtained from the forebrain 1–7 mm anterior to the confluence
of sinuses using the mouse brain matrix slicing tool. The
brain sections were placed in ice-cold PBS, and the meninges
were removed, after which the corpus callosum and cerebral
cortex were carefully removed under a microscope with a
disposable micro knife (Fine Science Tools, Canada). Four
times the amount of PBS with protease inhibitor cocktail
(Cytoskeleton, United States) was promptly added to the samples
and dismembraned by sonic dismembrator (ThermoFisher
Scientific, United States) on ice. After adding Triton X-100
(Sigma-Aldrich, United States) to a final concentration of 1%,
samples were frozen at −80◦C and thawed on ice. Then,
they were centrifuged at 10000 × g for 15 min at 4◦C to
remove cellular debris. Protein concentration was determined
by the BCA assay (Thermo Fisher, United States). Collected
samples were heated with equal amounts of LDS sample
buffer (ThermoFisher Scientific) and sample reducing agent
(ThermoFisher Scientific) at 70◦C for 10 min. Each sample was
equally (30 µg) loaded onto 4–12% Bis-Tris gels (ThermoFisher
Scientific) for electrophoresis, followed by transfer to a
nitrocellulose membrane (Thermo Fisher Scientific). Membranes
were blocked in 5% skim milk (LabScientific, United States)
and incubated overnight at 4◦C with primary antibodies against
PDGFRα (1:500, Sigma-Aldrich, United States), MBP (1:1000,
Thermo Fisher Scientific), and β-actin (1:10000, Sigma-Aldrich).
Then, membranes were processed with peroxidase-conjugated

secondary antibodies [1:1000 for anti-rabbit antibody (GE
Healthcare, United States), and 1:2000 for anti-mouse antibody
(GE Healthcare, United States)] and visualized by enhanced
chemiluminescence (Thermo Fisher Scientific). Visualized bands
were semi-quantified with ImageJ.

Immunohistochemistry
Five samples were randomly selected from each study group,
and 20 µm-thick coronal sections (corresponding to the area 0–
1 mm anterior to bregma) were prepared for immunostaining
using cryostat CM1520. Frozen sections were then fixed
with −20◦C methanol for 10 min. After being washed with
PBS containing 0.1% Triton X-100 for 5 min 3 times, they
were incubated in PBS/3% BSA solution for 1 h at room
temperature. Then, sections were incubated in PBS/3% BSA
solution containing primary antibodies anti-PDGFRα (1:100,
R&D systems, United States) or anti-nestin (1:100, Abcam,
United States) at 4◦C overnight. After being washed with
PBS 3 times, they were incubated with secondary antibodies
(1:1000, Jackson Immunoresearch Laboratories) for 1 h at room
temperature. Finally, the sections were washed three times with
PBS, and covered with VECTASHIELD R© mounting medium with
DAPI (Vector Laboratories, United States). Stained sections were
observed with ECLIPSE Ti-S and scanned with RetigaTM 2000R
Fast 1394 Digital Camera. All brain sections were blinded to
the examiner before the evaluation of fluorescence intensity.
Immunofluorescence intensity of PDGFRα-positive cells inside
the subventricular zone (SVZ) was calculated by ImageJ. Bilateral
sides of two coronal sections cut from the area + 0.5 ∼ + 1.0 mm
to the bregma were evaluated, and the average of 4 areas was
calculated per mouse. The same procedure was conducted for
evaluating the fluorescence intensity of nestin-positive cells.

Statistics
Statistical analysis was performed with R version 3.4.02 and
PRISM R© 7. For body weight, data were first tested with two-
way analysis of variance (ANOVA), followed by post hoc Sidak’s
multiple comparisons test. For the acquisition phase of the Morris
water maze test, data were first tested with two-way ANOVA,
followed by post hoc Tukey’s multiple comparisons test. Data
from the probe test were first analyzed with Brown-Forsythe
ANOVA, followed by post hocDunnett’s T3 multiple comparisons
test. NORT data were first analyzed with one-way ANOVA,
followed by post hoc Tukey’s multiple comparisons test. Mann-
Whitney U test or Welch’s t-test was used for other analyses. All
values were expressed as mean ± SD. P-values less than 0.05 were
considered statistically significant.

RESULTS

To examine the effects of treadmill exercise on the cognitive
function of middle-aged hypoperfused-SIVD mice, we conducted
two sets of experiments (Figure 1). Hypoperfused-SIVD mice
were prepared by subjecting mice to the BCAS operation.

2https://www.r-project.org/
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The baseline of cerebral blood flow is lower in aged mice
(22 months old), compared to young mice (2–3 months old),
thus the decrease of cerebral blood flow by BCAS is less
impacted in aged mice (Baik et al., 2021). However, at least
in our system, the BCAS operation caused prolonged cerebral
blood flow reduction in middle-aged mice (8 months old)
(Supplementary Figure 1). In the first set of experiments,
we prepared two groups (hypoperfused-SIVD mice without
exercise treadmill and hypoperfused-SIVD mice with exercise
treadmill) to investigate whether exercise treadmill during
cerebral hypoperfusion mitigated cognitive decline (e.g., from
day 13 to day 48 after BCAS) using Y-maze test. In addition,
after the completion of the Y-maze experiment, gastrocnemius
muscles and brains were sampled for biochemical analyses. In the
second set of experiments, we prepared three groups (sham mice
without exercise treadmill, hypoperfused-SIVD mice without
exercise treadmill, and hypoperfused SIVD mice with exercise) to
examine whether the cognitive function of hypoperfused-SIVD
mice with treadmill exercise would be comparable with that of
sham mice without treadmill exercise. For both experiments,
male C57BL/6J (8 months old) mice were subjected to the 6-week
exercise after sham or BCAS operation. One week was spent on
habituation exercise, where running speed began at 2 m/min and
was increased by 2 m/min every 2 min until a maximum speed
of 10 m/min was reached; the duration of the daily exercise was
initially set at 20 min and was increased daily by 10 min up to
60 min. In the following 5 weeks, mice were then subjected to
running exercise at a speed of 10 m/min for 60 min/day.

In the first set of experiments, both groups (hypoperfused-
SIVD mice without exercise and hypoperfused-SIVD mice with
exercise) lost body weight after BCAS operation, and over
time during the treadmill exercise training, they did not gain
body weight regardless of treadmill exercise (Figures 2A,B).
In addition, there was no significant difference in the right
gastrocnemius muscles between the two groups (Figure 2C for
the percentage of gastrocnemius muscle weight and Figure 2D
for the distribution of muscle fiber thickness). However, in the
Y-maze tests, while hypoperfused-SIVD mice without treadmill
exercise showed a decline in cognitive function from day 13
to day 48 after BCAS operation, hypoperfused-SIVD mice with
treadmill exercise did not (Figures 2E,F).

In the second set of experiments, we assessed cognitive
function with the Morris water maze test and NORT. In the
Morris water maze test, there was no significant difference in
the memory acquisition between the three groups (sham mice
without exercise vs. hypoperfused-SIVD mice without exercise
vs. hypoperfused-SIVD mice with exercise) (Figure 3A). In
addition, in the probe tests at 4 and 24 h after the last session
of acquisition trial, there were no differences in the memory
retention performance between the groups (Figures 3B–D).
In NORT, as expected, sham mice without exercise showed
a preference for the novel object; however, hypoperfused-
SIVD mice without exercise showed no preference between the
familiar and novel objects (Figure 3E). On the other hand,
there was no significant difference in the preference between
sham mice without exercise and hypoperfused-SIVD mice with
exercise (Figure 3F).

Finally, we examined whether white matter pathology would
be affected by treadmill exercise, because white matter damage
is one of the major characteristics of SIVD. Fluoro-myelin
staining showed that there was no difference in myelin density
in the corpus callosum between hypoperfused-SIVD mice with
or without treadmill exercise (Figure 4A). Western blotting also
confirmed that treadmill exercise did not change the myelin
density of corpus callosum, assessed by the level of MBP, which is
a major component of the myelin sheath (Figure 4B). After white
matter damage, compensatory responses would be activated,
and OPCs play an important role in increasing the number
of myelin-producing oligodendrocytes. However, the number of
OPCs was not affected by the treadmill exercise in middle-aged
hypoperfused-SIVD mice (Figures 4B,C). In addition, there was
no significant difference in the Nestin-positive cells, which can
differentiate into both neurons and OPCs in the adult brain after
brain injury (Figure 4C). And finally, we checked if the middle-
aged SIVD mice had a significant infarction in the cortical area.
It is now well accepted that prolonged cerebral hypoperfusion by
BCAS does not cause infarcts in young mice, but little is known
about this point in middle-aged mice. But we confirmed no
ischemic infarction in the cortex by hematoxylin-eosin staining
with randomly selected 10 brain samples from the SIVD mice
(Supplementary Figure 2).

DISCUSSION

Our current study demonstrated that in middle-aged mice with
prolonged cerebral hypoperfusion, treadmill exercise ameliorates
the decline of working memory in the Y-maze test. On the
other hand, treadmill exercise was limited in its supportive
effects on cognitive function in the Morris water maze test
and NORT. Previously, we showed that the same regimen
of treadmill exercise suppressed cognitive decline, assessed by
the three cognitive function tests (Y-maze, Morris water maze
test, and NORT), in young mice with cerebral hypoperfusion
(Ohtomo et al., 2020). Our previous study also showed that the
treadmill exercise during cerebral hypoperfusion increased the
number of OPCs within the SVZ region of young hypoperfused-
SIVD mice (Ohtomo et al., 2020), although we did not confirm
the positive effects of treadmill exercise on OPC function in
this study. Therefore, together with our previous data (Ohtomo
et al., 2020), our current study may suggest that the efficacy of
treadmill exercise in cognitive function would decrease with age,
but treadmill exercise still seems effective in supporting cognitive
function even in aging populations. This is consistent with past
studies that treadmill exercise supported cognitive function in
both young and aged AD mice, but the efficacy was smaller in
the aged groups (Choi et al., 2021).

An important aspect of our current study is the finding that
treadmill exercise is less effective in middle-aged SIVD model
mice. To the best of our knowledge, except for our previous report
(Ohtomo et al., 2020), there are only two previous studies that
evaluate the effectiveness of exercise in preventing/ameliorating
cognitive decline caused by chronic cerebral hypoperfusion
(Jiang et al., 2017; Lee et al., 2017). These two studies showed
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FIGURE 3 | Result of cognitive function test from Experiment 2. (A) During the acquisition phase of Morris water maze, no difference was observed in latencies to
locate the hidden platform between the 3 groups (Sham/Sedentary vs. BCAS/Sedentary vs. BCAS/Treadmill). Data are mean ± SD. (B,C) Result of the probe trial
(4 h after the last acquisition session) in the Morris water maze test. There were no significant differences in both (B) number of entries into and (C) time spent in the
quadrant which formerly contained a hidden platform in the acquisition phase. Data are mean ± SD. (D,E) Result of the probe trial (24 h after the last acquisition
session) in the Morris water maze test. There were no significant differences in both (D) number of entries into and (E) time spent in the quadrant which formerly
contained a hidden platform in the acquisition phase. Data are mean ± SD. (F) Compared to the Sham/Sedentary group, the BCAS/Sedentary group showed less
preference to the novel object (*p < 0.05, one-way ANOVA followed by post hoc Tukey’s test). However, there was no significant difference between
Sham/Sedentary and BCAS/Treadmill groups. Data are mean ± SD.

that treadmill exercise is effective in ameliorating cognitive
dysfunction using young SIVD model rats. Our findings further
add to this existing literature. The efficacy of treadmill exercise
during cerebral hypoperfusion in cognitive function might be
less effective in aging populations. This may be partly explained
by the fact that compensative responses after brain injury, such
as neurogenesis and oligodendrogenesis, are dampened by age
(Miyamoto et al., 2013; Liang et al., 2016). While the treadmill
exercise increased the number of OPCs within the SVZ region
in young SIVD mice (Ohtomo et al., 2020), our current study did
not confirm this effect in middle-aged mice. In addition, the body
weight loss after cerebral hypoperfusion was not recovered by
treadmill exercise in middle-aged mice (Figures 2A,B), although
the same protocol of treadmill exercise helped young SIVD mice
recover their body weight (Ohtomo et al., 2020). In stroke mice,

the body weight recovery was associated with an improvement of
motor function (Desgeorges et al., 2017; Kinoshita et al., 2021),
which may also explain the difference in the efficacy of treadmill
exercise between young and middle-aged mice.

Although we have demonstrated that treadmill exercise
ameliorates cognitive decline caused by cerebral hypoperfusion to
some extent in middle-aged mice, there are some limitations and
caveats in this study. First, we used only one protocol of treadmill
exercise, which was shown to be effective for young mice
(Ohtomo et al., 2020; Kinoshita et al., 2021). In general, in aged
populations, the capability of movement and the total volume of
muscle is lower compared to younger populations, so the exercise
protocol for young mice may not be suitable for middle-aged
mice. The optimization of the conditions of treadmill exercise
for middle-aged (or even aged) mice would be necessary for
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FIGURE 4 | (A) Result of myelin density of the corpus callosum, assessed by fluoromyelin staining. Myelin density was calculated based on the intensity of
age-matched male C57/BL6J mice (average of 5 mice). There was no significant difference in myelin density between the 2 groups (BCAS/Sedentary vs.
BCAS/Treadmill). Data are expressed as mean ± SD. (B) Result of MBP and PDGFRα western blot using samples from the corpus callosum region. Data are
expressed as mean ± SD. (C) Immunohistochemistry showed that there were no significant differences in both the intensity of PDGFRα-positive cells and the
intensity of Nestin-positive cells within the SVZ region. Data are expressed as mean ± SD.

future studies to pursue exercise as a therapeutic option for SIVD
and other CNS disease patients. Second, because we focused
on the effect of treadmill exercise on middle-aged SIVD mice,
our current study did not include a sham-exercise group in
our experiments. However, considering that treadmill exercise
improves cognitive function in older mice (Maejima et al., 2018),
further studies would be needed to answer the question of
whether the effect of treadmill exercise is ineffective in middle-
aged mice or only in middle-aged SIVD mice in our system.
Careful comparison of the effect of treadmill exercise between
these two groups may also help us to find a therapeutic target
for SIVD. Third, our current study does not address the potential
mechanism behind the effects of exercise on cognitive function.
In young mice, the activation of compensatory responses, such as
an increase of OPC number within the SVZ region, may partially
contribute (Ohtomo et al., 2020); however, no OPC activation
was observed in middle-aged mice. The hippocampal region
plays an important role in cognitive function, including spatial
learning and memory, and our pilot study indicated that in the

SGZ region of hippocampus, treadmill exercise may increase the
number of stem cells (data not shown). Because accumulating
evidence now suggests the close relationship between exercise
and the neuronal responses in the hippocampus (Moon et al.,
2016; Liu and Nusslock, 2018; Lourenco et al., 2019; Baik et al.,
2021), it would be helpful to examine the cellular and molecular
signaling in the hippocampus after treadmill exercise in middle-
aged SIVD mice in future studies. The final caveat of our
study is that we used only male mice for our experiment. Since
the sex-difference may alter the dynamics of systemic humoral
factors as mentioned in the published literature (Herson et al.,
2013; McMullan et al., 2016; Stanford et al., 2017), it will be
important to determine if our results can be replicated in middle-
aged female mice.

In conclusion, we have demonstrated that treadmill exercise
has some effect in reducing cognitive decline in middle-
aged mice with prolonged cerebral hypoperfusion that mimics
the pathophysiology of SIVD. Exercise is a safe behavioral
intervention and has the potential to be a non-pharmacological
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therapy for several CNS diseases, including SIVD. Because
polypharmacy among elderly patients has become a
serious social issue around the world (Fried et al., 2014),
future studies are warranted to pursue the therapeutic
option of exercise as a non-pharmacological approach
to decrease the cognitive decline in SIVD or other
dementia patients.
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In understanding the role of the neurovascular unit as both a biomarker and target for
disease interventions, it is vital to appreciate how the function of different components
of this unit change along the vascular tree. The cells of the neurovascular unit together
perform an array of vital functions, protecting the brain from circulating toxins and
infection, while providing nutrients and clearing away waste products. To do so,
the brain’s microvasculature dilates to direct energy substrates to active neurons,
regulates access to circulating immune cells, and promotes angiogenesis in response to
decreased blood supply, as well as pulsating to help clear waste products and maintain
the oxygen supply. Different parts of the cerebrovascular tree contribute differently to
various aspects of these functions, and previously, it has been assumed that there are
discrete types of vessel along the vascular network that mediate different functions.
Another option, however, is that the multiple transitions in function that occur across
the vascular network do so at many locations, such that vascular function changes
gradually, rather than in sharp steps between clearly distinct vessel types. Here, by
reference to new data as well as by reviewing historical and recent literature, we argue
that this latter scenario is likely the case and that vascular function gradually changes
across the network without clear transition points between arteriole, precapillary arteriole
and capillary. This is because classically localized functions are in fact performed
by wide swathes of the vasculature, and different functional markers start and stop
being expressed at different points along the vascular tree. Furthermore, vascular
branch points show alterations in their mural cell morphology that suggest functional
specializations irrespective of their position within the network. Together this work
emphasizes the need for studies to consider where transitions of different functions
occur, and the importance of defining these locations, in order to better understand the
vascular network and how to target it to treat disease.
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INTRODUCTION

The human brain has an extensive vascular network essential
for supplying the brain’s rich energy demands. Oxygen, glucose
and other nutrients and signaling molecules are sent to the
brain via finely regulated cerebral blood flow which is delivered
through arteries, arterioles and capillaries. Deoxygenated blood
and waste products are then removed via capillaries, venules
and veins. In the neocortex, large pial vessels run along the
surface then dive and penetrate the brain, before branching into
smaller vessels to form the dense capillary network (Duvernoy
et al., 1981). Pial and parenchymal arterioles and capillaries
respond to neuronal nutrient and oxygen demand by dilating
and contracting (Iadecola, 2017) to alter blood flow locally, a
process called neurovascular coupling (NVC). NVC is controlled
by the neurovascular unit (NVU), formed by vascular cells (mural
cells - smooth muscle cells and pericytes, and endothelial cells),
astrocytes and neurons. In addition to modulating contractile
tone and blood flow, the NVU is also fundamental in regulating
blood brain barrier (BBB) permeability and nutrient delivery
(Hawkins and Davis, 2005; Iadecola, 2017; Sweeney et al., 2018),
as well as helping to coordinate the brain’s immune response by
restricting leukocyte invasion into the tissue.

Different parts of the vascular tree contribute differentially to
these various functions, but in many cases, it remains unclear
how function changes along the vessel bed. This is partly because
of variability in nomenclature and definitions across studies, and
partly because of an understandable, but ultimately misleading,
tendency to oversimplify the manner in which these functional
transitions occur. It is important to better understand these
functional transitions, however, in order to identify which cells
and vessels need to be targeted to manipulate these various
processes therapeutically in conditions such as Alzheimer’s
disease or stroke.

Here we use existing literature and novel data to consider
which components of the vasculature mediate different functions,
to better understand functional transitions across the vascular
network. We suggest that evidence indicates multiple transition
points at different positions in the vascular network, and
therefore to gradual, heterogeneous changes in vascular function,
rather than sudden transition points between distinct vessel types.

Transitions in Anatomy Across the
Cerebral Microvascular Bed
Across the vascular bed, from arteriole to capillary to venule,
the diameter of vessels first decreases then increases, and
the morphology of their mural cells (smooth muscle cells or
pericytes) abluminal to the endothelial tube changes. Penetrating
arteries and arterioles are typically between 15 and 40 µm in
diameter and are composed of an inner layer of endothelial
cells with abundant caveolae. They contain an internal elastic
lamina and therefore express elastin in the vessel wall, which
can be detected from its binding to the dye Alexa 633
hydrazide (Shen et al., 2012). At the surface, they often
have 2-3 outer layers of closely packed ring-shaped smooth
muscle cells (SMCs), which are electrically coupled via gap

junctions (Chow et al., 2020; Garcia and Longden, 2020) and
strongly express smooth muscle alpha actin (αSMA). At the
pial surface, the blood vessel is separated from the pial
membrane by Virchow-Robin space, which narrows after the
arteriole enters the brain through a “pial funnel” (Gao et al.,
2015). Downstream from this region, SMCs form only one
layer before transitioning to a pericyte morphology. Grant
et al. (2019) report the first cells with “bump on a log”
morphology as always occurring beyond the first branch from
the arteriole, and most reports consider the arterioles to be
covered with annular SMCs (e.g., Hamilton et al., 2010; Grant
et al., 2019; Kisler et al., 2017). However, even near the pial
surface, mural cells’ morphology changes from a simple annulus
to gaining a distinct soma and processes. While these cells
are often still termed smooth muscle cells, historically this
transitional form would be called a pericyte (Zimmermann, 1923;
Attwell et al., 2016).

At the first branch point from penetrating arterioles are
precapillary sphincters: contractile mural cells encircling a
narrow section of vessel between the penetrating arteriole and
first order capillary (Chambers and Zweifach, 1946; Grubb et al.,
2020). The first branches off the penetrating arteriole are often
termed precapillary arterioles or first order capillaries (where
penetrating arterioles are branch order 0). These vessels tend to
have a diameter of between 5-15 µm, and are enwrapped with
mural cells that express αSMA and have a protruding, distinct
soma, and processes that cover the vessel to a large degree,
recently termed “ensheathing pericytes” (Hartmann et al., 2015;
Grant et al., 2019; but see Hill et al., 2015; Attwell et al., 2016).
These first branches are often termed the precapillary arteriole
or transitional zone, though these terms sometimes are used to
mean only the first vessel branching off the penetrating arteriole
(e.g., Thakore et al., 2021), and other times include the 2nd
and 3rd branches with larger pericyte coverage and αSMA actin
expression (Gonzales et al., 2020).

Downstream of these vessels, after 1-3 branches from the
diving arteriole (Grant et al., 2019) pericytes become less
dense and their processes cover less of the vessel as branch
order increases and vessel diameter decreases (range 3-9 µm).
These capillary pericytes have been reported to have low
(Bandopadhyay et al., 2001) or absent (Nehls and Drenckhahn,
1991; Grant et al., 2019) expression of αSMA and have been
termed mesh and thin strand pericytes (Hartmann et al., 2015).
Latterly these have been combined into a single category
(capillary pericytes), due to the difficulty in distinguishing a
transition point between these two morphologies (Grant et al.,
2019). These capillaries with low or absent αSMA expression and
low pericyte coverage are often termed mid-capillaries.

In post-capillary venules, pericytes have a stellate morphology,
becoming less extended with thicker, more radial processes (Joyce
et al., 1985; Hartmann et al., 2015). These post-capillary venules
branch to form large venules (> 50 µm), which have weak αSMA
labeling, indicating limited contractile potential (Hill et al., 2015).
On larger venules, SMCs are circumferential but are less compact
and show a less complete coverage of the vasculature and a leaf-
like instead of banded appearance compared to arteriolar SMCs
(Hill et al., 2015).
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Therefore, the anatomy of the vessels and mural cells of the
cerebral vasculature, as commonly reported, is used to define the
following distinct vascular segments: pial arterioles, penetrating
or diving arterioles, precapillary sphincters, pre-capillaries, also
termed transitional or low branch order capillaries, mid-
capillaries, post-capillaries and venules. These have been recently
condensed into 4 categories, arterioles, a transitional zone,
capillaries and venules, with distinct mural cells on each
(Hartmann et al., 2021a). In some ways this categorization is a
helpful way to discuss features of different parts of the vascular
bed, as the recent Hartmann et al. review does in a clear
and informative manner. Our argument, however, is that it is
important to recognize that these categories are overly simplistic
because they are superimposed on more gradually changing
anatomy and function across the vascular bed. For example,
existing literature shows that mural cell morphologies transition
gradually not abruptly along the network. This concept was first
discussed by Zimmermann (1923) and is evident from more
recent work which shows that there is a continuum of cell lengths
seen from SMCs through ensheathing to mid-capillary pericytes
(Grant et al., 2019). Furthermore, the shift in vessel coverage
of pericyte processes argued to mark a boundary between
ensheathing and mesh pericytes has a different distribution across
branch orders than that of αSMA expression (Grant et al., 2019),
i.e., αSMA transitions occur at largely different locations than do
transitions in pericyte coverage of the vessel.

Neurovascular Coupling Differences
Across the Cerebral Microvascular Bed
This heterogeneity of anatomy across the vascular tree
presumably reflects the varying functional roles performed
by different vessels. Anatomical transitions have been best
mapped onto functional changes in terms of dilatory capacity
and involvement in neurovascular coupling (i.e., dilation
in response to increased neuronal activity). Disease affects
different parts of the vasculature in specific ways, making
it important to understand how and where such functional
transitions occur to be able to intervene successfully to target
pathological mechanisms.

Classically, neuronal activity causes local pial and penetrating
arterioles to dilate, causing an increase in blood flow to
active brain regions (Attwell et al., 2010). However, different
components of the vasculature are now known to play distinct
roles in generating this response. Mid-capillary regions, being
closer on average than any other vessel segment to most neurons,
likely first detect neuronal activity, either via the accompanying
increase in extracellular potassium concentration (Longden et al.,
2017) and/or via production of vasoactive signaling molecules
such as prostaglandin E2 (Hall et al., 2014; Mishra et al., 2016)
or EETs (Mishra et al., 2016; Zhang et al., 2021). This signal
then spreads upstream from the capillary bed, causing dilation
of upstream low branching order capillaries and arterioles (Hall
et al., 2014; Rungta et al., 2018), via spread of hyperpolarizing
currents carried by inward rectifying potassium channels (Zhang
et al., 2011; Longden and Nelson, 2015). Whether mid-capillaries
constrict and dilate in response to modulation of neuronal

activity remains somewhat controversial. Some studies report
that they do not (Hill et al., 2015), but a growing body of evidence
supports their contractility (Hall et al., 2014; Kisler et al., 2017;
Hartmann et al., 2021b; Shaw et al., 2021), though this may be
via a different mechanism than in arterioles and lower branching
order capillaries (Hartmann et al., 2021b).

The size, frequency and timing of responses to neuronal
activity are often reported to vary across vascular compartments
though not always in a consistent manner. Arteriole response
magnitudes vary along their length, with surface sections
of penetrating arterioles dilating more than deeper sections,
probably as a result of the mechanical restriction imposed by
brain tissue (Gao et al., 2015), though deeper arteriole sections
have also been found to dilate more rapidly than shallower
sections (Tian et al., 2010). In alpha-chloralose anaesthetized
somatosensory cortex, Hall and colleagues found response
frequency decreased as branching order increased (i.e., capillaries
responded less frequently than arterioles; Hall et al., 2014),
though first and second branch order capillaries showed larger
and faster dilations than arterioles, a finding subsequently
supported by other studies (Zhang et al., 2021). In the olfactory
bulb, the region around the branch off the arteriole also dilated
first, with slower responses up and downstream (Rungta et al.,
2021). However, the same group found much more variable
timings in neocortex of ketamine-medetomidine anaesthetized
or awake mice, with capillaries or arterioles each being faster
on some occasions (Rungta et al., 2021), and in both these
reports, mid-capillary dilations were very small (though these
data conflate responders and non-responders, unlike some
other studies, Hall et al., 2014; Shaw et al., 2021). Precapillary
sphincters, where studied, have often shown larger dilations,
as a proportion of their diameter, than adjacent arterioles and
capillaries (Grubb et al., 2020; Zambach et al., 2021).

In short, there are functional differences between
neurovascular coupling responses along the vascular network,
with mid-capillaries responding less frequently than upstream
vessels to increases in local neuronal activity, and the fastest
responses often, but not exclusively, observed in the first
and second order capillaries. The physiological mechanisms
underlying this heterogeneity in contractile responses are
not wholly clear. Pericytes expressing αSMA seem likely to
mediate more reliable, often larger and faster changes in vascular
tone (Hill et al., 2015; Hartmann et al., 2021b), but as αSMA
is commonly expressed in vessels up to and including the
3rd branch from the penetrating arteriole (Grant et al., 2019),
variations in αSMA expression alone cannot explain the observed
pattern of responses.

Indeed, several vasoactive pathways and mechanisms
modulating the diameter of different vascular segments have
been found to vary across the vascular network. Vessels
beyond the penetrating arteriole were found to dilate via ATP-
mediated increases in astrocytic calcium and prostaglandin
action on EP4 receptors, while diving arterioles dilated via
NMDA receptor mediated NO production (Mishra et al.,
2016). Another functional transition point at the same location
was also recently observed, as capillary endothelial cells were
found to express MFSD2A, inhibiting caveolae formation,
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while arteriolar endothelial cells showed much lower MFSD2A
expression, instead having abundant caveolae that were
necessary for intact neurovascular coupling (Andreone et al.,
2017). Because MFSD2A-mediated reduction in caveolae
formation reduces transcytosis to sustain BBB integrity (Ben-Zvi
et al., 2014), this suggests a possible transition in both BBB
function and neurovascular coupling mechanisms at the same
arteriole-to-capillary point.

It is not just the mechanism of vasodilation that is sensitive to
the position in the microvasculature: The integration of vascular
signals across the vascular network is an area of increasing
focus, with many recent papers shedding new insights on how
vasoactive signals are propagated upstream of their detection
in the mid-capillary bed. Potassium currents (Longden et al.,
2017), nitric oxide (Kovacs-Oller et al., 2020), calcium and ATP
signals (Thakore et al., 2021) have all recently been shown to
be important in the transmission of vasodilatory signals and,
by their nature, these signals span vascular segments and may
be influenced by functional variations across these sections.
While many studies have not explicitly investigated how different
vascular segments affect signal transmission, Thakore et al.
(2021) recently showed that ATP application or TRPA1 channel
activation in the capillary bed produces slowly-propagating
calcium signals through capillary endothelial cells that depend on
ATP release from Panx1 channels, but are converted, by IK and
SK channels in a transitional segment, into rapidly-propagating
electrical signals that dilate upstream arterioles. A similarly
propagating signal has been shown to be initiated in the capillary
bed by PGE2 (Rosehart et al., 2021; this issue). In these papers,
the transitional zone was defined as the first branch off the
penetrating arteriole, and did not include lower branching order
vessels that would be expected to express αSMA, and it is not clear
whether these higher branching order vessels also show rapid IK
or SK-mediated propagation of dilation.

Perhaps unsurprisingly given the varying vasoactive properties
of different vascular segments, their function can be differentially
affected by disease. In Alzheimer’s disease, capillaries may
mediate functionally significant decreases in cerebral blood flow,
as capillaries but not arterioles were found to be constricted due
to endogenous Aβ-mediated endothelin signaling to pericytes
(Nortley et al., 2019), and to be plugged by neutrophils (Cruz
Hernández et al., 2019). Similar effects may be seen after stroke,
with capillaries constricting in brain slices during ischemia
(Hall et al., 2014) and showing stalled flow and constrictions
after reperfusion in vivo (Yemisci et al., 2009), though the
largest constrictions may be seen in αSMA-expressing vessels
rather than mid-capillary regions (Hill et al., 2015). Conversely,
in mice carrying the main genetic risk factor for Alzheimer’s
disease, APOE4, capillary function was unaffected, but the large
pial vessels were dysfunctional, with vasomotion and dilation
frequencies reduced compared to APOE3-expressing controls
(Bonnar et al., 2021). However, none of these studies define the
precise location of these transitions in disease susceptibility.

To summarize, the contractile properties of the vascular
tree, in terms of both capacity and timing of dilations,
mechanisms mediating neurovascular signaling and integration,
and the sensitivity of these processes to disease states all vary

depending on the position in the vascular network. In some
cases (e.g., response frequency) function seems to gradually
change along the network, while in others (e.g., mechanism of
neurovascular coupling), there are more abrupt transitions of
function, and in many cases the location of functional transitions
remains unknown.

Oxygen Supply
The major function of the brain’s blood supply is to provide it
with nutrients. These include the energy substrates, oxygen and
glucose, as well as nucleosides and amino acids needed for mRNA
and protein synthesis. Classically, the dense capillary bed has
been thought of as the site of nutrient exchange, but actually
measuring where nutrient delivery occurs is not straightforward.

Improved two-photon phosphorescence lifetime imaging
of oxygen probes has recently provided insights into the
concentration gradients of oxygen across the microvasculature in
mouse cortex, and therefore where most oxygen delivery likely
takes place. In anaesthetized cortex, arterioles were found to be
responsible for 50% of the extracted oxygen (Sakadžić et al.,
2014), with capillaries (here defined as vessels two branches
downstream of the penetrating arteriole) appearing to provide
a reserve for oxygen delivery capacity, taking on a larger role
during hypercapnia and, as suggested by modeling, when oxygen
consumption rates increased. Indeed, in more recent studies in
awake mice (therefore with a larger basal oxygen consumption
rate), less oxygen was found to be delivered by the arterioles
(34%), with the majority of the remainder expected to be
delivered by the capillary bed (Li et al., 2019).

The factors driving oxygen delivery by these different vessels
include red blood cell linear density, speed, local oxygen
concentration gradients, and intravascular resistance to oxygen
diffusion. These differ between cortical layers (Lyons et al.,
2016; Schmid et al., 2017; Li et al., 2019) and are differently
variable within these layers. For example, red blood cell (RBC)
flow was lowest and more homogenous between capillaries
and, correspondingly, oxygen extraction was largest in deep
cortical layers, with faster flow and less oxygen extraction in
superficial capillaries (Schmid et al., 2017; Li et al., 2019).
This was in part because blood pressure dropped more
in the diving arteriole when feeding deeper layers (Schmid
et al., 2017). Furthermore, from arterial to venous capillaries,
oxygenation becomes increasingly variable as an increasingly
clear relationship between RBC flow and pO2 emerges [more
O2 having been extracted from capillaries with slowly moving
RBCs (Li et al., 2019)]. Thus, position in the vascular network in
terms of both tissue depth and branching order affects how blood
delivers oxygen to the tissue.

Nutrient Supply and the BBB
Unlike oxygen, which can diffuse through cell membranes, other
nutrients are supplied to the brain via specialist transporters
which allow their passage across the BBB. The conventional view
is that arterioles and arteries control the blood supply to the
tissue but do not participate in the exchange of nutrients in the
brain, which is instead mediated by capillaries and post-capillary
venules (Yuan and Rigor, 2010). The BBB strictly controls the
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influx and efflux of molecules across its endothelial layer largely
by active transport. In addition to being vital for neuronal
function, these proteins can be targeted for drug development to
allow drugs to access the brain.

Little work has studied where in the vascular network these
transporters are most active, though a recent RNA Seq study
showed them to be predominantly expressed in capillary and
venule mural cells, in contrast to transcription factors which
were overrepresented at the arterial end of the vasculature
(Vanlandewijck et al., 2018). A key question to be addressed
in future, is whether this myriad of different transporters and
transcription factors transition in similar or different locations
across the vascular network.

The BBB and Immune Regulation
The BBB is also a key site of regulation of immune access
to the brain, which again varies across the vascular tree.
Unlike arteriolar and capillary endothelial cells, post-capillary
venular endothelial cells are connected by adherens rather
than tight junctions, meaning they are more leaky than the
capillaries which feed them (Rous and Smith, 1931; Pober
and Sessa, 2014). The basement membrane that surrounds
them also has a different structure, being lamellar instead
of homogenous (Braverman, 1989). Leukocyte infiltration into
the surrounding tissue primarily happens in this region,
leukocytes migrating through gaps between pericytes and thus
being regulated by pericyte morphology (Proebstl et al., 2012).
Pericyte contractility may feed into this process, as pericyte
relaxation (not contraction) widens the gaps between cells,
facilitating leukocyte infiltration (Wang et al., 2012). Once
in the parenchyma, leukocytes migrate along NG2-expressing
pericytes, which release factors to support their migration (Stark
et al., 2013). Thus, an important transition in vascular immune
function appears to occur between NG2-positive pericytes on
capillaries and the NG2-negative pericytes on veins, though
whether this happens to the same extent in brain as in peripheral
tissues remains unknown. In addition to regulation of immune
cell entry, the vasculature can also transport cytokines into the
brain, as well as respond to circulating factors with parenchymal
production of cytokines and chemokines (Banks et al., 2009;
Rustenhoven et al., 2017), but how this varies across the vascular
network is also unknown.

More studies into the site of immune regulation in the brain
would be valuable, however, as, perhaps unsurprisingly, these
pathways of immune regulation by pericytes and endothelial
cells are important for understanding and treating disease.
Pericyte damage and increased permeability of the brain
vasculature to plasma proteins and immune cells are hallmarks
of Alzheimer’s disease, multiple sclerosis, and stroke (Daneman,
2012), where infiltrating immune cells have also been shown to
induce vascular dysfunction, demyelination, axonal damage, and
neurodegeneration (Hochmeister et al., 2006; Ryu et al., 2015).
Understanding where in the network structural and functional
contributions of the vasculature to the regulation of neural
inflammation occur may thus enable us to understand which cells
should be best targeted therapeutically.

Vasomotion
As well as nutrients being delivered across the BBB, the
vasculature also plays an important role in the removal of
potentially neurotoxic substances from the surrounding brain
tissue. Vasomotion, a phenomenon first reported in bat wing
veins (Jones, 1853), is a spontaneous low frequency oscillation
in blood vessel tone (typically centered near 0.1 Hz; Mayhew
et al., 1996); and independent of heartbeat or respiration),
which is present in vessels (particularly arteries) throughout
the body (Aalkjær et al., 2011). This rhythmic pulsing of
vessels is thought to contribute substantially to paravascular
clearance (Aldea et al., 2019; van Veluw et al., 2020) and tissue
oxygenation (Tsai and Intaglietta, 1989; Aalkjær et al., 2011;
Thorn et al., 2011; Mateo et al., 2017). In arterioles, oscillations
are generated within the vascular wall as a result of local SMC
dilations and contractions, possibly via phospholipase C and
phospholipase A2 mediated cyclical release of calcium from IP3-
sensitive stores (Haddock et al., 2002). Capillaries have not been
reported to show these low frequency oscillations in diameter,
though RBC flow does show similar fluctuations which may be
due to upstream diameter fluctuations (Colantuoni et al., 1994;
Biswal and Hudetz, 1996). However, a functional transition in
vasomotion of vessel diameters has not yet been pinpointed.

Given the importance of vasomotion as a driving force
for paravascular tissue clearance, it is not surprisingly affected
by vascular-degenerating diseases. In a mouse model of
Alzheimer’s disease, arterioles surrounded with Aβ showed
impaired vasomotion when driven by neuronal activity, and
showed reduced dextran clearance from the parenchyma (van
Veluw et al., 2020). Mice carrying the main genetic risk factor
for Alzheimer’s disease, APOE4, also showed a reduction in
pial arteriole vasomotion compared to APOE3 controls (Bonnar
et al., 2021). Thus, vasomotion is important for regulating supply
and clearance of substances to the brain, and is affected by
disease. However, we do not yet know where in the vascular
tree the transition point falls in which the vessels cease to
show vasomotion.

Summary
Vascular anatomy, contractility, nutrient delivery, immune
regulation and clearance all differ across the vascular bed. To
a large extent, functions of the vascular network have been
assumed to transition broadly with branching anatomy, from
vasomotion pial and diving arterioles that show reliable, large
neurovascular coupling responses, through fast responding pre-
capillaries/low branching order capillaries, to less reliably dilating
mid-capillaries. These mid-capillaries are thought to have a
stronger role than upstream vessels in BBB regulation and
nutrient transport, while further downstream, post-capillary
venules regulate immune cell infiltration. While this framework
no doubt captures the broad changes that occur over the vascular
network, it is by no means clear that the vasculature can be
usefully divided into such discrete divisions. Indeed some of the
research discussed above points to the existence of additional
functional transitions within vascular segments, including the
decreasing size of dilations in superficial and deeper diving
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arterioles (Gao et al., 2015), and pericyte coverage of vessels
continuing to decrease into the capillary bed (Grant et al., 2019).
However, most focus on localizing functional changes across
the vasculature has fallen on contractile function or mural cell
anatomy, so it is unclear whether other functions transition at the
same, or different, locations. If different functions show the same
transition points as contractile function, we could reasonably
consider the vascular segments separated by these transition
points as different vessel types. If, however, different vascular
functions transition at different locations, it becomes somewhat
meaningless to use these shifts in contractile function to define
vascular segments.

To test the principle of whether there are clear locations within
the vascular network at which transitions occur between multiple
functions of the vasculature, we used immunohistochemistry
to label different functional markers in brain slices expressing
DsRed under the control of the NG2 promoter, as well as in vivo
two-photon imaging of vascular responses to visual stimuli in
awake mice to study the contractile characteristics of the vascular
bed at the different functional transition points. There was no
single point in the vasculature where the function transitioned
from “arteriole-like” to “capillary-like.” Classic pericyte markers,
NG2 and PDGFRβ were in fact expressed throughout the vascular
network, while transitions in markers for contractility, arteriolar
compliance, neurovascular coupling and angiogenic potential
occurred at different points in the vascular bed. We observed no
sudden transitions in mural cell morphology across the vascular
network, or at termination points of functional markers, though
branch points showed distinct changes in mural cell morphology
throughout the vasculature studied (arteriole-capillary). Finally,
we also observed transitions of neurovascular and vasomotion
function down the depth of arterioles, highlighting that arterioles
become more capillary-like further from the pial surface.

MATERIALS AND METHODS

Animals
All experimental procedures were performed in accordance with
the 1986 Animal (Scientific Procedures) Act and approved by the
United Kingdom Home Office and the University of Sussex or
University College London animal welfare ethical review boards.
Experiments were performed on mice aged 1-8 months of both
sexes (3-8 months for in vivo experiments). Mice were all on
a C57BL/6J background which were either wild-type, expressed
DsRed under the control of the NG2 promoter (Zhu et al., 2008),
or for data collected from the 186 vessels recorded for the in vivo
experiments expressed GCaMP6f under the control of the Thy1
promoter (Dana et al., 2014) or were SST-Cre crossed with floxed
GCaMP6f. Food and water were available ad libitum, and mice
were housed at 22◦C in a 12 h light/dark cycle (which was
reversed for the mice used in in vivo experiments).

Ex vivo Imaging
Each immunohistochemistry experiment used tissue from a
minimum of 3 animals, on at least 3 different experimental days.

Methods for slicing, fixing and labelling were as described
previously (Mishra et al., 2014; Boyd et al., 2021), as follows:

Slicing
NG2 DsRed mice were sacrificed by Schedule 1 approved
methods (cervical dislocation followed by decapitation). The
brain was then removed from the cranium and anterior and
posterior coronal sections were removed, producing a block
containing the central portion of the cerebral hemispheres. This
block was then mounted onto a chilled slicing block using
cyanoacrylate glue, with the inferior surface of the brain facing
an agarose block. Using a vibratome, 200 µm coronal brain
slices were prepared in ice-cold slicing solution containing (mM):
NaCl (124), NaHCO3 (26), glucose (10), KCl (2.5), MgCl2 (2),
CaCl2 (2), NaH2PO4 (1), kynurenic acid (1), bubbled with 95%
oxygen and 5% CO2. Slices were incubated in a slice storage
container containing slicing solution bubbled with 95% oxygen
and 5% CO2 at room temperature to recover for > 30 min
before fixation. Some slices were incubated in oxygenated slicing
solution containing the fluorescent dye AlexaFluor 633 hydrazide
(20 µM) to label elastin (Shen et al., 2012).

Fixation, Blocking and Permeabilization
Slices were fixed in 4% paraformaldehyde solution for 30 min
in a 24-well plate on a rotary shaker. Slices were then washed
(3 × 10 min) in 0.1 M phosphate buffered saline (PBS)
on a rotary shaker at room temperature. In preparation for
antibody labeling the slices were incubated for 3 h in 0.2%
Triton X-100, 10% normal goat serum and 0.2M glycine in
0.1M PBS (blocking and permeabilizing solution) at room
temperature to block generalized secondary antibody staining
and to permeabilize the tissue.

Immunohistochemical Labeling
The following primary antibodies were used, all at 1:200 dilution
in 0.1M PBS: rabbit anti-αSMA (Abcam), chicken anti-nestin
(Abcam), rabbit anti-PDGFRβ (Santa Cruz Biotechnologies),
rabbit anti-GLUT-1 (Abcam), and chicken anti-GFAP (Abcam).
Slices were incubated in primary antibody in PBS overnight
(12-16 h) on a rotary shaker at room temperature, washed
(3 × 10 min) in 0.1 M PBS, followed by a 6-8 h fluorescently
labeled appropriate secondary antibody incubation in 0.1M PBS
at room temperature (AlexaFluor 647 goat anti-rabbit IgG or
AlexaFluor 488 donkey anti-rabbit IgG - both Life Technologies;
Goat anti-chicken CF488 IgY - Sigma). A no-primary control
experiment was used for each antibody to check for non-
specific binding of secondary antibodies. After labeling, slices
were mounted onto microscope slides with Vectashield hard-set
mounting medium including DAPI (Vector Laboratories) and
covered with a glass cover slip. Cover slip borders were then
sealed with nail varnish.

Confocal Imaging
SMCs and pericytes on large and small blood vessels, respectively,
were readily identifiable through DsRed expression under the
control of the NG2 promoter. Fluorescent labeling of the proteins
described previously allowed visualization of the expression
of proteins involved in the various functions of the cerebral
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vasculature. Fixed slices were imaged using a Leica SP8 or
Zeiss LSM780 confocal laser-scanning microscope. Imaging with
multiple wavelengths was performed as sequential scans at
each wavelength, to minimize “bleed-through” of fluorescence
between channels. Z stacks of penetrating arterioles and their
downstream capillary bed were obtained using a 20x air
objective. These stacks were then projected as ‘maximum-
intensity projections’ and stitched together using the MosaicJ
plugin of ImageJ software (NIH, Bethesda, MD, United States).
High-power Z-stacks of regions of interest, including the
transition point of the various markers, were acquired using a 63x
oil immersion objective.

Image Analysis
Image analysis was conducted using FIJI/ImageJ. Intersoma
distances and diameters were calculated manually using the
measurement tool in ImageJ. Measurements were made in one
z-plane by drawing a line from the mid-point of the pericyte
soma nearest the transition in labeling, to the mid-point of the
closest proximal vascular mural cell on the same vessel. Somata
were identified by DsRed expression and confirmed by DAPI
stained cell nuclei. Diameters were measured as the distance
between the innermost DsRed labeling on either side of the vessel
lumen (i.e., the diameters include endothelial cell thickness).
Branch points of the vessels were identified from the penetrating
arteriole, termed branch order 0, incrementing by 1 at each
subsequent branch point.

In vivo Imaging
Surgery and Two-Photon Imaging
Cranial window surgery to insert an optical window over V1
suitable for chronic, awake two-photon imaging was performed
on 11 mice (6 female) under isoflurane anesthesia (see Shaw et al.,
2021 for full methods). Following a one-week minimum post-
surgery recovery period, mice were habituated to head fixation
over multiple sessions. The experimental set-up consisted of a
cylinder fitted with a Kuebler rotary encoder placed under a two-
photon microscope with red and green filters (Scientifica), and in
front of two computer screens for visual stimulus presentation.
The objective used for two-photon imaging was a water-based
16x aperture (LWD, Nikon) with tissue excited at 940 nm
(Chameleon Vision II Ti:Sapphire laser, Coherent). The visual
stimulus was a drifting grating (PsychoPy) that varied either
by contrast (25, 63, or 100%, all at 315◦ orientation), size (20◦
small circular stimulus or 220◦ full screen stimulus, both at
100% contrast), or spatial frequency (0.04 or 0.2 cycles per
degree). As our data selected only the trials where the mouse
was not running, chi-square tests were conducted to ensure all
vessel segments were subject to the same distribution of stimulus
conditions across trials (contrast p = 0.94; size p = 0.99; spatial
frequency p = 0.99). Imaging sessions recorded fluorescent blood
vessels and calcium activity (in excitatory or somatostatin cells),
however, for the purposes of this study only data recorded from
vessels was analyzed. To visualize blood vessels (penetrating
arterioles and their downstream capillaries) during darkness or
visual stimulation whilst the animal was running or resting, mice
were injected with 2.5% (w/v) Texas Red Dextran dissolved in

saline (70 kDa via tail vein or 3 kDa subcutaneously, Fisher
Scientific). For the stimulus-dependent vessel dilation data,
we looked only at the dilations occurring during rest trials
(i.e., to remove locomotion confounds). Imaging sessions were
recorded in SciScan software (SciScan v1.2.1, Scientifica), where
the imaged vessels ranged between 0 and 729.6 µm in depth
(mean: 182.55 µm, SD: 132.65 µm), had an average pixel size of
0.1958 µm (range: 0.1484 - 0.4431 µm, SD: 0.08 µm) and were
acquired at speeds of 7.6 Hz.

Vessel Classification
Vessel diameter, vessel depth and branch order were measured
for all vessel classifications (see Table 1). Because we wanted
to look at responses down the penetrating arteriole, in these
experiments we separately classified the penetrating arteriole and
capillary branching orders. This was therefore different to that
used for immunohistochemical analysis, where the penetrating
arteriole was always 0, and branch orders always referred to the
position in the capillary bed. Here, for penetrating arterioles,
branch order started at 0 at the pial surface, and increased by
1 down the length of the diving vessel after a branch offshoot
was encountered. For capillaries, the first offshoot protruding
off the penetrating arteriole was always given a branch order of
1 and vessel branch order increased by 1 for each bifurcation
encountered (see Supplementary Figure 1).

Data Extraction
To improve image quality, vessel recordings were subject to
several preprocessing steps prior to analysis. Using ImageJ:
image type was set at 8 bit, images were despeckled, and light
artifacts from the stimulus minimized using the ‘stack contrast
adjustment’ plugin. To correct for motion artifacts (mainly
arising from locomotion) vessel recordings were also image
registered using Suite2P (Pachitariu et al., 2016). A custom
MATLAB script was used to extract vessel diameter along
the full width at half maximum (see Shaw et al., 2021).
Diameter measurements were averaged along the entire vessel
length, leaving an averaged (per frame) continuous diameter
trace over time.

Data Analysis
Stimulus-dependent responses: Continuous vessel diameter traces
were cut into 30 s trials around the stimulus presentations
(stimulation occurred between 5-10 s). Data trials were then
normalized to the 5 s pre-stimulus baseline period (1D/D = (D-
Dmin)/(Dmax – Dmin)), and multiplied by 100 (to present data
as a% increase from baseline). Only ‘rest’ trials were included,
meaning there was no significant locomotion occurring in the
2 s prior to or during the stimulus. Locomotion events had a
duration > 1/3 s and were distanced from other locomotion
epochs by at least 1 s. The locomotion-free stimulus-centered
vessel trials were categorized as responsive or non-responsive
to stimulation, with responsive trials being those in which the
maximum dilation during the stimulus event exceeded 0.5 ×
the standard deviation of the 5 s baseline period. The maximum
dilation was calculated by finding the peak of the trace during
the stimulus. The peak at the cessation of the stimulus was taken
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by measuring the value of the vessel dilation trace at 10 s. The
onset time of dilation responses was calculated as the time to
10% of the maximum peak (during the stimulation period). Four
noisy data trials (from 2222 total trials) were removed from
the diameter traces [3 trials from vessel 77 (C5) and 1 trial
from vessel 167 (C5)] because dilation shifts were very noisy
(high frequency shifts reflective of motion artifacts/signal loss)
and peaks exceeded 10x the average (mean dilation peak across
all responsive vessels during visual stimulation: 8.43 vs 101.3%,
123.2, 214.3, and 92.4%).

Power Spectra Responses
Welch’s power spectral density estimates were computed across
all continuous vessel diameter traces. These recordings could be
during rest, visual stimulus and/or locomotion, and we included
the entire continuous trace in the power analysis as (a) the
stimulus presentation occurred for 5 s every 30 s, meaning the
power spectrum peak corresponding to stimulus presentation
would be at 0.03 Hz (outside our 0.05-0.15 Hz range of interest);
and (b) there was no significant difference in the amount of time
spent in locomotion between the different vessel categories (mean
time spent in locomotion: 13.07%, standard deviation: 6.39%,
p = 0.45). All continuous data was detrended by subtracting the
baseline (the 8th percentile calculated over a 15 s time window;
see Bonnar et al., 2021). The MATLAB function “pwelch” was
used to conduct discrete Fourier transforms across 60 s time
windows. Data plots display raw power spectra and power spectra
corrected for 1/f (pink) noise (1/f corrected trace = Welch power
spectrum trace ∗ corresponding Welch frequency trace). All data
underwent outlier removal based on the maximum value detected
between 0-1 Hz (all traces containing peaks greater than 3 ∗ the
standard deviation of all the maximum values were removed).
This resulted in the removal of 3/186 vessel diameter traces (from
categories: PA BO0, PA BO3, and Cap BO1). For comparing
power spectra, the power value at 0.1 Hz was extracted. The
number of vessels which showed high power at 0.1 Hz was
assessed by separating vessel diameter traces by those above and
below a set threshold (standard deviation across all detected
power values at 0.1 Hz ∗ 0.5).

Statistics
Statistical analyses were conducted in RStudio. Data in graphs are
presented as mean ± SEM, and individual dots on bar graphs
represent data from individual blood vessels, whereas violin plots
were used to represent individual stimulus-presentation trials.
For comparing the distribution of vessel responsivity rates or
stimulus condition, data was taken from individual stimulus-
presentation trials, and tested using a 3D Cochran-Mantel-
Haenszel test with Fisher’s post hoc comparison. For comparing
the sizes of vessel dilations or the power in the vasomotion
frequency range, where data was non-normal, data was averaged
across vessels and a Kruskal-Wallis test with post hoc pairwise
Wilcoxon rank sum tests were utilized. Branch order and/or
vessel categorization (penetrating arteriole/capillary) were set
as the independent variable, dilation peak (for all trials during
stimulus period or at stimulus cessation), time to 10% of dilation
peak, power (value at 0.1 Hz or AUC between 0.05-0.15 Hz)
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or locomotion frequency (% time spent in locomotion) as
the dependent variable. For comparing the individual vessel
diameters and depths, where data was normally distributed, one-
way ANOVAs with Tukey’s post hoc comparisons were used. For
post hoc tests, for clarity only significant (p < 0.05) or trend
(p < 0.1) level comparisons are shown, but these tests were
always carried out, so absence of a displayed p value indicates a
non-significant (p > 0.1) result.

RESULTS

“Pericyte Markers” Are Expressed
Throughout the Microvascular Network
NG2, a chondroitin sulfate proteoglycan, is considered a pericyte
marker and has been reported at low levels in smooth muscle
cells (Kumar et al., 2017). However, NG2-controlled DsRed
labeling is found throughout the microvascular tree, including in
smooth muscle cells with a clear banded morphology (Figure 1).
Immunohistochemical labeling for another pericyte marker,
PDGFRβ (Winkler et al., 2010), also reveals protein expression
throughout the microvascular tree, including in SMCs on pial
vessels as well as penetrating arterioles and capillaries (Figure 1).

Markers of Contractility and Elasticity
Terminate at Different Positions of the
Vascular Tree
As discussed above, a much studied transition across the vascular
bed has been that between vascular mural cells expressing
high levels of αSMA and those expressing low or no levels of
αSMA, which broadly occurs between ensheathing and mesh
pericytes, though the distribution of αSMA termination positions
is different from that of the change in vessel coverage (Grant
et al., 2019). As discussed above, this switch in αSMA expression
may coincide with the faster responses observed in low branching
order capillaries (Rungta et al., 2018), though contractility
of pericytes may extend beyond this transition in αSMA
expression, as mid-capillary pericytes also dilate (Hall et al., 2014;
Kisler et al., 2017; Hartmann et al., 2021b), presumably using
different contractile machinery (Hartmann et al., 2021b). This
latter study also found these mid-capillary pericytes to show
slower constriction to optogenetic stimulation than did αSMA
expressing-pericytes.

Vessels also show a transition in expression of elastin across
the vascular bed, representing another flow regulation functional
transition. In mammals, the number of layers of elastin expressed
in the vessel wall scales with blood pressure and arterial size,
being highest in the largest arteries (Cocciolone et al., 2018), but
with only one layer, just abluminal to endothelial cells, for most
intracerebral arterioles (Shinaoka et al., 2013). Elastin expression
terminates before arterioles branch successively to become
capillaries, presumably reflecting the lower blood pressures to
which these smaller vessels are exposed. Elastin’s main role
is to increase vessel distensibility, storing energy in the vessel
wall during systole, and releasing it during diastole, thus
smoothing blood flow across the heart beat and dampening

pressure waves, protecting downstream vascular beds from large
fluctuations in pressure (Shinaoka et al., 2013). In addition to
this biomechanical role, it may also act as a signaling molecule,
regulating and attracting smooth muscle and immune cells
(Cocciolone et al., 2018).

Elastin can be readily labeled by i.v. injection or incubation
of tissue with AlexaFluor 633 hydrazide (Shen et al., 2012),
but its role in microvascular regulation remains understudied.
Recently, however, it has been used to identify intracortical
arterioles in which endothelial caveolae were found to be critical
players in neurovascular coupling (Chow et al., 2020), and was
found around precapillary sphincters branching off penetrating
arterioles that regulate blood flow and pressure into the cortical
capillary network (Grubb et al., 2020; Zambach et al., 2021).

To test whether the transitions between αSMA and elastin
expression occur at the same location, thus defining two
different vessel “types,” we used immunolabeling for αSMA
combined with AlexaFluor 633 hydrazide labeling of elastin.
We found that elastin terminated on vessels of large and small
diameters (Figures 2B,D) but always upstream from the point
of termination of αSMA (Figures 2A-D,F; 4/4 double-labeled
branches showed non-overlapping termination points).

Nestin Expression in the Capillary Bed
Extends Beyond αSMA Labeling
Nestin is an intermediate filament protein, commonly thought
to be expressed in proliferating cells (Suzuki et al., 2010), and
is associated with cardiovascular remodeling (Calderone, 2018).
Recently it has been shown to be expressed in quiescent as
well as proliferating endothelial cells and, indeed, may exert an
inhibitory effect on endothelial cell proliferation (Dusart et al.,
2018). Nestin expression by endothelial cells may therefore not
necessarily reflect ongoing angiogenesis, but rather indicate the
angiogenic potential of vessels. Double labeling of nestin and
αSMA or elastin in NG2-DsRed mice revealed the capillary
network to be nestin-positive (Figure 3). Nestin labeling
extended from the capillary bed into lower branching order
capillaries that were also αSMA positive (Figures 3B-D), but
never overlapped with elastin-labeled vessels (Figures 3F-H).

To quantify the expression patterns of nestin, αSMA and
elastin across the microvascular network, we next categorized
the termination points of each label according to vessel lumen
diameter, branching order from the penetrating arteriole (where
the penetrating arteriole is 0th order; Figure 4A), and the distance
between mural cells, or inter-soma distance (ISD). This latter
measurement serves as an indicator of the morphology of these
cells, as they transition from banded SMCs that are adjacent to
each other, to pericytes with distinct soma and processes that
become progressively longer along the vascular bed into the
capillary network (Grant et al., 2019). Termination points of
the different markers occurred at vessels of similar diameters
(Figure 4B), but at different branch orders (Figure 4A) or
ISD values (Figure 4C), indicative of different positions in the
vascular tree. Specifically, elastin termination points were on
vessels of significantly lower branch orders than termination
points for αSMA or nestin, and mural cells at elastin and
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FIGURE 1 | PDGFRβ is expressed in smooth muscle cells as well as pericytes in the cortical microvasculature. Green: immunohistochemical labeling for PDGFRβ.
Red: DsRed expressed under the control of the NG2 control promoter. (A) Example vascular bed from pial surface (top) to layers V/VI of cortex (bottom). (B–G): Two
different example vessels at higher magnification, to show capillary pericyte labeling of both markers.

nestin termination points were significantly closer together than
at termination points for αSMA. Furthermore, consistent with
our observations from double labeling of elastin and αSMA
(Figure 2), the ISD at which elastin terminated was always smaller
than that where αSMA terminated (Figure 4D). Thus, each
functional transition occurred at a different point in the vascular
tree, as defined by branch order and/or ISD. This means that in
addition to the functional transitions between elastin presence
and absence, and αSMA presence and absence, there is an
additional functional transition point, where nestin terminates,
between these two positions.

nNOS Association With Blood Vessels Is
Strongest in Low Branching Order
Vessels
The vasodilatory signaling molecule nitric oxide (NO) is
released by sub-populations of interneurons during synaptic
activation, and can mediate or modulate neurovascular coupling
(Attwell et al., 2010). In neocortex, if not cerebellum, it
seems predominantly involved in regulating arteriole but not
capillary diameter, a transition appearing to occur between the
diving arteriole and first capillary branch (Hall et al., 2014;

Mishra et al., 2016). To investigate whether this reflects neuronal
NO sources for vasodilation differing along the vascular tree, we
immunohistochemically labeled brain slices for neuronal nitric
oxide synthase (nNOS or NOS1) while labeling the vasculature
with Alexa647-conjugated isolectin B4, which binds to the
basement membrane (Peters and Goldstein, 1979). Consistent
with previous studies (Vlasenko et al., 2007), some arterioles
showed clear nNOS labeling around (but not within) vessels
which extended into the capillary bed, as well as parenchymal
signal (Figures 5A-F). To assess whether nNOS is preferentially
expressed around particular elements of the vascular network, we
measured the intensity of labeling immediately around vessels of
different branching orders, and at increasing distances from these
vessels (Figure 5G). Linear mixed modeling (with distance from
vessel and branch order as fixed factors and vessel as a random
factor) showed nNOS labeling to be significantly more intense
at the vessel compared to the parenchyma (F = 7.20, d.f. = 3,30,
p = 0.0009), but there was no difference in nNOS labeling around
different branches (F = 0.87, d.f. = 3, 30, p = 0.47), nor did
branch order affect the drop-off in signal away from the vessel
(F = 0.25, d.f. = 9, 30, p = 0.98). When just the labeling at the
vessel was considered, branch order was borderline-significant
(F = 4.1, d.f. = 3,6, p = 0.068). Together these results suggest
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FIGURE 2 | Elastin labeling (white) terminates before αSMA labeling (green) in the cortical microvasculature (arrows). Red: DsRed expressed in NG2-positive mural
cells. Panels (A–F) show arteriole and capillary example images. Arrows indicate termination point of elastin labeling. Images are representative of 9 (αSMA) and 12
(elastin) vascular trees, which are quantified in Figure 4.

FIGURE 3 | Nestin expression (green) extends from the capillary bed to terminate (arrowheads) on vessels that express αSMA (magenta; termination point showed
with small arrows), but does not extend as far as the termination point of elastin (long arrows). Red: DsRed-NG2 positive mural cells. (A) Example vascular bed from
pia (top) to layer V/VI of cortex. (B–E) and (F–H) are two other example vessels at higher magnification. Images are representative of 11 vascular trees, which are
quantified in Figure 4.
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FIGURE 4 | Quantification of relative termination points of three vascular functional markers, assessed from vessel branch order (BO; A,B), luminal diameter (A,C)
and inter-soma distance (ISD; A,D). Bars represent mean ± SEM. Each data point represents a vessel (elastin, n = 12; αSMA, n = 9, nestin, n = 11). P values are
results from independent sample t tests corrected for multiple comparisons using the Holm-Bonferroni method.

that nNOS interneurons do target blood vessels, but that the
degree of association is similar between penetrating arterioles and
the first few capillary branches from the arteriole. The tendency
for marginally stronger labeling at arterioles may contribute to
the different dependence of neurovascular coupling reported in
capillaries and arterioles (Mishra et al., 2016), but is unlikely
to explain it entirely. Interestingly, recent work has shown that
NO can modulate the propagation of vasodilation through the
vascular network (Kovacs-Oller et al., 2020). It is an open, and
important, question if nNOS-derived NO could contribute to
neurovascular coupling by modulating the integration of vascular
signals across the network in addition to its direct effect on
vasodilation, and how such NO release would interact with
endothelial (eNOS)-derived NO, which is also an important
modulator of neurovascular function (e.g., Toth et al., 2015;
Chow et al., 2020). Studying the pattern of targets of NO signaling
(e.g., soluble guanylyl cyclase, or cytochrome P450 ω hydroxylase
(Sun et al., 2000) should be informative in identifying how
different vessels can respond to this perivascular NO production.

Shifts in Functional Expression Are Not
Accompanied by Sudden Shifts in
Vascular Cell Length
Previous work suggests that mural cell morphology changes
in some respects near to the point at which αSMA expression
terminates, with αSMA-expressing ensheathing pericytes
covering the underlying vessel to a greater degree than mesh
pericytes immediately downstream of the αSMA termination
point (though the distribution of changes in coverage is shifted

to higher branch order vessels than the termination of αSMA;
Grant et al., 2019). However, the degree of vessel coverage by
processes is not the only morphological change that pericytes
undergo across the vascular network, as they change cell length
(indicated by ISD), as well as soma orientation and shape,
number and orientation of processes and many other descriptors
(Zimmermann, 1923). ISD is different across pericyte categories
as defined by vessel coverage, with ensheathing pericytes having
a lower ISD than mesh pericytes (Grant et al., 2019; Shaw et al.,
2021), so we wondered whether any abrupt shifts in ISD would be
observed at functional marker transitions, suggestive of a major
change in vessel type at this point. We therefore plotted the ISD
immediately before and after the termination points of αSMA
and elastin, normalized to the ISD at the termination point
(Figures 6A,B). There was no significant change in ISD at the
termination point of either functional marker. We had measured
more ISD values on the elastin vessels, so also calculated the
ISD two further cells away from the termination point, which
also showed no differences compared to the cells nearer the
transition point, further emphasizing the lack of an abrupt
change (Figure 6C).

Mural Cells Are More Densely Spaced at
Branch Points Compared With
Non-branch Regions
Pericytes are often found at vessel bifurcations (Hartmann et al.,
2015), but we also noticed that they appeared to have a different
morphology at branch points, cells being clustered with a shorter
ISD and greater vessel coverage (Figure 7A). Indeed, both
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FIGURE 5 | NO production occurs preferentially near vessels. Alexa 647-conjugated Isolectin B4 (IB4; A,C,D,F; magenta) and immunohistochemical labeling of
nNOS (B,C,E,F; green) show increased nNOS expression around vessels. (G): Quantification of nNOS labeling around different vessel branches, expressed by
normalizing the intensity of labeling around the vessel to that at the penetrating arteriole (0th order vessel). Data represents mean ± SEM. Individual points show
different vessels (n = 3).

vessel diameter and ISD were greater at branch points than
expected based on the average of the upstream and downstream
values of these parameters (Figure 7B). Furthermore, while
the increase in diameter was larger at branch points on larger
vessels (Figure 7C), the change in morphology, indicated by the
relative change in ISD, occurred on all vessels irrespective of the
vessel diameter or ISD at the branch point (across a range of
vessels from 5-20 µm in diameter; Figures 7D,E). Because ISD
generally increases as vessel diameter decreases into the vascular
bed (Figure 7F), mural cells at bifurcations therefore, at least
in terms of ISD, have a morphology more like larger upstream
vessels. This suggests the vascular network shows functional
specialization at bifurcations, in addition to classic arteriole-
capillary transitions of function. Pericytes at branch points can
generate different calcium signals and constriction of different
downstream branches, but downstream branch points were less
responsive to applied vasoactive agents than upstream vessels
(Gonzales et al., 2020). Our data suggest that these downstream
bifurcations may still be specialized in some manner, compared
to adjacent non-branch capillaries. Pericytes are known to occur
frequently at bifurcations (Hartmann et al., 2015). Our analysis
reveals that these pericytes at or near branch points are also
shorter than expected from the ISD of non-branch pericytes
immediately up or downstream.

In vivo Vascular Responses
Functional markers and anatomical changes in mural cell density
indicate, therefore, that vascular function changes gradually
across the vascular network, with multiple functional transition
points corresponding to changes in vascular distensibility,
proliferative capacity and contractility. These changes are

superimposed on gradually changing mural cell properties that
do not show clear alterations (at least in some features) at
these transition points, but which do show specializations at
branch points that likely reflect functional changes. Furthermore,
inspection of the images of DsRed-positive mural cells on
arterioles (in Figures 1A, 2A, 3A, 7A and Supplementary
Figure 1) show that, unlike commonly assumed, mural cells on
arterioles often lose their annular shape as the arteriole dives into
the cortex, forming intermediate pericyte morphologies with a
distinct soma and processes in deeper regions.

We wanted to test, where possible, how these transitions
reflected alterations in the physiological responses of different
components of the vascular bed, so studied three properties of
visual cortical microvasculature: frequency and size/timing of
dilations in response to visual stimulation, and low frequency
oscillations in the vasomotion range. We compared responses
of the penetrating arteriole before and after smaller branches
had come off the main vessel, as well as comparing responses
of the arteriole to increasing branch orders of capillaries (see
Supplementary Figure 2D for how different vessels’ branch order
was defined in order to separate vascular responses along the
length of the penetrating arteriole). All data is summarized in
Table 1 (and data demographics [cortical depth, diameter] shown
in Supplementary Figure 3).

Arterioles Dilate the Most Near the
Cortical Surface but Deeper Sections
Behave More Like Capillaries
Vessel responsiveness was assessed across the microvasculature
by testing if visual stimulation led to an increase in vessel
diameter (of > 0.5 standard deviations of the baseline). Sections
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FIGURE 6 | Functional markers terminate at different points along the vascular tree, without a concomitant change in vascular mural cell morphology, as assessed
by ISD. (A) ISD before or after the termination point normalized to the ISD at the termination point of elastin (A) or αSMA (B). Bars show mean ± SEM, with
connected data points representing individual vessels (N = 9 for αSMA and 11 for elastin). P values are from paired t tests (A,B) or a repeated measures ANOVA (C).

of arterioles near the cortical surface dilated significantly more
frequently than either downstream arteriole sections (≥ BO2) or
downstream capillaries (Figure 8 and Supplementary Figures 4–
6). Specifically, descending the penetrating arteriole, dilations
occurred with a similar frequency, and responses when they
occurred were of a similar size in the first two sections of
the vessel (before the first capillary branch and between the
1st and 2nd branches off the penetrating vessel), but these
superficial responses were more frequent and tended to be
larger than responses of the deepest sections of the penetrating
vessel (Figure 8).

Across the capillary bed (i.e., any vessel downstream of
the penetrating arteriole, populated by high αSMA ensheathing
pericytes or low αSMA mid-capillary pericytes), dilation
responses were of a similar frequency and size, with response
frequencies being similar to the deep sections of the penetrating
vessel (i.e., PA2+ ; Figure 8). There were no differences between

the speed of dilations across the different vascular segments
(Supplementary Figures 4–6).

More Arterioles Near the Cortical
Surface Show Higher Power in the
Vasomotion Range Compared to in
Deeper Sections and the Capillary Bed
We next measured vasomotion of the vascular diameter of
surface and deep sections of penetrating arterioles and different
branches of the capillary bed, finding that vasomotion (power
at 0.1Hz) was similar between arteriole sections and between
capillaries (Figures 9A-F). When we compared arterioles near
the cortical surface (PA0-1), to deeper arteriole sections (PA2 +)
and capillaries (C1 +), there was some evidence that penetrating
arterioles show more vasomotion near the pial surface, as
power at 0.1Hz was highest in superficial penetrating arterioles
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FIGURE 7 | ISD increases along the vessel but is smaller at branch points of any size. (A) Example NG2/DsRed labeled cortical vasculature, showing a whole
penetrating arteriole and branches (left), and a high-resolution image of a single branch point, with clustered pericytes (right). This whole vascular tree is shown in
Supplementary Figure 1. (B) Branch points have a larger diameter and more densely spaced pericytes than surrounding non-branch regions: The ratio of diameter
at a branch point to the average of values immediately up and downstream of that branch point is larger than 1, and the ratio of ISD at a branch point to the average
of ISD up and downstream of that branch point is less than one. N = 24 branch points. P values are from one sample t tests compared to 1. (C) This diameter ratio
correlates significantly with the vessel diameter: smaller vessels show a relatively smaller increase in diameter at branch points. ISD ratio (calculated as in B) is
uncorrelated with either ISD (D) or diameter (E). Thus, smaller vessels show the same proportional increase in pericyte density at branch points as do large vessels.
Bars represent mean ± SEM, data points are individual branches from 16 vessels. (F) Mural cell ISD increases with decreasing vessel diameter. Dots represent
individual ISD values from 20 vessels.

(Figure 9G), and significantly more upstream arteriole sections
(PA0-1: 33%) showed an increase in power in the vasomotion
range compared to capillaries (C1 + : 13%) (0.5 SD above
baseline; Figure 9G,H).

DISCUSSION

Our results demonstrate the existence of an intermediate
transition point in vascular function between the termination
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FIGURE 8 | In vivo vascular stimulus-dependent responses separated by vessel segment (responsive trials only). Stimulus-induced vascular dilations were classified
as responsive (black) or non-responsive across the vascular segments for (A) penetrating arterioles (PA0 nTrials = 270, nVessels = 21; PA1 nTrials = 247,
nVessels = 22; PA2 nTrials = 148, nVessels = 12; PA3 + nTrials = 124, nVessels = 9) and (B) capillaries (C1 nTrials = 562, nVessels = 50; C2 nTrials = 360,
nVessels = 29; C3 nTrials = 267, nVessels = 22; C4 + nTrials = 240, nVessels = 21). Lower order (PA0 and PA1) penetrating arterioles were more likely to dilate during
stimulus presentation than higher order diving arterioles (PA2, PA3 +), whereas no differences were found in the response rates between capillaries. Vessel responses
were plotted for the (C) penetrating arteriole (PA0 nTrials = 90, nVessels = 18; PA1 nTrials = 73, nVessels = 15; PA2 nTrials = 29, nVessels = 9; PA3 + nTrials = 19,
nVessels = 7) and (D) capillary (C1 nTrials = 109, nVessels = 36; C2 nTrials = 70, nVessels = 21; C3 nTrials = 55, nVessels = 17; C4 + nTrials = 39, nVessels = 14)
classifications during the stimulus for responsive trials only (traces represent mean ± SEM across trials; data from all trials are shown in Supplementary Figure 4).
Gray bar (5-10 s) shows when the stimulus was presented. Responsive trials, averaged across individual vessels, and the maximum dilation during the stimulus
presentation was compared between branch orders for (E) penetrating arterioles and (F) capillaries. There were differences in the maximum dilation during stimulus
presentation across sections of penetrating arterioles (p = 0.04; Kruskal-Wallis test as data is highly skewed), with the largest dilations in the most superficial section
(PA0) (p = 0.06 vs PA3 +, pairwise comparison with Wilcoxon Rank Sum test), whereas stimulus-induced dilations were not significantly different across the capillary
bed. We then compared vessel responses between the superficial and deep sections of penetrating arterioles (PA0 nTrials = 270, nVessels = 21; PA1 nTrials = 247,
nVessels = 22; PA2 + nTrials = 272, nVessels = 21) and the capillary network (C1 + nTrials = 1429, nVessels = 122). (G) Lower order (more superficial) penetrating

(Continued)
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FIGURE 8 | arterioles (PA0-1) were more likely to dilate to visual stimulus than higher order penetrating arterioles (PA2 +) and capillaries (C1 +) (p = 2e-8).
(H) Stimulus-dependent vascular dilation responses were then averaged across each vessel and superficial and deep penetrating arterioles were compared with the
capillary bed (PA0 nTrials = 90, nVessels = 18; PA1 nTrials = 73, nVessels = 15; PA2 + nTrials = 48, nVessels = 16; C1 + nTrials = 277, nVessels = 90; data including
non-responsive trials is shown in Supplementary Figure 6). The maximum dilation differed across vessel categories (p = 0.05; Kruskal-Wallis test), being borderline
significantly smaller in deep PA sections than either superficial arteriolar segments or the capillary bed (p = 0.06 vs PA0-1 and C1 +). Horizontal gray lines on violin
plots show median (solid line) and interquartile range (dotted lines), and statistical comparisons of vessel responsivity rates were made using a Chi-square test with
Fisher’s post hoc comparison, and of dilation peaks using a Kruskal-Wallis test with post hoc Wilcoxon rank sum tests to assess pairwise comparisons.

points for elastin and αSMA – a transition in nestin expression.
Furthermore, pericyte morphology as assessed from ISD does
not alter abruptly around these transition points, suggesting that
gradual changes in morphology along the vascular network are
superimposed upon multiple sharp changes in protein expression
levels. In both large and small vessels, branch points are also
functionally specialized, having denser pericyte coverage than
adjacent up and downstream vessels. Conversely, we did not
find any transitions in expression of classic pericyte markers
PDGFRβ and NG2, or perivascular nNOS levels, which were
expressed from the pia to the mid-capillary bed. Finally, in vivo,
below their second branch, penetrating arterioles showed similar
neurovascular coupling and vasomotion to capillaries, having a
lower frequency of dilation or vasomotion compared to the first
two segments of the penetrating arterioles.

Thus overall, our data support a view of the vascular
network whereby sharp distinctions between different vascular
segments do not exist, but rather different functions transition
at different positions within the vascular tree, within classic
vascular categories such as “arterioles” and “capillaries” as well as
between them. This means that vascular function overall changes
gradually across the vascular network, including along classically
defined single “vessel types” such as diving arterioles.

Expression of Pericyte Markers
Throughout the Vascular Network
We found PDGFRβ and NG2 to be expressed throughout
the arteriole-capillary vascular network. Both are classically
considered to be pericyte markers (Winkler et al., 2010;
Armulik et al., 2011), but our results are consistent with the
described effects on smooth muscle cells of PDGFRβ gain-
of-function mutations, which increase leukocyte accumulation
in the aorta (He et al., 2015). Single cell RNA seq analyses
also support the more widespread expression of both PDGFRβ

and NG2, with mRNA transcripts found in smooth muscle
cells as well as pericytes (Vanlandewijck et al., 2018), albeit at
moderately lower levels.

The function of these two “marker” proteins may be different
depending on their vascular location. NG2 is known to be
important for neovascularization and stabilization of newly
formed vessels, via the interaction of NG2 with integrins and
growth factor receptors on the same and other cells (Stallcup,
2018). In capillary pericytes of the mature vasculature, however, it
promotes the formation of new capillaries through angiogenesis,
whereas in larger vessels it instead may promote arteriogenetic
remodeling of vessel diameter (Rundek and Della-Morte, 2015).
Such remodeling can occur after decreased tissue oxygen and,
consistent with widespread NG2 expression, cells in surface
and penetrating arterioles, and the capillary bed, have been

found to proliferate after cerebral ischemia (Wei et al., 2001).
PDGFRβ also functions differently in arteries compared to
smaller vessels. In culture, pericytes but not smooth muscle cells
shed PDGFRβ in response to stress (Sagare et al., 2015) and
mutations that block PDGFRβ signaling reduce pericyte number
and increase capillary leakiness, without affecting smooth muscle
cells (Nikolakopoulou et al., 2017). Conversely, inhibition of
PDGFRβ pharmacologically or using siRNA preserves cerebral
arterial smooth muscle cells and arterial vascular tone after
sub-arachnoid hemorrhage (Shiba et al., 2012; Wan et al.,
2019), highlighting a potential pathophysiological contribution of
PDGFRβ signaling to arterial smooth muscle cells.

Thus both NG2 and PDGFRβ are expressed throughout the
cerebral microvasculature, but differ functionally depending on
their location, presumably due to differences in expression levels
of other proteins that are localized to different parts of the
vascular network.

nNOS Is Expressed Around Arterioles
and Capillaries
Given the involvement of nNOS-derived NO in arteriole but
not capillary neurovascular coupling (Mishra et al., 2016), we
expected to observe differential expression of nNOS along the
vascular network. However, while nNOS was expressed at greater
levels around vessels than in the parenchyma, this occurred to
a similar degree for all vessels studied (up to 3rd branch order)
and not just the diving arterioles. NO can control the electrical
coupling of pericytes in the retina (Kovacs-Oller et al., 2020) as
well as the production of other vasoactive molecules such as 20-
HETE (Liu et al., 2008; Hall et al., 2014), so neuronally derived
NO may be released onto all vessels but play a different role at
arterioles than capillaries, generating a dilation in the former and
modulating the response in the latter. A gradient of expression
of the other constitutive NOS isoform, endothelial NOS, has not
been reported, and RNA Seq data suggests it is expressed at
similar levels in arterial, capillary and venous endothelial cells
(Vanlandewijck et al., 2018).

Correspondence of Elastin and αSMA
Labeling to Transitions in Physiological
Responses
As previously described, elastin and αSMA labeling in the
vascular wall both label arterioles (Shen et al., 2012; Grant
et al., 2019) with αSMA labeling extending into the capillary
bed (Grant et al., 2019; Chow et al., 2020; Thakore et al., 2021).
Here we show these termination points are distinct and non-
overlapping, occurring at significantly different branch orders
and with different pericyte morphologies as assessed by ISD.
The location of elastin labeling quite well matches locations
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FIGURE 9 | In vivo vascular vasomotion responses separated by vessel segment. Average power spectra of (A) penetrating arteriole (PA0 nVessels = 20, PA1
nVessels = 22, PA2 nVessels = 12, PA3 + nVessels = 8) and (B) capillaries (C1 nVessels = 49, C2 nVessels = 29, C3 nVessels = 22, C4 + nVessels = 21) were
separated by branch order for raw traces (left) and 1/f corrected traces (right insert). No significant differences were seen in the 1/f corrected power at 0.1 Hz
between (C) penetrating arteriole or (D) capillary segments. Error bars represent mean ± SEM, and power at 0.1 Hz was compared between individual vessels using
a Kruskal Wallis test. (A) threshold was set for assessing the number of vessels which showed high 1/f corrected power at 0.1 Hz (threshold: 0.5 * standard
deviation across all vessels’ 0.1 Hz 1/f corrected power values), and no significant differences were seen between (E) penetrating arteriole or (F) capillary vascular
segments in the ratio of vessels with higher 1/f corrected power at the vasomotion frequency (numbers in bars represent individual vessels). We then compared
vessel responses between the penetrating arterioles (PA0-1 nVessels = 42, PA2 + nVessels = 20) and capillary network (nVessels = 120). As for neurovascular
coupling responses, superficial (PA0-1) and deep (PA2 +) arterioles were compared with the capillary bed (C1 +). (G) Average 1/f corrected power at 0.1 Hz was
different across these vessel groups, with superficial arterioles showing significantly more power at 0.1 Hz than capillaries (p = 0.01; Wilcoxon rank sum pairwise
comparisons). (H) The lowest order penetrating arterioles (PA0-1) also had more vessels with higher 1/f corrected power at 0.1 Hz than other categories (p = 0.01),
specifically when compared to the capillaries (p = 0.03). Statistical comparisons of the number of vessels with higher power in the vasomotion range were made
using a Chi-square test with Fisher’s post hoc comparison, and of power at 0.1 Hz using a Kruskal Wallis test with Wilcoxon rank sum pairwise post hoc tests.
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where we see transitions in physiological responses - the second
branch off the diving arteriole - below which responses seem
more like those in the capillary bed. Of our 12 elastin-labeled
vessels, 8 terminated on the penetrating arteriole (75%), of which
5 (42% of the total) terminated before the first branch from
the arteriole, i.e., upstream of where we observe a change in
response frequencies. Thus, arteriole elastin labeling broadly, but
not tightly, corresponds with the superficial part of the diving
arteriole where neurovascular dilations and vasomotion were
most frequently observed.

Though associated with contractile ability, the termination
point of αSMA does not, however, correlate very well with
the size or frequency of neurovascular coupling responses or
vasomotion, we observed in vivo. αSMA universally terminated
beyond the penetrating arteriole, but we found no differences in
neurovascular response frequency, dilation size or vasomotion
between different capillary branching orders (1-4 +), though
many fewer of these smaller vessels express αSMA. Furthermore,
responses were equally frequent in αSMA-expressing deep
sections of the penetrating arteriole as in the capillary bed,
and capillary dilations were actually larger than these deep
arteriole dilations. This is at odds with previous findings, where
dilations in ≥ 4th order vessels were substantially smaller
than higher order vessels in whisker barrel cortex of awake
mice (Rungta et al., 2021). The reasons for this are unclear.
Firstly, we compare both response frequency and response sizes,
whereas these two measures are conflated in Rungta et al’s
paper. However, as we also saw similar response frequencies and
sizes across the capillary bed, this cannot explain why we do
not see smaller responses in ≥ 4th order vessels. The cortical
area is different (visual vs. somatosensory), and the degree of
neuronal stimulation might be different (whole field drifting
gratings vs. a single whisker deflection), which could perhaps
have an impact on neurovascular coupling. Another potential
cause of these differences is the method of detecting vascular
diameter. We used xy images from which we calculate the
diameter perpendicular to every point of a small length of a
vessel’s axis, thus averaging across space (12-109 pixels, or 2.4-22
microns), while Rungta et al. used line scans of vessels to measure
vascular diameter at a single position. The spatial smoothing we
used in this paper is likely to give us a higher sensitivity to small
deflections in diameter.

Previous work in anaesthetized animals, has also found
different vascular segments to show different time courses of
dilation, with deeper sections of arterioles or first order capillaries
responding faster than superficial arteriolar segments (Tian et al.,
2010; Hall et al., 2014; Rungta et al., 2018). Our data from awake
mice did not show this, with similar response kinetics between
vascular segments.

Transitional Segment?
The vascular segment between the penetrating arteriole, or end
of elastin labeling, and the end of αSMA labeling has often
been termed a “precapillary arteriole” or a “transitional segment”
(e.g., Rungta et al., 2021), representing a region where vascular
function transitions between arteriole and capillary. However,
our in vivo data suggests that this segment, corresponding

roughly to branch orders 1 to 3, is not (in our hands) where
transitions of contractile behavior occur. Other transitions do
occur in this zone: We found endothelial expression of the
intermediate filament protein nestin extends out of the capillary
bed to a position between the termination points of elastin
and αSMA. In the retina, calponin, filamentous microtubules,
αSMA, filamentous actin and myosin heavy chain were all also
found to change expression levels across this section (Gonzales
et al., 2020). However, these all transitioned at different positions,
calponin terminating on the arteriole, microtubules on branch 1
and αSMA on branch 2, with filamentous actin and myosin heavy
chain gradually decreasing in expression levels from branch
orders 0 to 4 (beyond which vessels were not studied). These
progressive changes in function across a number of markers
fit with the gradual changes in mural cell morphology or ISD
we observed before and after the termination points of elastin
and αSMA, at roughly branch orders 0 and 3, respectively.
Thus this “transitional zone” is not uniform, with a single
type of vascular cell and, crucially, is not the only region
where such transitions of function are occurring, as similar
transitions in vasomotion, neurovascular coupling, and mural
cell morphology also occur when descending the penetrating
arteriole: Neurovascular coupling responses and vasomotion
were observed more frequently in superficial segments of diving
arterioles than in either downstream capillaries or deep sections
of the arterioles, which were similar to each other in response
characteristics. Correspondingly, mural cells lost their annular
smooth muscle cell morphology to gain a distinct soma and
processes at lower reaches of the diving arterioles. This suggests
arteriolar mural cells can be pericytes, unlike has been argued
(Hartmann et al., 2021a).

This data suggests that the division of the vascular network
into four functional segments: arterioles with SMCs, a
transitional zone with ensheathing pericytes, capillaries
with capillary pericytes and venules with venular SMCs
(Hartmann et al., 2021a), while helpful in discussing broad
functional changes across the network, is overly simplistic
and neglects the gradual transition in functions that occurs.
Indeed, multiple other functional transitions occur at other
positions in the vascular tree, including between the pial
and penetrating arterioles: Penetrating arterioles exhibit
higher contractile tone at low intravascular pressures
than pial arterioles (Longden et al., 2016). Neurovascular
response sizes are also smaller, possibly because of the
lower external pressure on the surface vessel compared to
penetrating arterioles which are surrounded by brain tissue
(Gao et al., 2015).

Branch Points May Be Functionally
Specialized
Our data suggest that pericytes exist at a higher density at
branch points than on surrounding vessel lengths, and this
clustering occurs to a similar degree on small and large
microvessels. This suggests some functional specialization at
branch points. 90% of branch points in the transitional segment
were previously found to have a pericyte at that location
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FIGURE 10 | Summary of known functional transition points across the arteriole-capillary axis. The location of many functional transitions remains unknown,
indicated by label placement in a general zone, without an arrow (e.g., between slow and fast propagated dilation, and expression levels of transporters vs.
transcription factors). Gradient shading shows that the labeled marker is expressed in the vascular zone to the shaded side of the termination point indicated.
Current nomenclature for mural cells is indicated, with mural cells on the arteriole suggested to be ensheathing pericytes rather than smooth muscle cells due to their
pericyte morphology. This is backed up by the similar behavior of deep arteriole sections compared to the capillary bed, though there are other differences (e.g.,
elastin labeling, caveloe) as indicated.

compared to only 45% of more distal branch points (Gonzales
et al., 2020). This corresponds with the increase in pericyte
ISD we report here, but our data suggest that even the distal
branch points are functionally specialized, as they have a
shorter ISD than surrounding non-branch point regions. The
pericytes at proximal branch points had calcium sparks that
corresponded with selective constriction of individual branches,
suggesting branch points serve to direct blood flow to active
neurons (Gonzales et al., 2020). Distal branch points (> 4th
branch order) were not found to be contractile, and calcium
changes in these pericytes were not reported. As our data
suggest these distal capillaries do dilate to a similar degree

as the proximal branches, it would be valuable to study
whether these branch points’ pericyte calcium changes also
correspond to changes in vascular diameter of the different
downstream branches.

Transcriptomic Gradients Could
Illuminate Transitions in Whole Range of
Functions
Our data and the wider literature currently support multiple
transitions of function at different positions of the vascular
bed, including down diving arterioles, and along increasingly
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branching capillaries. Contractile function and neurovascular
coupling are the functions most widely studied, but transitions
at different locations are also seen in oxygen supply as well
as expression of transcription factors, transporters, regulators
of angiogenesis and immune regulators. However, these studies
are all limited by a low capacity to look at different functions.
Rather than focusing on individual vascular functions, single
cell RNA Seq has the potential to illuminate the whole range
of gene expression differences that exist across the vascular
network (He et al., 2018). Clustering of vascular endothelial and
mural cells has revealed that endothelial gene expression changes
gradually, suggesting that there are likely not simultaneous
transitions in expression of many genes at the same point on
the vessel. More abrupt transitions between smooth muscle
cell and pericytes have been reported (Vanlandewijck et al.,
2018), which may fit with the sharp transitions observed
in some vascular features (e.g., the shift in vessel coverage
from ensheathing to mesh pericytes). However, this study
also shows large numbers of genes that are expressed in
wider zones of the vasculature, e.g., pericytes and arteriolar
but not arterial SMCs, supporting the existence of multiple
transition points. Indeed, another RNA Seq study identifies
multiple pericyte clusters suggestive of multiple functional
transition points (Zeisel et al., 2018). Future studies could
link single cell RNA seq data to specific spatial locations
within the vascular network, to illuminate this issue further.
Such data would allow us to better understand the vascular
regions to target with pharmacological interventions, given
Alzheimer’s disease and stroke are vasculature-degenerating
conditions that differentially affect the various parts of the
vascular network.

CONCLUSION

Our data, and the literature, support the existence of
multiple transition points in vascular function, different
proteins being expressed at overlapping sections of the
vascular network, and properties of neurovascular and
vasomotion response rates, sizes and timings varying at
different places in the network (summarized in Figure 10).
These various functional transitions are superimposed on
gradually changing mural cell morphologies across the
vascular tree, which show specializations at branch points.
Thus, while categorization of vessels or mural cells may
be a useful simplification in some circumstances, it is
important to remember that, for example, an upstream
ensheathing pericyte is not identical to a downstream
ensheathing pericyte, nor to one on a branch point.
Understanding where and how different vascular functions
(e.g., oxygen and nutrient supply, waste clearance, immune
regulation) are supported across the vascular tree is vital to
understand how different sections are impacted, and could
be targeted, during disease, but will likely require approaches
such as spatially-localized RNA Seq to identify how the
transcriptome as a whole alters across the cerebral microvascular
network.
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