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Debprasad Chattopadhyay*
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SARS-CoV-2 infection across the world has led to immense turbulence in the treatment

modality, thus demanding a swift drug discovery process. Spike protein of SARS-CoV-2

binds to ACE2 receptor of human to initiate host invasion. Plethora of studies

demonstrate the inhibition of Spike-ACE2 interactions to impair infection. The ancient

Indian traditional medicine has been of great interest of Virologists worldwide to decipher

potential antivirals. Hence, in this study, phytochemicals (1,952 compounds) from eight

potential medicinal plants used in Indian traditional medicine were meticulously collated,

based on their usage in respiratory disorders, alongwith immunomodulatory and anti-viral

potential from contemporary literature. Further, these compounds were virtually screened

against Receptor Binding Domain (RBD) of Spike protein. The potential compounds

from each plant were prioritized based on the binding affinity, key hotspot interactions

at ACE2 binding region and glycosylation sites. Finally, the potential hits in complex

with spike protein were subjected to Molecular Dynamics simulation (450 ns), to infer

the stability of complex formation. Among the compounds screened, Tellimagrandin-II

(binding energy of −8.2 kcal/mol and binding free energy of −32.08 kcal/mol) from

Syzygium aromaticum L. and O-Demethyl-demethoxy-curcumin (binding energy of−8.0

kcal/mol and binding free energy of−12.48 kcal/mol) from Curcuma longa L. were found

to be highly potential due to their higher binding affinity and significant binding free

energy (MM-PBSA), along with favorable ADMET properties and stable intermolecular

interactions with hotspots (including the ASN343 glycosylation site). The proposed hits

are highly promising, as these are resultant of stringent in silico checkpoints, traditionally

used, and are documented through contemporary literature. Hence, could serve as

promising leads for subsequent experimental validations.

Keywords: COVID-19, traditional medicine, docking, molecular dynamics, drug design
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GRAPHICAl ABSTRACT | In-silico strategies implemented to prioritize phytochemical moieties for targeting Dual hotspots of Sars-Cov-2 spike protein.

INTRODUCTION

A new respiratory infectious disease was reported in Wuhan,
Hubei Province of China, around December 2019 (1, 2). The
outbreak at the initial stage was linked to a seafood market
with a possibility of animal transmission. In due course of time,
human to human infection began that spread across the globe,
and the disease was called as COVID-19 (Coronavirus disease
19). The newly emerged virus was named as SARS Corona virus-
2 (SARS-CoV-2; Figure 1), based on the etiology and symptoms,
which is closely associated with SARS-CoV identified in the
year 2002 in China (3). The epidemic of COVID-19 has been
declared as a pandemic by theWHOon 30th January 2020, which
affected the population across the globe to the worst possible
extent (4). The SARS-CoV-2 infection has spread across the
continents, as of March 25, 2021 a total of 125,429,834 cases
with a mortality of 2,756,742 and recoveries of 101,293,629 are
reported, based on the registered cases (5). Currently, quarantine,
isolation, use of masks, physical distancing, washing of hands
with soap water and symptomatic treatment protocol is being
strictly followed to manage the disease, as there is no drug
available till date to selectively target this virus. These data
mainly highlight the extent of spread across the globe. Hence,
finding prophylactic or therapeutic agents becomes important
and essential.

The virus enters the human cells by the regulation of spike (S)
glycoprotein (1,273 amino acids long; Figure 2) which is cleaved
into 2 main units, namely, S1 (13–685 aa) and S2 (686–1,273 aa).

The S1 and S2 domains are present in individual monomers
of the spike protein trimer (Supplementary Figure 1).This 3D
structure of protein complex has been recently elucidated using
Cryo-Electron microscopy (PDB id: 6VSB) (rendered using
PyMol) (6, 7). The surface unit 1 (S1) helps in the strong
attachment of the spike protein to human cell receptors. The
cleavage of S1/S2 helps in the entry of viral particles and the
fusion of the viral capsid with the host cell membrane is guided by
the S2 subunit (8). Several studies established that angiotensin-
converting enzyme 2 (ACE2) receptor of the host cell is the
mediator that facilitates viral entry (9, 10). Spike protein S1
domain is further divided into multiple regions that are involved
in binding to host receptors. In Spike protein, 319–541 aa region
(S1) is known as receptor binding domain (RBD) [PDB id: 7BZ5;
Figure 3; (11)]

and 437–508 as receptor binding motif (RBM), which
binds to the ACE2 receptor. Other earlier studies have also
compared the receptor-binding domain (RBD) of spike protein
of both SARS-CoV and SARS-CoV-2 having high residue
conservation, indicating that only a small change makes the
SARS-CoV-2 binding to the ACE2 receptor different from the
other coronaviruses (12, 13). Recent genome sequencing study
also showed the spread of mutant form (D614G) of spike
protein to have the potential for enhanced ACE2 binding (14).
Glycosylation sites of SARS-CoV-2 are reported to modulate the
host immune response, and also proposed to be the potential
target for future mutations (15). The glycosylation process in
coronaviruses mainly occurs to camouflage the immunogenic
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process in the host. Targeting glycosylation sites can also help in
the early and rapid immune response to neutralize the virion (16).
The potential hotspot residues of spike protein namely, THR323,
SER325, ASN331, and ASN343 are reported to be involved in
glycosylation. Among these residues, ASN343 spans the RBD
region of the spike protein (17). Thus, targeting these sites could
be an efficient mode for combating SARS-CoV2 infections.

Drug development is a tedious and highly time-consuming
process usually takes years to get the newly developed drug for
the treatment (18–20). Thus, one of the most preferred method
is to find a suitable drug through drug repurposing, as it saves
both time and financial resources (21). The most common source

FIGURE 1 | Illustration of SARS-CoV-2 in complex with Human

ACE2 receptor.

of drug repurposing is existing drugs or molecules of natural
origin, and the scientists across the globe feel that the use of
compounds from natural sources is one of the best and sought
about way to move forward (22), even to find a drug for COVID-
19 (23, 24). Computational approaches in identifying potential
hits have gained momentum due to their cost effective and time
saving efficiencies in drug discovery process (25).Moreover, these
approaches have been well-utilized for mining potential chemical
moieties from diverse phytochemical libraries (24, 26, 27). In
recent times, studies on traditional medicine have climbed to
newer heights across the globe due to its immense potential,
easy availability, time-tested safety profile, and wide range of

FIGURE 3 | Receptor binding Domain of spike glycoprotein (Molecular

Surface View) (PDB ID 7BZ5).

FIGURE 2 | S1 and S2 region of spike glycoprotein and ACE2 receptor [Blue, S1 Domain; Pink, S2 Domain; Green, S1 Receptor binding domain (RBD); Red, ACE2

Receptor] (PDB ID 7KJ2).
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pharmacological actions. The increase in studies is also due to
the implementation of technologies to understand the structure
and function of phytocompounds from nature (28). With the
continuous advancement in the field of computer science,
many drugs have been approved from natural sources through
computer-aided drug design, like Ponatinib (FDA approval:
2012), Dasatinib (FDA approval: 2006), and Imatinib (FDA
approval: 2001). Applications of in silico approach helps to
calculate and analyze the combinations of compounds and targets
as highly accurate, hence gaining more and more importance
in the field of drug discovery by saving time and money
(29). Several studies revealed that ethnomedicinal “phytophores”
belonging to different classes, based on their structure activity
relationship (SAR), showed effectiveness in curtailing viral
replication in diverse viral infections. The antiviral compounds
usually interfere in host-virus interaction points like viral entry
process from adhesion/attachment to fusion and penetration,
inhibit enzymatic activity, and or block one or more steps of
the viral life cycle including replication to release. The scientific
evidence and the traditional usage of antiviral plant extracts
clearly portray the potential of natural compounds in modulating
viral infection (30).

India is a country with rich biodiversity and long history of
use of traditional medicine (TM) with a vast knowledge base of
useful medicinal plants through the ages. Indian Ayurveda is one
of the oldest systems of medicine of the world existing since the
world’s first civilizations and Vedic era. The main resource of TM
is the generation-old time-tested knowledge base of plant-based
formulations and wisdom of different communities, known as
“ethnomedicine” (31), using different parts of plants from roots
to leaves, bark fruits, and seeds (New Look to Phytomedicine,
2019). A wide range of plants used in ethnomedicinal practices
were shown to be highly effective in the management of diverse
viral infections by inhibiting either the viral life cycle or the
host-virus interactions (32).

Viral infections are increasing across the globe mainly due
to increased anthropogenic activities like land-use change,
increased human-animal interaction and lack of proper
healthcare infrastructure. Hence, the discovery of antivirals
from natural sources, mainly traditionally used medicinal plants
have gained importance. Since ages, plants have been used as
a source of therapeutics in diverse ethnomedicinal practices.
Many ethnomedicinal plant extracts and phytocompounds
are known to modulate host immune responses (33) and
may exert antimicrobial and antiviral effects (34). A variety
of plant compounds including alkaloids, coumarins, essential
oils, flavonoids, polyphenols, phytosterols, proteins, peptides,
saponins, and tannins play diverse roles in the human system.
Consistent progress has beenmade in the development of nature-
based antiviral drugs in recent years, as natural products like
plant extracts and phytocompounds used in TM are novel and
broad-based chemical entity that may serve as a potential sources
of antiviral drugs (35). The ever-increasing drug resistance,
frequent microbial mutations with increased emerging and
re-emerging outbreaks of viruses necessitate the development
of easily available cost-effective antimicrobials and antivirals for
better treatments. Hence, traditional medicines are the hope and

source for novel agents to manage viral diseases (30). A whole
range of viral diseases caused by the Dengue, Human herpes
viruses, HIV, Rabies, and Severe acute respiratory syndrome
(SARS) needs potential therapeutics; while using modern tools
the vast knowledge of ethnomedicinal practices can be identified
and validated for antiviral applications (36). Thus, a surge of
research is been observed in research institutes and universities,
particularly the countries rich in TM.

In recent times, several phytocompounds having antiviral
potential have been identified with their molecular mechanism
of action. Spiroketalenol, isolated from the rhizome extract of
Tanacetum vulgare L., was found to inhibit HSV-1 and HSV-
2 by blocking the virus entry, and inhibit the activity of viral
glycoproteins (37). Another compound Samarangenin B from
the roots of Limonium sinense found to suppress the replication
of HSV-1 by inhibiting the expression of HSV-1 immediate
early (IE) or α- gene (38). Harmaline (HM), a dihydro-pyrido-
indole, from the ethnomedicinal herb Ophiorrhiza nicobarica
is reported to exhibit anti-HSV activity by suppressing the
viral IE gene synthesis through epigenetic blocking of LSD-
1 with a different mode of action than the gold standard
antiviral Acyclovir (39). Further, it was reported that the ursolic
acid isolated from Mallotus peltatus (Geist) Muell. Arg. dose-
dependently inhibits the plaque formation of both HSV-1 and
HSV-2 at 10µg/ml within 2–5 h post-infection (40). Moreover,
Odina wodier Roxb, a herb used in folklore medicine confer
therapeutic effects on the skin infections caused by HSV (41).
Pterocarya stenoptera traditionally used in the treatment of viral
diseases is another potential plant with antiviral activity and
its isolated compound Pterocarnin A was shown to inhibit
HSV-2, by blocking the penetration of the virion into the host
cells (42). Complementarily, many bio-active compounds from
plants were shown to have immunomodulatory activities by
triggering anti-inflammatory responses, which in turn helps
in the control of viral infection (34). Earlier studies have
revealed that modulation of NF-κB signaling mediated anti-
inflammatory response triggered by Pedilanthus tithymaloides
L. confer a higher level of anti-HSV activity (43, 44). Further,
ultrasound-induced Gallic acid based gold nanoparticles can
inhibit HSV infection with EC50 of 32.3 and 38.6µM against
HSV-1 and HSV-2, respectively (45). While oleo-gum resin-
extract and β-Boswellic acid of Boswellia serrata inhibit HSV-1
infection through modulation of NF-kβ and p38 MAP kinase
signaling (46).

Ethnomedicinal literature claims the broad-spectrum antiviral
activity of diverse medicinal plant extracts and phytocompounds,
as the majority of those antiviral herbs contain flavones,
polyphenols, and alkaloids. Due to the rapid emergence of
new highly infectious viruses as well as re-emergence of
drug-resistance, and difficult-to-treat infections along with the
concurrent availability of advanced technological tools, the
exploration of antiviral activity of medicinal plants has acquired
momentum. In the current scenario of COVID-19, traditional
Chinese medicine (TCM) was included in the guideline for the
treatment, which claimed to be efficacious in several cases (47).
Similarly, many of the Indian ethnomedicinal plants are reported
to ameliorate the symptoms related to COVID-19, with antiviral
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activities (24). The hits based on such observations can provide
the edge for development of drugs to manage/treat COVID-19.
Thus, in this study we have performed a meticulous analysis
of documented antiviral properties of selected traditionally used
Indian medicinal plants. This resulted in eight potential plants to
be probed for phytochemical moieties that could target COVID-
19 effectively. The rationale on selection of plants is discussed in
detail as follows.

MATERIALS AND METHODS

Selection of Plants and the Rationale
Tylophora indica Burm F. Merrill (Asclepiadaceae)

Syn. T. asthmatica (Roxb) Wt & Arn.
The detailed flowchart on the insilico methodologies
implemented in this study towards prioritization of
phytochemical moieties are shown in Figure 4. Tylophora
indica, a perennial climber indigenous to India, commonly
called “Antamool” is an important medicinal plant used in
Indian medicine, mainly found in the plains, hills, and the forest
borders in eastern and southern India. This plant is ethnically
used for treating various types of ailments including cancer,
respiratory infections, bronchial asthma, whooping cough, and
anaphylaxis. The active ingredients of T. indica are mainly
available in leaves and roots that exhibit most therapeutic effects
mostly due to the pharmacologically active alkaloids tylophorine,
tylophorinine, and tylophorinidine (48). Some previous studies
have shown that Tylophora alkaloids can inhibit viral protease
and suppresses viral RNA replication by blocking the JAK2
mediated NF-κB activation (49). While tylophorine derivatives
have inhibitory effects on mouse hepatitis virus (MHV),
transmissible gastroenteritis virus (TGEV), and SARS-CoV

(50–52). A recent report revealed that Tylophora alkaloids could
inhibit the CoV-infected cells of swine (53). However, an earlier
pharmacokinetic study demonstrated moderate to good oral
bioavailability of tylophorine (65.7%) in rats (50). Recent studies
also showed that alkaloids from T. indica possess anti-replication
activity and inhibit the cytopathic effect induced by apoptosis,
and apoptosis induced by viral infection (54). While kaempferol
derived from T. indica could effectively block the 3a channel
protein in coronavirus (55).

Glycyrrhiza glabra L. (Fabaceae)
Glycyrrhiza glabra rhizome (Yashtimadhu) is used worldwide
in various traditional systems of medicines. In Ayurveda
it is an important drug component of Dasamoolarishtam,
Aswagandharishtam, Madhu-yastyaditaila etc., as mentioned in
Charaka Samhita. In folk medicine it is used as a laxative,
emmenagogue, contraceptive, galactagogue, anti-asthmatic, anti-
tussive, and antiviral agent. Being a member of the pea and
bean family, the plant is best known for its use in making
liquorice-flavored confectionery while roots and rhizomes are
used for medicinal purposes. A number of pharmacological
effects including expectorant and antitussive, antiviral against
SARS-CoV, HIV, and in the treatment of diabetes, cancer,
and hepatitis (56) have been studied for this plant. The main
chemical constituent of liquorice is glycyrrhizin, a triterpene
saponin with a low haemolytic index; while the root contains
glycyrrhetinic (Glycyrrhetic) acid, the aglycone of glycyrrhizin.
Other active constituents of liquorice include isoflavonoids,
chalcones, coumarins, triterpenoids, sterols, lignans, amino
acids, amines, gums, and volatile oils (57). Chemically G.
glabra comprises of 20 triterpenoids and around 300 flavonoid
compounds. Among these 18β-glycyrrhetinic acid, glycyrrhizin,

FIGURE 4 | A schematic representation of methodologies implemented in this study.
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glabridin, licochalcone A, licochalcone E, and liquiritigenin
have antimicrobial activity (58). While glycyrrhizin A and
18β-glycyrrhetinic acid can elicit anti-HCV activity through
inhibition of core protein expression and by blocking the
degradation of NFκB inhibitor IκB, followed by activation
of T lymphocyte proliferation (58). The glycyrrhizin and its
analogs have significant inhibitory effect against hepatitis, herpes,
influenza, and SARS viruses (59). Oral administration of G.
glabra extract has an antitussive effect by promoting pharyngeal
and bronchial secretions leading to good expectorant action.
Liquiritigenin, a flavonoid from the root extracts demonstrated
anti-asthmatic activity (60). The antiviral activity of glycyrrhizin
have been assessed against two clinical isolates of coronavirus
(FFM-1 and FFM-2) from SARS patients and found that it
could inhibit viral adsorption, penetration, and replication (59).
The crude Glycyrrhizin was also demonstrated to have low
antiviral activity against varicella zoster virus (VZV) better than
acyclovir and interferon (61). The roots of G. glabra had an
accumulation of molecules having 3D similarities to influenza
neuraminidase (NA) inhibitors. Further, it was elaborated in
chemiluminescence (CL)-based NA inhibition assays on different
influenza virus strains including an oseltamivir-resistant isolate
A/342/09 (H1N1) that 11 out of 12 compounds had IC50 in
nanomolar to micromolar range (62). A study with G. glabra
leaf extract also revealed antiviral activity against Newcastle
disease virus (NDV) with an highest embryo survival rate
at 300 µg/ml (63).

Camellia sinensis L. (Theaceae)
The use of Camellia sinensis or tea as beverage and medicine
has a long history of almost 5000 years. Chemically tea contains
polyphenols, flavonoids, tannins, and caffeine derivatives with
amino acids, having antioxidant and diverse therapeutic effects.
Black tea is prepared from the green tea leaves by a series
of fermentation when catechin (30%) of green leaves oxidized
into theaflavins (theaflavin, theaflavin-3-gallate, theaflavin-3

′

-
gallate, and theaflavin-3,3

′

-digallate) by dimerization and into
thearubigins (17%) through polymerization. Tea flavonoids
help in the reduction of inflammation, possess antimicrobial
effects, and are used in the treatment of respiratory diseases
such as asthma. A number of compounds like theaflavins and
tannins from black and green tea have antiviral activities,
mainly against bovine rotavirus and bovine coronavirus (32,
64). In vitro studies have shown that theaflavin di-gallate
inhibited the infectivity of influenza A and B viruses (65).
Green tea is widely used as a beverage across the world,
mainly for its antioxidant nature. It is rich in polyphenolic
compounds (flavonoids) and bonded benzene rings combined
with multiple hydroxyl functional groups. A study on water-
soluble phenols like tannic acid and theflavin-3-3

′

-digallate have
shown to inhibit 3-chymotrypsin like protease (3CLpro) of
SARS Coronavirus. Hence, it can be considered as a starting
point for molecules against the SARS-CoV-2 (32, 66). A
recent docking study revealed that the bioactive molecules
of C. sinensis: Barrigenol, Kaempferol, and Myricetin have
significant binding affinity with the active site of SARS-CoV2

Nsp15 protein (67). In a similar study, Oolonghomobisflavan-
A, Theasinensin-D, and Theaflavin-3-O-gallate from tea were
compared with repurposed antivirals (Atazanavir, Darunavir,
and Lopinavir) for their binding affinity with Mpro of SARS-
CoV-2. The results revealed that Oolonghomobisflavan-A to be
highly significant in terms of binding affinity and intermolecular
interactions when compared to all the other repurposed antiviral
inhibitors (68).

Justicia adhatoda L. (Acanthaceae) Syn. Adhatoda

vasica Nees
Justicia adhatoda (synonym Adhatoda vasica), known as Vasaka
in Ayurveda, is a well-known medicinal plant in indigenous
system of medicine, mostly effective in treating respiratory
ailments, as the leaf extract has a stimulant effect. Vasica leaf is an
antispasmodic cum expectorant and has been used for centuries
to treat asthma, chronic bronchitis, and other problems including
fever, swelling, asthma, pneumonia, malaria, tuberculosis, cough,
and cold (69). The infusion of A. Vasica leaf is known to relieve
headaches. The root is used as an expectorant and antispasmodic;
while the root infusion has an anthelmintic property. The
phytochemical profiling of this plant showed the presence of
alkaloids, anthraquinones, flavonoids, phenols, saponins, and
tannins (70). Several studies showed that the aqueous and
methanolic extracts of leaves can directly interfere with the
envelop proteins of many viruses. In particular, methanolic
extract had a higher level of inhibition of influenza virus, by
blocking viral attachment and inhibition of viral hemagglutinin
(HA) protein. Detailed study revealed that the methanolic
extract mainly comprised of Vasicine alkaloids have antiviral
activity (71). Aqueous extract of leaves is reported to inhibit
the arachidonic acid metabolites through COX (TXB2) and
LOX (LP1 and 12-HETE) pathways; while platelet aggregation
studies showed butanol extract to exert strong inhibition against
arachidonic acid, platelet activating factor, and collagen-induced
aggregation (72).Methanolic extract also possess antiviral activity
against HSV-2, while aqueous extract against HSV-1. Moreover,
the methanolic extract showed 100% reduction in HA at
10 mg/ml; while the aqueous extracts at 5–10 mg/ml dose
reduced the HA levels to 33 and 16.67%, respectively, suggesting
strong anti-influenza activity by inhibiting viral attachment
and/or replication (73).

Ocimum Tenuiflorum L. (Lamiaceae) Syn. O. sanctum

L. (Tulsi)
Ocimum sanctum or Tulsi has been used for thousands of years
for its diverse therapeutic activities, and is known as the “Queen
of herbs” or the legendary “Incomparable one” of India with
strong aroma and astringent taste. It is the holiest and most
cherished plant for its healing and health-promoting properties
and in TM, Tulsi is known as an adaptogen that balances different
processes in the body and helps in adapting stress. Ayurveda
treats it as a kind of “elixir of life” and is believed to promote
longevity and a healthy body. Thus, extracts from Tulsi are
used in many Ayurvedic remedies including the common cold,
headache, stomach ailments, inflammation and heart disease
(74). Several studies with O. sanctum leaf extracts showed
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therapeutic, prophylactic, and virucidal activities. A study in
ovo model indicated its therapeutic activity against H9N2 virus
by reducing the infection level (75); while crude extracts or
individual compounds isolated from Tulsi have a wide spectrum
of antiviral activity against HSV, Adenovirus, Coxsackievirus B1,
and Enteroviruses (76). Tulsi is used in diverse formulations
including mouthwash, sanitizer and water purifiers (77). The
purified components apigenin, linalool, and ursolic acid of O.
basilicum showed a broad spectrum of antiviral activities against
DNA viruses (HSV, adenoviruses, hepatitis B virus) and RNA
viruses (Coxsackievirus B1, Enterovirus 71), amongwhich ursolic
acid showed the strongest activity against HSV (40), ADV-8,
CVB1, and EV71 (76). Crude, terpenoid, and polyphenol-rich
extract of O. sanctum showed significant virucidal activity (p
< 0.001–0.01) and was found to decrease the virus genome
copy numbers at the lowest dose up to 72 h post-infection (77).
Recently, molecular docking studies also suggest that tulsinol
A-G and dihydro-dieuginol B as potential inhibitors of SARS
Coronavirus Main Protease (Mpro) and Papain-like Protease
(PLpro), indicating that O. sanctum can be used as preventive
against CoV due to its potential immunomodulatory, ACE2
blocking and viral replication inhibition properties (78).

Zingiber Officinale Roscoe (Zingiberaceae)
Zingiber officinale (Ginger), native to South-East Asia, is used
as a common spice across the world. It encompasses several
diverse chemical moieties with antiarthritic, anti-inflammatory,
antidiabetic, antibacterial, antifungal, and anticancer activities
and is one of the major medicinal sources of Ayurveda, Unani,
Siddha, and various traditional medicine systems of India (79).
Fresh ginger is used to treat cold, nausea, colic, heart palpitations,
respiratory illnesses, dyspepsia and dry cough. During the
nineteenth century a popular formulation from Ginger was used
in the treatment of asthma and cough, consisted of the mixture
of fresh ginger, and fresh garlic juice with honey (80). The
ginger rhizome contains highly pungent vanillyl ketones like
Gingerol and paradol derivatives having therapeutic effect on
a wide range of diseases (81). Fresh rhizomes have inhibitory
activity against the human respiratory syncytial virus (RSV) that
infects the respiratory tract of humans (82). It was shown that
the water-grown ginger has greater inhibitory activity against
Chikungunya (CHIK) virus (83). The ginger oil was also reported
to inhibit HSV-2 plaque formation (84) while the dried rhizomes
containing sesquiterpenes have anti-rhinoviral activity in plaque
reduction assay, but the best activity was found with the beta-
sesquiphellandrene at an IC50 of 0.44µM in vitro (85).

Curcuma longa L. (Zingiberaceae)
Curcuma longa (Turmeric) belongs to the ginger family
Zingiberaceae; and turmeric rhizome has been traditionally used
in India for various ailments and diseases. Indian traditional
and folklore medicine used turmeric to treat inflammation,
infections, respiratory illness, gastric, hepatic, and blood
disorders. Curcumin, the marker compound of turmeric is a
well-studied therapeutic phyto-molecule, while curcumin and
its derivatives are the major polyphenols of the rhizome (86).
The antiviral activity of curcumin and its derivatives have been

established against a wide variety of pathogenic viruses including
hepatitis, herpes simplex, human immune deficiency, human
papilloma, influenza, and zika. The mechanism is mainly by
inhibition of viral entry, replication, particle production, viral
protease, and gene expression (87). Curcumin and its analogs
also modulate the regulation of renin-angiotensin–aldosterone
system (RAAS) which is involved in anti-inflammatory, anti-
oxidant and anti-hypertensive activity, that are highly elevated
in viral infection (88). Crude aqueous and ethanolic extracts
of C. longa confer significant antiviral activity against H5N1
virus in vitro by inhibiting viral replication with significant
upregulation of TNF-α and IFN-β mRNA expressions (89).
Anti-influenza activity of curcumin was earlier assessed by
computational methods, wherein curcumin derivatives were
docked against the HA protein of influenza (H1N1) virus.
The results inferred that specific curcumin derivatives can be
successfully used against influenza virus infection. Moreover,
curcuminoids from the methanol extract of C. longa also provide
strong inhibitory effects on the neuraminidases of H1N1 and
H9N2, as non-competitive inhibitors (90).

Syzygium Aromaticum (L.) Merr. & L. M. Perry

(Myrtaceae)
Clove, the aromatic flower bud of Syzygium aromaticum is one
of the ancient traditionally used spices in almost every household
in India, with several therapeutic properties for dental, digestive,
and respiratory disorders, including asthma (91). The other
application of clove includes food preservation. Cloves contain
various classes of phytochemicals including sesquiterpenes,
monoterpenes, hydrocarbons, and phenolics along with Eugenyl
acetate, eugenol, and β-caryophyllene as principal components
of clove oil. Various pharmacological studies with clove have
shown its inhibitory effects on pathogenic bacteria, Plasmodium,
and Herpes simplex and Hepatitis C viruses (92). The essential
oil of clove contains 85–95% eugenol and is shown to be
highly effective in the treatment of HSV and HCV by blocking
viral replication. The synergistic action of acyclovir and S.
aromaticum extract have a significant impact on the inhibition of
viral replication (92). Aqueous extract of clove showed antiviral
activity against Feline Calicivirus (FCV) as a surrogate for human
norovirus. Pre-treatment of FCV with clove oil reduced viral
titer to 6.0 logs. The antiviral activity of the pure eugenol was
similar to the clove extract, albeit at a lower level (93). The
silver nanoparticles prepared from the aqueous extract of the
flower buds of S. aromaticum were found to be novel and
effective against the Newcastle Viral Disease (NDV) in vitro and
in embryonated eggs (94).

Data Sources
In this study, the dataset of phytochemicals of eight plants
were acquired from different sources like CMAUP (95),
NPASS (96), Dr. Dukes Database and KnapSack (97)
database (Supplementary Table 1). Initially, the list of all
the phytochemicals were collated out from individual sources by
manual curation. In the next step, all the duplicate entries and
the ubiquitous chemicals were removed from the list. The final
list was taken as input for downloading structural files from the
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PubChem database using an automation script created using
Python programming (https://github.com/sandes89/PubDown).
The structures which were accessible online and documented
were only considered for screening.

Docking Studies
Preparation of Protein
The crystal structure of RBD (PDB id: 7BZ5) of spike protein
presented in Figure 3 was downloaded from RCSB PDB (Protein
Data Bank) (98, 99). GUI based “Auto-Dock Tools” was used to
prepare and execute the docking studies. Kollman atom charges,
solvation parameters, and polar hydrogens were added to the
protein and proceeded for docking studies. As the ligands used
are not peptides, Gasteiger charges were assigned only to the
protein and the non-polar hydrogens were merged. Based on the
literature and predicted active regions, a grid box was assigned
around the active sites using AutoGrid application (100).

Preparation of Ligands
The 2D/3D structures were retrieved from PubChem Database
using a custom written python script which is hosted on
GitHub portal (https://github.com/sandes89/PubDown). List of
compounds with their chemical names were prepared as an
input to Python script and searched iteratively on PubChem
ftp database and the compounds were downloaded in sdf
(Structure Data File) format. A total of 1,952 compounds were
downloaded from PubChem database. In this study, POAP
(101) was used for the preparation of ligands and for virtual
screening. POAP tool is a bash shell script-based pipeline which
can be used to optimize ligands for docking using Open Babel
(102) and to perform virtual screening using Autodock Suite.
POAP implements dynamic file handling methods for efficient
memory usage and data organization, ligandminimization (5,000
steps), MMFF94 force-field was employed with the addition of
hydrogens. A total of 50 conformations for each compound
were generated using the weighted rotor search method, with
minimization using the steepest descent method. Finally, the
best conformation was retained in.pdbqt format for utilization in
further docking studies.

Active Residues Definition and Cavity Prioritization
Themost important aspect in docking studies is the identification
of important residues and favorable cavity for ligand binding. In
this study, the cavity definition was mainly performed based on
the literature insights on important residues (ACE2 binding site)
coupled with the cavity prediction using P2RANK (103). The
P2RANK predicted cavity spanned the ACE2 binding residues,
as well as on few glycosylation sites. It should be noted that viral
glycosylation has many roles in viral pathogenesis and biology,
as it affects protein folding and stable interaction with host cells
(15). As discussed earlier, glycosylation process in coronaviruses
mainly occur to camouflage the immunogenic process in the host.
Targeting glycosylation sites can aid in the primary and rapid
immune response to neutralize the virus (16). Hence, along with
ACE2 binding residues, glycosylation sites spanning the active
cavity predicted by P2RANK were also considered for grid box
generation. Considering the importance of the binding site with

ACE2, glycosylation sites as well as the active cavity predicted
by the P2RANK tool, the docking grid for molecular docking
was fixed.

Virtual Screening Using POAP and ADMET Prediction
The geometry optimized compounds were subjected to
Molecular docking with SARS-CoV-2 Spike glycoprotein. In
the docking process, the ligands were considered as flexible
and protein was considered as rigid body. The Grid box was
prepared based on the active site residues as inferred from earlier
ligand co-crystallized complex of spike protein and P2RANK
based binding pocket prediction. For the docking process, an
exhaustiveness value of 100 was fixed in Vina. The resulting
Protein-ligand complexes were analyzed for intermolecular
interactions using PLIP tool (104). The top-ranking ligands were
subjected to ADMET profiling using pKCSM server (105).

Molecular Dynamics (MD) Simulation
The MD simulation of Apo protein and docked complexes were
carried out using Desmond version 2020. Here, OPLS_2005 force
field was used to initiate the MD simulation, and the system was
solvated using SPC (Simple point charge) water model (106). The
neutralization of the system was performed by adding counter
ions and the details of ions and concentration added to complexes
are given in Supplementary Table 11. Energy minimization of
the entire system was performed using OPLS_2005, as it is
an all-atom type force field (107). In the studies on natural
compounds, the application of OPLS_2005 force field was found
to be highly optimal. Hence, it was adopted for this study (27).
The geometry of water molecules, the bond lengths and the bond
angles of heavy atoms was restrained using the SHAKE algorithm
(108). Simulation of the continuous system was executed by
applying periodic boundary conditions (109) and long-range
electrostatics was maintained by the particle mesh Ewald method
(110, 111). The equilibration of the system was done using NPT
ensemble with temperature at 300 k and pressure at 1.0 bar. The
coupling of temperature-pressure parameters was done using the
Berendsen coupling algorithm (112). On post-minimization and
equilibration of the system, the Apo protein system consisted of
28,645 atoms in total and number of atoms for all the complexes
are given in Supplementary Table 11. On post-preparation of the
system, the production run was performed for 50 ns with a time
step of 1.2 fs and trajectory recording was done for every 5.0 ps
summing up to the recording of 10,000 frames. The calculation
of the RMSD (Root mean square deviation) was done for the
backbone atoms and was analyzed graphically to understand the
nature of protein-ligand interactions (113, 114). RMSF (Root
Mean Square Fluctuation) for every residue was calculated to
understand the major conformational changes in the residues in
comparison between the initial state and dynamics state (115).
The compactness of the protein-ligand complexes in comparison
to Apo form was calculated using radius of gyration rGyr (116).
The 2D interactions of Protein-ligand complex showing the
stability of the complexes and interaction sites were generated for
the complete run time.
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KDeep Based Absolute Binding Affinity (1G)

Calculation
On post-molecular dynamics simulation, the top ranking
complexes from each plant were energy minimized and
was also analyzed for absolute binding affinity (1G) using
KDeep (117). KDeep employs machine learning approach with
implementation of 3D convolutional neural networks. KDeep
analyses the input and voxelizes into pharmacophore features
like (aromatic, hydrophobic, hydrogen-bond acceptor/donor,
positive, and negative ionizable). The prepared input is passed to
the DCNN (Deep Convolutional Neural Network) model which
is pre-trained by PDB bind v.2016 database, wherein, based
on adaptability to the model the absolute free energy of the
protein-ligand complex is calculated.

MM-PBSA Calculation of Topmost Stable Complexes
Molecular Mechanics-Poisson Boltzmann Surface Area (MM-
PBSA) calculation is one of the most commonly used method for
enumerating binding free energy of protein-ligand complexes.
TheMM-PBSA combines energy calculations based onmolecular
mechanics and implicit solvent model. This method precisely
estimates the binding free energy of the protein-ligand complex,
which is estimated by the differences between the free energy
of the complex and free energies of unbound individual
components of the complex (118). In this study, the MM-
PBSA (PB3) based binding free energy of top most stable
complexes were calculated using farPPI server. WhilePB3 option
was considered as it was benchmarked to be highly accurate
when compared to all the other methods in FarPPI (119). The
force fields, GAFF2 and ff14SB as provided in the server were
applied for ligand and protein, respectively. This calculation was
performed for the lowest potential energy conformation of the
top most stable complexes.

RESULTS

Binding Site Assignment
The structure of spike protein co-crystallized with the ligand
is yet to be available in PDB, hence P2RANK was used to
identify the potential drug binding pockets in concurrence
with key hotspot residues reported in the literature. Based on
the interaction plot of Spike protein (RBD)-ACE2 receptor
complex (PDB ID: 6M0J), the residues of Spike protein that are
involved in the interactions were identified as GLY502, THR500,
LYS417, TYR449, GLY446, ASN487, and GLY496. In addition,
the P2RANK prediction also covered the ASN343 glycosylation
site spanning the RBD of spike glycoprotein. Considering all
these important residues based on the literature, cavities and
solvent accessible areas as predicted by P2RANK, an optimal
docking grid box was created over the spike protein (PBD ID:
7BZ5). It should be noted that the 6M0J structure was only
utilized for mapping the ACE2-Binding region on the spike
protein, and was not used for docking studies, as some atoms
were found missing in the structure. Hence, the 7BZ5 structure
(ACE2 unbound form) with no such issues were utilized for
docking and simulation studies. The Grid file was generated with
the following coordinates (x =−85.56, y =−23.44, z =−16.90)

using Autodock tools program and was proceeded for molecular
docking using Vina as shown in Figure 5.

Molecular Docking Studies
In pursuit of finding an important candidate for managing
COVID-19 from selected plants, molecular docking studies were
carried out with phytochemicals listed from eight plants on
the binding pocket of COVID-19 spike glycoprotein (PDB ID:
7BZ5). Based on literature review, it was clearly found that the
virus enters the human cell via the ACE2 receptor. Hence, we
prioritized the receptor binding domain of spike glycoprotein
PDB ID: 7BZ5, wherein the spike protein interacts with ACE2 for
docking studies. The geometry optimized compounds from all
the plants were docked against active-cavity as discussed above,
and were ranked based on their corresponding docking score.
Compounds having the docking score of <-7.0 kcal/mol were
considered for further evaluation. This cut-offwas adopted, based
on earlier studies, wherein it was found to be optimal (120, 121).
A comprehensive evaluation of all the compounds was performed
based on the binding affinity score and the involvement of
key residues in the binding cavity (Table 1). Also the ADMET
profiling of the compounds with topmost binding affinity was
carried out using pKCSM server (105) and the data is provided
in Supplementary Table 10.

The compound Rutaecarpine from T. indica was found to
be interacting with spike protein at SER371 and SER373 with a
binding affinity of −7.9 kcal/mol (Figure 6A). Tylophorinidine
showed a hydrogen bond with ASN343 (glycosylation site)
and binding energy of −6.9 kcal/mol. Licoagrodin from G.
glabra was found to interact with GLY339, ASP364, VAL367,
and SER371 of RBD region with a binding affinity of −8.7
kcal/mol (Figure 6B). Further analysis also showed that
Hispaglabridin-B, Licoagrone, and Licocoumarin-A from G.
glabra to form hydrogen-bonded interactions with glycosylation
site ASN343 with a binding energy of−8.2 kcal/mol, respectively.
Cryptoxanthin showed hydrogen bond with ASN440, stabilized
by 7 hydrophobic interactions having a binding energy of
−8.4 kcal/mol (Figure 6C); while 3-O-Galloylepicatechin-
(4Beta-6)-Epigallo-catechin-3-O-Gallate (−8.3 kcal/mol)
showed hydrogen bonded interactions at positions: PHE338,
ASN370, SER371, SER373, ASN437, and ASN440. Based on this
significance it was considered for further studies. Furthermore,
compounds namely, Camelliquercetiside-B (−7.8 kcal/mol),
Procyanidin C1 (−7.8 kcal/mol), 3-O-Galloylepiafzelechin-
(4Beta-6)-Epigallo-catechin-3-O-Gallate (−7.7 kcal/mol),
Theasinensin B (−7.6 kcal/mol), Epigallocatechin-(2 Beta-
7,4 Beta-8)-Epigallocatechin-3-O-Gallate (−7.5 kcal/mol),
3-O-Galloylepicatechin-(4 Beta-8)-Epicatechin-3-O-Gallate
(−7.3 kcal/mol), and Theasinensin-C (−7.2 kcal/mol) from
C. sinensis also showed hydrogen bond with residue ASN343.
Compounds from J. adhatoda did not show any interactions
with active residues, however interactions were observed with
residues proximal to the active region: PHE342, SER371,
and SER373. Among all the compounds studied from J.
adhatoda, Daucosterol showed the highest binding affinity
with a score of −7.6 kcal/mol (Figure 6D). In case of O.
tenuiflorum, Stigmastanol (−7.7 kcal/mol) showed interactions
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FIGURE 5 | Represents the region of docking grid fixation (yellow surface)

based on the documented active site residues and P2RANK prediction

including glycosylation site (PDB ID 7BZ5).

with surrounding residues of active cavity and (+)-Taxifolin
(−7.0 kcal/mol) formed hydrogen bonded interaction with
ASN343, while other compounds showed interactions only
with other residues proximal to active residues and showed
higher binding affinity. Among these compounds, Caryophyllene
featured the highest binding affinity with a score of −8.1
kcal/mol (Figure 6E). Compounds Isoginkgetin (−7.6 kcal/mol),
Rutin (−7.3 kcal/mol), 4

′

-Methoxyglabridin (−7.2 kcal/mol),
Curcumin (−7.2 kcal/mol), Cubebin (−7.2 kcal/mol), Cyanin
(−7.0 kcal/mol), and (Z)-1,7-bis(4-hydroxy-3-methoxy-phenyl)
hept-4-en-3-one (−7.0 kcal/mol) from Z. officinale showed
hydrogen bonded interaction with active cavity residues.
The marker compounds of Z. officinale like Gingerenone-
A and B, and Isogingerenone-B showed interactions around
the active residues PHE342, SER371, and SER373, wherein
Geraniin showed highest affinity with a score of −8.2 kcal/mol
(Figure 6F). In case of C. longa, Letestuianin A (−7.2
kcal/mol) showed hydrogen bonded interaction with residue
ASN343. Moreover, the marker compounds like Curcumin (−7.2
kcal/mol) and its derivatives showed interactions around the
active site residues CYS336, PHE342, SER371, and SER373;
wherein O-Demethyldemethoxycurcumin showed significant
binding affinity with a score of −8 kcal/mol (Figure 6G).
In case of S. aromaticum Tellimagrandin-II (−8.2 kcal/mol),
Rugosin-D (−7.9 kcal/mol), Syzyginin-A (−7.8 kcal/mol),
Campesterol glucoside (−7.6 kcal/mol), Sitogluside (−7.7
kcal/mol), Cirrhopetalanthrin (−7.4 kcal/mol), Tellimagrandin-
I (−7.4 kcal/mol), Rugosin-E (−7.3 kcal/mol), Strictinin (−7.3
kcal/mol), Tannin (−7.1 kcal/mol), Myricetin (−7.0 kcal/mol),

and Quercetin (−7.0 kcal/mol) showed hydrogen bonded
interactions at active residue ASN343 and other residues.
Among these compounds Tellimagrandin-II showed the highest
affinity with a score of −8.2 kcal/mol (Figure 6H). The
2D interaction diagrams of all the compounds are given in
Supplementary Figures 2–9.

Molecular Dynamics Simulation of Top
Docked Complexes
Molecular dynamics simulation for all the top-ranking complexes
per plant was carried out with Desmond for a duration of 50
ns. The data from the trajectory was analyzed and tabulated in
Supplementary Table 11. The RMSD and RMSF values of the
protein backbone for all the 8 complexes were plotted and are
shown in Figures 7, 8.

Based on the stability, compactness, and ligand contacts
during the simulation process, Spike protein O-Demethyl-
demethoxycurcumin and Spike protein Tellimagrandin-II
complexes were found to be more stable and were analyzed
further in detail.

Spike Protein O-Demethyldemethoxycurcumin

Complex
The simulation system of Spike protein O-Demethyl-
demethoxycurcumin consisted of 25,902 atoms with 7,659
water molecules. To further neutralize the system, 3 Cl−

(7.122mM) were added and the system was subjected to
50 ns run of production run. The RMSD plot showed
a convergence at 10 ns with ∼1.5 Å difference in the
ligand bound state (Figure 9). The Ligand RMSD values
remained within the range of 1.0–2.5 Å with average RMSD
value being 1.75 Å (Figure 9). The lowest potential energy
conformation was found at 21.5 ns with energy value of
−84,977 kcal/mol with a binding free energy (MM-PBSA) of
−12.48 kcal/mol.

The mobility of the compound in the complex during
simulation with residue-wise calculations was plotted as RMSF
trajectory. The analysis of the RMSF plot inferred that there
was a minimum fluctuation around ∼1 Å, and the trajectory
to remain stable throughout the simulation with maximum
deviation of∼2.4 Å (Supplementary Figure 10). Further the
radius of gyration (rGyr) trajectory was plotted for the entire
production run, wherein the deviation was∼4.70–5.5 Å, thereby
implying the higher compactness during the simulation process
(Supplementary Figure 11).

Protein-Ligand contact analysis inferred that CYS336 to form
hydrogen-bonded interactions for around 80% of the duration,
followed by PHE338, which showed 60% of time to interaction by
means of hydrogen bond and hydrophobic interactions. PHE342,
ASP364, VAL367, and TRP436 showed around 50% of the time
with interaction fraction which includes hydrophobic and water-
bridge interactions (Figures 10A,B).

Spike Protein—Tellimagrandin-II Complex
The simulation system of Spike protein Tellimagrandin-II
complex comprised of 25,917 atoms with 7,645 water molecules.
To further neutralize the system, 3 Cl− (7.135mM) were added.
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TABLE 1 | Compounds from each plant with best binding energy/score.

Plant id Plant name Compound name Binding
energy

KDeep 1G
(Kcal/mol)

Interactions

(kcal/mol) Hydrogen bond
(Distance in Å)

Hydrophobic interaction
(Distance in Å)

Pi-stacking

NITM1 Tylophora indica

(Burm. F.) Merrill Syn.

Tylophora asthmatica

(Roxb.) Wt & Arn.

Rutaecarpine −7.9 −6.15 SER371 (3.23), SER373

(3.14)

PHE342 (3.16), VAL367 (3.39),

LEU368 (3.67), PHE374 (3.64)

TRP436

NITM2 Glycyrrhiza glabra L. Licoagrodin −8.7 −9.45 GLY339 (3.13), ASP364

(3.49), VAL367 (4.06),

SER371 (3.13)

PHE338 (3.89), GLU340 (3.71),

ASP364 (2.93), VAL367 (3.69),

LEU368 (3.46), PHE374 (3.93),

TRP436 (3.83)

NITM3 Camellia sinensis L. 3-O-

Galloylepicatechin-

(4Beta-6)-

Epicatechin-3-O-

Gallate

−8.3 −10.95 PHE338 (2.46), ASN370

(2.17), SER71 (2.57),

SER373 (2.21), ASN437

(3.44), ASN440 (2.67)

PHE338 (3.77), PHE342 (3.63),

VAL367 (3.58)

NITM4 Justicia adhatoda L.,

Syn. Adhatoda vasica

Nees

Daucosterol −7.6 −12.77 PHE342 (3.23), SER373

(3.72), TRP436 (3.13)

ARG509 (2.94)

LEU335 (3.41), PHE338 (3.55),

PHE342 (3.51), ASP364 (3.94),

VAL367 (3.72), PHE374 (3.80)

NITM5 Ocimum tenuiflorum

L., Syn. Ocimum

sanctum L.

Caryophyllene −8.1 −13.77 PHE338 (2.87), GLY339

(2.88), SER373 (2.70)

LEU335 (3.00), PHE338 (3.75),

PHE342 (3.89), ASP364 (3.30),

VAL367 (3.62), LEU368 (3.19),

PHE374 (3.72)

NITM6 Zingiber officinale

Roscoe

Geraniin −8.2 −9.40 VAL362 (3.79), ASP364

(3.04), VAL367 (3.29),

SER371 (3.81)

LEU368 (3.68)

NITM7 Curcuma longa L. O-Demethyl

demethoxycurcumin

−8.0 −7.84 CYS336 (3.04), ASP364

(3.84)

LEU335 (3.70), PHE338 (3.42),

ASP364 (3.67), VAL367 (3.55),

LEU368 (3.95), PHE374 (3.85)

PHE374,

TRP436

NITM8 Syzygium

aromaticum L.

Tellimagrandin-II −8.2 −15.68 CYS336 (2.90), PRO337

(3.52), GLY339 (3.72),

GLU340 (3.37), ASN343

(3.15), ASP364 (3.73),

VAL367 (3.72), SER371

(2.91), SER373 (2.93)

PHE338 (3.28), VAL367 (3.47),

LEU368 (3.39)

Binding energy—Autodock binding score; KDeep 1G—absolute protein ligand binding affinity calculated using KDeep tool.

The system was subjected to a 50 ns run of the production run.
The RMSD plot for this complex showed convergence at 10 ns
with ∼1 Å (admissible range) of deviation in intermolecular
interactions during the entire production run (Figure 11). The
Ligand RMSD values remained within the range of ∼2.0–3.0 Å
with an average mean value of 2.5 Å (Figure 11). The lowest
potential energy conformation was found at 40.8 ns with energy
value of −83,747 kcal/mol with a binding free energy (MM-
PBSA) of−32.08 kcal/mol.

The mobility of the compound in the complex during
simulation with residue-wise calculation was visualized as (root
mean square fluctuation) RMSF plot. On further analysis, the
plot inferred a minimum fluctuation in the ligand bound
position ∼1 Å. Moreover, the trajectory remained stable
throughout the simulation with a maximal deviation of ∼2.5 Å
(Supplementary Figure 12). Furthermore, radius of gyration
(rGyr) trajectory was also plotted, which inferred rGyr to have
maintained∼5.70–6 Å, thereby implying the higher compactness
of ligand (Supplementary Figure 13). Protein-Ligand contact

analysis for the simulation period of 50 ns inferred that
GLU340 and ASP364 to show hydrogen bonded and water-
bridge interaction fraction for around 100% of the duration,
with interactions at more than one position. ASN343 showed
interactions around 60% of the simulation run, which mainly
includes hydrogen bonds and water bridges. VAL367 showed
interactions around 100% of the time includes Hydrogen bonds,
Hydrophobic, and water-bridge interactions (Figures 12A,B).

DISCUSSION

On cumulative analysis of all the results, it could be inferred that
Tellimagrandin-II and O-Demethyldemethoxycurcumin, were
highly potential hits, as these compounds feature significant
interactions with ACE2 binding region coupled with key
glycosylation site (ASN343) of spike protein. Recent mutagenesis
studies strongly suggest that the targeting ASN343 glycosylation
to be the most potential inhibitory mode. Moreover, the
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FIGURE 6 | 3D diagram of RBD of Spike Glycoprotein in complex with (A) Rutaecarpine, (B) Licoagrodin, (C) 3-O-Galloylepicatechin-(4Beta-6)-Epicatechin-3-O-
Gallate, (D) Daucosterol, (E) Caryophyllene, (F) Geraniin, (G) O-Demethyldemethoxycurcumin, and (H) Tellimagrandin-II.

FIGURE 7 | Protein Backbone RMSD plots from Molecular dynamics for all the 8 top ranking protein-ligand complexes.

infectivity of SARS-CoV-2 showed reduction to almost 1,200-
folds when both ASN331 and ASN343 were mutated in
spike protein. This shows the significance of blocking these
glycosylation sites on the receptor binding domain (122).
Viral glycosylation holds a major role in pathogenesis, as
it mediates protein folding, shaping viral tropism, and host

invasion (123). Blocking of glycosylation not only aids in
preventing viral pathogenesis, but also facilitates immune
recognition of the virus (124, 125). Based on the number of
intermolecular interactions with active residues, glycosylation
sites, and proximal residues to active site, Tellimagrandin-II
with a binding energy of−8.2 kcal/mol from S. aromaticummay
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FIGURE 8 | Ligand RMSD plot from Molecular dynamics for all the 8 molecules.

FIGURE 9 | Protein-Ligand RMSD plot of Spike protein O-Demethyldemethoxycurcumin complex.

have a higher affinity toward the spike protein in comparison
with all other compounds. Moreover, it also formed a stable
complex, as inferred by molecular dynamics simulation. The

hydrolysable tannin Tellimagrandin-II is traditionally known
to possess antiviral activity; while hydrolysable tannins as a
whole class are well-known antiviral agents (126). Tannins are
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FIGURE 10 | (A) Protein-ligand contact map for 50ns duration for Spike protein and O-Demethyl-demethoxycurcumin complex. (B) Protein -ligand contacts of Spike

protein-O-Demethyl-demethoxycurcumin complex simulation (Blue, water bridges; Green, Hbonds; Violet, Hydrophobic).

known to inhibit various viral activities like attachment and
penetration of virus and inhibition of reverse transcriptase
(127). Tellimagrandin-II is the first polyphenolic ellagitannin
formed from 1,2,3,4,6-pentagalloyl-glucose, and is an isomer
of punicafolin or nupharin A, also known as Cornustannin
2 or Eugeniin (C41H30O26; Molecular Mass 93,866 g/mol).
The compound is isolated from the dried flower bud of S.
aromaticum (Clove). Earlier studies showed that ethanol extract
of S. aromaticum to possess strong inhibition of recombinant
NS2BNS3 proteases of DENV-2 and 3; while its bioactivity
guided fractionation yielded eugeniin (128, 129), isobiflorin
(5,7-dihydroxy-2-methylchromone-8C-β-d-glucopyranoside),
and biflorin (5,7-dihydroxy-2-methylchromone-6C-β-d-
glucopyranoside). Interestingly the eugeniin from S. aromaticum
and Geum japonicum is found to inhibit α-glucosidase and
possess significant antiviral activity against wild-type HSV-1
and HSV-2. Moreover, eugeniin also targets thymidine-kinase
deficient or acyclovir as well as phosphonoacetic acid (PAA)-
resistant HSV-1 at EC50 of 5.0µg/ml, with CC50 of 69.5µg/ml
(130). Unlike nucleoside analogs, Eugeniin is reported to inhibit
viral DNA polymerase and late protein syntheses in HSV-infected
Vero cells, in a non-competitive manner with respect to dTTP

(130). Animal studies revealed that Eugeniin at 0.3 mg/kg at oral
and intraperitoneal dose retard the development of skin lesions
of HSV-1-infected mice; while at 6 or 50 mg/kg it significantly
prolonged the mean survival times and or reduced mortality
without toxicity. However, at an oral dose of 50 mg/kg it reduced
virus yields in the skin and brain of infected mice with higher
bioavailability. Moreover, Eugeniin enhance the anti-HSV-1
activity of acyclovir, and interact with the polymerase near
PAA-binding site (131). Eugeniin in pure form demonstrated
potent inhibition of NS2BNS3 proteases of DENV-2 and 3
at IC50 of 94.7 nM and 7.53µM; while moderate inhibition
was found with isobiflorin and biflorin at 58.9 and 89.6µM
(132). Furthermore, the kinetic studies revealed a competitive
inhibition at same binding site of both proteases; while the K i

value of eugeniin is reported as 125.2 nM for DENV2 protease,
and 7.1µM for DENV3 protease (132).

Secondly, O-Demethyldemethoxycurcumin from C. longa
was predicted to be a promising molecule for inhibition
of SARS-CoV-2 pathogenesis. It should be noted that O-
Demethyldemethoxycurcumin not only confers inhibitory effects
on the SARS-CoV-2 spike protein as per our prediction, but
is also well-proven to be involved in Endoplasmic reticulum
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FIGURE 11 | Protein-Ligand RMSD plots of Spike protein Tellimagrandin-II complex.

(ER) stress reduction (133). It is well-known that ER stress
reduction is crucial in viral replication and infection, and
is an essential aspect in reducing the infection level, as the
complete secretory mechanism of the virus occurs in ER
(134, 135). Moreover, ER stress is one of the major problems
in SARS-CoV-2 infection, as the synthesis and folding of
transmembrane protein loses balance and the amount of
proteins entering the ER increases drastically. This loss of
balance culminates in the aggregation of unfolded proteins in
the ER, which in turn triggers the ER stress response that
initiates to assist the organelle for homeostasis. SARS-CoV-
2 activates the Unfolded protein response (UPR) and hijack
the signaling pathways for its benefit to infect rapidly, hence
the reduction of ER stress in the body can be a potential
way of blocking SARS-CoV-2 infection (136). Curcumin and
its derivatives are treated as miraculous molecules in many
infectious diseases as well as in immunomodulation. The
derivatives of curcumin in combination with advanced drug
delivery systems may work in a multi-faceted way for the
treatment and prevention of SARS-CoV-2 (88). A recent
computational study showed that curcumin exhibit strong
binding affinity to Spike protein of SARS-CoV-2, ACE2 receptor
of host, and their complex (RBD of viral S protein and ACE2;
RBD/ACE2-complex) with the binding affinity values of −7.9
kcal/mol; −7.8 kcal/mol; and −7.6 kcal/mol; – 9.1 and– 7.6
kcal/mol, respectively. Moreover, molecular dynamics simulation
also substantiated the curcumin’s interaction within RBD site,
thereby predicts the possibility of therapeutic strategy against
SARS-CoV2 (120).

The ADME and toxicity profile of O-
Demethyldemethoxycurcumin and Tellimagrandin II were
predicted and summarized using pKCSM (105). The Intestinal
absorption of O-Demethyldemethoxycurcumin was found
to be high compared to Tellimagrandin-II i.e., 76.46 and
41.54%, respectively. O-Demethyl-demethoxycurcumin was
found to be CYP3A4 substrate and inhibitor of CYP1A2,
CYP2C19, and CYP2C9; whereas Tellimagrandin-II was
predicted as a non-inhibitor. However, both the compounds
were found to be non-substrate to CYP2D6 and non-inhibitor
of CYP2D6 and CYP3A4, thus shall be non-toxic. Further,
both these compounds showed a negative effect in the
AMES toxicity, which indicates its negligible effect on the
different bacterial strains; and a negative effect on the hERG
(Ether-à-go-go-Related Gene), thereby unlikely to cause
arrhythmia; and do not have hepatotoxic property. The
oral acute toxicity of O-Demethyl-demethoxycurcumin was
predicted to be 2.23 mol/kg, whereas, for Tellimagrandin II
it was 2.48 mol/kg. Similarly, the oral rat chronic toxicity of
O-Demethyldemethoxycurcumin was predicted to be 2.715
log mol/kg body weights per day, whereas, for Tellimagrandin
II it was 10.618 log mol/kg body weight per day. Both these
compounds also scored significant KDeep 1G (absolute binding
affinity) and MM-PBSA values.

CONCLUSION

The RBD of Spike protein is one of the major targets in the
inhibition of SARS-CoV-2 and is the most sought-after target
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FIGURE 12 | (A) Protein-ligand contact map for 50ns duration for Spike protein and Tellimagrandin-II complex. (B) Protein - ligand contacts of Spike protein

Tellimagrandin-II complex simulation (Blue, water bridges; Green, Hbonds; Violet, Hydrophobic).

being worked out across the globe. Some of the key residues
which are involved in the entry and infection of the SARS-
CoV-2 harbors on the RBD of the spike protein. Recently,
glycosylation sites are also suggested to hold a key role in
viral proliferation, as inferred by mutagenesis studies. Hence,
in this study, virtual screening of phytochemical inhibitors
targeting RBD domain was carried out, with a key emphasis on
ACE2 binding residues along with glycosylation sites. Among
the compounds studied, Tellimagrandin-II from S. aromaticum
and O-Demethyl-demethoxycurcumin from C. longa were found
to show stable interactions with key hotspot residues (ACE2
binding) including the glycosylation site. Molecular dynamics
simulation of these compounds in complex with RBD also
showed higher stability due to intermolecular interactions
with active residues, significant binding free energy and
optimal shape complementary during the entire production
run. The results from this study clearly indicates that the
proposed compounds may be considered as potential candidates
for the inhibition of SARS-CoV-2 infection, as these are
dual-acting in terms of inhibiting ACE2 interactions, as well
as targeting the glycosylation of spike protein. However,

further experimental validations are warranted to infer the
therapeutic efficacy.
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Background: The tumour immune microenvironment plays an important role in the

biological mechanisms of tumorigenesis and progression. Artificial intelligence medicine

studies based on big data and advanced algorithms are helpful for improving the

accuracy of prediction models of tumour prognosis. The current research aims to explore

potential prognostic immune biomarkers and develop a predictive model for the overall

survival of ovarian cancer (OC) based on artificial intelligence algorithms.

Methods: Differential expression analyses were performed between normal tissues

and tumour tissues. Potential prognostic biomarkers were identified using univariate

Cox regression. An immune regulatory network was constructed of prognostic immune

genes and their highly related transcription factors. Multivariate Cox regression was used

to identify potential independent prognostic immune factors and develop a prognostic

model for ovarian cancer patients. Three artificial intelligence algorithms, random survival

forest, multitask logistic regression, and Cox survival regression, were used to develop a

novel artificial intelligence survival prediction system.

Results: The current study identified 1,307 differentially expressed genes and 337

differentially expressed immune genes between tumour samples and normal samples.

Further univariate Cox regression identified 84 prognostic immune gene biomarkers

for ovarian cancer patients in the model dataset (GSE32062 dataset and GSE53963

dataset). An immune regulatory network was constructed involving 63 immune genes

and 5 transcription factors. Fourteen immune genes (PSMB9, FOXJ1, IFT57, MAL,

ANXA4, CTSH, SCRN1, MIF, LTBR, CTSD, KIFAP3, PSMB8, HSPA5, and LTN1) were

recognised as independent risk factors by multivariate Cox analyses. Kaplan-Meier

survival curves showed that these 14 prognostic immune genes were closely related

to the prognosis of ovarian cancer patients. A prognostic nomogram was developed by

using these 14 prognostic immune genes. The concordance indexes were 0.760, 0.733,

and 0.765 for 1-, 3-, and 5-year overall survival, respectively. This prognostic model
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could differentiate high-risk patients with poor overall survival from low-risk patients.

According to three artificial intelligence algorithms, the current study developed an

artificial intelligence survival predictive system that could provide three individual mortality

risk curves for ovarian cancer.

Conclusion: In conclusion, the current study identified 1,307 differentially expressed

genes and 337 differentially expressed immune genes in ovarian cancer patients.

Multivariate Cox analyses identified fourteen prognostic immune biomarkers for ovarian

cancer. The current study constructed an immune regulatory network involving 63

immune genes and 5 transcription factors, revealing potential regulatory associations

among immune genes and transcription factors. The current study developed

a prognostic model to predict the prognosis of ovarian cancer patients. The

current study further developed two artificial intelligence predictive tools for ovarian

cancer, which are available at https://zhangzhiqiao8.shinyapps.io/Smart_Cancer_

Survival_Predictive_System_17_OC_F1001/ and https://zhangzhiqiao8.shinyapps.io/

Gene_Survival_Subgroup_Analysis_17_OC_F1001/. An artificial intelligence survival

predictive system could help improve individualised treatment decision-making.

Keywords: ovarian cancer, overall survival, immune gene, transcription factor, prognostic signature

INTRODUCTION

Ovarian cancer (OC) is one of the most lethal malignant tumours
in women, with 295,414 new cases and 184,799 deaths in
2018 (1). Although considerable progress has been made in
diagnostic and therapeutic techniques, the 5-year survival rate of
advanced OC patients remains poor (2). Early identification of
patients with highmortality risk andmore precise, individualised
treatments will help improve the prognosis of OC patients.
Regarding precision medicine, developing predictive models
to provide early individualised mortality risk prediction and
predicting the effectiveness of specific therapeutic schedules
would be significant.

Considerable progress in bioinformatics helps scientists
explore the intrinsic regulatory mechanisms of tumorigenesis
and progression (3–6). The immune microenvironment plays an
important role in the initiation and development of tumours
(7, 8). Various studies have reported the clinical value of
immunotherapy for ovarian cancer (5, 6). Several studies
established prognostic models to predict the prognosis of OC
patients (7, 8). However, regarding precision medicine, mortality
risk prediction for high-risk and low-risk subgroups could
not meet the needs of individualised treatment. Individualised
treatment needs precise prognostic models to provide individual
mortality risk prediction for a specific agent but not for a
special subgroup.

Our team constructed two precision medicine predictive
tools that predict individualised mortality risk for hepatocellular
carcinoma (9, 10). These two precision medicine predictive tools

Abbreviations: OC, ovarian cancer; TCGA, The Cancer Genome Atlas; GEO,
Gene Expression Omnibus; ROC, receiver operating characteristic; DFS, disease-
free survival; HR, hazard ratio; CI, confidence interval; AJCC, American Joint
Committee on Cancer; SD, standard deviation.

provide online mortality risk prediction that is convenient and
easy to understand. More importantly, these precision medicine
predictive tools provide individual and specific mortality risk
prediction, which is important for individualised treatment
decision-making. Recently, artificial intelligence based on big
data and advanced algorithms has been used to improve
the accuracy of predictive models for the diagnosis and
prognosis in various tumours (11–13). Therefore, the current
study aimed to build artificial intelligence predictive tools to
predict individualised mortality risk for OC patients based on
immune genes.

MATERIALS AND METHODS

Study Datasets
We retrieved the Gene Expression Omnibus (GEO) database
according to the following conditions to obtain valuable
research datasets: (1) The dataset should have available gene
expression profile data; (2) The dataset should have complete
clinicopathological data; (3) The dataset should have follow-
up survival information. The GSE32062 dataset contained
expression profiling data from 260 advanced-stage high-grade
OC patients (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE32062). The GSE53963 dataset contained expression
profiling data from 174 high-grade OC patients (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53963). To
eliminate the effect of death caused by non-tumour factors on the
results of survival analysis, surviving patients with a survival time
of <3 months were removed from the current study. Therefore,
the GSE32062 dataset and GSE53963 dataset involved 420
patients, and 19,569 mRNAs were downloaded as model datasets
for further survival. Probe IDs generated on the GPL6480
platform were converted to gene symbols based on Gencode
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v29. The TCGA cohort contained 21,586 mRNAs and 370 OC
patients as a validation dataset for survival. The gene count
values were log2-transformed for the TCGA cohort. The flow
chart of patient selection is shown in Supplementary Figure 1.

Differential Expression Analyses
We searched the GEO database to explore a dataset containing
gene expression information of ovarian cancer samples and
normal samples. The GSE26712 dataset was generated on
the Affymetrix Human Genome U133A Array platform. The
GSE26712 dataset has gene expression profiling information
from 185 primary ovarian tumours and 10 normal ovarian
surface epithelium (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE26712). Therefore, differential expression
analyses were performed between 185 tumour samples and
10 normal samples (GSE26712). Cut-off values for differential
expression analyses were log2 |fold change| > 1 and P < 0.05.
The data were normalised using the trimmed mean of M values
method with “edgeR” (14).

Immune Genes
The Immunology Database and Analysis Portal database were
used to identify the immune gene list (15). Transcription factors
were identified via the Cistrome Cancer database (16). Cytoscape
v3.6.1 was used to develop an immune regulatory network of
prognostic immune genes and their highly related transcription
factors (11). Thresholds of |correlation coefficient| > 0.5 and P <

0.01 were used to identify transcription factors highly correlated
with prognostic immune genes. The biological processes of
immune genes were identified using the TISIDB database (http://
cis.hku.hk/TISIDB/index.php).

Tumour Immune Infiltration
Associations among tumour infiltrating immune cells and
immune genes were evaluated by the Tumour Immune
Estimation Resource database (16). Twenty-eight tumour
immune infiltration scores were generated by single sample gene
set enrichment analysis (17, 18).

Statistical Analyses
Statistical analyses were conducted by SPSS Statistics 19.0
(SPSS Inc., USA). Artificial intelligence and bioinformatics
analyses were performed using Python language 3.7.2 and
R software 3.5.2 with the following artificial intelligence
algorithms: random survival forest (RFS) algorithm (19, 20),
multitask logistic regression (MTLR) algorithm (21, 22), and Cox
survival regression algorithm (23, 24). The important packages
included pec, rms, survival, rmda, ggplot2, GOplot, timereg,
randomForestSRC, and riskRegression. The threshold for a
statistically significant difference was a P < 0.05.

RESULTS

Study Datasets
The clinical information of the OC patients is shown in Table 1.
There were 229 (61.9%) of 370 patients who died in the TCGA
cohort (validation dataset), and 260 (61.9%) of 420 patients died

TABLE 1 | Clinical features of included patients.

TCGA dataset GEO dataset P-value

Number [n] 370 420

Deaths [n (%)] 229 (61.9) 260 (61.9) 0.997

Total survival time (mean ± SD, month) 39.2 ± 31.0 47.9 ± 37.3 <0.001

Survival time for dead patients (month) 38.7 ± 25.7 36.8 ± 28.3 0.430

Survival time for living patients (month) 40.0 ± 38.1 66.0 ± 42.7 <0.001

Age (mean ± SD, year) 60.0 ± 11.0 NA

Grade 4 [n (%)] 1 (0.3) 74 (17.6) 0.615

Grade 3 [n (%)] 316 (85.4) 212 (50.5)

Grade 2 [n (%)] 42 (11.4) 134 (31.9)

Grade 1 [n (%)] 1 (0.3) 0

Grade (NA) [n (%)] 10 (2.7) 0

Stage 4 [n (%)] 57 (15.4) 93 (22.1) <0.001

Stage 3 [n (%)] 289 (78.1) 320 (76.2)

Stage 2 [n (%)] 20 (5.4) 7 (1.7)

Stage 1 [n (%)] 1 (0.3) 0

Stage (NA) [n (%)] 3 (0.8) 0

Vascular invasion (positive) [n (%)] 63 (17.0) NA

Vascular invasion (negative) [n (%)] 39 (10.5) NA

Vascular invasion (NA) [n (%)] 268 (72.4) NA

Lymphovascular invasion (positive) [n (%)] 99 (26.8) NA

Lymphovascular invasion (negative) [n (%)] 46 (12.4) NA

Lymphovascular invasion (NA) [n (%)] 225 (60.8) NA

ECOG score (2–4) [n (%)] 6 (1.6) NA

ECOG score (1) [n (%)] 26 (7.0) NA

ECOG score (0) [n (%)] 53 (14.3) NA

ECOG score (NA) [n (%)] 285 (77.0) NA

Continuous variables were presented as mean ± standard deviation; NA, missing data;

AJCC, American Joint Committee on Cancer.

in the GEO cohort (model dataset). As shown in Table 1, there
was no significant difference regarding mortality, survival time
of deceased patients, or grade between the modelling cohort and
the validation cohort during the follow-up period (P > 0.05).
The overall survival time of all patients and the survival time of
the patients in the survival subgroup for the model dataset were
significantly longer than those of the validation dataset. However,
the survival time of patients in the death subgroup of the model
dataset was shorter than that of the patients in the death subgroup
of the validated dataset, indicating that the difference in survival
time between the two datasets might be related to the longer
follow-up time of patients in the GEO cohort (model dataset).

Differential Expression Analyses
Volcano plots of 13,216 mRNAs and 3,075 immune genes are
shown in Figures 1A,B. With a threshold of log2 |fold change|
> 1 and P < 0.05, differential expression analysis identified
779 upregulated and 528 downregulated mRNAs from 13,216
mRNAs (Figure 1A) between 185 tumour samples and 10 normal
samples (GSE26712 dataset). Differential expression analysis
further identified 194 upregulated and 143 downregulated
immune mRNAs from 3,075 immune mRNAs (Figure 1B)
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FIGURE 1 | Differentially expression and functional enrichment: (A). Volcano plot of all genes; (B). Volcano plot of immune genes; (C). Barplot chart of immune genes.

The depth of the color represents different P-values; The length of the band represents the number of enriched genes.
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between 185 tumour samples and 10 normal samples in the
GSE26712 dataset.

To explore the gene expression difference of the identified
immune biomarkers between the patients who died among the
remaining patients with respect to the year of death, we further
performed differential expression analysis between 130 tumour
samples of patients who died and 10 normal samples of living
patients (GSE26712 dataset). Differential expression analysis
identified 753 upregulated and 526 downregulated mRNAs from
13,216 mRNAs. Differential expression analysis further identified
190 upregulated and 137 downregulated immune mRNAs from
3,075 immune mRNAs in the GSE26712 dataset.

Functional Enrichment Analyses
Further univariate Cox regression identified 84 prognostic
immune gene biomarkers for OC patients in the model
dataset (GSE32062 dataset and GSE53963 dataset). The bar
plot (Figure 1C) and Gene Ontology chord chart (Figure 2)
showed that the biological processes of the previous 84 prognostic
immune genes were mainly enriched in leukocyte migration,
cell chemotaxis, regulation of protein serine/threonine kinase
activity, regulation of MAP kinase activity, positive regulation
of response to external stimulus, regulation of leukocyte
migration, regulation of chemotaxis, leukocyte chemotaxis,
positive regulation of MAP kinase activity, and leukocyte
proliferation. The results of the bar plot and Gene Ontology
chord chart suggested that the above biological processes might
play a role in the occurrence, growth, invasion, and prognosis
of ovarian cancer, and the underlying mechanism is worthy of
further study.

Immune Regulatory Network
Univariate Cox regression identified 84 prognostic immune
biomarkers for the OS of OC patients. Transcription factors
that were highly correlated with prognostic immune mRNAs
were identified with previous correlation analysis thresholds.
To explore the potential regulatory relationships among these
immune genes, these previous prognostic immune mRNAs
and their highly correlated transcription factors were placed
in the STRING database with confidence values of 0.90.
Thus, a regulatory network involving 63 immune genes and 5
transcription factors was constructed by using Cytoscape v3.6.1
(Figure 3). As shown in Figure 3, IRF4, GATA4, GATA3, CIITA,
and MYH11 were involved in the immune regulatory network,
indicating that these five transcription factors might play a role
in the immune microenvironment of ovarian cancer.

Construction of a Prognostic Model
Multivariate Cox regression identified fourteen independent
prognostic mRNAs for OS (Table 2 and Figure 4), indicating
that these 14 prognostic immune genes might be more
closely related to the prognosis of ovarian cancer than the
prognostic immune genes that were not included in multivariate
Cox regression. The formula of the prognostic model based
on multivariate Cox regression was as follows: prognostic
score = (-0.472∗PSMB9) + (-0.268∗FOXJ1) + (0.303∗IFT57)
+ (0.095∗MAL) + (0.357∗ANXA4) + (-0.339∗CTSH)

+ (0.422∗SCRN1) + (-0.301∗MIF) + (0.515∗LTBR) +
(-0.371∗CTSD) + (0.503∗KIFAP3) + (0.574∗PSMB8) +
(0.485∗HSPA5) + (0.463∗LTN1). A prognostic nomogram
is shown in Figure 5. For each prognostic gene, different gene
expression values were assigned different risk scores. The total
points (overall risk score) of one patient were obtained by
adding up the risk scores of 14 prognostic genes. Through the
vertical line corresponding to the total points, we can obtain
the corresponding mortality rate of individual patients at
different times.

Supplementary Figure 2 shows significant differences in
survival curves between the high-risk group and the low-risk
group. Eight immune factors (IFT57, MAL, ANXA4, SCRN1,
LTBR, KIFAP3, HSPA5, and LTN1) were positively correlated
with poor prognosis of ovarian cancer, whereas six immune
factors (PSMB9, FOXJ1, CTSH, MIF, CTSD, and PSMB8)
were negatively correlated with poor prognosis of ovarian
cancer. Supplementary Figures 3, 4 show the predictive value
distribution chart and the survival status scatter plot.

Performance of Model Cohort
Survival curves of the two groups are illustrated in Figure 6A,
showing that the mortality rate in the high-risk group was
significantly higher than that in the low-risk group. Concordance
indexes were 0.760, 0.733, and 0.765 for 1-, 3-, and 5-year
survival, respectively (Figure 6B), indicating that the prognostic
model has good predictive value for the prognosis of OC patients.
Supplementary Figure 5 shows the calibration curves of the
model cohort, showing that there was good consistency between
the predicted mortality rate and the actual mortality rate.

Performance of Validation Cohort
Survival curves of the two groups are illustrated in Figure 7A,
showing that the mortality rate in the high-risk group was
significantly higher than that in the low-risk group. Concordance
indexes were 0.860, 0.715, and 0.679 for 1-, 3-, and 5-year
survival, respectively (Figure 7B), indicating that the prognostic
model has good predictive value for the prognosis of OC
patients. Supplementary Figure 6 shows calibration curves of
the validation cohort. Supplementary Figure 7 shows decision
curves for 1-, 3-, and 5-year survival, showing that there was
consistency between the predicted mortality rate and the actual
mortality rate.

Artificial Intelligence Survival Predictive
System
An artificial intelligence survival prediction system was
constructed for individual mortality risk prediction for OC
patients (Figure 8) and is available at https://zhangzhiqiao8.
shinyapps.io/Smart_Cancer_Survival_Predictive_System_17_
OC_F1001/. After the user inputs the expression values of the
prognostic genes and clicks the “predict” button, the survival
curve of one individual patient during the follow-up period will
be presented.

The artificial intelligence survival prediction system provides
three individual mortality risk predictive curves based on
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FIGURE 2 | Chord chart of prognostic genes. Biological processes of previous 84 prognostic immune genes were mainly enriched in cell chemotaxis, leukocyte

migration, regulation of protein serine/threonine kinase activity, regulation of MAP kinase activity, positive regulation of response to external stimulus, regulation of

leukocyte migration, regulation of chemotaxis, leukocyte chemotaxis, positive regulation of MAP kinase activity, and leukocyte proliferation.

artificial intelligence algorithms: the RFS model (Figure 8A),
MTLR model (Figure 8B), and Cox model (Figure 8C).

Gene Survival Analysis Screen System
A Gene Survival Analysis Screen System was
constructed for exploratory research of immune genes
(Supplementary Figure 8) and is available at https://zhangz

hiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_17_
OC_F1001/. After the user inputs the parameters and clicks
the “survival curve analysis” button, the survival curves of the
high-risk group and low-risk group are presented. Users can
obtain hazard ratio values of different clinical parameters after
clicking the “Univariate Cox survival analysis table” button in
the Gene Survival Analysis Screen System.
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FIGURE 3 | Immune gene regulatory network chart. The immune regulatory network involved 63 immune genes and 5 transcription factors. IRF4, GATA4, GATA3,

CIITA, and MYH11 were involved in the immune regulatory network, indicating these transcription factors might play a role in the immune microenvironment of ovarian

cancer.

Independence Assessment
We used multivariate Cox regression to explore the independent
effect of the prognostic model on the prognosis of OC patients.
The prognostic signature was an independent influencing factor
for OS in themodel cohort (Table 3). In the validation cohort, the
prognostic signature was an independent risk factor for OS. The
results of multivariate Cox regression showed that the prognostic
model had an independent effect on the prognosis of ovarian
cancer, which further supported the value of the prognostic
model in predicting ovarian cancer prognosis.

DISCUSSION

The current study identified 1,307 differentially expressed
genes and 337 differentially expressed immune genes between
tumour samples and normal samples. Further univariate Cox
regression identified 84 prognostic immune gene biomarkers
for OC patients in the model dataset (GSE32062 dataset

and GSE53963 dataset). An immune regulatory network was
depicted involving 63 immune genes and 5 transcription factors.
Through bioinformatics research, the current study depicted
potential regulatory relationships among immune genes and
transcription factors. Fourteen immune genes were identified as
independent prognostic factors by multivariate survival analysis.
Kaplan-Meier survival curves showed that these 14 prognostic
genes were closely related to the prognosis of ovarian cancer
patients. These 14 prognostic genes were used to develop
a prognostic nomogram for ovarian cancer. Moreover, two
artificial intelligence predictive tools were developed for precise
individual mortality risk prediction in ovarian cancer. Based on a
random survival forest algorithm, a multitask logistic regression
algorithm, and a Cox survival regression algorithm, the current
artificial intelligence survival predictive system provided three
individual mortality risk predictive curves for the evaluation and
improvement of individualised medical decisions.

In the current study, 1,308 differentially expressed genes
(including 337 differential immune genes) were identified
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TABLE 2 | Information of prognostic immune genes.

Univariate analysis Multivariate analysis

Immune gene HR 95% CI P-value Coefficient HR 95% CI P-value

PSMB9 (High/Low) 0.708 0.554–0.904 0.006 −0.472 0.624 0.449–0.867 0.005

FOXJ1 (High/Low) 0.659 0.516–0.843 <0.001 −0.268 0.765 0.672–0.871 <0.001

IFT57 (High/Low) 1.439 1.126–1.839 0.004 0.303 1.354 1.014–1.807 0.040

MAL (High/Low) 1.355 1.060–1.730 0.015 0.095 1.099 1.019–1.186 0.014

ANXA4 (High/Low) 1.298 1.017–1.658 0.036 0.357 1.430 1.123–1.820 0.004

CTSH (High/Low) 0.751 0.588–0.960 0.022 −0.339 0.712 0.565–0.898 0.004

SCRN1 (High/Low) 1.415 1.107–1.809 0.006 0.422 1.525 1.126–2.065 0.006

MIF (High/Low) 0.776 0.608–0.991 0.042 −0.301 0.740 0.602–0.910 0.004

LTBR (High/Low) 1.377 1.077–1.759 0.011 0.515 1.674 1.190–2.354 0.003

CTSD (High/Low) 0.772 0.605–0.986 0.038 −0.371 0.690 0.523–0.912 0.009

KIFAP3 (High/Low) 1.619 1.266–2.070 <0.001 0.503 1.653 1.189–2.298 0.003

PSMB8 (High/Low) 0.615 0.480–0.787 <0.001 0.574 1.775 1.165–2.703 0.008

HSPA5 (High/Low) 1.317 1.032–1.681 0.027 0.485 1.625 1.094–2.415 0.016

LTN1 (High/Low) 1.347 1.054–1.721 0.017 0.463 1.588 1.051–2.400 0.028

HR, hazard ratio; CI, confidence interval. The medians of gene expression values were used as cut-off values to stratify gene expression values into high expression group (as value 1)

and low expression group (as value 0).

FIGURE 4 | Immune gene survival forest chart. Eight immune factors (IFT57, MAL, ANXA4, SCRN1, LTBR, KIFAP3, HSPA5, and LTN1) were positively correlated with

poor prognosis of ovarian cancer, whereas six immune factors (PSMB9, FOXJ1, CTSH, MIF, CTSD, and PSMB8) were negatively correlated with poor prognosis of

ovarian cancer.

by differential expression analysis. Compared with normal
ovarian tissues, these differentially expressed genes showed high
expression or low expression in tumour tissues, suggesting

that these differentially expressed genes might be related
to the biological characteristics and clinical process of OC.
Further univariate Cox and multivariate Cox regression analyses
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FIGURE 5 | Prognostic nomogram chart. For each prognostic gene, different gene expression values were assigned different risk scores. The total point (overall risk

score) of one patient was obtained by adding up the risk scores of 14 prognostic genes. Through the vertical line corresponding to the total point, we can obtain the

corresponding mortality rate of individual patient at different times.

identified 84 and 14 prognostic immune genes, respectively,
suggesting that these 14 prognostic immune genes might be
closely related to the prognosis of OC patients. Functional
enrichment analysis showed that the 84 genes were mainly
related to the regulation of immune inflammation and were
enriched in leukocyte migration, cell chemotaxis, regulation of
protein serine/threonine kinase activity, and regulation of MAP
kinase activity.

The immune regulatory network further indicated the
potential regulatory relationship among 63 immune genes and
5 transcription factors, suggesting that these immune genes and
transcription factors might play a potential role in the regulatory
mechanism of the tumour immune environment. Previous
studies have provided supporting evidence for the potential
mechanisms of these five transcription factors regarding tumour
growth, progression and prognosis. There is a close relationship
between GATA3 and poor prognosis of high-grade serous
ovarian carcinoma (25). GATA3 positivity is associated with
poor prognosis of pancreatic ductal adenocarcinoma (26). High

expression of GATA3 is associated with good prognosis of ER+
breast cancer (27). IRF4 might activate the Notch-Akt signalling
pathway in non-small cell lung cancer (28). Higher expression
of IRF4+ Tregs was related to poor prognosis for different
cancers (29). IRF4 was an independent prognostic factor for
node-negative breast cancer (30). MYH11 positively modulated
the immune-related gene GLP2R in colon adenocarcinoma
(31). MYH11 positively regulated GSTM5, PTGIS, ENPP2, and
P4HA3 (32). GATA4 inhibits tumour growth by affecting the
assembly of tumour suppressor enhancement modules (33).
Overexpression of GATA4 can protect human granulosa cell
tumours from apoptosis induced by TRAIL in vitro (34).

Different research teams have established valuable survival
prediction models for ovarian cancer based on different research
cohorts and modelling methods. Previous prognostic models
provided mortality curves for two classes of patients with
different clinical characteristics (7, 8) but did not provide
mortality curves for individual patients. He et al. constructed
a prognostic model based on 10 RNA-binding proteins for
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FIGURE 6 | Clinical performance in model cohort: (A). Survival curves for high risk group and low risk group; (B). Time-dependent receiver operating characteristic

curves. The mortality rate in the high risk group was significantly higher than that in the low risk group. Concordance indexes were 0.760, 0.733, and 0.765 for 1-, 3-,

and 5-year survival, indicating that the prognostic model has a good predictive value for the prognosis of ovarian cancer patients.

ovarian cancer (35). However, the calculation formula of this
model is so complex that it is difficult for patients to calculate
their personal risk score. Bing et al. constructed a novel model
by merging three previous models selected by the integrated

P-value method, providing a new idea for the establishment
of a prognostic model (36). However, this theoretically feasible
method has not been applied in clinical research because it
involves the fusion of multiple prognostic models. Tang et al.
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FIGURE 7 | Clinical performance in validation cohort: (A). Survival curves for high risk group and low risk group; (B). Time-dependent receiver operating characteristic

curves. The mortality rate in the high risk group was significantly higher than that in the low risk group. Concordance indexes were 0.860, 0.715, and 0.679 for 1-, 3-,

and 5-year survival, respectively (B), indicating that the prognostic model has a good predictive value for the prognosis of ovarian cancer patients.

presented an eight-mRNA prognostic model for ovarian cancer
(37), providing a valuable predictive model for clinical practise.
If the above models can provide a simple calculation tool, it
will be more helpful to provide convenient survival prediction
information for patients with ovarian cancer. In fact, every

cancer patient cares only for her or his own individual mortality
after diagnosis. Due to the considerable clinical heterogeneity
of tumours, clinicians observe large differences in clinical
prognosis among different cancer patients. Therefore, it is of
great significance to predict the individual mortality risk of
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FIGURE 8 | Individual mortality risk predictive curves based on artificial intelligence algorithms. (A) Random survival forest model; (B) Multitask logistic regression

model; (C) Cox proportional hazard regression model.

cancer patients. The emergence of big data and advanced
algorithms has laid a solid foundation for artificial intelligence
research. Different artificial intelligence algorithms have been
used to improve clinical diagnosis and prognostic prediction
(11–13). Based on the artificial intelligence algorithms provided
in previous studies, the current study developed an artificial
intelligence survival prediction system. The current artificial
intelligence survival prediction system provides three individual
mortality risk predictive curves according to different artificial
intelligence algorithms. These artificial intelligence algorithms

are not widely used in clinical research because of the complexity
of calculation. To the best of our knowledge, our team is the first
to introduce various artificial intelligence algorithms for tumour
prognosis research. Our study showed that artificial intelligence
algorithms have great application value and superiority in
predicting the individual mortality risk for cancer patients
and are worth further research and application. The tumour
immune microenvironment is reportedly related to oncogenesis
and prognosis (7, 38). The current study revealed the potential
association of tumour-infiltrating immune cells and immune
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TABLE 3 | Results of Cox regression analyses.

Univariate analysis Multivariate analysis

HR 95% CI P-value Coefficient HR 95% CI P-value

Model cohort (n = 420)

AJCC Stage (3–4/1–2) 1.913 0.783–4.679 0.155 1.000 2.718 1.111–6.646 0.028

AJCC Grade (3–4/1–2) 1.417 1.066–1.882 0.016 0.108 1.114 0.832–1.492 0.468

Prognostic model (High/Low) 2.988 2.294–3.893 <0.001 1.105 3.019 2.302–3.959 <0.001

Validation cohort (n = 370)

AJCC Stage (3–4/1–2) 1.999 0.887–4.505 0.095 0.734 2.084 0.913–4.756 0.081

AJCC Grade (3–4/1–2) 1.209 0.808–1.812 0.356 0.046 1.048 0.695–1.579 0.824

Prognostic model (High/Low) 1.915 1.466–2.500 <0.001 0.658 1.930 1.472–2.531 <0.001

AJCC, the American Joint Committee on Cancer; HR, hazard ratio; CI, confidence interval. The median of Prognostic model scores was used as the cut-off value to stratify gastric

cancer patients into high risk group and low risk group.

genes with tumour prognosis. Compared with several previous
predictive models for the prognosis of OC patients (14, 39),
our precision medical predictive tools were more valuable
in providing individual mortality risk prediction at different
time points.

The TISIDB database was used to explore the biological
processes of immune genes. The top biological processes of
proteasome subunit beta 9 (PSMB9) were immune response-
activating signal transduction, the immune response-regulating
signalling pathway, and the immune response-activating cell
surface receptor signalling pathway. The top biological processes
of Forkhead box J1 (FOXJ1) were adaptive immune responses,
leucocyte-mediated immunity, humoural immune response
mediated by circulating immunoglobulin, and lymphocyte-
mediated immunity. The top biological processes of mal, T-
cell differentiation protein (MAL) were the extrinsic apoptotic
signalling pathway via death domain receptors, regulation
of apoptotic signalling pathway, and the extrinsic apoptotic
signalling pathway. The top biological processes of annexin
A4 (ANXA4) were interleukin-8 production, regulation of
interleukin-8 production, and negative regulation of interleukin-
8 production. The top biological processes of cathepsin
H (CTSH) were T cell-mediated immunity, lymphocyte-
mediated immunity, leucocyte-mediated immunity, and adaptive
immune response. The top biological processes of macrophage
migration inhibitory factor (MIF) were negative regulation
of immune system process, B cell homeostasis, regulation
of immune effect or process, and lymphocyte homeostasis.
The top biological processes of lymphotoxin beta receptor
(LTBR) were myeloid dendritic cell activation, leucocyte
differentiation, response to tumour necrosis factor, and response
to molecules of bacterial origin. The top biological processes
of cathepsin D (CTSD) were autophagy, antigen processing
and presentation of exogenous antigen, antigen processing
and presentation of exogenous peptide antigen via MHC
class II. The top biological processes of kinesin-associated
protein 3 (KIFAP3) were antigen processing and presentation,
antigen processing and presentation of peptide antigen via
MHC class II, and antigen processing and presentation of
exogenous antigen. The top biological processes of proteasome

subunit beta 8 (PSMB8) were immune response-activating
signal transduction, innate immune response-activating signal
transduction, and the immune response-regulating cell surface
receptor signalling pathway.

PSMB9, FOXJ1, IFT57, MAL, ANXA4, CTSH, SCRN1,
MIF, LTBR, CTSD, KIFAP3, PSMB8, HSPA5, and LTN1 were
recognised as independent risk factors by multivariate Cox
analyses, suggesting that these 14 prognostic immune genes
might have potential effects on the occurrence, progression and
prognosis of tumours. NANOG controls cell migration and
invasion by regulating FOXJ1 expression in ovarian cancer (15).
FOXJ1 promoted tumour growth in bladder cancer (16). Highly
expressed FOXJ1 promoted the proliferation and invasiveness of
laryngeal squamous cell carcinoma cells (17). High expression
of MAL was associated with poor survival of advanced ovarian
cancer (40). Overexpression of the MAL gene was used to predict
chemoresistance and poor prognosis in serous ovarian cancer
patients (18). High expression of MAL promoted metastasis
in colorectal cancer (24). Ikaros inhibited the proliferation
of tumour cells by downregulating the expression of ANXA4
in hepatocellular carcinoma (23). Knockdown of SCRN1
significantly reduced tumour cell growth in colorectal cancer
(19). EIF expression was associated with overall survival in
patients with ovarian cancer (20). The KIFAP3 gene is highly
expressed at the mRNA and protein levels in breast cancer
(41). miR-451a inhibited cancer growth and induced apoptosis
of papillary thyroid cancer by targeting PSMB8 (41). The CpG
mutation of PSMB9 is related to the recurrence or drug resistance
of ovarian cancer after chemotherapy (42). High expression
of PSMB8 and PSMB9 is related to the five-year survival of
ovarian cancer (43). High expression of MIF is correlated with
poor overall survival of ovarian cancer (44). HSPA5 inhibits
the growth of epithelial ovarian cancer cells through G1 phase
arrest (45). High expression of CD5L promoted proliferation and
the antiapoptotic response in hepatocellular carcinoma cells by
binding to HSPA5 (46).

CD4T helper cells can inhibit the transformation of
immunosuppressive regulatory T cells in ovarian cancer (41).
Regulatory T cells were positively correlated with ovarian cancer
(20). An increased CD8/regulatory T cell ratio suggests good
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prognosis for ovarian cancer (47). Dendritic cell immunotherapy
could stimulate antitumour T cell immunity and improve the
prognosis of cancer patients (21). Interleukin 10 regulates Toll-
like receptor-mediated dendritic cell activation in ovarian cancer
(22). IL-15 enhanced natural killer cell function in ovarian cancer
patients (13). A low lymphocyte-to-monocyte ratio was related
to poor survival in ovarian cancer (48). Mast cell infiltration
with high mean vessel density indicated favourable prognosis
in ovarian cancer (49). Macrophage secretory proteins induce
ovarian cancer proliferation through the JAK2/STAT3 pathway
(50). M1 macrophages induce ovarian cancer cell metastasis
through the activation of NF-κB (51). Small extracellular vesicles
could inhibit the T cell response and promote the growth
of ovarian cancer cells (51). Artesunate induced apoptosis of
ovarian cancer cells by microRNA-142 (52). Mature neutrophils
inhibited T cell immunity in ovarian cancer patients (50).
Regulatory T cells inhibit CD8T cell function through the IL-
10 pathway (53). ISG15 induced CD8T cells and inhibited
the progression of ovarian cancer (54). TGF-beta 1 induces
CD8 Tregs through the p38 MAPK pathway in ovarian
cancer (55). CD4T helper cells inhibit the transformation of
immunosuppressive regulatory T cells (56). CD4T cells induce
the host immune response through dendritic cells in patients
with MHC class II-negative ovarian cancer (57).

Advantages: First, the current study developed two artificial
intelligence predictive tools that provided individual mortality
risk prediction at different time points and were valuable
for optimising individual treatment decisions. Second, the
current artificial intelligence survival predictive system provided
three individual mortality risk predictive curves based on
three artificial intelligence algorithms. Different artificial
intelligence algorithms provided more reliable and valuable
prognostic predictions for ovarian cancer than conventional
prognostic models.

Shortcomings: First, because study datasets from public
databases did not include information on surgical treatment,
radiotherapy, biological targeting therapy, etc., the current study
failed to assess the impact of these important clinical variables
on survival. Second, from the perspective of model validity
and extensibility, the sample size of the current research was
relatively small for prognosis, which might weaken the validity
of the research conclusions. Large, prospective sample studies
can provide more convincing clinical evidence for the current
study. Third, as non-parametric algorithms, artificial intelligence
algorithms are complex to perform, and their calculation
processes cannot be expressed by simple equations, restricting
artificial intelligence algorithms as the mainstream methods for
prognostic studies. Fourth, the current study constructed an
immune regulatory network and revealed potential regulatory
associations among immune genes and transcription factors.
However, the role and mechanism of immune genes and
transcription factors in tumorigenesis, growth and prognosis
need to be elucidated by further study.

In conclusion, the current study identified 1,307 differentially
expressed genes and 337 differentially expressed immune genes
in ovarian cancer patients. Multivariate Cox analyses identified

fourteen prognostic immune biomarkers for ovarian cancer.
The current study constructed an immune regulatory network
involving 63 immune genes and 5 transcription factors, revealing
potential regulatory associations among immune genes and
transcription factors. The current study developed a prognostic
model to predict the prognosis of ovarian cancer patients. The
current research further developed two artificial intelligence
predictive tools for ovarian cancer, which are available at
https://zhangzhiqiao8.shinyapps.io/Smart_Cancer_Survival_
Predictive_System_17_OC_F1001/ and https://zhangzhiqiao8.
shinyapps.io/Gene_Survival_Subgroup_Analysis_17_OC_
F1001/. The artificial intelligence survival predictive system can
improve individualised treatment decision-making.
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The coronavirus disease (COVID-19), a worldwide pandemic, is caused by the severe

acute respiratory syndrome-corona virus-2 (SARS-CoV-2). At this moment in time,

there are no specific therapeutics available to combat COVID-19. Drug repurposing

and identification of naturally available bioactive molecules to target SARS-CoV-2 are

among the key strategies to tackle the notorious virus. The enzyme RNA-dependent

RNA polymerase (RdRp) performs a pivotal role in replicating the virus. RdRp is a

prime target for Remdesivir and other nucleotides analog-based antiviral drugs. In this

study, we showed three bioactive molecules from tea (epicatechin-3,5-di-O-gallate,

epigallocatechin-3,5-di-O-gallate, and epigallocatechin-3,4-di-O-gallate) that showed

better interaction with critical residues present at the catalytic center and the NTP entry

channel of RdRp than antiviral drugs Remdesivir and Favipiravir. Our computational

approach to identify these molecules included molecular docking studies, followed by

robust molecular dynamics simulations. All the three molecules are readily available in tea

and could be made accessible along with other medications to treat COVID-19 patients.

However, these results require validation by further in vitro and in vivo studies.

Keywords: RNA-RdRp, bioactive molecules, SARS-CoV-2, tea, COVID-19

INTRODUCTION

Recently, a major threat to humanity has emerged in the form of a novel coronavirus (CoV),
causing a disease that is regarded as coronavirus disease 2019 (COVID-19) (1, 2). Taxonomically,
this virus hails to the Coronaviridae family, which contains the enveloped positive-sense RNA virus
of four major groups, alpha, beta, gamma, and delta (3, 4). Among these, Severe Acute Respiratory
Syndrome (SARS) CoV and Middle East Respiratory Syndrome (MERS) CoV from the beta group
are highly pathogenic to humans and develop symptoms like common cold, fever, and respiratory
problems (5, 6). Previous outbreaks of the CoV in humans were reported in 2002 and 2012, which
involved the SARS and MERS CoV, respectively (7, 8). Due to the absence of a specific treatment
protocol, they had to be controlled via several public health measures (4, 9). The COVID-19 disease
is provoked by a new CoV, named SARS-CoV-2. As compared to the other CoVs, SARS-CoV-2 has
an uplifted human-to-human transmission rate, which gives a rationale for its extensive spread
(10, 11).
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GRAPHICAL ABSTRACT |

The non-structural protein 12 (nsp12), also called the RNA-
dependent RNA polymerase (RdRp), performs a significant
function in the replication and transcription cycles of SARS-
CoV-2 by catalyzing the synthesis of the viral RNA, making it one
of the most critical targets for viral inhibition (1, 12). The nsp12
is likely to be assisted by cofactors like the nsp7 and nsp8 (13).
The RdRp structure comprises a polymerase domain ranging
from residue S367 to F920 that resembles a cupped “right hand”
and a nidovirus-unique N-terminal extension domain ranging
from residues D60 to R249, also called the NiRAN domain
(14, 15). The two domains interact via the interface domain
ranging from residues A250 to R365 (12). It also comprises the
fingers subdomain (residues L366-A581 and K621-G679), the
palm domain (residues T582-P620 and residues T680-Q815), and
the thumb domain (residues H816-E920) (12, 14). There is an
N-terminal β-hairpin (residues D29 to K50) between the palm
subdomain and the NiRAN domain, which assists in the overall
stabilization of the structure (12). The region from residue A4 to
R118 comprises two helices and five antiparallel β-strands (9, 12).
Another β-strand is present in the region between residues N215
and D218. It interacts with a strand in the region V96 to A100,
thereby providing stability to the conformation by forming a
compact and firm β-barrel architecture (12). The RdRp mediates
a template-directed RNA synthesis part of the viral life cycle

where the template entry, the nucleoside triphosphate (NTP)
entrance, and the nascent strand exit pathway converge into a
central cavity, which is all positively charged (12, 16). The NTP
entry channel is demarcated via hydrophilic motif F having K545,
R553, and R555 residues (12). The RNA template enters the active
site from a channel between motifs F and G, where motif E and
the thumb subdomain hold the template strand. The active site
is mainly constituted of motifs A and C, held up by motifs B and
D (9).

The worldwide spread of SARS-CoV-2 and the rising statistics
emphasize the importance of identifying drug candidates, which
can act as potent antivirals to control the growing pandemic.
RdRp is a promising target for inhibition, firstly, due to its
critical involvement in the viral life cycle; secondly, it conserved
the nature of its structure and sequence across several RNA
viruses; and lastly, due to the missing homologs in the host
(4, 12). Nucleotide analogs (NAs) include Remdesivir (adenosine
analog), which has already proven to be effective against several
viral diseases and has also been reported to inhibit SARS-CoV-
2 by controlling its proliferation (17, 18). NAs upon entry
tend to acquire an active 5

′

-triphosphate, which challenges the
endogenous nucleotides to get incorporated in the viral RNA by
acting as an alternate substrate for the RdRp (1). Remdesivir also
works similarly by benefiting from the low fidelity of the RdRp,
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thereby preventing viral proliferation by chain termination (19,
20). Analysis of the Remdesivir-mediated inhibition state of the
virus illustrates conformational changes in the residues D760,
D761, andD618. This allows the phosphate group of the inhibitor
to interact with allosteric residue R555 (12).

In this study, a dataset of bioactive molecules of tea were
screened and compared to Remdesivir and Favipiravir for their
inhibitory potential against the RdRp of SARS-CoV-2. Tea is
consumed by more than half of the world’s population. The
proof underpinning the health benefits of tea is rapidly growing
with each new research published in the scientific literature. A
plethora of studies have reported advantageous effects of habitual
tea consumption against several types of cancers, cardiovascular
diseases, diabetes, and arthritis (21). Apart from it, bioactive
tea molecules are promising compounds in manifesting antiviral
activities. They exhibit antiviral activity against a broad spectrum
of human viruses, including HIV, herpes simplex virus, influenza,
hepatitis B, and hepatitis C (22, 23). These compounds are
even effective against Zika, Chikungunya, and Dengue viruses
(23). Recent computational and experimental investigations
documented the potent antiviral activities of bioactive tea
molecules against multiple vital proteins, including the main
protease (Mpro), non-structural protein 15 (Nsp15), spike, and
RdRp of SARS-CoV-2 (24–28). The main objectives of the study
were to analyze the interaction pattern and binding affinity of
selected bioactive molecules and FDA-approved antiviral drugs
with the active pocket of SARS-CoV-2 RdRp and, furthermore,
to rank and suggest topmost molecules on the basis of their
potential to hinder the replication process of SARS-CoV-2.

MATERIALS AND METHODS

Datasets
The crystallographic RdRp-RNA structure complex (PDB Id:
7BV2) was obtained from the protein data bank with a resolution
of 2.50 Å (29). The chain A (nsp12) contains 951 amino acids.
The protein complex also constitutes of primer and template
RNA strands of length 20 and 30 nucleotides, respectively.
A set of bioactive molecules of Tea (24) was prepared for
molecular docking and MD simulation studies. The structures of
Remdesivir and Favipiravir in their active forms were obtained
from PubChem (30).

Molecular Docking
A set of bioactive molecules from tea along with Remdesivir and
Favipiravir was docked into the active site of RdRp of SARS-
CoV-2. Discovery Studio’s CDOCKER algorithm was utilized to
carry out molecular docking. CDOCKER is CHARMm-based
semiflexible docking engine (31). The resilient conformation
section grabbed by ligand molecules searched employing high-
temperature kinetics. The optimization at the binding site of
each conformation is achieved by using the simulated annealing
method to obtain reliable docking outcomes. The CDOCKER
parameters were kept on default. The number of starting random
conformations and the number of rotated ligand orientations to
refine for each of the conformations for 1,000 dynamics steps
were set to 10. Moreover, for annealing refinement, the number

of heating steps was 2000, while the number of cooling sets was
set to 5,000. The distance to consider Pi-cation, Pi-Pi, and Pi-alkyl
interactions was set to 5, 6, and 5.5 Å, respectively. A radius of 8.0
Åwas assigned centering the ligand in the active site that contains
all the active residues participating in the binding of the ligand
to the RdRp–RNA SARS-CoV-2 protein. The 3D structures of
all the bioactive molecules were prepared using the Discovery
Studio package (32). Furthermore, for energy minimization, we
have used CHARMm force field and DFT protocols (33). The
built molecules were then read in Discovery Studio.

Molecular Dynamics Simulations
A 100-ns MD simulation was performed for all the selected
complexes using the GROMACS 4.6.7 suite (34). A large protein
size of RdRp (951 amino acids) along with RNA increases the
complexity of all atomic simulation setups by several folds. The
protein topology for the protein complexes has been derived
from the CHARMM27 force field, while ligand topologies were
prepared by employing the PRODRG server. Every protein
complex system was solvated with a simple point charge (SPC)
water model. Each system was neutralized by attaching chloride
ions, accompanied by energy minimization with the steepest
descent method of integration. After minimization, the protein
was equilibrated for 10 ns at 300K in NVT as well as NPT
ensemble (35). Finally, MD simulation was performed at a
temperature of 300K for 100 ns under periodic boundary state
and the time constant of 1.0 ps for coupling. The constant
pressure and temperature (1/atm/300K) were managed through
Berendsen Coupling Algorithm17 with a time constant of 0.2
ps for heat-bath coupling (36). The SHAKE algorithm was
used during simulation to maintain the length of the bond
involving the hydrogen bond. The free binding energies of the
selected complexes were calculated with g_mmpbsa software in
GROMACS 4.6.7. The MM-PBSA method was applied to the
calculation of the binding free energies (37). It can be calculated
via the following equation:

1Gbinding = GComplex − [GProtein + GLigand] (1)

Here,1Gbinding delineates the binding free energy of the protein–
ligand complexes; GProtein and GLigand delineate the overall free
energies of the protein and ligand molecule. The generated
trajectories of MD simulations were then practiced to construct
the graph for root mean square deviation (RMSD), RMSD
conformational clustering, and hydrogen bond; “gmx rms,” “gmx
cluster,” and “gmx hbond” scripts of GROMACS were employed
to interpret the yield trajectory data.

RESULTS AND DISCUSSION

The availability of a high-resolution crystallographic structure
of the RdRp–RNA complex has unlocked the pathway for
the development of potential antivirals targeting the particular
protein of SARS-CoV-2. Many studies around the world have
suggested that high intake of foods rich in bioactive molecules
has beneficial impact on human health and may mitigate
the possibility of various human ailments, such as diabetes,
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FIGURE 1 | Molecular docking interaction poses of (A) Remdesivir and (B) Favipiravir with the active site of the RNA–RdRp complex of SARS-CoV-2. The

color-coding scheme is as follows: H-bonds (green), pi-alkyl/alkyl (pink), pi-sulfur (golden yellow), and pi-lone pair (limon).

cancer, Alzheimer’s disease, cataracts, stroke, and age-related
functional disorders (38). Bioactive molecules are rich in
structural diversity and provide a large area of chemical space
for the exploration of possible target sites. In our previous study,
the bioactive molecules Oolonghomobisflavan-A, Theasinensin-
D, and Theaflavin-3-O-gallate of tea showed better binding
than the FDA-approved drugs to the active site of the main
protease of SARS-CoV-2 (24). Herein, we screened a dataset of
bioactive molecules from tea to check and compare their affinity
toward the active site of the RdRp–RNA complex of SARS-
CoV-2. The top three tea bioactive molecules screened in this
study were epicatechin-3,5-di-O-gallate, epigallocatechin-3,4-di-
O-gallate, and epigallocatechin-3,5-di-O-gallate.

Molecular Docking
Molecular docking is an exemplary tool to identify the
intermolecular framework of ligand–protein, protein–nucleic
acid, and protein–protein complexes. The RdRp–RNA complex
of SARS-CoV-2 was docked with a set of bioactive molecules
from tea and FDA-approved repurposed drugs Remdesivir
and Favipiravir. All the molecules were ranked according to
their binding scores generated by the CDOCKER protocol
of Discovery Studio (Supplementary Table 1). The binding
poses of Remdesivir and Favipiravir within the active site of
the RdRp–RNA complex were shown in Figure 1. Remdesivir
binds to the active site by interacting with the residues of
RdRp and RNA nucleotides of both the primer and template
strand. The Uracil at position 20 of the primer strand is
bound to Remdesivir by two hydrogen bonds and Pi-alkyl
interactions. Remdesivir also formed hydrogen bonds with
Uracil at position 10 of the template strand. Additionally,
Remdesivir was stabilized in the binding site by a Pi-Sulfur
interaction with residues Arg555, Lys551, and Arg553 of

RdRp. Furthermore, residues Val557, Lys545, Asp760, Cys622,
Asp623, Thr680, Ser759, Asn691, Thr687, and Ala688 of RdRp
were involved in van der Waals interactions with Remdesivir.
Favipiravir occupied the central pocket of the RdRp–RNA
complex and formed a hydrogen bond with Uracil at position
20 of the primer RNA strand. Two hydrogen bonds were
formed between Favipiravir and Uracil at position 10 of
the template RNA strand. Residues Lys545 and Lys551 were
involved in Pi-Sulfur interaction with Favipiravir. Residues
Arg555, Val557, Ser6682, Asp761, Asp760, and Adenine at
position 11 of the template strand were involved in van der
Waals interactions.

Three molecules from tea displayed stronger binding with the
active site of the RdRp–RNA complex in terms of CDOCKER
interaction energy (Table 1). The docking poses with the most
favorable interaction patterns are shown in Figure 2. The
molecule epicatechin-3,5-di-O-gallate formed three hydrogen
bonds and a Pi-anion interaction with the Uracil at position
20 of the primer RNA strand. The molecule was further
stabilized within the active pocket by eight hydrogen bonds
with residues Lys545, Asp623, Asp425, Asn691, Ser759, Ser682,
and Ser814. Residues Asp623 and Thr556 were involved in
the formation of Pi-anion and Pi-Lone Pair interactions,
respectively. Many other residues of protein RdRp along with
the Adenine and Uracil of the template RNA strand at positions
11 and 10 showed van der Waals interactions. The second
molecule from tea, epigallocatechin-3,5-di-O-gallate, formed two
hydrogen bonds with Uracil at position 20 of primer RNA.
It interacted with residues Ser682, Asp623, Arg553, Arg55,
Lys545, Ile548, Asp760, and Ser759 via nine hydrogen bonds.
Residues Arg555 and Ala547 were also involved in Pi-alkyl
interactions. Furthermore, the binding of epigallocatechin-3,5-
di-O-gallate to the active pocket of the RdRp–RNA complex
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TABLE 1 | Selected tea bioactive molecules and FDA-approved drugs based on

-CDOCKER interaction energy.

Molecules -CDOCKER interaction energy

Epigallocatechin-3,5-di-O-gallate 79.4086

Epicatechin-3,5-di-O-gallate 78.0801

Epigallocatechin-3,4-di-O-gallate 74.4848

Favipiravir 74.1136

Remdesivir 33.9374

was enhanced by van der Waals interactions by residues Cys622,
Thr680, Ser682, Arg624, Val557, Ser549, Ser814, Asp761, Ala688,
Thr687, and Asn691. The molecule epigallocatechin-3,4-di-O-
gallate also showed higher binding potential than Favipiravir
and Remdesivir at the active site of the RdRp–RNA complex.
The primer strand Uracil at position 10 interacted via two
hydrogen bonds, while the Adenine at position 20 of the same
RNA strand formed one hydrogen bond with epigallocatechin-
3,4-di-O-gallate. The residues Arg836, Arg555, Ser759, Asn691,
Asp623, Ser682, Asp452, Arg553, and Lys545 of the RdRp
protein showed 10 hydrogen bonds with epigallocatechin-3,4-
di-O-gallate. Moreover, three Pi-anion interactions (Arg836,
Cys622, Asp623), two Pi-alkyl interactions (Arg555 and Val557),
and a Pi Lone Pair interaction were also observed at the
active site.

Remdesivir is a nucleotide analog that occupied the central
position of the catalytic active site and formed a covalent bond
with the primer RNA strand, and terminates replication by non-
obligate RNA chain termination (12). However, studies contrary
to these results showed the addition of more nucleotides to
the RNA strand even after the incorporation of Remdesivir
resulting in delayed chain termination (20, 39). The catalytic
center of RdRp protein is composed of residues Ser759, Asp760,
and Asp761. This site is conserved in most viral RdRps
(12, 29). Residues Lys545, Arg553, and Arg555 contribute to
the formation of the NTP entry channel (12). The FDA-
approved drugs Remdesivir and Favipiravir formed weaker
van der Waals and Pi-Sulfur interaction with the residues of
the catalytic center and the NTP entry channel. However, all
the three selected tea molecules formed stronger hydrogen
bonds with most of these residues. Residues Asn691, Ser682,
and Asp623 impart specificity to RNA replication over DNA
strand by recognizing the RNA specific 2

′

-OH group (40).
Our selected molecules from tea formed stronger hydrogen
bonds with residues Asn691, Ser682, and Asp623 as compared
to weaker van der Waals interactions formed by Remdesivir
and Favipiravir. Stronger interactions with RNA recognition
residues and other residues involved in the formation of the
catalytic center and the NTP entry channel would ensure
the destabilization of the incoming RNA in the active site
and hence halt/meddle with the process of viral replication.
Furthermore, MD simulations were conducted to substantiate
the molecular docking results and explore the dynamics of
ligand–protein interactions at the catalytic site of the RdRp–
RNA complex.

FIGURE 2 | Molecular docking interaction poses of bioactive molecules from

tea with the active site of the RNA–RdRp complex of SARS-CoV-2. (A)

Epicatechin-3,5-di-O-gallate, (B) epigallocatechin-3,5-di-O-gallate, and

(Continued)
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FIGURE 2 | (C) epigallocatechin-3,4-di-O-gallate. The color-coding scheme is

as follows: H-bonds (green), pi-alkyl/alkyl (pink), pi-sulfur (golden yellow), and

pi-lone pair (limon).

Molecular Dynamics Simulations
The basic understanding of how biological macromolecules
function requires an awareness of molecular structure and
dynamics (41). MD simulations establish fundamental
links based on experimental and theoretical evidences
between structure and dynamics, allowing the investigation
of conformational energy landscape available to biological
macromolecules (42, 43). In our previous studies, we showed
the potential of bioactive tea molecules to inhibit the Mpro
(24) and nsp15 (25) of SARS-CoV-2. Moreover, in a different
study, we demonstrated the inhibitory potential of acridinedione
analogs to inhibit the Mpro of SARS-CoV-2 (44). A recent
study employing MD simulations suggested potential molecules
to target the RdRp of SARS-CoV-2 (45). The RdRp–RNA
complexes with Remdesivir, Favipiravir, and three selected
bioactive molecules of tea were subjected to explicit MD
simulations. The MD results were analyzed by using different
multiscale computational methods.

Structural Stability of RdRp–Ligand–RNA
Complexes
The RMSD is a classical technique for the analysis of MD
results. It is a popular measure for analyzing the structural
stability of protein structures. The RMSDs of all the C-α
atoms of selected protein complexes were calculated, as depicted
in Figure 3. All the protein structures deviated < 0.35 nm
during the simulation. The RdRp–RNA complex with Remdesivir
had the highest deviation with an average RMSD value of
∼0.32 nm. The complex with Favipiravir deviated at a lower
trajectory than Remdesivir after 25 ns until the end of the
simulation. All the three RdRp–RNA complexes having selected
tea molecules (epicatechin-3,5-di-O-gallate, epigallocatechin-
3,4-di-O-gallate, and epigallocatechin-3,5-di-O-gallate) showed
relatively lower deviations than Remdesivir. The average RMSD
values of epicatechin-3,5-di-O-gallate and epigallocatechin-3,5-
di-O-gallate were 0.27 and 0.29 nm, respectively. After initial
deviations from the starting structure for the first 25 ns, the
RMSD trajectories of the simulated complexes stabilized and
showed convergence in the second half of the simulation. These
results indicated that the structural stability of RdRp–RNA
complexes with bioactive molecules of tea was comparable to that
of Favipiravir and wasmore stable than Remdesivir. Additionally,
lower RMSD values also showed that all the simulated structures
were able to reproduce correct binding poses as generated by
molecular docking studies.

Dynamics of Simulated Complexes
The ensemble clustering of simulation data is a conclusive
and effectual method of analyzing the structural flexibility of
concerned protein systems (46). The MD trajectories of all
the selected complexes for 5 ns (45–50 ns) of the simulation

period were extracted and subjected to clustering analysis. The
clustering was done on three different combinations of the
receptor and the ligand to explore the dynamics of ligand
interactions with individual receptors and the whole protein
(RdRp)–nucleic acid (active site RNA) complex. The RMSD
clustering results are shown in Figure 4. In RdRp–ligand
complexes, Favipiravir formed the least number of clusters
with an average RMSD of 0.130 nm, while Remdesivir and
epigallocatechin-3,4-di-O-gallate formed five clusters each with
an average RMSD of 0.131 and 0.130 nm, respectively. In
RNA–ligand complexes, Favipiravir showed only two clusters
with an average RMSD of 0.109 nm. Among the bioactive
molecules of tea, epigallocatechin-3,4-di-O-gallate showed only
three clusters, while the rest of the two molecules formed six
clusters each while interacting with RNA. Remdesivir formed
12 clusters with an average RMSD of 0.160 nm. Similarly, in
protein–RNA–ligand complexes, Remdesivir formed the most
number of clusters (nine clusters) followed by epicatechin-3,5-
di-O-gallate (eight clusters), epigallocatechin-3,5-di-O-gallate
(eight clusters), epigallocatechin-3,4-di-O-gallate (six clusters),
and Favipiravir (four clusters). The average RMSD of all
the clusters was below 0.140 nm. These results showed that
the selected bioactive tea molecules were more stable than
Remdesivir and almost comparable to Favipiravir in clustering
analysis. Furthermore, to visualize the effect of structural
fluctuations on intermolecular interactions, we analyzed the
hydrogen bond formations between RdRp–ligand and RNA–
ligand complexes.

Analysis of Intermolecular Hydrogen Bonds
Hydrogen bonds are commonly considered as mediators of
protein–ligand binding and also promote the binding affinity
of a ligand by displacing the water molecules bound to protein
into the bulk solvent. We calculated the number of hydrogen
bonds formed by the selected bioactive molecules of tea and
standard drugs with both the RdRp and RNA of SARS-CoV-
2. Remdesivir and Favipiravir formed an average of four and
five hydrogen bonds, respectively, with the RdRp of SARS-
CoV-2. Epicatechin-3,5-di-O-gallate formed the most number of
hydrogen bonds during the simulation with the residues of the
RdRp of SARS-CoV-2. The average number of hydrogen bonds
formed during the simulation by epicatechin-3,5-di-O-gallate
was 7, with few conformations formed up to 10 hydrogen bonds
(Figure 5A). Epigallocatechin-3,4-di-O-gallate stabilized in the
binding pocket by forming an average of six hydrogen bonds
with the RdRp of SARS-CoV-2. The third selected molecule
epigallocatechin-3,5-di-O-gallate for the first 25 ns showed an
average of five hydrogen bonds, while for the next 25 ns,
the average number of hydrogen bonds was five with RdRp.
Similarly, epicatechin-3,5-di-O-gallate, epigallocatechin-3,4-di-
O-gallate, and epigallocatechin-3,5-di-O-gallate formed more
hydrogen bonds with RNA at the active site of RdRp than
Remdesivir and Favipiravir. The average number of hydrogen
bonds formed between epicatechin-3,5-di-O-gallate and RNA
was two, while the highest number of hydrogen bonds was four.
Both epigallocatechin-3,4-di-O-gallate and epigallocatechin-3,5-
di-O-gallate showed up to five hydrogen bonds with the active
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FIGURE 3 | Backbone RMSDs are shown as a function of time for the RNA–RdRp complex of SARS-CoV-2 and ligands.

FIGURE 4 | Analysis of SARS-CoV-2 complexes shown as clusters of (A) RdRp–ligands, (B) RdRp–RNA, and (C) RdRp–RNA–ligands. Numbers of clusters are

represented by asterisk.

site RNA (Figure 5B). The standard drugs Remdesivir and
Favipiravir were able to form an average of one and two hydrogen
bonds, respectively, with the active site RNA. All the three

selected bioactive molecules of tea formed a greater number of
hydrogen bonds within the active site of the RdRp of SARS-CoV-
2 than Remdesivir and Favipiravir throughout the simulation
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FIGURE 5 | Hydrogen bond profiles of the RNA–RdRp complex of SARS-CoV-2 having (A) RdRp and (B) RNA.

FIGURE 6 | Binding free energy represented graphically for RdRp protein and color scheme as follows: (A) RNA–Remdesivir (black), RNA–Favipiravir (red). (B)

RdRp–Remdesivir (black), RdRp–Favipiravir (red). (C) RNA–epicatechin-3,5-di-O-gallate (blue), RNA–epigallocatechin-3,5-di-O-gallate (cyan),

RNA–epigallocatechin-3,4-di-O-gallate (orange). (D) RdRp–epicatechin-3,5-di-O-gallate (blue), RdRp–epigallocatechin-3,5-di-O-gallate (cyan),

RNA–epigallocatechin-3,4-di-O-gallate (orange).
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TABLE 2 | Binding free energy (MM-PBSA) calculations for selected complexes.

RNA–RdRp–Ligand Complexes 1E binding (kJ/mol) 1E polar solvation (kJ/mol) SASA (kJ/mol) 1E Electrostatic (kJ/mol) 1E Van der Waal (kJ/mol)

RdRp-Epicatechin-3,5-di-O-gallate −61.461 209.138 −19.313 −87.878 −163.408

RdRp-Epigallocatechin-3,5-di-O-gallate −38.515 280.167 −18.915 −139.544 −160.222

RdRp-Epigallocatechin-3,4-di-O-gallate −62.278 249.433 −22.516 −110.399 −178.796

RdRp-Remdesivir 107.346 437.201 −12.356 −248.406 −69.093

RdRp-Favipiravir 248.378 977.029 −12.653 −657.208 −58.790

RNA-Epicatechin-3,5-di-O-gallate −47.148 66.063 −7.478 −41.142 −64.592

RNA-Epigallocatechin-3,5-di-O-gallate −39.857 58.538 −7.632 −27.821 −62.942

RNA-Epigallocatechin-3,4-di-O-gallate −56.695 99.860 −10.168 −55.757 −90.630

RNA-Favipiravir 2091.712 −18.286 −6.780 2168.615 −51.572

RNA-Remdesivir 1311.862 −30.025 −7.045 1387.624 −40.383

period. These results were further confirmed by extracting RdRp–
ligand–RNA complex trajectories at different time intervals and
visualizing the stability of selected molecules in the active site of
RdRp (Supplementary Figure 1). The bioactive molecules of tea
were tightly bound to the active site of RdRp by forming a greater
number of hydrogen bonds and other non-covalent interactions
than Remdesivir and Favipiravir. Furthermore, an efficient and
reliable method of calculating the binding free energy and its
contributors was employed to compare bioactive tea molecules
with Remdesivir and Favipiravir.

The Molecular Mechanics
Poisson–Boltzmann Surface Area
(MM-PBSA) Analysis
MD simulations present a glimpse of a ligand’s stability in
the binding region of a concerned protein. By implementing
MM-PBSA calculations, we assessed the binding free energy of
selected RdRp–ligand complexes. The observation was made
with the extraction of the RdRp–ligand complex scripts fromMD
simulations. The binding free energy can acceptably illustrate
the durability of the linking ligand receptor, which is an
integral aspect of drug development. The binding energies of
the ligands with RdRp and RNA were compared. Remdesivir
and Favipiravir showed positive binding energy with both RdRp
and RNA. Moreover, the binding free energy was decomposed
into electrostatic, SASA, van der Waals, and polar solvation
energies. The lesser the binding energy, the more reliable the
ligand–protein binding. The favorable contribution of SASA,
electrostatic, and van der Waals energies was devoted to the
binding of RdRp and RNA with our selected molecules from
tea. In contrast, electrostatic energy was positive for standard
molecules in RNA but favorable in RdRp, as shown in Figure 6

and Table 2. Approximately all atoms inside a macromolecule
convey a partial charge, and thus, molecules striving for
molecular classification interact via electrostatic interactions. It
is believed that these interactions assist two leading roles: to
control the molecules toward their binding style and to generate
unique interactions within the active site (47). It is assumed that
the positive values of the electrostatic associations destabilize
the interaction and thus diminish the affinity. By contrast, in

binding free energy, the polar solvation energy participated
generously to increase the total energy. Van der Waals energy’s
augmentation to the overall binding free energy was higher
upon the electrostatic contribution energy. The higher (–ve)
binding energy is responsible for potential binding. These results
bestow higher binding energy for all the selected tea molecules as
compared to Remdesivir and Favipiravir.

CONCLUSION

The RdRp is an attractive target for the development of
specific inhibitors for SARS-CoV-2. The FDA-approved drugs
Remdesivir and Favipiravir showed promising results in curing
COVID-19 patients. In this study, a dataset of bioactive
molecules from tea was screened to analyze its interaction
profiles within the active site of the RdRp–RNA complex. The
molecules epicatechin-3,5-di-O-gallate, epigallocatechin-3,4-di-
O-gallate, and epigallocatechin-3,5-di-O-gallate formed stronger
hydrogen bonds with the key residues involved in the recognition
of RNA for replication, the catalytic center, and the NTP
entry channel. These residues showed weaker van der Waals
interactions with Remdesivir and Favipiravir. Both the selected
molecules also showed the most favorable binding energies
during robust MD simulations than the standard drug molecules.
The bioactive molecules of tea also target the Mpro and nsp15 of
SARS-CoV-2 as shown by our previous reports. The results our
previous study along with the present findings disclose the ability
of bioactive molecules of tea to target multiple proteins of SARS-
CoV-2 (Mpro, nsp15, and RdRp). These bioactive molecules
could be quickly made available in formulations along with other
antiviral therapies to rapidly cure COVID-19 patients. These in
silico results, however, require validation by experimental studies.
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Familial hypercholesterolemia (FH), a well-known lipid disease caused by inherited

genetic defects in cholesterol uptake and metabolism is underdiagnosed in many

countries including Saudi Arabia. The present study aims to identify the molecular basis

of severe clinical manifestations of FH patients from unrelated Saudi consanguineous

families. Two Saudi families with multiple FH patients fulfilling the combined FH diagnostic

criteria of Simon Broome Register, and the Dutch Lipid Clinic Network (DLCN) were

recruited. LipidSeq, a targeted resequencing panel for monogenic dyslipidemias, was

used to identify causative pathogenic mutation in these two families and in 92 unrelated

FH cases. Twelve FH patients from two unrelated families were sharing a very rare,

pathogenic and founder LDLR stop gain mutation i.e., c.2027delG (p.Gly676Alafs∗33)

in both the homozygous or heterozygous states, but not in unrelated patients. Based

on the variant zygosity, a marked phenotypic heterogeneity in terms of LDL-C levels,

clinical presentations and resistance to anti-lipid treatment regimen (ACE inhibitors, β-

blockers, ezetimibe, statins) of the FH patients was observed. This loss-of-function

mutation is predicted to alter the free energy dynamics of the transcribed RNA,

leading to its instability. Protein structural mapping has predicted that this non-sense

mutation eliminates key functional domains in LDLR, which are essential for the receptor

recycling and LDL particle binding. In conclusion, by combining genetics and structural

bioinformatics approaches, this study identified and characterized a very rare FH

causative LDLR pathogenic variant determining both clinical presentation and resistance

to anti-lipid drug treatment.

Keywords: familial hypercholesterolemia, genetic diagnosis, monogenic diseases, consanguineous populations,

LDLR pathogenic mutations
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INTRODUCTION

FH (OMIM 143890) is a relatively common metabolic disease
in which patients demonstrate life-long elevation of plasma
low-density lipoprotein (LDL) cholesterol (1). If left untreated,
modified LDL particles enter arterial wall macrophages
contributing to plaque formation, particularly within coronary
arteries leading to premature development of coronary heart
disease (CHD) (2). Cholesterol-laden macrophages lead to
formation of not only atheromatous plaques, but also extensor
tendon xanthomas (e.g., Achilles and fingers), xanthelasmata
(yellow deposit underneath the skin of upper and lower eyelids),
and arcus cornealis (cholesterol ring accumulating at the edge
of the cornea) (3). Since FH is asymptomatic in the initial
stages, most FH patients do not realize their illness until the
onset of symptomatic atherosclerotic cardiovascular disease in
their forties or fifties, which is sometimes fatal (4). The overall
prevalence of FH in the Gulf region is estimated to be ∼ 0.43%
(1/232), however, in Saudi Arabia, prevalence of FH is not yet
established due to the dearth of local FH clinical registries,
epidemiological studies, and population genetic screening
programs (5, 6). Diagnosis rates of FH are quite high among
individuals who have a positive family history of premature
CHD or hypercholesterolemia (7).

FH is caused by defective hepatic uptake of LDL receptor
(R) mediated LDL-C particle degradation processes. About 30–
60% of clinically diagnosed FH patients have a single copy of
a pathogenic mutation (8). Majority of the clinically diagnosed
FH patients (∼80%) have a mono-allelic loss-of-function (LoF)
variant in LDLR gene, while the rest are LoF variants in
the receptor-binding domain of the APOB gene or a gain-
of-function (GoF) variant in the PCSK9 gene. A very small
proportion of FH have biallelic LoF mutations in LDLRAP1
which normally assists in LDL receptor internalization by liver
cells. However, ∼30–70% of clinically diagnosed FH patients are
negative for LDLR, APOB, or PCSK9 pathogenic mutations. Few
have very rare LoF mutations in secondary FH genes, including
ABCG5, ABCG8, LIPA, or APOE, while many other patients with
hypercholesterolemia carry several common genetic variants
(also called single nucleotide polymorphisms), which collectively
act to influence the serum LDL-C concentration (9).

FH typically shows either autosomal dominant (HeFH;
heterozygous FH) or autosomal recessive (HoFH; homozygous
FH) mode of inheritance based on one or two copies of
pathogenic variants in LDLR, APOB or PCSK9 genes (10, 11).
In most of the studied populations, HoFH affects 1 in 160,000–
300,000 individuals, while the HeFH affects out 1 in 250–300
individuals (8). There is evidence for higher prevalence rates of
HeFH in founder subpopulations like Saudi Arabians, in which
consanguineous marriages are practiced as part of a social norm.
Furthermore, FH is underdiagnosed all around the world, with
<5% of affected individuals in many countries being identified
as having FH (12). Owing to the limited data describing the
genetic and phenotypic characteristics of hypercholesterolemia
among Saudi patients (13–15) this study aims at identifying
the inherited basis of FH in two consanguineous families from
Saudi Arabia. In this study, we show that LipidSeq targeted

resequencing panel for monogenic dyslipidemias, can effectively
detect FH causative LDLR founder variant (c.2027delG) in
genetically isolated populations like Saudi Arabians.

MATERIALS AND METHODS

Recruitment of FH Patients and Their
Families
The institutional Ethics Committee for Human Research of King
Abdulaziz University Hospital (KAUH) gave the approval to
conduct the present study according to standard international
guidelines. This study has recruited FH patients from Genetic
Dyslipidemia and Familial Hypercholesterolemia clinic at the
King Abdulaziz University Hospital, Jeddah, Saudi Arabia.
Initially two families with multiple members, fulfilling the
combined FH diagnostic criteria of Simon Broome Register, and
the Dutch Lipid Clinic Network (DLCN), were identified. In
Simon Broome criteria for FH diagnosis, points are assigned
for cholesterol concentrations, clinical characteristics, molecular
diagnosis, and family history, which include risk of fatal heart
disease (16). Although the Simon Broome Register criteria
consider the molecular diagnosis as evidence for definite FH, the
DLCN requires that at least one other criterion bemet in addition
to molecular diagnosis (17). All the affected individuals from
these families underwent detailed physical examinations and
their full family history was collected. Laboratory investigations
for multiple parameters including Plasma lipid profile (LDL-
C, HDL-C, Triglyceride and Total Cholesterol), blood glucose,
thyroid function, and liver function were measured by a
homogenous enzymatic assay. Clinical geneticist revisited the
medical data of patients, interviewed them, drew three generation
pedigree charts and enrolled the remaining relatives of the
patient families. We have also recruited 92 unrelated FH patients
following the DLCN criteria. Approximately 5mL of blood
sample (in EDTA vacutainers) was collected from all individuals
after explanation of the study, along with risks and potential
benefits. All the participants have signed the informed consent.

Genotyping
DNA Preparation
Genomic DNA from peripheral blood cells was isolated using
the standard protocols supplied by commercial extraction kits.
DNA’s quality and quantity were assessed with Nanodrop
spectrophotometer and DNA integrity was checked with 1%
agarose gel. DNA dilutions at starting concentration of 2 ng/µL
were prepared with help of a Qubit 2.0 fluorometer.

Targeted DNA Resequencing With LipidSeq
The DNA samples of the index cases and other members
from both families were sequenced on LipidSeq, a targeted
resequencing panel for monogenic dyslipidemias, at London
Regional Genomics Center, London, Ontario, Canada
(www.lrgc.ca). This LipidSeq resequencing panel can scan
pathogenic mutations in 73 genes and 185 single nucleotide
polymorphisms (SNPs) associated with dyslipidemia and other
metabolic disorders (18). A latest article has reviewed the utility
of LipidSeq technology in successfully diagnosing the monogenic
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dyslipidemias and metabolic disorders (19). The full details of
DNA library preparation, sequencing, sequence alignment and
variant calling (10-fold coverage and 20% read frequency) are
described in the original publication (18). VarSeq software was
used to annotate and prioritize the variants and for identifying
the FH potential variants. Different nucleotide sequence-based
prediction algorithms, such as CADD, SIFT and PolyPhen-2
which assess pathogenicity of variants were used to filter
the likely deleterious variants (20). The minor allele frequency
(MAF) of the variants was determined based on the data available
like SHGP, 1,000 genomes, ExAC, ESP and GnomAD databases.
From this data, we picked up the extremely rare (MAF is <0.01)
mutation occurring in coding regions or splicing regions of
the FH causative disease genes and validated its presence in
remaining family members and unrelated FH cases.

Sanger Sequencing
The LipidSeq identified a potential FH causative variant was
validated in index case, family members and unrelated FH
cases, using the Sanger sequencing method. In brief, initially
oligonucleotide primers (forward primer; 5′-CCCAACCTTGA
AACCTCCTTGTGGAAA-3′ and reverse primer; 5′-CCATTTG
ACAGATGAGCAGAGAG-3′) spanning the potential mutation
location were designed, followed by PCR reactions with dNTP
and ddNTP mixture, and bidirectional sequencing in an
automatic DNA sequencing machine. The sequence reads were
analyzed with help of Bioedit program and nucleotide numbering
of the mutations was done considering A of ATG code of mRNA
sequence as the first nucleotide. Variant segregation in the family
was determined by careful analysis of variant status in each
family member.

Computational Functional Analysis of
Pathogenic Mutations
Functional Analysis of Pathogenic Mutation on RNA

Structure
Studying the impact of pathogenic variants on the RNA
secondary structures gives hint about its possible functional
consequences. Thus, we used a RNA fold (http://rna.tbi.univie.
ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) prediction tool which
estimates the back bone traces and minimum free energy (MFE)
value differences on the optimal secondary structure of RNA
molecule (21). This tool intakes the native and wildtype RNA
sequences in FASTA format and uses Mccaskill’s algorithm (22)
for computing the probabilities of base pairing matrix, partition
function, and structure of centroid molecules. The output
of RNA folding is an interactive string representation RNA
secondary structure and a mountain plot showing the folding of
energy differences between native and mutant sequences. MFE
differences between native and mutant RNA structures were
compared to estimate the effect of pathogenic variant on their
secondary structural features.

Functional Analysis of Pathogenic Mutation on

Protein Structure
Studying the impact of pathogenic variants on protein structure
provides insight into the complex dynamics of genotype vs.

protein phenotype and structure-function relationships. In this
study, we retrieved the x-ray crystallography solved tertiary
structure of the query protein from Protein Data Bank (PDB).
The construction of missing structural regions basing on original
crystal structure coordinates was simulated through ab-initio
method using I-Tasser webserver (23, 24). The full length tertiary
model was subsequently processed for energy minimization
and stereochemical assessment steps as described in our recent
publication (25). We subsequently created mutant form of
FH candidate protein by providing the mutant amino acid
sequence and followed the similar steps involved in native protein
structure modeling. The built 3D models were provided as an
input to PDBSUM for examining the variant induced protein
phenotype changes at secondary structure level. PyMOL software
was used for visualizing and examining the salt bridges in,
which the 3D models built. Stability changes induced by the
variants on LDLR structure were estimated with help of DUET
webserver (26).

RESULTS

Case Presentations in the FH Families
Family A
Family A is a native Saudi Arabian family from the North-
Western region (Figure 1A). The index case (II.3) was clinically
diagnosed as FH patient at the age of nine and later presented to
our clinic when he was 34 years old for his lipid management.
His clinical examination revealed signs of severe hyperlipidemia.
All classical manifestations of FHwere present including bilateral
large Achilles tendon xanthomas, huge cholesterol depositions
around both mid-thighs, severe bilateral eye xanthelasma and
corneal arcus, and bilateral multiple extensor tendon xanthomas
on hands. His biochemical profile revealed on an average
high level of total cholesterol (15.18 ± 1.33 mmol/L), LDL-C
(12.98 ± 2.08 mmol/L) and normal triglycerides (0.81 ± 0.16
mmol/L) (Table 1). He had a past history of hospitalization
after chest discomfort and shortness of breath, during which
electrocardiogram generated ischemic changes were noticed.
A computerized tomography (CT) of the entire aorta was
performed, which showed extensive atherosclerotic calcifications
in the thoracic aorta, abdominal aorta and into the iliac vessels
(Figure 2).

At the time of his visit to our lipid clinic, II.3 was on
the following regimen; dual antiplatelet agents, angiotensin
converting enzyme (ACE) inhibitors, β-blockers, ezetimibe 10
mg/day and intensive statin treatment with rosuvastatin 40
mg/day, without showing any signs of improvement in his
lipid profile (and even when PCSK9 inhibitors were given).
He has been undergoing a bimonthly LDL- apheresis therapy
in the Cardiovascular Prevention and Rehabilitation Unit
of a major referral hospital in Saudi Arabia over the last
10 years. The patient reported his strict adherence to diet
and medications as per the physician’s instructions. With
each apheresis session, his LDL cholesterol level drops by
70 to 83 percent, but within 1 week, returns back to the
pre-apheresis level.
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FIGURE 1 | Pedigrees showing the autosomal dominant inheritance mode for LDLR variant (c.2027delG) in two different Saudi FH Families (A,B). Arrow indicates the

index case who was first seen in our clinic. The zygosity of the variant’s genotype is mentioned under the subjects. Dark color circles or boxes in the pedigree

indicates subjects with FH.

Pedigree analysis of the index case suggested positive family
history of dyslipidemia, consistent with an autosomal dominant
mode of inheritance. The biochemical findings of his parents (I.1
and I.2), five siblings including two brothers (II.1 and II.3), and 3
sisters (II.2, II.6 and II.6) were consistent with an FH diagnosis.
However, one sister (II.4) has showed a healthy lipid profile
and normal clinical features. Clinical and medication details of
family members are shown in Table 1. Furthermore, proband
has reported that three of his grandparents (both maternal
and paternal), two maternal uncles, three paternal uncles,
and three siblings suffered from cardiovascular complications
including multiple myocardial infarctions (MI). Of the three
paternal uncles, two had percutaneous coronary interventions
with insertion of coronary stents; one underwent coronary artery
bypass grafting (CABG) in his forties.

Family B
The second consanguineous family comes from the Southern
region of Saudi Arabia (Figure 1B). The proband (I.2) was

referred to our clinic after undergoing CABG surgery together
with replacement of two valves. His past medical history revealed
that he was hypercholesterolemic since early adulthood, has
undergone cardiac catheterization four times, and had multiple
stent placements at the ages of 39 (1 stent), 42 (4 stents),
and 44 (1 stent) due to coronary artery narrowing. At the
age of 47, the patient was admitted for an open-heart surgery
to perform CABG to improve blood flow and oxygen supply
to the heart. Clinical examination did not reveal the presence
of severe physical signs including the absence of Achilles and
tendon xanthomas. The only physical finding was the presence
of mild corneal arcus. At the time of his presentation at the lipid
clinic, his on-treatment lipid measurements were as follows; total
cholesterol 3.86 mmol/dL, LDL-C 2.69 mmol/Dl, and triglyceride
level 1.13 mmol/L (Table 1). Despite receiving combination of
lipid lowering drugs i.e., ezetimibe 10mg daily, and evolocumab
subcutaneous injections 140 mg/mL once every 2 weeks, there
was no improvement in his blood LDL cholesterol, which ranged
between (2.47–3.09 mmol/L).
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TABLE 1 | Clinical and biochemical characteristics of FH families studied in this investigation.

Family Member Genotype LDL-C

(mmol/L)

Reference

rane

TC

(mmol/L)

Reference

range

TG

(mmol/L)

Reference

range

Clinical phenotype

Mean ±

Standard

deviation

Mean ±

standard

deviation

Mean ±

standard

deviation

A I.1 G/− 8.3 ± 1.98 0–3.57

(mmol/L)

11.0 ±

1.01

0–5.20

(mmol/L)

0.76 ±

0.29

0.3–2.30

(mmol/L)

Diabetes, hyperlipidemia, bilateral

tendon xanthomas, history of

atherosclerosis myocardial infarctions

(MI).

I.2 G/− 9.7 ± 1.32 13.7 ±

1.37

0.86 ±

0.41

Hyperlipidemia, bilateral tendon

xanthomas, history of peripheral

atherosclerosis in both legs and

history of cardiovascular disease.

II.1 G/− 11.4 ±

0.54

12.8 ±

0.91

0.66 ±

0.54

Hyperlipidemia, history of MI.

II.2 G/− 10.1 ±

1.11

11.9 ±

1.11

0.78 ±

0.37

Hyperlipidemia, history of MI.

II.3 −/− 13.4 ±

2.11

15.5 ±

1.24

0.82 ±

0.19

Statin resistance, bilateral

xanthelasma, corneal arcus, bilateral

tendon xanthomas, Achilles tendon

xanthomas, severe and huge

cholesterol depositions around both

mid-thighs.

II.4 G/G – – – –

II.5 G/− 7.8 ± 0.98 14.6 ±

0.93

0.77 ±

0.33

Hyperlipidemia

II.6 G/− 8.2 ± 1.22 12.8 ±

0.87

0.87 ±

0.23

Hyperlipidemia

B I.1 G/− 7.6 ± 2.40 9.6 ± 1.33 0.75 ±

0.56

Hyperlipidemia, history of aortic

atherosclerosis

I.2* G/− 2.2 ± 1.08 3.6 ± 1.24 1.69 ±

0.55

Sever aortic stenosis, multiple MI

events and CABG surgery.

II.1 G/− 4.7 ± 1.51 6.3 ± 1.81 1.73 ±

1.01

Hyperlipidemia, chronic angina and

severe chest pain.

II.2 G/− 3.8 ± 1.41 5.5 ± 1.46 0.86 ±

0.05

Diabetes, hyperlipidemia, chronic

angina and severe chest pain.

II.3 G/− 4.8 ± 2.26 6.3 ± 2.42 1.08 ±

0.09

Hyperlipidemia, chronic angina and

severe chest pain.

*On-treatment lipid measurements; G/G, homozygote, G/−, heterozygote, −/−, homozygote for LDLR, c.2027delG mutation.

The clinical screening, biochemical investigations and
pedigree analysis of this family were consistent with an
autosomal dominant mode of inheritance. As per biochemistry
reports, spouse of the index case (I.1), elder son (II.1) and two
daughters (II.2 and II.3) were also dyslipidemic. However, his
younger son (II.4) and younger daughter (II.5) were healthy
and free from any symptoms related to dyslipidemia (Table 1).
The index case (I.2) and his wife (I.1) both have reported that
their mothers have died before the age of 60 due to myocardial
infarction (MI) and other heart associated related complications.
Moreover, the elder sister of the index case (I.1) and younger
brother of the spouse (I.2) were reported to have had open-heart
surgery before their fifties due to severe MI after they had
cardiac catheterizations initially at the age of 25. All these cardiac
events in the family and elevated blood lipid profiles strongly

suggests premature atherosclerosis which is consistent with
severe heterozygous or homozygous FH.

Genetic Analysis
The LipidSeq data of both families were analyzed for pathogenic
mutations in LDLR, APOB, PCSK9, ARH, APOE, ABCG5,
ABCG8, and LIPA owing to their known involvement in FH. Out
of all FH candidate genes screened, only one a rare pathogenic
c. 2027delG (g.11231084delG) variant localized to exon 14 of the
LDLR gene, which is positioned on chromosome 19 p13.2 was
noticed in 8 affected individuals in family A and five individuals
in family B. This deletion mutation results in a frameshift in
coding sequence of the LDLR gene and subsequently substitutes
the native amino acid glycine to variant alanine at 676th
position, followed by 33 nonsense residues, leading eventually
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FIGURE 2 | A computerized tomography (CT) scan showing the evidence of

stenosis. CT cross-section of the thoraco-abdomen illustrating (A)

Calcification within the aortic wall in the thoracic region (T11–T12). (B)

Calcification within the aortic wall in the lumber region (L1–L2). (C) Calcification

within the aortic wall in the lumber region (L4–L5). (D) Calcification within the

iliac artery in the sacral region.

to a premature stop gain signal to truncate the LDLR protein
(UniProtKB - P01130) at 709th amino acid (G676AfsX33).
This variant is expected to result in a prematurely truncated
protein which likely undergoes nonsense-mediated protein decay
(Figure 3).

This LDLR variant is listed in both dbSNP (ID: rs875989937)
and ClinVar (ID: 226383). The rare prevalence of this variant
is also ascertained through its absence in Exome Aggregation
Consortium (ExAC), 1,000 genomes, EURO-WABB (LOVD),
Greater Middle East (GME) Variome and Saudi Human Genome
Program (SHGP) databases. This variant has a very low frequency
of 0.0001 (six homozygotes and one heterozygote out of 4,706
individuals) in Saudi population as per the Saudi Human
Genome Program database. According to variant interpretation
standards and guidelines set out by American College of Medical
Genetics and Genomics (ACMG), this variant is very strongly
predicted to be pathogenic because it’s a null variant in coding
region of the LDLR gene whose loss of function (LOF) is a
well-known mechanism for FH. Moreover, this mutation has
been reported to fully segregate with FH in few Saudi families
(27, 28) and is also listed in Human Genome Mutation Database
(HGMD) to cause FH. Sanger sequencing results have confirmed
the autosomal dominant mode of inheritance of variant in FH
patients from both families. The distribution of mutation in
family A is as follows; both parents (I.1 and I.2), four siblings
(one brother- II.1 and three sisters- II.2, II.5 and II.6) were
heterozygote carriers of the variant. Whereas, the index case
(II.3) was homozygote for the c. 2027delG variant. As described
in previous section, this index case has presented with severe
clinical features of FH, including Achilles tendon xanthomas.
However, the younger sister (II.4) of index case was homozygous
for the reference G allele. In family B, the proband (I.2), his

wife (I.1), elder son (II.1) and two daughters (II.2 and II.3)
were heterozygotes, whereas his younger son (II.4) and younger
daughter (II.5) were homozygote carriers of the reference G
allele. The genotyping results in both families corroborate with
the biochemical and clinical findings. This frameshift deletion
variant was found to be completely absent in an unrelated 92
FH cases tested in this study, which suggests a strong possibility
that c.2027delG of the LDLR gene is a potential FH founder
mutation in Saudi patients. Furthermore, this variant was seen
to be located in evolutionarily highly conserved region of gene
sequence across different species like Gorilla, Panicus, Pongo
abelli, Callithrix jachchus, Microcebus murinus, Theropithecus
gelada, Macaca fascicularis, Macaca mulatta etc.

Computational Functional Analysis of
Pathogenic Mutation
Functional Impact of Pathogenic Mutation on RNA

Structure
The minimum free energy (MFE) calculation of LDLR centroid
structures revealed that mutant mRNA molecule of LDLR
(c.2027delG) possesses a relatively lower stability of secondary
structures with −50.70 kcal/mol compared to native LDLR
mRNA molecules (MEF was −52.80 kcal/mol). Hence, it is
assumed that the lower stability of mRNA with c.2027delG is
likely to affect the mRNA folding pattern and tertiary structure
formation (Figure 4).

3-Dimensional (3D) Protein Modeling and Secondary

Structure Analysis
The BLASTP program search for LDLR protein (860 aa)
identified that the PDB sourced experimentally solved structure
(3M0C: chain C) has 91% (1–715 aa) of amino acid sequence
coverage. However, the remaining 9% of the sequence spanning
786–860th amino acids is not yet solved. The structure of
LDLR spans over LD repeat domain (20–311), EGF like domain
(314–712), oligosaccharide linked sugars (700–758), membrane
domain (residues 759–781) and cytoplasmic domain (811–
860). Hence, the missing chain portions from EGF like and
cytoplasmic domains were simulated by using I-Tasser, which
predicted 5 probable models. The best fit LDLR model was
selected based on confidence (1.25), template modeling (0.54
± 0.12) and root mean square deviation scores (4.5 ± 2.8).
The built protein models were subsequently energy minimized
and taken as reference in constructing mutant model, which
were later used to predict the effect of variant on secondary
structural features. The native LDLR secondary structure is
characterized by 3 α-helices, 11 sheets, 164 β-strands (11 β-
sheets, 22 β-hairpins, 20 β-bulges, 77 β-turns, 34 β-pleated
strands), 12 loops (12 γ-turns) and 243 other components like
disulphide bridges. The G676A missense variant is localized to
3rd helix, does not change the secondary structure conformation
as such, but truncation of the protein at Asp 707 residue
eliminates/skips 34th β-strand and 12th loop spanning from
714 to 860th amino acid toward C-terminal region of the
protein (Figure 5).
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FIGURE 3 | Chromosomal location of human LDLR gene at chromosome19p13.2. exonic position and multiple sequence alignment showing the LDLR, EGF like

domain sequence across different mammalian species and chromatograms of c.2027delG variant showing wild type (GG), heterozygote (G/−), and homozygous

mutant (−/−) genotypes.

DISCUSSION

FH occurs in two clinical forms, namely homozygous or
heterozygous, depending upon the gene dosage of the variant
alleles, i.e., bi-allelic and mono-allelic, respectively (29). In the
current study, we identified both homozygous (one patient)
and several heterozygous FH patients (12 patients) from
two unrelated Saudi Bedouin families bearing a pathogenic
c.2027delG (p.G676Afs∗33) stop gain mutation. This mutation

was reported as c.2026delG in 5 among 4 HoFH patients and 14
HeFH patients belonging to different tribes from Saudi Arabia
(27, 28). So far, five different LDLR mutations (p.D445∗, p.
R471R, p. G676Afs∗33, p.Y419D, p.W577∗) were identified in
27 FH patients from five studies from Saudi Arabia (Table 2).
Hence, most likely c.2027delG is the founder FH mutation in
Saudi population, where both inter- and intra- consanguineous
marriages among tribal communities is a normal practice. A
few other FH founder mutations in the LDLR gene have been
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FIGURE 4 | RNA secondary structure prediction of the human LDLR by RNA Fold. (A,B) Shows the LDLR, RNA secondary structure predictions for wildtype and

mutant (c.2207delG), respectively, based on minimum free energy (MFE) calculations of nucleotide base pairing, which is represented by color gradient in the scale of

0–2. (C,D) Shows the mountain plot (MP) representation of MFE, thermodynamic ensemble (pf) and the centroid structure predictions, of the LDLR native and mutant

(c.2207delG) RNA secondary structures, respectively. MP shows the secondary structures in a height vs. position, where the helices are represented in slopes, loops

in plateaus and hairpin loops in the peaks. The bottom graph represents the entropy of predicted RNA structure, where higher the entropy means the RNA structure

has lower stability.

previously identified among French Canadians from Quebec
Province (33–35), Finnish from Finland (36) and Dutch from
Netherlands (37).

In the current study, we noticed that a clinically severe
patient with a phenotype resembling HoFH (II.3) from family
A, has inherited two copies LDLR c.2027delG stop gain
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FIGURE 5 | LDLR protein structure visualization. (A) 3D structural representation of the protein molecule. (B) Functional domains distribution. (C) The p.G676Afs*33

variant effect on the secondary structure organization on the protein.
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TABLE 2 | LDLR variants reported in Saudi FH patients.

S.No Variant ID Nucleotide change Amino acid change Exon Variant Nature No of Patients FH Zygosity Reference

1 – c.1332dupA p.D445* 9 Missense 2 HoFH (30)

rs5930 c.1413A>G p.R471R 10 Silent 2 HoFH

2 – c.2026delG p.G676Afs*33 14 Frameshift 1 HeFH (27)

3 – c.2027delG p.G676Afs*33 14 Frameshift 11 HeFH (28)

Frameshift 9 HoFH

rs5930 c.1413A>G p.R471R 10 Silent 8 HeFH

4 – c.1255T>G p.Y419D 9 Missense 1 HoFH (31)

5 – c.1731G>T p.W577* 12 Missense 3 HeFH (32)

6 – c.2027delG p.G676Afs*33 14 Frameshift 11 HeFH Present Study

Frameshift 1 HoFH

mutation from his HeFH parents (i.e., bi-allelic), although one
defective copy is sufficient enough to develop the disease in
heterozygotes. The severe clinical signs observed in this patient
could undoubtedly be the result of an extremely compromised
receptor capacity, a null variant with <2% functional activity,
therefore homozygosity would explain their particularly severe
biochemical and clinical phenotype. The LDL-C levels in HoFH
due to bi-allelic null variants can increase by 4 to 10-fold from
normal (38). It is notable that this HoFH patient despite having
severe coronary stenoses, has not yet reported any cardiovascular
events like myocardial infarctions (MI). Although this HoFH
patient has presented with severe atherosclerosis, we speculate
that early disease diagnosis (9 years), continuous medications,
regular clinical monitoring and lifestyle modifications, would
have averted the possibility of severe or fatal cardiac event.
Literature review suggests that untreated HoFH patients by their
2nd decade of life present with CVD due to the development
of advance atherosclerotic plaques and stenosis in blood vessels
(38). A clinical assessment and follow-up study of 39 HoFH
patients under <16 years of age reported cardiovascular events
in 88% of the subjects (39). The HoFH patients show worse
prognosis even on maximum treatment doses of lipid lowering
drugs these patients show LDL-C levels>7.8mmol/L. OurHoFH
patient has also manifested tendon xanthomas which are known
to be formed by huge cholesterol depositions in the tendons
and joints that may account for pain and disability (38). Arcus
cornealis, are bright zone of cholesterol deposits around the rim
of the cornea before the age of 40 and is an additional clinical
feature observed in HoFH patients (40).

Most FH patients from both family (A and B) are
heterozygous and carry one copy of the LDLR, c.2027delG stop
mutation, which could have been inherited from either of their
parents following an autosomal dominant mode of inheritance.
These patients demonstrate 2/3rd reduction in LDL clearance
rate, which subsequently elevates the circulating LDL-C by 2 to
3-folds (5–10 mmol/L; 200–400 mg/L) (10, 29, 41). FH patients
manifest the disease in their adulthood, spanning 3−7th decades
of their life (10, 41). We have observed that the majority of
our HeFH patients have presented with MI before their 60th
birthday. These clinical signs point us toward chronic deposits of
cholesterol that induce arterial atherosclerotic damages. Careful

physical examination in childhood often could prompts the early
clinical diagnosis of HoFH. The undiagnosed and untreated
HeFH patients have a very high risk of (10 to 20-folds) of
developing premature coronary artery disease (CAD) (42), while
the risk in untreated HoFH can be 100 to 200-fold increased from
normal (38). The variable expressivity of FH can be attributed
to modifier variants in LDLRAP1, EPHX2, ABCG5, ABCG8,
LIPA, or APOE genes or polygenic risk variants (2, 43, 44).
Early intervention to control the high LDL-C levels is clearly
beneficial in reducing the cardiovascular events among young FH
patients (45). The genetic testing of LDLR, c.2027delG variant
in extended family members of both family A and B could
potentially offer an advantage of early identification of FH cases,
planning lifelong lipid lowering therapy, genetic counseling, and
prenatal diagnosis (46).

The LDLR allelic makeup determines the molecular diagnosis
(i.e., heterozygous vs. homozygous) and in turn determines the
severity of clinical manifestation in FH. HoFH patients who have
lost most or all receptor function, show very high circulating
LDL-C levels and manifest cholesterol deposits in the body
compared to HeFH patients who can still maintain 50% of
functional receptors (47–49). Deleterious LDLR mutations are
known to either eliminate or considerably reduce the LDLR
function (50). This is true for the c.2027delG (p.G676Afs∗33)
frame shift mutation identified in this study, that introduces a
protein termination codon (PTC) at 33rd codon downstream,
and leads to the truncation of the LDLR protein at the Asp709th
residue located in EGF like domain. The truncated protein will
be 152 amino acid (aa) shorter than the native LDLR and lacks
5 aa residues from the EGF like domain, 58 aa residues of
oligosaccharide linked sugars domain and 22 aa residues of the
receptor transmembrane domain. Spanning between 314 and 712
aa is the EGF like domain the largest LDLR protein domain
where more than 50% of FH causative mutations are reported
highlighting its functional importance. EGF homology domain
controls the release of lipoproteins in low pH environment
and take part in receptor recycling (51). It is therefore fair to
assume that the truncated LDLR may undergo degradation that
may reduce the LDLR protein level and subsequently interfere
with the receptor assembly in those individuals who harbor
the mutation.
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Indeed, the mRNAs with PTC may potentially activates
nonsense mediated mRNA decay (NMD) (52) or leave a
markedly truncated LDLR protein (at variant residue 709)
which may eventually undergo degradation by ubiquitin
mediated proteasomal pathway (53). The correlation between
LDLR variant zygosity and its effect on protein expression is
shown through functional biology experiments on lymphocytes
obtained from FH patients with nonsense mutations (W23X,
S78X, E207X, and W541X) (52). Human mRNAs with PTC were
reported to reduce bothmRNA abundance and stability (54). Our
free energy-based RNA stability investigation predicted that the
LDLR, p.G676Afs∗33 variant destabilizes the mRNA structure,
and eventually affect its folding pattern. Free energy changes are
also affect the protein structure stability for disease causative stop
gain mutations (55). Therefore, we predict that p.G676Afs∗33 is a
loss-of-function (LoF) variant or null allele leading to abolition of
LDLR protein synthesis, hence it belongs to LDLR class 1 category
of mutations (56).

Recent advances in molecular and cell biology present
an alternative therapeutic opportunity to counter the genetic
defects (PTC mutations) by pharmacological modulation (NMD
or proteasomal degradation inhibitors) and help to control
disease pathogenesis (54, 57, 58). In theory, HoFH patients
who are unresponsive to statins might benefit from the use of
pharmacological modulators like aminoglycosides in restoring
partial sized LDLR molecules arising from stop gain mutations.
In experiments, treating lymphocytes bearing different nonsense
FH mutations with different translation modulator drugs, Holla
et al has successfully demonstrated the increased mRNA levels
of LDLR and LDL-C clearance (52). There are numerous
other treatments in development for severe HeFH and HoFH,
including inhibitors of angiopoietin like 3 protein (ANGPTL3),
long-acting inhibitors of proprotein convertase subtilisin/kexin
type 9 (PCSK9) in addition to gene therapies (59).

In conclusion, this study reports a very rare, pathogenic
and FH founder LDLR stop gain variant i.e. c.2027delG
(p.Gly676Alafs∗33) in 12 FH patients belonging to two different
Saudi families. Founder FH mutations concentrate due to
low genetic variability in genetically isolated populations.
Nevertheless, identifying FH founder confer advantages like
targeted screening, early genetic diagnosis, genetic counseling
and adoption of effective anti-lipid treatment strategies (i.e.,
LDL-apheresis) to prevent the cardiovascular disease burden
among the FH patients. Based on the variant zygosity of the stop

gain variant, we have noticed marked phenotypic heterogeneity
in terms of LDL-C levels and clinical presentations of the FH
patients. This loss-of-function variant was predicted to alter the
free energy dynamics of RNAmolecule hence its stability. Protein
structure mapping has predicted that this variant eliminates key
LDLR functional domains and eventually undergoes degradation.
However, future functional biology studies are required to study
the effect of c.2027delG variant on LDL-C clearance in the body.
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Genetic testing is widely used in breast cancer and has identified a lot of susceptibility

genes and single nucleotide polymorphisms (SNPs). However, for many SNPs, evidence

of an association with breast cancer is weak, underlying risk estimates are imprecise,

and reliable subtype-specific risk estimates are not in place. A recent genome-wide

long non-coding RNA (lncRNA) association study in Chinese Han has verified a genetic

association between rs12537 and breast cancer. This study is aimed at investigating the

association between rs12537 and the phenotype. We collected the clinical information

of 5,634 breast cancer patients and 6,308 healthy controls in the early study. And χ2

test was used for the comparison between different groups in genotype. The frequency

of genotypic distribution among SNP rs12537 has no statistically significant correlation

with family history (p = 0.8945), menopausal status (p = 0.3245) or HER-2 (p =

0.2987), but it is statistically and significantly correlated with ER (p = 0.004006) and

PR (p = 0.01379). Most importantly, compared to the healthy control, rs12537 variant

is significantly correlated with ER positive patients and the p-value has reached the level

of the whole genome (p = 1.66E-08 < 5.00E-08). Furthermore, we found rs12537

associated gene MTMR3 was lower expressed in breast cancer tissues but highly

methylated. In conclusion, our findings indicate that rs12537 is a novel susceptibility

gene in ER positive breast cancer in Chinese Han population and it may influence the

methylation of MTMR3.

Keywords: breast cancer, rs12537, phenotype, estrogen receptor, MTMR3

INTRODUCTION

The burden of breast cancer is increasing worldwide. Among the 19.3 million new cases reported
by the GLOBOCAN 2020, breast cancer patients account for 11.7% (1). China is undergoing
cancer transition with an increasing burden of breast cancer, and the incidence of breast
cancer arrives at 18.41%. In China, female breast cancer patients took up approximately 18%
of breast cancer deaths across the world (2). Many sequencing methods such as genome-wide
association studies (GWASs), exome and lncRNA sequencing are used to identify SNPs/loci/genes
related to the occurrence, development, prognosis and drug resistance of breast cancer (3–7).

65

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.708644
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.708644&domain=pdf&date_stamp=2021-07-28
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wuhucuiyong@vip.163.com
mailto:alvinbo@163.com
https://doi.org/10.3389/fmed.2021.708644
https://www.frontiersin.org/articles/10.3389/fmed.2021.708644/full


Xu et al. Breast Cancer Susceptibility SNP rs12537

Breast cancer is a heterogeneous and polygenic disease, and
breast cancer susceptibility SNPs and genes are closely related
to molecular subtype and clinical phenotypes (8–10). However,
for many SNPs, evidence of an association with cancer is often
weak, and accurate estimates of the cancer risks associated with
variants are often not available (11). In our previous study,
we performed a genome-wide lncRNA association study, and
reported a suggestive SNP, rs12537 (p = 8.84E-07), which may
be associated with breast cancer susceptibility (12). rs12537
variant was reported to be associated with IgA nephropathy in
Han Chinese, and rheumatoid arthritis (RA) and systemic lupus
erythematosus (SLE) in Egyptian patients (13, 14). Moreover,
rs12537 variant was also found associated with significantly
increased gastric cancer risk (15, 16). However, the relationship
between rs12537 and breast cancer remains unknown.

To investigate the association between rs12537 on 22q12.2
and breast cancer susceptibility as well as the clinical phenotype
including familial history, menopausal status, estrogen receptor
(ER), progestogen receptor (PR), human epidermal growth factor
receptor 2 (HER-2) and molecular subtypes of breast cancer
patients in Chinese Han population, we conducted a genotype-
phenotype analysis to clarify the association of rs12537 with
breast cancer phenotypes in Chinese Han population. Moreover,
we tried to analyze rs12537 associated genes and breast cancer
based on public databases.

MATERIALS AND METHODS

Subjects
We collected the genotyping data from our previous data
(including GWAS stage data and replication stage genotyping
data) and clinical data (including age of onset, family history,
menopausal status, ER, PR andHER-2) of a total of 5,634 patients
(12). Immunohistochemical analysis was employed to evaluate
the ER, PR and HER-2 status of breast tissue of biopsies. Each
case was diagnosed and confirmed by at least two oncologists.
And their clinical information was collected by investigators
with a comprehensive clinical check-up. We also collected the
genotyping data and age of 6,308 healthy controls, and they
were clinically determined to be free of breast cancer, other
neoplastic disease, systemic disorders, and to have no family
history of cancer (including first-, second- and third-degree
relatives). All participants provided written informed consent.
This study was approved by the institutional ethics committee of
each hospital and was conducted according to the Declaration of
Helsinki principles.

Statistical Analysis
To identify which phenotypes were associated with the specific
SNP rs12537, we performed case-control and case-only analysis
to examine the risk conferred by the suggestive SNP on
different phenotypes of breast cancer. PLINK1.07 software
(developed by Christopher Chang and others) and SPSS16.0
(IBM, https://www.ibm.com) were used to perform chi-square
test and logistic regression analysis to explore the correlation
between rs12537 and breast cancer susceptibility, as well as
the different phenotypes of breast cancer. Allele frequency and
genotype frequency were calculated by direct counting method,

TABLE 1 | Baseline characteristics of breast cancer patients and healthy controls.

Characteristics Total Samples GWAS Samples Replication

Samples

Cases

Sample size 5,634 1,496 4,138

Mean age at onset

(SD)

50.7 ± 11.1 49.3 ± 10.9 51.2 ± 11.2

Mean age (SD) 51.0 ± 11.1 50.0 ± 10.9 51.3 ± 11.1

Familial history of cancer

Familial (%) 265 (4.70%) 24 (1.60%) 241 (5.82%)

Sporadic (%) 5,369 (95.30%) 1472 (98.40%) 3,897 (94.18%)

Menopausal status 4,223 849 3,374

Premenopausal (%) 2,118 (50.15%) 471 (55.48%) 1,647 (48.81%)

Postmenopausal (%) 2,105 (49.85%) 378 (44.52%) 1,727 (51.19%)

ER 4,263 703 3,560

Positive (%) 2,773 (65.05%) 456 (64.86%) 2,317 (65.08%)

Negative (%) 1,490 (34.95%) 247 (35.14%) 1,243 (34.92%)

PR 4,262 702 3,560

Positive (%) 2,704 (63.44%) 413 (58.83%) 2,291 (64.35%)

Negative (%) 1,558 (36.56%) 289 (41.17%) 1,269 (35.65%)

HER-2 4,254 698 3,556

Positive (%) 1,148 (26.99%) 136 (19.48%) 1,012 (28.46%)

Negative (%) 3,106 (73.01%) 562 (80.52%) 2,544 (71.54%)

Molecular subtypes 4,096 687 3,409

Luminal A breast

cancer

1,088 (26.56%) 207 (30.13%) 881 (25.84%)

Lumina B breast

cancer

1,415 (34.55%) 244 (35.52%) 1,171 (34.35%)

HER-2 amplified

breast cancer

630 (15.38%) 93 (13.54%) 537 (15.75%)

Basal-like breast

cancer

963 (23.51%) 143 (20.82%) 820 (24.05%)

Controls

Sample size

6,308 1,257 5,051

Mean age (SD) 47.4 ± 12.8 37.2 ± 11.9 50.3 ± 10.6

χ2 significance test was carried out, and the relative risk was
evaluated by Odds ratio (OR) and 95% confidence interval (95%
CI), with the difference being statistically significant (p < 0.05),
a remarkable deviation from Hardy-Weinberg equilibrium in the
controls (p > 0.05) during each stage.

RESULTS

Sample Characteristics
All subjects involved in this study were from our early genome-
wide lncRNA association study (12). The clinical features of
5,634 cases and 6,308 controls are intact in this study. The
average age of onset of 5,634 female breast cancer patients was
50.7 ± 11.1. 4.70% (265) of these patients had familial history
of cancer, 50.15% (2,118) were diagnosed with premenopausal
breast cancer, 65.05% (2,773) were ER positive, 63.44% (2,704)
were PR positive, and 26.99% (1,148) were HER-2 positive.
For molecular subtypes, data of 1,538 of these patients were
missing, 26.56% (1,088), 34.55% (1,415) and 15.38% (630) were
lumina A, lumina B and HER-2 amplified breast cancer carriers,
respectively, and 23.51% (963) were diagnosed with basal-like
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TABLE 2 | The genotypic and allelic frequency of rs12537.

Groups Allele frequency (%) p-value OR (95% CI) p-hwe

T C

Family history Positive vs. Control 0.175 0.205 0.1095 0.8226 (0.6475-1.045) 0.6475

Negative vs. Control 0.1774 0.205 1.44E-06 0.8362 (0.7775–0.8994) 0.7775

Positive vs. Negative 0.175 0.1774 0.8945 0.9837 (0.7719–1.254) 0.7719

Menopausal status Positive vs. Control 0.1751 0.205 9.89E-05 0.8231 (0.7462–0.908) 0.7462

Negative vs. Control 0.1843 0.205 0.008677 0.8764 (0.7941–0.9672) 0.7941

Positive vs. Negative 0.1751 0.1843 0.3245 0.9393 (0.8292–1.064) 0.8292

ER Positive vs. Control 0.1664 0.205 1.66E-08 0.7744 (0.7085–0.8464) 0.7085

Negative vs. Control 0.1938 0.205 0.2052 0.9321 (0.8360–1.0390) 0.836

Positive vs. Negative 0.1664 0.1938 0.004006 0.8309 (0.7323–0.9427) 0.7323

PR Positive vs. Control 0.1678 0.205 6.13E-08 0.7822 (0.7155–0.8550) 0.7155

Negative vs. Control 0.1911 0.205 0.114 0.9163 (0.8222–1.021) 0.8222

Positive vs. Negative 0.1678 0.1911 0.01379 0.8536 (0.7525–0.9683) 0.7525

HER-2 Positive vs. Control 0.1832 0.205 0.02393 0.8699 (0.7708–0.9818) 0.7708

Negative vs. Control 0.1728 0.205 1.14E-06 0.8101 (0.7441–0.8819) 0.7441

Positive vs. Negative 0.1832 0.1728 0.2987 1.0740 (0.9388–1.2280) 0.9388

TABLE 3 | eQTL analysis to identify rs12537 associated genes.

p-value Gene ID Gene Symbol Chr Pos (hg19) Z-score FDR

4.91E-71 ENSG00000100325 ASCC2a 22 30209434 −17.8204 0

1.08E-34 ENSG00000184117 NIPSNAP1a 22 29964061 −12.2859 0

8.72E-30 ENSG00000100330 MTMR3a 22 30352999 −11.3358 0

4.64E-23 ENSG00000100319 ZMAT5a 22 30144972 9.8893 0

1.15E-08 ENSG00000100012 SEC14L3a 22 30855991 −5.707 6.43E-05

6.63E-08 ENSG00000167065 DUSP18a 22 31055957 5.401 0.000253

1.42E-06 ENSG00000099995 SF3A1a 22 30740457 −4.8224 0.003981

9.10E-06 ENSG00000100296 THOC5a 22 29926536 4.4376 0.023729

3.85E-08 ENSG00000189283 FHITb 3 60486084 5.4974 0.000499

6.03E-08 ENSG00000126353 CCR7b 17 38715872 5.418 0.000806

4.52E-07 ENSG00000120915 EPHX2b 8 27375688 5.0458 0.004067

7.11E-07 ENSG00000138795 LEF1b 4 109029406 4.9584 0.00614

1.28E-06 ENSG00000170915 PAQR8b 6 52249397 4.8428 0.010193

8.11E-06 ENSG00000186854 TRABD2Ab 2 85091453 4.4624 0.04903

acis-eQTL effects genes.
btrans-eQTL effects genes.

breast cancer. The average age of 6,308 female healthy controls
was 47.4± 12.8 (Table 1).

Genotypic and Phenotype Analysis
To further explore the relationship between suggestive SNP
rs12537 and breast cancer susceptibility, we combined our
GWAS and replication data to perform a genotypic and
phenotype analysis based on the clinical information we
collected. The results show that the suggestive SNP rs12537 is not
related to the familial history of cancer, menopausal status, HER-
2 and the four molecular subtypes of breast cancer patients. And
there is a statistical difference between PR positive patients and
PR negative patients (p= 0.01379, OR= 0.8536, 95% CI: 0.7525–
0.9638) in rs12537 variant (Table 2 and Supplementary Table 1).
And we also performed genotypic and phenotype analysis on

the other three SNPs, rs9397435, rs11066150 and rs62112521 in
Chinese Han women (12), but we found no correlation between
these three SNPs and the clinical characteristics of breast cancer
(Supplementary Table 2).

Surprisingly, ER positive patients and healthy controls also
differ statistically (p = 1.66E-8, OR = 0.7744, 95% CI: 0.7085–
0.8464) in rs12537 variant, and this difference has reached the
level of the whole genome for p < 5.00E-8. Moreover, there is
also a statistical difference between ER positive patients and ER
negative patients (p = 0.004006, OR = 0.8309, 95% CI: 0.7323–
0.9427) in rs12537 variant (Table 2). To exclude the influence of
clinical features other than ER status on the results, we further
analyzed and compared the clinical differences between ER
positive, ER negative breast cancer patients and healthy controls
(Supplementary Table 3), and we found that age, family history
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FIGURE 1 | The Association Between MTMR3 Gene Expression and Breast Cancer. (A) MTMR3 is highly expressed in normal tissues compared to primary tumor

tissues (p < 1E-12). (B) MTMR3 promoter is hypermethylated in primary tumor tissues compared to normal tissues (p = 2.66E-02). The Beta value indicates level of

DNA methylation ranging from 0 (unmethylated) to 1 (fully methylated). (C) MTMR3 gene expression has no correlation with the overall survival of breast cancer

patients (p =0.44). (D) Lower expressed MTMR3 could reduce patient’s relapse free survival (RFS) (p =2.2E-06) (KIAA0371 202197_at).

and HER-2 expression were not correlated with ER. So rs12537
is a novel ER positive breast cancer associated SNP variant in
Chinese Han women.

rs12537 Associated Gene MTMR3 and
Breast Cancer
Expression quantitative trait locus (eQTL) has become a
common tool to interpret the regulatory mechanisms of the
variants associated with complex traits through genome-wide
association studies (GWAS) (17, 18). To identify rs12537
associated genes, based on the eQTLGen database (https://www.

eqtlgen.org/), we identified 8 cis-eQTL effects genes (ASCC2,
NIPSNAP1, MTMR3, ZMAT5, SEC14L3, DUSP18, SF3A1 and
THOC5) and 6 trans-eQTL effects genes (FHIT, CCR7, EPHX2,
LEF1, PAQR8 and TRABD2A) (Table 3).

rs12537 associated gene, MTMR3, was reported to be
associated with RA and SLE, gastric cancer and breast cancer
(14, 15, 19). Therefore, we try to investigate the expression
of MTMR3 in the cancer genome atlas (TCGA) database by
UALCAN (20), discovering that compared to normal tissues
MTMR3 was lower expressed in primary tumor tissues (p <

1E-12), but the promoter methylation level was higher (p =
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2.66E-02). MTMR3 expression was not associated with overall
survival (OS) (p = 0.44) (Figures 1A–C). Moreover, based on
Kaplan-Meier Plotter (www.kmplot.com) (21), we found highly
expressed MTMR3 could improve patients relapse free survival
(RFS) (p = 2.2E-06) (Figure 1D), but there was no correlation
between MTMR3 expression and the OS, postoperative survival
(PPS) as well as distant metastasis-free survival (DMFS) in breast
cancer patients (Supplementary Figure 1).

DISCUSSION

Breast cancer is a complex multifactorial disease, with high
incidence, strong invasiveness, metastasis and heterogeneity (1,
22, 23). A large number of sequencing studies have identified
more than 200 susceptibility SNPs/genes (24). By combining
sequencing analysis with the clinical characteristics of breast
cancer patients, more SNPs/genes that have a stronger correlation
with clinical characteristics were identified, which provides
important theoretical support for precision treatment of breast
cancer (8, 11, 25).

It is reported that more than 60% of breast cancers,
including Luminal A and Luminal B breast cancers, were ER
positive (8, 10). And ER positive breast cancer is a highly
heterogeneous disease comprising different histological and
mutational patterns, with varied clinical courses and responses to
systemic treatment. GWASs have identified a lot of ER positive
breast cancer associated SNPs, such as rs112545418, rs17132398
in 4p16, rs116638271, rs77274510 and rs117564384 in 11q13 and
rs10941679 in 5p12 (26, 27). In our previous study, we designed
a lncRNA array independently, and then performed the first
genome-wide lncRNA association study on Han Chinese women,
identifying a novel breast cancer-associated susceptibility SNP,
rs11066150, a previously reported SNP, rs9397435 and two
suggestive SNPs rs12537 and rs62112521 (12), but our study
revealed that rs11066150, rs9397435 and rs6211252 had no
relationship with the clinical characteristics of breast cancer
(Supplementary Table 2). In the present research, we identified
rs12537 as a novel susceptibility SNP in ER positive breast cancer
in Han Chinese women. And this is the first time that rs12537
has been reported to be associated with ER positive breast cancer.
However, only 4,263 ER patients (65.05% ER positive, 34.56%
ER negative) and 6,308 healthy controls were included in this
study, and a larger and better-matched population (including age,
familial history, menopausal status, ER, PR and HER-2) may be
needed for further verification.

The SNP rs12537 present in the miR-181a-binding site in the
3’ UTR of theMTMR3 gene (15) and T/C variant inMTMR3were
reported to be associated with IgA nephropathy, RA, SLE and
gastric cancer (13–16). As an autophagy-related gene involved in
the negative regulation of autophagy initiation (24), rs12537 T/T
carriers were associated with lower serum MTMR3 expression
and higher miR-181a expression than in other genotypes among
SLE patients, and their interaction may lead to autophagy
increasing (14). rs12537 CT genotype carriers in gastric cancer
had low MTMR3 mRNA expression than CC genotype carriers
(15). Ectopic expression of miR-181a mimics or introduction of
MTMR3 small interfering RNA resulted in an increase in cell

proliferation, colony formation, migration, invasion, as well as
suppression of apoptosis in gastric cancer (28).

DNA methylation plays a crucial role in the formation and
process of cancers and it could be potential candidate biomarkers
for cancers (29). Based on TCGA database, we found that
MTMR3 gene was lower expressed in breast cancer tissues
than normal tissues and the promoter methylation level was
higher. However, MTMR3 expression had no correlation with
overall survival. Here, we hypothesize that rs12537 variant in
ER positive breast cancer patients could regulate the methylation
of MTMR3, and further studies are required to fully understand
the mechanism.

In conclusion, the results of our study show that rs12537
is a novel susceptibility SNP in ER positive breast cancer in
Chinese Han population. Moreover, rs12537 associated gene
MTMR3 is lowly expressed but highly methylated in breast
cancer. Considering that we have not found the correlation
betweenMTMR3 expression and overall survival based on TCGA
database, multicentric studies involving a larger number of cases
and genotypic data are needed to verify this result.
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Family trio next-generation sequencing-based variant analysis was done to identify the

genomic reason on unexplained recurrent pregnancy loss (RPL). A family (dead fetus and

parents) from Saudi Arabia with an earlier history of three unexplained RPLs at the ninth

week of pregnancy was included in the study. Whole-genome sequencing (WGS) of a

dead fetus and the parents was done to identify the pathogenic variation and confirmed

through Sanger sequencing. WGS of dead fetus identifies a novel homozygous exonic

variation (NM_017419.3:c.680G>T) in ASIC5 (acid-sensing ion channel subunit family

member 5) gene; the parents are heterozygous. Newly designed ARMS PCR followed

by direct sequencing confirms the presence of heterozygous in one subject and absence

of homozygous novel mutation among randomly selected healthy Saudis. The second

family with heterozygous was confirmed with three unexplained RPLs. Pathogenicity

analysis of R227I amino acid substitution in ASIC5 protein through molecular docking

and interaction analysis revealed that the mutations are highly pathogenic, decrease

the stability of the protein, and prevent binding of amiloride, which is an activator to

open the acid-sensing ion channel of ASIC5. The identified rare and novel autosomal

recessive mutation, c.680G>T:p.R227I (ASIC5Saudi), in two families confirm the ASIC5

gene association with RPL and can be fatal to the fetus.

Keywords: exome, recurrent pregnancy loss, whole genome sequencing, ASIC5, Saudi Arabia, molecular docking,
next generation sequencing, unknown spontaneous abortion

INTRODUCTION

Recurrent pregnancy loss (RPL), or recurrent miscarriage (RM) is described as three or more
sequential unpremeditated abortions before 20 weeks of gestation (1), a condition termed “habitual
abortion” or “repeated spontaneous abortions” (2). RPL affects couples at propagative age around
the world. The etiologies of RPL in Saudis or Arabs and other populations tend to be multifactorial.
Factors including genetic abnormalities (3–10), placental anomalies (11–13), psychological trauma

71

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.699672
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.699672&domain=pdf&date_stamp=2021-07-30
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fbalexander@iau.edu.sa
mailto:borgiomicro@gmail.com
https://orcid.org/0000-0001-7199-1540
https://doi.org/10.3389/fmed.2021.699672
https://www.frontiersin.org/articles/10.3389/fmed.2021.699672/full


Al Qahtani et al. NGS Reveals RPL Associated Variation

and stressful life events (14), and certain coagulation and
immunoregulatory protein defects (15–18) were reported to be
associated with RPL among women in the Gulf region. In some
populations, other factors have been studied, such as anatomical,
endocrine, hormonal problems, infection, smoking and alcohol
consumption, and exposure to environmental factors, and these
factors could increase the risk of RPL (19). Several studies have
reported the relationship between various causes of recurrent
miscarriage among Saudis and the rest of the population;
however, 30–50% of RPLs were unexplained (5, 19). More studies
on RPL only can reveal the cause. The objective of the study is
to analyze the genetic basis of a family from Saudi Arabia with
an earlier history of recurrent pregnancy loss at the ninth week
of pregnancy using next-generation sequencing [whole-genome
sequencing (WGS)] by complete analysis of whole genome
of the fetus and parents followed by rigorous bioinformatics
and confirmatory analyses (20–36). The study reports a novel
homozygous exonic variation in the ASIC5 gene in a dead fetus,
while the parents are heterozygous.

MATERIALS AND METHODS

Ethics and Study Subjects
The study was approved by the Institutional Review
Boards Committee of the Imam Abdulrahman Bin Faisal
University (IRB-2017-13-137).

A family with a past history of three miscarriages has
been included in the study with a written consent from
the father and mother. During the fourth pregnancy, the
mother experienced a similar type of miscarriage at the
ninth week of pregnancy. Tissue (separated cautiously from
maternal tissue to avoid contamination) samples and blood
samples were collected from the fetus (proband) and parents,
respectively. Miscarriage sample was collected in an RNAprotect
Cell Reagent (Qiagen, Hilden, Germany). The DNAs of
the samples were isolated, and the most prevalent genetic
disease, hemoglobinopathies, were screened using the Sanger
sequencing. Genes (functional variants and deletions in
HBB, HBA1, HBA2, ATRX, and HBD) related to the most
prevalent mutations have been found to be normal. Hence,
the WGS was done for the miscarriage tissue, mother, and
father genomes.

Whole-Genome Sequencing and Trio
Analysis
The trio analysis has been carried out using the best practice
GATK pipeline (20). The program Fastx (http://hannonlab.cshl.
edu/fastx_toolkit) was used to filter low-quality reads. Then the
reads were aligned to the reference human genome (hg19) using
the program BWA (21). The GATK haplotype caller was used to
call the variants. The resulting variants were then annotated using
in-house developed workflow including the following three sets
of data sources:

1. Public databases: These were collected from the Annovar
packages, and they include the basic positional information
about genes and related proteins. They also include

information from the dbSNP database, the 1000 Genome
database, ExAC, and gnomAD databases. Annovar also
includes predictions of the functional effect of the variants
from the tools Polyphan, Sift, CADD, and MetaSVM.
In addition to Annovar, we used the clinvar and OMIM
databases to annotate the variants and genes with up-to-data
medical information.

2. In-house databases: We annotated the variants using the Saudi
Human Genome Program variant DB to check for variant
frequency in the Saudi population (22–24).

3. Commercial databases: We used the HGMD database to
annotate the variant with clinical information.

After variant annotation, we ran filters according to the ACMG
(American College of Medical Genetics and Genomics)
guidelines. We excluded variants that are intergenic,
synonymous, appearing more than 5% in population databases,
or not damaging (as predicted by CADD, Polyphen, SIFT, and
MetaSVM). We also ran extra trio analysis to filter the variants
according to the autosomal recessive, de novo, compound
heterozygous, and x-linked. After applying these filters, the
remaining variants were examined manually to match the
annotated clinical information to the fetus phenotype.

Sanger Sequencing Validation
Whole-genome result was confirmed using Sanger sequencing.
The presence of the homozygous NM_017419.3:c.680G>T in
the proband and heterozygous in the parents were confirmed
using Sanger sequencing. Highly specific primers (ASIC5F:
5′-CAGATAAAAACATGTTTCCATACATCTTCAG-3′ and
ASIC5R: 5′- TTGTGGCATGAACATTCCCTGGA-3′) were
designed, and the selected region of the gene was amplified
[PCR recipe: MOLEQULE-ON absolute master mix 12.5 µl,
ASIC5F 1 µl (10 nM), ASIC5R 1 µl (10 nM), DNA Template
25 ng, and Dis H2O to 25 µl; temperature profile: 95◦C for
10min; 35 cycles of 95◦C/60 s, 60◦C/60 s, 72◦C/60 s; and 72◦C
for 5min] and sequenced using BigDye Terminator Cycle
Sequencing Kit (Thermo Fisher Scientific, Inc., Waltham, MA,
USA). Amplified PCR product (691 bp) of the ASIC5 gene
region was purified and sequenced using Genetic Analyzer
3500 (Thermo Fisher Scientific, Inc.) at the Department
of Genetic Research, Institute for Research and Medical
Consultations, Imam Abdulrahman Bin Faisal University
(Dammam, Saudi Arabia). Sequences were analyzed using
mutation surveyor software (Softgenetics, US) and DNA
sequencing analysis software v.5.3 (Applied Biosystem; Thermo
Fisher Scientific, Inc.).

Amplification Refractory Mutation
System-Polymerase Chain Reaction-Based
Variation Screening and Sanger
Sequencing Validation
The amplification refractory mutation system-polymerase
chain reaction (ARMS-PCR) was designed (primers
will be available on request) to screen the presence
of NM_017419.3:c.680G>T among healthy Saudis
(n = 200). The subjects positive for the presence of
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NM_017419.3:c.680G>T was confirmed through Sanger
sequencing using primers (ASIC5F and ASIC5R). This
is also to confirm the absence of the homozygous
NM_017419.3:c.680G>T in the healthy Saudi subjects
randomly selected.

Homology Protein Modeling and
Functional Annotations
The homology modeling of wild (p.R227) and mutant (p.R227I)
ASIC5 protein was performed using Swiss Model server (25),
validated using PROCHECK (26). The structural functional
annotations were completed using SAS-sequence server (27),
ProFunc (28), and PDBsum (29). Mutant structures were
generated using Swiss-PDB Viewer and PyMol (30). Energy
minimization for the wild and mutants was estimated using
GROMACS (31). Evolutionary conservation and functional
aspect analysis of the R227 residue in the wild-type protein
was performed using the ConSurf (32). PROVEAN and I-
Mutant were used for analyzing the impact on the biological
function of a protein due to an amino acid substitution R227I
(33, 34). AutoDock Vina was used for molecular docking of
the ligand with wild type and mutant ASIC5 protein (35),
and the molecular visualization was done in PyMol and
LigPlot (36).

RESULTS

Whole-Genome Sequencing and Trio
Analysis
The family with a history of three unexplained miscarriages
was included in the study. The couple is consanguineous but
not first-degree relatives. There was no history of genetic
and chronic diseases in the couple. The family was identified
with a similar type of unknown spontaneous abortion at
the ninth week of pregnancy. The mother was 30 years at
the time of the fourth unexplained spontaneous miscarriage;
the father was 34. The previous three unexplained miscarriages
and the fourth were also of similar gestation. At this
gestation, the gender of the proband cannot be determined
even after miscarriage. The mother is devoid of uterine
or cervical abnormalities. In order to identify the cause
of the recurrent spontaneous abortion, WGS was done for
the mother, father, and proband. The WGS of the trio
(proband and parents) samples has revealed an inheritance
of NM_017419.3:c.680G>T mutation in the ASIC5 gene from
the parents (Figure 1A and Supplementary Table 1). Various
heterozygous mutations observed in the proband are listed
in the Supplementary Material, which were inherited either
from the mother or father (Supplementary Table 2). The WGS
result of NM_017419.3:c.680G>T variation in exon 4 of the
ASIC5 gene has been confirmed through the Sanger sequencing
(Figure 1B). The father and the mother were found to be carriers
(heterozygous) of the c.680G>T:p.R227I at theASIC5 gene, while
the proband was homozygous to c.680G>T:p.R227I (GenBank:
MN251164; ClinVar: SCV000930628; SNP ID: rs1248841709)

(Figure 1). The name of the novel variant was validated using
Mutalyzer 2.0.32.

Amplification Refractory Mutation
System-Polymerase Chain Reaction-Based
Variation Screening and Sanger
Sequencing Validation
In order to confirm the absence of the homozygous
NM_017419.3:c.680G>T among the living population, a
total of 200 healthy Saudis were selected randomly and checked
for the mutation at the c.680 position in the ASIC5 gene using
ARMS-PCR followed by Sanger sequencing. The results of
the ARMS-PCR and direct sequencing of 200 healthy Saudis
in the c.680 position in the ASIC5 gene revealed the absence
of homozygous NM_017419.3:c.680G>T. Furthermore, this
mutation is novel to the SHGP (Saudi Human Genome Program)
database (about 9,500 cases). This suggests that the discovered
mutation NM_017419.3:c.680G>T is rare, and their absence
of a homozygous state in the healthy Saudis is validated.
Furthermore, a female subject was observed with a heterozygous
NM_017419.3:c.680G>T in the ASIC5 gene. The female subject
with heterozygous mutations is a single daughter, and her
mother experienced the unexplained RPL similar with the
earlier family in the ninth week of pregnancy consecutively
three times.

Molecular Docking and Interaction
Analysis
The predicted structure of the wild ASIC5 on the Ramachandran
plot showed φ/9 angles of 83.1% residues in the most favored
regions, 15.4% in the additional allowed regions, 1.1% in the
generously allowed regions, and 0.3% in the disallowed regions
(Figure 2B). The total residue span of the secondary structure
consist of 23.0% residues involved in the formation of the strands,
23.0% residues in alpha helices, 2.6% residues in 3–10 helices,
and 51.5% residues in other structural moieties. Analysis of
secondary structure in ProFunc showed the presence of 3 β-
sheets, 4 β-hairpins, 1 psi loop, 3 β-bulges, 14 strands, 14 helices,
5 helix–helix interactions, 34 β-turns, and 9 γ-turns. Homology
modeling of the mutant structure (R227I) of the ASIC5 showed
deviations from the wild type; the mutant structure on the
Ramachandran plot showed φ/9 angles of 84.3% residues in
the most favored regions, 14.3% in the additional allowed
regions, 1.1% in the generously allowed regions, and 0.3% in
the disallowed regions. The total residue span of the secondary
mutant structure consisting of 22.7% residues involving the
formation of the strands, 23.7% residues in alpha helices, 1.8%
residues in 3–10 helices, and 51.8% residues in other structural
moieties. Analysis of the secondary structure of the mutant in
ProFunc showed the presence of 3 β-sheets, 4 β-hairpins, 1 psi
loop, 2 β-bulges, 14 strands, 13 helices, 5 helix–helix interactions,
42 β-turns, and 8 γ-turns.

ConSurf analysis revealed that R227I is a functional residue,
which is highly conserved and exposed. A total of 97 HMMER
hits were considered for this analysis, while 91 of them were
unique, including the query. PROVEAN analysis showed that
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FIGURE 1 | Novel mutation in the ASIC5 gene (NM_017419.3:c.680G>T) in the family. (A) Phylogenic analysis of the family with the NM_017419.3:c.680G>T

mutation in the ASIC5 gene. (B) Electropherogram of the sequence c.664 to c.695 of exon 4 at the ASIC5 gene of the proband and the parents. The highlighted

nucleotide with arrow indicates the position of the NM_017419.3:c.680G>T. The proband is homozygous for the NM_017419.3:c.680G>T. The mother and father

are heterozygous for the NM_017419.3:c.680G>T.

R227I is a deleterious amino acid substitution as evident from
PROVEAN score −3.830. I-Mutant analysis predicted that the
free energy change value (DDG) between wild type and mutant
type was less than zero (DDG < 0), which declares the decrease
in protein stability. Wild (RMSD= 0.045 Å) and mutant (RMSD
= 0.088 Å) proteins were superimposed, quantitative measure
of similarity analysis revealed an increase of 95.56% root-mean-
square deviation of atomic positions in the mutant (Figure 2C).

Molecular docking studies of wild (p.R227) and mutant
(p.R227I) ASIC5 protein with amiloride, a potent inhibitor of
acid-sensing ion channel proteins, were performed, and it was
observed that the binding behavior of amiloride with the mutant
model compared with the wild-type model was completely
different (Figure 2). R227 residue is not directly involved in
binding with the ligand, but it assists atomic interactions through
binding of the ligand with protein molecules at specific sites
(Figure 2F). In particular, a halogen bonding occurs between the
chlorine atom (colored green) of amiloride with the amino group
(NH2) of Gln305 (colored blue). The oxygen atom of the carbonyl
group (colored red) of amiloride interacts with the hydrogen of
the amino group (NH2) of Gln265 through N–H· · ·O hydrogen
bonding. In a similar fashion, the hydrogen of amiloride interacts
with the oxygen group of Glu203. However, the R227I prevents
the binding of ligand with the ASIC5 molecule at a specific site
(Figure 2G). In this mutant model, an alteration in the protein
coordination site occurs (Gly126 and Asn243) and, therefore,
fails to coordinate with amiloride functional groups.

DISCUSSION

Studies on tissues of miscarriage specimens from women with
RPL observed the chromosomal aberrations from 29 to 46% of
miscarriage tissues, while majority of the RPL may be due to
alternative mechanisms or other than chromosomal aberrations
(37–39). The present observation suggests that coding variants
in ASIC5 gene can be one among the alternative mechanisms
for RPL. The role of the acid-sensing ion channel subunit family
member 5 (ASIC5) or ACCN5 or bile acid-sensitive ion channel
(BASIC) gene in humans, in general, and the development of
the fetus, in particular, is scanty (40–42). Very limited studies
are available on the gene ASIC5 and related expression. This
gene, ASIC5, was reported to be expressed in the amniotic fluid
(43), fetal gut, brain, liver, heart, ovary, and testis (44). ASIC5 is
overexpressed in the fetal gut (41.0) and plasma (27.5). ASIC5
was observed to a key player in the physiology of unipolar
brush cells of the vestibulocerebellum (42, 45, 46). The complete
functions of the ASIC5 gene and its product are yet to be
identified (40–42). Animal studies on the autosomal recessive
mouse mutant of the gene encoding the L-type calcium channel
revealed that the homozygous mutant animals die at birth;
however, the heterozygous for the mutant is not distinguishable
from that of wild animals (47). The study resembles the present
observation of the heterozygous mutant of the healthy parents,
while death of the fetus with a homozygous mutant in the
gene belongs to the amiloride-sensitive Na+ channel. The R227I
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FIGURE 2 | Pathogenicity analysis of R227I mutation in the ASIC5 protein through molecular docking and interaction analysis. (A) Structural models of the wild (R227)

and mutated (R227I) ASIC5 proteins. (B) Ramachandran plot for the predicted structure of the ASIC5 protein. Eighty-three porterage residues of the ASIC5 protein are

in the most favored regions. Cx, superimposed structures of the wild (R227) and mutated (R227I) ASIC5 proteins; Cy, deviated region of R227I from R227 on

superimposed wild and mutant ASIC5. (D) Amiloride with ASIC5 at the active binding site. (E) 3D amiloride with surrounding amino acids of ASIC5 protein. (F,G)
Protein–ligand interaction. (F) Wild ASIC5 (R227) protein with ligand, amiloride. (G) Mutant ASIC5 (R227I) protein with ligand, amiloride.
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prevents the binding of amiloride with ASIC5 protein. However,
more confirmatory studies are mandatory to prove the failure in
amiloride-R227I (ASIC5) binding in wet lab, which is mandatory
for an activator to open its own channel (41, 48). Acid-sensing
ion channel subunit channels play an important role in the
fetal developmental pathology due to acidosis; furthermore,
prolonged acidosis is significantly associated with mortality of
the fetus (49, 50). Increased apoptosis was observed in the retina
due to the mutant ASIC2 gene compared with the wild type
(51). Mammalian degenerin (MDEG) or ASIC2 (acid-sensing ion
channel subunit 2) gene mutant study on the development of
Xenopus reported that the Xenopus oocytes with ASIC2mutation
start to maturate and die (52). This indicates the pathophysiology
of the mutation in the acid-sensing ion channel subunit genes.

Earlier reports reported that in 39% of the Saudi females
who had RPL, the origin of the patient in the study was
unexplained or had no identifiable cause (5). Various reasons
including genetic factors were stated for recurrent pregnancy loss
among Saudi women (3, 4, 6, 14, 18). Consanguineous marriages
are also considerably (p = 0.046) impacting (3). Genome-wide
association study (GAWS) revealed the association of ASIC5
(p = 0.0029; Supplementary Table 3) and level of manganese
(53, 54). Furthermore, the level of manganese in the placental
tissue of Saudi women with recurrent pregnancy loss was
significantly (p < 0.0001) decreased (11). This suggests that the
identified mutation in ASIC5 might have played a role in the
level of manganese in the present women. A recent study on
the prognosis markers of glioblastoma revealed the expression
of ASIC5 as associated prognosis markers (55). ASIC5 was
found to be activated in the ethanol-(100mM)-exposed neonatal
rat cardiomyocytes along with other six molecules (CYP2A6,
PRL, CHRNA4, CNR1, CRH, and SLC40A1) (56). Low (in 50%)
ASIC5 protein expression in melanoma were observed with<4%
mutation rates (57).

Preparing the mutated animal model to study the impact
of the mutant on the fetal development is not available in
our laboratory, which is a limitation of the study. Hence,
the region with the mutation, c.680G>T in the ASIC5 gene,
was screened using ARMS-PCR followed by sequencing using
designed primers to identify the presence of c.680G>T in
randomly selected Saudis in the study region, which confirms
the absence of the homozygous NM_017419.3:c.680G>T and the
presence of heterozygous NM_017419.3:c.680G>T in a female
subject and her mother with RPL. The study confirms the
influence of the association of the novel exonic mutation with
RPL. However, nationwide studies are mandatory to identify
the prevalence of this rare mutation and mutations in this gene
among unexplained miscarriages cases and their impact on the
recurrent pregnancy loss and fetal development. This can reveal
the role of ASIC5. The protein–protein interaction analysis of
ASIC5 protein, with the protein observed with the mutation
in the proband using STRING, revealed lack of interaction
(Supplementary Table 2). However, the analysis using STRING
cannot reveal any specific impact of mutated protein–protein
interactions due to specific amino acid changes (58).

Based on the earlier reports on the member of the DEG/ENaC
(degenerin/epithelial sodium channel) protein family and the

current observations, it may be concluded that the R227I amino
acid substitution in the ASIC5 is highly deleterious; the mutant
ASIC5 showed decreased stability and of the protein and prevents
the binding of amiloride, a potent inhibitor of acid-sensing ion
channel proteins (59).

The observed novel ASIC5 gene-coding variant (ASIC5Saudi)
in two families confirm the ASIC5 association with the results
of RPL. Hence, this mutation is pathogenic, which may cause
serious illness to the fetus and cause fetal mortality. The
molecular mechanism behind the death of the fetus in relation to
the homozygous NM_017419.3:c.680G>T at exon 4 (ASIC5Saudi)
in the ASIC5 gene should be studied in detail. Early prenatal
diagnosis of pathogenic variation like ASIC5Saudi can provide a
choice for the parent to decide pregnancy termination within the
allowed time among high-consanguinity population (60).
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Background: The failure of the embryonic hyaloid vascular system to regress naturally

causes persistent hyperplastic primary vitreous (PHPV), a congenital eye disease. PHPVs

molecular pathway, candidate genes, and drug targets are unknown. The current paper

describes a comprehensive analysis using bioinformatics to identify the key genes and

molecular pathways associated with PHPV, and to evaluate potential therapeutic agents

for disease management.

Methods: The genes associated with PHPV were identified using the pubmed2ensembl

text mining platform. GeneCodis was employed to evaluate the Gene Ontology (GO)

biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways. Search Tool for the Retrieval of Interacting Genes (STRING) constructed a

protein-protein interaction (PPI) network from the text mining genes (TMGs) in Cytoscape.

The significant modules were clustered using Molecular Complex Detection (MCODE),

and the GO and KEGG analysis for the hub genes were analyzed with the Database of

Annotation, Visualization and Integrated Discovery (DAVID) tool. ClueGO, CluePedia, and

ShinyGo were used to illustrate the functions and pathways of the clustered hub genes in

a significant module. The Drug-Gene Interaction database (DGIdb) was used to evaluate

drug–gene interactions of the hub genes to identify potential PHPV drug candidates.

Results: A total of 50 genes associated with PHPV were identified. Overall, 35 enriched

GO terms and 15 KEGG pathways were discovered by the gene functional enrichment

analysis. Two gene modules were obtained from the PPI network constructed with 31

nodes with 42 edges usingMCODE.We selected 14 hub genes as core candidate genes:

TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP,

PITX2, and PAX2, primarily associated with camera-type eye morphogenesis, pancreatic

cancer, the apoptotic process involved in morphogenesis, and the VEGF receptor

signaling pathway. We discovered that 26 Food and Drug Administration (FDA)-approved

drugs could target 7 of the 14 hub genes.

Conclusions: In conclusion, the results revealed a total of 14 potential genes, 4 major

pathways, 7 drug gene targets, and 26 candidate drugs that could provide the basis of

novel targeted therapies for targeted treatment and management of PHPV.

Keywords: persistent hyperplastic primary vitreous, gene ontology, bioinformatic analysis, hub genes, molecular
pathway
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GRAPHICAL ABSTRACT | Schematic diagram for evaluating and identifying the key genes, molecular pathways, predicted drug targets of PHPV.

INTRODUCTION

Persistent hyperplastic primary vitreous (PHPV) is a rare
vitreoretinal disorder which accounts for up to 5% of blindness
(1). PHPV’s pathophysiology occurs during the embryonic
stage, with vessel development occurring in the third week
of pregnancy. The hyaloid artery system expands and extends
to the anterior part of the eye forming the iridohyaloid or
capsulopupillary artery during this period. At this point of
development, the posterior tunica vasculosa lentis, which is
an anastomosis of vessels at the back of the lens begins to
develop and nourishes the lens. Secondary vitreous begins
to develop in place of primary vitreous during the second
trimester of pregnancy. The pathological persistence of fetal
intraocular vessels including the hyaloid artery in embryonic
vitreous causes this congenital eye disease (2, 3). Apoptosis or
macrophage activation causes hyaloidal artery regression which
is accompanied by vasa hyaloidal propria, iridohyaloid, and
tunica vasculosa lentis (4). White retrolental tissue, an anteriorly
swollen lens, centrally dragging ciliary structures, and varying
degrees of lenticular opacification are themost prominent clinical
symptoms (5). These vascular remnants can hinder the normal
retinal development leading to retinal detachment and optic
nerve or macula anomalies, and it can also appear in anterior,
lateral, or combined forms in various patients (5, 6). PHPV
is usually detected in infants within the first 3 months of life
due to leukocoria, microphthalmos, and strabismus (7). Figure 1
represents the typical morphology of a PHPV subject. PHPV is

also known as persistent fetal vasculature (PFV) (5). Bilateral
PHPV is rare and sporadic compared to unilateral PHPV;
however, it is an autosomal dominant or recessive trait that may
be inherited (8, 9).

A large number of genes are involved in the development
and regression of the hyaloid artery. PHPV traits have been
observed in human and animal models. In humans, PHPV
incidence was found to be an autosomal dominant inheritance
pattern in an Egyptian family (10). Mutations in the NDP
gene and the COX15 gene on chromosome 10 have been
found in cases of bilateral PHPV (11–14). The ZNF408 gene,
which had previously been found in retinitis pigmentosa
and autosomal dominant familial exudative vitreoretinopathy
(ADFEVR) was also identified in PHPV cases of microcornea,
posterior megalolenticonus, and coloboma syndrome (MPPC
syndrome) (15). FZD4 (frizzled-type receptor 4) was reported
to be associated in certain PHPV cases as well as a gene linked
to familial exudative vitreoretinopathy (FEVR) (16). In animal
models, various signaling pathways have been implicated in the
pathogenesis of PHPV including protooncogene ski, p53, tumor
suppressor gene Arf, ephrin-B2, βA3/A1-crystallin, LRP5, ang-
2, Bax and Bak, FZD4, and ephrin-A5. FEVR, incontinentia
pigmenti, retinoblastoma, and retinopathy of prematurity (RoP)
are some of the conditions that mimic PHPV-like symptoms
(17–23). However, the regulatory mechanisms responsible and
genes involved in the process of fetal vascular regression
continue to be unclear, as does the underlying cause of failure
of regression.
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The current surgical management of PHPV is primarily based
on the pathological presence of individual cases. Depending
on the ocular pathology of PHPV, the limbal and pars plicata
incisions are the two most frequent surgical incision methods
(24). The most common criteria for surgical intervention

FIGURE 1 | Morphology of persistent hyperplastic primary vitreous in a

1-year-old boy with white vascularized retrolental tissue. Image obtained with

prior informed consent from the parents of the patient.

are severe media opacities due to cataract or retrolental
membranes, progressive anterior chamber shallowing due to
cataract, uncontrolled glaucoma or secondary ocular hypotony
related to ciliary process dragging, vitreous hemorrhage, and
retinal detachment following vitreoretinal traction (5, 25).
In cases with advanced pathology, such as acute optic nerve
hypoplasia, severe retinal detachment, or microphthalmia,
surgery is not a preferred choice since post-operative vision
is often low (24). Non-surgical management is currently
used in non-progressive conditions and patients with non-
central opacity that does not cause any visual impairment.
If a non-surgical alternative is used, diligent follow-up
should be carried out to detect any potential risks, such
as cataract progression or glaucoma (26). The disease’s
heterogeneity continues to render PHPV diagnosis and
treatment challenging.

Since PHPV is a rare disease, understanding the mechanisms
that constitute a group of phenotypes is often restricted
by small sampling sizes. Therefore, comprehending the
molecular mechanisms underlying the expression of the
mutated gene, which leads to improper vascular remodeling
and the formation of PHPV is often individual-specific and
critical for diagnosis, prevention, and therapeutic management.
The assessment and analysis of molecular pathways and
genetic variant analysis using conventional variant detection

FIGURE 2 | Summary of the study design and methodology flowchart. Text mining was conducted using pubmed2ensembl to identify genes associated with

persistent hyperplastic primary vitreous (PHPV). GeneCodis was used to detect genes enriched in Gene Ontology (GO) biological process terms and KEGG pathways.

STRING and MCODE software were used to construct a protein-protein interaction network and identify modules. The GO biological process terms and KEGG

pathways were analyzed using DAVID, ClueGO, and ShinyGo. The drug list was compiled based on the gene-drug interaction using the drug-gene interaction

database (DGIdb).
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FIGURE 3 | Protein-protein interaction network of all TMGs related to PHPV. The network, genetic interactions, co-expression analysis, and pathways evaluated using

Genemania, a Cytoscape plugin, are represented in the figure.

approaches such as Sanger sequencing, next generation
sequencing, FISH, aCGH, and GTG banding can be time-
consuming, expensive, and results in complicated data analysis
for unspecified variants (27–31). Text mining is an effective
tool for generating a hypothesis since it can reveal novel
correlations between genes and the disease pathologies (32).
Integration of text mining with biological knowledge and
a bioinformatic approach provides new insights into the
potential to reconfigure existing drugs (33). By integrating
biological databases and in silico tools, the present paper aims
to explore possible molecular mechanisms (if any) and classify
the causative genes responsible for the heterogenic disease
PHPV, thus discovering new drug targets for the treatment of
the disease.

METHODS

Selection of Key Genes Using Text Mining
Analysis
To identify genes related to PHPV, text mining analysis was
performed using pubmed2ensembl (http://pubmed2ensembl.ls.
manchester.ac.uk) which revealed associations between genes
and the literature for data extraction. It is a freely accessible
database that connects over 2,000,000 articles in PubMed
publications to 150,000 Ensembl genes from 50 species (34,
35). To create a list of key genes, we used search terminology
“Persistent Hyperplastic Primary Vitreous” and “Persistent Fetal
Vasculature” from 100,000 relevant document IDs. The search
terms used were confined to avoid overlapping genes related with

other ocular disorders. The species dataset was set to “Homo
sapiens (GRCh37)” and the query result was constrained using
“filter on MEDLINE: PubMed ID”. The unduplicated genes were
extracted and the TMGs were recovered as the intersection of
gene hits from the two sets. Figure 2 represents the methodology
flowchart and summary of the study design.

Pathway Enrichment and Biological
Process Analysis
The TMGs obtained from text mining were analyzed for
biological process annotations. The tool GeneCodis, a web-
based server, was used (http://genecodis.cnb.csic.es/) to execute
an enrichment analysis of the TMGs. GeneCodis assesses
functional analysis of gene lists that integrates different
sources of information which includes Gene Ontology (GO)
[a collection of terminology that describe gene products in
terms of Biological Process (BP), Molecular Function (MF), and
Cellular Component (CC)], KEGG pathways (offers evidence on
biological metabolic pathways that are well-known), and Inter
Pro motifs (36). The organism chosen for the analysis was set as
Homo sapiens. The TMGs were used as the input set, and genes
with significantly enriched biological processes relevant to eye
development and vasculogenesis were chosen using an adjusted
P-value and analyzed using the GO and BP categories. Using the
same method, the genes from the selected annotations were used
for KEGG pathway analysis and the genes obtained by the KEGG
pathway analysis were further analyzed (28). GeneMania (version
3.5.2), a Cytoscape plugin (version 3.8.2), was used to construct a
gene-gene functional interaction network from the TMGs. The
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TABLE 1 | Top 15 enriched Gene Ontology (GO) biological process terms assigned to the text mining genes.

Biological process Genes in query
set

Total genes in
the genome

Corrected
P-value

Genes

Extracellular matrix-cell signaling 3 4 2.33E-08 FZD4, NDP, LRP5

Multicellular organism development 9 1,103 2.51E-08 FZD4, FZD5, VEGFA, PAX2, PAEP, LRP5, KDR,

ATOH7, FOXC1

Regulation of transcription by RNA polymerase ii 9 1,102 3.12E-08 VEGFA, TP53, PAX2, MYCN, SMAD2,

JMJD1C, ATOH7, FOXC1, KDM3B

Norrin signaling pathway 3 3 3.50E-08 FZD4, NDP, LRP5

Positive regulation of transcription, DNA-templated 8 701 3.77E-08 FZD4, TP53, PAX2, NDP, MYCN, SMAD2,

LRP5, FOXC1

Positive regulation of transcription by RNA

polymerase ii

9 1,068 4.73E-08 IKBKG, FZD5, VEGFA, TP53, PAX2, MYCN,

SMAD2, LRP5, FOXC1

Negative regulation of gene expression 6 291 1.27E-07 VEGFA, TP53, TGFB2, MYCN, SMAD2, KDR

Retina vasculature morphogenesis in camera-type

eye

3 7 1.53E-07 FZD4, NDP, LRP5

Heart development 5 234 2.04E-06 TP53, TGFB2, PCNA, SMAD2, FOXC1

Vascular endothelial growth factor signaling pathway 3 16 2.17E-06 VEGFA, KDR, FOXC1

Regulation of transcription, DNA-templated 7 998 4.75E-06 TP53, PAX2, MYCN, SMAD2, JMJD1C,

ATOH7, FOXC1

Negative regulation of cell population proliferation 5 438 3.78E-05 FZD5, TP53, TGFB2, NF2, SMAD2

Positive regulation of epithelial to mesenchymal

transition

3 48 4.27E-05 TGFB2, SMAD2, FOXC1

Post-embryonic camera-type eye development 2 4 4.52E-05 FZD5, VEGFA

Heart morphogenesis 3 53 4.76E-05 VEGFA, TGFB2, FOXC1

In utero embryonic development 4 202 4.76E-05 VEGFA, TP53, SMAD2, FOXC1

Positive regulation of endothelial cell chemotaxis by

VEGF-activated vascular endothelial growth factor

receptor signaling pathway

2 5 4.90E-05 VEGFA, KDR

Vascular endothelial growth factor receptor-2

signaling pathway

2 5 4.90E-05 VEGFA, KDR

Positive regulation of cell population proliferation 5 519 4.96E-05 VEGFA, TGFB2, PAX2, LRP5, KDR

Cell differentiation 6 943 5.02E-05 VEGFA, PAX2, SMAD2, KDR, ATOH7, FOXC1

Positive regulation of gene expression 5 486 5.03E-05 VEGFA, TP53, MYCN, SMAD2, FOXC1

Vasculogenesis 3 61 5.39E-05 FZD4, VEGFA, KDR

Wnt signaling pathway 4 226 5.41E-05 FZD4, FZD5, NDP, LRP5

Retinal blood vessel morphogenesis 2 6 5.88E-05 FZD4, LRP5

Positive regulation of transcription from RNA

polymerase ii promoter in response to hypoxia

2 6 5.88E-05 VEGFA, TP53

advanced statistical options used were max resultant genes =

20, max resultant attributes = 10, and the automatically selected
network weighting function. The resulting network comprised
functional annotations from GO as well as genes most closely
related to the original list.

Construction of Protein-Protein Interaction
Network and Module Analysis
STRING (version 1.6.0) was used to construct the PPI network of
35 enriched genes based on GO. STRING is a web-based database
comprising nearly 24.6 million proteins and over 3.1 billion
interactions from 5,090 distinct species [https://string-db.org/
cgi/input.pl; (37)]. The fundamental metrics of nodes in network
theory are connectivity degree (k), Betweenness Centrality (BC),

Closeness Centrality (CC), Eigenvector Centrality (EC), and
eccentricity. However, the main advantage of PPI network
analysis is to accommodate a wide range of biological
processes including inputs pathway information, providing
confidence scores based on evidence from conserved genomic
neighborhoods, gene-fusion events, co-occurrence events, co-
expression data, experimental data, database information, text
mining, and homology. In the PPI network, nodes with a high
degree known, as hub proteins, are critical proteins because they
may correlate to disease-causing genes while nodes with a high
BC, known as bottlenecks, prefer to signify important genes
because they can be compared to highly used intersections on
major highways or bridges. The confidence score of 0.900 was
specified as the minimum criterion. The molecular interaction
network was then visualized and hub genes were identified using
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TABLE 2 | Top 10 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways assigned to the text mining genes.

PHPV-KEGG pathway Genes in the
query set

Total genes in
the genome

Corrected
P-value

Genes

Pathways in cancer 9 368 1.24E-12 IKBKG, FZD4, FZD5, VEGFA, TP53, TGFB2,

SMAD2, LRP5, LAMB2

Proteoglycans in cancer 7 141 5.54E-12 FZD4, FZD5, VEGFA, TP53, TGFB2, SMAD2,

KDR

Hepatocellular carcinoma 6 90 3.16E-11 FZD4, FZD5, TP53, TGFB2, SMAD2, LRP5

Gastric cancer 6 89 3.94E-11 FZD4, FZD5, TP53, TGFB2, SMAD2, LRP5

Pancreatic cancer 5 62 8.60E-10 IKBKG, VEGFA, TP53, TGFB2, SMAD2

Human papillomavirus infection 6 179 1.39E-09 IKBKG, FZD4, FZD5, VEGFA, TP53, LAMB2

Hippo signaling pathway 5 81 2.42E-09 FZD4, FZD5, TGFB2, NF2, SMAD2

MAPK signaling pathway 5 192 1.66E-07 IKBKG, VEGFA, TP53, TGFB2, KDR

Wnt signaling pathway 4 69 1.96E-07 FZD4, FZD5, TP53, LRP5

Cell cycle 4 74 2.35E-07 TP53, TGFB2, PCNA, SMAD2

PI3K-Akt signaling pathway 5 222 2.49E-07 IKBKG, VEGFA, TP53, LAMB2, KDR

Breast cancer 4 87 3.77E-07 FZD4, FZD5, TP53, LRP5

Fluid shear stress and atherosclerosis 4 95 4.97E-07 IKBKG, VEGFA, TP53, KDR

Hepatitis B 4 127 1.49E-06 IKBKG, TP53, TGFB2, PCNA

Basal cell carcinoma 3 31 1.82E-06 FZD4, FZD5, TP53

the Cytoscape software which visually presents the integration
of gene expression, biological network, and genotype (38). In
this study, the hub nodes were classified by a high score
based on the network’s scale-free property and was used for
centrality analysis by analyzing the network topology (39) and
considered the sub-network of these key proteins as the backbone
which was worth exploring further in the signaling pathways
involved in eye development. Further, a built in Cytoscape plugin
Molecular Complex Detection (MCODE, version 2.0.0) was used
to distinguish the significant gene modules (clusters) and hub
genes from the PPI network (40). The cutoff parameters were
“degree cutoff = 2,” “node score cutoff = 0.2,” “k-core = 2,” and
“max depth= 100” (41).

Drug-Gene Interactions
The Drug-Gene Interaction Database (DGIdb) (www.dgidb.org)
is an online resource that consolidates data from various
sources to illustrate drug–gene interactions and gene druggability
(42). We investigated drug-gene interactions used in significant
module genes as the potential targets for existing drugs or
compounds using DGIdb (Version 3.0). The PubChem database
was used to obtain the chemical structure of the identified
drugs (https://pubchem.ncbi.nlm.nih.gov). It has over 25 million
specific chemical structures and 90 million bioactivity outcomes
linked to thousands of macromolecular targets.

RESULTS

Identification of Candidate Genes
We obtained 50 unique genes in Homo sapiens associated with
PHPV using the TMG approach. Figure 3 depicts the network,
genetic interactions, co-expression analysis, and pathways of the
50 TMGs assessed by GeneMania. From these, 35 genes were

selected as candidate genes for enrichment analysis based on their
GO and molecular pathways.

Enrichment Analysis of TMGs
The most enriched terminology directly linked to the pathology
of vasculature morphogenesis of the eye contributing to PHPV
was identified using GeneCodis (with P = 1.00E-07), GO,
biological process (BP), and KEGG. The GO and BP annotations
analysis identified 35 significantly enriched genes. The 10 most
enriched functions were “extracellular matrix cell signaling”
(P = 2.33E-08), “multicellular organism development” (P =

2.51E-08), “regulation of transcription by RNA polymerase ii”
(P = 3.12 E-08), “Norrin signaling pathway” (P = 3.50E-08),
“regulation of transcription, DNA templated” (P = 3.77E-08),
“negative regulation of gene expression” (P = 1.27E-07), “retina
vasculature morphogenesis in camera-type eye” (P = 1.53E-
07), “heart development” (P = 2.04E-06), “vascular endothelial
growth factor (VEGF) signaling pathway” (P = 2.17E-06), and
“post-embryonic camera type eye development” (P = 4.52E-05).
Overall, 15 major pathways involving 12 TMGs were discovered
by KEGG enrichment analysis. The five most significantly
enriched pathways were “pathways in cancer” (P = 11.24E-
12), “proteoglycans in cancer” (P = 5.54E-12), “hepatocellular
carcinoma” (P = 3.16E-11), “gastric cancer” (P = 3.94E-11), and
“pancreatic cancer” (P = 8.69E-10), involving 9, 7, 6, 6, and 5
text mining genes, respectively. Table 1 displays 15 enriched GO
terms and Table 2 exhibits the KEGG analysis of 10 enriched
molecular pathways of the TMGs.

PPI Network Construction, Modular
Analysis, and Key Genes Identification
STRING was used to construct a PPI network for the 35
target genes with a high confidence score >0.900. There
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FIGURE 4 | Identification and enrichment analysis of the text mining genes (TMGs). (A) The protein-protein interaction (PPI) network of the 35 target TMGs was

visualized using Cytoscape. The gradience of the genes node border color reflects its role in the eye development process (a dark green node border represents the

strongest degree of association and a light green node border represents the weakest degree of association). (B,C) The two modules were obtained from the PPI

network using MCODE. (B) Module 1, the most significant module with four nodes. (C) Module 2 with five nodes.

were 31 nodes and 42 edges in the network (Figure 4A).
Using a cluster analysis of filtering nodes, 14 hub node
genes were identified among 31 nodes (Table 3). The hub
genes identified were TP53, VEGFA, SMAD2, CDKN2A, FOXC,
FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP, PITX2, and
PAX2. The REVIGO analysis of the hub genes revealed five
clusters based on GO similarity which were primarily related
to eye development, Wnt signaling pathway, cell proliferation,
regulation of cell migration, and regulation of angiogenesis
(Figure 5). The modular analysis performed using MCODE
yielded two modules. The PPI network relies on a total
of 9 genes, as module 1 (FZD4, FZD5, LRP5, and NDP)
contained 4 genes with 10 edges and module 2 (TP53, KDR,

VEGFA, CDK2NA, and SMAD2) contained 5 genes with 6
edges (Figures 4B,C). According to the pathway enrichment
analysis using KEGG and the ShinyGo platform, the genes
in module 1 were associated with VEGF signaling pathway,
regulation of execution process of apoptosis, and cell migration
involved in sprouting angiogenesis. The module 2 genes
were significantly associated with eye development, retinal
vasculature development, andWnt signaling pathway (Figure 6).
Overall, the enrichment analysis revealed that these genes were
substantially enriched in cell proliferation, anatomical structure
morphogenesis, and regulation of developmental process which
play a crucial role in vasculature formation of the lens
causing PHPV.
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TABLE 3 | Hub node genes in the protein-protein interaction network identified

with a filtering node degree ≥2.

Genes Degree MCODE cluster MCODE
node status

MCODE
SCORE

TP53 12 Clustered Module 1 4

VEGFA 9 Clustered Module 1 4

SMAD2 7 Seed Module 1 4

CDKN2A 6 Clustered Module 1 4

FOXC1 5 Unclustered – 1

FZD4 4 Clustered Module 2 3

LRP5 4 Clustered Module 2 3

KDR 4 Clustered Module 1 4

FZD5 3 Clustered Module 2 3

PAX6 3 Unclustered – 2

MYCN 3 Unclustered – 3

NDP 3 Seed Module 2 3

PITX2 3 Unclustered – 2

PAX2 3 Unclustered – 2

Drug-Gene Interaction Analysis of Core
Genes
In the drug-gene interaction study, we selected 14 hub genes as
potential drug targets (Table 4). Overall, 7 of the 14 are potential
gene targets and 26 FDA-approved drugs are expected to have
drug-gene interactions. FOXC1, FZD4, LRP5, FZD5, PAX6,

NDP, and PITX2 were the exceptions. The major interactions
among drugs, genes, and pathways are depicted in Table 4.
Table 5 represents the chemical structure and formula of the
identified drugs.

DISCUSSION

PHPV is a disease that leads to blindness or severe vision
loss, although there are currently few therapeutic choices (24,
25). On the other hand, PHPV patients are more likely to
develop cataracts and closed-angle glaucoma early on in life.
Terminal glaucoma, uveitis, retinal detachment, and intra-
ocular hemorrhage can be inevitable for these patients (35).
As a consequence, the molecular mechanisms that contribute
to PHPV must be established. Our analysis discloses that the
molecular mechanism of PHPV overlaps with various other
signaling pathways contributing to a broader range of therapeutic
targets and prognostic biomarkers. The present paper reports
35 genes that might be involved in the development of the
eye’s vasculature process in the PHPV condition. The enriched
GO and BP terms assigned to these genes were associated
mainly with extracellular matrix-cell signaling, multicellular
organism development, regulation of transcription by RNA
polymerase ii, Norrin signaling pathway, and retina vasculature
morphogenesis in camera-type eyes. The PPI network and
enrichment analysis identified 14 hub genes, TP53, VEGFA,
SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6,

MYCN, NDP, PITX2, and PAX2 that were involved in camera-
type eye morphogenesis, pancreatic cancer, the apoptotic process
involved in morphogenesis, and the VEGF receptor signaling
pathway (Figure 7). The functional analysis and pathways of the
key genes in module 1 and module 2 illustrated using ClueGO
are displayed in Figure 7A. Figure 7B displays the distribution
of functions and pathways among core genes, while Figure 7C

reveals KEGG pathways and enriched GO terms, with colors
allocated to each pathway.

Based on the evaluations, four genes such as FZD4,
LRP5, FZD5, NDP were involved in the process of eye
development, retina vasculature development, retinal blood
vessel morphogenesis, and the Wnt signaling pathway
[Figure 6B; (43, 44)]. The architecture of the retinal vasculature
is dependent on highly organized signaling between various
cell types of retina, combining internal metabolic conditions
with external influences such as oxygen and nutrient supply. In
various organs, including the eye, the Wnt signaling pathway is
essential for vascular morphogenesis. During eye development,
and in vascular eye disorders, Wnt ligands and receptors are
key regulators of ocular angiogenesis and also control the
development of structured layers of vasculature in retinas as well
as the regression of hyaloid vessels (45). FEVR (an inherited
disease in which the peripheral retina is hypovascularized to
varying degrees) has been attributed to mutations in Wnt
pathway components FZD4, LRP5, and the secreted cysteine-
knot protein Norrin (46, 47). Norrin is a non-Wnt ligand with
a high affinity FZD4 receptor located in the retina and activates
the Wnt/β-catenin pathway. Norrie disease, retinopathy of
prematurity, and Coats disease are vascular retinopathies caused
by defects in the Norrin gene (48). In humans, mutations in NDP
and FZD4 have been identified in a limited number of unilateral
and bilateral PHPV patients (14, 49–51). ATOH7 mutation
(N46H-homozygous) in a family of autosomal recessive PHPV
disease traits linked to 10q21 has been identified (52). These
variations include deletions, insertions, and missense and
nonsense mutations. However, individuals with X-linked FEVR,
autosomal dominant FEVR, retinopathy of prematurity, and
Norrie disease have also been reported to have mutations in
NDP and FZD4 genes (53). According to the GO analysis, five
genes TP53, VEGFA, SMAD2, CDKN2A, and KDR (Figure 6A)
are involved in the process of regulation of cell migration by
the VEGF signaling pathway, angiogenesis, regulation of muscle
cell apoptotic process, and embryonic organ development
process. Apoptosis is another crucial process in eye development
involving extensive programmed cell death associated with
morphogenesis (54).

Previous research on transgenic mice models supports our
in silico analysis of PHPV to validate the function of these
hub genes in hyaloid vasculature regression such as knockouts
of the Arf tumor suppressor gene (23, 55, 56), p53 (21, 57),
and Frizzled-5 (57) which were associated with PHPV-like
phenotypes in mouse models. During mouse eye development,
the arf tumor suppressor gene promoted hyaloid vasculature
regression and its deficiency may cause a retrolental membrane
with persistent hyaloid vessels (9, 23). In Atoh7 knockout
mice, hyaloid vessels persist in the vitreous and proliferate to
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FIGURE 5 | Gene Ontology terms of the 14 hub genes. The figure represents enriched GO terms related to eye morphogenesis and vasculature remodeling. DAVID

and the REVIGO web server were employed to conduct functional and pathway enrichment analysis.

supply the retina which lacks intrinsic vasculature (58, 59). The
ephirin-A5 family of receptor tyrosine has been demonstrated
to be significant in the regression of the primary vitreous in
mouse models (60). Furthermore, in mice lacking LRP5, a Wnt
receptor displayed hyaloid vasculature that lasted throughout
their lives (61, 62). Given the correlation between transgenic
mouse PHPV phenotypes and the hub genes in human congenital
defects affecting the eye morphogenesis or retinal vasculature
and molecular signaling pathways in module 1 and module 2, it
suggests that the pathogenesis of PHPV is regulated by genes in
modules 1 and 2.

Twenty-six drugs identified by the drug-gene interaction
analysis were classified as anti-neoplastic agents, ocular vascular
disorder agents, kinase inhibitors, immune system functioning
agents, or corticosteroids. Among them, four potential drugs
such as Ranibizumab, Dinutuximab, Pegaptanib Sodium, and

Sonidegib were identified based on their high drug-gene
interaction score (Table 4). Ranibizumab is a recombinant
humanized monoclonal antibody fragment that binds to human
vascular endothelial growth factor A (VEGF-A) and thereby
prevents it from binding to its receptor and blocking the
development of new blood vessels (63). Pegaptanib Sodium
is an anti-angiogenic drug used to treat neovascular diseases.
It specifically binds to the 165 isoform of VEGF, a protein
that is involved in angiogenesis and increased blood vessel
leakage (64). Ranibizumab and Pegaptanib Sodium are typically
used to treat wet age-related macular degeneration, a type
of eye disease (61, 62, 65, 66). They are also used to treat
macular edema after retinal vein occlusion, diabetic macular
edema, and diabetic retinopathy. Dinutuximab is a GD2-binding
human/mouse chimericmonoclonal antibody. It has been proven
that the action of pro and anti-angiogenic factors regulates
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FIGURE 6 | Gene Ontology (GO) terms in the three modules. (A) Significantly enriched GO terms in module 1. (B) Significantly enriched GO terms in module 2. The

functional and pathway enrichment analyses in PHPV were related with high score (P > 0.005) based on a tree illustration created using the ShinyGo web server.

angiogenesis in the development of new capillaries from a
pre-existing capillary network (67). Dinutuximab binds to
GD2 on the cell surface and induces GD2 expressing cells
to lyse by antibody-dependent cell-mediated cytotoxicity and
complement-dependent cytotoxicity (68, 69). Sonidegib is an
anticancer drug that inhibits the hedgehog (Hh) pathway which
is involved in cell differentiation, tissue polarity, and stem
cell maintenance during embryonic growth. Hh is essential
for the development of the hyaloid loop on the lens’s
ventral surface by promoting VEGF-mediated angiogenesis.
In a zebrafish model, the loss of Hh signaling induced
excess sprouting of blood vessels in the dorsal eye and
impaired the growth of blood vessels in the ventral eye (70).
Regulation of the Hh signaling pathway has been associated

with the growth and progression of cancers such as basal
cell carcinoma, medulloblastoma (71), and periocular basal cell
carcinoma (72).

In PHPV, the ocular fetal vasculature does not go through
normal developmental regression. The reasons could be due to
presumed loss of apoptosis in PHPV; these natural apoptotic
pathways could be pathologically disrupted (22, 73). Apoptosis
is a process of cell death that is regulated by a number of gene
families. In mice models, the macrophage has been established
as a key mediator in studies examining the mechanisms of
regression (74, 75). In silico drug-gene analysis using the
hub genes of PHPV revealed high interaction with anticancer
compounds in the present study. It is understood that vascular
quiescence can be regulated by a combination of pro and
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TABLE 4 | Details of the 26 Food and Drug Administration (FDA)-approved drugs that potentially target 7 of the 14 hub genes.

Drug Gene Interaction Interaction
score

Drug class Approved Reference
(PubMed ID)

Ranibizumab VEGFA Inhibitor 6.51 Antineoplastic agents, ocular vascular

disorder agents

Yes 18046235,

18054637

Pegaptanib Sodium VEGFA Antagonist 2.31 Antagonist agent vascular endothelial

growth factor (VEGF)

Yes 23953100

Aflibercept VEGFA Antibody, binder, inhibitor 1.89 Antagonist agent vascular endothelial

growth factor-A (VEGF-A) and placental

growth factor (PLGF)

Yes 22813448,

20124951

Minocycline VEGFA Inhibitor 0.28 Antibiotic agent Yes 11875741,

16224178

Carvedilol VEGFA Other/unknown 0.18 Beta blocker agent Yes 15071347,

15942707,

15732037

Dinutuximab MYCN Other/unknown 6.31 Antineoplastic agents Yes –

Sonidegib MYCN Other/unknown 2.52 Antineoplastic agents Yes 24651015

Amifostine SMAD2 Unknown 2.24 Chemo protectant, antineoplastic adjunct,

or cytoprotective agent

Yes –

Hydrocortisone SMAD2 Unknown 0.3 Corticosteroids Yes 26343583,

27488531,

22983396

Bleomycin SMAD2 Unknown 0.57 Antitumor antibiotic Yes –

Tretinoin SMAD2 Unknown 0.26 Anticancer drugs Yes –

Progesterone PAX2 Unknown 1.48 Antimineralocorticoid; neurosteroid Yes 11850818

Vandetanib KDR Inhibitor 0.0 Tyrosine kinase inhibitors Yes 26578684,

20124951

Ramucirumab KDR Inhibitor, antagonist, antibody 0.63 Binds to the vascular endothelial growth

factor receptor-2

Yes 20048182, 2182794

Lenvatinib KDR Inhibitor Kinase inhibitors, antineoplastic agent Yes 17943726

Sunitinib KDR Inhibitor 0.25 Kinase inhibitors, antineoplastic agent Yes 27149458,

20142593,

25639617

Sorafenib KDR Antagonist, inhibitor Kinase inhibitors, antineoplastic agent Yes 16824050,

16418310,

26344591

Axinib KDR Unknown 0.32 Kinase inhibitors, antineoplastic agent Yes –

Regorafenib KDR Inhibitor 0.14 Kinase inhibitors, antineoplastic agent Yes 27004155

Sorafenib KDR Antagonist, inhibitor 0.12 Kinase inhibitors, antineoplastic agent Yes 16824050,

16418310,

26344591

Abemaciclib CDKN2A Unknown 0.92 Antineoplastic agent Yes 27217383,

26183925

Palbociclib CDKN2A Unknown 0.88 Antineoplastic agent Yes 26715889,

21278246,

22711607

Alectinib CDKN2A Unknown 0.65 Antineoplastic agent Yes –

Zinc Chloride TP53 Chaperone 0 Immune system functioning agent Yes 17327663,

29843463

Trifluridine TP53 Unknown 0.07 Ophthalmological antiviral agent Yes 25700705

Bortezomib TP53 Inhibitor 0 Anticancer drug Yes 28679691

anti-angiogenic factors. Previous reports have demonstrated
that the equilibrium of angiogenic factors such as VEGF and
placental growth factor is crucial in vascular regression and

mice lacking angiopoietin 2 which regulates angiogenesis by
binding to the Tie2 receptor, maintaining fetal vessels in the
eyes (18, 76). In addition, the identified drugs can be used
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TABLE 5 | Chemical structure of the potential drugs that target the seven candidate genes.

Drug Gene target Chemical structure Chemical
formula/protein formula

Pegaptanib

sodium

VEGFA C22H44N3O10P

Minocycline VEGFA C23H27N3O7

Carvedilol VEGFA C24H26N2O4

Sonidegib MYCN C26H26F3N3O3

Amifostine SMAD2 C5H15N2O3PS

Hydrocortisone SMAD2 C21H30O5

Bleomycin SMAD2 C110H168N34O46S7

(Continued)
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TABLE 5 | Continued

Drug Gene target Chemical structure Chemical
formula/protein formula

Tretinoin SMAD2 C20H28O2

Progesterone PAX2 C21H30O2

Vandetanib KDR C22H24BrFN4O2

Lenvatinib KDR 21H19ClN4O4

Sunitinib KDR C22H27FN4O2

Sorafenib KDR C21H16ClF3N4O3

(Continued)
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TABLE 5 | Continued

Drug Gene target Chemical structure Chemical
formula/protein formula

Axinib KDR C22H18N4OS

Regorafenib KDR C21H15ClF4NO3

Sorafenib KDR C21H16ClF3N4O3

Abemaciclib CDKN2A C27H32F2N8

Palbociclib CDKN2A C24H29N7O2

Alectinib CDKN2A C30H34N4O2

(Continued)
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TABLE 5 | Continued

Drug Gene target Chemical structure Chemical
formula/protein formula

Zinc chloride TP53 Cl2Zn

Trifluridine TP53 C10H11F3N2O5

Bortezomib TP53 C19H25BN4O4

Ranibizumab VEGFA Monoclonal antibody C2158H3282N562O681S12

Aflibercept VEGFA Monoclonal antibody C4318H6788N1164S32

Dinutuximab MYCN Monoclonal antibody C6422H9982N1722O2008S48

Ramucirumab KDR Monoclonal antibody C6374H9864N1692O1996S46

for pharmacological screening in mice and zebrafish models
to identify compounds affecting vasculature development that
could be of therapeutic importance. The results of the study
could lead to a better understanding of the potential molecular
pathway and possible hyaloid vasculature mechanism, as well
as the development of novel therapeutics to prevent or cure
this blinding disease, PHPV. Since the current paper focuses
on the appropriate path for understanding molecular pathways
and therapeutic options for PHPV through in silico analysis,
further experimental analysis using animal models is highly
recommended to confirm the significance of the candidate
genes and pro- and antiangiogenic factors in hyaloid vasculature
development and physiology. This continues to be a limitation of
the study.

CONCLUSION AND FUTURE
PERSPECTIVES

To conclude, no specific candidate genes, molecular pathways,
or drug targets have been associated with PHPV until now.
TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR,
FZD5, PAX6, MYCN, NDP, PITX2, and PAX2 were identified
for the first time as hub genes using in silico tools that
may be involved in the development of retinal vasculature
and dysfunction of these genes, leading to PHPV. These
genes appear to be predominantly associated with functions

related to eye morphogenesis, cancer, apoptosis, and VEGF
receptor signaling pathways. Previous reports in knockout
TP53, VEGFA, FZD4, and NDP transgenic mouse models
confirmed the failure of regression of hyaloid vessels and
abnormalities in the retinal vasculature. In the future, these
in silico analyses will be validated by mutation screening
of the hub genes in PHPV patients in order to identify
pathogenic variants and gene product expressivity. Clearly, more
research is warranted on animals and in human patients as the
phenotypic differences will differ from individual to individual
based on the expressivity of the gene product. In addition,
we identified four genes that may be potential drug targets.
Precision medicine for a fetal ocular condition like PHPV
presents new challenges but with a possibility. Since PHPV is a
rare and often autosomal recessive condition, the present paper
is useful when there is little pathological knowledge about the
disease or where there is substantial pathway heterogeneity,
underlying the clinical phenotype. As a result, a combination
of therapeutic methods such as surgical intervention and
candidate gene identification may be used not only to analyze
biological pathways unique to specific cases, but also to propose
potential drug combinations based on gene products annotated
to the disease associated with PHPV. This research sheds
light on the potential of personalized intervention in the
treatment of PHPV indicating a substantial advancement in
management strategy.

Frontiers in Medicine | www.frontiersin.org 15 August 2021 | Volume 8 | Article 69059493

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Thomas et al. Identification of Key Genes and Pathways in PHPV

FIGURE 7 | Function analysis of the 14 core genes in module 1 and module 2. (A) Functions and pathways of the core genes were visualized using ClueGO. (B)
Distribution of the functions and pathways among the core genes. (C) KEGG pathways and enriched GO terms, colors are assigned to each pathway. Corrected P <

0.01 was considered statistically significant.
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Type 2 diabetes mellitus (T2DM) is continuously rising with more disease cases every

year. T2DM is a chronic disease with many severe comorbidities and therefore remains a

burden for the patient and the society. Disease prevention, early diagnosis, and stratified

treatment are important elements in slowing down the increase in diabetes prevalence.

T2DM has a substantial genetic component with an estimated heritability of 40–70%,

and more than 500 genetic loci have been associated with T2DM. Because of the

intrinsic genetic basis of T2DM, one tool for risk assessment is genome-wide genetic risk

scores (GRS). Current GRS only account for a small proportion of the T2DM risk; thus,

better methods are warranted for more accurate risk assessment. T2DM is correlated

with several other diseases and complex traits, and incorporating this information by

adjusting effect size of the included markers could improve risk prediction. The aim

of this study was to develop multi-trait (MT)-GRS leveraging correlated information.

We used phenotype and genotype information from the UK Biobank, and summary

statistics from two independent T2DM studies. Marker effects for T2DM and seven

correlated traits, namely, height, body mass index, pulse rate, diastolic and systolic blood

pressure, smoking status, and information on current medication use, were estimated

(i.e., by logistic and linear regression) within the UK Biobank. These summary statistics,

together with the two independent training summary statistics, were incorporated into

the MT-GRS prediction in different combinations. The prediction accuracy of the MT-

GRS was improved by 12.5% compared to the single-trait GRS. Testing the MT-GRS

strategy in two independent T2DM studies resulted in an elevated accuracy by 50–94%.

Finally, combining the seven information traits with the two independent T2DM studies

further increased the prediction accuracy by 34%. Across comparisons, body mass

index and current medication use were the two traits that displayed the largest weights

in construction of the MT-GRS. These results explicitly demonstrate the added benefit

of leveraging correlated information when constructing genetic scores. In conclusion,

constructing GRS not only based on the disease itself but incorporating genomic

information from other correlated traits as well is strongly advisable for obtaining improved

individual risk stratification.

Keywords: UK Biobank, genetic risk scores, GRS, multi-trait analysis, precision medicine
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a chronic disease with severe
comorbidities, such as myocardial infarction, loss of kidney
function, blindness, and risk of amputations (1). Globally, the
prevalence of T2DM is expected to increase exponentially in
developing countries (2, 3), and it is a disease that places a
severe economic burden on health systems. Accurate disease risk
assessment is important for early disease diagnosis for initiating
lifestyle changes early in the disease progression or prompt the
clinician to treat high-risk patients more aggressively, which
is expected to slow down disease progression, reduce disease
symptoms, and prevent severe morbidity and mortality. Thus,
methods for accurate disease risk assessment are absolutely
critical for reducing morbidity and mortality.

Studies have unambiguously shown that T2DM is a complex,
multifactorial disease, where an individual’s risk of developing
the disease is influenced by a combination of genetic variation
at multiple sites across the genome acting in concert with
environmental factors (4–6). The heritability of T2DM has been
estimated to be 40–70% (7, 8), and more than 500 distinct
genetic loci have been implicated with T2DM risk (6, 9–12). As
T2DM is greatly impacted by genetics, genomic information has
the potential to not only aid with early disease diagnosis but
importantly also to stratify patients across disease subtypes (13)
to initiate treatment intervention and lifestyle changes early in
the disease progression.

During the last decade, an enormous effort has been in
method development and construction of disease risk scores
based on genomic information (14–17). However, until recently,
these genome-wide genetic risk scores (GRS) have mainly
been constructed using a single-trait approach. Because much
of the variation within the human genome contributes to a
large number of different complex traits and diseases (18), the
accuracy of risk stratification can be improved by developing
multi-trait (MT)-GRS accounting for the genetic correlation
among traits. Using correlated information to construct GRS has
theoretically—and to a minor extend empirical—been shown to
increase the accuracy of disease risk prediction (6–8). T2DM
is strongly correlated with a range of complex diseases and
traits, such as overweight (19), cardiovascular disease (1, 19–
21), hypertension (19, 22), and chronic kidney disease (19, 23);
hence, T2DM is an excellent case for developing accurate GRS by
leveraging correlated information.

The objective of the current study was to investigate the
predictive performance of a MT-GRS model that combines
marker effects from genome-wide association studies (GWAS)
of T2DM and a number of correlated traits. The types of
information included in this study were body mass index (BMI),
height, smoking status, pulse rate, diastolic and systolic blood
pressure, and a quantity of current medication use, as the total
count of different prescription and over-the-counter medications
is a proxy for general health and disease status. The aim of the
present study was to investigate whether a MT-GRS model based
on loci for multiple correlated traits had increased predictive
discriminative power compared with a traditional single-trait
(ST)-GRS model. This strategy was first applied within the UK

Biobank (UKB) (24), and then extended to include information
on two UKB-independent GWAS summary statistics and, finally,
a combined model incorporating information from the UKB and
the two independent T2DM GWAS data sets.

MATERIALS AND METHODS

Phenotype and Genotype Data
Only unrelated British Caucasian individuals from the UKB (24)
(n = 335,652 subjects) were used in the current study (excluding
individuals with more than 5,000 missing genotype values or if
having chromosomal aneuploidy). T2DM status was determined
based on in-hospital records (by ICD-10 E.11, UKB data field
41270, which contains both main and secondary diagnoses) and
self-reported disease state (UKB data field 20002) counting a
total of 18,809 individuals. Seven additional phenotypes were
also included: standing height, BMI, diastolic and systolic blood
pressure, pulse rate, smoking status, and current medication use
(measured as the number of different prescription and over-the-
counter medications taken). These phenotypes were all adjusted
for sex, age, UKB assessment center, and the first 10 genetic
principal components (to account for any cryptic relatedness that
were not accounted for by restricting to unrelated Caucasian
British individuals), following inverse rank normalization to
approximate normality.

Genotyped variants with minor allele frequency <0.01,
genotype missingness >5%, or variants within the major
histocompatibility complex were excluded from the analyses,
resulting in a total of 599,297 genetic variants.

Prediction of Diabetes Risk
T2DM risk was determined using GRS based on either summary
statistics obtained within the UKB cohort and other T2DM-
related GWAS studies (Table 1). The overall workflow is depicted
in Figure 1 and is described in detail below.

UKB Summary Statistics
The White-British UKB cohort of unrelated individuals (335,652
subjects) was split into 10 folds with no overlap of samples
within each fold, and for each fold, the marker effects for T2DM,
standing height, BMI, diastolic and systolic blood pressure, pulse
rate, smoking status, and current medication use, were estimated
using logistic or linear regression as implemented in PLINK2
(26). In all analyses, the same set of covariates were included as
those used during phenotypic adjustment as this has been shown
to increase statistical power (27).

Publicly Available Type 2 Diabetes Summary

Statistics
Two recently published GWAS for T2DM were identified
(Table 1). Common for the studies were that they did not include
UKB data, and therefore provide an independent training set.
The regression coefficients were flipped such that the marker
effect of the effect allele matched the effect allele within the
UKB data.
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TABLE 1 | Type 2 diabetes studies with available GWAS summary statistics independent of UKB.

Study References ntotal ncase mtotal mUKB

Scott et al. (2017) (10) 159,208 26,676 12,056,346 595,528

Zhao et al. (2017) (25) 265,678 73,337 8,796,184 558,105

ntotal is the sample size of the listed study. ncase is the number of T2DM cases within the listed study. mtotal is the number of genetic variants used in the GWAS of the listed study. mUKB

is the number of variants in the listed study that were among the 599,297 quality-controlled genotyped variants in the UKB.

FIGURE 1 | Schematic overview of the research design of the current study. Summary statistics (β) for T2DM and seven information traits were estimated from

individual-level genotypic information (X) within the UKB using a 10-fold cross validation scheme. Two external GWAS summary statistics were identified. ST-GRS for

T2DM was computed based on either the summary statistics obtained within the UKB or from the two external data sets. Estimates of the heritability (h2) and genetic

correlations (rg) were estimated for T2DM, the seven information traits, and the two external T2DM studies. MT-GRS were computed based on four scenarios (S1–S4),

depending on which types of information the predictor variable was adjusted for.

Estimation of Genetic Parameters
Linkage disequilibrium (LD) between the genotyped variants was
estimated as the squared Pearson’s correlation coefficient (r2)
between two genetic variants adjusted for sample size (N) as the
standard estimator of the Pearson’s correlation coefficient has
an upward bias (28). The adjusted squared Pearson’s correlation
coefficient (r̃2) is obtained as (28):

r̃2 = r2 −
1− r2

N − 2
, (1)

which was computed with the R package qgg (29). LD
scores (l) for all variants within a window size of 5,000

markers (2,500 markers around the i-th variant) were
computed as

li =
∑m=5000

k=1
r̃2i,k. (2)

The MT-GRS model relies on selection index theory to obtain
marker weights that require estimates of genetic parameters (30).
The heritability (h2) and the genetic correlation (rg) between
traits can be computed based on GWAS summary statistics using
LD score regression (28). The heritability was estimated as the
regression of the summary statistics on the LD score:
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TABLE 2 | UKB cohort description (n = 335,652) of T2DM cases and controls

(count (%) or mean ± standard deviation).

Characteristics Controls T2DM cases Information
trait

N 316,935 18,809

Age (years) 56.4 ± 8.0 60.5 ± 6.7

Sex, male 144,070 (45.5%) 11,693 (62.2%)

BMI (kg/m2 ) 27.1 ± 4.5 31.9 ± 5.8 X

Height (cm) 168.8 ± 9.2 170.0 ± 9.3 X

Pulse rate (BPM) 69.1 ± 11.1 73.6 ± 13.1 X

Systolic blood pressure

(mmHg)

138.0 ± 18.6 142.6 ± 18.0 X

Diastolic blood pressure

(mmHg)

82.3 ± 10.1 82.3 ± 10.3 X

Smoking status X

Never 175,002 (55.4%) 7,687 (41.1%)

Former 109,007 (34.5%) 8,663 (46.3%)

Current 31,867 (10.1%) 2,345 (12.6%)

Number of medications 2.3 ± 2.4 5.7 ± 3.7 X

ĥ2 =
(

Z′Z
)−1 (

Z′y
)

, (3)

where Z = neff × l/m, with l being the LD score
(see Equation 2), m is the number of genetic variants, and
neff is the effective number of individuals and is neff =

median

(

1/2× af × (1− af )×SE
(

b̂
)2

)

, where af is the allele

frequency, and SE
(

b̂
)

is the estimated standard error of the

marker regression estimate. The response variable is y =
(

b̂

SE(b̂)

)2
, where b̂ is the estimated regression coefficient for the

genetic variants [for binary traits, the odds ratios (ORs) were

converted to b̂ = log(OR), and SE
(

b̂
)

=

∣

∣

∣
b̂/P(X < (1− p)/2)

∣

∣

∣
,

where P(X < (1 − p)/2) is the normal cumulative distribution
given the marker P-value, p (31)]. Similarly, the genetic
correlation between traits 1 and 2 can be estimated as:

r̂g =

(

Z′Z
)−1 (

Z′y
)

√

ĥ21

√

ĥ22

, (4)

where Z =
√
n1
√
n2 ×

l
m , and y =

b̂1
SE(b̂1)

×
b̂2

SE(b̂2)
. LD score

regression was implemented in the R package qgg (29) and was
computed for each of the 10-folds of random data subdivisions
for T2DM and the seven information traits (Table 2), and among
the information traits and the publicly available T2DM summary
statistics (Table 1).

ST-GRS
The ST-GRS was computed as,

ST− GRS =

∑m

i=1
Xib̂i, (5)

where Xi is the i-th column of the genotype matrix containing
allelic counts, b̂i is the estimatedmarker effect for the i-th marker,
and m is the number of variants left after LD pruning (r2 < 0.1,
<0.5, or <0.9) and P-value thresholding (P < 0.001, 0.01, 0.05,
0.1, 0.2, 0.3, 0.5, 0.7, 0.9, and 0.99). The genetic scoring was
performed with the R package qgg (29).

MT-GRS
The accuracy of GRS can be improved by leveraging information
from correlated traits by adjusting themarker effects (b̂) (30). The
adjustment of the marker effects for the focal trait (f , i.e., T2DM)
is obtained by computing index weights for each marker (wi

′)

b̂wMTi = wi
′b̂i. (6)

From quantitative genetic theory, selection indices have been
developed for MT selection, in which many ST individual genetic
effects (i.e., breeding values) are combined with an index weight
allowing selection of the individuals with the best MT phenotype
(32, 33). The optimal weights can be derived asw = V−1C, where
C is a k× 1 column vector of covariances between the b̂ values of
the k traits and the true marker effects of the focal trait (bf ), and

V is a k× k variance–covariancematrix of the b̂ values:

w =







var(b̂1) . . . cov(b̂1, b̂k)
...

. . .
...

cov(b̂k, b̂1) . . . var(b̂k)







−1




cov(bf , b̂1)
. . .

cov(bf , b̂k)



 . (7)

The diagonal elements of variance–covariance matrix, V , are

var
(

b̂k

)

=
h2
k

M
+

1

Nk
, (8)

whereM is the effective number of chromosomal segments [here
M = 60, 000 (30, 34)] and Nk is the number of observations for
trait k. The off-diagonal elements of V for trait k and l are

cov
(

b̂k, b̂l
)

=
rghkhl

M
, (9)

which is the same for the elements of C. Combining Equations
(8) and (9), Equation (7) becomes

w =











h21
M +

1
N1

. . .
rgh1hk
M

...
. . .

...
rghkh1
M . . .

h2
k
M +

1
Nk











−1






h21
M
. . .

rgh1hk
M






. (10)

The MT-GRS is then obtained as the sum of adjusted
marker effects,

MT− GRS =

m
∑

i=1

Xib̂wMTi . (11)

MT-GRS was computed by applying LD pruning (r2 < 0.1, <0.5,
or <0.9) and P-value thresholding (P < 0.001, 0.01, 0.05, 0.1,
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0.2, 0.5, 0.75, and 0.99) based on UKB genotypes and T2DM
summary statistics; thus, the same LD pruning and P-value
thresholding were applied across traits.

Four MT scenarios were applied, resulting in four different
predictors (Figure 1): (1) UKB T2DM summary statistics
combined with the seven UKB information traits; (2) external
T2DM summary statistics [i.e., results from Scott et al. (10) and
Zhao et al. (25)] combined with the seven UKB information
traits; (3) external T2DM summary statistics combined with
the seven UKB information traits and UKB T2DM summary
statistics; and (4) UKB T2DM summary statistics combined with
the seven UKB information traits and the two external T2DM
summary statistics.

GRS Accuracy
The accuracy of ST-GRS and MT-GRS was determined using
Nagelkerke’s variance explained (R2),

R2 =
1− e−LR/n

1− e−(−2L0)/n
(12)

where LR is the likelihood ratio comparing two nested logistic
regression models, L0 is the log-likelihood of a model neglecting
the GRS, and n is the number of observations. The full model
included sex, age, UKB assessment center, the first 10 genetic
principal components, and the GRS, whereas the reduced model
did not contain the GRS effect. For visualization, the GRS were
divided into percentiles, and the disease prevalence within each
bin was computed; the OR for each percentile was computed
adjusting for sex, age, UKB assessment center, and the first 10
genetic principal components, and the OR was expressed relative
to the 50-th percentile.

RESULTS

ST Prediction and Genetic Parameters
The analysis of T2DM was performed using 335,662 unrelated
individuals from UKB with more than 18,000 T2DM cases
(Table 2). A larger proportion of T2DM cases were males and
smokers; on average, T2DM cases were older than individuals
without T2DM, had higher BMI, and on average used more
medications than non-diabetic individuals (Table 2).

The UKB cohort was split into 10 training and validation
sets, and within-cohort marginal marker effects of common
genotyped variants were estimated for each training set. After LD
pruning and P-value thresholding, ST-GRS were computed for
individuals within the validation sets. The maximum prediction
accuracy for ST-GRS was R2 = 0.032 when using variants with
LD r2 < 0.9 and P < 0.05 (Figure 2; Supplementary Table 2).

Across the 10 training sets, the average heritability for T2DM
on the observed scale was 0.07 (0.31 on the liability scale).
Seven information traits were included and used in the MT
genetic risk scoring (Table 2). All seven traits showed non-
zero heritability estimates (Figure 3A), and the strongest genetic
correlation was observed between diastolic and systolic blood
pressure (Figure 3B). Current medication use was the trait that
showed the highest genetic correlation to most of the other traits,

and only standing height showed negative genetic correlation to
the other traits (Figure 3B).

Leveraging Correlated Information for MT
Prediction
The T2DM marginal effects were adjusted using the estimated
genetic parameters to compute MT-GRS (Scenario 1; Figure 1).
Across the three levels of LD pruning, the predictive ability was
generally improved when the marginal SNP effects were adjusted
by the seven information traits (Supplementary Figure 1;
Supplementary Table 2). The highest prediction accuracy
(R2 = 0.036) was obtained at LD r2 < 0.9 and P < 0.999
(Figure 2; Supplementary Table 2), which corresponds to an
improved prediction accuracy by 12.5%

Next, we estimated the T2DM risk within the UKB using
summary statistics from two independent external sets of
summary statistics (Figure 1). Both external data sets [Scott et al.
(10) and Zhao et al. (25)] showed low prediction accuracy when
the GRS solely were computed using T2DM summary statistics
[Scott et al. (10): R2 = 0.026 at LD r2 = 0.9 and P < 0.01; and
Zhao et al. (25): R2 = 0.017 at LD r2 = 0.9 and P < 0.001;
Figure 4; Supplementary Tables 3, 4; Supplementary Figure 2].
The external T2DM summary statistics were adjusted using
summary statistics from the seven information traits obtained
from the UKB (Scenario 2; Figure 1; Supplementary Table 1;
Supplementary Figure 3), which for the summary statistics from
Scott et al. (10) increased the prediction accuracy by 8%, but
for Zhao et al. (25), a marginal drop in accuracy was observed
when comparing the local maximum for ST-GRS with the local
maximum for MT-GRS [R2 = 0.017 (r2 = 0.9, P < 0.001)] vs.
0.016 [R2

= 0.016 (r2 = 0.9, P< 0.999); Supplementary Table 4];
however, comparing the accuracy within the P-value threshold,
the accuracy of the MT-GRS model was superior over the
ST (Supplementary Table 4). Extending the MT model to also
include UKB T2DM summary statistics (Scenario 3, Figure 1),
the accuracy was further increased by 50% (from 0.028 to
0.042; Figure 4) and 94% (from 0.016 to 0.031; Figure 4) using
the summary statistics of Scott et al. (10) and Zhao et al.
(25), respectively.

The MT model trained within the UKB was further extended
to also include summary statistics from the two independent
T2DM GWAS data sets (Scenario 4; Figure 1). Adjusting the
UKB T2DM summary statistics by the seven information traits
and the two independent T2DM GWAS data sets resulted in an
increase in prediction accuracy from 0.032 to 0.043 (Figure 5;
Supplementary Table 2), which is an increase of 34%.

T2DM Risk Stratification
Stratifying UKB participants based on their T2DM genetic risk
showed that a larger proportion of individuals with a T2DM
diagnosis were among the top 10% of individuals with highest
genetic score when applying theMT strategy (Figure 6). TheMT-
GRS that in addition to the seven information traits also included
information from the independent testing data gave a better
stratification of cases by distributing a larger proportion of T2DM
cases within the top risk (Figure 6), which also was apparent
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FIGURE 2 | Variance explained (R2) for type 2 diabetes by ST-GRS and MT-GRS (LD pruning r2 < 0.9) using P-value thresholding (X-axis). Points indicate mean R2 for

a given threshold, and the surrounding shading indicates the standard error of the mean. ns, non-significant difference between ST and MT, *significant difference

between ST and MT.

FIGURE 3 | Estimated genetic parameters. (A) Estimated heritabilities for T2DM and the seven information traits. Errors bars indicate the standard error of the

estimates across the 10 training sets. (B) Estimated genetic correlations between T2DM and the seven information traits.
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FIGURE 4 | Variance explained (R2) for type 2 diabetes by ST-GRS and MT-GRS (LD pruning r2 < 0.9) using publicly available summary statistics from (A) Scott et al.
(10) and (B) Zhao et al. (25). Statistics of model comparisons are found in Supplementary Tables 3, 4.

FIGURE 5 | Variance explained (R2) for type 2 diabetes using MT model with the seven information traits and publicly available T2DM summary statistics. Points

indicate mean R2 for a given threshold, and the surrounding shading indicates the standard error of the mean. The horizontal dashed lines indicate the maximum R2

obtained for ST-GRS and MT-GRS without publicly available summary statistics.
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FIGURE 6 | Comparison of T2DM risk gradient within the UKB according to GRS percentile for (A) ST model, (B) MT model using the seven information traits, and (C)
MT model with the seven information traits and the T2DM testing data. Each point indicates the average T2DM prevalence within each percentile of GRS across then

10 validation sets. Horizontal lines indicate the prevalence at the top 10 GRS percentile, and percentage indicates the prevalence among the top 10% with the highest

genetic risk.

with a large OR of the top 10% compared to the remaining
(Supplementary Figure 4).

DISCUSSION

Precision medicine is predicted to change the way we prevent,
diagnose, risk stratify individuals, and treat medical conditions
(35, 36) through development of targeted preventive or treatment
approaches based on the genetic background, biomarkers,
environmental exposures, and lifestyle of the individual.
Diagnosis and treatment plans based on genetic testing has been
effectively applied to several monogenic disorders (37); however,
for common complex diseases, genomic information has been
far less incorporated. One reason for the lack of incorporating
genomic information in disease prevention and diagnosis for
complex diseases is because a large proportion of the underlying
genetic variation remains unexplained (38, 39). In the current
study, we investigated whether an MT-GRS approach provided
more accurate risk stratification than traditional ST genetic
scoring approaches.

Adjusting the UKB T2DM marker effects by the genomic
correlation of the seven information traits increased the
prediction accuracy from R2 = 0.032 to 0.036, and further
adjusted by the two UKB-independent T2DM studies increased
the accuracy to R2 = 0.042. The great improvement in
prediction accuracy (31%) is achieved as a consequence of
abundant genomic pleiotropy (18, 30) and the apparent genomic
correlation with the selected traits. In comparison, Khera et al.
(14) reported a prediction accuracy of ST-GRS of R2 = 0.028
(14), and Maier et al. (30) obtained an accuracy of R2 < 0.01
for both ST-GRS and MT-GRS (30). Although Maier et al. (30)
showed increased prediction accuracy by combining the marker
effects of selected traits (30), our reported prediction accuracies
were greatly elevated compared with Maier et al. (30), most likely
driven by differences in the included traits, and thereby in the
optimal weights caused by differences in genomic correlation
among the traits.

One of the information traits we included in the MT-GRS
was the genetic liability to current medication use, which is the
number of different medications the UKB participants have taken
at the time of the verbal interview. Because most individuals that
suffers from temporary or chronic diseases will undergo medical
intervention and because of comorbidity many individuals will
have multiple medical conditions, those individuals will be
treated with a range of different medicines. Consequently, the
total set of prescription and over-the-counter drugs is potentially
an informative index of the current medical and health status
of an individual. Wu et al. (40) performed genetic analysis
of self-reported medication use within the UKB and found
that categories of different types of medication were strongly
genetically associated with a range of different diseases and traits
(40). We found that the genetic correlation between T2DM and
medication use was rg = 0.55 (only the correlation between
T2DM and BMI had higher estimate, rg = 0.58). This is also
evident by investigating the optimal weights (Equation 7), where
BMI and medication use were the two information traits with
the largest weights (Supplementary Figure 5A), besides T2DM
itself. Including summary statistics from the two published
T2DM association studies only marginally affected the optimal
weights (Supplementary Figure 5B).

Although the exact level of prediction accuracy of T2DM was
considerably lower when using external data from Zhao et al.
(25) compared to data from Scott et al. (10) (Figure 4), the
percentage increase when extending ST-GRS to the MT-GRS was
higher for Zhao et al. (25) (82%) compared with Scott et al. (10)
(62%), despite the much greater sample size by Zhao et al. (25)
(Table 1). The discrepancy in prediction accuracy is most likely
a consequence of different ancestries of the two external T2DM
studies (10, 25), where the ancestry of the individuals in the study
by Scott et al. (10) is more similar to the ancestry of the UKB
(European) than the study by Zhao et al. (25) (mixed ancestry).
It is well-established that across ancestry, risk prediction is very
difficult because the LD between populations is very diverse
(41–43).
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The last decade has shown us that the sample size of
human genetic association studies keeps increasing (44, 45),
not only entailing more association signals but also providing
more accurate effect estimates. This in conjunction with the
increasingly accessibility of publicly available GWAS summary
statistics (46, 47) implies that genomic prediction of complex
diseases will continually improve, in particular if multivariate
predictors are created by integrating information across studies.
Although we have demonstrated increased prediction accuracy
by constructing MT-GRS, our work has several limitations.
Firstly, as our training data were the UKB and with a 10-
fold cross-validation scheme, the number of cases became
limited, meaning less accurate marker effect estimation and
thereby less accurate risk stratification. Secondly, although we
in addition to the UKB summary statistics from the 10-fold
cross-validation obtained T2DM summary statistics from two
independent studies (Table 1), we only had access to genotype
information from the UKB and no other T2DM cohorts. Thirdly,
we restricted the number of information traits to seven (Table 2),
based on the criterion that it should be a type of information
that is easy and accurate to measure and obtain; height, BMI,
pulse rate, and diastolic and systolic blood pressure are things
that we easily and accurately can measure, and smoking status
and current medication use can easily be obtained by asking
the participants. Accurate observations lead to more accurate
estimation of marker effects and thereby better prediction
accuracies. It is compelling to speculate whether other types
of information traits would improve prediction accuracy even
more, and additional studies are warranted for developing
methods for identifying the set of information traits most
important for a particular disease.

Genomic information has the potential to change the way
we diagnose and treat individuals today and will be central for
implementing preventive healthcare in the clinics. An important
aspect of precision medicine is accurate prediction of genetic
risk toward common diseases, as it may guide the general
practitioners to better and earlier identify those individuals who
have an inherent genetically lifetime high disease risk, and then
to initiate lifestyle changes potentially before disease outcome.
Moreover, precise stratification of T2DM patients not only based
on their pathophysiological symptoms (13) but also on their
genetic makeup may help the general practitioners to treat high-
risk patients more aggressively, which has the potential to slow
down disease progression, reduce symptoms, and prevent severe
morbidity and mortality.

In conclusion, by incorporating information traits and two
previously published T2DM GWAS results, the prediction
accuracy for T2DM was increased by 31% (from R2 = 0.032
to R2 = 0.042), clearly demonstrating the added benefit of
incorporating correlated information in the construction of
GRS. Thus, incorporating genomic information on correlated
traits and disease is advisable for obtaining improved individual
genetic risk stratification.
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Laterality defects (LDs) or asymmetrically positioned organs are a group of rare

developmental disorders caused by environmental and/or genetic factors. However, the

exact molecular pathophysiology of LD is not yet fully characterised. In this context,

studying Arab population presents an ideal opportunity to discover the novel molecular

basis of diseases owing to the high rate of consanguinity and genetic disorders.

Therefore, in the present study, we studied the molecular basis of LD in Arab patients,

using next-generation sequencing method. We discovered an extremely rare novel

missense variant inMYO1D gene (Pro765Ser) presenting with visceral heterotaxy and left

isomerism with polysplenia syndrome. The proband in this index family has inherited this

homozygous variant from her heterozygous parents following the autosomal recessive

pattern. This is the first report to show MYO1D genetic variant causing left–right

axis defects in humans, besides previous known evidence from zebrafish, frog and

Drosophila models. Moreover, our multilevel bioinformatics-based structural (protein

variant structural modelling, divergence, and stability) analysis has suggested that Ser765

causes minor structural drifts and stability changes, potentially affecting the biophysical
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and functional properties of MYO1D protein like calmodulin binding and microfilament

motor activities. Functional bioinformatics analysis has shown thatMYO1D is ubiquitously

expressed across several human tissues and is reported to induce severe phenotypes

in knockout mouse models. In conclusion, our findings show the expanded genetic

spectrum of LD, which could potentially pave way for the novel drug target identification

and development of personalised medicine for high-risk families.

Keywords: laterality defects, whole exome sequencing, microfilament, gene expression, variant

INTRODUCTION

Laterality defects (LDs) are a group of developmental diseases
that affect internal organ positioning in the body. In general,
human LDs can be divided into three categories: (1) situs solitus
(SS) with normally expected organ arrangement; (2) situs inversus
(SI) characterised by complete mirror image of organs; and (3)
situs ambiguus (SA) with organ arrangement falling along a
spectrum of various anomalies between SS and SI, including
congenital heart defects (CHDs). Within SA, a subgroup of
patients presents a severe and complex form of congenital heart
disease, which is commonly known as heterotaxy (1). Defective
left–right (LR) patterning of internal organs is associated with
multiple congenital diseases affecting the cardiovascular system,
kidneys, liver, and biliary tract (2, 3). According to the National
Birth Defects Prevention Study (4), the estimated prevalence
of LD is 1.1 per 10,000 in the United States. Despite the rare
likelihood of LD, its incidence is excepted to be higher among
the Arab population due to their high rate of consanguinity and
genetic disorders (5).

The aetiology of LD is complex and includes both
environment (5–7) and genetic factors (8, 9). Disease-causing
genetic variations are found in <20% of LD cases; and the
remaining 80% of cases are due to unidentifiable causes (10, 11).
Up to now, known LD genes were mostly associated with
NODAL/TGFβ signalling (NODAL, CFC1, ACVR2B, LEFTYB,
GDF1, TGFBR2, and FOXH1), SHH signalling (ZIC3 and
LZTFL1), and monocilia function (NPHP2, NPHP3, NPHP4,
PKD2, and TTC8) (10). Other genetic alterations associated
with early cardiac development (NKX2-5, CRELD1, MMP21,
and PKD1L1) were also implicated in LD development (10).
The main functional roles of these genes were demonstrated in
LR axis determination, controlling cardiac looping direction,
nodal activity regulation in embryogenesis, protein interaction of
primary cilia, and signalling involved in morphogenesis cascade
(12–19). Hence, LDs occur in a variety of different diseases,
affecting various cardiac, respiratory, and gastrointestinal organs,
reflecting the complex genes involved in signalling pathways of
organogenesis and ciliary function.

Genetic testing and molecular diagnostics are now regarded
as an useful approach to discover molecular causes underlying
the LD development. Whole-exome sequencing (WES) analysis
proved to be a successful method to uncover novel candidate
genes or novel variants in known candidate genes (10). To
this end, there is an increasing need to study the rare
developmental disorders across different ethnic populations

due to its potential in expanding the genetic spectrum of the
disease. However, literature searches reveal sparse data on the
Arab LD patients. We hypothesise that genetically investigating
LD patients from a consanguineous Arab society will offer
new insights into disease pathogenesis by identifying novel
genes or novel variants in known genes, as demonstrated in
other complex diseases (20). Therefore, the objective of the
present study was to identify the genetic cause of LD in
Arab patients, using WES and multilevel bioinformatics-based
structural (protein variant structural modelling, divergence, and
stability) and functional (gene expression and knockout mouse
model) analysis approaches.

MATERIALS AND METHODS

The ethical approval for the present study was obtained
from the institutional ethics committee of King Abdulaziz
University Hospital (KAUH), Jeddah, Saudi Arabia. Informed
consent forms were collected from both adult parents and
their children (parental consent and children’s assent for those
<18 years old) prior to blood sample collection and genetic
testing. As per the National Birth Defects Prevention Study,
LD participants were selected based on the following clinical
criteria: situs inversus, CHDs (heterotaxy), isomerism of the
lungs (bilateral two lobes/left-sidedness and bilateral three
lobes/right-sidedness), abdominal situs abnormality (abdominal
situs inversus and SA), and spleen abnormality (asplenia and
polysplenia) (4). One LD index family composed of the proband
(affected child) and both parents was recruited to paediatric
cardiology, surgery, and pulmonology clinics in KAUH. Clinical,
laboratory, and radiological results were independently assessed
by both paediatric cardiology and pulmonology consultants.
Family pedigree was drawn by interviewing the parents. Samples
from two other LD families were screened for the presence of the
identified candidate variants.

Molecular Testing
Clinical Sampling
A total of 5ml of whole EDTA peripheral blood samples was
collected from each study participant.

DNA Extraction
The genomic DNA was isolated from circulating lymphocytes
using QIAampDNA blood Kit as per the manufacturer’s protocol
and quantified using a NanoDrop 2000 spectrophotometer. DNA
integrity was checked on 2% agarose gel electrophoresis.
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FIGURE 1 | (A) Family pedigree chart of laterality defect (LD) Arab family. Proband is indicated by the arrow. The affected proband (shaded circle) is homozygous of

c.2293C>T mutation in MYO1D gene. Both parents were consanguineous (double horizontal lines) and heterozygous carriers of the identified mutation. (B) Chest

X-rays showing left isomerism (heterotaxy).
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TABLE 1 | List of LD potential candidate variants that showed autosomal recessive inheritance pattern.

Gene name Chrom ref Alt Effect HGVS.c HGVS.p dbSNP151_ID 1000G_AF ExAC_AF gnomAD_exomes_AF

(1) ZC3H12A chr1 G T Missense c.99G>T p.Arg33Ser rs116208741 0.00139776 0.002405 0.002499959

(2) ZC3H12A chr1 C T Missense c.95C>T p.Pro32Leu rs115805535 0.00119808 0.002117 0.002117

(3) TMEM18A chr7 C T Missense c.116G>A p.Gly39Glu rs183593116 0.00219649 0.004772 0.00515989

(4) CPNE7 chr16 C T Missense c.898C>T p.Pro300Ser rs150443459 0.000399361 0.0002966 0.0003931566

(5) ASXL2 chr2 C T Missense c.1489G>A p.Ala497Thr rs192716734 0.00139776 0.003805 0.004480134

(6) MYO1D chr17 G A Missense c.2293C>T p.Pro765Ser rs7209106 0.0043 0.002759 0.002424917

(7) EPB42 chr15 C T Missense c.1477G>A p.Gly493Ser rs148871144 0.000199681 0.0007578 0.0007836991

(8) FAM220A chr7 G A Missense c.437C>T p.Pro146Leu rs75910050 0.00139776 0.0009884 0.0009261591

(9) OR10A2 chr11 C A Missense c.741C>A p.Phe247Leu rs150322658 0.00119808 0.0014 0.001421724

LD, laterality defect.

TABLE 2 | Computational pathogenicity prediction scores of the LD candidate variants.

S. no Variant Gene CADD FATHMM MetaLR MutationTaster PROVEAN REVEL

(1) rs115805535 ZC3H12A 16.06 0.22678 0.0431 0.08975 0.30964 0.027

(2) rs116208741 ZC3H12A – – – – – –

(3) rs150443459 CPNE7 – – – – – –

(4) rs192716734 ASXL2 14.94 0.18248 0.025 0.25126 0.24026 0.079

(5) rs148871144 EPB42 0.135 0.78537 0.1928 0.08975 0.23156 0.121

(6) rs75910050 FAM220A 0.524 0.06931 0.0102 0.08975 0.58248 0.049

(7) rs150322658 OR10A2 – – – – – –

(8) rs183593116 TMEM184A 9.855 0.43279 0.0355 0.08975 0.07008 0.039

(9) rs7209106 MYO1D 23.2 0.88298 0.6557 0.81001 0.80682 0.553

LD, laterality defect.

CADD: >25 = damaging; <25 = tolerated; FATHMM: >0.5 = damaging; <0.5 = tolerated; MetaLR: > 0.5 = damaging; <0.5 = tolerated; Mutation Tester: >0.5 = damaging; <0.5 =

tolerated; PROVEAN: >0.5 = damaging; <0.5 = tolerated; REVEL: >0.5 = damaging; <0.5 = tolerated.

Whole-Exome Sequencing Analysis
The DNA library was prepared using Agilent Sure Select Target
Enrichment Kit. DNA library was captured using ultralong 120
mer biotinylated cRNA baits. The library was sequenced using
HiSeq2000Next Generation Sequencer (Illumina, SanDiego, CA,
USA). The FASTQ format sequence was obtained, and reads
were aligned using Burrows-Wheeler Aligner (BWA) software
(Version bwa-0.7.12) against human genome reference sequence
build 38 (GRCH38.p12). Variant calling was conducted using
the genome analysis tool kit (GATK). The filtration pipeline
was applied as follows: all coding variants that passed quality
control (phred > 30 score) were included. All variants with a
minor allele frequency (MAF) <0.015% were included. Known
candidate gene variants were filtered based on the function of the
gene and their role in LD development. Genes that are related to
LD disease were collected through the Coremine MedicalTM tool,
National Center for Biotechnology Information (NCBI), OMIM,
and literature review.

Variant Validation Using Sanger Sequencing Method
The potential LD candidate variant was validated using Sanger
sequencer ABI 3500 Genetic Analyzer. The primers were
designed using NCBI Primer Blast to capture targeted mutation
in candidate gene. The sequence files (chromatogram) were
analysed using BioEdit software.

Functional Analysis of Laterality Defect
Variant Using Computational Methods
Amino Acid Conserved Domains
The functional relevance of LD candidate genetic variant on
candidate proteins was predicted by searching the nucleotide
and amino acid sequences against the functional domains of
concerned protein as per the listing available in Conserved
Domain Database (CDD). To estimate the sequence conservation
characteristics of the functional domains in the candidate
protein, CDD tool uses RPS-BLAST, which rapidly scans
the query protein for pre-computed position-specific scoring
matrices (PSSMs). The output file demonstrates the links between
protein domains with annotations against the query input
sequence together with imagining choices (21).

3D Protein Modelling
The pathogenic effects of amino acid variants on disease
candidate proteins can be best understood when they are studied
at the structural level. Therefore, the potential effect of LD variant
on the tertiary structural features was explored through 3D
simulation of the candidate protein. Based on the availability of
the X-ray crystallographic structure of the query protein, either
a combination of ab initio approaches or homology modelling
approaches were followed (22, 23). The 3D simulated structure
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FIGURE 2 | Sanger sequencing analysis of MYO1D gene. (A) Affected proband, homozygous for the variant c.2293C>T. (B,C) Heterozygous carriers of mother and

father.

of the native protein was then used to construct the mutated
version of candidate protein, which was then energy minimised
and then analysed for structural deformities like amino acid or
whole structure level deviations using YASARA software (24).
The impact of candidate variant on the stability of protein
structure was estimated using DUET webserver, which contains
Protein Data Bank (PDB) structures of query proteins to predict
the Gibbs free energy (G) values (25).

RNA Expression, Gene Ontology, and Mouse Gene

Knockout Model
The Human Protein Atlas (HPA) (https://www.proteinatlas.org/)
database was used to determine the RNA expression status of the

LD candidate gene. This database provides the expression profile
of the query gene or protein based on primary antibody staining
data in a series of immunohistochemistry pictures of clinical
specimens. The functional enrichment analysis of the potential
LD candidate gene was done using gene ontology (GO) webtool
hosted in Ensembl web browser. Moreover, Mouse Genome
Informatics (MGI) database (http://www.informatics.jax.org/)
was used to better understand the functional role of potential LD
gene on phenotype characteristics of knockout mouse models.
The MGI resource provides a comprehensive set of data, tools,
and analysis designed specifically for use in mouse laboratory
model. It accepts input data in the form of a gene symbol and
provides output corresponding to the physiological condition of
knockout mice.
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FIGURE 3 | The exonic, functional domain and 3D structural annotation of MYO1D (Pro765Ser) variant.

RESULTS

Clinical Assessment
The proband aged 4 years 6 months at the time of clinical
diagnosis was born to an apparently healthy consanguineous
parents of Arab origin (Figure 1A). The proband exhibited a
spectrum of phenotypes including visceral heterotaxy (abnormal
arrangements of thoracoabdominal organs) (Figure 1B),
congenital cyanotic heart disease in the form of single ventricle
physiology, left isomerism with polysplenia syndrome, double
inlet atrioventricular connection (a heart defect that affects
the valves and chambers), pulmonary atresia, interrupted

inferior vena cava with absent supra-renal segment, and
azygos continuation (a rare congenital abnormality often
combined with cardiovascular and visceral malformations).
At the age of 10 months, the proband underwent thorough
palliative cardiac procedures in the form of ductal stenting in
the neonatal period followed by Kawashima cavo-pulmonary
shunt (a palliative surgical procedure performed in cases of left
isomerism and azygos continuation of the inferior vena cava, and
common atrioventricular valve with or without regurgitation
and pulmonary stenosis) in addition to left pulmonary artery
(LPA) balloon dilatation procedure. At 3 years of age, Fontan
completion was performed via incorporation of hepatic veins to
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FIGURE 4 | Protein Atlas expression analysis of MYO1D. (A) Bar graph represents the MYO1D expression in sigmoid and transverse colon samples. (B)

Histopathological examinations of colonic samples from three different patients showing the MYO1D protein expression.

pulmonary artery correcting thereby blood flow from the lower
body parts directly to the lungs.

Genetic Analysis
Whole-Exome Sequencing Variant Filtering and Novel

Gene Identification
The sequencing of the index case generated approximately 98,000
variants, including 12,150 synonymous variants, 13,000 missense
variants, and 11,500 indels. Variant filtration was based on
its rare frequency, deleterious potential, autosomal recessive
mode of inheritance, and functional relevance to disease (LD,
primary ciliary dyskinesia (PCD), congenital heart disease, and
heterotaxy). Nine genetic variants were identified as potential
candidates (Table 1). Among these variants, only one missense
variant (rs7209106: NM_015194.2:c.2293C>T; p.Pro765Ser) in
MYO1D novel gene has survived our variant filtration criteria.
This allele is absent in local databases like GME (Greater Middle
East) (http://igm.ucsd.edu/gme/), DALIA (Disease Alleles in
Arabs) (http://clingen.igib.res.in/dalia/index), and Saudi Human
Genome Program (SHGP) (https://shgp.kacst.edu.sa/index.en.
html#home).The MAF of this variant in international databases
like 1,000 Genomes and gnomAD databases is 0.005 and
0.002, respectively. Although it has an allele frequency of
0.013 in the African population, only eight individuals are

reported as homozygous for this variant in the gnomAD.
But their clinical details are not provided in the gnomAD
database. In the index family studied here, both parents were
heterozygous and do not have any symptoms associated with
LD, confirming the autosomal recessive inheritance pattern as
we initially deduced from their pedigree analysis. Moreover,
more than 80% (5/6; 83.34) of the computational prediction
methods like CADD, FATHMM, MetaLR, Mutation Taster,
PROVEAN, and REVEL have attributed pathogenicity scores to
thisMYO1D (p.Pro765Ser) variant (Table 2). Functional biology
data available from model organisms like Drosophila, zebrafish,
and frog have proved the functional role of MYO1D gene
in LDs.

Sanger Sequencing Validation
Sanger sequencing analysis confirmed that the LD patient is
homozygous for c.2293C>T variant in MYO1D gene (1V.9,
Figures 1A, 2), whereas themother and father were heterozygous
carriers (111.2, 111.3, Figures 1A, 2). This variant was absent in
apparently healthy siblings and were homozygous for the T allele
(1V.2, 1V.4, and 1V.5–8; Figure 1A). Two additional clinically
diagnosed LD families were screened for this variant, and none
carries this mutation, suggesting that MYO1D (p.Pro765Ser)
variant is a rare private mutation in this family.
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FIGURE 5 | (A) Ensembl function annotations of MYO1D. (B) Mouse MYO1D knockout analysis and phenotypic changes.

Computational Functional Analysis
Variant Mapping on MYOID1 Protein Domain
The mapping of conserved amino acid domains is a vital step
in deducing the association between the nucleotide sequence,
protein structure, and function of disease-causing proteins. The
CDD analysis showed that MYO1D protein is made up of three
domains, namely, motor (11–682 amino acids), IQ calmodulin-
binding motif (699–719 amino acids), and Myosin TH1 (803–
1,000 amino acids) domains. The Pro765Ser variant is located
between the Myosin TH1 and calmodulin-binding domains
(Figure 3).

MYO1D 3D Model Construction
The PDB database search revealed the availability of partial 707
aa (between 10 and 717 of 1,006 AA long MYO1D protein)
X-ray crystal protein model (4L79) with 2.3-Å resolution.
Hence, the remaining 306 aa long chain was simulated with
iterative threading assembly modification (I-TASSER) webserver
following an ab initio approach. From the I-TASSER output,
the best MYO1D model was chosen based on its polypeptide
prediction quality scores like confidence score (C = −1.52),
template modelling (TM = 0.53 ± 0.15), and root-mean-square
deviation (RMSD) (12.7 ± 4.3 Å) scores. These quality metrics
indicate the very good structural similarity between the query

and template proteins (Figure 3). The stereochemical evaluation
of the energy-minimised MYO1D protein model revealed that
96.2% of the amino acids are in the allowed portion of the
protein, whereas 3.8% are in the non-allowed region. As per the
above outlined processes, the native MYO1D model was used as
a template to create a mutant variant by manually substituting
proline for serine at the 765th position. PyMOL was used to
depict native and mutant proteins.

Structural Deviation and Stability Findings
We have used YASARA tool to analyze Cα-atom coordinates
of native and mutant MYO1D 3D structures to evaluate
their structural drifts (in terms of RMSD) at residue and
whole structure levels. RMSD value is used to quantitatively
measure the structural similarity between two atomic coordinates
when superimposed on each other. The impact of substitution
mutations on amino acid structures can be calculated when
there is a divergence at the polypeptide chain level. We noticed
minor structural drifts inMYO1D structure only at 765th residue
position due to the RMSD value difference (2.28) induced by
the substitution of proline with serine (Figure 3). The DUET
analysis of the MYO1D (P765S) variant predicted Gibbs free
energy (11G) alterations shifting the energy equilibrium to
negative value, i.e., −0.959 kcal/mol, suggesting that the queried
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TABLE 3 | Phenotypes and genetic data of LD and/or PCD among Arabs.

Nationality Situs inversus

(SI)

PCD Dextrocardia Heterotaxy of

abdominal

organs

Recurrent chest

infections

Chronic rhinitis Bronchiectasis Chronic or

recurrent otitis

media

Gene Reference

Yemeni + – + Visceral

heterotaxy,

polysplenia

syndrome

– – – – MYO1D Present

study

Saudi (6 patients) +6/6 – NR NR – NR NR NR DNAH5, PKD1L1,

DNAAF5/CYP21A2,

DNAI1

(26)

Arab + NR + NR NR NR NR NR GDF1 (27)

Saudi + NR + Abdominal

ultrasound

revealed that the

liver and

gallbladder were

located in the left

hypochondrium,

spleen on the right

side

NR NR NR NR NR (28)

Arab + NR + + NR NR NR NR HES7 (29)

Saudi (75 patients) + +73/75 NR NR +15/75 NR NR NR CCDC151,

CCDC39,

CCDC40,

DNAH11,

GOLGA3, RSPH9,

CCNO, RSPH9,

ITCH, MCIDAS,

RSPH4A, DNAH5,

CEP164, GOLGA3

(26)

Morocco + + + + + + + – NR (30)

Saudi + + + NR NR + + + DNAH1 (31)

Kuwaiti + + NR NR + NR NR DNAH5 (32),

Saudi NR + NR NR + + + NR CCDC151 (33)

Palestine NR + + NR NR NR + + LRRC6 (34)

Saudi NR + NR NR NR NR + NR RSPH9 (35)

UAE NR + NR NR + NR + NR RSPH9 (36)

UAE – + NR NR + + + + RSPH9 (37)

Saudi + + NR NR NR NR + NR 19q13.3 (27)

Saudi + + – Situs inversus of

cardiac shadow

and gastric air

bubble

+ NR + – NR (38)

+, presence of symptoms; –, absence of symptoms; NR, not reported; PCD, primary ciliary dyskinesia.
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variant is potentially deleterious to the protein stability owing to
its destabilising behaviour.

RNA Expression Analysis
The HPA shows the positive expression status ofMYO1D gene in
different tissues and organs of the human body like the colon,
lungs, and thyroid gland. In particular, the highest expression
was seen in the digestive system with the colon, where the 274
transverse colon samples showed a maximum of 221.5 protein
transcripts per million (pTPM) and 233 sigmoid colon samples
showed a maximum of 97.8 pTPM. The RNA-Seq analysis
of immunohistochemistry tissue specimens from three control
specimens showed that glandular cells showed the highest pTPM
status ofMYO1D gene when compared with smooth muscle cells
and other cell types in the colon (Figure 4).

Gene Ontology and Gene Knockout Analysis
The Ensembl GO analysis of MYO1D gene showed its
involvement in 43 GO terms, including those connected to
biological processes (seven GO terms), molecular functions
(11 GO terms), and cellular component (25 GO terms)
(Supplementary Table 1). All the annotations collectively
highlight that MYO1D is localised in the cytoplasm (cellular
component) and plays an important role in actin filament
organisation (biological process) as well as microfilament motor
activity function (molecular function). Supplementary Table 2

shows details of disease phenotypes corresponding to the
MYO1D genetic background in different knockout mice models.

DISCUSSION

Recent evolution and easy accessibility of next-generation
sequencing resulted in accurate molecular diagnosis of variety of
genetic diseases from around the globe (39, 40). Owing to the
genetic heterogeneity, identification of specific molecular cause
of LD is very challenging in up to 80% of the cases. Majority
of known LD causative genes are structural proteins of the cilia
and are known for their involvement in NODAL/TGFβ or SHH
signalling pathways. During embryonic development, these genes
play an important role in symmetrical LR positioning of the
organs (10).

MYO1D gene consists of 27 exons mapped to chromosome
17q11.2. Myosin heavy chain class 1 is a member of the myosin
superfamily, playing essential roles in cytoskeletal structure,
mechanical signal-transduction membrane dynamics (41), and
endosome processing (42). In the present study, we identified
the first case of a homozygous missense (c.2293C>T) mutation
in MYO1D gene causing LD in the proband of an Arab
consanguineous family. Further screening of LD participants
from two additional Arab families did not reveal any mutations
in this gene. In Middle Eastern Arab databases (with more
than 10,000 exome data combined) such as SHGP, GMC, and
DALIA, not a single case was recorded for this variant. Also,
this variant was extremely rare (<0.005) in 1,000 Genomes and
0.013 in gnomAD across all ethnic groups. In gnomAD, only
eight individuals were reported as homozygous (six males and
two females), but no clinical data were available.

Various studies suggested the role ofMYO1D gene in laterality
disease in Drosophila, zebrafish, and frog (43–47). MYO1D has
a role in organ asymmetry in Drosophila, which lacks cilia
and nodal pathway while developing LD by using polar cell
polarity (PCP),MYO1D, andHOX gene Abd-B (48, 49). Another
study demonstrated the function of MYO1D in Xenopus laevis
and influence the orientation of the cilia on the LR organiser
(LRO) through planar cell polarity pathway as implicated in
Drosophila (45). In zebrafish, MYO1D plays a fundamental
role in the LR organisation (43, 50). Aside from the above
initial reports, our understanding of MYO1D function in the
context of human LR patterning remains largely unexplored.
The situs inversus (SI) phenotype is reported in approximately
50% of PCD cases with congenital cardiac defects (51, 52).
Approximately 3–7% of LD patients have CHDs (53). Many
studies (54, 55) in a variety of species failed to identify a unifying
mechanism for LR patterning. However, recent studies (43, 50)
provided the first evidence of a shared origin of laterality in both
arthropods and chordates through MYO1D gene. The clinical
features are consistent with previous observations in zebrafish
and Drosophila, indicating that MYO1D has an important role
in LR patterning during embryogenesis. Moreover, asymmetric
clustering of cilia was disrupted in ependymal cells of MYO1D
KO rat models, consistent with LD (56).

MYO1D gene knockout in different mouse strains (seven
different strains) is shown to demonstrate a variety of phenotypes
like decreased body fat amount (adipose tissue), decreased
startle reflex (behaviour/neurological), increased susceptibility to
colitis (digestive/alimentary), decreased bone mineral content
(skeleton), and increased susceptibility to weight loss (growth
size/body weight and immune system and mortality or ageing)
(Figure 5). Our study is the first one to report the association of
defectiveMYO1D to LD in humans, confirming that the function
is evolutionarily conserved from Drosophila, to zebrafish, to
frog, to humans. Thus, MYO1D gene can be considered as the
new causal gene for LD in humans. Though the Drosophila
and zebrafish models clearly showed the visceral heterotaxy,
mouse KO phenotypes were surprisingly not showing any LD-
related phenotypes.

Extensive computational analysis of the protein structure
and function adds the supporting evidence for MYO1D in LD.
MYO1D protein is 1,006 aa long with a molecular weight of
116 kDa. It consists of a large, highly conserved Myocin Motor
Domain (671 aa), short calmodulin-binding motif (20 aa), and
a basic C-terminal tail homology-1 (TH1) domain (197 aa).
The amino acid residue level structural deviation observed with
the variant serine (Pro765Ser) in MYO1D is likely to disturb
the primary, secondary, tertiary, and quaternary structural
features in the protein. Numerous studies have shown the strong
correlation between deviations in residue level RMSD score and
structural properties for the disease-causing variants (23, 57–59).
Disease causative pathogenic mutations have often changed the
energy equilibrium, which is required to maintain the protein
stability (60). Given the close physical proximity of P765S
variant between calmodulin-binding motif and TH1 domains,
the conformational and stability changes in MYO1D protein are
likely to impact its main biological functions such as calmodulin
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binding, actin-dependent ATPase activity, calcium-dependent
protein binding, and microfilament motor activities (61).

LD is a complex disease, and its clinical phenotype
presentations often overlap with PCD symptoms. A recent
study from Saudi Arabia reported the overlapping clinical
symptoms between PCD and LD patients (26). This report
investigated a total of 81 patients, including 58 patients with
sinopulmonary infections (SPIs), 15 patients with combined
LD with SPIs, and six patients with LD alone. They reported
mutations in the known PCD genes as follows: RSPH9,
CCNO, DNAAF5, RSPH4A, MCIDAS, and CCDC40 gene
mutations in PCD patients with SPIs; CCDC151, DNAH11,
CCDC40, DNAH5, and CCDC39 gene mutations in LD
patients with SPIs; PKD1L1 and DNAAF5 gene mutations
in LD patients; and RSPH9 and MCIDAS gene mutations
in neonatal respiratory distress. Additionally, they have also
identified gene mutations in ITCH and CEP164 in two
patients, demonstrating ITCH-related syndrome and Bardet–
Biedl syndrome. Sparrow et al. (29) reported HES7 as a
cause of spondylocostal dysostosis with SI and dextrocardia.
Molecular diagnosis of LD and PCD in Arab patients has
revealed a spectrum of mutations in many genes with
variable clinical presentations (35), which is summarised in
Table 3.

CONCLUSION

In conclusion, we discovered missense mutation in MYO1D
gene (c.2293C>T) in an Arab patient presenting with visceral
heterotaxy and left isomerism with polysplenia syndrome by
using higher-throughput WES technology. This is the first report
to establish the relationship between MYO1D variants and LD,
supporting the previous findings in Drosophila zebrafish, and
frog. This exciting finding may support the critical role of
MYO1D gene for LR patterning in humans. This study has
some sincere limitations, as this is the first case identified with
MYO1D mutation potentially contributing to LD phenotypes,
and there are no reported cases with MYO1D variants to
compare our data with. Therefore, testing MYO1D variants for
LD patients in large cohort studies is recommended to verify
our findings. Future functional studies are also recommended to
investigate the specific molecular role and therapeutic prospects
of targeting MYO1D genetic variants in patients demonstrating
LD phenotypes.
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Objective: Long noncoding RNAs (lncRNAs) are key regulators during ovarian cancer

initiation and progression and are involved inmediating autophagy. In this study, we aimed

to develop a prognostic autophagy-related lncRNA signature for ovarian cancer.

Methods: Autophagy-related abnormally expressed lncRNAs were screened in ovarian

cancer with the criteria values of |correlation coefficient| > 0.4 and p < 0.001. Based

on them, a prognostic lncRNA signature was established. The Kaplan–Meier overall

survival analysis was conducted in high- and low-risk samples in the training, verification,

and entire sets, followed by receiver operating characteristics (ROCs) of 7-year survival.

Multivariate Cox regression analysis was used for assessing the predictive independency

of this signature after adjusting other clinical features. The associations between the risk

scores and immune cell infiltration, PD-L1 expression, and sensitivity of chemotherapy

drugs were assessed in ovarian cancer.

Results: A total of 66 autophagy-related abnormally expressed lncRNAs were identified

in ovarian cancer. An autophagy-related lncRNA signature was constructed for ovarian

cancer. High-risk scores were indicative of poorer prognosis compared with the low-risk

scores in the training, verification, and entire sets. ROCs of 7-year survival confirmed

the well-predictive efficacy of this model. Following multivariate Cox regression analysis,

this model was an independent prognostic factor. There were distinct differences in

infiltrations of immune cells, PD-L1 expression, and sensitivity of chemotherapy drugs

between high- and low-risk samples.

Conclusions: This study constructed an autophagy-related lncRNA signature that

was capable of predicting clinical outcomes and also therapeutic responses for

ovarian cancer.

Keywords: ovarian cancer, autophagy, lncRNAs, signature, prognosis, tumor microenvironment

121

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.715250
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.715250&domain=pdf&date_stamp=2021-10-04
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jiahuw@163.com
https://doi.org/10.3389/fmed.2021.715250
https://www.frontiersin.org/articles/10.3389/fmed.2021.715250/full


Li et al. Autophagy-Related lncRNA Signature of OV

INTRODUCTION

Ovarian cancer represents the major cause of death among
gynecological malignancies (1). Surgery followed by
chemotherapy (such as platinum and taxane) remained the
first-line therapeutic strategy (2). Approximately 80% of the
subjects originally respond to this therapy. Nevertheless, the
majority of the subjects in late stages usually experienced
recurrence following chemotherapy, thereby leading to an
undesirable prognosis (5-year survival < 50%). Hence, it is
significant to probe into the pathogenesis of ovarian cancer and
also predictive indicators for prognostic stratification.

Alterations in gene expression profiling have become
fundamental laboratory tools for improving tumor diagnoses,
survival outcomes, and also treatment responses, which
overcome weaknesses of typical clinical and imaging features
due to heterogeneity at the genetic and molecular levels (3).
Dysregulated long non-coding RNAs (lncRNAs) such as
LINC00189, CACNA1G-AS1, and CHRM3-AS2 have been
implicated in ovarian cancer initiation and the progress,
highlighting their promising functions as markers of precision
medicine (4). Their correlations to survival outcomes and
treatment responses are still indistinct in ovarian cancer. A
few lncRNA-based expression signatures have been developed
for predicting survival outcomes, status, and chemosensitivity
in ovarian cancer. For instance, Zheng et al. developed a
three-lncRNA signature (LOC101927151, LINC00861, and
LEMD1-AS1) for predicting clinical outcomes of the subjects
with ovarian cancer on the basis of copy number variation (5).
Zhang et al. proposed a three-lncRNA signature (LINC01619,
DLX6-AS1, and AC004943.2) that can predict survival and
response of chemotherapy in ovarian cancer (6). In comparison
to abundant lncRNAs identified by genome-wide studies,
functionally lncRNAs require better characterization in
ovarian cancer.

Autophagy, an evolutionarily conserved process, maintains
cell homeostasis through a lysosomal degradation system that
supports cell survival and also maintains homeostasis under
various types of stress (7). Autophagy-based cell deaths provide
molecular mechanisms and clinical implications upon ovarian
cancer therapy (8). Thus, it is of significance to identify key
regulators of autophagy for theoretical basis and clinical practice.
Several studies have found that autophagy can be mediated
by lncRNA regulators in ovarian cancer (9–12). For instance,
GAS8-AS1 inhibits the progress of ovarian cancer by activation
of autophagy through binding with Beclin1 (9). Moreover,
lncRNA TUG1 induces autophagy-related paclitaxel resistance
via sponging miR-29b-3p in ovarian cancer (10). Also, silencing
HOTAIR enhances the sensitivity to cisplatin in ovarian cancer
via inhibition of cisplatin-induced autophagy (11). LncRNA
highly upregulated in liver cancer exerts a carcinogenic effect

Abbreviations: LncRNAs, long non-coding RNAs; TCGA, The Cancer Genome
Atlas; GTEx, Genotype-Tissue Expression; FC, fold change; LASSO, least absolute
shrinkage and selection operator; OS, overall survival; HR, hazard ratio; ROC,
receiver operating characteristic; ESTIMATE, Estimation of STromal and Immune
cells in Malignant Tumor tissues using Expression data.

via targeting autophagy-related genes ATG7 and ITGB1 in an
epithelial ovarian cancer (12). Thus, autophagy-related lncRNAs
possess potential as prognostic indicators and therapeutic targets.

Ovarian cancer represents an insidious malignancy, which
usually develops asymptomatically to late stages along with
metastases, chemoresistance, and undesirable clinical outcomes
(13). Autophagy is a key bioprocess during the initiation and
progression of ovarian cancer (14). LncRNA regulators are
involved in the autophagy process. There is still a lack of
systematic analysis for identifying autophagy-related lncRNA
signature for prediction of the survival outcomes of the patients
with ovarian cancer. Herein, this study developed a prognostic
autophagy-related lncRNA signature for ovarian cancer.

MATERIALS AND METHODS

Data Retrieval and Pre-processing
Among all databases, only the Cancer Genome Atlas (TCGA;
https://portal.gdc.cancer.gov/) database has the RNA-seq
expression profiling and corresponding clinical and prognostic
information of ovarian cancer. Thus, we curated transcriptome
data and clinical information containing age, survival time,
recurrence, survival status, histologic grade, and pathologic
stage of 379 ovarian cancer tissues from the TCGA database.
Mutation annotation format (MAF) files of somatic mutation
data of ovarian cancer samples were also downloaded from the
TCGA database. Meanwhile, the RNA-seq expression profiles of
133 normal ovarian samples were obtained from the genotype
tissue expression (GTEx; https://toil.xenahubs.net/download/
GTEX_phenotype.gz) database (15). The RNA-seq counts values
from the TCGA and GTEx databases were normalized and
preprocessed by the TCGAbiolinks package (16). Based on the
HUGO Gene Nomenclature Committee (HGNC; http://www.
gene.ucl.ac.uk/cgi-bin/nomenclature/searchgenes.pl), lncRNAs
and mRNAs were annotated (17).

Acquisition of Abnormally Expressed
lncRNAs
Abnormally expressed lncRNAs between ovarian cancer and
normal ovarian specimens were screened utilizing edgeR package
(http://bioconductor.org) based on gene expression data (18).
Adjusted p ≤ 0.05 and |log2fold change (FC)| ≥ 1 were set as the
criteria values of abnormally expressed lncRNAs.

Acquisition of Autophagy-Related lncRNAs
A total of 232 autophagy-related genes were retrieved from
the HumanAutophagy Database (HADb; http://www.autophagy.
lu/). The correlation between abnormally expressed lncRNAs and
autophagy-related genes was analyzed by psych package (https://
CRAN.R-project.org/package=psych) with Pearson’s correlation
analysis. Autophagy-related lncRNAs were screened with the
criteria values of |correlation coefficient| > 0.4 and p < 0.001.

Construction of a LASSO Regression
Model
By adopting the least absolute shrinkage and selection operator
(LASSO) Cox regression analysis, this study constructed
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an autophagy-related lncRNA model utilizing the glmnet
package (19). The association between the lncRNAs in
this model and overall survival (OS) was assessed by
univariate Cox regression analysis. LncRNAs with hazard
ratio (HR) > 1 and p < 0.05 were risk factors, while those
with HR < 1 and p < 0.05 were protective factors. The
risk score of each sample was determined. The formula
was as follows: risk score = coefficient (lncRNA1) ×

expression (lncRNA1) + coefficient (lncRNA2) × expression
(lncRNA2) + . . . + coefficient (lncRNAn) × expression
(lncRNAn). The distributions of risk scores, survival

status, and disease progress were assessed in the samples of
ovarian cancer.

Assessment of the Prognostic Model
All the subjects with ovarian cancer were randomly separated
into the training set and the validation set at a ratio of 1:1.
The subjects with ovarian cancer were separated into high-
and low-risk groups. The Kaplan–Meier survival analyses were
carried out to assess the OS differences between high- and low-
risk groups with survival package in the training set, validation
set, and the whole dataset. Time-dependent receiver operating

FIGURE 1 | Screening abnormally expressed long noncoding RNAs (lncRNAs) between ovarian cancer and normal ovarian specimens using TCGA and GTEx

datasets. (A–C) Scatter, volcano, and heatmap diagrams for the up (red) and downregulated (blue) lncRNAs in ovarian cancer and normal samples. (D) Heatmap for

the top 20 up and downregulated lncRNAs for ovarian cancer.
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characteristic (ROCs) curves were depicted for estimating the
predictive efficacy of survival time through risk score and
other clinical features (age, pathologic stage, and histologic
grade) utilizing the survival ROC package. Furthermore, the
differences in the risk scores between patients with different

histologic grades or pathologic stages were analyzed by one-
way ANOVA.Multivariate Cox regression analysis was presented
for evaluating whether the risk score could be independent
of other clinical features including pathologic stage and
histologic grade.

TABLE 1 | The top 20 upregulated lncRNAs in ovarian cancer.

Gene name log2FC P-value Q-value Cancer Normal

AC012313.1 9.547183939 0 0 10.31895834 0.771774397

UCA1 9.216655018 1.2272E-116 6.3207E-116 12.81661174 3.59995672

AC007389.3 9.147273622 1.8891E-146 1.321E-145 9.442887756 0.295614134

LINC00958 8.733161562 0 0 10.64514913 1.911987563

AC139530.1 8.320256095 1.2565E-175 1.0943E-174 9.16409823 0.843842135

AC019117.2 7.940574318 1.5611E-132 9.4059E-132 10.17086201 2.230287692

AC073869.1 7.93835612 0 0 11.53335685 3.595000733

ESRG 7.88342569 1.29304E-97 5.43305E-97 9.509050129 1.625624439

AC034236.2 7.840261744 0 0 7.803144412 −0.037117331

AC012123.1 7.575128788 0 0 10.06414233 2.489013539

MIR205HG 7.508354236 2.9168E-99 1.25304E-98 10.64232063 3.133966398

PART1 7.450907876 1.1583E-197 1.1681E-196 12.24750023 4.796592357

AC005562.1 7.220023466 0 0 7.809237126 0.58921366

AC016586.1 7.200189856 0 0 11.25391667 4.053726816

AC016734.1 7.136519504 0 0 7.696281571 0.559762067

AC083843.3 7.119307279 0 0 9.449229653 2.329922374

AC019080.1 6.989829409 0 0 7.558546463 0.568717055

AC005034.3 6.970382156 0 0 9.402961692 2.432579536

AC005083.1 6.968474931 9.7814E-230 1.2628E-228 9.411351502 2.442876571

SNHG3 6.926312525 0 0 12.89759844 5.971285912

TABLE 2 | The 20 downregulated lncRNAs in ovarian cancer.

Gene name log2FC P-value Q-value Cancer Normal

AC007362.1 −7.953839402 0 0 3.573056805 11.52689621

DIO3OS −7.25010061 0 0 7.8433415 15.09344211

MEG3 −6.926193554 0 0 11.89962972 18.82582328

LINC00313 −6.572300069 0 0 2.518410795 9.090710864

HAND2-AS1 −6.400004123 0 0 6.508966669 12.90897079

MEG9 −5.584769193 5.2013E-247 7.3277E-246 6.183950367 11.76871956

AC024560.3 −5.562626374 0 0 6.396148069 11.95877444

AC074286.1 −5.375749227 0 0 2.776822389 8.152571616

AL590822.2 −5.097997242 0 0 4.32297655 9.420973791

LINC00924 −5.04563661 0 0 5.818215591 10.8638522

ADAMTS9-AS2 −4.904513345 0 0 6.606317799 11.51083114

MEG8 −4.756706248 5.3224E-182 4.9503E-181 4.749036786 9.505743034

LEMD1-AS1 −4.748134967 0 0 7.224444409 11.97257938

AC017048.3 −4.676146545 3.2389E-208 3.6939E-207 5.295737783 9.971884328

AC069213.1 −4.643176366 0 0 4.407805217 9.050981583

AP000442.1 −4.428047311 0 0 3.056508739 7.48455605

CELF2-AS1 −4.38133152 5.0736E-171 4.3013E-170 4.075613874 8.456945394

MEF2C-AS1 −4.276829555 0 0 4.792378869 9.069208425

AC009061.1 −4.255822376 0 0 4.029896192 8.285718568

AC084018.1 −4.237903564 0 0 8.332160874 12.57006444
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CIBERSORT
CIBERSORT algorithm (http://cibersort.stanford.edu/) can
characterize cell compositions of complex tissues based on the
gene expression profiles (20). This algorithm is superior to
other methods in terms of noise, unknown mixture content,
and closely related cell types. CIBERSORT algorithm was
employed to characterize immune cell compositions (including
B cells naïve, B cells memory, plasma cells, T cells CD8, T
cells CD4, naïve T cells, CD4 memory resting, T cells CD4
memory activated, T cells follicular helper, T cells regulatory
(Tregs), T cells gamma delta, NK cells resting, NK cells activated,
monocytes, macrophages M0, macrophages M1, macrophages
M2, dendritic cells resting, dendritic cells activated, mast cells
resting, mast cells activated, eosinophils and neutrophils) in
ovarian cancer tissues.

Estimation of Stromal and Immune Cells in
Malignant Tumor Tissues Using Expression
Data
The fractions of stromal and immune cells were inferred in each
ovarian cancer sample using the ESTIMATE algorithm (https://
sourceforge.net/projects/estimateproject/) (21). The differences
in immune and stromal scores were assessed between high- and
low-risk samples of ovarian cancer by Student’ t-test.

Sensitivity to Chemotherapy Drugs
A total of 94 ovarian cancer-related chemotherapy drugs were
collected from the Cancer Genome Project (CGP; version 2014).
The pRRophetic package was employed to predict the clinical
chemotherapeutic responses based on the gene expression

FIGURE 2 | Construction of an autophagy-related lncRNA signature in ovarian cancer. (A) Heatmap for the correlation between abnormally expressed lncRNAs and

autophagy-related genes in ovarian cancer specimens. Red indicates positive correlation while blue indicates negative correlation. (B) LASSO coefficient profiles

based on autophagy-related abnormally expressed lncRNAs in ovarian cancer samples. (C) Selecting the optimal parameter (λ) in the LASSO model. (D) Forest plots
for the univariate Cox regression analysis results of autophagy-related abnormally expressed lncRNAs. (E) The distributions of the risk scores of patients with ovarian

cancer. (F,G) The distributions of survival status (green: alive and red: dead) and disease progress (green: disease-free and red: recurred/progressed) for the patients

with ovarian cancer. Black dotted line indicates the median value of the risk scores.
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profiles of ovarian cancer (22). The IC50 values of chemotherapy
drugs were compared between high- and low-risk groups
utilizing Student’s t-test.

Somatic Mutation Analysis
The “Masked Somatic Mutation” data were obtained and
processed with VarScan software (version 2), a method for
the detection of somatic mutation and copy number variation
in exome data (23). The maftools package (24) was adopted
to analyze the MAF of the somatic variants. The “titv”
function classified single nucleotide polymorphisms (SNPs) into
transitions (Ti) and transversions (Tv). The overall distribution
of the six different SNVs and the proportion of transitions
in each sample were evaluated. The oncoplot of the top 30
mutated genes was depicted by the “ComplexHeatmap” function.
The “somaticInteractions” function was used to detect mutually
exclusive or co-occurring genomes, which were tested by Fisher’s
exact test.

Gene Set Enrichment Analysis
Pathways underlying the autophagy-related lncRNA
signature were evaluated through GSEA package (25). The
“c5.bp.v6.2.symbols.gm” gene set was curated from the
Molecular Signatures Database, which was employed as a
reference set. Terms with |nominal enrichment score (NES)| >

1.7 and nominal p < 0.05 were significantly enriched.

TABLE 3 | A total of 66 autophagy-related abnormally expressed lncRNAs.

LncRNAs LncRNAs LncRNAs

AC005387.2 C9orf163 LINC00996

AC006538.1 CACTIN-AS1 MAP3K14-AS1

AC007292.3 CCDC39 MEG3

AC007382.1 CDKN2B-AS1 MEIS1-AS3

AC009093.1 DHRS4-AS1 MIR22HG

AC010336.1 EHMT2-AS1 MKNK1-AS1

AC073869.1 ERVK13-1 NARF-IT1

AC084018.1 EXTL3-AS1 NEAT1

AC092171.2 FAM13A-AS1 PCED1B-AS1

AC105020.1 FLNB-AS1 PRKCQ-AS1

AC137932.1 GAS6-AS1 RNF216P1

ACTA2-AS1 HCP5 SH3BP5-AS1

AL136115.1 LINC00174 SPANXA2-OT1

AL137127.1 LINC00265 SRGAP3-AS2

AL590822.2 LINC00342 TEX26-AS1

AP000695.1 LINC00624 TNK2-AS1

AP005482.1 LINC00677 TTLL10-AS1

AP006621.1 LINC00702 U73169.1

AP4B1-AS1 LINC00893 UBE2Q1-AS1

ARAP1-AS2 LINC00894 USP30-AS1

C10orf55 LINC00954 YEATS2-AS1

C1orf195 LINC00968 ZSWIM8-AS1

RESULTS

Screening Abnormally Expressed lncRNAs
Herein, we retrieved RNA expression profiles of ovarian
cancer and normal ovarian tissues from TCGA and
GTEx datasets. Totally, 590 lncRNAs with adjusted p
≤ 0.05 and |log2FC| ≥ 1 were abnormally expressed in
379 specimens of ovarian cancer in comparison with the
normal ovarian cancer (Figures 1A–C). There were 373
upregulated (Supplementary Table 1) and 217 downregulated
(Supplementary Table 2) lncRNAs for ovarian cancer. We
separately displayed the top 20 upregulated (Table 1)
and downregulated (Table 2) lncRNAs for ovarian cancer
(Figure 1D).

Construction of an Autophagy-Related
lncRNA Prognostic Signature in Ovarian
Cancer
The correlation between abnormally expressed lncRNAs
and autophagy-related genes was evaluated by Pearson’s
correlation analysis, which was visualized into the heat
map (Figure 2A; Supplementary Table 3). With the criteria
values of |correlation coefficient| > 0.4 and p < 0.001, we
selected 66 autophagy-related abnormally expressed lncRNAs,
as shown in Table 3. Using LASSO regression analysis, we
determined the regression coefficients of the 14 lncRNAs in
the model (Figures 2B,C). The risk score of each specimen
of ovarian cancer was calculated as follows: AC084018.1
expression ∗ (−0.008315282) + AC092171.2 expression ∗

2.84E-05 + AP000695.1 ∗ 0.395692194 + GAS6-AS1 expression
∗ 0.028077942 + LINC00174 expression ∗ 0.010226196 +

LINC00893 expression ∗ (−0.013179597) + LINC00996
expression ∗ (−0.214479586) + MEIS1-AS3 expression ∗

(−0.093561265) + MIR22HG expression ∗ (−0.007661823) +
NEAT1 expression ∗ (0.000320475) + TEX26-AS1 expression
∗ (−0.061717576) + U73169.1 expression ∗ (−0.263275905)
+ UBE2Q1-AS1 expression ∗ (−0.589381398) + USP30-AS1
expression ∗ (−0.114206463). Univariate Cox regression
analysis results showed that AP000695.1 (HR: 1.73, 95%

TABLE 4 | The clinical characteristics of patients with ovarian cancer.

Variables The whole set Training set Validation set

(N = 374) (N = 187) (N = 187)

Age 59.54 ± 11.4 60.34 ± 10.63 58.74 ± 12.09

Status

Alive 145 (38.77) 73 (39.04) 72 (38.5)

Dead 229 (61.23) 114 (60.96) 115 (61.5)

Pathologic stage

Stage I 1 (0.27) 0 (0) 1 (0.53)

Stage II 22 (5.88) 9 (4.81) 13 (6.95)

Stage III 291 (77.81) 139 (74.33) 152 (81.28)

Stage IV 57 (15.24) 36 (19.25) 21 (11.23)

Unknow 3 (0.8) 3 (1.6) 0 (0)
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FIGURE 3 | Evaluation of the autophagy-related lncRNA signature as a robust prognostic factor in ovarian cancer. (A–C) The Kaplan–Meier overall survival curves

between high- and low-risk patients with ovarian cancer in the (A) training set, (B) validation set, and (C) the whole dataset. P-values for log-rank tests. (D–F)
Receiver operating characteristics (ROCs) under 7-year survival in the (D) training set, (E) validation set, and (F) the whole dataset.

CI: 1.05–2.85, p-value: 0.033) was a risk factor of ovarian
cancer while LINC00996 (HR: 0.422, 95% CI: 0.235–0.758,
p-value: 0.00388) and USP30-AS1 (HR: 0.794, 95% CI:
0.677–0.931, p-value: 0.00464) were protective factors of
ovarian cancer (Figure 2D). In Figure 2E, we visualized the
distributions of the risk scores of the patients with ovarian
cancer. Also, we found that the risk scores displayed associations
with survival status (Figure 2F) and disease progression
(Figure 2G).

Evaluation of the Autophagy-Related
lncRNA Signature as a Robust Prognostic
Factor in Ovarian Cancer
Herein, all the patients with ovarian cancer were randomly
separated into the training set and validation set (both n =

187) in Table 4. Based on the median value of the risk scores,
the patients were divided into high- and low-risk groups. Our
data showed that there were distinct differences in OS time
between the two groups in the training set (p = 3.08e-10),
validation set (p = 1.91e-03), and the whole dataset (p =

9.9e-10; Figures 3A–C). Patients in the low-risk group had
prolonged OS duration in comparison with those in the high-
risk group. ROCs were conducted to validate the predictive
performance of this signature. The area under the curves
under 7-year survival were 0.717, 0.747, and 0.727 in the
training set, validation set, and the whole dataset, respectively
(Figures 3D–F).

The Autophagy-Related lncRNA Signature
as an Independent Prognostic Factor for
Ovarian Cancer
We further evaluated the correlations between the risk scores
and other clinical features in specimens with ovarian cancer.
As a result, lowered risk scores were detected in grade 3 than
grade 2 (p = 8.55e-04; Figure 4A). Meanwhile, we found that
the risk scores increased gradually as the pathologic stages
increased (Figure 4B). The AUCs under 3-, 5-, and 7-year
survival time were 0.602, 0.651, and 0.727 for the patients with
ovarian cancer, indicating the well-predictive performance of
this signature (Figure 4C). Furthermore, compared with the
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FIGURE 4 | Evaluation of the autophagy-related lncRNA signature as an independent prognostic factor for ovarian cancer. (A,B) The distributions of the risk score in

patients with ovarian cancer with different (A) histologic grades and (B) pathologic stages. (C) AUCs under 3-, 5-, and 7-year survival for the risk score. (D) AUCs
under 7-year survival for the risk scores and other clinical features (age, pathologic stage, and histologic grade). (E) Multivariate Cox regression analysis of the risk

score, pathologic stage, and histologic grade.

other clinical characteristics including age (AUC = 0.536),
pathologic stage (AUC = 0.497), and histologic grade (AUC
= 0.508), there was a higher AUC value under 7-year OS
time for the risk score (Figure 4D). The data suggested that
this risk score might possess higher sensitivity and accuracy in
predicting the prognosis of the patients with ovarian cancer.
Multivariate Cox regression analysis demonstrated that this
risk score could be independently predictive of the prognosis
of the patients (HR: 2.31, 95% CI: 1.75–3.03, p = 2.64e-09;
Figure 4E).

The Autophagy-Related lncRNA Signature
Is Associated With Immune Cell Infiltration
in Ovarian Cancer
Here, we adopted the CIBERSORT algorithm to infer the
immune cell infiltration in samples with ovarian cancer.
Figure 5A visualized the proportions of 22 kinds of immune
cell components in ovarian cancer tissues. Also, we analyzed the

correlations between distinct immune cells. In Figure 5B, there
were strong correlations between B cells naïve and macrophages
M2 (r = 0.93), between B cells memory and monocytes (r =

0.98), between T cells CD4 naïve and T cells CD4 memory
resting (r = 0.98), between T cells follicular helper and Tregs
(r = 0.97), between T cells follicular helper and T cells gamma
delta (r = 0.96), between Tregs and macrophages M0 (r =

0.97), between T cells gamma delta and mast cells activated (r
= 0.92), and between monocytes and mast cells activated (r
= 0.95) in ovarian cancer tissues. Also, heatmap visualized the
differences in the immune cell infiltrations between high- and
low-risk samples of the ovarian cancer (Figure 5C). Compared
with the low-risk group, there were lowered infiltration levels of
macrophages M1 (p < 0.0001), mast cells resting (p = 0.007),
plasma cells (p = 0.003), T-cell CD8 (p = 0.016), and T-cell
follicular helper (p = 0.001) and also higher infiltration levels
of macrophages M2 (p = 0.003), mast cells activated (p <

0.0001), and neutrophils (p = 0.036) in the high-risk group
(Figure 5D).
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FIGURE 5 | Association between the autophagy-related lncRNA signature and immune cell infiltration in ovarian cancer. (A) The proportions of different immune cell

components in ovarian cancer tissues. (B) Heatmap for the correlations between different immune cells. The darker the color, the greater the |correlation coefficient|.

Red: positive correlation and blue: negative correlation. (C) Heatmap for the infiltration levels of immune cells in the high- and low-risk samples with ovarian cancer. (D)
Box plots for the differences in infiltration levels of immune cells between the high- and low-risk samples with ovarian cancer.
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FIGURE 6 | Associations between the autophagy-related lncRNA signature and immune checkpoints in ovarian cancer. (A,B) Box plots for the expression of immune

checkpoints (A) LSECtin and (B) PD-L1 in the high- and low-risk groups. (C,D) Box plots for the (C) immune and (D) stromal scores in the high- and low-risk groups.

The Autophagy-Related lncRNA Signature
Is Associated With Immune Checkpoints in
Ovarian Cancer
Herein, we observed whether the autophagy-related lncRNA
signature was associated with the expression of immune
checkpoints in ovarian cancer tissues. Higher LSECtin expression
was found in the high-risk group compared with the low-risk
group (Figure 6A). Furthermore, there was distinctly decreased
PD-L1 expression in the low-risk group compared with the
high-risk group (p = 2.79e-04; Figure 6B). We also assessed
the correlations between the risk scores and immune or stromal
scores. As a result, higher immune scores and lower stromal
scores were detected in the high-risk samples compared with
the low-risk samples, which were not statistically significant
(Figures 6C,D).

Prediction of the Sensitivity to
Chemotherapy Drugs Based on the
Autophagy-Related lncRNA Signature
Based on the gene expression profiles, we predicted the
responses to 94 chemotherapy drugs in each patient with ovarian
cancer. Among them, there were significant differences in
responses to 29 chemotherapy drugs with p < 0.05 between
high- and low-risk patients with ovarian cancer, including
CHIR.99021, methotrexate, cisplatin, bicalutamide, FH535,
midostaurin, bexarotene, vinblastine, embelin, A.770041,
bryostatin.1, GSK269962A, FTI.277, dasatinib, XMD8.85,
WH.4.023, WZ.1.84, Obatoclax.Mesylate, thapsigargin,
EHT.1864, cyclopamine, imatinib, RO.3306, AS601245, QS11,
BMS.536924, mitomycin.C, JNK.9L, and etoposide (Figure 7;
Supplementary Table 4).
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FIGURE 7 | Forest plots for the differences in IC50 values of chemotherapy drugs between the high- and low-risk samples with ovarian cancer.

Somatic Mutation Landscapes in Ovarian
Cancer
We further analyzed the somatic mutation landscapes in
specimens of ovarian cancer. Both in the high- (Figure 8A)
and low-risk (Figure 8B) samples, missense mutation was the
most common mutation type. TP53 was the top-ranked mutated
gene, followed by TTN. C > T mutation had the highest
proportion in the two groups (Figures 8C,D). Furthermore,
potential druggable categories targeted mutated genes were
predicted, such as the druggable genome, clinically actionable,
and kinase in the high- (Figure 8E) and low-risk (Figure 8F)
samples. Approximately 98.48% of samples occurred genetic
mutations in the high-risk samples (Figure 9A) and 99.28% of
the occurred mutations in the low-risk samples (Figure 9B).
Many genes co-occur in cancer or show strong exclusivity in
their mutation patterns. Here, we visualized the close interactions

between the mutated genes in the high- and low-risk samples
(Figures 9C,D).

Significant Signaling Pathways Underlying
the Autophagy-Related lncRNA Signature
To explore the significant signaling pathways underlying the
autophagy-related lncRNA signature, this study carried out
GSEA by comparing high- and low-risk groups. As shown in
Figure 10, we observed that ribosome (NES = 1.90 and nominal
p = 0.019), oxidative phosphorylation (NES = 1.76 and nominal
p = 0.037), and Parkinson’s disease (NES = 1.74 and nominal
p = 0.035) were markedly activated in the high-risk group.
Meanwhile, various types of N-glycan biosynthesis (NES=−1.84
and nominal p = 0.002), lysosome (NES = −1.87 and nominal p
= 0.002), and circadian rhythm (NES = −2.08 and nominal p <

0.0001) were enriched significantly in the low-risk group.
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FIGURE 8 | Somatic mutation landscapes in ovarian cancer. (A,B) The summary of mutation types and mutated genes in the high- and low-risk samples with ovarian

cancer. (C,D) The overall distribution of the six different Single-nucleotide variants and the proportion of transitions in the high- and low-risk samples with ovarian

cancer. (E,F) Druggable categories based on the mutated genes in the high- and low-risk samples.

DISCUSSION

As per a previous study, 17 autophagy-related lncRNAs have
been identified as prognostic predictors of ovarian cancer

(26). Nevertheless, a single autophagy-related lncRNA often
has limited predictive power. Furthermore, the established
clinical prognostic biomarkers have limited accuracy and
specificity. It has been confirmed that gene models exhibit higher
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FIGURE 9 | Mutated genes and their interactions in ovarian cancer. (A,B) Oncoplots for the top 30 mutated genes in the high- and low-risk samples with ovarian

cancer. (C,D) The interactions between the mutated genes. The darker the color, the stronger the co-occurrence.

predictive power than a single gene (5). This study employed
the LASSO regression method to establish an autophagy-
related lncRNA signature containing AC084018.1, AC092171.2,
AP000695.1, GAS6-AS1, LINC00174, LINC00893, LINC00996,
MEIS1-AS3, MIR22HG, NEAT1, TEX26-AS1, U73169.1,
UBE2Q1-AS1, and USP30-AS1 for ovarian cancer based on
abnormally expressed autophagy-related lncRNA profiles.
After verification, this signature robustly and independently
predicted the survival outcomes of the patients with ovarian
cancer. Among the 14 lncRNAs in this signature, GAS6-AS1
exerts a carcinogenic effect in the breast cancer (27) and
hepatocellular carcinoma (28). LINC00174 promotes glioma

progression via miR-152-3p/SLC2A1 axis (29). LINC00893
suppresses papillary thyroid cancer by inactivating the AKT
pathway and stabilizing PTEN (30). USP30-AS1 expression is
related to autophagy in the bladder urothelial carcinoma (31).
More experiments require to verify the regulatory roles of these
lncRNAs on autophagy.

As immunogenic cancers, the spontaneous anticancer
immune responses may increase survival duration, and the
immune escape may cut down survival duration (32). In
the recent years, several immune-based strategies such as
immune checkpoint inhibition, vaccination, and antigen-
specific active immunotherapy have been developed in ovarian

Frontiers in Medicine | www.frontiersin.org 13 October 2021 | Volume 8 | Article 715250133

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Li et al. Autophagy-Related lncRNA Signature of OV

FIGURE 10 | Significant signaling pathways underlying the autophagy-related lncRNA signature by Gene set enrichment analysis.

cancer (33). The immune-suppressive networks in the tumor
microenvironment have been considered for immunotherapy
implementation (34). The immune-related markers may
be utilized for predicting the responses to immunotherapy
(35). Hence, the interactions between molecules and tumor
microenvironment require in-depth exploration. Our study
demonstrated that the autophagy-related lncRNA signature
was in relation to infiltrations of macrophages M1, mast
cells resting, plasma cells, T-cell CD8, T-cell follicular helper,
macrophages M2, mast cells activated, and neutrophils,
indicating the crosstalk between these autophagy-related
lncRNAs and immune cells. Consistently, Deng et al. identified
a novel autophagy-related lncRNA model that was distinctly
related to the infiltrations of immune cells in pancreatic
cancer (36). Ovarian cancer represents a low immune-reactive
malignancy with restricted immune cell infiltrations and
extensive immunosuppressive T cell infiltrations (37). Tumors
positive for PD-L1 usually exhibit a higher response to immune
checkpoint inhibition therapy, and highly expressed PD-L1
is a predictor of undesirable clinical outcomes (37). Here,
our data showed that the low-risk ovarian cancer patients

had higher PD-L1 expression in comparison to those with
high risk.

Chemotherapy (platinum and taxanes) plays a fundamental
role in adjuvant therapy against ovarian cancer (38). Despite the
initial response to this therapy, most of the patients diagnosed
with ovarian cancer developed chemotherapy resistance (39).
This resistance may be driven by a range of mechanisms.
Hence, it is of importance to develop individual markers for
the prediction of the sensitivity to chemotherapy. Our data
showed that the risk scores were in relation to 29 chemotherapy
drugs such as cisplatin, indicating that the autophagy-related
lncRNAswere involved in chemotherapy sensitivity, as a previous
study (11).

CONCLUSIONS

Collectively, this study provided a knowledge base of novel
autophagy-related lncRNAs in ovarian cancer, improving the
understanding of the functions of lncRNA on the regulation
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of autophagy in ovarian cancer. We established an autophagy-
related lncRNA signature as a robust prognostic marker for the
prediction of survival outcomes, immunotherapy response, and
chemotherapy sensitivity. Our findings may assist to precisely
guide therapeutic strategies for individual patients with ovarian
cancer in clinical practice.
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Parkinson’s disease (PD), a neurodegenerative disorder characterized by distinct aging-

independent loss of dopaminergic neurons in substantia nigra pars compacta (SNpc)

region urging toward neuronal loss. Over the decade, various key findings from clinical

perspective to molecular pathogenesis have aided in understanding the genetics

with assorted genes related with PD. Subsequently, several pathways have been

incriminated in the pathogenesis of PD, involving mitochondrial dysfunction, protein

aggregation, and misfolding. On the other hand, the sporadic form of PD cases is found

with no genetic linkage, which still remain an unanswered question? The exertion in

ascertaining vulnerability factors in PD considering the genetic factors are to be further

dissevered in the forthcoming decades with advancement in research studies. One

of the major proponents behind the prognosis of PD is the pathogenic transmutation

of aberrant alpha-synuclein protein into amyloid fibrillar structures, which actuates

neurodegeneration. Alpha-synuclein, transcribed by SNCA gene is a neuroprotein found

predominantly in brain. It is implicated in the modulation of synaptic vesicle transport

and eventual release of neurotransmitters. Due to genetic mutations and other elusive

factors, the alpha-synuclein misfolds into its amyloid form. Therefore, this review aims in

briefing the molecular understanding of the alpha-synuclein associated with PD.

Keywords: Parkinson’s, genes, alpha-synuclein, mutation, protein aggregation

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disorder that falls under
the category of synucleinopathy (1). PD is characterized by distinct aging-independent loss of
dopaminergic neurons in substantia nigra pars compacta (SNpc) region and the decrease in
dopamine levels (2). Possibly, PD leads to the loss of terminal ends of striatum, which occurs before
the neuronal loss in SNpc and; it seems to be more significant in disease pathogenesis (3). About
95% of PD cases are sporadic with no genetic linkage. Mostly, PD has its mean age of onset at
55 years with increased incidences with aging (1). PD is the most common disorder in a range of
disorders classified as Parkinsonism characterized by dopamine deficiency and striatal damage.

In early stages of PD, the patients are pre-symptomatic with possible pathological changes of
dorsal motor nucleus of vagus in medulla and the anterior olfactory nucleus of olfactory bulb
followed by changes in locus ceruleus neurons of pons and dopaminergic neurons of substantia
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nigra. Hence, the smell and taste disturbances may be early
clinical features of PD. During later stages, the pathology
spreads to amygdala, basal forebrain, and medial temporal lobe
structures. Neocortex is affected in final stages of the disease.
Wherein, these stages are based on Braak’s PD staging scheme
(2, 4).

PD is characterized by motor symptoms such as bradykinesia,
hypokinesia, akinesia, hypomimia, hypophonia, drooling,
swallowing problems, micrographia, decreased stride length
during walking, rigidity (stiffness of limbs), postural instability,
and resting tremors (5). Some of the non-motor symptoms of PD
include sleep disorders, depression, memory impairment, lack
of initiative, delayed response, slowed cognition, passiveness,
psychosis, and confusion (6–9). Pain is the most common
non-motor symptom in PD patients and it may occur even
before the motor symptoms. Hence, these symptoms may not
share the same pathogenic pathways. Nociceptive dysfunction
in the peripheral primary afferent nerves leading to abnormal
sensory input and degeneration has been hypothesized as a
possible reason for the early-stage pain symptoms and impaired
response to pain stimuli (10).

Other parkinsonian disorders and related atypical
parkinsonian disorders are caused by multiple system atrophy
(MSA), tauopathies, or progressive supranuclear palsy (PSP) and
cortico-basal degeneration (CBD) (7).

The most pathological hallmark of PD is Lewy bodies
(LB). Lewy bodies are intraneuronal inclusions that contain
immunoreactive alpha-synuclein aggregates which may also
contain various neurofilament proteins as well as proteins
involved in proteolysis such as ubiquitin. Predominantly, the cell
death is caused by disruption of nuclear membrane integrity
and release of alpha synuclein aggregation promoting nuclear
factors like histones. Alpha synuclein may spread to other cells
by direct or indirect means once aggregation starts. When
compared with unaffected normal individuals, around 50–70%
of neurons are lost in this region, at the time of death in
patients with PD (11–13). Some studies suggest that LBs are
the cell’s defensive mechanism to prevent intracellular protein
aggregate accumulation, while other studies suggest LBs to
have a pathogenic role in PD. Therefore, LBs are an area of
controversy in PD. LB formation may activate pathways for
neuronal dysfunction and cell death (2, 4).

Mutations in the alpha-synuclein gene are responsible for
some familial cases of PD with LB, whereas mutations in the
Parkin gene cause a parkinsonian syndrome without LB in early-
onset cases. Furthermore, Parkin proteins cause ubiquitination
of the alpha-synuclein by interacting with synphilin-1 and thus
promote the formation of LB (14–16). Mutations in genes coding
the proteins involved in ubiquitin-proteasome system (UPS) and
some deubiquitinating enzymes have been linked to PD. UPS
removes unwanted proteins inside the cell and maintains many
intracellular processes for cell viability (5).

This review offers an analytical assessment of the literature
designating the possible role of the genes involved in causing
PD. The information was collected from the molecular, cellular,
and computational studies from various library databases and
search engines. Hence, this article helps in providing a better

understanding over the impact of the alpha synuclein and
its mutations causing PD in terms of the molecular and
neurological perspectives.

OVERVIEW ABOUT THE AMYLOIDOSIS IN
NEURODEGENERATIVE DISORDERS

The pathological commonality among predominant
neurodegenerative disorders such as Alzheimer’s disease
(AD), Huntington’s disease (HD), PD, prion disorders, and
amyotrophic lateral sclerosis (ALS) are protein aggregation and
the formation of inclusion bodies. The aggregates also called as
amyloids, are composed of fibers and fibrils consisting aberrant
misfolded proteins rich in beta-sheets. Amyloid deposition is
directly associated with cellular deterioration and neuronal
malfunction. It is also insinuated to effectuate endoplasmic
reticulum, oxidative stress, mitochondrial, and proteasomal
dysfunction, thus eventually causing neuronal waning. While
mutations are culpable behind protein misfolding, sporadic
causes attributed to other genetic and environmental variables.
Increasing reports from various studies have elucidated the
better comprehension of biochemical pathways associated with
protein aggregation. Chief pathways suspected to cause protein
aggregation include unfolded states/unfolding intermediates
mediated physical aggregation, aggregation propelled chemical
linkages, or protein self-association and aggregation mediated
via chemical degradations (17–20).

DISORDERED PROTEINS INVOLVED IN
PATHOGENESIS OF PARKINSON’S

Primarily, the accumulation of misfolded proteins has been
suggested to be the cause of PD. Mutations in alpha-synuclein
(SNCA), ATP13A2, GBA, FBX07, VPS35, PLA2G6, DNAJC6,
SYNJ1, UCHL1, parkin (PRKN), LRRK2, PINK1, and DJ-1 genes
has been identified to cause familial early onset PD by causing
abnormal protein conformations and disrupting the ability of
cellular machinery to clear the misfolded proteins (Figure 1) (6,
21). Pdr-1 (Parkin gene) and PINK1 mutants in C. elegans have
been found to exhibit defective dopamine dependent behavior.

ATP13A2 encodes cation-transporting ATPase 13A2 that
partakes in maintaining mitochondrial, lysosomal, and neuronal
integrity. Its chief function involves transporting divalent
transition metal cations. On the other hand, Glucosylceramidase
beta encoded by GBA gene, is implicated in glucocerebroside’s
hydrolyzation. While, FBXO7 gene translates into F-box only
protein 7 that is involved in mitophagy. VPS35 encodes Vacuolar
protein sorting-associated protein 35, which participates in
autophagy by transporting proteins across Golgi apparatus and
vesicular structures. Next, gene PLA2G6 translates into an 85–88
kDA protein, which is calcium-independent phospholipase A2.
It is also involved in regulating phospholipid remodeling and
fatty acids’ release from phospholipids. In addition, it has been
implicated in prostaglandin and leukotriene production, and
in nitric oxide/vasopressin mediated arachidonic acid release.
DNAJC6, on the other hand, encodes putative tyrosine-protein
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FIGURE 1 | Mechanisms of Neurodegeneration in PD.

phosphatase auxilin that partakes in neuronal clathrin-mediated
endocytosis. Further, SYNJ1 translates into Synaptojanin-1,
which is a phosphoinositide phosphatase enzyme that modulates
PIP2 in membrane. Next, Ubiquitin carboxyl-terminal hydrolase
isozyme L1 is encoded by geneUCHL1. It is a deubiquitinating
enzyme that produces monomers of ubiquitin, suspected to
regulate monoubiquitin’s degradation in lysosomes. And, PRKN
translates to E3 ubiquitin-protein ligase parkin, a ubiquitin ligase
that participates in effacing damaged or misfolded proteins (22).

The pdr-1 and PINK1 mutants had greater accumulation of
dysfunctional mitochondria with age, leading to the activation
of mitochondrial ubiquitin proteasome response. By this way,
the prevention of upregulation of ubiquitin protein response
was found to reduce dopaminergic neuron lifespan and lead
to their loss in C.elegans (23). PINK1 and Parkin were found
to regulate the mitochondrial quality control in neurons by
removing damaged mitochondria (with reduced membrane
potential, increased ROS production, defective electron transport
chain, or accumulation of unfolded proteins) through autophagy
and thus replacing the damaged mitochondria. Mutations in
either PINK1 or Parkin can alter this mechanism and lead to
mitochondrial dysfunction, which is found to be prevalent in
PD neurons (24). LRRK2 is the most common gene involved
in sporadic PD, while the other gene defects cause only a
small number of familial PD cases; however, they provide
information on the proteins involved and disease mechanism
(25). Point mutations in alpha-synuclein gene has been identified
to cause early-onset PD in an autosomal-dominant way and

the overexpression of gene has been found to cause late-onset
or sporadic cases of PD (26). LRRK2 gene codes for the
dardarin protein and this gene is the most common cause of
familial or sporadic PD. LBs have been found in PD cases
involving LRRK2 (27). LRRK2 G2019S mutation (substitution
of glycine to serine at codon 2019) accounts for the majority
of familial cases and 1.6% of sporadic cases of PD even
though its prevalence is variable (28). Single gene mutations
in Parkin and DJ-1 cause early-onset PD and these mutations
are inherited by autosomal-recessive pattern. Abnormalities in
mitochondrial Complex I of oxidative phosphorylation enzyme
pathway have been consistently found to cause mitochondrial
defects by inducing oxidative stress, increasing the production
of reactive oxygen species along with superoxides that can
target the electron transport chain to accelerate their own
production and energy failure leading to PD pathogenesis
(29). Dopaminergic neurons are particularly vulnerable to
oxidative stress reactive oxygen species mediated mitochondrial
dysfunction because the metabolism of dopamine produces
superoxides radicals, hydrogen peroxide, and DA-quinone
(produced by auto-oxidation of dopamine) which damage the
cells. However, the directs links between ROS generation, defects
in oxidative phosphorylation, and PD pathology are not strong
and convincing, because of the rare occurrence of Parkinsonism
in patients with mutations affecting oxidative phosphorylation.
Mitochondrial defects have been suggested to cause cell death
and dysfunction in PD, which could occur due to the inherited
defective mitochondrial DNA or mutations in mitochondrial
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genome caused by possible systemic toxicity. Deregulation
of kinase signaling, disruption of signaling mechanisms in
dopaminergic neurons and endoplasmic reticulum stress are also
key molecular mechanisms in PD (30, 31). PINK1 gene codes for
a mitochondrial complex that has been shown to be responsible
for autosomal-recessive form of PD, but it is not a major risk
factor of sporadic PD. Programmed cell death has been suggested
to cause the neuron cell death in PD, but whether it causes cell
death due to abnormal pathway or to clear cells injured and
damaged by the pathological mechanisms of PD is still not clear
(6, 8, 32).

Furthermore, Franco et al. have compiled the aforementioned
genes’ functionalities in terms of their biochemical, biomolecular,
network interactions, and pathway analysis from various in silico,
in vitro, and in vivo studies, to formulate putative mechanism:
due to genetic mutations observed in the afore mentioned list of
genes, involved in protein processing and vesicular trafficking,
native alpha synuclein’s normal processing is hindered and
altered (22).

STRUCTURAL ARCHITECTURE AND
DISEASE-CAUSING MUTATIONS IN ALPHA
SYNUCLEIN (AS)

Alpha synuclein is a small (14 kDa), intrinsically disordered
protein with 140 amino acids that is highly charged and coded
by SNCA (synuclein) gene, which is mainly expressed in CNS
(33). Alpha synuclein is predominantly found at the presynaptic
terminals, where it associates with synaptic vesicles. Alpha
synuclein belongs to the synuclein family, which also includes
gamma and beta synucleins. One percentage of the total proteins
of neuronal cytosol are comprised of AS. AS has an amphipathic
N-terminus consisting of 7 imperfect sequence repeats of 11
residues with a possible alpha helix structure that facilitates lipid
binding and a potential role in aggregation. Further, the non-
amyloid component (NAC) at the C- terminus facilitates calcium
binding and inhibits protein aggregation (34).

Moreover, NMR structure of human alpha-synuclein reported
by Ulmer et al. indicates that amino acids in-between 3–
37 and 45–97 forms alpha-helices (curved), joined by linker
(extended) organized in an unprecedented anti-parallel manner.
Then, a notably high mobile tail spans in-between 98 and 140
amino acid range. The well-organized orientation of helical
connector implicates a demarcated association with lipidic
surfaces, indicating a notion that, when adhered to synaptic
vesicles with larger diameter, it can function as a modulator
between the aforementioned structure and an uninterrupted
helical model that was postulated earlier (35).

AS is involved in synucleinopathies like PD (both familial
and sporadic), multiple systems atrophy and dementia with LB;
however, the physiological function of AS is still unknown.
Researchers suggest that AS could potentially play a role in
cell function regulation, dopamine release regulation, vesicular
trafficking, and oxidative stress. Removal of AS gene in mice
has been found to cause the loss of dopaminergic neurons,
striatal dopamine reduction, and absence of dopamine-induce

locomotive responses mediated by dopamine transporter (DAT)
(4). Missense point mutations of the N-terminal (A53E, A53T,
A30P, E46K, H50Q, and G51D) have been strongly correlated
with autosomal dominant form of PD, while, the duplication
and triplication of AS gene have been shown to be involved
in familial PD cases with early onset (36). Mutant AS proteins
vary in only a few amino acid residues but result in a significant
change in their conformation and the type of aggregates formed
(37). There is no explanation for this phenomenon to date.
AS inclusions are found to be usually hyperphosphorylated at
various sites including Ser129, Ser87, and Tyr125 in LB (38, 39).
Mutant AS protein (A30P and A53T disease mutations) involved
in familial PD have been shown to be structurally defective for
membrane binding, leading to alteration of the protein’s binding
properties (40). Wild-type AS has been observed to form two
different dimers and; the single point mutations (A30P, E46K,
and A53T) have been suggested to promote dimerization of
AS. Moreover, the structural homogeneity of these dimers has
been suggested to lead in different aggregation pathways (41). In
a mutation-frequency analysis conducted on Japanese patients,
the SNCA p.A53V homozygous mutation was found to cause
distinct phenotype of progressive Parkinsonianism and cognitive
decline similar to SNCAmissense mutation. Particularly, the two
newly discovered mutants of AS viz., A18T and A29S were found
to aggregate faster than wild-type AS with greater propensity
for aggregation. Furthermore, the A18T mutant was found to
have faster aggregation kinetics compared to A29S and hence,
it makes the protein more sensitive to aggregation by modifying
its native conformation (42). Of note, the broken helix structure
of AS, which consists of two antiparallel membrane bound
helices connected by a non-helical linker causes the protein to
interact with synaptic vesicles docked at the plasma membrane.
Phosphorylation of tyrosine at position 39 (Y39 phosphorylation)
in AS, in vitro, was found to free the protein from the membrane
surface of vesicles by decreasing the binding of helix-2 in the
broken helix state. In addition, this effect was found to be
similar to the effect of G51D mutation (43). The peptide (1a)
consisting of residues 36–55 of AS was found to form a beta
hairpin structure that subsequently assembled into a triangular
trimer. Full length AS has been suggested to from such an
assembly with evidences from molecular modeling. Also, this
1a peptide was able to bind anionic lipid bilayers membranes
and nucleate the oligomerization of AS (44). Recently in a study
of 426 Italian PD patient, the 263 bp allelic variant of Rep-1
(D4S3481 microsatellite), present upstream of the SNCA gene
translation start site, was found to raise the risk of hallucinations
and dementia in patients carrying this variant compared to
the non-carriers (45). Chinese PD patients have been found to
have lower resting-state brain activity in the lingual gyrus and
left caudate, when the amplitude of low-frequency fluctuation
(ALFF) values of the brain was compared between the PD
patients and healthy controls. Furthermore, the participants
carrying the rs894278 single nucleotide polymorphism in SNCA
gene, also called as the G allele, were found to have lower ALFF
values in the right fusiform compared to non-carriers of the
G allele. This study suggests that PD may also alter the brain
connections (46).
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Apart from aforementioned mutations, certain genetic
polymorphism in SCNA can be accredited toward enfeebling
sporadic PD. Reports have shown that SNPs: rs7684318,
rs894278, and rs2572324 have be known to enhance susceptibly
toward sporadic PD. Further, missense mutations A29S and
A18T were found in patients with sporadic PD (47). Also, a study
conducted in Japanese population states that SNPs rs2736990
and rs356220 were considerably associated with sporadic PD
risk (48).

Due to various genetic mutations and other obscure
biomolecular circumstances, AS pathogenically misfolds and
transmutes into amyloid fibrils that are rich in beta-sheets.
Solid state NMR structure of pathogenic AS fibrils was
presented by Tuttle et al. it was reported that AS fibril had
more than 200 distinctive long-range distance restraints that
delineates a consensus structure possessing characteristics such as
hydrophobic-core residues and in-register β-sheets, and diverse
residual framework such as a glutamine ladder, intermolecular
salt bridge, small residues mediated close backbone interactions,
and various other steric zippers that stabilizes the orthogonal
Greek-key topology (49). However, it should be noted that
amyloid fibrils are usually polymorphic: capable of existing in
multiple viable forms (50). Recently, Guerrero-Ferreira et al. had
reported two new polymorphic structures of AS fibrils, which
evince distinct morphological features (51).

NEUROTOXIC EFFECT OF AS IN PD

AS is associated with calcium homeostasis and its overexpression
may disrupt calcium homeostasis making dopaminergic neurons
vulnerable to damage (52). Besides, AS has been suggested
to have good affinity to phospholipid membranes, especially
the synaptic vesicles with a preference for membranes with
high curvature and specific membrane microdomains (53).
AS has been found to regulate synaptic vesicle distribution
and presynaptic terminal size. In specific, the N-terminal
alpha helix helps in its lipid-binding capability (54). Increase
in AS levels has been suggested to decrease dopamine as
well as glutamine neurotransmission by interacting with the
SNARE protein complex, modulating endoplasmic reticulum-
golgi vesicular trafficking, inhibiting vesicular priming, and
reducing synaptic contact (38). Overexpressed monomeric
wild-type AS has been shown to inhibit vesicle endocytosis
and impair neurotransmission. AS has been suggested to
cause PD by disrupting the synthesis, storage, recycling,
reuptake, and efflux of dopamine (55). Increased levels of AS
has also been found to reduce active tyrosine hydroxylase
(TH) enzyme that is involved in the production of dopamine
by stabilizing TH in its inactive form. AS overexpression
was found to attenuate vesicular monoamine transporter 2
(VMAT2) activity. Thus, the dopamine is stored in synaptic
vesicles via VMAT2 after its production to reduce the oxidative
damage from its metabolites. Increased cytosol concentration
of dopamine due to the reduction of VMAT2 activity by AS
has been proposed as a possible neurotoxic pathway in PD
(56). Dopamine transporter (DAT) has been associated with

dopamine trafficking, but whether it increases or decreases
DAT levels is still a debate because of evidence supporting
both sides (57). DAT knock-out mice showed high extracellular
dopamine levels and low intraneuronal dopamine concentration;
thus, DAT is important for neurotransmission and its activity
(especially decreased dopamine uptake as well as increased
dopamine clearance and efflux) upon disruption by AS can
cause PD. Most of these proposed functions of AS rely on
its membrane binding capacity (38, 39, 58–61). In vivo, AS is
distributed as unstructured, cytosolic, soluble, and partially
membrane-bound state. Of note, the equilibrium between
the structured and unstructured states or the balance of the
order and disorder of AS conformations at the surface of
membranes has been suggested to influence the biological
functions of the protein and also lead to the aggregation of the
protein due to detachment from the membrane (62). Membrane
binding by AS requires a conformational transition into a
highly helical state and this is promoted by the amphipathic
N-terminal. Moreover, the C-terminal of AS was found to be
highly disordered and the NAC domain has been found to be
highly structured in beta-sheet conformation in the amyloid
state of AS (59). AS oligomers were found to stabilize and
enhance pre-existing defects in supported lipid bilayers (SLBs) of
1-palmitoyl-2-oleoyl-sn-glycero-3phosphocholine/1-palmitoyl-
2-oleoyl-sn-glycero-3-phospho-L-serine(POPC/POPS).
Particularly, the exposed lipid acyl chains at the edges of
membrane defects were suggested to promote the membrane-
oligomer interactions resulting in the development of fractal
domains lacking lipids. The growth of membrane damage pattern
did not depend on the lipid- oligomer interaction suggesting an
oligomer-dependent, diffusion limited extraction mechanism for
the enhancement of membrane damage by AS oligomers (63).

AS may not form pores in membranes or induce damage
by itself but enlarges previous membrane defects instead.
The synphilin-1 proteins have been found to be accumulated
abnormally in AS inclusions of synucleopathies (64). AS
and neuroinflammation mediated by the inflammatory
response through microglial activation have been suggested
to potentiate each other. Misfolded AS may activate microglia
by increased expression of TNF-α, IL-1β, IL-6, iNOS, and
COX-2. Following stimulation by AS, receptors (TLRs,
CD36, and FCγR) as well as signaling molecules (galectin-
3, MMPs, and PHOX) have been proposed to join the microglial
response to activate signaling pathways (NF-κB and MAPKs).
These pathways further contribute to PD progression (65)
(Figure 2).

Aberrant AS is also suspected to affect protein degradation
systems. It was reported that malformed AS, under certain
circumstances can trigger proteasomal dysfunction in vitro and
in vivo. Further, mutant AS could also affect the lysosomes by
impairing CMA, which in turn could induce macroautophagy
that has a notable influence on neuronal survival. Also, AS
is reckoned to influence dynamics of cytoskeletal system.
Studies have shown that AS could interact and impact actin
polymerization to affect cellular trafficking; substantial deviations
on actin were reported, between native and A30P AS mutant.
These findings indicate that apart from aberrant AS’s neurotoxic
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FIGURE 2 | Info graph elucidating the various repercussions that can be observed in a neuron during PD.

role, it can also venture into aforementioned pathological
digressions to propel PD disorder (34).

MECHANISM OF AS AGGREGATION

AS aggregation was found to be triggered by Cu(II) in conditions
relevant to PD. Two independent Cu(II) binding sites with
varying affinities in the N-terminus of AS were identified and the
complex formation between the high affinity site of AS as well as
Cu(II) was found to be critical to the metal-mediated fibrillation
process. However, this complex formation is also hypothesized to
make the protein vulnerable to oxidative damage. Presence of a
truncated C-terminal was found to accelerate the process due to
reduction of the non-aggregation activity of the C-terminal (66).
The formation of N-terminal acetylated AS- Cu(I) complex at the
N-terminal site I has been found to stabilize local conformations
with alpha-helical secondary structure and restricted motility.
Besides, the formation of this complex with stabilized helically
folded structure may occur in vivo and also, affect the membrane
binding and aggregation capability of the N-terminal acetylated

AS (67). AS proteins lacking residues 109–140 in the C-terminal
were found to form amyloid fibrils with strongly twisted beta-
sheets, an increased beta-sheet distance, higher solvent exposure
compared to monomeric wild-type AS, and incompatibility
with the wild-type monomeric AS (68). Acetylation of the N-
terminus of naturally occurring AS was found to perturb its
ability to bind Cu2+ and the presence of the H50Q missense
mutation alongwith theN-terminal acetylation prevented copper
binding (69). Over expression of AS in frozen-hydrated primary
midbrain neurons was found to increase intracellular Mn levels
with reduction in levels of Ca, Zn, K, P, and S. Cu/Mn and
Fe/Mn levels were found to have a strong correlation with AS
overexpression. Mn release from the cells was also found to be
reduced (70). Clioquinol was found to reduce the interaction
between iron and A53T mutant AS in transgenic mice with
improved phenotype (71). These studies suggest the involvement
of transition metals in AS aggregation mediated PD pathology
and suggest the regulation of these metal levels as a potential
therapeutic strategy.

Tubulin polymerization promoting protein (TPPP/p25)
has been found to co-localize with AS and induce its
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aggregation (especially oligomers and protofilaments) by
forming a complex even though they are produced by different
cells—oligodendrocytes and neurons, respectively. TPPP/p25 has
been shown to be present in LB. Both of these are Neomorphic
Moonlighting Proteins. TPPP/p25 is also a chameleon protein
with high conformational plasticity and it is involved in
physiological functions such as regulation of microtubules.
Hence, targeting it with therapeutic drugs is difficult. A study
on the chameleon TPPP/p25 protein- AS complex using NMR,
CD spectroscopy, ELISA, and PCR followed by computational
study using charge-hydropathy plot (CH-plot) and cumulative-
distribution function plot (CDF-plot) has proposed that the
interface between the two proteins in the pathological complex
is a potential target for therapeutic drugs (72, 73). TPPP/p25α
has also been shown to promote release of AS through exophagy
and impairment of autophagosome formation/trafficking and
lysosomal dysfunction preventing the degradation of AS (74).
Cross-seeding between wild-type, A30P and A53T AS variants
that vary in only one or two amino acid residues but result
in different fibril morphologies were studied. Wherein, the
study suggested that similarity of conformations of the seeds
and monomers is essential for seed elongation (37). Further,
the morphology of wild-type AS fibrils has been suggested
to be determined by competitive growth between different
polymorphs during fibrillation and slowmaturation or annealing
process of fibrils (75). AS was found to bind strongly with
lipid membranes of large unilamellar vesicles with anionic or
zwitterionic headgroups in vitro and this binding is suggested
to reduce the protein-protein interactions of AS that lead to
fibrillation. Recent updates in research pertaining to PD and AS
is delineated in Table 1.

OVERVIEW OF THERAPEUTICS
TARGETING AS

Presently, there are no effective therapeutics contrived for PD,
but medication/surgery alleviates the symptoms and ameliorates
motor impairments. A prudent way to effectively alleviate
PD would be to target one of its crucial causatives, AS.
Recently, various therapeutic strategies have been formulated,
to encumber AS’s toxic effect. One such strategy would be to
control transmission by blocking AS receptors. LAG3-directed
antibodies were reported to substantially regulate aberrant
AS induced toxicity. Concurrently, silencing AS expression
in mouse and rat brain models through shRNA and siRNA
was also reported. Further, an oligomer regulator: Anle138b
[3-(1,3-benzodioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole] was
able to hinder the synthesis and accumulation of AS oligomers.
Additionally, numerous small molecule-based inhibitors have
been elucidated to impede AS aggregation. One such inhibitor:
Methylthioninium was found to effectively control AS fibrillar
inclusions in vitro and in vivo. Besides, numerous phytochemical
and plant extracts were also found to effectively modulate AS
aggregation in PD models. Lately, the use of phytochemicals to
target AS aggregated has gained a lot of attention and focus in the
research community (96, 97).

COMPUTATIONAL STUDIES ON AS

Using Monte Carlo (MC) computational methods (Replica
Exchange MC and Canonical Protein MC, Molecular Dynamics
(MD) based on CHARMM force field and AMBER force field
were used in various studies to disintegrate the mutational effect
on AS protein. On the other hand, virtual screening, docking
using AUTODOCK (using Lamarckian Genetic Algorithm) and
Interaction Potentials for assessment of protein druggability
(MD- based DruGUI) were used to analyze the effect of drug
molecules and other lead compounds on compact structures
of AS in aggregates. Moreover, the regions of the protein that
exhibit extended variable beta-sheet structure with a potential
role in aggregation and the protein druggability for potential
drugs inhibiting aggregation has been studied extensively (98).
Notably, 332 genes that affect AS toxicity were identified using
genome-wide screens of yeast. Later, these genes were used
to map the human counterparts by using a newly developed
computational method topology called Transpose Net that
integrates Steiner prize-collecting approach with homology
assignment through sequence, structure and interaction. Gene
interaction profiles of ATP13A2/PARK9 and VPS35/PARK17
and network relationships between the genes LRRK2/PARK8,
ATXN2, RAB7L1/PARK16, and EIF4G1/PARK18 were identified
and confirmed in induced pluripotent stem cell (iPSC) derived
neurons following the computational mapping (99).

Computational study using molecular dynamics simulations
and modeling has been used to reveal varying aggregation effects
in distinct protein conformational disorders (100–105). Thus,
MD studies have revealed that the NAC domain of ASmonomers
strong interacts with the amyloid beta monomers. In specific,
the cross-seeded NAC-amyloid beta oligomers were found to
show polymorphism with the NAC oligomers preferring to
form double layer conformations with amyloid beta over single
layer conformations. Further, the self-assembled NAC oligomers
with three beta strands connected by two turns were found to
affect the secondary structure of self-assembled amyloid beta
oligomers. Distinctly, the inner core distance values of NAC
oligomers remained unchanged in cross-seeded NAC-amyloid
beta oligomers but the inner core distance values in single
layer amyloid beta conformations were decreased to form a
compact and stable cross beta structure by strong hydrophobic
interactions with the inner core domain. N-terminal of AS has
been found to play an important role in the self-assembly of
AS (1–140) into fibrils of cross-beta structure using models
constructed by G-key 3D structure of self-assembled AS, NMR
fibril structures, molecular dynamics simulations and GBMV
calculations followed by analysis.

Recently, AS has been found to move into the nucleus by
binding to Retinoic acid in a calreticulin dependent manner
leading to increase toxicity and the AS in nucleus has been
suggested to particularly increase the expression of PD-associated
genes (ATP13A2, PINK1) in SH-SY5Y cells (106). N-terminal
mutants of AS (D2A, D2P) were found to alter the N-
terminal acetylation, protein level, stability, risk of neuron death
and toxicity of AS in neuron as well as HEK293 models,
showcasing the importance of the N-terminal amino acids and

Frontiers in Medicine | www.frontiersin.org 7 October 2021 | Volume 8 | Article 736978143

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Srinivasan et al. AS Aggregation Causing PD

TABLE 1 | Table delineating the recent research updates pertaining to AS and PD.

S.no Year of

publishing

Author(s) Title Key research findings References

1 2020 Mellier et al. The process of Lewy body formation, rather

than simply α-synuclein fibrillization, is one of

the major drivers of neurodegeneration

• Proposed seeding based model for AS fibrillation.

• Elucidated the interaction between AS aggregates

and cellular organelles like mitochondria ER etc.

(76)

2 2020 Ray et al. α-Synuclein aggregation nucleates through

liquid-liquid phase separation

Provides detailed characterization of AS’s

phase-separation behavior and its pathogenic

transformation into aggregates.

(77)

3 2020 Perren et al. The structural differences between

patient-derived α-synuclein strains dictate

characteristics of Parkinson’s disease, multiple

system atrophy, and dementia with Lewy

bodies

Characterizes structural variations of pathogenic AD

in various synucleinopathies.

(78)

4 2020 Stephens et al. Extent of N-terminus exposure of monomeric

alpha-synuclein determines its aggregation

propensity

Identifies structural orientations and environmental

conditions that furthers monomeric AS’s

aggregation.

(79)

5 2020 Zhao et al. Parkinson’s disease-related phosphorylation at

Tyr39 rearranges α-synuclein amyloid fibril

structure revealed by cryo-EM

Identifies PD’s pathological outcome that reorients

AS’s 3D structure.

(80)

6 2020 Arlehamn et al. α-Synuclein-specific T cell reactivity is

associated with preclinical and early

Parkinson’s disease

Examines the association between α-syn-specific T

cell responses and PD.

(81)

7 2020 Niu et al. A longitudinal study on α-synuclein in plasma

neuronal exosomes as a biomarker for

Parkinson’s disease development and

progression

Findings indicate that AS found in plasma neuronal

exosomes could server as biomarker in early PD

detection and also as prognostic marker for the

PD’s progression.

(82)

8 2019 Bhattacharjee

et al.

Mass Spectrometric Analysis of Lewy

Body-Enriched α-Synuclein in Parkinson’s

Disease

Identified 20 AS variant species in PD patients. (83)

9 2019 Levine et al. α-Synuclein O-GlcNAcylation alters

aggregation and toxicity, revealing certain

residues as potential inhibitors of Parkinson’s

disease

Advocates O-GlcNAcylation as a potential

therapeutic tool for regulating PD.

(84)

10 2019 Tian et al. Erythrocytic α-Synuclein as a potential

biomarker for Parkinson’s disease

Finding indicate that AS levels are altered in PD

patients’ erythrocytesand peripheral erythrocytic

could be a potential biomarker.

(85)

11 2019 Elfarrash et al. Organotypic slice culture model demonstrates

inter-neuronal spreading of alpha-synuclein

aggregates

Characterizes how AS aggregates are formed and

spreads across neurons.

(86)

12 2019 Landeck et al. Toxic effects of human and rodent variants of

alpha-synuclein in vivo

Quantifies the neurodegenerative effects of rodent

and human AS variants.

(87)

13 2019 Brys et al. Randomized phase I clinical trial of

anti-α-synuclein antibody BIIB054

Delineates the phase I clinical trial outcomes of

BIIB054 antibody against AS, which indicates that

BIIB054 pose tolerability, safety, and

pharmacokinetic propensities in PD patients.

(88)

14 2019 Kang et al. Comparative study of cerebrospinal fluid

α-synuclein seeding aggregation assays for

diagnosis of Parkinson’s disease

Formulates high accuracy AS seeding aggregation

assay that can be used for PD diagnosis.

(89)

15 2018 Pihlstrom et al. A comprehensive analysis of SNCA-related

genetic risk in sporadic Parkinson’s disease

Delineates AS encoding SCNA gene polymorphisms

that are associated with sporadic PD.

(90)

16 2018 Longhena et al. Synapsin III is a key component of α-synuclein

fibrils in Lewy bodies of PD brains

Identifies Synapsin III as an integral part of AS fibrils

in PD patients’ brain.

(91)

17 2018 Faustini et al. Synapsin III deficiency hampers α-synuclein

aggregation, striatal synaptic damage, and

nigral cell loss in an AAV-based mouse model

of Parkinson’s disease

Constitutes SynapsinIII as a crucial factor for AS

aggregation and could be a potential target in

mitigating PD.

(92)

18 2018 Papagiannakis

et al.

Alpha-synuclein dimerization in erythrocytes of

patients with genetic and non-genetic forms of

Parkinson’s Disease

Increased AS dimers were observed in PD patients,

which could provide insights into PD prognosis and

can be used as biomarker.

(93)

(Continued)
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TABLE 1 | Continued

S.no Year of

publishing

Author(s) Title Key research findings References

19 2018 Jankovic et al. Safety and Tolerability of Multiple Ascending

Doses of PRX002/RG7935, an

Anti-α-Synuclein Monoclonal Antibody, in

Patients With Parkinson’s Disease: A

Randomized Clinical Trial

Multiple doses of PRX002 antibodies was found to

be safe and tolerable even resulted in robust

interaction with peripheral AS.

(94)

20 2018 Zhang et al. A Comprehensive Analysis of the Association

Between SNCA Polymorphisms and the Risk of

Parkinson’s Disease

Delineates SNPs in SCNA gene that pose risk of

developing PD rs11931074 and rs2736990

increased the risk in East Asian group rs181489,

rs356219, rs356165, rs2737029, and rs11931074

increased the risk for European group.

(95)

N-terminal acetylation in AS stability, toxicity, and aggregation
(36). Overexpression of mutant A53T AS in HEK293 cells and rat
dopaminergic neurons, was found to inhibit the 26S ubiquitin-
proteasomal system and accumulation of AS phosphorylated at
Ser129 was observed when the ubiquitin proteasomal system was
inhibited (107).

INTERPLAY OF PROTEINS AND GENES IN
PD PATHOGENESIS

Synaptic vesicle endocytosis, mitochondrial dynamics, and
Lysosomal/Proteasomal activity are three critical processes that
become dysfunctional during PD pathogenesis. The dysfunction
of these processes could be because neurons are vulnerable to
oxidative stress as well as accumulation of damaged organelles
or misfolded proteins. The over expression of mutant proteins
overloads the defense mechanisms of the dopaminergic neurons
leading to disease pathogenesis. PINK1 mediates mitophagy
either independently or through the recruitment of Parkin
to the damaged/depolarized mitochondrial membrane. The
PINK1/Parkin pathway is also important formitochondria fusion
and fission dynamics. Hence, mutations/deficiency of these
proteins can lead to accumulation of defective mitochondria
in the cell and lead to oxidative stress. Oxidized proteins
are transported from the mitochondria to lysosomes through
mitochondrial vesicles (MDVs) during oxidative stress due
to reactive oxygen species and this process has also been
suggested to be affected by dysfunction of the PINK-1/Parkin
pathway (Figure 3). Similarly, DJ-1 acts as a sensor of oxidative
stress in the neurons and it has been suggested to move into
damaged mitochondria. DJ-1 also protects cells from apoptosis
due to stress. Mutations leading to loss of function of DJ-1
have been suggested to lead to reduced lysosomal activity and
autophagy. Furthermore, increased expression of AS due to
mutation, gene duplication or triplication has been suggested
to cause mitochondrial fragmentation and oxidative stress.
Glucocerebrosidase coded by GBA has also been suggested
to degrade AS in lysosomes and reduce AS toxicity. It is
also responsible for the conversion of glucosylceramide into
membrane constituents. Mutations of GBA have been shown
to lead to dysfunction of lysosomal autophagy, dysfunctional

ubiquitin proteasome system, mitochondrial fragmentation,
oxidative stress, and lead to defective lipid metabolism. Similarly,
mutant LRRK2 under oxidative stress have been shown to
cause apoptosis, defective vesicular trafficking and synthesis
of defective/misfolded proteins (108, 109). Recently, mutated
PINK1 expression in patient-derived neurons was found to lead
to over-expression of LRRK2 at the mRNA and protein level
(110). This suggests that PINK1 modulates LRRK2 level in
neurons. DJ-1 has been suggested to regulate the level of PINK-1
and AS in neurons (111).

Parkin has been suggested to regulate the endolysosomal
system by ubiquitination of Rab7. It has also been shown to
interact with endophilin A (which is involved in autophagy
and endocytosis) as well as other proteins involved in
neuron survival. LRRK2 is also involved in endophilin A
phosphorylation. Mutant AS has been suggested to prevent
their own degradation in lysosomes which could be through
Rab1a inhibition. Reduced activity of GCase1 due to GBA
mutations has been shown to lead to accumulation of
glucosylceramides and glycosphingolipids which may lead to
greater production of Lewy Bodies and accelerate AS aggregation.
Mutations in GBA are also suggested to cause the GCase
protein to be stuck in the endoplasmic reticulum leading to
ER stress, AS accumulation and interference with lysosomes.
Misfolded AS aggregate and influence neurotransmission,
synaptic vesicle exocytosis, recycling as well as endocytosis in
the substantia nigra region. Furthermore, Aggregated AS has
been suggested to target the retromer pathway of endolysosomal
trafficking. The AS fibrils/filaments have been suggested to
spread to surrounding regions through synapses in a prion-
like manner through endocytosis and this has been suggested
to evade lysosomal/proteasomal degradation through some way.
Moreover, mutant/pathogenic LRRK2 with increased kinase-
activity has been speculated to lead to exocytosis of misfolded
AS fibrils along with increased endocytosis of such fibrils,
which may help these fibrils to spread from cell-to-cell. AS has
been suggested to promote the movement of pro-inflammatory
monocytes into the substantia nigra region and also lead
to the presentation of MHCII leading to inflammation and
degeneration of neurons in this region. Although the activity of
PINK-1/Parkin can help alleviate this process, mutated PINK-
1/Parkin could not function this way (111, 112).
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FIGURE 3 | Snapshot of interaction network of the different Proteins involved in PD pathogenesis from STRING Database. The thickness of lines indicates the

confidence score for the interaction between two proteins.

ROLE OF PERSONALIZED MEDICINE IN
MITIGATING PD PATHOLOGY

Till now, PD’s heterogenic pathology has been well-delineated.
Further, it paves way for the formulation of personalized
therapeutics, wherein it is surmised that pathophysiology
and genetic might be crucial. Due to this heterogeneity,
an imperative need for developing individualized pathology
mitigating therapies have been imposed upon themedical society.
Recent medical advancement has made us witness, treatments
effectuated upon PD patients with specific genetic aberration.

Glucocerebrosidase is a common risk factor associated with
PD. Mutations in GBA gene, which encodes glucocerebrosidase,
are found predominantly among people from Netherlands and
Ashkenazi Jews. Though GBA’s role in PD remains obscure,
targeted therapeutics can be steered toward restoration of
enzyme function and regulation of glycosphingolipid turnover.
Accordingly, gene therapy though adeno-associated virus
expression glucocerebrosidase has shown positive findings in
GBA pre-clinical studies. And reduced levels of alpha-synuclein

aggregates were also reported in the same. Further, Ambroxol is
currently being investigated in a PD clinical trial.

Like GBA, genetic mutations in LRRK2 are also prevalent in
certain ethnicities and also considered to be a credible risk factor
for autosomal dominant PD. Enhancing LRRK2 kinase seems to
have a beneficial effect. At present, various structurally distinct
LRRK2 inhibitors formulated by Merck, Pfizer, Genentech and
GSK are in the pipeline.

Of note, the personalized medicine trails are more laborious
and complicated than the typical clinical trial and can face
various issues including the need for specific genotype patients
in large number. Nonetheless, with the SCNA gene and its
polymorphisms being studied and characterized extensively, it
holds a great potential in the field of personalized medicine, to
effectively mitigate toxic AS aggregates (113–115).

CONCLUSION

Though AS’s precise neuronal role remains obscure, it still
persists as one of the crucial causalities behind PD. Its aberrant

Frontiers in Medicine | www.frontiersin.org 10 October 2021 | Volume 8 | Article 736978146

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Srinivasan et al. AS Aggregation Causing PD

conformational change (due to genetic mutations and other
unknown pathophysiological circumstances) into toxic amyloid
fibrils disrupts cellular homeostasis and effectuates neuronal
deterioration. The present review covers a broad range of
information on the disease-causing gene AS related to PD
disorder. By contrast with the previous century the current
era of medical ailments and research studies had witnessed
astonishing progress in understanding PD, particularly with
respects to the clinical studies, genetics, pathophysiology and
molecular mechanism of PD. Though prodigious, the intricacy
in understanding the disease pathology of PD is considered
to be a promising approach toward the significant therapeutic
targets. Besides, personalized medicine for the treatment of the
PD considering the specificity of the defective genes will be
the forthcoming approach over the next decades in the field
of medical research world. Moreover, the directed delivery of
therapies toward the central nervous system crossing the blood
brain barrier will embolden credible hope that aid in improvising
the new treatment for the devastating PD disorder.
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Metabolic reprogramming is one of the emerging hallmarks of cancer cells. Various

factors, such as signaling proteins (S), miRNA, and transcription factors (TFs), may

play important roles in altering the metabolic status in cancer cells by interacting

with metabolic enzymes either directly or via protein-protein interactions (PPIs).

Therefore, it is important to understand the coordination among these cellular pathways,

which may provide better insight into the molecular mechanism behind metabolic

adaptations in cancer cells. In this study, we have designed a cervical cancer-specific

supra-interaction network where signaling pathway proteins, TFs, and microRNAs (miRs)

are connected to metabolic enzymes via PPIs to investigate novel molecular targets

and connections/links/paths regulating the metabolic enzymes. Using publicly available

omics data and PPIs, we have developed a Hidden Markov Model (HMM)-based

mathematical model yielding 94, 236, and 27 probable links/paths connecting signaling

pathway proteins, TFs, and miRNAs to metabolic enzymes, respectively, out of which

83 paths connect to six common metabolic enzymes (RRM2, NDUFA11, ENO2,

EZH2, AKR1C2, and TYMS). Signaling proteins (e.g., PPARD, BAD, GNB5, CHECK1,

PAK2, PLK1, BRCA1, MAML3, and SPP1), TFs (e.g., KAT2B, ING1, MED1, ZEB1,

AR, NCOA2, EGR1, TWIST1, E2F1, ID4, RBL1, ESR1, and HSF2), and miR (e.g.,

mir-147a, mir-593-5p, mir-138-5p, mir-16-5p, and mir-15b-5p) were found to regulate

two key metabolic enzymes, EZH2 and AKR1C2, with altered metabolites (L-lysine

and tetrahydrodeoxycorticosterone, THDOC) status in cervical cancer. We believe, the

biology-based approach of our system will pave the way for future studies, which could

be aimed toward identifying novel signaling, transcriptional, and post-transcriptional

regulators of metabolic alterations in cervical cancer.

Keywords: metabolic reprogramming, cervical cancer, mathematical modeling, systems biology, signaling
pathway proteins, transcription factor, microRNA, metabolic enzymes
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INTRODUCTION

Cervical cancer is the fourth most frequently occurring cancer
and the fourth leading cause of death in women worldwide
with an estimate of 5,70,000 cases and 3,11,000 deaths in
2018. Approximately 80–85% of the deaths from cervical cancer
occur in lower and middle-income countries compared to high-
income countries (1, 2). Squamous cell carcinoma (SCC) and
adenocarcinomas are the two main types of cervical cancer.
Above 90% of patients with cervical cancer belong to SCC (3).
The persistent infection with human papillomavirus (HPV), a
particularly high-risk type of HPV (mainly HPV16 and HPV18
type), is considered the primary cause of cervical cancer (4–6).
Only HPV16 and HPV18 types are responsible for almost 70%
of cases of cervical cancer globally (7). While infection by high-
risk HPV is necessary for developing cervical cancer, it alone may
not be sufficient. Various studies suggest that the pathogenesis
of cervical cancer depends on various other factors acting in
concert with disease-associated HPV types (8–10). Therefore, it
is important to understand the molecular mechanism behind the
development of cervical cancer.

Metabolic reprogramming is considered one of the emerging
hallmarks of cancer cells, and it is essential for cancer cell
growth and proliferation to evolve into a more aggressive
malignant state (11, 12). Understanding the coordination among
various biological pathways, such as gene-regulatory, signaling,
and metabolic pathways is important and may provide clues
into the molecular mechanism of metabolic adaptation in
cancer and associated cells. To understand that, one needs to
investigate the molecular mechanism by which the impact of
signaling, transcriptional, and post-transcriptional aberration
is transgressed to metabolic reprogramming. Various studies
demonstrated that the metabolic status in cancer cells is
regulated by oncogenic changes in signaling pathways (13–
15), transcription factors (TFs) (16–18), and miRNAs (19–21).
However, these studies are focused either on a single molecule
or pathways and may not capture the complex interconnectivity
among various biological processes.

To overcome the complexity of interconnected biological
pathways, biological approaches to efficient systems need to
be developed. Computational and/or mathematical model-based
system biology approaches provide an effective way to discover
new drug targets for cancer therapy (22, 23). Mathematical
model-based system biology approaches are successful for
signaling and metabolic network analyses (24–30). Mathematical
models for signaling pathways have been developed based on
logical models (27–30), kinetic models (31, 32), Petri nets (33),
decision tree (34), ordinary differential equations (35), and
linear programming (LP)-based model (22, 36). Previously, we
also have established a Hidden Markov Model (HMM)-based
mathematical model to analyze the signaling-metabolic (S-M)
interconnecting networks (37).

In the present study, we have designed a cervical cancer-
specific supra-interaction network model incorporating
transcriptome data onto a protein-protein interaction (PPIs)
network to investigate novel molecular targets and connections
regulating the status of metabolic enzymes. We have developed

a biology framework of a comprehensive system where signaling
(S) pathway proteins, miRNA, and TF-based gene-regulatory
modules are connected to metabolic (M) pathway proteins
through protein-protein interactors (PPIs; Figure 1). Initially,
network topologically IINs, such as a hub, central node (CN),
local network perturbing nodes (LNPNs), and global network
perturbing nodes (GNPN), were identified in different [S-M, TF-
metabolic (TF-M), and miRNA-metabolic] modules of cervical
cancer-specific networks using graph theory approach previously
reported by our laboratory (38). These IINsmay serve as potential
diagnostic and/or prognostic biomarkers in cervical cancer.
Furthermore, signaling pathway proteins, TFs, and microRNA
(miR) to metabolic enzymes interconnecting paths/links [S-PPI-
M, TF-target genes (TG)-PPI-M, and miR-TG-PPI-M] were
identified in cervical cancer. Publicly available transcriptomic
data derived from cervical cancer patients were incorporated into
the HMM-based mathematical modeling set-up to weigh and
rank the interconnecting link/paths in each module. Additional
confidence values based on biological and network topological
properties (hub, CN, GNPN, and LNPN) were assigned to each
gene/protein/miRNA in the paths/links identified after model
implementation to extract out high confident connections/links
specific to cervical cancer. In silico validation of these selected
genes/proteins/miRNAs and paths has been performed through
perturbation analysis, demonstrating the importance of
certain genes/proteins/miRNAs forming critical inter-pathway
connections. PPI links connecting to key metabolic enzymes,
such as RRM2, NDUFA11, ENO2, EZH2, AKR1C2, and TYMS,
are identified from signaling proteins (e.g., PPARD, BAD,
GNB5, CHECK1, PAK2, PLK1, BRCA1, MAML3, and SPP1),
TFs (e.g., KAT2B, ING1, MED1, ZEB1, AR, NCOA2, EGR1,
TWIST1, E2F1, ID4, RBL1, ESR1, and HSF2), and miR (e.g.,
mir-147a, mir-593-5p, mir-138-5p, mir-16-5p, and mir-15b-5p)
in cervical cancer scenario. Out of the six metabolic enzymes
that are commonly linked by 83 paths/links, EZH2 and AKR1C2
were mapped with deregulated metabolite status. Further,
comparative analysis of the identified genes/proteins/miRNAs
and the associated molecular pairs and paths in different
modules were performed using transcriptomics data obtained
from cervical, breast, and ovarian cancer patients. This study
led to novel inter–bio-molecular links between signaling, gene-
regulatory components, and metabolic enzymes paving the
probable way(s) to identify drug targets to inhibit cervical cancer
progression in a more specific manner.

MATERIALS AND METHODS

Messenger Ribonucleic Acid (mRNA) and
Micro Ribonucleic Acid (miRNA)
Expression Datasets
mRNA and miRNA expression datasets of cervical, breast cancer,
and ovarian cancer patients were extracted from the Gene
Expression Omnibus (GEO) database (39) to study the gene and
miRNA expression profiles. For the mRNA expression datasets,
similar microarray (Affymetrix microarrays) platforms were used
for each cancer type to minimize the undesirable variations that
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FIGURE 1 | Pictorial workflow of the study. CC, cervical cancer; S, signaling proteins; TF, transcription factor; miR, microRNA; M, metabolic proteins; PPI,

protein-protein interactors; CP, central proteins; LNPP, local network perturbing protein; GNPP, global network perturbing proteins.

occurred due to different microarray platforms. Further, the
cancer samples in each dataset were considered in a 1:1 ratio
with normal samples to avoid sample heterogeneity (as shown in
Table 1).

Differential Expression Analysis
The differential expression analysis of each dataset was
performed separately using the GEO2R web tool (40–42)
available at the GEO database. Genes having log2FC ≥ +1.5
and log2FC ≤ −1.5 were considered as upregulated and
downregulated genes, respectively. The genes with log2FC values
between −1.5 and +1.5 were considered only as neutrally
expressed genes (EG). Benjamini and Hochberg’s method (43)
was used to control the false discovery rate. Genes with an
adjusted p≤ 0.05 were considered significant. For ovarian cancer
datasets, the log2FC and p-value threshold of ± 2 and ≤0.01,
respectively, were considered for the selection of upregulated,
downregulated, and EG. For differential miRNA expression
adjusted p ≤ 0.05 and log2FC ≥ +1.0 and log2FC ≤ −1.0 were
considered as thresholds for the identification of upregulated and
downregulated miRNAs, respectively.

Construction of Human Protein-Protein
Interaction Network
The HPPIN was constructed by extracting experimentally
verified (confidence score ≥0.7) HPPIs available in the STRING
v11.0 (44) database. The resulting network (proteins as nodes and

edges demark interaction) consisted of 5,048 proteins and 18,044
interactions, respectively.

Construction of Cancer-Specific
Protein-Protein Interaction Network
Differentially expressed genes (dEXP) and EG from each cervical
cancer dataset (GSE9750, GSE63514, and GSE52904; Table 1)
were mapped onto the HPPIN to construct a cervical CC-
PPIN. The interactions were considered up to the second level
(i.e., interactors of interactors). In the first level, interactions
mediated by only deregulated genes were considered where their
interactors could be either deregulated or neutrally expressed.
The resulting network consisted of 2,240 proteins interconnected
via 5,452 edges. Similarly, breast and ovarian CC-PPINs were
constructed using the corresponding transcriptomic datasets
(Table 1).

Construction of Cancer-Specific
Transcriptional Regulatory Network
The transcriptional regulatory network was constructed
by collating deregulated TF-TG interaction and associated
protein-protein interactions. Experimentally verified strong
evidenced TF-TG interactions were retrieved from Human
Transcriptional Regulation Interactions database (HTRIdb)
(45) and Transcriptional Regulatory Relationships Unraveled
by Sentence-based Text mining (TRUSST) (46) databases and
were merged generating 22,480 interactions among 697 TFs
and 12,407 TG. The combined deregulated genes (differentially
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TABLE 1 | Differential expression analysis of mRNA and miRNA.

mRNA dataset Origin Normal
samples

Patient samples Up-Regulated Down-Regulated Neutrally expressed

Cervical cancer GSE9750 USA 19 19 330 634 4,338

GSE63514 USA 19 19 1,019 676 4,390

GSE52904 Mexico 17 17 177 322 6,228

Total – 45 45 1,250 1,331 10,053

Breast cancer GSE29044 Saudi Arabia 27 27 356 729 9,175

GSE42568 Ireland 17 17 1,270 1,343 7,636

GSE103512 USA 10 10 57 101 8,016

Total – 54 54 1,385 1,676 1,2717

Ovarian cancer GSE38666 USA 12 12 2,733 954 4,847

GSE54388 USA 6 6 232 527 4,087

GSE66957 USA 12 12 2,201 872 9,028

Total – 30 30 4,481 1,901 11,560

miRNA dataset Origin Normal
samples

Patient samples Up-regulated Down-regulated Neutrally expressed

Cervical cancer GSE30656 Netherland 10 10 4 12 NA

GSE81137 India 3 3 15 20 NA

Total – 13 13 19 31 NA

Breast cancer GSE45498 Switzerland 59 59 66 13 NA

GSE97811 Japan 16 16 39 15 NA

GSE143564 China 3 3 141 20 NA

Total – 78 78 197 40 NA

Ovarian cancer GSE23383 USA 3 3 53 15 NA

GSE47841 Norway 9 9 52 105 NA

GSE119056 China 3 3 55 147 NA

Total – 15 15 137 245 NA

expressed and neutrally expressed) of all the three datasets
(GSE9750, GSE63514, and GSE52904) were mapped on to
TF-TG interactions to filter the cervical cancer-specific TF-
TG interactions. In this study, only those interactions were
considered where both TFs and their TG were deregulated.
The deregulated TF-TG were further mapped to experimentally
verify HPPIs up to the second level, and only those interactions
were considered where the interacting partners were either
deregulated or expressed. Finally, the filtered TF-TG and PPI
interactions were merged to form the TF-TG-PPI network.
The resulting network consisted of 2,894 nodes interconnected
via 5,694 edges. Breast and ovarian cancer-specific TF-TG-PPI
networks were also constructed with the corresponding mRNA
transcriptomics data (Table 1) using the same protocol.

Construction of Cancer-Specific
Post-transcriptional Regulatory Network
The post-transcriptional regulatory network was constructed
by collating miRNA-TG interactions and protein-protein
interactions. The experimentally verified miRNA-TG
interactions were retrieved from mirTarbase (47) and Tarbase
(48) databases and merged, which consisted of 8,407 miRNA-
TG interactions forming among 743 miRNA and 2,891 TG.

Subsequently, the same procedure described for the construction
of the TF-TG-PPIN network was followed for the construction
of the miRNA-TG-PPIN network. The miRNA-TG-PPIN using
cervical cancer-specific miRNA transcriptomics data consisted of
1,017 edges connecting 1,718 nodes. Likewise, breast and ovarian
TF-TG-PPINs consisting of 2,668, 2,657 nodes and 6,197, 5,702
interactions, respectively, were also constructed.

Characterization of Cancer-Specific
Networks
The cancer-specific networks, PPIN, TF-TG-PPIN, and miRNA-
TG-PPIN, described above were compared with the respective
random networks of the same number of interactions. Ten
random networks were generated by the NetworkX program (49)
against each cervical cancer-specific network described above,
and the degree distribution of each network was compared with
the respective random networks. The degree distribution was
calculated using the following formula:

P
(

k
)

= nk/N

Where the degree distribution of network P(k) signifies the
fraction of the node with degree k. For the network with a node
size of N, nk nodes will have the degree k.
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Identification of IINs
Topologically IINs (genes/proteins/miRNA) of the constructed
cancer-specific networks described above were identified by
utilizing procedures based on graph theory methods described
earlier in Bhattacharyya and Chakrabarti (38). Identification of
important interacting genes/proteins/miRNAs in the network is
based on some independent network properties, such as hub
(highly connected nodes in the network), CNs of the network,
GNPN, and LNPN. The nodes (genes/proteins/miRNAs) that
were identified as topologically important in at least two
categories (Hub, CN, LNPN, and GNPN) were considered
as IINs.

Over-representation Analysis
Kyoto encyclopedia of genes and genomes (KEGG) pathway-
based ORA was performed with deregulated genes extracted
from the mRNA expression datasets used and IINs (except
miRNAs) identified in each of the regulatory networks described
above using “protein-coding gene set” as the reference gene set
in WebGestalt (50) web tool. The top 20 pathway categories
were ranked based on significant false detection rate (FDR)
calculated using Benjamini and Hochberg procedure (43) and
enrichment ratio.

Additionally, Gene Ontology (GO)-basedmolecular functions
and online mendelian inheritance in man (OMIM)-based disease
pathway over-representation analyses were also performed for
the deregulated genes/proteins in cervical cancer.

Construction of S-M Enzyme
Cross-Connecting Paths and Network
A signaling-metabolic inter-connection network was constructed
using 23 signaling pathway (cancer-specific) genes/proteins
and all the metabolic pathways (85 pathways) genes/proteins.
Signaling and metabolic gene/protein datasets were created
by extracting all the genes/proteins from the KEGG (51, 52)
database. All possible unique connections (maximum three
proteins involved in between) to a metabolic pathway protein
(M) were established through PPIs (up to the second level),
considering a signaling pathway protein (S) as a starting point
in the HPPIN. Four different types of linking paths were
established where signaling proteins were connected tometabolic
pathway proteins either directly (S-M) or via one (S-P-M), two
(S-P-P-M), or three (S-P-P-P-M) PPIs, respectively. NetworkX
program (49) was used to construct all possible signaling to
metabolic interconnecting paths. These paths/connections were
converted into a network to construct a signaling-metabolic
interaction network (SMIN).

Construction of TF to Metabolic Enzyme
Cross-Connecting Paths and Network
Connections between TFs and metabolic pathway genes/proteins
were established through TF-TG interactions and PPIs of TF-
TG (up to the second level) considering TFs as a source. In this
study, five different types of the path were established where TFs
were connected to metabolic pathway proteins either directly
(TF-TG/M), or TFs were connected to their TG, and their TG
were connected to metabolic proteins directly (TF-TG-M), or

through one (TF-TG-P-M), two (TF-TG-P-P-M), and three (TF-
TG-P-P-P-M) PPIs of TG, respectively. The resulting paths/links
were converted into a network to construct a TF-metabolic
interaction network (TFMIN).

Construction of miRNA to Metabolic
Enzyme Cross-Connecting Paths and
Network
MicroRNAs to metabolic pathway proteins interconnecting
all possible paths were established using the NetworkX
program (49). The miRs to metabolic pathway proteins
(M) interconnecting paths were established using miRNA-TG
interactions and PPIs (up to the second level) of miRNA TG
considering miRNA as the source. The resulting paths were
of five types viz; miRNA-TG/M, miR-TG-M, miR-TG/P-P-M,
miR-TG/P-P-P-M, and miR-TG/P-P-P-P-M paths. The resulting
paths were converted into a network to form a miR-metabolic
interconnecting network (miRMIN).

Contextualization of Regulatory Molecules
(Signaling Pathway Proteins, TF, and
miRNA) to Metabolic Enzyme
Cross-Connecting Paths and Network
The deregulated (upregulated and downregulated) and neutrally
EG and miRNAs identified from the cervical, breast, and
ovarian cancer patients specific transcriptomic datasets were
mapped onto all possible paths/connections mentioned
above to filter cancer-specific regulatory molecules (signaling
pathway proteins, TF, and miRNA) to metabolic enzymes
cross-connecting paths. For the signaling to metabolic
interconnecting paths/connections/links, the paths having
deregulated (upregulated and downregulated) genes/proteins at
the terminals and deregulated or EG/proteins in middle were
filtered out and converted into a network to form cervical, breast,
and ovarian cancer-specific signaling-metabolic interconnecting
subnetwork (CC-SMIN, BC-SMIN, andOC-SMIN, respectively).

Similarly, to construct the cancer-specific TF and miRNA
to metabolic interconnecting sub-networks (CC/BC/OC-TFMIN
and CC/BC/OC-miRMIN, respectively), the paths having
deregulated genes/miRNA at the terminal and their target and
deregulated or EG/proteins in the middle were considered.
The respective resulting paths were converted into a network
to form cancer-specific (CC/BC/OC-TFMIN and CC/BC/OC-
miRMIN) sub-networks.

Calculation of Edge Weight
The edge weights in each sub-networks (CC/BC/OC-SMIN,
CC/BC/OC-TFMIN, and CC/BC/OC-miRMIN) were defined in
terms of local entropy using an in-house program (37). The
probability of interactions of a gene/protein with its interactors
in the sub-network was determined by using the principle
of mass action to define the local entropy of a gene/protein.
The calculation of the interaction probabilities is based on the
assumption that two proteins known to interact will have a
higher probability of interaction when they are highly expressed.
The normalized expression values of sub-network genes in the
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samples of cancer patients used in this study were utilized to
calculate the interaction probabilities.

Calculation of Node Weight and
Effect-On-Node
To incorporate the importance and impact of the interactors
of a particular node in the sub-networks, the node-weight (Wi)
of every node i was defined based on its biological properties
[signaling cross-talk (SC) protein and rate-limiting enzyme
(RLE)], differentially expressed gene (dEXP), and network
topological properties [hub, CP, local network perturbing protein
(LNPP), and global network perturbing proteins (GNPP)] using
the following formula.

Wi =







1; if
(

dEXP =
1
7 , RLE =

1
7 , SC =

1
7 , HUB =

1
7 ,

CP =
1
7 , GNPP =

1
7 , LNPP =

1
7

)

0; else

Effect of interactors on a node in the sub-network was defined
as effect-on-node (effs) depending on the node weight of its
interactors up to the second level.

effs =

k
∑

j

(

n
∑

i

wi

ni
+

wj

nj

)

Where k is the degree of node s, ni is the degree of node i, nj is the
degree of node j, and wi and wj are the weights of nodes i and j.

Identification of Significant Regulatory
Molecules (S/TF/miR) to a Metabolic
Enzyme (M) Interconnecting Pairs and Path
To understand the information flow starting from a regulatory
molecule (S/TF/miRNA) to metabolic enzyme (M), cancer-
specific cross-connecting paths mentioned above were scored by
implementing an HMM-based mathematical model established
in our laboratory earlier (37). In this study, two separate models
were used to identify the significant S/TF/miR–M pairs (the
source; signaling pathway protein/TFs/miR; and destination:
metabolic pathway protein) and S/TF/miR–M interconnecting
paths. Model 1 was applied to identify the S/TF/miR–M pairs.
Model 2 was applied to identify the S/TF/miR–M interconnecting
paths between the S/TF/miR–Mpairs selected afterModel 1. Edge
weight and node weight of genes/proteins/miRNAs involved in
the S/TF/miR–M path were used to calculate the path scores.
The path score of each S/TF/miR to M linking path calculated
by Model 1 and Model 2 was converted into a statistical z-score
to identify paths deviating from the mean. A z-score (Z)≥ 1 filter
was applied to select the significant S/TF/miR–M pairs. Paths
having path score ≥ 80% of the highest path score for every
S/TF/miR–M pair were considered as significant S/TF/miR–M
interconnecting paths from Model 2.

All the networks were visualized and represented by using
Cytoscape (53). The signaling, TF, and miR to metabolic pathway
connections were represented as the Circos plot (54).

In-silico Perturbation Analysis
In-silico perturbation analysis was performed for each signaling
pathway protein, TF, and miRNA-based gene regulatory module
to identify the paths that change significantly upon removal of a
node (protein/TF/miRNA). To identify the key nodes in the final
paths/networks of every module, each of the nodes present in
the paths/network having z-score ≥ 1 was removed individually
from the HPPIN, and the path score was recalculated for the
resulting paths/network by using the HMMModels 1 and 2. The
perturbation score was calculated by using the average path score
before and after perturbation as below.

Perturbationscore = Pathscore′ − Pathscore

Where, Pathscore and Pathscore′ are average path scores before and
after perturbation, respectively.

The difference of average path score (before vs. after
perturbation) for each perturbed node was converted into a z-
score (Z), and the nodes for which z-scores deviated from the
mean as −1 ≥ Z ≥ 1 were selected as effective or key nodes in
significant paths/network.

Metabolomics Data Collection and
Integration Into Cancer-Specific Paths
The deregulated metabolites in cervical, breast, and ovarian
cancer patient were extracted from literature (55–57).
The cervical cancer metabolomic dataset consisted of 55
downregulated and seven upregulated metabolites. Twenty-one
downregulated and 41 upregulated metabolites were found in
breast cancer whereas the ovarian cancer metabolomic dataset
consisted of 46 downregulated and 116 upregulated metabolites.
The metabolic genes corresponding to these metabolites were
obtained from the Human metabolome database (HMDB) (58).
The deregulated metabolites were mapped to the paths obtained
after model implementation.

Survival Analysis
Kaplan-Meier (KM) plotter software (59, 60) was used to
perform the overall survival (OS) analysis of the constituent
genes/miRNAs of the identified cross-pathway paths/links. We
used a KM plotter using survival and expression data of
307 cervical cancer patients obtained from the TCGA dataset
(project ID: TCGA-CESC; phs000178). To estimate the survival
prognostic value of a specific gene/miRNA, the patient samples
were divided into high- and low-expression cohorts according
to the median expression of the given gene/miRNA, and KM
plots were created. Additionally, the hazard ratio (HR) and
the log-rank p-value were calculated. The survival estimate of
a gene/miRNA with a p-value < 0.05 was considered to be
statistically significant.

Drug/Chemotherapy Response Analysis
The receiver operator characteristic (ROC) plotter (61) was
used to predict the utility of the genes as predictive biomarkers
with respect to drug/chemotherapy response. ROC plotter is
capable to link gene expression and response to therapy using
transcriptome-level data of 3,104 breast cancer patients.

Frontiers in Medicine | www.frontiersin.org 6 November 2021 | Volume 8 | Article 736495156

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kumar et al. Cross-Pathway Regulatory Links in Cervical Cancer

FIGURE 2 | Differential expression analysis of transcriptomic datasets associated with cervical cancer. (A–C) represent the overlap of upregulated, downregulated,

and EG, respectively. (D–F) show the overlap of upregulated, downregulated, and expressed miRNAs, respectively.

RESULTS

mRNA and miRNA Expressions in Cervical
Cancer Patients
The individual differential expression analysis of three different
cervical cancer mRNA expression datasets (GSE9752, GSE63514,
and GSE52904) leads to the identification of several upregulated,
downregulated, and neutrally EG in cervical cancer (Figure 2,
Table 1). However, a comparison of the gene expression
patterns across datasets showed that only 54 upregulated,
59 downregulated, and 421 neutrally EG were found to be
overlapped (Figures 2A–C). The differential expression analysis
of miRNA resulted in four upregulated, 12 downregulated,
and 110 neutrally expressed miRNAs in GSE30656 and 15
upregulated, 20 downregulated, and 103 neutrally expressed
miRNAs in the GSE81137 dataset (Figures 2D–F).

Over-representation analysis-based enrichment for cellular
pathways, molecular functions, and biological processes was
performed using a merged list of deregulated (upregulated
and downregulated) genes of all the three mRNA datasets.
Supplementary Figures 1A,B show the top 20 most enriched
pathway filters based on FDR for proteins encoded by
upregulated and downregulated genes, respectively. Most highly
enriched pathways were found to be DNA replication (p =

4.42E−13) and arachidonic acid metabolism (p = 2.76E−08)
for the proteins encoded by upregulated and downregulated
genes, respectively. GO-based molecular function and biological
process ORA was also performed using deregulated genes
in cervical cancer. The most significantly enriched molecular

functions were found to be collagen binding (p = 4.36E−07)
and oxidoreductase activity (p = 4.35E−04) for proteins encoded
by upregulated and downregulated genes, respectively. However,
microtubule cytoskeleton organization involved in mitosis (p =

2.13E−14) and peptide cross-linking (p = 8.81E−11) were highly
enriched biological processes, for upregulated gene-encoded
proteins and downregulated gene-encoded proteins, respectively
(Supplementary Figure 1).

Construction and Characterization of
Cervical Cancer-Specific Networks
The cervical CC-PPIN, TF-TG-PPIN, and miR-TG-PPIN were
constructed by mapping differentially expressed genes, miRNA,
and neutrally EG from each cervical cancer dataset (see Methods;
Supplementary Figures 2A, 3A, 4A, respectively). The resulting
CC-PPIN, TF-TG-PPIN, and miR-TG-PPIN were validated by
comparing them with corresponding 10 random networks of the
same size. The degree distributions of CC-PPIN, TF-TG-PPIN,
and miR-TG-PPIN networks followed the Power law and were
considered to have scale-free organization. However, the degree
distribution of 10 corresponding random networks showed
binomial distribution (Supplementary Figures 2B, 3B, 4B).

IINs in Cervical Cancer-Specific Networks
Network topologically important nodes, such as hubs (highly
connected nodes in the network), CNs, LNPNs, and GNPNs
in a scale-free network could play important roles in
maintaining the network integrity and function. Various
topologically important interacting genes/proteins/miRNAs
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(hubs, CN, GNPN, and LNPN) in cervical cancer-specific
networks (CC-PPIN, TF-TG-PPIN, and miR-TG-PPIN) were
identified by implementing a graph theory-based method
described earlier by Bhattacharyya and Chakrabarti (38).
A total of 165, 167, 96, and 67 nodes/proteins in CC-
PPIN (Supplementary Figure 2C, Supplementary Table 1),
62, 36, 60, and 80 nodes/genes/proteins in TF-TG-PPIN
(Supplementary Figure 3C, Supplementary Table 2), and 45,
45, 30, and 24 nodes/genes/proteins/miRNAs in miR-TG-PPIN
(Supplementary Figure 4C, Supplementary Table 3) were
identified as hubs, CNs, GNPNs, and LNPNs, respectively. The
nodes/genes/proteins/miRNAs common in at least any two of the
four categories (hubs, CN, GNPN, and LNPN) were considered
as IINs in cervical cancer networks. When the IINs from each
network were compared, 30 IINs were found to be common in
CC-PPIN and TF-TG-PPIN, 38 IINs were common in CC-PPIN,
and miR-TG-PPIN, and 17 IINs were shared by TF-TG-PPIN
and miR-TG-PPIN. However, 17 IINs were found to be common
in all three cervical cancer networks (Supplementary Figure 5A,
Supplementary Table 4).

Over-representation analysis-based pathway enrichment was
performed using IINs in the above described cervical cancer-
specific regulatory networks. Top three enriched pathways were
found to be DNA replication (p = 1.30E−10), basal TFs (p
= 3.07E−10), and cell cycle (p = 0.00) for IINs in CC-PPIN
(Supplementary Figure 2D). DNA replication (p = 1.21E−10),
mismatch repair (p = 1.29E−04), and cell cycle (p = 1.44E−15)
were the top three enriched pathways for IINs in TF-TG-
PPIN (Supplementary Figure 3D), respectively. However, for
IINs (except miRNA) of miR-TG-PPIN, top three enriched
pathways were found to be DNA replication (p = 8.88E−16),
cell cycle (p = 0.00), and mismatch repair (p = 5.23E−06;
Supplementary Figure 4D). When the top 20 enriched pathways
for IINs in each network were compared, 8 enriched pathways
were found to be common (Supplementary Figure 5B). The
common pathways were cell cycle, DNA replication, nucleotide
excision repair, mismatch repair, prostate cancer, herpes simplex
infection, oocyte meiosis, and viral carcinogenesis pathways.

S-M Enzyme Cross-Connecting Paths and
Network in Cervical Cancer
Experimentally supported HPPIs (experimental score ≥ 0.7)
were utilized to establish all possible S-M cross-connecting paths,
where signaling pathway proteins were connected to metabolic
enzymes either directly (S-M paths) or via one (S-P-M paths), two
(S-P-P-M paths), and three (S-P-P-P-M paths) PPIs in between
them. The resulting S-M cross-connecting paths consisted of 210
direct (S-M) connections, 2,669 via one PPI (S-P-M), 40,266
via two PPIs (S-P-P-M), and 7,35,395 via three PPIs (S-P-P-P-
M) interconnections. These interconnections/paths were formed
between 210, 1,697, 7,965, and 28,920 S-M pathway protein pairs,
respectively. These S-M paths were converted into a network
to form a SMIN, which consisted of 11,442 interactions formed
among 2,603 genes/proteins.

To understand the flow of information from a signaling
protein to metabolic enzymes probably leading to metabolic

adaptations in the case of cervical cancer cells, we mapped
differentially expressed (up and downregulated) and neutrally
EG onto the abovementioned S-M interconnecting paths. The
S-M paths having deregulated genes at the terminal and
deregulated or EG in middle were extracted and considered for
further analysis. The resulting paths/interconnections consisted
of four (S-M), 47 (S-P-M), 639 (S-P-P-M), and 10,311 (S-P-
P-P-M) paths formed between 4, 39, 180, and 631 S-M pairs,
respectively. The filtered paths were converted into a network
to construct the cervical cancer-specific SMIN (CC-SMIN)
network. The CC-SMIN consisted of 1,425 interactions forming
among 439 genes/proteins.

To identify the potential disease-specific paths/pairs, each
node and each edge of the CC-PPIN network were weighted
based on their biological properties, differential expression
status, and network topological properties (hubs, CN, GNPN,
and LNPN) of CC-PPIN. Local signaling entropy (Si) was
integrated to understand the system-level network property. The
significance of each node (gene/protein) in the cancer-specific
network was estimated in the form of effect-on-node (effs) based
on SC, RLE, dEXP (differentially expressed genes), hub, CN,
GNPN, and LNPN, respectively. To identify the probable and
significant paths of information flow from signaling pathway to
metabolic pathway in cervical cancer cells, local signaling entropy
(Si) and effect-on-node (effs) properties were incorporated as
node weights. The edge weight of every two interacting nodes
of CC-PPIN was defined as the probability of interaction using
their normalized expression value in cervical cancer patient
samples. Node weight and edge weight were integrated into
HMM-based mathematical models (Models 1 and 2) to identify
S-M linking pairs and paths. Model 1 was applied to identify the
S-M pairs (the source signaling pathway protein and destination
metabolic pathway protein). Model 2 was applied to identify the
S-M interconnecting paths between the S-M pairs selected after
Model 1. The path score of each S-M linking path calculated
by Models 1 and 2 was converted into a statistical z-score to
identify paths deviating from the mean. A z-score ≥ 1 filter
was applied to select the significant S-M pairs. Using these
filtering criteria, we identified 81 S-M pairs and 94 S-PPI-M
paths in cervical cancer. The selected paths were converted into a
network to form a significant CC-PPIN network which consisted
of 152 interactions forming among 135 genes/proteins (Table 2,
Figure 3A).

Mapping pathway information to the terminal nodes (source
signaling protein and destination metabolic enzyme) showed
that the Ras signaling pathway had maximum connections
(50) to all the six metabolic pathways followed by cell cycle
(44), Map-kinase (44), epidermal growth factor receptor
(EGFR) signaling pathway (42), and p53 signaling pathway
(34), respectively. However, among metabolic pathways,
nucleotide metabolism had maximum connections (87) with
signaling pathways, followed by amino acid (63), energy (58),
xenobiotics (44), carbohydrate (42), and lipid metabolism
(11), respectively. 1:1 interconnections between signaling and
metabolic pathways showed that the cell cycle had maximum
connections with nucleotide metabolism (18 connections;
Figure 3B, Supplementary Table 5).
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Mapping the deregulated metabolites in cervical
cancer to significant S-M paths yielded 12 S-PPI-M
interconnections/paths where four metabolites [L-lysine,
oxoglutaric acid, tetrahydrodeoxycorticosterone (THDOC),
and pyruvic acid] were regulated by eight signaling pathway
proteins (BAD, CHEK1, GNB5, MAML3, MAP3K1, PAK2,
PPARD, and SPP1). The metabolic enzymes connecting these
four metabolites were enhancers of zeste homolog 2 (EZH2),
procollagen lysine hydroxylase and glycosyltransferase LH3
(PLOD3), aldo-keto reductase family 1 member C2 (AKR1C2),
and 3-mercaptopyruvate sulfurtransferase (MPST). L-lysine is
the substrate of both EZH2 and PLOD3. Whereas, THDOC and
pyruvic acid are the products of metabolic enzymes AKR1C2 and
MPST, respectively. Hence, these paths/connections showed the
correlated status of themetabolic enzymes and the corresponding
metabolites (Figure 3C).

TF to Metabolic Enzyme Cross-Connecting
Paths and Network in Cervical Cancer
All possible paths/links connecting TF to the metabolic enzyme
(M) were established using TF-TG interaction and HPPIN (refer
toMethods). The resulting paths/links consisted of 930 TF-TG/M
paths, 4,276 TF-TG/P-M, 114,844 TF-TG/P-P-M, 9,384,069 TF-
TG/P-P-P-M, and 188,563,171 TF-TG/P-P-P-P-M paths forming
between 930, 2,299, 9,121, 33,676 and 90,477 TF-M pairs,
respectively. These paths were converted into a network to
form a TFMIN.

All possible TF-TG-PPI-M paths were filtered by mapping
deregulated and neutrally EG to establish the context-specific
(cervical cancer-specific) paths and network. The resulting paths
consisted of 89 TF-TG/M, 20 TF-TG/P-M, 110 TF-TG/P-P-
M, 1,262 TF-TG/P-P-P-M, and 21,016 TF-TG/P-P-P-P-M paths
formed between 89, 17, 53, 162 and 508 TF-M pairs, respectively.
The filtered paths were converted into a network to construct the
cervical cancer-specific TFMIN (CC-TFMIN), which consisted of
815 nodes and 2,364 edges formed among them.

Each node and each edge in the CC-TFMIN were weighted
to identify the potential significant paths in the cervical
cancer-specific network. Node weights and edge weights were
incorporated into HMM-based mathematical models (Models
1 and 2) to identify TF-M pairs and TF-PPI-M paths forming
between them (refer to Methods). Model 1 resulted in the
identification of 172 significant (z ≥ 1) TF-M pairs and Model
2 resulted in 236 significant TF-PPI-M paths connecting the
TF-M pairs obtained after Model 1. The significant TF-PPI-M
paths in cervical cancer were converted into a network to form
significant CC-TFMIN that consisted of 179 interactions among
141 genes/proteins (Figure 4A, Table 3).

The metabolic pathway information was mapped onto
the terminal metabolic enzymes of the significant TF-PPI-
M paths to identify metabolic pathways that are highly
connected to specific TFs. Nucleotide metabolism yielded
maximum connections followed by energy metabolism, amino
acid metabolism, carbohydrate metabolism, lipid metabolism,
and xenobiotics biodegradation and metabolism (Figure 4B,
Supplementary Table 6).
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FIGURE 3 | Significant signaling-metabolic pathway interconnecting paths/network in cervical cancer. (A) represents a significant signaling metabolic interaction

network, (B) shows the signaling metabolic pathways interconnectivity, and (C) shows the significant signaling to metabolic paths regulating metabolites in cervical

cancer. Terminal signaling pathway proteins and metabolic enzymes are colored in purple and blue. Protein-protein interactors are colored in orange. Protein-protein

interactions are represented by orange edges. Nodes with an asterisk (*) are key or effector nodes in the significant paths/network.

Mapping of deregulated metabolites onto the terminal
metabolic enzymes resulted in 28 paths where four metabolites
were deregulated in cervical cancer. The deregulated metabolites
were L-lysine, oxoglutaric acid, pyruvic acid, and THDOC. L-
lysine was found to be linked with AR, ESR1, ZEB1, NCOA2,
HSF2, RBL1, ID4, E2F1, EGR1, MED1, TWIST1, KAT2B, ING1,
and PGR TFs via 19 different paths. Oxoglutaric acid was linked
with PGR, EGR1, and ESR1 via three paths. MED1 was found
to be regulating (probably) pyruvic acid whereas THDOC was
found to be linked with AR, TWIST1, and ING1 in four different
paths (Figure 4C).

miR to Metabolic Enzyme
Cross-Connecting Paths and Network in
Cervical Cancer
Similar to SMIN and TFMIN, all possible paths/links were
established considering miRNA as a source node and metabolic
enzymes as a destination by collating miRNA-TG interactions

and HPPIN. The resulted paths/links consisted of 577 direct
(miR-TG/M) paths, 1,145 via their TG (miR-TG/P-M), 26,330
via one PPI (miR-TG/P-P-M), 826,207 via two PPI (miR-
TG/P-P-P-M), and 33,934,931 via three PPI (miR-TG/P-P-P-
P-M) paths formed by 577, 1,128, 9,904, 44,271, and 111,730
miR-M pairs, respectively. The deregulated miRNA, genes, and
neutrally EG were mapped onto all possible miR-PPI-M paths to
filter the cervical cancer-specific miRNA to metabolic enzymes
interconnections. The filtered paths/links consisted of 13 miR-
TG/M, 1 miR-TG/P-M, 7 miR-TG/P-P-M, 95 miR-TG/P-P-P-M,
and 1,851 miR-TG/P-P-P-P-M paths formed between 13, 1, 7,
38 and 149 miR-M pairs, respectively. The resulted paths were
converted into a network to form a cervical cancer-specific miR-
metabolic enzyme interaction network (CC-miRMIN) which
consisted of 309 nodes and 952 interactions among them
(Table 4).

The nodes and edges in the CC-miRMIN were weighted
based on their biological properties, differential expression status,
and network topological properties in cervical cancer-specific
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FIGURE 4 | Significant Transcription factor-metabolic pathway interconnecting paths/network in cervical cancer. (A) represents a significant transcription factor

metabolic interaction network, (B) shows the transcription factor to metabolic pathways interconnectivity, and (C) shows the significant transcription factor to

metabolic paths regulating metabolites in cervical cancer. Terminal transcription factors and metabolic enzymes are colored green and blue. Protein-protein interactors

are colored in orange. Gene regulatory edges are represented as black arrows and protein-protein interactions are represented by orange edges. Nodes with an

asterisk (*) are key or effector nodes in the significant paths/network.

miR-TG-PPIN. After the incorporation of HMM Model 1, 22
significant (Z ≥ 1) miR-M pairs were identified. HMM, Model
2, resulted in the identification of a total of 27 miR-PPI-M paths,
where 22 significant miR-M pairs obtained after Model 1 were
connected via their TG and PPIs. The resulting miR-PPI-M paths
were converted into a network to form significant CC-miRMIN
that consisted of 59 nodes and 67 interactions among them
(Figure 5A).

Mapping metabolic pathway information to the terminal
metabolic enzymes in significant miR-PPI-M paths showed
that amino acid metabolism was highly regulated by miRNAs,
followed by nucleotide metabolism, xenobiotics biodegradation
and metabolism, energy metabolism, carbohydrate metabolism,
and lipid metabolism (Figure 5B).

After mapping deregulated metabolites to the terminal
metabolic enzymes, 13 miR-PPI-M paths were found to regulate
the metabolites. L-lysine was found to be linked/regulated by

miR-138-5p, miR-223-3p, miR-203a-3p, miR-593-5p, miR-15b-
5p, miR-16-5p, and miR-147a via 11 miR-PPI-M paths. THDOC
was found to be linked with miR-593-5p and miR-193b-3p via
two different miR-PPI-M paths (Figure 5C).

In-silico Perturbation of Nodes in the Final
Weighted Paths/Network
In-silico perturbation analysis was performed to identify
the paths that change significantly upon removal of a node
(protein/TF/miRNA). To identify the key nodes in the final
paths/networks of every module, each of the nodes present in
the paths/network having Z ≥ 1 was removed individually from
the HPPIN, and the path score was recalculated for the resulting
paths/network by using HMMModels 1 and 2. Accordingly, new
significant pairs and paths were identified based onModels 1 and
2, respectively. The difference of average path score (before vs.
after perturbation) for each perturbed node was converted into a
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TABLE 3 | Transcription factor to metabolic pathways interconnecting paths and pairs.

Connection types Pairs and paths

TF-Metabolic interaction
network (TFMIN)

Cervical cancer (CC) Breast cancer (BC) Ovarian cancer (OC)

Significant CC-TFMIN Significant BC-TFMIN Significant OC-TFMIN

Model 1
pair selection

Model 2
paths selection

Model 1
pair selection

Model 2
paths selection

Model 1
pair selection

Model 2
paths selection

Pairs Paths Z ≥ 1
Pairs

Z ≥ 1 or
score ≥ 80%

paths

Z ≥ 1
pairs

Z ≥ 1 or
score ≥ 80%

paths

Z ≥ 1
pairs

Z ≥ 1 or
score ≥ 80%

paths

TF-TG/M 930 930 6 14 2 2 2 3

TF-TG/P-M 2,299 4,276 5 6 3 4 5 12

TF-TG/P-P-M 9,121 114,844 10 9 11 18 4 17

TF-TG/P-P-P-M 33,676 9,384,069 53 66 46 87 116 155

TF-TG/P-P-P-P-M 90,477 188,563,171 159 141 251 200 562 482

Total 91,790 193,067,290 172 236 261 311 577 669

TF-TG/M, TFs connected to metabolic pathway proteins; TF-TG-M, TFs connected to TG and TG connected to metabolic proteins directly; TF-TG-P-M, TFs connected to TG and TG connected to metabolic proteins directly through

one PPI of TG; TF-TG-P-P-M, TFs connected to TG and TG connected to metabolic proteins directly two PPIs of TG; TF-TG-P-P-P-M, TFs connected to TG and TG connected to metabolic proteins directly three PPIs of TG.

TABLE 4 | microRNA to metabolic pathways interconnecting paths and pairs.

Connection types Pairs and paths

miRNA-Metabolic interaction
network (miRMIN)

Cervical cancer (CC) Breast cancer (BC) Ovarian cancer (OC)

Significant CC-miRMIN Significant BC-miRMIN Significant OC-miRMIN

Model 1
pair selection

Model 2
paths selection

Model 1
pair selection

Model 2
paths selection

Model 1
pair selection

Model 2
paths selection

Pairs Paths Z ≥ 1
pairs

Z ≥ 1 or
score ≥ 80%

paths

Z ≥ 1
pairs

Z ≥ 1 or
score ≥ 80%

paths

Z ≥ 1
pairs

Z ≥ 1 or
score ≥ 80%

paths

miR-TG/M 577 577 1 2 9 9 0 0

miR-TG/P-M 1,128 1,145 1 1 4 6 2 2

miR-TG/P-P-M 9,904 26,330 2 2 14 34 5 8

miR-TG/P-P-P-M 44,271 826,207 6 7 42 73 21 38

miR-TG/P-P-P-P-M 111,730 33,934,931 20 15 299 291 139 118

Total 112,745 34,789,190 22 27 325 413 150 166
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z-score and the nodes for which z-scores deviated from the mean
as−1≥ Z≥ 1 were selected as effective or key nodes in significant
paths/networks. Sixteen nodes/proteins (CDC5L, PAK2,
CHECK1, NDUFA9, MCM, POLA1, PIK3CA, PIK3R1,
PDGFRA, LUC7L3, SERPINE1, VTN, ZRANB2, TYMS, CD14,
and NDUFA11) in the signaling module (Figure 2A), 16
nodes/proteins (CDKN2A, POLA1, CDC45, CCND1, MCM5,
CDC7, RRM2, MCM3, DHFR, AKR1C3, AKR1C2, AKR1C1,
RRM1, TYMS, AR, and E2F1) in TF-based gene regulatory
module (Figure 4A), and nine nodes/miRNA/proteins (CDK2,
MCM3, mir-147a, AKR1C2, CDC5L, PLK1, mir-593-5p, TYMS,
and mir-196a-5p) in miRNA-based gene regulatory module
(Figure 5A) were identified as an effector or key nodes in the
significant paths/networks.

S, TF, and miR Cross-Talks in Cervical
Cancer
Comparing cervical cancer-specific significant S-PPI-M, TF-PPI-
M, and miR-PPI-M paths or links discussed above resulted in
the identification of 83 paths/links where six metabolic enzymes
(RRM2, AKR1C2, ENO2, TYMS, EZH2, and NDUFA11)
were probably regulated by signaling pathway proteins (BAD,
PPARD, GNB5, TF, PAK2, RBL1, CDK2NC, TRAF5, CFTR,
AKT3, MAP3K1, IL1R1, RICTOR, TNFRSF1B, CHEK1 BRCA1,
MAML3, SPP1, PLK1, ATP6V1C2, and SERPINE1), TFs (TGIF1,
FOSL1, E2F1, TWIST1, ING1, HSF2, ESR1, RBL1, ID4, EGR1,
NCOA2, ZEB1, AR, MED1, KAT2B, FOXM1, and KLF8), and
miRs (miR-593-5p, miR-15b-5p, miR-106b-5p, miR-147a, miR-
494-3p, miR-138-1-3p, miR-196a-5p, miR-138-5p, miR-16-5p,
and miR-223-3p) (Figure 6). Out of six metabolic enzymes,
AKR1C2 and EZH2 were mapped to the deregulated metabolites
THDOC and L-lysine, respectively (Figures 6B,D).

Survival Analysis of the Genes/miRNAs of
Identified Paths/Links in Cervical Cancer
Potential prognostic values of the genes and miRNAs of
the signaling, transcriptional and post-transcriptional cross-
connecting paths/links to metabolic enzymes in cervical cancer
patients were explored by evaluating the correlation and OS. A
total of 53 genes and 10 miRNAs were found to be significantly
associated with the OS in the log-rank test with a p < 0.05
(Supplementary Table 12). Mapping these genes and miRNAs
onto the corresponding cross-connecting paths/links yielded
16, 34, 20, and 9 paths/links to have 1–25, 26–50, 51–75,
and 76–100% of their component as a prognostic marker
in cervical cancer patients (Figure 7A). Almost all the final
selected paths/links (79 out of 83) possess at least one node
(gene/miRNA), whose expression is significantly associated with
cervical cancer patients’ survival. In total, 38% (30 out of 79)
of the selected paths/links have more than 50% nodes to be
significant (p < 0.05) prognosis marker (Figure 7A). Further,
we checked the status of these prognostic markers in different
types of paths/links. Most of the two-component (2C) paths were
found to have 100% of their component as a prognostic marker.
Three-component (3C) paths were found to have 51–75% of their
component nodes as a prognostic marker. Similarly, significantly

higher numbers of longer or higher component paths (e.g., 4, 5,
and 6C, respectively) also possess more than 25% of their nodes
as a prognostic marker (Figure 7B).

S, TF, and miR Cross-Talks in Breast and
Ovarian Cancers
To investigate whether the cross-pathway links are specific
to cervical cancer, we identified such paths from two other
female-specific cancers, such as breast and ovarian cancers. As
mentioned in the Methods, paths originating from S, TF, and
miR connecting metabolic enzymes (M) were identified in breast
and ovarian cancers using the cancer-specific transcriptomics
data mapping followed by implementation of HMM-based
mathematical models. A total of 2,79, 311 and 413 S-PPI-
M, TF-PPI-M, and miR-PPI-M paths were identified in breast
cancer connecting 232, 261 and 325 S-M, TF-M, and miR-
M pairs, respectively. Similarly, 250, 669 and 166 S-PPI-M,
TF-PPI-M, and miR-PPI-M paths were identified in ovarian
cancer connecting 218, 577 and 150 S-M, TF-M, and miR-
M pairs, respectively (Tables 1–3). Mapping of deregulated
metabolites resulted in 69 paths in breast cancer and 481 paths
in ovarian cancer.

The signaling (S-M), transcriptional (TF-M), and post-
transcriptional (miR-M) regulatory links identified from cervical,
breast, and ovarian cancer networks were compared to estimate
the common and specific regulators and regulatory links
(Figure 8). Interestingly, a very little overlap of regulatory
paths and pairs was observed among the three types of
cancers (Figures 8A–F). In total, 32% of terminal signaling
proteins and 43% of terminal metabolic enzymes forming
CC-specific S-M enzymes paths were found to be common
with that extracted from breast and ovarian cancer networks
(Figures 8G,J). Similarly, 46% of terminal TFs and 30% of
terminal metabolic enzymes forming CC-specific TF-metabolic
enzyme paths were found to be common with those extracted
from breast and ovarian cancer networks (Figures 8H,K). Three
metabolic enzymes (EZH2, ENO2, and RRM2) were found to be
commonly regulated by S-M, TF-M, and miR in all three cancers
(Figure 8).

The metabolic enzymes EZH2 and MIF connected to
deregulated metabolites L-lysine and citric acid were commonly
regulated in breast cancer. However, 17 metabolic enzymes
(EZH2, MTHFD1, ALDH3B2, ATP6V1B1, TCIRG1, AGMAT,
SETDB1, PFKL, TKT, INPPL1, MTHFD2, CPS1, MARS, PFKP,
AASDHPPT, ATP6V0D2, and PLOD3) connected to nine
deregulated metabolites (L-lysine, adenosine monophosphate,
fructose 6-phosphate, homovanillic acid, methylimidazole acetic
acid, N-acetylglutamic acid, phenylacetic acid, phosphate, and
Urea) were found to be commonly regulated in ovarian cancer.

The metabolic enzyme EZH2 was connected to deregulated
metabolites L-lysine in cervical, breast, and ovarian cancer
(Figure 6B, Supplementary Figure 6). Twenty-five out of the
27 paths/links connected to metabolic enzyme EZH2 in the
breast cancer network (Supplementary Figure 6A) possesses
at least one gene, whose expression is significantly associated
with drug/chemotherapy response. Seventeen out of the
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FIGURE 5 | Significant miR-metabolic pathway interconnecting paths/network in cervical cancer. (A) represents a significant miRNA metabolic interaction network,

(B) shows the miRNA to metabolic pathway interconnectivity, and (C) shows the significant miRNA to metabolic paths regulating metabolites in cervical cancer.

Terminal miRNAs and metabolic enzymes are colored in red and blue. Protein-protein interactors are colored in orange. Gene regulatory edges are represented as

black arrows and protein-protein interactions are represented by orange edges. Nodes with an asterisk (*) are key or effector nodes in the significant paths/network.

37 genes associated with these paths were predicted as
cancer biomarkers with potential clinical utility (AUC ≥ 0.6;
Supplementary Table 13).

DISCUSSION

Understanding the molecular mechanisms for cancer
progression and subsequent development of potential
therapeutics to inhibit this complex disease are difficult
from the independent knowledge of ongoing signaling, gene
regulatory, and metabolic alterations. Therefore, understanding
the intricate coordination of signaling and gene regulatory-
induced proliferation of tumor cells/growth and metabolic
processes is very much required. An integrated view of the
probable interconnections between oncogenic signaling-
gene regulatory pathways and the metabolic shift could
be one of the better ways to find out possible potential
therapeutic targets. Our approach toward the establishment of a

cross-pathway metabolic interconnection network is an attempt
in that direction.

It is well-established that genetic modifications, altered
transcriptional, and post-transcriptional regulations are
responsible for mediating the changes in biological processes,
which ultimately shape complex pathophysiological situations
like cancer. The interconnectivity and regulations are perhaps
maintained through the systemic-coordinated interaction of
proteins as a complex system, acting as a perfect molecular
machine (62–64). Therefore, the identification of such a
precise protein-interaction network responsible for the disease
progression is of utmost importance for understanding the
disease and potential therapeutic development.

In this study, we have developed a biology framework of
a cervical cancer-specific system where signaling (S) pathway
proteins, miRNA, and TF-based gene-regulatory modules are
connected to metabolic (M) pathway proteins through PPIs.
Publicly available transcriptomic data derived from cervical
cancer patients were incorporated into a mathematical modeling

Frontiers in Medicine | www.frontiersin.org 14 November 2021 | Volume 8 | Article 736495164

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kumar et al. Cross-Pathway Regulatory Links in Cervical Cancer

FIGURE 6 | Signaling pathway proteins, transcription factor, and miR cross-connecting paths/links to metabolic enzymes in cervical cancer. Six metabolic enzymes

(A–F) are commonly linked to signaling proteins, transcription factors, and miR. Two metabolic enzymes, EZH2 and AKR1C2 (B,D), are connected to deregulated

metabolites in cervical cancer. Terminal signaling pathway proteins, transcription factors, and miRNAs, metabolic enzymes are colored in purple, green, red, and blue.

Protein-protein interactors are colored in orange. Gene regulatory edges are represented as black arrows and protein-protein interactions are represented by orange

edges. Nodes with an asterisk (*) are key or effector nodes in the significant paths/network.

FIGURE 7 | Prognostic markers in identified cross-connecting paths. (A) shows the fraction of components as a prognostic marker of cervical cancer in the identified

paths/links. (B) shows the fraction of components as a prognostic marker in different types (2, 3, 4, 5, and 6C) of identified cross-connecting paths/links.
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FIGURE 8 | Comparison of regulatory molecules and links in female-specific cancer. (A–C) show the overlap of significant signaling proteins (S), transcription factor

(TF), and miR to metabolic enzyme connecting paths, respectively, identified from cervical cancer (CC), breast cancer (BC), and ovarian cancer (OC) specific networks.

(D–F) show the overlap of S-M, TF-M, and miR-M pairs, respectively. (G–I) represent the overlap of terminal signaling protein in S–M paths, a transcription factor in

TF–M paths, and miR–M paths, respectively. (J–L) represent an overlap of terminal metabolic enzymes. S-M, signaling-metabolic; TF-M, TF-metabolic; miR-M,

microRNA-metabolic.

set-up to weigh and rank the interconnecting link/paths in
addition to biological and network topological properties to
extract out high confidence inter-pathway connections that
are perhaps responsible for facilitating metabolic adaptation in
cervical cancer.

In our previous study, we implemented the underlined
mathematical model-based approach for the development,
test, and validation of S-M interconnecting links using
glioblastoma multiform (GBM) cell line-derived transcriptomics
and proteomics data (37). Further, in-vitro perturbation of
genes/proteins involved in forming a high-score interconnection
between S-M pathway proteins showed a significant change in
the expression of proteins involved in the metabolic pathway.
This validated our model for discovering hitherto unknown
connections/involvement between signaling and metabolic
genes/proteins. As a natural follow-up study, here we have
significantly upgraded the previous model with two entirely
new types of connectivity paths linking TF and miRNA-based
regulatory mechanisms to altered states of metabolic enzymes.
We have used large-scale patient-derived cervical cancer data

and implemented additional network topology-based weights
to signify the identified cross-pathway links. Further, we have
utilized differential metabolite data to extract out paths that
correlate with the altered status of the metabolic enzymes that
were proposed to be regulated via signaling and regulatory
factors. Comparison of the significant paths originated with S,
TFs, and miRNAs yielded 88 commonly linked paths connecting
six common metabolic enzymes (e.g., RRM2, AKR1C2, ENO2,
TYMS, EZH2, and NDUFA11).

The ribonucleotide reductase subunit M2 (RRM2) was found
to be significantly upregulated in cervical cancer tissue and is
linked to promoting the progression of cervical cancer (65).
RRM2 is likely to become a novel potential diagnostic and
prognostic biomarker of cervical cancer.

Aldo-keto reductase subfamily 1C2, which plays a major
role in regulating the activity of androgens, estrogens,
progesterone, and prostaglandins metabolisms, is also
implicated with cervical, endometrial, and bladder cancers
(66, 67). Overexpression of AKR1C2 is found to be a mildly
favorable prognostic marker (Supplementary Table 12) but
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lower expression of NADH:ubiquinone oxidoreductase
subunit A11 (NDUFA11) is prognostically unfavorable
in cervical cancer (Supplementary Table 12). Enolase 2
(ENO2) and thymidylate synthetase (TYMS) are found to
be upregulated in cervical cancer transcription datasets
(68, 69). Overexpression of enhancer zeste homolog 2
(EZH2) has been linked with proliferation, progression,
and prognosis of cervical cancer (70). However, our survival
analysis using data of cervical cancer patients from TCGA
suggested much lower survival with lower expression of EZH2
(Supplementary Table 12).

Several miRNAs have been identified whose roles have been
implicated in cervical cancer progression. Most of the miRNAs
except one (miR-593-5p) forming the metabolic pathway PPI
links were previously reported to be dysregulated in cervical
cancers (71–75). However, the diverse mechanisms by which
these miRNAs could regulate cervical cancer progression were
not well-known especially their roles in regulating the metabolic
adaptation in cervical cancer cells. Our study provides novel
avenues to study the impact of these important miRNAs in
the regulation of metabolic reprogramming in cervical cancer.
miR-593 plays important role in the regulation of lung, breast,
and gastric cancer proliferation (76–79). Higher expression of
miR-593 is found to be unfavorable for the survival of cervical
cancer patients (Supplementary Table 12). Hence, its role in
cervical cancer especially in its metabolic adaptation is worth
investigating further.

Transcription factors are key regulators of cancer proliferation
and metastasis. Roles of several transcription factors, such as
SOX2, E2F4, E2F1, POU5F1, SMAD3, SMAD2, VDR, ERG,
TP53, EWS, c-fos, fra-1, OCT4, KLF4, C-MYC, and NANOG,
were established in cervical cancer (80, 81). Our study highlights
the probable roles of important transcription factors in regulating
the metabolic status of cervical cancer cells via modulating the
metabolic enzymes. Thirty-one TFs were found to be connected
to 30 metabolic enzymes via the TG and their respective
PPIs. Fifteen TFs were found to be linked with six metabolic
enzymes for which altered metabolite status could be associated
(Figure 4).

Ras, cell cycle, MAPK, EGFR, and p53 are among the
top five most connected signaling pathways to the metabolic
enzymes via PPI interconnectivity (Figure 3). Among the 27
terminal signaling proteins that form significant connections
with metabolic enzymes, 9 (CHEK1, MAP3K1, CDKN2C, PAK2,
EGFR, FGFR2, PDGFRA, and PTK2) are found to be kinases.
TFs and miRNAs are generally regarded as “undruggable,” hence,
these regulatory kinases could be ideal candidates for targets of
small molecules inhibitors/drugs to check their roles in altering
the functional activities of the connected enzymes.

All cervical cancer-based cross-pathway links are provided
in Supplementary Tables 8–11. Similarly, an online platform is
also created as a separately published work (82) where cervical
cancer dataset-specific S-M, TF-metabolic, miRNA-metabolic,
and combined paths are made available at http://www.hpppi.iicb.
res.in/APODHIN/home.html.

Cervical cancer-based PPI links to metabolic enzymes
originated from signaling (S), TF, and miR regulatory molecules
were also compared to the same identified from breast and
ovarian cancer networks. Comparison of the regulators and
regulatory links yielded little overlap among the three cancers
(Figure 8) indicating the existence of cancer-specific regulatory
mechanisms for probable metabolic alterations. However, some
signaling proteins were found to be common regulatory
molecules among the three cancers whereas terminal enzymes,
such as EZH2, ENO2, RRM2, and TYMS, were found to
be commonly regulated in all the cancers by three different
regulatory mechanisms (Figure 8).

We understand that our approach is computation heavy and
our findings require further in vitro and in vivo experimental
validations. Similarly, for effective stratification of the patients,
multiple omics data (e.g., transcriptomics, proteomics, and
metabolomics) need to be generated from an individual patient.
Nevertheless, we believe that our systems biology-based approach
of identifying multi-factor signature links connected to the
regulation of status and functionalities of metabolic enzymes
paves the way for future studies which could be aimed
toward identifying novel regulators of metabolic alterations in
cervical cancer.
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The soluble resistance-related calcium-binding protein (sorcin, SRI) serves as the

calcium-binding protein for the regulation of calcium homeostasis and multidrug

resistance. Although the mounting evidence suggests a crucial role of SRI in the

chemotherapeutic resistance of certain types of tumors, insights into pan-cancer analysis

of SRI are unavailable. Therefore, this study aimed to probe the multifaceted properties

of SRI across the 33 cancer types. The SRI expression was analyzed via The Cancer

Genome Atlas (TCGA) and Genotype Tissue-Expression (GTEX) database. The SRI

genomic alterations and drug sensitivity analysis were performed based on the cBioPortal

and the CellMiner database. Furthermore, the correlations among the SRI expression

and survival outcomes, clinical features, stemness, tumor mutation burden (TMB),

microsatellite instability (MSI), and immune cells infiltration were analyzed using TCGA

data. The differential analysis showed that SRI was upregulated in 25 tumor types

compared with the normal tissues. Aberrant expression of SRI was able to predict

survival in different cancers. Further, the most frequent alteration of SRI genomic was

amplification. Moreover, the aberrant SRI expression was related to stemness score,

epithelial-mesenchymal-transition (EMT)-related genes, MSI, TMB, and tumor immune

microenvironment in various types of cancer. TIMER database mining further found

that the SRI expression was significantly correlated with the infiltration levels of various

immune cells in certain types of cancer. Intriguingly, the SRI expression was negatively

correlated with drug sensitivity of fluorouracil, paclitaxel, docetaxel, and isotretinoin. Our

findings highlight the predictive value of SRI in cancer and provide insights for illustrating

the role of SRI in tumorigenesis and drug resistance.

Keywords: pan-cancer, sorcin, prognosis (carcinoma), MSI, TMB

INTRODUCTION

Recent statistics showed that cancer has become a worldwide public health issue with an
estimated 1,898,160 new cancer cases and 608,570 cancer deaths in 2021 (1). In recent decades,
great advances have been achieved in the diagnostics and treatment of cancer, in particular
checkpoint blockade-based immunotherapy (2). Currently, reliable predictive biomarkers and new
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immunotherapy targets have attracted considerable attention
among scientists. The SRI gene, which encodes the soluble
resistance-related calcium-binding protein (sorcin), is located
at chromosome 7q21.12 spanning about 21.9 kb of the human
genome (3). Sorcin serves as a calcium-binding protein that is a
member of the penta-EF hand (PEF) family (4). Sorcin exists in a
soluble form in a low cytoplasmic calcium state but translocates
to the membrane to exercise its function in a high cytoplasmic
calcium state (5). Classically, sorcin holds a crucial role in the
regulation of calcium homeostasis through diverse mechanisms.
Sorcin not only directly binds to calcium but also interacts with
an L-type calcium channel and cardiac ryanodine receptor-2 to
modulate calcium balance (6, 7). The aberrant expression of SRI
is reported to be associated with the neurodegenerative diseases,
hereditary spherocytosis cells, and women with unexplained
infertility (8–10). However, the role of SRI in cancer is receiving
gradually more attention.

The previous studies proved that SRI acted as a pro-oncogenic
and multidrug resistance gene in certain types of cancers (11–
15). The resistance to chemotherapeutic agents is recognized
as a major hurdle in cancer therapy. In the past years, MDR1
(ABCB1, P-glycoprotein, and P-gp) and MDR-associated protein
1 (MRP1) were the most extensively investigated resistance
proteins in cancer (16, 17). However, SRI as a novel resistance
gene has begun to attract substantial attention from scientists
(18). Of note, SRI and MDR1 co-localize on the same amplicon
and often co-amplify in multidrug-resistant tumor cells (19).
The overexpression of sorcin contributed to resistance to many
chemotherapy agents, and sorcin knockdown has been found to
reverse the multidrug resistance in certain types of cancer (20–
22). To date, most of the studies on SRI in tumors are limited by
a specific cancer type and many studies have focused on in vitro
cellular level. Therefore, dissecting the role of SRI in pan-cancer
is required.

Our previous findings revealed that SRI promoted the
paclitaxel resistance and malignant progression in ovarian
cancer (23). Thus, here we postulated that SRI might function
as a critical oncogenic, resistant effector in pan-cancer, and
played crucial roles in cancer immunity. To uncover the role
of SRI in pan-cancer, we systematically integrated multiple
databases from bioinformatics point of view. In this study, the
expression of SRI was comprehensively investigated in normal
tissues and their cancer counterparts using Genotype-Tissue
Expression (GTEX), The Cancer Genome Atlas (TCGA), and
Oncomine database. Meanwhile, the prognostic value of SRI
to predict the survival outcomes was also evaluated. Then, the
potential relationships among the SRI expression and clinical
features, cancer stemness score, tumor mutation burden (TMB),
microsatellite instability (MSI), and infiltrating immune cells
were explored in pan-cancer. In addition, the SRI genomic
alternations and effect of SRI on the drug sensitivity were
determined using the cBioPortal and the CellMiner database.
Further, the gene set enrichment analysis (GSEA) was applied
to elucidate the biological function of SRI in cancer. Overall,
this study highlights the multifaceted role of SRI in pan-
cancer, which provides a rationale for targeting SRI as a novel
therapeutic strategy.

METHODS

Data Processing and the SRI Expression
Analysis
Publicly available transcriptome data of TCGA pan-cancer and
the related clinical features were obtained from the UCSC
XENA (https://xena.ucsc.edu/). The expression matrices of 31
human normal tissues were downloaded from GTEX web
portal (https://www.gtexportal.org/). The strawberry Perl script
was developed (version 5.30.0.1, http://strawberryperl.com/) to
extract the SRI expression data in 33 TCGA tumor types and
GTEX normal tissues. The mRNA level of SRI in the healthy
men and women tissues was visualized with “gganatogram”
R package. The expression data were log2(TPM) transformed
excluding missing data and duplicated values. The differences
in the SRI expression between the tumor and normal tissues
were examined by the Wilcoxon rank-sum test. The differential
expression of SRI mRNA was evaluated in various tumor types
using the Oncomine database (www.oncomine.org) (24). All
the analyses were conducted using the R version 4.0.2 software
(https://www.Rproject.org/). The overall workflow of our study
is presented in Figure 1A.

Correlation of SRI Expression With Survival
Prognosis and Clinical Features
The survival and clinical characteristics data were obtained
from the UCSC XENA repository. The association between the
SRI expression level and survival outcomes, such as overall
survival (OS), progression-free interval (PFS), disease-specific
survival (DSS), and disease-free survival (DFS), was evaluated
using Kaplan–Meier method and Cox proportional hazards
model. The “survival,” “survminer,” and “forestplot” packages
were employed to draw the Kaplan–Meier and forest plots. The
clinical records, such as patents age, tumor stage, and tumor
status, were applied to investigate their relationship with the
SRI expression. The data representations were performed using
“limma” and “ggpubr” R-packages.

Genomic Alterations SRI in Cancers and
the Co-expression Gene Analysis
The SRI gene alternations in TCGA pan-cancer datasets
across 10,953 patients were analyzed using cBioPortal database
(http://www.cbioportal.org/) (25). The “Oncoprint” and “Cancer
Type Summary” modules were used to investigate the genetic
alterations of SRI. The “Mutations” module was applied to obtain
themutated site information of SRI. The effect of SRI alternations
on the OS and gene mutation co-occurrence analysis were
obtained from the “Comparison/Suvival” module. Furthermore,
the copy number alterations data, mRNA Expression Z-scores
data, and protein level Z-scores data of SRI in ovarian cancer
were downloaded from the TCGA PanCancer Atlas dataset. To
investigate the co-expression genes of SRI in ovarian cancer, the
TCGA-OV RNA-seq data were accessed using the Linkedomics
online tool (http://www.linkedomics.org/login.php/). The top 50
positive and negative correlated genes were selected to construct
a co-expression network. The network was visualized in the
STRING database (https://string-db.org/).
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FIGURE 1 | Differential expression of SRI. (A) Outline of the workflow for this research. (B) The SRI expression in normal tissues from Genotype Tissue-Expression

(GTEX) data. (C) Differential SRI mRNA expression between 33 The Cancer Genome Atlas (TCGA) cancers and GTEX normal tissues. The red color column represents

the cancer samples and the blue color column represents the normal samples. ns, P ≥ 0.05; *, P < 0.05; **, P < 0.01; and ***, P < 0.001.

Correlation Analysis of SRI Expression
With Stemness Score and EMT-Related
Genes in Cancers
Cancer stemness was reported to be capable of evaluating
by RNA stemness score (RNAss) based on mRNA expression
(26). Correlation analysis between SRI expression and RNAss
was examined using Spearman rank-based testing. Data were
visualized with the R-package “corrplot”. We further determined
the correlation between the level of SRI and cancer stem cell
marker genes, epithelial-mesenchymal-transition (EMT)-related
genes. The heatmaps were generated with the “reshape2” and
“RColorBrewer” R-packages.

Relationship Between SRI Expression and
TMB, MSI in Pan-Cancer
Recent studies have revealed that TMB and MSI could become
independent biomarkers for immune checkpoint inhibitors
response (27, 28). The TCGA pan-cancer mutation data were

applied to calculate the TMB scores of each sample. The MSI
scores of the TCGA pan-cancer samples were obtained according
to a previous study (29). The analyses regarding the correlations
between the SRI expression and TMB, MSI were calculated using
Spearman’s coefficient. The results were displayed as radar plots
using the R-package “fmsb.” The tumors with high microsatellite
instability are often characterized by a defective DNA mismatch
repair system (MMR) system (30). The association between the
SRI expression and MMR-related genes was further explored in
cancers. The results were visualized as the heatmaps using the
“reshape2” and “RColorBrewer” R-packages.

Association Analysis of the SRI Expression
With Tumor Immune Microenvironment in
Cancers
The Estimation of Stromal and Immune cells in Malignant
Tumors using Expression data (ESTIMATE) algorithm was
performed to calculate the ImmuneScore, StromalScore, and
ESTIMATEScore using the R package “ESTIMATE” (31).
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The results were displayed using the R-package “corrplot”
using Spearman’s rank-based testing. Moreover, we
analyzed the correlation of SRI expression with the
abundance of various immune cell infiltrates in pan-
cancer using the TIMER database (32) (https://cistrome.
shinyapps.io/timer/). In addition, a correlation analysis
of SRI and immune checkpoint genes was performed.
The results were processed using the “reshape2” and
“RColorBrewer” R-packages.

Drug Sensitivity of SRI and GSEA
The NCI-60 compound activity data and the RNA-seq
expression profiles were obtained from CellMiner (https://
discover.nci.nih.gov/cellminer/home.do) (33). The drugs that
were considered FDA approved or in the clinical trials were
selected for further analysis. Then, the effect of SRI on the
drug sensitivity was analyzed using the “impute,” “limma,”
“ggplot2,” and “ggpubr” R package. The GSEA analysis was
performed to explore the biological functions of SRI in
cancer. The gene sets of Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) signature were
obtained from GSEA online (https://www.gsea-msigdb.org/
gsea/downloads.jsp). The GSEA analysis was processed with
the R-packages “enrichplot,” “org.Hs.eg.db,” “clusterProfiler,”
“DOSE,” and “limma”.

Sorcin Expression in the Ovarian Cancer
Sphere Cells
The cell culture and sphere formation assays were performed
according to the previously described method (34). The sorcin
expression in the ovarian cancer sphere cells was evaluated using
a western blot. Anti-SRI antibody (ab71983) was purchased from
Abcam (Cambridge, UK).

Statistical Analysis
A log-rank test was applied in the Kaplan–Meier survival curves.
Hazard ratio (HR) was determined by a Cox proportional hazard
regression model. The correlation analysis was executed by
Spearman’s rank test. The statistical analyses were performed
using the R version 4.0.2 software (R Foundation for Statistical
Computing, Vienna, Austria) or GraphPad Prism 8 (San
Diego, CA, USA). Results with P <0.05 were considered
statistically significant (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,
and ∗∗∗∗P<0.0001).

RESULTS

Expression Levels of SRI in Normal Tissues
and Pan-Cancer
To gain insights into the expression pattern of SRI
in the human normal tissues, the SRI expression in
tissue physiological state was investigated according to
GTEX dataset. SRI was highly expressed in the small
intestine, bone marrow, brain, and breast tissues, while
the skeletal muscle and liver tissues expressed low levels
of SRI (Figure 1B). The SRI expression abundances of
various tissues in men and women are displayed in

Supplementary Figures 1A,B. Overall, no gender difference
was observed in the mRNA expression levels of SRI
(Supplementary Figure 1C).

To further explore the SRI expression in human cancers,
the SRI expression in various types of cancers was analyzed
using the RNA-seq data of TCGA database (Figure 1C).
The aberrant expression of SRI was detected in 28 types of
cancer except for those cancers where no normal tissue data
were available. The SRI expression was significantly higher
in bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD), lymphoid neoplasm diffuse
large B-cell lymphoma (DLBC), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), kidney chromophobe
(KICH), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), brain lower grade
glioma (LGG), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), ovarian serous cystadenocarcinoma (OV), pancreatic
adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD),
rectum adenocarcinoma (READ), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular germ cell
tumors (TGCT), thymoma (THYM), uterine corpus endometrial
carcinoma (UCEC), and uterine carcinosarcoma (UCS). In
contrast, the SRI levels were significantly downregulated in
adrenocortical carcinoma (ACC), acute myeloid leukemia
(LAML), and thyroid carcinoma (THCA). Aside from
this, the higher level of SRI was reconfirmed in the brain,
bladder, esophageal, gastric, head and neck, kidney, liver,
melanoma, myeloma, pancreatic, and prostate cancer
compared with the normal tissues using ONCOMINE database
(Supplementary Figure 1D).

Prognostic Value of SRI in Pan-Cancer
To further explore the prognostic value of SRI in pan-cancer,
the association between the SRI expression level and survival
of patients was evaluated using the Cox proportional hazards
model and the Kaplan-Meier analysis. The results from a Cox
proportional hazards regression model revealed that the SRI
expression levels were correlated with OS in BLCA (P = 0.030),
HNSC (P = 0.023), KIRP (P = 0.009), LIHC (P < 0.001), LGG
(P = 0.001), PAAD (P = 0.033), SKCM (P = 0.006), STAD (P
= 0.043), THYM (P = 0.05), and uveal melanoma (UVM) (P =

0.048) (Figure 2A). SRI served as a high-risk factor for HNSC,
KIRP, LIHC, PAAD, STAD, and UVM, while it acted as a low-
risk gene for BLCA, LGG, SKCM, and THYM. Furthermore, the
Kaplan–Meier survival analysis demonstrated that the high level
of SRI predicted poor OS in cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC) (Figure 2B, P =

0.020), CHOL (Figure 2C, P = 0.044), KIRP (Figure 2D, P =

0.050), LIHC (Figure 2E, P = 0.023), and PAAD (Figure 2F,
P = 0.026). While low expression of SRI was correlated with
the shortened OS in SKCM (Figure 2G, P = 0.003). Regarding
the PFS, the high SRI level represented an adverse factor in
CESC (P = 0.012), HNSC (P = 0.016), LIHC (P = 0.049),
PAAD (P = 0.023), PRAD (P = 0.009), STAD (P = 0.008),
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FIGURE 2 | The Cox proportional hazards model and Kaplan–Meier analysis of overall survival (OS) time by the SRI expression. (A) A forest plot of the associations of

SRI expression and OS in 33 types of tumor. (B–G) Kaplan–Meier analysis of the correlations between the SRI expression and OS. A red line represents high SRI

expression, and the blue lines represent low SRI expression.

and UVM (P = 0.008), while the high SRI level was considered
as a favorable factor in BLCA (P = 0.002), BRCA (P =

0.004), and LGG (P = 0.017) (Figure 3A). The Kaplan–Meier
curves for PFS revealed a correlation between the high SRI

expression level and poor survival time in the patients with
CESC (Figure 3C, P = 0.038), HNSC (Figure 3D, P = 0.040),
KIRC (Figure 3E, P = 0.009), and UCEC (Figure 3G, P =

0.016). The patients with high SRI expression had significantly
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FIGURE 3 | The Cox proportional hazards model and Kaplan–Meier analysis of progression-free survival (PFS) time by the SRI expression. (A) A forest plot of the

associations of SRI expression and PFS in 33 types of tumor (B–G) Kaplan–Meier analysis of the correlations between the SRI expression and PFS. A red line

represents the high SRI expression, and the blue lines represent the low SRI expression.

longer PFS than the patients with low expression in BLCA
(Figure 3B, P = 0.012) and THCA (Figure 3F, P = 0.028).
Regarding the associations between the SRI expression and

DFS, the forest plots showed high SRI expression predicted
poor DFS in CESC (P = 0.002), OV (P = 0.020), and STAD
(P = 0.040) (Figure 4A). Significant relationships between the
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FIGURE 4 | The Cox proportional hazards model and Kaplan–Meier analysis of disease-free survival (DFS) time and disease-specific survival (DSS) by the SRI

expression. (A) A forest plot of the associations of SRI expression and DFS in 33 types of tumor (B,C) Kaplan–Meier analysis of the correlations between the SRI

expression and DFS. A red line represents the high SRI expression, and the blue lines represent the low SRI expression. (D) A forest plot of the associations of SRI

expression and DSS in 33 types of tumor (E,F) Kaplan–Meier analysis of the correlations between the SRI expression and DSS. A red line represents high the SRI

expression, and the blue lines represent the low SRI expression.
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FIGURE 5 | Correlation between SRI expression and stage in (A) bladder urothelial carcinoma (BLCA), (B) liver hepatocellular carcinoma (LIHC). Correlation between

SRI expression and tumor status in (C) bladder urothelial carcinoma (BLCA), (D) esophageal carcinoma (ESCA), (E) glioblastoma multiforme (GBM), (F) kidney renal
clear cell carcinoma (KIRC), (G) liver hepatocellular carcinoma (LIHC), (H) prostate adenocarcinoma (PRAD), and (I) uveal melanoma (UVM).

SRI expression and DFS were observed in CESC (Figure 4B, P
= 0.013) and THCA (Figure 4C, P = 0.005) by the Kaplan–
Meier survival analysis. Furthermore, SRI exhibited a significant
prognostic value in BLCA (P = 0.004), BRCA (P = 0.006),
LIHC (P = 0.008), PAAD (P = 0.034), STAD (P = 0.021),
UCEC (P = 0.014), and UVM (P = 0.05) in a Cox proportional
hazards regression model for DSS (Figure 4D). The Kaplan–
Meier survival analysis found that the PAAD (Figure 4E, P =

0.025) and UCEC (Figure 4F, P = 0.008) patients with high
expression of SRI had shortened DSS. Additionally, the survival

analysis of SRI in some types of cancer was validated in the GEO
database (Supplementary Figure 2).

Correlation Between the SRI Expression
and Clinicopathological Phenotypes in
Cancers
Next, the correlations between the SRI expression and the
clinicopathological features of patients were investigated in pan-
cancer. Patients with age ≥65 years had higher expression of
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FIGURE 6 | The genetic alterations of SRI in TCGA pan-cancer. (A) OncoPrint summary of the alterations on SRI in TCGA pan-cancer datasets. (B) Summary of the

alteration frequency of SRI derived from structural variant, mutations, and copy-number alterations data in TCGA pan-cancer datasets. (C) The mutation types,

(Continued)
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FIGURE 6 | number, and sites of the SRI genetic alterations. (D) The analysis of gene mutation co-occurrence comparing the altered group and unaltered group of

SRI. (E) Kaplan–Meier overall survival of TCGA pan-cancer cohort with altered or unaltered SRI. (F) Association of the SRI copy number alterations with its mRNA

expression in the TCGA ovarian cancer cohort. ***P < 0.001, ****P < 0.0001, and by one-way ANOVA followed by Tukey’s test. (G) Association of SRI copy number

alterations with its protein expression in the TCGA ovarian cancer cohort. **P < 0.01, ***P < 0.001, and by one-way ANOVA followed by Tukey’s test.

FIGURE 7 | Correlation of the SRI expression with stemness and EMT-related genes in cancers. (A) The SRI expression associated with RNA stemness score

(RNAss) in different cancers. The red dots indicate a positive correlation and the blue dots indicate a negative correlation. RNAss, RNA stemness score; a heatmap

indicating the correlation between the SRI expression and cancer stem cell markers expression (B), EMT-related genes expression (C). For each pair, the top left

triangle represents the P-value, and the bottom right triangle represents the correlation coefficient *P < 0.05, **P < 0.01, and ***P < 0.001.

SRI in KIRC (Supplementary Figure 3A; P = 0.011) and PRAD
(Supplementary Figure 3B; P= 0.012). No significant difference
was observed between the SRI expression and age in other
cancers. We further compared the differential mRNA level of
SRI in different tumor stages. SRI expression tended to decrease
from stage I to stage IV in BLCA (Figure 5A). In contrast,
the high SRI expression tended to associate with the advanced
tumor stages in LIHC (Figure 5B). The difference between stage
I and IV tumors was not statistically significant in LIHC, one
reason that might be responsible is the small patient numbers
in the advanced stage. Tumor status after treatment was closely
associated with disease recurrence. We found that the high
level of SRI was significantly correlated with-tumor status in
ESCA (Figure 5D), GBM (Figure 5E), KIRC (Figure 5F), LIHC
(Figure 5G), PRAD (Figure 5H), and UVM (Figure 5I). While a
high expression of SRI was significantly related to the tumor-free
status in BLCA (Figure 5C).

Genetic Alteration Analysis of SRI in
Pan-Cancer
Next, the cBioPortal database was applied to investigate the
genetic alterations of SRI in the TCGA pan-cancer datasets.
As shown in Figure 6A, the SRI gene was altered in 168
patients with cancer which accounted for only 1.5% across 10,953
samples. Regarding the SRI alterations in different cancer types
(Figure 6B), the most frequent alterations of SRI gene were
amplification in ESCA, DLBC, STAD, LUSC, HNSC, CHOL,
OV, PAAD, GBM, UCS, BLCA, PRAD, CESC, LIHC, TGCT,
ACC, LUAD, BRCA, KIRC, LGG, and KIRP. Patients with
UCEC, SKCM harbored High frequency of SRI mutations was
observed in UCEC, SKCM, while patients with LAML and THCA
harbored high frequency of SRI deep deletion of SRI gene was
the most frequent mutation type in LAML and THCA. The
mutation types, number, and sites of the SRI genetic alterations
are displayed in Figure 6C. The results showed that the missense
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FIGURE 8 | The correlation of SRI expression with microsatellite instability (MSI), tumor mutational burden (TMB), and mismatch repair (MMR) genes. (A) Radar map

of correlation between the SRI expression and MSI. (B) Radar map of correlation between the SRI expression and TMB. (C) A heatmap indicating the correlation

between the SRI expression and MMR genes. For each pair, the top left triangle indicates the P-value, and the bottom right triangle indicates the correlation coefficient

*P < 0.05, **P < 0.01, and ***P < 0.001.
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FIGURE 9 | Correlation between the SRI gene expression and tumor immune microenvironment in TCGA. (A–C) The SRI expression associated with ImmuneScore,

ESTIMATEScore, and StromaScore in different cancers. The red dots indicate a positive correlation and the blue dots indicate a negative correlation. (D–H) Correlation
of the SRI expression with immune infiltration level in adrenocortical carcinoma (ACC), ESCA, LIHC, lung squamous cell carcinoma (LUSC), and PRAD in

TIMER database.

mutations were the major mutation type of SRI. Intriguingly,
co-occurrence of STEAP4, ADAM22, ZNF804B, DBF4, CFAP69,
ABCB1, STEAP2, ABCB4, RUNDC3B, and TEX47 alterations
was observed with the SRI alterations (Figure 6D). While the

patients with SRI alterations represented only a small part, the
patients in the SRI genetic altered group had poorer OS than
those in the SRI unaltered group (Figure 6E). To explore whether
the SRI amplification had an influence on its mRNA and protein
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FIGURE 10 | The drug sensitivity analysis of SRI. The SRI expression was positively associated with drug sensitivity of JNJ-38877605 (A), Simvastatin (B),
BMS-777607 (G), PF-04217903 (J), and XAV-939 (O). The SRI expression was negatively associated with drug sensitivity of Fluorouracil (C), DOLASTATIN 10 (D),
Paclitaxel (E), Actinomycin D (F), Tegafur (H), Docetaxel (I), Isotretinoin (K), Mithramycin (L), Elesclomol (M), EMD-534085 (N), and Dinaciclib (P). X-axis represents

the SRI expression level and Y-axis represents the scores of drug sensitivity.

level, the copy number alterations data and expression data
of SRI were acquired in TCGA ovarian cancer. The results
indicated that SRI was amplified along with the significantly high
mRNA and protein level in TCGA-OV cohort (Figures 6F,G).
Regarding the co-expression genes of SRI, the co-expression
analysis was conducted using the Linkedomics database in the
TCGA ovarian cancer dataset. The results are presented in
Supplementary Table 1. The top 50 positive and negative co-
expression genes of SRI were visualized in the STRING database
(Supplementary Figure 4).

Correlation Among the SRI Expression and
Stemness Score, EMT-Related Genes, MSI,
TMB, and MMR-Related Genes in
Pan-Cancer
Our previous work revealed that SRI promoted the stemness
and EMT process in ovarian cancer (35), we, therefore, wanted
to investigate the association of SRI expression with stemness
score and EMT-related genes in cancers. First, the sorcin

expression was upregulated in the OVCAR-3 and SKOV-
3 spheres cells compared with the respective adherent cells
(Supplementary Figure 5). Correlation analysis indicated that
the SRI expression was positively associated with the RNAss
in GBM, KIRC, LAML, LGG, OV, PADD, pheochromocytoma
and paraganglioma (PCPG), UCEC, and UCS. While a negative
relationship between the SRI level and RNAss was observed in
ACC (Figure 7A). Figure 7B depicts the correlations between the
SRI expression and 18 tumor stem cell markers. More than 10
cancer stem cell markers expression were significantly positively
correlated with the SRI levels in GBM, KIRC, LGG, LIHC,
SKCM, THCA, and UCEC. Furthermore, a heatmap showed a
positive correlation between the SRI expression and 25 EMT-
related genes (Figure 7C). The expression of over 15 EMT-related
genes was positively associated with the SRI expression in COAD,
GBM, KIRC, LIHC, and OV. The correlations among the TMB,
MSI, and SRI expression were further analyzed in cancers. The
results demonstrated that the SRI expression was significantly
associated with increased MSI in BRCA, DLBC, ESCA, HNSC,
KIRC, PAAD, THCA, and UCEC, while the SRI expression was
negatively associated with MSI in COAD, GBM, LUAD, and
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LUSC (Figure 8A). In addition, SRI was positively correlated
with TMB in ESCA, HNSC, LGG, PAAD, SKCM, and STAD,
while a negative correlation between the SRI expression and
TMB was found in ACC, BRCA, CESC, COAD, OV, and THCA
(Figure 8B). As shown in Figure 8C, the SRI expression was
significantly positively correlated with the MMR-related genes
level in most of the tumors, especially in KIRP, LIHC, SKCM,
UCEC, and UVM.

Correlation of the SRI Expression With
Tumor Immune Microenvironment
Presently, the predictive role of SRI in tumor immune
microenvironment has received little attention. Here, the
association of SRI expression with the tumor immune
microenvironment was evaluated according to the ESTIMATE
algorithm and TIMER database. Our findings showed that the
SRI expression had a positive correlation with the immune
scores and estimate scores in ACC, ESCA, CHOL, LIHC,
PRAD, and SARC (sarcoma). A strong negative correlation
between the SRI and immune scores and estimate scores was
found in LGG, MESO, and PAAD (Figures 9A,B). In addition,
the correlation analyses revealed that the stromal scores were
negatively correlated with the SRI expression in GBM, LGG,
MESO, PADD, and UCS (Figure 9C). Then, the relationship
between the SRI expression and immune cells infiltration was
investigated in pan-cancer. The results indicated that the SRI
expression was significantly associated with tumor purity in five
cancer types. Furthermore, the SRI expression was significantly
correlated with the infiltration levels of B cells in 14 cancer
types, CD8+T cells in 14 cancer types, CD4+T cells in 13 cancer
types, the macrophages in 21 cancer types, the neutrophils
in 16 cancer types, and the dendritic cells in 12 cancer types
(Figures 9D–H; Supplementary Figures 6, 7). Combined results
from the correlation analysis and TIMER database, the SRI
expression was strongly correlated with the immune infiltrating
level in ACC, ESCA, LIHC, LUSC, and PRAD. The correlation
between the immune checkpoint genes expression and SRI
expression was explored. The results demonstrated that the most
immune checkpoint genes were positively correlated with the
SRI expression, especially in LIHC, PRAD, UVM, and ACC
(Supplementary Figure 8), which suggested that the high level
of SRI might mediate immune escape.

Drug Sensitivity Analysis of SRI
Since the drug resistance role of SRI in cancer has been
gradually valued, we further investigated the potential
correlation analysis between the drug sensitivity and SRI
expression using the CellMinerTM database. Our results
indicated that the SRI expression was positively related to
JNJ-38877605, Simvastatin, BMS-777607, PF-04217903, and
XAV-939 sensitivity (Figures 10A,B,G,J,O). Notably, the SRI
expression was negatively correlated with the drug sensitivity of
fluorouracil, dolastatin 10, paclitaxel, actinomycin D, tegafur,
docetaxel, isotretinoin, mithramycin, elesclomol, EMD-534085,
and dinaciclib (Figures 10C–F,H,I,K–N,P).

Biological Function of SRI in Cancer
The GSEA was then performed to explore the main biological
process affected by SRI in cancer. In the KEGG pathway
gene set analysis, our results suggested that SRI positively
regulated the immune-related pathways in CHOL, COAD,
PRAD, such as natural cell-mediated cytotoxicity, antigen
processing, and presentation. SRI was positively enriched in
the metabolism-related pathways of OV and PRAD, such as
oxidative phosphorylation, ascorbate and aldarate metabolism,
and chlorophyll metabolism. In contrast, SRI was negatively
enriched in the glyoxylate and dicarboxylate metabolism and
drug metabolism cytochrome P450 in READ and SKCM.
In addition, SRI was identified as a negative regulator for
olfactory transduction, autophagy, WNT signaling pathway in
LGG, READ, OV, UCEC, and STAD (Figure 11). The GO
results of GSEA analysis of SRI in pan-cancer are displayed
in Supplementary Figures 9, 10. In ACC, CESC, HNSC, LIHC,
LAML, and SKCM, the SRI expression showed positive
enrichment in the gene regulatory mechanisms, such as gene
silencing, alternative mRNA splicing, transcription activator
activity, andmethylation CPG binding. Several immune response
pathways, such as immune response regulating cell surface
receptor signaling, regulation of immune effector process, and
response to interleukin 12 were positively correlated to the SRI
expression in STAD, CHOL, and SARC. Furthermore, a negative
enrichment among the cell cycle G1/S transition, regulation of
epidermal cell growth, and SRI expression was observed in OV,
LUSC, PRAD, UCS, PCPG, READ, and ESCA.

DISCUSSION

In the present study, high expression of SRI in multiple cancers
was observed and its dysregulation could predict worse prognosis
in the patients with cancer, which indicated that SRI could
serve as a robust prognostic factor among a variety of cancers.
SRI exerts its function via the regulation of stemness, MSI,
TMB, tumor immune microenvironment, and drug resistance.
Sorcin, one of the most abundant calcium-binding proteins,
plays an essential role in excitable cells, such as neurons and
cardiomyocytes (36). Regarding the SRI expression in normal
tissues, our research revealed that the small intestine, brain
tissues, and bone marrow had a high expression abundance
of SRI, which was consistent with the reports of PaxDb
database (https://pax-db.org/) (18). Cytosolic calcium (Ca2+),
one of the most fascinating cell signaling, organizes the diverse
physiological activities from cell division, cellular motility to
cell death (37). As an overexpressed Ca2+ binding protein,
sorcin exquisitely controls the intracellular calcium content
and exchange under normal physiological conditions. Multiple
mechanisms are reported in the regulation of calcium balance
affected by sorcin, some of which depend on the interaction
with other calcium-related proteins (38). For a long time,
substantial evidence suggests that Ca2+ signaling is implicated
in the cancer cells’ uncontrolled proliferation, angiogenesis,
immune surveillance, and drug resistance (39). The previous
studies have reported overexpression of SRI in the cell lines
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FIGURE 11 | The gene set enrichment analysis (GSEA) analysis in Kyoto Encyclopedia of Genes and Genomes (KEGG) signature of cholangiocarcinoma (CHOL),

colon adenocarcinoma (COAD), brain lower-grade glioma (LGG), ovarian serous cystadenocarcinoma (OV), PRAD, rectum adenocarcinoma (READ), skin cutaneous

melanoma (SKCM), stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC). The different colors curves represent the different functions

or pathways. The peaks on the upward curve indicate positive regulation by SRI and peaks on the downward curve indicate negative regulation by SRI.

of gastric cancer, colorectal cancer, and breast cancer (13–15).
Meanwhile, the high expression level of SRI was observed in
the resistance cells of ovarian cancer, myeloma, lung cancer,
leukemia, and nasopharyngeal carcinoma (20, 40–44). In this
study, the high expression of SRI was verified in 25 tumor types
compared with the normal tissues. Until now, literature on the
prognostic value of SRI in patients with cancer is scarce. The
SRI overexpression was reported to be closely related to the
poor clinical outcomes and the complete remission rate in acute
myeloid leukemia (45). Our Kaplan–Meier survival and the Cox
regression analyses first demonstrated that SRI had predictive
value on the survival outcomes in BLCA, BRCA, CESC, CHOL,
HNSC, KIRP, KIRC, LGG, LIHC, OV, PAAD, PRAD, SKCM,
STAD, THYM, THCA, UCEC, and UVM. In addition, the SRI
expression was negatively associated with the disease stage in
BLCA but positively correlated to the tumor stage in HNSC,
LIHC, andMESO. Sorcin was previously reported to be positively

related with the TNM stage in gastric cancer (46). Further, our
study revealed that the high expression of SRI was significantly
related to the with-tumor status in ESCA, GBM, KIRC, LIHC,
PRAD, and UVM, suggesting SRI might have the potential for
reflecting the tumor status.

Regarding the SRI genomic alterations in cancer, our data
found that amplification was the most frequent mutation type
in cancer. As reported in many studies, genomic amplification
of the chromosomal region 7q21, such as ABCB1 and SRI
occurred in the multidrug-resistant cancers (47–51). In treating
with the chemotherapeutic drugs, amplification of the ABCB1-
related amplicon region containing SRI was sufficient to drive
tumor chemoresistance. Genomic amplification of SRI has long
been recognized as an occasional event of such genomic co-
amplification (52). However, accumulating evidence indicated
that the pathways involved in the tumor malignant behaviors,
such as TGF-β and JAK-STAT3 signaling were affected by the SRI
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gene amplification (35, 53). In addition, we found co-occurrence
of ADAM22, DBF4, ABCB1, ABCB4, and RUNDC3B alterations
was observed with the SRI alterations, which was consistent
with the previous reports (48). The full-length sorcin could lead
to a low level of paclitaxel resistance in ovarian cancer cells
(54). In this study, our analysis showed that the amplification
was associated with the high mRNA and protein level of SRI
in ovarian cancer, which indicated the sorcin overexpression
in ovarian cancer might be due in part to the SRI genomic
amplification. A survival analysis further showed that the patients
with cancer with the SRI genetic alterations had poorer OS than
those with SRI unaltered group. The above findings suggested
that the SRI genomic alterations were considered as a risk factor
for prognosis in cancer.

The cancer stem cells (CSCs), a pool of specialized cancer
cells, are at the root of tumor initiation and responsible for
chemoresistance of malignant tumors (55). The occurrence of
EMT endows cancer cells with the mesenchymal phenotypes
and stem cell-like characteristics and thus confers invasiveness
and chemoresistance (56). Sorcin silencing in the breast cancer
cells decreases the pool of CD44+/CD24– and ALDH1 high
CSCs in vitro (13). Sorcin was also reported to facilitate
the migration, invasion, and EMT in breast cancer, ovarian
cancer, and colorectal cancer (13, 14, 35). Sorcin overexpression
is tightly associated with the increased local invasion and
lymph node metastasis of gastric cancer (46). Mechanistically,
sorcin silencing effectively decreased the expression of matrix
metalloproteinases 2 and 9 (MMP2 and MMP9), and eventually
suppressed gastric cancer metastasis (53). The previous studies
have demonstrated that sorcin induced EMT-related phenotype
by the regulation of PI3K/Akt/mTOR pathway and vascular
endothelial growth factor (VEGF) (13, 14). Our analysis of
on cancer stemness and EMT-related genes further supported
the oncogenic and stemness-related role of SRI in cancer.
MSI and TMB have recently captured widespread attention as
promising predictive biomarkers for immunotherapy efficacy,
especially in colorectal cancers and lung cancer (57, 58). Our
results demonstrated that the SRI expression was significantly
related to MSI in 12 cancer types and TMB in 13 cancer
types. These results strongly implied that the SRI expression
might affect the response to immune checkpoint therapy in
patients with cancer, which will shed new light on the prognosis
of immunotherapy. Further analysis revealed that the SRI
expression was positively correlated with the MMR-related genes
expression in most of the tumors. Thus, the patients with cancer
with low expression of SRI, high MSI, and TMB may benefit
from immunotherapy.

At present, the role of SRI in the tumor immune
microenvironment remains a research gap worth investigation
in further research. According to ESTIMATE algorithm, the
correlation between the SRI expression and immune cell content
might depend on the tumor types. TIMER database mining
further found that the SRI expression was significantly correlated
with the infiltration levels of various immune cells, particularly
in ACC, ESCA, LIHC, LUSC, and PRAD. In addition, the
correlation analysis demonstrated that the immune checkpoint
genes were positively correlated with the SRI expression

in most tumor types, suggesting SRI might be involved in
immune escape. Further in vitro and in vivo studies exploring
the relationship between the SRI expression and immune
infiltrations are warranted. Currently, the SRI roles in multi-drug
resistance have become increasingly appreciated. The previous
studies reported sorcin knockdown resulted in the increased
cisplatin, paclitaxel, doxorubicin, fluorouracil, and vincristine
sensitivity in the cancer cells (21, 54, 59–62), which was also
consistent with our drug sensitivity of SRI. Nevertheless, more
experimental validation needs to be further studied to evaluate
the influence of SRI on new drugs in clinical trials. Our findings
may be useful in prioritizing further research on drug screening.
Furthermore, our GSEA analyses suggested that SRI was closely
associated with the metabolism-related pathways, transcription
activator activity, immune-related pathways, and cell cycle G1/S
transition. Relevant literature has reported the SRI affected
glucose metabolism (63), STAT3 transcriptional activity (53), cell
cycle progression in mitosis (64), and immuno-inflammatory
responses (65). The results of GSEA further indicated that SRI
was involved in immune-related pathways in certain types of
tumor, which was consistent with our previous immune-related
analysis on SRI. Our findings revealed that a signaling pathway
was significantly enriched in various types of tumors. We,
therefore, considered that the signaling pathways mediated by
SRI were not specific for different cancers.

The pre-clinical studies have found that the natural
compounds, such as dihydromyricetin and triptolide specifically
reversed drug resistance through the downregulation of SRI
expression in vitro, which indicates the clinical transfer value
of SRI as a good candidate to prevent chemoresistance (22, 44).
The significance of our work is that the multifaceted functions of
SRI were unveiled in cancer, which not only further verified the
previous findings but also advanced our understanding of the
role mediated by SRI in the tumor immune microenvironment.
Since our study was a comprehensive bioinformatics analysis
and relied on multiple databases, several limitations are
inevitable. First, the results are not experimental, and thus future
experimental validations are required. Second, the majority of
our analyses were focused on the mRNA expression of SRI. It is
worth mentioning that the analyses based on the protein levels
of SRI would make the results more convincing. Third, this
work solely presented the correlation analysis, and the molecular
mechanisms of SRI in tumor stemness and immune infiltration
require further investigation in the future. To sum up, our
pan-cancer analyses systematically probe the characteristics of
SRI in multiple aspects, such as expression pattern, survival
prognosis, genetic mutation, stemness, TMB, MSI, tumor
immune microenvironment, and drug resistance. SRI might be
a potential target for cancer therapy since it displayed abnormal
high expression in multiple cancers and predicted worse
prognosis in patients with cancer. Frequent amplification of SRI
genomic was observed and the SRI expression correlated with
amplification. Moreover, the aberrant SRI expression was related
to the stemness score, EMT-related genes, MSI, TMB, and tumor
immune microenvironment across various types of cancer. SRI
was able to predict the sensitivity to chemotherapeutic agents as a
novel resistance gene. The present study may provide insights for
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illustrating the role of SRI in tumorigenesis and drug resistance.
At the same time, our work also points to several directions for
future prospective studies focusing on SRI in cancer.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

JZ performed most of the analyses and wrote the manuscript.
XH and JZ conceived the idea and led the project. JC, BS, LL,

JD, QS, and QZ performed some of the analyses and edited the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was supported by grants from the Key Science and
Technology Program of Anhui province, China (1401042007).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2021.752619/full#supplementary-material

REFERENCES

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J

Clin. (2021) 71:7–33. doi: 10.3322/caac.21654
2. Bergholz JS, Wang Q, Kabraji S, Zhao JJ. Integrating immunotherapy

and targeted therapy in cancer treatment: mechanistic insights
and clinical implications. Clin Cancer Res. (2020) 26:5557–
66. doi: 10.1158/1078-0432.CCR-19-2300

3. Meyers MB, Schneider KA, Spengler BA, Chang TD, Biedler JL. Sorcin
(V19), a soluble acidic calcium-binding protein overproduced in multidrug-
resistant cells. Identification of the protein by anti-sorcin antibody. Biochem
Pharmacol. (1987) 36:2373–80. doi: 10.1016/0006-2952(87)90606-X

4. Ilari A, Johnson KA, Nastopoulos V, Verzili D, Zamparelli C, Colotti G. The
crystal structure of the sorcin calcium binding domain provides a model
of Ca2+-dependent processes in the full-length protein. J Mol Biol. (2002)
317:447–58. doi: 10.1006/jmbi.2002.5417

5. Zheng BB, Zhang P, Jia WW, Yu LG, Guo XL. Sorcin, a potential therapeutic
target for reversing multidrug resistance in cancer. J Physiol Biochem. (2012)
68:281–7. doi: 10.1007/s13105-011-0140-0

6. Matsumoto T, Hisamatsu Y, Ohkusa T, Inoue N, Sato T, Suzuki S.
Sorcin interacts with sarcoplasmic reticulum Ca(2+)-ATPase and modulates
excitation-contraction coupling in the heart. Basic Res Cardiol. (2005)
100:250–62. doi: 10.1007/s00395-005-0518-7

7. Fowler MR, Colotti G, Chiancone E, Smith GL, Fearon IM.
Sorcin modulates cardiac L-type Ca2+ current by functional
interaction with the alpha1C subunit in rabbits. Exp Physiol. (2008)
93:1233–8. doi: 10.1113/expphysiol.2008.043497

8. Yabuki N, Sakata K, Yamasaki T, Terashima H, Mio T, Miyazaki
Y. Gene amplification and expression in lung cancer cells with
acquired paclitaxel resistance. Cancer Genet Cytogenet. (2006) 173:1–9.
doi: 10.1016/j.cancergencyto.07.020

9. Gupta K, Sirohi VK, Kumari S, Shukla V, Manohar M, Popli P. Sorcin is
involved during embryo implantation via activating VEGF/PI3K/Akt pathway
in mice. J Mol Endocrinol. (2018) 60:119–32. doi: 10.1530/JME-17-0153

10. Genovese I, Giamogante F, Barazzuol L, Battista T, Fiorillo A, Vicario M.
Sorcin is an early marker of neurodegeneration, Ca(2+) dysregulation and
endoplasmic reticulum stress associated to neurodegenerative diseases. Cell
Death Dis. (2020) 11:861. doi: 10.1038/s41419-020-03063-y

11. He Q, Zhang G, Hou D, Leng A, Xu M, Peng J. Overexpression of
sorcin results in multidrug resistance in gastric cancer cells with up-
regulation of P-gp. Oncol Rep. (2011) 25:237–43. doi: 10.3892/or_00
001066

12. Gong Z, Sun P, Chu H, Zhu H, Sun D, Chen J. Overexpression of sorcin
in multidrug-resistant human breast cancer. Oncol Lett. (2014) 8:2393–
8. doi: 10.3892/ol.2014.2543

13. Hu Y, Li S, Yang M, Yan C, Fan D, Zhou Y. Sorcin silencing inhibits epithelial-
to-mesenchymal transition and suppresses breast cancer metastasis in vivo.

Breast Cancer Res Treat. (2014) 143:287–99. doi: 10.1007/s10549-013-2
809-2

14. Tong W, Sun D, Wang Q, Suo J. Sorcin enhances metastasis and promotes
epithelial-to-mesenchymal transition of colorectal cancer. Cell Biochem

Biophys. (2015) 72:453–9. doi: 10.1007/s12013-014-0486-3
15. Deng LM, Tan T, Zhang TY, Xiao XF, Gu H. miR-1 reverses multidrug

resistance in gastric cancer cells via downregulation of sorcin through
promoting the accumulation of intracellular drugs and apoptosis of cells. Int J
Oncol. (2019) 55:451–61. doi: 10.3892/ijo.2019.4831

16. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM.
Revisiting the role of ABC transporters in multidrug-resistant cancer.Nat Rev
Cancer. (2018) 18:452–64. doi: 10.1038/s41568-018-0005-8

17. Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical
molecular-based approach to overcome multidrug resistance in
cancer by targeting P-glycoprotein (P-gp). Med Res Rev. (2021)
41:525–555. doi: 10.1002/med.21739

18. Battista T, Fiorillo A, Chiarini V, Genovese I, Ilari A, Colotti G. Roles of
sorcin in drug resistance in cancer: one protein, many mechanisms, for
a novel potential anticancer drug target. Cancers (Basel). (2020) 12:887.
doi: 10.3390./cancers12040887

19. Van der Bliek AM, Meyers MB, Biedler JL, Hes E, Borst P. A 22-kd protein
(sorcin/V19) encoded by an amplified gene in multidrug-resistant cells, is
homologous to the calcium-binding light chain of calpain. Embo J. (1986)
5:3201–8. doi: 10.1002/j.1460-1986, tb04630.x

20. Gao Y, Li W, Liu X, Gao F, Zhao X. Reversing effect and mechanism of
soluble resistance-related calcium-binding protein on multidrug resistance
in human lung cancer A549/DDP cells. Mol Med Rep. (2015) 11:2118–
24. doi: 10.3892/mmr.2014.2936

21. Genovese I, Fiorillo A, Ilari A, Masciarelli S, Fazi F, Colotti G. Binding of
doxorubicin to Sorcin impairs cell death and increases drug resistance in
cancer cells. Cell Death Dis. (2017) 8:e2950. doi: 10.1038/cddis.2017.342

22. Sun Y, Wang C, Meng Q, Liu Z, Huo X, Sun P. Targeting P-
glycoprotein and SORCIN: dihydromyricetin strengthens anti-proliferative
efficiency of adriamycin via MAPK/ERK and Ca(2+)-mediated apoptosis
pathways in MCF-7/ADR and K562/ADR. J Cell Physiol. (2018) 233:3066–
79. doi: 10.1002/jcp.26087

23. Zhang J, Guan W, Xu X, Wang F, Li X, Xu G. A novel homeostatic
loop of sorcin drives paclitaxel-resistance and malignant progression via

Smad4/ZEB1/miR-142-5p in human ovarian cancer. Oncogene. (2021)
40:4906–18. doi: 10.1038/s41388-021-01891-6

24. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J,
Briggs BB. Oncomine 3.0: genes, pathways, and networks in a collection
of 18,000 cancer gene expression profiles. Neoplasia. (2007) 9:166–
80. doi: 10.1593/neo.07112

25. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO. Integrative
analysis of complex cancer genomics and clinical profiles using the cBioPortal.
Sci Signal. (2013) 6:l1. doi: 10.1126/scisignal.2004088

Frontiers in Medicine | www.frontiersin.org 17 November 2021 | Volume 8 | Article 752619187

https://www.frontiersin.org/articles/10.3389/fmed.2021.752619/full#supplementary-material
https://doi.org/10.3322/caac.21654
https://doi.org/10.1158/1078-0432.CCR-19-2300
https://doi.org/10.1016/0006-2952(87)90606-X
https://doi.org/10.1006/jmbi.2002.5417
https://doi.org/10.1007/s13105-011-0140-0
https://doi.org/10.1007/s00395-005-0518-7
https://doi.org/10.1113/expphysiol.2008.043497
https://doi.org/10.1016/j.cancergencyto.07.020
https://doi.org/10.1530/JME-17-0153
https://doi.org/10.1038/s41419-020-03063-y
https://doi.org/10.3892/or_00001066
https://doi.org/10.3892/ol.2014.2543
https://doi.org/10.1007/s10549-013-2809-2
https://doi.org/10.1007/s12013-014-0486-3
https://doi.org/10.3892/ijo.2019.4831
https://doi.org/10.1038/s41568-018-0005-8
https://doi.org/10.1002/med.21739
https://doi.org/10.3390./cancers12040887
https://doi.org/10.1002/j.1460-1986
https://doi.org/10.3892/mmr.2014.2936
https://doi.org/10.1038/cddis.2017.342
https://doi.org/10.1002/jcp.26087
https://doi.org/10.1038/s41388-021-01891-6
https://doi.org/10.1593/neo.07112
https://doi.org/10.1126/scisignal.2004088
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhang et al. Pan-Cancer Analysis of Sorcin

26. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein
JN. Machine learning identifies stemness features associated with oncogenic
dedifferentiation. Cell. (2018) 173:338–54.e315. doi: 10.1016/j.cell.03, 034.

27. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD.
Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med. (2018)
378:1976–86. doi: 10.1056/NEJMoa1716078

28. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers
for checkpoint inhibitor immunotherapy. Nat Rev Cancer. (2019) 19:133–
50. doi: 10.1038/s41568-019-0116-x

29. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ. Landscape
of microsatellite instability across 39 cancer types. JCO Precis Oncol. (2017)
1:1–5. doi: 10.1200./PO.17.00073

30. Yu Y, Carey M, Pollett W, Green J, Dicks E, Parfrey P. The long-term survival
characteristics of a cohort of colorectal cancer patients and baseline variables
associated with survival outcomes with or without time-varying effects. BMC

Med. (2019) 17:150. doi: 10.1186/s12916-019-1379-5
31. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-

Garcia W. Inferring tumour purity and stromal and immune cell admixture
from expression data.Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612

32. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS. TIMER: a web server for
comprehensive analysis of tumor-infiltrating immune cells.Cancer Res. (2017)
77:e108–10. doi: 10.1158/0008-5472.CAN-17-0307

33. Shankavaram UT, Varma S, Kane D, Sunshine M, Chary KK, Reinhold WC.
CellMiner: a relational database and query tool for the NCI-60 cancer cell
lines. BMC Genomics. (2009) 10:277. doi: 10.1186/1471-2164-10-277

34. Zhang J, Wang F, Xu X, Li X, Guan W. Overexpressed COL5A1
is correlated with tumor progression, paclitaxel resistance, and tumor-
infiltrating immune cells in ovarian cancer. J Cell Physiol. (2021). 236:6907–
19. doi: 10.1002./jcp.30350

35. Zhang J, Guan W, Xu X, Wang F, Li X, Xu G. A novel
homeostatic loop of sorcin drives paclitaxel-resistance and malignant
progression via Smad4/ZEB1/miR-142-5p in human ovarian
cancer. Oncogene. (2021). 40:4906–18. doi: 10.1038./s41388-021-01
891-6

36. Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW,
Fishman GI. Association of sorcin with the cardiac ryanodine
receptor. J Biol Chem. (1995) 270:26411–8. doi: 10.1074/jbc.270.44.
26411

37. Bruce JIE, James AD. Targeting the calcium signalling machinery in cancer.
Cancers (Basel). (2020) 12:2351. doi: 10.3390./cancers12092351

38. Colotti G, Poser E, Fiorillo A, Genovese I, Chiarini V, Ilari A. Sorcin, a
calcium binding protein involved in the multidrug resistance mechanisms
in cancer cells. Molecules. (2014) 19:13976–89. doi: 10.3390/molecules1909
13976

39. Tajada S, Villalobos C. Calcium permeable channels in cancer hallmarks. Front
Pharmacol. (2020) 11:968. doi: 10.3389/fphar.2020.00968

40. Qi J, Liu N, Zhou Y, Tan Y, Cheng Y, Yang C. Overexpression of
sorcin in multidrug resistant human leukemia cells and its role in
regulating cell apoptosis. Biochem Biophys Res Commun. (2006) 349:303–9.
doi: 10.1016/j.bbrc.08.042

41. Liu X, Chen L, Feng B, Liu G. Reversing effect of sorcin in the drug resistance
of human nasopharyngeal carcinoma. Anat Rec (Hoboken). (2014) 297:215–
21. doi: 10.1002/ar.22832

42. Yamagishi N, Nakao R, Kondo R, Nishitsuji M, Saito Y, Kuga T. Increased
expression of sorcin is associated with multidrug resistance in leukemia
cells via up-regulation of MDR1 expression through cAMP response
element-binding protein. Biochem Biophys Res Commun. (2014) 448:430–6.
doi: 10.1016/j.bbrc.04, 125.

43. Xu P, Jiang YF, Wang JH. shRNA-mediated silencing of sorcin increases drug
chemosensitivity in myeloma KM3/DDP and U266/ADM cell lines. Int J Clin
Exp Pathol. (2015) 8:2300–10.

44. Hu H, Zhu S, Tong Y, Huang G, Tan B, Yang L. Antitumor activity
of triptolide in SKOV3 cells and SKOV3/DDP in vivo and in vitro.
Anticancer Drugs. (2020) 31:483–91. doi: 10.1097/CAD.00000000000
00894

45. Tan Y, Li G, Zhao C, Wang J, Zhao H, Xue Y. Expression of sorcin
predicts poor outcome in acute myeloid leukemia. Leuk Res. (2003) 27:125–
31. doi: 10.1016/S0145-2126(02)00083-8

46. Deng L, Su T, Leng A, Zhang X, Xu M, Yan L. Upregulation of soluble
resistance-related calcium-binding protein (sorcin) in gastric cancer. Med

Oncol. (2010) 27:1102–8. doi: 10.1007/s12032-009-9342-5
47. Chao CC, Ma CM, Lin-Chao S. Co-amplification and over-expression of two

mdr genes in a multidrug-resistant human colon carcinoma cell line. FEBS
Lett. (1991) 291:214–8. doi: 10.1016/0014-5793(91)81287-I

48. Flahaut M, Mühlethaler-Mottet A, Martinet D, Fattet S, Bourloud KB,
Auderset K. Molecular cytogenetic characterization of doxorubicin-resistant
neuroblastoma cell lines: evidence that acquired multidrug resistance results
from a unique large amplification of the 7q21 region. Genes Chromosomes

Cancer. (2006) 45:495–508. doi: 10.1002/gcc.20312
49. Kitada K, Yamasaki T. The MDR1/ABCB1 regional amplification in

large inverted repeats with asymmetric sequences and microhomologies
at the junction sites. Cancer Genet Cytogenet. (2007) 178:120–7.
doi: 10.1016/j.cancergencyto.06.014

50. Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday
S. Whole-genome characterization of chemoresistant ovarian cancer. Nature.
(2015) 521:489–94.

51. Steuer CE, Ramalingam SS. Tumormutation burden: leading immunotherapy
to the era of precision medicine? J Clin Oncol. (2017) 36:631–2.
doi: 10.1200/JCO.76.8770

52. Van der Bliek AM, Baas F, Van der Velde-Koerts T, Biedler JL, Meyers MB,
Ozols RF. Genes amplified and overexpressed in human multidrug-resistant
cell lines. Cancer Res. (1988) 48:5927–32.

53. Tuo H, Shu F, She S, Yang M, Zou XQ, Huang J. Sorcin induces gastric cancer
cell migration and invasion contributing to STAT3 activation. Oncotarget.
(2017) 8:104258–71. doi: 10.18632/oncotarget.22208

54. Parekh HK, Deng HB, Choudhary K, Houser SR, Simpkins H.
Overexpression of sorcin, a calcium-binding protein, induces a low
level of paclitaxel resistance in human ovarian and breast cancer cells.
Biochem Pharmacol. (2002) 63:1149–58. doi: 10.1016/S0006-2952(02)0
0850-X

55. Jones CL, Inguva A, Jordan CT. Targeting energy metabolism in cancer stem
cells: progress and challenges in leukemia and solid tumors. Cell Stem Cell.

(2021) 28:378–93. doi: 10.1016/j.stem.02, 013.
56. Rodriguez-Aznar E,Wiesmüller L, Sainz B, Hermann PC. EMT and stemness-

key players in pancreatic cancer stem cells. Cancers (Basel). (2019) 11:1136.
doi: 10.3390./cancers11081136

57. Margetis P, Antonelou M, Karababa F, Loutradi A, Margaritis L, Papassideri
I. Physiologically important secondary modifications of red cell membrane
in hereditary spherocytosis-evidence for in vivo oxidation and lipid rafts
protein variations. Blood CellsMol Dis. (2006) 38:210–20. doi: 10.1016/j.bcmd.
10.163

58. André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C. Pembrolizumab
in microsatellite-instability-high advanced colorectal cancer. N Engl J Med.
(2020) 383:2207–18. doi: 10.1056/NEJMoa2017699

59. Padar S, van Breemen C, Thomas DW, Uchizono JA, Livesey JC, Rahimian
R. Differential regulation of calcium homeostasis in adenocarcinoma cell
line A549 and its Taxol-resistant subclone. Br J Pharmacol. (2004) 142:305–
16. doi: 10.1038/sj.bjp.0705755

60. Maddalena F, Laudiero G, Piscazzi A, Secondo A, Scorziello A, Lombardi
V. Sorcin induces a drug-resistant phenotype in human colorectal
cancer by modulating Ca(2+) homeostasis. Cancer Res. (2011) 71:7659–
69. doi: 10.1158/0008-5472.CAN-11-2172

61. Qinghong S, Shen G, Lina S, Yueming Z, Xiaoou L, Jianlin W. Comparative
proteomics analysis of differential proteins in respond to doxorubicin
resistance in myelogenous leukemia cell lines. Proteome Sci. (2015)
13:1. doi: 10.1186/s12953-014-0057-y

62. Wang D, Shi S, Hsieh YL, Wang J, Wang H, Wang W. Knockdown of sorcin
increases HEI-OC1 cell damage induced by cisplatin in vitro. Arch Biochem

Biophys. (2021) 701:108752. doi: 10.1016/j.abb.2021.108752
63. Rutti S, Arous C, Schvartz D, Timper K, Sanchez JC, Dermitzakis E.

Fractalkine (CX3CL1), a new factor protecting β-cells against TNFα. Mol

Metab. (2014) 3:731–41. doi: 10.1016/j.molmet.07.007
64. Lalioti VS, Ilari A, O’Connell DJ, Poser E, Sandoval IV, Colotti

G. Sorcin links calcium signaling to vesicle trafficking, regulates
Polo-like kinase 1 and is necessary for mitosis. PLoS ONE. (2014)
9:e85438. doi: 10.1371/journal.pone.0085438

Frontiers in Medicine | www.frontiersin.org 18 November 2021 | Volume 8 | Article 752619188

https://doi.org/10.1016/j.cell.03
https://doi.org/10.1056/NEJMoa1716078
https://doi.org/10.1038/s41568-019-0116-x
https://doi.org/10.1200./PO.17.00073
https://doi.org/10.1186/s12916-019-1379-5
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://doi.org/10.1186/1471-2164-10-277
https://doi.org/10.1002./jcp.30350
https://doi.org/10.1038./s41388-021-01891-6
https://doi.org/10.1074/jbc.270.44.26411
https://doi.org/10.3390./cancers12092351
https://doi.org/10.3390/molecules190913976
https://doi.org/10.3389/fphar.2020.00968
https://doi.org/10.1016/j.bbrc.08.042
https://doi.org/10.1002/ar.22832
https://doi.org/10.1016/j.bbrc.04
https://doi.org/10.1097/CAD.0000000000000894
https://doi.org/10.1016/S0145-2126(02)00083-8
https://doi.org/10.1007/s12032-009-9342-5
https://doi.org/10.1016/0014-5793(91)81287-I
https://doi.org/10.1002/gcc.20312
https://doi.org/10.1016/j.cancergencyto.06.014
https://doi.org/10.1200/JCO.76.8770
https://doi.org/10.18632/oncotarget.22208
https://doi.org/10.1016/S0006-2952(02)00850-X
https://doi.org/10.1016/j.stem.02
https://doi.org/10.3390./cancers11081136
https://doi.org/10.1016/j.bcmd.10.163
https://doi.org/10.1056/NEJMoa2017699
https://doi.org/10.1038/sj.bjp.0705755
https://doi.org/10.1158/0008-5472.CAN-11-2172
https://doi.org/10.1186/s12953-014-0057-y
https://doi.org/10.1016/j.abb.2021.108752
https://doi.org/10.1016/j.molmet.07.007
https://doi.org/10.1371/journal.pone.0085438
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhang et al. Pan-Cancer Analysis of Sorcin

65. Li X, Liu Y, Wang Y, Liu J, Cao H. Negative regulation of hepatic
inflammation by the soluble resistance-related calcium-binding protein via

signal transducer and activator of transcription 3. Front Immunol. (2017)
8:709. doi: 10.3389/fimmu.2017.00709

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Zhang, Chen, Shan, Lin, Dong, Sun, Zhou and Han. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Medicine | www.frontiersin.org 19 November 2021 | Volume 8 | Article 752619189

https://doi.org/10.3389/fimmu.2017.00709
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


BRIEF RESEARCH REPORT
published: 03 December 2021

doi: 10.3389/fmed.2021.723019

Frontiers in Medicine | www.frontiersin.org 1 December 2021 | Volume 8 | Article 723019

Edited by:

Balu Kamaraj,

Imam Abdulrahman Bin Faisal

University, Saudi Arabia

Reviewed by:

Manigandan Venkatesan,

The University of Texas Health Science

Center at San Antonio, United States

Abdullahi Hassan Ndanusa,

Skyline University Nigeria

(SUN), Nigeria

Saravanan Parameswaran,

Gwangju Institute of Science and

Technology, South Korea

Subbaiya Ramasamy,

Copperbelt University, Zambia

*Correspondence:

Karunakaran Rohini

rohini@aimst.edu.my

Specialty section:

This article was submitted to

Precision Medicine,

a section of the journal

Frontiers in Medicine

Received: 09 June 2021

Accepted: 25 October 2021

Published: 03 December 2021

Citation:

Vickram AS, Anbarasu K, Jeyanthi P,

Gulothungan G, Nanmaran R,

Thanigaivel S, Sridharan TB and

Rohini K (2021) Identification and

Structure Prediction of Human

Septin-4 as a Biomarker for Diagnosis

of Asthenozoospermic Infertile

Patients—Critical Finding Toward

Personalized Medicine.

Front. Med. 8:723019.

doi: 10.3389/fmed.2021.723019

Identification and Structure
Prediction of Human Septin-4 as a
Biomarker for Diagnosis of
Asthenozoospermic Infertile
Patients—Critical Finding Toward
Personalized Medicine
A. S. Vickram 1, K. Anbarasu 2, Palanivelu Jeyanthi 3, G. Gulothungan 4, R. Nanmaran 4,

S. Thanigaivel 1, T. B. Sridharan 5 and Karunakaran Rohini 6*

1Department of Biotechnology, Saveetha School of Engineering (SSE), SIMATS, Chennai, India, 2Department of

Bioinformatics, Saveetha School of Engineering (SSE), SIMATS, Chennai, India, 3Department of Biotechnology, Vel Tech

Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India, 4Department of Biomedical Engineering,

Saveetha School of Engineering (SSE), SIMATS, Chennai, India, 5Department of Biotechnology, School of Bio Sciences and

Technology, Vellore Institute of Technology (VIT), Vellore, India, 6Unit of Biochemistry, Faculty of Medicine, AIMST University,

Bedong, Malaysia

Semen parameters are been found as a key factor to evaluate the count and morphology

in the given semen sample. The deep knowledge of male infertility will unravel with

semen parameters correlated with molecular and biochemical parameters. The current

research study is to identify the motility associated protein and its structure through

the in-silico approach. Semen samples were collected and initial analysis including

semen parameters was analyzed by using the World Health Organization protocol.

Semen biochemical parameters, namely, seminal plasma protein concentration, fructose

content, and glucosidase content were calculated and evaluated for correlation. Sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted

laser desorption/ionization-time of flight (MALDI-TOF) were carried out for identification

of Septin-4 presence in the semen sample. Mascot search was done for protein

conformation and in-silico characterization of Septin-4 by structural modeling in Iterative

Threading Assembly Refinement (I-TASSER). Twenty-five nanoseconds molecular

dynamics (MD) simulations results showed the stable nature of Septin-4 in the dynamic

system. Overall, our results showed the presence of motility-associated protein in

normospermia and control samples and not in the case of asthenospermia and

oligoasthenospermia. Molecular techniques characterized the presence of Septin-4 and

as a novel biomarker for infertility diagnosis.

Keywords: human semen, seminal plasma, motility associated protein, septin-4, in-silico characterization,
molecular dynamics simulations

INTRODUCTION

Human infertility affects <15% of all couples, <6% of Indian couples. Among these, male partner
contributes 40–50% of total infertility (1–3). This gave a clear picture of the contribution of
males toward human infertility. Semen parameters, namely, spermatozoa concentration, sperm
motility, morphology, etc. plays a major role and act as a deciding factor for fertility rate.
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So, the andrologists majorly focus on these issues primarily
toward the diagnosis of male infertility (4, 5). For analyzing these
factors, a multiple-omics approach is in need to diagnosis male
infertility by having a strong focus on parameter analysis. Semen
parameters were found to be only the primary trump card, with
these, we can just tell about the count and morphology, wherein
the deepest knowledge of male infertility will come only when
semen parameters were correlated with many molecular and
biochemical parameters (6). One such approach is proteomics
of semen, correlating with motility-associated proteins. Motility
is the major parameter analyzed during semen analysis, the
cluster of proteins involved in giving mobility to the sperm
cells when entered into the female reproductive system (7–
11). Many potential biomarkers could be elucidated here
(proteomic approach) which strengthens the diagnosing part
(12). A biomarker is a marker derived from any biological
substances which could be used to study, analyze, and compare
various conditions and strategies. Biomarkers were non-invasive,
with minimal side effects, and could be used for various
diagnostics and therapeutics values (13–17). Currently, the
basic andrology laboratory, various semen analysis parameters,
endocrine research, and antisperm antibodies where assisting
clinicians for diagnosis (18–20).

In addition, the proteomic approach will strengthen the
patient-specific diagnosis and prognosis. Already we studied
the role and influence of many proteins like Semenogelin II,
prostasomes proteins, and epididymal proteins as markers for
various diagnostic approaches. Septin is one of the flagellar
proteins that produce the energy in the annular region and
helps the sperm to move forward in the female reproductive
tract (21–23). Septins are the major cytoskeletal protein with
major and unique filament-forming capabilities (24, 25). Many
mice model studies proved that the downregulated or missing
septin family protein in ejaculated semen will fall under sick
without mobility and thus producing the immotile sperms will
not help further for natural conception (26). So far 14 different
septin genes were identified since the first was 35 years back.
Disruption of septin and its functions shows many abnormalities
to humankind, namely, neoplasia, breast cancer, Parkinson’s
disease, neurogenerative disease, and human male infertility
(27, 28). Each septin presence is important for other septins to
do their functions properly. These septins will bind together to
produce a higher order structure, to form a filament, membranes,
or ring-like structure (29). The septin-rich part of sperm is the
annulus, it is a submembranous ring that separates the middle
and peripheral regions of the sperm flagella. The role of septin
is still in debate whether it is an active GTPases or just as a
guanosine triphosphate binding protein (30, 31). Septin gives
much more energy and the ring structure gives the circulatory
force that drives the sperm to move forward and not immotile in
the female reproductive tract (32, 33).

The functions of septin start at spermatogenesis itself, during
this time it helps in establishing the mitochondrial architecture
and cytoskeleton to the annulus. The absence of Septin-4 and−12
in the sperm cell, lacking with the functions of mobility,
midpiece damage, rounded sperm head, acrosomal defects,
etc. (34, 35). Many studies revealed the insufficient energy

for a sperm cell to move forward in the absence of septin
proven by in vitro and in vivo mice models. The absence of
septin in sperm cells is shown with lots of annuli and the
connection between midpiece and head, this will misfunction
the sperm and not able to fuse the ovum as it fails the
forward motility (36, 37). The functions of septin in male
fertility were more, but still, the mechanism of understating
these family proteins was very tough, and correlating with male
infertility diagnosis could be elucidated further (38, 39). Due
to the lack of experimental structure of human Septin-4, the
structural predictionmethods using in-silico characterization will
help in elucidating the structure–function relationship at the
molecular level.

MATERIALS AND METHODS

Semen Sample Collection
Semen samples were collected from the patients who visited
Bangalore Assisted Conception Center, Bangalore, Karnataka
at the Andrology lab. The samples were collected from them
in a wide mounted, sterile, non-toxic plastic ware, they have
been provided with a neat room to collect the samples. The
method followed was 7 days abstinence time and masturbation
technique. Strictly the abstinence time was asked with them as
it influences the results in a great manner. The patients were
provided with all necessary infrastructures for collection as this
also influence the results. Once, the collection was over, the
patient details, namely, the name, hospital number, andrology
number, abstinence time, method of collection, smoking habits,
alcohol habits, last visit date, last collection date, age, and
region were asked for and observed. The sample container
was marked with a patient number, hospital number for
further processing (40).

Ethical Consent
Ethical clearance was done for this work to carry on human
semen samples. Informed consent was also obtained from the
patients in their own language. The patients were explained with
the motive of this work and only after semen analysis report
were ready, and then the remaining samples were utilized for
this work.

Semen Analysis Report Preparation
Soon after the arrival of samples from the patients to
andrologists, a semen analysis report was prepared.WorldHealth
Organization (41) procedure was strictly followed to prepare
the report. Computer-assisted semen analysis, Germany made,
was used to compute the number of spermatozoa, motility,
morphology, etc. (42).

Categorization of Semen Samples
Semen samples were segregated into groups by prepared
semen analysis report; the categories were asthenozoospermia,
oligozoospermia, normozoospermia, and healthy volunteers or
controls. The segregation was done purely by using semen
parameter values and semen analysis reports (42).
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Statistical Analysis
We have used Graphpad prism (GraphPad Software, USA),
version 5.1 for this research statistical data. Values were
mentioned with mean ± standard error of the mean for
experiments repeated (43).

Separation of Spermatozoa and Seminal
Plasma for Biochemical and Molecular
Analysis
For this research, after semen sample analysis, samples were
collected according to the standard protocol followed by WHO
and as per Rao et al. (44).

Spermatozoa Disruption for Obtaining the
Intracellular Protein Content
Spermatozoa separated from seminal plasma; sperm pellets
were suspended which was supplied with buffers with
various detergents. The standard protocol is followed for
spermatozoa disruption (42).

Protein Estimation
Protein estimation was done on each fraction of seminal
plasma and spermatozoa with the standard protocol followed by
standard protocol (45).

Fructose Content Estimation
Fructose content in each sample was evaluated with the standard
protocol given byWHO (41), with somemodifications done (46).

Enzyme α-Glucosidase Estimation
α-Glucosidase estimation in each sample was evaluated with the
standard protocol given by WHO (41), with some modifications
done (47).

Estimation of Trace Element Zn
Zinc (Zn) plays a major role in human male fertility.
Estimation of Zn was done with standard protocol by using
atomic absorption spectroscopy and followed standard protocol
(48). Trace element concentrations were estimated using the
standard curve.

Identification of Septin-4 Protein in
Spermatozoa
The centrifuged and ultrasonicated samples were used to
identify the fertility-associated protein in spermatozoa (Septin-
4); intracellular proteins isolated from different semen samples’
categories (asthenozoospermia, oligospermia, normospermia,
and control) were subjected to SDS-PAGE analysis. The silver
stating protocol was used to stain the gel. To the extend, the
protein band which was differentially expressed (downregulated)
in the asthenozoospermia category was subjected to matrix-
assisted laser desorption/ionization- time of flight- mass
spectrometry (MALDI-TOF-MS) analysis and then Mascot
search for identification of the protein.

The differentially expressed band from the gel was excised
and dehydrated with a minimum of 50% 50mM ammonium
bicarbonate and 50% acetonitrile. Then follows the standard

protocol overnight. Voyager-DE STR instrument (PerSeptive
Biosystems, Inc., USA) in linear mode was used to acquire
MALDI-TOF-MS spectra. Positive ions accelerated to 20V were
calculated. Both matrix and sample were dissolved in milliQ
water and equal ratios of matrix and sample were mixed and
spotted onto MALDI plate for analysis.

In-silico Characterization
In addition to the wet-lab experiments, the in-silico structural
analysis was evaluated for human Septin-4. The primary analysis
based on the Swissprot database screen proved Septin-4 consists
of 478 amino acids (Uniprot/Swissprot id: O43236). Septin-4
consists of eight isoforms and isoform 1 (identifier: O43236-
1) was selected for the analysis consisting of molecular weight
55,098 Daltons (55 KDa). From the structural database screening,
the absence of an experimental 3D structure of Septin-4 was
identified. The in-silico structural modeling of Septin-4 was
performed using the Iterative Threading Assembly Refinement
(I-Tasser) server (49). Iterative Threading Assembly Refinement
is a fully automated 3D structural prediction of protein server
based on the threading/fold recognition methodology. It ranked
no. 1 among the structural prediction server evaluated by a
critical assessment of structure prediction (CASP14 experiment
in 2020) and also ranked top for the function prediction
(CASP9). The server chooses the suitable structural templates
from database protein data bank (PDB) by a multiple-threading
approach called local meta-threading server (LOMETS) and
protein models constructed by iterative template-based fragment
assembly simulations. The prediction is mainly based on critical
parameters like C-score, TM score, and root mean square
deviation (RMSD). C-score, a scoring function mainly based on
the theoretical concepts were also done. C-score with a range of
[−5, 2] signifies the higher value confirmed the protein model
with the confidence level. The output showed the five best protein
models based on optimal C-score, TM-score, RMSD, and SD.

Molecular Dynamics Simulation
Molecular dynamics (MD) simulations study on human Septin-
4 was carried out using GROMACS 5.0 package (David van der
Spoel, Sweden) (50). Simple point charge (SPC21) water
molecules of 0.9 nmwere used for the solvation of proteinmodels
in the simulation box. The neutralization of the system was
obtained by adding six sodium ions to replace the initial SPC
water molecule in all directions. Energy minimization of all
systems was carried out by steepest descent energy minimization
with tolerance limit 100 kJ/mol and GROMOS96 43a1 force
field was used for the simulations of protein (51). A cutoff of
14 Å for van der Waals interactions and 12 Å for electrostatic
interactions was used for the process. Electrostatic interactions
were computed using the particle mesh Ewald method. The
LINCS algorithm was used to constrain all bond lengths and
the SETTLE algorithm was applied to constrain the geometry
of water molecules in the system. The energy minimization was
done in two equilibration phases, number of particles, volume,
and temperature (NVT) ensemble with a constant temperature
of 300K and with a coupling constant of 0.1 ps for duration
100 ps, and number of particles, pressure, and temperature
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(NPT) ensemble with a constant pressure of 1 bar was employed
with a coupling constant of 5 ps for duration 100 ps. For both
ensembles of equilibration, the coupling scheme of Berendsen
was employed. Finally, the systems were subjected to production
MD simulation for 25 ns run. MD trajectories of human
Septin-4 were analyzed by GROMACS utilities. The analysis
included RMSD, solvent accessible surface, the radius of gyration
(Rg), and principal component analysis (PCA). The stability
analysis was performed by using utilities like g_ rms, g_ sas, g_
gyrate, g_covar, and g_anaeig, respectively. Principal component
analysis describes a correlated motion of the protein obtained
from the mass-weighted Cα-covariance matrix. The functionally
relevant motion of the protein can be computed by the collective
displacement of domains called essential dynamics. To detect
the collective motion mutant trajectories were subjected to
PCA. The resulting covariance matrix describes the concerted
coordinate motions

In this study, the first and second Cartesian principal
components are considered reaction coordinates derived
from PCA.

RESULTS

The first step was to categorize the semen samples based on the
World health organization values, this was done by using several
semen samples, and each value and its error mean was the final
mark. Based on the semen analysis report oligospermia (N = 18)
meant for less count than normal, asthenospermia (less motility
N = 24) than normal, normospermia (normal as per WHO
N = 15), oligoasthenospermia (both less count and motility
N = 12), and healthy volunteer (control N = 8). The semen
parameter values were tabulated in Supplementary Table 1. The
results suggested that there exists a potential statistical difference
exist between oligospermia and asthenospermia in the case of
motility parameter. As this work will further correlate only
the motility issues, the results we majorly focused on only
motility issues.

Once the semen analysis report and categorization of samples
were done, immediately the samples were kept in liquid nitrogen
preservation. Once the need, the samples were centrifuged
for separation of seminal plasma and spermatozoa. Important
biochemical parameters were analyzed. The total protein
content was done for both seminal plasma and spermatozoa,
fructose content was estimated in seminal plasma, α-glucosidase
estimation was also done in seminal plasma for all samples in all
categories, and Zn content was evaluated in the same way. All
these are very essential biochemical parameters that need to be
evaluated for proper correlation with molecular markers during
diagnosis. All these biochemical values for different categories of
semen samples were tabulated in Supplementary Table 2.

Protein content was already evaluated through Lowry’s
method. After centrifugation, sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) was done
for different infertile categories as mentioned earlier in the
methodology section. The developed silver-stained protein
SDS-PAGE was depicted in Figure 1. Almost eight bands were

FIGURE 1 | The band around 55 kDa was less expressed in the case of

asthenospermia, but present in the case of oligospermia, normospermia, and

healthy volunteers. We guessed the importance of missed 55-kDa protein and

further we want to investigate on this protein. GelAnalyzer was used to analyze

this 1D SDS PAGE bands and all the interpretation has been done by the

standard protocol. 1, marker standard; 2, Normospermia; 3, healthy volunteer;

4, Asthenospermia; 5, Oligoasthenospermia.

found to be visible in the SDS-PAGE, with a maximum of
bands existing in the case of 50 and 110 kDa proteins. The
band around 55 kDa was missing in the case of asthenospermia,
but present in the case of oligospermia, normospermia, and
healthy volunteers. We guessed the importance of missed 55-kDa
protein and further, we want to investigate this protein. The
missed protein was isolated from normospermia and healthy
volunteers and then MALDI-TOF analysis was done for eight
samples to access the similarity in the results. Also, a Mascot
search was done by using the MALDI-TOF results. The missing
protein in asthenospermia was identified as Septin-4. It has
already been evidenced that this protein had played a major role
in Alzheimer’s disease, male infertility, and Down syndrome.
The role of Septin-4 in male infertility is enormous and more
molecular work is in need for the prediction of the pathway
mechanism behind male infertility. The correlation of motility
and its implications with male infertility diagnosis is the key
to success.

Mascot Search and Its Implications
The date got through m/Z values were analyzed for each sample
was searched in mascot MALDI-TOF-MS ions search. The
database used as SwissProt, humans as chosen for taxonomy and
enzyme as trypsin in the search tool. The parameters used for
searching the protein of interest through mascot search were
tabulated in Table 1. We looked for a maximum of hits and
were obtained against the Septin-4 protein. The functions of
the query protein were reviewed in Swissprot and involves in
male infertility if downregulated in certain patients. Database
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TABLE 1 | Mascot Search for the identified protein by MALDI TOF and its parameter search.

Variable modification Protein Fixed modification Sequence coverage (%) Significance score

Carbamidomethyl (C) Septin 4 (Homo sapiens) Carbamidomethyl (N-term) 91 85

Carbamidomethyl (C)

Carbamyl (K)

Septin family (Mice) Carbamidomethyl (N-term)

Carbamyl (N-Term)

85 57

Carbamidomethyl (C)

Carbamyl (K)

Semenogelin II

(Homo sapiens)

Carbamidomethyl (N-term)

Carbamyl (N-Term)

80 52

FIGURE 2 | (A) 3D structure model of human septin 4 visualized in PyMOL. (B) Protein quality check from ProSA server.

search was performed in PDB and observed that the absence of
experimental structure of human Septin-4. The in-silico approach
has been used to predict the structure of protein for further
research studies.

Structure Prediction
Using the in-silico structural study on human Septin-4, the 3D
structural model was predicted from the I-Tasser server. Out
of five models, the model with the least C-score −3.19 was
selected as the best structure of Septin-4. The other parameters
also supported the model with an estimated TM score of 0.36 ±
0.12 and an estimated RMSD of 15.2 ± 3.5Å. The threading/fold
recognitionmethod screened the structure of the GTPase domain
of human Septin-12 (PDB code: 6MQ9) as the template for the
Septin-4 modeling. The Septin-4 model falls under the structural
classification of alpha + beta, the architecture of the three-
layer (αβα) sandwich, and the topology of the Rossmann fold,
and is visualized in PyMol in Figure 2A. The major molecular
function of the septin family was catalytic activity, GTPase
activity, hydrolase activity, protein binding, lipid binding, and

protein dimerization activity. The quality of the model was
deciphered by the ProSA server and results showed the Z-score
of−3.5 that related to experimental structures in Figure 2B. The
above predicted human Septin-4 structural model can be used for
further annotation studies related to male infertility mechanisms.

Molecular Dynamics Simulations
The convergence of the protein system during simulations was
measured by RMSD of all Cα atoms from the initial structure.
The initial equilibration of the native structure of human Septin-
4 was done in 5 ns. After the equilibration phase, the structure
of Septin-4 showed an RMSD range in 0.3–0.4 nm during 25 ns
simulations (Figure 3A). The structure was well-converged and
confirmed the protein stability of Septin-4 at end of simulations
and structure with a stable trajectory in the dynamic system.
Radius of gyration was the property of the overall dimension of
protein during simulations. The Rg is termed as a measure of
mass-weighted root mean square distance of all atoms from the
center of mass. Radius of gyration of Septin-4 native structure
started with 1.92 nm but gradually decrease to equilibrate
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FIGURE 3 | Molecular dynamics simulations at 25ns of human septin 4 model (A) RMSD plot, (B) Rg plot, (C) SASA plot, (D) PCA plot.

with 1.85 nm (Figure 3B). Thus, the overall protein folding
pattern of human Septin-4 protein was observed. A solvent-
accessible surface (SASA) plot was constructed and results
showed the accessibility area around 75–80 nm2 confirmed the
behavior of the hydrophilic and hydrophobic residues in Septin-
4 (Figure 3C). Principal component analysis was performed
based on two steps. In the first step, the covariance matrix
was constructed and diagonalized based on Cα atoms using
g_covar and trace value of 5.52816 nm2. The eigenvectors and
corresponding eigenvalues were evaluated from the covariance
matrix using the motion of protein at the atom level. Then PCA
was done using g_anaeig with the projection of the first two
eigenvectors (eigenvector 1 vs. eigenvector 2) and the maximum
motion extracted from the production run of 20 ns. The local
motion of the PCA plot showed the overall motion of human
Septin-4 in the dynamic system related to eigenvector 1 vs.
eigenvector 2. The cluster was more compact and deciphered the
motion of protein with covariance matrix (Figure 3D).

DISCUSSION

Homozygous Septin-4 (Human semen Septin-4) deletion or its
downexpression was shown to have a complete or partial defect
in the structure of the sperm flagellum; this means it helps a lot

for the forward motility (52, 53). In our results also, the Septin-
4 absent or less expressed yield with less motility and especially
with forward type. The defect in the flagella or neck region always
yields these types of results (54, 55). Other researchers worked
with Septin-4-null sperm or flagella modified with no annulus,
this structure has been replaced by thin segment missing cortical
material, acts like an abnormal-flagella conferring a hairpin-
like structure (56–58). Two major hypothetical utilities have
long been ascribed to the annulus of the spermatozoa: one is
a diffusion barrier function; it is a very essential function for
the fertilization, detaining proteins to various compartments of
the sperm tail to the neck (59, 60). The second one is might
be on morphological planner function given guidance to the
growth of the flagellum and the association of the mitochondria
along the axoneme. Both of these mechanisms were found to
be failed in the case of Septin-4 null sperm. Morphology of
human sperm annulus/flagellum has been known for a long time,
but the mechanism by which it is correlating is poorly studied
(56, 61). Sperm flagella biogenesis, the biochemical composition
of the sperm tail to neck, and its functions remained as same
in the case of rigorous research. For the last decade, septins
have appeared and been explored as constitutive components of
the annulus/flagella of spermatozoa and persuasive evidence has
been evidenced bymany researchers and suggest that a very stable
septin complex/Septin-4 is the prerequisite for morphological

Frontiers in Medicine | www.frontiersin.org 6 December 2021 | Volume 8 | Article 723019195

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Vickram et al. Human Septin-4 as a Biomarker

differentiation of the sperm tail, neck and with an important
mechanism of diffusion barrier function (56). Although current
evidence suggests that septins bind to the plasma membrane
via interaction with phosphoinositides, our previous research
with prostasomes suggest that the Zn present on prostasomes
may transfer the essentials of needed motility factors and
phospholipids for proper movement (62), this achieved through
the fusion process of prostasomes and spermatozoa by means
of protein dependent or pH dependent (63, 64). This finding
suggests that binding to integral membrane proteins could also
be involved.Moreover, the advance of in-silico studies deciphered
the structural annotation of human Septin-4 that can be used
to understand the role of septin in male infertility. Molecular
modeling is the current best method used in the 3D structure
prediction of key protein/enzymes/drug targets in proteomics.
From the model structure, the major mechanism of Septin-4
has been studied using the structural arrangements of helix and
sheets. The structure–function relationship is highly critical in
the research area of male infertility, as very few 3D experimental
structures are available. Also, advancements in MDs simulation
deciphered the behavior of novel biomarker protein Septin-4 in
the all-atom dynamics. In-silico finding acts as a critical point that
can initiate various structure-function studies on human Septin-4
toward male infertility mechanism and pharmacology aspects.

CONCLUSION

Septins are the most important constituents of the annulus
in spermatozoa, a submembranous ring that disconnects the
middle and primary pieces of spermatozoa. This is believed to
be an important protein Septin-4 that plays a major role in
motility and its absence may be associated with asthenospermia.
Many researchers previously reported its essential role in
spermatogenesis and reproduction in animal models. Till now
many researchers worked with labeling techniques and identified
the importance of Septin-4 in the case of male infertility. In this
current research work, we elucidated and identified the presence
of Septin-4 in normal healthy sperm samples and its absence or
less expression in the case of other infertile groups especially in
the case of motility-related issues. The importance of Septin-4 in
male fertility was proved with 3D structural modeling from in-
silico characterization and MDs simulation confirmed the role
of stable Septin-4 in the dynamic system. Less expression was
found exclusively in infertile patients when compared to fertile

patients. Further research on Septin-4 with structural studies
may be used to explore more on the mechanism and its role
in spermatogenesis and human infertility. Hence, our findings
concluded that Septin-4 was a novel biomarker formale infertility
and can be used for diagnosis and pharmacology purposes.
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Background: Stomach adenocarcinoma (STAD) is a significant global health problem.

It is urgent to identify reliable predictors and establish a potential prognostic model.

Methods: RNA-sequencing expression data of patients with STAD were downloaded

from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA)

database. Gene expression profiling and survival analysis were performed to investigate

differentially expressed genes (DEGs) with significant clinical prognosis value. Overall

survival (OS) analysis and univariable and multivariable Cox regression analyses were

performed to establish the prognostic model. Protein–protein interaction (PPI) network,

functional enrichment analysis, and differential expression investigation were also

performed to further explore the potential mechanism of the prognostic genes in

STAD. Finally, nomogram establishment was undertaken by performing multivariate Cox

regression analysis, and calibration plots were generated to validate the nomogram.

Results: A total of 229 overlapping DEGs were identified. Following Kaplan–Meier

survival analysis and univariate and multivariate Cox regression analysis, 11 genes

significantly associated with prognosis were screened and five of these genes, including

COL10A1, MFAP2, CTHRC1, P4HA3, and FAP, were used to establish the risk model.

The results showed that patients with high-risk scores have a poor prognosis, compared

with those with low-risk scores (p = 0.0025 for the training dataset and p = 0.045

for the validation dataset). Subsequently, a nomogram (including TNM stage, age,

gender, histologic grade, and risk score) was created. In addition, differential expression

and immunohistochemistry stain of the five core genes in STAD and normal tissues

were verified.

Conclusion: We develop a prognostic-related model based on five core genes, which

may serve as an independent risk factor for survival prediction in patients with STAD.

Keywords: stomach adenocarcinoma, GEO, TCGA, differentially expressed genes, prognostic model
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BACKGROUND

Approximately 1.4 million people die each year worldwide
from adenocarcinomas of the esophagus, stomach, colon, or
rectum (1), of which stomach adenocarcinoma (STAD) has the
third highest incidence and second highest for cancer-related
mortality, and it remains a significant global health problem (2).
In 2018, STAD was estimated to cause one million new cases and
781,000 deaths worldwide (3). Since the non-specific symptoms
in early stages of the disease, STAD is typically not diagnosed
until the disease has progressed to a more severe state, resulting
in poor prognosis due to metastasis, intratumoral heterogeneity,
chemotherapy resistance, etc. (4). This raises an urgent need
for the development of reliable diagnostic, prognostic, and
therapeutic molecular biomarkers of STAD.

Integrative bioinformatics analysis is one of the frontiers of
biological research today and can be used to identify differential
genes, screen prognostic biomarkers, and select appropriate
treatment approach (5). Research on single-gene prediction
is very concentrated, but it is not yet effective in prognosis.
Polygenic combination has been reported to possess better
predictive ability for cancer prognosis than single genes (6). For
instance, Lu et al. (7) revealed that the dysregulated expression
of the THBS family was closely related to STAD prognosis
and tumor immunity. Additionally, Liu et al. (8) demonstrated
that the SFRP family was potential targets for precision therapy
and prognostic biomarkers for survival of patients with STAD.
Although there are some polygene bioinformatics analysis
studies, most of them focus on predicting of signatures, and there
is still a lack of research on polygenic risk estimation model and
predict prognosis of STAD.

In this study, we aimed to develop a prognostic model
for the predict prognosis for patients with STAD. A large
number of mRNA expression profiles of patients with STAD
were downloaded from Gene Expression Omnibus (GEO) and
the Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-
STAD) database. Differential expression analysis was used to
identify differentially expressed genes (DEGs) between STAD-
related tissue and normal tissue. Then, survival analysis and
univariable Cox regression analysis were performed to screen
prognostic genes, and multivariable Cox regression analysis was
used to establish a prognostic risk model. Further, protein–
protein interaction (PPI) network, functional enrichment
analysis, differential expression, and structure investigation of the
core genes were performed. Finally, a nomogram that includes
age, gender, tumor TNM stage, histologic grade, and 5-gene risk
prediction model as an independent clinical factor was used to

Abbreviations: STAD, stomach adenocarcinoma; GEO, Gene Expression
Omnibus; TCGA, the Cancer Genome Atlas; DEGs, differentially expressed
genes; TCGA-STAD, The Cancer Genome Atlas- Stomach Adenocarcinoma;
PPI, protein–protein interaction; OS, overall survival; ROC, receiver operating
characteristic; AUCs, areas under ROC curves; STRING, Search Tool for the
Retrieval of Interacting Genes database; GO, gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; BP, biological process; MF, molecular
function; CC, cell components; GSEA, gene set enrichment analysis; CRC,
colorectal cancer; FDR, false discovery rate.

predict the 1-, 3-, and 5-year survival rate of patients with STAD.
The detailed flowchart of this work is provided in Figure 1.

METHODS

Data Source
The GEO database (http://www.ncbi.nlm.nih.gov/geo) was used
to retrieve data with “stomach adenocarcinoma” as the keywords
and human as the species. Datasets that covered cancer tissue
and normal adjacent tissue, came from the same platform,
and contained at least 20 samples were selected, and then,
the gene expression profiles and their clinical data were
downloaded. From TCGA portal (https://tcga-data.nci.nih.gov/
tcga/), we collected the STAD RNA-seq data and related
clinical parameters.

Differential Expression Analysis
Gene level expression data were normalized and then log2
transformation is provided by the limma package of R software
(version 3.6.3). For GEO datasets, data were analyzed using the
GEO2R analysis tool, and the DEGs were identified at adjusted p
< 0.05 and |Log2FC| >1. For TCGA-STAD cohort, DEGs were
identified with false discovery rate (FDR) < 0.05 and |Log2FC|
>1 via the edge R package (9).

Prognostic Genes’ Identification
Overlapping DEGs were screened based on the p-value
and fold change (FC)/log(FC), and the top 50 genes were
selected for Kaplan–Meier survival analysis. Log-rank p-
values for Kaplan–Meier plots were calculated using an
R package for survival analysis. Then, we screened genes
with log-rank p < 0.05 as prognostic-related genes for
subsequent analysis.

Construction and Validation Prognostic
Model of STAD
To establish the prognostic model of STAD, univariable and
multivariable Cox regression analyses were performed on the
prognostic-related genes by the survival R package (10). Owing
to the lack of survival information on GEO, we randomly
divided the patients with complete survival information in
TCGA-STAD dataset into training set and validation set, fit
the model in the training set, and assessed its performance in
the validation set. Then, the prognostic model was established
based on corresponding coefficients of the prognostic genes
of STAD.

Risk score =

n
∑

i=1

β×Expi

Further, the training set was divided into high- and low-
risk groups according to the median value of risk score.
Kaplan–Meier survival analysis was performed to estimate
overall survival (OS) between the two groups by the
survival R package. Time-dependent receiver operating
characteristic (ROC) curves were plotted by time ROC R
package, and the areas under ROC curves (AUCs) were
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FIGURE 1 | Flowchart of this study.

calculated to test the efficiency of the prognostic model
(11). Univariable and multivariable Cox regression analyses
were applied on clinical data (including age, gender, TMN

stage, and histologic grade) and risk scores to assess whether
the risk model was an independent prognostic factor of
clinical parameters.
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PPI Network Construction and Functional
Enrichment Analysis
Interaction network analysis was obtained by employing
STRING v11.5 database (http://string-db.org/), keeping default
parameters. The topological properties of the PPI network
included average shortest path length, betweenness centrality,
closeness centrality, degree, eccentricity, neighborhood
connectivity, radiality, stress, and topological coefficient.
Molecular complex detection (MCODE) analysis was applied
to the prognostic-related gene network to identify densely
connected subnetwork modules. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis were performed to identify significant pathways via
the “cluster Profiler” package in R (12). The items of biological
processes were further analyzed by GO classifications. The
adjusted p < 0.05 was considered to indicate a statistically
significant difference. In addition, gene set enrichment analysis
(GSEA) was utilized to determine the core gene-related signaling
pathways by the “cluster Profiler” package in R. Results with
absolute value of normalized enrichment score > 1, FDR < 0.25,
and adjust p < 0.05 were considered statistically significant. 1D
linear domain structures and 3D structures of proteins were
visualized using cBioPortal (http://www.cbioportal.org/).

Prognostic Gene Expression Investigation
in STAD and Nomogram Construction
Differential expression of the prognostic genes between
normal and STAD-related tissues was verified. Additionally,
immunohistochemistry staining of the prognostic genes in
STAD and normal tissues was acquired from the Human Protein
Atlas database (https://www.proteinatlas.org/). According to the
results of univariate and multivariate Cox regression analyses, a
nomogram was created using the rms and survival package of R
(13). Additionally, a calibration plots were generated to validate
the nomogram.

RESULTS

Differential Expression Analysis
The clinical data of GSE27342, GSE63089, and TCGA-STAD
were shown in Table 1. We found 474 DEGs in GSE27342
profile (287 upregulated and 187 downregulated, Figure 2A),
732 DEGs in GSE63089 profile (622 upregulated and 110
downregulated, Figure 2B), and 5,494 DEGs in TCGA-STAD
cohort (2,659 upregulated and 2,835 downregulated, Figure 2C).
Subsequently, a total of 229 overlapping DEGs (159 upregulated
and 70 downregulated) were screened among the three datasets
(Figure 2D and Additional File 1).

Prognostic-Related Genes’ Identification
We selected the top 50 overlapping DEGs (cutoff: p < 0.05 and
|Log2FC| >1.75) as candidate genes. According to log-rank p <

0.05 by Kaplan–Meier survival analysis, 11 genes (ADAM2, BGN,
COL10A1, MMP1, MMP7, MFAP2, CTHRC1, P4HA3, SFRP4,
TNFRSF11B, and FAP) were screened as prognostic-related genes
for following research, and the Kaplan–Meier plots were shown
in Figure 3.

TABLE 1 | Clinical or characteristics of patients with STAD in different datasets.

Characteristic TCGA data (n, %) GSE27342

(n, %)

GSE63089

(n, %)

Platform Illumina HiSeq2000

RNA sequencing

platform

Affymetrix

Human Exon

1.0 ST Array

Affymetrix

Human Exon

1.0 ST Array

Samples 407 (100.0%) 160 (100.0%) 90 (100.0%)

Normal 32 (7.9%) 80 (50.0%) 45 (50.0%)

Tumor 375 (92.1%) 80 (50.0%) 45 (50.0%)

Survival status 377 (92.6%) NA NA

Death 145 (35.6%) NA NA

Survival 232 (57.0%) NA NA

Age 366 (89.9%) 77 (48.1%) 70 (77.8%)

<=65 155 (38.1%) 59 (36.9%) 51 (56.7%)

>65 211 (51.8%) 18 (11.3%) 19 (21.1%)

Gender 380 (93.3%) 80 (50.0%) 70 (77.8%)

Female 137 (33.7%) 27 (16.9%) 25 (27.8%)

Male 243 (59.7%) 53 (33.1%) 45 (50.0%)

Stage 356 (87.5%) 80 (50.0%) NA

I 55 (13.5%) 4 (2.5%) NA

II 112 (27.5%) 7 (4.4%) NA

III 150 (36.9%) 54 (33.8%) NA

IV 39 (9.6%) 15 (9.4%) NA

T classification 372 (91.4%) NA 70 (77.8%)

T1 20 (4.9%) NA 12 (13.3%)

T2 84 (20.6%) NA 16 (17.8%)

T3 168 (41.3%) NA 25 (27.8%)

T4 100 (24.6%) NA 17 (18.9%)

N classification 362 (88.9%) NA NA

N0 113 (27.8%) NA NA

N1 99 (24.3%) NA NA

N2 76 (18.7%) NA NA

N3 74 (18.2%) NA NA

M classification 358 (88.0%) NA NA

M0 332 (81.6%) NA NA

M1 26 (6.4%) NA NA

TCGA, The Cancer Genome Atlas; NA, not available; T, primary tumor; N, regional lymph

nodes; M, distant metastasis.

Construction and Validation Prognostic
Model of STAD
Since the expression value of ADAM2 was zero in half of the
samples, it was impossible to group by the median. The results of
the univariate and multivariate proportional hazards regression
analyses of the 10 prognostic-related genes associated with
clinical outcomes are shown in Table 2. Multivariate regression
analysis revealed COL10A1, MFAP2, CTHRC1, P4HA3, and FAP
as the risk factor, and the risk score formula for OS was as follows:

Riskscore = (−0.0013× COL10A1Exp)+ (0.2709

×MFAP2Exp) + (0.1869× CTHRC1Exp)+ (0.1649

×P4HA3Exp) + (9e− 04× FAPExp)
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FIGURE 2 | The results of differential expression analysis. (A) The heatmap and volcano plots visualizing the DEGs in TCGA-STAD. (B) The heatmap and volcano

plots visualizing the DEGs in GSE27342. (C) The heatmap and volcano plots visualizing the DEGs in GSE63089. (D) Venn diagram showing the overlapping DEGs in

the three datasets.
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FIGURE 3 | Kaplan–Meier curves of 11 gene with prognostic value.
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TABLE 2 | Univariate and multivariate Cox regression analyses.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

COL10A1 (high vs. low) 370 1.434 (1.030–1.996) 0.033 0.999 (0.595–1.676) 0.996

MFAP2 (high vs. low) 370 1.593 (1.140–2.226) 0.006 1.311 (0.851–2.021) 0.220

CTHRC1 (high vs. low) 370 1.559 (1.118–2.174) 0.009 1.206 (0.708–2.052) 0.491

P4HA3 (high vs. low) 370 1.511 (1.084–2.107) 0.015 1.179 (0.740–1.878) 0.488

FAP (high vs. low) 370 1.415 (1.017–1.970) 0.039 1.001 (0.598–1.676) 0.997

BGN (high vs. low) 370 1.326 (0.954–1.844) 0.094

MMP1 (high vs. low) 370 1.187 (0.855–1.648) 0.305

MMP7 (high vs. low) 370 1.084 (0.781–1.504) 0.631

SFRP4 (high vs. low) 370 1.267 (0.913–1.758) 0.157

TNFRSF11B (high vs. low) 370 1.341 (0.966–1.862) 0.080

FIGURE 4 | Development of prognostic model in the training set. (A) Expression heatmap of five core genes. (B) ROC curves for survival risk predicted by risk score

for 1-, 3-, and 5-year follow-ups. (C) Survival curves of high- and low-risk groups separated by risk score.
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FIGURE 5 | Invalidation of prognostic model in the invalidation set. (A) Expression heatmap of five core genes. (B) ROC curves for survival risk predicted by risk score

for 1-, 3-, and 5-year follow-ups. (C) Survival curves of high- and low-risk groups separated by risk score.

In addition, the patients of TCGA-STAD dataset were divided
into training set and validation set. Training set consisted of
186 STAD cases whereas validation set consisted of 185 STAD
cases. Patients with STAD were divided into high- and low-risk
subgroups according to the median value of risk score (cutoff
= 14.9). In the training set, the survival analysis showed that
the OS rates in the high-risk group were significantly lower
than those in the low-risk group (p = 0.0025, Figure 4C). The
time-dependent ROC curves offered a survival prediction that
the AUCs were 0.576 (1-year OS), 0.733 (3-year OS), and 0.887
(5-year OS). Result showed that the risk model had a good
ability to predict long-term prognosis of STAD (Figure 4B). The
heatmap showed that the expression levels of five core genes
were higher in patients with STAD with high-risk scores than

those with low-risk scores (Figures 4A, 5A). Meanwhile, data
in the validation set showed the similar results: OS rates in the
high-risk group were significantly lower than those in the low-
risk group (p = 0.045, Figure 5C); the time-dependent ROC
curves (Figure 5B) predicted that the AUCs were 0.530 (1-year
OS), 0.599 (3-year OS), and 0.702 (5-year OS). Moreover, using
multivariate Cox regression analysis, the prognostic model was
identified as an independent predictor for patients with STAD (p
= 0.008, Table 3).

PPI Network Construction and Functional
Enrichment Analysis
The PPI network of the five core genes was shown in Figure 6A.
The topological properties of the PPI network for each gene were
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TABLE 3 | Univariate and multivariate Cox regression analyses for risk score of patients with STAD.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 370

≥65 213 Reference

≤65 157 0.607 (0.430–0.856) 0.004 0.538 (0.369–0.785) 0.001

Gender 370

Male 237 Reference

Female 133 0.789 (0.554–1.123) 0.188

T stage 362

T1&T2 96 Reference

T3&T4 266 1.719 (1.131–2.612) 0.011 1.410 (0.894–2.226) 0.140

M stage 352

M0 327 Reference

M1 25 2.254 (1.295–3.924) 0.004 2.489 (1.337–4.634) 0.004

N stage 352

N0&N1 204 Reference

N2&N3 148 1.650 (1.182–2.302) 0.003 1.517 (1.060–2.172) 0.023

Histologic grade 361

G1&G2 144 Reference

G3 217 1.353 (0.957–1.914) 0.087 1.399 (0.956–2.048) 0.084

Risk score 370 1.036 (1.012–1.062) 0.004 1.037 (1.010–1.065) 0.008

shown in Additional File 6. Highly interconnected subcluster of
the five core genes was shown in Figure 6B, and the subcluster
consisted of 53 nodes and 305 edges (score = 11.731), which
represented relatively stable of protein in the network.

The results of GO enrichment analysis (Figure 7A) showed
that the five core genes significantly focused on extracellular
matrix organization, extracellular structure organization
(biological process, BP); extracellular matrix structural
constituent, dipeptidyl-peptidase activity (molecular function,
MF); and collagen-containing extracellular matrix, collagen
trimer (cell components, CC). Meanwhile, we found that in
terms of biological processes, the genes were mainly focused
on extracellular matrix, cell cycle, and Wnt signaling pathways.
According to the p-value, the top five items from the three
categories were selected to plot a histogram (Figure 7B). KEGG
enrichment analysis (Figure 7A) indicated that prognostic genes
were significantly enriched with arginine and proline metabolism
and protein digestion and absorption, etc.

Gene set enrichment analysis was applied to determine
their related signaling pathways (Figures 7C–G). COL10A1
was significantly enriched with olfactory transduction and
nitrogen metabolism pathways, etc. CTHRC1 was significantly
enriched in olfactory transduction and metabolism of
xenobiotics by cytochrome p450 pathways, etc. MFAP2 was
significantly enriched with olfactory transduction and fatty
acid metabolism pathways, etc. P4HA3 was significantly
enriched with ribosome and nitrogen metabolism pathways,
etc. FAP was significantly enriched in nitrogen metabolism and
metabolism of xenobiotics by cytochrome p450 pathways, etc.

Themutation site and structure of the five core genes were shown
in Figure 8.

Prognostic Gene Expression Investigation
in STAD and Nomogram Construction
Differential expression of the prognostic genes between
normal and STAD-related tissues was verified. Results
demonstrated that COL10A1, MFAP2, CTHRC1, P4HA3,
and FAP were significantly upregulated in STAD-related tissues
compared with normal tissues (Figure 9A). Additionally,
immunohistochemistry staining of five core genes in STAD
and normal tissues was acquired from the Human Protein
Atlas database, which showed that differential expression of
protein was consistent with gene expression (Figure 9B).
However, the immunohistochemical images of COL10A1 were
not found. Then, a nomogram (Figure 10A, including TNM
stage, age, gender, histologic grade, and risk score) was created
to predict the survival rate of patients with STAD at 1, 3, and 5
years. It was found that high total points predicted low 1-, 3-,
and 5-year survival rates; however, a low total points did the
opposite. The nomogram calibration plots (Figure 10B) indicate
that the nomogram was well-calibrated, with mean predicted
probabilities for 1- and 3-year OS close to observed probabilities.

DISCUSSION

The genetic background of STAD is complicated. Mining genes
related to the prognosis of STAD from the genetic and molecular
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FIGURE 6 | PPI network construction. (A) PPI for the five core genes in 229 overlapping DEGs. (B) Important modules including the five core genes in the PPI network.

Frontiers in Medicine | www.frontiersin.org 10 December 2021 | Volume 8 | Article 793401208

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wang et al. Prognosis Prediction Model for STAD

FIGURE 7 | Enrichment analysis for the five core genes. (A) GO and KEGG enrichment analysis. (B) Biological process enrichment analysis. (C–G) GSEA for

COL10A1 (C), CTHRC1 (D), MFAP2 (E), P4HA3 (F), and FAP (G).

level is of great significance for the treatment and prognosis
prediction of STAD. Bioinformatics analysis based on large
databases has pointed out the direction for tumor research. In this
study, we downloaded gene expression profiling and clinical data
from the TCGA and GEO databases, identified DEGs, screened
the prognostic-related genes, and then constructed a prognostic
model based on five core genes (COL10A1, MFAP2, CTHRC1,
P4HA3, and FAP).

COL10A1 is amember of the collagen family involved in tissue
architecture and acts as a barrier to the migration of epithelial
cells under normal conditions (14). Necula et al. (14) identified
a significant increase in COL10A1 plasma level in patients
with STAD and concluded that COL10A1 shows an elevated
expression from the beginning of carcinogenesis, in the early

stages, and its increased level remains elevated during gastric
cancer progression. Aktas et al. also found that COL10A1 is
abnormally upregulated in gastric cancer and its high expression
can be used as a diagnostic and/or prognostic biomarker (15). It
has been reported thatMFAP2 is upregulated in STAD, negatively
correlated with OS, and can be used as a prognostic biomarker
of STAD (16, 17), which is consistent with our results. Further,
Yao et al. revealed that MFAP2 is overexpressed in gastric cancer
and promotes motility via the MFAP2/integrin α5β1/FAK/ERK
pathway (18). CTHRC1 is a cancer-related gene that can
promote cancer recurrence or metastasis via diverse signaling
pathways, including TGF-β, MEK/ERK, and PKC-δ/ERK (19).
Ding et al. (20) found that CTHRC1 promoted STAD metastasis
through HIF-1α/CXCR4 signaling pathway, which can be used
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FIGURE 8 | Structural and functional in of the five core genes. (A) COL10A1, (B) CTHRC1, (C) MFAP2, (D) P4HA3, and (E) FAP.

as a biomarker for STAD, and is consistent with our results.
Moreover, CTHRC1 was demonstrated that overexpressed in
hepatocellular carcinoma tissues significantly correlating with
poor survival rate, which can be used as a prognostic marker for
liver cancer (21). Consistent with the results of this study, P4HA3
has been repeatedly reported to be overexpressed in STAD and
is related to the poor prognosis of STAD (22). Song et al. found
that P4HA3 can be apparently activated by Slug in STAD tissues,
of which imbalance and metastasis were related to poor survival

rates (23). FAP is a fibroblast activating protein, which has
found to be involved in the growth and formation of a variety
of cancers. Research revealed that FAP promoted the growth
of intrahepatic cholangiocarcinoma through the recruitment of
myeloid derived suppression cells (24). Additionally, the high
expression of FAP in colorectal cancer is related to angiogenesis
and immune regulation (25).

In this study, we established a polygene risk factors model
for predicting prognostic of STAD, which is more rational than
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FIGURE 9 | Expression investigation of five core genes. (A) Differential expression of the five core genes between normal and STAD-related tissues. (B)

Immunohistochemistry staining and their mRNA expression in normal and STAD-related tissues based on The Human Protein Atlas. ***p < 0.001.
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FIGURE 10 | Nomogram predicted the 1-, 3-, and 5-year survival rates of patients with STAD. (A) Nomogram predicting the 1-, 3-, and 5-year OS rates of patients

with STAD. (B) Calibration plots for the 1- and 3-year OS nomogram.
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single-risk factor. However, there are potential limitations to
our analysis. First, this study has limitations inherent to a
bioinformatics analysis. The construction of prognostic model
is based on the TCGA and GEO database analysis and lacks
clinical or cellular or animal functional experimental verification.
Second, due to some patients with incomplete details are
excluded, there may be selection bias in this study.

CONCLUSION

We developed a prognostic model for patients with STAD
based on COL10A1, MFAP2, CTHRC1, P4HA3, and FAP, and
a nomogram to predict the survival rate of patients with STAD
at 1, 3, and 5 years. The evidence from this study comes from
bioinformatics, as with other studies of a similar nature. It is still
necessary to conduct further experiments to verify these findings.
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Objective: This study aimed to identify the programmed death ligand-1 (PDL1, also

termed as CD274) and its positively correlated immune checkpoint genes (ICGs) and

to determine the immune subtypes of CD274-centered ICG combinations in oral and

squamous cell carcinoma (OSCC).

Materials and Methods: Firstly, the 95 ICGs obtained via literature reviews were

identified in the Cancer Genome Atlas (TCGA) database in relation to OSCC, and such

88 ICG expression profiles were extracted. ICGs positively correlated with CD274 were

utilized for subsequent analysis. The relationship between ICGs positively correlated with

CD274 and immunotherapy biomarkers (tumor mutation burden (TMB), and adaptive

immune resistance pathway genes) was investigated, and the relationships of these

genes with OSCC clinical features were explored. The prognostic values of CD274 and

its positively correlated ICGs and also their associated gene pairs were revealed using

the survival analysis.

Results: Eight ICGs, including CTLA4, ICOS, TNFRSF4, CD27, B- and T-lymphocyte

attenuator (BTLA), ADORA2A, CD40LG, and CD28, were found to be positively

correlated with CD274. Among the eight ICGs, seven ICGs (CTLA4, ICOS, TNFRSF4,

CD27, BTLA, CD40LG, and CD28) were significantly negatively correlated with TMB.

The majority of the adaptive immune resistance pathway genes were positively

correlated with ICGs positively correlated with CD274. The survival analysis utilizing

the TCGA-OSCC data showed that, although CD274 was not significantly associated

with overall survival (OS), the majority of ICGs positively correlated with CD274
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(BTLA, CD27, CTLA4, CD40LG, CD28, ICOS, and TNFRSF4) were significantly

correlated with OS, whereby their low-expression predicted a favorable prognosis.

The survival analysis based on the gene pair subtypes showed that the combination

subtypes of CD274_low/BTLA_low, CD274_low/CD27_low, CD274_low/CTLA4_low,

CD8A_high/BTLA_low, CD8A_high/CD27_low, and CD8A_high/CTLA4_low predicted

favorable OS.

Conclusion: The results in this study provide a theoretical basis for prognostic immune

subtyping of OSCC and highlight the importance of developing future immunotherapeutic

strategies for treating oral cancer.

Keywords: PDL1, immune checkpoint genes, oral and squamous cell carcinoma, immune subtypes, prognosis

INTRODUCTION

Oral and squamous cell carcinoma (OSCC) is one of the most
common oral cancers and is characterized by high morbidity and
mortality (1). Currently applied treatment approaches include
tumor resection, radiotherapy, and adjuvant chemotherapy but
patients with OSCC continue to display an unsatisfactory
prognosis after such routine therapy (2). The median survival
period of patients with OSCC is 515 days, which is<1.5 years (3).
This fact underscores a urgent need for innovative and effective
therapeutic strategies for treating OSCC. Immunotherapy based
on the drugs targeting immune checkpoint genes (ICGs) has
gained considerable attention in recent years, with a surge
in the development of novel immune strategies to treat and
improve the survival of patients with cancer (4). Two main
approaches have been proposed to enhance the antitumor
immunity. The most well-investigated approach is the blockade
of coinhibitory molecules with monoclonal Abs directed to T-
cell surface ICG biomarkers, namely programmed cell death
protein-1 (PD1)/programmed death ligand-1 (PDL1 also named
as CD274), CTLA4, LAG3, TIM3, and B- and T-lymphocyte
attenuator (BTLA) (5). The second approach is based on
activating costimulatory molecules with agnostic Abs directed
to T-cell surface ICG biomarkers, namely CD27, CD40, OX40,
and CD137 (6). Most current research is focused on coinhibitory
ICGs due to the fundamental safety challenges accompanying the
triggering costimulatory immune pathways, as well as the dose-
limiting toxicities of mAbs agents to costimulatory ICGs (7).
Therefore, the primary focus of researchers has been directed at
investigating coinhibitory ICGs, particularly PD1 and its ligand-
PDL1 (8).

It is well-established that PDL1 expressed on the surface
of cancer cells can bind with PD1 on the surface of T-
cells, and the interaction between PDL1 and PDL1 can inhibit
the function of T-cells by inhibiting proliferation, promoting
apoptosis, and inhibiting the cytokine secretion (9). The inhibitor
drugs targeting PDL1, pembrolizumab and pembrolizumab,
have been approved for use in many solid cancer treatments,
including the first-line treatment for patients with recurrent or
metastatic head and neck squamous cell carcinomas (HNSCC)
(10). However, currently, there are no clinical trials of PDL1
inhibitors for treating OSCC. Prior clinical trials using a PDL1

inhibitor in HNSCC showed unsatisfactory response rates in
an unselected population of patients with cancer, suggesting
that not all patients respond well to the PDL1 inhibitor-based
immunotherapy and a subset of patients are resistant to such
immunotherapy (11). The purported cause underlying this
phenomenon is to vary the expression levels of PDL1 among
patients; therefore, patients with a high expression of PDL1might
achieve clinical responses, while those with a low expression
are likely to be resistant. Another important influencing factor
might be the density, composition, and activation state of the
CD8+ effector T-cells, which play a central role in antitumor
immunity. Patients with low infiltration of CD8+ T-cells might
not respond to such immunotherapy (12). Based on these factors,
there is an urgent need for the differentiation of patients with
cancer into immune subtypes according to the expression level
of PDL1 and the infiltration of CD8+ T-cells. The subtyping
of an immune microenvironment in OSCC can be beneficial
for identifying patients who may benefit from ICG-targeting
therapies, and aid in optimizing the agent design for future
clinical trials.

Furthermore, a few studies have shown that coinhibitory
ICGs’ inhibitor drugs, when administered as synergistic
combination strategies, induced a dramatic increase in
durable response rates as compared to monotherapy (13).
The combination of PDL1 and its synergistic ICG blockers was
shown to significantly increase the response rates and enhance
the treatment efficacy in patients with cancer. For example,
the combination of ipilimumab (anti-CTLA-4) plus nivolumab
(anti-PD-1) was shown to significantly enhance efficacy in
patients with metastatic melanoma; therefore, ipilimumab
plus nivolumab was approved for the treatment of metastatic
melanoma, advanced renal cell carcinoma, and metastatic
colorectal cancer (14). The treatment efficacy of PDL1-centered
ICG combination inhibitors has been reported in many research
studies on melanoma, breast cancer, and lung cancer (15, 16).
The success of this combination in other cancer types encourages
its investigation in OSCC. While previous studies have addressed
the synergistic combination of coinhibitory ICG inhibitors in
cancer treatment, it has not yet been investigated in the context
of OSCC.

To address this research gap, the present study utilized the
Cancer Genome Atlas (TCGA) (17) and the Gene Expression
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Omnibus (GEO) database (18). The TCGA is well-established as
the most comprehensive cancer genomics program, which has
produced, evaluated, andmade public data related to the genomic
sequencing, expression, methylation, and copy number variation
of over 11,000 patients with cancer who have been diagnosed
with more than 30 distinct forms of cancer (17). Many previous
bioinformatics studies have followed the traditional study design
of analyzing the TCGA data and followed by the verification
of the computationally predicted results using GEO data sets
(19–24). The GEO database is a freely accessible resource for
the functional genomics data that contain original data sets
from tens of thousands of published microarray or sequencing
experiments (25). Because GEO data sets vary in the aspects
of experimental design, country, race, laboratories, experimental
platform, sample size, and disease severity, these multiple factors
allow the GEO data sets to be heterogeneous. If the results
determined based on the TCGA data can be validated using
the heterogeneous GEO data sets, the predicted results can be
considered reliable. Therefore, in the present investigation, four
oral cancer GEO data sets were used as independent cohorts to
validate the prognostic immune subtypes results obtained using
the TCGA data.

Based on the clinical survival data and RNA expression data
from the TCGA and GEO database, the present research aimed to
identify the ICGs that work synergistically with PDL1 in OSCC,
as well as the PDL1-centered ICGs combinations that have
prognostic values for OSCC. The ICG inhibitor combinations
and prognostic immune subtypes identified in this research could
provide novel strategies for the immunotherapy of OSCC, and
bear the potential for clinical translation.

MATERIALS AND METHODS

Study Design
The work flowchart is shown in Figure 1. In brief, 95 ICGs
obtained from the literature review were mapped into the
OSCC-TCGA data set, and 88 ICGs were found in the data
set. The tumor-infiltrating immune cell (TIIC) analysis was
performed based on the expression profiles of 88 ICGs in OSCC
samples, and it included distribution proportion, a heat map
analysis, and a correlation analysis. The correlation among the
88 ICGs in OSCC samples was investigated, particularly focusing
on the ICGs positively correlated with CD274. Afterward, the
relationship between ICGs positively correlated with CD274
and several immunotherapy-related aspects was investigated.
Moreover, the OSCC sample subtypes with prognostic values
were identified by investigating the prognostic values of the
sole genes (CD274 and its positively correlated ICGs); the
prognostic values of the combination subtypes defined by
CD274 and its positively correlated ICGs; and the prognostic
values of the combination subtypes defined by ICGs positively
correlated with CD8A and CD274. To validate the prediction
accuracy of the prognostic immune subtypes identified by the
TCGA data analysis, four independent cohort data sets (i.e.,
GSE41613, GSE42743, GSE75538, and GSE85446) were used
for verification.

Procurement of 95 ICGs by Literature
Reviews
The ICG list, including 95 ICGs, was obtained by collecting
the union of ICG list in several literatures investigating the
involvement of ICGs in cancers (26–29). ICGs are displayed in
Supplementary Table S1.

OSCC Data Downloading and
Preprocessing
The HNSCC data from the TCGA database were downloaded
from the University of California Santa Cruz’s official webpage
(https://xenabrowser.net/datapages/). The downloaded data
regarding HNSCC consisted of gene expression RNAseq data,
survival data, somatic mutation (SNPs and small INDELs) data,
curated clinical data, and phenotype data. The OSCC data were
collected by selecting the OSCC-related anatomic sites in the
column of “site_of_resection_or_biopsy.diagnoses” of the excel
file regarding the clinical data of HNSCC. The OSCC-related
anatomic sites include buccal mucosa, retromolar trigone,
alveolar ridge, the floor of the mouth, hard palate, oral cavity,
gingiva (upper and lower), and oral tongue (anterior 2/3) (30).
Afterward, the OSCC data were pre-processed by removing
the samples without clinical information, particularly survival
information, and the samples with the overall survival (OS) of
<1 month, and the adjacent healthy control samples, as well as
the samples in which genes’ Fragments Per Kilobase of transcript
per Million mapped reads (FPKM) value was 0. After performing
such preprocessing, the 326 OSCC samples were obtained.
Supplementary Table S2 presents the sample size belonging to
the different anatomic sites of the 326 OSCC samples. As seen
from Supplementary Table S2, the most frequent site is the
tongue (42.33%); the overlapping lesion of the lip as the second
frequent site (25.15%); and the floor of the mouth as the third
frequent site (16.87%).

Procurement of the Expression Profiles of
88 ICGs in OSCC Samples
The ensemble IDs of genes in the expression profile of OSCC
were converted to the gene SYMBOL by using the Bioconductor
package (31). Regarding the genes that repeatedly appear after
conversion, the average expression values of these genes were
taken to ensure that the genes were unique in the expression
profile. Afterward, 95 ICGs were mapped into the expression
profile of OSCC, and 88 ICGs showed an expression in the
TCGA-OSCC data set, and thus the expression profile of these
88 ICGs was obtained.

Analysis of TIICs in OSCC Samples
Twenty-two TIICs were obtained based on the CIBERSORT
webtool (https://cibersort.stanford.edu/) (32). Firstly, the
expression profiles of 88 ICGs in TCGA-OSCC samples were
normalized, and the proportion of TIICs in OSCC samples was
predicted using the CIBERSORT webtool (32). A total of 115
OSCC samples were obtained from 326 TCGA-OSCC samples
by selecting the value of p < 0.05. Secondly, the expression levels
of varying ICGs in each type of cell were obtained. The average
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FIGURE 1 | The work flowchart of the present study. The flowchart is divided into four steps: data procurement for obtaining the 88 immune checkpoint genes (ICGs)

with the expression profile in the Cancer Genome Atlas (TCGA) oral and squamous cell carcinoma (OSCC) data set; tumor-infiltrating immune cells (TIICs) analysis; a

correlation analysis for identifying ICGs positively correlated with CD274; and subsequent analysis focusing on the ICGs positively correlated with CD274 particularly

(Continued)
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FIGURE 1 | from the aspect of the tumor mutation burden (TMB), adaptive immune resistance pathway, and clinical features; as well as the identification of the

prognostic immune subtypes.

value of all ICGs in a certain type of cell was regarded as the
expression level of this type of cell in samples. The heat map
was plotted to show the expression levels of 22 TIICs in 115
OSCC samples.

Thirdly, a correlation plot was drawn based on the expression
levels of TIICs in 115 samples to analyze the correlation between
TIICs in the pathogenesis of OSCC. The Pearson correlation
coefficient was used for calculating the correlation between any
two types of TIICs. The correlation relationship between the two
ICGs is represented by the letter r and quantified with a number,
which varies between −1 and +1. Zero means that there is no
correlation, whereas 1 means a complete or perfect correlation.
The sign of r shows the direction of a correlation: a positive r
means that the certain two ICGs were positively correlated and
can play a synergistic role and vice versa. The interpretation of the
Pearson’s correlation coefficients value should be referred to the
literature by the users’ guide provided by Haldun Akoglu in 2018
(33). The |r| value≥ 0.8 indicates a very strong correlation; 0.5≤
|r|< 0.8 indicates a moderate correlation; 0.3≤ |r|< 0.5 indicates
a fair correlation; and |r| < 0.3 indicates a poor correlation.

Heat Map Shows the Prognostic Values of
88 ICGs in OSCC
Eighty-eight ICGs with expression values in the TCGA-OSCC
data set were obtained. Differentially expressed ICGs in the
OSCC-TCGA data were identified by performing a differential
expression analysis and using the edgeR package (version 3.14)
(34) in the R software (version 3.6.3). Genes with log FC > 0 and
the value of p < 0.05 were regarded as upregulated differentially
expressed genes (DEGs); while genes with logFC < 0 and the
value of p< 0.05 were regarded as downregulatedDEGs (35). The
relationship between these 88 ICGs and the OS of patients with
OSCC was analyzed using a univariate Cox regression analysis
(log-rank p < 0.05). Heat maps were plotted using the pheatmap
package (version 1.0.12) in R (36).

The Correlation Relationship Among 88
ICGs
To evaluate the correlation relationship among 88 ICGs, the
Spearman algorithm was used to calculate the correlation of the
expression value of 88 ICGs. The correlation relationship among
88 ICGs was displayed by using the corrplot package (version
0.92) in R (37). The correlation between PDL1 (CD274) and
other ICGs was particularly marked as the research focus in
subsequent analysis aimed to identify the ICGs, which were either
positively (synergistic) or negatively (antagonistic) correlated
with CD274.

Identification of Prognostic ICGs Positively
Correlated With CD274
Among the 88 ICGs, ICGs, which were positively correlated to
CD274 and had the value of p < 0.05, were selected. Based

on the expression values of these selected genes, the univariate
Cox regression analysis was performed by using the survival
package (version 3.2-13) in R (38). The relationship between the
expression values of selected ICGs and prognosis was shown by
the forest plot, which was plotted by using the forestplot package
(version 2.0.1) in R (39). ICGs, which were not only positively
correlated with CD274 but also had significant prognostic
values, were identified and used as the investigation focus in
subsequent analysis. Furthermore, the functional enrichment
analysis was performed to determine the significant biological
processes (BPs), and signaling pathways enriched by the ICGs
were identified in the last step. The gene names of these ICGs
were converted to the Entrez ID using the org.Hs.eg.db package
(version 3.14) in R (40). The functional enrichment analysis was
performed using the clusterProfiler package (version 3.14) in R
(41). The species for the analysis was selected to beHomo sapiens.
The GO terms, particularly BP and KEGG pathways that were
significantly enriched by the correlated genes, were identified by
setting the threshold value of p < 0.05. If there are more than 20
terms that were significantly enriched by this threshold setting,
then only the top 20 terms ranked by the ascending order of
the value of p were obtained to plot the bubble chart; otherwise,
if there are <20 terms that were significantly enriched by this
threshold setting, then all of the terms were used for plotting
the bubble chart. The bubble charts were plotted to visualize the
enrichment results using the ggplot2 package (version 3.3.5) in
R (42).

Relationship Between TMB and
CD274-Related ICG Group
Among the 326 OSCC samples obtained by data preprocessing,
320 samples appeared to be with somatic mutation. The tumor
mutation burden (TMB) values of these 320 samples were first
calculated. The expression profile of CD274 and its positively
correlated ICGs in these 320 samples were obtained. Based on
the TMB values of 320 samples and the expression profile of
the CD274-related ICGs group, the correlation analysis was
performed to show the relationship between TMB and CD274-
related ICGs group using the Spearman correlation method (43).
The value of p showing a correlation was displayed with the
radar chart using the fmsb package (version 0.7.2) in R (44).
In addition, Spearman’s RHO correlation values were calculated,
and scatterplots were created to assess the correlation between
CD274-related ICGs group and TMB in 320 samples. The scatter
plots were drawn by using the ggplot2 package (version 3.3.5) in
R (42). The edge density maps, which were located on both sides
of the scatter plot, were drawn by using the ggMarginal function
of the ggExtra package (version 0.9) in R (45). The correlation
coefficient and the values of p were added to the scatter plots by
using the stat_cor function of the ggpubr package (version 0.4.0)
in R (46).
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The Correlation Relationship Between
Genes Involved in Adaptive Immune
Resistance Pathway and Genes in the
CD274-Related ICG Group
CD8+ T-cells can produce IFNγ and thus activate the immune
pathways, leading to the upregulation of genes involved in
an adaptive immune resistance pathway (e.g., CD68, NOS2,
PRF1, GZMA, GZMB, GZMH, IFNG, CD8A, CD38, and CCR5).
The correlation relationship between the genes involved in
an adaptive immune resistance pathway and the genes in the
CD274-related ICGs group was calculated by performing the
Spearman correlation analysis based on the cor.test function in
R. The Spearman correlation values and the values of p were
obtained, based on which a heat map was plotted.

Relationship Between ICGs and Their
Clinical Features
Based on the clinical information obtained from the TCGA
database, the relationship between the CD274-correlated ICGs
and their clinical features was analyzed, particularly focusing on
the tumor (T), node (N), and clinical stages. Box plots were
drawn by using the ggboxplot function in the ggpubr package
of R (46). The significance of test was performed by using the
stat_compare_means function in the ggpubr package of R (46).
The Kruskal–Wallis algorithm was used to examine the values of
p, showing the relationship between the gene expression level and
its clinical features.

Relationship Between Prognosis and
Subtypes Defined by CD274-Related ICG
Group
The survival analysis was performed in three steps: (i) Firstly,
to identify the relationship between the sole gene (CD274 and
its positively correlated ICGs) and 5-year OS rate; (ii) Secondly,
to identify the prognostic values of the combination of the
genes consisted of CD274 and its positively correlated ICGs; (iii)
Thirdly, to identify the prognostic values of the combination
of the genes consisted of ICGs positively correlated with CD8A
and CD274.

The survival analysis was performed by using the survival
package in R (38). Kaplan–Meier (KM) plots were generated
using the survfit function (version 3.2-13) in R (47); meanwhile,
the values of p from log-rank tests were calculated. The clinical
OSCC samples with the survival time of <5 years were obtained.
By using the coxph function of the survival package in R, a Cox
risk model was constructed for each gene (48). After then, the
predict function was used for predicting the risk score of each
model, and further the risk score of each sample was obtained.
By taking the median value of the risk scores, the samples were
divided into a high-expression group (H) and a low-expression
group (L).

Regarding the second step of the survival analysis, the high-
/low-expression groups of CD274 and its positively correlated
ICGs were integrated. OSCC samples were divided into four
categories to analyze the survival of gene classification samples.

Regarding the third step of the survival analysis, CD8A was
selected among the adaptive immune resistance pathway genes,
and it was focused in this section. The subtypes constituted by
CD8A and each CD274-related ICG group gene were analyzed.
Likewise, OSCC samples were divided into four categories to
analyze the survival of gene classification samples.

Validating the Prognostic Values of the
Immune Subtypes Identified by TCGA Data
To validate the prognostic values of the immune subtypes
identified by the TCGA data, four OSCC-related GEO data
sets [i.e., GSE41613 (49), GSE42743 (49), GSE75538 (50), and
GSE85446] with the OS information were obtained, based on
which the survival analysis was performed. The survival data of
patients with OSCC within 5 years were obtained for an analysis.
Firstly, the relationship between ICGs positively correlated with
CD274 and OS within 5 years was validated. Secondly, the
prognostic values of gene pair subtypes consisting of ICGs
positively correlated with CD8A and CD274 were validated.

RESULTS

TIICs in OSCC Samples
A total of 115 OSCC samples were obtained by selecting samples
with the value of p < 0.05 from the CIBERSORT webtool. The
proportion of 22 TIICs in each sample is shown in Figure 2A.
A heat map shows the expression levels of 22 TIICs in 115 OSCC
samples (Figure 2B). As observed from Figure 2B, dendritic cells
who were at rest were highly expressed in OSCC samples, and the
other types of cells were downregulated or nearly nonexpressed
in OSCC samples.

Figure 2C shows the correlation among TIICs in the
pathogenesis of OSCC. Because ICGs act as an interaction
between tumor cells and T-cells, the interpretation of the results
of this correlation analysis should also be focused on T-cells,
particularly CD8+ effector T-cells and regulatory T- (Treg-) cells.
Thereby, CD8+T-cells were significantly negatively correlated
with macrophage M0 (Pearson correlation value = −0.58) and
significantly positively correlated with activated dendritic cells
(Pearson correlation value = 0.55); Treg cells were significantly
negatively correlated with CD8+ T-cells (Pearson correlation
value=−0.49).

The Expression Pattern and Correlation
Relationship of ICGs in OSCC Samples
The expression level of 88 ICGs in OSCC samples is shown
in Figure 3. Supplementary Table S3 presents the expression
level of 88 ICGs in oral tumor samples compared with healthy
control oral samples. Among the 88 ICGs, 30 genes were
found to be with the value of p < 0.05 and thus regarded
as DEGs. Supplementary Table S4 presents the differential
expression information of these 30 DEGs in oral tumor samples
compared with healthy control oral samples. Figure 4A shows
that 88 ICGs were mainly positively correlated. Interestingly,
the aggregation effect was obviously observed, which indicated
that the relationship between ICGs is mainly synergistic. It
can be clearly observed that all of the other ICGs were
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FIGURE 2 | Performance of CIBERSORT ascertained TIICs in OSCC. (A) The distribution of 22 TIICs in OSCC samples. X-axis represents the name of 115 samples,

and y-axis represents the composition ratio of the cells in each sample. Different colors represent different types of cells. The longer column of each cell in a certain

sample indicates that the proportion of this type of cell is higher in this sample. (B) A heat map of the 22 TIICs proportions in 115 OSCC samples. Each column

(Continued)
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FIGURE 2 | represents a sample, and each row represents one type of immune cell population. The levels of the immune cell populations are shown in different

colors, which transition from green to red with increasing proportions. Y-axis represents the expression levels of TIICs in each sample. In the color bar, green

represents a low expression of TIICs in samples; red represents a high expression of TIICs in samples; and black represents that the TIICs were not expressed in the

samples, meaning the expression level was 0. (C) A correlation matrix of 22 immune cell proportions and immune/stromal score in OSCC. Variables have been

ordered by average linkage clustering. For comparison, the immune/stromal score has been rescaled to range between 0 and 1 separately in each study. The

correlation between TIICs in the pathogenesis of OSCC. Both the x- and y-axis represent the 22 types of TIICs. The color bar shows the correlation value of TIICs.

Blue indicated that the TIICs were negatively correlated, and red indicated that the TIICs were positively correlated. The darker color indicated that the correlation

showed a higher significance. The diagonal line drawn from the coordinate (0,22) to the coordinate (22,0) has a correlation of 1.

positively correlated with CD274 except for four CD274-
negatively correlated genes [i.e., DLX3 (Pearson correlation
coefficient value r = −0.11), HHLA2 (r = −0.09), TNFRSF18 (r
=−0.14), and VTCN1 (r =−0.02)]. This observation suggested
that most ICGs play a coinhibitory role in tumor immunology
and work synergistically with CD274, while the minority of
ICGs play a costimulatory role in tumor immunology and work
antagonistically with CD274. Because the correlation coefficient
value |r| between CD274 and its negatively correlated ICGs were
very small even<0.2 showing a poor correlation, thus only ICGs,
which were positively correlated with CD274, were included in
subsequent analysis.

Identification of the Prognostic ICG That Is
Significantly Positively Correlated With
CD274
Among the 88 ICGs, 73 ICGs were selected based on the selection
criteria: a positive correlation with CD274 and the value of p <

0.05. Based on the expression level of these 73 ICGs in the TCGA-
OSCC data set and the prognosis of patients, Figure 4B shows
the relationship between 73 ICGs and the prognosis using forest
plots. The eight prognostic ICGs (CTLA4, ICOS, TNFRSF4,
CD27, BTLA, ADORA2A, CD40LG, and CD28) with the value of
p < 0.05 were marked with a five-pointed red star in Figure 4B.
Supplementary Table S5 listed the hazard ratio- (HR-) related
parameters (i.e., HR, HR with a lower/higher 95% confidence
index) and the values of p of eight ICGs. Subsequent analysis was
focused on these eight ICGs.

Identification of Significantly Enriched
Functional Terms of Eight ICGs
Figure 4C shows that the eight prognostic ICGs were
significantly enriched in several TIICs related BPs, for example,
T-cell-related BPs (e.g., T-cell proliferation, positive regulation
of T-cell activation, T-cell costimulation, the regulation of
T-cell activation, and T-cell activation), B-cell-related BPs
(e.g., regulation of B-cell activation, and B-cell activation),
lymphocyte-related BPs (e.g., the regulation of lymphocyte
proliferation, lymphocyte costimulation, a positive regulation
of lymphocyte activation, and the regulation of lymphocyte
activation), and leukocyte-related BPs (e.g., a positive regulation
of leukocyte cell–cell adhesion, leukocyte cell–cell adhesion,
a positive regulation of leukocyte activation, the regulation of
leukocyte cell–cell adhesion, and the regulation of leukocyte
activation). In addition, the functional enrichment analysis
results also revealed the significant KEGG pathways enriched
by the eight prognostic ICGs, including the cytokine–cytokine

receptor interaction, an immune network for IgA production,
cell adhesion molecules, and a T-cell receptor signaling pathway
(Figure 4D).

Identification of TMB and Its Significantly
Related ICGs From Eight ICGs
The correlation between TMB and eight ICGs identified in the
abovementioned analysis was evaluated by using the Spearman
correlation analysis. Supplementary Table S6 presents that the
correlations between the expression of TMB and all of
the eight ICGs were negative (< 0), and with a statistical
significance (p < 0.05) except for ADORA2A. The results
in Supplementary Table S6 are also displayed in the radar
chart (Figure 5A) and also in the scatter plots (Figure 5B).
These results showed that a high expression of these seven
ICGs (CTLA4, ICOS, TNFRSF4, CD27, BTLA, CD40LG, and
CD28) showing the worse/unfavorable prognosis corresponds
to a low expression of TMB. TMB has been demonstrated
to be a reliable biomarker for predicting the clinical efficacy
of patients to PDL1 inhibitors (25). A low TMB predicts
a poor response to PDL1 inhibitor therapy. The results in
Supplementary Table S6, Figures 5A,B indicate that the patients
with OSCC having a high expression of these seven ICGs are not
suitable for the immune treatment of PDL1 inhibitor drugs and
vice versa.

Identification of ICGS Correlated With
CD274 and Significantly Related to Clinical
Features
The box plots in Figure 6 show the relationship between
the clinical features and eight ICGs positively correlated with
CD274. Regarding the expression level, the eight ICGs correlated
with CD274 were significantly divided into a high- and a
low-expression group. The high-expression group consisted of
CTLA4, ICOS, TNFRSF4, CD27, and the low-expression group
consisted of BTLA, ADORA2A, CD40LG, and CD28. As shown
in Figure 6A, in the significance test, no significance was found
between any of the eight ICGs with N (nodes) (Kruskal–
Wallis test, p > 0.05). As shown in Figure 6B, a significance
(Kruskal–Wallis test, p = 0.028) was found between CD40LG
and the T stage. As shown in Figure 6C, a significance (Kruskal–
Wallis test, p = 0.038) was found between CD40LG and the
clinical stage. Taken together, the majority of ICGs positively
correlated with CD274 were not significantly correlated with
clinical features.
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FIGURE 3 | A heat map shows the expression pattern of ICGs in the TCGA-OSCC data set. The color bar refers to the gene expression levels. Red indicates relatively

higher gene expression levels, and blue indicates relatively low gene expression levels.
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FIGURE 4 | The correlation between 95 ICGs and the prognostic values of 73 CD274-correalted ICGs. (A) The correlation between 95 ICGs. The index of the color

bar indicates that the positively correlated ICGs (index > 0) and its negative correlation (index < 0). (B) The forest plot of log 10 hazard ratios (HRs) with 95% CIs

shows the relationship between 73 CD274-positively correlated ICGs and overall survival (OS). The vertical line represents a HR of 0. (C) The Gene Ontology analysis

(Continued)
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FIGURE 4 | identifies the top 20 significant biological processes (BPs) enriched by the 8 prognostic ICGs positively correlated with CD274 (CTLA4, CD28, CD40LG,

ADORA2A, B- and T-lymphocyte attenuator (BTLA), CD27, TNFRSF4, and ICOS). (D) Functional enrichment analysis identifies the top 20 significant KEGG signaling

pathways enriched by the 8 prognostic ICGs positively correlated with CD274 (CTLA4, CD28, CD40LG, ADORA2A, BTLA, CD27, TNFRSF4, and ICOS).

A Correlation Between CD274-Related
ICGs and Adaptive Immune Resistance
Pathway Genes
Correlations between ICGs and 10 adaptive immune resistance
pathway genes (CD68, NOS2, PRF1, GZMA, GZMB, GZMH,
IFNG, CD8A, CD38, and CCR5) were analyzed. The heat map
in Figures 7A,B show the correlation coefficients and –log 10
(p-value) between 10 adaptive immune resistance pathway genes
and 88 ICGs, respectively. In Figures 7C,D, a heat map is used
to particularly show the correlation coefficients and –log10 (p-
value) between 10 adaptive immune resistance pathway genes
and CD274-related ICGs. As shown in Figure 7, the majority of
adaptive immune resistance pathway genes (e.g., PRF1, GZMA,
GZMB, GZMH, IFNG, CD8A, and CCR5) were positively
correlated with the expression of the CD274-related ICGs and the
majority of ICGs, whereas the three adaptive immune resistance
pathway genes (e.g., NOS2, CD38, and CD68) were negatively
correlated to the expression of nine CD274-related ICGs and the
majority of ICGs. As observed in Figures 7A,B, almost all of the
correlations were significant by performing the significance test
of correlation coefficients (log-rank p < 0.01).

The Prognostic Values of the OSCC
Subtypes Defined by ICGs Positively
Correlated With CD274
Figure 8, Supplementary Table S7 show a relationship between
the OS rate and CD274-related ICGs (CD274 and its positively
correlated ICGs). Although there is no significant relationship
between CD274 and the OS of OSCC [CD274 (p= 0.57 > 0.05)],
the significant prognostic values of ICGs positively correlated
with CD274 were observed, for example, BTLA (p = 0.0069 <

0.05), CD27 (p = 0.0056 < 0.05), CTLA4 (p = 0.0062 < 0.05),
CD40LG (p = 0.046 < 0.05), CD28 (p = 0.049 < 0.05), ICOS (p
= 0.041 < 0.05), and TNFRSF4 (p= 0.015 < 0.05).

The Prognostic Values of the OSCC
Subtypes Defined by CD274 and Its
Positively Correlated ICGs
Oral and squamous cell carcinoma samples were divided
into four combinations based on the median value of gene
expression levels for eight pairs of genes (CD274-CTLA4,
CD274-ICOS, CD274-TNFRSF4, CD274-CD27, CD274-BTLA,
CD274-ADORA2A, CD274-CD40LG, and CD274-CD28).
Supplementary Table S8 presents that among these eight pairs
of ICGs, only three pairs were found to be with significant
prognostic values [CD274-BTLA (p = 0.019 < 0.05), CD274-
CD27 (p = 0.015 < 0.05), and CD274-CTLA4 (p = 0.0052 <

0.05)]. Figure 9A shows the significance between the 5-year OS
rate and the four high- and low-expression combinations

for three pairs of genes (CD274-BTLA, CD274-CD27,
and CD274-CTLA4).

The Prognostic Values of the OSCC
Subtypes Defined by CD8A and
CD274-Related ICGs
Oral and squamous cell carcinoma samples were divided
into four combinations based on the median value of gene
expression levels for nine pairs of genes (CD8A-CD274, CD8A-
CTLA4, CD8A-ICOS, CD8A-TNFRSF4, CD8A-CD27, CD8A-
BTLA, CD8A-ADORA2A, CD8A-CD40LG, and CD8A-CD28).
Supplementary Table S8 presents that among these nine pairs
of ICGs, only four pairs were found to be with significant
prognostic values [CD8A-BTLA (p= 0.019 <0.05), CD8A-CD27
(p = 0.025 < 0.05), CD274-CTLA4 (p = 0.032 < 0.05), and
CD8A-TNFRSF4 (p = 0.031 < 0.05)]. To match the results
in Figure 9A, only three pairs of genes (CD8A-BTLA, CD8A-
CD27, and CD8A-CTLA4) were listed in Figure 9B to show the
significance between the 5-year OS rate and the four high- and
low-expression combinations corresponding to these three pairs
of genes.

Validation of the Prognostic Values of the
Immune Subtypes
Four independent cohorts (i.e., GSE41613, GSE42743,
GSE75538, and GSE85446) in the GEO database were used
to verify the prediction accuracy of the prognostic values of the
immune subtypes identified by the survival analysis based on the
TCGA data. Supplementary Figures S1–S4 show the survival
analysis results based on the four independent GEO data sets.
These validation results were unfortunately not as anticipated
and displayed insignificant prognostic values (p > 0.05) for the
relationship between the OS and majority of immune subtype
combinations identified by the TCGA-OSCC data set. This
finding may be attributed to the small sample size of these GEO
data sets as compared with the TCGA-OSCC data set [GSE41613:
n = 42 samples, GSE42743 (n = 52), GSE75538 (n = 8), and
GSE85446 (n = 32), and TCGA_OSCC data set (n = 295)].
As OSCC-related mRNA sequencing experiments are typically
based on larger sample sizes, a sufficient documentation of the
OS information should be encouraged in future research. Most
of the existing GEO data sets lacked the survival information,
and a few GEO data sets with the survival information had
small sample sizes. Furthermore, other types of prognostic
outcomes such as disease-free survival, metastasis-free survival,
and progression-free survival were also lacking.

DISCUSSION

The present research aimed to characterize the prognostic
subtypes of OSCC based on CD274 and its positively correlated
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FIGURE 5 | The radar chart (A) and scatter plot (B) showing the relationship between the eight ICGs positively correlated with CD274 (CTLA4, CD28, CD40LG,

ADORA2A, BTLA, CD27, TNFRSF4, and ICOS) and TMB.

ICGs. Using the mRNA expression data from TCGA and an
independent cohort GEO data set, it was shown that eight
ICGs (CTLA4, ICOS, TNFRSF4, CD27, BTLA, ADORA2A,
CD40LG, and CD28) work synergistically and are positively
correlated with CD274. An important finding was that although
both CD8A and CD274 were not significantly related to
OS, six subytypes with favorable survival were identified

based on the three ICGs positively correlated with CD274
(BTLA, CD27, and CTLA4). The six subtypes showing a better
survival were CD274_low/BTLA_low, CD274_low/CD27_low,
CD274_low/CTLA4_low, CD8A_high/BTLA_low,
CD8A_high/CD27_low, and CD8A_high/CTLA4_low.

Based on the synergistic correlation and prognosis analysis,
the three combination strategies of ICG inhibitors drugs may be
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FIGURE 6 | The box plots show the eight ICGs positively correlated with CD274 and clinical features including N (A), T (B), and stages (C).
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FIGURE 7 | The correlation between adaptive immune resistance pathway genes and ICGs. (A) A heat map shows the correlation coefficients between 10 adaptive

immune resistance pathway genes and 88 ICGs. (B) A heat map shows –log 10 p for the correlation between adaptive immune resistance pathway genes and 88

ICGs. (C) A heat map shows the correlation coefficients between adaptive immune resistance pathway genes and CD274-related ICGs (ADORA2A, TNFRSF4,

CD40LG, BTLA, CD28, CD27, CTLA4, and ICOS). (D) A heat map shows –log 10 p for the correlation between adaptive immune resistance pathway genes and

CD274-related ICGs (ADORA2A, TNFRSF4, CD40LG, BTLA, CD28, CD27, CTLA4, and ICOS).
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FIGURE 8 | The Kaplan–Meier (KM) plots show the relationship between the 5-year OS and CD274-related ICGs [CD274 and its eight positively correlated ICGs

(BTLA, CD27, CTLA4, CD40LG, CD28, ICOS, TNFRSF4, and ADORA2A)]. The red curves indicate the low-expression group, whereas the blue curves indicate the

high-expression group.

suggested, including, an inhibitor of PDL1+ inhibitor of BTLA,
inhibitor of PDL1+ inhibitor of CD27, and inhibitor of PDL1+
inhibitor of CTLA.Much previous evidence supports the findings

of the current study. A high expression of BTLA in different
types of cancers (e.g., colorectal cancer, melanoma cancer, and
lung cancer) was found to inhibit the expression and function of
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FIGURE 9 | The KM plots show a significant relationship between the 5-year OS and gene pairs subtypes consisted of CD274-related genes, based on the

TCGA-OSCC data analysis. (A) The KM plots show the prognostic values of subtypes consisted of CD274 and its positively correlated ICGs (BTLA, CD27, and

CTLA4). (B) The KM plots show the prognostic values of CD8A and three ICGs positively correlated with CD274 (BTLA, CD27, and CTLA4).

T-cells (51–53). Patients with lung cancer negative for both BTLA
and PDL1 showed a better relapse-free survival (RFS) compared
with patients, positive for either BTLA or PDL1 (51). Although
BTLA and PDL1 employ distinct phosphatases to suppress T-cell
signaling, both of them dampen the TCR and CD28 signaling
pathways equally, and thus the inhibitors of both BTLA and
PDL1might be regarded as a combination of immunotherapeutic
agents for cancer treatment (54, 55). However, the data regarding
BTLA in oral cancer were still lacking. The TNFR superfamily

member CD27 showed a synergistic correlation with PDL1,
and a low expression of CD27 indicated a significantly better
survival outcome as compared with its high expression, and a low
expression of both PDL1 and CD27 indicated the best survival.
Contradictory results are reported in previous studies, showing
CD27 as a costimulatory ICG, which plays critical roles in the
activation, proliferation, and survival of T-cells, and that the
blockade of PDL1 and agonist of CD27 activates CD8+ T-cell-
driven antitumor immunity (56–58). Tumor heterogeneity and
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different cancer types may underlie these contradictory findings.
The present research showed that a low expression of CTLA4
indicated a better prognosis. Moreover, a low expression of both
PDL1 and CTLA4 indicated an improved prognosis. This is in
line with available research. The inhibitor of CTLA4-ipilimumab
has been approved by FDA for treating melanoma (59). The
mechanistic aspects of PDL1 and CTLA4 vary in immuno-
oncology and PDL1 plays a suppressing role at the later stage
of immune response, whereas CTLA4 plays an inhibiting role
at the early stage of immune response (60). However, anti-PDL1
and anti-CTLA4 treatments have additive and synergistic effects
on cancer treatment, based on the observation of the superior
efficacy obtained by using the combination of CTLA4 blockade
and PDL1 blockade in patients with melanoma compared with
monotherapy (61).

In addition, the subtyping findings based on CD8A suggested
that the coevaluation of the CD8A expression level and three
ICGs positively correlated with CD274 (BTLA, CD27, and
CTLA4) may enable a better evaluation of the immunological
state of OSCC. The current study showed that patients with
OSCC having the best survival had an increased CD8A
infiltration and a low expression of one of the three ICGs
positively correlated with CD274 (BTLA, CD27, and CTLA4).
These results are reasonable considering CD8A is a surface
biomarker of effector T-cells, and CD8+ T-cells in the TME
indicate a good prognosis in many cancer types (62). The
low expression of three ICGs positively correlated with CD274
(BTLA, CD27, and CTLA4) indicated a better prognosis
compared to their high expression, indicating their coinhibitory
roles in the tumor immunology of oral cancer. A previous
study using the bioinformatic analysis also provided similar
results, showing that patients with pancreatic adenocarcinoma
(PDAC) with the best survival had increased CD8A infiltration
without the expression of CD274 (63). Although the current
study did not find a statistical significance of the relationship
between CD8A/CD274 immunotypes and prognosis, significant
prognostic values of three ICGs positively correlated with
CD8A/CD274 (BTLA, CD27, and CTLA4) were found. A high
expression of BTLA indicated a poor prognosis of OSCC, which
is in accordance with the results of a previous study on ovarian
cancer (64). A previous examination regarding melanoma
showed that BTLA+ CD8+ tumor-infiltrating lymphocytes
(TILs) showed a superior response and better survival compared
to BTLA- CD8+ TILs (65) as BTLA plays a costimulatory role
on activating CD8+ T-cells in melanoma. Such results were
contradictory with the current research, which showed that the
BTLA- CD8+ subset had the best survival in oral cancer, and
might be explained by varying the roles of BTLA in different
cancers. Previous studies have shown a costimulatory role of
CD27 in inducing a potent proliferation of CD8+ T-cells, with
a significant production of Th1 cytokines (IFNα, TNFα, and
IL-2) and Th2 cytokines (mainly IL-13) by T-cells (7). This
is contradictory with the results in the current computational
prediction regarding oral cancer, which may be attributed to
CD27 acting as either a costimulatory or coinhibitory receptor in
different cancers and different circumstances (66). Considering
the combination of CTLA4-CD8A, the present research showed

that patients with OSCC with high CD8A T-cell infiltration
and a low expression of CTLA4 had the best prognosis.
Previous research showed that the administration of CTLA4
blockade could increase the expansion and enhance the effector
function of memory CD8+ T-cells, thereby contributing to
the great accumulation of functional memory CD8+ T-cells
(67). CTLA4+ tumor-infiltrating cells have been found to be
an independent prognostic factor in OSCC, showing that its
high infiltration indicated worse recurrence-free survival and
metastasis-free survival (68).

It is important to clearly state the strengths and limitations
of the current study. The main strength of the present study
is that a series of comprehensive bioinformatics analyses was
performed, including the analysis of TIICs, correlation analysis,
TMB analysis, clinical feature relationship analysis, and survival
analysis for identifying prognostic immune subtypes. The first
limitation is the lack of experimental validation of the estimated
synergistic effects of the administration of a PDL1 inhibitor and
its positively correlated ICGs in OSCC. The second limitation is
the lack of experimental validation of the prognostic values of
the PDL1-based immune subtypes in OSCC. Both these aspects
suggest the experimental design direction for future research.
Another important limitation is the small sample size of the
oral cancer-related data sets with the survival information for
validation, which could be a reason for the insignificant results
concerning the value of the immune subtypes. Although the
findings of the analysis based on the TCGA data were statistically
significant, the magnitude of their potential clinical effects must
be recognized and could only be evaluated in clinical settings.

It is noteworthy to highlight the potential implications and
the clinical transfer values of the current study. Firstly, the
combination of PDL-1-based ICG inhibitors might play additive
and synergistic roles in the immune therapy of OSCC as
compared to using either one of them alone. Thereby, the
combinations identified in the current studymight indicate novel
therapeutic strategies for oral cancer treatment. Secondly, the
immune subtypes identified in the current study could be used
for predicting the OS outcomes of patients with oral cancer,
and chairside testing based on these subsets could be developed
as a useful prognostic prediction tool. Most importantly, the
prognostic immune subtypes identified in the current study
can have clinical implications for personalized immunotherapy.
Patients belonging to specific subtypes should be administered
with suitable ICG inhibitor agents with maximal efficacy. For
example, considering the PDL1+CTLA4+ subset, this subgroup
of patients with OSCC can receive a combination of a PDL1
inhibitor and CTLA4 inhibitor. However, the PDL1 and CTLA4
inhibitor agents will be not useful for the PDL1-CTLA4- subset.
Therefore, immune subtypes as identified in this study can guide
a refined patient selection, and enable personalized immune
therapy strategies to significantly improve the OS in OSCC.

CONCLUSION

The current study identified several ICGs positively correlated
with CD274 (BLTA, CD27, and CTLA4) comprising
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immune subtypes indicating favorable OS outcomes,
including CD274_low/BTLA_low, CD274_low/CD27_low,
CD274_low/CTLA4_low, CD8A_high/BTLA_low,
CD8A_high/CD27_low, and CD8A_high/CTLA4_low. These
findings suggest that the three combinations of ICG inhibitors
might play synergistic and additive effects in treating and
improving the prognosis of OSCC, i.e., the combination of a
CD274 inhibitor and BTLA inhibitor, the combination of a
CD274 inhibitor and CD27 inhibitor, and the combination of
a CD274 inhibitor and CTLA4 inhibitor. The combination of
immune subtypes and suggested drug agents might provide
precise immune strategies for application in personalized oral
cancer treatment.
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Background: Tuberculosis (TB) is a major infectious disease, where incomplete

information about host genetics and immune responses is hindering the development

of transformative therapies. This study characterized the immune cell landscape and

blood transcriptomic profile of patients with pulmonary TB (PTB) to identify the potential

therapeutic biomarkers.

Methods: The blood transcriptome profile of patients with PTB and controls were

used for fractionating immune cell populations with the CIBERSORT algorithm and then

to identify differentially expressed genes (DEGs) with R/Bioconductor packages. Later,

systems biology investigations (such as semantic similarity, gene correlation, and graph

theory parameters) were implemented to prioritize druggable genes contributing to the

immune cell alterations in patients with TB. Finally, real time-PCR (RT-PCR) was used to

confirm gene expression levels.

Results: Patients with PTB had higher levels of four immune subpopulations like

CD8+ T cells (P = 1.9 × 10−8), natural killer (NK) cells resting (P = 6.3 × 10−5),

monocytes (P = 6.4 × 10−6), and neutrophils (P = 1.6 × 10−7). The functional

enrichment of 624 DEGs identified in the blood transcriptome of patients with PTB

revealed major dysregulation of T cell-related ontologies and pathways (q ≤ 0.05). Of

the 96 DEGs shared between transcriptome and immune cell types, 39 overlapped

with TB meta-profiling genetic signatures, and their semantic similarity analysis with

the remaining 57 genes, yielded 45 new candidate TB markers. This study identified 9

CD8+ T cell-associated genes (ITK, CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E,
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and IL7R) as potential therapeutic targets of PTB by combining computational

druggability and co-expression (r2 ≥ |0.7|) approaches.

Conclusion: The changes in immune cell proportion and the downregulation of T

cell-related genes may provide new insights in developing therapeutic compounds

against chronic TB.

Keywords: Mycobacterium tuberculosis, gene express profile, drug target, CD8+T cells, immune pathways

INTRODUCTION

Tuberculosis (TB) is a chronic infectious lung disease caused
by pathogenic Mycobacterium tuberculosis (MTB) belonging
to the Mycobacteriaceae family. Despite the widespread use
of antibiotics and live attenuated vaccine, TB remains to be
the major cause of morbidity and death among all bacterial
diseases (1). This is primarily due to the rapid emergence of
drug-resistant MTB strains and the incomplete knowledge of
complex host-pathogen interactions (2). In the initial stages of
infection, MTB invades and replicates in the macrophages after
reaching the alveolar air sacs of the lungs (3). Granulomas,
hallmark of TB, are formed around the infected macrophages
by the organized aggregation of immune cells (like T and
B lymphocytes), multinucleated giant cells, dendritic cells,
and fibroblasts. Granulomas also suppress the host immune
responses, as dendritic cells and macrophages were unable
to present antigen to lymphocytes (4). It is noteworthy to
mention that mycobacteria can induce distinct host responses
from asymptomatic conditions to severe pulmonary illness (5).
However, underlying immune cell types and their association
with the differentially expressed genes in TB and how they
contribute to severe infection are not yet fully explored.

Over the past few decades, microarray-based genome-wide
RNA profiling has evolved as a powerful approach to investigate
the host transcriptional response (of∼19,000 genes) in infectious
diseases (6). However, differences in the type of clinical
samples, array platforms, and statistical approaches used, created
a discordance in interpreting massive transcriptomics data.
Advances in statistical modeling and bioinformatics approaches
have accelerated the identification of disease-centric genes by
employing gene networking methods based on graph topological
parameters for many infectious diseases (7, 8). Moreover, the
new bioinformatic methods like estimating relative subsets of
RNA transcripts (CIBERSORT), Tumor Immune Estimation
Resource (TIMER), and Estimating the Proportions of Immune
and Cancer cells (EPIC) are developed to characterize immune
cell composition using large-scale gene expression data (9, 10).
These bioinformatic methods implement functional enrichment
scores based on the presence of the query genes over reference
gene sets. They perform variety of biological analyses including
immune responses based on the defined gene sets. Exploring
abnormal immune cell infiltration is critical for developing
novel transformative therapies to combat diseases such as
cancer, myocarditis, and TB (11, 12). Therefore, in order to
characterize alterations in immune cell proportion landscape
and transcriptomic profile, and to identify new molecular

therapeutic targets, this study applied statistical and knowledge-
based systemic investigations (such as semantic similarity,
gene correlation, and graph theory parameters) to the blood
transcription data of patients with TB.

MATERIALS AND METHODS

Study Design and Global Expression Data
The genome-wide gene expression dataset (GSE83456) (13) was
imported in raw format from the Gene Expression Omnibus
(GEO) database (www.ncbi.nlm.nih.gov/geo). This dataset has
expression profiles of 45 pulmonary TB (PTB) and 61 control
blood samples generated on the Illumina Human HT-12 V4.0
expression bead chip (Illumina, Inc, USA). The detailed sample
information is given in the Supplementary Material Table 1.
Figure 1 depicts the overall work design employed in the current
research analysis.

Global Data Preprocessing and Screening
of Differentially Expressed Genes
R/Bioconductor packages were used to analyze microarray gene
expression data. Raw data was fed into the R package limma (14)
for the standardization and noise reduction of the probe data,
and the raw signal levels for each probe set were standardized.
The Quantile method was used to normalize the microarray
datasets. The t-statistic was used to detect statistically significant
differentially expressed genes (DEGs) between the PTB and
control samples. To eliminate false positives, the Benjamini and
Hochberg false discovery rate (FDR) with p < 0.05 was used as
a cut-off point for gene data. Thereafter, probes were matched to
Entrez Gene IDs, and duplicates (with the highest fold change
difference) and unmatched transcripts were filtered out. In the
final stage, all the DEGs were classified as up- and downregulated
genes based on the fold change threshold (FC ≥ |1.5|).

Identification of Immune Cell Composition
From Gene Expression Profiles
The fractions of 22 immune cell types in the PTB transcriptome
profile were estimated using the CIBERSORT algorithm (15).
This program employs linear support vector (SVR) regression to
perform feature selection and to deconvolve the cell mixture from
the gene expression profile. In this study, gene expression profiles
of PTB and control samples were fed into the CIBERSORT
algorithm where the algorithm converts the gene expression
matrix into the immune cell-matrix and applies the filtering
criteria of 1,000 permutations and significant p value set at≤ 0.05.
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FIGURE 1 | Study workflow. The gene expression profiles of patients with tuberculosis (TB) and controls were used to deconvolute immune cell fractions. Differentially

expressed genes (DEGs) were mapped to functional pathways and then correlated with immune cell and TB meta-analysis gene signatures. The overlapping genes

showing semantic similarity were explored by druggability and protein interaction analysis to identify novel candidate therapeutic targets/biomarkers for combating TB

infection.

MTB Meta-Profiling Genetic Signatures
We obtained 380 genetic signatures identified from the modular
analysis and meta-profiling of 16 publicly available gene
expression datasets (16) (Supplementary Material Table 2). We
compared the overlapping genes between these 380 TB genetic
signatures, DEGs, and genes associated with immune cell
populations for downstream analysis.

Identification of Immune Pathways From
Gene Expression Profiles
The functional enrichment analysis of the DEGs was performed
using g:Profiler (17), a webserver to interpret the function
of gene lists (https://biit.cs.ut.ee/gprofiler/gost). This server
matches a queried gene list to established functional data
sources and uncovers gene ontologies as well as pathway terms
that are significantly enriched at q ≤ 0.05. Immune-related
pathways were screened from the functional enrichment list. The
DEGs which are contributing to immune-associated pathways
were mapped to the known signature of TB and immune
signature genes in the CIBERSORT to identify unreported
genes in TB.

Identification of Semantic Similarity
Using encoded evidence in the Gene Ontology (GO) hierarchy,
the functional similarity between unreported genes and known
TB signatures is assessed. In this study, we usedWang’s similarity
metric to compare the biological process (BP) hierarchy. To
quantify the semantic similarity between gene pairs, we used the
R tool GoSemSim (18).

We employed Resnik’s measure of Best-Match Average (BMA)
method, which combines the semantic relationship scores of
numerous GO terms and produces the average of all maximal
similarities in each row and column because a gene can be
annotated by many GO terms (19). Following that, gene pairs
were selected based on a semantic score of ≤0.5, with a larger
score indicating a stronger relationship. The following formula
was used to calculate the semantic similarity among gene pairs:

SGO (A,B) =

∑

t∈TA∩TB
(SA (t) + SB(t))

∑

t∈TA
SA (t)+

∑

t∈TB
SB(t)

(1)

where TA designates the contribution of t ∈ TA term to the
semantics of A based on the relative positions of t and A in
the graph, and SA (t) implies the role of t ∈ TA term to the
semantics of A.
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FIGURE 2 | The immune cell proportion landscape between pulmonary TB (PTB) and controls. (A) The relative proportion of immune cell subpopulations in

GSE83456 dataset. (B) The difference of immune infiltration between PTB and normal controls (the control group was marked in blue color and the PTB group was

marked in red color. P < 0.05 were considered as statistically significant).

Druggability Analysis
The Drug–Gene Interaction Database (DGIdb) (20) was used to
assess the druggability of the genes. DGIdb is a central resource
for drug-gene interaction data and the potential druggability
of each query gene based on different databases. We included
approved drugs, antineoplastic drugs, and Immunotherapeutic
drug interactions filters and in advance filters, we selected 9
Disease-Agnositic sources databases, 43 gene categories, and
31 interaction types. We used drug target interaction with
interactions score ≥0.03 to search the DEGs, which could act as
potential drug target genes for MTB.

Correlation Among the Druggable Genes
The correlation between the druggable genes in PTB was
investigated using Pearson’s correlation method. The correlation
(r) between each pair of genematrices was ranked using Pearson’s
correlation coefficient (PCC). The formula used for computing
the PCC existing between two genes is given below.

PCC (r) =

∑n
i=1 (xi − x̄) (yi − ȳ)

√

∑n
i=1 (xi − x̄)2

√

∑n
i=1 (yi − ȳ)2

(2)

where x̄ and ȳ are the average of sample’s gene expression signal
in PTB of the two genes, respectively. The gene co-expression was
confirmed using the Search Tool for the Retrieval of Interacting

Genes (STRING) (21), an online protein interaction database,
with high confidence interaction score of ≥0.7.

Real Time-PCR (RT-PCR) Validation of
Druggable Genes
In order to verify our bioinformatics findings, we validated the
expression of 9 druggable genes by the RT-PCR method. In brief,
the RNA collected from THP-1 cell lines infected with the MTB
strain (H37Rv) was collected after the post-incubation period
as previously described (22). In brief, total RNA was reverse
transcribed as complementary DNA (cDNA) and then amplified
by the RT-PCR method using gene-specific oligonucleotide
primers. The relative expression level of potentially druggable
genes between the control and test cell lines was estimated by
the 2−11CT formula after normalizing their expression levels
with the GAPDH internal reference gene. A p < 0.05 under the
standard two-tailed t-test was considered a significant value.

RESULTS

Immune Cell Proportion Analysis of PTB
Gene Expression Profile
The immune cell proportion landscape of PTB is not yet
fully revealed, particularly in low abundant cell subpopulations.
In this study, the CIBERSORT algorithm has identified the
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FIGURE 3 | Graphical distribution of differentially expressed genes. (A) Volcano plot representing the distribution of fold change and p-value significance. (B) The
distribution mean intensity of differentially expressed genes in the PTB and control samples. (C) Red and green nodes represent up and downregulation of genes and

black nodes are the immune cell types. (D) The Venn diagram represents the overlap of DEGs with immune and TB signatures. (E) Semantic similarity of pairs of genes

between differentially expressed immune signatures and TB signatures. The selected gene pairs with higher functional similarity (≥0.5) are highlighted in green color.
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enrichment of genes associated with 10 types of adaptive immune
cells like B cells naive, plasma cells, T follicular helper cells,
CD8+ T cells, resting memory CD4+ T cells, T cells, CD4+

memory T cells activated, memory B cells, naive CD4+ T
cells, regulatory T cells (Tregs), and Gamma-delta (γδ) T cells.
On the other hand, DEGs associated with 12 innate immune
cell type categories were NK cells resting, macrophages M2,
monocytes, macrophagesM1, macrophagesM0, resting dendritic
cells, eosinophils, dendritic cells activated, mast cells resting, NK
cells activated, mast cells activated, and neutrophils were also
found be enriched. The immune cell proportions of adaptive
immune cells and innate immune cells are represented in
Supplementary Material Figure 1.

The genes associated with four immune cells; NK cells
activated, T follicular helper cells, dendritic cells resting, and
eosinophils, were not significantly enriched in both groups. The
proportion plot of the enriched immune cell types is represented
in Figure 2A. We observed higher relative proportion of genes
enriched for cell types like CD8+ T cells (P = 1.9 × 10−8), NK
cells resting (P = 6.3 × 10−5), monocytes (P = 6.4 × 10−6), and
neutrophils (P= 1.6× 10−7) in the PTB samples compared to the
control samples (Figure 2B, Supplementary Material Figure 1).
Among the 4 cell types with a higher relative proportion of
enriched genes from DEGs, the genes of CD8+ T cells and
NK resting cells were found to be downregulated in PTB when
compared to the control samples. On other hand, monocytes
and neutrophil-associated genes were highly active in PTB when
compared to control samples.

Identification of DEGs From Gene
Expression Profile
The standardized gene expression data of “PTB vs. controls”
was used to identify the differentially expressed genes. The
volcano plot representing the distribution of fold change and the
significant p-value is given in Figure 3A. The PTB vs. control
group analysis revealed 624 DEGs (FC |1.5|, adj p-value of 0.05),
with 393 upregulated and 231 downregulated genes. The top 10
DEGs obtained from PTB vs controls are given in Table 1. The
mean distribution of intensity of differentially expressed genes in
PTB and control samples is represented in Figure 3B.

Functional Enrichment Analysis of DEGs
The differentially expressed genes enriched using g:Profiler
with the statistical significance of q value ≤ 0.05, generated 309
ontologies of Biological Process (BP), 17 ontologies of Molecular
Function (MF), 42 ontologies of Cellular Component (CC),
and 85 terms in pathways (Supplementary Material Table 3).
Overall, the enrichment analysis has shown the overlap
with immune-related ontologies and pathways. We pooled
immune-related pathways from enrichment terms to check
how DEGs affect the immune system pathways. We observed
the upregulation of pathways such as interferon signaling (q =

9.16 × 10−27), cytokine signaling in the immune system (q =

2.34 × 10−21), neutrophil degranulation (q = 3.13 × 10−11),
viral genome replication (q = 2.47 × 10−7), and response
to biotic stimulus, etc. (Supplementary Material Figure S1).
On the other hand, pathways like T-cell antigen receptor

TABLE 1 | The top 10 differentially expressed gene list in pulmonary tuberculosis

(PTB).

Symbol FC Gene name Adj P value

SERPING1 7.75 Serpin family G member 1 2.08E−36

ANKRD22 7.58 Ankyrin repeat domain 22 9.83E−35

FCGR1A 7.51 Fc fragment of IgG receptor Ia 1.00E−28

FCGR1C 7.04 Fc fragment of IgG receptor Ic, pseudogene 3.79E−30

FCGR1B 6.02 Fc fragment of IgG receptor Ib 2.75E−28

LRRN3 −2.91 Leucine rich repeat neuronal 3 4.35E−13

FCGBP −2.60 Fc fragment of IgG binding protein 1.03E−12

NELL2 −2.27 Neural EGFL like 2 6.95E−17

GZMK −2.20 Granzyme K 2.19E−10

CCR7 −2.19 C-C motif chemokine receptor 7 1.15E−16

signaling, antigen receptor-mediated signaling, NF-kappa
B signaling, T cell activation, T cell receptor signaling,
leukocyte differentiation, leukocyte activation, alpha-beta T
cell activation, and T cell differentiation, were downregulated
(Supplementary Material Figure S1). Overall, our functional
enrichment analysis points to a major downregulation of T
cell-related ontologies and pathways.

Mapping DEGs to Immune Cell Proportions
in PTB
Here we investigated the genes overlapping between the
CIBERSORT signature and DEGs. There are about 96 DEGs
(Figure 3C) contributing to different immune cell types
(Supplementary Material Table 4). Interestingly, we found
that 31.25% of DEGs were contributing to the immune cell
type “CD8+ T cells.” We also observed that all those genes
contributing to the “CD8+ T cells” were downregulated in PTB
samples, as shown in Figure 3C. The findings from the mapping
of DEGs to immune cell proportions are consistent with
functional enrichment analysis, where T cell-related pathways
have shown major dysregulation.

Comparison of DEGs, Immune Cell
Signatures With TB Meta-Analysis
Signatures
The differentially expressed immune signatures in the sample
of patients with TB were compared with the known signatures
of TB (Supplementary Material Table 4). Here, we observed 39
(40.6%) differentially expressed immune signatures overlapping
with TB meta-analysis gene signatures and 57 novel genes
(59.3%) contributing to the immune cell proportion (Figure 3D).
Further, semantic similarity (functional association) of these
57 novel genes with 39 overlapping with TB signatures was
performed to identify the most predominant genes. The semantic
similarity score of ≥0.5 among the gene pairs was considered
as a highly significant score implying a stronger association.
The semantic similarity of 45/57 genes has shown a stronger
functional association with overlapping with TB signatures
(Figure 3E). Again, it is important to pinpoint that 20 out of 45
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FIGURE 4 | The druggable targets with their expression, interaction and co-expression (A) The network depicts the drug-target interaction where black and pink

nodes represent target and drugs respectively. (B) The co-expression (a similar pattern of gene expression) among the druggable genes where red and blue represent

the positive and negative correlation. (C) The pattern of gene expression of druggable genes in control and PTB patient samples clearly depicts a distinction between

the control and PTB groups.

genes (44%) were contributing to the immune cell type “CD8+
T cells.”

Druggability and Co-expression Analysis
Druggability analysis was performed on the 45 genes
that had shown higher functional similarity to the
known TB signature. We found that 21 druggable genes
(Supplementary Material Figure S2) (46%) with an interaction
score ≥ 0.03, were enriched against terms like an antibody,
binder, inhibitor, antagonist, agonist, modulator, and activator.
Of all the druggable genes, ITK and FCGR3B genes were
observed to have the highest number of drug interactions
(19 drugs) followed by PTGDR (13 drugs), TLR7 (12 drugs),
and CD3E (10 drugs). The drug-target interaction network is
represented in Figure 4A. Next, we checked the association
of druggable targets to the immune cell types. Among the 21
druggable targets, 48% were contributing to the immune cell
type “CD8+ T cells” followed by monocytes (9%), naïve B
cells (9%), and neutrophils (9%) (Figure 4B). Interestingly, the
expression patterns of these 21 druggable genes have shown
a clear distinction in PTB when compared to control samples
(Figure 4C).

To check the correlation of these 21 druggable targets
in patients with PTB, we performed Pearson’s correlation

analysis (Figure 4B). The correlation analysis performed between
druggable targets in PTB samples resulted in 15 genes (ITK,
CD2, CD6, CD247, CD27, CD3D, ZAP70, SH2D1A, IL2RB,
CEACAM3, IL7R, TLR2, CD3E, PTGDR, FCGR3B) with higher
Pearson correlation coefficient (r2 ≥ |0.7|). The co-expressed
genes are shown in Table 2. Among the 15 co-expressed genes,
12 and 3 were down and upregulated respectively (Figure 5A).
Upregulated genes were contributing to the immune cell types
“Monocytes” (TLR2) andNeutrophils (FCGR3B andCEACAM3).
Again, 10 downregulated genes were contributing to “T cells
CD8” and 1 each for “T cells regulatory” and “B cells memory”
(Figure 5B).

Interestingly, we noticed a cluster of 12 co-expressed genes
ITK, CD2, CD6, ZAP70, CD247, CD3D, SH2D1A, CD27, CD3E,
IL2RB, IL7R, and PTGDR. To validate the co-expression among
the 12 downregulated genes we queried them in the STRING
database with a high confidence score of ≥ 0.7. The STRING
database identified strong interaction among the 11 genes except
for PTGDR (Figure 5C). Co-expression and protein interaction
network from the STRING database has shown the mutual
influence of the 11 genes in the expression and functional
activities. Nine genes (expect CD27, PTGDR, and IL2RB) were
contributing to “CD8+ T cells.” All the genes were predicted
to be targeted by different drug molecules, most of which are
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TABLE 2 | List of co-expressed genes and the druggable targets.

Gene Immune cells Regulation Co-expressed genes PCC range

ITK CD8+ T cells DOWN CD2, CD3D, ZAP70, CD247, SH2D1A, CD3E, TLR2, CD6, CD27 0.72–0.91

CD2 CD8+ T cells DOWN CD3D, SH2D1A, ZAP70, CD247, TLR2, CD3E, ITK, CD6, CD27 0.74–0.91

CD6 CD8+ T cells DOWN ITK, ZAP70, CD2, CD3D, CD247, SH2D1A, TLR2, CD3E, CD27 0.74–0.89

ZAP70 CD8+ T cells DOWN TLR2, CD247, CD3E, SH2D1A, CD6, CD2, ITK, CD3D, CD27 0.76–0.88

CD247 CD8+ T cells DOWN SH2D1A, IL2RB, TLR2, CD2, CD3D, ITK, ZAP70, CD6 0.79–0.87

CD3D CD8+ T cells DOWN CD247, SH2D1A, ZAP70, TLR2, CD2, ITK, CD6, CD27 0.72–0.90

SH2D1A CD8+ T cells DOWN IL2RB, TLR2, CD2, CD247, CD3D, ITK, CD6, ZAP70 0.73–0.88

TLR2 Monocytes UP ZAP70, CD247, CD6, CD2, SH2D1A, ITK, CD3D 0.72–0.82

CD27 B cells memory DOWN CD6, ITK, CD3D, CD2, ZAP70, IL7R 0.71–0.85

CD3E CD8+ T cells DOWN ZAP70, ITK, CD6, CD2 0.74–0.80

IL2RB T cells regulatory DOWN SH2D1A, CD247, PTGDR 0.79–0.82

CEACAM3 Neutrophils UP FCGR3B 0.71

IL7R CD8+ T cells DOWN CD27 0.71

PTGDR CD8+ T cells DOWN IL2RB 0.79

FCGR3B Neutrophils UP CEACAM3 0.71

#PCC, Pearson correlation coefficient.

FIGURE 5 | The interaction networks of druggable targets. (A) co-expressed network of druggable targets where red and green colored nodes represent up and

downregulated genes. The red edge represents the association of targets to immune cells and the blue edges depict the interaction among the target genes. (B) The
pie chart represents the composition of immune cell types with the co-expressed druggable targets. (C) The interaction of the co-expressed druggable targets in the

STRING database.

monoclonal antibodies (Table 3). Hence, the integrated analysis
has depicted predominant deregulation of “CD8+ T cells” as the
key genetic signatures for active PTB.

RT-PCR Validation of Druggable Genes
The real-time PCR gene expression results showed that the
relative expression levels of 9 potential druggable genes (ITK,
CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E, and IL7R)
were consistent with the findings of microarray hybridization.
All the genes were differentially expressed between treated
and untreated cell lines (p ≤ 0.01). These results confirm the
dysregulated “CD8+ T cell signaling” plays important role in
establishing TB infection (Supplementary Material Figure S3).

DISCUSSION

Host genetic factors are known to play an important role in
regulating the initial TB infection and determining the disease
progression in the lungs (37). Genome-wide association studies
have underlined the relevance of numerous polymorphisms in
immune response-related genes in contributing to susceptibility
or resistance to TB (38). However, polymorphism studies were
unable to provide full insight into the complex molecular
crosstalk between thousands of host genes involved in innate and
adaptive immune responses. In this context, high throughput
transcriptome approaches have shown great promise in
dissecting the host-pathogen interactions thereby helping to
develop a novel vaccine and therapeutic targets for several
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TABLE 3 | The list of drugs shows direct interaction with 9 genes associated with CD+T cell functioning.

Gene Drug Interaction type and
directionality

Sources PMIDs Query
Score

Interaction
Score*

ITK CHEMBL2179805 – DTC (23) 8.77 6.71

CD2 ALEFACEPT Inhibitor (inhibitory) TdgClinicalTrial (24–26) 21.92 106.32

ChemblInteractions TEND (27, 28)

GuideToPharmacology (29)

SIPLIZUMAB Inhibitor (inhibitory) TdgClinicalTrial – 13.15 63.79

ChemblInteractions TTD

CD6 ITOLIZUMAB Antibody (inhibitory) GuideToPharmacology TTD – 8.77 63.79

ONCOLYSIN CD6 – ChemblInteractions – 4.38 31.9

CD247 MUROMONAB-

CD3

– TdgClinicalTrial (30, 31) 9.86 15.95

ZAP70 TRIDOLGOSIR – DTC (32) 2.92 21.26

ALOISINE Inhibitor (inhibitory) GuideToPharmacology – 1.46 10.63

CD3D MUROMONAB-

CD3

Inhibitor (inhibitory) TdgClinicalTrial (30, 31) 13.15 9.11

ChemblInteractions

BLINATUMOMAB Activator (activating) TdgClinicalTrial – 5.85 6.08

ChemblInteractions

SH2D1A EMAPALUMAB – PharmGKB FDA – 1.1 15.95

CD3E MUROMONAB-

CD3

Binder, inhibitor

(inhibitory), antibody

(inhibitory)

TdgClinicalTrial (33, 34) 26.31 12.76

ChemblInteractions TEND

GuideToPharmacology TTD OTELIXIZUMAB Antibody (inhibitory) TdgClinicalTrial – 8.77 6.38

ChemblInteractions

GuideToPharmacology

IL7R RUXOLITINIB – CGI (35, 36) 1.1 15.95

*Drug molecules showing >5 interaction score is shown here.

infectious diseases (39–41). Therefore, we explored host immune
system response through integrated systems biology approach
based on immune cell subtyping and differential gene expression
profiles of patients with PTB to normal controls.

The cellular and molecular background of TB-induced
systemic immunological dysregulation is poorly understood.
Therefore, we screened the DEGs in PTB and deciphered
their contribution to immune cell proportion alterations.
Traditionally, host transcriptomics studies have relied on whole
blood to characterize TB gene signatures by aggregating
transcriptomic signals from many different cell types but were
unable to identify specific immune cell type signatures (42). To
overcome these constraints, we used a powerful computational
technique called CIBERSORT to define the range of immune
cell states in the blood of patients with TB. This method
relies on linear support vector regression (SVR), a machine
learning approach to deconvolute the gene expression signatures,
known as “signature matrix” for determining the relative fraction
of immune cell proportions in blood or tissues (15). The
CIBERSORT method has been widely used to infer immune cell
types from transcriptomics data to predict outcomes of different
cancers (9, 43, 44) and infectious diseases (45–47). In this study,
the CIBERSORT output identified the downregulation of “CD8+

T cells” in patients with PTB.

The GO functional enrichment analysis of gene expression
profile revealed the upregulation of interferon signaling, cytokine
signaling in the immune system, neutrophil degranulation,
and response to biotic stimulus pathways. The MTB infection
of primary human macrophages is shown to induce type
I IFN signaling and limit the expression of IL-1β, which
imparts immunity against the infection (48). Additionally,
the downregulation of major pathways associated with T
cells function like T-cell antigen receptor signaling, leukocyte
differentiation, leukocyte activation, T cell activation, T cell
differentiation, T cell receptor signaling, alpha-beta T cell
activation, NF-kappa B signaling, and antigen receptor-mediated
signaling pathway were noted in PTB samples.

Majority of the DEGs contributing to the immune cell type
“CD8+ T cells” were clearly downregulated in the PTB samples
indicating their potential roles in defense against TB. These cells
are also known as killer or cytotoxic T lymphocytes, as they
potentially destroy the infected cells by recruiting cytokines and
other immune cells to the site of infection. The low abundance of
blood CD8+ T lymphocytes may impair the effective immunity
against pathogens, as they lack a sufficient cytotoxic T cells to
recognize the MHC class I-restricted epitopes of MTB antigens,
in the site of infection (49). A recent RNA transcriptome study
used the positron emission tomography (PET) data collected
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from recovered patients with TB, at 4th and 24th weeks has
also reported that genes associated with the overexpression of
B cells and down expression of T cells and platelets confirms
our findings (50). Thus, the downregulation that contribute to
immune cell type is concordant with the pathway enrichment
analysis findings of lower expression of T cell-related ontologies
and pathways.

The druggability potential of any protein is attributed to its
binding specificity with small compounds following Lipinski’s
rule-of-five for drug likeliness (51). Numerous bioinformatic
and empirical methods which consume less time and provide
faster prescreening of druggability of candidate proteins than
conventional methods have been developed (52, 53). There are
a variety of computational methods available, which can predict
druggability and protein-binding sites by using energy dynamics
to geometrical topological estimations, and from flexible to rigid
proteins (54, 55).

By applying druggability and co-expression features we
identified 9 CD8+ T cells associated genes (ITK, CD2, CD6,
CD247, ZAP70, CD3D, SH2D1A, CD3E, and IL7R) as potential
therapeutic targets of PTB. However, it is pivotal to carefully
prioritize the drug molecules based on their mode of action,
whether activator or inhibitor based on the gene expression
status. For example, over-expressed genes can be targeted by
inhibitory molecules, and downregulated genes can be targeted
by activator molecules (56). From the above 9 genes, the
therapeutic potential of ITK and IL7R has been characterized
by experimental methods. ITK is a tyrosine kinase expressed
on T-cells, which regulates its T-cell development and function.
Human lungs with ITK deficiency impair early protection
against MTB in vivo (57). Improving ITK signaling pathways
could become an alternative approach for combating MTB
infection. One study reveals the role of IL7R on T-cell immunity
in human TB (58). The authors reported that patients with
TB had lower IL7R concentrations and lower IL7R expression
in T cells than healthy controls, indicating that patients with
TB have impaired T-cell sensitivity. In addition, due to post-
transcriptional processes, patients with TB had reduced amounts
of IL7R in T cells. In vitro experiments revealed that MTB-
specific T lymphocytes from patients with TB have reduced IL-
7-induced STAT5 phosphorylation and IL-7-promoted cytokine
production (59). The role of the remaining 7 genes (CD2, CD6,
CD247, ZAP70, CD3D, SH2D1A, and CD3E) in T-cell signaling
and modulation of host immune responses in mycobacterium
infections is also supported (60–64).

Our results highlight the dysregulation of CD8+ T cells and
the associated genes in PTB patients. These findings are exciting
not just from the fact that CD8+ T cell-associated genes have
the potential to act as potential therapeutic targets but prove
that their role is not less important than CD4+ T cells in
controlling MTB infection. We acknowledge that our strategy
has some technical constraints. CIBERSORT was a convenient
computational tool for determining infiltrating immune cell
fractions, but it was still less precise than immunohistochemistry

or flow cytometry, which could lead to inaccuracies in
immune cell fractions. However, to overcome this limitation
to some extent, we have linked gene expression profiles of
immune signatures followed by functional enrichment, semantic
similarity, druggability, and co-expression among the identified
key signatures.

CONCLUSION

In this study, by coupling computational deconvolution
algorithms and high throughput blood transcriptomics
data, we identified the difference in T-cell-related immune
cell populations among patients with PTB. The functional
enrichment of 624 DEGs (393 over-expressed and 231 under-
expressed) identified in the blood transcriptome of PTB patients
revealed the major dysregulation of T cell-related ontologies and
pathways. By linking DEGs against immune cell populations and
TB gene signature, this study identified 9 CD8+ T cells associated
genes (ITK, CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E,
and IL7R) as potential therapeutic targets of PTB. The expression
levels of these 9 genes in MTB infection in cell lines were assessed
by RT-PCR-based expression assay, confirming the experimental
validation. However, further in vitro and in vivo studies are
needed to establish the role of these genes in PTB infection,
progression, and treatment.
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Background: Cell division cycle-associated protein 2 (CDCA2) is a member of cell

cycle-related proteins. CDCA2 plays a role in the regulation of protein phosphatase

1(PP1) γ-dependent DNA damage response (DDR) and H3 phosphorylation. CDCA2

promotes the tumorigenesis and development of several types of cancers by promoting

the proliferation of tumor cells. However, the relationship between CDCA2 expression and

the clinicopathological characteristics of hepatocellular carcinoma (HCC) is unknown.

Methods: Gene expression information and clinical data were downloaded from The

Cancer Genome Atlas (TCGA) database. The expression of CDCA2 and its correlation

to clinical characteristics in HCC were analyzed. The expression level of CDCA2 was

validated in HCC cell lines. The relationship between CDCA2 expression and the survival

of patients with HCC was analyzed by using Kaplan–Meier method. The prognostic value

of CDCA2 in HCC was estimated by Cox regression analysis. The expression difference

of CDCA2 between HCC and normal tissues and its correlation to survival were verified

in independent datasets. Gene set enrichment analysis (GSEA) was used to screen the

CDCA2-related signaling pathways.

Results: Cell division cycle-associated protein 2 expression was upregulated in HCC

tissues (p < 0.001) and increased CDCA2 was correlated to increased T stage,

pathologic stage, histologic grade, and alpha-fetoprotein (AFP) level (p < 0.001). In

addition, CDCA2 was overexpressed in HCC cell lines HepG2 and LM3. High CDCA2

expression level was associated with poor overall survival [hazard ratio (HR) = 1.69;

95% CI, 1.20–1.40, p = 0.003], disease specific survival (HR = 1.73; 95% CI, 1.11–

2.71, p = 0.016), and progress free interval (HR = 1.74; 95% CI, 1.30–2.34, p <

0.001). Overexpression of CDCA2 and its correlation to poor survival in HCC were

verified in Gene Expression Omnibus (GEO) datasets and Kaplan–Meier plotter database.

Increased CDCA2 expression was associated with upregulation of PD-L1 (Spearman’s

coefficient = 0.207, p < 0.001), PD-L2 (Spearman coefficient’s = 0.118, p < 0.05), and

CTLA4 (Spearman’s coefficient = 0.355, p < 0.001). GSEA showed that homologous
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recombination pathway, insulin signaling pathway, mitogen-activated protein kinase

(MAPK) pathway, mismatch repair pathway, mechanistic target of rapamycin (mTOR)

pathway, Notch pathway, T cell receptor pathway, toll like receptor pathway, and WNT

pathway were enriched in CDCA2 high expression phenotype.

Conclusion: Cell division cycle-associated protein 2 may serve as an independent

biomarker for poor prognosis in HCC and increased CDCA2 expression was associated

with upregulation of immune checkpoints.

Keywords: liver cancer, hepatocellular carcinoma, CDCA2, survival, prognosis

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors in the world, with a high cancer-related
mortality. Each year, there are about 840,000 new cases of HCC
and about 780,000HCC related-deaths worldwide. The prognosis
of HCC is poor, with a survival interval of 6–20 months without
treatment (1, 2). For patients with resectable disease, surgical
resection is the recommended treatment. However, recurrence
occurs in about 70% of patients (3). Systemic therapy is the
standard treatment for patients with inoperable or recurrent
disease, such as sorafenib, lenvatinib, and immune checkpoint
inhibitor (4). However, the prognosis of these patients are
poor, with a 5-year survival rate of <8% (5). Thus, it is an
urgent need to find new biomarkers for the diagnosis, treatment,
and prognosis.

Cell division cycle-associated protein 2 (CDCA2) is a member
of cell cycle-related proteins. It is reported that CDCA2 plays a
role in the regulation of protein phosphatase 1(PP1) γ-dependent
DNA damage response (DDR) by forming a complex with PP1γ
(6). In addition, CDCA2 regulates H3 phosphorylation in a
PP1 dependent manner (7). CDCA2 promotes the tumorigenesis
and development of prostate cancer, malignant melanoma,
renal cancer, and other malignant tumors by promoting the
proliferation of tumor cells (6, 8–10). CDCA2 participates in
cell cycle regulation. It was reported that CDCA2 expression
level affected the activation of DNA damage checkpoint. Cell
cycle checkpoints are induced by DNA damage and cause cell
cycle arrest (11, 12). Thus, CDCA2 plays an important role in
the regulation of cell cycle progression. Previous studies have
shown that CDCA2 is upregulated and associated with poor
prognosis in some tumors, such as lung cancer (13), breast
cancer (14), and pancreatic cancer (15). However, there are few
reports about the correlation between CDCA2 expression and the
clinicopathological characteristics of HCC.

To explore the expression pattern and the prognostic value of
CDCA2 in HCC, we performed the current study.

METHODS

Datasets and Clinical Information
Cell division cycle-associated protein 2 expression data of normal
liver tissue (50 cases) and HCC tissues (374 cases), and the
clinical data of patients with HCC were downloaded from The
Cancer Genome Atlas database (TCGA-LIHC). The expression

information of CDCA2 and patient information used in the
current study were obtained from public database and therefore
ethical approval was not required. R software (version 3.6.3) was
used to perform the analysis. The difference of expression is
visualized by dot graphs and box graphs.

RNA Extraction and Quantitative
Real-Time PCR Analysis of CDCA2
Expression in HCC Cell Lines
Hepatocellular carcinoma cell lines HepG2 and SNU182 and
normal liver cell line THLE-3 were purchased from American
Type Culture Collection (ATCC) cell bank. Total RNA of the
cell lines was extracted using the TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) and reverse transcription was performed
to obtain cDNA. Primer sequences of CDCA2 were shown
as follows: forward, 5′-ATGACCGGCTGTCTGGAAT-3′, and
reverse, 5′-GCTGAGACCTTCCTTTCTGGT-3′. According to
the instructions of manufacturer of the SYBR Green reagent
(ABI, CA, USA), quantitative real-time PCR (qRT-PCR) was
performed to examine the expression of CDCA2 mRNA.

Verification of CDCA2 Expression and Its
Correlation With Survival by GEO Datasets
and Kaplan–Meier Plotter
Microarray data and RNA sequencing data were downloaded
from GEO database. The terms, such as “liver,” or
“hepatocellular” and “cancer,” “carcinoma,” or “neoplasm”
were used for the search. GSE27150, GSE54236, GSE56140,
GSE64041, and GSE76427 were downloaded. GSE56140,
GSE76427, and GSE64041 were used to validate the CDCA2
expression difference between normal tissues and HCC tissues.
GSE27150, GSE54236, and GSE76427 were used to validate the
relationship between CDCA2 expression and survival. Meta-
analysis was performed to verify the hazard ratio (HR) of CDCA2
expression to survival. The combined value was calculated by
HR and 95% CI. Heterogeneity between datasets was assessed by
using the τ

2 and I2 test. If I2 > 50%, the random-effects model
was used, otherwise, the fixed-effects model was used. HCC
data from Kaplan-Meier plotter database (https://kmplot.com/
analysis/) were used to validate the relationship between CDCA2
expression and survival.
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Gene Set Enrichment Analysis
Patients were classified as CDCA2-high group and CDCA2-
low group, using the median expression level of CDCA2 as
cutoff value. Gene set enrichment analysis (GSEA)was conducted
to assess the potential mechanism of CDCA2 in HCC. The
c2.cp.kegg.v6.2.symbols.gmt was used as reference gene set.
Parameter of gene set permutation for each analysis was 1,000.
The significance of enriched gene sets was estimated by nominal
p-value and false discovery rate (FDR) Q-value.

Statistical Analysis
Statistical analyses were conducted by using R software (version
3.6.3). Results were considered as statistically significant if
p < 0.05. First, the expression of CDCA2 in normal tissues and
tumor tissues was compared by Wilcoxon rank sum test. The
correlation between CDCA2 expression and clinicopathological
characteristics was examined by logistic regression analysis.
Then, the relationship between CDCA2 expression and survival
in HCC was estimated by Kaplan–Meier method. The prognostic
value of CDCA2 in HCC was estimated by the univariate and
multivariate Cox regression analysis.

RESULTS

CDCA2 Was Overexpressed in HCC
Tissues
The expression level of CDCA2 in 50 adjacent noncancer tissues
and 374HCC tissues was compared. It was shown that expression
of CDCA2 was significantly higher in HCC tissues (p < 0.001)
(Figure 1A). In fifty pairs of adjacent noncancerous and HCC
tissues, CDCA2 expression was increased in HCC tissues in
comparison with noncancerous tissues (p < 0.001) (Figure 1B).
In short, CDCA2 was overexpressed in HCC tissues.

CDCA2 Was Upregulated in HCC Cell Lines
To verify the upregulation of CDCA2 expression in HCC,
we compared the expression of CDCA2 mRNA in HCC cells
lines (HepG2 and SNU182) and normal liver epithelial cell line
(THLE-3). Results showed that CDCA2 mRNA was upregulated
in both HepG2 and SUN182 cell lines (Figure 1L).

Correlations Between CDCA2 Expression
Level and Clinicopathological
Characteristics in Patients With HCC
Expression of CDCA2 in patients with HCC with different
clinicopathological characteristics was analyzed. As shown in
Figures 1C,D, the expression level of CDCA2 was increased
as T stage (Kruskal–Wallis test, p < 0.001) and pathologic
stage (Kruskal–Wallis test, p < 0.001) was increased. CDCA2
expression level in poorly differentiated groups (G3 and
G4) was significantly higher than that in well differentiated
groups (G1 and G2) (p < 0.001) (Figure 1E). Patients with
high AFP level (p < 0.001) (Figure 1F) and low body mass
index (BMI) (p < 0.05) (Figure 1G) also had higher CDCA2
expression level. Logistic regression analysis was performed
to estimate the relationships between CDCA2 expression and
clinicopathological characteristics of patients with HCC. It was
revealed that an increased CDCA2 expression was significantly

related to age [for >60 years vs. <=60 years, odds ratio (OR) =
0.505; 95% CI, 0.333–0.761, p= 0.001], T stage (for T2–T4 vs. T1,
OR = 2.541; 95% CI, 1.678–3.875, p < 0.001), pathological stage
(for stage II-IV vs. stage I, OR=2.359; 95%CI, 1.541–3.636, p <

0.001), AFP level (for >400 ng/ml vs. <400 ng/ml, OR = 3.558;
95% CI, 1.969–6.667, p < 0.001) and histologic grade (for G3–4
vs. G1–2, OR= 3.375; 95% CI, 2.170–5.314, p < 0.001) (Table 1).

Comparison of Survival in CDCA2-High
and CDCA2-Low Patients
The median expression level of CDCA2 was 1.008 and it was
used as the cutoff value. Patients with CDCA2 expression level
higher than the cutoff value were considered as CDCA2 high
expression, otherwise they were considered as CDCA2 low
expression. Kaplan–Meier method was used to compare the
survival of patients with high and low expression of CDCA2 from
TCGA database. Patients with high CDCA2 expression level had
worse overall survival (HR= 1.69; 95% CI, 1.20–1.40, p= 0.003),
disease specific survival (HR = 1.73; 95% CI, 1.11–2.71, p =

0.016), and progress free interval (HR = 1.74; 95% CI, 1.30–2.34,
p < 0.001) (Figures 1H–J).

Verification of CDCA2 Overexpression in
HCC by GEO Datasets
Cell division cycle-associated protein 2 expression in GSE56140,
GSE76427, and GSE64041 was analyzed. The expression
difference of CDCA2 between normal tissues and HCC tissues
was compared. We found that CDCA2 expression was increased
in HCC tissues (Figures 2A–C), which was consistent with the
results of TCGA database.

Verification the Relationship Between
CDCA2 Expression and Survival in HCC
The survivals of patients with high and low CDCA2 expression
in GSE27150, GSE54236, and GSE76427 were compared.
In GSE54236 cohort, patients with high CDCA2 expression
showed significantly worse survival than patients with low
CDCA2 expression (p = 0.030) (Figure 2E). In GSE27150 and
GSE76427 cohorts, survivals were not significantly different
between CDCA2 high and CDCA2 low expression patients
(Figures 2D,F). To further confirm the correlation of CDCA2
expression with survival in patients from GEO datasets, meta-
analysis was conducted. Meta-analysis result of the GSE27150,
GSE54236, and GSE76427 showed that CDCA2 overexpression
was not associated with poor survival [combined HR = 1.07
(95% CI: 0.56–2.04)] (Figure 2G). After analyzing the result, we
found that the homogeneity between studies was poor, with I2

= 85%. We further analyzed the array data of the three GEO
datasets and found that GSE27150 did not provide normalization
information and normalization method about the data. The
poor homogeneity was mainly due to GSE27150. We excluded
GSE27150 and performed survival analysis using the GSE54236
and GSE76427 datasets. The result indicated that high expression
of CDCA2 was associated with better survival (p < 0.001)
(Figure 2H). The result was inconsistent with the previous results
from TCGA. We analyzed the data of the two datasets and
we found that 69.3% of patients in high CDCA2 group were
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FIGURE 1 | Cell division cycle-associated protein 2 (CDCA2) expression in hepatocellular carcinoma (HCC) and the correlations between CDCA2 expression and

clinicopathological characteristic. (A) Cell division cycle-associated protein 2 expression in HCC tissues and normal tissues (Wilcoxon rank sum test, ***p < 0.001). (B)

Cell division cycle-associated protein 2 expression in HCC tissues and adjacent noncancerous tissues (Wilcoxon signed rank test, ***p < 0.001). (C) Expression

(Continued)
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FIGURE 1 | level of CDCA2 in patients with different T stages (Kruskal–Wallis test, ***p < 0.001). (D) Expression level of CDCA2 in patients with different pathological

stages (Kruskal–Wallis test, ***p < 0.001). (E) Expression level of CDCA2 in patients with different histologic grades (Wilcoxon rank sum test, ***p < 0.001). (F)

Expression level of CDCA2 in patients with different AFP levels (Wilcoxon rank sum test, ***p < 0.001). (G) Expression level of CDCA2 in patients with different body

mass index (BMI) (Wilcoxon rank sum test, ***p < 0.05). (H) Overall survivals of patients with high and low CDCA2 expression (log-rank test, p = 0.003). (I) Disease

specific survivals of patients with high and low CDCA2 expression (log-rank test, p = 0.016). (J) Progress free intervals of patients with high and low CDCA2

expression (log-rank test, p < 0.001). (K) A receiver operating characteristic (ROC) curve and the area under the curve (AUC) of CDCA2 in HCC. (L) Cell division

cycle-associated protein 2 mRNA was upregulated in both HepG2 and SNU182 cell lines (t-test, *p < 0.05, **p < 0.01).

TABLE 1 | Logistic regression analysis was performed to estimate the

relationships between cell division cycle-associated protein 2 (CDCA2) expression

and clinicopathological characteristics.

Characteristics Total (N) Odds Ratio (OR) P-value

Age (>60 vs. ≤60) 373 0.505 (0.333–0.761) 0.001†

Gender (Male vs. Female) 374 0.843 (0.545–1.300) 0.439

T stage (T2–T4 vs. T1) 371 2.541 (1.678–3.875) <0.001†

Pathologic stage (Stage II-IV

vs. Stage I)

350 2.359 (1.541–3.636) <0.001†

BMI (>25 vs. ≤25) 337 0.817 (0.532–1.253) 0.355

AFP(ng/ml) (>400 vs. ≤400) 280 3.558 (1.969–6.667) <0.001†

Histologic grade (G3–4 vs.

G1–2)

369 3.375 (2.170–5.314) <0.001†

† p < 0.05.

lost to follow-up while only 11.4% of patients in low CDCA2
group were lost to follow-up. The unbalanced loss of follow
up rate between the two groups may affect the survival rate,
and the high loss of follow-up rate in the high CDCA2 group
may make the calculated survival rate higher than the actual
survival rate. In addition, meta-analysis of the GSE54236 and
GSE76427 showed that homogeneity between the two datasets
was good (I2 = 27%) and increased CDCA2 was associated
with poor clinical outcome (combined HR = 1.61 (95% CI:1.30–
1.99). (Supplementary Figure S2). HCC data from Kaplan–
Meier plotter database (https://kmplot.com/analysis/) were used
to validate the relationship between CDCA2 expression and
survival. It was indicated that patients with high CDCA2
expression showed poor overall survival (HR = 1.94; 95% CI,
1.36–2.76, p < 0.001) (Figure 2I) and progress free survival
(HR = 1.81; 95% CI, 1.34–2.43, p < 0.001) (Figure 2L). In
stage I-II subgroup and stage III-IV subgroup patients, CDCA2
overexpression was related to poor overall survival (for stage
I-II subgroup, HR = 1.87; 95% CI, 1.08–3.21, p = 0.022; for
stage III-IV subgroup, HR = 2.16; 95% CI, 1.20–3.90, p =

0.0089) (Figures 2J,K) and progress free survival (for stage I-II
subgroup, HR = 1.68; 95% CI, 1.12–2.52, p = 0.011; for stage
III-IV subgroup, HR = 2.14; 95% CI, 1.10–4.16, p = 0.021)
(Figures 2M,N). The results were consistent with the results of
TCGA database.

Diagnostic and Prognostic Values of
CDCA2 in HCC
A receiver operating characteristic (ROC) curve was plotted
and the area under the curve (AUC) was calculated to examine
the diagnostic value of CDCA2 in HCC. The ROC showed a

sensitivity of 0.900 and a specificity of 0.898 and the AUC was
0.951 (Figure 1K). Univariate and multivariate analysis were
used to estimate the correlation between clinicopathological
characteristics and prognosis of HCC. Univariate analysis
showed that CDCA2 expression (HR = 1.694; 95% CI, 1.196–
2.401; p= 0.003), T stage (HR= 2.126; 95% CI, 1.481–3.052; p <

0.001), and pathologic stage (HR = 2.090; 95% CI, 1.429–3.055;
p < 0.001) were related to poor survival (Table 2). Multivariate
analysis showed that CDCA2 expression (HR = 1.613; 95% CI,
1.108–2.349; p = 0.013) was independently related to survival
(Table 2). In summary, CDCA2 expression was an independent
prognostic factor for HCC and increased CDCA2 expression was
related to poor survival.

Overexpression of CDCA2 Was Related to
Increased Expression of Immune
Checkpoint
Spearman’s correlation analysis was performed to estimate the
relation of CDCA2 expression to immune checkpoint expression,
such as PD-L1, PD-L2, and CTLA4. The results showed
that overexpression of CDCA2 was associated with increased
expression of PD-L1 (Spearman’s coefficient= 0.207, p < 0.001),
PD-L2 (Spearman’s coefficient = 0.118, p < 0.05), and CTLA4
(Spearman’s coefficient= 0.355, p < 0.001) (Figure 3).

Identification of CDCA2-Related Pathways
Patients were classified into CDCA2 high group and CDCA2
low group according to the median value of CDCA2 expression.
CDCA2-related pathways were screened by GSEA. Results
showed that homologous recombination pathway, insulin
signaling pathway, mitogen-activated protein kinase (MAPK)
pathway, mismatch repair pathway, mTOR pathway, Notch
pathway, T cell receptor pathway, toll like receptor pathway,
and WNT pathway were enriched in CDCA2 high expression
phenotype (Table 3 and Figure 4).

DISCUSSION

Cell division cycle-associated protein 2 participates in cell
cycle regulation. It was reported that CDCA2 expression level
affected the activation of DNA damage checkpoint. Cell cycle
checkpoints are induced by DNA damage and cause cell cycle
arrest (11, 12). CDCA2 participates in chromatin remodeling
by regulating histone H3 de-phosphorylation (7). Thus, CDCA2
plays an important role in the regulation of cell cycle progression.
Previous studies have shown that CDCA2 is upregulated and
associated with poor prognosis in some tumors, such as lung
cancer (13), breast cancer (14), and pancreatic cancer (15).
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FIGURE 2 | Verification of CDCA2 overexpression in HCC and the correlation between CDCA2 expression with survival by independent datasets. Cell division

cycle-associated protein 2 expression in (A) GSE56140, (B) GSE76427, and (C) GSE64041. ***p < 0.001. The overall survivals of patients with high and low CDCA2

expression in (D) GSE27150, (E) GSE54326, and (F) GSE76427. (G) Meta-analysis of hazel ratio (HR) of CDCA2 overexpression to survival. (H) Overall survival of

patients with high and low CDCA2 expression in GSE54236+GSE 76427 cohort. (I) Overall survivals of patients with high and low CDCA2 expression

(Continued)
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FIGURE 2 | in Kaplan–Meier plotter database. (J) Overall survivals of stage I-II subgroup patients with high and low CDCA2 expression in Kaplan–Meier plotter

database. (K) Overall survivals of stage III-IV subgroup patients with high and low CDCA2 expression in Kaplan–Meier plotter database. (L) Progress free survivals of

patients with high and low CDCA2 expression in Kaplan–Meier plotter database. (M) Progress free survivals of stage I-II subgroup patients with high and low CDCA2

expression in Kaplan–Meier plotter database. (N) Progress freesurvivals of stage III-IV subgroup patients with high and low CDCA2 expression in Kaplan–Meier

plotter database.

TABLE 2 | Univariate and multivariate analysis were used to estimate the

correlation between clinicopathological characteristics and prognosis of

hepatocellular carcinoma (HCC).

Univariate analysis Multivariate analysis

Characteristics Total

(N)

HR

(95% CI)

P-value HR

(95% CI)

P-value

Age

(>60 vs. <=60)

373 1.205

(0.850–1.708)

0.295

Gender

(Male vs. Female)

373 0.793

(0.557–1.130)

0.200

BMI

(>25 vs. <=25)

336 0.798

(0.550–1.158)

0.235

T stage

(T2–T4 vs. T1)

370 2.126

(1.481–3.052)

<0.001† 0.731

(0.101–5.302)

0.757

Pathologic stage

(Stage II–IV vs.

Stage I)

349 2.090

(1.429–3.055)

<0.001† 2.658

(0.362–19.545)

0.337

AFP(ng/ml)

(>400

vs. <=400)

279 1.075

(0.658–1.759)

0.772

Histologic grade

(G4–3 vs. G1–2)

368 1.091

(0.761–1.564)

0.636

CDCA2

(High vs. Low)

373 1.694

(1.196–2.401)

0.003† 1.613

(1.108–2.349)

0.013†

† p < 0.05.

In the current study, we analyzed the expression pattern of
CDCA2 and its diagnostic and prognostic value in HCC. To
explore the potential mechanism by which CDCA2 regulates
the tumorigenesis and development of HCC, we analyzed the
CDCA2-high phenotype related signal pathways by GSEA. In the
TCGA-LIHC cohort, we found that CDCA2 was upregulated in
HCC and increased CDCA2 expression was associated with poor
prognosis of patients with HCC. To validate the bioinformatic
analysis results of the TCGA-LIHC cohort, we searched the GEO
database and analyzed CDCA2 expression level in normal tissue
and HCC tissue and its association with prognosis. We got
consistent results with the results of TCGA-LIHC cohort.

Some reports have indicated that CDCA2 was associated with
poor survival in HCC and the correlation between pathologic
stage and histologic grade with CDCA2 expression was also
reported (15–17). However, the relationship between CDCA2
expression and other clinical features was not analyzed. In the
current study, we analyzed the correlation between CDCA2
expression level and clinicopathological features, such as T
stage, lymph node invasion, distant metastasis, pathologic stage,
histological grade, AFP level, and BMI. Logistic regression
showed that CDCA2 expression was significantly associated with

histological grade, AFP level, T stage, and pathologic stage.
CDCA2 was increased as histological grade, AFP level, T stage,
and pathologic stage increased. These results suggested that
CDCA2 participated in the development of HCC. An ROC curve
showed that CDCA2 had high diagnostic value for HCC, with an
AUC of 0.951.

Univariate analysis showed that CDCA2 expression level, T
stage, and pathologic stage may predict poor prognosis of HCC.
Multivariate regression analysis further verified that CDCA2
had an independent prognostic value for HCC. The results
were consistent with previous reports (15–17). Wang Y et al.
demonstrated that low methylation of CDCA2 was related to
poor survival. However, they did not study the relationship
between CDCA2 expression level and clinical prognosis and the
results were not verified by independent dataset (16). Though
Wang Z also indicated that increased CDCA2 was related to poor
survival in HCC, they did not verify the results by independent
dataset (17). Wu B et al. showed that upregulation of CDCA2 was
related to poor survival in HCC. They used only one dataset to
validate the upregulation of CDCA2 and the correlation between
CDCA2 expression and survival (15). However, the sample size
was small. The validation dataset contained only 14 pairs of HCC
tissues and adjacent tissues and 64 cases of patients with HCC
(15). In the current study, we used three independent datasets to
verify the upregulation of CDCA2 in HCC. The validation cohort
contained larger sample size than previous study. GSE56140
contained 34 normal tissues and 35 tumor tissues. GSE76427
contained 52 normal tissues and 155 tumor tissues. GSE64041
contained 60 pairs of HCC tissues and adjacent tissues. The three
independent datasets showed the consistent results. As these
three datasets did not contain prognosis information, we used the
other three datasets (GSE27150, GSE54236, and GSE76427) to
validate the correlation between CDCA2 expression and clinical
outcomes. The result fromGSE27150 and GSE75427 showed that
the prognosis of patients with high and low CDCA2 expression
level did not have statistical difference. However, the result from
GSE 54236 showed that patients with high CDCA2 expression
had worse clinical outcome. The inconsistent results may be
attributed to bias introduced by the small sample size in the
GSE27150 and GSE76427 datasets. To further analyze the results,
meta-analysis was performed. However, meta-analysis indicated
that high CDCA2 expression was not related to poor survival.
It should be noted that poor heterogeneity existed between the
three datasets, with I2 = 85%. After the data of the three dataset,
we found that GSE54236 and GSE76427 were both normalized
by the same method (robust spline normalization, RSN) while
normalization information of GSE27150 was not provided. After
excluding GSE27150 and survival analysis of GSE54236 and
GSE76427 by Kaplan–Meier method showed that increased
CDCA2 was associated with better survival. The inconsistent
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FIGURE 3 | Correlation of CDCA2 with expression level of immune checkpoints. (*p < 0.05; ***p < 0.001).

TABLE 3 | Cell division cycle-associated protein 2-related pathways screened by

gene set enrichment analysis (GSEA).

Gene set name NES NOM

p-value

FDR

q-value

KEGG_HOMOLOGOUS_RECOMBINATION 1.99 0.000 0.003

KEGG_INSULIN_SIGNALING_PATHWAY 1.86 0.000 0.008

KEGG_MAPK_SIGNALING_PATHWAY 1.72 0.002 0.023

KEGG_MISMATCH_REPAIR 1.93 0.000 0.005

KEGG_MTOR_SIGNALING_PATHWAY 1.83 0.000 0.011

KEGG_NOTCH_SIGNALING_PATHWAY 1.85 0.004 0.010

KEGG_P53_SIGNALING_PATHWAY 2.10 0.000 0.000

KEGG_T_CELL_RECEPTOR_SIGNALING_

PATHWAY

1.81 0.002 0.013

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_

PATHWAY

1.74 0.002 0.021

KEGG_WNT_SIGNALING_PATHWAY 1.83 0.000 0.011

result may be due to the obviously higher loss of follow-up rate
in the high CDCA2 group. The meta-analysis result of the two
datasets confirmed the high CDCA2 expression was related to
poor survival.

Some research have studied the mechanisms of CDCA2 in
HCC. It was reported that CDCA2 protected against oxidative
stress by activating BRCA1-NRF2 pathways in HCC (18).

Li et al. reported that CDCA2 promoted cell proliferation
of HCC by activating AKT/CCND1 pathway (19). However,
the relationship between immune checkpoint and CDCA2
expression has not been reported. As immune checkpoint
inhibitors have become one of the standard treatments for HCC,
we estimated whether the CDCA2 expression was related to
immune checkpoint expression. Spearman’s correlation analysis
showed that increased expression of CDCA2 was associated
with increased expression of immune checkpoints. It has been
indicated that increased immune checkpoint was associated
with inhibition of immune cells activity (20). The above results
revealed that upregulation of CDCA2 may affect the prognosis
by inhibiting immune cell activity.

Gene set enrichment analysis was performed to explore
the potential mechanisms of CDAC2 in HCC. We found that
homologous recombination pathway, insulin signaling pathway,
MAPK pathway, mismatch repair pathway, mTOR pathway,
Notch pathway, T cell receptor pathway, toll like receptor
pathway, and WNT pathway were enriched in CDCA2 high
expression phenotype. Homologous recombination pathway is a
signal pathway associated with DNA double-strand breaks repair
(21). Drugs targeting homologous recombination deficiency
(HRD), such as poly(ADP-ribose) polymerase (PARP) inhibitors,
have been proved to have an antitumor activity in some types
of tumors, such as breast cancer and ovarian cancer (21,
22). Mismatch repair pathway is another DNA damage repair
pathway, which promotes DNA damage response mediated by
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FIGURE 4 | Cell division cycle-associated protein 2-related pathways identified by gene set enrichment analysis (GSEA). (A) Homologous recombination pathway, (B)

insulin signaling pathway, (C) MAPK pathway, (D) mismatch repair pathway, (E) mTOR pathway, (F) Notch pathway, (G) T cell receptor pathway, (H) toll like receptor

pathway, and (I) WNT pathway.

ataxia telangiectasia mutated (ATM) and ataxia-telangiectasia
mutated (ATR) (23). The previous studies reported that BRCA1
was recruited by CDCA2 (18) and BRCA1 functioned in DNA
repair process (24). These results supported that homologous
recombination pathway and mismatch repair pathway were
enriched in CDCA2 high phenotype. Insulin signaling pathway,
which can be activated by IGF-1, promotes cell growth,
proliferation, and inhibits apoptosis. It has been indicated
that insulin signaling pathway activation was associated with
increased risk of breast cancer (25) and colorectal cancer (26).

MAPK pathway is the ubiquitous signal transduction pathway
which involves in many processes of life and often alters in
many disease (27). MAPK pathway regulates cellular activities
during development of cancers, such as cell proliferation, cell
apoptosis, and immune escape. Inhibiting the upstream kinase
of MAPK pathway has become a therapeutic strategy of some
cancer (28). The mTOR pathway involves in the regulation
of protein synthesis, glucose metabolism, lipid metabolism,
glutamine metabolism, and nucleotide synthesis in cancer cells.
The mTOR pathway has become a therapeutic target for cancer
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therapy. mTOR inhibitors, such as rapamycin and everolimus,
have been approved for the treatment of some types of cancers
(29). It was reported that CDCA2 activated AKT related
pathways and promoted HCC proliferation (19). mTOR was
one of the downstream effectors of PI3K/AKT pathways (30).
The current study showed that mTOR pathway was enriched
in CDCA2 high phenotype. The result was consistent with
previous reports. Notch pathway plays a vital role in promoting
tumor development by changing tumor microenvironment
and recruiting immunosuppressive cells (31). Moreover, Notch
pathway can interact with WNT pathway and promote HCC
development (32). Toll like receptors are important factors
affecting the immune system and initiation of inflammatory
response. It has been revealed that inhibiting toll like receptors
suppresses the proliferation of HCC cells (33). The above
finding results from GSEA provided information to explore
the mechanism by which CDCA2 promoting the development
of HCC.

However, some limitations existed in the current study. First,
the number of tumor tissues in TCGA and GEO database was
much higher than number of normal tissues, which were used as a
control. Second, we only analyzed the CDCA2mRNA expression
of the tissue. The protein expression level of CDCA2 was not
assessed. And finally, we only explored the potential involved
pathways related to CDCA2 by bioinformatic analysis and the
molecular mechanism was not explored in depth by molecular
biology experiment. In addition, it should be noticed that the
meta-analysis of the three GEO datasets indicated that CDCA2
was not associated with survival, though multiple Cox regression
analyses pointed out that CDCA2 was associated with survival
independently. The relationship between CDCA2 expression and
survival should be validated clinically.

In conclusion, we analyzed the CDCA2 expression data of
TCGA database and validated the results using independent
cohorts fromGEOdatabase. The results showed that CDCA2was
increased in HCC and had a high diagnostic power for HCC.
Kaplan–Meier analysis and univariate Cox regression analysis
indicated that CDCA2 was associated with poor survival for
HCC. Increased CDCA2 expression was associated with the
upregulation of PD-L1, PD-L2, and CTLA4. In addition, we

also screened the potential signal pathways related to CDCA2 in
HCC. However, the prognostic value of CDCA2 in HCC needs
further clinical exploration and validation.
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