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SARS-CoV-2 infection across the world has led to immense turbulence in the treatment modality, thus demanding a swift drug discovery process. Spike protein of SARS-CoV-2 binds to ACE2 receptor of human to initiate host invasion. Plethora of studies demonstrate the inhibition of Spike-ACE2 interactions to impair infection. The ancient Indian traditional medicine has been of great interest of Virologists worldwide to decipher potential antivirals. Hence, in this study, phytochemicals (1,952 compounds) from eight potential medicinal plants used in Indian traditional medicine were meticulously collated, based on their usage in respiratory disorders, along with immunomodulatory and anti-viral potential from contemporary literature. Further, these compounds were virtually screened against Receptor Binding Domain (RBD) of Spike protein. The potential compounds from each plant were prioritized based on the binding affinity, key hotspot interactions at ACE2 binding region and glycosylation sites. Finally, the potential hits in complex with spike protein were subjected to Molecular Dynamics simulation (450 ns), to infer the stability of complex formation. Among the compounds screened, Tellimagrandin-II (binding energy of −8.2 kcal/mol and binding free energy of −32.08 kcal/mol) from Syzygium aromaticum L. and O-Demethyl-demethoxy-curcumin (binding energy of −8.0 kcal/mol and binding free energy of −12.48 kcal/mol) from Curcuma longa L. were found to be highly potential due to their higher binding affinity and significant binding free energy (MM-PBSA), along with favorable ADMET properties and stable intermolecular interactions with hotspots (including the ASN343 glycosylation site). The proposed hits are highly promising, as these are resultant of stringent in silico checkpoints, traditionally used, and are documented through contemporary literature. Hence, could serve as promising leads for subsequent experimental validations.
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GRAPHICAL ABSTRACT. In-silico strategies implemented to prioritize phytochemical moieties for targeting Dual hotspots of Sars-Cov-2 spike protein.


INTRODUCTION

A new respiratory infectious disease was reported in Wuhan, Hubei Province of China, around December 2019 (1, 2). The outbreak at the initial stage was linked to a seafood market with a possibility of animal transmission. In due course of time, human to human infection began that spread across the globe, and the disease was called as COVID-19 (Coronavirus disease 19). The newly emerged virus was named as SARS Corona virus-2 (SARS-CoV-2; Figure 1), based on the etiology and symptoms, which is closely associated with SARS-CoV identified in the year 2002 in China (3). The epidemic of COVID-19 has been declared as a pandemic by the WHO on 30th January 2020, which affected the population across the globe to the worst possible extent (4). The SARS-CoV-2 infection has spread across the continents, as of March 25, 2021 a total of 125,429,834 cases with a mortality of 2,756,742 and recoveries of 101,293,629 are reported, based on the registered cases (5). Currently, quarantine, isolation, use of masks, physical distancing, washing of hands with soap water and symptomatic treatment protocol is being strictly followed to manage the disease, as there is no drug available till date to selectively target this virus. These data mainly highlight the extent of spread across the globe. Hence, finding prophylactic or therapeutic agents becomes important and essential.


[image: Figure 1]
FIGURE 1. Illustration of SARS-CoV-2 in complex with Human ACE2 receptor.


The virus enters the human cells by the regulation of spike (S) glycoprotein (1,273 amino acids long; Figure 2) which is cleaved into 2 main units, namely, S1 (13–685 aa) and S2 (686–1,273 aa).


[image: Figure 2]
FIGURE 2. S1 and S2 region of spike glycoprotein and ACE2 receptor [Blue, S1 Domain; Pink, S2 Domain; Green, S1 Receptor binding domain (RBD); Red, ACE2 Receptor] (PDB ID 7KJ2).


The S1 and S2 domains are present in individual monomers of the spike protein trimer (Supplementary Figure 1).This 3D structure of protein complex has been recently elucidated using Cryo-Electron microscopy (PDB id: 6VSB) (rendered using PyMol) (6, 7). The surface unit 1 (S1) helps in the strong attachment of the spike protein to human cell receptors. The cleavage of S1/S2 helps in the entry of viral particles and the fusion of the viral capsid with the host cell membrane is guided by the S2 subunit (8). Several studies established that angiotensin-converting enzyme 2 (ACE2) receptor of the host cell is the mediator that facilitates viral entry (9, 10). Spike protein S1 domain is further divided into multiple regions that are involved in binding to host receptors. In Spike protein, 319–541 aa region (S1) is known as receptor binding domain (RBD) [PDB id: 7BZ5; Figure 3; (11)]


[image: Figure 3]
FIGURE 3. Receptor binding Domain of spike glycoprotein (Molecular Surface View) (PDB ID 7BZ5).


and 437–508 as receptor binding motif (RBM), which binds to the ACE2 receptor. Other earlier studies have also compared the receptor-binding domain (RBD) of spike protein of both SARS-CoV and SARS-CoV-2 having high residue conservation, indicating that only a small change makes the SARS-CoV-2 binding to the ACE2 receptor different from the other coronaviruses (12, 13). Recent genome sequencing study also showed the spread of mutant form (D614G) of spike protein to have the potential for enhanced ACE2 binding (14). Glycosylation sites of SARS-CoV-2 are reported to modulate the host immune response, and also proposed to be the potential target for future mutations (15). The glycosylation process in coronaviruses mainly occurs to camouflage the immunogenic process in the host. Targeting glycosylation sites can also help in the early and rapid immune response to neutralize the virion (16). The potential hotspot residues of spike protein namely, THR323, SER325, ASN331, and ASN343 are reported to be involved in glycosylation. Among these residues, ASN343 spans the RBD region of the spike protein (17). Thus, targeting these sites could be an efficient mode for combating SARS-CoV2 infections.

Drug development is a tedious and highly time-consuming process usually takes years to get the newly developed drug for the treatment (18–20). Thus, one of the most preferred method is to find a suitable drug through drug repurposing, as it saves both time and financial resources (21). The most common source of drug repurposing is existing drugs or molecules of natural origin, and the scientists across the globe feel that the use of compounds from natural sources is one of the best and sought about way to move forward (22), even to find a drug for COVID-19 (23, 24). Computational approaches in identifying potential hits have gained momentum due to their cost effective and time saving efficiencies in drug discovery process (25). Moreover, these approaches have been well-utilized for mining potential chemical moieties from diverse phytochemical libraries (24, 26, 27). In recent times, studies on traditional medicine have climbed to newer heights across the globe due to its immense potential, easy availability, time-tested safety profile, and wide range of pharmacological actions. The increase in studies is also due to the implementation of technologies to understand the structure and function of phytocompounds from nature (28). With the continuous advancement in the field of computer science, many drugs have been approved from natural sources through computer-aided drug design, like Ponatinib (FDA approval: 2012), Dasatinib (FDA approval: 2006), and Imatinib (FDA approval: 2001). Applications of in silico approach helps to calculate and analyze the combinations of compounds and targets as highly accurate, hence gaining more and more importance in the field of drug discovery by saving time and money (29). Several studies revealed that ethnomedicinal “phytophores” belonging to different classes, based on their structure activity relationship (SAR), showed effectiveness in curtailing viral replication in diverse viral infections. The antiviral compounds usually interfere in host-virus interaction points like viral entry process from adhesion/attachment to fusion and penetration, inhibit enzymatic activity, and or block one or more steps of the viral life cycle including replication to release. The scientific evidence and the traditional usage of antiviral plant extracts clearly portray the potential of natural compounds in modulating viral infection (30).

India is a country with rich biodiversity and long history of use of traditional medicine (TM) with a vast knowledge base of useful medicinal plants through the ages. Indian Ayurveda is one of the oldest systems of medicine of the world existing since the world's first civilizations and Vedic era. The main resource of TM is the generation-old time-tested knowledge base of plant-based formulations and wisdom of different communities, known as “ethnomedicine” (31), using different parts of plants from roots to leaves, bark fruits, and seeds (New Look to Phytomedicine, 2019). A wide range of plants used in ethnomedicinal practices were shown to be highly effective in the management of diverse viral infections by inhibiting either the viral life cycle or the host-virus interactions (32).

Viral infections are increasing across the globe mainly due to increased anthropogenic activities like land-use change, increased human-animal interaction and lack of proper healthcare infrastructure. Hence, the discovery of antivirals from natural sources, mainly traditionally used medicinal plants have gained importance. Since ages, plants have been used as a source of therapeutics in diverse ethnomedicinal practices. Many ethnomedicinal plant extracts and phytocompounds are known to modulate host immune responses (33) and may exert antimicrobial and antiviral effects (34). A variety of plant compounds including alkaloids, coumarins, essential oils, flavonoids, polyphenols, phytosterols, proteins, peptides, saponins, and tannins play diverse roles in the human system. Consistent progress has been made in the development of nature-based antiviral drugs in recent years, as natural products like plant extracts and phytocompounds used in TM are novel and broad-based chemical entity that may serve as a potential sources of antiviral drugs (35). The ever-increasing drug resistance, frequent microbial mutations with increased emerging and re-emerging outbreaks of viruses necessitate the development of easily available cost-effective antimicrobials and antivirals for better treatments. Hence, traditional medicines are the hope and source for novel agents to manage viral diseases (30). A whole range of viral diseases caused by the Dengue, Human herpes viruses, HIV, Rabies, and Severe acute respiratory syndrome (SARS) needs potential therapeutics; while using modern tools the vast knowledge of ethnomedicinal practices can be identified and validated for antiviral applications (36). Thus, a surge of research is been observed in research institutes and universities, particularly the countries rich in TM.

In recent times, several phytocompounds having antiviral potential have been identified with their molecular mechanism of action. Spiroketalenol, isolated from the rhizome extract of Tanacetum vulgare L., was found to inhibit HSV-1 and HSV-2 by blocking the virus entry, and inhibit the activity of viral glycoproteins (37). Another compound Samarangenin B from the roots of Limonium sinense found to suppress the replication of HSV-1 by inhibiting the expression of HSV-1 immediate early (IE) or α- gene (38). Harmaline (HM), a dihydro-pyrido-indole, from the ethnomedicinal herb Ophiorrhiza nicobarica is reported to exhibit anti-HSV activity by suppressing the viral IE gene synthesis through epigenetic blocking of LSD-1 with a different mode of action than the gold standard antiviral Acyclovir (39). Further, it was reported that the ursolic acid isolated from Mallotus peltatus (Geist) Muell. Arg. dose-dependently inhibits the plaque formation of both HSV-1 and HSV-2 at 10 μg/ml within 2–5 h post-infection (40). Moreover, Odina wodier Roxb, a herb used in folklore medicine confer therapeutic effects on the skin infections caused by HSV (41). Pterocarya stenoptera traditionally used in the treatment of viral diseases is another potential plant with antiviral activity and its isolated compound Pterocarnin A was shown to inhibit HSV-2, by blocking the penetration of the virion into the host cells (42). Complementarily, many bio-active compounds from plants were shown to have immunomodulatory activities by triggering anti-inflammatory responses, which in turn helps in the control of viral infection (34). Earlier studies have revealed that modulation of NF-κB signaling mediated anti-inflammatory response triggered by Pedilanthus tithymaloides L. confer a higher level of anti-HSV activity (43, 44). Further, ultrasound-induced Gallic acid based gold nanoparticles can inhibit HSV infection with EC50 of 32.3 and 38.6 μM against HSV-1 and HSV-2, respectively (45). While oleo-gum resin-extract and β-Boswellic acid of Boswellia serrata inhibit HSV-1 infection through modulation of NF-kβ and p38 MAP kinase signaling (46).

Ethnomedicinal literature claims the broad-spectrum antiviral activity of diverse medicinal plant extracts and phytocompounds, as the majority of those antiviral herbs contain flavones, polyphenols, and alkaloids. Due to the rapid emergence of new highly infectious viruses as well as re-emergence of drug-resistance, and difficult-to-treat infections along with the concurrent availability of advanced technological tools, the exploration of antiviral activity of medicinal plants has acquired momentum. In the current scenario of COVID-19, traditional Chinese medicine (TCM) was included in the guideline for the treatment, which claimed to be efficacious in several cases (47). Similarly, many of the Indian ethnomedicinal plants are reported to ameliorate the symptoms related to COVID-19, with antiviral activities (24). The hits based on such observations can provide the edge for development of drugs to manage/treat COVID-19. Thus, in this study we have performed a meticulous analysis of documented antiviral properties of selected traditionally used Indian medicinal plants. This resulted in eight potential plants to be probed for phytochemical moieties that could target COVID-19 effectively. The rationale on selection of plants is discussed in detail as follows.



MATERIALS AND METHODS


Selection of Plants and the Rationale
 
Tylophora indica Burm F. Merrill (Asclepiadaceae) Syn. T. asthmatica (Roxb) Wt & Arn.

The detailed flowchart on the insilico methodologies implemented in this study towards prioritization of phytochemical moieties are shown in Figure 4. Tylophora indica, a perennial climber indigenous to India, commonly called “Antamool” is an important medicinal plant used in Indian medicine, mainly found in the plains, hills, and the forest borders in eastern and southern India. This plant is ethnically used for treating various types of ailments including cancer, respiratory infections, bronchial asthma, whooping cough, and anaphylaxis. The active ingredients of T. indica are mainly available in leaves and roots that exhibit most therapeutic effects mostly due to the pharmacologically active alkaloids tylophorine, tylophorinine, and tylophorinidine (48). Some previous studies have shown that Tylophora alkaloids can inhibit viral protease and suppresses viral RNA replication by blocking the JAK2 mediated NF-κB activation (49). While tylophorine derivatives have inhibitory effects on mouse hepatitis virus (MHV), transmissible gastroenteritis virus (TGEV), and SARS-CoV (50–52). A recent report revealed that Tylophora alkaloids could inhibit the CoV-infected cells of swine (53). However, an earlier pharmacokinetic study demonstrated moderate to good oral bioavailability of tylophorine (65.7%) in rats (50). Recent studies also showed that alkaloids from T. indica possess anti-replication activity and inhibit the cytopathic effect induced by apoptosis, and apoptosis induced by viral infection (54). While kaempferol derived from T. indica could effectively block the 3a channel protein in coronavirus (55).


[image: Figure 4]
FIGURE 4. A schematic representation of methodologies implemented in this study.




Glycyrrhiza glabra L. (Fabaceae)

Glycyrrhiza glabra rhizome (Yashtimadhu) is used worldwide in various traditional systems of medicines. In Ayurveda it is an important drug component of Dasamoolarishtam, Aswagandharishtam, Madhu-yastyaditaila etc., as mentioned in Charaka Samhita. In folk medicine it is used as a laxative, emmenagogue, contraceptive, galactagogue, anti-asthmatic, anti-tussive, and antiviral agent. Being a member of the pea and bean family, the plant is best known for its use in making liquorice-flavored confectionery while roots and rhizomes are used for medicinal purposes. A number of pharmacological effects including expectorant and antitussive, antiviral against SARS-CoV, HIV, and in the treatment of diabetes, cancer, and hepatitis (56) have been studied for this plant. The main chemical constituent of liquorice is glycyrrhizin, a triterpene saponin with a low haemolytic index; while the root contains glycyrrhetinic (Glycyrrhetic) acid, the aglycone of glycyrrhizin. Other active constituents of liquorice include isoflavonoids, chalcones, coumarins, triterpenoids, sterols, lignans, amino acids, amines, gums, and volatile oils (57). Chemically G. glabra comprises of 20 triterpenoids and around 300 flavonoid compounds. Among these 18β-glycyrrhetinic acid, glycyrrhizin, glabridin, licochalcone A, licochalcone E, and liquiritigenin have antimicrobial activity (58). While glycyrrhizin A and 18β-glycyrrhetinic acid can elicit anti-HCV activity through inhibition of core protein expression and by blocking the degradation of NFκB inhibitor IκB, followed by activation of T lymphocyte proliferation (58). The glycyrrhizin and its analogs have significant inhibitory effect against hepatitis, herpes, influenza, and SARS viruses (59). Oral administration of G. glabra extract has an antitussive effect by promoting pharyngeal and bronchial secretions leading to good expectorant action. Liquiritigenin, a flavonoid from the root extracts demonstrated anti-asthmatic activity (60). The antiviral activity of glycyrrhizin have been assessed against two clinical isolates of coronavirus (FFM-1 and FFM-2) from SARS patients and found that it could inhibit viral adsorption, penetration, and replication (59). The crude Glycyrrhizin was also demonstrated to have low antiviral activity against varicella zoster virus (VZV) better than acyclovir and interferon (61). The roots of G. glabra had an accumulation of molecules having 3D similarities to influenza neuraminidase (NA) inhibitors. Further, it was elaborated in chemiluminescence (CL)-based NA inhibition assays on different influenza virus strains including an oseltamivir-resistant isolate A/342/09 (H1N1) that 11 out of 12 compounds had IC50 in nanomolar to micromolar range (62). A study with G. glabra leaf extract also revealed antiviral activity against Newcastle disease virus (NDV) with an highest embryo survival rate at 300 μg/ml (63).



Camellia sinensis L. (Theaceae)

The use of Camellia sinensis or tea as beverage and medicine has a long history of almost 5000 years. Chemically tea contains polyphenols, flavonoids, tannins, and caffeine derivatives with amino acids, having antioxidant and diverse therapeutic effects. Black tea is prepared from the green tea leaves by a series of fermentation when catechin (30%) of green leaves oxidized into theaflavins (theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate, and theaflavin-3,3′-digallate) by dimerization and into thearubigins (17%) through polymerization. Tea flavonoids help in the reduction of inflammation, possess antimicrobial effects, and are used in the treatment of respiratory diseases such as asthma. A number of compounds like theaflavins and tannins from black and green tea have antiviral activities, mainly against bovine rotavirus and bovine coronavirus (32, 64). In vitro studies have shown that theaflavin di-gallate inhibited the infectivity of influenza A and B viruses (65). Green tea is widely used as a beverage across the world, mainly for its antioxidant nature. It is rich in polyphenolic compounds (flavonoids) and bonded benzene rings combined with multiple hydroxyl functional groups. A study on water-soluble phenols like tannic acid and theflavin-3-3′-digallate have shown to inhibit 3-chymotrypsin like protease (3CLpro) of SARS Coronavirus. Hence, it can be considered as a starting point for molecules against the SARS-CoV-2 (32, 66). A recent docking study revealed that the bioactive molecules of C. sinensis: Barrigenol, Kaempferol, and Myricetin have significant binding affinity with the active site of SARS-CoV2 Nsp15 protein (67). In a similar study, Oolonghomobisflavan-A, Theasinensin-D, and Theaflavin-3-O-gallate from tea were compared with repurposed antivirals (Atazanavir, Darunavir, and Lopinavir) for their binding affinity with Mpro of SARS-CoV-2. The results revealed that Oolonghomobisflavan-A to be highly significant in terms of binding affinity and intermolecular interactions when compared to all the other repurposed antiviral inhibitors (68).



Justicia adhatoda L. (Acanthaceae) Syn. Adhatoda vasica Nees

Justicia adhatoda (synonym Adhatoda vasica), known as Vasaka in Ayurveda, is a well-known medicinal plant in indigenous system of medicine, mostly effective in treating respiratory ailments, as the leaf extract has a stimulant effect. Vasica leaf is an antispasmodic cum expectorant and has been used for centuries to treat asthma, chronic bronchitis, and other problems including fever, swelling, asthma, pneumonia, malaria, tuberculosis, cough, and cold (69). The infusion of A. Vasica leaf is known to relieve headaches. The root is used as an expectorant and antispasmodic; while the root infusion has an anthelmintic property. The phytochemical profiling of this plant showed the presence of alkaloids, anthraquinones, flavonoids, phenols, saponins, and tannins (70). Several studies showed that the aqueous and methanolic extracts of leaves can directly interfere with the envelop proteins of many viruses. In particular, methanolic extract had a higher level of inhibition of influenza virus, by blocking viral attachment and inhibition of viral hemagglutinin (HA) protein. Detailed study revealed that the methanolic extract mainly comprised of Vasicine alkaloids have antiviral activity (71). Aqueous extract of leaves is reported to inhibit the arachidonic acid metabolites through COX (TXB2) and LOX (LP1 and 12-HETE) pathways; while platelet aggregation studies showed butanol extract to exert strong inhibition against arachidonic acid, platelet activating factor, and collagen-induced aggregation (72). Methanolic extract also possess antiviral activity against HSV-2, while aqueous extract against HSV-1. Moreover, the methanolic extract showed 100% reduction in HA at 10 mg/ml; while the aqueous extracts at 5–10 mg/ml dose reduced the HA levels to 33 and 16.67%, respectively, suggesting strong anti-influenza activity by inhibiting viral attachment and/or replication (73).



Ocimum Tenuiflorum L. (Lamiaceae) Syn. O. sanctum L. (Tulsi)

Ocimum sanctum or Tulsi has been used for thousands of years for its diverse therapeutic activities, and is known as the “Queen of herbs” or the legendary “Incomparable one” of India with strong aroma and astringent taste. It is the holiest and most cherished plant for its healing and health-promoting properties and in TM, Tulsi is known as an adaptogen that balances different processes in the body and helps in adapting stress. Ayurveda treats it as a kind of “elixir of life” and is believed to promote longevity and a healthy body. Thus, extracts from Tulsi are used in many Ayurvedic remedies including the common cold, headache, stomach ailments, inflammation and heart disease (74). Several studies with O. sanctum leaf extracts showed therapeutic, prophylactic, and virucidal activities. A study in ovo model indicated its therapeutic activity against H9N2 virus by reducing the infection level (75); while crude extracts or individual compounds isolated from Tulsi have a wide spectrum of antiviral activity against HSV, Adenovirus, Coxsackievirus B1, and Enteroviruses (76). Tulsi is used in diverse formulations including mouthwash, sanitizer and water purifiers (77). The purified components apigenin, linalool, and ursolic acid of O. basilicum showed a broad spectrum of antiviral activities against DNA viruses (HSV, adenoviruses, hepatitis B virus) and RNA viruses (Coxsackievirus B1, Enterovirus 71), among which ursolic acid showed the strongest activity against HSV (40), ADV-8, CVB1, and EV71 (76). Crude, terpenoid, and polyphenol-rich extract of O. sanctum showed significant virucidal activity (p < 0.001–0.01) and was found to decrease the virus genome copy numbers at the lowest dose up to 72 h post-infection (77). Recently, molecular docking studies also suggest that tulsinol A-G and dihydro-dieuginol B as potential inhibitors of SARS Coronavirus Main Protease (Mpro) and Papain-like Protease (PLpro), indicating that O. sanctum can be used as preventive against CoV due to its potential immunomodulatory, ACE2 blocking and viral replication inhibition properties (78).



Zingiber Officinale Roscoe (Zingiberaceae)

Zingiber officinale (Ginger), native to South-East Asia, is used as a common spice across the world. It encompasses several diverse chemical moieties with antiarthritic, anti-inflammatory, antidiabetic, antibacterial, antifungal, and anticancer activities and is one of the major medicinal sources of Ayurveda, Unani, Siddha, and various traditional medicine systems of India (79). Fresh ginger is used to treat cold, nausea, colic, heart palpitations, respiratory illnesses, dyspepsia and dry cough. During the nineteenth century a popular formulation from Ginger was used in the treatment of asthma and cough, consisted of the mixture of fresh ginger, and fresh garlic juice with honey (80). The ginger rhizome contains highly pungent vanillyl ketones like Gingerol and paradol derivatives having therapeutic effect on a wide range of diseases (81). Fresh rhizomes have inhibitory activity against the human respiratory syncytial virus (RSV) that infects the respiratory tract of humans (82). It was shown that the water-grown ginger has greater inhibitory activity against Chikungunya (CHIK) virus (83). The ginger oil was also reported to inhibit HSV-2 plaque formation (84) while the dried rhizomes containing sesquiterpenes have anti-rhinoviral activity in plaque reduction assay, but the best activity was found with the beta-sesquiphellandrene at an IC50 of 0.44 μM in vitro (85).



Curcuma longa L. (Zingiberaceae)

Curcuma longa (Turmeric) belongs to the ginger family Zingiberaceae; and turmeric rhizome has been traditionally used in India for various ailments and diseases. Indian traditional and folklore medicine used turmeric to treat inflammation, infections, respiratory illness, gastric, hepatic, and blood disorders. Curcumin, the marker compound of turmeric is a well-studied therapeutic phyto-molecule, while curcumin and its derivatives are the major polyphenols of the rhizome (86). The antiviral activity of curcumin and its derivatives have been established against a wide variety of pathogenic viruses including hepatitis, herpes simplex, human immune deficiency, human papilloma, influenza, and zika. The mechanism is mainly by inhibition of viral entry, replication, particle production, viral protease, and gene expression (87). Curcumin and its analogs also modulate the regulation of renin-angiotensin–aldosterone system (RAAS) which is involved in anti-inflammatory, anti-oxidant and anti-hypertensive activity, that are highly elevated in viral infection (88). Crude aqueous and ethanolic extracts of C. longa confer significant antiviral activity against H5N1 virus in vitro by inhibiting viral replication with significant upregulation of TNF-α and IFN-β mRNA expressions (89). Anti-influenza activity of curcumin was earlier assessed by computational methods, wherein curcumin derivatives were docked against the HA protein of influenza (H1N1) virus. The results inferred that specific curcumin derivatives can be successfully used against influenza virus infection. Moreover, curcuminoids from the methanol extract of C. longa also provide strong inhibitory effects on the neuraminidases of H1N1 and H9N2, as non-competitive inhibitors (90).



Syzygium Aromaticum (L.) Merr. & L. M. Perry (Myrtaceae)

Clove, the aromatic flower bud of Syzygium aromaticum is one of the ancient traditionally used spices in almost every household in India, with several therapeutic properties for dental, digestive, and respiratory disorders, including asthma (91). The other application of clove includes food preservation. Cloves contain various classes of phytochemicals including sesquiterpenes, monoterpenes, hydrocarbons, and phenolics along with Eugenyl acetate, eugenol, and β-caryophyllene as principal components of clove oil. Various pharmacological studies with clove have shown its inhibitory effects on pathogenic bacteria, Plasmodium, and Herpes simplex and Hepatitis C viruses (92). The essential oil of clove contains 85–95% eugenol and is shown to be highly effective in the treatment of HSV and HCV by blocking viral replication. The synergistic action of acyclovir and S. aromaticum extract have a significant impact on the inhibition of viral replication (92). Aqueous extract of clove showed antiviral activity against Feline Calicivirus (FCV) as a surrogate for human norovirus. Pre-treatment of FCV with clove oil reduced viral titer to 6.0 logs. The antiviral activity of the pure eugenol was similar to the clove extract, albeit at a lower level (93). The silver nanoparticles prepared from the aqueous extract of the flower buds of S. aromaticum were found to be novel and effective against the Newcastle Viral Disease (NDV) in vitro and in embryonated eggs (94).




Data Sources

In this study, the dataset of phytochemicals of eight plants were acquired from different sources like CMAUP (95), NPASS (96), Dr. Dukes Database and KnapSack (97) database (Supplementary Table 1). Initially, the list of all the phytochemicals were collated out from individual sources by manual curation. In the next step, all the duplicate entries and the ubiquitous chemicals were removed from the list. The final list was taken as input for downloading structural files from the PubChem database using an automation script created using Python programming (https://github.com/sandes89/PubDown). The structures which were accessible online and documented were only considered for screening.



Docking Studies
 
Preparation of Protein

The crystal structure of RBD (PDB id: 7BZ5) of spike protein presented in Figure 3 was downloaded from RCSB PDB (Protein Data Bank) (98, 99). GUI based “Auto-Dock Tools” was used to prepare and execute the docking studies. Kollman atom charges, solvation parameters, and polar hydrogens were added to the protein and proceeded for docking studies. As the ligands used are not peptides, Gasteiger charges were assigned only to the protein and the non-polar hydrogens were merged. Based on the literature and predicted active regions, a grid box was assigned around the active sites using AutoGrid application (100).



Preparation of Ligands

The 2D/3D structures were retrieved from PubChem Database using a custom written python script which is hosted on GitHub portal (https://github.com/sandes89/PubDown). List of compounds with their chemical names were prepared as an input to Python script and searched iteratively on PubChem ftp database and the compounds were downloaded in sdf (Structure Data File) format. A total of 1,952 compounds were downloaded from PubChem database. In this study, POAP (101) was used for the preparation of ligands and for virtual screening. POAP tool is a bash shell script-based pipeline which can be used to optimize ligands for docking using Open Babel (102) and to perform virtual screening using Autodock Suite. POAP implements dynamic file handling methods for efficient memory usage and data organization, ligand minimization (5,000 steps), MMFF94 force-field was employed with the addition of hydrogens. A total of 50 conformations for each compound were generated using the weighted rotor search method, with minimization using the steepest descent method. Finally, the best conformation was retained in.pdbqt format for utilization in further docking studies.



Active Residues Definition and Cavity Prioritization

The most important aspect in docking studies is the identification of important residues and favorable cavity for ligand binding. In this study, the cavity definition was mainly performed based on the literature insights on important residues (ACE2 binding site) coupled with the cavity prediction using P2RANK (103). The P2RANK predicted cavity spanned the ACE2 binding residues, as well as on few glycosylation sites. It should be noted that viral glycosylation has many roles in viral pathogenesis and biology, as it affects protein folding and stable interaction with host cells (15). As discussed earlier, glycosylation process in coronaviruses mainly occur to camouflage the immunogenic process in the host. Targeting glycosylation sites can aid in the primary and rapid immune response to neutralize the virus (16). Hence, along with ACE2 binding residues, glycosylation sites spanning the active cavity predicted by P2RANK were also considered for grid box generation. Considering the importance of the binding site with ACE2, glycosylation sites as well as the active cavity predicted by the P2RANK tool, the docking grid for molecular docking was fixed.



Virtual Screening Using POAP and ADMET Prediction

The geometry optimized compounds were subjected to Molecular docking with SARS-CoV-2 Spike glycoprotein. In the docking process, the ligands were considered as flexible and protein was considered as rigid body. The Grid box was prepared based on the active site residues as inferred from earlier ligand co-crystallized complex of spike protein and P2RANK based binding pocket prediction. For the docking process, an exhaustiveness value of 100 was fixed in Vina. The resulting Protein-ligand complexes were analyzed for intermolecular interactions using PLIP tool (104). The top-ranking ligands were subjected to ADMET profiling using pKCSM server (105).



Molecular Dynamics (MD) Simulation

The MD simulation of Apo protein and docked complexes were carried out using Desmond version 2020. Here, OPLS_2005 force field was used to initiate the MD simulation, and the system was solvated using SPC (Simple point charge) water model (106). The neutralization of the system was performed by adding counter ions and the details of ions and concentration added to complexes are given in Supplementary Table 11. Energy minimization of the entire system was performed using OPLS_2005, as it is an all-atom type force field (107). In the studies on natural compounds, the application of OPLS_2005 force field was found to be highly optimal. Hence, it was adopted for this study (27). The geometry of water molecules, the bond lengths and the bond angles of heavy atoms was restrained using the SHAKE algorithm (108). Simulation of the continuous system was executed by applying periodic boundary conditions (109) and long-range electrostatics was maintained by the particle mesh Ewald method (110, 111). The equilibration of the system was done using NPT ensemble with temperature at 300 k and pressure at 1.0 bar. The coupling of temperature-pressure parameters was done using the Berendsen coupling algorithm (112). On post-minimization and equilibration of the system, the Apo protein system consisted of 28,645 atoms in total and number of atoms for all the complexes are given in Supplementary Table 11. On post-preparation of the system, the production run was performed for 50 ns with a time step of 1.2 fs and trajectory recording was done for every 5.0 ps summing up to the recording of 10,000 frames. The calculation of the RMSD (Root mean square deviation) was done for the backbone atoms and was analyzed graphically to understand the nature of protein-ligand interactions (113, 114). RMSF (Root Mean Square Fluctuation) for every residue was calculated to understand the major conformational changes in the residues in comparison between the initial state and dynamics state (115). The compactness of the protein-ligand complexes in comparison to Apo form was calculated using radius of gyration rGyr (116). The 2D interactions of Protein-ligand complex showing the stability of the complexes and interaction sites were generated for the complete run time.



KDeep Based Absolute Binding Affinity (ΔG) Calculation

On post-molecular dynamics simulation, the top ranking complexes from each plant were energy minimized and was also analyzed for absolute binding affinity (ΔG) using KDeep (117). KDeep employs machine learning approach with implementation of 3D convolutional neural networks. KDeep analyses the input and voxelizes into pharmacophore features like (aromatic, hydrophobic, hydrogen-bond acceptor/donor, positive, and negative ionizable). The prepared input is passed to the DCNN (Deep Convolutional Neural Network) model which is pre-trained by PDB bind v.2016 database, wherein, based on adaptability to the model the absolute free energy of the protein-ligand complex is calculated.



MM-PBSA Calculation of Topmost Stable Complexes

Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculation is one of the most commonly used method for enumerating binding free energy of protein-ligand complexes. The MM-PBSA combines energy calculations based on molecular mechanics and implicit solvent model. This method precisely estimates the binding free energy of the protein-ligand complex, which is estimated by the differences between the free energy of the complex and free energies of unbound individual components of the complex (118). In this study, the MM-PBSA (PB3) based binding free energy of top most stable complexes were calculated using farPPI server. WhilePB3 option was considered as it was benchmarked to be highly accurate when compared to all the other methods in FarPPI (119). The force fields, GAFF2 and ff14SB as provided in the server were applied for ligand and protein, respectively. This calculation was performed for the lowest potential energy conformation of the top most stable complexes.





RESULTS


Binding Site Assignment

The structure of spike protein co-crystallized with the ligand is yet to be available in PDB, hence P2RANK was used to identify the potential drug binding pockets in concurrence with key hotspot residues reported in the literature. Based on the interaction plot of Spike protein (RBD)-ACE2 receptor complex (PDB ID: 6M0J), the residues of Spike protein that are involved in the interactions were identified as GLY502, THR500, LYS417, TYR449, GLY446, ASN487, and GLY496. In addition, the P2RANK prediction also covered the ASN343 glycosylation site spanning the RBD of spike glycoprotein. Considering all these important residues based on the literature, cavities and solvent accessible areas as predicted by P2RANK, an optimal docking grid box was created over the spike protein (PBD ID: 7BZ5). It should be noted that the 6M0J structure was only utilized for mapping the ACE2-Binding region on the spike protein, and was not used for docking studies, as some atoms were found missing in the structure. Hence, the 7BZ5 structure (ACE2 unbound form) with no such issues were utilized for docking and simulation studies. The Grid file was generated with the following coordinates (x = −85.56, y = −23.44, z = −16.90) using Autodock tools program and was proceeded for molecular docking using Vina as shown in Figure 5.


[image: Figure 5]
FIGURE 5. Represents the region of docking grid fixation (yellow surface) based on the documented active site residues and P2RANK prediction including glycosylation site (PDB ID 7BZ5).




Molecular Docking Studies

In pursuit of finding an important candidate for managing COVID-19 from selected plants, molecular docking studies were carried out with phytochemicals listed from eight plants on the binding pocket of COVID-19 spike glycoprotein (PDB ID: 7BZ5). Based on literature review, it was clearly found that the virus enters the human cell via the ACE2 receptor. Hence, we prioritized the receptor binding domain of spike glycoprotein PDB ID: 7BZ5, wherein the spike protein interacts with ACE2 for docking studies. The geometry optimized compounds from all the plants were docked against active-cavity as discussed above, and were ranked based on their corresponding docking score. Compounds having the docking score of < -7.0 kcal/mol were considered for further evaluation. This cut-off was adopted, based on earlier studies, wherein it was found to be optimal (120, 121). A comprehensive evaluation of all the compounds was performed based on the binding affinity score and the involvement of key residues in the binding cavity (Table 1). Also the ADMET profiling of the compounds with topmost binding affinity was carried out using pKCSM server (105) and the data is provided in Supplementary Table 10.


Table 1. Compounds from each plant with best binding energy/score.

[image: Table 1]

The compound Rutaecarpine from T. indica was found to be interacting with spike protein at SER371 and SER373 with a binding affinity of −7.9 kcal/mol (Figure 6A). Tylophorinidine showed a hydrogen bond with ASN343 (glycosylation site) and binding energy of −6.9 kcal/mol. Licoagrodin from G. glabra was found to interact with GLY339, ASP364, VAL367, and SER371 of RBD region with a binding affinity of −8.7 kcal/mol (Figure 6B). Further analysis also showed that Hispaglabridin-B, Licoagrone, and Licocoumarin-A from G. glabra to form hydrogen-bonded interactions with glycosylation site ASN343 with a binding energy of −8.2 kcal/mol, respectively. Cryptoxanthin showed hydrogen bond with ASN440, stabilized by 7 hydrophobic interactions having a binding energy of −8.4 kcal/mol (Figure 6C); while 3-O-Galloylepicatechin-(4Beta-6)-Epigallo-catechin-3-O-Gallate (−8.3 kcal/mol) showed hydrogen bonded interactions at positions: PHE338, ASN370, SER371, SER373, ASN437, and ASN440. Based on this significance it was considered for further studies. Furthermore, compounds namely, Camelliquercetiside-B (−7.8 kcal/mol), Procyanidin C1 (−7.8 kcal/mol), 3-O-Galloylepiafzelechin-(4Beta-6)-Epigallo-catechin-3-O-Gallate (−7.7 kcal/mol), Theasinensin B (−7.6 kcal/mol), Epigallocatechin-(2 Beta-7,4 Beta-8)-Epigallocatechin-3-O-Gallate (−7.5 kcal/mol), 3-O-Galloylepicatechin-(4 Beta-8)-Epicatechin-3-O-Gallate (−7.3 kcal/mol), and Theasinensin-C (−7.2 kcal/mol) from C. sinensis also showed hydrogen bond with residue ASN343. Compounds from J. adhatoda did not show any interactions with active residues, however interactions were observed with residues proximal to the active region: PHE342, SER371, and SER373. Among all the compounds studied from J. adhatoda, Daucosterol showed the highest binding affinity
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FIGURE 6. 3D diagram of RBD of Spike Glycoprotein in complex with (A) Rutaecarpine, (B) Licoagrodin, (C) 3-O-Galloylepicatechin-(4Beta-6)-Epicatechin-3-O-Gallate, (D) Daucosterol, (E) Caryophyllene, (F) Geraniin, (G) O-Demethyldemethoxycurcumin, and (H) Tellimagrandin-II.


with a score of −7.6 kcal/mol (Figure 6D). In case of O. tenuiflorum, Stigmastanol (−7.7 kcal/mol) showed interactions with surrounding residues of active cavity and (+)-Taxifolin (−7.0 kcal/mol) formed hydrogen bonded interaction with ASN343, while other compounds showed interactions only with other residues proximal to active residues and showed higher binding affinity. Among these compounds, Caryophyllene featured the highest binding affinity with a score of −8.1 kcal/mol (Figure 6E). Compounds Isoginkgetin (−7.6 kcal/mol), Rutin (−7.3 kcal/mol), 4′-Methoxyglabridin (−7.2 kcal/mol), Curcumin (−7.2 kcal/mol), Cubebin (−7.2 kcal/mol), Cyanin (−7.0 kcal/mol), and (Z)-1,7-bis(4-hydroxy-3-methoxy-phenyl) hept-4-en-3-one (−7.0 kcal/mol) from Z. officinale showed hydrogen bonded interaction with active cavity residues. The marker compounds of Z. officinale like Gingerenone-A and B, and Isogingerenone-B showed interactions around the active residues PHE342, SER371, and SER373, wherein Geraniin showed highest affinity with a score of −8.2 kcal/mol (Figure 6F). In case of C. longa, Letestuianin A (−7.2 kcal/mol) showed hydrogen bonded interaction with residue ASN343. Moreover, the marker compounds like Curcumin (−7.2 kcal/mol) and its derivatives showed interactions around the active site residues CYS336, PHE342, SER371, and SER373; wherein O-Demethyldemethoxycurcumin showed significant binding affinity with a score of −8 kcal/mol (Figure 6G). In case of S. aromaticum Tellimagrandin-II (−8.2 kcal/mol), Rugosin-D (−7.9 kcal/mol), Syzyginin-A (−7.8 kcal/mol), Campesterol glucoside (−7.6 kcal/mol), Sitogluside (−7.7 kcal/mol), Cirrhopetalanthrin (−7.4 kcal/mol), Tellimagrandin-I (−7.4 kcal/mol), Rugosin-E (−7.3 kcal/mol), Strictinin (−7.3 kcal/mol), Tannin (−7.1 kcal/mol), Myricetin (−7.0 kcal/mol), and Quercetin (−7.0 kcal/mol) showed hydrogen bonded interactions at active residue ASN343 and other residues. Among these compounds Tellimagrandin-II showed the highest affinity with a score of −8.2 kcal/mol (Figure 6H). The 2D interaction diagrams of all the compounds are given in Supplementary Figures 2–9.



Molecular Dynamics Simulation of Top Docked Complexes

Molecular dynamics simulation for all the top-ranking complexes per plant was carried out with Desmond for a duration of 50 ns. The data from the trajectory was analyzed and tabulated in Supplementary Table 11. The RMSD and RMSF values of the protein backbone for all the 8 complexes were plotted and are shown in Figures 7, 8.


[image: Figure 7]
FIGURE 7. Protein Backbone RMSD plots from Molecular dynamics for all the 8 top ranking protein-ligand complexes.



[image: Figure 8]
FIGURE 8. Ligand RMSD plot from Molecular dynamics for all the 8 molecules.


Based on the stability, compactness, and ligand contacts during the simulation process, Spike protein O-Demethyl-demethoxycurcumin and Spike protein Tellimagrandin-II complexes were found to be more stable and were analyzed further in detail.


Spike Protein O-Demethyldemethoxycurcumin Complex

The simulation system of Spike protein O-Demethyl-demethoxycurcumin consisted of 25,902 atoms with 7,659 water molecules. To further neutralize the system, 3 Cl− (7.122 mM) were added and the system was subjected to 50 ns run of production run. The RMSD plot showed a convergence at 10 ns with ~1.5 Å difference in the ligand bound state (Figure 9). The Ligand RMSD values remained within the range of 1.0–2.5 Å with average RMSD value being 1.75 Å (Figure 9). The lowest potential energy conformation was found at 21.5 ns with energy value of −84,977 kcal/mol with a binding free energy (MM-PBSA) of −12.48 kcal/mol.


[image: Figure 9]
FIGURE 9. Protein-Ligand RMSD plot of Spike protein O-Demethyldemethoxycurcumin complex.


The mobility of the compound in the complex during simulation with residue-wise calculations was plotted as RMSF trajectory. The analysis of the RMSF plot inferred that there was a minimum fluctuation around ~1 Å, and the trajectory to remain stable throughout the simulation with maximum deviation of~2.4 Å (Supplementary Figure 10). Further the radius of gyration (rGyr) trajectory was plotted for the entire production run, wherein the deviation was ~4.70–5.5 Å, thereby implying the higher compactness during the simulation process (Supplementary Figure 11).

Protein-Ligand contact analysis inferred that CYS336 to form hydrogen-bonded interactions for around 80% of the duration, followed by PHE338, which showed 60% of time to interaction by means of hydrogen bond and hydrophobic interactions. PHE342, ASP364, VAL367, and TRP436 showed around 50% of the time with interaction fraction which includes hydrophobic and water-bridge interactions (Figures 10A,B).


[image: Figure 10]
FIGURE 10. (A) Protein-ligand contact map for 50ns duration for Spike protein and O-Demethyl-demethoxycurcumin complex. (B) Protein -ligand contacts of Spike protein-O-Demethyl-demethoxycurcumin complex simulation (Blue, water bridges; Green, Hbonds; Violet, Hydrophobic).




Spike Protein—Tellimagrandin-II Complex

The simulation system of Spike protein Tellimagrandin-II complex comprised of 25,917 atoms with 7,645 water molecules. To further neutralize the system, 3 Cl− (7.135 mM) were added. The system was subjected to a 50 ns run of the production run. The RMSD plot for this complex showed convergence at 10 ns with ~1 Å (admissible range) of deviation in intermolecular interactions during the entire production run (Figure 11). The Ligand RMSD values remained within the range of ~2.0–3.0 Å with an average mean value of 2.5 Å (Figure 11). The lowest potential energy conformation was found at 40.8 ns with energy value of −83,747 kcal/mol with a binding free energy (MM-PBSA) of −32.08 kcal/mol.


[image: Figure 11]
FIGURE 11. Protein-Ligand RMSD plots of Spike protein Tellimagrandin-II complex.


The mobility of the compound in the complex during simulation with residue-wise calculation was visualized as (root mean square fluctuation) RMSF plot. On further analysis, the plot inferred a minimum fluctuation in the ligand bound position ~1 Å. Moreover, the trajectory remained stable throughout the simulation with a maximal deviation of ~2.5 Å (Supplementary Figure 12). Furthermore, radius of gyration (rGyr) trajectory was also plotted, which inferred rGyr to have maintained ~5.70–6 Å, thereby implying the higher compactness of ligand (Supplementary Figure 13). Protein-Ligand contact analysis for the simulation period of 50 ns inferred that GLU340 and ASP364 to show hydrogen bonded and water-bridge interaction fraction for around 100% of the duration, with interactions at more than one position. ASN343 showed interactions around 60% of the simulation run, which mainly includes hydrogen bonds and water bridges. VAL367 showed interactions around 100% of the time includes Hydrogen bonds, Hydrophobic, and water-bridge interactions (Figures 12A,B).
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FIGURE 12. (A) Protein-ligand contact map for 50ns duration for Spike protein and Tellimagrandin-II complex. (B) Protein - ligand contacts of Spike protein Tellimagrandin-II complex simulation (Blue, water bridges; Green, Hbonds; Violet, Hydrophobic).






DISCUSSION

On cumulative analysis of all the results, it could be inferred that Tellimagrandin-II and O-Demethyldemethoxycurcumin, were highly potential hits, as these compounds feature significant interactions with ACE2 binding region coupled with key glycosylation site (ASN343) of spike protein. Recent mutagenesis studies strongly suggest that the targeting ASN343 glycosylation to be the most potential inhibitory mode. Moreover, the infectivity of SARS-CoV-2 showed reduction to almost 1,200-folds when both ASN331 and ASN343 were mutated in spike protein. This shows the significance of blocking these glycosylation sites on the receptor binding domain (122). Viral glycosylation holds a major role in pathogenesis, as it mediates protein folding, shaping viral tropism, and host invasion (123). Blocking of glycosylation not only aids in preventing viral pathogenesis, but also facilitates immune recognition of the virus (124, 125). Based on the number of intermolecular interactions with active residues, glycosylation sites, and proximal residues to active site, Tellimagrandin-II with a binding energy of −8.2 kcal/mol from S. aromaticum may have a higher affinity toward the spike protein in comparison with all other compounds. Moreover, it also formed a stable complex, as inferred by molecular dynamics simulation. The hydrolysable tannin Tellimagrandin-II is traditionally known to possess antiviral activity; while hydrolysable tannins as a whole class are well-known antiviral agents (126). Tannins are known to inhibit various viral activities like attachment and penetration of virus and inhibition of reverse transcriptase (127). Tellimagrandin-II is the first polyphenolic ellagitannin formed from 1,2,3,4,6-pentagalloyl-glucose, and is an isomer of punicafolin or nupharin A, also known as Cornustannin 2 or Eugeniin (C41H30O26; Molecular Mass 93,866 g/mol). The compound is isolated from the dried flower bud of S. aromaticum (Clove). Earlier studies showed that ethanol extract of S. aromaticum to possess strong inhibition of recombinant NS2BNS3 proteases of DENV-2 and 3; while its bioactivity guided fractionation yielded eugeniin (128, 129), isobiflorin (5,7-dihydroxy-2-methylchromone-8C-β-d-glucopyranoside), and biflorin (5,7-dihydroxy-2-methylchromone-6C-β-d-glucopyranoside). Interestingly the eugeniin from S. aromaticum and Geum japonicum is found to inhibit α-glucosidase and possess significant antiviral activity against wild-type HSV-1 and HSV-2. Moreover, eugeniin also targets thymidine-kinase deficient or acyclovir as well as phosphonoacetic acid (PAA)-resistant HSV-1 at EC50 of 5.0 μg/ml, with CC50 of 69.5 μg/ml (130). Unlike nucleoside analogs, Eugeniin is reported to inhibit viral DNA polymerase and late protein syntheses in HSV-infected Vero cells, in a non-competitive manner with respect to dTTP (130). Animal studies revealed that Eugeniin at 0.3 mg/kg at oral and intraperitoneal dose retard the development of skin lesions of HSV-1-infected mice; while at 6 or 50 mg/kg it significantly prolonged the mean survival times and or reduced mortality without toxicity. However, at an oral dose of 50 mg/kg it reduced virus yields in the skin and brain of infected mice with higher bioavailability. Moreover, Eugeniin enhance the anti-HSV-1 activity of acyclovir, and interact with the polymerase near PAA-binding site (131). Eugeniin in pure form demonstrated potent inhibition of NS2BNS3 proteases of DENV-2 and 3 at IC50 of 94.7 nM and 7.53 μM; while moderate inhibition was found with isobiflorin and biflorin at 58.9 and 89.6 μM (132). Furthermore, the kinetic studies revealed a competitive inhibition at same binding site of both proteases; while the Ki value of eugeniin is reported as 125.2 nM for DENV2 protease, and 7.1 μM for DENV3 protease (132).

Secondly, O-Demethyldemethoxycurcumin from C. longa was predicted to be a promising molecule for inhibition of SARS-CoV-2 pathogenesis. It should be noted that O-Demethyldemethoxycurcumin not only confers inhibitory effects on the SARS-CoV-2 spike protein as per our prediction, but is also well-proven to be involved in Endoplasmic reticulum (ER) stress reduction (133). It is well-known that ER stress reduction is crucial in viral replication and infection, and is an essential aspect in reducing the infection level, as the complete secretory mechanism of the virus occurs in ER (134, 135). Moreover, ER stress is one of the major problems in SARS-CoV-2 infection, as the synthesis and folding of transmembrane protein loses balance and the amount of proteins entering the ER increases drastically. This loss of balance culminates in the aggregation of unfolded proteins in the ER, which in turn triggers the ER stress response that initiates to assist the organelle for homeostasis. SARS-CoV-2 activates the Unfolded protein response (UPR) and hijack the signaling pathways for its benefit to infect rapidly, hence the reduction of ER stress in the body can be a potential way of blocking SARS-CoV-2 infection (136). Curcumin and its derivatives are treated as miraculous molecules in many infectious diseases as well as in immunomodulation. The derivatives of curcumin in combination with advanced drug delivery systems may work in a multi-faceted way for the treatment and prevention of SARS-CoV-2 (88). A recent computational study showed that curcumin exhibit strong binding affinity to Spike protein of SARS-CoV-2, ACE2 receptor of host, and their complex (RBD of viral S protein and ACE2; RBD/ACE2-complex) with the binding affinity values of −7.9 kcal/mol; −7.8 kcal/mol; and −7.6 kcal/mol; – 9.1 and– 7.6 kcal/mol, respectively. Moreover, molecular dynamics simulation also substantiated the curcumin's interaction within RBD site, thereby predicts the possibility of therapeutic strategy against SARS-CoV2 (120).

The ADME and toxicity profile of O-Demethyldemethoxycurcumin and Tellimagrandin II were predicted and summarized using pKCSM (105). The Intestinal absorption of O-Demethyldemethoxycurcumin was found to be high compared to Tellimagrandin-II i.e., 76.46 and 41.54%, respectively. O-Demethyl-demethoxycurcumin was found to be CYP3A4 substrate and inhibitor of CYP1A2, CYP2C19, and CYP2C9; whereas Tellimagrandin-II was predicted as a non-inhibitor. However, both the compounds were found to be non-substrate to CYP2D6 and non-inhibitor of CYP2D6 and CYP3A4, thus shall be non-toxic. Further, both these compounds showed a negative effect in the AMES toxicity, which indicates its negligible effect on the different bacterial strains; and a negative effect on the hERG (Ether-à-go-go-Related Gene), thereby unlikely to cause arrhythmia; and do not have hepatotoxic property. The oral acute toxicity of O-Demethyl-demethoxycurcumin was predicted to be 2.23 mol/kg, whereas, for Tellimagrandin II it was 2.48 mol/kg. Similarly, the oral rat chronic toxicity of O-Demethyldemethoxycurcumin was predicted to be 2.715 log mol/kg body weights per day, whereas, for Tellimagrandin II it was 10.618 log mol/kg body weight per day. Both these compounds also scored significant KDeep ΔG (absolute binding affinity) and MM-PBSA values.



CONCLUSION

The RBD of Spike protein is one of the major targets in the inhibition of SARS-CoV-2 and is the most sought-after target being worked out across the globe. Some of the key residues which are involved in the entry and infection of the SARS-CoV-2 harbors on the RBD of the spike protein. Recently, glycosylation sites are also suggested to hold a key role in viral proliferation, as inferred by mutagenesis studies. Hence, in this study, virtual screening of phytochemical inhibitors targeting RBD domain was carried out, with a key emphasis on ACE2 binding residues along with glycosylation sites. Among the compounds studied, Tellimagrandin-II from S. aromaticum and O-Demethyl-demethoxycurcumin from C. longa were found to show stable interactions with key hotspot residues (ACE2 binding) including the glycosylation site. Molecular dynamics simulation of these compounds in complex with RBD also showed higher stability due to intermolecular interactions with active residues, significant binding free energy and optimal shape complementary during the entire production run. The results from this study clearly indicates that the proposed compounds may be considered as potential candidates for the inhibition of SARS-CoV-2 infection, as these are dual-acting in terms of inhibiting ACE2 interactions, as well as targeting the glycosylation of spike protein. However, further experimental validations are warranted to infer the therapeutic efficacy.
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Background: The tumour immune microenvironment plays an important role in the biological mechanisms of tumorigenesis and progression. Artificial intelligence medicine studies based on big data and advanced algorithms are helpful for improving the accuracy of prediction models of tumour prognosis. The current research aims to explore potential prognostic immune biomarkers and develop a predictive model for the overall survival of ovarian cancer (OC) based on artificial intelligence algorithms.

Methods: Differential expression analyses were performed between normal tissues and tumour tissues. Potential prognostic biomarkers were identified using univariate Cox regression. An immune regulatory network was constructed of prognostic immune genes and their highly related transcription factors. Multivariate Cox regression was used to identify potential independent prognostic immune factors and develop a prognostic model for ovarian cancer patients. Three artificial intelligence algorithms, random survival forest, multitask logistic regression, and Cox survival regression, were used to develop a novel artificial intelligence survival prediction system.

Results: The current study identified 1,307 differentially expressed genes and 337 differentially expressed immune genes between tumour samples and normal samples. Further univariate Cox regression identified 84 prognostic immune gene biomarkers for ovarian cancer patients in the model dataset (GSE32062 dataset and GSE53963 dataset). An immune regulatory network was constructed involving 63 immune genes and 5 transcription factors. Fourteen immune genes (PSMB9, FOXJ1, IFT57, MAL, ANXA4, CTSH, SCRN1, MIF, LTBR, CTSD, KIFAP3, PSMB8, HSPA5, and LTN1) were recognised as independent risk factors by multivariate Cox analyses. Kaplan-Meier survival curves showed that these 14 prognostic immune genes were closely related to the prognosis of ovarian cancer patients. A prognostic nomogram was developed by using these 14 prognostic immune genes. The concordance indexes were 0.760, 0.733, and 0.765 for 1-, 3-, and 5-year overall survival, respectively. This prognostic model could differentiate high-risk patients with poor overall survival from low-risk patients. According to three artificial intelligence algorithms, the current study developed an artificial intelligence survival predictive system that could provide three individual mortality risk curves for ovarian cancer.

Conclusion: In conclusion, the current study identified 1,307 differentially expressed genes and 337 differentially expressed immune genes in ovarian cancer patients. Multivariate Cox analyses identified fourteen prognostic immune biomarkers for ovarian cancer. The current study constructed an immune regulatory network involving 63 immune genes and 5 transcription factors, revealing potential regulatory associations among immune genes and transcription factors. The current study developed a prognostic model to predict the prognosis of ovarian cancer patients. The current study further developed two artificial intelligence predictive tools for ovarian cancer, which are available at https://zhangzhiqiao8.shinyapps.io/Smart_Cancer_Survival_Predictive_System_17_OC_F1001/ and https://zhangzhiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_17_OC_F1001/. An artificial intelligence survival predictive system could help improve individualised treatment decision-making.

Keywords: ovarian cancer, overall survival, immune gene, transcription factor, prognostic signature


INTRODUCTION

Ovarian cancer (OC) is one of the most lethal malignant tumours in women, with 295,414 new cases and 184,799 deaths in 2018 (1). Although considerable progress has been made in diagnostic and therapeutic techniques, the 5-year survival rate of advanced OC patients remains poor (2). Early identification of patients with high mortality risk and more precise, individualised treatments will help improve the prognosis of OC patients. Regarding precision medicine, developing predictive models to provide early individualised mortality risk prediction and predicting the effectiveness of specific therapeutic schedules would be significant.

Considerable progress in bioinformatics helps scientists explore the intrinsic regulatory mechanisms of tumorigenesis and progression (3–6). The immune microenvironment plays an important role in the initiation and development of tumours (7, 8). Various studies have reported the clinical value of immunotherapy for ovarian cancer (5, 6). Several studies established prognostic models to predict the prognosis of OC patients (7, 8). However, regarding precision medicine, mortality risk prediction for high-risk and low-risk subgroups could not meet the needs of individualised treatment. Individualised treatment needs precise prognostic models to provide individual mortality risk prediction for a specific agent but not for a special subgroup.

Our team constructed two precision medicine predictive tools that predict individualised mortality risk for hepatocellular carcinoma (9, 10). These two precision medicine predictive tools provide online mortality risk prediction that is convenient and easy to understand. More importantly, these precision medicine predictive tools provide individual and specific mortality risk prediction, which is important for individualised treatment decision-making. Recently, artificial intelligence based on big data and advanced algorithms has been used to improve the accuracy of predictive models for the diagnosis and prognosis in various tumours (11–13). Therefore, the current study aimed to build artificial intelligence predictive tools to predict individualised mortality risk for OC patients based on immune genes.



MATERIALS AND METHODS


Study Datasets

We retrieved the Gene Expression Omnibus (GEO) database according to the following conditions to obtain valuable research datasets: (1) The dataset should have available gene expression profile data; (2) The dataset should have complete clinicopathological data; (3) The dataset should have follow-up survival information. The GSE32062 dataset contained expression profiling data from 260 advanced-stage high-grade OC patients (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062). The GSE53963 dataset contained expression profiling data from 174 high-grade OC patients (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53963). To eliminate the effect of death caused by non-tumour factors on the results of survival analysis, surviving patients with a survival time of <3 months were removed from the current study. Therefore, the GSE32062 dataset and GSE53963 dataset involved 420 patients, and 19,569 mRNAs were downloaded as model datasets for further survival. Probe IDs generated on the GPL6480 platform were converted to gene symbols based on Gencode v29. The TCGA cohort contained 21,586 mRNAs and 370 OC patients as a validation dataset for survival. The gene count values were log2-transformed for the TCGA cohort. The flow chart of patient selection is shown in Supplementary Figure 1.



Differential Expression Analyses

We searched the GEO database to explore a dataset containing gene expression information of ovarian cancer samples and normal samples. The GSE26712 dataset was generated on the Affymetrix Human Genome U133A Array platform. The GSE26712 dataset has gene expression profiling information from 185 primary ovarian tumours and 10 normal ovarian surface epithelium (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712). Therefore, differential expression analyses were performed between 185 tumour samples and 10 normal samples (GSE26712). Cut-off values for differential expression analyses were log2 |fold change| > 1 and P < 0.05. The data were normalised using the trimmed mean of M values method with “edgeR” (14).



Immune Genes

The Immunology Database and Analysis Portal database were used to identify the immune gene list (15). Transcription factors were identified via the Cistrome Cancer database (16). Cytoscape v3.6.1 was used to develop an immune regulatory network of prognostic immune genes and their highly related transcription factors (11). Thresholds of |correlation coefficient| > 0.5 and P < 0.01 were used to identify transcription factors highly correlated with prognostic immune genes. The biological processes of immune genes were identified using the TISIDB database (http://cis.hku.hk/TISIDB/index.php).



Tumour Immune Infiltration

Associations among tumour infiltrating immune cells and immune genes were evaluated by the Tumour Immune Estimation Resource database (16). Twenty-eight tumour immune infiltration scores were generated by single sample gene set enrichment analysis (17, 18).



Statistical Analyses

Statistical analyses were conducted by SPSS Statistics 19.0 (SPSS Inc., USA). Artificial intelligence and bioinformatics analyses were performed using Python language 3.7.2 and R software 3.5.2 with the following artificial intelligence algorithms: random survival forest (RFS) algorithm (19, 20), multitask logistic regression (MTLR) algorithm (21, 22), and Cox survival regression algorithm (23, 24). The important packages included pec, rms, survival, rmda, ggplot2, GOplot, timereg, randomForestSRC, and riskRegression. The threshold for a statistically significant difference was a P < 0.05.




RESULTS


Study Datasets

The clinical information of the OC patients is shown in Table 1. There were 229 (61.9%) of 370 patients who died in the TCGA cohort (validation dataset), and 260 (61.9%) of 420 patients died in the GEO cohort (model dataset). As shown in Table 1, there was no significant difference regarding mortality, survival time of deceased patients, or grade between the modelling cohort and the validation cohort during the follow-up period (P > 0.05). The overall survival time of all patients and the survival time of the patients in the survival subgroup for the model dataset were significantly longer than those of the validation dataset. However, the survival time of patients in the death subgroup of the model dataset was shorter than that of the patients in the death subgroup of the validated dataset, indicating that the difference in survival time between the two datasets might be related to the longer follow-up time of patients in the GEO cohort (model dataset).


Table 1. Clinical features of included patients.
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Differential Expression Analyses

Volcano plots of 13,216 mRNAs and 3,075 immune genes are shown in Figures 1A,B. With a threshold of log2 |fold change| > 1 and P < 0.05, differential expression analysis identified 779 upregulated and 528 downregulated mRNAs from 13,216 mRNAs (Figure 1A) between 185 tumour samples and 10 normal samples (GSE26712 dataset). Differential expression analysis further identified 194 upregulated and 143 downregulated immune mRNAs from 3,075 immune mRNAs (Figure 1B) between 185 tumour samples and 10 normal samples in the GSE26712 dataset.


[image: Figure 1]
FIGURE 1. Differentially expression and functional enrichment: (A). Volcano plot of all genes; (B). Volcano plot of immune genes; (C). Barplot chart of immune genes. The depth of the color represents different P-values; The length of the band represents the number of enriched genes.


To explore the gene expression difference of the identified immune biomarkers between the patients who died among the remaining patients with respect to the year of death, we further performed differential expression analysis between 130 tumour samples of patients who died and 10 normal samples of living patients (GSE26712 dataset). Differential expression analysis identified 753 upregulated and 526 downregulated mRNAs from 13,216 mRNAs. Differential expression analysis further identified 190 upregulated and 137 downregulated immune mRNAs from 3,075 immune mRNAs in the GSE26712 dataset.



Functional Enrichment Analyses

Further univariate Cox regression identified 84 prognostic immune gene biomarkers for OC patients in the model dataset (GSE32062 dataset and GSE53963 dataset). The bar plot (Figure 1C) and Gene Ontology chord chart (Figure 2) showed that the biological processes of the previous 84 prognostic immune genes were mainly enriched in leukocyte migration, cell chemotaxis, regulation of protein serine/threonine kinase activity, regulation of MAP kinase activity, positive regulation of response to external stimulus, regulation of leukocyte migration, regulation of chemotaxis, leukocyte chemotaxis, positive regulation of MAP kinase activity, and leukocyte proliferation. The results of the bar plot and Gene Ontology chord chart suggested that the above biological processes might play a role in the occurrence, growth, invasion, and prognosis of ovarian cancer, and the underlying mechanism is worthy of further study.


[image: Figure 2]
FIGURE 2. Chord chart of prognostic genes. Biological processes of previous 84 prognostic immune genes were mainly enriched in cell chemotaxis, leukocyte migration, regulation of protein serine/threonine kinase activity, regulation of MAP kinase activity, positive regulation of response to external stimulus, regulation of leukocyte migration, regulation of chemotaxis, leukocyte chemotaxis, positive regulation of MAP kinase activity, and leukocyte proliferation.




Immune Regulatory Network

Univariate Cox regression identified 84 prognostic immune biomarkers for the OS of OC patients. Transcription factors that were highly correlated with prognostic immune mRNAs were identified with previous correlation analysis thresholds. To explore the potential regulatory relationships among these immune genes, these previous prognostic immune mRNAs and their highly correlated transcription factors were placed in the STRING database with confidence values of 0.90. Thus, a regulatory network involving 63 immune genes and 5 transcription factors was constructed by using Cytoscape v3.6.1 (Figure 3). As shown in Figure 3, IRF4, GATA4, GATA3, CIITA, and MYH11 were involved in the immune regulatory network, indicating that these five transcription factors might play a role in the immune microenvironment of ovarian cancer.


[image: Figure 3]
FIGURE 3. Immune gene regulatory network chart. The immune regulatory network involved 63 immune genes and 5 transcription factors. IRF4, GATA4, GATA3, CIITA, and MYH11 were involved in the immune regulatory network, indicating these transcription factors might play a role in the immune microenvironment of ovarian cancer.




Construction of a Prognostic Model

Multivariate Cox regression identified fourteen independent prognostic mRNAs for OS (Table 2 and Figure 4), indicating that these 14 prognostic immune genes might be more closely related to the prognosis of ovarian cancer than the prognostic immune genes that were not included in multivariate Cox regression. The formula of the prognostic model based on multivariate Cox regression was as follows: prognostic score = (-0.472*PSMB9) + (-0.268*FOXJ1) + (0.303*IFT57) + (0.095*MAL) + (0.357*ANXA4) + (-0.339*CTSH) + (0.422*SCRN1) + (-0.301*MIF) + (0.515*LTBR) + (-0.371*CTSD) + (0.503*KIFAP3) + (0.574*PSMB8) + (0.485*HSPA5) + (0.463*LTN1). A prognostic nomogram is shown in Figure 5. For each prognostic gene, different gene expression values were assigned different risk scores. The total points (overall risk score) of one patient were obtained by adding up the risk scores of 14 prognostic genes. Through the vertical line corresponding to the total points, we can obtain the corresponding mortality rate of individual patients at different times.


Table 2. Information of prognostic immune genes.
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FIGURE 4. Immune gene survival forest chart. Eight immune factors (IFT57, MAL, ANXA4, SCRN1, LTBR, KIFAP3, HSPA5, and LTN1) were positively correlated with poor prognosis of ovarian cancer, whereas six immune factors (PSMB9, FOXJ1, CTSH, MIF, CTSD, and PSMB8) were negatively correlated with poor prognosis of ovarian cancer.



[image: Figure 5]
FIGURE 5. Prognostic nomogram chart. For each prognostic gene, different gene expression values were assigned different risk scores. The total point (overall risk score) of one patient was obtained by adding up the risk scores of 14 prognostic genes. Through the vertical line corresponding to the total point, we can obtain the corresponding mortality rate of individual patient at different times.


Supplementary Figure 2 shows significant differences in survival curves between the high-risk group and the low-risk group. Eight immune factors (IFT57, MAL, ANXA4, SCRN1, LTBR, KIFAP3, HSPA5, and LTN1) were positively correlated with poor prognosis of ovarian cancer, whereas six immune factors (PSMB9, FOXJ1, CTSH, MIF, CTSD, and PSMB8) were negatively correlated with poor prognosis of ovarian cancer. Supplementary Figures 3, 4 show the predictive value distribution chart and the survival status scatter plot.



Performance of Model Cohort

Survival curves of the two groups are illustrated in Figure 6A, showing that the mortality rate in the high-risk group was significantly higher than that in the low-risk group. Concordance indexes were 0.760, 0.733, and 0.765 for 1-, 3-, and 5-year survival, respectively (Figure 6B), indicating that the prognostic model has good predictive value for the prognosis of OC patients. Supplementary Figure 5 shows the calibration curves of the model cohort, showing that there was good consistency between the predicted mortality rate and the actual mortality rate.


[image: Figure 6]
FIGURE 6. Clinical performance in model cohort: (A). Survival curves for high risk group and low risk group; (B). Time-dependent receiver operating characteristic curves. The mortality rate in the high risk group was significantly higher than that in the low risk group. Concordance indexes were 0.760, 0.733, and 0.765 for 1-, 3-, and 5-year survival, indicating that the prognostic model has a good predictive value for the prognosis of ovarian cancer patients.




Performance of Validation Cohort

Survival curves of the two groups are illustrated in Figure 7A, showing that the mortality rate in the high-risk group was significantly higher than that in the low-risk group. Concordance indexes were 0.860, 0.715, and 0.679 for 1-, 3-, and 5-year survival, respectively (Figure 7B), indicating that the prognostic model has good predictive value for the prognosis of OC patients. Supplementary Figure 6 shows calibration curves of the validation cohort. Supplementary Figure 7 shows decision curves for 1-, 3-, and 5-year survival, showing that there was consistency between the predicted mortality rate and the actual mortality rate.
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FIGURE 7. Clinical performance in validation cohort: (A). Survival curves for high risk group and low risk group; (B). Time-dependent receiver operating characteristic curves. The mortality rate in the high risk group was significantly higher than that in the low risk group. Concordance indexes were 0.860, 0.715, and 0.679 for 1-, 3-, and 5-year survival, respectively (B), indicating that the prognostic model has a good predictive value for the prognosis of ovarian cancer patients.




Artificial Intelligence Survival Predictive System

An artificial intelligence survival prediction system was constructed for individual mortality risk prediction for OC patients (Figure 8) and is available at https://zhangzhiqiao8.shinyapps.io/Smart_Cancer_Survival_Predictive_System_17_OC_F1001/. After the user inputs the expression values of the prognostic genes and clicks the “predict” button, the survival curve of one individual patient during the follow-up period will be presented.


[image: Figure 8]
FIGURE 8. Individual mortality risk predictive curves based on artificial intelligence algorithms. (A) Random survival forest model; (B) Multitask logistic regression model; (C) Cox proportional hazard regression model.


The artificial intelligence survival prediction system provides three individual mortality risk predictive curves based on artificial intelligence algorithms: the RFS model (Figure 8A), MTLR model (Figure 8B), and Cox model (Figure 8C).



Gene Survival Analysis Screen System

A Gene Survival Analysis Screen System was constructed for exploratory research of immune genes (Supplementary Figure 8) and is available at https://zhangzhiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_17_OC_F1001/. After the user inputs the parameters and clicks the “survival curve analysis” button, the survival curves of the high-risk group and low-risk group are presented. Users can obtain hazard ratio values of different clinical parameters after clicking the “Univariate Cox survival analysis table” button in the Gene Survival Analysis Screen System.



Independence Assessment

We used multivariate Cox regression to explore the independent effect of the prognostic model on the prognosis of OC patients. The prognostic signature was an independent influencing factor for OS in the model cohort (Table 3). In the validation cohort, the prognostic signature was an independent risk factor for OS. The results of multivariate Cox regression showed that the prognostic model had an independent effect on the prognosis of ovarian cancer, which further supported the value of the prognostic model in predicting ovarian cancer prognosis.


Table 3. Results of Cox regression analyses.
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DISCUSSION

The current study identified 1,307 differentially expressed genes and 337 differentially expressed immune genes between tumour samples and normal samples. Further univariate Cox regression identified 84 prognostic immune gene biomarkers for OC patients in the model dataset (GSE32062 dataset and GSE53963 dataset). An immune regulatory network was depicted involving 63 immune genes and 5 transcription factors. Through bioinformatics research, the current study depicted potential regulatory relationships among immune genes and transcription factors. Fourteen immune genes were identified as independent prognostic factors by multivariate survival analysis. Kaplan-Meier survival curves showed that these 14 prognostic genes were closely related to the prognosis of ovarian cancer patients. These 14 prognostic genes were used to develop a prognostic nomogram for ovarian cancer. Moreover, two artificial intelligence predictive tools were developed for precise individual mortality risk prediction in ovarian cancer. Based on a random survival forest algorithm, a multitask logistic regression algorithm, and a Cox survival regression algorithm, the current artificial intelligence survival predictive system provided three individual mortality risk predictive curves for the evaluation and improvement of individualised medical decisions.

In the current study, 1,308 differentially expressed genes (including 337 differential immune genes) were identified by differential expression analysis. Compared with normal ovarian tissues, these differentially expressed genes showed high expression or low expression in tumour tissues, suggesting that these differentially expressed genes might be related to the biological characteristics and clinical process of OC. Further univariate Cox and multivariate Cox regression analyses identified 84 and 14 prognostic immune genes, respectively, suggesting that these 14 prognostic immune genes might be closely related to the prognosis of OC patients. Functional enrichment analysis showed that the 84 genes were mainly related to the regulation of immune inflammation and were enriched in leukocyte migration, cell chemotaxis, regulation of protein serine/threonine kinase activity, and regulation of MAP kinase activity.

The immune regulatory network further indicated the potential regulatory relationship among 63 immune genes and 5 transcription factors, suggesting that these immune genes and transcription factors might play a potential role in the regulatory mechanism of the tumour immune environment. Previous studies have provided supporting evidence for the potential mechanisms of these five transcription factors regarding tumour growth, progression and prognosis. There is a close relationship between GATA3 and poor prognosis of high-grade serous ovarian carcinoma (25). GATA3 positivity is associated with poor prognosis of pancreatic ductal adenocarcinoma (26). High expression of GATA3 is associated with good prognosis of ER+ breast cancer (27). IRF4 might activate the Notch-Akt signalling pathway in non-small cell lung cancer (28). Higher expression of IRF4+ Tregs was related to poor prognosis for different cancers (29). IRF4 was an independent prognostic factor for node-negative breast cancer (30). MYH11 positively modulated the immune-related gene GLP2R in colon adenocarcinoma (31). MYH11 positively regulated GSTM5, PTGIS, ENPP2, and P4HA3 (32). GATA4 inhibits tumour growth by affecting the assembly of tumour suppressor enhancement modules (33). Overexpression of GATA4 can protect human granulosa cell tumours from apoptosis induced by TRAIL in vitro (34).

Different research teams have established valuable survival prediction models for ovarian cancer based on different research cohorts and modelling methods. Previous prognostic models provided mortality curves for two classes of patients with different clinical characteristics (7, 8) but did not provide mortality curves for individual patients. He et al. constructed a prognostic model based on 10 RNA-binding proteins for ovarian cancer (35). However, the calculation formula of this model is so complex that it is difficult for patients to calculate their personal risk score. Bing et al. constructed a novel model by merging three previous models selected by the integrated P-value method, providing a new idea for the establishment of a prognostic model (36). However, this theoretically feasible method has not been applied in clinical research because it involves the fusion of multiple prognostic models. Tang et al. presented an eight-mRNA prognostic model for ovarian cancer (37), providing a valuable predictive model for clinical practise. If the above models can provide a simple calculation tool, it will be more helpful to provide convenient survival prediction information for patients with ovarian cancer. In fact, every cancer patient cares only for her or his own individual mortality after diagnosis. Due to the considerable clinical heterogeneity of tumours, clinicians observe large differences in clinical prognosis among different cancer patients. Therefore, it is of great significance to predict the individual mortality risk of cancer patients. The emergence of big data and advanced algorithms has laid a solid foundation for artificial intelligence research. Different artificial intelligence algorithms have been used to improve clinical diagnosis and prognostic prediction (11–13). Based on the artificial intelligence algorithms provided in previous studies, the current study developed an artificial intelligence survival prediction system. The current artificial intelligence survival prediction system provides three individual mortality risk predictive curves according to different artificial intelligence algorithms. These artificial intelligence algorithms are not widely used in clinical research because of the complexity of calculation. To the best of our knowledge, our team is the first to introduce various artificial intelligence algorithms for tumour prognosis research. Our study showed that artificial intelligence algorithms have great application value and superiority in predicting the individual mortality risk for cancer patients and are worth further research and application. The tumour immune microenvironment is reportedly related to oncogenesis and prognosis (7, 38). The current study revealed the potential association of tumour-infiltrating immune cells and immune genes with tumour prognosis. Compared with several previous predictive models for the prognosis of OC patients (14, 39), our precision medical predictive tools were more valuable in providing individual mortality risk prediction at different time points.

The TISIDB database was used to explore the biological processes of immune genes. The top biological processes of proteasome subunit beta 9 (PSMB9) were immune response-activating signal transduction, the immune response-regulating signalling pathway, and the immune response-activating cell surface receptor signalling pathway. The top biological processes of Forkhead box J1 (FOXJ1) were adaptive immune responses, leucocyte-mediated immunity, humoural immune response mediated by circulating immunoglobulin, and lymphocyte-mediated immunity. The top biological processes of mal, T-cell differentiation protein (MAL) were the extrinsic apoptotic signalling pathway via death domain receptors, regulation of apoptotic signalling pathway, and the extrinsic apoptotic signalling pathway. The top biological processes of annexin A4 (ANXA4) were interleukin-8 production, regulation of interleukin-8 production, and negative regulation of interleukin-8 production. The top biological processes of cathepsin H (CTSH) were T cell-mediated immunity, lymphocyte-mediated immunity, leucocyte-mediated immunity, and adaptive immune response. The top biological processes of macrophage migration inhibitory factor (MIF) were negative regulation of immune system process, B cell homeostasis, regulation of immune effect or process, and lymphocyte homeostasis. The top biological processes of lymphotoxin beta receptor (LTBR) were myeloid dendritic cell activation, leucocyte differentiation, response to tumour necrosis factor, and response to molecules of bacterial origin. The top biological processes of cathepsin D (CTSD) were autophagy, antigen processing and presentation of exogenous antigen, antigen processing and presentation of exogenous peptide antigen via MHC class II. The top biological processes of kinesin-associated protein 3 (KIFAP3) were antigen processing and presentation, antigen processing and presentation of peptide antigen via MHC class II, and antigen processing and presentation of exogenous antigen. The top biological processes of proteasome subunit beta 8 (PSMB8) were immune response-activating signal transduction, innate immune response-activating signal transduction, and the immune response-regulating cell surface receptor signalling pathway.

PSMB9, FOXJ1, IFT57, MAL, ANXA4, CTSH, SCRN1, MIF, LTBR, CTSD, KIFAP3, PSMB8, HSPA5, and LTN1 were recognised as independent risk factors by multivariate Cox analyses, suggesting that these 14 prognostic immune genes might have potential effects on the occurrence, progression and prognosis of tumours. NANOG controls cell migration and invasion by regulating FOXJ1 expression in ovarian cancer (15). FOXJ1 promoted tumour growth in bladder cancer (16). Highly expressed FOXJ1 promoted the proliferation and invasiveness of laryngeal squamous cell carcinoma cells (17). High expression of MAL was associated with poor survival of advanced ovarian cancer (40). Overexpression of the MAL gene was used to predict chemoresistance and poor prognosis in serous ovarian cancer patients (18). High expression of MAL promoted metastasis in colorectal cancer (24). Ikaros inhibited the proliferation of tumour cells by downregulating the expression of ANXA4 in hepatocellular carcinoma (23). Knockdown of SCRN1 significantly reduced tumour cell growth in colorectal cancer (19). EIF expression was associated with overall survival in patients with ovarian cancer (20). The KIFAP3 gene is highly expressed at the mRNA and protein levels in breast cancer (41). miR-451a inhibited cancer growth and induced apoptosis of papillary thyroid cancer by targeting PSMB8 (41). The CpG mutation of PSMB9 is related to the recurrence or drug resistance of ovarian cancer after chemotherapy (42). High expression of PSMB8 and PSMB9 is related to the five-year survival of ovarian cancer (43). High expression of MIF is correlated with poor overall survival of ovarian cancer (44). HSPA5 inhibits the growth of epithelial ovarian cancer cells through G1 phase arrest (45). High expression of CD5L promoted proliferation and the antiapoptotic response in hepatocellular carcinoma cells by binding to HSPA5 (46).

CD4 T helper cells can inhibit the transformation of immunosuppressive regulatory T cells in ovarian cancer (41). Regulatory T cells were positively correlated with ovarian cancer (20). An increased CD8/regulatory T cell ratio suggests good prognosis for ovarian cancer (47). Dendritic cell immunotherapy could stimulate antitumour T cell immunity and improve the prognosis of cancer patients (21). Interleukin 10 regulates Toll-like receptor-mediated dendritic cell activation in ovarian cancer (22). IL-15 enhanced natural killer cell function in ovarian cancer patients (13). A low lymphocyte-to-monocyte ratio was related to poor survival in ovarian cancer (48). Mast cell infiltration with high mean vessel density indicated favourable prognosis in ovarian cancer (49). Macrophage secretory proteins induce ovarian cancer proliferation through the JAK2/STAT3 pathway (50). M1 macrophages induce ovarian cancer cell metastasis through the activation of NF-κB (51). Small extracellular vesicles could inhibit the T cell response and promote the growth of ovarian cancer cells (51). Artesunate induced apoptosis of ovarian cancer cells by microRNA-142 (52). Mature neutrophils inhibited T cell immunity in ovarian cancer patients (50). Regulatory T cells inhibit CD8 T cell function through the IL-10 pathway (53). ISG15 induced CD8 T cells and inhibited the progression of ovarian cancer (54). TGF-beta 1 induces CD8 Tregs through the p38 MAPK pathway in ovarian cancer (55). CD4 T helper cells inhibit the transformation of immunosuppressive regulatory T cells (56). CD4 T cells induce the host immune response through dendritic cells in patients with MHC class II-negative ovarian cancer (57).

Advantages: First, the current study developed two artificial intelligence predictive tools that provided individual mortality risk prediction at different time points and were valuable for optimising individual treatment decisions. Second, the current artificial intelligence survival predictive system provided three individual mortality risk predictive curves based on three artificial intelligence algorithms. Different artificial intelligence algorithms provided more reliable and valuable prognostic predictions for ovarian cancer than conventional prognostic models.

Shortcomings: First, because study datasets from public databases did not include information on surgical treatment, radiotherapy, biological targeting therapy, etc., the current study failed to assess the impact of these important clinical variables on survival. Second, from the perspective of model validity and extensibility, the sample size of the current research was relatively small for prognosis, which might weaken the validity of the research conclusions. Large, prospective sample studies can provide more convincing clinical evidence for the current study. Third, as non-parametric algorithms, artificial intelligence algorithms are complex to perform, and their calculation processes cannot be expressed by simple equations, restricting artificial intelligence algorithms as the mainstream methods for prognostic studies. Fourth, the current study constructed an immune regulatory network and revealed potential regulatory associations among immune genes and transcription factors. However, the role and mechanism of immune genes and transcription factors in tumorigenesis, growth and prognosis need to be elucidated by further study.

In conclusion, the current study identified 1,307 differentially expressed genes and 337 differentially expressed immune genes in ovarian cancer patients. Multivariate Cox analyses identified fourteen prognostic immune biomarkers for ovarian cancer. The current study constructed an immune regulatory network involving 63 immune genes and 5 transcription factors, revealing potential regulatory associations among immune genes and transcription factors. The current study developed a prognostic model to predict the prognosis of ovarian cancer patients. The current research further developed two artificial intelligence predictive tools for ovarian cancer, which are available at https://zhangzhiqiao8.shinyapps.io/Smart_Cancer_Survival_Predictive_System_17_OC_F1001/ and https://zhangzhiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_17_OC_F1001/. The artificial intelligence survival predictive system can improve individualised treatment decision-making.
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Bioactive Molecules of Tea as Potential Inhibitors for RNA-Dependent RNA Polymerase of SARS-CoV-2
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The coronavirus disease (COVID-19), a worldwide pandemic, is caused by the severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2). At this moment in time, there are no specific therapeutics available to combat COVID-19. Drug repurposing and identification of naturally available bioactive molecules to target SARS-CoV-2 are among the key strategies to tackle the notorious virus. The enzyme RNA-dependent RNA polymerase (RdRp) performs a pivotal role in replicating the virus. RdRp is a prime target for Remdesivir and other nucleotides analog-based antiviral drugs. In this study, we showed three bioactive molecules from tea (epicatechin-3,5-di-O-gallate, epigallocatechin-3,5-di-O-gallate, and epigallocatechin-3,4-di-O-gallate) that showed better interaction with critical residues present at the catalytic center and the NTP entry channel of RdRp than antiviral drugs Remdesivir and Favipiravir. Our computational approach to identify these molecules included molecular docking studies, followed by robust molecular dynamics simulations. All the three molecules are readily available in tea and could be made accessible along with other medications to treat COVID-19 patients. However, these results require validation by further in vitro and in vivo studies.
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INTRODUCTION

Recently, a major threat to humanity has emerged in the form of a novel coronavirus (CoV), causing a disease that is regarded as coronavirus disease 2019 (COVID-19) (1, 2). Taxonomically, this virus hails to the Coronaviridae family, which contains the enveloped positive-sense RNA virus of four major groups, alpha, beta, gamma, and delta (3, 4). Among these, Severe Acute Respiratory Syndrome (SARS) CoV and Middle East Respiratory Syndrome (MERS) CoV from the beta group are highly pathogenic to humans and develop symptoms like common cold, fever, and respiratory problems (5, 6). Previous outbreaks of the CoV in humans were reported in 2002 and 2012, which involved the SARS and MERS CoV, respectively (7, 8). Due to the absence of a specific treatment protocol, they had to be controlled via several public health measures (4, 9). The COVID-19 disease is provoked by a new CoV, named SARS-CoV-2. As compared to the other CoVs, SARS-CoV-2 has an uplifted human-to-human transmission rate, which gives a rationale for its extensive spread (10, 11).

The non-structural protein 12 (nsp12), also called the RNA-dependent RNA polymerase (RdRp), performs a significant function in the replication and transcription cycles of SARS-CoV-2 by catalyzing the synthesis of the viral RNA, making it one of the most critical targets for viral inhibition (1, 12). The nsp12 is likely to be assisted by cofactors like the nsp7 and nsp8 (13). The RdRp structure comprises a polymerase domain ranging from residue S367 to F920 that resembles a cupped “right hand” and a nidovirus-unique N-terminal extension domain ranging from residues D60 to R249, also called the NiRAN domain (14, 15). The two domains interact via the interface domain ranging from residues A250 to R365 (12). It also comprises the fingers subdomain (residues L366-A581 and K621-G679), the palm domain (residues T582-P620 and residues T680-Q815), and the thumb domain (residues H816-E920) (12, 14). There is an N-terminal β-hairpin (residues D29 to K50) between the palm subdomain and the NiRAN domain, which assists in the overall stabilization of the structure (12). The region from residue A4 to R118 comprises two helices and five antiparallel β-strands (9, 12). Another β-strand is present in the region between residues N215 and D218. It interacts with a strand in the region V96 to A100, thereby providing stability to the conformation by forming a compact and firm β-barrel architecture (12). The RdRp mediates a template-directed RNA synthesis part of the viral life cycle where the template entry, the nucleoside triphosphate (NTP) entrance, and the nascent strand exit pathway converge into a central cavity, which is all positively charged (12, 16). The NTP entry channel is demarcated via hydrophilic motif F having K545, R553, and R555 residues (12). The RNA template enters the active site from a channel between motifs F and G, where motif E and the thumb subdomain hold the template strand. The active site is mainly constituted of motifs A and C, held up by motifs B and D (9).

The worldwide spread of SARS-CoV-2 and the rising statistics emphasize the importance of identifying drug candidates, which can act as potent antivirals to control the growing pandemic. RdRp is a promising target for inhibition, firstly, due to its critical involvement in the viral life cycle; secondly, it conserved the nature of its structure and sequence across several RNA viruses; and lastly, due to the missing homologs in the host (4, 12). Nucleotide analogs (NAs) include Remdesivir (adenosine analog), which has already proven to be effective against several viral diseases and has also been reported to inhibit SARS-CoV-2 by controlling its proliferation (17, 18). NAs upon entry tend to acquire an active 5′-triphosphate, which challenges the endogenous nucleotides to get incorporated in the viral RNA by acting as an alternate substrate for the RdRp (1). Remdesivir also works similarly by benefiting from the low fidelity of the RdRp, thereby preventing viral proliferation by chain termination (19, 20). Analysis of the Remdesivir-mediated inhibition state of the virus illustrates conformational changes in the residues D760, D761, and D618. This allows the phosphate group of the inhibitor to interact with allosteric residue R555 (12).

In this study, a dataset of bioactive molecules of tea were screened and compared to Remdesivir and Favipiravir for their inhibitory potential against the RdRp of SARS-CoV-2. Tea is consumed by more than half of the world's population. The proof underpinning the health benefits of tea is rapidly growing with each new research published in the scientific literature. A plethora of studies have reported advantageous effects of habitual tea consumption against several types of cancers, cardiovascular diseases, diabetes, and arthritis (21). Apart from it, bioactive tea molecules are promising compounds in manifesting antiviral activities. They exhibit antiviral activity against a broad spectrum of human viruses, including HIV, herpes simplex virus, influenza, hepatitis B, and hepatitis C (22, 23). These compounds are even effective against Zika, Chikungunya, and Dengue viruses (23). Recent computational and experimental investigations documented the potent antiviral activities of bioactive tea molecules against multiple vital proteins, including the main protease (Mpro), non-structural protein 15 (Nsp15), spike, and RdRp of SARS-CoV-2 (24–28). The main objectives of the study were to analyze the interaction pattern and binding affinity of selected bioactive molecules and FDA-approved antiviral drugs with the active pocket of SARS-CoV-2 RdRp and, furthermore, to rank and suggest topmost molecules on the basis of their potential to hinder the replication process of SARS-CoV-2.



MATERIALS AND METHODS


Datasets

The crystallographic RdRp-RNA structure complex (PDB Id: 7BV2) was obtained from the protein data bank with a resolution of 2.50 Å (29). The chain A (nsp12) contains 951 amino acids. The protein complex also constitutes of primer and template RNA strands of length 20 and 30 nucleotides, respectively. A set of bioactive molecules of Tea (24) was prepared for molecular docking and MD simulation studies. The structures of Remdesivir and Favipiravir in their active forms were obtained from PubChem (30).



Molecular Docking

A set of bioactive molecules from tea along with Remdesivir and Favipiravir was docked into the active site of RdRp of SARS-CoV-2. Discovery Studio's CDOCKER algorithm was utilized to carry out molecular docking. CDOCKER is CHARMm-based semiflexible docking engine (31). The resilient conformation section grabbed by ligand molecules searched employing high-temperature kinetics. The optimization at the binding site of each conformation is achieved by using the simulated annealing method to obtain reliable docking outcomes. The CDOCKER parameters were kept on default. The number of starting random conformations and the number of rotated ligand orientations to refine for each of the conformations for 1,000 dynamics steps were set to 10. Moreover, for annealing refinement, the number of heating steps was 2000, while the number of cooling sets was set to 5,000. The distance to consider Pi-cation, Pi-Pi, and Pi-alkyl interactions was set to 5, 6, and 5.5 Å, respectively. A radius of 8.0 Å was assigned centering the ligand in the active site that contains all the active residues participating in the binding of the ligand to the RdRp–RNA SARS-CoV-2 protein. The 3D structures of all the bioactive molecules were prepared using the Discovery Studio package (32). Furthermore, for energy minimization, we have used CHARMm force field and DFT protocols (33). The built molecules were then read in Discovery Studio.



Molecular Dynamics Simulations

A 100-ns MD simulation was performed for all the selected complexes using the GROMACS 4.6.7 suite (34). A large protein size of RdRp (951 amino acids) along with RNA increases the complexity of all atomic simulation setups by several folds. The protein topology for the protein complexes has been derived from the CHARMM27 force field, while ligand topologies were prepared by employing the PRODRG server. Every protein complex system was solvated with a simple point charge (SPC) water model. Each system was neutralized by attaching chloride ions, accompanied by energy minimization with the steepest descent method of integration. After minimization, the protein was equilibrated for 10 ns at 300 K in NVT as well as NPT ensemble (35). Finally, MD simulation was performed at a temperature of 300 K for 100 ns under periodic boundary state and the time constant of 1.0 ps for coupling. The constant pressure and temperature (1/atm/300 K) were managed through Berendsen Coupling Algorithm17 with a time constant of 0.2 ps for heat-bath coupling (36). The SHAKE algorithm was used during simulation to maintain the length of the bond involving the hydrogen bond. The free binding energies of the selected complexes were calculated with g_mmpbsa software in GROMACS 4.6.7. The MM-PBSA method was applied to the calculation of the binding free energies (37). It can be calculated via the following equation:
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Here, ΔGbinding delineates the binding free energy of the protein–ligand complexes; GProtein and GLigand delineate the overall free energies of the protein and ligand molecule. The generated trajectories of MD simulations were then practiced to construct the graph for root mean square deviation (RMSD), RMSD conformational clustering, and hydrogen bond; “gmx rms,” “gmx cluster,” and “gmx hbond” scripts of GROMACS were employed to interpret the yield trajectory data.




RESULTS AND DISCUSSION

The availability of a high-resolution crystallographic structure of the RdRp–RNA complex has unlocked the pathway for the development of potential antivirals targeting the particular protein of SARS-CoV-2. Many studies around the world have suggested that high intake of foods rich in bioactive molecules has beneficial impact on human health and may mitigate the possibility of various human ailments, such as diabetes, cancer, Alzheimer's disease, cataracts, stroke, and age-related functional disorders (38). Bioactive molecules are rich in structural diversity and provide a large area of chemical space for the exploration of possible target sites. In our previous study, the bioactive molecules Oolonghomobisflavan-A, Theasinensin-D, and Theaflavin-3-O-gallate of tea showed better binding than the FDA-approved drugs to the active site of the main protease of SARS-CoV-2 (24). Herein, we screened a dataset of bioactive molecules from tea to check and compare their affinity toward the active site of the RdRp–RNA complex of SARS-CoV-2. The top three tea bioactive molecules screened in this study were epicatechin-3,5-di-O-gallate, epigallocatechin-3,4-di-O-gallate, and epigallocatechin-3,5-di-O-gallate.


Molecular Docking

Molecular docking is an exemplary tool to identify the intermolecular framework of ligand–protein, protein–nucleic acid, and protein–protein complexes. The RdRp–RNA complex of SARS-CoV-2 was docked with a set of bioactive molecules from tea and FDA-approved repurposed drugs Remdesivir and Favipiravir. All the molecules were ranked according to their binding scores generated by the CDOCKER protocol of Discovery Studio (Supplementary Table 1). The binding poses of Remdesivir and Favipiravir within the active site of the RdRp–RNA complex were shown in Figure 1. Remdesivir binds to the active site by interacting with the residues of RdRp and RNA nucleotides of both the primer and template strand. The Uracil at position 20 of the primer strand is bound to Remdesivir by two hydrogen bonds and Pi-alkyl interactions. Remdesivir also formed hydrogen bonds with Uracil at position 10 of the template strand. Additionally, Remdesivir was stabilized in the binding site by a Pi-Sulfur interaction with residues Arg555, Lys551, and Arg553 of RdRp. Furthermore, residues Val557, Lys545, Asp760, Cys622, Asp623, Thr680, Ser759, Asn691, Thr687, and Ala688 of RdRp were involved in van der Waals interactions with Remdesivir. Favipiravir occupied the central pocket of the RdRp–RNA complex and formed a hydrogen bond with Uracil at position 20 of the primer RNA strand. Two hydrogen bonds were formed between Favipiravir and Uracil at position 10 of the template RNA strand. Residues Lys545 and Lys551 were involved in Pi-Sulfur interaction with Favipiravir. Residues Arg555, Val557, Ser6682, Asp761, Asp760, and Adenine at position 11 of the template strand were involved in van der Waals interactions.


[image: Figure 1]
FIGURE 1. Molecular docking interaction poses of (A) Remdesivir and (B) Favipiravir with the active site of the RNA–RdRp complex of SARS-CoV-2. The color-coding scheme is as follows: H-bonds (green), pi-alkyl/alkyl (pink), pi-sulfur (golden yellow), and pi-lone pair (limon).


Three molecules from tea displayed stronger binding with the active site of the RdRp–RNA complex in terms of CDOCKER interaction energy (Table 1). The docking poses with the most favorable interaction patterns are shown in Figure 2. The molecule epicatechin-3,5-di-O-gallate formed three hydrogen bonds and a Pi-anion interaction with the Uracil at position 20 of the primer RNA strand. The molecule was further stabilized within the active pocket by eight hydrogen bonds with residues Lys545, Asp623, Asp425, Asn691, Ser759, Ser682, and Ser814. Residues Asp623 and Thr556 were involved in the formation of Pi-anion and Pi-Lone Pair interactions, respectively. Many other residues of protein RdRp along with the Adenine and Uracil of the template RNA strand at positions 11 and 10 showed van der Waals interactions. The second molecule from tea, epigallocatechin-3,5-di-O-gallate, formed two hydrogen bonds with Uracil at position 20 of primer RNA. It interacted with residues Ser682, Asp623, Arg553, Arg55, Lys545, Ile548, Asp760, and Ser759 via nine hydrogen bonds. Residues Arg555 and Ala547 were also involved in Pi-alkyl interactions. Furthermore, the binding of epigallocatechin-3,5-di-O-gallate to the active pocket of the RdRp–RNA complex was enhanced by van der Waals interactions by residues Cys622, Thr680, Ser682, Arg624, Val557, Ser549, Ser814, Asp761, Ala688, Thr687, and Asn691. The molecule epigallocatechin-3,4-di-O-gallate also showed higher binding potential than Favipiravir and Remdesivir at the active site of the RdRp–RNA complex. The primer strand Uracil at position 10 interacted via two hydrogen bonds, while the Adenine at position 20 of the same RNA strand formed one hydrogen bond with epigallocatechin-3,4-di-O-gallate. The residues Arg836, Arg555, Ser759, Asn691, Asp623, Ser682, Asp452, Arg553, and Lys545 of the RdRp protein showed 10 hydrogen bonds with epigallocatechin-3,4-di-O-gallate. Moreover, three Pi-anion interactions (Arg836, Cys622, Asp623), two Pi-alkyl interactions (Arg555 and Val557), and a Pi Lone Pair interaction were also observed at the active site.


Table 1. Selected tea bioactive molecules and FDA-approved drugs based on -CDOCKER interaction energy.
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FIGURE 2. Molecular docking interaction poses of bioactive molecules from tea with the active site of the RNA–RdRp complex of SARS-CoV-2. (A) Epicatechin-3,5-di-O-gallate, (B) epigallocatechin-3,5-di-O-gallate, and (C) epigallocatechin-3,4-di-O-gallate. The color-coding scheme is as follows: H-bonds (green), pi-alkyl/alkyl (pink), pi-sulfur (golden yellow), and pi-lone pair (limon).


Remdesivir is a nucleotide analog that occupied the central position of the catalytic active site and formed a covalent bond with the primer RNA strand, and terminates replication by non-obligate RNA chain termination (12). However, studies contrary to these results showed the addition of more nucleotides to the RNA strand even after the incorporation of Remdesivir resulting in delayed chain termination (20, 39). The catalytic center of RdRp protein is composed of residues Ser759, Asp760, and Asp761. This site is conserved in most viral RdRps (12, 29). Residues Lys545, Arg553, and Arg555 contribute to the formation of the NTP entry channel (12). The FDA-approved drugs Remdesivir and Favipiravir formed weaker van der Waals and Pi-Sulfur interaction with the residues of the catalytic center and the NTP entry channel. However, all the three selected tea molecules formed stronger hydrogen bonds with most of these residues. Residues Asn691, Ser682, and Asp623 impart specificity to RNA replication over DNA strand by recognizing the RNA specific 2′-OH group (40). Our selected molecules from tea formed stronger hydrogen bonds with residues Asn691, Ser682, and Asp623 as compared to weaker van der Waals interactions formed by Remdesivir and Favipiravir. Stronger interactions with RNA recognition residues and other residues involved in the formation of the catalytic center and the NTP entry channel would ensure the destabilization of the incoming RNA in the active site and hence halt/meddle with the process of viral replication. Furthermore, MD simulations were conducted to substantiate the molecular docking results and explore the dynamics of ligand–protein interactions at the catalytic site of the RdRp–RNA complex.



Molecular Dynamics Simulations

The basic understanding of how biological macromolecules function requires an awareness of molecular structure and dynamics (41). MD simulations establish fundamental links based on experimental and theoretical evidences between structure and dynamics, allowing the investigation of conformational energy landscape available to biological macromolecules (42, 43). In our previous studies, we showed the potential of bioactive tea molecules to inhibit the Mpro (24) and nsp15 (25) of SARS-CoV-2. Moreover, in a different study, we demonstrated the inhibitory potential of acridinedione analogs to inhibit the Mpro of SARS-CoV-2 (44). A recent study employing MD simulations suggested potential molecules to target the RdRp of SARS-CoV-2 (45). The RdRp–RNA complexes with Remdesivir, Favipiravir, and three selected bioactive molecules of tea were subjected to explicit MD simulations. The MD results were analyzed by using different multiscale computational methods.



Structural Stability of RdRp–Ligand–RNA Complexes

The RMSD is a classical technique for the analysis of MD results. It is a popular measure for analyzing the structural stability of protein structures. The RMSDs of all the C-α atoms of selected protein complexes were calculated, as depicted in Figure 3. All the protein structures deviated < 0.35 nm during the simulation. The RdRp–RNA complex with Remdesivir had the highest deviation with an average RMSD value of ~0.32 nm. The complex with Favipiravir deviated at a lower trajectory than Remdesivir after 25 ns until the end of the simulation. All the three RdRp–RNA complexes having selected tea molecules (epicatechin-3,5-di-O-gallate, epigallocatechin-3,4-di-O-gallate, and epigallocatechin-3,5-di-O-gallate) showed relatively lower deviations than Remdesivir. The average RMSD values of epicatechin-3,5-di-O-gallate and epigallocatechin-3,5-di-O-gallate were 0.27 and 0.29 nm, respectively. After initial deviations from the starting structure for the first 25 ns, the RMSD trajectories of the simulated complexes stabilized and showed convergence in the second half of the simulation. These results indicated that the structural stability of RdRp–RNA complexes with bioactive molecules of tea was comparable to that of Favipiravir and was more stable than Remdesivir. Additionally, lower RMSD values also showed that all the simulated structures were able to reproduce correct binding poses as generated by molecular docking studies.


[image: Figure 3]
FIGURE 3. Backbone RMSDs are shown as a function of time for the RNA–RdRp complex of SARS-CoV-2 and ligands.




Dynamics of Simulated Complexes

The ensemble clustering of simulation data is a conclusive and effectual method of analyzing the structural flexibility of concerned protein systems (46). The MD trajectories of all the selected complexes for 5 ns (45–50 ns) of the simulation period were extracted and subjected to clustering analysis. The clustering was done on three different combinations of the receptor and the ligand to explore the dynamics of ligand interactions with individual receptors and the whole protein (RdRp)–nucleic acid (active site RNA) complex. The RMSD clustering results are shown in Figure 4. In RdRp–ligand complexes, Favipiravir formed the least number of clusters with an average RMSD of 0.130 nm, while Remdesivir and epigallocatechin-3,4-di-O-gallate formed five clusters each with an average RMSD of 0.131 and 0.130 nm, respectively. In RNA–ligand complexes, Favipiravir showed only two clusters with an average RMSD of 0.109 nm. Among the bioactive molecules of tea, epigallocatechin-3,4-di-O-gallate showed only three clusters, while the rest of the two molecules formed six clusters each while interacting with RNA. Remdesivir formed 12 clusters with an average RMSD of 0.160 nm. Similarly, in protein–RNA–ligand complexes, Remdesivir formed the most number of clusters (nine clusters) followed by epicatechin-3,5-di-O-gallate (eight clusters), epigallocatechin-3,5-di-O-gallate (eight clusters), epigallocatechin-3,4-di-O-gallate (six clusters), and Favipiravir (four clusters). The average RMSD of all the clusters was below 0.140 nm. These results showed that the selected bioactive tea molecules were more stable than Remdesivir and almost comparable to Favipiravir in clustering analysis. Furthermore, to visualize the effect of structural fluctuations on intermolecular interactions, we analyzed the hydrogen bond formations between RdRp–ligand and RNA–ligand complexes.


[image: Figure 4]
FIGURE 4. Analysis of SARS-CoV-2 complexes shown as clusters of (A) RdRp–ligands, (B) RdRp–RNA, and (C) RdRp–RNA–ligands. Numbers of clusters are represented by asterisk.




Analysis of Intermolecular Hydrogen Bonds

Hydrogen bonds are commonly considered as mediators of protein–ligand binding and also promote the binding affinity of a ligand by displacing the water molecules bound to protein into the bulk solvent. We calculated the number of hydrogen bonds formed by the selected bioactive molecules of tea and standard drugs with both the RdRp and RNA of SARS-CoV-2. Remdesivir and Favipiravir formed an average of four and five hydrogen bonds, respectively, with the RdRp of SARS-CoV-2. Epicatechin-3,5-di-O-gallate formed the most number of hydrogen bonds during the simulation with the residues of the RdRp of SARS-CoV-2. The average number of hydrogen bonds formed during the simulation by epicatechin-3,5-di-O-gallate was 7, with few conformations formed up to 10 hydrogen bonds (Figure 5A). Epigallocatechin-3,4-di-O-gallate stabilized in the binding pocket by forming an average of six hydrogen bonds with the RdRp of SARS-CoV-2. The third selected molecule epigallocatechin-3,5-di-O-gallate for the first 25 ns showed an average of five hydrogen bonds, while for the next 25 ns, the average number of hydrogen bonds was five with RdRp. Similarly, epicatechin-3,5-di-O-gallate, epigallocatechin-3,4-di-O-gallate, and epigallocatechin-3,5-di-O-gallate formed more hydrogen bonds with RNA at the active site of RdRp than Remdesivir and Favipiravir. The average number of hydrogen bonds formed between epicatechin-3,5-di-O-gallate and RNA was two, while the highest number of hydrogen bonds was four. Both epigallocatechin-3,4-di-O-gallate and epigallocatechin-3,5-di-O-gallate showed up to five hydrogen bonds with the active site RNA (Figure 5B). The standard drugs Remdesivir and Favipiravir were able to form an average of one and two hydrogen bonds, respectively, with the active site RNA. All the three selected bioactive molecules of tea formed a greater number of hydrogen bonds within the active site of the RdRp of SARS-CoV-2 than Remdesivir and Favipiravir throughout the simulation period. These results were further confirmed by extracting RdRp–ligand–RNA complex trajectories at different time intervals and visualizing the stability of selected molecules in the active site of RdRp (Supplementary Figure 1). The bioactive molecules of tea were tightly bound to the active site of RdRp by forming a greater number of hydrogen bonds and other non-covalent interactions than Remdesivir and Favipiravir. Furthermore, an efficient and reliable method of calculating the binding free energy and its contributors was employed to compare bioactive tea molecules with Remdesivir and Favipiravir.


[image: Figure 5]
FIGURE 5. Hydrogen bond profiles of the RNA–RdRp complex of SARS-CoV-2 having (A) RdRp and (B) RNA.




The Molecular Mechanics Poisson–Boltzmann Surface Area (MM-PBSA) Analysis

MD simulations present a glimpse of a ligand's stability in the binding region of a concerned protein. By implementing MM-PBSA calculations, we assessed the binding free energy of selected RdRp–ligand complexes. The observation was made with the extraction of the RdRp–ligand complex scripts from MD simulations. The binding free energy can acceptably illustrate the durability of the linking ligand receptor, which is an integral aspect of drug development. The binding energies of the ligands with RdRp and RNA were compared. Remdesivir and Favipiravir showed positive binding energy with both RdRp and RNA. Moreover, the binding free energy was decomposed into electrostatic, SASA, van der Waals, and polar solvation energies. The lesser the binding energy, the more reliable the ligand–protein binding. The favorable contribution of SASA, electrostatic, and van der Waals energies was devoted to the binding of RdRp and RNA with our selected molecules from tea. In contrast, electrostatic energy was positive for standard molecules in RNA but favorable in RdRp, as shown in Figure 6 and Table 2. Approximately all atoms inside a macromolecule convey a partial charge, and thus, molecules striving for molecular classification interact via electrostatic interactions. It is believed that these interactions assist two leading roles: to control the molecules toward their binding style and to generate unique interactions within the active site (47). It is assumed that the positive values of the electrostatic associations destabilize the interaction and thus diminish the affinity. By contrast, in binding free energy, the polar solvation energy participated generously to increase the total energy. Van der Waals energy's augmentation to the overall binding free energy was higher upon the electrostatic contribution energy. The higher (–ve) binding energy is responsible for potential binding. These results bestow higher binding energy for all the selected tea molecules as compared to Remdesivir and Favipiravir.
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FIGURE 6. Binding free energy represented graphically for RdRp protein and color scheme as follows: (A) RNA–Remdesivir (black), RNA–Favipiravir (red). (B) RdRp–Remdesivir (black), RdRp–Favipiravir (red). (C) RNA–epicatechin-3,5-di-O-gallate (blue), RNA–epigallocatechin-3,5-di-O-gallate (cyan), RNA–epigallocatechin-3,4-di-O-gallate (orange). (D) RdRp–epicatechin-3,5-di-O-gallate (blue), RdRp–epigallocatechin-3,5-di-O-gallate (cyan), RNA–epigallocatechin-3,4-di-O-gallate (orange).



Table 2. Binding free energy (MM-PBSA) calculations for selected complexes.
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CONCLUSION

The RdRp is an attractive target for the development of specific inhibitors for SARS-CoV-2. The FDA-approved drugs Remdesivir and Favipiravir showed promising results in curing COVID-19 patients. In this study, a dataset of bioactive molecules from tea was screened to analyze its interaction profiles within the active site of the RdRp–RNA complex. The molecules epicatechin-3,5-di-O-gallate, epigallocatechin-3,4-di-O-gallate, and epigallocatechin-3,5-di-O-gallate formed stronger hydrogen bonds with the key residues involved in the recognition of RNA for replication, the catalytic center, and the NTP entry channel. These residues showed weaker van der Waals interactions with Remdesivir and Favipiravir. Both the selected molecules also showed the most favorable binding energies during robust MD simulations than the standard drug molecules. The bioactive molecules of tea also target the Mpro and nsp15 of SARS-CoV-2 as shown by our previous reports. The results our previous study along with the present findings disclose the ability of bioactive molecules of tea to target multiple proteins of SARS-CoV-2 (Mpro, nsp15, and RdRp). These bioactive molecules could be quickly made available in formulations along with other antiviral therapies to rapidly cure COVID-19 patients. These in silico results, however, require validation by experimental studies.
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Familial hypercholesterolemia (FH), a well-known lipid disease caused by inherited genetic defects in cholesterol uptake and metabolism is underdiagnosed in many countries including Saudi Arabia. The present study aims to identify the molecular basis of severe clinical manifestations of FH patients from unrelated Saudi consanguineous families. Two Saudi families with multiple FH patients fulfilling the combined FH diagnostic criteria of Simon Broome Register, and the Dutch Lipid Clinic Network (DLCN) were recruited. LipidSeq, a targeted resequencing panel for monogenic dyslipidemias, was used to identify causative pathogenic mutation in these two families and in 92 unrelated FH cases. Twelve FH patients from two unrelated families were sharing a very rare, pathogenic and founder LDLR stop gain mutation i.e., c.2027delG (p.Gly676Alafs*33) in both the homozygous or heterozygous states, but not in unrelated patients. Based on the variant zygosity, a marked phenotypic heterogeneity in terms of LDL-C levels, clinical presentations and resistance to anti-lipid treatment regimen (ACE inhibitors, β-blockers, ezetimibe, statins) of the FH patients was observed. This loss-of-function mutation is predicted to alter the free energy dynamics of the transcribed RNA, leading to its instability. Protein structural mapping has predicted that this non-sense mutation eliminates key functional domains in LDLR, which are essential for the receptor recycling and LDL particle binding. In conclusion, by combining genetics and structural bioinformatics approaches, this study identified and characterized a very rare FH causative LDLR pathogenic variant determining both clinical presentation and resistance to anti-lipid drug treatment.

Keywords: familial hypercholesterolemia, genetic diagnosis, monogenic diseases, consanguineous populations, LDLR pathogenic mutations


INTRODUCTION

FH (OMIM 143890) is a relatively common metabolic disease in which patients demonstrate life-long elevation of plasma low-density lipoprotein (LDL) cholesterol (1). If left untreated, modified LDL particles enter arterial wall macrophages contributing to plaque formation, particularly within coronary arteries leading to premature development of coronary heart disease (CHD) (2). Cholesterol-laden macrophages lead to formation of not only atheromatous plaques, but also extensor tendon xanthomas (e.g., Achilles and fingers), xanthelasmata (yellow deposit underneath the skin of upper and lower eyelids), and arcus cornealis (cholesterol ring accumulating at the edge of the cornea) (3). Since FH is asymptomatic in the initial stages, most FH patients do not realize their illness until the onset of symptomatic atherosclerotic cardiovascular disease in their forties or fifties, which is sometimes fatal (4). The overall prevalence of FH in the Gulf region is estimated to be ~ 0.43% (1/232), however, in Saudi Arabia, prevalence of FH is not yet established due to the dearth of local FH clinical registries, epidemiological studies, and population genetic screening programs (5, 6). Diagnosis rates of FH are quite high among individuals who have a positive family history of premature CHD or hypercholesterolemia (7).

FH is caused by defective hepatic uptake of LDL receptor (R) mediated LDL-C particle degradation processes. About 30–60% of clinically diagnosed FH patients have a single copy of a pathogenic mutation (8). Majority of the clinically diagnosed FH patients (~80%) have a mono-allelic loss-of-function (LoF) variant in LDLR gene, while the rest are LoF variants in the receptor-binding domain of the APOB gene or a gain-of-function (GoF) variant in the PCSK9 gene. A very small proportion of FH have biallelic LoF mutations in LDLRAP1 which normally assists in LDL receptor internalization by liver cells. However, ~30–70% of clinically diagnosed FH patients are negative for LDLR, APOB, or PCSK9 pathogenic mutations. Few have very rare LoF mutations in secondary FH genes, including ABCG5, ABCG8, LIPA, or APOE, while many other patients with hypercholesterolemia carry several common genetic variants (also called single nucleotide polymorphisms), which collectively act to influence the serum LDL-C concentration (9).

FH typically shows either autosomal dominant (HeFH; heterozygous FH) or autosomal recessive (HoFH; homozygous FH) mode of inheritance based on one or two copies of pathogenic variants in LDLR, APOB or PCSK9 genes (10, 11). In most of the studied populations, HoFH affects 1 in 160,000–300,000 individuals, while the HeFH affects out 1 in 250–300 individuals (8). There is evidence for higher prevalence rates of HeFH in founder subpopulations like Saudi Arabians, in which consanguineous marriages are practiced as part of a social norm. Furthermore, FH is underdiagnosed all around the world, with <5% of affected individuals in many countries being identified as having FH (12). Owing to the limited data describing the genetic and phenotypic characteristics of hypercholesterolemia among Saudi patients (13–15) this study aims at identifying the inherited basis of FH in two consanguineous families from Saudi Arabia. In this study, we show that LipidSeq targeted resequencing panel for monogenic dyslipidemias, can effectively detect FH causative LDLR founder variant (c.2027delG) in genetically isolated populations like Saudi Arabians.



MATERIALS AND METHODS


Recruitment of FH Patients and Their Families

The institutional Ethics Committee for Human Research of King Abdulaziz University Hospital (KAUH) gave the approval to conduct the present study according to standard international guidelines. This study has recruited FH patients from Genetic Dyslipidemia and Familial Hypercholesterolemia clinic at the King Abdulaziz University Hospital, Jeddah, Saudi Arabia. Initially two families with multiple members, fulfilling the combined FH diagnostic criteria of Simon Broome Register, and the Dutch Lipid Clinic Network (DLCN), were identified. In Simon Broome criteria for FH diagnosis, points are assigned for cholesterol concentrations, clinical characteristics, molecular diagnosis, and family history, which include risk of fatal heart disease (16). Although the Simon Broome Register criteria consider the molecular diagnosis as evidence for definite FH, the DLCN requires that at least one other criterion be met in addition to molecular diagnosis (17). All the affected individuals from these families underwent detailed physical examinations and their full family history was collected. Laboratory investigations for multiple parameters including Plasma lipid profile (LDL-C, HDL-C, Triglyceride and Total Cholesterol), blood glucose, thyroid function, and liver function were measured by a homogenous enzymatic assay. Clinical geneticist revisited the medical data of patients, interviewed them, drew three generation pedigree charts and enrolled the remaining relatives of the patient families. We have also recruited 92 unrelated FH patients following the DLCN criteria. Approximately 5 mL of blood sample (in EDTA vacutainers) was collected from all individuals after explanation of the study, along with risks and potential benefits. All the participants have signed the informed consent.



Genotyping
 
DNA Preparation

Genomic DNA from peripheral blood cells was isolated using the standard protocols supplied by commercial extraction kits. DNA's quality and quantity were assessed with Nanodrop spectrophotometer and DNA integrity was checked with 1% agarose gel. DNA dilutions at starting concentration of 2 ng/μL were prepared with help of a Qubit 2.0 fluorometer.



Targeted DNA Resequencing With LipidSeq

The DNA samples of the index cases and other members from both families were sequenced on LipidSeq, a targeted resequencing panel for monogenic dyslipidemias, at London Regional Genomics Center, London, Ontario, Canada (www.lrgc.ca). This LipidSeq resequencing panel can scan pathogenic mutations in 73 genes and 185 single nucleotide polymorphisms (SNPs) associated with dyslipidemia and other metabolic disorders (18). A latest article has reviewed the utility of LipidSeq technology in successfully diagnosing the monogenic dyslipidemias and metabolic disorders (19). The full details of DNA library preparation, sequencing, sequence alignment and variant calling (10-fold coverage and 20% read frequency) are described in the original publication (18). VarSeq software was used to annotate and prioritize the variants and for identifying the FH potential variants. Different nucleotide sequence-based prediction algorithms, such as CADD, SIFT and PolyPhen-2 which assess pathogenicity of variants were used to filter the likely deleterious variants (20). The minor allele frequency (MAF) of the variants was determined based on the data available like SHGP, 1,000 genomes, ExAC, ESP and GnomAD databases. From this data, we picked up the extremely rare (MAF is <0.01) mutation occurring in coding regions or splicing regions of the FH causative disease genes and validated its presence in remaining family members and unrelated FH cases.



Sanger Sequencing

The LipidSeq identified a potential FH causative variant was validated in index case, family members and unrelated FH cases, using the Sanger sequencing method. In brief, initially oligonucleotide primers (forward primer; 5′-CCCAACCTTGAAACCTCCTTGTGGAAA-3′ and reverse primer; 5′-CCATTTGACAGATGAGCAGAGAG-3′) spanning the potential mutation location were designed, followed by PCR reactions with dNTP and ddNTP mixture, and bidirectional sequencing in an automatic DNA sequencing machine. The sequence reads were analyzed with help of Bioedit program and nucleotide numbering of the mutations was done considering A of ATG code of mRNA sequence as the first nucleotide. Variant segregation in the family was determined by careful analysis of variant status in each family member.




Computational Functional Analysis of Pathogenic Mutations
 
Functional Analysis of Pathogenic Mutation on RNA Structure

Studying the impact of pathogenic variants on the RNA secondary structures gives hint about its possible functional consequences. Thus, we used a RNA fold (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) prediction tool which estimates the back bone traces and minimum free energy (MFE) value differences on the optimal secondary structure of RNA molecule (21). This tool intakes the native and wildtype RNA sequences in FASTA format and uses Mccaskill's algorithm (22) for computing the probabilities of base pairing matrix, partition function, and structure of centroid molecules. The output of RNA folding is an interactive string representation RNA secondary structure and a mountain plot showing the folding of energy differences between native and mutant sequences. MFE differences between native and mutant RNA structures were compared to estimate the effect of pathogenic variant on their secondary structural features.



Functional Analysis of Pathogenic Mutation on Protein Structure

Studying the impact of pathogenic variants on protein structure provides insight into the complex dynamics of genotype vs. protein phenotype and structure-function relationships. In this study, we retrieved the x-ray crystallography solved tertiary structure of the query protein from Protein Data Bank (PDB). The construction of missing structural regions basing on original crystal structure coordinates was simulated through ab-initio method using I-Tasser webserver (23, 24). The full length tertiary model was subsequently processed for energy minimization and stereochemical assessment steps as described in our recent publication (25). We subsequently created mutant form of FH candidate protein by providing the mutant amino acid sequence and followed the similar steps involved in native protein structure modeling. The built 3D models were provided as an input to PDBSUM for examining the variant induced protein phenotype changes at secondary structure level. PyMOL software was used for visualizing and examining the salt bridges in, which the 3D models built. Stability changes induced by the variants on LDLR structure were estimated with help of DUET webserver (26).





RESULTS


Case Presentations in the FH Families
 
Family A

Family A is a native Saudi Arabian family from the North-Western region (Figure 1A). The index case (II.3) was clinically diagnosed as FH patient at the age of nine and later presented to our clinic when he was 34 years old for his lipid management. His clinical examination revealed signs of severe hyperlipidemia. All classical manifestations of FH were present including bilateral large Achilles tendon xanthomas, huge cholesterol depositions around both mid-thighs, severe bilateral eye xanthelasma and corneal arcus, and bilateral multiple extensor tendon xanthomas on hands. His biochemical profile revealed on an average high level of total cholesterol (15.18 ± 1.33 mmol/L), LDL-C (12.98 ± 2.08 mmol/L) and normal triglycerides (0.81 ± 0.16 mmol/L) (Table 1). He had a past history of hospitalization after chest discomfort and shortness of breath, during which electrocardiogram generated ischemic changes were noticed. A computerized tomography (CT) of the entire aorta was performed, which showed extensive atherosclerotic calcifications in the thoracic aorta, abdominal aorta and into the iliac vessels (Figure 2).


[image: Figure 1]
FIGURE 1. Pedigrees showing the autosomal dominant inheritance mode for LDLR variant (c.2027delG) in two different Saudi FH Families (A,B). Arrow indicates the index case who was first seen in our clinic. The zygosity of the variant's genotype is mentioned under the subjects. Dark color circles or boxes in the pedigree indicates subjects with FH.



Table 1. Clinical and biochemical characteristics of FH families studied in this investigation.
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FIGURE 2. A computerized tomography (CT) scan showing the evidence of stenosis. CT cross-section of the thoraco-abdomen illustrating (A) Calcification within the aortic wall in the thoracic region (T11–T12). (B) Calcification within the aortic wall in the lumber region (L1–L2). (C) Calcification within the aortic wall in the lumber region (L4–L5). (D) Calcification within the iliac artery in the sacral region.


At the time of his visit to our lipid clinic, II.3 was on the following regimen; dual antiplatelet agents, angiotensin converting enzyme (ACE) inhibitors, β-blockers, ezetimibe 10 mg/day and intensive statin treatment with rosuvastatin 40 mg/day, without showing any signs of improvement in his lipid profile (and even when PCSK9 inhibitors were given). He has been undergoing a bimonthly LDL- apheresis therapy in the Cardiovascular Prevention and Rehabilitation Unit of a major referral hospital in Saudi Arabia over the last 10 years. The patient reported his strict adherence to diet and medications as per the physician's instructions. With each apheresis session, his LDL cholesterol level drops by 70 to 83 percent, but within 1 week, returns back to the pre-apheresis level.

Pedigree analysis of the index case suggested positive family history of dyslipidemia, consistent with an autosomal dominant mode of inheritance. The biochemical findings of his parents (I.1 and I.2), five siblings including two brothers (II.1 and II.3), and 3 sisters (II.2, II.6 and II.6) were consistent with an FH diagnosis. However, one sister (II.4) has showed a healthy lipid profile and normal clinical features. Clinical and medication details of family members are shown in Table 1. Furthermore, proband has reported that three of his grandparents (both maternal and paternal), two maternal uncles, three paternal uncles, and three siblings suffered from cardiovascular complications including multiple myocardial infarctions (MI). Of the three paternal uncles, two had percutaneous coronary interventions with insertion of coronary stents; one underwent coronary artery bypass grafting (CABG) in his forties.



Family B

The second consanguineous family comes from the Southern region of Saudi Arabia (Figure 1B). The proband (I.2) was referred to our clinic after undergoing CABG surgery together with replacement of two valves. His past medical history revealed that he was hypercholesterolemic since early adulthood, has undergone cardiac catheterization four times, and had multiple stent placements at the ages of 39 (1 stent), 42 (4 stents), and 44 (1 stent) due to coronary artery narrowing. At the age of 47, the patient was admitted for an open-heart surgery to perform CABG to improve blood flow and oxygen supply to the heart. Clinical examination did not reveal the presence of severe physical signs including the absence of Achilles and tendon xanthomas. The only physical finding was the presence of mild corneal arcus. At the time of his presentation at the lipid clinic, his on-treatment lipid measurements were as follows; total cholesterol 3.86 mmol/dL, LDL-C 2.69 mmol/Dl, and triglyceride level 1.13 mmol/L (Table 1). Despite receiving combination of lipid lowering drugs i.e., ezetimibe 10 mg daily, and evolocumab subcutaneous injections 140 mg/mL once every 2 weeks, there was no improvement in his blood LDL cholesterol, which ranged between (2.47–3.09 mmol/L).

The clinical screening, biochemical investigations and pedigree analysis of this family were consistent with an autosomal dominant mode of inheritance. As per biochemistry reports, spouse of the index case (I.1), elder son (II.1) and two daughters (II.2 and II.3) were also dyslipidemic. However, his younger son (II.4) and younger daughter (II.5) were healthy and free from any symptoms related to dyslipidemia (Table 1). The index case (I.2) and his wife (I.1) both have reported that their mothers have died before the age of 60 due to myocardial infarction (MI) and other heart associated related complications. Moreover, the elder sister of the index case (I.1) and younger brother of the spouse (I.2) were reported to have had open-heart surgery before their fifties due to severe MI after they had cardiac catheterizations initially at the age of 25. All these cardiac events in the family and elevated blood lipid profiles strongly suggests premature atherosclerosis which is consistent with severe heterozygous or homozygous FH.




Genetic Analysis

The LipidSeq data of both families were analyzed for pathogenic mutations in LDLR, APOB, PCSK9, ARH, APOE, ABCG5, ABCG8, and LIPA owing to their known involvement in FH. Out of all FH candidate genes screened, only one a rare pathogenic c. 2027delG (g.11231084delG) variant localized to exon 14 of the LDLR gene, which is positioned on chromosome 19 p13.2 was noticed in 8 affected individuals in family A and five individuals in family B. This deletion mutation results in a frameshift in coding sequence of the LDLR gene and subsequently substitutes the native amino acid glycine to variant alanine at 676th position, followed by 33 nonsense residues, leading eventually to a premature stop gain signal to truncate the LDLR protein (UniProtKB - P01130) at 709th amino acid (G676AfsX33). This variant is expected to result in a prematurely truncated protein which likely undergoes nonsense-mediated protein decay (Figure 3).
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FIGURE 3. Chromosomal location of human LDLR gene at chromosome19p13.2. exonic position and multiple sequence alignment showing the LDLR, EGF like domain sequence across different mammalian species and chromatograms of c.2027delG variant showing wild type (GG), heterozygote (G/−), and homozygous mutant (−/−) genotypes.


This LDLR variant is listed in both dbSNP (ID: rs875989937) and ClinVar (ID: 226383). The rare prevalence of this variant is also ascertained through its absence in Exome Aggregation Consortium (ExAC), 1,000 genomes, EURO-WABB (LOVD), Greater Middle East (GME) Variome and Saudi Human Genome Program (SHGP) databases. This variant has a very low frequency of 0.0001 (six homozygotes and one heterozygote out of 4,706 individuals) in Saudi population as per the Saudi Human Genome Program database. According to variant interpretation standards and guidelines set out by American College of Medical Genetics and Genomics (ACMG), this variant is very strongly predicted to be pathogenic because it's a null variant in coding region of the LDLR gene whose loss of function (LOF) is a well-known mechanism for FH. Moreover, this mutation has been reported to fully segregate with FH in few Saudi families (27, 28) and is also listed in Human Genome Mutation Database (HGMD) to cause FH. Sanger sequencing results have confirmed the autosomal dominant mode of inheritance of variant in FH patients from both families. The distribution of mutation in family A is as follows; both parents (I.1 and I.2), four siblings (one brother- II.1 and three sisters- II.2, II.5 and II.6) were heterozygote carriers of the variant. Whereas, the index case (II.3) was homozygote for the c. 2027delG variant. As described in previous section, this index case has presented with severe clinical features of FH, including Achilles tendon xanthomas. However, the younger sister (II.4) of index case was homozygous for the reference G allele. In family B, the proband (I.2), his wife (I.1), elder son (II.1) and two daughters (II.2 and II.3) were heterozygotes, whereas his younger son (II.4) and younger daughter (II.5) were homozygote carriers of the reference G allele. The genotyping results in both families corroborate with the biochemical and clinical findings. This frameshift deletion variant was found to be completely absent in an unrelated 92 FH cases tested in this study, which suggests a strong possibility that c.2027delG of the LDLR gene is a potential FH founder mutation in Saudi patients. Furthermore, this variant was seen to be located in evolutionarily highly conserved region of gene sequence across different species like Gorilla, Panicus, Pongo abelli, Callithrix jachchus, Microcebus murinus, Theropithecus gelada, Macaca fascicularis, Macaca mulatta etc.



Computational Functional Analysis of Pathogenic Mutation
 
Functional Impact of Pathogenic Mutation on RNA Structure

The minimum free energy (MFE) calculation of LDLR centroid structures revealed that mutant mRNA molecule of LDLR (c.2027delG) possesses a relatively lower stability of secondary structures with −50.70 kcal/mol compared to native LDLR mRNA molecules (MEF was −52.80 kcal/mol). Hence, it is assumed that the lower stability of mRNA with c.2027delG is likely to affect the mRNA folding pattern and tertiary structure formation (Figure 4).


[image: Figure 4]
FIGURE 4. RNA secondary structure prediction of the human LDLR by RNA Fold. (A,B) Shows the LDLR, RNA secondary structure predictions for wildtype and mutant (c.2207delG), respectively, based on minimum free energy (MFE) calculations of nucleotide base pairing, which is represented by color gradient in the scale of 0–2. (C,D) Shows the mountain plot (MP) representation of MFE, thermodynamic ensemble (pf) and the centroid structure predictions, of the LDLR native and mutant (c.2207delG) RNA secondary structures, respectively. MP shows the secondary structures in a height vs. position, where the helices are represented in slopes, loops in plateaus and hairpin loops in the peaks. The bottom graph represents the entropy of predicted RNA structure, where higher the entropy means the RNA structure has lower stability.




3-Dimensional (3D) Protein Modeling and Secondary Structure Analysis

The BLASTP program search for LDLR protein (860 aa) identified that the PDB sourced experimentally solved structure (3M0C: chain C) has 91% (1–715 aa) of amino acid sequence coverage. However, the remaining 9% of the sequence spanning 786–860th amino acids is not yet solved. The structure of LDLR spans over LD repeat domain (20–311), EGF like domain (314–712), oligosaccharide linked sugars (700–758), membrane domain (residues 759–781) and cytoplasmic domain (811–860). Hence, the missing chain portions from EGF like and cytoplasmic domains were simulated by using I-Tasser, which predicted 5 probable models. The best fit LDLR model was selected based on confidence (1.25), template modeling (0.54 ± 0.12) and root mean square deviation scores (4.5 ± 2.8). The built protein models were subsequently energy minimized and taken as reference in constructing mutant model, which were later used to predict the effect of variant on secondary structural features. The native LDLR secondary structure is characterized by 3 α-helices, 11 sheets, 164 β-strands (11 β-sheets, 22 β-hairpins, 20 β-bulges, 77 β-turns, 34 β-pleated strands), 12 loops (12 γ-turns) and 243 other components like disulphide bridges. The G676A missense variant is localized to 3rd helix, does not change the secondary structure conformation as such, but truncation of the protein at Asp 707 residue eliminates/skips 34th β-strand and 12th loop spanning from 714 to 860th amino acid toward C-terminal region of the protein (Figure 5).


[image: Figure 5]
FIGURE 5. LDLR protein structure visualization. (A) 3D structural representation of the protein molecule. (B) Functional domains distribution. (C) The p.G676Afs*33 variant effect on the secondary structure organization on the protein.






DISCUSSION

FH occurs in two clinical forms, namely homozygous or heterozygous, depending upon the gene dosage of the variant alleles, i.e., bi-allelic and mono-allelic, respectively (29). In the current study, we identified both homozygous (one patient) and several heterozygous FH patients (12 patients) from two unrelated Saudi Bedouin families bearing a pathogenic c.2027delG (p.G676Afs*33) stop gain mutation. This mutation was reported as c.2026delG in 5 among 4 HoFH patients and 14 HeFH patients belonging to different tribes from Saudi Arabia (27, 28). So far, five different LDLR mutations (p.D445*, p. R471R, p. G676Afs*33, p.Y419D, p.W577*) were identified in 27 FH patients from five studies from Saudi Arabia (Table 2). Hence, most likely c.2027delG is the founder FH mutation in Saudi population, where both inter- and intra- consanguineous marriages among tribal communities is a normal practice. A few other FH founder mutations in the LDLR gene have been previously identified among French Canadians from Quebec Province (33–35), Finnish from Finland (36) and Dutch from Netherlands (37).


Table 2. LDLR variants reported in Saudi FH patients.

[image: Table 2]

In the current study, we noticed that a clinically severe patient with a phenotype resembling HoFH (II.3) from family A, has inherited two copies LDLR c.2027delG stop gain mutation from his HeFH parents (i.e., bi-allelic), although one defective copy is sufficient enough to develop the disease in heterozygotes. The severe clinical signs observed in this patient could undoubtedly be the result of an extremely compromised receptor capacity, a null variant with <2% functional activity, therefore homozygosity would explain their particularly severe biochemical and clinical phenotype. The LDL-C levels in HoFH due to bi-allelic null variants can increase by 4 to 10-fold from normal (38). It is notable that this HoFH patient despite having severe coronary stenoses, has not yet reported any cardiovascular events like myocardial infarctions (MI). Although this HoFH patient has presented with severe atherosclerosis, we speculate that early disease diagnosis (9 years), continuous medications, regular clinical monitoring and lifestyle modifications, would have averted the possibility of severe or fatal cardiac event. Literature review suggests that untreated HoFH patients by their 2nd decade of life present with CVD due to the development of advance atherosclerotic plaques and stenosis in blood vessels (38). A clinical assessment and follow-up study of 39 HoFH patients under <16 years of age reported cardiovascular events in 88% of the subjects (39). The HoFH patients show worse prognosis even on maximum treatment doses of lipid lowering drugs these patients show LDL-C levels >7.8 mmol/L. Our HoFH patient has also manifested tendon xanthomas which are known to be formed by huge cholesterol depositions in the tendons and joints that may account for pain and disability (38). Arcus cornealis, are bright zone of cholesterol deposits around the rim of the cornea before the age of 40 and is an additional clinical feature observed in HoFH patients (40).

Most FH patients from both family (A and B) are heterozygous and carry one copy of the LDLR, c.2027delG stop mutation, which could have been inherited from either of their parents following an autosomal dominant mode of inheritance. These patients demonstrate 2/3rd reduction in LDL clearance rate, which subsequently elevates the circulating LDL-C by 2 to 3-folds (5–10 mmol/L; 200–400 mg/L) (10, 29, 41). FH patients manifest the disease in their adulthood, spanning 3−7th decades of their life (10, 41). We have observed that the majority of our HeFH patients have presented with MI before their 60th birthday. These clinical signs point us toward chronic deposits of cholesterol that induce arterial atherosclerotic damages. Careful physical examination in childhood often could prompts the early clinical diagnosis of HoFH. The undiagnosed and untreated HeFH patients have a very high risk of (10 to 20-folds) of developing premature coronary artery disease (CAD) (42), while the risk in untreated HoFH can be 100 to 200-fold increased from normal (38). The variable expressivity of FH can be attributed to modifier variants in LDLRAP1, EPHX2, ABCG5, ABCG8, LIPA, or APOE genes or polygenic risk variants (2, 43, 44). Early intervention to control the high LDL-C levels is clearly beneficial in reducing the cardiovascular events among young FH patients (45). The genetic testing of LDLR, c.2027delG variant in extended family members of both family A and B could potentially offer an advantage of early identification of FH cases, planning lifelong lipid lowering therapy, genetic counseling, and prenatal diagnosis (46).

The LDLR allelic makeup determines the molecular diagnosis (i.e., heterozygous vs. homozygous) and in turn determines the severity of clinical manifestation in FH. HoFH patients who have lost most or all receptor function, show very high circulating LDL-C levels and manifest cholesterol deposits in the body compared to HeFH patients who can still maintain 50% of functional receptors (47–49). Deleterious LDLR mutations are known to either eliminate or considerably reduce the LDLR function (50). This is true for the c.2027delG (p.G676Afs*33) frame shift mutation identified in this study, that introduces a protein termination codon (PTC) at 33rd codon downstream, and leads to the truncation of the LDLR protein at the Asp709th residue located in EGF like domain. The truncated protein will be 152 amino acid (aa) shorter than the native LDLR and lacks 5 aa residues from the EGF like domain, 58 aa residues of oligosaccharide linked sugars domain and 22 aa residues of the receptor transmembrane domain. Spanning between 314 and 712 aa is the EGF like domain the largest LDLR protein domain where more than 50% of FH causative mutations are reported highlighting its functional importance. EGF homology domain controls the release of lipoproteins in low pH environment and take part in receptor recycling (51). It is therefore fair to assume that the truncated LDLR may undergo degradation that may reduce the LDLR protein level and subsequently interfere with the receptor assembly in those individuals who harbor the mutation.

Indeed, the mRNAs with PTC may potentially activates nonsense mediated mRNA decay (NMD) (52) or leave a markedly truncated LDLR protein (at variant residue 709) which may eventually undergo degradation by ubiquitin mediated proteasomal pathway (53). The correlation between LDLR variant zygosity and its effect on protein expression is shown through functional biology experiments on lymphocytes obtained from FH patients with nonsense mutations (W23X, S78X, E207X, and W541X) (52). Human mRNAs with PTC were reported to reduce both mRNA abundance and stability (54). Our free energy-based RNA stability investigation predicted that the LDLR, p.G676Afs*33 variant destabilizes the mRNA structure, and eventually affect its folding pattern. Free energy changes are also affect the protein structure stability for disease causative stop gain mutations (55). Therefore, we predict that p.G676Afs*33 is a loss-of-function (LoF) variant or null allele leading to abolition of LDLR protein synthesis, hence it belongs to LDLR class 1 category of mutations (56).

Recent advances in molecular and cell biology present an alternative therapeutic opportunity to counter the genetic defects (PTC mutations) by pharmacological modulation (NMD or proteasomal degradation inhibitors) and help to control disease pathogenesis (54, 57, 58). In theory, HoFH patients who are unresponsive to statins might benefit from the use of pharmacological modulators like aminoglycosides in restoring partial sized LDLR molecules arising from stop gain mutations. In experiments, treating lymphocytes bearing different nonsense FH mutations with different translation modulator drugs, Holla et al has successfully demonstrated the increased mRNA levels of LDLR and LDL-C clearance (52). There are numerous other treatments in development for severe HeFH and HoFH, including inhibitors of angiopoietin like 3 protein (ANGPTL3), long-acting inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) in addition to gene therapies (59).

In conclusion, this study reports a very rare, pathogenic and FH founder LDLR stop gain variant i.e. c.2027delG (p.Gly676Alafs*33) in 12 FH patients belonging to two different Saudi families. Founder FH mutations concentrate due to low genetic variability in genetically isolated populations. Nevertheless, identifying FH founder confer advantages like targeted screening, early genetic diagnosis, genetic counseling and adoption of effective anti-lipid treatment strategies (i.e., LDL-apheresis) to prevent the cardiovascular disease burden among the FH patients. Based on the variant zygosity of the stop gain variant, we have noticed marked phenotypic heterogeneity in terms of LDL-C levels and clinical presentations of the FH patients. This loss-of-function variant was predicted to alter the free energy dynamics of RNA molecule hence its stability. Protein structure mapping has predicted that this variant eliminates key LDLR functional domains and eventually undergoes degradation. However, future functional biology studies are required to study the effect of c.2027delG variant on LDL-C clearance in the body.
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Genetic testing is widely used in breast cancer and has identified a lot of susceptibility genes and single nucleotide polymorphisms (SNPs). However, for many SNPs, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are not in place. A recent genome-wide long non-coding RNA (lncRNA) association study in Chinese Han has verified a genetic association between rs12537 and breast cancer. This study is aimed at investigating the association between rs12537 and the phenotype. We collected the clinical information of 5,634 breast cancer patients and 6,308 healthy controls in the early study. And χ2 test was used for the comparison between different groups in genotype. The frequency of genotypic distribution among SNP rs12537 has no statistically significant correlation with family history (p = 0.8945), menopausal status (p = 0.3245) or HER-2 (p = 0.2987), but it is statistically and significantly correlated with ER (p = 0.004006) and PR (p = 0.01379). Most importantly, compared to the healthy control, rs12537 variant is significantly correlated with ER positive patients and the p-value has reached the level of the whole genome (p = 1.66E-08 <5.00E-08). Furthermore, we found rs12537 associated gene MTMR3 was lower expressed in breast cancer tissues but highly methylated. In conclusion, our findings indicate that rs12537 is a novel susceptibility gene in ER positive breast cancer in Chinese Han population and it may influence the methylation of MTMR3.

Keywords: breast cancer, rs12537, phenotype, estrogen receptor, MTMR3


INTRODUCTION

The burden of breast cancer is increasing worldwide. Among the 19.3 million new cases reported by the GLOBOCAN 2020, breast cancer patients account for 11.7% (1). China is undergoing cancer transition with an increasing burden of breast cancer, and the incidence of breast cancer arrives at 18.41%. In China, female breast cancer patients took up approximately 18% of breast cancer deaths across the world (2). Many sequencing methods such as genome-wide association studies (GWASs), exome and lncRNA sequencing are used to identify SNPs/loci/genes related to the occurrence, development, prognosis and drug resistance of breast cancer (3–7). Breast cancer is a heterogeneous and polygenic disease, and breast cancer susceptibility SNPs and genes are closely related to molecular subtype and clinical phenotypes (8–10). However, for many SNPs, evidence of an association with cancer is often weak, and accurate estimates of the cancer risks associated with variants are often not available (11). In our previous study, we performed a genome-wide lncRNA association study, and reported a suggestive SNP, rs12537 (p = 8.84E-07), which may be associated with breast cancer susceptibility (12). rs12537 variant was reported to be associated with IgA nephropathy in Han Chinese, and rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) in Egyptian patients (13, 14). Moreover, rs12537 variant was also found associated with significantly increased gastric cancer risk (15, 16). However, the relationship between rs12537 and breast cancer remains unknown.

To investigate the association between rs12537 on 22q12.2 and breast cancer susceptibility as well as the clinical phenotype including familial history, menopausal status, estrogen receptor (ER), progestogen receptor (PR), human epidermal growth factor receptor 2 (HER-2) and molecular subtypes of breast cancer patients in Chinese Han population, we conducted a genotype-phenotype analysis to clarify the association of rs12537 with breast cancer phenotypes in Chinese Han population. Moreover, we tried to analyze rs12537 associated genes and breast cancer based on public databases.



MATERIALS AND METHODS


Subjects

We collected the genotyping data from our previous data (including GWAS stage data and replication stage genotyping data) and clinical data (including age of onset, family history, menopausal status, ER, PR and HER-2) of a total of 5,634 patients (12). Immunohistochemical analysis was employed to evaluate the ER, PR and HER-2 status of breast tissue of biopsies. Each case was diagnosed and confirmed by at least two oncologists. And their clinical information was collected by investigators with a comprehensive clinical check-up. We also collected the genotyping data and age of 6,308 healthy controls, and they were clinically determined to be free of breast cancer, other neoplastic disease, systemic disorders, and to have no family history of cancer (including first-, second- and third-degree relatives). All participants provided written informed consent. This study was approved by the institutional ethics committee of each hospital and was conducted according to the Declaration of Helsinki principles.



Statistical Analysis

To identify which phenotypes were associated with the specific SNP rs12537, we performed case-control and case-only analysis to examine the risk conferred by the suggestive SNP on different phenotypes of breast cancer. PLINK1.07 software (developed by Christopher Chang and others) and SPSS16.0 (IBM, https://www.ibm.com) were used to perform chi-square test and logistic regression analysis to explore the correlation between rs12537 and breast cancer susceptibility, as well as the different phenotypes of breast cancer. Allele frequency and genotype frequency were calculated by direct counting method, χ2 significance test was carried out, and the relative risk was evaluated by Odds ratio (OR) and 95% confidence interval (95% CI), with the difference being statistically significant (p < 0.05), a remarkable deviation from Hardy-Weinberg equilibrium in the controls (p > 0.05) during each stage.




RESULTS


Sample Characteristics

All subjects involved in this study were from our early genome-wide lncRNA association study (12). The clinical features of 5,634 cases and 6,308 controls are intact in this study. The average age of onset of 5,634 female breast cancer patients was 50.7 ± 11.1. 4.70% (265) of these patients had familial history of cancer, 50.15% (2,118) were diagnosed with premenopausal breast cancer, 65.05% (2,773) were ER positive, 63.44% (2,704) were PR positive, and 26.99% (1,148) were HER-2 positive. For molecular subtypes, data of 1,538 of these patients were missing, 26.56% (1,088), 34.55% (1,415) and 15.38% (630) were lumina A, lumina B and HER-2 amplified breast cancer carriers, respectively, and 23.51% (963) were diagnosed with basal-like breast cancer. The average age of 6,308 female healthy controls was 47.4 ± 12.8 (Table 1).


Table 1. Baseline characteristics of breast cancer patients and healthy controls.
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Genotypic and Phenotype Analysis

To further explore the relationship between suggestive SNP rs12537 and breast cancer susceptibility, we combined our GWAS and replication data to perform a genotypic and phenotype analysis based on the clinical information we collected. The results show that the suggestive SNP rs12537 is not related to the familial history of cancer, menopausal status, HER-2 and the four molecular subtypes of breast cancer patients. And there is a statistical difference between PR positive patients and PR negative patients (p = 0.01379, OR = 0.8536, 95% CI: 0.7525–0.9638) in rs12537 variant (Table 2 and Supplementary Table 1). And we also performed genotypic and phenotype analysis on the other three SNPs, rs9397435, rs11066150 and rs62112521 in Chinese Han women (12), but we found no correlation between these three SNPs and the clinical characteristics of breast cancer (Supplementary Table 2).


Table 2. The genotypic and allelic frequency of rs12537.

[image: Table 2]

Surprisingly, ER positive patients and healthy controls also differ statistically (p = 1.66E-8, OR = 0.7744, 95% CI: 0.7085–0.8464) in rs12537 variant, and this difference has reached the level of the whole genome for p <5.00E-8. Moreover, there is also a statistical difference between ER positive patients and ER negative patients (p = 0.004006, OR = 0.8309, 95% CI: 0.7323–0.9427) in rs12537 variant (Table 2). To exclude the influence of clinical features other than ER status on the results, we further analyzed and compared the clinical differences between ER positive, ER negative breast cancer patients and healthy controls (Supplementary Table 3), and we found that age, family history and HER-2 expression were not correlated with ER. So rs12537 is a novel ER positive breast cancer associated SNP variant in Chinese Han women.



rs12537 Associated Gene MTMR3 and Breast Cancer

Expression quantitative trait locus (eQTL) has become a common tool to interpret the regulatory mechanisms of the variants associated with complex traits through genome-wide association studies (GWAS) (17, 18). To identify rs12537 associated genes, based on the eQTLGen database (https://www.eqtlgen.org/), we identified 8 cis-eQTL effects genes (ASCC2, NIPSNAP1, MTMR3, ZMAT5, SEC14L3, DUSP18, SF3A1 and THOC5) and 6 trans-eQTL effects genes (FHIT, CCR7, EPHX2, LEF1, PAQR8 and TRABD2A) (Table 3).


Table 3. eQTL analysis to identify rs12537 associated genes.
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rs12537 associated gene, MTMR3, was reported to be associated with RA and SLE, gastric cancer and breast cancer (14, 15, 19). Therefore, we try to investigate the expression of MTMR3 in the cancer genome atlas (TCGA) database by UALCAN (20), discovering that compared to normal tissues MTMR3 was lower expressed in primary tumor tissues (p <1E-12), but the promoter methylation level was higher (p = 2.66E-02). MTMR3 expression was not associated with overall survival (OS) (p = 0.44) (Figures 1A–C). Moreover, based on Kaplan-Meier Plotter (www.kmplot.com) (21), we found highly expressed MTMR3 could improve patients relapse free survival (RFS) (p = 2.2E-06) (Figure 1D), but there was no correlation between MTMR3 expression and the OS, postoperative survival (PPS) as well as distant metastasis-free survival (DMFS) in breast cancer patients (Supplementary Figure 1).


[image: Figure 1]
FIGURE 1. The Association Between MTMR3 Gene Expression and Breast Cancer. (A) MTMR3 is highly expressed in normal tissues compared to primary tumor tissues (p <1E-12). (B) MTMR3 promoter is hypermethylated in primary tumor tissues compared to normal tissues (p = 2.66E-02). The Beta value indicates level of DNA methylation ranging from 0 (unmethylated) to 1 (fully methylated). (C) MTMR3 gene expression has no correlation with the overall survival of breast cancer patients (p =0.44). (D) Lower expressed MTMR3 could reduce patient's relapse free survival (RFS) (p =2.2E-06) (KIAA0371 202197_at).





DISCUSSION

Breast cancer is a complex multifactorial disease, with high incidence, strong invasiveness, metastasis and heterogeneity (1, 22, 23). A large number of sequencing studies have identified more than 200 susceptibility SNPs/genes (24). By combining sequencing analysis with the clinical characteristics of breast cancer patients, more SNPs/genes that have a stronger correlation with clinical characteristics were identified, which provides important theoretical support for precision treatment of breast cancer (8, 11, 25).

It is reported that more than 60% of breast cancers, including Luminal A and Luminal B breast cancers, were ER positive (8, 10). And ER positive breast cancer is a highly heterogeneous disease comprising different histological and mutational patterns, with varied clinical courses and responses to systemic treatment. GWASs have identified a lot of ER positive breast cancer associated SNPs, such as rs112545418, rs17132398 in 4p16, rs116638271, rs77274510 and rs117564384 in 11q13 and rs10941679 in 5p12 (26, 27). In our previous study, we designed a lncRNA array independently, and then performed the first genome-wide lncRNA association study on Han Chinese women, identifying a novel breast cancer-associated susceptibility SNP, rs11066150, a previously reported SNP, rs9397435 and two suggestive SNPs rs12537 and rs62112521 (12), but our study revealed that rs11066150, rs9397435 and rs6211252 had no relationship with the clinical characteristics of breast cancer (Supplementary Table 2). In the present research, we identified rs12537 as a novel susceptibility SNP in ER positive breast cancer in Han Chinese women. And this is the first time that rs12537 has been reported to be associated with ER positive breast cancer. However, only 4,263 ER patients (65.05% ER positive, 34.56% ER negative) and 6,308 healthy controls were included in this study, and a larger and better-matched population (including age, familial history, menopausal status, ER, PR and HER-2) may be needed for further verification.

The SNP rs12537 present in the miR-181a-binding site in the 3' UTR of the MTMR3 gene (15) and T/C variant in MTMR3 were reported to be associated with IgA nephropathy, RA, SLE and gastric cancer (13–16). As an autophagy-related gene involved in the negative regulation of autophagy initiation (24), rs12537 T/T carriers were associated with lower serum MTMR3 expression and higher miR-181a expression than in other genotypes among SLE patients, and their interaction may lead to autophagy increasing (14). rs12537 CT genotype carriers in gastric cancer had low MTMR3 mRNA expression than CC genotype carriers (15). Ectopic expression of miR-181a mimics or introduction of MTMR3 small interfering RNA resulted in an increase in cell proliferation, colony formation, migration, invasion, as well as suppression of apoptosis in gastric cancer (28).

DNA methylation plays a crucial role in the formation and process of cancers and it could be potential candidate biomarkers for cancers (29). Based on TCGA database, we found that MTMR3 gene was lower expressed in breast cancer tissues than normal tissues and the promoter methylation level was higher. However, MTMR3 expression had no correlation with overall survival. Here, we hypothesize that rs12537 variant in ER positive breast cancer patients could regulate the methylation of MTMR3, and further studies are required to fully understand the mechanism.

In conclusion, the results of our study show that rs12537 is a novel susceptibility SNP in ER positive breast cancer in Chinese Han population. Moreover, rs12537 associated gene MTMR3 is lowly expressed but highly methylated in breast cancer. Considering that we have not found the correlation between MTMR3 expression and overall survival based on TCGA database, multicentric studies involving a larger number of cases and genotypic data are needed to verify this result.
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Family trio next-generation sequencing-based variant analysis was done to identify the genomic reason on unexplained recurrent pregnancy loss (RPL). A family (dead fetus and parents) from Saudi Arabia with an earlier history of three unexplained RPLs at the ninth week of pregnancy was included in the study. Whole-genome sequencing (WGS) of a dead fetus and the parents was done to identify the pathogenic variation and confirmed through Sanger sequencing. WGS of dead fetus identifies a novel homozygous exonic variation (NM_017419.3:c.680G>T) in ASIC5 (acid-sensing ion channel subunit family member 5) gene; the parents are heterozygous. Newly designed ARMS PCR followed by direct sequencing confirms the presence of heterozygous in one subject and absence of homozygous novel mutation among randomly selected healthy Saudis. The second family with heterozygous was confirmed with three unexplained RPLs. Pathogenicity analysis of R227I amino acid substitution in ASIC5 protein through molecular docking and interaction analysis revealed that the mutations are highly pathogenic, decrease the stability of the protein, and prevent binding of amiloride, which is an activator to open the acid-sensing ion channel of ASIC5. The identified rare and novel autosomal recessive mutation, c.680G>T:p.R227I (ASIC5Saudi), in two families confirm the ASIC5 gene association with RPL and can be fatal to the fetus.

Keywords: exome, recurrent pregnancy loss, whole genome sequencing, ASIC5, Saudi Arabia, molecular docking, next generation sequencing, unknown spontaneous abortion


INTRODUCTION

Recurrent pregnancy loss (RPL), or recurrent miscarriage (RM) is described as three or more sequential unpremeditated abortions before 20 weeks of gestation (1), a condition termed “habitual abortion” or “repeated spontaneous abortions” (2). RPL affects couples at propagative age around the world. The etiologies of RPL in Saudis or Arabs and other populations tend to be multifactorial. Factors including genetic abnormalities (3–10), placental anomalies (11–13), psychological trauma and stressful life events (14), and certain coagulation and immunoregulatory protein defects (15–18) were reported to be associated with RPL among women in the Gulf region. In some populations, other factors have been studied, such as anatomical, endocrine, hormonal problems, infection, smoking and alcohol consumption, and exposure to environmental factors, and these factors could increase the risk of RPL (19). Several studies have reported the relationship between various causes of recurrent miscarriage among Saudis and the rest of the population; however, 30–50% of RPLs were unexplained (5, 19). More studies on RPL only can reveal the cause. The objective of the study is to analyze the genetic basis of a family from Saudi Arabia with an earlier history of recurrent pregnancy loss at the ninth week of pregnancy using next-generation sequencing [whole-genome sequencing (WGS)] by complete analysis of whole genome of the fetus and parents followed by rigorous bioinformatics and confirmatory analyses (20–36). The study reports a novel homozygous exonic variation in the ASIC5 gene in a dead fetus, while the parents are heterozygous.



MATERIALS AND METHODS


Ethics and Study Subjects

The study was approved by the Institutional Review Boards Committee of the Imam Abdulrahman Bin Faisal University (IRB-2017-13-137).

A family with a past history of three miscarriages has been included in the study with a written consent from the father and mother. During the fourth pregnancy, the mother experienced a similar type of miscarriage at the ninth week of pregnancy. Tissue (separated cautiously from maternal tissue to avoid contamination) samples and blood samples were collected from the fetus (proband) and parents, respectively. Miscarriage sample was collected in an RNAprotect Cell Reagent (Qiagen, Hilden, Germany). The DNAs of the samples were isolated, and the most prevalent genetic disease, hemoglobinopathies, were screened using the Sanger sequencing. Genes (functional variants and deletions in HBB, HBA1, HBA2, ATRX, and HBD) related to the most prevalent mutations have been found to be normal. Hence, the WGS was done for the miscarriage tissue, mother, and father genomes.



Whole-Genome Sequencing and Trio Analysis

The trio analysis has been carried out using the best practice GATK pipeline (20). The program Fastx (http://hannonlab.cshl.edu/fastx_toolkit) was used to filter low-quality reads. Then the reads were aligned to the reference human genome (hg19) using the program BWA (21). The GATK haplotype caller was used to call the variants. The resulting variants were then annotated using in-house developed workflow including the following three sets of data sources:

1. Public databases: These were collected from the Annovar packages, and they include the basic positional information about genes and related proteins. They also include information from the dbSNP database, the 1000 Genome database, ExAC, and gnomAD databases. Annovar also includes predictions of the functional effect of the variants from the tools Polyphan, Sift, CADD, and MetaSVM. In addition to Annovar, we used the clinvar and OMIM databases to annotate the variants and genes with up-to-data medical information.

2. In-house databases: We annotated the variants using the Saudi Human Genome Program variant DB to check for variant frequency in the Saudi population (22– 24).

3. Commercial databases: We used the HGMD database to annotate the variant with clinical information.

After variant annotation, we ran filters according to the ACMG (American College of Medical Genetics and Genomics) guidelines. We excluded variants that are intergenic, synonymous, appearing more than 5% in population databases, or not damaging (as predicted by CADD, Polyphen, SIFT, and MetaSVM). We also ran extra trio analysis to filter the variants according to the autosomal recessive, de novo, compound heterozygous, and x-linked. After applying these filters, the remaining variants were examined manually to match the annotated clinical information to the fetus phenotype.



Sanger Sequencing Validation

Whole-genome result was confirmed using Sanger sequencing. The presence of the homozygous NM_017419.3:c.680G>T in the proband and heterozygous in the parents were confirmed using Sanger sequencing. Highly specific primers (ASIC5F: 5′-CAGATAAAAACATGTTTCCATACATCTTCAG-3′ and ASIC5R: 5′- TTGTGGCATGAACATTCCCTGGA-3′) were designed, and the selected region of the gene was amplified [PCR recipe: MOLEQULE-ON absolute master mix 12.5 μl, ASIC5F 1 μl (10 nM), ASIC5R 1 μl (10 nM), DNA Template 25 ng, and Dis H2O to 25 μl; temperature profile: 95°C for 10 min; 35 cycles of 95°C/60 s, 60°C/60 s, 72°C/60 s; and 72°C for 5 min] and sequenced using BigDye Terminator Cycle Sequencing Kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA). Amplified PCR product (691 bp) of the ASIC5 gene region was purified and sequenced using Genetic Analyzer 3500 (Thermo Fisher Scientific, Inc.) at the Department of Genetic Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University (Dammam, Saudi Arabia). Sequences were analyzed using mutation surveyor software (Softgenetics, US) and DNA sequencing analysis software v.5.3 (Applied Biosystem; Thermo Fisher Scientific, Inc.).



Amplification Refractory Mutation System-Polymerase Chain Reaction-Based Variation Screening and Sanger Sequencing Validation

The amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) was designed (primers will be available on request) to screen the presence of NM_017419.3:c.680G>T among healthy Saudis (n = 200). The subjects positive for the presence of NM_017419.3:c.680G>T was confirmed through Sanger sequencing using primers (ASIC5F and ASIC5R). This is also to confirm the absence of the homozygous NM_017419.3:c.680G>T in the healthy Saudi subjects randomly selected.



Homology Protein Modeling and Functional Annotations

The homology modeling of wild (p.R227) and mutant (p.R227I) ASIC5 protein was performed using Swiss Model server (25), validated using PROCHECK (26). The structural functional annotations were completed using SAS-sequence server (27), ProFunc (28), and PDBsum (29). Mutant structures were generated using Swiss-PDB Viewer and PyMol (30). Energy minimization for the wild and mutants was estimated using GROMACS (31). Evolutionary conservation and functional aspect analysis of the R227 residue in the wild-type protein was performed using the ConSurf (32). PROVEAN and I-Mutant were used for analyzing the impact on the biological function of a protein due to an amino acid substitution R227I (33, 34). AutoDock Vina was used for molecular docking of the ligand with wild type and mutant ASIC5 protein (35), and the molecular visualization was done in PyMol and LigPlot (36).




RESULTS


Whole-Genome Sequencing and Trio Analysis

The family with a history of three unexplained miscarriages was included in the study. The couple is consanguineous but not first-degree relatives. There was no history of genetic and chronic diseases in the couple. The family was identified with a similar type of unknown spontaneous abortion at the ninth week of pregnancy. The mother was 30 years at the time of the fourth unexplained spontaneous miscarriage; the father was 34. The previous three unexplained miscarriages and the fourth were also of similar gestation. At this gestation, the gender of the proband cannot be determined even after miscarriage. The mother is devoid of uterine or cervical abnormalities. In order to identify the cause of the recurrent spontaneous abortion, WGS was done for the mother, father, and proband. The WGS of the trio (proband and parents) samples has revealed an inheritance of NM_017419.3:c.680G>T mutation in the ASIC5 gene from the parents (Figure 1A and Supplementary Table 1). Various heterozygous mutations observed in the proband are listed in the Supplementary Material, which were inherited either from the mother or father (Supplementary Table 2). The WGS result of NM_017419.3:c.680G>T variation in exon 4 of the ASIC5 gene has been confirmed through the Sanger sequencing (Figure 1B). The father and the mother were found to be carriers (heterozygous) of the c.680G>T:p.R227I at the ASIC5 gene, while the proband was homozygous to c.680G>T:p.R227I (GenBank: MN251164; ClinVar: SCV000930628; SNP ID: rs1248841709) (Figure 1). The name of the novel variant was validated using Mutalyzer 2.0.32.


[image: Figure 1]
FIGURE 1. Novel mutation in the ASIC5 gene (NM_017419.3:c.680G>T) in the family. (A) Phylogenic analysis of the family with the NM_017419.3:c.680G>T mutation in the ASIC5 gene. (B) Electropherogram of the sequence c.664 to c.695 of exon 4 at the ASIC5 gene of the proband and the parents. The highlighted nucleotide with arrow indicates the position of the NM_017419.3:c.680G>T. The proband is homozygous for the NM_017419.3:c.680G>T. The mother and father are heterozygous for the NM_017419.3:c.680G>T.




Amplification Refractory Mutation System-Polymerase Chain Reaction-Based Variation Screening and Sanger Sequencing Validation

In order to confirm the absence of the homozygous NM_017419.3:c.680G>T among the living population, a total of 200 healthy Saudis were selected randomly and checked for the mutation at the c.680 position in the ASIC5 gene using ARMS-PCR followed by Sanger sequencing. The results of the ARMS-PCR and direct sequencing of 200 healthy Saudis in the c.680 position in the ASIC5 gene revealed the absence of homozygous NM_017419.3:c.680G>T. Furthermore, this mutation is novel to the SHGP (Saudi Human Genome Program) database (about 9,500 cases). This suggests that the discovered mutation NM_017419.3:c.680G>T is rare, and their absence of a homozygous state in the healthy Saudis is validated. Furthermore, a female subject was observed with a heterozygous NM_017419.3:c.680G>T in the ASIC5 gene. The female subject with heterozygous mutations is a single daughter, and her mother experienced the unexplained RPL similar with the earlier family in the ninth week of pregnancy consecutively three times.



Molecular Docking and Interaction Analysis

The predicted structure of the wild ASIC5 on the Ramachandran plot showed ϕ/Ψ angles of 83.1% residues in the most favored regions, 15.4% in the additional allowed regions, 1.1% in the generously allowed regions, and 0.3% in the disallowed regions (Figure 2B). The total residue span of the secondary structure consist of 23.0% residues involved in the formation of the strands, 23.0% residues in alpha helices, 2.6% residues in 3–10 helices, and 51.5% residues in other structural moieties. Analysis of secondary structure in ProFunc showed the presence of 3 β-sheets, 4 β-hairpins, 1 psi loop, 3 β-bulges, 14 strands, 14 helices, 5 helix–helix interactions, 34 β-turns, and 9 γ-turns. Homology modeling of the mutant structure (R227I) of the ASIC5 showed deviations from the wild type; the mutant structure on the Ramachandran plot showed ϕ/Ψ angles of 84.3% residues in the most favored regions, 14.3% in the additional allowed regions, 1.1% in the generously allowed regions, and 0.3% in the disallowed regions. The total residue span of the secondary mutant structure consisting of 22.7% residues involving the formation of the strands, 23.7% residues in alpha helices, 1.8% residues in 3–10 helices, and 51.8% residues in other structural moieties. Analysis of the secondary structure of the mutant in ProFunc showed the presence of 3 β-sheets, 4 β-hairpins, 1 psi loop, 2 β-bulges, 14 strands, 13 helices, 5 helix–helix interactions, 42 β-turns, and 8 γ-turns.
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FIGURE 2. Pathogenicity analysis of R227I mutation in the ASIC5 protein through molecular docking and interaction analysis. (A) Structural models of the wild (R227) and mutated (R227I) ASIC5 proteins. (B) Ramachandran plot for the predicted structure of the ASIC5 protein. Eighty-three porterage residues of the ASIC5 protein are in the most favored regions. Cx, superimposed structures of the wild (R227) and mutated (R227I) ASIC5 proteins; Cy, deviated region of R227I from R227 on superimposed wild and mutant ASIC5. (D) Amiloride with ASIC5 at the active binding site. (E) 3D amiloride with surrounding amino acids of ASIC5 protein. (F,G) Protein–ligand interaction. (F) Wild ASIC5 (R227) protein with ligand, amiloride. (G) Mutant ASIC5 (R227I) protein with ligand, amiloride.


ConSurf analysis revealed that R227I is a functional residue, which is highly conserved and exposed. A total of 97 HMMER hits were considered for this analysis, while 91 of them were unique, including the query. PROVEAN analysis showed that R227I is a deleterious amino acid substitution as evident from PROVEAN score −3.830. I-Mutant analysis predicted that the free energy change value (DDG) between wild type and mutant type was less than zero (DDG < 0), which declares the decrease in protein stability. Wild (RMSD = 0.045 Å) and mutant (RMSD = 0.088 Å) proteins were superimposed, quantitative measure of similarity analysis revealed an increase of 95.56% root-mean-square deviation of atomic positions in the mutant (Figure 2C).

Molecular docking studies of wild (p.R227) and mutant (p.R227I) ASIC5 protein with amiloride, a potent inhibitor of acid-sensing ion channel proteins, were performed, and it was observed that the binding behavior of amiloride with the mutant model compared with the wild-type model was completely different (Figure 2). R227 residue is not directly involved in binding with the ligand, but it assists atomic interactions through binding of the ligand with protein molecules at specific sites (Figure 2F). In particular, a halogen bonding occurs between the chlorine atom (colored green) of amiloride with the amino group (NH2) of Gln305 (colored blue). The oxygen atom of the carbonyl group (colored red) of amiloride interacts with the hydrogen of the amino group (NH2) of Gln265 through N–H···O hydrogen bonding. In a similar fashion, the hydrogen of amiloride interacts with the oxygen group of Glu203. However, the R227I prevents the binding of ligand with the ASIC5 molecule at a specific site (Figure 2G). In this mutant model, an alteration in the protein coordination site occurs (Gly126 and Asn243) and, therefore, fails to coordinate with amiloride functional groups.




DISCUSSION

Studies on tissues of miscarriage specimens from women with RPL observed the chromosomal aberrations from 29 to 46% of miscarriage tissues, while majority of the RPL may be due to alternative mechanisms or other than chromosomal aberrations (37–39). The present observation suggests that coding variants in ASIC5 gene can be one among the alternative mechanisms for RPL. The role of the acid-sensing ion channel subunit family member 5 (ASIC5) or ACCN5 or bile acid-sensitive ion channel (BASIC) gene in humans, in general, and the development of the fetus, in particular, is scanty (40–42). Very limited studies are available on the gene ASIC5 and related expression. This gene, ASIC5, was reported to be expressed in the amniotic fluid (43), fetal gut, brain, liver, heart, ovary, and testis (44). ASIC5 is overexpressed in the fetal gut (41.0) and plasma (27.5). ASIC5 was observed to a key player in the physiology of unipolar brush cells of the vestibulocerebellum (42, 45, 46). The complete functions of the ASIC5 gene and its product are yet to be identified (40–42). Animal studies on the autosomal recessive mouse mutant of the gene encoding the L-type calcium channel revealed that the homozygous mutant animals die at birth; however, the heterozygous for the mutant is not distinguishable from that of wild animals (47). The study resembles the present observation of the heterozygous mutant of the healthy parents, while death of the fetus with a homozygous mutant in the gene belongs to the amiloride-sensitive Na+ channel. The R227I prevents the binding of amiloride with ASIC5 protein. However, more confirmatory studies are mandatory to prove the failure in amiloride-R227I (ASIC5) binding in wet lab, which is mandatory for an activator to open its own channel (41, 48). Acid-sensing ion channel subunit channels play an important role in the fetal developmental pathology due to acidosis; furthermore, prolonged acidosis is significantly associated with mortality of the fetus (49, 50). Increased apoptosis was observed in the retina due to the mutant ASIC2 gene compared with the wild type (51). Mammalian degenerin (MDEG) or ASIC2 (acid-sensing ion channel subunit 2) gene mutant study on the development of Xenopus reported that the Xenopus oocytes with ASIC2 mutation start to maturate and die (52). This indicates the pathophysiology of the mutation in the acid-sensing ion channel subunit genes.

Earlier reports reported that in 39% of the Saudi females who had RPL, the origin of the patient in the study was unexplained or had no identifiable cause (5). Various reasons including genetic factors were stated for recurrent pregnancy loss among Saudi women (3, 4, 6, 14, 18). Consanguineous marriages are also considerably (p = 0.046) impacting (3). Genome-wide association study (GAWS) revealed the association of ASIC5 (p = 0.0029; Supplementary Table 3) and level of manganese (53, 54). Furthermore, the level of manganese in the placental tissue of Saudi women with recurrent pregnancy loss was significantly (p < 0.0001) decreased (11). This suggests that the identified mutation in ASIC5 might have played a role in the level of manganese in the present women. A recent study on the prognosis markers of glioblastoma revealed the expression of ASIC5 as associated prognosis markers (55). ASIC5 was found to be activated in the ethanol-(100 mM)-exposed neonatal rat cardiomyocytes along with other six molecules (CYP2A6, PRL, CHRNA4, CNR1, CRH, and SLC40A1) (56). Low (in 50%) ASIC5 protein expression in melanoma were observed with <4% mutation rates (57).

Preparing the mutated animal model to study the impact of the mutant on the fetal development is not available in our laboratory, which is a limitation of the study. Hence, the region with the mutation, c.680G>T in the ASIC5 gene, was screened using ARMS-PCR followed by sequencing using designed primers to identify the presence of c.680G>T in randomly selected Saudis in the study region, which confirms the absence of the homozygous NM_017419.3:c.680G>T and the presence of heterozygous NM_017419.3:c.680G>T in a female subject and her mother with RPL. The study confirms the influence of the association of the novel exonic mutation with RPL. However, nationwide studies are mandatory to identify the prevalence of this rare mutation and mutations in this gene among unexplained miscarriages cases and their impact on the recurrent pregnancy loss and fetal development. This can reveal the role of ASIC5. The protein–protein interaction analysis of ASIC5 protein, with the protein observed with the mutation in the proband using STRING, revealed lack of interaction (Supplementary Table 2). However, the analysis using STRING cannot reveal any specific impact of mutated protein–protein interactions due to specific amino acid changes (58).

Based on the earlier reports on the member of the DEG/ENaC (degenerin/epithelial sodium channel) protein family and the current observations, it may be concluded that the R227I amino acid substitution in the ASIC5 is highly deleterious; the mutant ASIC5 showed decreased stability and of the protein and prevents the binding of amiloride, a potent inhibitor of acid-sensing ion channel proteins (59).

The observed novel ASIC5 gene-coding variant (ASIC5Saudi) in two families confirm the ASIC5 association with the results of RPL. Hence, this mutation is pathogenic, which may cause serious illness to the fetus and cause fetal mortality. The molecular mechanism behind the death of the fetus in relation to the homozygous NM_017419.3:c.680G>T at exon 4 (ASIC5Saudi) in the ASIC5 gene should be studied in detail. Early prenatal diagnosis of pathogenic variation like ASIC5Saudi can provide a choice for the parent to decide pregnancy termination within the allowed time among high-consanguinity population (60).
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Background: The failure of the embryonic hyaloid vascular system to regress naturally causes persistent hyperplastic primary vitreous (PHPV), a congenital eye disease. PHPVs molecular pathway, candidate genes, and drug targets are unknown. The current paper describes a comprehensive analysis using bioinformatics to identify the key genes and molecular pathways associated with PHPV, and to evaluate potential therapeutic agents for disease management.

Methods: The genes associated with PHPV were identified using the pubmed2ensembl text mining platform. GeneCodis was employed to evaluate the Gene Ontology (GO) biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Search Tool for the Retrieval of Interacting Genes (STRING) constructed a protein-protein interaction (PPI) network from the text mining genes (TMGs) in Cytoscape. The significant modules were clustered using Molecular Complex Detection (MCODE), and the GO and KEGG analysis for the hub genes were analyzed with the Database of Annotation, Visualization and Integrated Discovery (DAVID) tool. ClueGO, CluePedia, and ShinyGo were used to illustrate the functions and pathways of the clustered hub genes in a significant module. The Drug-Gene Interaction database (DGIdb) was used to evaluate drug–gene interactions of the hub genes to identify potential PHPV drug candidates.

Results: A total of 50 genes associated with PHPV were identified. Overall, 35 enriched GO terms and 15 KEGG pathways were discovered by the gene functional enrichment analysis. Two gene modules were obtained from the PPI network constructed with 31 nodes with 42 edges using MCODE. We selected 14 hub genes as core candidate genes: TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP, PITX2, and PAX2, primarily associated with camera-type eye morphogenesis, pancreatic cancer, the apoptotic process involved in morphogenesis, and the VEGF receptor signaling pathway. We discovered that 26 Food and Drug Administration (FDA)-approved drugs could target 7 of the 14 hub genes.

Conclusions: In conclusion, the results revealed a total of 14 potential genes, 4 major pathways, 7 drug gene targets, and 26 candidate drugs that could provide the basis of novel targeted therapies for targeted treatment and management of PHPV.

Keywords: persistent hyperplastic primary vitreous, gene ontology, bioinformatic analysis, hub genes, molecular pathway
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GRAPHICAL ABSTRACT. Schematic diagram for evaluating and identifying the key genes, molecular pathways, predicted drug targets of PHPV.


INTRODUCTION

Persistent hyperplastic primary vitreous (PHPV) is a rare vitreoretinal disorder which accounts for up to 5% of blindness (1). PHPV's pathophysiology occurs during the embryonic stage, with vessel development occurring in the third week of pregnancy. The hyaloid artery system expands and extends to the anterior part of the eye forming the iridohyaloid or capsulopupillary artery during this period. At this point of development, the posterior tunica vasculosa lentis, which is an anastomosis of vessels at the back of the lens begins to develop and nourishes the lens. Secondary vitreous begins to develop in place of primary vitreous during the second trimester of pregnancy. The pathological persistence of fetal intraocular vessels including the hyaloid artery in embryonic vitreous causes this congenital eye disease (2, 3). Apoptosis or macrophage activation causes hyaloidal artery regression which is accompanied by vasa hyaloidal propria, iridohyaloid, and tunica vasculosa lentis (4). White retrolental tissue, an anteriorly swollen lens, centrally dragging ciliary structures, and varying degrees of lenticular opacification are the most prominent clinical symptoms (5). These vascular remnants can hinder the normal retinal development leading to retinal detachment and optic nerve or macula anomalies, and it can also appear in anterior, lateral, or combined forms in various patients (5, 6). PHPV is usually detected in infants within the first 3 months of life due to leukocoria, microphthalmos, and strabismus (7). Figure 1 represents the typical morphology of a PHPV subject. PHPV is also known as persistent fetal vasculature (PFV) (5). Bilateral PHPV is rare and sporadic compared to unilateral PHPV; however, it is an autosomal dominant or recessive trait that may be inherited (8, 9).


[image: Figure 1]
FIGURE 1. Morphology of persistent hyperplastic primary vitreous in a 1-year-old boy with white vascularized retrolental tissue. Image obtained with prior informed consent from the parents of the patient.


A large number of genes are involved in the development and regression of the hyaloid artery. PHPV traits have been observed in human and animal models. In humans, PHPV incidence was found to be an autosomal dominant inheritance pattern in an Egyptian family (10). Mutations in the NDP gene and the COX15 gene on chromosome 10 have been found in cases of bilateral PHPV (11–14). The ZNF408 gene, which had previously been found in retinitis pigmentosa and autosomal dominant familial exudative vitreoretinopathy (ADFEVR) was also identified in PHPV cases of microcornea, posterior megalolenticonus, and coloboma syndrome (MPPC syndrome) (15). FZD4 (frizzled-type receptor 4) was reported to be associated in certain PHPV cases as well as a gene linked to familial exudative vitreoretinopathy (FEVR) (16). In animal models, various signaling pathways have been implicated in the pathogenesis of PHPV including protooncogene ski, p53, tumor suppressor gene Arf, ephrin-B2, βA3/A1-crystallin, LRP5, ang-2, Bax and Bak, FZD4, and ephrin-A5. FEVR, incontinentia pigmenti, retinoblastoma, and retinopathy of prematurity (RoP) are some of the conditions that mimic PHPV-like symptoms (17–23). However, the regulatory mechanisms responsible and genes involved in the process of fetal vascular regression continue to be unclear, as does the underlying cause of failure of regression.

The current surgical management of PHPV is primarily based on the pathological presence of individual cases. Depending on the ocular pathology of PHPV, the limbal and pars plicata incisions are the two most frequent surgical incision methods (24). The most common criteria for surgical intervention are severe media opacities due to cataract or retrolental membranes, progressive anterior chamber shallowing due to cataract, uncontrolled glaucoma or secondary ocular hypotony related to ciliary process dragging, vitreous hemorrhage, and retinal detachment following vitreoretinal traction (5, 25). In cases with advanced pathology, such as acute optic nerve hypoplasia, severe retinal detachment, or microphthalmia, surgery is not a preferred choice since post-operative vision is often low (24). Non-surgical management is currently used in non-progressive conditions and patients with non-central opacity that does not cause any visual impairment. If a non-surgical alternative is used, diligent follow-up should be carried out to detect any potential risks, such as cataract progression or glaucoma (26). The disease's heterogeneity continues to render PHPV diagnosis and treatment challenging.

Since PHPV is a rare disease, understanding the mechanisms that constitute a group of phenotypes is often restricted by small sampling sizes. Therefore, comprehending the molecular mechanisms underlying the expression of the mutated gene, which leads to improper vascular remodeling and the formation of PHPV is often individual-specific and critical for diagnosis, prevention, and therapeutic management. The assessment and analysis of molecular pathways and genetic variant analysis using conventional variant detection approaches such as Sanger sequencing, next generation sequencing, FISH, aCGH, and GTG banding can be time-consuming, expensive, and results in complicated data analysis for unspecified variants (27–31). Text mining is an effective tool for generating a hypothesis since it can reveal novel correlations between genes and the disease pathologies (32). Integration of text mining with biological knowledge and a bioinformatic approach provides new insights into the potential to reconfigure existing drugs (33). By integrating biological databases and in silico tools, the present paper aims to explore possible molecular mechanisms (if any) and classify the causative genes responsible for the heterogenic disease PHPV, thus discovering new drug targets for the treatment of the disease.



METHODS


Selection of Key Genes Using Text Mining Analysis

To identify genes related to PHPV, text mining analysis was performed using pubmed2ensembl (http://pubmed2ensembl.ls.manchester.ac.uk) which revealed associations between genes and the literature for data extraction. It is a freely accessible database that connects over 2,000,000 articles in PubMed publications to 150,000 Ensembl genes from 50 species (34, 35). To create a list of key genes, we used search terminology “Persistent Hyperplastic Primary Vitreous” and “Persistent Fetal Vasculature” from 100,000 relevant document IDs. The search terms used were confined to avoid overlapping genes related with other ocular disorders. The species dataset was set to “Homo sapiens (GRCh37)” and the query result was constrained using “filter on MEDLINE: PubMed ID”. The unduplicated genes were extracted and the TMGs were recovered as the intersection of gene hits from the two sets. Figure 2 represents the methodology flowchart and summary of the study design.


[image: Figure 2]
FIGURE 2. Summary of the study design and methodology flowchart. Text mining was conducted using pubmed2ensembl to identify genes associated with persistent hyperplastic primary vitreous (PHPV). GeneCodis was used to detect genes enriched in Gene Ontology (GO) biological process terms and KEGG pathways. STRING and MCODE software were used to construct a protein-protein interaction network and identify modules. The GO biological process terms and KEGG pathways were analyzed using DAVID, ClueGO, and ShinyGo. The drug list was compiled based on the gene-drug interaction using the drug-gene interaction database (DGIdb).




Pathway Enrichment and Biological Process Analysis

The TMGs obtained from text mining were analyzed for biological process annotations. The tool GeneCodis, a web-based server, was used (http://genecodis.cnb.csic.es/) to execute an enrichment analysis of the TMGs. GeneCodis assesses functional analysis of gene lists that integrates different sources of information which includes Gene Ontology (GO) [a collection of terminology that describe gene products in terms of Biological Process (BP), Molecular Function (MF), and Cellular Component (CC)], KEGG pathways (offers evidence on biological metabolic pathways that are well-known), and Inter Pro motifs (36). The organism chosen for the analysis was set as Homo sapiens. The TMGs were used as the input set, and genes with significantly enriched biological processes relevant to eye development and vasculogenesis were chosen using an adjusted P-value and analyzed using the GO and BP categories. Using the same method, the genes from the selected annotations were used for KEGG pathway analysis and the genes obtained by the KEGG pathway analysis were further analyzed (28). GeneMania (version 3.5.2), a Cytoscape plugin (version 3.8.2), was used to construct a gene-gene functional interaction network from the TMGs. The advanced statistical options used were max resultant genes = 20, max resultant attributes = 10, and the automatically selected network weighting function. The resulting network comprised functional annotations from GO as well as genes most closely related to the original list.



Construction of Protein-Protein Interaction Network and Module Analysis

STRING (version 1.6.0) was used to construct the PPI network of 35 enriched genes based on GO. STRING is a web-based database comprising nearly 24.6 million proteins and over 3.1 billion interactions from 5,090 distinct species [https://string-db.org/cgi/input.pl; (37)]. The fundamental metrics of nodes in network theory are connectivity degree (k), Betweenness Centrality (BC), Closeness Centrality (CC), Eigenvector Centrality (EC), and eccentricity. However, the main advantage of PPI network analysis is to accommodate a wide range of biological processes including inputs pathway information, providing confidence scores based on evidence from conserved genomic neighborhoods, gene-fusion events, co-occurrence events, co-expression data, experimental data, database information, text mining, and homology. In the PPI network, nodes with a high degree known, as hub proteins, are critical proteins because they may correlate to disease-causing genes while nodes with a high BC, known as bottlenecks, prefer to signify important genes because they can be compared to highly used intersections on major highways or bridges. The confidence score of 0.900 was specified as the minimum criterion. The molecular interaction network was then visualized and hub genes were identified using the Cytoscape software which visually presents the integration of gene expression, biological network, and genotype (38). In this study, the hub nodes were classified by a high score based on the network's scale-free property and was used for centrality analysis by analyzing the network topology (39) and considered the sub-network of these key proteins as the backbone which was worth exploring further in the signaling pathways involved in eye development. Further, a built in Cytoscape plugin Molecular Complex Detection (MCODE, version 2.0.0) was used to distinguish the significant gene modules (clusters) and hub genes from the PPI network (40). The cutoff parameters were “degree cutoff = 2,” “node score cutoff = 0.2,” “k-core = 2,” and “max depth = 100” (41).



Drug-Gene Interactions

The Drug-Gene Interaction Database (DGIdb) (www.dgidb.org) is an online resource that consolidates data from various sources to illustrate drug–gene interactions and gene druggability (42). We investigated drug-gene interactions used in significant module genes as the potential targets for existing drugs or compounds using DGIdb (Version 3.0). The PubChem database was used to obtain the chemical structure of the identified drugs (https://pubchem.ncbi.nlm.nih.gov). It has over 25 million specific chemical structures and 90 million bioactivity outcomes linked to thousands of macromolecular targets.




RESULTS


Identification of Candidate Genes

We obtained 50 unique genes in Homo sapiens associated with PHPV using the TMG approach. Figure 3 depicts the network, genetic interactions, co-expression analysis, and pathways of the 50 TMGs assessed by GeneMania. From these, 35 genes were selected as candidate genes for enrichment analysis based on their GO and molecular pathways.


[image: Figure 3]
FIGURE 3. Protein-protein interaction network of all TMGs related to PHPV. The network, genetic interactions, co-expression analysis, and pathways evaluated using Genemania, a Cytoscape plugin, are represented in the figure.




Enrichment Analysis of TMGs

The most enriched terminology directly linked to the pathology of vasculature morphogenesis of the eye contributing to PHPV was identified using GeneCodis (with P = 1.00E-07), GO, biological process (BP), and KEGG. The GO and BP annotations analysis identified 35 significantly enriched genes. The 10 most enriched functions were “extracellular matrix cell signaling” (P = 2.33E-08), “multicellular organism development” (P = 2.51E-08), “regulation of transcription by RNA polymerase ii” (P = 3.12 E-08), “Norrin signaling pathway” (P = 3.50E-08), “regulation of transcription, DNA templated” (P = 3.77E-08), “negative regulation of gene expression” (P = 1.27E-07), “retina vasculature morphogenesis in camera-type eye” (P = 1.53E-07), “heart development” (P = 2.04E-06), “vascular endothelial growth factor (VEGF) signaling pathway” (P = 2.17E-06), and “post-embryonic camera type eye development” (P = 4.52E-05). Overall, 15 major pathways involving 12 TMGs were discovered by KEGG enrichment analysis. The five most significantly enriched pathways were “pathways in cancer” (P = 11.24E-12), “proteoglycans in cancer” (P = 5.54E-12), “hepatocellular carcinoma” (P = 3.16E-11), “gastric cancer” (P = 3.94E-11), and “pancreatic cancer” (P = 8.69E-10), involving 9, 7, 6, 6, and 5 text mining genes, respectively. Table 1 displays 15 enriched GO terms and Table 2 exhibits the KEGG analysis of 10 enriched molecular pathways of the TMGs.


Table 1. Top 15 enriched Gene Ontology (GO) biological process terms assigned to the text mining genes.

[image: Table 1]


Table 2. Top 10 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways assigned to the text mining genes.
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PPI Network Construction, Modular Analysis, and Key Genes Identification

STRING was used to construct a PPI network for the 35 target genes with a high confidence score >0.900. There were 31 nodes and 42 edges in the network (Figure 4A). Using a cluster analysis of filtering nodes, 14 hub node genes were identified among 31 nodes (Table 3). The hub genes identified were TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP, PITX2, and PAX2. The REVIGO analysis of the hub genes revealed five clusters based on GO similarity which were primarily related to eye development, Wnt signaling pathway, cell proliferation, regulation of cell migration, and regulation of angiogenesis (Figure 5). The modular analysis performed using MCODE yielded two modules. The PPI network relies on a total of 9 genes, as module 1 (FZD4, FZD5, LRP5, and NDP) contained 4 genes with 10 edges and module 2 (TP53, KDR, VEGFA, CDK2NA, and SMAD2) contained 5 genes with 6 edges (Figures 4B,C). According to the pathway enrichment analysis using KEGG and the ShinyGo platform, the genes in module 1 were associated with VEGF signaling pathway, regulation of execution process of apoptosis, and cell migration involved in sprouting angiogenesis. The module 2 genes were significantly associated with eye development, retinal vasculature development, and Wnt signaling pathway (Figure 6). Overall, the enrichment analysis revealed that these genes were substantially enriched in cell proliferation, anatomical structure morphogenesis, and regulation of developmental process which play a crucial role in vasculature formation of the lens causing PHPV.


[image: Figure 4]
FIGURE 4. Identification and enrichment analysis of the text mining genes (TMGs). (A) The protein-protein interaction (PPI) network of the 35 target TMGs was visualized using Cytoscape. The gradience of the genes node border color reflects its role in the eye development process (a dark green node border represents the strongest degree of association and a light green node border represents the weakest degree of association). (B,C) The two modules were obtained from the PPI network using MCODE. (B) Module 1, the most significant module with four nodes. (C) Module 2 with five nodes.



Table 3. Hub node genes in the protein-protein interaction network identified with a filtering node degree ≥2.
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[image: Figure 5]
FIGURE 5. Gene Ontology terms of the 14 hub genes. The figure represents enriched GO terms related to eye morphogenesis and vasculature remodeling. DAVID and the REVIGO web server were employed to conduct functional and pathway enrichment analysis.



[image: Figure 6]
FIGURE 6. Gene Ontology (GO) terms in the three modules. (A) Significantly enriched GO terms in module 1. (B) Significantly enriched GO terms in module 2. The functional and pathway enrichment analyses in PHPV were related with high score (P > 0.005) based on a tree illustration created using the ShinyGo web server.




Drug-Gene Interaction Analysis of Core Genes

In the drug-gene interaction study, we selected 14 hub genes as potential drug targets (Table 4). Overall, 7 of the 14 are potential gene targets and 26 FDA-approved drugs are expected to have drug-gene interactions. FOXC1, FZD4, LRP5, FZD5, PAX6, NDP, and PITX2 were the exceptions. The major interactions among drugs, genes, and pathways are depicted in Table 4. Table 5 represents the chemical structure and formula of the identified drugs.


Table 4. Details of the 26 Food and Drug Administration (FDA)-approved drugs that potentially target 7 of the 14 hub genes.

[image: Table 4]


Table 5. Chemical structure of the potential drugs that target the seven candidate genes.

[image: Table 5]




DISCUSSION

PHPV is a disease that leads to blindness or severe vision loss, although there are currently few therapeutic choices (24, 25). On the other hand, PHPV patients are more likely to develop cataracts and closed-angle glaucoma early on in life. Terminal glaucoma, uveitis, retinal detachment, and intra-ocular hemorrhage can be inevitable for these patients (35). As a consequence, the molecular mechanisms that contribute to PHPV must be established. Our analysis discloses that the molecular mechanism of PHPV overlaps with various other signaling pathways contributing to a broader range of therapeutic targets and prognostic biomarkers. The present paper reports 35 genes that might be involved in the development of the eye's vasculature process in the PHPV condition. The enriched GO and BP terms assigned to these genes were associated mainly with extracellular matrix-cell signaling, multicellular organism development, regulation of transcription by RNA polymerase ii, Norrin signaling pathway, and retina vasculature morphogenesis in camera-type eyes. The PPI network and enrichment analysis identified 14 hub genes, TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP, PITX2, and PAX2 that were involved in camera-type eye morphogenesis, pancreatic cancer, the apoptotic process involved in morphogenesis, and the VEGF receptor signaling pathway (Figure 7). The functional analysis and pathways of the key genes in module 1 and module 2 illustrated using ClueGO are displayed in Figure 7A. Figure 7B displays the distribution of functions and pathways among core genes, while Figure 7C reveals KEGG pathways and enriched GO terms, with colors allocated to each pathway.


[image: Figure 7]
FIGURE 7. Function analysis of the 14 core genes in module 1 and module 2. (A) Functions and pathways of the core genes were visualized using ClueGO. (B) Distribution of the functions and pathways among the core genes. (C) KEGG pathways and enriched GO terms, colors are assigned to each pathway. Corrected P < 0.01 was considered statistically significant.


Based on the evaluations, four genes such as FZD4, LRP5, FZD5, NDP were involved in the process of eye development, retina vasculature development, retinal blood vessel morphogenesis, and the Wnt signaling pathway [Figure 6B; (43, 44)]. The architecture of the retinal vasculature is dependent on highly organized signaling between various cell types of retina, combining internal metabolic conditions with external influences such as oxygen and nutrient supply. In various organs, including the eye, the Wnt signaling pathway is essential for vascular morphogenesis. During eye development, and in vascular eye disorders, Wnt ligands and receptors are key regulators of ocular angiogenesis and also control the development of structured layers of vasculature in retinas as well as the regression of hyaloid vessels (45). FEVR (an inherited disease in which the peripheral retina is hypovascularized to varying degrees) has been attributed to mutations in Wnt pathway components FZD4, LRP5, and the secreted cysteine-knot protein Norrin (46, 47). Norrin is a non-Wnt ligand with a high affinity FZD4 receptor located in the retina and activates the Wnt/β-catenin pathway. Norrie disease, retinopathy of prematurity, and Coats disease are vascular retinopathies caused by defects in the Norrin gene (48). In humans, mutations in NDP and FZD4 have been identified in a limited number of unilateral and bilateral PHPV patients (14, 49–51). ATOH7 mutation (N46H-homozygous) in a family of autosomal recessive PHPV disease traits linked to 10q21 has been identified (52). These variations include deletions, insertions, and missense and nonsense mutations. However, individuals with X-linked FEVR, autosomal dominant FEVR, retinopathy of prematurity, and Norrie disease have also been reported to have mutations in NDP and FZD4 genes (53). According to the GO analysis, five genes TP53, VEGFA, SMAD2, CDKN2A, and KDR (Figure 6A) are involved in the process of regulation of cell migration by the VEGF signaling pathway, angiogenesis, regulation of muscle cell apoptotic process, and embryonic organ development process. Apoptosis is another crucial process in eye development involving extensive programmed cell death associated with morphogenesis (54).

Previous research on transgenic mice models supports our in silico analysis of PHPV to validate the function of these hub genes in hyaloid vasculature regression such as knockouts of the Arf tumor suppressor gene (23, 55, 56), p53 (21, 57), and Frizzled-5 (57) which were associated with PHPV-like phenotypes in mouse models. During mouse eye development, the arf tumor suppressor gene promoted hyaloid vasculature regression and its deficiency may cause a retrolental membrane with persistent hyaloid vessels (9, 23). In Atoh7 knockout mice, hyaloid vessels persist in the vitreous and proliferate to supply the retina which lacks intrinsic vasculature (58, 59). The ephirin-A5 family of receptor tyrosine has been demonstrated to be significant in the regression of the primary vitreous in mouse models (60). Furthermore, in mice lacking LRP5, a Wnt receptor displayed hyaloid vasculature that lasted throughout their lives (61, 62). Given the correlation between transgenic mouse PHPV phenotypes and the hub genes in human congenital defects affecting the eye morphogenesis or retinal vasculature and molecular signaling pathways in module 1 and module 2, it suggests that the pathogenesis of PHPV is regulated by genes in modules 1 and 2.

Twenty-six drugs identified by the drug-gene interaction analysis were classified as anti-neoplastic agents, ocular vascular disorder agents, kinase inhibitors, immune system functioning agents, or corticosteroids. Among them, four potential drugs such as Ranibizumab, Dinutuximab, Pegaptanib Sodium, and Sonidegib were identified based on their high drug-gene interaction score (Table 4). Ranibizumab is a recombinant humanized monoclonal antibody fragment that binds to human vascular endothelial growth factor A (VEGF-A) and thereby prevents it from binding to its receptor and blocking the development of new blood vessels (63). Pegaptanib Sodium is an anti-angiogenic drug used to treat neovascular diseases. It specifically binds to the 165 isoform of VEGF, a protein that is involved in angiogenesis and increased blood vessel leakage (64). Ranibizumab and Pegaptanib Sodium are typically used to treat wet age-related macular degeneration, a type of eye disease (61, 62, 65, 66). They are also used to treat macular edema after retinal vein occlusion, diabetic macular edema, and diabetic retinopathy. Dinutuximab is a GD2-binding human/mouse chimeric monoclonal antibody. It has been proven that the action of pro and anti-angiogenic factors regulates angiogenesis in the development of new capillaries from a pre-existing capillary network (67). Dinutuximab binds to GD2 on the cell surface and induces GD2 expressing cells to lyse by antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (68, 69). Sonidegib is an anticancer drug that inhibits the hedgehog (Hh) pathway which is involved in cell differentiation, tissue polarity, and stem cell maintenance during embryonic growth. Hh is essential for the development of the hyaloid loop on the lens's ventral surface by promoting VEGF-mediated angiogenesis. In a zebrafish model, the loss of Hh signaling induced excess sprouting of blood vessels in the dorsal eye and impaired the growth of blood vessels in the ventral eye (70). Regulation of the Hh signaling pathway has been associated with the growth and progression of cancers such as basal cell carcinoma, medulloblastoma (71), and periocular basal cell carcinoma (72).

In PHPV, the ocular fetal vasculature does not go through normal developmental regression. The reasons could be due to presumed loss of apoptosis in PHPV; these natural apoptotic pathways could be pathologically disrupted (22, 73). Apoptosis is a process of cell death that is regulated by a number of gene families. In mice models, the macrophage has been established as a key mediator in studies examining the mechanisms of regression (74, 75). In silico drug-gene analysis using the hub genes of PHPV revealed high interaction with anticancer compounds in the present study. It is understood that vascular quiescence can be regulated by a combination of pro and anti-angiogenic factors. Previous reports have demonstrated that the equilibrium of angiogenic factors such as VEGF and placental growth factor is crucial in vascular regression and mice lacking angiopoietin 2 which regulates angiogenesis by binding to the Tie2 receptor, maintaining fetal vessels in the eyes (18, 76). In addition, the identified drugs can be used for pharmacological screening in mice and zebrafish models to identify compounds affecting vasculature development that could be of therapeutic importance. The results of the study could lead to a better understanding of the potential molecular pathway and possible hyaloid vasculature mechanism, as well as the development of novel therapeutics to prevent or cure this blinding disease, PHPV. Since the current paper focuses on the appropriate path for understanding molecular pathways and therapeutic options for PHPV through in silico analysis, further experimental analysis using animal models is highly recommended to confirm the significance of the candidate genes and pro- and antiangiogenic factors in hyaloid vasculature development and physiology. This continues to be a limitation of the study.



CONCLUSION AND FUTURE PERSPECTIVES

To conclude, no specific candidate genes, molecular pathways, or drug targets have been associated with PHPV until now. TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP, PITX2, and PAX2 were identified for the first time as hub genes using in silico tools that may be involved in the development of retinal vasculature and dysfunction of these genes, leading to PHPV. These genes appear to be predominantly associated with functions related to eye morphogenesis, cancer, apoptosis, and VEGF receptor signaling pathways. Previous reports in knockout TP53, VEGFA, FZD4, and NDP transgenic mouse models confirmed the failure of regression of hyaloid vessels and abnormalities in the retinal vasculature. In the future, these in silico analyses will be validated by mutation screening of the hub genes in PHPV patients in order to identify pathogenic variants and gene product expressivity. Clearly, more research is warranted on animals and in human patients as the phenotypic differences will differ from individual to individual based on the expressivity of the gene product. In addition, we identified four genes that may be potential drug targets. Precision medicine for a fetal ocular condition like PHPV presents new challenges but with a possibility. Since PHPV is a rare and often autosomal recessive condition, the present paper is useful when there is little pathological knowledge about the disease or where there is substantial pathway heterogeneity, underlying the clinical phenotype. As a result, a combination of therapeutic methods such as surgical intervention and candidate gene identification may be used not only to analyze biological pathways unique to specific cases, but also to propose potential drug combinations based on gene products annotated to the disease associated with PHPV. This research sheds light on the potential of personalized intervention in the treatment of PHPV indicating a substantial advancement in management strategy.
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Type 2 diabetes mellitus (T2DM) is continuously rising with more disease cases every year. T2DM is a chronic disease with many severe comorbidities and therefore remains a burden for the patient and the society. Disease prevention, early diagnosis, and stratified treatment are important elements in slowing down the increase in diabetes prevalence. T2DM has a substantial genetic component with an estimated heritability of 40–70%, and more than 500 genetic loci have been associated with T2DM. Because of the intrinsic genetic basis of T2DM, one tool for risk assessment is genome-wide genetic risk scores (GRS). Current GRS only account for a small proportion of the T2DM risk; thus, better methods are warranted for more accurate risk assessment. T2DM is correlated with several other diseases and complex traits, and incorporating this information by adjusting effect size of the included markers could improve risk prediction. The aim of this study was to develop multi-trait (MT)-GRS leveraging correlated information. We used phenotype and genotype information from the UK Biobank, and summary statistics from two independent T2DM studies. Marker effects for T2DM and seven correlated traits, namely, height, body mass index, pulse rate, diastolic and systolic blood pressure, smoking status, and information on current medication use, were estimated (i.e., by logistic and linear regression) within the UK Biobank. These summary statistics, together with the two independent training summary statistics, were incorporated into the MT-GRS prediction in different combinations. The prediction accuracy of the MT-GRS was improved by 12.5% compared to the single-trait GRS. Testing the MT-GRS strategy in two independent T2DM studies resulted in an elevated accuracy by 50–94%. Finally, combining the seven information traits with the two independent T2DM studies further increased the prediction accuracy by 34%. Across comparisons, body mass index and current medication use were the two traits that displayed the largest weights in construction of the MT-GRS. These results explicitly demonstrate the added benefit of leveraging correlated information when constructing genetic scores. In conclusion, constructing GRS not only based on the disease itself but incorporating genomic information from other correlated traits as well is strongly advisable for obtaining improved individual risk stratification.

Keywords: UK Biobank, genetic risk scores, GRS, multi-trait analysis, precision medicine


INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a chronic disease with severe comorbidities, such as myocardial infarction, loss of kidney function, blindness, and risk of amputations (1). Globally, the prevalence of T2DM is expected to increase exponentially in developing countries (2, 3), and it is a disease that places a severe economic burden on health systems. Accurate disease risk assessment is important for early disease diagnosis for initiating lifestyle changes early in the disease progression or prompt the clinician to treat high-risk patients more aggressively, which is expected to slow down disease progression, reduce disease symptoms, and prevent severe morbidity and mortality. Thus, methods for accurate disease risk assessment are absolutely critical for reducing morbidity and mortality.

Studies have unambiguously shown that T2DM is a complex, multifactorial disease, where an individual's risk of developing the disease is influenced by a combination of genetic variation at multiple sites across the genome acting in concert with environmental factors (4–6). The heritability of T2DM has been estimated to be 40–70% (7, 8), and more than 500 distinct genetic loci have been implicated with T2DM risk (6, 9–12). As T2DM is greatly impacted by genetics, genomic information has the potential to not only aid with early disease diagnosis but importantly also to stratify patients across disease subtypes (13) to initiate treatment intervention and lifestyle changes early in the disease progression.

During the last decade, an enormous effort has been in method development and construction of disease risk scores based on genomic information (14–17). However, until recently, these genome-wide genetic risk scores (GRS) have mainly been constructed using a single-trait approach. Because much of the variation within the human genome contributes to a large number of different complex traits and diseases (18), the accuracy of risk stratification can be improved by developing multi-trait (MT)-GRS accounting for the genetic correlation among traits. Using correlated information to construct GRS has theoretically—and to a minor extend empirical—been shown to increase the accuracy of disease risk prediction (6–8). T2DM is strongly correlated with a range of complex diseases and traits, such as overweight (19), cardiovascular disease (1, 19–21), hypertension (19, 22), and chronic kidney disease (19, 23); hence, T2DM is an excellent case for developing accurate GRS by leveraging correlated information.

The objective of the current study was to investigate the predictive performance of a MT-GRS model that combines marker effects from genome-wide association studies (GWAS) of T2DM and a number of correlated traits. The types of information included in this study were body mass index (BMI), height, smoking status, pulse rate, diastolic and systolic blood pressure, and a quantity of current medication use, as the total count of different prescription and over-the-counter medications is a proxy for general health and disease status. The aim of the present study was to investigate whether a MT-GRS model based on loci for multiple correlated traits had increased predictive discriminative power compared with a traditional single-trait (ST)-GRS model. This strategy was first applied within the UK Biobank (UKB) (24), and then extended to include information on two UKB-independent GWAS summary statistics and, finally, a combined model incorporating information from the UKB and the two independent T2DM GWAS data sets.



MATERIALS AND METHODS


Phenotype and Genotype Data

Only unrelated British Caucasian individuals from the UKB (24) (n = 335,652 subjects) were used in the current study (excluding individuals with more than 5,000 missing genotype values or if having chromosomal aneuploidy). T2DM status was determined based on in-hospital records (by ICD-10 E.11, UKB data field 41270, which contains both main and secondary diagnoses) and self-reported disease state (UKB data field 20002) counting a total of 18,809 individuals. Seven additional phenotypes were also included: standing height, BMI, diastolic and systolic blood pressure, pulse rate, smoking status, and current medication use (measured as the number of different prescription and over-the-counter medications taken). These phenotypes were all adjusted for sex, age, UKB assessment center, and the first 10 genetic principal components (to account for any cryptic relatedness that were not accounted for by restricting to unrelated Caucasian British individuals), following inverse rank normalization to approximate normality.

Genotyped variants with minor allele frequency <0.01, genotype missingness >5%, or variants within the major histocompatibility complex were excluded from the analyses, resulting in a total of 599,297 genetic variants.



Prediction of Diabetes Risk

T2DM risk was determined using GRS based on either summary statistics obtained within the UKB cohort and other T2DM-related GWAS studies (Table 1). The overall workflow is depicted in Figure 1 and is described in detail below.


Table 1. Type 2 diabetes studies with available GWAS summary statistics independent of UKB.

[image: Table 1]


[image: Figure 1]
FIGURE 1. Schematic overview of the research design of the current study. Summary statistics (β) for T2DM and seven information traits were estimated from individual-level genotypic information (X) within the UKB using a 10-fold cross validation scheme. Two external GWAS summary statistics were identified. ST-GRS for T2DM was computed based on either the summary statistics obtained within the UKB or from the two external data sets. Estimates of the heritability (h2) and genetic correlations (rg) were estimated for T2DM, the seven information traits, and the two external T2DM studies. MT-GRS were computed based on four scenarios (S1–S4), depending on which types of information the predictor variable was adjusted for.



UKB Summary Statistics

The White-British UKB cohort of unrelated individuals (335,652 subjects) was split into 10 folds with no overlap of samples within each fold, and for each fold, the marker effects for T2DM, standing height, BMI, diastolic and systolic blood pressure, pulse rate, smoking status, and current medication use, were estimated using logistic or linear regression as implemented in PLINK2 (26). In all analyses, the same set of covariates were included as those used during phenotypic adjustment as this has been shown to increase statistical power (27).



Publicly Available Type 2 Diabetes Summary Statistics

Two recently published GWAS for T2DM were identified (Table 1). Common for the studies were that they did not include UKB data, and therefore provide an independent training set. The regression coefficients were flipped such that the marker effect of the effect allele matched the effect allele within the UKB data.



Estimation of Genetic Parameters

Linkage disequilibrium (LD) between the genotyped variants was estimated as the squared Pearson's correlation coefficient (r2) between two genetic variants adjusted for sample size (N) as the standard estimator of the Pearson's correlation coefficient has an upward bias (28). The adjusted squared Pearson's correlation coefficient ([image: image]) is obtained as (28):

[image: image]

which was computed with the R package qgg (29). LD scores (l) for all variants within a window size of 5,000 markers (2,500 markers around the i-th variant) were computed as

[image: image]

The MT-GRS model relies on selection index theory to obtain marker weights that require estimates of genetic parameters (30). The heritability (h2) and the genetic correlation (rg) between traits can be computed based on GWAS summary statistics using LD score regression (28). The heritability was estimated as the regression of the summary statistics on the LD score:

[image: image]

where Z = neff × l/m, with l being the LD score (see Equation 2), m is the number of genetic variants, and neff is the effective number of individuals and is [image: image], where af is the allele frequency, and [image: image] is the estimated standard error of the marker regression estimate. The response variable is [image: image], where [image: image] is the estimated regression coefficient for the genetic variants [for binary traits, the odds ratios (ORs) were converted to [image: image], and [image: image], where P(X < (1 − p)/2) is the normal cumulative distribution given the marker P-value, p (31)]. Similarly, the genetic correlation between traits 1 and 2 can be estimated as:

[image: image]

where [image: image], and [image: image]. LD score regression was implemented in the R package qgg (29) and was computed for each of the 10-folds of random data subdivisions for T2DM and the seven information traits (Table 2), and among the information traits and the publicly available T2DM summary statistics (Table 1).


Table 2. UKB cohort description (n = 335,652) of T2DM cases and controls (count (%) or mean ± standard deviation).

[image: Table 2]



ST-GRS

The ST-GRS was computed as,

[image: image]

where Xi is the i-th column of the genotype matrix containing allelic counts, [image: image] is the estimated marker effect for the i-th marker, and m is the number of variants left after LD pruning (r2 < 0.1, <0.5, or <0.9) and P-value thresholding (P < 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, and 0.99). The genetic scoring was performed with the R package qgg (29).



MT-GRS

The accuracy of GRS can be improved by leveraging information from correlated traits by adjusting the marker effects ([image: image]) (30). The adjustment of the marker effects for the focal trait (f, i.e., T2DM) is obtained by computing index weights for each marker ([image: image])

[image: image]

From quantitative genetic theory, selection indices have been developed for MT selection, in which many ST individual genetic effects (i.e., breeding values) are combined with an index weight allowing selection of the individuals with the best MT phenotype (32, 33). The optimal weights can be derived as w = V−1C, where C is a k × 1 column vector of covariances between the [image: image] values of the k traits and the true marker effects of the focal trait (bf), and V is a k × k variance–covariance matrix of the [image: image] values:

[image: image]

The diagonal elements of variance–covariance matrix, V, are

[image: image]

where M is the effective number of chromosomal segments [here M = 60, 000 (30, 34)] and Nk is the number of observations for trait k. The off-diagonal elements of V for trait k and l are

[image: image]

which is the same for the elements of C. Combining Equations (8) and (9), Equation (7) becomes

[image: image]

The MT-GRS is then obtained as the sum of adjusted marker effects,

[image: image]

MT-GRS was computed by applying LD pruning (r2 < 0.1, <0.5, or <0.9) and P-value thresholding (P < 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.75, and 0.99) based on UKB genotypes and T2DM summary statistics; thus, the same LD pruning and P-value thresholding were applied across traits.

Four MT scenarios were applied, resulting in four different predictors (Figure 1): (1) UKB T2DM summary statistics combined with the seven UKB information traits; (2) external T2DM summary statistics [i.e., results from Scott et al. (10) and Zhao et al. (25)] combined with the seven UKB information traits; (3) external T2DM summary statistics combined with the seven UKB information traits and UKB T2DM summary statistics; and (4) UKB T2DM summary statistics combined with the seven UKB information traits and the two external T2DM summary statistics.



GRS Accuracy

The accuracy of ST-GRS and MT-GRS was determined using Nagelkerke's variance explained (R2),

[image: image]

where LR is the likelihood ratio comparing two nested logistic regression models, L0 is the log-likelihood of a model neglecting the GRS, and n is the number of observations. The full model included sex, age, UKB assessment center, the first 10 genetic principal components, and the GRS, whereas the reduced model did not contain the GRS effect. For visualization, the GRS were divided into percentiles, and the disease prevalence within each bin was computed; the OR for each percentile was computed adjusting for sex, age, UKB assessment center, and the first 10 genetic principal components, and the OR was expressed relative to the 50-th percentile.





RESULTS


ST Prediction and Genetic Parameters

The analysis of T2DM was performed using 335,662 unrelated individuals from UKB with more than 18,000 T2DM cases (Table 2). A larger proportion of T2DM cases were males and smokers; on average, T2DM cases were older than individuals without T2DM, had higher BMI, and on average used more medications than non-diabetic individuals (Table 2).

The UKB cohort was split into 10 training and validation sets, and within-cohort marginal marker effects of common genotyped variants were estimated for each training set. After LD pruning and P-value thresholding, ST-GRS were computed for individuals within the validation sets. The maximum prediction accuracy for ST-GRS was R2 = 0.032 when using variants with LD r2 < 0.9 and P < 0.05 (Figure 2; Supplementary Table 2).


[image: Figure 2]
FIGURE 2. Variance explained (R2) for type 2 diabetes by ST-GRS and MT-GRS (LD pruning r2 < 0.9) using P-value thresholding (X-axis). Points indicate mean R2 for a given threshold, and the surrounding shading indicates the standard error of the mean. ns, non-significant difference between ST and MT, *significant difference between ST and MT.


Across the 10 training sets, the average heritability for T2DM on the observed scale was 0.07 (0.31 on the liability scale). Seven information traits were included and used in the MT genetic risk scoring (Table 2). All seven traits showed non-zero heritability estimates (Figure 3A), and the strongest genetic correlation was observed between diastolic and systolic blood pressure (Figure 3B). Current medication use was the trait that showed the highest genetic correlation to most of the other traits, and only standing height showed negative genetic correlation to the other traits (Figure 3B).


[image: Figure 3]
FIGURE 3. Estimated genetic parameters. (A) Estimated heritabilities for T2DM and the seven information traits. Errors bars indicate the standard error of the estimates across the 10 training sets. (B) Estimated genetic correlations between T2DM and the seven information traits.




Leveraging Correlated Information for MT Prediction

The T2DM marginal effects were adjusted using the estimated genetic parameters to compute MT-GRS (Scenario 1; Figure 1). Across the three levels of LD pruning, the predictive ability was generally improved when the marginal SNP effects were adjusted by the seven information traits (Supplementary Figure 1; Supplementary Table 2). The highest prediction accuracy (R2 = 0.036) was obtained at LD r2 < 0.9 and P < 0.999 (Figure 2; Supplementary Table 2), which corresponds to an improved prediction accuracy by 12.5%

Next, we estimated the T2DM risk within the UKB using summary statistics from two independent external sets of summary statistics (Figure 1). Both external data sets [Scott et al. (10) and Zhao et al. (25)] showed low prediction accuracy when the GRS solely were computed using T2DM summary statistics [Scott et al. (10): R2 = 0.026 at LD r2 = 0.9 and P < 0.01; and Zhao et al. (25): R2 = 0.017 at LD r2 = 0.9 and P < 0.001; Figure 4; Supplementary Tables 3, 4; Supplementary Figure 2]. The external T2DM summary statistics were adjusted using summary statistics from the seven information traits obtained from the UKB (Scenario 2; Figure 1; Supplementary Table 1; Supplementary Figure 3), which for the summary statistics from Scott et al. (10) increased the prediction accuracy by 8%, but for Zhao et al. (25), a marginal drop in accuracy was observed when comparing the local maximum for ST-GRS with the local maximum for MT-GRS [R2 = 0.017 (r2 = 0.9, P < 0.001)] vs. 0.016 [R2 = 0.016 (r2 = 0.9, P < 0.999); Supplementary Table 4]; however, comparing the accuracy within the P-value threshold, the accuracy of the MT-GRS model was superior over the ST (Supplementary Table 4). Extending the MT model to also include UKB T2DM summary statistics (Scenario 3, Figure 1), the accuracy was further increased by 50% (from 0.028 to 0.042; Figure 4) and 94% (from 0.016 to 0.031; Figure 4) using the summary statistics of Scott et al. (10) and Zhao et al. (25), respectively.


[image: Figure 4]
FIGURE 4. Variance explained (R2) for type 2 diabetes by ST-GRS and MT-GRS (LD pruning r2 < 0.9) using publicly available summary statistics from (A) Scott et al. (10) and (B) Zhao et al. (25). Statistics of model comparisons are found in Supplementary Tables 3, 4.


The MT model trained within the UKB was further extended to also include summary statistics from the two independent T2DM GWAS data sets (Scenario 4; Figure 1). Adjusting the UKB T2DM summary statistics by the seven information traits and the two independent T2DM GWAS data sets resulted in an increase in prediction accuracy from 0.032 to 0.043 (Figure 5; Supplementary Table 2), which is an increase of 34%.


[image: Figure 5]
FIGURE 5. Variance explained (R2) for type 2 diabetes using MT model with the seven information traits and publicly available T2DM summary statistics. Points indicate mean R2 for a given threshold, and the surrounding shading indicates the standard error of the mean. The horizontal dashed lines indicate the maximum R2 obtained for ST-GRS and MT-GRS without publicly available summary statistics.




T2DM Risk Stratification

Stratifying UKB participants based on their T2DM genetic risk showed that a larger proportion of individuals with a T2DM diagnosis were among the top 10% of individuals with highest genetic score when applying the MT strategy (Figure 6). The MT-GRS that in addition to the seven information traits also included information from the independent testing data gave a better stratification of cases by distributing a larger proportion of T2DM cases within the top risk (Figure 6), which also was apparent with a large OR of the top 10% compared to the remaining (Supplementary Figure 4).


[image: Figure 6]
FIGURE 6. Comparison of T2DM risk gradient within the UKB according to GRS percentile for (A) ST model, (B) MT model using the seven information traits, and (C) MT model with the seven information traits and the T2DM testing data. Each point indicates the average T2DM prevalence within each percentile of GRS across then 10 validation sets. Horizontal lines indicate the prevalence at the top 10 GRS percentile, and percentage indicates the prevalence among the top 10% with the highest genetic risk.





DISCUSSION

Precision medicine is predicted to change the way we prevent, diagnose, risk stratify individuals, and treat medical conditions (35, 36) through development of targeted preventive or treatment approaches based on the genetic background, biomarkers, environmental exposures, and lifestyle of the individual. Diagnosis and treatment plans based on genetic testing has been effectively applied to several monogenic disorders (37); however, for common complex diseases, genomic information has been far less incorporated. One reason for the lack of incorporating genomic information in disease prevention and diagnosis for complex diseases is because a large proportion of the underlying genetic variation remains unexplained (38, 39). In the current study, we investigated whether an MT-GRS approach provided more accurate risk stratification than traditional ST genetic scoring approaches.

Adjusting the UKB T2DM marker effects by the genomic correlation of the seven information traits increased the prediction accuracy from R2 = 0.032 to 0.036, and further adjusted by the two UKB-independent T2DM studies increased the accuracy to R2 = 0.042. The great improvement in prediction accuracy (31%) is achieved as a consequence of abundant genomic pleiotropy (18, 30) and the apparent genomic correlation with the selected traits. In comparison, Khera et al. (14) reported a prediction accuracy of ST-GRS of R2 = 0.028 (14), and Maier et al. (30) obtained an accuracy of R2 < 0.01 for both ST-GRS and MT-GRS (30). Although Maier et al. (30) showed increased prediction accuracy by combining the marker effects of selected traits (30), our reported prediction accuracies were greatly elevated compared with Maier et al. (30), most likely driven by differences in the included traits, and thereby in the optimal weights caused by differences in genomic correlation among the traits.

One of the information traits we included in the MT-GRS was the genetic liability to current medication use, which is the number of different medications the UKB participants have taken at the time of the verbal interview. Because most individuals that suffers from temporary or chronic diseases will undergo medical intervention and because of comorbidity many individuals will have multiple medical conditions, those individuals will be treated with a range of different medicines. Consequently, the total set of prescription and over-the-counter drugs is potentially an informative index of the current medical and health status of an individual. Wu et al. (40) performed genetic analysis of self-reported medication use within the UKB and found that categories of different types of medication were strongly genetically associated with a range of different diseases and traits (40). We found that the genetic correlation between T2DM and medication use was rg = 0.55 (only the correlation between T2DM and BMI had higher estimate, rg = 0.58). This is also evident by investigating the optimal weights (Equation 7), where BMI and medication use were the two information traits with the largest weights (Supplementary Figure 5A), besides T2DM itself. Including summary statistics from the two published T2DM association studies only marginally affected the optimal weights (Supplementary Figure 5B).

Although the exact level of prediction accuracy of T2DM was considerably lower when using external data from Zhao et al. (25) compared to data from Scott et al. (10) (Figure 4), the percentage increase when extending ST-GRS to the MT-GRS was higher for Zhao et al. (25) (82%) compared with Scott et al. (10) (62%), despite the much greater sample size by Zhao et al. (25) (Table 1). The discrepancy in prediction accuracy is most likely a consequence of different ancestries of the two external T2DM studies (10, 25), where the ancestry of the individuals in the study by Scott et al. (10) is more similar to the ancestry of the UKB (European) than the study by Zhao et al. (25) (mixed ancestry). It is well-established that across ancestry, risk prediction is very difficult because the LD between populations is very diverse (41–43).

The last decade has shown us that the sample size of human genetic association studies keeps increasing (44, 45), not only entailing more association signals but also providing more accurate effect estimates. This in conjunction with the increasingly accessibility of publicly available GWAS summary statistics (46, 47) implies that genomic prediction of complex diseases will continually improve, in particular if multivariate predictors are created by integrating information across studies. Although we have demonstrated increased prediction accuracy by constructing MT-GRS, our work has several limitations. Firstly, as our training data were the UKB and with a 10-fold cross-validation scheme, the number of cases became limited, meaning less accurate marker effect estimation and thereby less accurate risk stratification. Secondly, although we in addition to the UKB summary statistics from the 10-fold cross-validation obtained T2DM summary statistics from two independent studies (Table 1), we only had access to genotype information from the UKB and no other T2DM cohorts. Thirdly, we restricted the number of information traits to seven (Table 2), based on the criterion that it should be a type of information that is easy and accurate to measure and obtain; height, BMI, pulse rate, and diastolic and systolic blood pressure are things that we easily and accurately can measure, and smoking status and current medication use can easily be obtained by asking the participants. Accurate observations lead to more accurate estimation of marker effects and thereby better prediction accuracies. It is compelling to speculate whether other types of information traits would improve prediction accuracy even more, and additional studies are warranted for developing methods for identifying the set of information traits most important for a particular disease.

Genomic information has the potential to change the way we diagnose and treat individuals today and will be central for implementing preventive healthcare in the clinics. An important aspect of precision medicine is accurate prediction of genetic risk toward common diseases, as it may guide the general practitioners to better and earlier identify those individuals who have an inherent genetically lifetime high disease risk, and then to initiate lifestyle changes potentially before disease outcome. Moreover, precise stratification of T2DM patients not only based on their pathophysiological symptoms (13) but also on their genetic makeup may help the general practitioners to treat high-risk patients more aggressively, which has the potential to slow down disease progression, reduce symptoms, and prevent severe morbidity and mortality.

In conclusion, by incorporating information traits and two previously published T2DM GWAS results, the prediction accuracy for T2DM was increased by 31% (from R2 = 0.032 to R2 = 0.042), clearly demonstrating the added benefit of incorporating correlated information in the construction of GRS. Thus, incorporating genomic information on correlated traits and disease is advisable for obtaining improved individual genetic risk stratification.



DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data can be found at: The genetic and phenotypic data were obtained from the UK Biobank Resource (ID 31269). Researchers can apply for access through: https://www.ukbiobank.ac.uk/registerapply/. Summary statistics for T2DM were obtained from published studies.



ETHICS STATEMENT

The studies involving human participants were reviewed and approved by The Ethics and Governance Framework (EGF) sets standards for the UK Biobank project so that all necessary safeguards are in place to ensure that the data and samples are only used for scientifically and ethically approved research. Participants of the UK Biobank have given their consent to participate which will apply throughout the lifetime of the UK Biobank unless the participants withdraw. Their consent involves the collection and storage of biological material (blood, saliva, urine samples) as well as collection of electronic health records (GP, hospitals, dental and prescription records). Information on the individual data level is anonymised for the researchers, and every research project has its own anonymised data. The ethics committee waived the requirement of written informed consent for participation.



AUTHOR CONTRIBUTIONS

PDR and PS conceived and designed the research project and performed the genetic analyses. PDR, PS, MN, and MK interpreted the results. All authors contributed to the preparation of the manuscript, read, edited, and approved the manuscript.



FUNDING

PDR has received funding from The Lundbeck Foundation (R287-2018-735).



ACKNOWLEDGMENTS

The data used in the presented study were obtained from the UKB Resource (project ID 31269). All of the computing for this project was performed on the GenomeDK HPC cluster. We would like to thank GenomeDK and Aarhus University for providing computational resources and support that contributed to these research results.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2021.711208/full#supplementary-material



REFERENCES

 1. The Emerging Risk Factors Collaboration, Sarwar N, Gao P, Kondapally Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. The Lancet (2010) 375:2215–22. doi: 10.1016/S0140-6736(10)60484-9

 2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. (2014) 103:137–49. doi: 10.1016/j.diabres.2013.11.002

 3. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. (2018) 138:271–81. doi: 10.1016/j.diabres.2018.02.023

 4. Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. (2017) 15:1–11. doi: 10.1186/s12916-017-0901-x

 5. Flannick J, Florez JC. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat Rev Genet. (2016) 17:535–49. doi: 10.1038/nrg.2016.56

 6. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. (2016) 536:41–7. doi: 10.1038/nature18642

 7. Poulsen P, Ohm Kyvik K, Vaag A, Beck-Nielsen H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance - a population-based twin study. Diabetologia. (1999) 42:139–45. doi: 10.1007/s001250051131

 8. Willemsen G, Ward KJ, Bell CG, Christensen K, Bowden J, Dalgård C, et al. The concordance and heritability of Type 2 diabetes in 34,166 twin pairs from international twin registers: The Discordant Twin (DISCOTWIN) Consortium. Twin Res Hum Genet. (2015) 18:762–71. doi: 10.1017/thg.2015.83

 9. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segrè A V., Steinthorsdottir V, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. (2012) 44:981–90. doi: 10.1038/ng.2383

 10. Scott RA, Scott LJ, Mägi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An expanded genome-wide association study of Type 2 diabetes in Europeans. Diabetes. (2017) 66:2888–902. doi: 10.2337/db16-1253

 11. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. (2018) 50:1505–13. doi: 10.1038/s41588-018-0241-6

 12. Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. (2020) 52:680–91. doi: 10.1101/19012690

 13. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. (2018) 6:361–9. doi: 10.1016/S2213-8587(18)30051-2

 14. Khera A V., Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. (2018) 50:1219–24. doi: 10.1038/s41588-018-0183-z

 15. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. (2015) 97:576–92. doi: 10.1016/j.ajhg.2015.09.001

 16. Choi SW, Mak TSH, O'Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. (2020) 15: doi: 10.1038/s41596-020-0353-1

 17. Euesden J, Lewis CM, O'Reilly PF. PRSice: polygenic risk score software. Bioinformatics. (2015) 31:1466–8. doi: 10.1093/bioinformatics/btu848

 18. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. (2015) 47:1236–41. doi: 10.1038/ng.3406

 19. Iglay K, Hannachi H, Joseph Howie P, Xu J, Li X, Engel SS, et al. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin. (2016) 32:1243–52. doi: 10.1185/03007995.2016.1168291

 20. Goodarzi MO, Rotter JI. Genetics insights in the relationship between Type 2 diabetes and coronary heart disease. Circ Res. (2021) 126:1526–48. doi: 10.1161/CIRCRESAHA.119.316065

 21. Danaei G, Lawes CM, Vander Hoorn S, Murray CJ, Ezzati M. Global and regional mortality from ischaemic heart disease and stroke attributable to higher-than-optimum blood glucose concentration: comparative risk assessment. Lancet. (2006) 368:1651–9. doi: 10.1016/S0140-6736(06)69700-6

 22. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third national health and nutrition examination survey. Am J Kidney Dis. (2003) 41:1–12. doi: 10.1053/ajkd.2003.50007

 23. Dean J. Organising care for people with diabetes and renal disease. J Ren Care. (2012) 38:23–9. doi: 10.1111/j.1755-6686.2012.00272.x

 24. Bycroft C, Elliott LT, Young A, Vukcevic D, Effingham M, Marchini J, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. (2018) 562:203–9. doi: 10.1038/s41586-018-0579-z

 25. Zhao W, Rasheed A, Tikkanen E, Lee JJ, Butterworth AS, Howson JMM, et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat Genet. (2017) 49:1450–7. doi: 10.1038/ng.3943

 26. Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. (2015) 4:1–16. doi: 10.1186/s13742-015-0047-8

 27. Sofer T, Zheng X, Gogarten SM, Laurie CA, Grinde K, Shaffer JR, et al. A fully adjusted two-stage procedure for rank-normalization in genetic association studies. Genet Epidemiol. (2019) 43:263–75. doi: 10.1002/gepi.22188

 28. Bulik-Sullivan B, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. (2015) 47:291–5. doi: 10.1038/ng.3211

 29. Rohde PD, Fourie Sørensen I, Sørensen P. qgg: an R package for large-scale quantitative genetic analyses. Bioinformatics. (2020) 36:2614–5. doi: 10.1093/bioinformatics/btz955

 30. Maier RM, Zhu Z, Lee SH, Trzaskowski M, Ruderfer DM, Stahl EA, et al. Improving genetic prediction by leveraging genetic correlations among human diseases and traits. Nat Commun. (2018) 9:989. doi: 10.1038/s41467-017-02769-6

 31. Hu D, Wang C, O'Connor AM. A method of back-calculating the log odds ratio and standard error of the log odds ratio from the reported group-level risk of disease. PLoS ONE. (2020) 15:e0222690. doi: 10.1371/journal.pone.0222690

 32. Hazel LN. The genetic basis for constructing selection indexes. Genetics. (1943) 28:476–90. doi: 10.1093/genetics/28.6.476

 33. Wientjes YCJ, Bijma P, Veerkamp RF, Calus MPL. An equation to predict the accuracy of genomic values by combining data from multiple traits, populations, or environments. Genetics. (2016) 202:799–823. doi: 10.1534/genetics.115.183269

 34. Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, Ingelsson E, O'Connell JR, Mangino M, et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet. (2011) 19:807–12. doi: 10.1038/ejhg.2011.39

 35. Ginsburg GS, McCarthy JJ. Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. (2001) 19:491–6. doi: 10.1016/S0167-7799(01)01814-5

 36. Ashley EA. Towards precision medicine. Nat Rev Genet. (2016) 17:507–22. doi: 10.1038/nrg.2016.86

 37. Katsanis SH, Katsanis N. Molecular genetic testing and the future of clinical genomics. Nat Rev Genet. (2013) 14:415–26. doi: 10.1038/nrg3493

 38. Chatterjee N, Shi J, García-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. (2016) 17:392–406. doi: 10.1038/nrg.2016.27

 39. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. (2009) 461:747–53. doi: 10.1038/nature08494

 40. Wu Y, Byrne EM, Zheng Z, Kemper KE, Yengo L, Mallett AJ, et al. Genome-wide association study of medication-use and associated disease in the UK Biobank. Nat Commun. (2019) 10:1891. doi: 10.1038/s41467-019-09572-5

 41. Kerminen S, Martin AR, Koskela J, Ruotsalainen SE, Havulinna AS, Surakka I, et al. Geographic variation and bias in the polygenic scores of complex diseases and traits in Finland. Am J Hum Genet. (2019) 104:1169–81. doi: 10.1016/j.ajhg.2019.05.001

 42. Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, et al. Human demographic history impacts genetic risk prediction across diverse populations. Am J Hum Genet. (2017) 100:635–49. doi: 10.1016/j.ajhg.2017.03.004

 43. Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun. (2019) 10:3328. doi: 10.1038/s41467-019-11112-0

 44. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. (2012) 90:7–24. doi: 10.1016/j.ajhg.2011.11.029

 45. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS Discovery: biology, function, and translation. Am J Hum Genet. (2017) 101:5–22. doi: 10.1016/j.ajhg.2017.06.005

 46. Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary association statistics. Nat Rev Genet. (2017) 18:117–27. doi: 10.1038/nrg.2016.142

 47. Buniello A, Macarthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. (2019) 47:D1005–12. doi: 10.1093/nar/gky1120

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Rohde, Nyegaard, Kjolby and Sørensen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	
	ORIGINAL RESEARCH
published: 13 September 2021
doi: 10.3389/fmed.2021.724826






[image: image2]

Novel MYO1D Missense Variant Identified Through Whole Exome Sequencing and Computational Biology Analysis Expands the Spectrum of Causal Genes of Laterality Defects

Rabab Said Alsafwani1†, Khalidah K. Nasser1,2†, Thoraia Shinawi1, Babajan Banaganapalli2,3, Hanan Abdelhalim ElSokary2, Zhaher F. Zaher4,5, Noor Ahmad Shaik2,3,6, Gaser Abdelmohsen4,7, Jumana Yousuf Al-Aama2,3, Adam J. Shapiro8, Osman O. Al-Radi9*, Ramu Elango2,3* and Turki Alahmadi4,10*


1Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia

2Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia

3Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

4Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

5Pediatric Cardiac Center of Excellence, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia

6Department of Genetics, Al Borg Medical Laboratories, Jeddah, Saudi Arabia

7Pediatric Cardiology Division, Department of Pediatrics, Cairo University, Kasr Al Ainy Faculty of Medicine, Cairo, Egypt

8Division of Pediatric Respiratory Medicine, McGill University Health Centre Research Institute, Montreal Children's Hospital, Montreal, QC, Canada

9Department of Surgery Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

10Pediatric Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia

Edited by:
Thirumal Kumar D., Meenakshi Academy of Higher Education and Research, India

Reviewed by:
Ibrahim Jelaidan, King Faisal Cardiac Center, King Abdulaziz Medical City, Saudi Arabia
 Prashantha Karunakar, PES University, India

*Correspondence: Ramu Elango, relango@kau.edu.sa
 Osman O. Al-Radi, oradi@kau.edu.sa
 Turki Alahmadi, tsalahmadi@kau.edu.sa

†These authors have contributed equally to this work

Specialty section: This article was submitted to Precision Medicine, a section of the journal Frontiers in Medicine

Received: 14 June 2021
 Accepted: 10 August 2021
 Published: 13 September 2021

Citation: Alsafwani RS, Nasser KK, Shinawi T, Banaganapalli B, ElSokary HA, Zaher ZF, Shaik NA, Abdelmohsen G, Al-Aama JY, Shapiro AJ, O. Al-Radi O, Elango R and Alahmadi T (2021) Novel MYO1D Missense Variant Identified Through Whole Exome Sequencing and Computational Biology Analysis Expands the Spectrum of Causal Genes of Laterality Defects. Front. Med. 8:724826. doi: 10.3389/fmed.2021.724826



Laterality defects (LDs) or asymmetrically positioned organs are a group of rare developmental disorders caused by environmental and/or genetic factors. However, the exact molecular pathophysiology of LD is not yet fully characterised. In this context, studying Arab population presents an ideal opportunity to discover the novel molecular basis of diseases owing to the high rate of consanguinity and genetic disorders. Therefore, in the present study, we studied the molecular basis of LD in Arab patients, using next-generation sequencing method. We discovered an extremely rare novel missense variant in MYO1D gene (Pro765Ser) presenting with visceral heterotaxy and left isomerism with polysplenia syndrome. The proband in this index family has inherited this homozygous variant from her heterozygous parents following the autosomal recessive pattern. This is the first report to show MYO1D genetic variant causing left–right axis defects in humans, besides previous known evidence from zebrafish, frog and Drosophila models. Moreover, our multilevel bioinformatics-based structural (protein variant structural modelling, divergence, and stability) analysis has suggested that Ser765 causes minor structural drifts and stability changes, potentially affecting the biophysical and functional properties of MYO1D protein like calmodulin binding and microfilament motor activities. Functional bioinformatics analysis has shown that MYO1D is ubiquitously expressed across several human tissues and is reported to induce severe phenotypes in knockout mouse models. In conclusion, our findings show the expanded genetic spectrum of LD, which could potentially pave way for the novel drug target identification and development of personalised medicine for high-risk families.

Keywords: laterality defects, whole exome sequencing, microfilament, gene expression, variant


INTRODUCTION

Laterality defects (LDs) are a group of developmental diseases that affect internal organ positioning in the body. In general, human LDs can be divided into three categories: (1) situs solitus (SS) with normally expected organ arrangement; (2) situs inversus (SI) characterised by complete mirror image of organs; and (3) situs ambiguus (SA) with organ arrangement falling along a spectrum of various anomalies between SS and SI, including congenital heart defects (CHDs). Within SA, a subgroup of patients presents a severe and complex form of congenital heart disease, which is commonly known as heterotaxy (1). Defective left–right (LR) patterning of internal organs is associated with multiple congenital diseases affecting the cardiovascular system, kidneys, liver, and biliary tract (2, 3). According to the National Birth Defects Prevention Study (4), the estimated prevalence of LD is 1.1 per 10,000 in the United States. Despite the rare likelihood of LD, its incidence is excepted to be higher among the Arab population due to their high rate of consanguinity and genetic disorders (5).

The aetiology of LD is complex and includes both environment (5–7) and genetic factors (8, 9). Disease-causing genetic variations are found in <20% of LD cases; and the remaining 80% of cases are due to unidentifiable causes (10, 11). Up to now, known LD genes were mostly associated with NODAL/TGFβ signalling (NODAL, CFC1, ACVR2B, LEFTYB, GDF1, TGFBR2, and FOXH1), SHH signalling (ZIC3 and LZTFL1), and monocilia function (NPHP2, NPHP3, NPHP4, PKD2, and TTC8) (10). Other genetic alterations associated with early cardiac development (NKX2-5, CRELD1, MMP21, and PKD1L1) were also implicated in LD development (10). The main functional roles of these genes were demonstrated in LR axis determination, controlling cardiac looping direction, nodal activity regulation in embryogenesis, protein interaction of primary cilia, and signalling involved in morphogenesis cascade (12–19). Hence, LDs occur in a variety of different diseases, affecting various cardiac, respiratory, and gastrointestinal organs, reflecting the complex genes involved in signalling pathways of organogenesis and ciliary function.

Genetic testing and molecular diagnostics are now regarded as an useful approach to discover molecular causes underlying the LD development. Whole-exome sequencing (WES) analysis proved to be a successful method to uncover novel candidate genes or novel variants in known candidate genes (10). To this end, there is an increasing need to study the rare developmental disorders across different ethnic populations due to its potential in expanding the genetic spectrum of the disease. However, literature searches reveal sparse data on the Arab LD patients. We hypothesise that genetically investigating LD patients from a consanguineous Arab society will offer new insights into disease pathogenesis by identifying novel genes or novel variants in known genes, as demonstrated in other complex diseases (20). Therefore, the objective of the present study was to identify the genetic cause of LD in Arab patients, using WES and multilevel bioinformatics-based structural (protein variant structural modelling, divergence, and stability) and functional (gene expression and knockout mouse model) analysis approaches.



MATERIALS AND METHODS

The ethical approval for the present study was obtained from the institutional ethics committee of King Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia. Informed consent forms were collected from both adult parents and their children (parental consent and children's assent for those <18 years old) prior to blood sample collection and genetic testing. As per the National Birth Defects Prevention Study, LD participants were selected based on the following clinical criteria: situs inversus, CHDs (heterotaxy), isomerism of the lungs (bilateral two lobes/left-sidedness and bilateral three lobes/right-sidedness), abdominal situs abnormality (abdominal situs inversus and SA), and spleen abnormality (asplenia and polysplenia) (4). One LD index family composed of the proband (affected child) and both parents was recruited to paediatric cardiology, surgery, and pulmonology clinics in KAUH. Clinical, laboratory, and radiological results were independently assessed by both paediatric cardiology and pulmonology consultants. Family pedigree was drawn by interviewing the parents. Samples from two other LD families were screened for the presence of the identified candidate variants.


Molecular Testing


Clinical Sampling

A total of 5 ml of whole EDTA peripheral blood samples was collected from each study participant.



DNA Extraction

The genomic DNA was isolated from circulating lymphocytes using QIAamp DNA blood Kit as per the manufacturer's protocol and quantified using a NanoDrop 2000 spectrophotometer. DNA integrity was checked on 2% agarose gel electrophoresis.



Whole-Exome Sequencing Analysis

The DNA library was prepared using Agilent Sure Select Target Enrichment Kit. DNA library was captured using ultralong 120 mer biotinylated cRNA baits. The library was sequenced using HiSeq2000 Next Generation Sequencer (Illumina, San Diego, CA, USA). The FASTQ format sequence was obtained, and reads were aligned using Burrows-Wheeler Aligner (BWA) software (Version bwa-0.7.12) against human genome reference sequence build 38 (GRCH38.p12). Variant calling was conducted using the genome analysis tool kit (GATK). The filtration pipeline was applied as follows: all coding variants that passed quality control (phred > 30 score) were included. All variants with a minor allele frequency (MAF) <0.015% were included. Known candidate gene variants were filtered based on the function of the gene and their role in LD development. Genes that are related to LD disease were collected through the Coremine Medical™ tool, National Center for Biotechnology Information (NCBI), OMIM, and literature review.



Variant Validation Using Sanger Sequencing Method

The potential LD candidate variant was validated using Sanger sequencer ABI 3500 Genetic Analyzer. The primers were designed using NCBI Primer Blast to capture targeted mutation in candidate gene. The sequence files (chromatogram) were analysed using BioEdit software.




Functional Analysis of Laterality Defect Variant Using Computational Methods
 
Amino Acid Conserved Domains

The functional relevance of LD candidate genetic variant on candidate proteins was predicted by searching the nucleotide and amino acid sequences against the functional domains of concerned protein as per the listing available in Conserved Domain Database (CDD). To estimate the sequence conservation characteristics of the functional domains in the candidate protein, CDD tool uses RPS-BLAST, which rapidly scans the query protein for pre-computed position-specific scoring matrices (PSSMs). The output file demonstrates the links between protein domains with annotations against the query input sequence together with imagining choices (21).



3D Protein Modelling

The pathogenic effects of amino acid variants on disease candidate proteins can be best understood when they are studied at the structural level. Therefore, the potential effect of LD variant on the tertiary structural features was explored through 3D simulation of the candidate protein. Based on the availability of the X-ray crystallographic structure of the query protein, either a combination of ab initio approaches or homology modelling approaches were followed (22, 23). The 3D simulated structure of the native protein was then used to construct the mutated version of candidate protein, which was then energy minimised and then analysed for structural deformities like amino acid or whole structure level deviations using YASARA software (24). The impact of candidate variant on the stability of protein structure was estimated using DUET webserver, which contains Protein Data Bank (PDB) structures of query proteins to predict the Gibbs free energy (G) values (25).



RNA Expression, Gene Ontology, and Mouse Gene Knockout Model

The Human Protein Atlas (HPA) (https://www.proteinatlas.org/) database was used to determine the RNA expression status of the LD candidate gene. This database provides the expression profile of the query gene or protein based on primary antibody staining data in a series of immunohistochemistry pictures of clinical specimens. The functional enrichment analysis of the potential LD candidate gene was done using gene ontology (GO) webtool hosted in Ensembl web browser. Moreover, Mouse Genome Informatics (MGI) database (http://www.informatics.jax.org/) was used to better understand the functional role of potential LD gene on phenotype characteristics of knockout mouse models. The MGI resource provides a comprehensive set of data, tools, and analysis designed specifically for use in mouse laboratory model. It accepts input data in the form of a gene symbol and provides output corresponding to the physiological condition of knockout mice.





RESULTS


Clinical Assessment

The proband aged 4 years 6 months at the time of clinical diagnosis was born to an apparently healthy consanguineous parents of Arab origin (Figure 1A). The proband exhibited a spectrum of phenotypes including visceral heterotaxy (abnormal arrangements of thoracoabdominal organs) (Figure 1B), congenital cyanotic heart disease in the form of single ventricle physiology, left isomerism with polysplenia syndrome, double inlet atrioventricular connection (a heart defect that affects the valves and chambers), pulmonary atresia, interrupted inferior vena cava with absent supra-renal segment, and azygos continuation (a rare congenital abnormality often combined with cardiovascular and visceral malformations). At the age of 10 months, the proband underwent thorough palliative cardiac procedures in the form of ductal stenting in the neonatal period followed by Kawashima cavo-pulmonary shunt (a palliative surgical procedure performed in cases of left isomerism and azygos continuation of the inferior vena cava, and common atrioventricular valve with or without regurgitation and pulmonary stenosis) in addition to left pulmonary artery (LPA) balloon dilatation procedure. At 3 years of age, Fontan completion was performed via incorporation of hepatic veins to pulmonary artery correcting thereby blood flow from the lower body parts directly to the lungs.


[image: Figure 1]
FIGURE 1. (A) Family pedigree chart of laterality defect (LD) Arab family. Proband is indicated by the arrow. The affected proband (shaded circle) is homozygous of c.2293C>T mutation in MYO1D gene. Both parents were consanguineous (double horizontal lines) and heterozygous carriers of the identified mutation. (B) Chest X-rays showing left isomerism (heterotaxy).




Genetic Analysis


Whole-Exome Sequencing Variant Filtering and Novel Gene Identification

The sequencing of the index case generated approximately 98,000 variants, including 12,150 synonymous variants, 13,000 missense variants, and 11,500 indels. Variant filtration was based on its rare frequency, deleterious potential, autosomal recessive mode of inheritance, and functional relevance to disease (LD, primary ciliary dyskinesia (PCD), congenital heart disease, and heterotaxy). Nine genetic variants were identified as potential candidates (Table 1). Among these variants, only one missense variant (rs7209106: NM_015194.2:c.2293C>T; p.Pro765Ser) in MYO1D novel gene has survived our variant filtration criteria. This allele is absent in local databases like GME (Greater Middle East) (http://igm.ucsd.edu/gme/), DALIA (Disease Alleles in Arabs) (http://clingen.igib.res.in/dalia/index), and Saudi Human Genome Program (SHGP) (https://shgp.kacst.edu.sa/index.en.html#home). The MAF of this variant in international databases like 1,000 Genomes and gnomAD databases is 0.005 and 0.002, respectively. Although it has an allele frequency of 0.013 in the African population, only eight individuals are reported as homozygous for this variant in the gnomAD. But their clinical details are not provided in the gnomAD database. In the index family studied here, both parents were heterozygous and do not have any symptoms associated with LD, confirming the autosomal recessive inheritance pattern as we initially deduced from their pedigree analysis. Moreover, more than 80% (5/6; 83.34) of the computational prediction methods like CADD, FATHMM, MetaLR, Mutation Taster, PROVEAN, and REVEL have attributed pathogenicity scores to this MYO1D (p.Pro765Ser) variant (Table 2). Functional biology data available from model organisms like Drosophila, zebrafish, and frog have proved the functional role of MYO1D gene in LDs.


Table 1. List of LD potential candidate variants that showed autosomal recessive inheritance pattern.
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Table 2. Computational pathogenicity prediction scores of the LD candidate variants.
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Sanger Sequencing Validation

Sanger sequencing analysis confirmed that the LD patient is homozygous for c.2293C>T variant in MYO1D gene (1V.9, Figures 1A, 2), whereas the mother and father were heterozygous carriers (111.2, 111.3, Figures 1A, 2). This variant was absent in apparently healthy siblings and were homozygous for the T allele (1V.2, 1V.4, and 1V.5–8; Figure 1A). Two additional clinically diagnosed LD families were screened for this variant, and none carries this mutation, suggesting that MYO1D (p.Pro765Ser) variant is a rare private mutation in this family.


[image: Figure 2]
FIGURE 2. Sanger sequencing analysis of MYO1D gene. (A) Affected proband, homozygous for the variant c.2293C>T. (B,C) Heterozygous carriers of mother and father.





Computational Functional Analysis


Variant Mapping on MYOID1 Protein Domain

The mapping of conserved amino acid domains is a vital step in deducing the association between the nucleotide sequence, protein structure, and function of disease-causing proteins. The CDD analysis showed that MYO1D protein is made up of three domains, namely, motor (11–682 amino acids), IQ calmodulin-binding motif (699–719 amino acids), and Myosin TH1 (803–1,000 amino acids) domains. The Pro765Ser variant is located between the Myosin TH1 and calmodulin-binding domains (Figure 3).


[image: Figure 3]
FIGURE 3. The exonic, functional domain and 3D structural annotation of MYO1D (Pro765Ser) variant.




MYO1D 3D Model Construction

The PDB database search revealed the availability of partial 707 aa (between 10 and 717 of 1,006 AA long MYO1D protein) X-ray crystal protein model (4L79) with 2.3-Å resolution. Hence, the remaining 306 aa long chain was simulated with iterative threading assembly modification (I-TASSER) webserver following an ab initio approach. From the I-TASSER output, the best MYO1D model was chosen based on its polypeptide prediction quality scores like confidence score (C = −1.52), template modelling (TM = 0.53 ± 0.15), and root-mean-square deviation (RMSD) (12.7 ± 4.3 Å) scores. These quality metrics indicate the very good structural similarity between the query and template proteins (Figure 3). The stereochemical evaluation of the energy-minimised MYO1D protein model revealed that 96.2% of the amino acids are in the allowed portion of the protein, whereas 3.8% are in the non-allowed region. As per the above outlined processes, the native MYO1D model was used as a template to create a mutant variant by manually substituting proline for serine at the 765th position. PyMOL was used to depict native and mutant proteins.



Structural Deviation and Stability Findings

We have used YASARA tool to analyze Cα-atom coordinates of native and mutant MYO1D 3D structures to evaluate their structural drifts (in terms of RMSD) at residue and whole structure levels. RMSD value is used to quantitatively measure the structural similarity between two atomic coordinates when superimposed on each other. The impact of substitution mutations on amino acid structures can be calculated when there is a divergence at the polypeptide chain level. We noticed minor structural drifts in MYO1D structure only at 765th residue position due to the RMSD value difference (2.28) induced by the substitution of proline with serine (Figure 3). The DUET analysis of the MYO1D (P765S) variant predicted Gibbs free energy (ΔΔG) alterations shifting the energy equilibrium to negative value, i.e., −0.959 kcal/mol, suggesting that the queried variant is potentially deleterious to the protein stability owing to its destabilising behaviour.



RNA Expression Analysis

The HPA shows the positive expression status of MYO1D gene in different tissues and organs of the human body like the colon, lungs, and thyroid gland. In particular, the highest expression was seen in the digestive system with the colon, where the 274 transverse colon samples showed a maximum of 221.5 protein transcripts per million (pTPM) and 233 sigmoid colon samples showed a maximum of 97.8 pTPM. The RNA-Seq analysis of immunohistochemistry tissue specimens from three control specimens showed that glandular cells showed the highest pTPM status of MYO1D gene when compared with smooth muscle cells and other cell types in the colon (Figure 4).


[image: Figure 4]
FIGURE 4. Protein Atlas expression analysis of MYO1D. (A) Bar graph represents the MYO1D expression in sigmoid and transverse colon samples. (B) Histopathological examinations of colonic samples from three different patients showing the MYO1D protein expression.




Gene Ontology and Gene Knockout Analysis

The Ensembl GO analysis of MYO1D gene showed its involvement in 43 GO terms, including those connected to biological processes (seven GO terms), molecular functions (11 GO terms), and cellular component (25 GO terms) (Supplementary Table 1). All the annotations collectively highlight that MYO1D is localised in the cytoplasm (cellular component) and plays an important role in actin filament organisation (biological process) as well as microfilament motor activity function (molecular function). Supplementary Table 2 shows details of disease phenotypes corresponding to the MYO1D genetic background in different knockout mice models.





DISCUSSION

Recent evolution and easy accessibility of next-generation sequencing resulted in accurate molecular diagnosis of variety of genetic diseases from around the globe (39, 40). Owing to the genetic heterogeneity, identification of specific molecular cause of LD is very challenging in up to 80% of the cases. Majority of known LD causative genes are structural proteins of the cilia and are known for their involvement in NODAL/TGFβ or SHH signalling pathways. During embryonic development, these genes play an important role in symmetrical LR positioning of the organs (10).

MYO1D gene consists of 27 exons mapped to chromosome 17q11.2. Myosin heavy chain class 1 is a member of the myosin superfamily, playing essential roles in cytoskeletal structure, mechanical signal-transduction membrane dynamics (41), and endosome processing (42). In the present study, we identified the first case of a homozygous missense (c.2293C>T) mutation in MYO1D gene causing LD in the proband of an Arab consanguineous family. Further screening of LD participants from two additional Arab families did not reveal any mutations in this gene. In Middle Eastern Arab databases (with more than 10,000 exome data combined) such as SHGP, GMC, and DALIA, not a single case was recorded for this variant. Also, this variant was extremely rare (<0.005) in 1,000 Genomes and 0.013 in gnomAD across all ethnic groups. In gnomAD, only eight individuals were reported as homozygous (six males and two females), but no clinical data were available.

Various studies suggested the role of MYO1D gene in laterality disease in Drosophila, zebrafish, and frog (43–47). MYO1D has a role in organ asymmetry in Drosophila, which lacks cilia and nodal pathway while developing LD by using polar cell polarity (PCP), MYO1D, and HOX gene Abd-B (48, 49). Another study demonstrated the function of MYO1D in Xenopus laevis and influence the orientation of the cilia on the LR organiser (LRO) through planar cell polarity pathway as implicated in Drosophila (45). In zebrafish, MYO1D plays a fundamental role in the LR organisation (43, 50). Aside from the above initial reports, our understanding of MYO1D function in the context of human LR patterning remains largely unexplored. The situs inversus (SI) phenotype is reported in approximately 50% of PCD cases with congenital cardiac defects (51, 52). Approximately 3–7% of LD patients have CHDs (53). Many studies (54, 55) in a variety of species failed to identify a unifying mechanism for LR patterning. However, recent studies (43, 50) provided the first evidence of a shared origin of laterality in both arthropods and chordates through MYO1D gene. The clinical features are consistent with previous observations in zebrafish and Drosophila, indicating that MYO1D has an important role in LR patterning during embryogenesis. Moreover, asymmetric clustering of cilia was disrupted in ependymal cells of MYO1D KO rat models, consistent with LD (56).

MYO1D gene knockout in different mouse strains (seven different strains) is shown to demonstrate a variety of phenotypes like decreased body fat amount (adipose tissue), decreased startle reflex (behaviour/neurological), increased susceptibility to colitis (digestive/alimentary), decreased bone mineral content (skeleton), and increased susceptibility to weight loss (growth size/body weight and immune system and mortality or ageing) (Figure 5). Our study is the first one to report the association of defective MYO1D to LD in humans, confirming that the function is evolutionarily conserved from Drosophila, to zebrafish, to frog, to humans. Thus, MYO1D gene can be considered as the new causal gene for LD in humans. Though the Drosophila and zebrafish models clearly showed the visceral heterotaxy, mouse KO phenotypes were surprisingly not showing any LD-related phenotypes.
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FIGURE 5. (A) Ensembl function annotations of MYO1D. (B) Mouse MYO1D knockout analysis and phenotypic changes.


Extensive computational analysis of the protein structure and function adds the supporting evidence for MYO1D in LD. MYO1D protein is 1,006 aa long with a molecular weight of 116 kDa. It consists of a large, highly conserved Myocin Motor Domain (671 aa), short calmodulin-binding motif (20 aa), and a basic C-terminal tail homology-1 (TH1) domain (197 aa). The amino acid residue level structural deviation observed with the variant serine (Pro765Ser) in MYO1D is likely to disturb the primary, secondary, tertiary, and quaternary structural features in the protein. Numerous studies have shown the strong correlation between deviations in residue level RMSD score and structural properties for the disease-causing variants (23, 57–59). Disease causative pathogenic mutations have often changed the energy equilibrium, which is required to maintain the protein stability (60). Given the close physical proximity of P765S variant between calmodulin-binding motif and TH1 domains, the conformational and stability changes in MYO1D protein are likely to impact its main biological functions such as calmodulin binding, actin-dependent ATPase activity, calcium-dependent protein binding, and microfilament motor activities (61).

LD is a complex disease, and its clinical phenotype presentations often overlap with PCD symptoms. A recent study from Saudi Arabia reported the overlapping clinical symptoms between PCD and LD patients (26). This report investigated a total of 81 patients, including 58 patients with sinopulmonary infections (SPIs), 15 patients with combined LD with SPIs, and six patients with LD alone. They reported mutations in the known PCD genes as follows: RSPH9, CCNO, DNAAF5, RSPH4A, MCIDAS, and CCDC40 gene mutations in PCD patients with SPIs; CCDC151, DNAH11, CCDC40, DNAH5, and CCDC39 gene mutations in LD patients with SPIs; PKD1L1 and DNAAF5 gene mutations in LD patients; and RSPH9 and MCIDAS gene mutations in neonatal respiratory distress. Additionally, they have also identified gene mutations in ITCH and CEP164 in two patients, demonstrating ITCH-related syndrome and Bardet–Biedl syndrome. Sparrow et al. (29) reported HES7 as a cause of spondylocostal dysostosis with SI and dextrocardia. Molecular diagnosis of LD and PCD in Arab patients has revealed a spectrum of mutations in many genes with variable clinical presentations (35), which is summarised in Table 3.


Table 3. Phenotypes and genetic data of LD and/or PCD among Arabs.
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CONCLUSION

In conclusion, we discovered missense mutation in MYO1D gene (c.2293C>T) in an Arab patient presenting with visceral heterotaxy and left isomerism with polysplenia syndrome by using higher-throughput WES technology. This is the first report to establish the relationship between MYO1D variants and LD, supporting the previous findings in Drosophila zebrafish, and frog. This exciting finding may support the critical role of MYO1D gene for LR patterning in humans. This study has some sincere limitations, as this is the first case identified with MYO1D mutation potentially contributing to LD phenotypes, and there are no reported cases with MYO1D variants to compare our data with. Therefore, testing MYO1D variants for LD patients in large cohort studies is recommended to verify our findings. Future functional studies are also recommended to investigate the specific molecular role and therapeutic prospects of targeting MYO1D genetic variants in patients demonstrating LD phenotypes.
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Objective: Long noncoding RNAs (lncRNAs) are key regulators during ovarian cancer initiation and progression and are involved in mediating autophagy. In this study, we aimed to develop a prognostic autophagy-related lncRNA signature for ovarian cancer.

Methods: Autophagy-related abnormally expressed lncRNAs were screened in ovarian cancer with the criteria values of |correlation coefficient| > 0.4 and p < 0.001. Based on them, a prognostic lncRNA signature was established. The Kaplan–Meier overall survival analysis was conducted in high- and low-risk samples in the training, verification, and entire sets, followed by receiver operating characteristics (ROCs) of 7-year survival. Multivariate Cox regression analysis was used for assessing the predictive independency of this signature after adjusting other clinical features. The associations between the risk scores and immune cell infiltration, PD-L1 expression, and sensitivity of chemotherapy drugs were assessed in ovarian cancer.

Results: A total of 66 autophagy-related abnormally expressed lncRNAs were identified in ovarian cancer. An autophagy-related lncRNA signature was constructed for ovarian cancer. High-risk scores were indicative of poorer prognosis compared with the low-risk scores in the training, verification, and entire sets. ROCs of 7-year survival confirmed the well-predictive efficacy of this model. Following multivariate Cox regression analysis, this model was an independent prognostic factor. There were distinct differences in infiltrations of immune cells, PD-L1 expression, and sensitivity of chemotherapy drugs between high- and low-risk samples.

Conclusions: This study constructed an autophagy-related lncRNA signature that was capable of predicting clinical outcomes and also therapeutic responses for ovarian cancer.

Keywords: ovarian cancer, autophagy, lncRNAs, signature, prognosis, tumor microenvironment


INTRODUCTION

Ovarian cancer represents the major cause of death among gynecological malignancies (1). Surgery followed by chemotherapy (such as platinum and taxane) remained the first-line therapeutic strategy (2). Approximately 80% of the subjects originally respond to this therapy. Nevertheless, the majority of the subjects in late stages usually experienced recurrence following chemotherapy, thereby leading to an undesirable prognosis (5-year survival <50%). Hence, it is significant to probe into the pathogenesis of ovarian cancer and also predictive indicators for prognostic stratification.

Alterations in gene expression profiling have become fundamental laboratory tools for improving tumor diagnoses, survival outcomes, and also treatment responses, which overcome weaknesses of typical clinical and imaging features due to heterogeneity at the genetic and molecular levels (3). Dysregulated long non-coding RNAs (lncRNAs) such as LINC00189, CACNA1G-AS1, and CHRM3-AS2 have been implicated in ovarian cancer initiation and the progress, highlighting their promising functions as markers of precision medicine (4). Their correlations to survival outcomes and treatment responses are still indistinct in ovarian cancer. A few lncRNA-based expression signatures have been developed for predicting survival outcomes, status, and chemosensitivity in ovarian cancer. For instance, Zheng et al. developed a three-lncRNA signature (LOC101927151, LINC00861, and LEMD1-AS1) for predicting clinical outcomes of the subjects with ovarian cancer on the basis of copy number variation (5). Zhang et al. proposed a three-lncRNA signature (LINC01619, DLX6-AS1, and AC004943.2) that can predict survival and response of chemotherapy in ovarian cancer (6). In comparison to abundant lncRNAs identified by genome-wide studies, functionally lncRNAs require better characterization in ovarian cancer.

Autophagy, an evolutionarily conserved process, maintains cell homeostasis through a lysosomal degradation system that supports cell survival and also maintains homeostasis under various types of stress (7). Autophagy-based cell deaths provide molecular mechanisms and clinical implications upon ovarian cancer therapy (8). Thus, it is of significance to identify key regulators of autophagy for theoretical basis and clinical practice. Several studies have found that autophagy can be mediated by lncRNA regulators in ovarian cancer (9–12). For instance, GAS8-AS1 inhibits the progress of ovarian cancer by activation of autophagy through binding with Beclin1 (9). Moreover, lncRNA TUG1 induces autophagy-related paclitaxel resistance via sponging miR-29b-3p in ovarian cancer (10). Also, silencing HOTAIR enhances the sensitivity to cisplatin in ovarian cancer via inhibition of cisplatin-induced autophagy (11). LncRNA highly upregulated in liver cancer exerts a carcinogenic effect via targeting autophagy-related genes ATG7 and ITGB1 in an epithelial ovarian cancer (12). Thus, autophagy-related lncRNAs possess potential as prognostic indicators and therapeutic targets.

Ovarian cancer represents an insidious malignancy, which usually develops asymptomatically to late stages along with metastases, chemoresistance, and undesirable clinical outcomes (13). Autophagy is a key bioprocess during the initiation and progression of ovarian cancer (14). LncRNA regulators are involved in the autophagy process. There is still a lack of systematic analysis for identifying autophagy-related lncRNA signature for prediction of the survival outcomes of the patients with ovarian cancer. Herein, this study developed a prognostic autophagy-related lncRNA signature for ovarian cancer.



MATERIALS AND METHODS


Data Retrieval and Pre-processing

Among all databases, only the Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) database has the RNA-seq expression profiling and corresponding clinical and prognostic information of ovarian cancer. Thus, we curated transcriptome data and clinical information containing age, survival time, recurrence, survival status, histologic grade, and pathologic stage of 379 ovarian cancer tissues from the TCGA database. Mutation annotation format (MAF) files of somatic mutation data of ovarian cancer samples were also downloaded from the TCGA database. Meanwhile, the RNA-seq expression profiles of 133 normal ovarian samples were obtained from the genotype tissue expression (GTEx; https://toil.xenahubs.net/download/GTEX_phenotype.gz) database (15). The RNA-seq counts values from the TCGA and GTEx databases were normalized and preprocessed by the TCGAbiolinks package (16). Based on the HUGO Gene Nomenclature Committee (HGNC; http://www.gene.ucl.ac.uk/cgi-bin/nomenclature/searchgenes.pl), lncRNAs and mRNAs were annotated (17).



Acquisition of Abnormally Expressed lncRNAs

Abnormally expressed lncRNAs between ovarian cancer and normal ovarian specimens were screened utilizing edgeR package (http://bioconductor.org) based on gene expression data (18). Adjusted p ≤ 0.05 and |log2fold change (FC)| ≥ 1 were set as the criteria values of abnormally expressed lncRNAs.



Acquisition of Autophagy-Related lncRNAs

A total of 232 autophagy-related genes were retrieved from the Human Autophagy Database (HADb; http://www.autophagy.lu/). The correlation between abnormally expressed lncRNAs and autophagy-related genes was analyzed by psych package (https://CRAN.R-project.org/package=psych) with Pearson's correlation analysis. Autophagy-related lncRNAs were screened with the criteria values of |correlation coefficient| > 0.4 and p < 0.001.



Construction of a LASSO Regression Model

By adopting the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, this study constructed an autophagy-related lncRNA model utilizing the glmnet package (19). The association between the lncRNAs in this model and overall survival (OS) was assessed by univariate Cox regression analysis. LncRNAs with hazard ratio (HR) > 1 and p < 0.05 were risk factors, while those with HR <1 and p < 0.05 were protective factors. The risk score of each sample was determined. The formula was as follows: risk score = coefficient (lncRNA1) × expression (lncRNA1) + coefficient (lncRNA2) × expression (lncRNA2) + … + coefficient (lncRNAn) × expression (lncRNAn). The distributions of risk scores, survival status, and disease progress were assessed in the samples of ovarian cancer.



Assessment of the Prognostic Model

All the subjects with ovarian cancer were randomly separated into the training set and the validation set at a ratio of 1:1. The subjects with ovarian cancer were separated into high- and low-risk groups. The Kaplan–Meier survival analyses were carried out to assess the OS differences between high- and low-risk groups with survival package in the training set, validation set, and the whole dataset. Time-dependent receiver operating characteristic (ROCs) curves were depicted for estimating the predictive efficacy of survival time through risk score and other clinical features (age, pathologic stage, and histologic grade) utilizing the survival ROC package. Furthermore, the differences in the risk scores between patients with different histologic grades or pathologic stages were analyzed by one-way ANOVA. Multivariate Cox regression analysis was presented for evaluating whether the risk score could be independent of other clinical features including pathologic stage and histologic grade.



CIBERSORT

CIBERSORT algorithm (http://cibersort.stanford.edu/) can characterize cell compositions of complex tissues based on the gene expression profiles (20). This algorithm is superior to other methods in terms of noise, unknown mixture content, and closely related cell types. CIBERSORT algorithm was employed to characterize immune cell compositions (including B cells naïve, B cells memory, plasma cells, T cells CD8, T cells CD4, naïve T cells, CD4 memory resting, T cells CD4 memory activated, T cells follicular helper, T cells regulatory (Tregs), T cells gamma delta, NK cells resting, NK cells activated, monocytes, macrophages M0, macrophages M1, macrophages M2, dendritic cells resting, dendritic cells activated, mast cells resting, mast cells activated, eosinophils and neutrophils) in ovarian cancer tissues.



Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data

The fractions of stromal and immune cells were inferred in each ovarian cancer sample using the ESTIMATE algorithm (https://sourceforge.net/projects/estimateproject/) (21). The differences in immune and stromal scores were assessed between high- and low-risk samples of ovarian cancer by Student' t-test.



Sensitivity to Chemotherapy Drugs

A total of 94 ovarian cancer-related chemotherapy drugs were collected from the Cancer Genome Project (CGP; version 2014). The pRRophetic package was employed to predict the clinical chemotherapeutic responses based on the gene expression profiles of ovarian cancer (22). The IC50 values of chemotherapy drugs were compared between high- and low-risk groups utilizing Student's t-test.



Somatic Mutation Analysis

The “Masked Somatic Mutation” data were obtained and processed with VarScan software (version 2), a method for the detection of somatic mutation and copy number variation in exome data (23). The maftools package (24) was adopted to analyze the MAF of the somatic variants. The “titv” function classified single nucleotide polymorphisms (SNPs) into transitions (Ti) and transversions (Tv). The overall distribution of the six different SNVs and the proportion of transitions in each sample were evaluated. The oncoplot of the top 30 mutated genes was depicted by the “ComplexHeatmap” function. The “somaticInteractions” function was used to detect mutually exclusive or co-occurring genomes, which were tested by Fisher's exact test.



Gene Set Enrichment Analysis

Pathways underlying the autophagy-related lncRNA signature were evaluated through GSEA package (25). The “c5.bp.v6.2.symbols.gm” gene set was curated from the Molecular Signatures Database, which was employed as a reference set. Terms with |nominal enrichment score (NES)| > 1.7 and nominal p < 0.05 were significantly enriched.




RESULTS


Screening Abnormally Expressed lncRNAs

Herein, we retrieved RNA expression profiles of ovarian cancer and normal ovarian tissues from TCGA and GTEx datasets. Totally, 590 lncRNAs with adjusted p ≤ 0.05 and |log2FC| ≥ 1 were abnormally expressed in 379 specimens of ovarian cancer in comparison with the normal ovarian cancer (Figures 1A–C). There were 373 upregulated (Supplementary Table 1) and 217 downregulated (Supplementary Table 2) lncRNAs for ovarian cancer. We separately displayed the top 20 upregulated (Table 1) and downregulated (Table 2) lncRNAs for ovarian cancer (Figure 1D).


[image: Figure 1]
FIGURE 1. Screening abnormally expressed long noncoding RNAs (lncRNAs) between ovarian cancer and normal ovarian specimens using TCGA and GTEx datasets. (A–C) Scatter, volcano, and heatmap diagrams for the up (red) and downregulated (blue) lncRNAs in ovarian cancer and normal samples. (D) Heatmap for the top 20 up and downregulated lncRNAs for ovarian cancer.



Table 1. The top 20 upregulated lncRNAs in ovarian cancer.
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Table 2. The 20 downregulated lncRNAs in ovarian cancer.
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Construction of an Autophagy-Related lncRNA Prognostic Signature in Ovarian Cancer

The correlation between abnormally expressed lncRNAs and autophagy-related genes was evaluated by Pearson's correlation analysis, which was visualized into the heat map (Figure 2A; Supplementary Table 3). With the criteria values of |correlation coefficient| > 0.4 and p < 0.001, we selected 66 autophagy-related abnormally expressed lncRNAs, as shown in Table 3. Using LASSO regression analysis, we determined the regression coefficients of the 14 lncRNAs in the model (Figures 2B,C). The risk score of each specimen of ovarian cancer was calculated as follows: AC084018.1 expression * (−0.008315282) + AC092171.2 expression * 2.84E-05 + AP000695.1 * 0.395692194 + GAS6-AS1 expression * 0.028077942 + LINC00174 expression * 0.010226196 + LINC00893 expression * (−0.013179597) + LINC00996 expression * (−0.214479586) + MEIS1-AS3 expression * (−0.093561265) + MIR22HG expression * (−0.007661823) + NEAT1 expression * (0.000320475) + TEX26-AS1 expression * (−0.061717576) + U73169.1 expression * (−0.263275905) + UBE2Q1-AS1 expression * (−0.589381398) + USP30-AS1 expression * (−0.114206463). Univariate Cox regression analysis results showed that AP000695.1 (HR: 1.73, 95% CI: 1.05–2.85, p-value: 0.033) was a risk factor of ovarian cancer while LINC00996 (HR: 0.422, 95% CI: 0.235–0.758, p-value: 0.00388) and USP30-AS1 (HR: 0.794, 95% CI: 0.677–0.931, p-value: 0.00464) were protective factors of ovarian cancer (Figure 2D). In Figure 2E, we visualized the distributions of the risk scores of the patients with ovarian cancer. Also, we found that the risk scores displayed associations with survival status (Figure 2F) and disease progression (Figure 2G).


[image: Figure 2]
FIGURE 2. Construction of an autophagy-related lncRNA signature in ovarian cancer. (A) Heatmap for the correlation between abnormally expressed lncRNAs and autophagy-related genes in ovarian cancer specimens. Red indicates positive correlation while blue indicates negative correlation. (B) LASSO coefficient profiles based on autophagy-related abnormally expressed lncRNAs in ovarian cancer samples. (C) Selecting the optimal parameter (λ) in the LASSO model. (D) Forest plots for the univariate Cox regression analysis results of autophagy-related abnormally expressed lncRNAs. (E) The distributions of the risk scores of patients with ovarian cancer. (F,G) The distributions of survival status (green: alive and red: dead) and disease progress (green: disease-free and red: recurred/progressed) for the patients with ovarian cancer. Black dotted line indicates the median value of the risk scores.



Table 3. A total of 66 autophagy-related abnormally expressed lncRNAs.
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Evaluation of the Autophagy-Related lncRNA Signature as a Robust Prognostic Factor in Ovarian Cancer

Herein, all the patients with ovarian cancer were randomly separated into the training set and validation set (both n = 187) in Table 4. Based on the median value of the risk scores, the patients were divided into high- and low-risk groups. Our data showed that there were distinct differences in OS time between the two groups in the training set (p = 3.08e-10), validation set (p = 1.91e-03), and the whole dataset (p = 9.9e-10; Figures 3A–C). Patients in the low-risk group had prolonged OS duration in comparison with those in the high-risk group. ROCs were conducted to validate the predictive performance of this signature. The area under the curves under 7-year survival were 0.717, 0.747, and 0.727 in the training set, validation set, and the whole dataset, respectively (Figures 3D–F).


Table 4. The clinical characteristics of patients with ovarian cancer.
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[image: Figure 3]
FIGURE 3. Evaluation of the autophagy-related lncRNA signature as a robust prognostic factor in ovarian cancer. (A–C) The Kaplan–Meier overall survival curves between high- and low-risk patients with ovarian cancer in the (A) training set, (B) validation set, and (C) the whole dataset. P-values for log-rank tests. (D–F) Receiver operating characteristics (ROCs) under 7-year survival in the (D) training set, (E) validation set, and (F) the whole dataset.




The Autophagy-Related lncRNA Signature as an Independent Prognostic Factor for Ovarian Cancer

We further evaluated the correlations between the risk scores and other clinical features in specimens with ovarian cancer. As a result, lowered risk scores were detected in grade 3 than grade 2 (p = 8.55e-04; Figure 4A). Meanwhile, we found that the risk scores increased gradually as the pathologic stages increased (Figure 4B). The AUCs under 3-, 5-, and 7-year survival time were 0.602, 0.651, and 0.727 for the patients with ovarian cancer, indicating the well-predictive performance of this signature (Figure 4C). Furthermore, compared with the other clinical characteristics including age (AUC = 0.536), pathologic stage (AUC = 0.497), and histologic grade (AUC = 0.508), there was a higher AUC value under 7-year OS time for the risk score (Figure 4D). The data suggested that this risk score might possess higher sensitivity and accuracy in predicting the prognosis of the patients with ovarian cancer. Multivariate Cox regression analysis demonstrated that this risk score could be independently predictive of the prognosis of the patients (HR: 2.31, 95% CI: 1.75–3.03, p = 2.64e-09; Figure 4E).


[image: Figure 4]
FIGURE 4. Evaluation of the autophagy-related lncRNA signature as an independent prognostic factor for ovarian cancer. (A,B) The distributions of the risk score in patients with ovarian cancer with different (A) histologic grades and (B) pathologic stages. (C) AUCs under 3-, 5-, and 7-year survival for the risk score. (D) AUCs under 7-year survival for the risk scores and other clinical features (age, pathologic stage, and histologic grade). (E) Multivariate Cox regression analysis of the risk score, pathologic stage, and histologic grade.




The Autophagy-Related lncRNA Signature Is Associated With Immune Cell Infiltration in Ovarian Cancer

Here, we adopted the CIBERSORT algorithm to infer the immune cell infiltration in samples with ovarian cancer. Figure 5A visualized the proportions of 22 kinds of immune cell components in ovarian cancer tissues. Also, we analyzed the correlations between distinct immune cells. In Figure 5B, there were strong correlations between B cells naïve and macrophages M2 (r = 0.93), between B cells memory and monocytes (r = 0.98), between T cells CD4 naïve and T cells CD4 memory resting (r = 0.98), between T cells follicular helper and Tregs (r = 0.97), between T cells follicular helper and T cells gamma delta (r = 0.96), between Tregs and macrophages M0 (r = 0.97), between T cells gamma delta and mast cells activated (r = 0.92), and between monocytes and mast cells activated (r = 0.95) in ovarian cancer tissues. Also, heatmap visualized the differences in the immune cell infiltrations between high- and low-risk samples of the ovarian cancer (Figure 5C). Compared with the low-risk group, there were lowered infiltration levels of macrophages M1 (p < 0.0001), mast cells resting (p = 0.007), plasma cells (p = 0.003), T-cell CD8 (p = 0.016), and T-cell follicular helper (p = 0.001) and also higher infiltration levels of macrophages M2 (p = 0.003), mast cells activated (p < 0.0001), and neutrophils (p = 0.036) in the high-risk group (Figure 5D).


[image: Figure 5]
FIGURE 5. Association between the autophagy-related lncRNA signature and immune cell infiltration in ovarian cancer. (A) The proportions of different immune cell components in ovarian cancer tissues. (B) Heatmap for the correlations between different immune cells. The darker the color, the greater the |correlation coefficient|. Red: positive correlation and blue: negative correlation. (C) Heatmap for the infiltration levels of immune cells in the high- and low-risk samples with ovarian cancer. (D) Box plots for the differences in infiltration levels of immune cells between the high- and low-risk samples with ovarian cancer.




The Autophagy-Related lncRNA Signature Is Associated With Immune Checkpoints in Ovarian Cancer

Herein, we observed whether the autophagy-related lncRNA signature was associated with the expression of immune checkpoints in ovarian cancer tissues. Higher LSECtin expression was found in the high-risk group compared with the low-risk group (Figure 6A). Furthermore, there was distinctly decreased PD-L1 expression in the low-risk group compared with the high-risk group (p = 2.79e-04; Figure 6B). We also assessed the correlations between the risk scores and immune or stromal scores. As a result, higher immune scores and lower stromal scores were detected in the high-risk samples compared with the low-risk samples, which were not statistically significant (Figures 6C,D).


[image: Figure 6]
FIGURE 6. Associations between the autophagy-related lncRNA signature and immune checkpoints in ovarian cancer. (A,B) Box plots for the expression of immune checkpoints (A) LSECtin and (B) PD-L1 in the high- and low-risk groups. (C,D) Box plots for the (C) immune and (D) stromal scores in the high- and low-risk groups.




Prediction of the Sensitivity to Chemotherapy Drugs Based on the Autophagy-Related lncRNA Signature

Based on the gene expression profiles, we predicted the responses to 94 chemotherapy drugs in each patient with ovarian cancer. Among them, there were significant differences in responses to 29 chemotherapy drugs with p < 0.05 between high- and low-risk patients with ovarian cancer, including CHIR.99021, methotrexate, cisplatin, bicalutamide, FH535, midostaurin, bexarotene, vinblastine, embelin, A.770041, bryostatin.1, GSK269962A, FTI.277, dasatinib, XMD8.85, WH.4.023, WZ.1.84, Obatoclax.Mesylate, thapsigargin, EHT.1864, cyclopamine, imatinib, RO.3306, AS601245, QS11, BMS.536924, mitomycin.C, JNK.9L, and etoposide (Figure 7; Supplementary Table 4).


[image: Figure 7]
FIGURE 7. Forest plots for the differences in IC50 values of chemotherapy drugs between the high- and low-risk samples with ovarian cancer.




Somatic Mutation Landscapes in Ovarian Cancer

We further analyzed the somatic mutation landscapes in specimens of ovarian cancer. Both in the high- (Figure 8A) and low-risk (Figure 8B) samples, missense mutation was the most common mutation type. TP53 was the top-ranked mutated gene, followed by TTN. C > T mutation had the highest proportion in the two groups (Figures 8C,D). Furthermore, potential druggable categories targeted mutated genes were predicted, such as the druggable genome, clinically actionable, and kinase in the high- (Figure 8E) and low-risk (Figure 8F) samples. Approximately 98.48% of samples occurred genetic mutations in the high-risk samples (Figure 9A) and 99.28% of the occurred mutations in the low-risk samples (Figure 9B). Many genes co-occur in cancer or show strong exclusivity in their mutation patterns. Here, we visualized the close interactions between the mutated genes in the high- and low-risk samples (Figures 9C,D).


[image: Figure 8]
FIGURE 8. Somatic mutation landscapes in ovarian cancer. (A,B) The summary of mutation types and mutated genes in the high- and low-risk samples with ovarian cancer. (C,D) The overall distribution of the six different Single-nucleotide variants and the proportion of transitions in the high- and low-risk samples with ovarian cancer. (E,F) Druggable categories based on the mutated genes in the high- and low-risk samples.



[image: Figure 9]
FIGURE 9. Mutated genes and their interactions in ovarian cancer. (A,B) Oncoplots for the top 30 mutated genes in the high- and low-risk samples with ovarian cancer. (C,D) The interactions between the mutated genes. The darker the color, the stronger the co-occurrence.




Significant Signaling Pathways Underlying the Autophagy-Related lncRNA Signature

To explore the significant signaling pathways underlying the autophagy-related lncRNA signature, this study carried out GSEA by comparing high- and low-risk groups. As shown in Figure 10, we observed that ribosome (NES = 1.90 and nominal p = 0.019), oxidative phosphorylation (NES = 1.76 and nominal p = 0.037), and Parkinson's disease (NES = 1.74 and nominal p = 0.035) were markedly activated in the high-risk group. Meanwhile, various types of N-glycan biosynthesis (NES = −1.84 and nominal p = 0.002), lysosome (NES = −1.87 and nominal p = 0.002), and circadian rhythm (NES = −2.08 and nominal p < 0.0001) were enriched significantly in the low-risk group.


[image: Figure 10]
FIGURE 10. Significant signaling pathways underlying the autophagy-related lncRNA signature by Gene set enrichment analysis.





DISCUSSION

As per a previous study, 17 autophagy-related lncRNAs have been identified as prognostic predictors of ovarian cancer (26). Nevertheless, a single autophagy-related lncRNA often has limited predictive power. Furthermore, the established clinical prognostic biomarkers have limited accuracy and specificity. It has been confirmed that gene models exhibit higher predictive power than a single gene (5). This study employed the LASSO regression method to establish an autophagy-related lncRNA signature containing AC084018.1, AC092171.2, AP000695.1, GAS6-AS1, LINC00174, LINC00893, LINC00996, MEIS1-AS3, MIR22HG, NEAT1, TEX26-AS1, U73169.1, UBE2Q1-AS1, and USP30-AS1 for ovarian cancer based on abnormally expressed autophagy-related lncRNA profiles. After verification, this signature robustly and independently predicted the survival outcomes of the patients with ovarian cancer. Among the 14 lncRNAs in this signature, GAS6-AS1 exerts a carcinogenic effect in the breast cancer (27) and hepatocellular carcinoma (28). LINC00174 promotes glioma progression via miR-152-3p/SLC2A1 axis (29). LINC00893 suppresses papillary thyroid cancer by inactivating the AKT pathway and stabilizing PTEN (30). USP30-AS1 expression is related to autophagy in the bladder urothelial carcinoma (31). More experiments require to verify the regulatory roles of these lncRNAs on autophagy.

As immunogenic cancers, the spontaneous anticancer immune responses may increase survival duration, and the immune escape may cut down survival duration (32). In the recent years, several immune-based strategies such as immune checkpoint inhibition, vaccination, and antigen-specific active immunotherapy have been developed in ovarian cancer (33). The immune-suppressive networks in the tumor microenvironment have been considered for immunotherapy implementation (34). The immune-related markers may be utilized for predicting the responses to immunotherapy (35). Hence, the interactions between molecules and tumor microenvironment require in-depth exploration. Our study demonstrated that the autophagy-related lncRNA signature was in relation to infiltrations of macrophages M1, mast cells resting, plasma cells, T-cell CD8, T-cell follicular helper, macrophages M2, mast cells activated, and neutrophils, indicating the crosstalk between these autophagy-related lncRNAs and immune cells. Consistently, Deng et al. identified a novel autophagy-related lncRNA model that was distinctly related to the infiltrations of immune cells in pancreatic cancer (36). Ovarian cancer represents a low immune-reactive malignancy with restricted immune cell infiltrations and extensive immunosuppressive T cell infiltrations (37). Tumors positive for PD-L1 usually exhibit a higher response to immune checkpoint inhibition therapy, and highly expressed PD-L1 is a predictor of undesirable clinical outcomes (37). Here, our data showed that the low-risk ovarian cancer patients had higher PD-L1 expression in comparison to those with high risk.

Chemotherapy (platinum and taxanes) plays a fundamental role in adjuvant therapy against ovarian cancer (38). Despite the initial response to this therapy, most of the patients diagnosed with ovarian cancer developed chemotherapy resistance (39). This resistance may be driven by a range of mechanisms. Hence, it is of importance to develop individual markers for the prediction of the sensitivity to chemotherapy. Our data showed that the risk scores were in relation to 29 chemotherapy drugs such as cisplatin, indicating that the autophagy-related lncRNAs were involved in chemotherapy sensitivity, as a previous study (11).



CONCLUSIONS

Collectively, this study provided a knowledge base of novel autophagy-related lncRNAs in ovarian cancer, improving the understanding of the functions of lncRNA on the regulation of autophagy in ovarian cancer. We established an autophagy-related lncRNA signature as a robust prognostic marker for the prediction of survival outcomes, immunotherapy response, and chemotherapy sensitivity. Our findings may assist to precisely guide therapeutic strategies for individual patients with ovarian cancer in clinical practice.
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Parkinson's disease (PD), a neurodegenerative disorder characterized by distinct aging-independent loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) region urging toward neuronal loss. Over the decade, various key findings from clinical perspective to molecular pathogenesis have aided in understanding the genetics with assorted genes related with PD. Subsequently, several pathways have been incriminated in the pathogenesis of PD, involving mitochondrial dysfunction, protein aggregation, and misfolding. On the other hand, the sporadic form of PD cases is found with no genetic linkage, which still remain an unanswered question? The exertion in ascertaining vulnerability factors in PD considering the genetic factors are to be further dissevered in the forthcoming decades with advancement in research studies. One of the major proponents behind the prognosis of PD is the pathogenic transmutation of aberrant alpha-synuclein protein into amyloid fibrillar structures, which actuates neurodegeneration. Alpha-synuclein, transcribed by SNCA gene is a neuroprotein found predominantly in brain. It is implicated in the modulation of synaptic vesicle transport and eventual release of neurotransmitters. Due to genetic mutations and other elusive factors, the alpha-synuclein misfolds into its amyloid form. Therefore, this review aims in briefing the molecular understanding of the alpha-synuclein associated with PD.
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INTRODUCTION

Parkinson's disease (PD) is the second most common neurodegenerative disorder that falls under the category of synucleinopathy (1). PD is characterized by distinct aging-independent loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) region and the decrease in dopamine levels (2). Possibly, PD leads to the loss of terminal ends of striatum, which occurs before the neuronal loss in SNpc and; it seems to be more significant in disease pathogenesis (3). About 95% of PD cases are sporadic with no genetic linkage. Mostly, PD has its mean age of onset at 55 years with increased incidences with aging (1). PD is the most common disorder in a range of disorders classified as Parkinsonism characterized by dopamine deficiency and striatal damage.

In early stages of PD, the patients are pre-symptomatic with possible pathological changes of dorsal motor nucleus of vagus in medulla and the anterior olfactory nucleus of olfactory bulb followed by changes in locus ceruleus neurons of pons and dopaminergic neurons of substantia nigra. Hence, the smell and taste disturbances may be early clinical features of PD. During later stages, the pathology spreads to amygdala, basal forebrain, and medial temporal lobe structures. Neocortex is affected in final stages of the disease. Wherein, these stages are based on Braak's PD staging scheme (2, 4).

PD is characterized by motor symptoms such as bradykinesia, hypokinesia, akinesia, hypomimia, hypophonia, drooling, swallowing problems, micrographia, decreased stride length during walking, rigidity (stiffness of limbs), postural instability, and resting tremors (5). Some of the non-motor symptoms of PD include sleep disorders, depression, memory impairment, lack of initiative, delayed response, slowed cognition, passiveness, psychosis, and confusion (6–9). Pain is the most common non-motor symptom in PD patients and it may occur even before the motor symptoms. Hence, these symptoms may not share the same pathogenic pathways. Nociceptive dysfunction in the peripheral primary afferent nerves leading to abnormal sensory input and degeneration has been hypothesized as a possible reason for the early-stage pain symptoms and impaired response to pain stimuli (10).

Other parkinsonian disorders and related atypical parkinsonian disorders are caused by multiple system atrophy (MSA), tauopathies, or progressive supranuclear palsy (PSP) and cortico-basal degeneration (CBD) (7).

The most pathological hallmark of PD is Lewy bodies (LB). Lewy bodies are intraneuronal inclusions that contain immunoreactive alpha-synuclein aggregates which may also contain various neurofilament proteins as well as proteins involved in proteolysis such as ubiquitin. Predominantly, the cell death is caused by disruption of nuclear membrane integrity and release of alpha synuclein aggregation promoting nuclear factors like histones. Alpha synuclein may spread to other cells by direct or indirect means once aggregation starts. When compared with unaffected normal individuals, around 50–70% of neurons are lost in this region, at the time of death in patients with PD (11–13). Some studies suggest that LBs are the cell's defensive mechanism to prevent intracellular protein aggregate accumulation, while other studies suggest LBs to have a pathogenic role in PD. Therefore, LBs are an area of controversy in PD. LB formation may activate pathways for neuronal dysfunction and cell death (2, 4).

Mutations in the alpha-synuclein gene are responsible for some familial cases of PD with LB, whereas mutations in the Parkin gene cause a parkinsonian syndrome without LB in early-onset cases. Furthermore, Parkin proteins cause ubiquitination of the alpha-synuclein by interacting with synphilin-1 and thus promote the formation of LB (14–16). Mutations in genes coding the proteins involved in ubiquitin-proteasome system (UPS) and some deubiquitinating enzymes have been linked to PD. UPS removes unwanted proteins inside the cell and maintains many intracellular processes for cell viability (5).

This review offers an analytical assessment of the literature designating the possible role of the genes involved in causing PD. The information was collected from the molecular, cellular, and computational studies from various library databases and search engines. Hence, this article helps in providing a better understanding over the impact of the alpha synuclein and its mutations causing PD in terms of the molecular and neurological perspectives.



OVERVIEW ABOUT THE AMYLOIDOSIS IN NEURODEGENERATIVE DISORDERS

The pathological commonality among predominant neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD), PD, prion disorders, and amyotrophic lateral sclerosis (ALS) are protein aggregation and the formation of inclusion bodies. The aggregates also called as amyloids, are composed of fibers and fibrils consisting aberrant misfolded proteins rich in beta-sheets. Amyloid deposition is directly associated with cellular deterioration and neuronal malfunction. It is also insinuated to effectuate endoplasmic reticulum, oxidative stress, mitochondrial, and proteasomal dysfunction, thus eventually causing neuronal waning. While mutations are culpable behind protein misfolding, sporadic causes attributed to other genetic and environmental variables. Increasing reports from various studies have elucidated the better comprehension of biochemical pathways associated with protein aggregation. Chief pathways suspected to cause protein aggregation include unfolded states/unfolding intermediates mediated physical aggregation, aggregation propelled chemical linkages, or protein self-association and aggregation mediated via chemical degradations (17–20).



DISORDERED PROTEINS INVOLVED IN PATHOGENESIS OF PARKINSON'S

Primarily, the accumulation of misfolded proteins has been suggested to be the cause of PD. Mutations in alpha-synuclein (SNCA), ATP13A2, GBA, FBX07, VPS35, PLA2G6, DNAJC6, SYNJ1, UCHL1, parkin (PRKN), LRRK2, PINK1, and DJ-1 genes has been identified to cause familial early onset PD by causing abnormal protein conformations and disrupting the ability of cellular machinery to clear the misfolded proteins (Figure 1) (6, 21). Pdr-1 (Parkin gene) and PINK1 mutants in C. elegans have been found to exhibit defective dopamine dependent behavior.
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FIGURE 1. Mechanisms of Neurodegeneration in PD.


ATP13A2 encodes cation-transporting ATPase 13A2 that partakes in maintaining mitochondrial, lysosomal, and neuronal integrity. Its chief function involves transporting divalent transition metal cations. On the other hand, Glucosylceramidase beta encoded by GBA gene, is implicated in glucocerebroside's hydrolyzation. While, FBXO7 gene translates into F-box only protein 7 that is involved in mitophagy. VPS35 encodes Vacuolar protein sorting-associated protein 35, which participates in autophagy by transporting proteins across Golgi apparatus and vesicular structures. Next, gene PLA2G6 translates into an 85–88 kDA protein, which is calcium-independent phospholipase A2. It is also involved in regulating phospholipid remodeling and fatty acids' release from phospholipids. In addition, it has been implicated in prostaglandin and leukotriene production, and in nitric oxide/vasopressin mediated arachidonic acid release. DNAJC6, on the other hand, encodes putative tyrosine-protein phosphatase auxilin that partakes in neuronal clathrin-mediated endocytosis. Further, SYNJ1 translates into Synaptojanin-1, which is a phosphoinositide phosphatase enzyme that modulates PIP2 in membrane. Next, Ubiquitin carboxyl-terminal hydrolase isozyme L1 is encoded by geneUCHL1. It is a deubiquitinating enzyme that produces monomers of ubiquitin, suspected to regulate monoubiquitin's degradation in lysosomes. And, PRKN translates to E3 ubiquitin-protein ligase parkin, a ubiquitin ligase that participates in effacing damaged or misfolded proteins (22).

The pdr-1 and PINK1 mutants had greater accumulation of dysfunctional mitochondria with age, leading to the activation of mitochondrial ubiquitin proteasome response. By this way, the prevention of upregulation of ubiquitin protein response was found to reduce dopaminergic neuron lifespan and lead to their loss in C.elegans (23). PINK1 and Parkin were found to regulate the mitochondrial quality control in neurons by removing damaged mitochondria (with reduced membrane potential, increased ROS production, defective electron transport chain, or accumulation of unfolded proteins) through autophagy and thus replacing the damaged mitochondria. Mutations in either PINK1 or Parkin can alter this mechanism and lead to mitochondrial dysfunction, which is found to be prevalent in PD neurons (24). LRRK2 is the most common gene involved in sporadic PD, while the other gene defects cause only a small number of familial PD cases; however, they provide information on the proteins involved and disease mechanism (25). Point mutations in alpha-synuclein gene has been identified to cause early-onset PD in an autosomal-dominant way and the overexpression of gene has been found to cause late-onset or sporadic cases of PD (26). LRRK2 gene codes for the dardarin protein and this gene is the most common cause of familial or sporadic PD. LBs have been found in PD cases involving LRRK2 (27). LRRK2 G2019S mutation (substitution of glycine to serine at codon 2019) accounts for the majority of familial cases and 1.6% of sporadic cases of PD even though its prevalence is variable (28). Single gene mutations in Parkin and DJ-1 cause early-onset PD and these mutations are inherited by autosomal-recessive pattern. Abnormalities in mitochondrial Complex I of oxidative phosphorylation enzyme pathway have been consistently found to cause mitochondrial defects by inducing oxidative stress, increasing the production of reactive oxygen species along with superoxides that can target the electron transport chain to accelerate their own production and energy failure leading to PD pathogenesis (29). Dopaminergic neurons are particularly vulnerable to oxidative stress reactive oxygen species mediated mitochondrial dysfunction because the metabolism of dopamine produces superoxides radicals, hydrogen peroxide, and DA-quinone (produced by auto-oxidation of dopamine) which damage the cells. However, the directs links between ROS generation, defects in oxidative phosphorylation, and PD pathology are not strong and convincing, because of the rare occurrence of Parkinsonism in patients with mutations affecting oxidative phosphorylation. Mitochondrial defects have been suggested to cause cell death and dysfunction in PD, which could occur due to the inherited defective mitochondrial DNA or mutations in mitochondrial genome caused by possible systemic toxicity. Deregulation of kinase signaling, disruption of signaling mechanisms in dopaminergic neurons and endoplasmic reticulum stress are also key molecular mechanisms in PD (30, 31). PINK1 gene codes for a mitochondrial complex that has been shown to be responsible for autosomal-recessive form of PD, but it is not a major risk factor of sporadic PD. Programmed cell death has been suggested to cause the neuron cell death in PD, but whether it causes cell death due to abnormal pathway or to clear cells injured and damaged by the pathological mechanisms of PD is still not clear (6, 8, 32).

Furthermore, Franco et al. have compiled the aforementioned genes' functionalities in terms of their biochemical, biomolecular, network interactions, and pathway analysis from various in silico, in vitro, and in vivo studies, to formulate putative mechanism: due to genetic mutations observed in the afore mentioned list of genes, involved in protein processing and vesicular trafficking, native alpha synuclein's normal processing is hindered and altered (22).



STRUCTURAL ARCHITECTURE AND DISEASE-CAUSING MUTATIONS IN ALPHA SYNUCLEIN (AS)

Alpha synuclein is a small (14 kDa), intrinsically disordered protein with 140 amino acids that is highly charged and coded by SNCA (synuclein) gene, which is mainly expressed in CNS (33). Alpha synuclein is predominantly found at the presynaptic terminals, where it associates with synaptic vesicles. Alpha synuclein belongs to the synuclein family, which also includes gamma and beta synucleins. One percentage of the total proteins of neuronal cytosol are comprised of AS. AS has an amphipathic N-terminus consisting of 7 imperfect sequence repeats of 11 residues with a possible alpha helix structure that facilitates lipid binding and a potential role in aggregation. Further, the non-amyloid component (NAC) at the C- terminus facilitates calcium binding and inhibits protein aggregation (34).

Moreover, NMR structure of human alpha-synuclein reported by Ulmer et al. indicates that amino acids in-between 3–37 and 45–97 forms alpha-helices (curved), joined by linker (extended) organized in an unprecedented anti-parallel manner. Then, a notably high mobile tail spans in-between 98 and 140 amino acid range. The well-organized orientation of helical connector implicates a demarcated association with lipidic surfaces, indicating a notion that, when adhered to synaptic vesicles with larger diameter, it can function as a modulator between the aforementioned structure and an uninterrupted helical model that was postulated earlier (35).

AS is involved in synucleinopathies like PD (both familial and sporadic), multiple systems atrophy and dementia with LB; however, the physiological function of AS is still unknown. Researchers suggest that AS could potentially play a role in cell function regulation, dopamine release regulation, vesicular trafficking, and oxidative stress. Removal of AS gene in mice has been found to cause the loss of dopaminergic neurons, striatal dopamine reduction, and absence of dopamine-induce locomotive responses mediated by dopamine transporter (DAT) (4). Missense point mutations of the N-terminal (A53E, A53T, A30P, E46K, H50Q, and G51D) have been strongly correlated with autosomal dominant form of PD, while, the duplication and triplication of AS gene have been shown to be involved in familial PD cases with early onset (36). Mutant AS proteins vary in only a few amino acid residues but result in a significant change in their conformation and the type of aggregates formed (37). There is no explanation for this phenomenon to date. AS inclusions are found to be usually hyperphosphorylated at various sites including Ser129, Ser87, and Tyr125 in LB (38, 39). Mutant AS protein (A30P and A53T disease mutations) involved in familial PD have been shown to be structurally defective for membrane binding, leading to alteration of the protein's binding properties (40). Wild-type AS has been observed to form two different dimers and; the single point mutations (A30P, E46K, and A53T) have been suggested to promote dimerization of AS. Moreover, the structural homogeneity of these dimers has been suggested to lead in different aggregation pathways (41). In a mutation-frequency analysis conducted on Japanese patients, the SNCA p.A53V homozygous mutation was found to cause distinct phenotype of progressive Parkinsonianism and cognitive decline similar to SNCA missense mutation. Particularly, the two newly discovered mutants of AS viz., A18T and A29S were found to aggregate faster than wild-type AS with greater propensity for aggregation. Furthermore, the A18T mutant was found to have faster aggregation kinetics compared to A29S and hence, it makes the protein more sensitive to aggregation by modifying its native conformation (42). Of note, the broken helix structure of AS, which consists of two antiparallel membrane bound helices connected by a non-helical linker causes the protein to interact with synaptic vesicles docked at the plasma membrane. Phosphorylation of tyrosine at position 39 (Y39 phosphorylation) in AS, in vitro, was found to free the protein from the membrane surface of vesicles by decreasing the binding of helix-2 in the broken helix state. In addition, this effect was found to be similar to the effect of G51D mutation (43). The peptide (1a) consisting of residues 36–55 of AS was found to form a beta hairpin structure that subsequently assembled into a triangular trimer. Full length AS has been suggested to from such an assembly with evidences from molecular modeling. Also, this 1a peptide was able to bind anionic lipid bilayers membranes and nucleate the oligomerization of AS (44). Recently in a study of 426 Italian PD patient, the 263 bp allelic variant of Rep-1 (D4S3481 microsatellite), present upstream of the SNCA gene translation start site, was found to raise the risk of hallucinations and dementia in patients carrying this variant compared to the non-carriers (45). Chinese PD patients have been found to have lower resting-state brain activity in the lingual gyrus and left caudate, when the amplitude of low-frequency fluctuation (ALFF) values of the brain was compared between the PD patients and healthy controls. Furthermore, the participants carrying the rs894278 single nucleotide polymorphism in SNCA gene, also called as the G allele, were found to have lower ALFF values in the right fusiform compared to non-carriers of the G allele. This study suggests that PD may also alter the brain connections (46).

Apart from aforementioned mutations, certain genetic polymorphism in SCNA can be accredited toward enfeebling sporadic PD. Reports have shown that SNPs: rs7684318, rs894278, and rs2572324 have be known to enhance susceptibly toward sporadic PD. Further, missense mutations A29S and A18T were found in patients with sporadic PD (47). Also, a study conducted in Japanese population states that SNPs rs2736990 and rs356220 were considerably associated with sporadic PD risk (48).

Due to various genetic mutations and other obscure biomolecular circumstances, AS pathogenically misfolds and transmutes into amyloid fibrils that are rich in beta-sheets. Solid state NMR structure of pathogenic AS fibrils was presented by Tuttle et al. it was reported that AS fibril had more than 200 distinctive long-range distance restraints that delineates a consensus structure possessing characteristics such as hydrophobic-core residues and in-register β-sheets, and diverse residual framework such as a glutamine ladder, intermolecular salt bridge, small residues mediated close backbone interactions, and various other steric zippers that stabilizes the orthogonal Greek-key topology (49). However, it should be noted that amyloid fibrils are usually polymorphic: capable of existing in multiple viable forms (50). Recently, Guerrero-Ferreira et al. had reported two new polymorphic structures of AS fibrils, which evince distinct morphological features (51).



NEUROTOXIC EFFECT OF AS IN PD

AS is associated with calcium homeostasis and its overexpression may disrupt calcium homeostasis making dopaminergic neurons vulnerable to damage (52). Besides, AS has been suggested to have good affinity to phospholipid membranes, especially the synaptic vesicles with a preference for membranes with high curvature and specific membrane microdomains (53). AS has been found to regulate synaptic vesicle distribution and presynaptic terminal size. In specific, the N-terminal alpha helix helps in its lipid-binding capability (54). Increase in AS levels has been suggested to decrease dopamine as well as glutamine neurotransmission by interacting with the SNARE protein complex, modulating endoplasmic reticulum-golgi vesicular trafficking, inhibiting vesicular priming, and reducing synaptic contact (38). Overexpressed monomeric wild-type AS has been shown to inhibit vesicle endocytosis and impair neurotransmission. AS has been suggested to cause PD by disrupting the synthesis, storage, recycling, reuptake, and efflux of dopamine (55). Increased levels of AS has also been found to reduce active tyrosine hydroxylase (TH) enzyme that is involved in the production of dopamine by stabilizing TH in its inactive form. AS overexpression was found to attenuate vesicular monoamine transporter 2 (VMAT2) activity. Thus, the dopamine is stored in synaptic vesicles via VMAT2 after its production to reduce the oxidative damage from its metabolites. Increased cytosol concentration of dopamine due to the reduction of VMAT2 activity by AS has been proposed as a possible neurotoxic pathway in PD (56). Dopamine transporter (DAT) has been associated with dopamine trafficking, but whether it increases or decreases DAT levels is still a debate because of evidence supporting both sides (57). DAT knock-out mice showed high extracellular dopamine levels and low intraneuronal dopamine concentration; thus, DAT is important for neurotransmission and its activity (especially decreased dopamine uptake as well as increased dopamine clearance and efflux) upon disruption by AS can cause PD. Most of these proposed functions of AS rely on its membrane binding capacity (38, 39, 58–61). In vivo, AS is distributed as unstructured, cytosolic, soluble, and partially membrane-bound state. Of note, the equilibrium between the structured and unstructured states or the balance of the order and disorder of AS conformations at the surface of membranes has been suggested to influence the biological functions of the protein and also lead to the aggregation of the protein due to detachment from the membrane (62). Membrane binding by AS requires a conformational transition into a highly helical state and this is promoted by the amphipathic N-terminal. Moreover, the C-terminal of AS was found to be highly disordered and the NAC domain has been found to be highly structured in beta-sheet conformation in the amyloid state of AS (59). AS oligomers were found to stabilize and enhance pre-existing defects in supported lipid bilayers (SLBs) of 1-palmitoyl-2-oleoyl-sn-glycero-3phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine(POPC/POPS). Particularly, the exposed lipid acyl chains at the edges of membrane defects were suggested to promote the membrane-oligomer interactions resulting in the development of fractal domains lacking lipids. The growth of membrane damage pattern did not depend on the lipid- oligomer interaction suggesting an oligomer-dependent, diffusion limited extraction mechanism for the enhancement of membrane damage by AS oligomers (63).

AS may not form pores in membranes or induce damage by itself but enlarges previous membrane defects instead. The synphilin-1 proteins have been found to be accumulated abnormally in AS inclusions of synucleopathies (64). AS and neuroinflammation mediated by the inflammatory response through microglial activation have been suggested to potentiate each other. Misfolded AS may activate microglia by increased expression of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Following stimulation by AS, receptors (TLRs, CD36, and FCγR) as well as signaling molecules (galectin-3, MMPs, and PHOX) have been proposed to join the microglial response to activate signaling pathways (NF-κB and MAPKs). These pathways further contribute to PD progression (65) (Figure 2).
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FIGURE 2. Info graph elucidating the various repercussions that can be observed in a neuron during PD.


Aberrant AS is also suspected to affect protein degradation systems. It was reported that malformed AS, under certain circumstances can trigger proteasomal dysfunction in vitro and in vivo. Further, mutant AS could also affect the lysosomes by impairing CMA, which in turn could induce macroautophagy that has a notable influence on neuronal survival. Also, AS is reckoned to influence dynamics of cytoskeletal system. Studies have shown that AS could interact and impact actin polymerization to affect cellular trafficking; substantial deviations on actin were reported, between native and A30P AS mutant. These findings indicate that apart from aberrant AS's neurotoxic role, it can also venture into aforementioned pathological digressions to propel PD disorder (34).



MECHANISM OF AS AGGREGATION

AS aggregation was found to be triggered by Cu(II) in conditions relevant to PD. Two independent Cu(II) binding sites with varying affinities in the N-terminus of AS were identified and the complex formation between the high affinity site of AS as well as Cu(II) was found to be critical to the metal-mediated fibrillation process. However, this complex formation is also hypothesized to make the protein vulnerable to oxidative damage. Presence of a truncated C-terminal was found to accelerate the process due to reduction of the non-aggregation activity of the C-terminal (66). The formation of N-terminal acetylated AS- Cu(I) complex at the N-terminal site I has been found to stabilize local conformations with alpha-helical secondary structure and restricted motility. Besides, the formation of this complex with stabilized helically folded structure may occur in vivo and also, affect the membrane binding and aggregation capability of the N-terminal acetylated AS (67). AS proteins lacking residues 109–140 in the C-terminal were found to form amyloid fibrils with strongly twisted beta-sheets, an increased beta-sheet distance, higher solvent exposure compared to monomeric wild-type AS, and incompatibility with the wild-type monomeric AS (68). Acetylation of the N-terminus of naturally occurring AS was found to perturb its ability to bind Cu2+ and the presence of the H50Q missense mutation along with the N-terminal acetylation prevented copper binding (69). Over expression of AS in frozen-hydrated primary midbrain neurons was found to increase intracellular Mn levels with reduction in levels of Ca, Zn, K, P, and S. Cu/Mn and Fe/Mn levels were found to have a strong correlation with AS overexpression. Mn release from the cells was also found to be reduced (70). Clioquinol was found to reduce the interaction between iron and A53T mutant AS in transgenic mice with improved phenotype (71). These studies suggest the involvement of transition metals in AS aggregation mediated PD pathology and suggest the regulation of these metal levels as a potential therapeutic strategy.

Tubulin polymerization promoting protein (TPPP/p25) has been found to co-localize with AS and induce its aggregation (especially oligomers and protofilaments) by forming a complex even though they are produced by different cells—oligodendrocytes and neurons, respectively. TPPP/p25 has been shown to be present in LB. Both of these are Neomorphic Moonlighting Proteins. TPPP/p25 is also a chameleon protein with high conformational plasticity and it is involved in physiological functions such as regulation of microtubules. Hence, targeting it with therapeutic drugs is difficult. A study on the chameleon TPPP/p25 protein- AS complex using NMR, CD spectroscopy, ELISA, and PCR followed by computational study using charge-hydropathy plot (CH-plot) and cumulative-distribution function plot (CDF-plot) has proposed that the interface between the two proteins in the pathological complex is a potential target for therapeutic drugs (72, 73). TPPP/p25α has also been shown to promote release of AS through exophagy and impairment of autophagosome formation/trafficking and lysosomal dysfunction preventing the degradation of AS (74). Cross-seeding between wild-type, A30P and A53T AS variants that vary in only one or two amino acid residues but result in different fibril morphologies were studied. Wherein, the study suggested that similarity of conformations of the seeds and monomers is essential for seed elongation (37). Further, the morphology of wild-type AS fibrils has been suggested to be determined by competitive growth between different polymorphs during fibrillation and slow maturation or annealing process of fibrils (75). AS was found to bind strongly with lipid membranes of large unilamellar vesicles with anionic or zwitterionic headgroups in vitro and this binding is suggested to reduce the protein-protein interactions of AS that lead to fibrillation. Recent updates in research pertaining to PD and AS is delineated in Table 1.


Table 1. Table delineating the recent research updates pertaining to AS and PD.
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OVERVIEW OF THERAPEUTICS TARGETING AS

Presently, there are no effective therapeutics contrived for PD, but medication/surgery alleviates the symptoms and ameliorates motor impairments. A prudent way to effectively alleviate PD would be to target one of its crucial causatives, AS. Recently, various therapeutic strategies have been formulated, to encumber AS's toxic effect. One such strategy would be to control transmission by blocking AS receptors. LAG3-directed antibodies were reported to substantially regulate aberrant AS induced toxicity. Concurrently, silencing AS expression in mouse and rat brain models through shRNA and siRNA was also reported. Further, an oligomer regulator: Anle138b [3-(1,3-benzodioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole] was able to hinder the synthesis and accumulation of AS oligomers. Additionally, numerous small molecule-based inhibitors have been elucidated to impede AS aggregation. One such inhibitor: Methylthioninium was found to effectively control AS fibrillar inclusions in vitro and in vivo. Besides, numerous phytochemical and plant extracts were also found to effectively modulate AS aggregation in PD models. Lately, the use of phytochemicals to target AS aggregated has gained a lot of attention and focus in the research community (96, 97).



COMPUTATIONAL STUDIES ON AS

Using Monte Carlo (MC) computational methods (Replica Exchange MC and Canonical Protein MC, Molecular Dynamics (MD) based on CHARMM force field and AMBER force field were used in various studies to disintegrate the mutational effect on AS protein. On the other hand, virtual screening, docking using AUTODOCK (using Lamarckian Genetic Algorithm) and Interaction Potentials for assessment of protein druggability (MD- based DruGUI) were used to analyze the effect of drug molecules and other lead compounds on compact structures of AS in aggregates. Moreover, the regions of the protein that exhibit extended variable beta-sheet structure with a potential role in aggregation and the protein druggability for potential drugs inhibiting aggregation has been studied extensively (98). Notably, 332 genes that affect AS toxicity were identified using genome-wide screens of yeast. Later, these genes were used to map the human counterparts by using a newly developed computational method topology called Transpose Net that integrates Steiner prize-collecting approach with homology assignment through sequence, structure and interaction. Gene interaction profiles of ATP13A2/PARK9 and VPS35/PARK17 and network relationships between the genes LRRK2/PARK8, ATXN2, RAB7L1/PARK16, and EIF4G1/PARK18 were identified and confirmed in induced pluripotent stem cell (iPSC) derived neurons following the computational mapping (99).

Computational study using molecular dynamics simulations and modeling has been used to reveal varying aggregation effects in distinct protein conformational disorders (100–105). Thus, MD studies have revealed that the NAC domain of AS monomers strong interacts with the amyloid beta monomers. In specific, the cross-seeded NAC-amyloid beta oligomers were found to show polymorphism with the NAC oligomers preferring to form double layer conformations with amyloid beta over single layer conformations. Further, the self-assembled NAC oligomers with three beta strands connected by two turns were found to affect the secondary structure of self-assembled amyloid beta oligomers. Distinctly, the inner core distance values of NAC oligomers remained unchanged in cross-seeded NAC-amyloid beta oligomers but the inner core distance values in single layer amyloid beta conformations were decreased to form a compact and stable cross beta structure by strong hydrophobic interactions with the inner core domain. N-terminal of AS has been found to play an important role in the self-assembly of AS (1–140) into fibrils of cross-beta structure using models constructed by G-key 3D structure of self-assembled AS, NMR fibril structures, molecular dynamics simulations and GBMV calculations followed by analysis.

Recently, AS has been found to move into the nucleus by binding to Retinoic acid in a calreticulin dependent manner leading to increase toxicity and the AS in nucleus has been suggested to particularly increase the expression of PD-associated genes (ATP13A2, PINK1) in SH-SY5Y cells (106). N-terminal mutants of AS (D2A, D2P) were found to alter the N-terminal acetylation, protein level, stability, risk of neuron death and toxicity of AS in neuron as well as HEK293 models, showcasing the importance of the N-terminal amino acids and N-terminal acetylation in AS stability, toxicity, and aggregation (36). Overexpression of mutant A53T AS in HEK293 cells and rat dopaminergic neurons, was found to inhibit the 26S ubiquitin-proteasomal system and accumulation of AS phosphorylated at Ser129 was observed when the ubiquitin proteasomal system was inhibited (107).



INTERPLAY OF PROTEINS AND GENES IN PD PATHOGENESIS

Synaptic vesicle endocytosis, mitochondrial dynamics, and Lysosomal/Proteasomal activity are three critical processes that become dysfunctional during PD pathogenesis. The dysfunction of these processes could be because neurons are vulnerable to oxidative stress as well as accumulation of damaged organelles or misfolded proteins. The over expression of mutant proteins overloads the defense mechanisms of the dopaminergic neurons leading to disease pathogenesis. PINK1 mediates mitophagy either independently or through the recruitment of Parkin to the damaged/depolarized mitochondrial membrane. The PINK1/Parkin pathway is also important for mitochondria fusion and fission dynamics. Hence, mutations/deficiency of these proteins can lead to accumulation of defective mitochondria in the cell and lead to oxidative stress. Oxidized proteins are transported from the mitochondria to lysosomes through mitochondrial vesicles (MDVs) during oxidative stress due to reactive oxygen species and this process has also been suggested to be affected by dysfunction of the PINK-1/Parkin pathway (Figure 3). Similarly, DJ-1 acts as a sensor of oxidative stress in the neurons and it has been suggested to move into damaged mitochondria. DJ-1 also protects cells from apoptosis due to stress. Mutations leading to loss of function of DJ-1 have been suggested to lead to reduced lysosomal activity and autophagy. Furthermore, increased expression of AS due to mutation, gene duplication or triplication has been suggested to cause mitochondrial fragmentation and oxidative stress. Glucocerebrosidase coded by GBA has also been suggested to degrade AS in lysosomes and reduce AS toxicity. It is also responsible for the conversion of glucosylceramide into membrane constituents. Mutations of GBA have been shown to lead to dysfunction of lysosomal autophagy, dysfunctional ubiquitin proteasome system, mitochondrial fragmentation, oxidative stress, and lead to defective lipid metabolism. Similarly, mutant LRRK2 under oxidative stress have been shown to cause apoptosis, defective vesicular trafficking and synthesis of defective/misfolded proteins (108, 109). Recently, mutated PINK1 expression in patient-derived neurons was found to lead to over-expression of LRRK2 at the mRNA and protein level (110). This suggests that PINK1 modulates LRRK2 level in neurons. DJ-1 has been suggested to regulate the level of PINK-1 and AS in neurons (111).


[image: Figure 3]
FIGURE 3. Snapshot of interaction network of the different Proteins involved in PD pathogenesis from STRING Database. The thickness of lines indicates the confidence score for the interaction between two proteins.


Parkin has been suggested to regulate the endolysosomal system by ubiquitination of Rab7. It has also been shown to interact with endophilin A (which is involved in autophagy and endocytosis) as well as other proteins involved in neuron survival. LRRK2 is also involved in endophilin A phosphorylation. Mutant AS has been suggested to prevent their own degradation in lysosomes which could be through Rab1a inhibition. Reduced activity of GCase1 due to GBA mutations has been shown to lead to accumulation of glucosylceramides and glycosphingolipids which may lead to greater production of Lewy Bodies and accelerate AS aggregation. Mutations in GBA are also suggested to cause the GCase protein to be stuck in the endoplasmic reticulum leading to ER stress, AS accumulation and interference with lysosomes. Misfolded AS aggregate and influence neurotransmission, synaptic vesicle exocytosis, recycling as well as endocytosis in the substantia nigra region. Furthermore, Aggregated AS has been suggested to target the retromer pathway of endolysosomal trafficking. The AS fibrils/filaments have been suggested to spread to surrounding regions through synapses in a prion-like manner through endocytosis and this has been suggested to evade lysosomal/proteasomal degradation through some way. Moreover, mutant/pathogenic LRRK2 with increased kinase-activity has been speculated to lead to exocytosis of misfolded AS fibrils along with increased endocytosis of such fibrils, which may help these fibrils to spread from cell-to-cell. AS has been suggested to promote the movement of pro-inflammatory monocytes into the substantia nigra region and also lead to the presentation of MHCII leading to inflammation and degeneration of neurons in this region. Although the activity of PINK-1/Parkin can help alleviate this process, mutated PINK-1/Parkin could not function this way (111, 112).



ROLE OF PERSONALIZED MEDICINE IN MITIGATING PD PATHOLOGY

Till now, PD's heterogenic pathology has been well-delineated. Further, it paves way for the formulation of personalized therapeutics, wherein it is surmised that pathophysiology and genetic might be crucial. Due to this heterogeneity, an imperative need for developing individualized pathology mitigating therapies have been imposed upon the medical society. Recent medical advancement has made us witness, treatments effectuated upon PD patients with specific genetic aberration.

Glucocerebrosidase is a common risk factor associated with PD. Mutations in GBA gene, which encodes glucocerebrosidase, are found predominantly among people from Netherlands and Ashkenazi Jews. Though GBA's role in PD remains obscure, targeted therapeutics can be steered toward restoration of enzyme function and regulation of glycosphingolipid turnover. Accordingly, gene therapy though adeno-associated virus expression glucocerebrosidase has shown positive findings in GBA pre-clinical studies. And reduced levels of alpha-synuclein aggregates were also reported in the same. Further, Ambroxol is currently being investigated in a PD clinical trial.

Like GBA, genetic mutations in LRRK2 are also prevalent in certain ethnicities and also considered to be a credible risk factor for autosomal dominant PD. Enhancing LRRK2 kinase seems to have a beneficial effect. At present, various structurally distinct LRRK2 inhibitors formulated by Merck, Pfizer, Genentech and GSK are in the pipeline.

Of note, the personalized medicine trails are more laborious and complicated than the typical clinical trial and can face various issues including the need for specific genotype patients in large number. Nonetheless, with the SCNA gene and its polymorphisms being studied and characterized extensively, it holds a great potential in the field of personalized medicine, to effectively mitigate toxic AS aggregates (113–115).



CONCLUSION

Though AS's precise neuronal role remains obscure, it still persists as one of the crucial causalities behind PD. Its aberrant conformational change (due to genetic mutations and other unknown pathophysiological circumstances) into toxic amyloid fibrils disrupts cellular homeostasis and effectuates neuronal deterioration. The present review covers a broad range of information on the disease-causing gene AS related to PD disorder. By contrast with the previous century the current era of medical ailments and research studies had witnessed astonishing progress in understanding PD, particularly with respects to the clinical studies, genetics, pathophysiology and molecular mechanism of PD. Though prodigious, the intricacy in understanding the disease pathology of PD is considered to be a promising approach toward the significant therapeutic targets. Besides, personalized medicine for the treatment of the PD considering the specificity of the defective genes will be the forthcoming approach over the next decades in the field of medical research world. Moreover, the directed delivery of therapies toward the central nervous system crossing the blood brain barrier will embolden credible hope that aid in improvising the new treatment for the devastating PD disorder.
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Metabolic reprogramming is one of the emerging hallmarks of cancer cells. Various factors, such as signaling proteins (S), miRNA, and transcription factors (TFs), may play important roles in altering the metabolic status in cancer cells by interacting with metabolic enzymes either directly or via protein-protein interactions (PPIs). Therefore, it is important to understand the coordination among these cellular pathways, which may provide better insight into the molecular mechanism behind metabolic adaptations in cancer cells. In this study, we have designed a cervical cancer-specific supra-interaction network where signaling pathway proteins, TFs, and microRNAs (miRs) are connected to metabolic enzymes via PPIs to investigate novel molecular targets and connections/links/paths regulating the metabolic enzymes. Using publicly available omics data and PPIs, we have developed a Hidden Markov Model (HMM)-based mathematical model yielding 94, 236, and 27 probable links/paths connecting signaling pathway proteins, TFs, and miRNAs to metabolic enzymes, respectively, out of which 83 paths connect to six common metabolic enzymes (RRM2, NDUFA11, ENO2, EZH2, AKR1C2, and TYMS). Signaling proteins (e.g., PPARD, BAD, GNB5, CHECK1, PAK2, PLK1, BRCA1, MAML3, and SPP1), TFs (e.g., KAT2B, ING1, MED1, ZEB1, AR, NCOA2, EGR1, TWIST1, E2F1, ID4, RBL1, ESR1, and HSF2), and miR (e.g., mir-147a, mir-593-5p, mir-138-5p, mir-16-5p, and mir-15b-5p) were found to regulate two key metabolic enzymes, EZH2 and AKR1C2, with altered metabolites (L-lysine and tetrahydrodeoxycorticosterone, THDOC) status in cervical cancer. We believe, the biology-based approach of our system will pave the way for future studies, which could be aimed toward identifying novel signaling, transcriptional, and post-transcriptional regulators of metabolic alterations in cervical cancer.
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INTRODUCTION

Cervical cancer is the fourth most frequently occurring cancer and the fourth leading cause of death in women worldwide with an estimate of 5,70,000 cases and 3,11,000 deaths in 2018. Approximately 80–85% of the deaths from cervical cancer occur in lower and middle-income countries compared to high-income countries (1, 2). Squamous cell carcinoma (SCC) and adenocarcinomas are the two main types of cervical cancer. Above 90% of patients with cervical cancer belong to SCC (3). The persistent infection with human papillomavirus (HPV), a particularly high-risk type of HPV (mainly HPV16 and HPV18 type), is considered the primary cause of cervical cancer (4–6). Only HPV16 and HPV18 types are responsible for almost 70% of cases of cervical cancer globally (7). While infection by high-risk HPV is necessary for developing cervical cancer, it alone may not be sufficient. Various studies suggest that the pathogenesis of cervical cancer depends on various other factors acting in concert with disease-associated HPV types (8–10). Therefore, it is important to understand the molecular mechanism behind the development of cervical cancer.

Metabolic reprogramming is considered one of the emerging hallmarks of cancer cells, and it is essential for cancer cell growth and proliferation to evolve into a more aggressive malignant state (11, 12). Understanding the coordination among various biological pathways, such as gene-regulatory, signaling, and metabolic pathways is important and may provide clues into the molecular mechanism of metabolic adaptation in cancer and associated cells. To understand that, one needs to investigate the molecular mechanism by which the impact of signaling, transcriptional, and post-transcriptional aberration is transgressed to metabolic reprogramming. Various studies demonstrated that the metabolic status in cancer cells is regulated by oncogenic changes in signaling pathways (13–15), transcription factors (TFs) (16–18), and miRNAs (19–21). However, these studies are focused either on a single molecule or pathways and may not capture the complex interconnectivity among various biological processes.

To overcome the complexity of interconnected biological pathways, biological approaches to efficient systems need to be developed. Computational and/or mathematical model-based system biology approaches provide an effective way to discover new drug targets for cancer therapy (22, 23). Mathematical model-based system biology approaches are successful for signaling and metabolic network analyses (24–30). Mathematical models for signaling pathways have been developed based on logical models (27–30), kinetic models (31, 32), Petri nets (33), decision tree (34), ordinary differential equations (35), and linear programming (LP)-based model (22, 36). Previously, we also have established a Hidden Markov Model (HMM)-based mathematical model to analyze the signaling-metabolic (S-M) interconnecting networks (37).

In the present study, we have designed a cervical cancer-specific supra-interaction network model incorporating transcriptome data onto a protein-protein interaction (PPIs) network to investigate novel molecular targets and connections regulating the status of metabolic enzymes. We have developed a biology framework of a comprehensive system where signaling (S) pathway proteins, miRNA, and TF-based gene-regulatory modules are connected to metabolic (M) pathway proteins through protein-protein interactors (PPIs; Figure 1). Initially, network topologically IINs, such as a hub, central node (CN), local network perturbing nodes (LNPNs), and global network perturbing nodes (GNPN), were identified in different [S-M, TF-metabolic (TF-M), and miRNA-metabolic] modules of cervical cancer-specific networks using graph theory approach previously reported by our laboratory (38). These IINs may serve as potential diagnostic and/or prognostic biomarkers in cervical cancer. Furthermore, signaling pathway proteins, TFs, and microRNA (miR) to metabolic enzymes interconnecting paths/links [S-PPI-M, TF-target genes (TG)-PPI-M, and miR-TG-PPI-M] were identified in cervical cancer. Publicly available transcriptomic data derived from cervical cancer patients were incorporated into the HMM-based mathematical modeling set-up to weigh and rank the interconnecting link/paths in each module. Additional confidence values based on biological and network topological properties (hub, CN, GNPN, and LNPN) were assigned to each gene/protein/miRNA in the paths/links identified after model implementation to extract out high confident connections/links specific to cervical cancer. In silico validation of these selected genes/proteins/miRNAs and paths has been performed through perturbation analysis, demonstrating the importance of certain genes/proteins/miRNAs forming critical inter-pathway connections. PPI links connecting to key metabolic enzymes, such as RRM2, NDUFA11, ENO2, EZH2, AKR1C2, and TYMS, are identified from signaling proteins (e.g., PPARD, BAD, GNB5, CHECK1, PAK2, PLK1, BRCA1, MAML3, and SPP1), TFs (e.g., KAT2B, ING1, MED1, ZEB1, AR, NCOA2, EGR1, TWIST1, E2F1, ID4, RBL1, ESR1, and HSF2), and miR (e.g., mir-147a, mir-593-5p, mir-138-5p, mir-16-5p, and mir-15b-5p) in cervical cancer scenario. Out of the six metabolic enzymes that are commonly linked by 83 paths/links, EZH2 and AKR1C2 were mapped with deregulated metabolite status. Further, comparative analysis of the identified genes/proteins/miRNAs and the associated molecular pairs and paths in different modules were performed using transcriptomics data obtained from cervical, breast, and ovarian cancer patients. This study led to novel inter–bio-molecular links between signaling, gene-regulatory components, and metabolic enzymes paving the probable way(s) to identify drug targets to inhibit cervical cancer progression in a more specific manner.


[image: Figure 1]
FIGURE 1. Pictorial workflow of the study. CC, cervical cancer; S, signaling proteins; TF, transcription factor; miR, microRNA; M, metabolic proteins; PPI, protein-protein interactors; CP, central proteins; LNPP, local network perturbing protein; GNPP, global network perturbing proteins.




MATERIALS AND METHODS


Messenger Ribonucleic Acid (mRNA) and Micro Ribonucleic Acid (miRNA) Expression Datasets

mRNA and miRNA expression datasets of cervical, breast cancer, and ovarian cancer patients were extracted from the Gene Expression Omnibus (GEO) database (39) to study the gene and miRNA expression profiles. For the mRNA expression datasets, similar microarray (Affymetrix microarrays) platforms were used for each cancer type to minimize the undesirable variations that occurred due to different microarray platforms. Further, the cancer samples in each dataset were considered in a 1:1 ratio with normal samples to avoid sample heterogeneity (as shown in Table 1).


Table 1. Differential expression analysis of mRNA and miRNA.
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Differential Expression Analysis

The differential expression analysis of each dataset was performed separately using the GEO2R web tool (40–42) available at the GEO database. Genes having log2FC ≥ +1.5 and log2FC ≤ −1.5 were considered as upregulated and downregulated genes, respectively. The genes with log2FC values between −1.5 and +1.5 were considered only as neutrally expressed genes (EG). Benjamini and Hochberg's method (43) was used to control the false discovery rate. Genes with an adjusted p ≤ 0.05 were considered significant. For ovarian cancer datasets, the log2FC and p-value threshold of ± 2 and ≤ 0.01, respectively, were considered for the selection of upregulated, downregulated, and EG. For differential miRNA expression adjusted p ≤ 0.05 and log2FC ≥ +1.0 and log2FC ≤ −1.0 were considered as thresholds for the identification of upregulated and downregulated miRNAs, respectively.



Construction of Human Protein-Protein Interaction Network

The HPPIN was constructed by extracting experimentally verified (confidence score ≥0.7) HPPIs available in the STRING v11.0 (44) database. The resulting network (proteins as nodes and edges demark interaction) consisted of 5,048 proteins and 18,044 interactions, respectively.



Construction of Cancer-Specific Protein-Protein Interaction Network

Differentially expressed genes (dEXP) and EG from each cervical cancer dataset (GSE9750, GSE63514, and GSE52904; Table 1) were mapped onto the HPPIN to construct a cervical CC-PPIN. The interactions were considered up to the second level (i.e., interactors of interactors). In the first level, interactions mediated by only deregulated genes were considered where their interactors could be either deregulated or neutrally expressed. The resulting network consisted of 2,240 proteins interconnected via 5,452 edges. Similarly, breast and ovarian CC-PPINs were constructed using the corresponding transcriptomic datasets (Table 1).



Construction of Cancer-Specific Transcriptional Regulatory Network

The transcriptional regulatory network was constructed by collating deregulated TF-TG interaction and associated protein-protein interactions. Experimentally verified strong evidenced TF-TG interactions were retrieved from Human Transcriptional Regulation Interactions database (HTRIdb) (45) and Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TRUSST) (46) databases and were merged generating 22,480 interactions among 697 TFs and 12,407 TG. The combined deregulated genes (differentially expressed and neutrally expressed) of all the three datasets (GSE9750, GSE63514, and GSE52904) were mapped on to TF-TG interactions to filter the cervical cancer-specific TF-TG interactions. In this study, only those interactions were considered where both TFs and their TG were deregulated. The deregulated TF-TG were further mapped to experimentally verify HPPIs up to the second level, and only those interactions were considered where the interacting partners were either deregulated or expressed. Finally, the filtered TF-TG and PPI interactions were merged to form the TF-TG-PPI network. The resulting network consisted of 2,894 nodes interconnected via 5,694 edges. Breast and ovarian cancer-specific TF-TG-PPI networks were also constructed with the corresponding mRNA transcriptomics data (Table 1) using the same protocol.



Construction of Cancer-Specific Post-transcriptional Regulatory Network

The post-transcriptional regulatory network was constructed by collating miRNA-TG interactions and protein-protein interactions. The experimentally verified miRNA-TG interactions were retrieved from mirTarbase (47) and Tarbase (48) databases and merged, which consisted of 8,407 miRNA-TG interactions forming among 743 miRNA and 2,891 TG. Subsequently, the same procedure described for the construction of the TF-TG-PPIN network was followed for the construction of the miRNA-TG-PPIN network. The miRNA-TG-PPIN using cervical cancer-specific miRNA transcriptomics data consisted of 1,017 edges connecting 1,718 nodes. Likewise, breast and ovarian TF-TG-PPINs consisting of 2,668, 2,657 nodes and 6,197, 5,702 interactions, respectively, were also constructed.



Characterization of Cancer-Specific Networks

The cancer-specific networks, PPIN, TF-TG-PPIN, and miRNA-TG-PPIN, described above were compared with the respective random networks of the same number of interactions. Ten random networks were generated by the NetworkX program (49) against each cervical cancer-specific network described above, and the degree distribution of each network was compared with the respective random networks. The degree distribution was calculated using the following formula:
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Where the degree distribution of network P(k) signifies the fraction of the node with degree k. For the network with a node size of N, nk nodes will have the degree k.



Identification of IINs

Topologically IINs (genes/proteins/miRNA) of the constructed cancer-specific networks described above were identified by utilizing procedures based on graph theory methods described earlier in Bhattacharyya and Chakrabarti (38). Identification of important interacting genes/proteins/miRNAs in the network is based on some independent network properties, such as hub (highly connected nodes in the network), CNs of the network, GNPN, and LNPN. The nodes (genes/proteins/miRNAs) that were identified as topologically important in at least two categories (Hub, CN, LNPN, and GNPN) were considered as IINs.



Over-representation Analysis

Kyoto encyclopedia of genes and genomes (KEGG) pathway-based ORA was performed with deregulated genes extracted from the mRNA expression datasets used and IINs (except miRNAs) identified in each of the regulatory networks described above using “protein-coding gene set” as the reference gene set in WebGestalt (50) web tool. The top 20 pathway categories were ranked based on significant false detection rate (FDR) calculated using Benjamini and Hochberg procedure (43) and enrichment ratio.

Additionally, Gene Ontology (GO)-based molecular functions and online mendelian inheritance in man (OMIM)-based disease pathway over-representation analyses were also performed for the deregulated genes/proteins in cervical cancer.



Construction of S-M Enzyme Cross-Connecting Paths and Network

A signaling-metabolic inter-connection network was constructed using 23 signaling pathway (cancer-specific) genes/proteins and all the metabolic pathways (85 pathways) genes/proteins. Signaling and metabolic gene/protein datasets were created by extracting all the genes/proteins from the KEGG (51, 52) database. All possible unique connections (maximum three proteins involved in between) to a metabolic pathway protein (M) were established through PPIs (up to the second level), considering a signaling pathway protein (S) as a starting point in the HPPIN. Four different types of linking paths were established where signaling proteins were connected to metabolic pathway proteins either directly (S-M) or via one (S-P-M), two (S-P-P-M), or three (S-P-P-P-M) PPIs, respectively. NetworkX program (49) was used to construct all possible signaling to metabolic interconnecting paths. These paths/connections were converted into a network to construct a signaling-metabolic interaction network (SMIN).



Construction of TF to Metabolic Enzyme Cross-Connecting Paths and Network

Connections between TFs and metabolic pathway genes/proteins were established through TF-TG interactions and PPIs of TF-TG (up to the second level) considering TFs as a source. In this study, five different types of the path were established where TFs were connected to metabolic pathway proteins either directly (TF-TG/M), or TFs were connected to their TG, and their TG were connected to metabolic proteins directly (TF-TG-M), or through one (TF-TG-P-M), two (TF-TG-P-P-M), and three (TF-TG-P-P-P-M) PPIs of TG, respectively. The resulting paths/links were converted into a network to construct a TF-metabolic interaction network (TFMIN).



Construction of miRNA to Metabolic Enzyme Cross-Connecting Paths and Network

MicroRNAs to metabolic pathway proteins interconnecting all possible paths were established using the NetworkX program (49). The miRs to metabolic pathway proteins (M) interconnecting paths were established using miRNA-TG interactions and PPIs (up to the second level) of miRNA TG considering miRNA as the source. The resulting paths were of five types viz; miRNA-TG/M, miR-TG-M, miR-TG/P-P-M, miR-TG/P-P-P-M, and miR-TG/P-P-P-P-M paths. The resulting paths were converted into a network to form a miR-metabolic interconnecting network (miRMIN).



Contextualization of Regulatory Molecules (Signaling Pathway Proteins, TF, and miRNA) to Metabolic Enzyme Cross-Connecting Paths and Network

The deregulated (upregulated and downregulated) and neutrally EG and miRNAs identified from the cervical, breast, and ovarian cancer patients specific transcriptomic datasets were mapped onto all possible paths/connections mentioned above to filter cancer-specific regulatory molecules (signaling pathway proteins, TF, and miRNA) to metabolic enzymes cross-connecting paths. For the signaling to metabolic interconnecting paths/connections/links, the paths having deregulated (upregulated and downregulated) genes/proteins at the terminals and deregulated or EG/proteins in middle were filtered out and converted into a network to form cervical, breast, and ovarian cancer-specific signaling-metabolic interconnecting subnetwork (CC-SMIN, BC-SMIN, and OC-SMIN, respectively).

Similarly, to construct the cancer-specific TF and miRNA to metabolic interconnecting sub-networks (CC/BC/OC-TFMIN and CC/BC/OC-miRMIN, respectively), the paths having deregulated genes/miRNA at the terminal and their target and deregulated or EG/proteins in the middle were considered. The respective resulting paths were converted into a network to form cancer-specific (CC/BC/OC-TFMIN and CC/BC/OC-miRMIN) sub-networks.



Calculation of Edge Weight

The edge weights in each sub-networks (CC/BC/OC-SMIN, CC/BC/OC-TFMIN, and CC/BC/OC-miRMIN) were defined in terms of local entropy using an in-house program (37). The probability of interactions of a gene/protein with its interactors in the sub-network was determined by using the principle of mass action to define the local entropy of a gene/protein. The calculation of the interaction probabilities is based on the assumption that two proteins known to interact will have a higher probability of interaction when they are highly expressed. The normalized expression values of sub-network genes in the samples of cancer patients used in this study were utilized to calculate the interaction probabilities.



Calculation of Node Weight and Effect-On-Node

To incorporate the importance and impact of the interactors of a particular node in the sub-networks, the node-weight (Wi) of every node i was defined based on its biological properties [signaling cross-talk (SC) protein and rate-limiting enzyme (RLE)], differentially expressed gene (dEXP), and network topological properties [hub, CP, local network perturbing protein (LNPP), and global network perturbing proteins (GNPP)] using the following formula.
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Effect of interactors on a node in the sub-network was defined as effect-on-node (effs) depending on the node weight of its interactors up to the second level.

[image: image]

Where k is the degree of node s, ni is the degree of node i, nj is the degree of node j, and wi and wj are the weights of nodes i and j.



Identification of Significant Regulatory Molecules (S/TF/miR) to a Metabolic Enzyme (M) Interconnecting Pairs and Path

To understand the information flow starting from a regulatory molecule (S/TF/miRNA) to metabolic enzyme (M), cancer-specific cross-connecting paths mentioned above were scored by implementing an HMM-based mathematical model established in our laboratory earlier (37). In this study, two separate models were used to identify the significant S/TF/miR–M pairs (the source; signaling pathway protein/TFs/miR; and destination: metabolic pathway protein) and S/TF/miR–M interconnecting paths. Model 1 was applied to identify the S/TF/miR–M pairs. Model 2 was applied to identify the S/TF/miR–M interconnecting paths between the S/TF/miR–M pairs selected after Model 1. Edge weight and node weight of genes/proteins/miRNAs involved in the S/TF/miR–M path were used to calculate the path scores. The path score of each S/TF/miR to M linking path calculated by Model 1 and Model 2 was converted into a statistical z-score to identify paths deviating from the mean. A z-score (Z) ≥ 1 filter was applied to select the significant S/TF/miR–M pairs. Paths having path score ≥ 80% of the highest path score for every S/TF/miR–M pair were considered as significant S/TF/miR–M interconnecting paths from Model 2.

All the networks were visualized and represented by using Cytoscape (53). The signaling, TF, and miR to metabolic pathway connections were represented as the Circos plot (54).



In-silico Perturbation Analysis

In-silico perturbation analysis was performed for each signaling pathway protein, TF, and miRNA-based gene regulatory module to identify the paths that change significantly upon removal of a node (protein/TF/miRNA). To identify the key nodes in the final paths/networks of every module, each of the nodes present in the paths/network having z-score ≥ 1 was removed individually from the HPPIN, and the path score was recalculated for the resulting paths/network by using the HMM Models 1 and 2. The perturbation score was calculated by using the average path score before and after perturbation as below.
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Where, Pathscore and [image: image] are average path scores before and after perturbation, respectively.

The difference of average path score (before vs. after perturbation) for each perturbed node was converted into a z-score (Z), and the nodes for which z-scores deviated from the mean as −1 ≥ Z ≥ 1 were selected as effective or key nodes in significant paths/network.



Metabolomics Data Collection and Integration Into Cancer-Specific Paths

The deregulated metabolites in cervical, breast, and ovarian cancer patient were extracted from literature (55–57). The cervical cancer metabolomic dataset consisted of 55 downregulated and seven upregulated metabolites. Twenty-one downregulated and 41 upregulated metabolites were found in breast cancer whereas the ovarian cancer metabolomic dataset consisted of 46 downregulated and 116 upregulated metabolites. The metabolic genes corresponding to these metabolites were obtained from the Human metabolome database (HMDB) (58). The deregulated metabolites were mapped to the paths obtained after model implementation.



Survival Analysis

Kaplan-Meier (KM) plotter software (59, 60) was used to perform the overall survival (OS) analysis of the constituent genes/miRNAs of the identified cross-pathway paths/links. We used a KM plotter using survival and expression data of 307 cervical cancer patients obtained from the TCGA dataset (project ID: TCGA-CESC; phs000178). To estimate the survival prognostic value of a specific gene/miRNA, the patient samples were divided into high- and low-expression cohorts according to the median expression of the given gene/miRNA, and KM plots were created. Additionally, the hazard ratio (HR) and the log-rank p-value were calculated. The survival estimate of a gene/miRNA with a p-value < 0.05 was considered to be statistically significant.



Drug/Chemotherapy Response Analysis

The receiver operator characteristic (ROC) plotter (61) was used to predict the utility of the genes as predictive biomarkers with respect to drug/chemotherapy response. ROC plotter is capable to link gene expression and response to therapy using transcriptome-level data of 3,104 breast cancer patients.




RESULTS


mRNA and miRNA Expressions in Cervical Cancer Patients

The individual differential expression analysis of three different cervical cancer mRNA expression datasets (GSE9752, GSE63514, and GSE52904) leads to the identification of several upregulated, downregulated, and neutrally EG in cervical cancer (Figure 2, Table 1). However, a comparison of the gene expression patterns across datasets showed that only 54 upregulated, 59 downregulated, and 421 neutrally EG were found to be overlapped (Figures 2A–C). The differential expression analysis of miRNA resulted in four upregulated, 12 downregulated, and 110 neutrally expressed miRNAs in GSE30656 and 15 upregulated, 20 downregulated, and 103 neutrally expressed miRNAs in the GSE81137 dataset (Figures 2D–F).
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FIGURE 2. Differential expression analysis of transcriptomic datasets associated with cervical cancer. (A–C) represent the overlap of upregulated, downregulated, and EG, respectively. (D–F) show the overlap of upregulated, downregulated, and expressed miRNAs, respectively.


Over-representation analysis-based enrichment for cellular pathways, molecular functions, and biological processes was performed using a merged list of deregulated (upregulated and downregulated) genes of all the three mRNA datasets. Supplementary Figures 1A,B show the top 20 most enriched pathway filters based on FDR for proteins encoded by upregulated and downregulated genes, respectively. Most highly enriched pathways were found to be DNA replication (p = 4.42E−13) and arachidonic acid metabolism (p = 2.76E−08) for the proteins encoded by upregulated and downregulated genes, respectively. GO-based molecular function and biological process ORA was also performed using deregulated genes in cervical cancer. The most significantly enriched molecular functions were found to be collagen binding (p = 4.36E−07) and oxidoreductase activity (p = 4.35E−04) for proteins encoded by upregulated and downregulated genes, respectively. However, microtubule cytoskeleton organization involved in mitosis (p = 2.13E−14) and peptide cross-linking (p = 8.81E−11) were highly enriched biological processes, for upregulated gene-encoded proteins and downregulated gene-encoded proteins, respectively (Supplementary Figure 1).



Construction and Characterization of Cervical Cancer-Specific Networks

The cervical CC-PPIN, TF-TG-PPIN, and miR-TG-PPIN were constructed by mapping differentially expressed genes, miRNA, and neutrally EG from each cervical cancer dataset (see Methods; Supplementary Figures 2A, 3A, 4A, respectively). The resulting CC-PPIN, TF-TG-PPIN, and miR-TG-PPIN were validated by comparing them with corresponding 10 random networks of the same size. The degree distributions of CC-PPIN, TF-TG-PPIN, and miR-TG-PPIN networks followed the Power law and were considered to have scale-free organization. However, the degree distribution of 10 corresponding random networks showed binomial distribution (Supplementary Figures 2B, 3B, 4B).



IINs in Cervical Cancer-Specific Networks

Network topologically important nodes, such as hubs (highly connected nodes in the network), CNs, LNPNs, and GNPNs in a scale-free network could play important roles in maintaining the network integrity and function. Various topologically important interacting genes/proteins/miRNAs (hubs, CN, GNPN, and LNPN) in cervical cancer-specific networks (CC-PPIN, TF-TG-PPIN, and miR-TG-PPIN) were identified by implementing a graph theory-based method described earlier by Bhattacharyya and Chakrabarti (38). A total of 165, 167, 96, and 67 nodes/proteins in CC-PPIN (Supplementary Figure 2C, Supplementary Table 1), 62, 36, 60, and 80 nodes/genes/proteins in TF-TG-PPIN (Supplementary Figure 3C, Supplementary Table 2), and 45, 45, 30, and 24 nodes/genes/proteins/miRNAs in miR-TG-PPIN (Supplementary Figure 4C, Supplementary Table 3) were identified as hubs, CNs, GNPNs, and LNPNs, respectively. The nodes/genes/proteins/miRNAs common in at least any two of the four categories (hubs, CN, GNPN, and LNPN) were considered as IINs in cervical cancer networks. When the IINs from each network were compared, 30 IINs were found to be common in CC-PPIN and TF-TG-PPIN, 38 IINs were common in CC-PPIN, and miR-TG-PPIN, and 17 IINs were shared by TF-TG-PPIN and miR-TG-PPIN. However, 17 IINs were found to be common in all three cervical cancer networks (Supplementary Figure 5A, Supplementary Table 4).

Over-representation analysis-based pathway enrichment was performed using IINs in the above described cervical cancer-specific regulatory networks. Top three enriched pathways were found to be DNA replication (p = 1.30E−10), basal TFs (p = 3.07E−10), and cell cycle (p = 0.00) for IINs in CC-PPIN (Supplementary Figure 2D). DNA replication (p = 1.21E−10), mismatch repair (p = 1.29E−04), and cell cycle (p = 1.44E−15) were the top three enriched pathways for IINs in TF-TG-PPIN (Supplementary Figure 3D), respectively. However, for IINs (except miRNA) of miR-TG-PPIN, top three enriched pathways were found to be DNA replication (p = 8.88E−16), cell cycle (p = 0.00), and mismatch repair (p = 5.23E−06; Supplementary Figure 4D). When the top 20 enriched pathways for IINs in each network were compared, 8 enriched pathways were found to be common (Supplementary Figure 5B). The common pathways were cell cycle, DNA replication, nucleotide excision repair, mismatch repair, prostate cancer, herpes simplex infection, oocyte meiosis, and viral carcinogenesis pathways.



S-M Enzyme Cross-Connecting Paths and Network in Cervical Cancer

Experimentally supported HPPIs (experimental score ≥ 0.7) were utilized to establish all possible S-M cross-connecting paths, where signaling pathway proteins were connected to metabolic enzymes either directly (S-M paths) or via one (S-P-M paths), two (S-P-P-M paths), and three (S-P-P-P-M paths) PPIs in between them. The resulting S-M cross-connecting paths consisted of 210 direct (S-M) connections, 2,669 via one PPI (S-P-M), 40,266 via two PPIs (S-P-P-M), and 7,35,395 via three PPIs (S-P-P-P-M) interconnections. These interconnections/paths were formed between 210, 1,697, 7,965, and 28,920 S-M pathway protein pairs, respectively. These S-M paths were converted into a network to form a SMIN, which consisted of 11,442 interactions formed among 2,603 genes/proteins.

To understand the flow of information from a signaling protein to metabolic enzymes probably leading to metabolic adaptations in the case of cervical cancer cells, we mapped differentially expressed (up and downregulated) and neutrally EG onto the abovementioned S-M interconnecting paths. The S-M paths having deregulated genes at the terminal and deregulated or EG in middle were extracted and considered for further analysis. The resulting paths/interconnections consisted of four (S-M), 47 (S-P-M), 639 (S-P-P-M), and 10,311 (S-P-P-P-M) paths formed between 4, 39, 180, and 631 S-M pairs, respectively. The filtered paths were converted into a network to construct the cervical cancer-specific SMIN (CC-SMIN) network. The CC-SMIN consisted of 1,425 interactions forming among 439 genes/proteins.

To identify the potential disease-specific paths/pairs, each node and each edge of the CC-PPIN network were weighted based on their biological properties, differential expression status, and network topological properties (hubs, CN, GNPN, and LNPN) of CC-PPIN. Local signaling entropy (Si) was integrated to understand the system-level network property. The significance of each node (gene/protein) in the cancer-specific network was estimated in the form of effect-on-node (effs) based on SC, RLE, dEXP (differentially expressed genes), hub, CN, GNPN, and LNPN, respectively. To identify the probable and significant paths of information flow from signaling pathway to metabolic pathway in cervical cancer cells, local signaling entropy (Si) and effect-on-node (effs) properties were incorporated as node weights. The edge weight of every two interacting nodes of CC-PPIN was defined as the probability of interaction using their normalized expression value in cervical cancer patient samples. Node weight and edge weight were integrated into HMM-based mathematical models (Models 1 and 2) to identify S-M linking pairs and paths. Model 1 was applied to identify the S-M pairs (the source signaling pathway protein and destination metabolic pathway protein). Model 2 was applied to identify the S-M interconnecting paths between the S-M pairs selected after Model 1. The path score of each S-M linking path calculated by Models 1 and 2 was converted into a statistical z-score to identify paths deviating from the mean. A z-score ≥ 1 filter was applied to select the significant S-M pairs. Using these filtering criteria, we identified 81 S-M pairs and 94 S-PPI-M paths in cervical cancer. The selected paths were converted into a network to form a significant CC-PPIN network which consisted of 152 interactions forming among 135 genes/proteins (Table 2, Figure 3A).


Table 2. Signaling to metabolic pathways interconnecting paths and pairs.
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FIGURE 3. Significant signaling-metabolic pathway interconnecting paths/network in cervical cancer. (A) represents a significant signaling metabolic interaction network, (B) shows the signaling metabolic pathways interconnectivity, and (C) shows the significant signaling to metabolic paths regulating metabolites in cervical cancer. Terminal signaling pathway proteins and metabolic enzymes are colored in purple and blue. Protein-protein interactors are colored in orange. Protein-protein interactions are represented by orange edges. Nodes with an asterisk (*) are key or effector nodes in the significant paths/network.


Mapping pathway information to the terminal nodes (source signaling protein and destination metabolic enzyme) showed that the Ras signaling pathway had maximum connections (50) to all the six metabolic pathways followed by cell cycle (44), Map-kinase (44), epidermal growth factor receptor (EGFR) signaling pathway (42), and p53 signaling pathway (34), respectively. However, among metabolic pathways, nucleotide metabolism had maximum connections (87) with signaling pathways, followed by amino acid (63), energy (58), xenobiotics (44), carbohydrate (42), and lipid metabolism (11), respectively. 1:1 interconnections between signaling and metabolic pathways showed that the cell cycle had maximum connections with nucleotide metabolism (18 connections; Figure 3B, Supplementary Table 5).

Mapping the deregulated metabolites in cervical cancer to significant S-M paths yielded 12 S-PPI-M interconnections/paths where four metabolites [L-lysine, oxoglutaric acid, tetrahydrodeoxycorticosterone (THDOC), and pyruvic acid] were regulated by eight signaling pathway proteins (BAD, CHEK1, GNB5, MAML3, MAP3K1, PAK2, PPARD, and SPP1). The metabolic enzymes connecting these four metabolites were enhancers of zeste homolog 2 (EZH2), procollagen lysine hydroxylase and glycosyltransferase LH3 (PLOD3), aldo-keto reductase family 1 member C2 (AKR1C2), and 3-mercaptopyruvate sulfurtransferase (MPST). L-lysine is the substrate of both EZH2 and PLOD3. Whereas, THDOC and pyruvic acid are the products of metabolic enzymes AKR1C2 and MPST, respectively. Hence, these paths/connections showed the correlated status of the metabolic enzymes and the corresponding metabolites (Figure 3C).



TF to Metabolic Enzyme Cross-Connecting Paths and Network in Cervical Cancer

All possible paths/links connecting TF to the metabolic enzyme (M) were established using TF-TG interaction and HPPIN (refer to Methods). The resulting paths/links consisted of 930 TF-TG/M paths, 4,276 TF-TG/P-M, 114,844 TF-TG/P-P-M, 9,384,069 TF-TG/P-P-P-M, and 188,563,171 TF-TG/P-P-P-P-M paths forming between 930, 2,299, 9,121, 33,676 and 90,477 TF-M pairs, respectively. These paths were converted into a network to form a TFMIN.

All possible TF-TG-PPI-M paths were filtered by mapping deregulated and neutrally EG to establish the context-specific (cervical cancer-specific) paths and network. The resulting paths consisted of 89 TF-TG/M, 20 TF-TG/P-M, 110 TF-TG/P-P-M, 1,262 TF-TG/P-P-P-M, and 21,016 TF-TG/P-P-P-P-M paths formed between 89, 17, 53, 162 and 508 TF-M pairs, respectively. The filtered paths were converted into a network to construct the cervical cancer-specific TFMIN (CC-TFMIN), which consisted of 815 nodes and 2,364 edges formed among them.

Each node and each edge in the CC-TFMIN were weighted to identify the potential significant paths in the cervical cancer-specific network. Node weights and edge weights were incorporated into HMM-based mathematical models (Models 1 and 2) to identify TF-M pairs and TF-PPI-M paths forming between them (refer to Methods). Model 1 resulted in the identification of 172 significant (z ≥ 1) TF-M pairs and Model 2 resulted in 236 significant TF-PPI-M paths connecting the TF-M pairs obtained after Model 1. The significant TF-PPI-M paths in cervical cancer were converted into a network to form significant CC-TFMIN that consisted of 179 interactions among 141 genes/proteins (Figure 4A, Table 3).
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FIGURE 4. Significant Transcription factor-metabolic pathway interconnecting paths/network in cervical cancer. (A) represents a significant transcription factor metabolic interaction network, (B) shows the transcription factor to metabolic pathways interconnectivity, and (C) shows the significant transcription factor to metabolic paths regulating metabolites in cervical cancer. Terminal transcription factors and metabolic enzymes are colored green and blue. Protein-protein interactors are colored in orange. Gene regulatory edges are represented as black arrows and protein-protein interactions are represented by orange edges. Nodes with an asterisk (*) are key or effector nodes in the significant paths/network.



Table 3. Transcription factor to metabolic pathways interconnecting paths and pairs.
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The metabolic pathway information was mapped onto the terminal metabolic enzymes of the significant TF-PPI-M paths to identify metabolic pathways that are highly connected to specific TFs. Nucleotide metabolism yielded maximum connections followed by energy metabolism, amino acid metabolism, carbohydrate metabolism, lipid metabolism, and xenobiotics biodegradation and metabolism (Figure 4B, Supplementary Table 6).

Mapping of deregulated metabolites onto the terminal metabolic enzymes resulted in 28 paths where four metabolites were deregulated in cervical cancer. The deregulated metabolites were L-lysine, oxoglutaric acid, pyruvic acid, and THDOC. L-lysine was found to be linked with AR, ESR1, ZEB1, NCOA2, HSF2, RBL1, ID4, E2F1, EGR1, MED1, TWIST1, KAT2B, ING1, and PGR TFs via 19 different paths. Oxoglutaric acid was linked with PGR, EGR1, and ESR1 via three paths. MED1 was found to be regulating (probably) pyruvic acid whereas THDOC was found to be linked with AR, TWIST1, and ING1 in four different paths (Figure 4C).



miR to Metabolic Enzyme Cross-Connecting Paths and Network in Cervical Cancer

Similar to SMIN and TFMIN, all possible paths/links were established considering miRNA as a source node and metabolic enzymes as a destination by collating miRNA-TG interactions and HPPIN. The resulted paths/links consisted of 577 direct (miR-TG/M) paths, 1,145 via their TG (miR-TG/P-M), 26,330 via one PPI (miR-TG/P-P-M), 826,207 via two PPI (miR-TG/P-P-P-M), and 33,934,931 via three PPI (miR-TG/P-P-P-P-M) paths formed by 577, 1,128, 9,904, 44,271, and 111,730 miR-M pairs, respectively. The deregulated miRNA, genes, and neutrally EG were mapped onto all possible miR-PPI-M paths to filter the cervical cancer-specific miRNA to metabolic enzymes interconnections. The filtered paths/links consisted of 13 miR-TG/M, 1 miR-TG/P-M, 7 miR-TG/P-P-M, 95 miR-TG/P-P-P-M, and 1,851 miR-TG/P-P-P-P-M paths formed between 13, 1, 7, 38 and 149 miR-M pairs, respectively. The resulted paths were converted into a network to form a cervical cancer-specific miR-metabolic enzyme interaction network (CC-miRMIN) which consisted of 309 nodes and 952 interactions among them (Table 4).


Table 4. microRNA to metabolic pathways interconnecting paths and pairs.
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The nodes and edges in the CC-miRMIN were weighted based on their biological properties, differential expression status, and network topological properties in cervical cancer-specific miR-TG-PPIN. After the incorporation of HMM Model 1, 22 significant (Z ≥ 1) miR-M pairs were identified. HMM, Model 2, resulted in the identification of a total of 27 miR-PPI-M paths, where 22 significant miR-M pairs obtained after Model 1 were connected via their TG and PPIs. The resulting miR-PPI-M paths were converted into a network to form significant CC-miRMIN that consisted of 59 nodes and 67 interactions among them (Figure 5A).
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FIGURE 5. Significant miR-metabolic pathway interconnecting paths/network in cervical cancer. (A) represents a significant miRNA metabolic interaction network, (B) shows the miRNA to metabolic pathway interconnectivity, and (C) shows the significant miRNA to metabolic paths regulating metabolites in cervical cancer. Terminal miRNAs and metabolic enzymes are colored in red and blue. Protein-protein interactors are colored in orange. Gene regulatory edges are represented as black arrows and protein-protein interactions are represented by orange edges. Nodes with an asterisk (*) are key or effector nodes in the significant paths/network.


Mapping metabolic pathway information to the terminal metabolic enzymes in significant miR-PPI-M paths showed that amino acid metabolism was highly regulated by miRNAs, followed by nucleotide metabolism, xenobiotics biodegradation and metabolism, energy metabolism, carbohydrate metabolism, and lipid metabolism (Figure 5B).

After mapping deregulated metabolites to the terminal metabolic enzymes, 13 miR-PPI-M paths were found to regulate the metabolites. L-lysine was found to be linked/regulated by miR-138-5p, miR-223-3p, miR-203a-3p, miR-593-5p, miR-15b-5p, miR-16-5p, and miR-147a via 11 miR-PPI-M paths. THDOC was found to be linked with miR-593-5p and miR-193b-3p via two different miR-PPI-M paths (Figure 5C).



In-silico Perturbation of Nodes in the Final Weighted Paths/Network

In-silico perturbation analysis was performed to identify the paths that change significantly upon removal of a node (protein/TF/miRNA). To identify the key nodes in the final paths/networks of every module, each of the nodes present in the paths/network having Z ≥ 1 was removed individually from the HPPIN, and the path score was recalculated for the resulting paths/network by using HMM Models 1 and 2. Accordingly, new significant pairs and paths were identified based on Models 1 and 2, respectively. The difference of average path score (before vs. after perturbation) for each perturbed node was converted into a z-score and the nodes for which z-scores deviated from the mean as −1≥ Z ≥ 1 were selected as effective or key nodes in significant paths/networks. Sixteen nodes/proteins (CDC5L, PAK2, CHECK1, NDUFA9, MCM, POLA1, PIK3CA, PIK3R1, PDGFRA, LUC7L3, SERPINE1, VTN, ZRANB2, TYMS, CD14, and NDUFA11) in the signaling module (Figure 2A), 16 nodes/proteins (CDKN2A, POLA1, CDC45, CCND1, MCM5, CDC7, RRM2, MCM3, DHFR, AKR1C3, AKR1C2, AKR1C1, RRM1, TYMS, AR, and E2F1) in TF-based gene regulatory module (Figure 4A), and nine nodes/miRNA/proteins (CDK2, MCM3, mir-147a, AKR1C2, CDC5L, PLK1, mir-593-5p, TYMS, and mir-196a-5p) in miRNA-based gene regulatory module (Figure 5A) were identified as an effector or key nodes in the significant paths/networks.



S, TF, and miR Cross-Talks in Cervical Cancer

Comparing cervical cancer-specific significant S-PPI-M, TF-PPI-M, and miR-PPI-M paths or links discussed above resulted in the identification of 83 paths/links where six metabolic enzymes (RRM2, AKR1C2, ENO2, TYMS, EZH2, and NDUFA11) were probably regulated by signaling pathway proteins (BAD, PPARD, GNB5, TF, PAK2, RBL1, CDK2NC, TRAF5, CFTR, AKT3, MAP3K1, IL1R1, RICTOR, TNFRSF1B, CHEK1 BRCA1, MAML3, SPP1, PLK1, ATP6V1C2, and SERPINE1), TFs (TGIF1, FOSL1, E2F1, TWIST1, ING1, HSF2, ESR1, RBL1, ID4, EGR1, NCOA2, ZEB1, AR, MED1, KAT2B, FOXM1, and KLF8), and miRs (miR-593-5p, miR-15b-5p, miR-106b-5p, miR-147a, miR-494-3p, miR-138-1-3p, miR-196a-5p, miR-138-5p, miR-16-5p, and miR-223-3p) (Figure 6). Out of six metabolic enzymes, AKR1C2 and EZH2 were mapped to the deregulated metabolites THDOC and L-lysine, respectively (Figures 6B,D).


[image: Figure 6]
FIGURE 6. Signaling pathway proteins, transcription factor, and miR cross-connecting paths/links to metabolic enzymes in cervical cancer. Six metabolic enzymes (A–F) are commonly linked to signaling proteins, transcription factors, and miR. Two metabolic enzymes, EZH2 and AKR1C2 (B,D), are connected to deregulated metabolites in cervical cancer. Terminal signaling pathway proteins, transcription factors, and miRNAs, metabolic enzymes are colored in purple, green, red, and blue. Protein-protein interactors are colored in orange. Gene regulatory edges are represented as black arrows and protein-protein interactions are represented by orange edges. Nodes with an asterisk (*) are key or effector nodes in the significant paths/network.




Survival Analysis of the Genes/miRNAs of Identified Paths/Links in Cervical Cancer

Potential prognostic values of the genes and miRNAs of the signaling, transcriptional and post-transcriptional cross-connecting paths/links to metabolic enzymes in cervical cancer patients were explored by evaluating the correlation and OS. A total of 53 genes and 10 miRNAs were found to be significantly associated with the OS in the log-rank test with a p < 0.05 (Supplementary Table 12). Mapping these genes and miRNAs onto the corresponding cross-connecting paths/links yielded 16, 34, 20, and 9 paths/links to have 1–25, 26–50, 51–75, and 76–100% of their component as a prognostic marker in cervical cancer patients (Figure 7A). Almost all the final selected paths/links (79 out of 83) possess at least one node (gene/miRNA), whose expression is significantly associated with cervical cancer patients' survival. In total, 38% (30 out of 79) of the selected paths/links have more than 50% nodes to be significant (p < 0.05) prognosis marker (Figure 7A). Further, we checked the status of these prognostic markers in different types of paths/links. Most of the two-component (2C) paths were found to have 100% of their component as a prognostic marker. Three-component (3C) paths were found to have 51–75% of their component nodes as a prognostic marker. Similarly, significantly higher numbers of longer or higher component paths (e.g., 4, 5, and 6C, respectively) also possess more than 25% of their nodes as a prognostic marker (Figure 7B).
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FIGURE 7. Prognostic markers in identified cross-connecting paths. (A) shows the fraction of components as a prognostic marker of cervical cancer in the identified paths/links. (B) shows the fraction of components as a prognostic marker in different types (2, 3, 4, 5, and 6 C) of identified cross-connecting paths/links.




S, TF, and miR Cross-Talks in Breast and Ovarian Cancers

To investigate whether the cross-pathway links are specific to cervical cancer, we identified such paths from two other female-specific cancers, such as breast and ovarian cancers. As mentioned in the Methods, paths originating from S, TF, and miR connecting metabolic enzymes (M) were identified in breast and ovarian cancers using the cancer-specific transcriptomics data mapping followed by implementation of HMM-based mathematical models. A total of 2,79, 311 and 413 S-PPI-M, TF-PPI-M, and miR-PPI-M paths were identified in breast cancer connecting 232, 261 and 325 S-M, TF-M, and miR-M pairs, respectively. Similarly, 250, 669 and 166 S-PPI-M, TF-PPI-M, and miR-PPI-M paths were identified in ovarian cancer connecting 218, 577 and 150 S-M, TF-M, and miR-M pairs, respectively (Tables 1–3). Mapping of deregulated metabolites resulted in 69 paths in breast cancer and 481 paths in ovarian cancer.

The signaling (S-M), transcriptional (TF-M), and post-transcriptional (miR-M) regulatory links identified from cervical, breast, and ovarian cancer networks were compared to estimate the common and specific regulators and regulatory links (Figure 8). Interestingly, a very little overlap of regulatory paths and pairs was observed among the three types of cancers (Figures 8A–F). In total, 32% of terminal signaling proteins and 43% of terminal metabolic enzymes forming CC-specific S-M enzymes paths were found to be common with that extracted from breast and ovarian cancer networks (Figures 8G,J). Similarly, 46% of terminal TFs and 30% of terminal metabolic enzymes forming CC-specific TF-metabolic enzyme paths were found to be common with those extracted from breast and ovarian cancer networks (Figures 8H,K). Three metabolic enzymes (EZH2, ENO2, and RRM2) were found to be commonly regulated by S-M, TF-M, and miR in all three cancers (Figure 8).
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FIGURE 8. Comparison of regulatory molecules and links in female-specific cancer. (A–C) show the overlap of significant signaling proteins (S), transcription factor (TF), and miR to metabolic enzyme connecting paths, respectively, identified from cervical cancer (CC), breast cancer (BC), and ovarian cancer (OC) specific networks. (D–F) show the overlap of S-M, TF-M, and miR-M pairs, respectively. (G–I) represent the overlap of terminal signaling protein in S–M paths, a transcription factor in TF–M paths, and miR–M paths, respectively. (J–L) represent an overlap of terminal metabolic enzymes. S-M, signaling-metabolic; TF-M, TF-metabolic; miR-M, microRNA-metabolic.


The metabolic enzymes EZH2 and MIF connected to deregulated metabolites L-lysine and citric acid were commonly regulated in breast cancer. However, 17 metabolic enzymes (EZH2, MTHFD1, ALDH3B2, ATP6V1B1, TCIRG1, AGMAT, SETDB1, PFKL, TKT, INPPL1, MTHFD2, CPS1, MARS, PFKP, AASDHPPT, ATP6V0D2, and PLOD3) connected to nine deregulated metabolites (L-lysine, adenosine monophosphate, fructose 6-phosphate, homovanillic acid, methylimidazole acetic acid, N-acetylglutamic acid, phenylacetic acid, phosphate, and Urea) were found to be commonly regulated in ovarian cancer.

The metabolic enzyme EZH2 was connected to deregulated metabolites L-lysine in cervical, breast, and ovarian cancer (Figure 6B, Supplementary Figure 6). Twenty-five out of the 27 paths/links connected to metabolic enzyme EZH2 in the breast cancer network (Supplementary Figure 6A) possesses at least one gene, whose expression is significantly associated with drug/chemotherapy response. Seventeen out of the 37 genes associated with these paths were predicted as cancer biomarkers with potential clinical utility (AUC ≥ 0.6; Supplementary Table 13).




DISCUSSION

Understanding the molecular mechanisms for cancer progression and subsequent development of potential therapeutics to inhibit this complex disease are difficult from the independent knowledge of ongoing signaling, gene regulatory, and metabolic alterations. Therefore, understanding the intricate coordination of signaling and gene regulatory-induced proliferation of tumor cells/growth and metabolic processes is very much required. An integrated view of the probable interconnections between oncogenic signaling-gene regulatory pathways and the metabolic shift could be one of the better ways to find out possible potential therapeutic targets. Our approach toward the establishment of a cross-pathway metabolic interconnection network is an attempt in that direction.

It is well-established that genetic modifications, altered transcriptional, and post-transcriptional regulations are responsible for mediating the changes in biological processes, which ultimately shape complex pathophysiological situations like cancer. The interconnectivity and regulations are perhaps maintained through the systemic-coordinated interaction of proteins as a complex system, acting as a perfect molecular machine (62–64). Therefore, the identification of such a precise protein-interaction network responsible for the disease progression is of utmost importance for understanding the disease and potential therapeutic development.

In this study, we have developed a biology framework of a cervical cancer-specific system where signaling (S) pathway proteins, miRNA, and TF-based gene-regulatory modules are connected to metabolic (M) pathway proteins through PPIs. Publicly available transcriptomic data derived from cervical cancer patients were incorporated into a mathematical modeling set-up to weigh and rank the interconnecting link/paths in addition to biological and network topological properties to extract out high confidence inter-pathway connections that are perhaps responsible for facilitating metabolic adaptation in cervical cancer.

In our previous study, we implemented the underlined mathematical model-based approach for the development, test, and validation of S-M interconnecting links using glioblastoma multiform (GBM) cell line-derived transcriptomics and proteomics data (37). Further, in-vitro perturbation of genes/proteins involved in forming a high-score interconnection between S-M pathway proteins showed a significant change in the expression of proteins involved in the metabolic pathway. This validated our model for discovering hitherto unknown connections/involvement between signaling and metabolic genes/proteins. As a natural follow-up study, here we have significantly upgraded the previous model with two entirely new types of connectivity paths linking TF and miRNA-based regulatory mechanisms to altered states of metabolic enzymes. We have used large-scale patient-derived cervical cancer data and implemented additional network topology-based weights to signify the identified cross-pathway links. Further, we have utilized differential metabolite data to extract out paths that correlate with the altered status of the metabolic enzymes that were proposed to be regulated via signaling and regulatory factors. Comparison of the significant paths originated with S, TFs, and miRNAs yielded 88 commonly linked paths connecting six common metabolic enzymes (e.g., RRM2, AKR1C2, ENO2, TYMS, EZH2, and NDUFA11).

The ribonucleotide reductase subunit M2 (RRM2) was found to be significantly upregulated in cervical cancer tissue and is linked to promoting the progression of cervical cancer (65). RRM2 is likely to become a novel potential diagnostic and prognostic biomarker of cervical cancer.

Aldo-keto reductase subfamily 1C2, which plays a major role in regulating the activity of androgens, estrogens, progesterone, and prostaglandins metabolisms, is also implicated with cervical, endometrial, and bladder cancers (66, 67). Overexpression of AKR1C2 is found to be a mildly favorable prognostic marker (Supplementary Table 12) but lower expression of NADH:ubiquinone oxidoreductase subunit A11 (NDUFA11) is prognostically unfavorable in cervical cancer (Supplementary Table 12). Enolase 2 (ENO2) and thymidylate synthetase (TYMS) are found to be upregulated in cervical cancer transcription datasets (68, 69). Overexpression of enhancer zeste homolog 2 (EZH2) has been linked with proliferation, progression, and prognosis of cervical cancer (70). However, our survival analysis using data of cervical cancer patients from TCGA suggested much lower survival with lower expression of EZH2 (Supplementary Table 12).

Several miRNAs have been identified whose roles have been implicated in cervical cancer progression. Most of the miRNAs except one (miR-593-5p) forming the metabolic pathway PPI links were previously reported to be dysregulated in cervical cancers (71–75). However, the diverse mechanisms by which these miRNAs could regulate cervical cancer progression were not well-known especially their roles in regulating the metabolic adaptation in cervical cancer cells. Our study provides novel avenues to study the impact of these important miRNAs in the regulation of metabolic reprogramming in cervical cancer. miR-593 plays important role in the regulation of lung, breast, and gastric cancer proliferation (76–79). Higher expression of miR-593 is found to be unfavorable for the survival of cervical cancer patients (Supplementary Table 12). Hence, its role in cervical cancer especially in its metabolic adaptation is worth investigating further.

Transcription factors are key regulators of cancer proliferation and metastasis. Roles of several transcription factors, such as SOX2, E2F4, E2F1, POU5F1, SMAD3, SMAD2, VDR, ERG, TP53, EWS, c-fos, fra-1, OCT4, KLF4, C-MYC, and NANOG, were established in cervical cancer (80, 81). Our study highlights the probable roles of important transcription factors in regulating the metabolic status of cervical cancer cells via modulating the metabolic enzymes. Thirty-one TFs were found to be connected to 30 metabolic enzymes via the TG and their respective PPIs. Fifteen TFs were found to be linked with six metabolic enzymes for which altered metabolite status could be associated (Figure 4).

Ras, cell cycle, MAPK, EGFR, and p53 are among the top five most connected signaling pathways to the metabolic enzymes via PPI interconnectivity (Figure 3). Among the 27 terminal signaling proteins that form significant connections with metabolic enzymes, 9 (CHEK1, MAP3K1, CDKN2C, PAK2, EGFR, FGFR2, PDGFRA, and PTK2) are found to be kinases. TFs and miRNAs are generally regarded as “undruggable,” hence, these regulatory kinases could be ideal candidates for targets of small molecules inhibitors/drugs to check their roles in altering the functional activities of the connected enzymes.

All cervical cancer-based cross-pathway links are provided in Supplementary Tables 8–11. Similarly, an online platform is also created as a separately published work (82) where cervical cancer dataset-specific S-M, TF-metabolic, miRNA-metabolic, and combined paths are made available at http://www.hpppi.iicb.res.in/APODHIN/home.html.

Cervical cancer-based PPI links to metabolic enzymes originated from signaling (S), TF, and miR regulatory molecules were also compared to the same identified from breast and ovarian cancer networks. Comparison of the regulators and regulatory links yielded little overlap among the three cancers (Figure 8) indicating the existence of cancer-specific regulatory mechanisms for probable metabolic alterations. However, some signaling proteins were found to be common regulatory molecules among the three cancers whereas terminal enzymes, such as EZH2, ENO2, RRM2, and TYMS, were found to be commonly regulated in all the cancers by three different regulatory mechanisms (Figure 8).

We understand that our approach is computation heavy and our findings require further in vitro and in vivo experimental validations. Similarly, for effective stratification of the patients, multiple omics data (e.g., transcriptomics, proteomics, and metabolomics) need to be generated from an individual patient. Nevertheless, we believe that our systems biology-based approach of identifying multi-factor signature links connected to the regulation of status and functionalities of metabolic enzymes paves the way for future studies which could be aimed toward identifying novel regulators of metabolic alterations in cervical cancer.
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The soluble resistance-related calcium-binding protein (sorcin, SRI) serves as the calcium-binding protein for the regulation of calcium homeostasis and multidrug resistance. Although the mounting evidence suggests a crucial role of SRI in the chemotherapeutic resistance of certain types of tumors, insights into pan-cancer analysis of SRI are unavailable. Therefore, this study aimed to probe the multifaceted properties of SRI across the 33 cancer types. The SRI expression was analyzed via The Cancer Genome Atlas (TCGA) and Genotype Tissue-Expression (GTEX) database. The SRI genomic alterations and drug sensitivity analysis were performed based on the cBioPortal and the CellMiner database. Furthermore, the correlations among the SRI expression and survival outcomes, clinical features, stemness, tumor mutation burden (TMB), microsatellite instability (MSI), and immune cells infiltration were analyzed using TCGA data. The differential analysis showed that SRI was upregulated in 25 tumor types compared with the normal tissues. Aberrant expression of SRI was able to predict survival in different cancers. Further, the most frequent alteration of SRI genomic was amplification. Moreover, the aberrant SRI expression was related to stemness score, epithelial-mesenchymal-transition (EMT)-related genes, MSI, TMB, and tumor immune microenvironment in various types of cancer. TIMER database mining further found that the SRI expression was significantly correlated with the infiltration levels of various immune cells in certain types of cancer. Intriguingly, the SRI expression was negatively correlated with drug sensitivity of fluorouracil, paclitaxel, docetaxel, and isotretinoin. Our findings highlight the predictive value of SRI in cancer and provide insights for illustrating the role of SRI in tumorigenesis and drug resistance.
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INTRODUCTION

Recent statistics showed that cancer has become a worldwide public health issue with an estimated 1,898,160 new cancer cases and 608,570 cancer deaths in 2021 (1). In recent decades, great advances have been achieved in the diagnostics and treatment of cancer, in particular checkpoint blockade-based immunotherapy (2). Currently, reliable predictive biomarkers and new immunotherapy targets have attracted considerable attention among scientists. The SRI gene, which encodes the soluble resistance-related calcium-binding protein (sorcin), is located at chromosome 7q21.12 spanning about 21.9 kb of the human genome (3). Sorcin serves as a calcium-binding protein that is a member of the penta-EF hand (PEF) family (4). Sorcin exists in a soluble form in a low cytoplasmic calcium state but translocates to the membrane to exercise its function in a high cytoplasmic calcium state (5). Classically, sorcin holds a crucial role in the regulation of calcium homeostasis through diverse mechanisms. Sorcin not only directly binds to calcium but also interacts with an L-type calcium channel and cardiac ryanodine receptor-2 to modulate calcium balance (6, 7). The aberrant expression of SRI is reported to be associated with the neurodegenerative diseases, hereditary spherocytosis cells, and women with unexplained infertility (8–10). However, the role of SRI in cancer is receiving gradually more attention.

The previous studies proved that SRI acted as a pro-oncogenic and multidrug resistance gene in certain types of cancers (11–15). The resistance to chemotherapeutic agents is recognized as a major hurdle in cancer therapy. In the past years, MDR1 (ABCB1, P-glycoprotein, and P-gp) and MDR-associated protein 1 (MRP1) were the most extensively investigated resistance proteins in cancer (16, 17). However, SRI as a novel resistance gene has begun to attract substantial attention from scientists (18). Of note, SRI and MDR1 co-localize on the same amplicon and often co-amplify in multidrug-resistant tumor cells (19). The overexpression of sorcin contributed to resistance to many chemotherapy agents, and sorcin knockdown has been found to reverse the multidrug resistance in certain types of cancer (20–22). To date, most of the studies on SRI in tumors are limited by a specific cancer type and many studies have focused on in vitro cellular level. Therefore, dissecting the role of SRI in pan-cancer is required.

Our previous findings revealed that SRI promoted the paclitaxel resistance and malignant progression in ovarian cancer (23). Thus, here we postulated that SRI might function as a critical oncogenic, resistant effector in pan-cancer, and played crucial roles in cancer immunity. To uncover the role of SRI in pan-cancer, we systematically integrated multiple databases from bioinformatics point of view. In this study, the expression of SRI was comprehensively investigated in normal tissues and their cancer counterparts using Genotype-Tissue Expression (GTEX), The Cancer Genome Atlas (TCGA), and Oncomine database. Meanwhile, the prognostic value of SRI to predict the survival outcomes was also evaluated. Then, the potential relationships among the SRI expression and clinical features, cancer stemness score, tumor mutation burden (TMB), microsatellite instability (MSI), and infiltrating immune cells were explored in pan-cancer. In addition, the SRI genomic alternations and effect of SRI on the drug sensitivity were determined using the cBioPortal and the CellMiner database. Further, the gene set enrichment analysis (GSEA) was applied to elucidate the biological function of SRI in cancer. Overall, this study highlights the multifaceted role of SRI in pan-cancer, which provides a rationale for targeting SRI as a novel therapeutic strategy.



METHODS


Data Processing and the SRI Expression Analysis

Publicly available transcriptome data of TCGA pan-cancer and the related clinical features were obtained from the UCSC XENA (https://xena.ucsc.edu/). The expression matrices of 31 human normal tissues were downloaded from GTEX web portal (https://www.gtexportal.org/). The strawberry Perl script was developed (version 5.30.0.1, http://strawberryperl.com/) to extract the SRI expression data in 33 TCGA tumor types and GTEX normal tissues. The mRNA level of SRI in the healthy men and women tissues was visualized with “gganatogram” R package. The expression data were log2(TPM) transformed excluding missing data and duplicated values. The differences in the SRI expression between the tumor and normal tissues were examined by the Wilcoxon rank-sum test. The differential expression of SRI mRNA was evaluated in various tumor types using the Oncomine database (www.oncomine.org) (24). All the analyses were conducted using the R version 4.0.2 software (https://www.Rproject.org/). The overall workflow of our study is presented in Figure 1A.
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FIGURE 1. Differential expression of SRI. (A) Outline of the workflow for this research. (B) The SRI expression in normal tissues from Genotype Tissue-Expression (GTEX) data. (C) Differential SRI mRNA expression between 33 The Cancer Genome Atlas (TCGA) cancers and GTEX normal tissues. The red color column represents the cancer samples and the blue color column represents the normal samples. ns, P ≥ 0.05; *, P < 0.05; **, P < 0.01; and ***, P < 0.001.




Correlation of SRI Expression With Survival Prognosis and Clinical Features

The survival and clinical characteristics data were obtained from the UCSC XENA repository. The association between the SRI expression level and survival outcomes, such as overall survival (OS), progression-free interval (PFS), disease-specific survival (DSS), and disease-free survival (DFS), was evaluated using Kaplan–Meier method and Cox proportional hazards model. The “survival,” “survminer,” and “forestplot” packages were employed to draw the Kaplan–Meier and forest plots. The clinical records, such as patents age, tumor stage, and tumor status, were applied to investigate their relationship with the SRI expression. The data representations were performed using “limma” and “ggpubr” R-packages.



Genomic Alterations SRI in Cancers and the Co-expression Gene Analysis

The SRI gene alternations in TCGA pan-cancer datasets across 10,953 patients were analyzed using cBioPortal database (http://www.cbioportal.org/) (25). The “Oncoprint” and “Cancer Type Summary” modules were used to investigate the genetic alterations of SRI. The “Mutations” module was applied to obtain the mutated site information of SRI. The effect of SRI alternations on the OS and gene mutation co-occurrence analysis were obtained from the “Comparison/Suvival” module. Furthermore, the copy number alterations data, mRNA Expression Z-scores data, and protein level Z-scores data of SRI in ovarian cancer were downloaded from the TCGA PanCancer Atlas dataset. To investigate the co-expression genes of SRI in ovarian cancer, the TCGA-OV RNA-seq data were accessed using the Linkedomics online tool (http://www.linkedomics.org/login.php/). The top 50 positive and negative correlated genes were selected to construct a co-expression network. The network was visualized in the STRING database (https://string-db.org/).



Correlation Analysis of SRI Expression With Stemness Score and EMT-Related Genes in Cancers

Cancer stemness was reported to be capable of evaluating by RNA stemness score (RNAss) based on mRNA expression (26). Correlation analysis between SRI expression and RNAss was examined using Spearman rank-based testing. Data were visualized with the R-package “corrplot”. We further determined the correlation between the level of SRI and cancer stem cell marker genes, epithelial-mesenchymal-transition (EMT)-related genes. The heatmaps were generated with the “reshape2” and “RColorBrewer” R-packages.



Relationship Between SRI Expression and TMB, MSI in Pan-Cancer

Recent studies have revealed that TMB and MSI could become independent biomarkers for immune checkpoint inhibitors response (27, 28). The TCGA pan-cancer mutation data were applied to calculate the TMB scores of each sample. The MSI scores of the TCGA pan-cancer samples were obtained according to a previous study (29). The analyses regarding the correlations between the SRI expression and TMB, MSI were calculated using Spearman's coefficient. The results were displayed as radar plots using the R-package “fmsb.” The tumors with high microsatellite instability are often characterized by a defective DNA mismatch repair system (MMR) system (30). The association between the SRI expression and MMR-related genes was further explored in cancers. The results were visualized as the heatmaps using the “reshape2” and “RColorBrewer” R-packages.



Association Analysis of the SRI Expression With Tumor Immune Microenvironment in Cancers

The Estimation of Stromal and Immune cells in Malignant Tumors using Expression data (ESTIMATE) algorithm was performed to calculate the ImmuneScore, StromalScore, and ESTIMATEScore using the R package “ESTIMATE” (31). The results were displayed using the R-package “corrplot” using Spearman's rank-based testing. Moreover, we analyzed the correlation of SRI expression with the abundance of various immune cell infiltrates in pan-cancer using the TIMER database (32) (https://cistrome.shinyapps.io/timer/). In addition, a correlation analysis of SRI and immune checkpoint genes was performed. The results were processed using the “reshape2” and “RColorBrewer” R-packages.



Drug Sensitivity of SRI and GSEA

The NCI-60 compound activity data and the RNA-seq expression profiles were obtained from CellMiner (https://discover.nci.nih.gov/cellminer/home.do) (33). The drugs that were considered FDA approved or in the clinical trials were selected for further analysis. Then, the effect of SRI on the drug sensitivity was analyzed using the “impute,” “limma,” “ggplot2,” and “ggpubr” R package. The GSEA analysis was performed to explore the biological functions of SRI in cancer. The gene sets of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) signature were obtained from GSEA online (https://www.gsea-msigdb.org/gsea/downloads.jsp). The GSEA analysis was processed with the R-packages “enrichplot,” “org.Hs.eg.db,” “clusterProfiler,” “DOSE,” and “limma”.



Sorcin Expression in the Ovarian Cancer Sphere Cells

The cell culture and sphere formation assays were performed according to the previously described method (34). The sorcin expression in the ovarian cancer sphere cells was evaluated using a western blot. Anti-SRI antibody (ab71983) was purchased from Abcam (Cambridge, UK).



Statistical Analysis

A log-rank test was applied in the Kaplan–Meier survival curves. Hazard ratio (HR) was determined by a Cox proportional hazard regression model. The correlation analysis was executed by Spearman's rank test. The statistical analyses were performed using the R version 4.0.2 software (R Foundation for Statistical Computing, Vienna, Austria) or GraphPad Prism 8 (San Diego, CA, USA). Results with P < 0.05 were considered statistically significant (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001).




RESULTS


Expression Levels of SRI in Normal Tissues and Pan-Cancer

To gain insights into the expression pattern of SRI in the human normal tissues, the SRI expression in tissue physiological state was investigated according to GTEX dataset. SRI was highly expressed in the small intestine, bone marrow, brain, and breast tissues, while the skeletal muscle and liver tissues expressed low levels of SRI (Figure 1B). The SRI expression abundances of various tissues in men and women are displayed in Supplementary Figures 1A,B. Overall, no gender difference was observed in the mRNA expression levels of SRI (Supplementary Figure 1C).

To further explore the SRI expression in human cancers, the SRI expression in various types of cancers was analyzed using the RNA-seq data of TCGA database (Figure 1C). The aberrant expression of SRI was detected in 28 types of cancer except for those cancers where no normal tissue data were available. The SRI expression was significantly higher in bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thymoma (THYM), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS). In contrast, the SRI levels were significantly downregulated in adrenocortical carcinoma (ACC), acute myeloid leukemia (LAML), and thyroid carcinoma (THCA). Aside from this, the higher level of SRI was reconfirmed in the brain, bladder, esophageal, gastric, head and neck, kidney, liver, melanoma, myeloma, pancreatic, and prostate cancer compared with the normal tissues using ONCOMINE database (Supplementary Figure 1D).



Prognostic Value of SRI in Pan-Cancer

To further explore the prognostic value of SRI in pan-cancer, the association between the SRI expression level and survival of patients was evaluated using the Cox proportional hazards model and the Kaplan-Meier analysis. The results from a Cox proportional hazards regression model revealed that the SRI expression levels were correlated with OS in BLCA (P = 0.030), HNSC (P = 0.023), KIRP (P = 0.009), LIHC (P < 0.001), LGG (P = 0.001), PAAD (P = 0.033), SKCM (P = 0.006), STAD (P = 0.043), THYM (P = 0.05), and uveal melanoma (UVM) (P = 0.048) (Figure 2A). SRI served as a high-risk factor for HNSC, KIRP, LIHC, PAAD, STAD, and UVM, while it acted as a low-risk gene for BLCA, LGG, SKCM, and THYM. Furthermore, the Kaplan–Meier survival analysis demonstrated that the high level of SRI predicted poor OS in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) (Figure 2B, P = 0.020), CHOL (Figure 2C, P = 0.044), KIRP (Figure 2D, P = 0.050), LIHC (Figure 2E, P = 0.023), and PAAD (Figure 2F, P = 0.026). While low expression of SRI was correlated with the shortened OS in SKCM (Figure 2G, P = 0.003). Regarding the PFS, the high SRI level represented an adverse factor in CESC (P = 0.012), HNSC (P = 0.016), LIHC (P = 0.049), PAAD (P = 0.023), PRAD (P = 0.009), STAD (P = 0.008), and UVM (P = 0.008), while the high SRI level was considered as a favorable factor in BLCA (P = 0.002), BRCA (P = 0.004), and LGG (P = 0.017) (Figure 3A). The Kaplan–Meier curves for PFS revealed a correlation between the high SRI expression level and poor survival time in the patients with CESC (Figure 3C, P = 0.038), HNSC (Figure 3D, P = 0.040), KIRC (Figure 3E, P = 0.009), and UCEC (Figure 3G, P = 0.016). The patients with high SRI expression had significantly longer PFS than the patients with low expression in BLCA (Figure 3B, P = 0.012) and THCA (Figure 3F, P = 0.028). Regarding the associations between the SRI expression and DFS, the forest plots showed high SRI expression predicted poor DFS in CESC (P = 0.002), OV (P = 0.020), and STAD (P = 0.040) (Figure 4A). Significant relationships between the SRI expression and DFS were observed in CESC (Figure 4B, P = 0.013) and THCA (Figure 4C, P = 0.005) by the Kaplan–Meier survival analysis. Furthermore, SRI exhibited a significant prognostic value in BLCA (P = 0.004), BRCA (P = 0.006), LIHC (P = 0.008), PAAD (P = 0.034), STAD (P = 0.021), UCEC (P = 0.014), and UVM (P = 0.05) in a Cox proportional hazards regression model for DSS (Figure 4D). The Kaplan–Meier survival analysis found that the PAAD (Figure 4E, P = 0.025) and UCEC (Figure 4F, P = 0.008) patients with high expression of SRI had shortened DSS. Additionally, the survival analysis of SRI in some types of cancer was validated in the GEO database (Supplementary Figure 2).
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FIGURE 2. The Cox proportional hazards model and Kaplan–Meier analysis of overall survival (OS) time by the SRI expression. (A) A forest plot of the associations of SRI expression and OS in 33 types of tumor. (B–G) Kaplan–Meier analysis of the correlations between the SRI expression and OS. A red line represents high SRI expression, and the blue lines represent low SRI expression.
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FIGURE 3. The Cox proportional hazards model and Kaplan–Meier analysis of progression-free survival (PFS) time by the SRI expression. (A) A forest plot of the associations of SRI expression and PFS in 33 types of tumor (B–G) Kaplan–Meier analysis of the correlations between the SRI expression and PFS. A red line represents the high SRI expression, and the blue lines represent the low SRI expression.
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FIGURE 4. The Cox proportional hazards model and Kaplan–Meier analysis of disease-free survival (DFS) time and disease-specific survival (DSS) by the SRI expression. (A) A forest plot of the associations of SRI expression and DFS in 33 types of tumor (B,C) Kaplan–Meier analysis of the correlations between the SRI expression and DFS. A red line represents the high SRI expression, and the blue lines represent the low SRI expression. (D) A forest plot of the associations of SRI expression and DSS in 33 types of tumor (E,F) Kaplan–Meier analysis of the correlations between the SRI expression and DSS. A red line represents high the SRI expression, and the blue lines represent the low SRI expression.




Correlation Between the SRI Expression and Clinicopathological Phenotypes in Cancers

Next, the correlations between the SRI expression and the clinicopathological features of patients were investigated in pan-cancer. Patients with age ≥65 years had higher expression of SRI in KIRC (Supplementary Figure 3A; P = 0.011) and PRAD (Supplementary Figure 3B; P = 0.012). No significant difference was observed between the SRI expression and age in other cancers. We further compared the differential mRNA level of SRI in different tumor stages. SRI expression tended to decrease from stage I to stage IV in BLCA (Figure 5A). In contrast, the high SRI expression tended to associate with the advanced tumor stages in LIHC (Figure 5B). The difference between stage I and IV tumors was not statistically significant in LIHC, one reason that might be responsible is the small patient numbers in the advanced stage. Tumor status after treatment was closely associated with disease recurrence. We found that the high level of SRI was significantly correlated with-tumor status in ESCA (Figure 5D), GBM (Figure 5E), KIRC (Figure 5F), LIHC (Figure 5G), PRAD (Figure 5H), and UVM (Figure 5I). While a high expression of SRI was significantly related to the tumor-free status in BLCA (Figure 5C).
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FIGURE 5. Correlation between SRI expression and stage in (A) bladder urothelial carcinoma (BLCA), (B) liver hepatocellular carcinoma (LIHC). Correlation between SRI expression and tumor status in (C) bladder urothelial carcinoma (BLCA), (D) esophageal carcinoma (ESCA), (E) glioblastoma multiforme (GBM), (F) kidney renal clear cell carcinoma (KIRC), (G) liver hepatocellular carcinoma (LIHC), (H) prostate adenocarcinoma (PRAD), and (I) uveal melanoma (UVM).




Genetic Alteration Analysis of SRI in Pan-Cancer

Next, the cBioPortal database was applied to investigate the genetic alterations of SRI in the TCGA pan-cancer datasets. As shown in Figure 6A, the SRI gene was altered in 168 patients with cancer which accounted for only 1.5% across 10,953 samples. Regarding the SRI alterations in different cancer types (Figure 6B), the most frequent alterations of SRI gene were amplification in ESCA, DLBC, STAD, LUSC, HNSC, CHOL, OV, PAAD, GBM, UCS, BLCA, PRAD, CESC, LIHC, TGCT, ACC, LUAD, BRCA, KIRC, LGG, and KIRP. Patients with UCEC, SKCM harbored High frequency of SRI mutations was observed in UCEC, SKCM, while patients with LAML and THCA harbored high frequency of SRI deep deletion of SRI gene was the most frequent mutation type in LAML and THCA. The mutation types, number, and sites of the SRI genetic alterations are displayed in Figure 6C. The results showed that the missense mutations were the major mutation type of SRI. Intriguingly, co-occurrence of STEAP4, ADAM22, ZNF804B, DBF4, CFAP69, ABCB1, STEAP2, ABCB4, RUNDC3B, and TEX47 alterations was observed with the SRI alterations (Figure 6D). While the patients with SRI alterations represented only a small part, the patients in the SRI genetic altered group had poorer OS than those in the SRI unaltered group (Figure 6E). To explore whether the SRI amplification had an influence on its mRNA and protein level, the copy number alterations data and expression data of SRI were acquired in TCGA ovarian cancer. The results indicated that SRI was amplified along with the significantly high mRNA and protein level in TCGA-OV cohort (Figures 6F,G). Regarding the co-expression genes of SRI, the co-expression analysis was conducted using the Linkedomics database in the TCGA ovarian cancer dataset. The results are presented in Supplementary Table 1. The top 50 positive and negative co-expression genes of SRI were visualized in the STRING database (Supplementary Figure 4).
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FIGURE 6. The genetic alterations of SRI in TCGA pan-cancer. (A) OncoPrint summary of the alterations on SRI in TCGA pan-cancer datasets. (B) Summary of the alteration frequency of SRI derived from structural variant, mutations, and copy-number alterations data in TCGA pan-cancer datasets. (C) The mutation types, number, and sites of the SRI genetic alterations. (D) The analysis of gene mutation co-occurrence comparing the altered group and unaltered group of SRI. (E) Kaplan–Meier overall survival of TCGA pan-cancer cohort with altered or unaltered SRI. (F) Association of the SRI copy number alterations with its mRNA expression in the TCGA ovarian cancer cohort. ***P < 0.001, ****P < 0.0001, and by one-way ANOVA followed by Tukey's test. (G) Association of SRI copy number alterations with its protein expression in the TCGA ovarian cancer cohort. **P < 0.01, ***P < 0.001, and by one-way ANOVA followed by Tukey's test.




Correlation Among the SRI Expression and Stemness Score, EMT-Related Genes, MSI, TMB, and MMR-Related Genes in Pan-Cancer

Our previous work revealed that SRI promoted the stemness and EMT process in ovarian cancer (35), we, therefore, wanted to investigate the association of SRI expression with stemness score and EMT-related genes in cancers. First, the sorcin expression was upregulated in the OVCAR-3 and SKOV-3 spheres cells compared with the respective adherent cells (Supplementary Figure 5). Correlation analysis indicated that the SRI expression was positively associated with the RNAss in GBM, KIRC, LAML, LGG, OV, PADD, pheochromocytoma and paraganglioma (PCPG), UCEC, and UCS. While a negative relationship between the SRI level and RNAss was observed in ACC (Figure 7A). Figure 7B depicts the correlations between the SRI expression and 18 tumor stem cell markers. More than 10 cancer stem cell markers expression were significantly positively correlated with the SRI levels in GBM, KIRC, LGG, LIHC, SKCM, THCA, and UCEC. Furthermore, a heatmap showed a positive correlation between the SRI expression and 25 EMT-related genes (Figure 7C). The expression of over 15 EMT-related genes was positively associated with the SRI expression in COAD, GBM, KIRC, LIHC, and OV. The correlations among the TMB, MSI, and SRI expression were further analyzed in cancers. The results demonstrated that the SRI expression was significantly associated with increased MSI in BRCA, DLBC, ESCA, HNSC, KIRC, PAAD, THCA, and UCEC, while the SRI expression was negatively associated with MSI in COAD, GBM, LUAD, and LUSC (Figure 8A). In addition, SRI was positively correlated with TMB in ESCA, HNSC, LGG, PAAD, SKCM, and STAD, while a negative correlation between the SRI expression and TMB was found in ACC, BRCA, CESC, COAD, OV, and THCA (Figure 8B). As shown in Figure 8C, the SRI expression was significantly positively correlated with the MMR-related genes level in most of the tumors, especially in KIRP, LIHC, SKCM, UCEC, and UVM.


[image: Figure 7]
FIGURE 7. Correlation of the SRI expression with stemness and EMT-related genes in cancers. (A) The SRI expression associated with RNA stemness score (RNAss) in different cancers. The red dots indicate a positive correlation and the blue dots indicate a negative correlation. RNAss, RNA stemness score; a heatmap indicating the correlation between the SRI expression and cancer stem cell markers expression (B), EMT-related genes expression (C). For each pair, the top left triangle represents the P-value, and the bottom right triangle represents the correlation coefficient *P < 0.05, **P < 0.01, and ***P < 0.001.
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FIGURE 8. The correlation of SRI expression with microsatellite instability (MSI), tumor mutational burden (TMB), and mismatch repair (MMR) genes. (A) Radar map of correlation between the SRI expression and MSI. (B) Radar map of correlation between the SRI expression and TMB. (C) A heatmap indicating the correlation between the SRI expression and MMR genes. For each pair, the top left triangle indicates the P-value, and the bottom right triangle indicates the correlation coefficient *P < 0.05, **P < 0.01, and ***P < 0.001.




Correlation of the SRI Expression With Tumor Immune Microenvironment

Presently, the predictive role of SRI in tumor immune microenvironment has received little attention. Here, the association of SRI expression with the tumor immune microenvironment was evaluated according to the ESTIMATE algorithm and TIMER database. Our findings showed that the SRI expression had a positive correlation with the immune scores and estimate scores in ACC, ESCA, CHOL, LIHC, PRAD, and SARC (sarcoma). A strong negative correlation between the SRI and immune scores and estimate scores was found in LGG, MESO, and PAAD (Figures 9A,B). In addition, the correlation analyses revealed that the stromal scores were negatively correlated with the SRI expression in GBM, LGG, MESO, PADD, and UCS (Figure 9C). Then, the relationship between the SRI expression and immune cells infiltration was investigated in pan-cancer. The results indicated that the SRI expression was significantly associated with tumor purity in five cancer types. Furthermore, the SRI expression was significantly correlated with the infiltration levels of B cells in 14 cancer types, CD8+T cells in 14 cancer types, CD4+T cells in 13 cancer types, the macrophages in 21 cancer types, the neutrophils in 16 cancer types, and the dendritic cells in 12 cancer types (Figures 9D–H; Supplementary Figures 6, 7). Combined results from the correlation analysis and TIMER database, the SRI expression was strongly correlated with the immune infiltrating level in ACC, ESCA, LIHC, LUSC, and PRAD. The correlation between the immune checkpoint genes expression and SRI expression was explored. The results demonstrated that the most immune checkpoint genes were positively correlated with the SRI expression, especially in LIHC, PRAD, UVM, and ACC (Supplementary Figure 8), which suggested that the high level of SRI might mediate immune escape.
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FIGURE 9. Correlation between the SRI gene expression and tumor immune microenvironment in TCGA. (A–C) The SRI expression associated with ImmuneScore, ESTIMATEScore, and StromaScore in different cancers. The red dots indicate a positive correlation and the blue dots indicate a negative correlation. (D–H) Correlation of the SRI expression with immune infiltration level in adrenocortical carcinoma (ACC), ESCA, LIHC, lung squamous cell carcinoma (LUSC), and PRAD in TIMER database.




Drug Sensitivity Analysis of SRI

Since the drug resistance role of SRI in cancer has been gradually valued, we further investigated the potential correlation analysis between the drug sensitivity and SRI expression using the CellMiner™ database. Our results indicated that the SRI expression was positively related to JNJ-38877605, Simvastatin, BMS-777607, PF-04217903, and XAV-939 sensitivity (Figures 10A,B,G,J,O). Notably, the SRI expression was negatively correlated with the drug sensitivity of fluorouracil, dolastatin 10, paclitaxel, actinomycin D, tegafur, docetaxel, isotretinoin, mithramycin, elesclomol, EMD-534085, and dinaciclib (Figures 10C–F,H,I,K–N,P).
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FIGURE 10. The drug sensitivity analysis of SRI. The SRI expression was positively associated with drug sensitivity of JNJ-38877605 (A), Simvastatin (B), BMS-777607 (G), PF-04217903 (J), and XAV-939 (O). The SRI expression was negatively associated with drug sensitivity of Fluorouracil (C), DOLASTATIN 10 (D), Paclitaxel (E), Actinomycin D (F), Tegafur (H), Docetaxel (I), Isotretinoin (K), Mithramycin (L), Elesclomol (M), EMD-534085 (N), and Dinaciclib (P). X-axis represents the SRI expression level and Y-axis represents the scores of drug sensitivity.




Biological Function of SRI in Cancer

The GSEA was then performed to explore the main biological process affected by SRI in cancer. In the KEGG pathway gene set analysis, our results suggested that SRI positively regulated the immune-related pathways in CHOL, COAD, PRAD, such as natural cell-mediated cytotoxicity, antigen processing, and presentation. SRI was positively enriched in the metabolism-related pathways of OV and PRAD, such as oxidative phosphorylation, ascorbate and aldarate metabolism, and chlorophyll metabolism. In contrast, SRI was negatively enriched in the glyoxylate and dicarboxylate metabolism and drug metabolism cytochrome P450 in READ and SKCM. In addition, SRI was identified as a negative regulator for olfactory transduction, autophagy, WNT signaling pathway in LGG, READ, OV, UCEC, and STAD (Figure 11). The GO results of GSEA analysis of SRI in pan-cancer are displayed in Supplementary Figures 9, 10. In ACC, CESC, HNSC, LIHC, LAML, and SKCM, the SRI expression showed positive enrichment in the gene regulatory mechanisms, such as gene silencing, alternative mRNA splicing, transcription activator activity, and methylation CPG binding. Several immune response pathways, such as immune response regulating cell surface receptor signaling, regulation of immune effector process, and response to interleukin 12 were positively correlated to the SRI expression in STAD, CHOL, and SARC. Furthermore, a negative enrichment among the cell cycle G1/S transition, regulation of epidermal cell growth, and SRI expression was observed in OV, LUSC, PRAD, UCS, PCPG, READ, and ESCA.
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FIGURE 11. The gene set enrichment analysis (GSEA) analysis in Kyoto Encyclopedia of Genes and Genomes (KEGG) signature of cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), brain lower-grade glioma (LGG), ovarian serous cystadenocarcinoma (OV), PRAD, rectum adenocarcinoma (READ), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC). The different colors curves represent the different functions or pathways. The peaks on the upward curve indicate positive regulation by SRI and peaks on the downward curve indicate negative regulation by SRI.





DISCUSSION

In the present study, high expression of SRI in multiple cancers was observed and its dysregulation could predict worse prognosis in the patients with cancer, which indicated that SRI could serve as a robust prognostic factor among a variety of cancers. SRI exerts its function via the regulation of stemness, MSI, TMB, tumor immune microenvironment, and drug resistance. Sorcin, one of the most abundant calcium-binding proteins, plays an essential role in excitable cells, such as neurons and cardiomyocytes (36). Regarding the SRI expression in normal tissues, our research revealed that the small intestine, brain tissues, and bone marrow had a high expression abundance of SRI, which was consistent with the reports of PaxDb database (https://pax-db.org/) (18). Cytosolic calcium (Ca2+), one of the most fascinating cell signaling, organizes the diverse physiological activities from cell division, cellular motility to cell death (37). As an overexpressed Ca2+ binding protein, sorcin exquisitely controls the intracellular calcium content and exchange under normal physiological conditions. Multiple mechanisms are reported in the regulation of calcium balance affected by sorcin, some of which depend on the interaction with other calcium-related proteins (38). For a long time, substantial evidence suggests that Ca2+ signaling is implicated in the cancer cells' uncontrolled proliferation, angiogenesis, immune surveillance, and drug resistance (39). The previous studies have reported overexpression of SRI in the cell lines of gastric cancer, colorectal cancer, and breast cancer (13–15). Meanwhile, the high expression level of SRI was observed in the resistance cells of ovarian cancer, myeloma, lung cancer, leukemia, and nasopharyngeal carcinoma (20, 40–44). In this study, the high expression of SRI was verified in 25 tumor types compared with the normal tissues. Until now, literature on the prognostic value of SRI in patients with cancer is scarce. The SRI overexpression was reported to be closely related to the poor clinical outcomes and the complete remission rate in acute myeloid leukemia (45). Our Kaplan–Meier survival and the Cox regression analyses first demonstrated that SRI had predictive value on the survival outcomes in BLCA, BRCA, CESC, CHOL, HNSC, KIRP, KIRC, LGG, LIHC, OV, PAAD, PRAD, SKCM, STAD, THYM, THCA, UCEC, and UVM. In addition, the SRI expression was negatively associated with the disease stage in BLCA but positively correlated to the tumor stage in HNSC, LIHC, and MESO. Sorcin was previously reported to be positively related with the TNM stage in gastric cancer (46). Further, our study revealed that the high expression of SRI was significantly related to the with-tumor status in ESCA, GBM, KIRC, LIHC, PRAD, and UVM, suggesting SRI might have the potential for reflecting the tumor status.

Regarding the SRI genomic alterations in cancer, our data found that amplification was the most frequent mutation type in cancer. As reported in many studies, genomic amplification of the chromosomal region 7q21, such as ABCB1 and SRI occurred in the multidrug-resistant cancers (47–51). In treating with the chemotherapeutic drugs, amplification of the ABCB1-related amplicon region containing SRI was sufficient to drive tumor chemoresistance. Genomic amplification of SRI has long been recognized as an occasional event of such genomic co-amplification (52). However, accumulating evidence indicated that the pathways involved in the tumor malignant behaviors, such as TGF-β and JAK-STAT3 signaling were affected by the SRI gene amplification (35, 53). In addition, we found co-occurrence of ADAM22, DBF4, ABCB1, ABCB4, and RUNDC3B alterations was observed with the SRI alterations, which was consistent with the previous reports (48). The full-length sorcin could lead to a low level of paclitaxel resistance in ovarian cancer cells (54). In this study, our analysis showed that the amplification was associated with the high mRNA and protein level of SRI in ovarian cancer, which indicated the sorcin overexpression in ovarian cancer might be due in part to the SRI genomic amplification. A survival analysis further showed that the patients with cancer with the SRI genetic alterations had poorer OS than those with SRI unaltered group. The above findings suggested that the SRI genomic alterations were considered as a risk factor for prognosis in cancer.

The cancer stem cells (CSCs), a pool of specialized cancer cells, are at the root of tumor initiation and responsible for chemoresistance of malignant tumors (55). The occurrence of EMT endows cancer cells with the mesenchymal phenotypes and stem cell-like characteristics and thus confers invasiveness and chemoresistance (56). Sorcin silencing in the breast cancer cells decreases the pool of CD44+/CD24– and ALDH1 high CSCs in vitro (13). Sorcin was also reported to facilitate the migration, invasion, and EMT in breast cancer, ovarian cancer, and colorectal cancer (13, 14, 35). Sorcin overexpression is tightly associated with the increased local invasion and lymph node metastasis of gastric cancer (46). Mechanistically, sorcin silencing effectively decreased the expression of matrix metalloproteinases 2 and 9 (MMP2 and MMP9), and eventually suppressed gastric cancer metastasis (53). The previous studies have demonstrated that sorcin induced EMT-related phenotype by the regulation of PI3K/Akt/mTOR pathway and vascular endothelial growth factor (VEGF) (13, 14). Our analysis of on cancer stemness and EMT-related genes further supported the oncogenic and stemness-related role of SRI in cancer. MSI and TMB have recently captured widespread attention as promising predictive biomarkers for immunotherapy efficacy, especially in colorectal cancers and lung cancer (57, 58). Our results demonstrated that the SRI expression was significantly related to MSI in 12 cancer types and TMB in 13 cancer types. These results strongly implied that the SRI expression might affect the response to immune checkpoint therapy in patients with cancer, which will shed new light on the prognosis of immunotherapy. Further analysis revealed that the SRI expression was positively correlated with the MMR-related genes expression in most of the tumors. Thus, the patients with cancer with low expression of SRI, high MSI, and TMB may benefit from immunotherapy.

At present, the role of SRI in the tumor immune microenvironment remains a research gap worth investigation in further research. According to ESTIMATE algorithm, the correlation between the SRI expression and immune cell content might depend on the tumor types. TIMER database mining further found that the SRI expression was significantly correlated with the infiltration levels of various immune cells, particularly in ACC, ESCA, LIHC, LUSC, and PRAD. In addition, the correlation analysis demonstrated that the immune checkpoint genes were positively correlated with the SRI expression in most tumor types, suggesting SRI might be involved in immune escape. Further in vitro and in vivo studies exploring the relationship between the SRI expression and immune infiltrations are warranted. Currently, the SRI roles in multi-drug resistance have become increasingly appreciated. The previous studies reported sorcin knockdown resulted in the increased cisplatin, paclitaxel, doxorubicin, fluorouracil, and vincristine sensitivity in the cancer cells (21, 54, 59–62), which was also consistent with our drug sensitivity of SRI. Nevertheless, more experimental validation needs to be further studied to evaluate the influence of SRI on new drugs in clinical trials. Our findings may be useful in prioritizing further research on drug screening. Furthermore, our GSEA analyses suggested that SRI was closely associated with the metabolism-related pathways, transcription activator activity, immune-related pathways, and cell cycle G1/S transition. Relevant literature has reported the SRI affected glucose metabolism (63), STAT3 transcriptional activity (53), cell cycle progression in mitosis (64), and immuno-inflammatory responses (65). The results of GSEA further indicated that SRI was involved in immune-related pathways in certain types of tumor, which was consistent with our previous immune-related analysis on SRI. Our findings revealed that a signaling pathway was significantly enriched in various types of tumors. We, therefore, considered that the signaling pathways mediated by SRI were not specific for different cancers.

The pre-clinical studies have found that the natural compounds, such as dihydromyricetin and triptolide specifically reversed drug resistance through the downregulation of SRI expression in vitro, which indicates the clinical transfer value of SRI as a good candidate to prevent chemoresistance (22, 44). The significance of our work is that the multifaceted functions of SRI were unveiled in cancer, which not only further verified the previous findings but also advanced our understanding of the role mediated by SRI in the tumor immune microenvironment. Since our study was a comprehensive bioinformatics analysis and relied on multiple databases, several limitations are inevitable. First, the results are not experimental, and thus future experimental validations are required. Second, the majority of our analyses were focused on the mRNA expression of SRI. It is worth mentioning that the analyses based on the protein levels of SRI would make the results more convincing. Third, this work solely presented the correlation analysis, and the molecular mechanisms of SRI in tumor stemness and immune infiltration require further investigation in the future. To sum up, our pan-cancer analyses systematically probe the characteristics of SRI in multiple aspects, such as expression pattern, survival prognosis, genetic mutation, stemness, TMB, MSI, tumor immune microenvironment, and drug resistance. SRI might be a potential target for cancer therapy since it displayed abnormal high expression in multiple cancers and predicted worse prognosis in patients with cancer. Frequent amplification of SRI genomic was observed and the SRI expression correlated with amplification. Moreover, the aberrant SRI expression was related to the stemness score, EMT-related genes, MSI, TMB, and tumor immune microenvironment across various types of cancer. SRI was able to predict the sensitivity to chemotherapeutic agents as a novel resistance gene. The present study may provide insights for illustrating the role of SRI in tumorigenesis and drug resistance. At the same time, our work also points to several directions for future prospective studies focusing on SRI in cancer.
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Semen parameters are been found as a key factor to evaluate the count and morphology in the given semen sample. The deep knowledge of male infertility will unravel with semen parameters correlated with molecular and biochemical parameters. The current research study is to identify the motility associated protein and its structure through the in-silico approach. Semen samples were collected and initial analysis including semen parameters was analyzed by using the World Health Organization protocol. Semen biochemical parameters, namely, seminal plasma protein concentration, fructose content, and glucosidase content were calculated and evaluated for correlation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) were carried out for identification of Septin-4 presence in the semen sample. Mascot search was done for protein conformation and in-silico characterization of Septin-4 by structural modeling in Iterative Threading Assembly Refinement (I-TASSER). Twenty-five nanoseconds molecular dynamics (MD) simulations results showed the stable nature of Septin-4 in the dynamic system. Overall, our results showed the presence of motility-associated protein in normospermia and control samples and not in the case of asthenospermia and oligoasthenospermia. Molecular techniques characterized the presence of Septin-4 and as a novel biomarker for infertility diagnosis.

Keywords: human semen, seminal plasma, motility associated protein, septin-4, in-silico characterization, molecular dynamics simulations


INTRODUCTION

Human infertility affects <15% of all couples, <6% of Indian couples. Among these, male partner contributes 40–50% of total infertility (1–3). This gave a clear picture of the contribution of males toward human infertility. Semen parameters, namely, spermatozoa concentration, sperm motility, morphology, etc. plays a major role and act as a deciding factor for fertility rate. So, the andrologists majorly focus on these issues primarily toward the diagnosis of male infertility (4, 5). For analyzing these factors, a multiple-omics approach is in need to diagnosis male infertility by having a strong focus on parameter analysis. Semen parameters were found to be only the primary trump card, with these, we can just tell about the count and morphology, wherein the deepest knowledge of male infertility will come only when semen parameters were correlated with many molecular and biochemical parameters (6). One such approach is proteomics of semen, correlating with motility-associated proteins. Motility is the major parameter analyzed during semen analysis, the cluster of proteins involved in giving mobility to the sperm cells when entered into the female reproductive system (7–11). Many potential biomarkers could be elucidated here (proteomic approach) which strengthens the diagnosing part (12). A biomarker is a marker derived from any biological substances which could be used to study, analyze, and compare various conditions and strategies. Biomarkers were non-invasive, with minimal side effects, and could be used for various diagnostics and therapeutics values (13–17). Currently, the basic andrology laboratory, various semen analysis parameters, endocrine research, and antisperm antibodies where assisting clinicians for diagnosis (18–20).

In addition, the proteomic approach will strengthen the patient-specific diagnosis and prognosis. Already we studied the role and influence of many proteins like Semenogelin II, prostasomes proteins, and epididymal proteins as markers for various diagnostic approaches. Septin is one of the flagellar proteins that produce the energy in the annular region and helps the sperm to move forward in the female reproductive tract (21–23). Septins are the major cytoskeletal protein with major and unique filament-forming capabilities (24, 25). Many mice model studies proved that the downregulated or missing septin family protein in ejaculated semen will fall under sick without mobility and thus producing the immotile sperms will not help further for natural conception (26). So far 14 different septin genes were identified since the first was 35 years back. Disruption of septin and its functions shows many abnormalities to humankind, namely, neoplasia, breast cancer, Parkinson's disease, neurogenerative disease, and human male infertility (27, 28). Each septin presence is important for other septins to do their functions properly. These septins will bind together to produce a higher order structure, to form a filament, membranes, or ring-like structure (29). The septin-rich part of sperm is the annulus, it is a submembranous ring that separates the middle and peripheral regions of the sperm flagella. The role of septin is still in debate whether it is an active GTPases or just as a guanosine triphosphate binding protein (30, 31). Septin gives much more energy and the ring structure gives the circulatory force that drives the sperm to move forward and not immotile in the female reproductive tract (32, 33).

The functions of septin start at spermatogenesis itself, during this time it helps in establishing the mitochondrial architecture and cytoskeleton to the annulus. The absence of Septin-4 and−12 in the sperm cell, lacking with the functions of mobility, midpiece damage, rounded sperm head, acrosomal defects, etc. (34, 35). Many studies revealed the insufficient energy for a sperm cell to move forward in the absence of septin proven by in vitro and in vivo mice models. The absence of septin in sperm cells is shown with lots of annuli and the connection between midpiece and head, this will misfunction the sperm and not able to fuse the ovum as it fails the forward motility (36, 37). The functions of septin in male fertility were more, but still, the mechanism of understating these family proteins was very tough, and correlating with male infertility diagnosis could be elucidated further (38, 39). Due to the lack of experimental structure of human Septin-4, the structural prediction methods using in-silico characterization will help in elucidating the structure–function relationship at the molecular level.



MATERIALS AND METHODS


Semen Sample Collection

Semen samples were collected from the patients who visited Bangalore Assisted Conception Center, Bangalore, Karnataka at the Andrology lab. The samples were collected from them in a wide mounted, sterile, non-toxic plastic ware, they have been provided with a neat room to collect the samples. The method followed was 7 days abstinence time and masturbation technique. Strictly the abstinence time was asked with them as it influences the results in a great manner. The patients were provided with all necessary infrastructures for collection as this also influence the results. Once, the collection was over, the patient details, namely, the name, hospital number, andrology number, abstinence time, method of collection, smoking habits, alcohol habits, last visit date, last collection date, age, and region were asked for and observed. The sample container was marked with a patient number, hospital number for further processing (40).



Ethical Consent

Ethical clearance was done for this work to carry on human semen samples. Informed consent was also obtained from the patients in their own language. The patients were explained with the motive of this work and only after semen analysis report were ready, and then the remaining samples were utilized for this work.



Semen Analysis Report Preparation

Soon after the arrival of samples from the patients to andrologists, a semen analysis report was prepared. World Health Organization (41) procedure was strictly followed to prepare the report. Computer-assisted semen analysis, Germany made, was used to compute the number of spermatozoa, motility, morphology, etc. (42).



Categorization of Semen Samples

Semen samples were segregated into groups by prepared semen analysis report; the categories were asthenozoospermia, oligozoospermia, normozoospermia, and healthy volunteers or controls. The segregation was done purely by using semen parameter values and semen analysis reports (42).



Statistical Analysis

We have used Graphpad prism (GraphPad Software, USA), version 5.1 for this research statistical data. Values were mentioned with mean ± standard error of the mean for experiments repeated (43).



Separation of Spermatozoa and Seminal Plasma for Biochemical and Molecular Analysis

For this research, after semen sample analysis, samples were collected according to the standard protocol followed by WHO and as per Rao et al. (44).



Spermatozoa Disruption for Obtaining the Intracellular Protein Content

Spermatozoa separated from seminal plasma; sperm pellets were suspended which was supplied with buffers with various detergents. The standard protocol is followed for spermatozoa disruption (42).



Protein Estimation

Protein estimation was done on each fraction of seminal plasma and spermatozoa with the standard protocol followed by standard protocol (45).



Fructose Content Estimation

Fructose content in each sample was evaluated with the standard protocol given by WHO (41), with some modifications done (46).



Enzyme α-Glucosidase Estimation

α-Glucosidase estimation in each sample was evaluated with the standard protocol given by WHO (41), with some modifications done (47).



Estimation of Trace Element Zn

Zinc (Zn) plays a major role in human male fertility. Estimation of Zn was done with standard protocol by using atomic absorption spectroscopy and followed standard protocol (48). Trace element concentrations were estimated using the standard curve.



Identification of Septin-4 Protein in Spermatozoa

The centrifuged and ultrasonicated samples were used to identify the fertility-associated protein in spermatozoa (Septin-4); intracellular proteins isolated from different semen samples' categories (asthenozoospermia, oligospermia, normospermia, and control) were subjected to SDS-PAGE analysis. The silver stating protocol was used to stain the gel. To the extend, the protein band which was differentially expressed (downregulated) in the asthenozoospermia category was subjected to matrix-assisted laser desorption/ionization- time of flight- mass spectrometry (MALDI-TOF-MS) analysis and then Mascot search for identification of the protein.

The differentially expressed band from the gel was excised and dehydrated with a minimum of 50% 50 mM ammonium bicarbonate and 50% acetonitrile. Then follows the standard protocol overnight. Voyager-DE STR instrument (PerSeptive Biosystems, Inc., USA) in linear mode was used to acquire MALDI-TOF-MS spectra. Positive ions accelerated to 20 V were calculated. Both matrix and sample were dissolved in milliQ water and equal ratios of matrix and sample were mixed and spotted onto MALDI plate for analysis.



In-silico Characterization

In addition to the wet-lab experiments, the in-silico structural analysis was evaluated for human Septin-4. The primary analysis based on the Swissprot database screen proved Septin-4 consists of 478 amino acids (Uniprot/Swissprot id: O43236). Septin-4 consists of eight isoforms and isoform 1 (identifier: O43236-1) was selected for the analysis consisting of molecular weight 55,098 Daltons (55 KDa). From the structural database screening, the absence of an experimental 3D structure of Septin-4 was identified. The in-silico structural modeling of Septin-4 was performed using the Iterative Threading Assembly Refinement (I-Tasser) server (49). Iterative Threading Assembly Refinement is a fully automated 3D structural prediction of protein server based on the threading/fold recognition methodology. It ranked no. 1 among the structural prediction server evaluated by a critical assessment of structure prediction (CASP14 experiment in 2020) and also ranked top for the function prediction (CASP9). The server chooses the suitable structural templates from database protein data bank (PDB) by a multiple-threading approach called local meta-threading server (LOMETS) and protein models constructed by iterative template-based fragment assembly simulations. The prediction is mainly based on critical parameters like C-score, TM score, and root mean square deviation (RMSD). C-score, a scoring function mainly based on the theoretical concepts were also done. C-score with a range of [−5, 2] signifies the higher value confirmed the protein model with the confidence level. The output showed the five best protein models based on optimal C-score, TM-score, RMSD, and SD.



Molecular Dynamics Simulation

Molecular dynamics (MD) simulations study on human Septin-4 was carried out using GROMACS 5.0 package (David van der Spoel, Sweden) (50). Simple point charge (SPC21) water molecules of 0.9 nm were used for the solvation of protein models in the simulation box. The neutralization of the system was obtained by adding six sodium ions to replace the initial SPC water molecule in all directions. Energy minimization of all systems was carried out by steepest descent energy minimization with tolerance limit 100 kJ/mol and GROMOS96 43a1 force field was used for the simulations of protein (51). A cutoff of 14 Å for van der Waals interactions and 12 Å for electrostatic interactions was used for the process. Electrostatic interactions were computed using the particle mesh Ewald method. The LINCS algorithm was used to constrain all bond lengths and the SETTLE algorithm was applied to constrain the geometry of water molecules in the system. The energy minimization was done in two equilibration phases, number of particles, volume, and temperature (NVT) ensemble with a constant temperature of 300 K and with a coupling constant of 0.1 ps for duration 100 ps, and number of particles, pressure, and temperature (NPT) ensemble with a constant pressure of 1 bar was employed with a coupling constant of 5 ps for duration 100 ps. For both ensembles of equilibration, the coupling scheme of Berendsen was employed. Finally, the systems were subjected to production MD simulation for 25 ns run. MD trajectories of human Septin-4 were analyzed by GROMACS utilities. The analysis included RMSD, solvent accessible surface, the radius of gyration (Rg), and principal component analysis (PCA). The stability analysis was performed by using utilities like g_ rms, g_ sas, g_ gyrate, g_covar, and g_anaeig, respectively. Principal component analysis describes a correlated motion of the protein obtained from the mass-weighted Cα-covariance matrix. The functionally relevant motion of the protein can be computed by the collective displacement of domains called essential dynamics. To detect the collective motion mutant trajectories were subjected to PCA. The resulting covariance matrix describes the concerted coordinate motions.

In this study, the first and second Cartesian principal components are considered reaction coordinates derived from PCA.




RESULTS

The first step was to categorize the semen samples based on the World health organization values, this was done by using several semen samples, and each value and its error mean was the final mark. Based on the semen analysis report oligospermia (N = 18) meant for less count than normal, asthenospermia (less motility N = 24) than normal, normospermia (normal as per WHO N = 15), oligoasthenospermia (both less count and motility N = 12), and healthy volunteer (control N = 8). The semen parameter values were tabulated in Supplementary Table 1. The results suggested that there exists a potential statistical difference exist between oligospermia and asthenospermia in the case of motility parameter. As this work will further correlate only the motility issues, the results we majorly focused on only motility issues.

Once the semen analysis report and categorization of samples were done, immediately the samples were kept in liquid nitrogen preservation. Once the need, the samples were centrifuged for separation of seminal plasma and spermatozoa. Important biochemical parameters were analyzed. The total protein content was done for both seminal plasma and spermatozoa, fructose content was estimated in seminal plasma, α-glucosidase estimation was also done in seminal plasma for all samples in all categories, and Zn content was evaluated in the same way. All these are very essential biochemical parameters that need to be evaluated for proper correlation with molecular markers during diagnosis. All these biochemical values for different categories of semen samples were tabulated in Supplementary Table 2.

Protein content was already evaluated through Lowry's method. After centrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was done for different infertile categories as mentioned earlier in the methodology section. The developed silver-stained protein SDS-PAGE was depicted in Figure 1. Almost eight bands were found to be visible in the SDS-PAGE, with a maximum of bands existing in the case of 50 and 110 kDa proteins. The band around 55 kDa was missing in the case of asthenospermia, but present in the case of oligospermia, normospermia, and healthy volunteers. We guessed the importance of missed 55-kDa protein and further, we want to investigate this protein. The missed protein was isolated from normospermia and healthy volunteers and then MALDI-TOF analysis was done for eight samples to access the similarity in the results. Also, a Mascot search was done by using the MALDI-TOF results. The missing protein in asthenospermia was identified as Septin-4. It has already been evidenced that this protein had played a major role in Alzheimer's disease, male infertility, and Down syndrome. The role of Septin-4 in male infertility is enormous and more molecular work is in need for the prediction of the pathway mechanism behind male infertility. The correlation of motility and its implications with male infertility diagnosis is the key to success.


[image: Figure 1]
FIGURE 1. The band around 55 kDa was less expressed in the case of asthenospermia, but present in the case of oligospermia, normospermia, and healthy volunteers. We guessed the importance of missed 55-kDa protein and further we want to investigate on this protein. GelAnalyzer was used to analyze this 1D SDS PAGE bands and all the interpretation has been done by the standard protocol. 1, marker standard; 2, Normospermia; 3, healthy volunteer; 4, Asthenospermia; 5, Oligoasthenospermia.



Mascot Search and Its Implications

The date got through m/Z values were analyzed for each sample was searched in mascot MALDI-TOF-MS ions search. The database used as SwissProt, humans as chosen for taxonomy and enzyme as trypsin in the search tool. The parameters used for searching the protein of interest through mascot search were tabulated in Table 1. We looked for a maximum of hits and were obtained against the Septin-4 protein. The functions of the query protein were reviewed in Swissprot and involves in male infertility if downregulated in certain patients. Database search was performed in PDB and observed that the absence of experimental structure of human Septin-4. The in-silico approach has been used to predict the structure of protein for further research studies.


Table 1. Mascot Search for the identified protein by MALDI TOF and its parameter search.

[image: Table 1]



Structure Prediction

Using the in-silico structural study on human Septin-4, the 3D structural model was predicted from the I-Tasser server. Out of five models, the model with the least C-score −3.19 was selected as the best structure of Septin-4. The other parameters also supported the model with an estimated TM score of 0.36 ± 0.12 and an estimated RMSD of 15.2 ± 3.5Å. The threading/fold recognition method screened the structure of the GTPase domain of human Septin-12 (PDB code: 6MQ9) as the template for the Septin-4 modeling. The Septin-4 model falls under the structural classification of alpha + beta, the architecture of the three-layer (αβα) sandwich, and the topology of the Rossmann fold, and is visualized in PyMol in Figure 2A. The major molecular function of the septin family was catalytic activity, GTPase activity, hydrolase activity, protein binding, lipid binding, and protein dimerization activity. The quality of the model was deciphered by the ProSA server and results showed the Z-score of −3.5 that related to experimental structures in Figure 2B. The above predicted human Septin-4 structural model can be used for further annotation studies related to male infertility mechanisms.


[image: Figure 2]
FIGURE 2. (A) 3D structure model of human septin 4 visualized in PyMOL. (B) Protein quality check from ProSA server.




Molecular Dynamics Simulations

The convergence of the protein system during simulations was measured by RMSD of all Cα atoms from the initial structure. The initial equilibration of the native structure of human Septin-4 was done in 5 ns. After the equilibration phase, the structure of Septin-4 showed an RMSD range in 0.3–0.4 nm during 25 ns simulations (Figure 3A). The structure was well-converged and confirmed the protein stability of Septin-4 at end of simulations and structure with a stable trajectory in the dynamic system. Radius of gyration was the property of the overall dimension of protein during simulations. The Rg is termed as a measure of mass-weighted root mean square distance of all atoms from the center of mass. Radius of gyration of Septin-4 native structure started with 1.92 nm but gradually decrease to equilibrate with 1.85 nm (Figure 3B). Thus, the overall protein folding pattern of human Septin-4 protein was observed. A solvent-accessible surface (SASA) plot was constructed and results showed the accessibility area around 75–80 nm2 confirmed the behavior of the hydrophilic and hydrophobic residues in Septin-4 (Figure 3C). Principal component analysis was performed based on two steps. In the first step, the covariance matrix was constructed and diagonalized based on Cα atoms using g_covar and trace value of 5.52816 nm2. The eigenvectors and corresponding eigenvalues were evaluated from the covariance matrix using the motion of protein at the atom level. Then PCA was done using g_anaeig with the projection of the first two eigenvectors (eigenvector 1 vs. eigenvector 2) and the maximum motion extracted from the production run of 20 ns. The local motion of the PCA plot showed the overall motion of human Septin-4 in the dynamic system related to eigenvector 1 vs. eigenvector 2. The cluster was more compact and deciphered the motion of protein with covariance matrix (Figure 3D).


[image: Figure 3]
FIGURE 3. Molecular dynamics simulations at 25ns of human septin 4 model (A) RMSD plot, (B) Rg plot, (C) SASA plot, (D) PCA plot.





DISCUSSION

Homozygous Septin-4 (Human semen Septin-4) deletion or its downexpression was shown to have a complete or partial defect in the structure of the sperm flagellum; this means it helps a lot for the forward motility (52, 53). In our results also, the Septin-4 absent or less expressed yield with less motility and especially with forward type. The defect in the flagella or neck region always yields these types of results (54, 55). Other researchers worked with Septin-4-null sperm or flagella modified with no annulus, this structure has been replaced by thin segment missing cortical material, acts like an abnormal-flagella conferring a hairpin-like structure (56–58). Two major hypothetical utilities have long been ascribed to the annulus of the spermatozoa: one is a diffusion barrier function; it is a very essential function for the fertilization, detaining proteins to various compartments of the sperm tail to the neck (59, 60). The second one is might be on morphological planner function given guidance to the growth of the flagellum and the association of the mitochondria along the axoneme. Both of these mechanisms were found to be failed in the case of Septin-4 null sperm. Morphology of human sperm annulus/flagellum has been known for a long time, but the mechanism by which it is correlating is poorly studied (56, 61). Sperm flagella biogenesis, the biochemical composition of the sperm tail to neck, and its functions remained as same in the case of rigorous research. For the last decade, septins have appeared and been explored as constitutive components of the annulus/flagella of spermatozoa and persuasive evidence has been evidenced by many researchers and suggest that a very stable septin complex/Septin-4 is the prerequisite for morphological differentiation of the sperm tail, neck and with an important mechanism of diffusion barrier function (56). Although current evidence suggests that septins bind to the plasma membrane via interaction with phosphoinositides, our previous research with prostasomes suggest that the Zn present on prostasomes may transfer the essentials of needed motility factors and phospholipids for proper movement (62), this achieved through the fusion process of prostasomes and spermatozoa by means of protein dependent or pH dependent (63, 64). This finding suggests that binding to integral membrane proteins could also be involved. Moreover, the advance of in-silico studies deciphered the structural annotation of human Septin-4 that can be used to understand the role of septin in male infertility. Molecular modeling is the current best method used in the 3D structure prediction of key protein/enzymes/drug targets in proteomics. From the model structure, the major mechanism of Septin-4 has been studied using the structural arrangements of helix and sheets. The structure–function relationship is highly critical in the research area of male infertility, as very few 3D experimental structures are available. Also, advancements in MDs simulation deciphered the behavior of novel biomarker protein Septin-4 in the all-atom dynamics. In-silico finding acts as a critical point that can initiate various structure-function studies on human Septin-4 toward male infertility mechanism and pharmacology aspects.



CONCLUSION

Septins are the most important constituents of the annulus in spermatozoa, a submembranous ring that disconnects the middle and primary pieces of spermatozoa. This is believed to be an important protein Septin-4 that plays a major role in motility and its absence may be associated with asthenospermia. Many researchers previously reported its essential role in spermatogenesis and reproduction in animal models. Till now many researchers worked with labeling techniques and identified the importance of Septin-4 in the case of male infertility. In this current research work, we elucidated and identified the presence of Septin-4 in normal healthy sperm samples and its absence or less expression in the case of other infertile groups especially in the case of motility-related issues. The importance of Septin-4 in male fertility was proved with 3D structural modeling from in-silico characterization and MDs simulation confirmed the role of stable Septin-4 in the dynamic system. Less expression was found exclusively in infertile patients when compared to fertile patients. Further research on Septin-4 with structural studies may be used to explore more on the mechanism and its role in spermatogenesis and human infertility. Hence, our findings concluded that Septin-4 was a novel biomarker for male infertility and can be used for diagnosis and pharmacology purposes.
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Background: Stomach adenocarcinoma (STAD) is a significant global health problem. It is urgent to identify reliable predictors and establish a potential prognostic model.

Methods: RNA-sequencing expression data of patients with STAD were downloaded from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database. Gene expression profiling and survival analysis were performed to investigate differentially expressed genes (DEGs) with significant clinical prognosis value. Overall survival (OS) analysis and univariable and multivariable Cox regression analyses were performed to establish the prognostic model. Protein–protein interaction (PPI) network, functional enrichment analysis, and differential expression investigation were also performed to further explore the potential mechanism of the prognostic genes in STAD. Finally, nomogram establishment was undertaken by performing multivariate Cox regression analysis, and calibration plots were generated to validate the nomogram.

Results: A total of 229 overlapping DEGs were identified. Following Kaplan–Meier survival analysis and univariate and multivariate Cox regression analysis, 11 genes significantly associated with prognosis were screened and five of these genes, including COL10A1, MFAP2, CTHRC1, P4HA3, and FAP, were used to establish the risk model. The results showed that patients with high-risk scores have a poor prognosis, compared with those with low-risk scores (p = 0.0025 for the training dataset and p = 0.045 for the validation dataset). Subsequently, a nomogram (including TNM stage, age, gender, histologic grade, and risk score) was created. In addition, differential expression and immunohistochemistry stain of the five core genes in STAD and normal tissues were verified.

Conclusion: We develop a prognostic-related model based on five core genes, which may serve as an independent risk factor for survival prediction in patients with STAD.

Keywords: stomach adenocarcinoma, GEO, TCGA, differentially expressed genes, prognostic model


BACKGROUND

Approximately 1.4 million people die each year worldwide from adenocarcinomas of the esophagus, stomach, colon, or rectum (1), of which stomach adenocarcinoma (STAD) has the third highest incidence and second highest for cancer-related mortality, and it remains a significant global health problem (2). In 2018, STAD was estimated to cause one million new cases and 781,000 deaths worldwide (3). Since the non-specific symptoms in early stages of the disease, STAD is typically not diagnosed until the disease has progressed to a more severe state, resulting in poor prognosis due to metastasis, intratumoral heterogeneity, chemotherapy resistance, etc. (4). This raises an urgent need for the development of reliable diagnostic, prognostic, and therapeutic molecular biomarkers of STAD.

Integrative bioinformatics analysis is one of the frontiers of biological research today and can be used to identify differential genes, screen prognostic biomarkers, and select appropriate treatment approach (5). Research on single-gene prediction is very concentrated, but it is not yet effective in prognosis. Polygenic combination has been reported to possess better predictive ability for cancer prognosis than single genes (6). For instance, Lu et al. (7) revealed that the dysregulated expression of the THBS family was closely related to STAD prognosis and tumor immunity. Additionally, Liu et al. (8) demonstrated that the SFRP family was potential targets for precision therapy and prognostic biomarkers for survival of patients with STAD. Although there are some polygene bioinformatics analysis studies, most of them focus on predicting of signatures, and there is still a lack of research on polygenic risk estimation model and predict prognosis of STAD.

In this study, we aimed to develop a prognostic model for the predict prognosis for patients with STAD. A large number of mRNA expression profiles of patients with STAD were downloaded from Gene Expression Omnibus (GEO) and the Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) database. Differential expression analysis was used to identify differentially expressed genes (DEGs) between STAD-related tissue and normal tissue. Then, survival analysis and univariable Cox regression analysis were performed to screen prognostic genes, and multivariable Cox regression analysis was used to establish a prognostic risk model. Further, protein–protein interaction (PPI) network, functional enrichment analysis, differential expression, and structure investigation of the core genes were performed. Finally, a nomogram that includes age, gender, tumor TNM stage, histologic grade, and 5-gene risk prediction model as an independent clinical factor was used to predict the 1-, 3-, and 5-year survival rate of patients with STAD. The detailed flowchart of this work is provided in Figure 1.


[image: Figure 1]
FIGURE 1. Flowchart of this study.




METHODS


Data Source

The GEO database (http://www.ncbi.nlm.nih.gov/geo) was used to retrieve data with “stomach adenocarcinoma” as the keywords and human as the species. Datasets that covered cancer tissue and normal adjacent tissue, came from the same platform, and contained at least 20 samples were selected, and then, the gene expression profiles and their clinical data were downloaded. From TCGA portal (https://tcga-data.nci.nih.gov/tcga/), we collected the STAD RNA-seq data and related clinical parameters.



Differential Expression Analysis

Gene level expression data were normalized and then log2 transformation is provided by the limma package of R software (version 3.6.3). For GEO datasets, data were analyzed using the GEO2R analysis tool, and the DEGs were identified at adjusted p < 0.05 and |Log2FC| >1. For TCGA-STAD cohort, DEGs were identified with false discovery rate (FDR) < 0.05 and |Log2FC| >1 via the edge R package (9).



Prognostic Genes' Identification

Overlapping DEGs were screened based on the p-value and fold change (FC)/log(FC), and the top 50 genes were selected for Kaplan–Meier survival analysis. Log-rank p-values for Kaplan–Meier plots were calculated using an R package for survival analysis. Then, we screened genes with log-rank p < 0.05 as prognostic-related genes for subsequent analysis.



Construction and Validation Prognostic Model of STAD

To establish the prognostic model of STAD, univariable and multivariable Cox regression analyses were performed on the prognostic-related genes by the survival R package (10). Owing to the lack of survival information on GEO, we randomly divided the patients with complete survival information in TCGA-STAD dataset into training set and validation set, fit the model in the training set, and assessed its performance in the validation set. Then, the prognostic model was established based on corresponding coefficients of the prognostic genes of STAD.

[image: image]

Further, the training set was divided into high- and low-risk groups according to the median value of risk score. Kaplan–Meier survival analysis was performed to estimate overall survival (OS) between the two groups by the survival R package. Time-dependent receiver operating characteristic (ROC) curves were plotted by time ROC R package, and the areas under ROC curves (AUCs) were calculated to test the efficiency of the prognostic model (11). Univariable and multivariable Cox regression analyses were applied on clinical data (including age, gender, TMN stage, and histologic grade) and risk scores to assess whether the risk model was an independent prognostic factor of clinical parameters.



PPI Network Construction and Functional Enrichment Analysis

Interaction network analysis was obtained by employing STRING v11.5 database (http://string-db.org/), keeping default parameters. The topological properties of the PPI network included average shortest path length, betweenness centrality, closeness centrality, degree, eccentricity, neighborhood connectivity, radiality, stress, and topological coefficient. Molecular complex detection (MCODE) analysis was applied to the prognostic-related gene network to identify densely connected subnetwork modules. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to identify significant pathways via the “cluster Profiler” package in R (12). The items of biological processes were further analyzed by GO classifications. The adjusted p < 0.05 was considered to indicate a statistically significant difference. In addition, gene set enrichment analysis (GSEA) was utilized to determine the core gene-related signaling pathways by the “cluster Profiler” package in R. Results with absolute value of normalized enrichment score > 1, FDR < 0.25, and adjust p < 0.05 were considered statistically significant. 1D linear domain structures and 3D structures of proteins were visualized using cBioPortal (http://www.cbioportal.org/).



Prognostic Gene Expression Investigation in STAD and Nomogram Construction

Differential expression of the prognostic genes between normal and STAD-related tissues was verified. Additionally, immunohistochemistry staining of the prognostic genes in STAD and normal tissues was acquired from the Human Protein Atlas database (https://www.proteinatlas.org/). According to the results of univariate and multivariate Cox regression analyses, a nomogram was created using the rms and survival package of R (13). Additionally, a calibration plots were generated to validate the nomogram.




RESULTS


Differential Expression Analysis

The clinical data of GSE27342, GSE63089, and TCGA-STAD were shown in Table 1. We found 474 DEGs in GSE27342 profile (287 upregulated and 187 downregulated, Figure 2A), 732 DEGs in GSE63089 profile (622 upregulated and 110 downregulated, Figure 2B), and 5,494 DEGs in TCGA-STAD cohort (2,659 upregulated and 2,835 downregulated, Figure 2C). Subsequently, a total of 229 overlapping DEGs (159 upregulated and 70 downregulated) were screened among the three datasets (Figure 2D and Additional File 1).


Table 1. Clinical or characteristics of patients with STAD in different datasets.

[image: Table 1]


[image: Figure 2]
FIGURE 2. The results of differential expression analysis. (A) The heatmap and volcano plots visualizing the DEGs in TCGA-STAD. (B) The heatmap and volcano plots visualizing the DEGs in GSE27342. (C) The heatmap and volcano plots visualizing the DEGs in GSE63089. (D) Venn diagram showing the overlapping DEGs in the three datasets.




Prognostic-Related Genes' Identification

We selected the top 50 overlapping DEGs (cutoff: p < 0.05 and |Log2FC| >1.75) as candidate genes. According to log-rank p < 0.05 by Kaplan–Meier survival analysis, 11 genes (ADAM2, BGN, COL10A1, MMP1, MMP7, MFAP2, CTHRC1, P4HA3, SFRP4, TNFRSF11B, and FAP) were screened as prognostic-related genes for following research, and the Kaplan–Meier plots were shown in Figure 3.


[image: Figure 3]
FIGURE 3. Kaplan–Meier curves of 11 gene with prognostic value.




Construction and Validation Prognostic Model of STAD

Since the expression value of ADAM2 was zero in half of the samples, it was impossible to group by the median. The results of the univariate and multivariate proportional hazards regression analyses of the 10 prognostic-related genes associated with clinical outcomes are shown in Table 2. Multivariate regression analysis revealed COL10A1, MFAP2, CTHRC1, P4HA3, and FAP as the risk factor, and the risk score formula for OS was as follows:

[image: image]


Table 2. Univariate and multivariate Cox regression analyses.
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In addition, the patients of TCGA-STAD dataset were divided into training set and validation set. Training set consisted of 186 STAD cases whereas validation set consisted of 185 STAD cases. Patients with STAD were divided into high- and low-risk subgroups according to the median value of risk score (cutoff = 14.9). In the training set, the survival analysis showed that the OS rates in the high-risk group were significantly lower than those in the low-risk group (p = 0.0025, Figure 4C). The time-dependent ROC curves offered a survival prediction that the AUCs were 0.576 (1-year OS), 0.733 (3-year OS), and 0.887 (5-year OS). Result showed that the risk model had a good ability to predict long-term prognosis of STAD (Figure 4B). The heatmap showed that the expression levels of five core genes were higher in patients with STAD with high-risk scores than those with low-risk scores (Figures 4A, 5A). Meanwhile, data in the validation set showed the similar results: OS rates in the high-risk group were significantly lower than those in the low-risk group (p = 0.045, Figure 5C); the time-dependent ROC curves (Figure 5B) predicted that the AUCs were 0.530 (1-year OS), 0.599 (3-year OS), and 0.702 (5-year OS). Moreover, using multivariate Cox regression analysis, the prognostic model was identified as an independent predictor for patients with STAD (p = 0.008, Table 3).


[image: Figure 4]
FIGURE 4. Development of prognostic model in the training set. (A) Expression heatmap of five core genes. (B) ROC curves for survival risk predicted by risk score for 1-, 3-, and 5-year follow-ups. (C) Survival curves of high- and low-risk groups separated by risk score.
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FIGURE 5. Invalidation of prognostic model in the invalidation set. (A) Expression heatmap of five core genes. (B) ROC curves for survival risk predicted by risk score for 1-, 3-, and 5-year follow-ups. (C) Survival curves of high- and low-risk groups separated by risk score.



Table 3. Univariate and multivariate Cox regression analyses for risk score of patients with STAD.
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PPI Network Construction and Functional Enrichment Analysis

The PPI network of the five core genes was shown in Figure 6A. The topological properties of the PPI network for each gene were shown in Additional File 6. Highly interconnected subcluster of the five core genes was shown in Figure 6B, and the subcluster consisted of 53 nodes and 305 edges (score = 11.731), which represented relatively stable of protein in the network.


[image: Figure 6]
FIGURE 6. PPI network construction. (A) PPI for the five core genes in 229 overlapping DEGs. (B) Important modules including the five core genes in the PPI network.


The results of GO enrichment analysis (Figure 7A) showed that the five core genes significantly focused on extracellular matrix organization, extracellular structure organization (biological process, BP); extracellular matrix structural constituent, dipeptidyl-peptidase activity (molecular function, MF); and collagen-containing extracellular matrix, collagen trimer (cell components, CC). Meanwhile, we found that in terms of biological processes, the genes were mainly focused on extracellular matrix, cell cycle, and Wnt signaling pathways. According to the p-value, the top five items from the three categories were selected to plot a histogram (Figure 7B). KEGG enrichment analysis (Figure 7A) indicated that prognostic genes were significantly enriched with arginine and proline metabolism and protein digestion and absorption, etc.


[image: Figure 7]
FIGURE 7. Enrichment analysis for the five core genes. (A) GO and KEGG enrichment analysis. (B) Biological process enrichment analysis. (C–G) GSEA for COL10A1 (C), CTHRC1 (D), MFAP2 (E), P4HA3 (F), and FAP (G).


Gene set enrichment analysis was applied to determine their related signaling pathways (Figures 7C–G). COL10A1 was significantly enriched with olfactory transduction and nitrogen metabolism pathways, etc. CTHRC1 was significantly enriched in olfactory transduction and metabolism of xenobiotics by cytochrome p450 pathways, etc. MFAP2 was significantly enriched with olfactory transduction and fatty acid metabolism pathways, etc. P4HA3 was significantly enriched with ribosome and nitrogen metabolism pathways, etc. FAP was significantly enriched in nitrogen metabolism and metabolism of xenobiotics by cytochrome p450 pathways, etc. The mutation site and structure of the five core genes were shown in Figure 8.


[image: Figure 8]
FIGURE 8. Structural and functional in of the five core genes. (A) COL10A1, (B) CTHRC1, (C) MFAP2, (D) P4HA3, and (E) FAP.




Prognostic Gene Expression Investigation in STAD and Nomogram Construction

Differential expression of the prognostic genes between normal and STAD-related tissues was verified. Results demonstrated that COL10A1, MFAP2, CTHRC1, P4HA3, and FAP were significantly upregulated in STAD-related tissues compared with normal tissues (Figure 9A). Additionally, immunohistochemistry staining of five core genes in STAD and normal tissues was acquired from the Human Protein Atlas database, which showed that differential expression of protein was consistent with gene expression (Figure 9B). However, the immunohistochemical images of COL10A1 were not found. Then, a nomogram (Figure 10A, including TNM stage, age, gender, histologic grade, and risk score) was created to predict the survival rate of patients with STAD at 1, 3, and 5 years. It was found that high total points predicted low 1-, 3-, and 5-year survival rates; however, a low total points did the opposite. The nomogram calibration plots (Figure 10B) indicate that the nomogram was well-calibrated, with mean predicted probabilities for 1- and 3-year OS close to observed probabilities.


[image: Figure 9]
FIGURE 9. Expression investigation of five core genes. (A) Differential expression of the five core genes between normal and STAD-related tissues. (B) Immunohistochemistry staining and their mRNA expression in normal and STAD-related tissues based on The Human Protein Atlas. ***p < 0.001.
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FIGURE 10. Nomogram predicted the 1-, 3-, and 5-year survival rates of patients with STAD. (A) Nomogram predicting the 1-, 3-, and 5-year OS rates of patients with STAD. (B) Calibration plots for the 1- and 3-year OS nomogram.





DISCUSSION

The genetic background of STAD is complicated. Mining genes related to the prognosis of STAD from the genetic and molecular level is of great significance for the treatment and prognosis prediction of STAD. Bioinformatics analysis based on large databases has pointed out the direction for tumor research. In this study, we downloaded gene expression profiling and clinical data from the TCGA and GEO databases, identified DEGs, screened the prognostic-related genes, and then constructed a prognostic model based on five core genes (COL10A1, MFAP2, CTHRC1, P4HA3, and FAP).

COL10A1 is a member of the collagen family involved in tissue architecture and acts as a barrier to the migration of epithelial cells under normal conditions (14). Necula et al. (14) identified a significant increase in COL10A1 plasma level in patients with STAD and concluded that COL10A1 shows an elevated expression from the beginning of carcinogenesis, in the early stages, and its increased level remains elevated during gastric cancer progression. Aktas et al. also found that COL10A1 is abnormally upregulated in gastric cancer and its high expression can be used as a diagnostic and/or prognostic biomarker (15). It has been reported that MFAP2 is upregulated in STAD, negatively correlated with OS, and can be used as a prognostic biomarker of STAD (16, 17), which is consistent with our results. Further, Yao et al. revealed that MFAP2 is overexpressed in gastric cancer and promotes motility via the MFAP2/integrin α5β1/FAK/ERK pathway (18). CTHRC1 is a cancer-related gene that can promote cancer recurrence or metastasis via diverse signaling pathways, including TGF-β, MEK/ERK, and PKC-δ/ERK (19). Ding et al. (20) found that CTHRC1 promoted STAD metastasis through HIF-1α/CXCR4 signaling pathway, which can be used as a biomarker for STAD, and is consistent with our results. Moreover, CTHRC1 was demonstrated that overexpressed in hepatocellular carcinoma tissues significantly correlating with poor survival rate, which can be used as a prognostic marker for liver cancer (21). Consistent with the results of this study, P4HA3 has been repeatedly reported to be overexpressed in STAD and is related to the poor prognosis of STAD (22). Song et al. found that P4HA3 can be apparently activated by Slug in STAD tissues, of which imbalance and metastasis were related to poor survival rates (23). FAP is a fibroblast activating protein, which has found to be involved in the growth and formation of a variety of cancers. Research revealed that FAP promoted the growth of intrahepatic cholangiocarcinoma through the recruitment of myeloid derived suppression cells (24). Additionally, the high expression of FAP in colorectal cancer is related to angiogenesis and immune regulation (25).

In this study, we established a polygene risk factors model for predicting prognostic of STAD, which is more rational than single-risk factor. However, there are potential limitations to our analysis. First, this study has limitations inherent to a bioinformatics analysis. The construction of prognostic model is based on the TCGA and GEO database analysis and lacks clinical or cellular or animal functional experimental verification. Second, due to some patients with incomplete details are excluded, there may be selection bias in this study.



CONCLUSION

We developed a prognostic model for patients with STAD based on COL10A1, MFAP2, CTHRC1, P4HA3, and FAP, and a nomogram to predict the survival rate of patients with STAD at 1, 3, and 5 years. The evidence from this study comes from bioinformatics, as with other studies of a similar nature. It is still necessary to conduct further experiments to verify these findings.
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Objective: This study aimed to identify the programmed death ligand-1 (PDL1, also termed as CD274) and its positively correlated immune checkpoint genes (ICGs) and to determine the immune subtypes of CD274-centered ICG combinations in oral and squamous cell carcinoma (OSCC).

Materials and Methods: Firstly, the 95 ICGs obtained via literature reviews were identified in the Cancer Genome Atlas (TCGA) database in relation to OSCC, and such 88 ICG expression profiles were extracted. ICGs positively correlated with CD274 were utilized for subsequent analysis. The relationship between ICGs positively correlated with CD274 and immunotherapy biomarkers (tumor mutation burden (TMB), and adaptive immune resistance pathway genes) was investigated, and the relationships of these genes with OSCC clinical features were explored. The prognostic values of CD274 and its positively correlated ICGs and also their associated gene pairs were revealed using the survival analysis.

Results: Eight ICGs, including CTLA4, ICOS, TNFRSF4, CD27, B- and T-lymphocyte attenuator (BTLA), ADORA2A, CD40LG, and CD28, were found to be positively correlated with CD274. Among the eight ICGs, seven ICGs (CTLA4, ICOS, TNFRSF4, CD27, BTLA, CD40LG, and CD28) were significantly negatively correlated with TMB. The majority of the adaptive immune resistance pathway genes were positively correlated with ICGs positively correlated with CD274. The survival analysis utilizing the TCGA-OSCC data showed that, although CD274 was not significantly associated with overall survival (OS), the majority of ICGs positively correlated with CD274 (BTLA, CD27, CTLA4, CD40LG, CD28, ICOS, and TNFRSF4) were significantly correlated with OS, whereby their low-expression predicted a favorable prognosis. The survival analysis based on the gene pair subtypes showed that the combination subtypes of CD274_low/BTLA_low, CD274_low/CD27_low, CD274_low/CTLA4_low, CD8A_high/BTLA_low, CD8A_high/CD27_low, and CD8A_high/CTLA4_low predicted favorable OS.

Conclusion: The results in this study provide a theoretical basis for prognostic immune subtyping of OSCC and highlight the importance of developing future immunotherapeutic strategies for treating oral cancer.

Keywords: PDL1, immune checkpoint genes, oral and squamous cell carcinoma, immune subtypes, prognosis


INTRODUCTION

Oral and squamous cell carcinoma (OSCC) is one of the most common oral cancers and is characterized by high morbidity and mortality (1). Currently applied treatment approaches include tumor resection, radiotherapy, and adjuvant chemotherapy but patients with OSCC continue to display an unsatisfactory prognosis after such routine therapy (2). The median survival period of patients with OSCC is 515 days, which is <1.5 years (3). This fact underscores a urgent need for innovative and effective therapeutic strategies for treating OSCC. Immunotherapy based on the drugs targeting immune checkpoint genes (ICGs) has gained considerable attention in recent years, with a surge in the development of novel immune strategies to treat and improve the survival of patients with cancer (4). Two main approaches have been proposed to enhance the antitumor immunity. The most well-investigated approach is the blockade of coinhibitory molecules with monoclonal Abs directed to T-cell surface ICG biomarkers, namely programmed cell death protein-1 (PD1)/programmed death ligand-1 (PDL1 also named as CD274), CTLA4, LAG3, TIM3, and B- and T-lymphocyte attenuator (BTLA) (5). The second approach is based on activating costimulatory molecules with agnostic Abs directed to T-cell surface ICG biomarkers, namely CD27, CD40, OX40, and CD137 (6). Most current research is focused on coinhibitory ICGs due to the fundamental safety challenges accompanying the triggering costimulatory immune pathways, as well as the dose-limiting toxicities of mAbs agents to costimulatory ICGs (7). Therefore, the primary focus of researchers has been directed at investigating coinhibitory ICGs, particularly PD1 and its ligand-PDL1 (8).

It is well-established that PDL1 expressed on the surface of cancer cells can bind with PD1 on the surface of T-cells, and the interaction between PDL1 and PDL1 can inhibit the function of T-cells by inhibiting proliferation, promoting apoptosis, and inhibiting the cytokine secretion (9). The inhibitor drugs targeting PDL1, pembrolizumab and pembrolizumab, have been approved for use in many solid cancer treatments, including the first-line treatment for patients with recurrent or metastatic head and neck squamous cell carcinomas (HNSCC) (10). However, currently, there are no clinical trials of PDL1 inhibitors for treating OSCC. Prior clinical trials using a PDL1 inhibitor in HNSCC showed unsatisfactory response rates in an unselected population of patients with cancer, suggesting that not all patients respond well to the PDL1 inhibitor-based immunotherapy and a subset of patients are resistant to such immunotherapy (11). The purported cause underlying this phenomenon is to vary the expression levels of PDL1 among patients; therefore, patients with a high expression of PDL1 might achieve clinical responses, while those with a low expression are likely to be resistant. Another important influencing factor might be the density, composition, and activation state of the CD8+ effector T-cells, which play a central role in antitumor immunity. Patients with low infiltration of CD8+ T-cells might not respond to such immunotherapy (12). Based on these factors, there is an urgent need for the differentiation of patients with cancer into immune subtypes according to the expression level of PDL1 and the infiltration of CD8+ T-cells. The subtyping of an immune microenvironment in OSCC can be beneficial for identifying patients who may benefit from ICG-targeting therapies, and aid in optimizing the agent design for future clinical trials.

Furthermore, a few studies have shown that coinhibitory ICGs' inhibitor drugs, when administered as synergistic combination strategies, induced a dramatic increase in durable response rates as compared to monotherapy (13). The combination of PDL1 and its synergistic ICG blockers was shown to significantly increase the response rates and enhance the treatment efficacy in patients with cancer. For example, the combination of ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) was shown to significantly enhance efficacy in patients with metastatic melanoma; therefore, ipilimumab plus nivolumab was approved for the treatment of metastatic melanoma, advanced renal cell carcinoma, and metastatic colorectal cancer (14). The treatment efficacy of PDL1-centered ICG combination inhibitors has been reported in many research studies on melanoma, breast cancer, and lung cancer (15, 16). The success of this combination in other cancer types encourages its investigation in OSCC. While previous studies have addressed the synergistic combination of coinhibitory ICG inhibitors in cancer treatment, it has not yet been investigated in the context of OSCC.

To address this research gap, the present study utilized the Cancer Genome Atlas (TCGA) (17) and the Gene Expression Omnibus (GEO) database (18). The TCGA is well-established as the most comprehensive cancer genomics program, which has produced, evaluated, and made public data related to the genomic sequencing, expression, methylation, and copy number variation of over 11,000 patients with cancer who have been diagnosed with more than 30 distinct forms of cancer (17). Many previous bioinformatics studies have followed the traditional study design of analyzing the TCGA data and followed by the verification of the computationally predicted results using GEO data sets (19–24). The GEO database is a freely accessible resource for the functional genomics data that contain original data sets from tens of thousands of published microarray or sequencing experiments (25). Because GEO data sets vary in the aspects of experimental design, country, race, laboratories, experimental platform, sample size, and disease severity, these multiple factors allow the GEO data sets to be heterogeneous. If the results determined based on the TCGA data can be validated using the heterogeneous GEO data sets, the predicted results can be considered reliable. Therefore, in the present investigation, four oral cancer GEO data sets were used as independent cohorts to validate the prognostic immune subtypes results obtained using the TCGA data.

Based on the clinical survival data and RNA expression data from the TCGA and GEO database, the present research aimed to identify the ICGs that work synergistically with PDL1 in OSCC, as well as the PDL1-centered ICGs combinations that have prognostic values for OSCC. The ICG inhibitor combinations and prognostic immune subtypes identified in this research could provide novel strategies for the immunotherapy of OSCC, and bear the potential for clinical translation.



MATERIALS AND METHODS


Study Design

The work flowchart is shown in Figure 1. In brief, 95 ICGs obtained from the literature review were mapped into the OSCC-TCGA data set, and 88 ICGs were found in the data set. The tumor-infiltrating immune cell (TIIC) analysis was performed based on the expression profiles of 88 ICGs in OSCC samples, and it included distribution proportion, a heat map analysis, and a correlation analysis. The correlation among the 88 ICGs in OSCC samples was investigated, particularly focusing on the ICGs positively correlated with CD274. Afterward, the relationship between ICGs positively correlated with CD274 and several immunotherapy-related aspects was investigated. Moreover, the OSCC sample subtypes with prognostic values were identified by investigating the prognostic values of the sole genes (CD274 and its positively correlated ICGs); the prognostic values of the combination subtypes defined by CD274 and its positively correlated ICGs; and the prognostic values of the combination subtypes defined by ICGs positively correlated with CD8A and CD274. To validate the prediction accuracy of the prognostic immune subtypes identified by the TCGA data analysis, four independent cohort data sets (i.e., GSE41613, GSE42743, GSE75538, and GSE85446) were used for verification.


[image: Figure 1]
FIGURE 1. The work flowchart of the present study. The flowchart is divided into four steps: data procurement for obtaining the 88 immune checkpoint genes (ICGs) with the expression profile in the Cancer Genome Atlas (TCGA) oral and squamous cell carcinoma (OSCC) data set; tumor-infiltrating immune cells (TIICs) analysis; a correlation analysis for identifying ICGs positively correlated with CD274; and subsequent analysis focusing on the ICGs positively correlated with CD274 particularly from the aspect of the tumor mutation burden (TMB), adaptive immune resistance pathway, and clinical features; as well as the identification of the prognostic immune subtypes.




Procurement of 95 ICGs by Literature Reviews

The ICG list, including 95 ICGs, was obtained by collecting the union of ICG list in several literatures investigating the involvement of ICGs in cancers (26–29). ICGs are displayed in Supplementary Table S1.



OSCC Data Downloading and Preprocessing

The HNSCC data from the TCGA database were downloaded from the University of California Santa Cruz's official webpage (https://xenabrowser.net/datapages/). The downloaded data regarding HNSCC consisted of gene expression RNAseq data, survival data, somatic mutation (SNPs and small INDELs) data, curated clinical data, and phenotype data. The OSCC data were collected by selecting the OSCC-related anatomic sites in the column of “site_of_resection_or_biopsy.diagnoses” of the excel file regarding the clinical data of HNSCC. The OSCC-related anatomic sites include buccal mucosa, retromolar trigone, alveolar ridge, the floor of the mouth, hard palate, oral cavity, gingiva (upper and lower), and oral tongue (anterior 2/3) (30). Afterward, the OSCC data were pre-processed by removing the samples without clinical information, particularly survival information, and the samples with the overall survival (OS) of <1 month, and the adjacent healthy control samples, as well as the samples in which genes' Fragments Per Kilobase of transcript per Million mapped reads (FPKM) value was 0. After performing such preprocessing, the 326 OSCC samples were obtained. Supplementary Table S2 presents the sample size belonging to the different anatomic sites of the 326 OSCC samples. As seen from Supplementary Table S2, the most frequent site is the tongue (42.33%); the overlapping lesion of the lip as the second frequent site (25.15%); and the floor of the mouth as the third frequent site (16.87%).



Procurement of the Expression Profiles of 88 ICGs in OSCC Samples

The ensemble IDs of genes in the expression profile of OSCC were converted to the gene SYMBOL by using the Bioconductor package (31). Regarding the genes that repeatedly appear after conversion, the average expression values of these genes were taken to ensure that the genes were unique in the expression profile. Afterward, 95 ICGs were mapped into the expression profile of OSCC, and 88 ICGs showed an expression in the TCGA-OSCC data set, and thus the expression profile of these 88 ICGs was obtained.



Analysis of TIICs in OSCC Samples

Twenty-two TIICs were obtained based on the CIBERSORT webtool (https://cibersort.stanford.edu/) (32). Firstly, the expression profiles of 88 ICGs in TCGA-OSCC samples were normalized, and the proportion of TIICs in OSCC samples was predicted using the CIBERSORT webtool (32). A total of 115 OSCC samples were obtained from 326 TCGA-OSCC samples by selecting the value of p < 0.05. Secondly, the expression levels of varying ICGs in each type of cell were obtained. The average value of all ICGs in a certain type of cell was regarded as the expression level of this type of cell in samples. The heat map was plotted to show the expression levels of 22 TIICs in 115 OSCC samples.

Thirdly, a correlation plot was drawn based on the expression levels of TIICs in 115 samples to analyze the correlation between TIICs in the pathogenesis of OSCC. The Pearson correlation coefficient was used for calculating the correlation between any two types of TIICs. The correlation relationship between the two ICGs is represented by the letter r and quantified with a number, which varies between −1 and +1. Zero means that there is no correlation, whereas 1 means a complete or perfect correlation. The sign of r shows the direction of a correlation: a positive r means that the certain two ICGs were positively correlated and can play a synergistic role and vice versa. The interpretation of the Pearson's correlation coefficients value should be referred to the literature by the users' guide provided by Haldun Akoglu in 2018 (33). The |r| value ≥ 0.8 indicates a very strong correlation; 0.5 ≤ |r| < 0.8 indicates a moderate correlation; 0.3 ≤ |r| < 0.5 indicates a fair correlation; and |r| < 0.3 indicates a poor correlation.



Heat Map Shows the Prognostic Values of 88 ICGs in OSCC

Eighty-eight ICGs with expression values in the TCGA-OSCC data set were obtained. Differentially expressed ICGs in the OSCC-TCGA data were identified by performing a differential expression analysis and using the edgeR package (version 3.14) (34) in the R software (version 3.6.3). Genes with log FC > 0 and the value of p < 0.05 were regarded as upregulated differentially expressed genes (DEGs); while genes with logFC < 0 and the value of p < 0.05 were regarded as downregulated DEGs (35). The relationship between these 88 ICGs and the OS of patients with OSCC was analyzed using a univariate Cox regression analysis (log-rank p < 0.05). Heat maps were plotted using the pheatmap package (version 1.0.12) in R (36).



The Correlation Relationship Among 88 ICGs

To evaluate the correlation relationship among 88 ICGs, the Spearman algorithm was used to calculate the correlation of the expression value of 88 ICGs. The correlation relationship among 88 ICGs was displayed by using the corrplot package (version 0.92) in R (37). The correlation between PDL1 (CD274) and other ICGs was particularly marked as the research focus in subsequent analysis aimed to identify the ICGs, which were either positively (synergistic) or negatively (antagonistic) correlated with CD274.



Identification of Prognostic ICGs Positively Correlated With CD274

Among the 88 ICGs, ICGs, which were positively correlated to CD274 and had the value of p < 0.05, were selected. Based on the expression values of these selected genes, the univariate Cox regression analysis was performed by using the survival package (version 3.2-13) in R (38). The relationship between the expression values of selected ICGs and prognosis was shown by the forest plot, which was plotted by using the forestplot package (version 2.0.1) in R (39). ICGs, which were not only positively correlated with CD274 but also had significant prognostic values, were identified and used as the investigation focus in subsequent analysis. Furthermore, the functional enrichment analysis was performed to determine the significant biological processes (BPs), and signaling pathways enriched by the ICGs were identified in the last step. The gene names of these ICGs were converted to the Entrez ID using the org.Hs.eg.db package (version 3.14) in R (40). The functional enrichment analysis was performed using the clusterProfiler package (version 3.14) in R (41). The species for the analysis was selected to be Homo sapiens. The GO terms, particularly BP and KEGG pathways that were significantly enriched by the correlated genes, were identified by setting the threshold value of p < 0.05. If there are more than 20 terms that were significantly enriched by this threshold setting, then only the top 20 terms ranked by the ascending order of the value of p were obtained to plot the bubble chart; otherwise, if there are <20 terms that were significantly enriched by this threshold setting, then all of the terms were used for plotting the bubble chart. The bubble charts were plotted to visualize the enrichment results using the ggplot2 package (version 3.3.5) in R (42).



Relationship Between TMB and CD274-Related ICG Group

Among the 326 OSCC samples obtained by data preprocessing, 320 samples appeared to be with somatic mutation. The tumor mutation burden (TMB) values of these 320 samples were first calculated. The expression profile of CD274 and its positively correlated ICGs in these 320 samples were obtained. Based on the TMB values of 320 samples and the expression profile of the CD274-related ICGs group, the correlation analysis was performed to show the relationship between TMB and CD274-related ICGs group using the Spearman correlation method (43). The value of p showing a correlation was displayed with the radar chart using the fmsb package (version 0.7.2) in R (44). In addition, Spearman's RHO correlation values were calculated, and scatterplots were created to assess the correlation between CD274-related ICGs group and TMB in 320 samples. The scatter plots were drawn by using the ggplot2 package (version 3.3.5) in R (42). The edge density maps, which were located on both sides of the scatter plot, were drawn by using the ggMarginal function of the ggExtra package (version 0.9) in R (45). The correlation coefficient and the values of p were added to the scatter plots by using the stat_cor function of the ggpubr package (version 0.4.0) in R (46).



The Correlation Relationship Between Genes Involved in Adaptive Immune Resistance Pathway and Genes in the CD274-Related ICG Group

CD8+ T-cells can produce IFNγ and thus activate the immune pathways, leading to the upregulation of genes involved in an adaptive immune resistance pathway (e.g., CD68, NOS2, PRF1, GZMA, GZMB, GZMH, IFNG, CD8A, CD38, and CCR5). The correlation relationship between the genes involved in an adaptive immune resistance pathway and the genes in the CD274-related ICGs group was calculated by performing the Spearman correlation analysis based on the cor.test function in R. The Spearman correlation values and the values of p were obtained, based on which a heat map was plotted.



Relationship Between ICGs and Their Clinical Features

Based on the clinical information obtained from the TCGA database, the relationship between the CD274-correlated ICGs and their clinical features was analyzed, particularly focusing on the tumor (T), node (N), and clinical stages. Box plots were drawn by using the ggboxplot function in the ggpubr package of R (46). The significance of test was performed by using the stat_compare_means function in the ggpubr package of R (46). The Kruskal–Wallis algorithm was used to examine the values of p, showing the relationship between the gene expression level and its clinical features.



Relationship Between Prognosis and Subtypes Defined by CD274-Related ICG Group

The survival analysis was performed in three steps: (i) Firstly, to identify the relationship between the sole gene (CD274 and its positively correlated ICGs) and 5-year OS rate; (ii) Secondly, to identify the prognostic values of the combination of the genes consisted of CD274 and its positively correlated ICGs; (iii) Thirdly, to identify the prognostic values of the combination of the genes consisted of ICGs positively correlated with CD8A and CD274.

The survival analysis was performed by using the survival package in R (38). Kaplan–Meier (KM) plots were generated using the survfit function (version 3.2-13) in R (47); meanwhile, the values of p from log-rank tests were calculated. The clinical OSCC samples with the survival time of <5 years were obtained. By using the coxph function of the survival package in R, a Cox risk model was constructed for each gene (48). After then, the predict function was used for predicting the risk score of each model, and further the risk score of each sample was obtained. By taking the median value of the risk scores, the samples were divided into a high-expression group (H) and a low-expression group (L).

Regarding the second step of the survival analysis, the high-/low-expression groups of CD274 and its positively correlated ICGs were integrated. OSCC samples were divided into four categories to analyze the survival of gene classification samples.

Regarding the third step of the survival analysis, CD8A was selected among the adaptive immune resistance pathway genes, and it was focused in this section. The subtypes constituted by CD8A and each CD274-related ICG group gene were analyzed. Likewise, OSCC samples were divided into four categories to analyze the survival of gene classification samples.



Validating the Prognostic Values of the Immune Subtypes Identified by TCGA Data

To validate the prognostic values of the immune subtypes identified by the TCGA data, four OSCC-related GEO data sets [i.e., GSE41613 (49), GSE42743 (49), GSE75538 (50), and GSE85446] with the OS information were obtained, based on which the survival analysis was performed. The survival data of patients with OSCC within 5 years were obtained for an analysis. Firstly, the relationship between ICGs positively correlated with CD274 and OS within 5 years was validated. Secondly, the prognostic values of gene pair subtypes consisting of ICGs positively correlated with CD8A and CD274 were validated.




RESULTS


TIICs in OSCC Samples

A total of 115 OSCC samples were obtained by selecting samples with the value of p < 0.05 from the CIBERSORT webtool. The proportion of 22 TIICs in each sample is shown in Figure 2A. A heat map shows the expression levels of 22 TIICs in 115 OSCC samples (Figure 2B). As observed from Figure 2B, dendritic cells who were at rest were highly expressed in OSCC samples, and the other types of cells were downregulated or nearly nonexpressed in OSCC samples.


[image: Figure 2]
FIGURE 2. Performance of CIBERSORT ascertained TIICs in OSCC. (A) The distribution of 22 TIICs in OSCC samples. X-axis represents the name of 115 samples, and y-axis represents the composition ratio of the cells in each sample. Different colors represent different types of cells. The longer column of each cell in a certain sample indicates that the proportion of this type of cell is higher in this sample. (B) A heat map of the 22 TIICs proportions in 115 OSCC samples. Each column represents a sample, and each row represents one type of immune cell population. The levels of the immune cell populations are shown in different colors, which transition from green to red with increasing proportions. Y-axis represents the expression levels of TIICs in each sample. In the color bar, green represents a low expression of TIICs in samples; red represents a high expression of TIICs in samples; and black represents that the TIICs were not expressed in the samples, meaning the expression level was 0. (C) A correlation matrix of 22 immune cell proportions and immune/stromal score in OSCC. Variables have been ordered by average linkage clustering. For comparison, the immune/stromal score has been rescaled to range between 0 and 1 separately in each study. The correlation between TIICs in the pathogenesis of OSCC. Both the x- and y-axis represent the 22 types of TIICs. The color bar shows the correlation value of TIICs. Blue indicated that the TIICs were negatively correlated, and red indicated that the TIICs were positively correlated. The darker color indicated that the correlation showed a higher significance. The diagonal line drawn from the coordinate (0,22) to the coordinate (22,0) has a correlation of 1.


Figure 2C shows the correlation among TIICs in the pathogenesis of OSCC. Because ICGs act as an interaction between tumor cells and T-cells, the interpretation of the results of this correlation analysis should also be focused on T-cells, particularly CD8+ effector T-cells and regulatory T- (Treg-) cells. Thereby, CD8+T-cells were significantly negatively correlated with macrophage M0 (Pearson correlation value = −0.58) and significantly positively correlated with activated dendritic cells (Pearson correlation value = 0.55); Treg cells were significantly negatively correlated with CD8+ T-cells (Pearson correlation value = −0.49).



The Expression Pattern and Correlation Relationship of ICGs in OSCC Samples

The expression level of 88 ICGs in OSCC samples is shown in Figure 3. Supplementary Table S3 presents the expression level of 88 ICGs in oral tumor samples compared with healthy control oral samples. Among the 88 ICGs, 30 genes were found to be with the value of p < 0.05 and thus regarded as DEGs. Supplementary Table S4 presents the differential expression information of these 30 DEGs in oral tumor samples compared with healthy control oral samples. Figure 4A shows that 88 ICGs were mainly positively correlated. Interestingly, the aggregation effect was obviously observed, which indicated that the relationship between ICGs is mainly synergistic. It can be clearly observed that all of the other ICGs were positively correlated with CD274 except for four CD274-negatively correlated genes [i.e., DLX3 (Pearson correlation coefficient value r = −0.11), HHLA2 (r = −0.09), TNFRSF18 (r = −0.14), and VTCN1 (r = −0.02)]. This observation suggested that most ICGs play a coinhibitory role in tumor immunology and work synergistically with CD274, while the minority of ICGs play a costimulatory role in tumor immunology and work antagonistically with CD274. Because the correlation coefficient value |r| between CD274 and its negatively correlated ICGs were very small even <0.2 showing a poor correlation, thus only ICGs, which were positively correlated with CD274, were included in subsequent analysis.


[image: Figure 3]
FIGURE 3. A heat map shows the expression pattern of ICGs in the TCGA-OSCC data set. The color bar refers to the gene expression levels. Red indicates relatively higher gene expression levels, and blue indicates relatively low gene expression levels.
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FIGURE 4. The correlation between 95 ICGs and the prognostic values of 73 CD274-correalted ICGs. (A) The correlation between 95 ICGs. The index of the color bar indicates that the positively correlated ICGs (index > 0) and its negative correlation (index < 0). (B) The forest plot of log 10 hazard ratios (HRs) with 95% CIs shows the relationship between 73 CD274-positively correlated ICGs and overall survival (OS). The vertical line represents a HR of 0. (C) The Gene Ontology analysis identifies the top 20 significant biological processes (BPs) enriched by the 8 prognostic ICGs positively correlated with CD274 (CTLA4, CD28, CD40LG, ADORA2A, B- and T-lymphocyte attenuator (BTLA), CD27, TNFRSF4, and ICOS). (D) Functional enrichment analysis identifies the top 20 significant KEGG signaling pathways enriched by the 8 prognostic ICGs positively correlated with CD274 (CTLA4, CD28, CD40LG, ADORA2A, BTLA, CD27, TNFRSF4, and ICOS).




Identification of the Prognostic ICG That Is Significantly Positively Correlated With CD274

Among the 88 ICGs, 73 ICGs were selected based on the selection criteria: a positive correlation with CD274 and the value of p < 0.05. Based on the expression level of these 73 ICGs in the TCGA-OSCC data set and the prognosis of patients, Figure 4B shows the relationship between 73 ICGs and the prognosis using forest plots. The eight prognostic ICGs (CTLA4, ICOS, TNFRSF4, CD27, BTLA, ADORA2A, CD40LG, and CD28) with the value of p < 0.05 were marked with a five-pointed red star in Figure 4B. Supplementary Table S5 listed the hazard ratio- (HR-) related parameters (i.e., HR, HR with a lower/higher 95% confidence index) and the values of p of eight ICGs. Subsequent analysis was focused on these eight ICGs.



Identification of Significantly Enriched Functional Terms of Eight ICGs

Figure 4C shows that the eight prognostic ICGs were significantly enriched in several TIICs related BPs, for example, T-cell-related BPs (e.g., T-cell proliferation, positive regulation of T-cell activation, T-cell costimulation, the regulation of T-cell activation, and T-cell activation), B-cell-related BPs (e.g., regulation of B-cell activation, and B-cell activation), lymphocyte-related BPs (e.g., the regulation of lymphocyte proliferation, lymphocyte costimulation, a positive regulation of lymphocyte activation, and the regulation of lymphocyte activation), and leukocyte-related BPs (e.g., a positive regulation of leukocyte cell–cell adhesion, leukocyte cell–cell adhesion, a positive regulation of leukocyte activation, the regulation of leukocyte cell–cell adhesion, and the regulation of leukocyte activation). In addition, the functional enrichment analysis results also revealed the significant KEGG pathways enriched by the eight prognostic ICGs, including the cytokine–cytokine receptor interaction, an immune network for IgA production, cell adhesion molecules, and a T-cell receptor signaling pathway (Figure 4D).



Identification of TMB and Its Significantly Related ICGs From Eight ICGs

The correlation between TMB and eight ICGs identified in the abovementioned analysis was evaluated by using the Spearman correlation analysis. Supplementary Table S6 presents that the correlations between the expression of TMB and all of the eight ICGs were negative (< 0), and with a statistical significance (p < 0.05) except for ADORA2A. The results in Supplementary Table S6 are also displayed in the radar chart (Figure 5A) and also in the scatter plots (Figure 5B). These results showed that a high expression of these seven ICGs (CTLA4, ICOS, TNFRSF4, CD27, BTLA, CD40LG, and CD28) showing the worse/unfavorable prognosis corresponds to a low expression of TMB. TMB has been demonstrated to be a reliable biomarker for predicting the clinical efficacy of patients to PDL1 inhibitors (25). A low TMB predicts a poor response to PDL1 inhibitor therapy. The results in Supplementary Table S6, Figures 5A,B indicate that the patients with OSCC having a high expression of these seven ICGs are not suitable for the immune treatment of PDL1 inhibitor drugs and vice versa.


[image: Figure 5]
FIGURE 5. The radar chart (A) and scatter plot (B) showing the relationship between the eight ICGs positively correlated with CD274 (CTLA4, CD28, CD40LG, ADORA2A, BTLA, CD27, TNFRSF4, and ICOS) and TMB.




Identification of ICGS Correlated With CD274 and Significantly Related to Clinical Features

The box plots in Figure 6 show the relationship between the clinical features and eight ICGs positively correlated with CD274. Regarding the expression level, the eight ICGs correlated with CD274 were significantly divided into a high- and a low-expression group. The high-expression group consisted of CTLA4, ICOS, TNFRSF4, CD27, and the low-expression group consisted of BTLA, ADORA2A, CD40LG, and CD28. As shown in Figure 6A, in the significance test, no significance was found between any of the eight ICGs with N (nodes) (Kruskal–Wallis test, p > 0.05). As shown in Figure 6B, a significance (Kruskal–Wallis test, p = 0.028) was found between CD40LG and the T stage. As shown in Figure 6C, a significance (Kruskal–Wallis test, p = 0.038) was found between CD40LG and the clinical stage. Taken together, the majority of ICGs positively correlated with CD274 were not significantly correlated with clinical features.


[image: Figure 6]
FIGURE 6. The box plots show the eight ICGs positively correlated with CD274 and clinical features including N (A), T (B), and stages (C).




A Correlation Between CD274-Related ICGs and Adaptive Immune Resistance Pathway Genes

Correlations between ICGs and 10 adaptive immune resistance pathway genes (CD68, NOS2, PRF1, GZMA, GZMB, GZMH, IFNG, CD8A, CD38, and CCR5) were analyzed. The heat map in Figures 7A,B show the correlation coefficients and –log 10 (p-value) between 10 adaptive immune resistance pathway genes and 88 ICGs, respectively. In Figures 7C,D, a heat map is used to particularly show the correlation coefficients and –log10 (p-value) between 10 adaptive immune resistance pathway genes and CD274-related ICGs. As shown in Figure 7, the majority of adaptive immune resistance pathway genes (e.g., PRF1, GZMA, GZMB, GZMH, IFNG, CD8A, and CCR5) were positively correlated with the expression of the CD274-related ICGs and the majority of ICGs, whereas the three adaptive immune resistance pathway genes (e.g., NOS2, CD38, and CD68) were negatively correlated to the expression of nine CD274-related ICGs and the majority of ICGs. As observed in Figures 7A,B, almost all of the correlations were significant by performing the significance test of correlation coefficients (log-rank p < 0.01).


[image: Figure 7]
FIGURE 7. The correlation between adaptive immune resistance pathway genes and ICGs. (A) A heat map shows the correlation coefficients between 10 adaptive immune resistance pathway genes and 88 ICGs. (B) A heat map shows –log 10 p for the correlation between adaptive immune resistance pathway genes and 88 ICGs. (C) A heat map shows the correlation coefficients between adaptive immune resistance pathway genes and CD274-related ICGs (ADORA2A, TNFRSF4, CD40LG, BTLA, CD28, CD27, CTLA4, and ICOS). (D) A heat map shows –log 10 p for the correlation between adaptive immune resistance pathway genes and CD274-related ICGs (ADORA2A, TNFRSF4, CD40LG, BTLA, CD28, CD27, CTLA4, and ICOS).




The Prognostic Values of the OSCC Subtypes Defined by ICGs Positively Correlated With CD274

Figure 8, Supplementary Table S7 show a relationship between the OS rate and CD274-related ICGs (CD274 and its positively correlated ICGs). Although there is no significant relationship between CD274 and the OS of OSCC [CD274 (p = 0.57 > 0.05)], the significant prognostic values of ICGs positively correlated with CD274 were observed, for example, BTLA (p = 0.0069 < 0.05), CD27 (p = 0.0056 < 0.05), CTLA4 (p = 0.0062 < 0.05), CD40LG (p = 0.046 < 0.05), CD28 (p = 0.049 < 0.05), ICOS (p = 0.041 < 0.05), and TNFRSF4 (p = 0.015 < 0.05).


[image: Figure 8]
FIGURE 8. The Kaplan–Meier (KM) plots show the relationship between the 5-year OS and CD274-related ICGs [CD274 and its eight positively correlated ICGs (BTLA, CD27, CTLA4, CD40LG, CD28, ICOS, TNFRSF4, and ADORA2A)]. The red curves indicate the low-expression group, whereas the blue curves indicate the high-expression group.




The Prognostic Values of the OSCC Subtypes Defined by CD274 and Its Positively Correlated ICGs

Oral and squamous cell carcinoma samples were divided into four combinations based on the median value of gene expression levels for eight pairs of genes (CD274-CTLA4, CD274-ICOS, CD274-TNFRSF4, CD274-CD27, CD274-BTLA, CD274-ADORA2A, CD274-CD40LG, and CD274-CD28). Supplementary Table S8 presents that among these eight pairs of ICGs, only three pairs were found to be with significant prognostic values [CD274-BTLA (p = 0.019 < 0.05), CD274-CD27 (p = 0.015 < 0.05), and CD274-CTLA4 (p = 0.0052 < 0.05)]. Figure 9A shows the significance between the 5-year OS rate and the four high- and low-expression combinations for three pairs of genes (CD274-BTLA, CD274-CD27, and CD274-CTLA4).
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FIGURE 9. The KM plots show a significant relationship between the 5-year OS and gene pairs subtypes consisted of CD274-related genes, based on the TCGA-OSCC data analysis. (A) The KM plots show the prognostic values of subtypes consisted of CD274 and its positively correlated ICGs (BTLA, CD27, and CTLA4). (B) The KM plots show the prognostic values of CD8A and three ICGs positively correlated with CD274 (BTLA, CD27, and CTLA4).




The Prognostic Values of the OSCC Subtypes Defined by CD8A and CD274-Related ICGs

Oral and squamous cell carcinoma samples were divided into four combinations based on the median value of gene expression levels for nine pairs of genes (CD8A-CD274, CD8A-CTLA4, CD8A-ICOS, CD8A-TNFRSF4, CD8A-CD27, CD8A-BTLA, CD8A-ADORA2A, CD8A-CD40LG, and CD8A-CD28). Supplementary Table S8 presents that among these nine pairs of ICGs, only four pairs were found to be with significant prognostic values [CD8A-BTLA (p = 0.019 <0.05), CD8A-CD27 (p = 0.025 < 0.05), CD274-CTLA4 (p = 0.032 < 0.05), and CD8A-TNFRSF4 (p = 0.031 < 0.05)]. To match the results in Figure 9A, only three pairs of genes (CD8A-BTLA, CD8A-CD27, and CD8A-CTLA4) were listed in Figure 9B to show the significance between the 5-year OS rate and the four high- and low-expression combinations corresponding to these three pairs of genes.



Validation of the Prognostic Values of the Immune Subtypes

Four independent cohorts (i.e., GSE41613, GSE42743, GSE75538, and GSE85446) in the GEO database were used to verify the prediction accuracy of the prognostic values of the immune subtypes identified by the survival analysis based on the TCGA data. Supplementary Figures S1–S4 show the survival analysis results based on the four independent GEO data sets. These validation results were unfortunately not as anticipated and displayed insignificant prognostic values (p > 0.05) for the relationship between the OS and majority of immune subtype combinations identified by the TCGA-OSCC data set. This finding may be attributed to the small sample size of these GEO data sets as compared with the TCGA-OSCC data set [GSE41613: n = 42 samples, GSE42743 (n = 52), GSE75538 (n = 8), and GSE85446 (n = 32), and TCGA_OSCC data set (n = 295)]. As OSCC-related mRNA sequencing experiments are typically based on larger sample sizes, a sufficient documentation of the OS information should be encouraged in future research. Most of the existing GEO data sets lacked the survival information, and a few GEO data sets with the survival information had small sample sizes. Furthermore, other types of prognostic outcomes such as disease-free survival, metastasis-free survival, and progression-free survival were also lacking.




DISCUSSION

The present research aimed to characterize the prognostic subtypes of OSCC based on CD274 and its positively correlated ICGs. Using the mRNA expression data from TCGA and an independent cohort GEO data set, it was shown that eight ICGs (CTLA4, ICOS, TNFRSF4, CD27, BTLA, ADORA2A, CD40LG, and CD28) work synergistically and are positively correlated with CD274. An important finding was that although both CD8A and CD274 were not significantly related to OS, six subytypes with favorable survival were identified based on the three ICGs positively correlated with CD274 (BTLA, CD27, and CTLA4). The six subtypes showing a better survival were CD274_low/BTLA_low, CD274_low/CD27_low, CD274_low/CTLA4_low, CD8A_high/BTLA_low, CD8A_high/CD27_low, and CD8A_high/CTLA4_low.

Based on the synergistic correlation and prognosis analysis, the three combination strategies of ICG inhibitors drugs may be suggested, including, an inhibitor of PDL1+ inhibitor of BTLA, inhibitor of PDL1+ inhibitor of CD27, and inhibitor of PDL1+ inhibitor of CTLA. Much previous evidence supports the findings of the current study. A high expression of BTLA in different types of cancers (e.g., colorectal cancer, melanoma cancer, and lung cancer) was found to inhibit the expression and function of T-cells (51–53). Patients with lung cancer negative for both BTLA and PDL1 showed a better relapse-free survival (RFS) compared with patients, positive for either BTLA or PDL1 (51). Although BTLA and PDL1 employ distinct phosphatases to suppress T-cell signaling, both of them dampen the TCR and CD28 signaling pathways equally, and thus the inhibitors of both BTLA and PDL1 might be regarded as a combination of immunotherapeutic agents for cancer treatment (54, 55). However, the data regarding BTLA in oral cancer were still lacking. The TNFR superfamily member CD27 showed a synergistic correlation with PDL1, and a low expression of CD27 indicated a significantly better survival outcome as compared with its high expression, and a low expression of both PDL1 and CD27 indicated the best survival. Contradictory results are reported in previous studies, showing CD27 as a costimulatory ICG, which plays critical roles in the activation, proliferation, and survival of T-cells, and that the blockade of PDL1 and agonist of CD27 activates CD8+ T-cell-driven antitumor immunity (56–58). Tumor heterogeneity and different cancer types may underlie these contradictory findings. The present research showed that a low expression of CTLA4 indicated a better prognosis. Moreover, a low expression of both PDL1 and CTLA4 indicated an improved prognosis. This is in line with available research. The inhibitor of CTLA4-ipilimumab has been approved by FDA for treating melanoma (59). The mechanistic aspects of PDL1 and CTLA4 vary in immuno-oncology and PDL1 plays a suppressing role at the later stage of immune response, whereas CTLA4 plays an inhibiting role at the early stage of immune response (60). However, anti-PDL1 and anti-CTLA4 treatments have additive and synergistic effects on cancer treatment, based on the observation of the superior efficacy obtained by using the combination of CTLA4 blockade and PDL1 blockade in patients with melanoma compared with monotherapy (61).

In addition, the subtyping findings based on CD8A suggested that the coevaluation of the CD8A expression level and three ICGs positively correlated with CD274 (BTLA, CD27, and CTLA4) may enable a better evaluation of the immunological state of OSCC. The current study showed that patients with OSCC having the best survival had an increased CD8A infiltration and a low expression of one of the three ICGs positively correlated with CD274 (BTLA, CD27, and CTLA4). These results are reasonable considering CD8A is a surface biomarker of effector T-cells, and CD8+ T-cells in the TME indicate a good prognosis in many cancer types (62). The low expression of three ICGs positively correlated with CD274 (BTLA, CD27, and CTLA4) indicated a better prognosis compared to their high expression, indicating their coinhibitory roles in the tumor immunology of oral cancer. A previous study using the bioinformatic analysis also provided similar results, showing that patients with pancreatic adenocarcinoma (PDAC) with the best survival had increased CD8A infiltration without the expression of CD274 (63). Although the current study did not find a statistical significance of the relationship between CD8A/CD274 immunotypes and prognosis, significant prognostic values of three ICGs positively correlated with CD8A/CD274 (BTLA, CD27, and CTLA4) were found. A high expression of BTLA indicated a poor prognosis of OSCC, which is in accordance with the results of a previous study on ovarian cancer (64). A previous examination regarding melanoma showed that BTLA+ CD8+ tumor-infiltrating lymphocytes (TILs) showed a superior response and better survival compared to BTLA- CD8+ TILs (65) as BTLA plays a costimulatory role on activating CD8+ T-cells in melanoma. Such results were contradictory with the current research, which showed that the BTLA- CD8+ subset had the best survival in oral cancer, and might be explained by varying the roles of BTLA in different cancers. Previous studies have shown a costimulatory role of CD27 in inducing a potent proliferation of CD8+ T-cells, with a significant production of Th1 cytokines (IFNα, TNFα, and IL-2) and Th2 cytokines (mainly IL-13) by T-cells (7). This is contradictory with the results in the current computational prediction regarding oral cancer, which may be attributed to CD27 acting as either a costimulatory or coinhibitory receptor in different cancers and different circumstances (66). Considering the combination of CTLA4-CD8A, the present research showed that patients with OSCC with high CD8A T-cell infiltration and a low expression of CTLA4 had the best prognosis. Previous research showed that the administration of CTLA4 blockade could increase the expansion and enhance the effector function of memory CD8+ T-cells, thereby contributing to the great accumulation of functional memory CD8+ T-cells (67). CTLA4+ tumor-infiltrating cells have been found to be an independent prognostic factor in OSCC, showing that its high infiltration indicated worse recurrence-free survival and metastasis-free survival (68).

It is important to clearly state the strengths and limitations of the current study. The main strength of the present study is that a series of comprehensive bioinformatics analyses was performed, including the analysis of TIICs, correlation analysis, TMB analysis, clinical feature relationship analysis, and survival analysis for identifying prognostic immune subtypes. The first limitation is the lack of experimental validation of the estimated synergistic effects of the administration of a PDL1 inhibitor and its positively correlated ICGs in OSCC. The second limitation is the lack of experimental validation of the prognostic values of the PDL1-based immune subtypes in OSCC. Both these aspects suggest the experimental design direction for future research. Another important limitation is the small sample size of the oral cancer-related data sets with the survival information for validation, which could be a reason for the insignificant results concerning the value of the immune subtypes. Although the findings of the analysis based on the TCGA data were statistically significant, the magnitude of their potential clinical effects must be recognized and could only be evaluated in clinical settings.

It is noteworthy to highlight the potential implications and the clinical transfer values of the current study. Firstly, the combination of PDL-1-based ICG inhibitors might play additive and synergistic roles in the immune therapy of OSCC as compared to using either one of them alone. Thereby, the combinations identified in the current study might indicate novel therapeutic strategies for oral cancer treatment. Secondly, the immune subtypes identified in the current study could be used for predicting the OS outcomes of patients with oral cancer, and chairside testing based on these subsets could be developed as a useful prognostic prediction tool. Most importantly, the prognostic immune subtypes identified in the current study can have clinical implications for personalized immunotherapy. Patients belonging to specific subtypes should be administered with suitable ICG inhibitor agents with maximal efficacy. For example, considering the PDL1+CTLA4+ subset, this subgroup of patients with OSCC can receive a combination of a PDL1 inhibitor and CTLA4 inhibitor. However, the PDL1 and CTLA4 inhibitor agents will be not useful for the PDL1-CTLA4- subset. Therefore, immune subtypes as identified in this study can guide a refined patient selection, and enable personalized immune therapy strategies to significantly improve the OS in OSCC.



CONCLUSION

The current study identified several ICGs positively correlated with CD274 (BLTA, CD27, and CTLA4) comprising immune subtypes indicating favorable OS outcomes, including CD274_low/BTLA_low, CD274_low/CD27_low, CD274_low/CTLA4_low, CD8A_high/BTLA_low, CD8A_high/CD27_low, and CD8A_high/CTLA4_low. These findings suggest that the three combinations of ICG inhibitors might play synergistic and additive effects in treating and improving the prognosis of OSCC, i.e., the combination of a CD274 inhibitor and BTLA inhibitor, the combination of a CD274 inhibitor and CD27 inhibitor, and the combination of a CD274 inhibitor and CTLA4 inhibitor. The combination of immune subtypes and suggested drug agents might provide precise immune strategies for application in personalized oral cancer treatment.
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Transcriptome-Based Molecular Networks Uncovered Interplay Between Druggable Genes of CD8+ T Cells and Changes in Immune Cell Landscape in Patients With Pulmonary Tuberculosis
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Background: Tuberculosis (TB) is a major infectious disease, where incomplete information about host genetics and immune responses is hindering the development of transformative therapies. This study characterized the immune cell landscape and blood transcriptomic profile of patients with pulmonary TB (PTB) to identify the potential therapeutic biomarkers.

Methods: The blood transcriptome profile of patients with PTB and controls were used for fractionating immune cell populations with the CIBERSORT algorithm and then to identify differentially expressed genes (DEGs) with R/Bioconductor packages. Later, systems biology investigations (such as semantic similarity, gene correlation, and graph theory parameters) were implemented to prioritize druggable genes contributing to the immune cell alterations in patients with TB. Finally, real time-PCR (RT-PCR) was used to confirm gene expression levels.

Results: Patients with PTB had higher levels of four immune subpopulations like CD8+ T cells (P = 1.9 × 10−8), natural killer (NK) cells resting (P = 6.3 × 10−5), monocytes (P = 6.4 × 10−6), and neutrophils (P = 1.6 × 10−7). The functional enrichment of 624 DEGs identified in the blood transcriptome of patients with PTB revealed major dysregulation of T cell-related ontologies and pathways (q ≤ 0.05). Of the 96 DEGs shared between transcriptome and immune cell types, 39 overlapped with TB meta-profiling genetic signatures, and their semantic similarity analysis with the remaining 57 genes, yielded 45 new candidate TB markers. This study identified 9 CD8+ T cell-associated genes (ITK, CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E, and IL7R) as potential therapeutic targets of PTB by combining computational druggability and co-expression (r2 ≥ |0.7|) approaches.

Conclusion: The changes in immune cell proportion and the downregulation of T cell-related genes may provide new insights in developing therapeutic compounds against chronic TB.

Keywords: Mycobacterium tuberculosis, gene express profile, drug target, CD8+T cells, immune pathways


INTRODUCTION

Tuberculosis (TB) is a chronic infectious lung disease caused by pathogenic Mycobacterium tuberculosis (MTB) belonging to the Mycobacteriaceae family. Despite the widespread use of antibiotics and live attenuated vaccine, TB remains to be the major cause of morbidity and death among all bacterial diseases (1). This is primarily due to the rapid emergence of drug-resistant MTB strains and the incomplete knowledge of complex host-pathogen interactions (2). In the initial stages of infection, MTB invades and replicates in the macrophages after reaching the alveolar air sacs of the lungs (3). Granulomas, hallmark of TB, are formed around the infected macrophages by the organized aggregation of immune cells (like T and B lymphocytes), multinucleated giant cells, dendritic cells, and fibroblasts. Granulomas also suppress the host immune responses, as dendritic cells and macrophages were unable to present antigen to lymphocytes (4). It is noteworthy to mention that mycobacteria can induce distinct host responses from asymptomatic conditions to severe pulmonary illness (5). However, underlying immune cell types and their association with the differentially expressed genes in TB and how they contribute to severe infection are not yet fully explored.

Over the past few decades, microarray-based genome-wide RNA profiling has evolved as a powerful approach to investigate the host transcriptional response (of ~19,000 genes) in infectious diseases (6). However, differences in the type of clinical samples, array platforms, and statistical approaches used, created a discordance in interpreting massive transcriptomics data. Advances in statistical modeling and bioinformatics approaches have accelerated the identification of disease-centric genes by employing gene networking methods based on graph topological parameters for many infectious diseases (7, 8). Moreover, the new bioinformatic methods like estimating relative subsets of RNA transcripts (CIBERSORT), Tumor Immune Estimation Resource (TIMER), and Estimating the Proportions of Immune and Cancer cells (EPIC) are developed to characterize immune cell composition using large-scale gene expression data (9, 10). These bioinformatic methods implement functional enrichment scores based on the presence of the query genes over reference gene sets. They perform variety of biological analyses including immune responses based on the defined gene sets. Exploring abnormal immune cell infiltration is critical for developing novel transformative therapies to combat diseases such as cancer, myocarditis, and TB (11, 12). Therefore, in order to characterize alterations in immune cell proportion landscape and transcriptomic profile, and to identify new molecular therapeutic targets, this study applied statistical and knowledge-based systemic investigations (such as semantic similarity, gene correlation, and graph theory parameters) to the blood transcription data of patients with TB.



MATERIALS AND METHODS


Study Design and Global Expression Data

The genome-wide gene expression dataset (GSE83456) (13) was imported in raw format from the Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo). This dataset has expression profiles of 45 pulmonary TB (PTB) and 61 control blood samples generated on the Illumina Human HT-12 V4.0 expression bead chip (Illumina, Inc, USA). The detailed sample information is given in the Supplementary Material Table 1. Figure 1 depicts the overall work design employed in the current research analysis.


[image: Figure 1]
FIGURE 1. Study workflow. The gene expression profiles of patients with tuberculosis (TB) and controls were used to deconvolute immune cell fractions. Differentially expressed genes (DEGs) were mapped to functional pathways and then correlated with immune cell and TB meta-analysis gene signatures. The overlapping genes showing semantic similarity were explored by druggability and protein interaction analysis to identify novel candidate therapeutic targets/biomarkers for combating TB infection.




Global Data Preprocessing and Screening of Differentially Expressed Genes

R/Bioconductor packages were used to analyze microarray gene expression data. Raw data was fed into the R package limma (14) for the standardization and noise reduction of the probe data, and the raw signal levels for each probe set were standardized. The Quantile method was used to normalize the microarray datasets. The t-statistic was used to detect statistically significant differentially expressed genes (DEGs) between the PTB and control samples. To eliminate false positives, the Benjamini and Hochberg false discovery rate (FDR) with p < 0.05 was used as a cut-off point for gene data. Thereafter, probes were matched to Entrez Gene IDs, and duplicates (with the highest fold change difference) and unmatched transcripts were filtered out. In the final stage, all the DEGs were classified as up- and downregulated genes based on the fold change threshold (FC ≥ |1.5|).



Identification of Immune Cell Composition From Gene Expression Profiles

The fractions of 22 immune cell types in the PTB transcriptome profile were estimated using the CIBERSORT algorithm (15). This program employs linear support vector (SVR) regression to perform feature selection and to deconvolve the cell mixture from the gene expression profile. In this study, gene expression profiles of PTB and control samples were fed into the CIBERSORT algorithm where the algorithm converts the gene expression matrix into the immune cell-matrix and applies the filtering criteria of 1,000 permutations and significant p value set at ≤ 0.05.



MTB Meta-Profiling Genetic Signatures

We obtained 380 genetic signatures identified from the modular analysis and meta-profiling of 16 publicly available gene expression datasets (16) (Supplementary Material Table 2). We compared the overlapping genes between these 380 TB genetic signatures, DEGs, and genes associated with immune cell populations for downstream analysis.



Identification of Immune Pathways From Gene Expression Profiles

The functional enrichment analysis of the DEGs was performed using g:Profiler (17), a webserver to interpret the function of gene lists (https://biit.cs.ut.ee/gprofiler/gost). This server matches a queried gene list to established functional data sources and uncovers gene ontologies as well as pathway terms that are significantly enriched at q ≤ 0.05. Immune-related pathways were screened from the functional enrichment list. The DEGs which are contributing to immune-associated pathways were mapped to the known signature of TB and immune signature genes in the CIBERSORT to identify unreported genes in TB.



Identification of Semantic Similarity

Using encoded evidence in the Gene Ontology (GO) hierarchy, the functional similarity between unreported genes and known TB signatures is assessed. In this study, we used Wang's similarity metric to compare the biological process (BP) hierarchy. To quantify the semantic similarity between gene pairs, we used the R tool GoSemSim (18).

We employed Resnik's measure of Best-Match Average (BMA) method, which combines the semantic relationship scores of numerous GO terms and produces the average of all maximal similarities in each row and column because a gene can be annotated by many GO terms (19). Following that, gene pairs were selected based on a semantic score of ≤ 0.5, with a larger score indicating a stronger relationship. The following formula was used to calculate the semantic similarity among gene pairs:

[image: image]

where TA designates the contribution of t ∈ TA term to the semantics of A based on the relative positions of t and A in the graph, and SA(t) implies the role of t ∈ TA term to the semantics of A.



Druggability Analysis

The Drug–Gene Interaction Database (DGIdb) (20) was used to assess the druggability of the genes. DGIdb is a central resource for drug-gene interaction data and the potential druggability of each query gene based on different databases. We included approved drugs, antineoplastic drugs, and Immunotherapeutic drug interactions filters and in advance filters, we selected 9 Disease-Agnositic sources databases, 43 gene categories, and 31 interaction types. We used drug target interaction with interactions score ≥0.03 to search the DEGs, which could act as potential drug target genes for MTB.



Correlation Among the Druggable Genes

The correlation between the druggable genes in PTB was investigated using Pearson's correlation method. The correlation (r) between each pair of gene matrices was ranked using Pearson's correlation coefficient (PCC). The formula used for computing the PCC existing between two genes is given below.
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where [image: image] and ȳ are the average of sample's gene expression signal in PTB of the two genes, respectively. The gene co-expression was confirmed using the Search Tool for the Retrieval of Interacting Genes (STRING) (21), an online protein interaction database, with high confidence interaction score of ≥0.7.



Real Time-PCR (RT-PCR) Validation of Druggable Genes

In order to verify our bioinformatics findings, we validated the expression of 9 druggable genes by the RT-PCR method. In brief, the RNA collected from THP-1 cell lines infected with the MTB strain (H37Rv) was collected after the post-incubation period as previously described (22). In brief, total RNA was reverse transcribed as complementary DNA (cDNA) and then amplified by the RT-PCR method using gene-specific oligonucleotide primers. The relative expression level of potentially druggable genes between the control and test cell lines was estimated by the 2−ΔΔCT formula after normalizing their expression levels with the GAPDH internal reference gene. A p < 0.05 under the standard two-tailed t-test was considered a significant value.




RESULTS


Immune Cell Proportion Analysis of PTB Gene Expression Profile

The immune cell proportion landscape of PTB is not yet fully revealed, particularly in low abundant cell subpopulations. In this study, the CIBERSORT algorithm has identified the enrichment of genes associated with 10 types of adaptive immune cells like B cells naive, plasma cells, T follicular helper cells, CD8+ T cells, resting memory CD4+ T cells, T cells, CD4+ memory T cells activated, memory B cells, naive CD4+ T cells, regulatory T cells (Tregs), and Gamma-delta (γδ) T cells. On the other hand, DEGs associated with 12 innate immune cell type categories were NK cells resting, macrophages M2, monocytes, macrophages M1, macrophages M0, resting dendritic cells, eosinophils, dendritic cells activated, mast cells resting, NK cells activated, mast cells activated, and neutrophils were also found be enriched. The immune cell proportions of adaptive immune cells and innate immune cells are represented in Supplementary Material Figure 1.

The genes associated with four immune cells; NK cells activated, T follicular helper cells, dendritic cells resting, and eosinophils, were not significantly enriched in both groups. The proportion plot of the enriched immune cell types is represented in Figure 2A. We observed higher relative proportion of genes enriched for cell types like CD8+ T cells (P = 1.9 × 10−8), NK cells resting (P = 6.3 × 10−5), monocytes (P = 6.4 × 10−6), and neutrophils (P = 1.6 × 10−7) in the PTB samples compared to the control samples (Figure 2B, Supplementary Material Figure 1). Among the 4 cell types with a higher relative proportion of enriched genes from DEGs, the genes of CD8+ T cells and NK resting cells were found to be downregulated in PTB when compared to the control samples. On other hand, monocytes and neutrophil-associated genes were highly active in PTB when compared to control samples.


[image: Figure 2]
FIGURE 2. The immune cell proportion landscape between pulmonary TB (PTB) and controls. (A) The relative proportion of immune cell subpopulations in GSE83456 dataset. (B) The difference of immune infiltration between PTB and normal controls (the control group was marked in blue color and the PTB group was marked in red color. P < 0.05 were considered as statistically significant).




Identification of DEGs From Gene Expression Profile

The standardized gene expression data of “PTB vs. controls” was used to identify the differentially expressed genes. The volcano plot representing the distribution of fold change and the significant p-value is given in Figure 3A. The PTB vs. control group analysis revealed 624 DEGs (FC |1.5|, adj p-value of 0.05), with 393 upregulated and 231 downregulated genes. The top 10 DEGs obtained from PTB vs controls are given in Table 1. The mean distribution of intensity of differentially expressed genes in PTB and control samples is represented in Figure 3B.


[image: Figure 3]
FIGURE 3. Graphical distribution of differentially expressed genes. (A) Volcano plot representing the distribution of fold change and p-value significance. (B) The distribution mean intensity of differentially expressed genes in the PTB and control samples. (C) Red and green nodes represent up and downregulation of genes and black nodes are the immune cell types. (D) The Venn diagram represents the overlap of DEGs with immune and TB signatures. (E) Semantic similarity of pairs of genes between differentially expressed immune signatures and TB signatures. The selected gene pairs with higher functional similarity (≥0.5) are highlighted in green color.



Table 1. The top 10 differentially expressed gene list in pulmonary tuberculosis (PTB).
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Functional Enrichment Analysis of DEGs

The differentially expressed genes enriched using g:Profiler with the statistical significance of q value ≤ 0.05, generated 309 ontologies of Biological Process (BP), 17 ontologies of Molecular Function (MF), 42 ontologies of Cellular Component (CC), and 85 terms in pathways (Supplementary Material Table 3). Overall, the enrichment analysis has shown the overlap with immune-related ontologies and pathways. We pooled immune-related pathways from enrichment terms to check how DEGs affect the immune system pathways. We observed the upregulation of pathways such as interferon signaling (q = 9.16 × 10−27), cytokine signaling in the immune system (q = 2.34 × 10−21), neutrophil degranulation (q = 3.13 × 10−11), viral genome replication (q = 2.47 × 10−7), and response to biotic stimulus, etc. (Supplementary Material Figure S1). On the other hand, pathways like T-cell antigen receptor signaling, antigen receptor-mediated signaling, NF-kappa B signaling, T cell activation, T cell receptor signaling, leukocyte differentiation, leukocyte activation, alpha-beta T cell activation, and T cell differentiation, were downregulated (Supplementary Material Figure S1). Overall, our functional enrichment analysis points to a major downregulation of T cell-related ontologies and pathways.



Mapping DEGs to Immune Cell Proportions in PTB

Here we investigated the genes overlapping between the CIBERSORT signature and DEGs. There are about 96 DEGs (Figure 3C) contributing to different immune cell types (Supplementary Material Table 4). Interestingly, we found that 31.25% of DEGs were contributing to the immune cell type “CD8+ T cells.” We also observed that all those genes contributing to the “CD8+ T cells” were downregulated in PTB samples, as shown in Figure 3C. The findings from the mapping of DEGs to immune cell proportions are consistent with functional enrichment analysis, where T cell-related pathways have shown major dysregulation.



Comparison of DEGs, Immune Cell Signatures With TB Meta-Analysis Signatures

The differentially expressed immune signatures in the sample of patients with TB were compared with the known signatures of TB (Supplementary Material Table 4). Here, we observed 39 (40.6%) differentially expressed immune signatures overlapping with TB meta-analysis gene signatures and 57 novel genes (59.3%) contributing to the immune cell proportion (Figure 3D). Further, semantic similarity (functional association) of these 57 novel genes with 39 overlapping with TB signatures was performed to identify the most predominant genes. The semantic similarity score of ≥0.5 among the gene pairs was considered as a highly significant score implying a stronger association. The semantic similarity of 45/57 genes has shown a stronger functional association with overlapping with TB signatures (Figure 3E). Again, it is important to pinpoint that 20 out of 45 genes (44%) were contributing to the immune cell type “CD8+ T cells.”



Druggability and Co-expression Analysis

Druggability analysis was performed on the 45 genes that had shown higher functional similarity to the known TB signature. We found that 21 druggable genes (Supplementary Material Figure S2) (46%) with an interaction score ≥ 0.03, were enriched against terms like an antibody, binder, inhibitor, antagonist, agonist, modulator, and activator. Of all the druggable genes, ITK and FCGR3B genes were observed to have the highest number of drug interactions (19 drugs) followed by PTGDR (13 drugs), TLR7 (12 drugs), and CD3E (10 drugs). The drug-target interaction network is represented in Figure 4A. Next, we checked the association of druggable targets to the immune cell types. Among the 21 druggable targets, 48% were contributing to the immune cell type “CD8+ T cells” followed by monocytes (9%), naïve B cells (9%), and neutrophils (9%) (Figure 4B). Interestingly, the expression patterns of these 21 druggable genes have shown a clear distinction in PTB when compared to control samples (Figure 4C).


[image: Figure 4]
FIGURE 4. The druggable targets with their expression, interaction and co-expression (A) The network depicts the drug-target interaction where black and pink nodes represent target and drugs respectively. (B) The co-expression (a similar pattern of gene expression) among the druggable genes where red and blue represent the positive and negative correlation. (C) The pattern of gene expression of druggable genes in control and PTB patient samples clearly depicts a distinction between the control and PTB groups.


To check the correlation of these 21 druggable targets in patients with PTB, we performed Pearson's correlation analysis (Figure 4B). The correlation analysis performed between druggable targets in PTB samples resulted in 15 genes (ITK, CD2, CD6, CD247, CD27, CD3D, ZAP70, SH2D1A, IL2RB, CEACAM3, IL7R, TLR2, CD3E, PTGDR, FCGR3B) with higher Pearson correlation coefficient (r2 ≥ |0.7|). The co-expressed genes are shown in Table 2. Among the 15 co-expressed genes, 12 and 3 were down and upregulated respectively (Figure 5A). Upregulated genes were contributing to the immune cell types “Monocytes” (TLR2) and Neutrophils (FCGR3B and CEACAM3). Again, 10 downregulated genes were contributing to “T cells CD8” and 1 each for “T cells regulatory” and “B cells memory” (Figure 5B).


Table 2. List of co-expressed genes and the druggable targets.

[image: Table 2]
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FIGURE 5. The interaction networks of druggable targets. (A) co-expressed network of druggable targets where red and green colored nodes represent up and downregulated genes. The red edge represents the association of targets to immune cells and the blue edges depict the interaction among the target genes. (B) The pie chart represents the composition of immune cell types with the co-expressed druggable targets. (C) The interaction of the co-expressed druggable targets in the STRING database.


Interestingly, we noticed a cluster of 12 co-expressed genes ITK, CD2, CD6, ZAP70, CD247, CD3D, SH2D1A, CD27, CD3E, IL2RB, IL7R, and PTGDR. To validate the co-expression among the 12 downregulated genes we queried them in the STRING database with a high confidence score of ≥ 0.7. The STRING database identified strong interaction among the 11 genes except for PTGDR (Figure 5C). Co-expression and protein interaction network from the STRING database has shown the mutual influence of the 11 genes in the expression and functional activities. Nine genes (expect CD27, PTGDR, and IL2RB) were contributing to “CD8+ T cells.” All the genes were predicted to be targeted by different drug molecules, most of which are monoclonal antibodies (Table 3). Hence, the integrated analysis has depicted predominant deregulation of “CD8+ T cells” as the key genetic signatures for active PTB.


Table 3. The list of drugs shows direct interaction with 9 genes associated with CD+T cell functioning.
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RT-PCR Validation of Druggable Genes

The real-time PCR gene expression results showed that the relative expression levels of 9 potential druggable genes (ITK, CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E, and IL7R) were consistent with the findings of microarray hybridization. All the genes were differentially expressed between treated and untreated cell lines (p ≤ 0.01). These results confirm the dysregulated “CD8+ T cell signaling” plays important role in establishing TB infection (Supplementary Material Figure S3).




DISCUSSION

Host genetic factors are known to play an important role in regulating the initial TB infection and determining the disease progression in the lungs (37). Genome-wide association studies have underlined the relevance of numerous polymorphisms in immune response-related genes in contributing to susceptibility or resistance to TB (38). However, polymorphism studies were unable to provide full insight into the complex molecular crosstalk between thousands of host genes involved in innate and adaptive immune responses. In this context, high throughput transcriptome approaches have shown great promise in dissecting the host-pathogen interactions thereby helping to develop a novel vaccine and therapeutic targets for several infectious diseases (39–41). Therefore, we explored host immune system response through integrated systems biology approach based on immune cell subtyping and differential gene expression profiles of patients with PTB to normal controls.

The cellular and molecular background of TB-induced systemic immunological dysregulation is poorly understood. Therefore, we screened the DEGs in PTB and deciphered their contribution to immune cell proportion alterations. Traditionally, host transcriptomics studies have relied on whole blood to characterize TB gene signatures by aggregating transcriptomic signals from many different cell types but were unable to identify specific immune cell type signatures (42). To overcome these constraints, we used a powerful computational technique called CIBERSORT to define the range of immune cell states in the blood of patients with TB. This method relies on linear support vector regression (SVR), a machine learning approach to deconvolute the gene expression signatures, known as “signature matrix” for determining the relative fraction of immune cell proportions in blood or tissues (15). The CIBERSORT method has been widely used to infer immune cell types from transcriptomics data to predict outcomes of different cancers (9, 43, 44) and infectious diseases (45–47). In this study, the CIBERSORT output identified the downregulation of “CD8+ T cells” in patients with PTB.

The GO functional enrichment analysis of gene expression profile revealed the upregulation of interferon signaling, cytokine signaling in the immune system, neutrophil degranulation, and response to biotic stimulus pathways. The MTB infection of primary human macrophages is shown to induce type I IFN signaling and limit the expression of IL-1β, which imparts immunity against the infection (48). Additionally, the downregulation of major pathways associated with T cells function like T-cell antigen receptor signaling, leukocyte differentiation, leukocyte activation, T cell activation, T cell differentiation, T cell receptor signaling, alpha-beta T cell activation, NF-kappa B signaling, and antigen receptor-mediated signaling pathway were noted in PTB samples.

Majority of the DEGs contributing to the immune cell type “CD8+ T cells” were clearly downregulated in the PTB samples indicating their potential roles in defense against TB. These cells are also known as killer or cytotoxic T lymphocytes, as they potentially destroy the infected cells by recruiting cytokines and other immune cells to the site of infection. The low abundance of blood CD8+ T lymphocytes may impair the effective immunity against pathogens, as they lack a sufficient cytotoxic T cells to recognize the MHC class I-restricted epitopes of MTB antigens, in the site of infection (49). A recent RNA transcriptome study used the positron emission tomography (PET) data collected from recovered patients with TB, at 4th and 24th weeks has also reported that genes associated with the overexpression of B cells and down expression of T cells and platelets confirms our findings (50). Thus, the downregulation that contribute to immune cell type is concordant with the pathway enrichment analysis findings of lower expression of T cell-related ontologies and pathways.

The druggability potential of any protein is attributed to its binding specificity with small compounds following Lipinski's rule-of-five for drug likeliness (51). Numerous bioinformatic and empirical methods which consume less time and provide faster prescreening of druggability of candidate proteins than conventional methods have been developed (52, 53). There are a variety of computational methods available, which can predict druggability and protein-binding sites by using energy dynamics to geometrical topological estimations, and from flexible to rigid proteins (54, 55).

By applying druggability and co-expression features we identified 9 CD8+ T cells associated genes (ITK, CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E, and IL7R) as potential therapeutic targets of PTB. However, it is pivotal to carefully prioritize the drug molecules based on their mode of action, whether activator or inhibitor based on the gene expression status. For example, over-expressed genes can be targeted by inhibitory molecules, and downregulated genes can be targeted by activator molecules (56). From the above 9 genes, the therapeutic potential of ITK and IL7R has been characterized by experimental methods. ITK is a tyrosine kinase expressed on T-cells, which regulates its T-cell development and function. Human lungs with ITK deficiency impair early protection against MTB in vivo (57). Improving ITK signaling pathways could become an alternative approach for combating MTB infection. One study reveals the role of IL7R on T-cell immunity in human TB (58). The authors reported that patients with TB had lower IL7R concentrations and lower IL7R expression in T cells than healthy controls, indicating that patients with TB have impaired T-cell sensitivity. In addition, due to post-transcriptional processes, patients with TB had reduced amounts of IL7R in T cells. In vitro experiments revealed that MTB-specific T lymphocytes from patients with TB have reduced IL-7-induced STAT5 phosphorylation and IL-7-promoted cytokine production (59). The role of the remaining 7 genes (CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, and CD3E) in T-cell signaling and modulation of host immune responses in mycobacterium infections is also supported (60–64).

Our results highlight the dysregulation of CD8+ T cells and the associated genes in PTB patients. These findings are exciting not just from the fact that CD8+ T cell-associated genes have the potential to act as potential therapeutic targets but prove that their role is not less important than CD4+ T cells in controlling MTB infection. We acknowledge that our strategy has some technical constraints. CIBERSORT was a convenient computational tool for determining infiltrating immune cell fractions, but it was still less precise than immunohistochemistry or flow cytometry, which could lead to inaccuracies in immune cell fractions. However, to overcome this limitation to some extent, we have linked gene expression profiles of immune signatures followed by functional enrichment, semantic similarity, druggability, and co-expression among the identified key signatures.



CONCLUSION

In this study, by coupling computational deconvolution algorithms and high throughput blood transcriptomics data, we identified the difference in T-cell-related immune cell populations among patients with PTB. The functional enrichment of 624 DEGs (393 over-expressed and 231 under-expressed) identified in the blood transcriptome of PTB patients revealed the major dysregulation of T cell-related ontologies and pathways. By linking DEGs against immune cell populations and TB gene signature, this study identified 9 CD8+ T cells associated genes (ITK, CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E, and IL7R) as potential therapeutic targets of PTB. The expression levels of these 9 genes in MTB infection in cell lines were assessed by RT-PCR-based expression assay, confirming the experimental validation. However, further in vitro and in vivo studies are needed to establish the role of these genes in PTB infection, progression, and treatment.
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Background: Cell division cycle-associated protein 2 (CDCA2) is a member of cell cycle-related proteins. CDCA2 plays a role in the regulation of protein phosphatase 1(PP1) γ-dependent DNA damage response (DDR) and H3 phosphorylation. CDCA2 promotes the tumorigenesis and development of several types of cancers by promoting the proliferation of tumor cells. However, the relationship between CDCA2 expression and the clinicopathological characteristics of hepatocellular carcinoma (HCC) is unknown.

Methods: Gene expression information and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. The expression of CDCA2 and its correlation to clinical characteristics in HCC were analyzed. The expression level of CDCA2 was validated in HCC cell lines. The relationship between CDCA2 expression and the survival of patients with HCC was analyzed by using Kaplan–Meier method. The prognostic value of CDCA2 in HCC was estimated by Cox regression analysis. The expression difference of CDCA2 between HCC and normal tissues and its correlation to survival were verified in independent datasets. Gene set enrichment analysis (GSEA) was used to screen the CDCA2-related signaling pathways.

Results: Cell division cycle-associated protein 2 expression was upregulated in HCC tissues (p < 0.001) and increased CDCA2 was correlated to increased T stage, pathologic stage, histologic grade, and alpha-fetoprotein (AFP) level (p < 0.001). In addition, CDCA2 was overexpressed in HCC cell lines HepG2 and LM3. High CDCA2 expression level was associated with poor overall survival [hazard ratio (HR) = 1.69; 95% CI, 1.20–1.40, p = 0.003], disease specific survival (HR = 1.73; 95% CI, 1.11–2.71, p = 0.016), and progress free interval (HR = 1.74; 95% CI, 1.30–2.34, p < 0.001). Overexpression of CDCA2 and its correlation to poor survival in HCC were verified in Gene Expression Omnibus (GEO) datasets and Kaplan–Meier plotter database. Increased CDCA2 expression was associated with upregulation of PD-L1 (Spearman's coefficient = 0.207, p < 0.001), PD-L2 (Spearman coefficient's = 0.118, p < 0.05), and CTLA4 (Spearman's coefficient = 0.355, p < 0.001). GSEA showed that homologous recombination pathway, insulin signaling pathway, mitogen-activated protein kinase (MAPK) pathway, mismatch repair pathway, mechanistic target of rapamycin (mTOR) pathway, Notch pathway, T cell receptor pathway, toll like receptor pathway, and WNT pathway were enriched in CDCA2 high expression phenotype.

Conclusion: Cell division cycle-associated protein 2 may serve as an independent biomarker for poor prognosis in HCC and increased CDCA2 expression was associated with upregulation of immune checkpoints.

Keywords: liver cancer, hepatocellular carcinoma, CDCA2, survival, prognosis


INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with a high cancer-related mortality. Each year, there are about 840,000 new cases of HCC and about 780,000 HCC related-deaths worldwide. The prognosis of HCC is poor, with a survival interval of 6–20 months without treatment (1, 2). For patients with resectable disease, surgical resection is the recommended treatment. However, recurrence occurs in about 70% of patients (3). Systemic therapy is the standard treatment for patients with inoperable or recurrent disease, such as sorafenib, lenvatinib, and immune checkpoint inhibitor (4). However, the prognosis of these patients are poor, with a 5-year survival rate of <8% (5). Thus, it is an urgent need to find new biomarkers for the diagnosis, treatment, and prognosis.

Cell division cycle-associated protein 2 (CDCA2) is a member of cell cycle-related proteins. It is reported that CDCA2 plays a role in the regulation of protein phosphatase 1(PP1) γ-dependent DNA damage response (DDR) by forming a complex with PP1γ (6). In addition, CDCA2 regulates H3 phosphorylation in a PP1 dependent manner (7). CDCA2 promotes the tumorigenesis and development of prostate cancer, malignant melanoma, renal cancer, and other malignant tumors by promoting the proliferation of tumor cells (6, 8–10). CDCA2 participates in cell cycle regulation. It was reported that CDCA2 expression level affected the activation of DNA damage checkpoint. Cell cycle checkpoints are induced by DNA damage and cause cell cycle arrest (11, 12). Thus, CDCA2 plays an important role in the regulation of cell cycle progression. Previous studies have shown that CDCA2 is upregulated and associated with poor prognosis in some tumors, such as lung cancer (13), breast cancer (14), and pancreatic cancer (15). However, there are few reports about the correlation between CDCA2 expression and the clinicopathological characteristics of HCC.

To explore the expression pattern and the prognostic value of CDCA2 in HCC, we performed the current study.



METHODS


Datasets and Clinical Information

Cell division cycle-associated protein 2 expression data of normal liver tissue (50 cases) and HCC tissues (374 cases), and the clinical data of patients with HCC were downloaded from The Cancer Genome Atlas database (TCGA-LIHC). The expression information of CDCA2 and patient information used in the current study were obtained from public database and therefore ethical approval was not required. R software (version 3.6.3) was used to perform the analysis. The difference of expression is visualized by dot graphs and box graphs.



RNA Extraction and Quantitative Real-Time PCR Analysis of CDCA2 Expression in HCC Cell Lines

Hepatocellular carcinoma cell lines HepG2 and SNU182 and normal liver cell line THLE-3 were purchased from American Type Culture Collection (ATCC) cell bank. Total RNA of the cell lines was extracted using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and reverse transcription was performed to obtain cDNA. Primer sequences of CDCA2 were shown as follows: forward, 5′-ATGACCGGCTGTCTGGAAT-3′, and reverse, 5′-GCTGAGACCTTCCTTTCTGGT-3′. According to the instructions of manufacturer of the SYBR Green reagent (ABI, CA, USA), quantitative real-time PCR (qRT-PCR) was performed to examine the expression of CDCA2 mRNA.



Verification of CDCA2 Expression and Its Correlation With Survival by GEO Datasets and Kaplan–Meier Plotter

Microarray data and RNA sequencing data were downloaded from GEO database. The terms, such as “liver,” or “hepatocellular” and “cancer,” “carcinoma,” or “neoplasm” were used for the search. GSE27150, GSE54236, GSE56140, GSE64041, and GSE76427 were downloaded. GSE56140, GSE76427, and GSE64041 were used to validate the CDCA2 expression difference between normal tissues and HCC tissues. GSE27150, GSE54236, and GSE76427 were used to validate the relationship between CDCA2 expression and survival. Meta-analysis was performed to verify the hazard ratio (HR) of CDCA2 expression to survival. The combined value was calculated by HR and 95% CI. Heterogeneity between datasets was assessed by using the τ2 and I2 test. If I2 > 50%, the random-effects model was used, otherwise, the fixed-effects model was used. HCC data from Kaplan-Meier plotter database (https://kmplot.com/analysis/) were used to validate the relationship between CDCA2 expression and survival.



Gene Set Enrichment Analysis

Patients were classified as CDCA2-high group and CDCA2-low group, using the median expression level of CDCA2 as cutoff value. Gene set enrichment analysis (GSEA) was conducted to assess the potential mechanism of CDCA2 in HCC. The c2.cp.kegg.v6.2.symbols.gmt was used as reference gene set. Parameter of gene set permutation for each analysis was 1,000. The significance of enriched gene sets was estimated by nominal p-value and false discovery rate (FDR) Q-value.



Statistical Analysis

Statistical analyses were conducted by using R software (version 3.6.3). Results were considered as statistically significant if p < 0.05. First, the expression of CDCA2 in normal tissues and tumor tissues was compared by Wilcoxon rank sum test. The correlation between CDCA2 expression and clinicopathological characteristics was examined by logistic regression analysis. Then, the relationship between CDCA2 expression and survival in HCC was estimated by Kaplan–Meier method. The prognostic value of CDCA2 in HCC was estimated by the univariate and multivariate Cox regression analysis.




RESULTS


CDCA2 Was Overexpressed in HCC Tissues

The expression level of CDCA2 in 50 adjacent noncancer tissues and 374 HCC tissues was compared. It was shown that expression of CDCA2 was significantly higher in HCC tissues (p < 0.001) (Figure 1A). In fifty pairs of adjacent noncancerous and HCC tissues, CDCA2 expression was increased in HCC tissues in comparison with noncancerous tissues (p < 0.001) (Figure 1B). In short, CDCA2 was overexpressed in HCC tissues.


[image: Figure 1]
FIGURE 1. Cell division cycle-associated protein 2 (CDCA2) expression in hepatocellular carcinoma (HCC) and the correlations between CDCA2 expression and clinicopathological characteristic. (A) Cell division cycle-associated protein 2 expression in HCC tissues and normal tissues (Wilcoxon rank sum test, ***p < 0.001). (B) Cell division cycle-associated protein 2 expression in HCC tissues and adjacent noncancerous tissues (Wilcoxon signed rank test, ***p < 0.001). (C) Expression level of CDCA2 in patients with different T stages (Kruskal–Wallis test, ***p < 0.001). (D) Expression level of CDCA2 in patients with different pathological stages (Kruskal–Wallis test, ***p < 0.001). (E) Expression level of CDCA2 in patients with different histologic grades (Wilcoxon rank sum test, ***p < 0.001). (F) Expression level of CDCA2 in patients with different AFP levels (Wilcoxon rank sum test, ***p < 0.001). (G) Expression level of CDCA2 in patients with different body mass index (BMI) (Wilcoxon rank sum test, ***p < 0.05). (H) Overall survivals of patients with high and low CDCA2 expression (log-rank test, p = 0.003). (I) Disease specific survivals of patients with high and low CDCA2 expression (log-rank test, p = 0.016). (J) Progress free intervals of patients with high and low CDCA2 expression (log-rank test, p < 0.001). (K) A receiver operating characteristic (ROC) curve and the area under the curve (AUC) of CDCA2 in HCC. (L) Cell division cycle-associated protein 2 mRNA was upregulated in both HepG2 and SNU182 cell lines (t-test, *p < 0.05, **p < 0.01).




CDCA2 Was Upregulated in HCC Cell Lines

To verify the upregulation of CDCA2 expression in HCC, we compared the expression of CDCA2 mRNA in HCC cells lines (HepG2 and SNU182) and normal liver epithelial cell line (THLE-3). Results showed that CDCA2 mRNA was upregulated in both HepG2 and SUN182 cell lines (Figure 1L).



Correlations Between CDCA2 Expression Level and Clinicopathological Characteristics in Patients With HCC

Expression of CDCA2 in patients with HCC with different clinicopathological characteristics was analyzed. As shown in Figures 1C,D, the expression level of CDCA2 was increased as T stage (Kruskal–Wallis test, p < 0.001) and pathologic stage (Kruskal–Wallis test, p < 0.001) was increased. CDCA2 expression level in poorly differentiated groups (G3 and G4) was significantly higher than that in well differentiated groups (G1 and G2) (p < 0.001) (Figure 1E). Patients with high AFP level (p < 0.001) (Figure 1F) and low body mass index (BMI) (p < 0.05) (Figure 1G) also had higher CDCA2 expression level. Logistic regression analysis was performed to estimate the relationships between CDCA2 expression and clinicopathological characteristics of patients with HCC. It was revealed that an increased CDCA2 expression was significantly related to age [for >60 years vs. < =60 years, odds ratio (OR) = 0.505; 95% CI, 0.333–0.761, p = 0.001], T stage (for T2–T4 vs. T1, OR = 2.541; 95% CI, 1.678–3.875, p < 0.001), pathological stage (for stage II-IV vs. stage I, OR=2.359; 95%CI, 1.541–3.636, p < 0.001), AFP level (for >400 ng/ml vs. <400 ng/ml, OR = 3.558; 95% CI, 1.969–6.667, p < 0.001) and histologic grade (for G3–4 vs. G1–2, OR = 3.375; 95% CI, 2.170–5.314, p < 0.001) (Table 1).


Table 1. Logistic regression analysis was performed to estimate the relationships between cell division cycle-associated protein 2 (CDCA2) expression and clinicopathological characteristics.
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Comparison of Survival in CDCA2-High and CDCA2-Low Patients

The median expression level of CDCA2 was 1.008 and it was used as the cutoff value. Patients with CDCA2 expression level higher than the cutoff value were considered as CDCA2 high expression, otherwise they were considered as CDCA2 low expression. Kaplan–Meier method was used to compare the survival of patients with high and low expression of CDCA2 from TCGA database. Patients with high CDCA2 expression level had worse overall survival (HR = 1.69; 95% CI, 1.20–1.40, p = 0.003), disease specific survival (HR = 1.73; 95% CI, 1.11–2.71, p = 0.016), and progress free interval (HR = 1.74; 95% CI, 1.30–2.34, p < 0.001) (Figures 1H–J).



Verification of CDCA2 Overexpression in HCC by GEO Datasets

Cell division cycle-associated protein 2 expression in GSE56140, GSE76427, and GSE64041 was analyzed. The expression difference of CDCA2 between normal tissues and HCC tissues was compared. We found that CDCA2 expression was increased in HCC tissues (Figures 2A–C), which was consistent with the results of TCGA database.
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FIGURE 2. Verification of CDCA2 overexpression in HCC and the correlation between CDCA2 expression with survival by independent datasets. Cell division cycle-associated protein 2 expression in (A) GSE56140, (B) GSE76427, and (C) GSE64041. ***p < 0.001. The overall survivals of patients with high and low CDCA2 expression in (D) GSE27150, (E) GSE54326, and (F) GSE76427. (G) Meta-analysis of hazel ratio (HR) of CDCA2 overexpression to survival. (H) Overall survival of patients with high and low CDCA2 expression in GSE54236+GSE 76427 cohort. (I) Overall survivals of patients with high and low CDCA2 expression in Kaplan–Meier plotter database. (J) Overall survivals of stage I-II subgroup patients with high and low CDCA2 expression in Kaplan–Meier plotter database. (K) Overall survivals of stage III-IV subgroup patients with high and low CDCA2 expression in Kaplan–Meier plotter database. (L) Progress free survivals of patients with high and low CDCA2 expression in Kaplan–Meier plotter database. (M) Progress free survivals of stage I-II subgroup patients with high and low CDCA2 expression in Kaplan–Meier plotter database. (N) Progress freesurvivals of stage III-IV subgroup patients with high and low CDCA2 expression in Kaplan–Meier plotter database.




Verification the Relationship Between CDCA2 Expression and Survival in HCC

The survivals of patients with high and low CDCA2 expression in GSE27150, GSE54236, and GSE76427 were compared. In GSE54236 cohort, patients with high CDCA2 expression showed significantly worse survival than patients with low CDCA2 expression (p = 0.030) (Figure 2E). In GSE27150 and GSE76427 cohorts, survivals were not significantly different between CDCA2 high and CDCA2 low expression patients (Figures 2D,F). To further confirm the correlation of CDCA2 expression with survival in patients from GEO datasets, meta-analysis was conducted. Meta-analysis result of the GSE27150, GSE54236, and GSE76427 showed that CDCA2 overexpression was not associated with poor survival [combined HR = 1.07 (95% CI: 0.56–2.04)] (Figure 2G). After analyzing the result, we found that the homogeneity between studies was poor, with I2 = 85%. We further analyzed the array data of the three GEO datasets and found that GSE27150 did not provide normalization information and normalization method about the data. The poor homogeneity was mainly due to GSE27150. We excluded GSE27150 and performed survival analysis using the GSE54236 and GSE76427 datasets. The result indicated that high expression of CDCA2 was associated with better survival (p < 0.001) (Figure 2H). The result was inconsistent with the previous results from TCGA. We analyzed the data of the two datasets and we found that 69.3% of patients in high CDCA2 group were lost to follow-up while only 11.4% of patients in low CDCA2 group were lost to follow-up. The unbalanced loss of follow up rate between the two groups may affect the survival rate, and the high loss of follow-up rate in the high CDCA2 group may make the calculated survival rate higher than the actual survival rate. In addition, meta-analysis of the GSE54236 and GSE76427 showed that homogeneity between the two datasets was good (I2 = 27%) and increased CDCA2 was associated with poor clinical outcome (combined HR = 1.61 (95% CI:1.30–1.99). (Supplementary Figure S2). HCC data from Kaplan–Meier plotter database (https://kmplot.com/analysis/) were used to validate the relationship between CDCA2 expression and survival. It was indicated that patients with high CDCA2 expression showed poor overall survival (HR = 1.94; 95% CI, 1.36–2.76, p < 0.001) (Figure 2I) and progress free survival (HR = 1.81; 95% CI, 1.34–2.43, p < 0.001) (Figure 2L). In stage I-II subgroup and stage III-IV subgroup patients, CDCA2 overexpression was related to poor overall survival (for stage I-II subgroup, HR = 1.87; 95% CI, 1.08–3.21, p = 0.022; for stage III-IV subgroup, HR = 2.16; 95% CI, 1.20–3.90, p = 0.0089) (Figures 2J,K) and progress free survival (for stage I-II subgroup, HR = 1.68; 95% CI, 1.12–2.52, p = 0.011; for stage III-IV subgroup, HR = 2.14; 95% CI, 1.10–4.16, p = 0.021) (Figures 2M,N). The results were consistent with the results of TCGA database.



Diagnostic and Prognostic Values of CDCA2 in HCC

A receiver operating characteristic (ROC) curve was plotted and the area under the curve (AUC) was calculated to examine the diagnostic value of CDCA2 in HCC. The ROC showed a sensitivity of 0.900 and a specificity of 0.898 and the AUC was 0.951 (Figure 1K). Univariate and multivariate analysis were used to estimate the correlation between clinicopathological characteristics and prognosis of HCC. Univariate analysis showed that CDCA2 expression (HR = 1.694; 95% CI, 1.196–2.401; p = 0.003), T stage (HR = 2.126; 95% CI, 1.481–3.052; p < 0.001), and pathologic stage (HR = 2.090; 95% CI, 1.429–3.055; p < 0.001) were related to poor survival (Table 2). Multivariate analysis showed that CDCA2 expression (HR = 1.613; 95% CI, 1.108–2.349; p = 0.013) was independently related to survival (Table 2). In summary, CDCA2 expression was an independent prognostic factor for HCC and increased CDCA2 expression was related to poor survival.


Table 2. Univariate and multivariate analysis were used to estimate the correlation between clinicopathological characteristics and prognosis of hepatocellular carcinoma (HCC).
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Overexpression of CDCA2 Was Related to Increased Expression of Immune Checkpoint

Spearman's correlation analysis was performed to estimate the relation of CDCA2 expression to immune checkpoint expression, such as PD-L1, PD-L2, and CTLA4. The results showed that overexpression of CDCA2 was associated with increased expression of PD-L1 (Spearman's coefficient = 0.207, p < 0.001), PD-L2 (Spearman's coefficient = 0.118, p < 0.05), and CTLA4 (Spearman's coefficient = 0.355, p < 0.001) (Figure 3).


[image: Figure 3]
FIGURE 3. Correlation of CDCA2 with expression level of immune checkpoints. (*p < 0.05; ***p < 0.001).




Identification of CDCA2-Related Pathways

Patients were classified into CDCA2 high group and CDCA2 low group according to the median value of CDCA2 expression. CDCA2-related pathways were screened by GSEA. Results showed that homologous recombination pathway, insulin signaling pathway, mitogen-activated protein kinase (MAPK) pathway, mismatch repair pathway, mTOR pathway, Notch pathway, T cell receptor pathway, toll like receptor pathway, and WNT pathway were enriched in CDCA2 high expression phenotype (Table 3 and Figure 4).


Table 3. Cell division cycle-associated protein 2-related pathways screened by gene set enrichment analysis (GSEA).
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FIGURE 4. Cell division cycle-associated protein 2-related pathways identified by gene set enrichment analysis (GSEA). (A) Homologous recombination pathway, (B) insulin signaling pathway, (C) MAPK pathway, (D) mismatch repair pathway, (E) mTOR pathway, (F) Notch pathway, (G) T cell receptor pathway, (H) toll like receptor pathway, and (I) WNT pathway.





DISCUSSION

Cell division cycle-associated protein 2 participates in cell cycle regulation. It was reported that CDCA2 expression level affected the activation of DNA damage checkpoint. Cell cycle checkpoints are induced by DNA damage and cause cell cycle arrest (11, 12). CDCA2 participates in chromatin remodeling by regulating histone H3 de-phosphorylation (7). Thus, CDCA2 plays an important role in the regulation of cell cycle progression. Previous studies have shown that CDCA2 is upregulated and associated with poor prognosis in some tumors, such as lung cancer (13), breast cancer (14), and pancreatic cancer (15).

In the current study, we analyzed the expression pattern of CDCA2 and its diagnostic and prognostic value in HCC. To explore the potential mechanism by which CDCA2 regulates the tumorigenesis and development of HCC, we analyzed the CDCA2-high phenotype related signal pathways by GSEA. In the TCGA-LIHC cohort, we found that CDCA2 was upregulated in HCC and increased CDCA2 expression was associated with poor prognosis of patients with HCC. To validate the bioinformatic analysis results of the TCGA-LIHC cohort, we searched the GEO database and analyzed CDCA2 expression level in normal tissue and HCC tissue and its association with prognosis. We got consistent results with the results of TCGA-LIHC cohort.

Some reports have indicated that CDCA2 was associated with poor survival in HCC and the correlation between pathologic stage and histologic grade with CDCA2 expression was also reported (15–17). However, the relationship between CDCA2 expression and other clinical features was not analyzed. In the current study, we analyzed the correlation between CDCA2 expression level and clinicopathological features, such as T stage, lymph node invasion, distant metastasis, pathologic stage, histological grade, AFP level, and BMI. Logistic regression showed that CDCA2 expression was significantly associated with histological grade, AFP level, T stage, and pathologic stage. CDCA2 was increased as histological grade, AFP level, T stage, and pathologic stage increased. These results suggested that CDCA2 participated in the development of HCC. An ROC curve showed that CDCA2 had high diagnostic value for HCC, with an AUC of 0.951.

Univariate analysis showed that CDCA2 expression level, T stage, and pathologic stage may predict poor prognosis of HCC. Multivariate regression analysis further verified that CDCA2 had an independent prognostic value for HCC. The results were consistent with previous reports (15–17). Wang Y et al. demonstrated that low methylation of CDCA2 was related to poor survival. However, they did not study the relationship between CDCA2 expression level and clinical prognosis and the results were not verified by independent dataset (16). Though Wang Z also indicated that increased CDCA2 was related to poor survival in HCC, they did not verify the results by independent dataset (17). Wu B et al. showed that upregulation of CDCA2 was related to poor survival in HCC. They used only one dataset to validate the upregulation of CDCA2 and the correlation between CDCA2 expression and survival (15). However, the sample size was small. The validation dataset contained only 14 pairs of HCC tissues and adjacent tissues and 64 cases of patients with HCC (15). In the current study, we used three independent datasets to verify the upregulation of CDCA2 in HCC. The validation cohort contained larger sample size than previous study. GSE56140 contained 34 normal tissues and 35 tumor tissues. GSE76427 contained 52 normal tissues and 155 tumor tissues. GSE64041 contained 60 pairs of HCC tissues and adjacent tissues. The three independent datasets showed the consistent results. As these three datasets did not contain prognosis information, we used the other three datasets (GSE27150, GSE54236, and GSE76427) to validate the correlation between CDCA2 expression and clinical outcomes. The result from GSE27150 and GSE75427 showed that the prognosis of patients with high and low CDCA2 expression level did not have statistical difference. However, the result from GSE 54236 showed that patients with high CDCA2 expression had worse clinical outcome. The inconsistent results may be attributed to bias introduced by the small sample size in the GSE27150 and GSE76427 datasets. To further analyze the results, meta-analysis was performed. However, meta-analysis indicated that high CDCA2 expression was not related to poor survival. It should be noted that poor heterogeneity existed between the three datasets, with I2 = 85%. After the data of the three dataset, we found that GSE54236 and GSE76427 were both normalized by the same method (robust spline normalization, RSN) while normalization information of GSE27150 was not provided. After excluding GSE27150 and survival analysis of GSE54236 and GSE76427 by Kaplan–Meier method showed that increased CDCA2 was associated with better survival. The inconsistent result may be due to the obviously higher loss of follow-up rate in the high CDCA2 group. The meta-analysis result of the two datasets confirmed the high CDCA2 expression was related to poor survival.

Some research have studied the mechanisms of CDCA2 in HCC. It was reported that CDCA2 protected against oxidative stress by activating BRCA1-NRF2 pathways in HCC (18). Li et al. reported that CDCA2 promoted cell proliferation of HCC by activating AKT/CCND1 pathway (19). However, the relationship between immune checkpoint and CDCA2 expression has not been reported. As immune checkpoint inhibitors have become one of the standard treatments for HCC, we estimated whether the CDCA2 expression was related to immune checkpoint expression. Spearman's correlation analysis showed that increased expression of CDCA2 was associated with increased expression of immune checkpoints. It has been indicated that increased immune checkpoint was associated with inhibition of immune cells activity (20). The above results revealed that upregulation of CDCA2 may affect the prognosis by inhibiting immune cell activity.

Gene set enrichment analysis was performed to explore the potential mechanisms of CDAC2 in HCC. We found that homologous recombination pathway, insulin signaling pathway, MAPK pathway, mismatch repair pathway, mTOR pathway, Notch pathway, T cell receptor pathway, toll like receptor pathway, and WNT pathway were enriched in CDCA2 high expression phenotype. Homologous recombination pathway is a signal pathway associated with DNA double-strand breaks repair (21). Drugs targeting homologous recombination deficiency (HRD), such as poly(ADP-ribose) polymerase (PARP) inhibitors, have been proved to have an antitumor activity in some types of tumors, such as breast cancer and ovarian cancer (21, 22). Mismatch repair pathway is another DNA damage repair pathway, which promotes DNA damage response mediated by ataxia telangiectasia mutated (ATM) and ataxia-telangiectasia mutated (ATR) (23). The previous studies reported that BRCA1 was recruited by CDCA2 (18) and BRCA1 functioned in DNA repair process (24). These results supported that homologous recombination pathway and mismatch repair pathway were enriched in CDCA2 high phenotype. Insulin signaling pathway, which can be activated by IGF-1, promotes cell growth, proliferation, and inhibits apoptosis. It has been indicated that insulin signaling pathway activation was associated with increased risk of breast cancer (25) and colorectal cancer (26). MAPK pathway is the ubiquitous signal transduction pathway which involves in many processes of life and often alters in many disease (27). MAPK pathway regulates cellular activities during development of cancers, such as cell proliferation, cell apoptosis, and immune escape. Inhibiting the upstream kinase of MAPK pathway has become a therapeutic strategy of some cancer (28). The mTOR pathway involves in the regulation of protein synthesis, glucose metabolism, lipid metabolism, glutamine metabolism, and nucleotide synthesis in cancer cells. The mTOR pathway has become a therapeutic target for cancer therapy. mTOR inhibitors, such as rapamycin and everolimus, have been approved for the treatment of some types of cancers (29). It was reported that CDCA2 activated AKT related pathways and promoted HCC proliferation (19). mTOR was one of the downstream effectors of PI3K/AKT pathways (30). The current study showed that mTOR pathway was enriched in CDCA2 high phenotype. The result was consistent with previous reports. Notch pathway plays a vital role in promoting tumor development by changing tumor microenvironment and recruiting immunosuppressive cells (31). Moreover, Notch pathway can interact with WNT pathway and promote HCC development (32). Toll like receptors are important factors affecting the immune system and initiation of inflammatory response. It has been revealed that inhibiting toll like receptors suppresses the proliferation of HCC cells (33). The above finding results from GSEA provided information to explore the mechanism by which CDCA2 promoting the development of HCC.

However, some limitations existed in the current study. First, the number of tumor tissues in TCGA and GEO database was much higher than number of normal tissues, which were used as a control. Second, we only analyzed the CDCA2 mRNA expression of the tissue. The protein expression level of CDCA2 was not assessed. And finally, we only explored the potential involved pathways related to CDCA2 by bioinformatic analysis and the molecular mechanism was not explored in depth by molecular biology experiment. In addition, it should be noticed that the meta-analysis of the three GEO datasets indicated that CDCA2 was not associated with survival, though multiple Cox regression analyses pointed out that CDCA2 was associated with survival independently. The relationship between CDCA2 expression and survival should be validated clinically.

In conclusion, we analyzed the CDCA2 expression data of TCGA database and validated the results using independent cohorts from GEO database. The results showed that CDCA2 was increased in HCC and had a high diagnostic power for HCC. Kaplan–Meier analysis and univariate Cox regression analysis indicated that CDCA2 was associated with poor survival for HCC. Increased CDCA2 expression was associated with the upregulation of PD-L1, PD-L2, and CTLA4. In addition, we also screened the potential signal pathways related to CDCA2 in HCC. However, the prognostic value of CDCA2 in HCC needs further clinical exploration and validation.
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