About this Research Topic
Liquid handling and analysis of water will also be a critical factor for future long-term missions on the Moon (e.g., Lunar Gateway) or on the journey to Mars. Monitoring water quality continuously and in real-time will be essential for the survival of future astronauts. The same will apply for in situ resource utilization (ISRU) for crewed as well as robotic missions. The resource (water) will need to be manipulated, potentially treated, and analyzed before consumption or further processing. With the development of the Artemis program, fluidic research platforms engaged in space biology and pharmaceutical science will, more than ever, be needed to study the effects of microgravity, radiation, and similar on mammalian cells and bacteria (e.g., in bioreactors used for ISRU of energy, oxygen, biopolymers, and food). These platforms require liquid-handling and increasingly complex fluidic operations and analysis methods that function well in the rigors of space.
Potential topics include but are not limited to the development of technologies for the following applications:
- Handling, preparation and liquid-based analyses of fluidic samples in space
- Manipulation, treatment and analyses of water for space crew consumption
- Space biology techniques utilizing liquid analyses
- Liquid-based pharmaceutical techniques in reduced gravity environments
- Real time continuous water monitoring in space
- Liquid analyses methods for Ocean Worlds
Keywords: liquid handling, fluidics, Ocean Worlds, liquid-phase analysis, ISRU
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.