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Editorial on the Research Topic

Single-Molecule Image Analysis

Seeing is believing. This little sentence illustrates the prime reasonwhymicroscopy is such a widespread and
powerful tool for the study of biological systems. To observe something with one’s own eyes, even with the
help of a microscope, is a potent experience. The super-resolved approach single-molecule localization
microscopy (SMLM), however, goes beyond the qualitative aspects of biological imaging at an
unprecedented level of detail: it offers the unique ability to capture spatio-temporal coordinates for
detected fluorescence emission events from individual molecules. Today, SMLM is applied increasingly as a
quantitative tool for, e.g., molecular clustering, tracking and stoichiometry, benefitting from themultitude of
extractable parameters within the set of localized coordinates.

In this research topic we have gathered contributions from scientists working on a broad
range of aspects in SMLM, all unified in their focus on extracting information from multi-
dimensional localization data. In total, 12 articles have been included, with a mixture of 10
original research articles (2 technology and code, 5 original research, 3 methods), 1 review and 1
opinion article.

Since we started working on the research topic, we all have witnessed a very difficult year. The
pandemic is claiming and changing the lives of countless people around the world, hitting the already
disadvantaged worst and exacerbating the painful reality of disparity between those who have access
to wealth and those who don’t. Meanwhile, other diseases still persist, and sadly last year saw the loss
of one of the SMLM community’s most respected leaders, Kat Gaus, to cancer. In his special
contribution to the research topic Cebecauer offers a heartfelt tribute to her life and a glimpse into the
rich legacy she left behind.

Since its first description in the literature a decade and a half ago, SMLM has flourished into a
well-established method, albeit one that is difficult to master due to its reliance on specialized
fluorophores, stringent illumination requirements, and intensive data processing.

Here, Martens et al. have demystified the computational aspect of SMLM by producing a
wonderful summary of the processing required to bring a dataset from raw data to analysis and
visualization. In their work, the authors provide not only a general introduction to the methods,
divided in eight modules, but also ready-to-use educational code and tutorials in both MATLAB and
Python.

One of the key computational challenges in SMLM is extracting biologically meaningful
information from molecular coordinates. A number of articles in this research topic are thus
dedicated to tackling the analysis of multi-dimensional spatial localization distributions.
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In an ideal SMLM experiment, a single fluorophore blinking
event would be detected within one camera frame. However, in
reality, one individual emission event can span multiple camera
frames; without appropriate analytical treatment this can result in
over-counting the number of emitting molecules. Here, Schodt
and Lidke present a molecularly-informed grouping algorithm,
formulated as a linear assignment problem, that accounts for
photophysical kinetics, e.g., multiple blinking steps and
bleaching, and local emitter density variations. This helps
assign detected emission events to the correct fluorophore.

Structural resolution is one of the key parameters in SMLM
experiments and is a multivariate problem, since not only the
localization precision of single fluorophores, but also the final
localization density is significant. Especially in experimental
settings, where resolution is mainly limited by the resulting
localization density, e.g., in expansion microscopy, backfilling the
image by deep-learning approaches has become a promising
approach. In their manuscript, Berberich et al. describe a clever
approach of utilizing Fourier Ring Correlation as a trainable
quality metric that can be based on sparse SMLM data sets. This
new loss function can complement a multiscale structural similarity
index, leading to an overall improved reconstruction and can be easily
integrated in existing deep-learning and analysis workflows.

SMLM data is not limited to just two dimensions, and several
articles here describe analytical methods relating to extension of
SMLM in the axial, temporal, and spectral dimensions.

In an interesting overlap with computer vision, Blundell et al.
show how it is possible to use Deep Learning to perform what is
otherwise a hard problem: finding 3D structure from individual
2D projections. HOLLy, their software, uses a Convolutional
Neural Network, coupled to a differentiable renderer, to
explore the space of 3D structures and find candidates that
match the input data.

The single molecule nature of SMLM dovetails into the field
of single particle tracking (SPT), whereby the temporal
dynamics of labelled protein species can be measured. In
order to increase the throughput of SMLM for tracking
approaches, Butler et al. designed a microscope capable of
spectrally resolving 3D localizations in dynamic samples,
allowing for identification of different fluorophores without
imaging in multiple channels. Alongside this hardware
development, they showcase an analytical framework for
disentangling the multi-dimensional data acquired and
leveraging spectral information to inform multi-emitter
fitting analysis.

SPT data from living samples presents a complex analysis
problem for dissecting contributions from biological
environments with an unknown number of diffusive states.
Chen et al. combine Deep Learning with non-parametric
Bayesian inference to tackle complicated live-SPT data for
which: “the number of diffusive states is unknown, mixtures of
different diffusive populations may exist within single
trajectories, symmetry cannot be assumed between the x and y
directions, and anomalous diffusion is possible.”

Many signalling pathways in cell biology are mediated by
protein clustering at the cell membrane. As SMLM provides the
coordinates of individual molecules, it is an ideal technique for

quantifying the spatial distributions of such clusters. This
quantification is enabled by Kutz et al., who provide access to
advanced Bayesian cluster analysis algorithms through a
Graphical User Interface, BaClAva. This software not only
supports the analysis of SMLM data, but also simulation,
through which the user can explore the effect of algorithm
and parameter choice on clustering performance.

Cluster analysis is a challenging problem not just within the
context of a single image, but also when aggregating results across
different datasets. Feher et al. have developed a novel algorithm
called KNA (K-neighborhood analysis), based on principal
component analysis of vectors between nearest-neighbor
molecule coordinates. The authors demonstrate the application
of this approach in enhancing the performance of existing
clustering algorithms, visualising SMLM data in terms of
molecule neighborhood, and joint analysis across distinct
datasets. Beyond these technical advances, this manuscript is
particularly remarkable as it was finalized in a spirited manner by
Kat Gaus‘ group after her death in March 2021.

In addition to uncovering whether molecules of the same
species form clusters, extending SMLM into multiple colors can
provide information on interactions between different molecular
species. Mancebo et al. describe a novel method for efficiently
isolating clusters which co-localize with a second channel, based
on using k-dimensional trees. This method, implemented in
MATLAB, offers a dramatic reduction in memory and
computational power requirements over other methods.

One of the topics the scientific community is particularly
concerned about at the moment is reproducibility. In this
research topic, we had contributions that tackled the issue of
how far we can trust the results, either by quantifying the
uncertainty or, complementarily, how to integrate quality
metrics to improve the final resolution.

Thiele et al. present a theoretical discourse of the estimation of the
fluorescence lifetime in FLIM and SML-FLIM. By using a maximum
likelihood estimator, they derive the Cramer-Rao lower bound of the
lifetime variance with noise and demonstrate its usage with simulated
and experimental data. The described approach is part of their open-
domain software “Fluorescence-Lifetime TrackNTrace” and thus
readily available for users.

Schneider and Schütz discuss and demonstrate the so far
underused application of significance testing in single-
molecule experiments. They deliver on their manuscript
title, by showcasing the appropriate usage of p-value
testing for localization cluster analysis and the proper
combination of results obtained from multiple cells and/or
experiments. Since cluster analysis has become its own sub-
field within SMLM and the pointillistic nature of localization
microscopy coupled with the iterative detection of the same
molecules poses an ongoing bottleneck, their approach of
attaining an overall p-value, testing against a random
distribution of molecules has the potential to become an
important standard for future SMLM cluster studies.
Furthermore they present a block permutation test for
single-molecule tracking data, circumventing their inherent
correlation which can obscure conventional statistical
significance testing.
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Taken together, these articles present an overview of the broad
application range of SMLM and its current trends. In light of the
emerging reproducibility crisis, which includes algorithm driven
high-end microscopy, it is of utmost importance to make the
relevant source code or analysis software accessible to the widest
possible audience. We are therefore especially pleased with the
contributions to this special research topic, as virtually all
presented approaches are accompanied with open-domain
software and/or well documented source code (see Table 1).
Thus, the work collected in this special research topic functions
both as a useful, accessible resource for interested SMLM
newcomers and users, as well as hopefully an inspiration for
future endeavors.
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TABLE 1 | Comprehensive list of the software packages mentioned in the manuscripts in this research topic, along with their code availability destination at the time of
publishing and public licensing specifications.

Authors Software Code Licensing

Martens et al. SMLMComputational GitHub | Google Drive GPL-3.0
Schodt and Lidke SMLMFrameConnection GitHub MIT
Berberich et al. FRCnet GitHub MIT
Blundell et al. HOLLy GitHub GPL-3.0
Butler et al. PALMTracer GitHub Custom
Chen et al. NOBIAS GitHub GPL-3.0
Kutz et al. BaClAva GitHub MIT
Feher et al. KAN Supplementary Material #2 GPL-3.0
Mancebo et al. cross-correlation-filtering GitHub MIT
Thiele et al. TrackNTrace GitHub GPL-3.0
Schütz and Schneider Block-permutation method GitHub GPL-3.0
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NOBIAS: Analyzing Anomalous
Diffusion in Single-Molecule Tracks
With Nonparametric Bayesian
Inference
Ziyuan Chen1, Laurent Geffroy2 and Julie S. Biteen1,2*

1Department of Biophysics, University of Michigan, Ann Arbor, MI, United States, 2Department of Chemistry, University of
Michigan, Ann Arbor, MI, United States

Single particle tracking (SPT) enables the investigation of biomolecular dynamics at a high
temporal and spatial resolution in living cells, and the analysis of these SPT datasets can
reveal biochemical interactions and mechanisms. Still, how to make the best use of these
tracking data for a broad set of experimental conditions remains an analysis challenge in
the field. Here, we develop a new SPT analysis framework: NOBIAS (NOnparametric
Bayesian Inference for Anomalous Diffusion in Single-Molecule Tracking), which applies
nonparametric Bayesian statistics and deep learning approaches to thoroughly analyze
SPT datasets. In particular, NOBIAS handles complicated live-cell SPT data for which: the
number of diffusive states is unknown, mixtures of different diffusive populations may exist
within single trajectories, symmetry cannot be assumed between the x and y directions,
and anomalous diffusion is possible. NOBIAS provides the number of diffusive states
without manual supervision, it quantifies the dynamics and relative populations of each
diffusive state, it provides the transition probabilities between states, and it assesses the
anomalous diffusion behavior for each state. We validate the performance of NOBIAS with
simulated datasets and apply it to the diffusion of single outer-membrane proteins in
Bacteroides thetaiotaomicron. Furthermore, we compare NOBIAS with other SPT analysis
methods and find that, in addition to these advantages, NOBIAS is robust and has high
computational efficiency and is particularly advantageous due to its ability to treat
experimental trajectories with asymmetry and anomalous diffusion.

Keywords: single-molecule tracking (SPT), nonparametric Bayesian statistics, hierarchical Dirichlet process (HDP),
hidden Markov model (HMM), recurrent neural network (RNN), anomalous diffusion

INTRODUCTION

The biophysical dynamics of biomolecules reflect the biochemical interactions in the system, and
these dynamics can be quantified within a dataset of single-particle trajectories obtained by tracking
individual molecules. The invention of the super-resolution microscope (Moerner and Kador, 1989;
Hell and Wichmann, 1994; Betzig et al., 2006; Hess et al., 2006; Rust et al., 2006) and single-particle
tracking (SPT) methods (Yildiz et al., 2003; Deich et al., 2004; Elmore et al., 2005; Manley et al., 2008)
havemade possible investigations of biomolecular dynamics at a high temporal and spatial resolution
both in vitro and in vivo. Moreover, quantitative SPT algorithms can connect the real-time dynamics
from biophysical trajectories to biochemical roles to uncover whether a molecule interacts with other

Edited by:
Thomas Pengo,

University of Minnesota Twin Cities,
United States

Reviewed by:
Colin Kinz-Thompson,

Rutgers University, Newark,
United States

Carl-Magnus Svensson,
Leibniz Institute for Natural Product

Research and Infection Biology,
Germany

*Correspondence:
Julie S. Biteen

jsbiteen@umich.edu

Specialty section:
This article was submitted to
Computational BioImaging,

a section of the journal
Frontiers in Bioinformatics

Received: 15 July 2021
Accepted: 25 August 2021

Published: 10 September 2021

Citation:
Chen Z, Geffroy L and Biteen JS (2021)

NOBIAS: Analyzing Anomalous
Diffusion in Single-Molecule Tracks

With Nonparametric
Bayesian Inference.

Front. Bioinform. 1:742073.
doi: 10.3389/fbinf.2021.742073

Frontiers in Bioinformatics | www.frontiersin.org September 2021 | Volume 1 | Article 7420731

ORIGINAL RESEARCH
published: 10 September 2021
doi: 10.3389/fbinf.2021.742073

8

http://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2021.742073&domain=pdf&date_stamp=2021-09-10
https://www.frontiersin.org/articles/10.3389/fbinf.2021.742073/full
https://www.frontiersin.org/articles/10.3389/fbinf.2021.742073/full
https://www.frontiersin.org/articles/10.3389/fbinf.2021.742073/full
https://www.frontiersin.org/articles/10.3389/fbinf.2021.742073/full
http://creativecommons.org/licenses/by/4.0/
mailto:jsbiteen@umich.edu
https://doi.org/10.3389/fbinf.2021.742073
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2021.742073


cellular components (Izeddin et al., 2014), freely diffuses
(Badrinarayanan et al., 2012), is actively transported (Park
et al., 2014), or is constrained to a certain region (Bayas et al.,
2018).

Conventionally, SPT trajectory datasets have been assumed to
be Brownian, such that the mean squared displacement, MSD, of
each track is linearly proportional to the time lag, τ, and the
diffusion coefficient, D, can be calculated from a linear fit to this
curve (Qian et al., 1991; Saxton, 1997). This Brownian motion
assumption works accurately for freely diffusing molecules in
solution. Despite the accessibility of this method, it has a
simplified assumption that the molecule is freely diffusing
with a single diffusive state (a single D value) for each
trajectory. In the complicated cellular environment, however,
multiple diffusive states, each characterized by an averageD, can
exist—for instance due to binding and unbinding events—and
molecules can transition between different states to produce
heterogeneity even within single trajectories. To reveal these
heterogeneous dynamics, probability distribution-based
methods such as cumulative probability distribution (Schütz
et al., 1997; Mazza et al., 2012), have been applied. Probability
distribution-based models use kinetic modeling with a
predetermined number of diffusive states and are fit to
histograms of displacements calculated at different time lags.
These probability-based kinetic models pool displacements
from the SPT dataset to estimate the D and weight fraction
for each diffusive state in the model. Probability distribution-
based analytical tools (Rowland and Biteen, 2017; Hansen et al.,
2018) have been widely applied to SPT datasets with extra
corrections that consider the experimental microscopy data
collection process. These corrections include localization
error (Michalet and Berglund, 2012), confinement (Kusumi
et al., 1993), motion blur (Berglund, 2010; Deschout et al.,
2012), and out-of-focus effects (Lindén et al., 2017) in the
probability model.

For some well-studied biological systems in which the
biochemical states of molecules have been determined through
other methods, a fixed-state number analytical tool can be
suitable for quantifying the dynamics and weight for each
state (Elf et al., 2007; Hansen et al., 2017). However, SPT can
also be used as the beginning step to investigate biomolecule
dynamics without prior knowledge of how many diffusive states
there supposed to be (Monnier et al., 2015; Sungkaworn et al.,
2017; Biswas et al., 2021). In these cases, how to objectively
determine the number of diffusive states is a great challenge.
Moreover, these models provide a D value for each
subpopulation, but they do not assign the diffusive state to
each individual single-molecule step, nor do they quantify the
transition probability between distinct diffusive states within one
trajectory. However, these transition probabilities can reveal
important biological meaning such as the presence of critical
biochemical intermediates (Biswas et al., 2021).

Bayesian statistics and Hidden Markov Models (HMMs) have
been applied to analyze SPT datasets without assuming a
predetermined number of diffusive states and to access the
probabilities of transitioning between distinct states (Persson
et al., 2013; Monnier et al., 2015; Karslake et al., 2020; Heckert

et al., 2021). vbSPT, which was one of the first applications of
HMM for SPT analysis (Persson et al., 2013), uses a maximum-
evidence criterion to select between models with different
numbers of diffusive states; within each model, a fixed-order
HMM is used to infer the diffusion coefficient, weight fraction,
and transition probabilities for each state. More recently,
nonparametric Bayesian models based on Dirichlet processes
were combined with HMM to recover the number of diffusive
states from SPT trajectory datasets, such as in SMAUG (Karslake
et al., 2020) and DSMM (Heckert et al., 2021). In these models,
the motion of the molecule is approximated to be symmetric and
Brownian, which is an oversimplification considering the
crowded environment and various interaction partners for
biomolecules in cells.

To move beyond Brownian motion, here we consider a more
general random walk family: anomalous diffusion. In anomalous
diffusion, MSD and τ are related by a power law distribution,
MSD ∼ τα, where α is the anomalous diffusion exponent (Metzler
et al., 2014). Brownian motion is a special case of anomalous
diffusion (α � 1), and other cases can be further divided into
subdiffusion (α> 1) and superdiffusion (α< 1). Biomolecules
have been reported to diffuse anomalously in many situations,
such as constrained membrane protein motion (Jeon et al., 2016),
the facilitated diffusion of DNA binding protein (Bauer and
Metzler, 2012), and active transportation of cargoes (Caspi
et al., 2002). Different designs of neural networks effectively
classify the diffusion type of trajectories (Bo et al., 2019;
Granik et al., 2019; Argun et al., 2021; Gentili and Volpe,
2021), however these analyses typically assume that each track
is dynamically homogeneous and is characterized by a single type
of diffusion and a single D value. It remains a challenge to classify
the diffusion type within a trajectory when considering the
possibility of changes in dynamics or diffusion types within a
single track.

Here we introduce the NOnparametric Bayesian Inference
for Anomalous diffusion in Single-molecule tracking (NOBIAS)
framework to address the assumptions and simplifications
discussed above and provide a more physiologically relevant
analysis algorithm to quantify the dynamics encoded in SPT
datasets (Figure 1). In particular, NOBIAS recovers the number
of diffusive states and predict the diffusion type for each
diffusive state, even in heterogeneous trajectories. The
NOBIAS framework consists of two modules. The first
module uses a Hierarchical Dirichlet Process Hidden Markov
Model (HDP-HMM) with multivariate Gaussian emission to
recover the number of diffusive states and infer their
corresponding diffusion coefficients and weight fractions.
This module also assigns each single-molecule step a
diffusive state label to provide the state label sequence and
the matrix of transition probabilities. In the second module, the
original trajectories are segmented by diffusive state label and a
pre-trained Recurrent Neural Network (RNN) is used to classify
these segments and assign the diffusion type (Brownian motion,
Fractional Brownian motion, Continuous Time Random Walk,
or Lévy Walk) for each diffusive state. We simulated trajectory
datasets with mixtures of heterogeneous dynamics and diffusion
types to validate the NOBIAS framework, and we analyzed the
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SPT dataset from experimental measurements of the SusG
outer-membrane protein in living Bacteroides
thetaiotaomicron to access its dynamics and anomalous
diffusion behaviors, which are consistent with its role in
starch catabolism in gut microbiome. This framework uses
nonparametric Bayesian statistics and Deep learning to
thoroughly analyze a single-molecule tracking dataset. It

provides an objective method to determine the number of
diffusive states in an SPT dataset and accesses the
multidirectional dynamics of each state. A further diffusion
type classification for each diffusive state is also included in the
framework. The NOBIAS framework overcomes some
oversimplified assumptions in SPT analysis and provides a
powerful tool to fully make use of single-molecule tracking data.

FIGURE 1 | NOBIAS workflow. (1) Single-particle tracking (SPT) trajectory datasets are processed in the NOBIAS HDP-HMM module: the observed data (the
displacements, Δx) are analyzed in the context of the emission parameters (the diffusion coefficients, D). The state sequence, z, indicates the diffusive state
corresponding to each step, and the transition matrix, π, is estimated with a Hierarchical Dirichlet process prior using concentration hyperparameters a and c and the
sticky parameter, κ. The HDP-HMMmodule provides D and the weight fraction for each diffusive state, the π for transition probabilities between these states, and a
state label assignment for each SPT step. (2) In the NOBIAS RNNmodule, trajectory segments of the same diffusive state are collected and put in a pre-trained Recurrent
Neural Network (RNN) with two long short-term memory (LSTM) layers to classify the diffusion type for each diffusive state.
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METHODS

Hidden Markov Model
A HMM infers a system with a discrete-valued sequence of
unobservable states that can be modeled as a Markovian
process (Rabiner, 1989). The HMM assumes that the observed
data have a hidden discrete-valued state sequence, and at each
observed time, the observed data only depends on its hidden state.
In our NOBIAS application of the HMM model, the observed
data is the single-molecule displacements and the hidden state is
the molecule’s distinct biophysical diffusive state.

Suppose zt is the hidden state of the Markovian chain at time t
and yt is the observed data at time t, the HMM follows the
following generative process:

z1 ∼ π(0), zt+1
∣∣∣∣∣zt ∼ π(zt ), yt

∣∣∣∣∣zt ∼ f (θ(zt )) (1)

Here, π refers to the transition matrix of a HMM and π(zt) is
the zt row of the transition matrix and is the transition
distribution for state zt . Given zt and the corresponding

emission parameter θ(zt), yt is independently generated from

the emission function f (θ(zt)). In NOBIAS, the observed data, yt ,
is the vector of single-step displacements, Δxt , and the emission
function is a zero-mean multivariate Gaussian distribution, and
the emission parameter is the set of diffusion coefficients, D(zt):

Δxt
∣∣∣∣zt ∼ Norm(0, 4D(zt )τ)

Dirichlet Process for Nonparametric
Bayesian
In NOBIAS, the Dirichlet Process (DP) is used in the prior for the
parameters of a mixture model with an unknown number of
components. A random probability measure, G0, on a measurable
space,Θ, is distributed according to a DP when (Ferguson, 1973):

(G0(B1), . . . ,G0(Bn))|c, H ∼ Dir((cH(B1), . . . , cH(Bk))
(2)

Here, Dir is a Dirichlet distribution, H is a base measurement,
c is a positive concentration parameter, and {Bi}ni�1 is a finite
partition of Θ. In this case, we write G0 ∼ DP(c,H).

From this definition follow two properties of Dirichlet
processes. First, if G0 ∼ DP(c,H), then G0 is atomic and can
be written as:

G0 � ∑∞
i�1

βiδθi (3)

Here, βi is a weight and δθi is a unit-mass measure at
observation θi|H ∼ H.

Second, based on the conjugacy of the finite Dirichlet
distribution, given a set of observations θ1, . . . , θN where
θi ∼ G0, the posterior distribution for a Dirichlet process G0 is:

G0|θ1, . . . , θN , H, c ∼ DP⎛⎝c + N ,
c

c + N
H + 1

c + N
∑N
i�1

δθi⎞⎠
(4)

A stick-breaking process is used to construct the weight
parameter βi as follows:

βi � ]i ∏i
l�1

(1 − ]l) , ]l
∣∣∣∣c ∼ Beta(1, c) , i � 1, 2, . . .

In this process, the weight βi comes from a unit stick according
to a weight that is beta-distributed based on the remaining stick
length after the last breaking. This stick-breaking process is also
called a Griffiths-Engen-McCloskey (GEM) distribution
(Ishwaran and James, 2001; Pitman, 2006) and the weights
from this construction, which is denoted β ∼ GEM(c), have
been proven (Sethuraman, 1994) to be the weights βi of a
Dirichlet process as in Eq. 3.

For each value of θi, a random indicator variable zi is used to
denote that θi � θzi′, and then a predictive distribution of z can be
written as:

p(zN+1 � z|z1, . . . , zN , c)� c

c + N
δ(z,K + 1) + 1

c + N
∑K
k�1

Nkδ(z, k)

(5)

Where K is the current unique number of values of z and Nk is the
number of zi that take value k. This predictive distribution implies
that a new observation takes the value of a seen observation θzk with
probability proportional to Nk or takes a unseen value θK+1 with
probability proportional to concentration parameter c. When a
seen observation θzk is chosen for the new observation, the
indicator zN+1 � k, or if unseen value θK+1 is taken, the
indicator zN+1 � K + 1. This “the rich get richer” property is
essential for inferring a finite generated mixture model. Because
the DP posterior nonparametrically converges to parameters of a
mixturemodel for a finitemixture dataset (Ishwaran and Zarepour,
2002), the DP is an appropriate prior for the parameters of a
mixture model with an unknown number of components.

Hierarchical Dirichlet Process and Sticky
Extension
In NOBIAS, the different single-molecule trajectories of multiple
molecules under different biological condition and from different
cells, so the groups of data are related but generated
independently. Therefore, the DP is extended to a Hierarchical
Dirichlet Process (HDP) (Teh et al., 2006). In the HDP, a first
Dirichlet process, G0, is the base measure of a new Dirichlet
process, Gj:

Gj ∼ DP(a,G0), G0 ∼ DP(c,H)
To apply a HDP as prior for a HMM model, a HDP-HMM

model is generated according to:

β ∼ GEM(c), πj ∼ DP(a, β), θ(j)
∣∣∣∣∣λ ∼ H(λ) j � 1, 2, . . .

zt
∣∣∣∣{π}, zt−1 ∼ πzt−1 , yt

∣∣∣∣{θ}, zt ∼ F(θ(zt )) t � 1, 2, . . . ,T

In the NOBIAS parameter setting, the observed data yt would
be the single-step displacement Δxt , the emission parameter θ
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would be the diffusion coefficient D, and the hyperparameter λ
for θ would be the Normal-inverse-Wishart distribution (NIW)
with four prior hyperparameters {κ, ϑ, ],Δ} as stated below in the
Multivariate Normal Model section.

A common issue for the HDP-HMM model is that if the
algorithm artificially divides a set of observations into an
alternating pattern of rapid switching between several different
states, then this alternating pattern will be reinforced by the DP
(Fox et al., 2008). This assignment would result in an artificial
over-splitting of one state into multiple substates characterized by
a high probability of transitions between the substates. Because
we would not expect such rapid transitions back and forth
between two distinct but similar dynamical states in the
single-molecule trajectory data studied here, a sticky parameter
κ, is introduced which enforces self-transitions and avoids this
over-splitting of states. With this new hyperparameter, the πj can
be sampled as:

πj ∼ DP(a + κ,
aβ + κδj
a + κ

), j � 1, 2, . . . (6)

Which add a self-transition bias to the jth components of the
DP. The effects of κ on the results are shown in Supplementary
Figure S1D: if κ is too small, the over-splitting of states still
occurs and if κ is too large, the model will underestimate the
number of states.

Different Markov Chain Monte Carlo (MCMC) sampling
methods such as Direct Assignment Sampling, Beam
Sampling, and Blocked Sampling have been developed for the
HDP-HMM model (Teh et al., 2006; Fox et al., 2007; Van Gael
et al., 2008). In NOBIAS, we apply the most computationally
efficient Blocked Samplingmethod (Fox et al., 2007), which uses a
fixed-order truncation with weak-limit approximation HDP-
HMM. In this approach, the DP is L-degree approximated as:

β ∼ GEML(c) ∼ Dir(c/L, . . . , c/L) (7)

πj ∼ DPL(a + κ,
αβ + κδj
α + κ

) ∼ Dir(aβ1, . . . , aβj + κ, . . . , aβL )
(8)

with a truncation level, L, that is larger than the expected total
number of mixture components. Increasing L does not affect the
posterior results, but L does affect the running time
(Supplementary Figure S1C). The Blocked Sampling method
algorithm is detailed in the Supplementary Note, which describes
how the state sequence is generated and how the parameters for
each state are sampled.

Multivariate Normal Model
Bayes’ rule states that the posterior distribution is proportional to
the product of the prior probability and the likelihood,
i.e., P(θ|y) ∼ P(θ) P(y|θ). It is crucial to build conjugacy in
order to elegantly and concisely express the posterior
distribution. If we choose an appropriate prior distribution
class for P(θ) given a known sampling distribution P(y|θ),
then the posterior distribution P(θ|y) will have the same
distribution class as the prior distribution. This choice of a

prior distribution is called a conjugate prior, and this property
that the posterior and prior distributions are in the same class is
called conjugacy.

In NOBIAS HDP-HMM module, we assume 2D Brownian
motion trajectories. In this case, the displacements follow a zero-
mean 2D Gaussian and the diffusion coefficientsD determine the
variance, Σ, of the 2D Gaussian. Without loss of generality, the
mean, µ, is also included in the model, θ � {μ, Σ}, and the data
distribution is written as:

p(y|θ) � 1

(2π)|Σ|
1
2

exp{ − 1
2
(Δx − μ)T |Σ|−1(Δx − μ)}

(9)

In the 2D case, the observed data,Δx, is a 1 × 2 vector of the 2D
displacements, μ is a 1 × 2 vector and Σ is the 2 × 2 covariance
matrix.

As derived in reference Gelman (2004), the general conjugate
prior model for this multivariate normal model is the prior for the
mean and the variance of the step displacement follow a Normal-
inverse-Wishart distribution (NIW):

p(μ,Σ) ∼ NIW(κ, ϑ, ],Δ) (10)

Specifically, the variance, Σ, follows an inverse-Wishart prior
distribution IW(],Δ), and the mean, μ, has a conditional Normal
distribution: p(μ

∣∣∣∣Σ) ∼ N( ϑ, Σ/κ).
The posterior updates for this normal model with NIW prior

follows (Gelman, 2004):

p(μ(zt ),Σ(zt)|Δx(zt )) ∼ NIW(κ, ϑ, ],Δ) (11)

Where Δx(zt) is the entire displacement dataset in state zt, and for
each state zt, we update these parameters as:

κ � κ + N , κϑ � κϑ +∑N
n�1

Δxn, ] � ] + N ,

]Δ � ]Δ +∑N
n�1

ΔxnΔxTn + κϑϑT − κϑϑ
T
.

To decrease the running time, we apply the conjugate prior for
the Multivariate Normal Distribution, though a non-conjugate
prior is permissible. For further discussion of choice of prior see
(Gelman, 2004).

Trajectory Simulation
A state label sequence was firstly simulated with a given transition
matrix through a Markov chain process. Then according the state
label and the D of corresponding diffusive state, the 2D
displacement step is generated, and cumulatively summed to
get a single trajectory. Standard trajectory datasets are simulated
by generate 2D Gaussian random variable where mean is 0 and
variance is determined by the set diffusion coefficients with
symmetry and no correlation in two directions.

Motion blur trajectory datasets are generated by simulating a
state label sequence that is Texp times of the desired length with a
transition matrix that self-transit enhanced Texp times. Also
according to the label of this Texp times longer label sequence
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a true trajectories with Texp times more steps can be generated as
in the standard dataset case. 2D localization error is added to the
average position of every Texp steps in the true trajectory and
saved to create a motion-blur trajectory with desired length. In
the motion blur trajectory datasets used in this study, Texp was set
to 10.

Anomalous Diffusion
In the NOBIAS RNN module, trajectory segments of the same
diffusive state (identified by the HDP-HMM module) are
evaluated to classify the diffusion type for each diffusive state.
In Brownian Motion, the mean squared displacement (MSD) is
linearly proportional to the time lag, τ. In anomalous diffusion,
MSD is related to τ according to a power law (Metzler et al., 2014):

MSD∝ τα (12)

Here, α is the anomalous exponent. When α � 1, this relation
describes Brownian motion; when α> 1, Eq. 12 describes
superdiffusion; and when α< 1, Eq. 12 describes subdiffusion.
The NOBIAS framework includes the three specific types of
anomalous diffusion types that are most common in biology:
Fractional Brownian motion (FBM) (Mandelbrot and Van Ness,
1968), Continuous Time Random Walk (CTRW) (Scher and
Montroll, 1975), and Lévy Walk (LW) (Klafter and Zumofen,
1994).

FBM is a Gaussian process with correlated increments such
that MSD is related to τ according to: MSD � 2DHτ2H

(Mandelbrot and Van Ness, 1968; Jeon and Metzler, 2010).
Here, the Hurst exponent, H, is related to α in Eq. 12 by
α � 2H. The DH is the generalized coefficients with physical
dimension m2s−2H . The correlation between two time points
for FBM is x(t1)x(t2) � DH(t2H1 + t2H2 − |t1 − t2|2H). When this
correlation is positive, H > 0.5 and the motion is
superdiffusive; when the correlation is negative, H < 0.5 and
the motion is subdiffusive.

CTRW defines a random walk family in which the particle
displacement, Δx, follows a wait at its current position for a
random waiting time t that is a stochastic variable (Scher and
Montroll, 1975). NOBIAS considers the case where t follows a
power-law distribution, ψ(t) ∝ t−σ , and the following
displacement is sampled from a zero-mean Gaussian with
fixed variance. In this case, the σ in CTRW is related to α in
Eq. 12, by α � σ − 1. This CTRW can only be subdiffusion,
i.e., 0< α≤ 1.

LW is a special case of CTRW in which the waiting time, t, still
follows power law, but the displacement is not Gaussian, and is
instead determined by the waiting time (Klafter and Zumofen,
1994). The displacement will have a constant speed, v � |Δx|/t, and
this process can only be superdiffusive with exponent 1≤ α≤ 2.

We simulated these three types of anomalous diffusion with
the open-source Python package from the recent AnDi challenge
(Muñoz-Gil et al., 2020).

Recurrent Neural Network for NOBIAS
All segments 40 steps or greater identified in the HDP-HMM
module were further analyzed by the NOBIAS Recurrent Neural

Network (RNN) consisting of two long short-term memory
(LSTM) layers (Hochreiter and Schmidhuber, 1997). We
trained this RNN to classify trajectory segments identified to
have the same diffusive state from the HDP-HMM module. We
implemented this architecture, which is based on the design of the
RANDI package classification task (Bo et al., 2019; Argun et al.,
2021) with the MATLAB Deep Learning Toolbox™. The two
LSTM layers have 100 and 50 units, respectively, and these two
LSTM layers are followed by a fullyconnected layer, and the
output classification layer order is given in Figure 1.

The input to the network is the set of 2D coordinates from the
track segments; these coordinates are normalized to have zero
mean and unit variance. Despite a much higher classification
performance when using tracks > 50 steps long to train and
validate (Argun et al., 2021; Gentili and Volpe, 2021; Muñoz-Gil
et al., 2021), we trained two networks with 20-step tracks and with
40-step tracks, respectively, after considering the typical segment
lengths from real biological trajectories. The training data of
750,000 trajectories were simulated with the open-source Python
package from the AnDi challenge (Muñoz-Gil et al., 2020).
Regression networks with similar two LSTM layers
architecture were also trained for FBM and CTRW to estimate
the anomalous exponent α for the experimental data. The
performance of the classification network with 40-step data is
shown in the confusion matrix which was made with 10,000 test
trajectories (Supplementary Figure S2). However, although the
RNN module can classify CTRW and LW motion
(Supplementary Figure S2), because our HDP-HMM module
assumes Brownian motion, this first module cannot predict the
correct state label for these two diffusion types. We therefore test
a mixture of FBM and BM motion in Figure 3.

Single-Molecule Tracking in Living
Bacteroides thetaiotaomicron Cells
B. thetaiotaomicron cells expressing SusG-HaloTag fusions at the
native SusG promoter were grown as previously described
(Karunatilaka et al., 2014). Briefly, cells were cultured
overnight in 0.5% tryptone-yeast-extract-glucose medium and
incubated at 37°C under anaerobic conditions (85% N2, 10% H2,
5% CO2) in a Coy chamber. Approximately 24 h before imaging,
cells were diluted into B. thetaminimal medium (MM) (Martens
et al., 2008) containing 0.25% (wt/vol) amylopectin. On the day of
the experiment, cells were diluted into fresh MM and
carbohydrate and grown until reaching OD600 nm 0.55–0.60
(Tuson et al., 2018).

Before labeling, 900 μL of cells were washed twice by pelleting
(6,000 G, 2 min) followed by resuspension in MM. Cells were
then incubated in MM supplemented with 100 nM PAJF549 dye
(Grimm et al., 2016) for 15 min in the dark. Cells were then
washed five times in MM, transferring to a new tube on every
step, to remove excess dye (Lepore et al., 2019). Finally, 100 μL
cells were resuspended in MM containing 0.25% (wt/vol)
amylopectin for 30 min in the dark. 1.5 μL labeled cells were
pipetted onto a pad of 2% agarose in MM and placed between a
large and a small coverslip. The two coverslips were sealed
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FIGURE 2 | Validation of the NOBIAS HDP-HMM module with simulated trajectories. (A–H) The HDP-HMM module identifies distinct mobility states (colored
clusters). All scatter plots include at least 500 uncorrelated samples. Each point represents the average apparent single-molecule diffusion coefficient vs. weight fraction
in each distinct mobility state at each iteration of the Bayesian algorithm saved after convergence. The black crosses indicate the ground truth input for these simulated
trajectories. (A–D) Results for two-state mixture simulated trajectories results: (A) Standard (no motion blur) and abundant (500 100-step trajectories) simulations,
(B) Standard and sparse (2,000 10-step trajectories) simulations, (C)Motion blur and abundant simulations, and (D)Motion blur and sparse simulations. (E,H) Results

(Continued )
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together with epoxy (Devcon 31345 2 Ton Clear Epoxy, 25 ml) to
keep the media anaerobic (Karunatilaka et al., 2014).

Cells were imaged on an Olympus IX71 inverted
epifluorescence microscope with a 1.45 numerical aperture,
100× oil immersion phase-contrast objective (Olympus
UPLXAPO100XOPH) and a 3.3× beam expander. Frames
were collected continuously on a 512 × 512 pixel electron-
multiplying charge-coupled device camera (Photometrics
Evolve 512) at 50 frames/s. In this microscopy geometry, one
camera pixel corresponds to 48.5 nm PAJF549 dyes were photo-
activated one at a time with a 200–400 ms exposure by a 406-nm
laser (Coherent Cube 405-100; 0.1 μW/μm2) and imaged with a
561-nm laser (Coherent-Sapphire 561-50; 1 μW/μm2) using
appropriate filters as previously described (Tuson et al., 2018).

In each movie, each cell was analyzed separately by using an
appropriate mask. The collected frames were processed with
SMALL-LABS (Isaacoff et al., 2019) to detect single molecules
frame-by-frame and localize their position with typically ∼30 nm
uncertainty. Single molecules were identified as non-overlapping
punctuate spots of diameter larger than seven pixels and with
pixel intensities larger than the 92nd percentile intensity of the
fame. The punctate spots were fit to a 2D Gaussian and true
single-molecule localizations satisfied the following conditions: 1)
standard deviation > 1 pixel and 2) fit error ≤ 0.06 pixel.
Localizations in each cell over time were connected into
trajectories using a merit value: trajectories were selected for
further analysis based on their highest merit ranking.

RESULTS

The NOBIAS HDP-HMM Module Recovers
the Number of Diffusive States and the
Associated Diffusion Parameters
We first validated the NOBIAS HDP-HMM module with
simulated single-molecule tracks, beginning from the most
basic case: a mixture of Brownian motion trajectories.
Figures 2A–D depicts the results for a mixture of two
distinct diffusive states with D1 � 0.135 µm2/s and D2 �
1.8 µm2/s (Supplementary Table S1). A sequence of state
labels (1 or 2) was first simulated with a given transition
matrix (probability of transitioning from state 1 to 2 or from
state 2 to 1) through a Markov chain process (Methods). Then,
according the state label and the apparent diffusion coefficient,
D, of the corresponding diffusive state, each 2D displacement
step was generated, and cumulatively summed to get a single
trajectory. Similar state label sequences were simulated to
generate other trajectory datasets with four diffusive states
(Figures 2E–G; Supplementary Table S2).

The posterior results of the HDP-HMM module are shown in
scatter plots of the inferred D and weight fraction from each
iteration after the inferred number of states converges. Figure 2A
shows the result for a dataset of 500 trajectories eachwith 100 steps.
Here, the black crosses indicate the ground truth diffusion
coefficient and weight fraction for each diffusive state; the
posterior samples of the HDP-HMM model for the two states
after convergence are distributed around the true values. Based on
the posterior sample autocorrelation function (ACF) analysis
(Supplementary Figure S3), the posterior samples are thinned
by saving every 10 iterations; this setting is the same for all results in
this paper and was chosen by considering the effective sample sizes
and the ACF analysis for all the diffusive states. The number could
be updated accordingly depending on the correlation of posterior
samples from output. The mean values and standard deviations for
the estimation ofD and weight fractions for the two states are listed
in Supplementary Table S1. The estimated number of unique
states for this simulated dataset converges quickly over the course
of iterations to the true number of states and remains mostly stable
at that number (Supplementary Figure S4). Next, we considered
the less ideal case that often occurs experimentally: much shorter
trajectory lengths (10 steps) and many fewer total steps (2,000 10-
step trajectories). We refer to the 2,000 10-step trajectories as a
sparse dataset and the 500 100-step trajectories are an abundant
dataset. Figure 2B shows that the HDP-HMM model still
successfully converges to the true number of states (two) for
this dataset, and the posterior samples of the diffusive
parameters are still distributed near the true inputs (black crosses).

We further considered the true form of collected microscope
experimental data by including the localization error due to finite
photon counts and noise and motion blur due to the finite image
acquisition time (Methods). We refer these datasets “Motion blur
dataset” in contrast with the more ideal “Standard” dataset. In the
case of motion blur, the sticky parameter is increased to avoid
oversampling a single diffusive state into multiple state with similar
dynamics. The hyperparameter settings for this sticky HDP-HMM
model are listed in Supplementary Table S3. For both the
abundant dataset (Figure 2C: 500 100-step trajectories) and the
sparse dataset (Figure 2D: 2,000 10-step trajectories), the true
number of states (two) is recovered with our sticky HDP-HMM
model, and despite these added errors, the estimated parameters
deviate only slightly from the true inputs (black crosses).

We extended our simulations of standard and motion blur
Brownian motion track mixtures to a more complicated 4-state
scenarios for abundant (500 100-step trajectories) and sparse
(2,000 10-step trajectories) datasets (Figures 2E–H). Even with
four diffusive states, the performance of the HDP-HMM module
is still excellent for the standard mixture (Figures 2E,F). For the 4-
state mixture simulation that includes localization error and motion
blur, the HDP-HMM still successfully recovers the true number of

FIGURE 2 | for four-state mixture simulated trajectories results: (E) Standard (no motion blur) and abundant (500 100-step trajectories) simulations, (F) Standard and
sparse (2,000 10-step trajectories) simulations, (G) Motion blur and abundant simulations, and (H) Motion blur and sparse simulations. (I) The normalized Hamming
distance (NHD) decreases and converges with the number of iterations. All 100 chains use the same dataset under the settings in panel (E). (J) The final label assignment
accuracy increases with the track length for three- and four-state mixture datasets. The number of trajectories decreases as the track lengths increase such that the total
amount of steps is 30,000 for all track lengths.
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states, and the parameters for the four distinct states are still
estimated well, though the posterior samples have increased
variance and deviation from the true value (Figures 2G,H). The
statistics of the posterior samples for estimated parameters of the 4-
state simulation result are listed in Supplementary Table S2, and the
transition matrices for all the simulations in Figure 2 are shown in
Supplementary Tables S1, S2.

The NOBIAS HDP-HMM module also assigns diffusive state
labels to each single-molecule step within the trajectories dataset;
we call this the state sequence for each track. We quantified the
performance of the state sequence assignment relative to the
ground truth simulated state sequence with the Hamming
distance: the Hamming distance between two 1D sequences
with equal length is the number of points where the
components are different (Hamming, 1950). The resulting
distances were normalized to the total length to demonstrate
the Normalized Hamming Distance (NHD) convergence over
iterations (Figure 2I). The NHD decreases with increasing
iteration number and converges to approximately 0.18. This
final converged NHD depends on the dataset size, the true

transition matrix, and how separable the diffusive state are
from one another.

The true number of diffusive states can be recovered for
datasets of both abundant and sparse tracks, but the HDP-
HMM module performance depends strongly on the length of
the individual tracks. Using the overall state sequence assignment
accuracy (1 −NHD) as a performance evaluator for datasets with
the same total amount of steps (30,000), we found that the
assignment accuracy is considerably worse for tracks shorter
than 20 steps and almost linearly increases with the track
length till asymptotes for longer tracks (>20 steps; Figure 2J).
This trend is shared for a 3-state and 4-state dataset, but the
overall accuracy for 3-state dataset is higher than 4-state one for
all the track length.

The NOBIAS RNN Module Predicts the
Diffusion Type for Each Diffusive State
To analyze anomalous diffusion in an SPT dataset, NOBIAS
includes a second module: we built an RNN to classify the type of

FIGURE 3 | Validation of the NOBIAS-RNN module with simulated trajectories containing mixtures of different diffusion types. (A,C) The HDP-HMM module
identifies distinct mobility states (colored clusters). Each point represents the average apparent single-molecule diffusion coefficient,D, vs. weight fraction in each distinct
mobility state at each iteration of the Bayesian algorithm saved after convergence. The black crosses indicate the ground truth input for these simulated trajectories. (A)
Two-state mixture comprising a subdiffusive Fractional Brownian Motion (FBM) state with lower D and a Brownian Motion (BM) state with higher D. (B) The
NOBIAS-RNN determines the probability that the diffusion type for each diffusive state in (A) is classified as BM, FBM, Continuous Time Random Walk (CTRW), or Lévy
Walk (LW). The final probability for each diffusive state is the average of the classification probability of its track segments weighted by the segment length. The color of
each pie chart indicates the diffusive state corresponding to the color in (A). (C) Four-state mixture comprising a subdiffusive FBM state, two BM states, and a
superdiffusive FBM state with D in ascending order. (D) Diffusion type classification probability pie chart for each diffusive state in (C). The final probability for each
diffusive state is the average of the classification probability of its track segments weighted by the segment length and the color of each pie chart indicates the diffusive
state corresponding to the corresponding color in (C).
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motion [Brownian motion (BM), Fractional Brownian motion
(FBM), Continuous Time RandomWalk (CTRW), or Lévy Walk
(LW)] corresponding to the track segments within each diffusive
state identified by HDP-HMMmodule. The RNN consists of two
LSTM layers, a fullyconnected layer, and data input/output layer
(Methods). Although the HDP-HMM module is based on BM,
for some anomalous diffusion types, for example FBM, if the
dynamics level for each state is distinct, the HDP-HMM module
still performs well.

We simulated a mixture of BM and FBM with distinct
apparent diffusion coefficients for the two states
(D1 � 0.045 μm2/s andD2 � 0.90 μm2/s) to validate the
performance of NOBIAS on mixtures of different diffusion
types. Figure 3A shows the HDP-HMM posterior results for
this 2-state BM-FBM mixture (500 100-step trajectories) where
the FBM state is anomalous subdiffusion with α � 0.5 (Eq. 12)
and with lower diffusion coefficient. Then, based on the state
sequence labels from the HDP-HMMmodule, we generated track
segments for the two diffusive states and put them into the trained
NOBIAS RNN network to predict the diffusion types. NOBIAS
RNN successfully predicts the diffusion types for both states
(Figure 3B; Supplementary Table S4).

We further simulated a 4-state mixture (500 100-step
trajectories) corresponding to subdiffusive FBM, BM, BM, and
superdiffusive FBM (in order of increasing D). The HDP-HMM
module still successfully recovers the four states and make

excellent estimations for D and weight fraction for each state
(Figure 3C). The NOBIAS RNN module also predicts the true
diffusion type for the segments from each of the four states
(Figure 3D; Supplementary Table S4). Note that all track
segments are normalized before being put into the RNN to
avoid dynamics information bias in the diffusion type
prediction (Methods). One limitation for this RNN
classification analysis methodology is that only track segments
with at least certain length (20 or 40 in our analysis depending on
the trained network) could be classified with high accuracy; it is
very challenging to use very short track segments to identify these
modes of diffusion. Therefore, when the overall trajectory length
is short (∼10 steps), the network classification module might not
be usable. Another limitation of the HDP-HMM module is that
the current implementation is based on BM displacement
distributions, thus it would fail for anomalous diffusion types
like LW, which does not have a similar Gaussian distribution of
displacements.

Performance of NOBIAS on Experimental
Data for the Diffusion of SusG-HaloTag in
Bacteroides thetaiotaomicron Cells
After validating the performance of the two NOBIAS modules on
simulated data, we applied this framework to experimental single-
molecule trajectories. The SusG amylase recognizes and binds

FIGURE 4 | Application of NOBIAS to single-molecule trajectories of the SusG protein in living Bacteroides thetaiotaomicron cells. (A) Single-molecule trajectories
of SusG-HaloTag overlaid on the phase-contrast image of the corresponding B. thetaiotaomicron cells, scale bar: 1 μm. The long axis of the phase mask for each cell
was detected and a rotation transform was applied to all the trajectories in each cell such that the x-axis is the cell long axis for all cells. (B) The NOBIAS HDP-HMM
module identifies three diffusive states for SusG (colored clusters). Each point represents the average apparent singlemolecule diffusion coefficient vs. weight
fraction in each distinct mobility state at each iteration of the Bayesian algorithm saved after convergence. The blue and red points clusters average the x- and y-diffusion
coefficients as they are symmetric (Supplementary Table S4); the asymmetric fast state (purple) shows a different Dx and Dy. (C) The NOBIAS-RNN determines the
probability that the diffusion type for each diffusive state in (B) is classified as Brownian Motion (BM), Fractional Brownian Motion (FBM), Continuous Time RandomWalk
(CTRW), or Lévy Walk (LW). The color of each pie chart indicates the diffusive state corresponding to the color in (B). The fast state (purple) is predicted with high
probability to be BM; the two slower states (red and blue) are predicted to be FBM or CTRW.
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starch on the surface of B. thetaiotaomicron cells to enable starch
catabolism (Koropatkin and Smith, 2010). We measured the
motion of 7,897 trajectories (minimum length of 6 and
average length of 64) of single SusG molecules in 226 movies
of 149 B. thetaiotaomicron cells based on imaging
photoactivatable fluorescently labeled SusG-HaloTag fusions
(Methods).

We analyzed this data with NOBIAS to infer the number of
diffusive states and to estimate the diffusion coefficient, weight
fraction, and type of motion for each state as was done for the
simulated data (Figures 2, 3). Additionally, NOBIAS analyzes 2D
trajectories with a 2D Gaussian function and can therefore infer
the diffusion coefficients for the x and y directions separately and
estimate the potential correlation between the two directions.
Though the simulations used symmetric tracks in an unbound
domain, the experiments measure motion on the surface of cells
with a long axis and a short axis, which may create an asymmetry
in the diffusion. We rotated the cell orientations to orient the long
axis in the x direction without rescaling (Figure 4A).We analyzed
this rotated dataset with NOBIAS and found that it converged to a
3-state model, with a very small (1.8%) fast state fraction
(Figure 4B). Interestingly, we found that the Dx and Dy values
were similar for each of the two slower states (Supplementary
Table S5), while they were significantly different for the fastest
state (Dx � 0.68 µm2/s vs. Dy � 0.45 µm2/s). This asymmetry for
the fast state indicates that it corresponds to free diffusion that is
constrained by the cell shape (and therefore is more constrained
in the short-axis y direction), while the symmetry for the two
slower states implies molecules that only diffuse regionally and
are not affected by the cell shape. Compared with previous SPT
analysis methods, NOBIAS provides a two-dimensional analysis
of the dynamics of experimental single-molecule trajectories.

We separated the track segments by the state sequence label
from the HDP-HMM module and placed each group into the
RNN classification module. The fastest state was predicted with
high probability (80%) to be Brownian motion (Figure 4C;
Supplementary Table S4), consistent with the asymmetry
between Dx and Dy that was attributed to free diffusion
(Figure 4B). The two slower states were predicted to be either
FBM or CTRW.We used a RNN regression network (Methods) to
estimate the anomalous exponent α for the track segments of the
two slower states and both were found to be subdiffusion
(α1 � 0.38, α2 � 0.46), consistent with the symmetry between Dx

and Dy found (Supplementary Table S5). This finding of
subdiffusion is also consistent with the role of SusG in starch
catabolism: we have previously found that SusG motion slows in
the presence of its amylopectin substrate, as well as when it
transiently associates other outer-membrane proteins, indicating
starch-mediated Sus complex formation (Karunatilaka et al., 2014).

DISCUSSION

Single-molecule tracking measures dynamics in biological
systems at high spatial and temporal resolution, but how to
make the best use of these tracking data for a broad set of
experimental conditions remains an analysis challenge in the

field (Shen et al., 2017; Elf and Barkefors, 2019). Here, we have
introduced NOBIAS to quantify single-molecule dynamics and to
associate these biophysical measurements with the underlying
biochemical function and biological processes. NOBIAS handles
complicated live-cell SPT datasets for which: 1) the number of
diffusive states is unknown, 2) mixtures of different diffusive
populations may exist, even within single trajectories, 3)
symmetry cannot be assumed between the x and y directions,
and 4) anomalous diffusion is possible. These features are enabled
based on applying Nonparametric Bayesian statistics (Teh et al.,
2006; Fox et al., 2008; Johnson andWillsky, 2013) to SPT datasets
that have the same means but different variance with a HDP-
HMM module that has a 2D Gaussian as the emission function
and then by further investigating the anomalous diffusion types
in the RNN module of NOBIAS.

Compared with previous applications of nonparametric
Bayesian statistics in this field (Persson et al., 2013; Karslake
et al., 2020; Heckert et al., 2021), the NOBIAS HDP-HMM
module is more robust and has high computational efficiency
(Supplementary Table S6). NOBIAS and SMAUG both consider
motion blur effects and their estimation of D for each state is
closer to the ground truth then other methods. As Bayesian
method with similar principle NOBIAS is almost 10 times
faster than SMAUG. This HDP-HMM module also provides a
multivariate output to quantify and correlate dynamics in
multiple directions instead of assuming symmetry
(Supplementary Table S7). We observed that for asymmetric
simulated trajectories, vbSPT overestimates the true number of
states, and SMAUG can only provide the average D of for each
diffusive state while NOBIAS provides the respective diffusion
coefficients in two directions. The high accuracy of step state
sequence prediction also enables the classification of anomalous
diffusion type in the NOBIAS RNN module. We also applied
SMAUG and vbSPT on the experimental dataset
(Supplementary Table S8): SMAUG ran slow on large
datasets and suggested four diffusive state, while vbSPT
suggested the best model to be 10 diffusive state which is hard
to explain their corresponding biological meanings.

A further advantage of NOBIAS lies in its ability to treat sets of
relatively short trajectories (10-step trajectories in the simulated
data of Figures 2, 3 and minimal 6-step trajectories in the
experimental data of Figure 4). The recent AnDi (Anomalous
Diffusion) Challenge (Muñoz-Gil et al., 2021) demonstrated that
Deep Learning and Neural Network methods are currently the
most powerful tools to study anomalous diffusion (Argun et al.,
2021; Gentili and Volpe, 2021). However, in this challenge, the
target dataset was an ideal collection of simulated anomalous
diffusion trajectories with 100–1,000 steps, and only the simple
case of one state transition in the middle part of a track was
considered. There are also probability-based models that consider
confinement and anomalous diffusion (Robson et al., 2013) and
Bayesian methods that directly predict the diffusion type (Thapa
et al., 2018; Cherstvy et al., 2019), but these analyses, like the
neural network-based methods, are used for very long trajectories
or assume a single diffusive state in each track. To apply a deep
learning-based diffusion type classifier to realistic simulated
trajectories and real experimental trajectories, NOBIAS
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segments the raw trajectories into collections of track segments
that belong to the same diffusive state (as identified by the HDP-
HMM module) and then predicts the diffusion type of the long
segments in the RNN module. Since different biophysical
diffusive states correspond to different biochemical functions
which will exhibit different diffusion types due to interactions
like confinement, binding, directional motion, NOBIAS enables a
thorough investigation of these biochemical roles by revealing the
diffusion coefficients, the transition probabilities between states,
and the anomalous diffusion behaviors. Ultimately, NOBIAS will
enable investigators to extract a complete information set from
SPT data and to understand the role of each tracked molecule,
even in the living cell.

Despite these strengths, NOBIAS has several limitations.
Firstly, as an HMM-based method, NOBIAS is limited by the
length of each track. Under the extreme case where only very
short trajectories (∼2–5 steps) are available, the HDP-HMM
module may suggest a number of states and posterior results
with extremely high uncertainty; probability-based models
(Rowland and Biteen, 2017; Hansen et al., 2018) or the
histogram-based Bayesian method DPMM (Heckert et al.,
2021) should be applied for these short trajectories. The track
length also limits the RNN module, as the trained network need
tracks with at least 20 steps for good classification performance
because some anomalous diffusion types are characterized by
memory of previous steps (Metzler et al., 2014). Therefore the
application of the RNN module is limited for short experimental
tracks. Secondly, NOBIAS performs the diffusive state estimation
based on apparent diffusion coefficient in the HDP-HMMmodule
and then carries out the anomalous diffusion classification in the
RNN module. NOBIAS therefore assumes that each biochemical
state has a unique average apparent diffusion coefficient. Although
the RNN module can classify the diffusion types of two different
diffusive states with the same diffusion coefficient, the HDP-HMM
module would fail to separate these processes. Furthermore, for
some diffusion types like LW, the trajectory displacements may
exhibit different types of dynamics even though the trajectories are
generated from one process. Finally, even for Brownian trajectories,
a single biochemical state might not be represented by a single
diffusion coefficient value. Thus, the actual number of biochemical
states may not be equal to the number of diffusive states. Future
development of NOBIAS could use spatial filtering to distinguish
between these similar biochemical states.

NOBIAS provides a pioneering and compatible framework for
the analysis of dynamical mixtures that also classifies the
anomalous diffusion types. Future development of NOBIAS
could include more types of diffusion and could integrate
the anomalous distributions directly into the Bayesian
framework for more accurate prediction of the stepwise
state labels and the diffusion types. Furthermore, extra
experimental corrections corresponding to the specific

microscope setting (Berglund, 2010; Lindén et al., 2017;
Hansen et al., 2018) could also help adapt NOBIAS more
broadly to different types of SPT datasets. Overall, NOBIAS
has provided a powerful framework to analyze of SPT dataset
with unknown number of diffusive states and potential
asymmetric diffusion, and to access the anomalous
diffusion type for each diffusive state. The combination of
nonparametric Bayesian statistics and Deep learning enables
NOBIAS to fully extract the rich dynamics information from
the SPT dataset.
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An Efficient GUI-Based Clustering
Software for Simulation and Bayesian
Cluster Analysis of Single-Molecule
Localization Microscopy Data
Saskia Kutz1, Ando C. Zehrer1, Roman Svetlitckii 1, Gülce S. Gülcüler Balta2, Lucrezia Galli 2†,
Susanne Kleber2, Jakob Rentsch1, Ana Martin-Villalba2 and Helge Ewers1*

1Institut für Biochemie, Freie Universität Berlin, Berlin, Germany, 2Department of Molecular Neurobiology, German Cancer
Research Center (DKFZ), Heidelberg, Germany

Ligand binding of membrane proteins triggers many important cellular signaling events by
the lateral aggregation of ligand-bound and other membrane proteins in the plane of the
plasma membrane. This local clustering can lead to the co-enrichment of molecules that
create an intracellular signal or bring sufficient amounts of activity together to shift an
existing equilibrium towards the execution of a signaling event. In this way, clustering can
serve as a cellular switch. The underlying uneven distribution and local enrichment of the
signaling cluster’s constituting membrane proteins can be used as a functional readout.
This information is obtained by combining single-molecule fluorescence microscopy with
cluster algorithms that can reliably and reproducibly distinguish clusters from fluctuations in
the background noise to generate quantitative data on this complex process. Cluster
analysis of single-molecule fluorescence microscopy data has emerged as a proliferative
field, and several algorithms and software solutions have been put forward. However, in
most cases, such cluster algorithms require multiple analysis parameters to be defined by
the user, which may lead to biased results. Furthermore, most cluster algorithms neglect
the individual localization precision connected to every localized molecule, leading to
imprecise results. Bayesian cluster analysis has been put forward to overcome these
problems, but so far, it has entailed high computational cost, increasing runtime drastically.
Finally, most software is challenging to use as they require advanced technical knowledge
to operate. Here we combined three advanced cluster algorithms with the Bayesian
approach and parallelization in a user-friendly GUI and achieved up to an order of
magnitude faster processing than for previous approaches. Our work will simplify
access to a well-controlled analysis of clustering data generated by SMLM and
significantly accelerate data processing. The inclusion of a simulation mode aids in the
design of well-controlled experimental assays.
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1 INTRODUCTION

Cells rely on transmembrane signaling to interact with the outside
world. It is essential that cells can specifically and decisively be put
into action in response to signals in a noisy and complex
environment (Pierce et al., 2002). To do so, mechanisms have
evolved that allow the triggering of an all-or-none, lasting
response if required. This often involves a threshold number
of ligand-activated membrane molecules that recruit auxiliary
molecules to form a larger assembly that, upon reaching
threshold size, will switch the cell into a different state. These
signaling assemblies appear as clusters of membrane proteins in
the plasma membrane of cells. However, the clusters may
represent only a small subfraction of the membrane protein in
question in an otherwise randomly distributed larger population
(Janeway et al., 2001; Schultz and Schaefer, 2008). Cluster
algorithms can detect such active signaling clusters in a
randomly distributed background if the exact spatial
distribution of membrane proteins is known (Williamson
et al., 2011; Khater et al., 2020). Cartography of membrane
protein distribution at the nanoscale has been made possible
by super-resolution microscopy approaches based on the
sequential localization of single fluorescence-labeled proteins
[Single-Molecule Localisation Microscopy (SMLM), Betzig
et al., 2006; Rust et al., 2006; Heilemann et al., 2008].
Clustering has since developed into an essential readout for
membrane protein function in many cellular processes. Over
the last years, several cluster algorithms have been adapted
specifically for the analysis of single-molecule fluorescence
data of membrane proteins (Owen et al., 2010; Annibale et al.,
2011a,b; Nicovich et al., 2017; Baumgart et al., 2019; Arnold et al.,
2020; Pike et al., 2020). SMLM of membrane proteins and their
cluster analysis still requires a high level of experimental and
analytical expertise. To make cluster analysis more accessible, we
here combined a selection of the latest clustering approaches with
several useful computational features to speed up and streamline
cluster analysis in a single, user-friendly software. Specifically, we
implemented Bayesian Cluster Analysis, Ripley’s-K-based
clustering, DBSCAN (Rubin-Delanchy et al., 2015; Griffié
et al., 2016), and ToMATo (Pike et al., 2020) for cluster
analysis. We then compared the performance of these
approaches on simulated and newly generated experimental
data from different cellular systems. Furthermore, we
implemented a pipeline for parallelized computing of cluster
analysis and, as a result, could analyze even large datasets at a
fraction of the time required before. Our software will simplify
and accelerate cluster analysis as a readout of membrane protein
function.

2 RESULTS

2.1 Structure of the GUI
To facilitate the use of parallelized Bayesian cluster analysis for
the community, we developed an easy-to-use software called
BaClAva (Bayesian Cluster Analysis and visualization
application) with a graphical user interface (GUI, Figure 1).

This software consists of a pipeline of three modules for
simulations, clustering, and analysis that can be used
independently via the GUI. Thought experiments are an
essential tool in developing reliable experimental strategies and
are especially important for data processing-intensive assays
because they might offer crucial insights into the experimental
setup and data processing strategies. To allow for the freehand
design of ground-truth data while simulating realistic
experimental output, we included a simulation module similar
to FluoSim (Lagardère et al., 2020). This module allows the
generation of user-defined clusters of molecules combined
with a selected level of randomly placed background
molecules. The results of this ground truth are then modeled
as images resulting from an SMLM-experiment emulated based
on experimental statistics of dye blinking, camera noise, and
localization accuracy. The resulting image stack is localized using
standard algorithms and can be used as an alternative to or
alongside actual SMLM localization data in downstream
clustering analysis. If desired, the generation of emulated
microscopy images from the constructed localizations can be
omitted, as exemplified in Figure 3. This option is based on
Griffié et al. (2016).

The second module is the clustering module, which analyzes
single-molecule localization datasets in the format [X (nm), Y
(nm), STDEV (nm)]. STDEV is the localization precision as
calculated by the localization software. Once the data are loaded
into the software, the user can choose between ToMATo,
Ripley’s-K-based, or DBSCAN cluster analysis, define the
desired parameter space for Bayesian analysis and select,
whether the computation is done sequentially or in parallel.
The third and final module allows the visualization and export
of the results in a graphic or tabular form, including essential
analytical parameters such as the number of clusters, cluster area,
and cluster density.

To decrease the number of files stored on the computer disk,
we decided to store all information in a Hierarchical Data Format
(hdf5) (Figure 1). The hdf5 format enables us to store the
localization table (simulation or experimental), the Bayesian
engine scores and labels, and further information in a single
data file.

2.2 Benchmarking
First, we aimed to benchmark our cluster software on simulated
clustering data. To do so, we generated 100 simulated images of
clustered molecules, each containing ten clusters of 100
localizations. For example, see Figure 2A. These simulations
were generated in the following way: Clusters were generated
from single points ≥100 nm apart for each of which 100
localizations were generated by drawing from a normal
distribution with a standard deviation of 50 nm. The random
background was generated at a density of 111 localizations
per µm2. Thus, the proportion of unclustered localization was
designed to be 50% of all localizations (Section 4.6).

These data were then analyzed with the Bayesian model and
the three different cluster detection algorithms. Figure 2 shows
the simulated data and the corresponding clustering outputs.
Since the cluster centers were set to be at least two standard
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deviations apart from each other, the individual clusters can be
correctly identified by eye (Figure 2A) and as well with DBSCAN
(Figure 2C) and ToMATo (Figure 2D). In contrast and as shown
before (Pike et al., 2020), the approach based on Ripley’s
K-function (Figure 2B) fails to separate nearby clusters and
thus commonly misidentifies cluster number and area
(Figures 2E,F). As previously shown, this behavior is due to
the incapability of this approach to correctly take into account the
local density of the data points (Rubin-Delanchy et al., 2015;
Griffié et al., 2017). In contrast, both DBSCAN and ToMATo
could quantify both cluster number and overall cluster area quite
accurately in the majority of simulations (Figures 2E,F).

These methods in the Bayesian cluster approach rely not on a
single set of parameters but instead on a continuum of so-called
proposals, defined sets of values computed to cover an ample
parameter space to find an overall optimum of cluster
identification (Rubin-Delanchy et al., 2015; Griffié et al., 2016).
While this approach has proven to lead to superior results, it is
necessarily computationally costly. We aimed to overcome this
problem to increase processing speed and thus experimental
throughput.

In the original work (Rubin-Delanchy et al., 2015; Griffié et al.,
2016), the cluster proposals’ calculation in Bayesian analysis is

done in nested for-loops on a single CPU core. Since the
individual cluster proposals are independent of each other,
the processing could also be implemented in parallel. This
means that the program uses multiple CPU cores instead of a
single core and therefore calculates multiple proposals at the
same time. In our software, we implemented the parallelized
computing of Bayesian cluster analysis and compared the results
with the sequential computational approach.

We first used ten simulations to benchmark the clustering
methods described above in Bayesian analysis. We found
that typical runtimes for Ripley’s K-based and DBSCAN
clustering were 25.78 ± 0.86 and 28.45 ± 0.78 min,
respectively (mean ± standard deviation). The ToMATo
implementation from the RSMLM package (Pike et al., 2020)
had a runtime of 23.87 ± 0.80 min (mean ± standard deviation,
Figure 3). By parallelizing the clustering and scoring process
to multiple cores, we found the computation time to decrease
by 60% for Ripley’s K-based, 10.41 ± 0.23 min, and DBSCAN,
11.90 ± 0.27 min (Figure 3). For the ToMATo implementation,
the computational time decreased by one order of magnitude
to 3.062 ± 0.072 min. In summary, the parallelization
significantly reduced processing time for Bayesian cluster
analysis.

FIGURE 1 | Overview of the software GUI. Schematic of the three independently usable software modes and organization of the software. Simulations can be
prepared individually or as batches, and the localization results get exported as tiff or hdf5 files, depending on the simulation option. For the second module, the
simulated data is imported from the hdf5 file, or experimental datasets can be imported in the form of a text or csv file. The user can set various parameters, most notably
the cluster method, the type of computation, and additional Bayesian clustering parameters. This module’s output, namely the scores and the labels for all
proposals, is stored in the hdf5 file. In the final processing step, the original localization table and the Bayesian clustering module’s output are used to produce the best
cluster plots and the corresponding (batch) statistics. The statistics are exported as text files as well as plots.
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FIGURE 2 | Comparison of cluster algorithms. (A) Example of one of 100 simulated ground truth datasets. (B,C) Cluster detection (colored) by (B) Ripley’s-K-
function-based implementation, (C) DBSCAN, and (D) ToMATo for this dataset demonstrating the respectively detected clusters. (E) Violin plots of the number of
detected clusters in 100 simulations containing 10 ground-truth clusters for each of the algorithms implemented. The mean is emphasized as a black circle. Ten clusters
were simulated, and the mean for Ripley’s-K-based clustering was 9.8 ± 2.0, for DBSCAN 9.5 ± 0.7, and 9.8 ± 0.7 for ToMATo. Note that the spread is significantly
larger for Ripley’s-K-based, DBSCAN never overcounted, and ToMATo was the most accurate overall. (F) Plot of all ground truth and recognized cluster areas. The
ground truth data’s cluster area has an average size of 0.061 ± 0.013 µm2, the Ripley’s-K-based clustering results in 0.044 ± 0.023 µm2, DBSCAN in 0.055 ±
0.017 µm2, and ToMATo clustering averages the area to 0.053 ± 0.015 µm2 (mean ± standard deviation).

FIGURE 3 | Computational costs for sequential and parallel implementations. Shown is the computational time of the Bayesian engine (in min) in sequential and
parallel mode for (A) Ripley’s-K-based clustering, (B) DBSCAN, and (C) ToMATo.
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Next, we aimed to investigate several known sources of error in
clustering single-molecule localization microscopy data. An
important source of error in the cluster analysis of SMLM
data is caused by multiple localizations of the same fluorescent
molecule generated by most SMLM approaches that necessarily
generate a cluster of localizations from every single fluorophore.
Consequently, this fact must be considered for declaring any
statement on fundamental information such as cluster size in
terms of area and number of molecules in the cluster. In the case
of PALM, algorithms have been published which aim at
correcting this artifact (Annibale et al., 2011b,a; Jensen et al.,

2021b,a). By simulating blinking SMLM data with realistic
blinking statistics for Alexa Fluor 647, we determined how
dense the underlying molecules must be for proper cluster
detection. The simulations of (d)STORM experiments were
generated in the following way: Cluster areas were generated
by randomly distributing 40 non-overlapping clusters with an
area of 0.0078 µm2 (diameter � 50 nm). Their molecular density
was increased from 0.71 ± 0.25 × 103 to 6.24 ± 0.63 × 103 μm−2,
translating to molecules per cluster ranging from 5.6 ± 1.9 up to
49.0 ± 4.9. The random background was generated at a density of
639 ± 49 molecules per µm2 for sparse clusters up to a density of

FIGURE 4 | Influence of fluorophore blinking on clustering. (A) Violin plot for the relative density of the clusters vs. the background with and without grouping
applied, (B) Violin plot of the percentage of the clustered localization with grouping, (C) Violin plot of the number of clusters per ROI with andwithout grouping applied, (D)
Violin plot of the areas of the clusters with and without grouping, (E) Examples for clustering of a random distribution of fluorophores and 40 clusters at a density of 1.40 ±
0.36 × 103 μm−2 (left column), 3.79 ± 0.38 × 103 μm−2 (middle column) and 6.24 ± 0.63 × 103 μm−2 (right column). Each dataset was analyzed in SMAP with
and without grouping. The cluster analysis was performed by the Bayesian engine plus ToMATo.
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346 ± 51 molecules per µm2 for dense clusters. For sparse clusters,
almost 94 and 51% of all molecules are assigned to the
background for dense clusters. The blinking parameters were
kon � 0.01 s−1 and koff � 10 s−1. The FWHM of the PSF was set to
200 nmwith an intensity of 2007. The pixel size of the camera was
set to 0.096 µm, which is identical to the pixel size of the Evolve
Delta 512 Photometrics camera on our microscope. The exposure
time was set to 10 ms, which is the exposure time we use in
experiments with Alexa Fluor 647 dyes, and as in a (d)STORM
experiment, 50,000 frames were acquired. The localization
procedure and grouping were done in SMAP (Ries, 2020). The
obtained localization table was used for the Bayesian Analysis.
The results are visualized in Figure 4.

In Figure 4A, the cluster to background density for grouped
and non-grouped data is shown. For both cases, the relative
density increases with increasing cluster density and a smaller
spread of the distributions for grouped data, whereas the non-
grouped data distributions show a broader spread, indicating the
efficiency of the grouping function in SMAP. Additionally, the
number of clusters per region of interest (ROI) is reduced by the
grouping, which removes clusters caused by single blinking
fluorophores (Figures 4C,E). The higher relative density of
fluorophores in clusters compared with background
localizations indicates that a local density threshold must be
surpassed to render the interpretation of cluster data
independent of fluorophore blinking properties. As shown in
Figure 4C, the number of clusters is constant for grouped data up
to a concentration of 2.62 ± 0.39 × 103 μm−2 localizations. For
higher concentrations, the number of clusters approaches the
ground truth of 40 clusters. Without grouping, the number of
identified clusters decreases with increasing fluorophore
concentration, reflecting a higher relative enrichment of
fluorophores inside the clusters than outside them. The improved
situation for grouped data is also visible in Figure 4B, showing that
the percentage of clustered localizations increases with increasing
fluorophore density. For the best cluster result in these simulations,
more than 30% of the localizations must occur in clusters, and a
relative density (localization density inside vs. outside of cluster)
threshold of 10must be overcome for the localizations inside clusters
versus outside.

Moreover, the cluster size (Figure 4D), meaning the area
covered by localizations in a cluster, shows the influence of
background localizations on the data distribution. Cluster area
increases in size for grouped data starting from a concentration of
1.87 ± 0.39 × 103 μm−2. For the non-grouped data, there is a
significant proportion of very small clusters at all concentrations.
This cluster population is not present for the grouped data,
indicating that these clusters emerge from multiple detections
of a single fluorophore, i.e., blinking. For a density of 2.62 ± 0.39 ×
103 μm−2 molecules and higher, a second population emerges in
the non-grouped data distributions, which corresponds to the
main population in the grouped distributions. Therefore, they can
be considered correctly identified clusters. Similarly, from 2.62 ±
0.39 × 103 μm−2 molecules onwards, the number of clusters per
ROI decreases. As demonstrated in Figure 4E, small background
clusters are removed with the grouping functionality (top row vs.
bottom row) and with increasing fluorophore density within the

clusters (from left to right). As expected, the ground truth clusters
become more apparent when the number of clustered molecules
is increased even in the non-grouped data, indicating that single
fluorophore blinking has a significantly reduced impact on
density-based cluster identification for denser clusters. We
concluded that grouping is essential in the detection of smaller
clusters.

Finally, we aimed to apply our algorithm to experimental data
from single-molecule localization experiments of intact cells. We
used standard controls in the field for non-clustered and clustered
molecules respectively at the plasma membrane. The lipid-
anchored glycosylphosphatidylinositol-coupled green
fluorescent protein GPI-GFP should be more or less
homogeneously distributed and functioned as the negative
control. The clathrin-light chain (CLC), of which dozens of
copies are incorporated into every ∼150 nm diameter clathrin-
coated pit and thus appears strongly clustered, served as the
positive control. In order to keep our results comparable, all
molecules of interest were tagged with a GFP protein, and the (d)
STORM dye Alexa Fluor 647 was bound to the GFP via anti-GFP
nanobodies in all experiments (Ries et al., 2012). From the
simulation work, we know that the cluster results for GPI-GFP
should show a wide range of cluster areas, whereas, for the CLC,
we expect to yield well-defined cluster areas. Finally, we asked
whether we could detect clustering for the transmembrane
receptor CD95, as the receptor activation via its ligand may
trigger apoptosis or tumorigenesis of cancer cells and has been
suggested to result in the formation of high order molecular
clustering (Martin-Villalba et al., 2013). CD95 was likewise
labeled via GFP and AF647 nanobodies.

The reconstructed images in Figure 5 of these three proteins
show differences in the spatial distribution of the localizations.
For GPI-GFP imaged in CV-1 cells in Figure 5A, the localizations
are evenly distributed, and the cluster maps for the zoom-ins
show small clusters, which are probably due to the blinking of the
Alexa Fluor 647 dye. In contrast, in Figure 5B, the CLC imaged in
HeLa cells show well-defined clusters in agreement with clathrin-
coated pit size (Supplementary Figure S1) with little background
localizations, as seen in the cluster maps of the zoom-ins. The
CD95 receptor in T98G glioblastoma cells presents a localization
distribution with smaller clusters and more background
localizations than CLC. The cumulative distribution of the
cluster areas of several cells for each condition in Figure 5D
reveals that GPI and CLC exhibit distinct distributions of their
respective cluster areas in agreement with expectations. The
cumulative distribution of cluster areas for the CD95 receptor
is positioned between the two controls, demonstrating that CD95
forms small clusters likely consisting of around 0.54 molecules/
nm2 in the plane of the membrane.

3 DISCUSSION

Here we present a user-friendly software solution for cluster
analysis of SMLM data. Our software significantly reduces
processing time and allows the user to select different
algorithms to identify and quantify cluster formation.
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The simplest cluster algorithms, such as nearest-neighbor
algorithms, can answer whether areas of above-average
concentration, clusters, exist in a field of view (Endesfelder
et al., 2014). For a more detailed analysis of clusters found in
cellular membranes, Ripley’s K-function can provide answers to
the length scale of interparticle distances and the proportion of
entities found in clusters in a given dataset (Owen et al., 2010).
However, these methods are prone to artifacts intrinsic to single-
molecule fluorescence-based microscopy approaches, which lead
to small local clusters due to the blinking behavior of individual
fluorophores. To overcome errors due to blinking, approaches

have been developed to determine the degree of clustering in
challenging experimental circumstances, such as for dense
membrane molecules by varying the dye density (Baumgart
et al., 2019; Arnold et al., 2020).

To understand the functional underpinnings of cluster
formation in cell biology, a qualitative view of clustering is not
sufficient, but reproducible, robust quantitative assays are
required. One of the first ideas put forward was to use Ripley’s
function not on the entire sample but on individual localizations
convoluted with a search radius and a clustering threshold for
cluster identification in dense backgrounds. To facilitate the

FIGURE 5 | Practical application of the Bayesian engine on three different target molecules. Three different molecules were coupled to GFP and stained with
nanobodies labeled with Alexa Fluor 647. (A) GPI-GFP in CV-1 cells, (B) CLC-GFP in HeLa cells, and (C) CD95-GFP in T98G cells. Scale bars are 10 µm for the large
reconstructed images and 3 µm for the zoom-ins (i, ii). (D) Plot of the cumulative distribution of cluster areas for the three target molecules. A Kruskal-Wallist-test showd
that the three distributions are significantly different (p < 2e−16).
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differentiation of Ripley’s K function on the entire sample or
individual localizations, we termed the second case Ripley’s-K-
based clustering.

Ripley’s K-based clustering cannot adequately determine
clusters in samples with variations in cluster density and final
cluster size. Therefore, density-based clustering methods, like
DBSCAN (density-based spatial clustering of applications with
noise), have been adapted for SMLM cluster analysis, and they are
less error-prone, as shown before (Pike et al., 2020). In DBSCAN,
the search parameters are the search radius and the minimal
number of data points within this search radius. Points for which
these parameters are valid are counted towards this cluster. After
identifying all clusters, the remaining data points are assigned to
the background, and other parameters such as the individual
cluster area and density can be extracted from the data.

Even though density-based methods, like DBSCAN, can
handle datasets with density variations, they still often fail to
separate individual clusters that are very close to one another but
are easily distinguishable by eye. Additionally, it has been shown
that the detection of clusters by DBSCAN and Ripley’s-K-based
clustering (Pike et al., 2020) can be sensitive to even small changes
in the analytical parameters, possibly leading to artifactual results.
One of the latest introductions to SMLM cluster analysis is
persistence-based clustering which is based on density
estimation (Griffié et al., 2015). The introduced scheme is
called Topological Model Analysis Tool (ToMATo, Pike et al.,
2020; Chazal et al., 2012, 2013). In contrast to the above-
mentioned density-based methods, in this algorithm, local
maxima in molecular density are identified and termed
clusters by introducing a density gradient generated by
creating a path emanating from a molecule to its neighbors
and using the intermolecular distance as a measure of density.
If this intermolecular distance increases, the border of a cluster
may be reached. Such a local maximum in distance or minimum
in density may be a saddle point between clusters or define the
outer perimeter of a cluster. A threshold value defines the
persistence of a cluster from its center into space. Clusters
with persistence smaller than the threshold are assigned to
neighboring clusters, or they are deemed background. As a
result, ToMATo allows for a separation of even partially
overlapping clusters, and additionally, the output clustering
results are less sensitive to analytical input parameters as
compared to Ripley’s K-based clustering and DBSCAN.
Further clustering methods for SMLM data are based on
Voronoï tessellation (Levet et al., 2015), which detects clusters
based on polygonal regions. Voronoï tessellation intrinsically
generates contours of regions of density that may also be used
for boundary detection of cells. Recently, machine-learning has
been employed to improve cluster detection (Williamson et al.,
2020), but the number of input neurons limits the correct
processing of the underlying information. The Bayesian
engine’s main drawback is that due to the calculation and
scoring of thousands of cluster proposals for optimal results,
the process is significantly slowed down compared to traditional
methods with a single cluster proposal, hampering the routine use
of this method. On the other hand, ToMATo clustering

parameters are determined based on a persistence diagram
which can cause user bias.

To overcome these limitations and provide accessible GUI-
based software for state-of-the-art cluster analysis, we
implemented Ripleys-K-based clustering, DBSCAN, and
ToMaTo in a common software that allowed for parallel
computing. In this software, we first improved the Bayesian
engine’s speed by implementing parallel computation and
introduced ToMATo clustering to the Bayesian engine,
thereby dramatically decreasing computational time. In
combination with the software GUI, the Bayesian engine has
an improved user experience and processing speed, which we
hope will make state-of-the-art SMLM cluster analysis available
in many laboratories.

During an SMLM measurement of several thousands of
frames, a fluorescent molecule may cycle several times
between a bright and a dark state, and thus, one molecule
may be detected multiple times within a radius determined by
its localization precision. As a result, it is impossible to
differentiate between a single molecule detected several times
in different frames and different molecules in close proximity
detected in different frames. This is, of course, especially
problematic in cluster analysis, where localizations are
processed first without bias. To overcome this problem, it is
important to develop an understanding of the degree of influence
of blinking in the dataset at hand. As we showed in Figure 4, the
number of the small clusters resulting from dye blinking
decreases with increasing molecular density within the clusters
while keeping the actual cluster size constant. Thus, there is an
intrinsic threshold for relative localization densities inside and
outside clusters that render blinking irrelevant. This holds true
under the assumption that all localizations are caused by dyes
bound to molecules of interest, and no false localizations are
present in the sample. Below this threshold, the number of
detected clusters is highly overestimated, and the cluster radii
are dramatically underestimated. From simulations, we know
that such single-molecule clusters can be detected as sub-peaks
within clusters at low-density ratios. Increasing the density ratio
now increases the chance that clusters are quantified at their true
size. It is common in SMLM data analysis that multiple
temporally and spatially closely correlated localizations are
grouped together in a final reconstruction and are thus
counted as a single molecule. In clustering, this procedure
reduces the number of small background clusters dramatically,
and we analyze this effect in depth in Figure 4. Our grouping is
based on the blinking behavior of the most used (d)STORM dye
Alexa Fluor 647, which we also used in our experiments. Likewise,
we also based our simulations on the blinking behavior of this dye
(Heilemann et al., 2008; Dempsey et al., 2011). In order to detect
clusters of smaller density ratios and smaller sizes either or both,
the cluster detection may be improved by changing the dye or
even the SMLM method from (d)STORM to DNA-PAINT as
shown in Jayasinghe et al. (2018).

Microscopy experiments in cells are much more complex than
the corresponding in-silico experiments because many different
known and unknown cellular processes are involved in the
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temporal and spatial organization of the cell molecules and may
interfere in the process studied. Therefore, we chose highly
abundant molecules as cellular controls for clustering
experiments. A simple positive control is clathrin-coated pits
expressed at a well-defined radius of around 80 nm (A ≈
0.02 µm2) (Sochacki et al., 2017). Negative controls for
clustering in a cellular environment are far more challenging
to identify because natural cellular signaling processes result in a
spatial and temporal reorganization of the involved molecules,
and many membrane molecules exhibit clustering of some extent
(Gowrishankar et al., 2012; Saka et al., 2014; Baumgart et al., 2016;
Kalappurakkal et al., 2020). Therefore, the influence for altering
the negative control’s organization by cell processes should be
kept at a minimum, and an artificially introduced protein that is
only anchored to the outer membrane of the plasma membrane
and has no natural interaction partners, such as GPI, is the ideal
option (Li et al., 2020). These extreme cases of clustering and non-
clustering probes can be well differentiated in their reconstructed
images as well as their cumulative distribution functions. Proteins
with so far unknown spatial distribution on the plasma
membrane, such as the transmembrane receptor CD95, should
present a behavior between these two extremes. If they are less
clustered, they should tend towards a behavior similar to GPI, and
with increasing cluster areas, they should tend towards a
distribution similar to clathrin-coated pits. Since CD95 can be
found at the plasmamembrane as monomers or homodimers and
homotrimers (Micheau et al., 2020), it should be detected as small
clusters, as observed in Figure 5. We conclude that our software
can correctly distinguish between unclustered molecules and
clusters of even small size and a few molecules in number.

Taken together, our work allows the implementation of single-
molecule clustering analysis at a high rate of data throughput for
beginning users. We expect our work to accelerate research in this
area significantly and to contribute to the acceptance of
reproducible standards in clustering data analysis. In future
work, other analytical methods such as Voronoï tessellation
(Andronov et al., 2018; Levet et al., 2015) and extensions to
3D (Griffié et al., 2017) and dual-color co-clustering (Jayasinghe
et al., 2018) may be implemented, and the processing speed may
be further improved, i.e., by the implementation of GPU-
processing.

4 MATERIALS AND METHODS

4.1 Cell Culture and Preparation
CV-1 cells were cultured in a standard DMEM medium (1X,
Gibco) supplemented with 10% FBS (ThermoFisher) and 1%
GlutaMax (100X, Gibco by Life Technologies). Stable HeLa CLC-
GFP cells were cultured in the same medium with an additional
1% Penicillin-Streptomycin (Sigma), and for the T98G CD95-
GFP cells, 1% sodium pyruvate (stock: 100 mM, Gibco) was
added to the medium. The vector CD95-GFP was infected
into the cells with a lentiviral construct. The cells were then
FACS sorted for the stably transfected clones. All cell lines were
regularly tested for mycoplasmas and only used when tested
negative. For the seeding of the cells, 18 mm diameter #1.5 glass

slides (VWR) were cleaned in an ultrasound bath for 20 min
using 2% Hellmanex III (Hellma) and 70% ethanol, respectively.
Afterward, the glasses were dried and plasma cleaned for another
30 min.

4.2 Cell Staining
CV-1 GPI-GFP Cells
Transfection of GPI-GFP into CV-1 cells was done with
lipofectamine 3000 following the standard protocol
(lipofectamine protocol by Invitrogen/ThermoFischer). Cells
were treated with trypsin-EDTA and seeded on the glass slides
for incubation of 24 h (densities: 6 × 106 cells/ml for CV-1, 7 ×
104 cells/ml for HeLa CLC-GFP and T98G CD95-GFP). The
transfected CV-1 cells were fixed with prewarmed 4% PFA
with 0.2% GA in PBS for 20 min at 37°C. Then, cells were
quenched with freshly prepared 0.1% NaBH4 in PBS for 7 min
at room temperature and extensively washed. Cells were blocked
in two steps: for 30 min with ImageIT, followed by 4% goat serum
in 1% BSA in PBS for 1 h. CV-1 GPI-GFP cells were stained with
anti-GFP nanobodies (FluoTag-Q anti-GFP) labeled 1:1 with
Alexa Fluor 647 from NanoTag Biotechnologies GmbH at a
concentration of 50 nM for 1 h. Afterward, cells were postfixed
with 4% PFA and 0.2% GA in PBS for 20 min and quenched with
0.1% NaBH4 in PBS for 5 min at room temperature.

HeLa CLC-GFP Cells
HeLa CLC-GFP cells were fixed with prewarmed 4% PFA in PEM
for 20 min at 37°C and quenched with NH4Cl in PBS for 5 min at
room temperature. After quenching for 5 min with 0.2% saponin
in PEM, the cells were blocked with 4% goat serum in 1% BSA in
PEM for 1 h. HeLa CLC-GFP cells were stained with the NanoTag
Biotechnologies GmbH nanobody for 30 min at a concentration
of 50 nM and afterward post-fixated with 4% PFA in PEM for
20 min at room temperature. The cells were quenched with
NH4Cl in PBS for 5 min. In between all steps, the HeLa cells
were extensively washed with PEM.

T98G CD95-GFP Cells
The T98G CD95-GFP cells were fixed for 20 min at 37°C with
prewarmed 4% PFA plus 0.2% GA in PEM and quenched with
freshly prepared 0.1% NaBH4 in PEM for 7 min T98G cells were
permeabilized with 0.2% saponin in PEM for 5 min and blocked
with 4% goat serum in 1% BSA/PEM for 1 h. The cells were
stained with the NanoTag Biotechnologies GmbH nanobody at a
concentration of 50 nM for 30 min and post-fixated with 4% PFA
with 0.2% GA in PEM for 20 min at room temperature. For the
post-quenching, the cells were incubated in 0.1% NaBH4 in PEM
for 7 min. In between all steps, the cells were extensively washed
with PEM.

4.3 (d)STORM Imaging
The fixed and stained samples were mounted and imaged in beta-
mercaptoethanol and GLOX (2.5 mg/ml glucose oxidase, 0.2 mg/
ml catalase, 200 mM Tris-HCl pH 8.0, 50% glycerol) as imaging
buffer (10:1). The (d)STORM images were acquired on a home
build TIRF microscope as described in (Albrecht et al., 2016). For
the imaging, an Olympus 60x, 1.49 NA back focal plane TIRF
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objective was used to reach a pixel size of 96 nm. The samples
were illuminated with a 639 nm laser (ChangchunNew Industries
Optoelectronics Tech. Co., Ltd.) at powers of 0.008–0.015 mW/
μm2. For the acquisition of the (d)STORM images, a water-cooled
and back-illuminated Photometrics EMCCD camera with 512 ×
512 pixels at a pixel size of 16 × 16 µmwas used for the acquisition
of 30,000 frames at an exposure time of 10 ms. The EMCCD
camera was calibrated before the data acquisition, and the image
acquisition was controlled with MicroManager.

4.4 (d)STROM Reconstruction
The acquired and simulated (d)STORMdatasets were localized using
SMAP (Ries, 2020). Important camera and acquisition parameters
were extracted from themetadata file, which had been saved with the
data. Furthermore, the electron multiplier (EM) gain was set to 300,
and the conversion factor to 6.7 (analog to digital units to photons).
The minimum distance between two candidate peaks in order to be
fitted separately was set to 7 pixels. For the point-spread function
(PSF) fitting, the following parameters were set to a differential of
Gauss with sigma � 1.2, dynamic factor � 1.7, and free PSF, using the
workflow “set Cam parameters.”

4.5 Grouping in SMAP
The grouping procedure is a part of SMAP, which we used for the
reconstruction. The number of frames, dT, for which a single
molecule can be non-fluorescent but still be grouped with the first
localization of that molecule was set to dT � 1. The distance, dX,
the centroid of a single molecule can be shifted in the image plane
between two consecutive frames, but still, be grouped with the
first localization of the molecule, was set to dX � 1. These are the
standard values in SMAP, and they were identified as the optimal
parameter values for out (d)STORM experiments.

4.6 Simulations
Simulations Used for Cluster Algorithm Comparison
The simulations were done with an adapted simulation code
published by Rubin-Delanchy et al. (2015). The number of
clusters, the number of molecules inside each cluster, the
corresponding standard distribution for the cluster size, and
the background percentage were set depending on the analysis.
Unlike the original publication, the cluster centers are set to be at
least two standard distributions apart from each other. In total,
100 simulations were done for each case.

Simulations Used for Computational Time Evaluations
Ten simulations with a standard deviation of 50 nm, 10 clusters
with 100molecules each, and 50%of the total number of localizations
in the background were used to determine the computational cost
for the three cluster algorithms combined with the Bayesian engine.
The field of view had a size of 3,000× 3,000 nm2, and the background
is uniformly distributed. The localization precisions are generated
from a gamma function with shape � 5 and rate � 0.166667 (default
parameters, Griffié et al., 2016).

Simulations With Blinking Molecules
Simulations were prepared in Fluosim (Lagardère et al., 2020).
For the simulation of the sample staining, a geometry file was

created with a python script. The field of view had a size of 25 ×
25 μm2 and was composed of 40 randomly distributed, non-
overlapping clusters with a diameter of 50 nm. The clusters
were positioned with a minimum distance of 500 nm from
any border of the sample. The background image was an
image of the Evolve 512 EMCCD camera (Photometrics)
with a size of 26 × 26 μm2. The pixel size matched the
pixel size of our experimental setup. Each pixel’s noise values
were not considered because only the pixel shape was used in
the further course. The number of molecules was set to 4,000 to
match the density of optimal CV-1 GPI-GFP samples stained
with anti-GFP nanobodies labeled with Alexa Fluor 647. For a
fixed period (5–50 s), the molecules were diffusing within the
field of view with a coefficient of 0,01 μm2/s. A binding rate
of 0,997–1,007 s−1 was set to allow cluster formation inside
the clusters. Outside the designated cluster areas, the
binding rate was set to 0 s−1. After the binding period, the
molecules were freely diffusing for 50 s. During this time,
the binding and unbinding rates within the clusters were set
to zero and set to 0,997–1,007 s−1 outside of the cluster areas,
thereby causing a homogeneous distribution of background
molecules.

For simulating an actual SMLM experiment, the fluorophores’
blinking parameters and the optical properties of the fluorescence
emission were set accordingly. The on-rate was 0.01 s−1, and the
off-rate 10 s−1, based on an estimated 1:1,000 ratio in an SMLM
experiment. For fitting the point-spread function, full-width at
half maximum was fixed at 200 nm with a fluorescence emission
intensity of 2007. As in a microscopy experiment, 5,000 frames
were acquired of the simulated sample, and the exposure time was
set to 10 ms/frame. The output tiff-file was localized in SMAP
with the standard parameters used for SMLM imaging. The
camera parameters were the default values of the Delta 512 as
given by its metadata file.

4.7 Computational Runtime Measurements
To evaluate the implemented cluster algorithms’ speed, we used a
standard 64-bit laptop computer running Linux (Ubuntu 18.04.5
LTS), equipped with GNOME 3.28.2, 7.7 GiB of memory, and 4
Intel® Core™ i5-6200U CPU @ 2.30 GHz processors. The R
library “tictoc” (Izrailev, 2014) was used to measure the time
needed for each dataset to be processed.

4.8 Bayesian Analysis
Cluster Algorithms
The Ripley’s-K-based and DBSCAN cluster algorithms used were
written by (Rubin-Delanchy et al., 2015; Griffié et al., 2016). The
code was adapted for improvement by using functions from
several R packages and the ToMATo cluster algorithm for
SMLM data adapted from the R package RSMLM (Pike et al.,
2020). The library “doParallel” was used for parallel
implementation (Analytics and Weston, 2014).

Bayesian Parameters
All Bayesian cluster scorings were done with the same set of
parameters. The percentage of background localizations was set
to 50%, and the Dirichlet process’s concentration coefficient was
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20. The optimal cluster parameters (radius and threshold) were
searched in the sequences 5 to 300 for the first parameter and 5 to
500 for the second parameter in steps of 5.

Statistical Analysis
The statistical comparison was performed with a self-developed R
script.
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Fourier Ring Correlation and
Anisotropic Kernel Density Estimation
Improve Deep Learning Based SMLM
Reconstruction of Microtubules
Andreas Berberich1, Andreas Kurz2, Sebastian Reinhard2, Torsten Johann Paul1,
Paul Ray Burd3, Markus Sauer2 and Philip Kollmannsberger1*

1Center for Computational and Theoretical Biology, University of Wuerzburg, Wuerzburg, Germany, 2Department of
Biotechnology and Biophysics, University of Wuerzburg, Wuerzburg, Germany, 3Institute for Theoretical Physics and
Astrophysics, University of Wuerzburg, Wuerzburg, Germany

Single-molecule super-resolution microscopy (SMLM) techniques like dSTORM can reveal
biological structures down to the nanometer scale. The achievable resolution is not only
defined by the localization precision of individual fluorescent molecules, but also by their
density, which becomes a limiting factor e.g., in expansion microscopy. Artificial deep
neural networks can learn to reconstruct dense super-resolved structures such as
microtubules from a sparse, noisy set of data points. This approach requires a robust
method to assess the quality of a predicted density image and to quantitatively compare it
to a ground truth image. Such a quality measure needs to be differentiable to be applied as
loss function in deep learning. We developed a new trainable quality measure based on
Fourier Ring Correlation (FRC) and used it to train deep neural networks to map a small
number of sampling points to an underlying density. Smooth ground truth images of
microtubules were generated from localization coordinates using an anisotropic Gaussian
kernel density estimator. We show that the FRC criterion ideally complements the existing
state-of-the-art multiscale structural similarity index, since both are interpretable and there
is no trade-off between them during optimization. The TensorFlow implementation of our
FRC metric can easily be integrated into existing deep learning workflows.

Keywords: dSTORM, deep learning–artificial neural network (DL-ANN), single molecule localization microscopy,
microtubule cytoskeleton, super-resolution

INTRODUCTION

Single-molecule localization microscopy (SMLM) can overcome the diffraction barrier in
fluorescence microscopy by stretching the activation of fluorophores over time. To achieve this,
individual non-overlapping active emitters are localized with a precision of a few nanometers, limited
only by the number of photons acquired and the noise (van de Linde et al., 2011). The trade-off in
SMLM is the acquisition time required to obtain enough localizations to reconstruct a dense super-
resolved image. New deep learning-based fitting algorithms can reconstruct localizations from raw
frames at higher densities (Nehme et al., 2018; Speiser et al., 2021). This allows for shorter acquisition
times by increasing the number of blinking fluorophores in each frame. In some cases, however, the
density of localizations is inherently limited, for example due to unstable photodyes or low emitter
density in expanded samples. The density of localizations limits the resolution of SMLM independent
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of localization precision, since no structures at a length scale
smaller than two emitter distances can be resolved according to
the Nyquist limit.

Applications of deep convolutional neural networks to SMLM
have so far mainly been for fitting: using raw diffraction-limited
frames as input, trained deep networks predict localization
coordinates (Zelger et al., 2018), super-resolved images
(Nehme et al., 2018), or images with localization coordinates
encoded in the pixel values (Speiser et al., 2021). By learning non-
linear mappings from intensity distributions to point coordinates,
the sparsity requirements needed for accurate Gaussian fitting
can be relaxed and much higher localization densities can be
imaged, thus reducing the necessary measuring time. In
fluorescence microscopy in general, deep learning has many
other applications, including denoising and image restoration
(Weigert et al., 2018), classification, and segmentation. Most of
these applications are image-to-image tasks, i.e., the network
takes images as input and generates denoised images or
segmentation labels as output.

For image-to-image tasks like denoising and segmentation, the
U-Net architecture introduced by (Ronnebergeret al., 2015) is
considered state-of-the-art. It consists of an autoencoder-like
convolutional network with additional skip connections
between the down- and upsampling part. This way, a high-
level feature-based representation is efficiently combined with
spatial information. To train a U-Net, the generated image or
label map is compared to a ground truth image using various
image-based metrics (Zhao et al., 2017). The classical metric in
image-to-image tasks is the L2 loss, corresponding to the pixel-
wise mean squared error between output and target image. L2 is
common standard but causes artifacts as it does not penalize
small errors. The structural similarity index measure (SSIM) is a
good alternative as it takes the properties of the human perceptive
system into account. It shows best results when combined with
the absolute pixel-wise error or L1 loss to prevent an intensity
offset (Zhao et al., 2017). Alternatively, the loss function can be
learned by optimizing the image generator against a second
network (discriminator) that tries to discriminate ground truth
images from those generated by the U-Net in an approach called
“conditional generative adversarial network” or cGAN (Isola
et al., 2017). While this architecture can learn to generate
surprisingly realistic-looking images, the authors note that it is
not suitable for segmentation due to its tendency to generate
plausible-looking but non-existing structures in images.

To reconstruct dense SMLM images from sparse subsets of
localization, ANNA-PALM by (Ouyang et al., 2018) elegantly
combines the pix2pix cGAN architecture from (Isola et al., 2017)
with a consistency check against low-resolution images to
overcome the limitations of generative networks. In addition,
multiscale SSIM and L1 loss as described in (Zhao et al., 2017) are
used for training the U-Net generator. The generator-
discriminator loss by itself cannot be interpreted as measure of
prediction accuracy, as the two networks depend on each other.
During supervised training, there are ground truth images that
can serve as target to compare the prediction to the ground truth
and to determine the error, but when applying the trained
network to new images, this information is not available. To

solve this problem, a comparison with low-resolution wide-field
images is performed in (Ouyang et al., 2018) in cases where such
images are available.

Due to the stochastic blinking during the measurement, the
SMLM imaging process can be interpreted as sampling from an
underlying fluorophore-labeled density. This sampling contains
errors due to mislabeling, photobleaching, and post-processing.
Hence, one goal for each SMLM method is to estimate the real
underlying fluorophore distribution from a measured error-
prone sample. In some cases, the precise coordinates of
individual emitters are relevant, for example when looking at
the relative arrangements of discrete, isolated labeled molecules.
In most cases, however, the individual locations are of secondary
interest, and the reconstruction of the underlying density is the
central goal. This is the case for example when imaging
continuous structures in the cell, for example, cytoskeletal
filaments.

Localization coordinates can be visualized in different ways to
give an impression of the underlying density. When represented
as 2D histogram where each pixel contains the number of
localizations detected within the area of the pixel, blurring
each localization with a Gaussian kernel with a variance sigma
corresponding to the localization uncertainty can give a more
accurate impression of density. A single value for sigma based on
the average localization uncertainty of the entire image is an
efficient approximation (R. P. J. Nieuwenhuizen et al., 2014). This
Gaussian filter is an example of a kernel density estimate (KDE)
with a constant (non-adaptive) kernel width sigma. More
elaborate versions of KDE use adaptive kernels, for example
with a sigma proportional to the density of localizations in the
region of the image. Some interesting aspects of density
estimation from discrete localizations are described in (Rees
et al., 2012). Going one step further, the kernel for density
estimation could be made anisotropic. In different context,
adaptive anisotropic kernel density estimates have been used
by (Hensen et al., 2009) for improving configurational
entropies of macromolecules, or by (Ronneberger et al., 2015)
for human motion capture. The use of adaptive anisotropic KDE
for density estimation in SMLM localization data was
demonstrated by (Chen et al., 2014). They used anisotropic
Gaussian kernels where the covariance is a function of the
surrounding density of points and show that thresholding the
estimated density results in a better segmentation of subcellular
structures compared to conventional Gaussian rendering.

Estimating the resolution in a single image is not easily
possible, but when two images of the same structure are
available, their resolution can be estimated using Fourier Ring
Correlation (FRC). The 2D cross correlation of the two images is
calculated, and the intensity in the Fourier transformed
correlation image is summed up and binned by frequency.
The resulting curve shows how much the signal in the two
images is correlated as a function of frequency, or
correspondingly, length scale. If the images are dominated by
uncorrelated random noise beyond a certain frequency or below a
certain length scale, then these length scales cannot be resolved.
FRC was originally developed for electron cryomicroscopy, where
two independent images each using one half of the information
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are compared. It can easily be applied to SMLM, since it is
possible to reconstruct two subimages using one half of the
localizations each (Robert P. J. Nieuwenhuizen et al., 2013).
FRC is also used for image volume reconstruction, where
adjacent slices in a volume can be compared against each
other using the integral of the FRC (Preusser et al., 2021).
FRC has recently been shown to be useful to improve and
monitor image restoration and deconvolution, and can also be
applied to single images by constructing different subsamplings
(Koho et al., 2019). It was noted in (Legant et al., 2016) that the
result cannot always be interpreted as a measure for image
resolution, and that care must be taken when two different
types of images are compared. FRC can vary within images
depending on the content, and local FRC maps can be used to
compare super-resolved images to wide-field images (Culley et al.,
2018). A suitable quantification of SMLM resolution remains
challenging and is an active field of research (Cohen et al., 2019;
Descloux et al., 2019). A robust quality measure of reconstructed
images is a key requirement to assess image reconstruction
methods, and there is a general interest to develop robust
quality measures for SMLM images and to integrate them into
trainable image reconstruction workflows. FRC as an established
measure in the SMLM field is a promising candidate for such a
measure but using it for deep learning would require it to be
available as differentiable loss function.

Here, we present a deep learning approach to reconstruct
density estimates for microtubules from small subsets of
localizations. We show how the preprocessing of ground truth
images can be improved by using an anisotropic kernel density
estimate. We then introduce a new loss function based on a
modified FRC criterion and implement it as differentiable
function that can be used for training deep neural networks.
In combination, this can help to make deep learning based SMLM
density reconstruction easier to interpret. The FRC loss is
compared to the multiscale structural similarity index
(MSSIM) by training a U-Net with different combinations of
loss functions to reconstruct microtubules. As ground truth, we
use conventional Gaussian rendered histograms and density
estimates based on anisotropic adaptive kernels. Finally, we
discuss the differences of our approach to the existing state of
the art (ANNA-PALM) regarding ease of use and interpretability.
Our implementation is openly available on our github repository,
enabling its application for trainable image reconstruction also
beyond SMLM.

MATERIALS AND METHODS

Cell Culture, Fixation, and Staining
African green monkey kidney fibroblast-like cells (COS7, Cell
Lines Service GmbH, Eppelheim, #605470) were cultured in
DMEM (Sigma, #D8062) containing 10% FCS (Sigma-Aldrich,
#F7524), 100 U/ml penicillin and 0.1 mg/ml streptomycin
(Sigma-Aldrich, #P4333) at 37°C and 5% CO2. Cells were
grown in standard T25-culture flasks (Greiner Bio-One).
Staining of tubulin filaments was performed as described
earlier (van de Linde et al., 2011). COS-7 cells were

permeabilized for 1–2 min and simultaneously pre-fixed with a
prewarmed buffer (37°C) containing 0.3% glutaraldehyde and
0.25% Triton X-100 in Cytoskeletal Buffer. The buffer is then
exchanged for preheated (37°C) 2% glutaraldehyde (in CB) and
incubated for 10 min. Fixation is stopped by 100 mM glycine (in
PBS) step for 5 min, and cells were washed at least 3 times 5 min
with PBS. Blocking of epitopes inducing unspecific labeling was
carried out by 30 min incubation with 5% BSA. Primary antibody
(rabbit α-tubulin, PA5-19489, Thermo Fisher) was added at
concentrations of 10 μg/ml (in 5% BSA) for 60 min at room
temperature, and unspecifically bound primary antibody was
removed by rinsing the sample several times with 0.05%
Tween20 (in PBS) solution followed by washing with normal
PBS for 3 times 5 min. Secondary antibody [F (ab’) 2 goat-anti-
rabbit IgG (H + L) Alexa-647] was added at concentrations of
10 μg/ml in 5% BSA for at least 60 min at room temperature.
Washing steps with tween solution and PBS were applied as
described above. To maintain the labeling of both antibodies a
post fixation step with 4% formaldehyde (in PBS) for 10 min was
performed.

dSTORM Imaging
Imaging was performed on a Nikon Eclipse Ti inverted wide-field
microscope using a 640 nm laser at 200 mW excitation output
power, a Nikon APO TIRF 100x/1.49 oil immersion objective,
adapted HILO illumination and ×22 binning resulting in a pixel
size of 108 nm. In total 12 spots with microtubules were imaged,
and 50.000 frames were acquired per position. Each image covers
a square of about 21 × 21 μm2. Exposure time was set to 20 ms.
Raw frames were processed with the MLE fitter in Picasso
(Schnitzbauer et al., 2017) using a net gradient setting of 4,500
and drift correction.

Anisotropic Kernel Density Estimate
Localization files generated by Picasso were spatially binned into
2D histograms with a pixel size of 5 nm. These super-resolved
images were then filtered by convolution of the image I with a
discrete filter kernelK such that the estimated densityf( �xi) of the
i-th pixel pi is

f( �xi) � 1
n
∑k
j�1

I( �xj)K( �xi, �xj),
where �xi is the pixel’s position in the image. The summation is
performed over all k pixels within the kernel window placed on
top of xi. The classical isotropic Gaussian filter corresponds to the
kernel

K( �xi, �xj) � 1
2πb

exp
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ −

( �xi − �xj)2

2b2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where b denotes the constant variance of the Gaussian filter. This
density estimator is commonly used to render super-resolved
images from localization tables (R. P. J. Nieuwenhuizen et al.,
2014). It accounts for the localization uncertainty but does not
consider the heterogeneity and anisotropy of the localization
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density. Adaptive KDE as an alternative (Rees et al., 2012) scales b
with the density of localizations but is still isotropic. The main
limitation of a Gaussian KDE, adaptive or not, is that it is not
sensitive to anisotropic spatial distributions of fluorophores. For
anisotropic structures like microtubule filaments, the density
within the filaments becomes increasingly continuous when
increasing b, approximating the actual filament. The edges
however become more and more blurred as higher frequencies
in the image are increasingly suppressed by the Gaussian kernel,
since it acts as a low-pass filter.

The anisotropic adaptive KDE proposed by (Chen et al., 2014)
uses a kernel that adapts not only its scale, but also its shape and
orientation to the local distribution of localizations for each pixel.
We implemented anisotropic adaptive KDE using the 2D
multivariate Gaussian convolution kernel

K( �xi, �xj) � 1��������
(2π)2|Σi|2

√ exp( − 1
2
( �xi − �xj)T∑−1

i
( �xi − �xj)),

where Σi is the positive definite covariance matrix that defines the
properties of the kernel at position xi, and |Σi| is its determinant.
To adapt to the local distribution of localizations, the covariance
is estimated as

Σi � 1
~I
∑k
j�1
( �xj − �μi)( �xj − �μi)T

with ~I � ∑k
j�1

I( �xj),
with �μi the mean intensity within the kernel window at pixel pi.

Again, the summation is performed over all k pixels within the
kernel window placed around pi. At each pixel pi, the
corresponding covariance Σi shaped by the spatial intensity
distribution within the filter window is calculated. The
eigenvectors of Σi are perpendicular and define the orientation
of the kernel, whereas its eigenvalues λ1 and λ2 define its shape.
The covariance is diagonal along the main axis of the kernel,
i.e., when rotated towards the direction of highest localization
density. The resulting kernel is scaled by a constant factor and

applied to the corresponding region of the original image. We
used a constant odd window size of 11 × 11 pixel and varied the
scale between 1 and 4 (Figure 1). The same approach can be used
for higher dimensions, as multivariate Gaussian functions can
easily be generalized to 3D, as demonstrated e.g. for spatial
directional statistics simulations–see (Paul and
Kollmannsberger, 2020) for an implementation in python.

Fourier Ring Correlation Loss
Fourier Ring Correlation (FRC) measures the correlation of a
pair of images as a function of spatial frequency. When applied
to a pair of super-resolved images generated by dividing the list
of localization coordinates in two subsamples, it can be
interpreted as a measure of resolution of the full SMLM
image (Robert P. J. Nieuwenhuizen et al., 2013). The two
images are correlated by multiplying their Fourier
transforms Fx and Fy, and the FRCxy is obtained by
summing over concentric rings ri in Fourier space:

FRCxy(ri) � ∑r∈riFx(r)Fy(r)p������������������∑r∈riF
2
x(r)∑r∈riF

2
y(r)p

√
,

normalized by the total intensities in each ring. The signal at a
distance ri from the center of the Fourier transformed images
corresponds to the spatial frequency.

fi � ri
N
,

with N the number of frequency bins, or pixels in the image. The
spatial frequency where the FRC falls below a value of 1/7 is
defined as cut-off frequency and interpreted as resolution of the
full image (Robert P. J. Nieuwenhuizen et al., 2013).

The value of the cut-off frequency by itself does not contain
any information about the magnitude of correlation at lower
frequencies. Maximizing it is thus not an ideal target for
optimization (Figure 2). Instead of maximizing the cut-off
frequency during optimization, we calculate the area of the

FIGURE 1 | Anisotropic KDE as density estimate for filaments. (A) Illustration of the method as proposed by (Chen et al., 2014) but here implemented in image
space; red ellipses indicate the different shapes and orientations of the 2D anisotropic Gaussian filter kernels. (B) Histogram rendering of a complete field of view of a
reconstructed dSTORM image of microtubules in a COS7 cell, scale bar � 2 μm. (C) zoomed-in detail indicated by the box in b) (scale bar � 0.2 µm), top: unfiltered
histogram (left) and density estimation by classical Gaussian filtering with fixed sigma of 1–3 pixels, corresponding to 5–15 nm; bottom: same region, but with
anisotropic KDE applied using an adaptive multivariate Gaussian kernel scaled by a factor of 1–4 (from left to right).
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FRC similar to (Preusser et al., 2021) but only up to a fixed
frequency f′ and use it as target:

Lxy(f′) � 1 − FRCxy,f′ with FRCxy,f′ � ∑f′
j�0

FRCxy,f′(j),
where the summation is performed over all FRC values
corresponding to the spatial frequency j.

We implemented the differentiable area-FRC as described
above using the built-in complex multiplication, 2D-FFT and
reduce_sum functions of Tensorflow2. The frequency rings are
precomputed and held in GPU memory as constant masks.

DeepNeural Network for Image Restoration
We used a 2D U-Net-like (Ronneberger et al., 2015) deep
convolutional neural network. The details of the architecture
are identical to the generator part used in the pix2pix cGAN (Isola
et al., 2017) and in ANNA-PALM (Ouyang et al., 2018): the input
image is downsampled with eight consecutive 2D convolution
layers with stride � 2 and size � 4, Leaky ReLU activation, and
increasing filter number (64-128-256-512-. . .-512), followed by a
mirrored upsampling part with the corresponding transposed
convolutions using identical stride and filter number, ReLU
activation, and skip connections concatenating the output of
the corresponding downsampling layer to the upsampling
layer of the same size. The last layer is a transposed
convolution with tanh activation and generates the final
output image. The network was implemented in Tensorflow2
based on the pix2pix implementation in the official

documentation (https://www.tensorflow.org/tutorials/
generative/pix2pix) but without the discriminator part.

Network Training
Training data were generated from localization tables produced by
Picasso as follows: first, each full localization table was rendered into a
2D histogram with a pixel size of 5 nm. Isolated localizations were
removed, and density was estimated either by filtering with a
Gaussian blur filter of sigma � 5 nm (isotropic KDE) or by
applying anisotropic KDE with window size 11 × 11 and scale
factor between 1 and 4. The resulting density estimates were used
as training targets. The corresponding input images were generated
by rendering 2D histograms of a subset of frames using randomly
selected time windows containing between 5 and 30% of the total
number of localizations. Input-target image pairs were created by
randomly cropping pairs of corresponding patches with a size of
750 × 750 pixels from the sparse subset images, and from the density
estimates of the full dataset. From the 11 fields of view, 2 were held
back for validation. During training, patches were augmented by
applying continuous on-GPU rotation to prevent overfitting, and a
512 × 512 patch was cropped from the center of the rotated images.
ADAMoptimizationwith a learning rate of 2× 10−4 and β1� 0.5 was
used to train the network for 1,000 epochs (iterations over the
training set). The loss function was either area-FRC, multiscale
structural similarity index, or the sum of both, as indicated.
Additionally, we added a small L1 loss (absolute pixel-wise
difference) to stabilize training, since neither MS-SIM nor FRC
punish deviations in background or total intensity, which can lead
to offset or inverted output images.

FIGURE 2 | Fourier Ring Correlation to estimate image improvement with increasing density of localizations. (A) Histogram rendering (top) and corresponding FRC
(bottom) of full and sparse set of localizations, with threshold 1/7 and area threshold 0.2 (green) and 0.5 (red) indicated. Scale bar: 300 nm, (B) FRC cutoff frequency
(blue) and corresponding resolution (red) as function of the fraction of total localizations, (C) FRC area loss for a threshold of 0.2 (yellow) and 0.5 (blue) as function of the
fraction of total localizations.
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RESULTS

Anisotropic Kernel Density Estimate
Density estimation can help to improve trainable image
reconstruction algorithms that are designed to reconstruct the
density from a given subset of localizations. The problem with
such attempts is that the training data are available as point
clouds, so the training optimizes reconstruction of discrete
localization patterns rather than continuous densities. Rendered
histograms of localization data contain the discrete count of
localizations in each pixel, which can be non-continuous. KDE-
smoothed histograms are better suited as target for trainable image
reconstruction, as they do not encourage the training process to
optimize for reconstructing discontinuous localization patterns, but
instead for the continuous underlying density. Isotropic Gaussian
KDE provides such a density estimate, but at the expense of lowering
the effective resolution due to low-pass effect of Gaussian blur. We
implemented an anisotropic kernel density estimation as proposed in
(Chen et al., 2014) as window-based filter operation in Python
(Figure 1A), and applied it to rendered histograms of localization
datasets of tubulin (Figure 1B). The scale of the anisotropic KDEwas
systematically varied and compared to the results of conventional
KDE by Gaussian filtering (Figure 1C).

The purpose of applying KDE is to obtain an estimate of the
underlying true density of the labeled epitope that would be
observed in the limit of perfect labeling efficiency and infinite
measuring time, from the experimentally measured sample of
localizations. We found that for high-density dSTORM datasets
of microtubules, the anisotropic KDE provides a better estimate
of density as it does not blur the edges of the filaments
(Figure 1C). We hypothesize that preprocessing of real
training data with anisotropic KDE as shown in Figure 1 is an
alternative approach for anisotropic structures and will result in
improved reconstruction quality.

Fourier Ring Correlation and Localization
Density
Fourier Ring Correlation (FRC) can be used to measure image
resolution of SMLM images by splitting the localization data in
two subsets and calculating the FRC of the reconstructed histograms
(Robert P. J. Nieuwenhuizen et al., 2013). Recently, FRC has been
proposed to monitor the progress of image reconstruction and
deconvolution methods (Koho et al., 2019). Here, we explore the
potential of using FRC as target function to train deep neural
networks to reconstruct the underlying density from sparse
localization images. We implemented FRC in Tensorflow2 as
differentiable function, as described in materials and methods. To
determine how FRC depends on the localization density, we
generated sparse localization datasets using a subset of frames
with a defined fraction of localizations of the entire dataset. Each
resulting subset of localizations was then split in two, and the FRC
cut-off frequency of the corresponding rendered histograms was
calculated (Figures 2A,B). When correlating sparse and dense
images, the cut-off frequency cannot be directly used as resolution
measure, because the already reconstructed images cannot be split in
two subsets. The FRC vs. frequency plot nevertheless gives a measure

for similarity between the sparse and dense images: two identical
images would have FRC � 1 for all frequencies, whereas for unrelated
images, FRC would be � 0 everywhere. We thus propose the integral
of the FRC as new measure for reconstruction quality. To avoid the
influence of spurious correlations at high frequencies, we calculate the
FRC integral up to a cut-off frequency of 0.2 or 0.5 of the maximum
frequency.

The dependency of our area-FRCmeasure is shown in Figure 2C.
Here, the FRC between the reconstructed histogram of the subset and
that of the full dataset was calculated and summed up to a cut-off
frequency of 0.2 or 0.5. The area FRC scales similarly to the original
FRC, and shows a stronger dependency on fraction of localizations
when only using lower frequencies up to 0.2. For comparison, we also
calculated the area FRC in the classical way, i.e., by splitting the
localization data in two and summing up the FRC between the two
sub-histograms (Figure 2B). As can be seen, the dependency is
qualitatively similar. In summary, we conclude that the area of the
FRC between the sparse and the full density SMLM image can be
interpreted as a measure for the similarity between the two images.
Consequently, by comparing a reconstructed density image to the
true density image, one could monitor the quality of the
reconstruction and thus the progress of a trainable reconstruction
algorithm.

Training Neural Networks With FRC Loss
We implemented our area FRC measure as differentiable function in
Tensorflow2 to be able to use it as loss function for deep neural
network training. We generated a set of training and validation
images from a dSTORM experiment on labelled tubulin in cells, as
described in themethods section, and trained a 2DU-Net-like image-
to-image fully convolutional network (Figures 3A–C) using different
loss functions and targets. The final trained network was then used to
predict test images not used during training to assess network
performance. The evaluation criteria were peak signal-to-noise
ratio (PSNR), mean squared error (MSE) or L2 loss, multiscale
structural similarity index (MSSIM), and area FRC, independent
of the loss function used during training.

We first investigated if using the anisotropic kernel density
estimate as training target improves the training process. We
trained the same network using MSSIM loss using either
Gaussian KDE or anisotropic KDE target images and
monitored the improvement of the loss during training
(Figure 3D). The anisotropic density estimation target results
in faster convergence of the training process. This shows that the
smoothing effect of the anisotropic kernel provides a better
optimization target compared to regular isotropic Gaussian
density estimation for anisotropic structures like filaments.

Next, we compared our FRC area loss to MSSIM, which is the
state-of-the-art loss function for image-to-image tasks andwas shown
to work well for SMLM sparse-to-dense reconstruction (Ouyang
et al., 2018). We trained the network on the same data using either
MSSIM only, FRC only, or both together, and monitored both losses
during training (Figures 3E,F). We observed that the FRC loss
decreases at the same rate when optimizing for FRC area only or
for MSSIM + FRC, but at a slower rate when optimizing for MSSIM
only. Correspondingly, MSSIM goes down at the same rate when
optimizing for FRC + MSSIM as when optimizing for MSSIM only,
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but at a slower rate when optimizing for FRC only. This shows that
there is no trade-off between both losses: using MSSIM and FRC
together gives an improvement over using only one of the two. This
shows that our new area FRC loss provides an improvement over
using only MSSIM when both are combined.

Quantification of Reconstruction Quality
The final trained networks were used to predict images not used
during training to assess network performance. The evaluation

criteria were peak signal-to-noise ratio (PSNR), mean squared
error (MSE) or L2 loss, multiscale structural similarity index
(MSSIM), and area FRC, independent of the loss function used
during training (Figure 4A). In all cases, the network trained on
the combination of both loss functions shows comparable or
improved performance. The change of the FRC as function of
frequency gives information on how different length scales or
frequencies contribute to the improvement (Figure 4B). The FRC
of predicted and ground truth image shows a shift to higher

FIGURE 3 | Deep learning-based density reconstruction with FRC area loss. (A) Deep learning workflow using a 2D U-Net architecture to predict density images
from sparse input. (B) Example of sparse input with 10% of localizations (left), network prediction after training (middle), and target image using the full dataset (right).
Scale bar � 0.5 µm (C) Total loss monitored during network training for training (black) and unseen validation images (orange). (D) FRC loss during training for target
density images generated by classical isotropic Gaussian (grey) and anisotropic kernel density estimation (black). (E) Structural similarity index (MS-SSIM) during
training for a network trained on FRC loss only (red), SSIM (blue) and both together (black). (F) FRC area loss during training for a network trained on FRC loss only (red),
SSIM (blue), and both together (black).

FIGURE 4 | Evaluation of trained networks. (A) averagedMS-SIM and FRC (top), as well as peak signal-to-noise ratio (PSNR) and mean squared error (MSE) for 20
network output and target images from the validation dataset; error bars denote SEM. (B) FRC improvement as function of spatial frequency of input (left) vs. target (right)
and output (center) vs. target. Scale bar � 100 nm. (C) Line Profiler evaluation illustrated at the top and applied to two adjacent simulated filaments with distance of 80 nm
(green), 90 nm (yellow) and 100 nm (blue), showing the emergence of two separate peaks.
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frequencies as well as a constant offset in the frequencies above
the cut-off frequency in comparison to the FRC between input
and target image. The quality of reconstructed filaments and
image resolution is often measured by single line profiles
perpendicular to filament direction, but this criterion is not
objective. The tool LineProfiler was developed to provide an
unbiased measure for filament image quality (Zwettler et al.,
2020). We applied LineProfiler to reconstructions of simulated
sparse microtubule filament images with predefined distances
(Figure 4C). By defining the ability for resolving two filaments via
the existence of two peaks and a minimum, and evaluation of 20
independent simulations, we obtained a resolution capability of
89.15 ± 2.61 nm.

DISCUSSION

We introduced a new loss function based on the area of the FRC
for deep learning-based reconstruction of SMLM density
estimates for microtubules from small subsets of localizations.
Preprocessing of ground truth images by a novel anisotropic
kernel density estimate improved the training process. The FRC
loss ideally complements the multiscale structural similarity
index (MSSIM) and leads to an improved reconstruction
outcome. We implemented the adaptive anisotropic KDE
proposed in (Chen et al., 2014) in pixel space using a defined
support window and scale to calculate the covariance matrix.
While being more efficient, the disadvantage of such an image-
based implementation is the fixed window size, whereas in a
localization-based algorithm also far away localizations would
contribute to sparse regions, limiting the influence of isolated
localizations. The principle behind anisotropic KDE calculated in
image space is similar to anisotropic diffusion filtering, a widely
used concept in image processing (Weickert 1996).

We used the area of the FRC, as described in (Preusser et al.,
2021), up to a limit of 0.2 of the maximum frequency. Using the
entire FRC area, the network learned to achieve correlation at
high frequencies by blurring the image, but this did not improve
image quality. Fixed FRC cut-off values like 1/7 (Robert P.
J. Nieuwenhuizen et al., 2013) are problematic, as discussed in
(Heel et al., 2005). When used as optimization target, the
resulting FRC values are sometimes just above the threshold,
leading to poor image quality and high background intensity. In
general, FRC as image resolution metric must be used carefully
since it can give biased results (Johnson et al., 2021).

As with many deep learning-based methods, the question is
how much the generated images can be trusted, or if the network
makes up information that is not in the original data. In principle,
the information that is lost by removing a large fraction of the
localizations cannot be regained, neither by applying deep
learning nor by other reconstruction methods. In other words,
there is no way to infer the precise location of emitters that were
either never detected, or removed from the dataset. Instead, the
idea behind density reconstruction from sparse localization data
is to estimate the underlying density from a small sample of
emitter positions. SMLM imaging in fact always involves such an
estimate rather than measuring the true emitter density, since the

latter would require perfect labeling efficiency and infinite
measuring time. The benefit of density reconstruction by deep
learning or other means is that it can use inherent redundancy in
the localization data, thus reducing the number of required
localizations while only minimally compromising the
reconstruction quality. One could also argue that density
estimation from localization point cloud data can be seen
more as a segmentation task rather than denoising or
deconvolution.

Although we demonstrate our approach only on microtubule
filaments, the area-FRC loss is generally applicable, since FRC
works also for other structures than filaments. The feasibility of
NN-based SMLM reconstruction for a variety of structures was
already demonstrated in (Ouyang et al., 2018). The absolute
values of the FRC are however highly dependent on the
frequency content of an image and thus on the imaged
structures (Heel et al., 2005; Legant et al., 2016). Images with
filaments (e.g., microtubules) yield a different FRC area or
“resolution” compared to more continuous structures such as
mitochondria, even when imaged with the same optical
resolution. Nevertheless, using FRC area at low spatial
frequencies as optimization target for improving the same
image is possible, since only the change of the loss measure
but not its absolute value is used as criterion.

For density reconstruction from sparse localization data, ANNA-
PALMpresented byOuyang et al., (2018) presents the current state-
of-the-art based on conditional generative adversarial networks, or
cGANs. The original authors of the cGAN architecture (Isola et al.,
2017) argue that cGANs are not suitable for image segmentation as
they tend to hallucinate realistic-looking details to fool the
discriminator. Ouyang et al. elegantly solve this problem by
using a plausibility criterion where the consistency of the
restored image with respect to a widefield low-resolution image
is determined. Here, we did not use a cGAN, but a simpler
architecture using only a generator U-Net, and focus on
comparing the performance of different loss functions and
preprocessing methods. We thus see this work as
complementary to ANNA-PALM, and as basis for future
extensions using new architectures. For example, the standard
convolutional architecture could be modified to incorporate prior
knowledge about the physical constraints of the measurement
process. Introducing loss functions in Fourier space has
recently been shown to make deep learning-based image
reconstruction and perceptual superrsolution more efficient
(Fuoli et al., 2021), and might have other interesting applications
in the future. We make the python code of our training workflow
and our implementation of the area FRC loss and the anisotropic
kernel density estimation freely available to the community so that it
can easily be integrated into other deep learning workflows.
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K-Neighbourhood Analysis: A Method
for Understanding SMLM Images as
Compositions of Local
Neighbourhoods
Kristen Feher1,2*, Matthew S. Graus1,2, Simao Coelho1,2,3, Megan V. Farrell 1,2,
Jesse Goyette1,2* and Katharina Gaus1,2†

1School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington,
NSW, Australia, 2ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW,
Australia, 3Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States

Single molecule localisation microscopy (SMLM) is a powerful tool that has revealed the
spatial arrangement of cell surface signalling proteins, producing data of enormous
complexity. The complexity is partly driven by the convolution of technical and
biological signal components, and partly by the challenge of pooling information across
many distinct cells. To address these two particular challenges, we have devised a novel
algorithm called K-neighbourhood analysis (KNA), which emphasises the fact that each
image can also be viewed as a composition of local neighbourhoods. KNA is based on a
novel transformation, spatial neighbourhood principal component analysis (SNPCA),
which is defined by the PCA of the normalised K-nearest neighbour vectors of a
spatially random point pattern. Here, we use KNA to define a novel visualisation of
individual images, to compare within and between groups of images and to investigate
the preferential patterns of phosphorylation. This methodology is also highly flexible and
can be used to augment existing clusteringmethods by providing clustering diagnostics as
well as revealing substructure within microclusters. In summary, we have presented a
highly flexible analysis tool that presents new conceptual possibilities in the analysis of
SMLM images.

Keywords: TCR clustering, single molecule localisation microscopy, image analysis, point pattern analysis,
clustering, local density estimation, local indicators of spatial association

INTRODUCTION

SMLM has given insight into the spatial arrangement of signalling proteins with unprecedented
resolution (Huang et al., 2009; Patterson et al., 2010; Nicovich et al., 2017; Schnitzbauer et al., 2017).
The complex spatial arrangement of these proteins is an emergent property of interactions between
many types of proteins, and reflect the external environment that is being sensed, as well as being
dependent on prior states of the cell (Ditlev et al., 2018; Yoo et al., 2019; Espinosa et al., 2020). Being a
snapshot of a dynamic process, it can be expected that the image will contain a mixture of spatially
localised subprocesses that coexist side by side. Similar processes that are spatially separated may not
be exactly temporally synchronised. For example, protein clustering, i.e., transition away from well
mixed homogenous states towards droplets/condensates and beyond, is dynamic and may be at
different stages of progress in different parts of the cell, or even within larger condensates. While
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genetically identical cells grown under the same conditions will
result in unique and random instantiations, it could be expected
that they are linked by universal properties, e.g., distribution of
cluster sizes or distribution of distances between clusters.

Within the field of T cell activation, SMLM imaging has made
a large impact on our understanding of the underlying processes.
It is now well established that spatial organisation of T cell
receptor (TCR) in the plasma membrane determines the
probability of phosphorylation and downstream signalling
processes (Grakoui et al., 1999; Pageon et al., 2016a; Sherman
et al., 2016). As proteins that reside in the same regions in the
plasma membrane are more likely to interact, it is important to
map and better understand the organizing principles of
membrane proteins (Saka et al., 2014). For example, chimeric
antigen receptors (CARs) need to integrate into the T cell
signalling network (Lim and June 2017) and therefore ought
to adopt a spatial organisation similar to that of the TCR.
However, quantifying the diversity in spatial organisations that
a single protein can adopt within and across individual cells has
remained challenging. The TCR, for example, has been described
as randomly distributed (Rossboth et al., 2018), monomeric
(James et al., 2007) or as a functional dimer (Kuhns et al.,
2010), to form pre-existing (Sherman et al., 2011) (Schamel
et al., 2005; Kumar et al., 2011) and antigen-induced clusters
(Kumar et al., 2011; Pageon et al., 2016a; Boniface et al., 1998),
which can reside in large, immobile protein islands (Lillemeier
et al., 2010; Drbal et al., 2007; Purbhoo et al., 2010).

The mode of imaging adds a further layer of complexity, as the
molecules are not directly observed. When individual molecules
are not spatially resolvable due to the diffraction limit, sparsity is
induced in both space and time by stochastic photoactivation or
binding of fluorescent probes that generate localisations.
Localisations are points in R2 (for 2D imaging, or R3 for 3D
imaging), and a set of localisations over a small area is evidence
for the existence of a molecule. In real images, it is virtually
impossible to attribute localisations to specific molecular
numbers and positions with high confidence (Feher et al.,
2019). Molecules may be tightly packed and thus sets of
localisations arising from multiple molecules may be spatially
overlapping, dependent on instrument precision. Labelling
efficiency and stochastic blinking effects induce a fundamental
limitation in molecular counting at individual protein sites. It is
possible to estimate the underlying molecular positions by
collapsing repeated localisations in a procedure called
“grouping” but this can introduce new artefacts due to the
afore-mentioned reasons.

Overall, it can be expected that SMLM images of cells have a
complex multiscale structure, generated by convoluting biological
with technical effects and overlaid with spurious noise
localisations. For any given localisation, the spatial
arrangement of the immediately neighbouring localisations is
dominated by the photophysics and the distance of the nearest
neighbouring molecule. The spatial arrangement of more distant
localisations is influenced by the emergent properties of many
interacting proteins. To date, SMLM images of one or two protein
types are possible, but technical advances in simultaneously
imaging multiple protein types are underway. The broad goal

of SMLM data analysis is to extract instances or types of protein
arrangements and link it to biological function. Examples include
droplet size and composition, indicating previous recruitment of
proteins to the site; or proximity of proteins types to each other,
indicating the possibility or otherwise of biochemical reactions
taking place.

General approaches to analysing point pattern data often
involve clustering or density estimation. Examples within
SMLM data analysis include Ripley’s K-function (Owen et al.,
2010), pair correlation (Sengupta et al., 2013; Shivanandan et al.,
2016), density-based clustering (Pageon et al., 2016a; Jiang et al.,
2017; Rubin-Delanchy et al., 2015) or tessellation based analysis
(Levet et al., 2015). Clustering is most straightforward when
spacing between clusters (inter-cluster) dominates the spacing
between points within the cluster (intra-cluster) in all instances,
and there are no noise points between the clusters. In this case, a
single unambiguous clustering can generally be found. As intra-
cluster spacing grows with respect to inter-cluster spacing and
background noise increases, multiple cluster organisations could
be obtained depending on the chosen optimisation criteria (Liu
et al., 2015; Maurus and Plant, 2016). On the other hand, density
estimates are highly dependent on the chosen bandwidth (Davies
and Baddeley, 2018), and thus multiple bandwidths may be
needed to fully describe multiscale structure. As density is an
average quantity within a window, it can be problematic to
describe discontinuous events, e.g., a small cluster surrounded
by a relatively large empty space.

Bridging the gap between clustering and density estimation are
local indicators of spatial association (LISA) methods (Anselin,
1995). They represent the contribution of each point to a global
spatial statistic, reflecting local spatial arrangements. For
example, Ripley’s K-function can be decomposed into local
K-functions for each localisation. Other methods aim to
deconvolute the superposition of two independent point
patterns (Byers and Raftery, 1998; Cressie and Collins, 2001;
Redenbach et al., 2015). In this work, we describe a novel LISA-
like method of characterising SMLM images that is based on a
vector of nearest neighbour distances corresponding to each
localisation in the image. In more detail, our work extends
ideas in Byers & Raftery (Byers and Raftery, 1998), by
considering the joint distribution of Kth nearest neighbour
(NN) distances (NND) for K � 1 . . . 100. This leads us to
consider SMLM localisations as points in a multivariate
coordinate system defined by the NNDs for each K, so that we
can aggregate localisations with similar properties, in a manner
analogous to that of Cressie and Collins (2001). However, instead
of using local K-functions which requires the scale to be fixed, the
NND vectors can probe the local topology of each localisation,
regardless of that localisation’s local density (K-neighbourhood
analysis).

While clustering will remain central to SMLM data analysis,
we aim to expand the conceptual possibilities in a manner that
does not require explicit spatial segmentation via clustering.
Instead, we wish to view each image as a collection of local
neighbourhoods and use this concept to dissect individual images
and compare between entire images with minimal assumptions.
This will facilitate novel visualisations of SMLM images,
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comparisons amongst sets of SMLM images and provide a
rational framework to find associations between the spatial
structures of different types of proteins. This novel method
can be performed on the entire set of localisations, thereby
avoiding any artefacts introduced by grouping.

The major contribution of this paper is the Spatial
Neighbourhood PCA (SNPCA). This is a transformation that
is derived from the normalised nearest neighbour distance vectors
of each point in a spatially random point pattern, using the first K
neighbours. This basis can be used to compress the K-nearest
neighbour vectors of an arbitrary point pattern and compare the
neighbourhood compositions between sets of arbitrary point
patterns. The properties of SNPCA are investigated using
simulated point patterns to show it can capture structural
nuances that are not apparent with univariate measures such
as local density. The SNPCA is then used to develop a novel
visualisation technique for individual SMLM images. Next, a set
of SMLM images of activated T cells are analysed to demonstrate
the global differences of the CD3 spatial patterns that occur
between different types of cells. Finally, these results are used for a
downstream analysis of CD3 phosphorylation patterns.

MATERIALS AND METHODS

Cell Culture
Jurkat-ILA1 T cells and Jurkat 76T cells were cultured in RPMI
1640 (Life Technologies, 21870076) supplemented with 10% FBS,
2 mMl-glutamine, 1 mM penicillin and streptomycin (all from
Life Technologies). Characterization of the ILA1 TCR is
described in the methods section of Pageon et al. (Pageon
et al., 2016b). Jurkat 76 cells were transduced to express either
LaG17-CD3ζ or LaG17-CD28-CD3ζ CAR construct.

Constructs
Lentiviral anti-GFP CAR constructs were produced and
transduced into Jurkat 76 cells as described in Denham et al
(Denham et al., 2019). We used Jurkat 76 cells since these cells
lack surface expression of the TCR complex and thus anti-CD3ζ
staining was specific for CAR constructs. For bacterial expression
of CAR ligand, a construct of an N-terminally Avitag-labelled
monovalent (A206K mutant), dark (Y66S mutant) EGFP (Avi-
dGFP) was cloned into pTRC-HisA between the NheI and
HindIII restriction sites. For the PI3K PAINT probe, amino
acids 322–724 (constituting the tandem Src homology two
domains) of the regulatory subunit, p85, with M479S, I493S,
Y504S, Y508S hydrophobic to hydrophilic mutations of residues
in the interface with the catalytic domain were fused with mNeon
Green on C-terminus and cloned into pET21 between the NdeI
and NotI restriction sites (p85 tSH2-mNG).

CAR Ligand and PI3K PAINT Probe
Production
Chemically competent BL21 (DE3) E. coli cells (Agilent
Technologies) were transformed with Avi-dGFP or p85 tSH2-
mNG and grown on ampicillin (50 μg/ml) LB agar plates

overnight at 37°C. The following day an individual colony was
inoculated into LBmedia with 50 μg/ml ampicillin and grown in a
shaker incubator overnight at 37°C. Ten ml of this starter culture
was then inoculated into 1 L of LBmedia and the cells were grown
in a shaker incubator at 37°C until the optical density at 600 nm
was 0.6. The temperature in then decreased to 18°C and IPTG to
0.5 mM was added. For Avi-GFP biotin to 20 µM (to drive
biotinylation of the Avitag) was added to the culture media.
The protein was left to induce overnight, after which the cells
were pelleted by centrifugation and stored at −80°C until protein
extraction and purification was performed. Protein was extracted
by thawing cells, resuspending in 50 mM NaH2PO4, 300 mM
NaCl pH 7.5 (2×PBS), sonicating, and pelleting debris by
centrifugation at 15,000 rcf for 15 min. The clarified lysate was
passed through 2 ml Nickel-NTA agarose resin in a gravity-fed
column, which was then washed with 10 column volumes of
2×PBS, then with 10 ml of 2×PBS with 10 mm imidazole.
Proteins were eluted with 150 mM imidazole pH 7.5. Eluate
was concentrated to 0.5 ml with a 30 kDa spin concentrator
(Amicon) and a final polishing step of size exclusion
chromatography on a HiPrep 16/60 Sephacryl S-200 HR (GE
Healthcare) equilibrated in PBS with 1 mM DTT was performed.
Purified protein was mixed with glycerol to a final concentration
of 10% (v/v) and aliquots were frozen at −80°C until used.

Bilayer Preparation
Glass coverslips were cleaned with 1M KOH, rinsed in MilliQ
water, and then placed in 100% ethanol prior to plasma cleaning.
Eight-well silicone chambers (Ibidi, 80841) were then attached to
the plasma cleaned coverslip. A 1 mg/ml liposome solution with a
lipid ratio of 96.5% DOPC (1,2-dioleoyl-sn-glycero-3-
phosphocholine), 2% DGS-NTA(Ni) (1,2-dioleoyl-sn-glycero-
3-{[N-(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl}
(nickel salt)), 1% Biotinyl-Cap-PE [1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-(cap biotinyl) (sodium salt)], and
0.5% PEG5000-PE {1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy (polyethylene glycol)-
5000]} (ammonium salt) (mol%; all available from Avanti
Polar Lipids (DOPC, 850375C) [DGS-NTA(Ni), 790404C]
(Biotinyl-Cap-PE, 870273C), (PEG5000-PE, 880220C) was
created by vesicle extrusion, as described previously (Beemiller
et al., 2012). The lipid solution was added to each well at a 1:5
ratio with MilliQ water along with 10 mM of CaCl2 for 15 min
and then washed three times with phosphate-buffered saline
(PBS). 0.5 mM EDTA in MilliQ water was added to remove
the excess CaCl2 followed by washing with PBS. 1 mM of NiCl2 in
PBS was added for 15 min to recharge the NTA groups, then
surfaces washed three times with PBS. Disruption of the lipid
bilayer was avoided bymaintaining 100–150 µl of PBS in the wells
at all times.

To decorate the bilayer with proteins, 100 μg/ml of
streptavidin (Life Technologies, SNN1001) and 200 ng/ml of
His-tagged ICAM-1 (Thermo Fisher Scientific, 10346H08H50)
were combined in PBS and added to the well for 15 min at room
temperature and then washed with PBS. Biotinylated proteins
were then combined with 5% BSA/PBS and added to each well for
30 min at room temperature; for Jurkat-ILA cells 1:500 dilution of
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pMHC 3G (from a 1 mg/ml stock) was used and for CAR-
expressing Jurkat 76 cells 10 nM of dark GFP and 90 nM of
dark mCherry were combined prior to being added to the bilayer.
The wells are then washed with PBS to remove any unbound
proteins.

Antibody Conjugation
CF568-succinimidyl-ester (Biotium, 92131) was conjugated to
soluble pCD3ζ (pY142) antibody (BD Pharmingen, 558402).
CF568-succinimidyl-ester and the antibody were mixed at a 6:
1 molecular at pH 8.0 for 1 h at room temperature in the dark.
The antibody was purified by using Zeba desalting columns
(Thermo Fisher Scientific, 89883). Absorption spectroscopy
determined that the degree of labelling was 1.5:1 dye:
antibody ratio.

T Cell Activation on Bilayer and
Immunostaining
The wells containing bilayers were washed with RPMI culture
media and warmed to 37°C for 30 min prior to adding the cells.
Cells were added to the bilayer at a density of 250,000 cells/well
for 4–5 min at 37°C and fixed using 4% PFA in PBS warmed to
37°C. Fixation of cells was done for 15 min at 37°C. Prior to
immunostaining, cells were permeabilized with Triton X-100
(Sigma-Aldrich, T8787) at 0.1% for 5 min at room
temperature and washed with PBS. The cells were blocked
with 5% BSA in PBS for 1 h at room temperature.

Staining of the cells was performed sequentially with primary
labelled antibodies against l CD3ζ conjugated to Alexa Flour 647
(Abcam, 197037) and pCD3ζ (pY142) conjugated to CF568.
Staining was done in 5% BSA in PBS at a concentration of
10 μg/ml for both antibodies for 30 min at room temperature
in the dark, then washed with PBS. Fiducials in the form of
TetraSpeck Microspheres (Thermo Fisher Scientific, T7279) were
added to each well for 15 min then washed with PBS.

dSTORM and PAINT Imaging
For dSTORM imaging, a buffer consisting of 50 mM Tris, 10%
(wt/vol) glucose, 10 mMNaCl, 20 μg/ml catalase (Sigma-Aldrich,
C100), 0.8 mg/ml glucose oxidase (Sigma-Aldrich, G2133), and
30 mM cysteamine (Sigma-Aldrich, 30070), pH 8.0 was used
during data acquisition. Data was acquired on a Zeiss ELYRA
microscope with TIRF illumination using a ×100 oil-immersion
objective (NA � 1.46) coupled to a cooled, electron-multiplying
charge-coupled device camera (Andor, iXon DU-897). Sample
excitation was done with 637 nm laser and 561 nm laser. For
single channel acquisitions 20,000 frames were collected at an
exposure time of 33 ms. Sequential imaging of the fluorescent
probes was performed to acquire two-channel data with the
farther red channel acquired first. For each channel, 20,000
frames were collected with an exposure time of 33 ms. Drift
correction and channel alignment algorithms were performed on
the raw data to produce data tables containing x-y localization
coordinates using Zen 2012 SP5 (Zeiss MicroImaging).

PBS buffer containing 1% (wt/vol) BSA, 0.1% (wt/vol)
saponin, 1 mM DTT and 1 mM EDTA was used for the

preparation and imaging of the PI3K probe. PAINT imaging
was performed by adding 600 pM of the PI3K-mNeonGreen
probe to the well and exciting with 488 nm laser in TIRF
mode. For each cell, 10,000 frames were collected with an
exposure time of 200 ms. Raw image stacks were fitted for
molecular localisations and drift corrected using the “Picasso”
software package (Schnitzbauer et al., 2017).

DNA origami rulers. A single well of an eight-well chamber
(ibidi 80841) was attached to a clean coverslip and washed with
500 μl of PBS. The well was incubated with 200 μl of BSA-biotin
solution (1 mg/ml in PBS) for 5 min. Excess BSA-biotin was
removed by washing with 500 μl of PBS. The surface was
incubated with 200 μl of neutravidin (1 mg/ml in PBS) for
5 min and washed with a PBS with 10 mM magnesium.
Biotin-coated polystyrene beads (Spherotech, TP-305) (40 μg/
ml) were incubated for 1 h and the excess beads were removed.
The well was incubated with the DNA-origami ruler (GATTA-
PAINT, HiRes 20R or 80R) diluted 40 times in PBS with 10 mM
magnesium to get ∼100 rulers per field-of-view. Excess DNA
origamis were removed by washing with PBS with 10 mM
magnesium. The imaging strand was a 9-bp complementary
target strand with Atto 655, with a concentration of 5 nM.
Acquisition was performed as previously described by Coelho
et al., 2020 (Coelho et al., 2020).

Statistical Description of Localisations
Let there beN localisations in a region of interest (ROI), and each
localisation is indexed by i with 1 ≤ i ≤ N. In order to describe each
localisation i via its local topology, i.e., the spatial arrangement of
its neighbouring localisations, the distance Dij from the ith
localisation to its jth nearest neighbour (NN) is calculated for
1 ≤ j ≤ K. Thus localisation i is described by a K-dimensional
nearest neighbour vector NNVi � (Di1, . . . , Dij, . . . , DiK)
(K-neighbourhood).

Choice of K
The parameter K is chosen to be larger than the number of
localisations arising from a single molecule. However, the
K-neighbourhood analysis is quite robust over a range of K
values. Within large aggregates of molecules (e.g.,
microclusters), K-neighbourhoods may appear to be spatially
random because the edge of the cluster has not been reached.
To understand how the K-neighbourhoods are related to long-
range structure, we examined the NNDs for K � 200, 500.

Comparison of Image Localisations to
Spatially Random Localisations
The expected value of Dij under complete spatial randomness is
α√jwhere α is a constant that accounts for the rate of the Poisson
process, i.e., the density of localisations (Thompson, 1956).
To examine a localisation’s topology independently of scale,
we set α � 1/√K and normalised NNVi to yield nNNVi � NNVi/
DiK such that nNNVi falls on the interval (0, 1). Additionally, the
nNNVis of a ROI collectively forms the rows of a table of dimension
N × K, which we named NN feature table (NNFT). The NNFT is an
abstract description of a ROI.
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Principal Component Analysis (PCA) of the
Nearest Neighbour Feature Table (NNFT)
Localisation i can be viewed as a point in R

K via NNVi. To
summarise the major features of the NNFT (Figure 1), dimension
reduction is needed. Principal component analysis (PCA) could
performed on individual NNFTs to yield a new orthonormal basis
corresponding to the directions of largest variance. However,
each PCA will yield a different basis, reflecting the individual
properties of each NNFT, rendering comparisons between images
or cellular conditions impossible. To generate a universal basis for
any NNFT, we simulated 100,000 completely spatial random
(CSR) points with a two-dimensional Poisson process on the unit
square with intensity λ � 105. For each simulated point, the
nNNVi was calculated, the edge points discarded, the NNFT
mean-centred and the PCA calculated. For a NNFT arising from
an experimental ROI, each localisation can be represented by the
orthogonal projection of its nNNVi on the first two principal

components of the CSR PCA, yielding new coordinates (PC1i,
PC2i).

Local Density
In each K-neighbourhood, localisation density is defined as
Deni � (K/2)/(πD�i2), with D�i � (1/K)∑jDij (i.e., the mean NND).
Deni is plotted on a logarithmic scale.

Comparison of Images and Standardised
Frequency Table
A group of localisations in a single image can be represented by an
N × 3 table with the ith row defined (Deni, PC1i, PC2i). To make
comparisons between images, we compared the joint density of
these three parameters. To do this, we binned each parameter into
equally sized intervals, with the intervals being fixed for all
images. To construct the bins, for each parameter the

FIGURE 1 | Concept of k nearest neighbour distances to identify localised spatial organisations for each point in an image. (A) Three examples of a single point
(highlighted in red) residing in a cluster of six points (left), random point distribution (middle) and segregated from other points (left) and its K � 10 nearest neighbours
(blue lines). (B) Plots of the normalised distance from the red localisation to the jth nearest neighbour (y-axis) against j (x-axis) for the examples above (blue lines) and for
completely spatially random (CSR) data (grey lines). Each of the three scenarios shown in (A) gives rise to a characteristic curve in (B). (C) Schematic diagram
illustrating the workflow of the K-Neighbourhood Analysis.
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combined range over all images was determined. The range was
then split into 50 equal sized bins, and the 1-dimensional bins
were merged to form a 3-dimensional grid composed of 3-
dimensional bins. Finally, the localisations were counted in
each 3-dimensional bin, and the bins are clustered using
average linkage hierarchical clustering (Ward, 1963) to yield a
small number of 3-dimensional bin subsets (termed “groups”)
that correspond to a colour key.When performed on an ensemble
of images, a frequency table was obtained, with each row being
one image and each column corresponding to the total frequency
of localisations falling in a group of 3-dimensional bins. The
frequency table is compositional, i.e., rows sum to one, so log ratio
analysis is performed for dimension reduction (Aitchison and
Greenacre, 2002). This entails log transformation followed by
mean-centering, then principal component analysis (PCA) on the
column centred matrix. To facilitate visualisation of the three
categories, between component analysis is performed on the
dimension reduced table, which is the PCA on the
experimental means of the 3 cell types followed by the
projection of the individuals onto the found space
(Thioulouse, 2011). The table can also be visualised as a
heatmap (Gu et al., 2016). To test for differences in variance
between the experimental groups, the procedure in Anderson
(Anderson, 2006) is used. To test for differences in multivariate
means between the experimental groups, the procedure in Ellis
et al. (Burchett et al., 2017) is used.

Simulations
Point patterns were simulated to investigate the performance of
K-neighbourhood analysis. Spatially random cluster centres were
simulated using a Poisson process. They were populated with
localisations by randomly selecting the localisation count C on an
interval, and drawing C points from a bivariate normal
distribution with a fixed variance and zero correlation. Finally,
the simulated image is overlaid with spatially random noise
localisations that are simulated with a Poisson process.

Phosphorylation Enrichment Score
To calculate a spatially dependent phosphorylation enrichment
score, each CD3ζ localisation in an image is scored TRUE or
FALSE according to whether it is within 10 nm of a pCD3ζ
localisation (co-localised CD3ζ localisation). For each localisation
group indexed by k (here 1 ≤ k ≤ 9), the frequency of localisations
in k that also score TRUE is compared to the frequency of all
localisations in k such that Enrichment � log[Freq(k AND TRUE)/
Freq(k)]. When Enrichment > 0, phosphorylation is
overrepresented among localisations in k and when
Enrichment < 0, phosphorylation in underrepresented among
localisations in k. Differences of multivariate enrichment scores
between experimental groups are tested as described above in
“Comparison between images.” The enrichment score is
additionally plotted for thresholds of 10, 20, 30, 500 nm. To
understand whether enrichment scores are significantly different
from zero, random scores are simulated as follows: For each
image, if there are np co-localised CD3ζ localisations, then a
random vector is drawn from a multinomial distribution
characterised by the CD3ζ frequency vector of that image and

np, the random vector is normalised to sum to one, and an
enrichment score is calculated. This is repeated 10,000 times, and
the 5 and 95th percentiles of the simulated random scores are
obtained. After repeating for each image, the minimum and
maximum (respectively) scores over all images are reported
and plotted.

RESULTS

In order to characterise the neighbourhood of any point in a point
pattern (a point pattern here is defined as a set of points in R2),
the vector of the first K nearest neighbour (NN) distances is
considered. The normalised NN (n-NN) distances can be plotted
as a curve vs the index j (for 1 ≤ j ≤ K) (Figure 1). Independently
of the magnitude of the NN distances, the shape of this n-NN
curve is related to the spatial organisation of neighbouring points.
The n-NN curve can be compressed using a principal component
analysis (PCA) that is defined using n-NN curves arising from
spatially random data (SNPCA), meaning that different point
patterns can be expressed using a set of common basis vectors and
compared directly. The algorithm takes a point pattern and K as
input, calculates a n-NN curve for each point and transforms it
using the SNPCA. Two components have been shown to be
sufficient for SNPCA (Supplementary Figures 1–3). For
completeness, the mean NN value can also be stored along
with the two components, so that information about the NN
magnitude is available. For ease of interpretation, the mean NN
value can be converted to a density. The algorithm is referred to as
K-neighbourhood analysis (KNA).

The properties of the KNA are investigated using simulated
point patterns that mimic an SMLM image of spatially random
binding sites (Figure 2A). First, the region of interest (ROI) is
populated with molecules using a Poisson process of a given
intensity. Next, each molecule is replaced with clusters of
localisations generated from a bivariate normal distribution
(fixed variance in x and y, and correlation coefficient of zero),
with the number N of localisations being uniformly distributed
between 10 and 90. Finally, spurious background localisations are
generated using a Poisson process of a given intensity. For each
localisation associated with a “parent” molecule (signal
localisations), its local neighbourhood is strongly influenced by
the total number Nclus of localisations associated with the parent
molecule, the distanceDB to the parent molecule, and the distance
DBNN from its parent molecule to the neighbouring molecule. For
noise localisations, its local neighbourhood is strongly influenced
by the distance DB to the nearest molecule. Further properties
such as distance to the second neighbouring molecule also
influence local neighbourhoods but they are not considered here.

These three quantities are plotted against kernel density
estimates (adaptive smoothing using a Gaussian kernel)
calculated at each point, for two different bandwidths (Figures
2B,C). For signal localisations, there are negative and positive
trends (resp.) with DBNN and Nclus. However, there are two
separate trends with DN, with density estimates occuring in
the same range for signal and some noise localisations. While
this differentiation can be improved by lowering the bandwidth, it
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indicates that a single univariate parameter such as density
cannot capture the nuance of coexisting spatial arrangements.
A similar phenomenon occurs when plotting nearest neighbour
distances for individual values of K (Supplementary Figure 4).

The KNA of the same simulated dataset is carried out, and the
first two components are converted to polar coordinates r and θ
relative to the origin of the axes. There is a trend between DBNN

and r, showing that DBNN has radial dependence, and the slope of
this trend also depends on Nclus (Figures 3A,B). There is a trend
between Nclus and θ, showing that Nclus has an angular
dependence, and this effect is strongest for clusters that are
further from other clusters (as clusters in close proximity to
each other start to resemble larger aggregates) (Figures 3C,D).
Noise localisations occupy a distinct angular region in relation to
signal localisations (Supplementary Figure 5). For localisations
belonging to the same cluster, those closer to the parent molecule
have a lower value of SNPC1 than those farther from the parent
molecule, i.e., there is a local trend betweenDB and SNPC1. Noise
localisations generally have higher values of SNPC1 than signal
localisations (Figure 3E). While these trends have been evaluated
separately, they are in fact linked and jointly contribute to each
localisation’s local neighbourhood. Other aspects of structure
such as distance to the second nearest binding site have not
been considered, but they will also potentially contribute to each
local neighbourhood. Finally, as the density of noise localisations
increases (Supplementary Figures 6–7), it will cause an apparent
increase in the counts per cluster, and cause low count clusters to
be indistinguishable from noise localisations. For this reason,
meaningful comparisons can only be made between images

acquired under the same imaging conditions, unless batch
effects are being assessed.

Because the SNPCA is fixed, any point in the SNPC1-SNPC2
plane will always correspond to a fixed normalised NN curve, but
interpretation of the process it arises from requires careful
consideration of the context. For example, consider two
different scenarios with different densities of noise. In scenario
A (Figure 3), the density is low, and so the noise localisations in
fact appear to be segregated. In other words, the definition of
noise arises due to the fact they do not carry biological signal but
they are not spatially random within their neighbourhoods due to
positioning of surrounding clusters. In contrast, the noise points
in scenario D (Supplementary Figures 6–7) are much denser and
so their neighbourhoods have a larger tendency towards being
spatially random. Correspondingly, their SNPC1 and SNPC2
values have decreased compared to scenario A.

Having tested KNA on simulated data we then applied it to a
DNA PAINT image of DNA origami rulers. This image is
composed of localisations corresponding to a single type of
structure randomly scattered over the ROI (Supplementary
Figure 8A). As this image has low complexity, the image
components can easily be gated in a plot of mean NN
distance and SNPC1 (Supplementary Figure 8B). The gated
components correspond to specific structures in the image
(Supplementary Figures 8C,D). The KNA of an image can
also be used to assess parameter choice when clustering, e.g.,
with DBSCAN (Supplementary Figure 9). Here, this assessment
demonstrates that it is hard to find a parameter choice that
perfectly captures all localisations belonging to the rulers while

FIGURE 2 | (A) Simulated SMLM image of spatially random molecules. Molecules are generated using a Poisson process with intensity of five over a square
window with sides of length 10 (arbitrary units). The molecules are replaced with clusters of localisations, generated with a bivariate normal distribution with variance of
0.000625 and covariance of zero. The number of localisations per cluster is an integer randomly sampled on the interval (10, 90). Finally, the noise localisations are
generated using a Poisson process with intensity of 50. DB, DBNN, Nclus plotted vs Kernel Density Estimates (KDE). (B) KDE (adaptive smoothing) of Figure 4 fitted
with a global bandwidth of 0.1. (C)KDE (adaptive smoothing) of Figure 4 fitted with a global bandwidth of 0.2. At low values of the bandwidth, it is possible to differentiate
between signal and noise localisations but the trend with DBNN and Nclus becomes less clear. At a higher value of the bandwidth, the trend DBNN and Nclus becomes clear
but it is no longer possible to differentiate between signal and noise localisations. This highlights that a KDE at using a single bandwidth is not adequate to capture the
entire spatial structure. Trend lines are fitted with a linear model and are supplied for visualisation purposes.
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rejecting other localisations. Next, KNA is applied to a T cell
image stained with a PAINT probe for phosphoinositide 3-kinase
(PI3K) binding sites (Figure 4). The structure in the localisation
pattern can be visualised by creating a colour key (hue) for each
localisation that corresponds to θ which is performed at K � 100.
The colour key is selected such that blue/violet lines up with the
largest clusters, and yellow/green lines up with noise localisations,
creating an obvious contrast. The visualisation could be further
extended by introducing a saturation or value corresponding to r,
but in practice it became visually confusing.

The power of this method is being able to express unique
images in a fixed basis which facilitates direct comparison
amongst a set of images. This opens up new concepts in
SMLM image analysis such as being able to define variance in
a set of images, or defining differences between different sets of
images. To do this, KNA is performed on each image of the set,
and SNPC1, SNPC2 and mean NN distance are retained. A fixed
grid is defined in R3 (with sets of parallel planes) and the data is
binned (Figures 5A,B). The number of points in each bin are
counted and the grid is unfolded to yield a frequency vector. Thus
each image is now represented by a frequency vector and
multivariate statistics can be applied to the set of images. A
set of 11T cells images are compared with 13 first generation
chimeric antigen receptor (first gen CAR) images and 13 2nd gen
CAR images by performing correspondence analysis (CA) on the

frequency matrix (columns are first filtered such that all bins are
occupied in all images) (Figure 6). While there is overlap between
the different sets, they are significantly different from each other.
Furthermore, the two CAR sets show a wider variance than the
T cell set.

While a visualisation based on KNA was previously developed
for individual cells, the frequency table can also be used to
develop a joint visualisation for a set of cells (Figures 5B–D).
For this, the filtered frequency matrix is first clustered using
k-means clustering (kkmeans � 4). The remaining bins, which are
not occupied by all images, become another category. This
category is split in two based on density. Finally, frequency
clusters that have a large extent in SNPC1 are split into two,
with the boundary being SNPC1 � 0 (Figure 3E). In this example,
three out of six frequency clusters are split to yield nine frequency
clusters, and they were chosen based on visual inspection. The
frequency clustering is then converted into a localisation colour
key that can be applied to an image. In the k-means step, higher
values of kkmeans were tested (not shown) but this led to a
confusing visualisation. The process is summarised graphically
in Figure 5. The major intent of this visualisation is to highlight
the contrast in global structure between images. For this image
set, black, green and cyan generally correspond to nanoclusters
with decreasing separation (resp.) to other clusters. Magenta,
coral and purple transition from low count nanoclusters to noise

FIGURE 3 | (A) Relationship between SNPCA and DBNN. DBNN has a positive trend with r, and this effect is strongest for larger clusters. Trend lines are fitted with
robust linear models and are supplied for visualisation purposes. (B) Relationship between SNPCA and cluster count Nclus. Nclus has an angular dependence within the
SNPCA. The relationship is strongest for well separated binding sites otherwise individual clusters appear to be larger aggregates. Trend lines are fitted with robust linear
models and are supplied for visualisation purposes. (C) Relationship of DB with SNPCA. After normalising SNPC1 to the smallest value in each cluster, it has a
positive trend with DB. Trend lines are fitted with robust linear models and are supplied for visualisation purposes.
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localisations, with decreasing separation (resp.) from other
clusters. Microclusters are composed of red, blue, cyan and
purple localisations, with red patches having the highest
density. Finally, violet localisations have a relatively low
frequency and often correspond to a very small number of
unusually dense nanoclusters. These properties can be gleaned
from the n-NND curves (Figure 5E). While the frequency
clustering will often be aligned with discrete spatial structures,
e.g., nanoclusters, sometimes discrete spatial structures will have
memberships of more than one frequency cluster. Given that this
method is not intended to be a new spatial clustering method, it is
not a necessarily a fault but it does point to future refinements
that can be made.

To a rough approximation, KNA will be most sensitive to the
regions on the PC axes with the maximum freedom to vary
(Supplementary Figure 3). For K � 100 this is roughly in the
range of 10–70 nearest neighbours and in our T cell receptor
dataset this corresponds to nanoclusters and structures within the
large microclusters. However longer-range structure can be
probed with larger K values. Although the local topology

description is truncated at K � 100, the distribution of single
NND values for K � 200, 500, partitioned by the nine groups
(Supplementary Figure 10), mostly have well defined peaks
which are highly reproducible amongst all the T cells. The
colours dominating the microclusters consistently have the
smallest NNDs. This indicates that the spatial organisations
found with K � 100 have highly specific relationships to long-
range structure. These properties are biologically important
because neighbouring spatial organisations are likely to
exchange proteins and facilitate protein interactions.

Finally, the frequency clusters are used to assess
phosphorylation patterns. For each cell, the proportion of co-
localised localisations in each frequency cluster is compared to
the global proportions of each frequency cluster (Supplementary
Figure 11). Here, co-localisation is defined as a CD3 localisation
being within 10 nm of a pCD3 localisation. These frequency pairs
are used to define a phosphorylation enrichment score, which is
the log-ratio of the two frequencies. Scores greater than one
indicate an enrichment for phosphorylation while scores less than
one indicate a depletion. These results are displayed in Figure 7

FIGURE 4 | Visualisation based on theta for K � 100. (A) A novel visualisation is constructed by converting θ to hue. (B) PAINT image of T cell stained with PI3K
probe, and coloured according to (A). This choice of visualisation highlights cluster size (or local aggregation within microclusters) and contrasts aggregation (blue, violet,
magenta, red, orange) with segregation (green). (C) Inset of (B). This visualisation is limited in that it is only based on a single parameter. Other information is suppressed,
for example, segregated points (green) have a different density within or outside microclusters. This indicates that they arise from different processes: they occur in-
between tightly packed molecules within microclusters, and as spurious noise outside the microclusters.
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and while the three types of cells formmarkedly different patterns
of CD3 clustering, this does not seem to alter the local thresholds
for phosphorylation. Enrichment scores are simulated for a
random assignment of phosphorylation to each frequency

cluster, and the actual enrichment scores are almost always
significantly different from random (Supplementary
Figure 12). The enrichment scores are re-calculated at
multiple co-localisation thresholds up to 500 nm

FIGURE 5 | Joint K-neighbourhood analysis over a set of diverse SMLM images. SMLM data are from ILA TCR, first gen CAR and second gen CAR in Jurkat cells
activated on supported lipid bilayers containing ICAM-1 and pMHC or CAR ligands. (A) Each image is converted into topological coordinates, and the ensuing cloud of
points is discretised using a 50 × 50 × 50 grid that is common to all images. Example images of TCR (top panel), first gen CAR (middle panel) and second gen CAR
(bottom panel) are shown. (B) The number of localisations in each bin is counted and the grid is unfolded to yield a count vector. The count vector forms a
frequency table, where each image is now represented by a row of the frequency table. The bins (columns) are clustered to give localisation groups that have a similar
frequency profiles across all images. (C) The colour key derived in (B) is transferred to the topological coordinate system. (D). The colour key is transferred back to the
SMLM image. Scale bar � 5 μm. (E) Density-normalized nearest neighbour distances (NND) from the entire dataset for the first K � 100 neighbouring localisations for
each of the nine spatial organisations arranged in the pattern of the 2-D plot in a. identifies differences in local topology. Colour key as in (C).
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(Supplementary Figure 13). As the co-localisation thresholds
increase, the scores approach zero however at different rates for
the different frequency clusters. Of particular note are the red and
blue localisations, which are consistently the most enriched in
phosphorylation across all cell types. The median enrichment
score for the red group was 0.29, which means that
phosphorylation of red CD3ζ localisations was nearly twice as
frequent compared to a hypothetical random phosphorylation
event, even though red localisations exhibited a wide variance in
number. Although red localisations resided in microclusters, not
all spatial groups in microclusters were enriched in
phosphorylation suggesting that highly local organisations
determined the likelihood of TCR triggering.

DISCUSSION

The promise of SMLM is to transition away from static
biochemical networks, which can be likened to the ingredient
list of a recipe, to dynamic spatial signalling networks, i.e., the

instructions of a recipe. To do this in a reliable way, it is necessary
to move away from the visual inspection of individual cells
towards robust statistics over large cohorts of cells. This needs
to happen at two levels: picking out the functionally relevant
molecular interactions within cells, and quantifying the variance
of occurrence across cells (both within and between cell types). To
the best of our knowledge, we have presented the first framework
which makes it possible to pick out multiscale molecular
structures with minimal assumptions, and examine their
prevalence across multiple cells with different types of
receptors, giving a systematic overview. We have demonstrated
that while the three receptor types TCR, first Gen CAR and
second gen CAR have general similarities in how they self-
arrange, they in fact are subtly distinct from each other which
can be attributed to their different structure. The analysis has
pooled the information across multiple biological replicates and
characterised the variance within the three cell types, which is of
key importance in performing reproducible research. We devised
a method to characterise the interaction of two molecular species,
namely CD3ζ and pCD3ζ, and concluded that the spatial

FIGURE 6 | Comparison of diversity in spatial organisation between cells expressing TCR, first generation CAR or second generation CAR. (A–C) Representative
SMLM images of CD3ζ chain in the TCR-CD3 complex [(A), n � 11 images], first generation CAR [(B), n � 13 images)] second generation CAR [(C), n � 13 images] in
Jurkat cells activated on pMHC-containing bilayers. Spatial organisations are colour coded as in Figure 1. Scale bars � 2.5 μm (D) Between-component analysis (BCA)
of the 9-dimensional frequency table that contains the occupancy of each spatial group as percentages of total localisations. Each symbol represents the total point
pattern of TCR (red symbols), first generation CAR (green symbols) and second generation CAR (black symbols) obtained from one SMLM image. Large triangles
represent the SMLM images shown in (A–C) Adjacent data points indicate that their images have a similar overall spatial composition even though each image is unique.
The three data sets are significantly different from each other (Methods) with the TCR exhibiting the least cell-to-cell variability. (E)Occupancy of the black, magenta, cyan
and purple spatial organisations as a function of expression levels (total localisations) for TCR (red circles), first generation CAR (green open circles) and second
generation CAR (black crosses). Other spatial groups showed no correlation with expression levels.
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preference of phosphorylation remained constant across the three
cell types, despite the differences in receptor spatial composition.
Moreover, this analysis can be extended to 1) further types of
T cells to further characterise the spatial preference of
phosphorylation, 2) other key pairs of molecular species and
3) images of >2 molecular species. Finally, as an outlook, this
analysis can be used to build an “atlas”of known cell types (T cell
or other interesting cells), to identify commonalities and
differences in receptor clustering and also integrate spatial
information with other forms of single cell “omics” data. Such
an atlas can then be used to classify novel and unknown cell types
using machine learning.
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Spatiotemporal Clustering of
Repeated Super-Resolution
Localizations via Linear Assignment
Problem
David J. Schodt and Keith A. Lidke*

Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

Many fluorescence super-resolution techniques, such as (d)STORM, PALM, and DNA-
PAINT, generate datasets wherein multiple localizations across many camera frames may
arise from a single blinking event of an emitter. These repeated localizations not only hinder
interpretation and analysis of such datasets, but also represent an incomplete use of the
fluorescence photons. Such localizations are typically combined into a single localization
either by clustering with hard distance and time thresholds, or by classical hypothesis
testing assuming Gaussian localization errors. In this work, we describe a method for
clustering that accounts for localization precision, local emitter density estimates, and a
kinetic model for blinking which is used to optimize connections within a group of
spatiotemporally colocated localizations.

Keywords: fluorescence microscopy, super-resolution, image analysis, computational modeling, single molecule
techniques

1 INTRODUCTION

Fluorescence super-resolution methods have grown to be vital imaging techniques in many research
areas, particularly in the biological sciences. Single Molecule Localization Microscopy (SMLM)
methods take advantage of an extreme form of temporal independence where individual sources
blink on and off with little spatial-temporal overlap from other “on” sources. Many of these techniques,
such as (d)STORM (Rust et al., 2006; Heilemann et al., 2008), PALM (Betzig et al., 2006; Hess et al.,
2006), and DNA-PAINT (Jungmann et al., 2010), are relatively easy to implement on common
fluorescence microscopes with little to no modifications. By finding the center of distinct PSFs arising
from independent “on” sources as observed on a camera, SMLM data is reduced to a set of PSF center
coordinates, or localizations, and their associated precisions. The subsequent processing of these
localizations can have significant impacts on the final interpretation of the data.

Despite extensive research into optimally localizing emitters (Small and Stahlheber, 2014; Deschout
et al., 2014; Sage et al., 2019), little effort has been spent on what we will henceforth refer to as the frame-
connection problem. SMLM methods produce data with multiple localizations in subsequent/near-
subsequent frames which are likely the result of a single blinking event of a single emitter. Specifically, a
single visible emitter may appear in multiple frames, with each frame potentially producing a new
localization of that emitter. The frame-connection problem deals with combining these repeated
localizations into a single localization with higher precision. To the best of our knowledge, only two
solutions to the frame-connection problem are in use: 1) combining any localizations within N frames
and d pixels of one another, as is done in the popular ThunderSTORM package (Ovesný et al., 2014)
(we’ll refer to this method as the “classical” approach); or 2) by a hypothesis test assuming Gaussian
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localization noise (“hypothesis test”) (Wester et al., 2021). A
modification to the classical approach involves setting the
separation threshold d to be some multiple of the localization
error, as is done in the PYMEVisualize package (Marin et al., 2021)
(referred to as “chaining” in that work and as “revised classical”
here). The classical approach has the benefit of simplicity: its
implementation is straightforward and accessible. The
hypothesis testing approach makes use of localization error to
test the null hypothesis that localizations came from the same
emitter, however it neglects a calculation and comparison to the
low-probability alternative hypothesis that a new emitter could
have appeared in the same location. Both of these methods
implicitly make use of the prior knowledge that multiple
blinking events within a small spatiotemporal volume is rare in
SMLM data.

To ensure information about the underlying structure of emitters
is retained, an optimal frame-connection solution should exhibit
minimal over-clustering. In other words, a frame-connection
algorithm prone to connecting localizations from distinct emitters
may reduce the quality of SMLM data. However, if a frame-
connection algorithm is prone to under-clustering localizations
from a single blinking event, it’s addition to the analysis pipeline
may not represent much value. In that view, an optimal frame-
connection solution must be capable of clustering those localizations
which are very likely to have arisen from a single blinking event of a
single emitter, all the while remaining sufficiently conservative in its
connection assignments to minimize over-clustering.

The analysis of SMLM localizations can be classified into two
categories: pre- and post-processing. Broadly speaking, pre-
processing is a clean-up stage during which raw localizations
are filtered without destroying the information they carry. Frame-
connection should be considered pre-processing in the sense that
its goal is to combine repeated localizations without destroying
the temporal information carried by emitter blinking. In contrast,
post-processing methods aim to condense/summarize the
information carried by the localizations into descriptors of the
underlying structure or process being observed. More general
post-processing clustering methods, such as DBSCAN
(Daszykowski et al., 2001), Voronoi tesselation (Levet et al.,
2015), and BaGoL (Fazel et al., 2019b), differ from pre-
clustering frame-connection in that they are not restricted to
grouping observations of a single blinking event. Rather, post-
processing clustering methods attempt to associate or make
inference from all localizations of a single emitter.

The analysis of single-particle tracking (SPT) data aims to
achieve a similar goal to frame-connection: associating multiple
localizations over time to a single emitter. The ideal solution to the
SPT problem is global across all connection possibilities; however,
such a solution is not computationally feasible for realistic
experiments. A locally greedy solution is prone to incorrect/
missed connections, a problem exacerbated by emitter blinking
and detection failure. As a result, many SPT analysis methods
approximate a global solution by performing a locally greedy (in
time) step to reduce the computational complexity. For example,
the multiple target tracing (MTT) method (Sergé et al., 2008)
considers only those connection hypotheses corresponding to a
sliding spatiotemporal window. The method presented in

(Jaqaman et al., 2008) performs an initial frame-to-frame
connection followed by a global gap closing procedure.

In this work, we present a novel solution to the single blinking
event frame-connection problem which accounts for local emitter
densities, fluorescent emission kinetics, and localizations missed
in processing, which we refer to as linear assignment problem
frame-connection (LAP-FC). Motivated by the success and
robustness of the cost matrix method to solving the linear
assignment problem (LAP) in SPT (Jaqaman et al., 2008), we
formulate the frame-connection problem in terms of the costs of
connecting/not connecting localizations. Our algorithm
effectively groups all reasonable connection hypotheses in a
pre-processing step (enabled by the typical brevity of blinking
events in SMLM data), which allows us to find a globally optimal
solution to the single blinking event frame-connection problem.
We demonstrate that our algorithm outperforms the classical and
hypothesis test methods in several situations typical of SMLM
data with no to minimal evidence of over-clustering.
Furthermore, our algorithm is in practice parameter-free,
making it the ideal method for use by end users of SMLM data.

2 MATERIALS AND METHODS

Our solution to the frame-connection problem consists of three
primary components: 1) pre-clustering of localizations into sets of
connection candidates, 2) estimating local densities and kinetic
rates from preclusters, and 3) making a maximum likelihood
assignment of localizations to clusters, which is implemented as a
LAP. In this section, we will describe our formulation of the
frame-connection problem before describing the three
components of our algorithm. A description of some
commonly used variables used throughout this text is provided
in Table 1.

2.1 Pre-Clustering
For a typical SMLM dataset, the number of localizations n ∼ 106

makes finding a global solution to the LAP across all localizations
computationally infeasible. As such, we perform a pre-clustering
of localizations in a manner similar to the revised classical frame-
connection solution as presented in (Marin et al., 2021). For a
given localization, the spatial nearest neighbor within some frame
gap and within some multiplier of its localization error (typically
chosen to be five frames and 5, respectively) is found. If that
nearest neighbor is already part of a cluster, the localization is
incorporated into that same cluster. Otherwise, the localization
and its nearest neighbor (if one exists) are defined as a new
cluster. To ensure localizations aren’t excluded from their ideal
precluster, pre-clustering allows incorporation of multiple
localizations within the same frame to the same cluster.

2.2 Estimating Local Emitter Densities and
Kinetic Rates
To estimate local emitter densities and kinetic rates, we assume
that each precluster will on average be representative of a single
blinking event. That is, we assume that most preclusters consists
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of localizations of a single emitter blinking once with a duration of
multiple frames. The rate parameters kon, koff, and kbleach, and the
probability of missing a localization pmiss are estimated from the
pre-clustered data as follows. The sum of the off rate and the
bleaching rate koff + kbleach is estimated from the cluster durations
N (in frames) as

̂koff + kbleach � −log 1 − 1
�N

( ) (1)

where ... denotes the mean value. The expression given in Eq. 1 is
derived assuming that cluster durations are geometrically
distributed with the probability of turning off given by 1 −
exp[− (koff + kbleach)] (the probability of turning off within
Δt � 1 frames). The probability of missing a localization pmiss

is estimated from the ratio of the number of localizations in a
cluster nc to the cluster’s duration N as

p̂miss � 1 − nc/N

The expected cumulative number of localizations observed by
frame f is given by

〈ncumulative〉(f) ≈ Nemitters 1 − pmiss( )
τ

1 − exp −λ1(f − 1)[ ]
λ1

− 1 − exp −λ2(f − 1)[ ]
λ2

{ }
(2)

with

λ1 � kbleach
kon

kon + koff + kbleach
≡ kbleachτ

λ2 � kon + koff + kbleach − λ1

where Nemitters is the total number of emitters present at the
beginning of the experiment. Eq. 2 was derived from the results
presented in (Nino and Milstein, 2021) by assuming kon ≪ koff
with no restriction on kbleach and by accounting for pmiss.
Similarly, the cumulative number of preclusters observed over
time is of the form

〈nclusters cumulative〉(f) ≈ koff〈ncumulative〉(f) (3)

According to Eqs. 2, 3, the off rate koff can be estimated as
nclusters/n where nclusters is the total number of preclusters and n
is the total number of localizations. The bleaching rate kbleach is
then found by subtracting the estimate for koff from Eq. 1. The
on rate kon and the underlying number of emitters Nemitters are
then estimated by fitting the cumulative number of localizations
to the model given in Eq. 2. Additional details about the
parameter estimation procedures can be found in
Supplementary Text 1.

The local pre-cluster density corresponding to each pre-cluster
is estimated by finding the k (chosen to be two in this study)
nearest pre-clusters and then computing ρc � (k + 1)/πr2k where
rk is the distance to the kth nearest pre-cluster. The underlying
local emitter density present at the beginning of the experiment is
then estimated for each pre-cluster as

ρ̂0,local

� ρc
1

k̂off τ̂

1
1 − p̂miss

1 − exp[−λ̂1(fend − 1)]
λ̂1

− 1 − exp[−λ̂2(fend − 1)]
λ̂2

{ }−1

where fend is the last frame containing localizations in the
experiment. The density of on emitters ρon and the density of
off emitters ρoff are then estimated as

TABLE 1 | Description of commonly used variables.

Variable Description Units

kon transition rate from the emitter dark state to the on (visible) state frame−1

koff transition rate from the emitter on state to the reversible off state frame−1

kbleach transition rate from the emitter on state to the irreversible bleached state frame−1

pmiss probability of failing to localize a visible emitter
n total number of (pre-frame connection) localizations in the data
nc number of localizations in a given precluster
Nemitters underlying number of emitters in the data
ρ0 initial underlying density of emitters in the first frame of data emitters/pixel2

ρ underlying density of non-bleached emitters emitters/pixel2

ρon density of emitters in the “on” state emitters/pixel2

ρoff density of emitters in the “off” state emitters/pixel2

N number of spatial dimensions
x vector of Cartesian coordinates [x1, x2, . . . , xN] pixels
Δxi separation between two localizations along the i-th dimension pixels
σ2xi ,1 variance of the first localization in the i-th dimension pixels2

σ2xi ,2 variance of the second localization in the i-th dimension pixels2

σ2xi sum of the variances σ2xi ,1 + σ2xi ,2 pixels2

f integer frame number frames
fend frame number corresponding to the last frame of the data frames
Np number of candidate frames that have elapsed by the appearance of a localization frames
Nf number of candidate frames remaining after the appearance of a localization frames
τ approximate duty cycle of an emitter
F CDF of the nearest-neighbor distribution of localizations within 5 frames of one another
δ deviation of a nearest-neighbor distribution CDF F from the ideal CDF Fideal
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ρ̂on(f) � ρ̂0,localτ̂ exp −λ̂1(f − 1)[ ] − exp −λ̂2(f − 1)[ ]{ }
ρ̂off(f) � ρ̂on(f)

k̂off

k̂on

2.3 Frame-Connection via Minimization of
Costs
The frame-connection problem can be thought of as a
spatiotemporal clustering problem in which only one
localization is allowed admittance to each cluster in each
frame. In terms of the LAP, frame-connection concerns
assigning each observed localization to one and only one
cluster, with each assignment having an associated cost. In
particular, frame-connection consists of “connection” costs,
“birth” costs, and “death” costs. The connection costs are the
costs for assigning a localization to an existing cluster. The birth
costs are the costs for birthing a new emitter with the candidate
localization being its first observation. The death costs are the
costs for prohibiting assignment of any future localizations to an
existing localization cluster. The costs are arranged in a square
matrix such that the LAP solution permits only one assignment
per row and column. We define each of these costs by assuming a
three-state kinetic model for emitter blinking. The transition rates
are defined as kon, the rate from the (reversible) off state to the
visible on state; koff, the rate from the on state to the off state; and
kbleach, the rate from the on state to the (irreversible) bleached
state. We additionally assume a constant probability of missing a
localization (i.e., failing to localize a visible emitter) which we
designate pmiss. Furthermore, the costs account for the local
density of emitters ρ(x, f) where x � [x, y] is the precluster
location and f is the frame number. Our procedure for estimating
kon, koff, kbleach, pmiss, and ρ(x, f) directly from the data is described
in section 2.2.

The connection, birth, and death costs are defined to be the
negative logarithm of the probabilities associated with the
prescribed actions. The cost cc of connecting two localizations
is defined as follows:

cc � −log ∏N
i�1

p Δxi |σ2
xi

( ) · p observe aftermissing localizations|pmiss ,Δf( ) · p(not turning off |Δf)⎧⎨⎩ ⎫⎬⎭

where N is the number of dimensions (taken to be 2 for the
present study), Δxi is the separation between the two localizations
along the i-th dimension, σ2xi ≡ σ2xi,1 + σ2xi,2 is the sum of the
localization variances σ2xi,1 for localization 1 and σ2xi,2 for
localization 2 in the i-th dimension, and Δf > 0 is the
temporal separation between the two localizations. The
probability terms are given by

p Δxi|σ2xi( ) � 1�����
2πσ2xi

√ exp
Δx2

i

2σ2xi
( )

p observe aftermissing localizations|pmiss,Δf( ) � 1 − pmiss( )pΔf−1
miss

p(not turning off |Δf) � exp − koff + kbleach( )Δf[ ]

where the rate parameters are given in units of frame−1. The cost
of introducing a new emitter in frame M after Np candidate
frames (“birth” cost) is given by

cb � − log p new emitter turning on|kon , ρoff (x, f), Np( ) · p notmissing localization|pmiss( ){
+ p observe aftermissing localizations|pmiss , Np, ρon(x, f)( )}

� − log ρoff(x,M) 1 − exp −kon( )[ ]exp −konNp( ) 1 − pmiss( ){
+ ρon x,M −Np( ) 1 − pmiss( )pNp

miss}
where ρoff (x, f) is the local density of emitters in the off state, and
ρon (x, f) is the local density of emitters in the on state (see section
2.2). The cost of not observing an emitter for the remaining Nf

candidate frames (“death” cost) is given by

cd � −log p bleaching|kbleach( ) + p turn off |koff( ) + p missing localizations|pmiss , Nf( ){ }
� −log 1 − exp −kbleach( )[ ] + 1 − exp −koff( )[ ] + p

Nf

miss{ }

As in (Jaqaman et al., 2008), we arrange our LAP costs in a
square block matrix composed of four equal sized square sub-
matrices, with each sub-matrix being nc × nc for nc
localizations within a given precluster. The upper-left block
matrix contains the connection costs between a localization
identified by its row index with a localization identified by its
column index, arranged as an upper-triangular matrix (to
prohibit selection pairs of row m to column n and row n to
column m) and divided by two to account for the definition of
the bottom-right auxiliary block costs (see below). The
bottom-left block contains the birth costs for the
localizations identified by the column index. The upper-
right block contains the death costs for the localizations
identified by the row index. The bottom-right block, to
which we attribute no physical significance, is defined to be
the transpose of the upper-left connection block, as
assignments in the upper-left block lead to the same
assignments in the (transposed) lower-right block. All cost
matrix entries containing a prohibited selection (e.g., main
diagonal terms, which represent connection of a localization to
itself) are set to a non-link marker, which tells the LAP solver
not to select those entries. Costs that are infinite or otherwise
invalid (i.e., not a number) are set to twice the sum of all valid
costs to ensure they are only selected when no other
assignment is available. The LAP is then solved using the
Jonker-Volgenant algorithm (Jonker and Volgenant, 1987),
which assigns each localization to a single cluster of
localizations. This process is then repeated for each pre-
cluster of localizations to yield the final frame-connected set
of localizations.

Localizations connected by the frame-connection algorithm
are combined assuming they each represent independent samples
from a Gaussian distribution. The resulting position of the m
frame-connected localizations is taken to be the maximum-
likelihood estimate for the position x

x̂ � ∑m
i�1xi/σ

2
i∑m

i�11/σ
2
i

(4)

and the localization error for the frame-connected localization is
taken to be the inverse of the Fisher information
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σ̂2 � 1∑m
i�11/σ

2
i

(5)

2.4 Simulated SMLM Data
Simulated SMLM localizations were generated to test the frame-
connection algorithms. A uniformly distributed point target was
simulated by scattering emitters uniformly across a square region
of interest (ROI). Dimerized emitters were simulated by placing
emitters at varying separations from one another with sufficient
inter-dimer spacing to ensure localizations from distinct dimers

will not be connected by any of the algorithms. To generate
localizations from simulated emitter positions, the frames in
which each emitter was observed were simulated by the
Gillespie algorithm (Gillespie, 1976) as prescribed by the
transition rates kon � 0.005 frame−1, koff � 0.5 frame−1, and
kbleach � 0.2 frame−1. Localizations corresponding to the
emitter being on the entire frame were assigned a fixed
photon count I. For frames in which the emitter turned on,
turned off, or bleached, the number of photons was reduced to I
(1 − u) where u is sampled from the standard uniform
distribution. Gaussian noise was added to each localization

FIGURE 1 | Uniformly distributed emitters with initial density ρ0 � 10 emitter/pixel2, kon � 0.005/frame, koff � 0.5/frame, kbleach � 0.2/frame, pmiss � 0.01, photon
emission rate of 1,000 photons/frame, additional Gaussian noise with σ � 0.05 pixels, and 10,000 total frames. (A) “Ideal” frame-connection solution, scale bar � 2 pixels.
(B)–(E) Results for the three sub-ROIs marked with yellow squares in (A) using (B) LAP-FC with a maximum pre-clustering frame gap of five frames and a maximum
separation of 5 times the localization error; (C) the hypothesis test algorithmwith a maximum frame gap of five frames, a maximum separation of 1 pixel, and a level-
of-significance of 0.05; (D) the classical algorithm with a maximum frame gap of 1 frame and a maximum separation of 0.2 pixels; and (E) the revised classical algorithm
with a maximum frame gap of five frames and a maximum separation of 2 times the localization error. The circles in (B)–(E) are centered at the localization position with
radii equal to the localization error. Green circles represent localizations from the ideal results from (A). Magenta circles represent the results of the frame-connection
algorithm. White circles correspond to frame-connection results matching the ideal results.

FIGURE 2 | Deviation of the nearest-neighbor distance CDF from that of the ideal frame-connection result ensembled over multiple uniform emitter simulations,
where nearest-neighbors are restricted to appear within five frames of one another. The green line corresponds to the revised classical method, the purple line to the
classical method, the yellow line to the hypothesis test method, the red-orange line to the LAP-FC method, and the blue line is the δ � 0 baseline. The number of
simulations and initial densities were varied as (A) 40 simulations with ρ0 � 5 emitters/pixel2, (B) 20 simulations with ρ0 � 10 emitters/pixel2, and (C) 10 simulations
with ρ0 � 20 emitters/pixel2.
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with a standard deviation given by the Cramér-Rao lower bound
corresponding to fitting a Gaussian to the emitter PSF given the
background intensity and a finite pixel size (Smith et al., 2010). To
mimic noise sources not accounted for by localization errors,
such as residual, uncorrected sample drift, an additional source of
Gaussian noise with standard deviation 0.05 pixels was added to
each localization. A constant probability of missing a localization
pmiss was applied to the final results by randomly removing pmissn
(rounded to the nearest integer) localizations from the n total
localizations.

2.5 Comparison to “Ideal” Results
The “ideal” frame-connection results are specified as follows. For
a given simulation, the underlying emitter generating each
localization is noted. Localizations arising from the same
emitter that occur within five frames of one another are then
combined using Eqs. 4, 5. These frame-connected localizations
are considered to be the “ideal” frame-connection result.

The cumulative distribution function (CDF) of the nearest-
neighbor distance distribution between frame-connected
localizations was computed as follows. For a given set of
frame-connected localizations, the nearest-neighbor to each
localization within five frames (in the past or into the future,
but excluding same frame neighbors) was found and their
separation was stored. The binned CDF was then computed
from the resulting set of nearest-neighbor distances.

Comparisons to the “ideal” frame-connection CDF Fideal were
made by subtracting Fideal from the binned CDF F of the results
being compared. The difference δ ≡ F − Fideal provides a visual
tool for comparing frame-connection results. A deviation δ < 0
suggests that localizations were connected that should not have
been, since such over-connection would increase the expected
nearest-neighbor distance. Similarly, a difference δ > 0 suggests
that frame-connection did not connect localizations which
should have ideally been connected. Although this trend for δ
may not necessarily hold for exceptionally high localization
densities (e.g., for very high localization densities, incorrect
connections may in fact cause the mean nearest-neighbor
distance to decrease), we don’t expect such data to be relevant
in SMLM.

3 RESULTS

3.1 Uniformly Distributed Emitters
Simulated SMLM data for uniformly distributed emitters was
generated as described in section 2.4. The frame-connection
results from each of the algorithms (LAP-FC, hypothesis test,
classical, and revised classical) are shown in Figure 1. ROI
selections were made to highlight the performance of LAP-FC
in comparison to the other algorithms. For the sole emitter blink
present in Figure 1 ROI 1, the LAP-FC algorithm was the only

FIGURE 3 | Gaussian reconstruction images for frame-connection results on simulated dimer emitters with spatial separations ranging from 0.1-1 pixel, kon �
0.005/frame, koff � 0.5/frame, kbleach � 0.2/frame, pmiss � 0.01, photon emission rate of 1,000 photons/frame, and 10,000 total frames. (A) “Ideal” frame-connection
solution, scale bar � 2 pixels. (B)–(E) Results for the three sub-ROIs marked with yellow squares in (A) using (B) LAP-FC with a maximum pre-clustering frame gap of five
frames and a maximum separation of 5 times the localization error; (C) the hypothesis test algorithm with a maximum frame gap of five frames, a maximum
separation of 1 pixel, and a level-of-significance of 0.05; (D) the classical algorithmwith amaximum frame gap of 1 frame and amaximum separation of 0.2 pixels; and (E)
the revised classical algorithm with a maximum frame gap of five frames and a maximum separation of 2 times the localization error. Scale bar � 2 pixels.
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method to completely connect all observed localizations. For
Figure 1 ROI 2, the hypothesis test, classical, and revised
classical algorithms correctly connected most of the
localizations. For Figure 1 ROI 3, the classical and revised
classical algorithms again connected most localizations
correctly while failing to connect some others.

To compare the frame-connection algorithms for data with
varying densities, a total of 40, 20, and 10 independent uniform
emitter simulations were generated for initial emitter densities of
ρ0 � 5 emitters/pixel2, ρ0 � 10 emitters/pixel2, and ρ0 � 20
emitters/pixel2, respectively, with the parameters otherwise
matching those described in section 2.4. The deviation δ of
the nearest-neighbor distance CDF from the ideal CDF was
computed as described in section 2.5. The results are shown
in Figure 2. For a relatively low initial emitter density of 5
emitters/pixel2, all of the algorithms tend to under-cluster
localizations, with LAP-FC showing closer correspondence to
the ideal case; however, the hypothesis-test may slightly over-
cluster as indicated by the dip of δ < 0 in Figure 2A. For an initial
density of 10 emitters/pixel2, the hypothesis test algorithm shows
the closest correspondence to the ideal frame-connection results,
however the dip δ < 0 seen in Figure 2B suggestive of over-
clustering is more prominent than in Figure 2A. The LAP-FC
algorithm shows the closest correspondence to the ideal result
without indication of over-clustering. For an initial emitter
density of 20 emitters/pixel2, Figure 2C suggests that the
hypothesis testing method is largely over-clustering
localizations. The LAP-FC algorithm otherwise shows the
closest correspondence to the ideal frame-connection results
without significant over-clustering, however a small dip of δ <
0 was present at a scale not visible in the figure.

For the simulations described in the preceding paragraph,
histograms of the durations of frame-connected localizations
were generated and are shown in Supplementary Figure S2.
Comparing to the expected distribution (geometric with
probability p � 1 − exp(−k), where k ≡ koff + kbleach) of frame-
connected durations, all methods appear to have an over-
abundance of short durations, with the trend being similar at
each tested density. LAP-FC and the hypothesis test methodmore
closely reproduce the expected distribution than the classical and
revised classical methods, with the hypothesis test showing the
closest correspondence.

To test the robustness of LAP-FC with respect to its estimates
of kon, koff, kbleach, and pmiss, LAP-FC was repeated for the 20 ρ0 �
10 emitters/pixel2 simulations described above with varying
values of each parameter. For each of the 20 simulations,
LAP-FC was applied and the internally estimated values k̂on,
k̂off , k̂bleach, and p̂miss were noted (see Supplementary Table S1).
LAP-FC was then applied to each simulation with externally
prescribed values of kon, koff, kbleach, and pmiss, with each
parameter being varied individually with the other parameters
held fixed at their true simulated value. Each parameter was
varied to their upper and lower bound (see Supplementary Text
1) as well as to the maximum and minimum values estimated in
the original LAP-FC application described above. The resulting
values of δ were computed as described in 2.5 and plotted in
Supplementary Figure S1. According to the results in
Supplementary Figure S1, even large deviations in parameter
estimates from the true values rarely lead to over-clustering by
LAP-FC, and in all observed cases (i.e., excluding the upper and
lower bound demonstrations), the results show little deviation
from those when all parameters are set to their simulated value.

FIGURE 4 | Frame-connection results for actin microfilament localizations generated by multi-emitter fitting. (A) Gaussian reconstruction image of the LAP-FC
frame-connection results. Selected ROIs indicated by numbered yellow boxes in (A) are shown for the frame-connection results using (C) LAP-FC with a maximum pre-
clustering frame gap of five frames and amaximum separation of 5 times the localization error; (D) the hypothesis test algorithmwith amaximum frame gap of five frames,
a maximum separation of 1 pixel, and a level-of-significance of 0.05; (E) the classical algorithm with a maximum frame gap of 1 frame and a maximum separation of
0.2 pixels; and (F) the revised classical algorithm with a maximum frame gap of five frames and a maximum separation of 2 times the localization error. Scale bar �
0.5 μm. Localizations in (B)–(F) are displayed as circles of radius equal to the localization error centered on the estimated position and color-coded to indicate time, with
dark blue indicating the start of the experiment and yellow indicating the end of the experiment. The red arrows in (B)–(F) ROI 1 point to a qualitatively interesting set of
localizations.
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3.2 Simulated Dimer Emitters
Dimerized emitters were simulated at 20 spatial separations
ranging uniformly from 0.1-1 pixel to investigate frame-
connection performance for closely spaced emitters. Gaussian
reconstruction images are shown for the results of each of the
frame-connection algorithms in Figure 3. Overall, each of the
tested algorithms performed well enough to observe the general
trend in the data clear from the ideal result in Figure 3A (that is,
pairs of closely spaced emitters with an increasing pair separation
from left to right). The classical and the revised classical methods
(Figure 3D,E, respectively) did not correctly connect as many
localizations as the LAP-FC and hypothesis test methods
(Figure 3B,C, respectively), however no over-clustering was
apparent. Overall, the LAP-FC performed better than the
other methods tested. No apparent over-clustering artifacts
were introduced by any of the four algorithms tested.

3.3 High Duty Cycle Actin With Multi-Emitter
Fitting
An SMLM dataset resulting from Bayesian multi-emitter fitting
(Fazel et al., 2019a) of actin data with a relatively high localization
density was used to compare the performance of the tested frame-
connection algorithms. The results are shown in Figure 4. Inspecting
the ROI selections made in Figures 4C–F and comparing to the
non-frame connected results in Figure 4B, each of the algorithms
appear to make reasonable connections based on localization
spatiotemporal proximity. The LAP-FC and hypothesis testing
algorithms made the most connections as is noticeable by the
feature sharpness in Figures 4C,D. The classical and revised
classical methods both fail to connect a pair of relatively isolated
nearby emitters on the right hand side of ROI 1 (shown as blue
circles and pointed to by small red arrows), whichwhen compared to
Figure 4B seem to be arising from the same emitter.

4 DISCUSSION

SMLM is rapidly becoming a commonplace tool for researchers in
need of nanoscale spatial resolution in fluorescence microscopy.
The expansion of SMLM outside of dedicated research labs
necessitates reliable analyses which can be trusted without
expert intervention. Quantitative analysis of the resulting super-
resolved localizations requires, in many cases, a well-characterized
correspondence between localizations and emitters. That is to say,
many analyses of super-resolved localizations require a one-to-one
relationship between localization and emitter. While recent
techniques have largely solved this localization clustering
problem (Fazel et al., 2019b), any such method will be limited
by the reliability of the input localizations. If the input localizations
contain a very large proportion of repeated localizations, such post-
processing tools may be pushed to their practical limits, for
example leading to infeasible computational costs. Alternatively,
localizations which have been over-clustered (i.e., localizations
from distinct emitters that were connected together) represent a
loss of information unlikely to be captured by any post-processing
analysis.

Many steps in SMLM data analysis have been refined and
validated (e.g., fitting the localizations and determining the error in
their positions), however the frame-connection problem has received
little attention. Known existing methods for solving the frame-
connection problem have not reached an optimal solution. We
have shown that the classical and the revised classical methods are
perhaps too conservative in their assignment of connections to make
optimal use of the data. On the other hand, the hypothesis testing
method is perhaps too liberal in its assignment of connections. We
have shown that the hypothesis testing method for frame-connection,
which typically provides more appealing results than the classical and
revised classical methods, is susceptible to over-clustering at high
densities. Furthermore, results of the classical, revised classical, and the
hypothesis test algorithms rely heavily on the selection of arbitrary
thresholds.We have shown that, by formulating the frame-connection
problem as a linear assignment problem with statistically motivated
assignment costs, these common artifacts can largely be reduced, with
the added benefit that arbitrary thresholds are used only in a pre-
processing step. Our algorithm accounts for the local emitter densities,
the kinetic rates of blinking, and the possibility ofmissing localizations
of a visible emitter. By combining all of this knowledge, our algorithm
exceeds the performance of other known frame-connection problems
with minimal to no over-clustering.
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Corrigendum: Spatiotemporal
Clustering of Repeated
Super-Resolution Localizations via
Linear Assignment Problem
David J. Schodt and Keith A. Lidke*

Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

Keywords: fluorescence microscopy, super-resolution, image analysis, computational modeling, single molecule
techniques

A Corrigendum on

Spatiotemporal Clustering of Repeated Super-Resolution Localizations via Linear Assignment
Problem
by Schodt D. J and Lidke K. A (2021). Front. Bioinform. 1:724 325. doi: 10.3389/fbinf.2021.724325

In the original article, there was an error. Eq. (2) was written incorrectly. A correction has been made
to MATERIALS AND METHODS, Estimating Local Emitter Densities and Kinetic Rates, Paragraph
Number 2:

The expected cumulative number of localizations observed by frame f is given by

〈ncumulative〉(f) ≈ Nemitters 1 − pmiss( )τ 1 − exp −λ1(f − 1)[ ]
λ1

− 1 − exp −λ2(f − 1)[ ]
λ2

{ } (2)

In the original article, there was an error. An unlabeled equation was written incorrectly.
Additionally, a line of text in the associated paragraph was written incorrectly. A correction has
been made to MATERIALS AND METHODS, Estimating Local Emitter Densities and Kinetic Rates,
Paragraph Number 4:

The local pre-cluster density corresponding to each pre-cluster is estimated by finding the k
(chosen to be two in this study) nearest pre-clusters and then computing ρc � (k + 1)/πr2k where rk is
the distance to the kth nearest pre-cluster. The underlying local emitter density present at the
beginning of the experiment is then estimated for each pre-cluster as

ρ̂0,local � ρc
1

k̂off τ̂

1
1 − p̂miss

1 − exp[−λ̂1(fend − 1)]
λ̂1

− 1 − exp[−λ̂2(fend − 1)]
λ̂2

{ }−1

where fend is the last frame containing localizations in the experiment.
The authors apologize for this error and state that this does not change the scientific conclusion of

the article in any way. The original article has been updated.
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3D Structure From 2D Microscopy
Images Using Deep Learning
Benjamin Blundell 1, Christian Sieben2, Suliana Manley3, Ed Rosten4, QueeLim Ch’ng1 and
Susan Cox5*

1Centre for Developmental Biology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London,
United Kingdom, 2Nanoscale Infection Biology Lab (NIBI), Helmholtz Centre for Infection Research, London, Germany, 3École
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 4Snap, Inc., London, United Kingdom, 5Randall Centre for Cell and
Molecular Biophysics, King’s College London, London, United Kingdom

Understanding the structure of a protein complex is crucial in determining its function.
However, retrieving accurate 3D structures from microscopy images is highly challenging,
particularly as many imaging modalities are two-dimensional. Recent advances in Artificial
Intelligence have been applied to this problem, primarily using voxel based approaches to
analyse sets of electron microscopy images. Here we present a deep learning solution for
reconstructing the protein complexes from a number of 2D single molecule localization
microscopy images, with the solution being completely unconstrained. Our convolutional
neural network coupled with a differentiable renderer predicts pose and derives a single
structure. After training, the network is discarded, with the output of this method being a
structural model which fits the data-set. We demonstrate the performance of our system
on two protein complexes: CEP152 (which comprises part of the proximal toroid of the
centriole) and centrioles.

Keywords: SMLM, deep-learning, structure, storm, AI

1 INTRODUCTION

Imagingmesoscale 3D biological structures (that is, those between the nano- and themicro-scale) is a
critical problem in biology, as many processes of biological interest rely on collections of proteins or
other molecules arranged into a distinct architecture. Currently two major techniques can provide
data on the shape of such aggregates: electron microscopy and light (particularly fluorescence)
microscopy. Electron microscopy (EM) offers resolution below 1 nm, but is limited in the thickness
of the samples it can observe, and analysis is relatively complex, generally requiring multiple particle
averaging (Milne et al., 2013). Fluorescence microscopy is experimentally relatively simple and can
deal with larger samples, but generally yields only single images which are limited in resolution to
about 250 nm (Schermelleh et al., 2010).

Super-resolution techniques allow this limit to be broken, pushing the achievable resolution down
to 20–100 nm. In particular, single molecule localisation microscopy (SMLM) yields high resolution
images (around 20–30 nm), while allowing large amounts of data to be collected (Schermelleh et al.,
2010; Holden et al., 2014) and being relatively experimentally simple. SMLM imaging has a trade off
between the x, y and z resolution: gaining information in the z direction is possible, but generally at
the expense of in-plane information quality (Badieirostami et al., 2010). Therefore, 2D images will
have the highest localisation quality, but clearly limit information on 3D structure.

The challenge of how to infer 3D information from 2D images has been tackled both from the
perspective of synthesising EM images to create a 3D structural model (Milne et al., 2013), and in the
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computer vision field to infer a 3D structure from a single image
of a single object (Fan et al., 2017). In recent years, deep learning
has emerged as a promising approach to improve structural
fitting.

Convolutional neural networks are one of the most well
known forms of Deep Learning - convolving the data with a
kernel (Goodfellow et al., 2016). This process reduces the size of
the principal data dimensions, creating a number of feature maps
or filters, each sensitive to a particular, local aspect of the data.
Through training, the network parameters adjust to produce the
required output.

Here, we use a deep learning network to infer the pose of point
cloud data and 3D structure. Our algorithm HOLLy
(Hypothesised Object from Light Localisations) allows us to
perform a completely unconstrained model fit from 2D SMLM
images.

2 METHODS

2.1 Modelling Pose Using Deep Learning
HOLLy fits a 3D model against a set of 2D images of the same
biological structure. The input images are typically super-
resolved SMLM reconstructions, each of which is a z
projection of the structure being imaged from some unknown
rotational orientation and translation. The goal is to deduce the

pose (rotation and translation) for each input image and infer a
single 3D model for the entire data-set.

The 3D model is a collection of points (with their co-ordinates
represented by a matrix) which are initiated at random positions.
The current positions of the points, and the pose corresponding
to each input image, are used to generate a simulated microscopy
image corresponding to each input image (with the image being
projected in z into a single x-y plane). The image is rendered with
a Gaussian at each point, as is standard for SMLM. Each Gaussian
has the same sigma, which is a parameter of the renderer, and the
resulting image is differentiable with respect to the point
coordinates and sigma. Our renderer is designed to efficiently
and accurately render SMLM point clouds. This is in contrast to
existing state of the art such as OpenDR (Loper and Black, 2014),
DiRT (Henderson and Ferrari, 2020), PyTorch3D (Ravi et al.,
2020), Pulsar (Lassner and Zollhöfer, 2020) and DWDR (Han
et al., 2020) which are designed primarily to render illuminated,
texturedmeshes with perspective cameras (or in the case of Pulsar
and Insafutdinov and Dosovitskiy (2018), rendering with
spheres), our renderer is simpler and more closely models
SMLM. Rather than rendering rasterised triangles, HOLLy
converts the final 2D points to Gaussians.

We used a simple convolutional neural network (CNN)
consisting of 10 layers of strided convolutions and Leaky-
ReLU (Aggarwal, 2018), followed by two fully connected
layers. Figure 1 highlights the major components (further

FIGURE 1 | An overview of our network. Batches of images of size 128 × 128 pixels are fed to the convolution layers, which reduce the batch down to 6 parameters.
These are passed to the rendering pipeline along with the 3D reconstruction matrix to produce a batch of output images. The rendering parameters Rx, Ry and Rz
represent the rotation in “Angle-Axis” form. Tx and Ty represent translation in the X, Y plane. S represents the predicted output-sigma. The 3D reconstruction matrix
contains a list of vertices representing the predicted point-cloud.
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information can be found in Supplementary Material: HOLLy
technical details).

The CNN yields six outputs. The position and orientation of
the model are described by the translation in X and Y, and three
rotation parameters for which we used the axis-angle
formulation. The sixth parameter is the output-sigma value
which is used as the sigma for the renderer. Note that the
output-sigma explicitly differs from the resolution of the input
images, i.e., in the case where input images are themselves
reconstructions of SMLM data, the sigma used for their
reconstruction (input-sigma) is not the same as output-sigma.

In principle, if the input data were perfect, the output sigma
could be fixed to be equal to the input sigma. Since this is not the
case, allowing the model to predict output-sigma allows it to
account for some of the noise in the data. For example, consider
the case of scatter (noise in the position of fluorophores). That is
essentially a stochastic blur of the model structure, so when the
reconstructed 3D model (which has no scatter) is rendered, the
sigma needs to be higher in order for the output to be a good
match to the input. This is discussed further in Section 2.6.

The key element of our system is the use of a CNN to predict
the pose for each input image. Allowing for a pose per image is a
significant advantage over techniques such as template matching
based Cryo-EM (Milne et al., 2013), or classification of the images
by view (Salas et al., 2017) since the system is not limited to a
small number of orientations, and views do not have to be
determined a-priori on unknown structure in order to build a
classifier.

Additionally, using a CNN to predict the pose has a big
advantage in modelling a pose per image as it makes the

overall optimization much more tractable. The reason for this
is that the space is in some sense smooth and images that are close
in appearance will usually also be close in pose. This allows the
network to aggregate information from similar images in order to
get a better prediction of the pose for all of them. It also allows for
fast convergence because an improvement on one image can
cause an improvement in many others. We illustrate this in
Figure 2, where data that is not seen during training can
generate outputs that correspond to the input.

The advantage of using a CNN can be illustrated by attempting
to solve the same problem by direct optimisation. We removed
the convolutional layers from the architecture shown in Figure 1,
replacing them with a single 5 × Nmatrix (N being the size of the
training set). A training batch consists of a batch of images and
their corresponding poses from that 5 × N matrix. These
differentiable render is used to render the model with these
poses. This rendered images are compared to the
corresponding input image creating a loss as before. The loss
is back-propagated through the diffentiable renderer and used to
update the model and the poses. Various learning rates, models
and optimisers were tested.

This direct optimisation approach could not reproduce 3D
sample structure or model the pose correctly. We suspect this is
due to both a lack of shared rotational model between data and
the difficulty of modelling rotation. The results can be found in
Supplementary Material: Direct Optimisation. These results
demonstrate the advantages of using a CNN in this scenario.

2.2 The Output Is a Structural Model Rather
Than a Trained Network
Often, the value of a neural network is the network itself that can
be used to predict, discriminate or otherwise solve a particular
problem once trained. Our approach ignores the network once it
has been trained; the value in our approach is the 3D model
stored in the Reconstructed 3D Model matrix.

This 3D model gradually improves as training continues. The
user can stop training at any time, typically when the loss stops
improving. The final positions of the points in the 3D
reconstruction matrix represent the final structure, whereupon
the network is no longer required.

2.3 Simulated Data Models
In order to evaluate HOLLy, we selected a number of ground-
truth point-clouds with different characteristics: a reduced
version of the Stanford Bunny1, the Utah Teapot2 and an
approximation of the CEP152/HsSAS-6 complex (Sieben et al.,
2018).

All of the models consist of a relatively small number of
vertices (fewer than 400). Each have unique characteristics, such
as different numbers of vertices, symmetries and voids (see
Section 3 - Results). The Stanford Bunny and Utah Teapot
are standard in computer vision tests as they have properties

FIGURE 2 | Demonstration of information sharing between different
poses with the CNN. HOLLy was stopped half-way through the first epoch of
training, meaning only half of the data has been used for training. Note that for
the half of the data which has been seen, this corresponds to a single
step of gradient descent per image, and half of the data has not yet been used
at all. Already it can be observed that in many cases on seen data (illustrated in
A, C) there is correspondence between the input and output shapes (albeit
imperfect as it is very early in the optimization process). The advantage of the
CNN can be observed in the results on unseen data where this
correspondence also exists (B, D). This partial convergence on unseen data
shows that the CNN allows earlier data to assist in the convergence of data
seen later, which provides a very substantial improvement over modelling
poses separately.

1http://graphics.stanford.edu/data/3Dscanrep/\#bunny
2https://www.computerhistory.org/collections/catalog/102710359
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that are likely to prove challenging. The Utah teapot is close to,
but not quite, symmetric, and the Stanford bunny has fine
structure (ears) but also relatively large areas of smooth
structure (back). These properties showcase the potential of
the method to yield results as experimental data improves.

As we have complete control of data-set generation from
synthetic models, we must choose the distribution of data
across the translation and rotation space. We uniformly
sampled the 3D rotation group—SO(3)—which consists of all
rotations in Euclidean R3 space, centred at the origin, using the
equation presented by3 Kirk (1994). The models used in the
simulated data are small enough to be rendered “on-the-fly” into
images as the network trains.

2.4 Experimental Data From Biological
Structures
Our main biological targets were a centriolar complex comprised
of the CEP152 protein, and purified centrioles.

The first dataset was a super-resolution (STORM) microscopy
data-set of CEP152, obtained and analysed as described in Sieben
et al. (2018). The structure of this centro-symmetric complex has
been fitted with a toroid and found to be 400 nm in diameter
(Sieben et al., 2018), which subsequent work confirmed (Kim
et al., 2019). This yielded a list of localisations for each identified
CEP152 structure which were reconstructed localisations into 2D
images, rendering with a Gaussian. Since the number of
localisations in the experimental SMLM data-sets outnumber
the modelled point-cloud by a factor of 20, this process is
computationally intensive, and so these images are pre-
rendered and stored on disk.

This data-set consists of 4,663 individual images. Some of
these show incomplete labelling or are not centriole structures
(such as all the fluorophores converging on a single, bright spot).
Erroneous data were removed manually, reducing the data-set
size to 2055. Data was augmented by a factor of 20 rotating the
entire centriole within the field of view using a 2D rotational
matrix, giving a final training set size of around 40,000. As the
data is represented by points and not a bitmap, it can be rotated
by an arbitrary angle without introducing additional artefacts.
Examples of the STORMCEP152 training images can be found in
the Supplementary Figure S2.

The second data-set is derived from expansion microscopy
experiments to image labelled glutamylated tubulin in centrioles
purified from Chlamydomoanas reinhardtii (Mahecic et al.,
2020). The images are segmented and presented as tiff stacks
of size 128 × 128 × 84 in xyz. A sum projection is carried out to
eliminate the information in z, creating a 2D image of an
unknown blur. Each image was cropped to 60 × 60 pixels
centred on the protein complex.

As the data are represented by pixels and not a list of
localisations, augmentation is limited to the four cardinal
directions to avoid the creation of artefacts. The resulting
data-set is 14,612 items in size. As the point-spread function is

not modelled, there is no base input-sigma. A Gaussian blur of
decreasing sigma is applied “on-top-of” the existing image (see
Supplementary Figure S3).

2.5 Input Images
The input to the network consists of a batch of 2D images, each of
the same target object from different viewpoints. These images
may be simulated (rendered from a known ground-truth 3D
model) or derived from experimental data.

For both simulated and real SMLM data, rendering with a
Gaussian generates a 2D image, with the resolution of the
reconstruction being determined by the input-sigma. For the
simulated data the 2D point cloud is generated by applying a
random rotation and translation, adding noise and projecting
away Z. For data in the form of images were blurred with a
Gaussian, with input-sigma as the width.

Before being passed into the network, the input images were
normalised to ensure that the pixel values fall within boundaries
usable by the network (see Section 2.8).

Deep learning requires a large, representative training set for
results to be accurate. For accurate 3D reconstruction, it is
important to sample diverse angles since areas of the object
not represented in the training data will not be reconstructed.
In the simulated case, data-sets of any size can be generated (time
permitting). However, this is not the case for the
experimental data.

2.6 Sigma
The input-sigma value, which defines the level of blur
(i.e., resolution) in the input images, is initialised at a high
value (one which would produce an image with around
diffraction limited resolution). The value is then decreased on
a curve as the network trains. By starting with a larger input-
sigma, the loss between the input and output images is smaller,
with shallower gradients over larger distances. This allows the
network to broadly optimise the points in the 3D reconstructed
model matrix, refining finer detail as the input-sigma is reduced.

The lowest value for sigma can be set to the expected
localization error for a particular SMLM experiment. The
input-sigma curve can be found in the Supplementary Figure
S1. The output-sigma (that is, the sigma used by the differentiable
renderer to create images from the hypothesised model) is
predicted by the network. The output-sigma can be set to
match the known input-sigma, but early experiments suggest
that predicting the output-sigma increases the network’s
tolerance to scattered or missing fluorophores. By increasing
the output-sigma the blur increases, accommodating the
scattered points.

In experimental data, we would expect around an ∼8 nm
scatter in position due to the antibody used and an additional
∼12 nm degradation in precision due to the localisation accuracy.
Such values suggest an expected resolution around 20nm, with an
expected sigma around 10 nm. For our STORM CEP152
experiments we set the lower-bound of the input-sigma to a
value of ∼3.2 pixels, which equates to 30 nm using the scale
provided with the data. The input-sigma changes at the end of
each epoch, rather than continuously, giving a “stepped-curve”3https://demonstrations.wolfram.com/SamplingAUniformlyRandomRotation/
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(see Supplementary Material: Note 3 - input-sigma Hyper-
parameter and Supplementary Figure S1) This is due to the
images being pre-rendered before training begins. This decision
was made for performance reasons.

The expansion microscopy centriole data-set has a scale of
14 nm per pixel. The additional input sigma curve begins at 2.8
pixels (∼ 40 nm), reducing to zero. The smaller initial input sigma
attempts to account for the smaller image size and the unknown
resolution of the data.

2.7 Loss Function
The loss is calculated directly between images by comparing the
pixel values between the input data and the predicted result, using
the PyTorch L1 Reduction option4 with the ‘sum’ reduction.
Rather than use the L1 loss between entire images, a mask was
generated from target image. The loss was calculated only for
these pixels that are within the mask, with areas outside the mask
set to zero for both input and output images.

2.8 Reconstructed 3D Model Matrix and
Normalisation
As training progresses, the matrix of 3D points that represents the
reconstructed 3D model moves from a random positions to yield
a recognisable structure. The size of this matrix (the number of
points to optimise) is ultimately limited by the amount of
memory and time available to the end user. The matrix size is
chosen by the user before training starts. In simulated tests, the
number of points responsible for generating the input image is
generally known, except when multiple fluorophore
reappearances per point are simulated.

Since the number of points affects the integrated intensity of
the image, and thus the loss, the number of points is linked to the
appropriate learning rate. Normalisation was therefore required
to bring the training data into numerical ranges the network can
process without generating extreme gradients. The image tensor
was divided by the integrated intensity, followed with a
multiplication by a fixed scalar. Figure 3 shows three
examples of Stanford Bunny Reconstructions, each with a
different size of 3D reconstruction matrix, with normalisation

applied. In each case, the basic shape is recognisable, with
increasing detail.

2.9 Hyper-Parameter Choices
Hyper-parameters are the user-chosen settings (Goodfellow et al.,
2016), rather than the learned parameters. Our parameters were
chosen using a combination of existing defaults and explorations
within reasonable ranges.

To verify that the learning rate selected was appropriate the
suggested value of 0.004 for the Adam Optimizer (Kingma and
Ba, 2017) was varied by a factor of 10 in both directions, stopping
when structure reproduction began to fail, with a score of 0.0004.

The simulated data-sets used comprised 40,000 images,
generated from an initial set of 2000 images. Each image was
augmented 20 times by a random rotation around the Z axis to
better match the experimental data.

The number of images presented to the network at each
training step (the batch-size) can affect the final accuracy of
the network (Kandel and Castelli, 2020). A batch-size of 32 was
selected as appropriate. Decreasing the batch size too far caused
reproduction to suffer and increasing too far caused memory
usage to become computationally limiting.

The final parameter considered was the number of epochs
(that is, the training time). An epoch is completed when the
network has processed the entire training set once. A range of
number of epochs were tested, with a value of 40 being found to
be an acceptable trade-off between accuracy and time.

This baseline for training with simulated data was chosen after
a number of results from earlier tests, with the restrictions of the
final experimental data in mind. The most important of these is
the training set size and construction. Experiments with
increasing the size of the simulated training set gave improved
results, but we are restricted in the size of the real, experimental
data. Therefore we chose to match the size of the experimental
data-set when performing the simulated experiments.

Further details of these hyper-parameters used in our
experiments are listed in Supplementary Material: Note 5.

2.10 Implementation
Experiments were carried out with a nVidia GeForce 2080Ti
GPU. Training duration was around 8 h with the settings given as
the baseline. Larger numbers of points in the reconstructed 3D
model dramatically increased memory usage.

FIGURE 3 | Examples of a reconstructed Stanford Bunny using different sizes of 3D reconstruction matrices. (A) contains 100 vertices. (B) contains 350 vertices,
the same number as the underlying ground truth. (C) contains 1,000 vertices. HOLLy manages to reproduce the basic shape throughout.

4https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html
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The estimated energy use to train a model is 2.1 kWh based on
a measurement of 623.4 kWh over 166 days. In this period, 298
models were trained and evaluated. This was confirmed by cross-
checking against the wattage of the GPU and the time spent to
generate a model.

Further technical details may be found in Supplementary
Material: HOLLy Technical Details.

3 RESULTS

3.1 Evaluation Criteria
The 3D structure which the network attempts to reconstruct is
represented as a point cloud with the coordinates of each point
stored in the 3D reconstruction matrix. The network attempts to
learn the orientation over time, and simultaneously improves its
own internal representation of the 3D structure by comparing 2D
renders of the point cloud against the training images.

The effectiveness of our approach was assessed by measuring
the similarity between the input point-cloud and the resulting
point-cloud stored in the model’s 3D reconstruction matrix.
Finding the absolute best match between two structures is an
NP-hard problem, and therefore a definitive score is not possible.
Given this, we selected the root mean squared distance (RMSD)
between two equivalent vertices in each point-cloud as an
acceptable measure. Equivalence is determined by finding the
closest neighbour with the Iterative Closest Point (ICP) (Arun
et al., 1987) algorithm within CloudCompare5.

ICP relies on an rough, initial alignment. We performed this
step manually, then applied ICP to obtain our RMSD score,
independent of the pose predicted by the network. To find an
RMSD score baseline to compare against we attempted to match
two random clouds covering the same world-space as our model.

The parameters used in these experiments can be found in
Supplementary Material: Experiment parameters.

3.2 Simulated Results
To assess the accuracy of our proposed method, a set of
commonly used 3D models were chosen to evaluate the
approach. The availability of a ground-truth structure allowed
us to measure how well our network performs under different
conditions. To validate our approach, we first performed a set of
baseline experiments to determine how well the network could
infer the 3D structure when only presented with 2D renders of
these models.

3.2.1 Baseline Experiments - Stanford Bunny
The first model tested was the Stanford Bunny. This model has no
symmetry, contains fine detail, protrusions and a homogeneous
distribution of vertices across its surface. It contains considerably
more points than the other point-clouds used, though the version
in our experiments is in the order of hundreds of vertices as
opposed to tens of thousands in the original point-cloud.

All results from baseline experiments were noise free (i.e., every
generated fluorophore was exactly at an existing vertex position, there
was only one per vertex position, and every vertex position was
occupied). The baseline results all had low RMSD scores, considerably
less than 0.17, the average score when aligning two random point
clouds of the same size (Figure 4). However, three of the runs showed
a mirroring error, where the network mirrors the point-cloud in the
dorsal plane. This is due to the lack of depth information in the
training images (Figure 4), and is a fundamental ambiguity.

3.2.2 Baseline Experiments - Utah Teapot
Our second choice of model was the Utah Teapot, which posed
several challenges for ourmethod: the similarity of the handle and
spout (when rendered using points), the bilateral symmetry and
the large voids between the layers of points in the central body.

It was reconstructed well and the pose was well predicted.
However, the handle appeared to be the same as the spout. Both
of these areas are low in information with few ground truth
points. The predicted structure therefore has an additional
transverse plane of symmetry not present in the ground-truth
(Figure 5). From the tip of the spout, to the edge of the handle, the
distance is 1036nm, using the CEP152 experiment scale.

3.2.3 Baseline Experiments - Approximation of the
CEP152/HsSAS-6 Complex
The third point-cloud used in these experiments is an
approximation of the CEP152/HsSAS-6 complex (Sieben et al.,
2018). The approximation consisted of two cylinders, one smaller
and perpendicular to the other. This point-cloud is somewhat
smaller than the others and is extremely regular with large gaps
between the columns of points.

The smaller, cylindrical structure is offset towards the top of
the larger structure in the ground-truth; this is not reflected in the
reconstruction. This is likely due to the size of the point-cloud in the
view - fine detail is hard to discern when the point-cloud is small
(Figure 6). From the end of the small cylinder to the furthest edge of
the larger cylinder, the distance is roughly 415 nm.

Together, these baseline experiments indicate that our
approach is suitable for reconstructing the overall 3D structure from
a series of 2D images. Most results showed low RMSD scores and
produced structures that are a good match to the original 3D models.

3.3 Modelling Experimental Noise in
Simulated Results
Our method aims to discern structure from fluorescence
microscopy images, particularly super-resolution. We therefore
focused on the kinds of problems often encountered in such
experiments. Fluorophores are offset from the object they are
labelling, they may not bind to certain areas, or might bind
multiple times. They may not illuminate consistently or they may
not be separable from their neighbours. We modelled three forms
of experimental noise: missing fluorophores (where no
fluorophores appear for a particular ground-truth point),
scatter (where a fluorophore appears at a varying distance
from its ground-truth point), and multiple binding (where
multiple fluorophores appear for a single ground-truth point).5http://www.cloudcompare.org/
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3.3.1 Scatter
Two factors can lead to scatter in fluorophore positions: the
inaccuracy of the fitted position due to the limited number of
photons collected, and the offset between the protein of interest
and the label, with the largest effect arising from primary/

secondary antibody labelling. This noisy change of position
(scatter) is modelled using a random Gaussian distribution
with a particular scatter-sigma value. The scatter-sigma ranges
from 0.03 to 0.15 pixels (9–44 nm, given the scale in the CEP152
experimental data).

FIGURE 4 | Baseline Stanford Bunny experiment results for each run (A–E) with RMSD score in the lower right corner of each panel. The ground truth model is
shown in orange, with the inferred structure shown as blue spheres, overlaid and aligned. (B–D) have themodels mirrored for display and RMSD computation, and show
high quality fitting. (F–H) correspond to results for (B–D) as the original reconstructions (without mirroring). Note that under this imaging modality, the presence or
absence of mirroring cannot be determined. The parameters for this experiment can be found in Supplementary Table S5.1.

FIGURE 5 | Baseline Utah Teapot Experiment results for each run (A–E) with RMSD score. The inferred structure shown as blue spheres, overlaid and aligned
against the ground truth model shown in orange. Each model shows incorrect symmetry with non-differentiated spout and handle. The parameters for this experiment
can be found in Supplementary Table S5.2.

FIGURE 6 | Baseline CEP152/HsSAS-6 approximation experiment results for each run ((A–E), top row) with RMSD score. The ground truth model is shown in
orange, with the inferred structure shown as blue spheres, overlaid and aligned. Bottom row (F–J): close up of the top row. Note the slight offset of the smaller,
reconstructed cylinder from the ground-truth. The parameters for this experiment can be found in Supplementary Table S5.3.
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The results suggest that a scatter-sigma value between 0.06
pixels and 0.09 pixels (20–29 nm) is the cut-off point for
acceptable reproduction of the structure. The run in Figure 7F
shows a rare error where the structure is symmetrical along the
dorsal plane - effectively giving the structure two heads.
Figure 7C suffers from the mirroring problem (Figure 7).

3.3.2 Missing Fluorophores
When a fluorescence microscopy sample is labelled, not every
potential site is labelled, and not all fluorophores will fluoresce.
The degree of labelling and the performance of fluorophores
strongly impacts image quality. To simulate this effect a random

selection of vertex positions are not labelled with fluorophores.
Results suggest that a recognizable reproduction with a good
RMSD score can be obtained with up to ∼30% of the points
removed (Figure 8).

3.3.3 Multiple Binding and Scatter
Our final noise experiment randomly chooses up to a maximum
number of bound fluorophores per ground-truth point, each with a
random scatter. A single ground-truth point may “spawn” up-to a
maximum of individual fluorophores (max-spawn) using a user-set
probability (spawn-rate). In these experiments we chose a number of
parameters for “max-spawn,” “spawn-rate” and scatter.

FIGURE 7 | The results of the experiment into the effect of scatter. Top row (A–E): examples of training images treated with increasing scatter, as indicated by the
scatter value above each panel. Bottom row (F–J): the corresponding results with the inferred structure shown as blue spheres, overlaid and aligned with the ground
truth model shown in orange. RSMD scores are indicated for each run in the lower right corner of (F–J). Runs in (F) and (C) respectively showed an incorrect symmetry in
structure and mirroring in a vertical plane. The parameters for this experiment can be found in Supplementary Table S5.4.

FIGURE 8 | Results from the experiment on the effect of missing fluorophores. Top row (A–E): examples of training images with increasing probability of removing
points as indicated by the value above each panel. Bottom row (F–J): the corresponding results with the inferred structure shown as blue spheres, overlaid and aligned
with the ground truth model in orange. Resulting RSMD scores for each run are indicated in the lower right corner of (F–J). The run in (G) showed an incorrect symmetrical
structure whereas the run in (H) showed mirroring in a vertical plane. The parameters for this experiment can be found in Supplementary Table S5.5.
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Many of these runs show symmetrical structure where none
should occur (Figure 9), in a manner similar to the missing
fluorophores experiment (Figure 8).

These results provide additional confidence that HOLLy can
produce accurate structures from experimental data. The
majority of results have low RMSD scores, with identifiable
structures and some tolerance to noise.

3.4 SMLM Dataset of the CEP152 Complex
Having optimized our approach with different 3D models, we
next applied it to experimental SMLM data collected on the
CEP152 complex, which is part of the centriole. One
important factor with this data is that the integrated
intensity varies considerably across the CEP152 data-set,
with the number of localisations ranging from 5,000 to
30,000. Normalisation plays a key part in making sure this
intensity range can be modelled by our network.
Additionally, since this data-set is limited by the number
of feasible experiments, data-augmentation plays a key role in
increasing both the absolute number of training images and
the variety of orientations. This training data-set consists of
approximately 40,000 images, augmented from an
experimental data-set of approximately 2000 images. See
Supplementary Figure S2 for representative images that
illustrate the range of orientations and experimental noise
in this training data-set.

After training with these images, our network converged on a
central torus for the CEP152 complex (Figures 10, 11). This
inferred structure is consistent with the confirmed structure
of this protein complex (Sieben et al., 2018; Kim et al., 2019).

Figure 10 in particular, shows examples of the network
attempting to match the training images, both in terms of

structure and the input-sigma. The input images are not
completely static; recall they are generated with a particular
input-sigma, which decreases as training progresses.
However, the output-sigma predicted by the network does
not continuously decrease as the input-sigma does—rather
the rate begins to flatten towards the end of training. Indeed,
certain images are rendered with a higher blur than others,
suggesting that certain images are being compensated for
with a higher output-sigma.

The final 3D structures in Figure 11 can be seen more easily in
the videos which accompany this paper (see Supplementary
Video S1, 2). When rendering these predicted structures in
2D based on the inferred orientations, they show significant
blurring due to a large predicted output-sigma, even when the
input-sigma was low (Figure 10). There was some noise in the
inferred structure, with two “fringe-like” structures in some of the
runs (Figure 11). Some points still appear in the middle of the
toroidal structure, likely because the network has been unable to
optimise these points as any direction they might now move in
would result in an increasing error. The density appears to be
lower for a small arc on the torus, reflective of the input images
that also show a similar effect. These final structures are not exact
as some noise still remains. Nonetheless, the consensus result that
emerges from multiple runs is a toroidal structure that matches
that of the CEP152 complex.

3.5 SIM/Expansion Microscopy Dataset of
Glutamylated Tubulin in Centrioles
To validate our method, we also applied it to a separate
experimental data-set (Mahecic et al., 2020) obtained using a
different imaging technique. We analysed SIM/expansion

FIGURE 9 | Results from the Noise Experiment for each run (A–H), with resulting RMSD shown in the lower right corner of each panel. The ground truth model is
shown in orange, with the created structure shown as blue spheres, overlaid and aligned. The top row (A–D) shows runs with a maximum number of flurophores per
ground-truth point of 4, while the bottom row (E–H) shows runs with a maximum of 8. The left two columns (A, B, E, F) have a spawn-rate of 0.3, with the right two
columns (C, D, G, H) have a spawn-rate of 0.7. Runs in (A, C, D, E, F, G) have incorrect symmetry whereas the run in (H) has mirroring in a vertical plane. The
parameters for this experiment can be found in Supplementary Table S5.6.
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microscopy images of glutamylated tubulin in purified centrioles.
After training on the SIM/expansion microscopy images, our
network converged on a central cylinder for this complex
(Figure 12). The density of points is highest in the centre of
each image, with a tube-like structure visible. These 3D aspects
are clearer in the Supplementary Video S3, 4. There appears to
be a “frill-like” structure around the top to middle of the cylinder,
which may reflect a particular characteristic of the input data.
Many of the images show a spike like protrusion, emanating from
the top of the central cylinder (see Supplementary Figure S3).

The consensus elongated cylindrical structure produced by
our method is also consistent with the known structure of

glutamylated tubulin in centrioles (Mahecic et al., 2020) (See
Supplementary Figure S2).

3.6 Handedness
Often when reconstructing 3D shapes from macroscopic
images, perspective projection and occlusion effects can be
used to infer depth. Neither of these are present in 2D
fluorescence microscopy images. Without perspective
projection, there is an unknown reflection of the final 3D
geometry which cannot be determined from the data. This is
known as the affine ambiguity (Hartley, 2004). Examples of
this effect can bee seen in Figure 4.

FIGURE 10 | Examples from the first run of the STORMCEP152 data-set, rendered at different points during training as input-sigma values decreased. The top row
shows input images from the test set. The bottom row shows the corresponding prediction.

FIGURE 11 | Results of the five STORM CEP152 experiments (each with a top and side view image pair). The first experiment comprises image (A) and (B), the
second experiment (C) and (D), and so forth. The torus structure within the blue point cloud is highlighted with an orange ring. See SupplementaryMaterial Video S1,
2 for greater clarity.
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4 DISCUSSION

We have demonstrated a method that enables 3D structures to be
reconstructed from sets of 2D SMLM or fluorescence microscopy
images without any template or symmetry constraints. Our
method, HOLLy, can tolerate both scatter and the limited
labelling efficiency of experimental fluorescence images. The
training process results in a 3D model of the structure
encoded as a point-cloud in the 3D reconstruction matrix.
Based on estimates of RMSD values against ground-truth and
visual inspection of the results, we find that our approach can
create accurate reconstructions of 3D macro-molecular
structures.

Our results also demonstrate the limitations of the technique.
Because of the use of 2D images, the technique is unable to resolve
the chirality of the model. In addition, when the data quality is
poor small structures are not reproduced. As a result when the
structure is close to symmetric, the final model may become
actually symmetric. On experimental data, the presence of these
issues could potentially be identified by training on the same data-
set multiple times and examining the differences between the
results.

The value of reconstructing multiple images of a structure into
a single hypothesised structure has been demonstrated in cryo-
EM. In SMLM such approaches exist Heydarian et al. (2019), and
show an improvement in the signal to noise ratio when
combining multiple images, but performing such fits on
complex structures with no constraints is extremely
challenging. Here we show that, by building a 3D model and
using a neural network for predicting rotation, HOLLy can

discern structure from localisations with a data-set of 2000
unique images. With the increased popularity of high
throughput SMLM techniques (Holden et al., 2014; Barentine
et al., 2019), HOLLy provides a way to extract structural
information from large volumes of super-resolution
microscopy data without assumptions.
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Efficient Cross-Correlation Filtering of
One- and Two-Color Single Molecule
Localization Microscopy Data
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Single molecule localization microscopy has become a prominent technique to
quantitatively study biological processes below the optical diffraction limit. By fitting
the intensity profile of single sparsely activated fluorophores, which are often attached to
a specific biomolecule within a cell, the locations of all imaged fluorophores are obtained
with ∼20 nm resolution in the form of a coordinate table. While rendered super-resolution
images reveal structural features of intracellular structures below the optical diffraction
limit, the ability to further analyze the molecular coordinates presents opportunities to
gain additional quantitative insights into the spatial distribution of a biomolecule of
interest. For instance, pair-correlation or radial distribution functions are employed as a
measure of clustering, and cross-correlation analysis reveals the colocalization of two
biomolecules in two-color SMLM data. Here, we present an efficient filtering method for
SMLM data sets based on pair- or cross-correlation to isolate localizations that are
clustered or appear in proximity to a second set of localizations in two-color SMLM data.
In this way, clustered or colocalized localizations can be separately rendered and
analyzed to compare other molecular properties to the remaining localizations, such
as their oligomeric state or mobility in live cell experiments. Current matrix-based cross-
correlation analyses of large data sets quickly reach the limitations of computer memory
due to the space complexity of constructing the distance matrices. Our approach
leverages k-dimensional trees to efficiently perform range searches, which dramatically
reduces memory needs and the time for the analysis. We demonstrate the versatile
applications of this method with simulated data sets as well as examples of two-color
SMLM data. The provided MATLAB code and its description can be integrated into
existing localization analysis packages and provides a useful resource to analyze SMLM
data with new detail.

Keywords: single-molecule localization microscopy, photo-activated localization microscopy, cross-correlation,
colocalization, clustering
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INTRODUCTION

The subcellular localization of proteins and their interaction with
other biomolecules is a critical determinant of their function. For
instance, proteins have been shown to form clusters in nuclear
condensates which affect chromatin organization and gene
regulation (Cisse et al., 2013; Larson et al., 2017; Cho et al.,
2018; Chong et al., 2018; Sabari et al., 2018; Cai et al., 2019;
McSwiggen et al., 2019). Cell surface receptors such as TNFα,
EGFR, and TLR4 have been shown to form functional clusters in
the cell membrane that enhance signaling (Krüger et al., 2017, 4;
van Lengerich et al., 2017; Karathanasis et al., 2020). In the
immunological synapse, various receptors and signaling proteins
are co-clustered or excluded in supramolecular activation clusters
(Hartman et al., 2009; Pageon et al., 2016b). In most contexts, the
fraction of the proteins that cluster or co-cluster with other
proteins have different biophysical and biochemical properties
compared to the non-clustered ones.

Fluorescence microscopy has become a prominent technique
to study the sub-cellular distribution and colocalization of
specifically labeled proteins in cells. However, many
intracellular structures and proteins clusters are too small or
too closely spaced to be resolved below the optical diffraction
limit of conventional fluorescence microscopy. Super-resolution
microscopy techniques such as single molecule localization
microscopy (SMLM) (Betzig et al., 2006; Rust et al., 2006)
overcome these challenges. Instead of imaging all fluorophores
at the same time, SMLM employs fluorophores that are
predominantly in a dark state but switch to a fluorescent state
either intrinsically or induced by irradiation of a certain
wavelength of light (Patterson and Lippincott-Schwartz, 2002;
Betzig et al., 2006; Rust et al., 2006). In this way, only sparse and
spatially well separated single molecules are in a fluorescent state
and are detected in a single imaging frame. By recording many
frames, all individual fluorophores are then imaged over time. A
super-resolution image is then constructed by fitting all sparse
fluorophores in each frame with a point-spread function (PSF) or
Gaussian and by superimposing the center coordinates of all
localizations that typically have a precision of ∼20 nm.

In contrast to pixel-intensity information of conventional
fluorescence microscopy, SMLM data is based on coordinates,
widths, heights etc., of all fitted single fluorophores and therefore
presents unique opportunities for secondary data analysis. For
instance blink-correction algorithms have been developed to
correct repeated localizations of the same fluorophore that
arise from the complicated photophysics (Lee et al., 2012;
Rollins et al., 2015; Hummer et al., 2016; De Zitter et al.,
2020) and to count the number of molecules on an organelle
or cluster (Puchner et al., 2013). Various clustering algorithms
have been developed to quantify the degree or variability of
clustering of a protein of interest under various conditions.
Examples include local clustering algorithms that define
boundaries of dense localizations (Ester et al., 1996; Perry,
2004; Owen et al., 2010; Pageon et al., 2016a; Griffié et al.,
2016; Levet et al., 2019; Khater et al., 2020; Nino et al., 2020;
Simoncelli et al., 2020; Williamson et al., 2020; Marenda et al.,
2021; Nieves et al., 2021) or bulk metrics based on the radial

distribution or pair-correlation function that quantify the density
of localization pairs as a function of their distance to each other
(Ripley, 1979; Kiskowski et al., 2009; Sengupta et al., 2011; Veatch
et al., 2012; Stone and Veatch, 2015). Importantly, these analysis
methods can be expanded to two-color SMLM data to quantify
the colocalization and structural relation of two proteins. For
instance, cross-correlation and pair correlation analysis has been
used to study co-localization among synaptic membrane
receptors (Malkusch et al., 2012; Pageon et al., 2016a, 2016b;
Krüger et al., 2017; Khater et al., 2018, 2019; Lagache et al., 2018;
Kennedy et al., 2019; Karathanasis et al., 2020; Simoncelli et al.,
2020) and quantify the density of accessible DNA domains
colocalized with nuclear condensates and other nuclear
landmarks (Lee, 2019; Xie et al., 2020).

For the analysis of any SMLM data set that exhibits clustering
or colocalization of two different proteins, it would be desirable to
separate the molecule list based on the proximity of proteins to
each other. In this way localizations from clustered or colocalized
proteins can be separately visualized and analyzed to study how
their properties such as molecule number or their structure differs
from the rest of localizations that are not clustered or colocalized.
While pair-or cross-correlation analysis in principle allows to
make this separation based on a distance threshold, the
calculation of the distance matrix is memory intensive and
can’t be use over entire field of view of a typical mammalian
cell due to the large number of N localizations. Both the memory
requirement and calculation time scales as N2. An approach to
generate a cross correlation curve is to use small sections of data
(Kennedy et al., 2019), however, most of the localizations are
discarded. Fourier transformations are also used to calculate the
cross-correlation curve across the full field of view (Kiskowski
et al., 2009; Liu et al., 2014, 2; Xie et al., 2020) but these methods
discard localizations that generate pairwise distances during
analysis. Therefore, localizations that are within specific
distances or are colocalized with a protein of interest cannot
be separated and further analyzed. These existing methods
provide a coarse-grained representation of the cross-
correlation curve and may miss relevant transitions occurring
at smaller differences in distances that could provide insight into
protein oligomerization.

Here, we address these limitations by developing a memory
efficient approach using k-dimensional trees (Bentley, 1975) to
efficiently calculate the distance matrix for the pair- or cross-
correlation of SMLM data across the entire field of view
(Figure 1). Based on the cross-correlation, a distance cutoff
can be defined to separate localizations that cluster or
colocalize with a second protein of interest. These separated
molecule lists can then be separately visualized and further
analyzed with any existing secondary analysis algorithm to e.g.
determine the number of molecules in and the size of a cluster,
their diffusive state in live-cell data, or their degree of cross-
correlation (Owen et al., 2010; Sengupta et al., 2011; Veatch et al.,
2012; Puchner et al., 2013; Stone and Veatch, 2015; Pageon et al.,
2016a, 2016b; Hummer et al., 2016; Lagache et al., 2018; Banerjee
et al., 2020; Heydarian et al., 2021; Marenda et al., 2021). We first
demonstrate the performance and application of this method
with simulated data sets to allow a comparison of the results to a
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known ground truth. We also show the application to two-color
SMLM data of ULK1 and Atg13, two proteins that have been
recently shown to be involved in the initiation of autophagy when
co-clustered. Since our described method can be paired with any
existing downstream SMLM data analysis algorithm, it presents a
useful and modular way to improve SMLM analysis results e.g. by
suppressing randomly localized noise localizations and by
providing a refined comparison between clustered and non-
clustered localization.

MATERIALS AND METHODS

Workflow
In our code, available at https://github.com/PuchnerLab/cross-
correlation-filtering, the point of entry is the MATLAB function
“cc_graphic_pipeline”, which accepts as arguments each list of
coordinates (as x-y columns), the maximum distance used for the
pair- and cross-correlation calculations, the area of the field of
view of the localization data (for correct normalization of the
cross-correlation), and the units in which the data is provided.
This function outputs the pair-correlation of each dataset and the
cross-correlation between the two datasets. From the generated

graphs, the user can determine appropriate cutoff distances for
cross-correlation filtering and for the optional clustering. As an
aid, the pair-correlations indicate the distance to the 99% drop in
correlation, and the cross-correlation indicates the distance to
both the 50 and 99% drop in correlation.

The second step is the function “cc_separation_pipeline”,
which accepts as arguments each list of coordinates, a vector
of cutoff distances for clustering for each dataset [(0, 0) if no
clustering is to be performed], the cutoff distance for the cross-
correlation filtering, and a vector of minimum stoichiometries
considered for colocalization for each dataset [(1, 1) for no
minimum]. The primary output is a cell with each element
containing a logical vector of colocalized localizations of each
dataset, which can be used to select the colocalized and non-
colocalized localizations from the original datasets or from the
indices provided by another cluster assignment algorithm, such
as DBSCAN (Ester et al., 1996). Additionally,
“cc_separation_pipeline” outputs a cell of the colocalized
coordinates and a cell of non-colocalized coordinates.

In this second step, localizations from the two coordinate lists
that lie within the cutoff distance are assigned as colocalized. If
the optional clustering is performed prior to colocalization, then
two clusters are assigned as colocalized if any of their constituent

FIGURE 1 | Schematics of cross-correlation. For each localization of one type (red crosses), the distance to each of the other type (blue circles) is computed and
tabulated. Instead of calculating the distance of every pair of red crosses and blue circles, a distance cutoff is applied to only consider interparticle distances within
relevant length scales. When the distance exceeds the cutoff as shown by the dashed line, the distance is not tabulated, resulting in reduced memory requirements. The
list of localization can then be split into localization that do and do not colocalize or appear within the specified distance cutoff for further downstream analysis.
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FIGURE 2 |Cluster separation on simulated data. A data set was simulated consisting of two types of localizations as well as added noise. Population 1 (red) and 2
(cyan) consists of 40 clusters of size 0.1 ± 0.02 µm and stoichiometries of Poisson (90) and Poisson (150) respectively and represents the ground truth. Noise
localizations include non-colocalized clusters of size 0.1 ± 0.02 µm and stoichiometry Poisson (250) (cyan) as well as randomly distributed localizations (red) to measure
the performance of the cluster separation. (A) Super-resolution reconstruction of all localizations, the ground truth clusters of population 1 and 2, and the noise
localizations (upper). After applying the distance-based cutoff, the two molecule lists can be separated into the colocalized clusters and all other remaining noise
localizations (lower). (B) Pair correlation functions of each of the two ground truth populations showing the relevant length scale of cluster sizes used to identify clusters.
(C) Cross-correlation functions of all localizations between the two populations for all localizations. The dashed line indicates the maximum separation two localizations
can have to be classified as colocalized. If two localizations that belong to clusters as identified in B are closer than this maximum separation, all localizations from the
entire clusters are classified as colocalized. (D) Stoichiometry and size of ground truth (circles) and recovered clusters (crosses) for each of the populations.

Frontiers in Bioinformatics | www.frontiersin.org November 2021 | Volume 1 | Article 7397694

Mancebo et al. Efficient Cross-Correlation Filtering

82

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


localizations are within the cutoff distance and if the number of
localizations in the cluster is at least the specified minimum
number of localizations for each cluster.

A schematic of the organization of the code is shown in
Supplementary Figure S1.

Simulated Data
The simulated localization data used in cross-correlation filtering
(Figure 2A, All localizations) is composed of two parts: the
ground truth clusters (Figure 2A, Ground truth) and noise
clusters and localizations (Figure 2A, Noise). The clusters
were generated by randomly distributing cluster centers
throughout the field of view. Localizations were placed by
generating coordinates from a normal distribution around
each cluster center. Localizations were generated in this way
for both populations of clusters using the same cluster centers so
that colocalized clusters have complete overlap (Figure 2A,
Ground truth). Randomly distributed localizations were mixed
into each population to simulate localizations that are not
clustered or colocalized. Additional clusters of higher
stoichiometry were mixed into the second population to
simulate non-colocalized clusters that should be separated by
the analysis (Figure 2A, Noise). A schematic of the simulated
data construction is show in Supplementary Figure S2. The
recovery of the underlying colocalized ground truth and noise
rejection was quantified by computing the F-score as a function of
the colocalization cutoff distance (Supplementary Figure S3A).
The recovery of the correct radii and stoichiometries was
quantified in Supplementary Figure S3B and Supplementary
Figure S3C, respectively.

Cross-Correlation and Cluster Separation Analysis
In each population of simulated data, localizations appearing
within a distance of 0.4 µm from each other were first assigned to
clusters. Next, a cross-correlation analysis was performed by
using a k-dimensional tree for fast querying and to limit the
memory consumption of the distance tabulation. A range search
was then performed to compute the distances between each
localization of one population and those of the other
population up to a specified maximum separation distance,
which was chosen to be 1 µm. The indices and distances from
the range search are used to determine which clusters from one
population are colocalized with clusters from the other
population. A maximum separation of 150 nm between the
constituent molecules of two clusters was used for determining
their colocalization and at the same time a requirement of a
minimum of two localizations per cluster was imposed to filter
out individual non-colocalized localizations. The resulting lists of
colocalized clusters (and complementary list of excluded clusters
and localizations) were then further analyzed to determine their
stoichiometry and size compared to the ground truth clusters.
The performance of the colocalization analysis was also
quantified on lines and rings (Supplementary Figure S6).

Benchmarks
To test the memory and time efficiency of the k-dimensional tree-
based cross-correlation compared to full distance matrix

approach, we simulated two populations of completely
colocalized clusters of stoichiometries of 200 and 300
localizations normally distributed about the centroid with
standard deviation 100 nm and 10,000 individual noise
localizations in each population within a 40.96 µm field of
view. We varied the total number of clusters within the field
of view to increase the memory requirements of the cross-
correlation.

Memory Efficiency
Memory requirements in Figure 3 A were determined by
calculating the total number of bytes of memory needed for

FIGURE 3 | Performance of distance tabulation using a k-d tree and range
search vs. a full distance matrix. (A) Simulated data sets as in Figure 2 with
varying numbers of localizations were analyzed to measure the memory needs
for calculating the full distance matrix (dashed) and k-dimensional tree
(solid) with distance cutoff. For matrices that could not explicitly be allocated into
memory, a linear extrapolation was applied to estimate the allocation time (dot-
dashed). The total number of clusters is increased with an increasing number of
localizations to increase the memory requirements of the distance tabulation.
The distance is expressed as a fraction of the field of view. For relevant length
scales, the tree uses significantly less memory than the matrix. (B) Elapsed time
for calculating the full distance matrix (dashed) vs. the k-dimensional tree (solid).
When a realistic number of localizations is included in the distance tabulation, the
distance tabulation for the tree takes less time than the full matrix.
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FIGURE 4 | Colocalization analysis of ULK1 and ATG13 via cross correlation. (A) Left shows a two-color overlay of PALM images of mEos2-ULK1 (red) and
HaloTag-ATG13 bound to JF646 (cyan) with a corresponding magnified image (bottom left) taken from a representative starved cell (Scale bar top left: 5 µm; bottom left:
1 µm). Middle represents the ATG13 localizations that are within 100 nm of ULK1 molecules and considered colocalized with ULK1 clusters. The corresponding
magnified image (bottom middle) highlights the increased visibility of colocalized ULK1 clusters after filtering out non colocalized molecules using the cross-
correlation analysis framework. Right represents ULK1 and ATG13 localizations that are further than 100 nm away from each other and are not considered colocalized.
Examples of individual clusters that are and are not colocalized with ATG13 localizations are also displayed (scale bar: 150 nm). (B)Cross-correlation plot between ULK1
molecules and ATG13 localizations in fed (blue) and starved (red) cells. The cross correlation plot was calculated by using k dimensional trees to obtain ATG13
localizations within 2 µm of ULK1 molecules across the entire field of view. The inset graph represents the onset of leveling of the cross correlation plot around 100 nm.
The error bar corresponds to SEM from five fed and five starved cells. (C,D) show the quantification of the number of molecules and radii of ULK1 clusters colocalized
with ATG13 (inside, blue) and not colocalized with ATG13 (outside, orange) in fed (C) and starved (D) cells. ULK1 localizations that are and are not colocalized with
ATG13 exhibited similar distributions in fed cells while ULK1 localizations that colocalized with ATG13 in starved cells formed structures that contained more molecules
and were interpreted to be forming autophagosomes. (E) The radial distribution function further quantifies the local density difference between ULK1 colocalized (inside,
blue) vs. non ATG13 colocalized (outside, red) ULK1 molecules in starved cells. The error bar represents SEM from five starved cells. Figure (F) and (G) display a
normalized histogram of the number of ULK1molecules in a cluster colocalized with ATG13 (inside, blue) and not colocalized with ATG13 (outside, orange) in fed (F) and
starved (G) cells. The error bar corresponds to SEM from five fed and five starved cells. While there was no noticeable difference in ATG13 colocalized and non
ATG13 colocalized distributions in fed cells, there was a significant difference in both distributions in starved cells where ATG13 colocalized clusters contained the
highest number of ULK1 molecules.
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storing the distances between the localizations. For the matrix-
based analysis, this isMNB, which corresponds to the number of
elements in the distance matrix, where M andN are the number
of localizations in each population and B is the number of bytes
corresponding to the floating-point precision used. For the
k-dimensional tree-based analysis, the total amount of
memory is bounded from above by MNB, gradually
approaching it as the range is increased. For structure sizes
much smaller than the field of view, the k-dimensional tree
distance tabulation outperforms the distance matrix when
including only the relevant distances and excluding potentially
less relevant long-range distances. In the cases where the matrix
memory requirements did not exceed the system memory (as in
Supplementary Figure S5A), the memory consumption was
measured directly.

Time Efficiency
Elapsed times in Figure 3 B and Supplementary Figure S5Bwere
determined by measuring the time needed to construct either the
full distance matrix or the range search on the k-dimensional tree
for various distances. For matrices with a memory allocation that
would exceed the available system memory, the allocation time
was extrapolated from the allocation rate determined by fitting
the matrix allocation vs memory for moderate data
(Supplementary Figure S5D).

Mammalian Cell Analysis
Sample preparation, imaging methods, and blink correction
analysis are described in Banerjee et al., 2020 (Banerjee et al.,
2020). After identification of blink corrected ULK1 molecules,
molecules were assigned to clusters. The radial distribution (or
pair correlation) among all blink corrected ULK1 molecules with
respect to each other was calculated. The leveling of the pair
correlation plot approached zero at around 400 nm (Banerjee
et al., 2020). Nearby ULK1 molecules whose distances lie within
the cutoff distance of 400 nm were assigned to the same ULK1
cluster. After this, a spatial cross-correlation between the blink
corrected ULK1 molecules and ATG13 localizations was
calculated to determine the pairwise distance distribution
between the two protein populations. To overcome memory
limitations associated with existing methods, the ATG13
dataset was converted into a k-dimensional tree structure as
described in the results section. Then, a nearest neighbor
search was used to obtain pairwise distances between ULK1
and ATG13 molecules up to a specified distance cutoff of
2 µm. A cross correlation function was then calculated
between the obtained ATG13 and ULK1 pairwise distances
using previously described methods (Veatch et al., 2012;
Banerjee et al., 2020). Since the cross-correlation curve
remained constant at distances larger than 100 nm, which
indicates no clustering beyond this distance, this number was
used as the colocalization distance cutoff (Figure 4B). ATG13
localizations within the 100 nm distance cutoff of ULK1
molecules were therefore considered colocalized with ULK1
molecules. ULK1 and ATG13 molecules were segregated into
colocalized and non-colocalized groups. Cell and matrix array
computations were parallelized to increase computational speed.

Next, ULK1 clusters that contained at least one molecule
colocalized with an ATG13 localization was identified as a
colocalized cluster. These clusters were separated from non-
ATG13 colocalized clusters and further analyzed. Cluster
properties such as radius and the number of molecules for
both ULK1 clusters were then obtained. Radial distribution
functions of various sub ULK1 cluster populations were
calculated (ATG13 colocalized vs non-ATG13 colocalized
molecules) by normalizing the separated pairwise distances by
the bin area and the number of molecules in those individual
datasets. Cluster properties and pairwise distance distributions
from the full cell and isolated sub-populations within the cell were
pooled together to compare how these metric change between fed
and starved cells. The analysis codes were written in MATLAB
2018b and run on a Dell PowerEdge T440 server with 94GB
RAM, an Intel Xeon 2.68 GHz CPU, and 14.5 TB of disk space.

RESULTS

Cluster Separation to Remove Noise From
Simulated Data
The cross-correlation and cluster separation analysis can provide
information about the stoichiometry and size of colocalized
clusters while filtering out localizations that do not belong to
clusters or are not colocalized. To demonstrate the application
and to measure the performance of this analysis, we first
simulated localization data, allowing us to compare the
processed results to the ground truth. Figure 2 shows the
simulated cluster data for two populations of localizations. The
ground truth consists of randomly distributed clusters of
population 1 with a mean number of 90 localizations that
colocalize with clusters of population 2 that have a mean
number of 150 localizations. Superimposed to the ground
truth are randomly distributed localization of population 1 as
well as randomly distributed localizations and clusters of
population 2 with a mean of 250 localizations. In this way,
non-colocalized localizations and clusters are introduced as
noise, which is meant to be filtered by our analysis pipeline.
First, localizations in each population are assigned to a cluster if
they appear within 0.4 µm of each other, which corresponds to
the peak-width of the pair-correlation and reflects the average
cluster size (Figure 2B). Next, colocalized clusters from both
populations were identified based on the cross-correlation if two
localizations were separated by less than 150 nm (Figure 2C,
Supplementary Note S1, Supplementary Figure S4). As can be
seen in Figure 2A, the isolated clusters and remaining
localizations reflect to a large degree the original ground truth
and noise localizations. By determining the number of
localizations in each of the colocalized cluster, the original
distribution that was used for the simulation is recovered to
above 98% for population 1 and above 93% for population 2
(Figure 2D, Supplementary Figure S4). Likewise, further
structural analysis of the isolated clusters such as the
determination of cluster radii recovers the same results from
the ground truth. Overall, 100% of the 40 ground truth clusters in
each population were recovered and most deviations arose from
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noise localizations and clusters that are coincidentally in
proximity to the ground truth. These results demonstrate that
our cross-correlation based approach is effective in separating
noise localizations and clusters from colocalized clusters for
further downstream analysis.

Benchmarks
For large enough SMLM datasets, constructing a full distance
matrix for a cross-correlation analysis can approach or even
exceed the available system memory. This is because distances
between all localizations across the field of view are tabulated,
including distances that are well beyond relevant length scales of
clusters or structures under investigation. Using the
k-dimensional tree-based approach to compute the cross-
correlation can significantly reduce the memory requirements
by orders of magnitude when an appropriate cutoff distance is
selected for tabulating the distances. Figure 3A shows how the
memory requirements of the k-dimensional tree-based method
increase with the cutoff distance and remain orders of magnitude
below the full matrix for relevant length scales. As the cutoff
distance increases up to the full field of view, the memory
consumption approaches that of the full distance matrix.
Figure 3B shows that the computation time is worse for the
k-dimensional tree-based method when applied to smaller
datasets but eventually shows improved runtime performance
as the size of the dataset increases and reaches more realistic
numbers in the range of thousands of localizations. When
extrapolating the memory consumption to 100 GB, which is at
the order of magnitude where the calculation becomes infeasible,
a number of 112,000 localization is obtained for the full distance
matrix and 44, 200, 000 for k-dimensional trees at a distance
cutoff of 0.5 µm (Supplementary Note S2, Supplementary
Figure S5C). This result demonstrates that typical SMLM data
sets cannot be analyzed with a full cross-correlation and that
significantly larger data sets can be analyzed using
k-dimensional trees.

Isolating Co-clustered ULK1 and Atg13
Structures That Form Phagophores
In the following we demonstrate the isolation of co-clustered
structures in real two-color PALM data that recently led to the
identification of signaling clusters involved in autophagy
(Banerjee et al., 2020). Autophagy is a subcellular process in
eukaryotic cells in which macromolecules and organelles are
engulfed by a double membrane and then degraded by fusion
with lysosomes (Mercer et al., 2009; Jung et al., 2010; Roach,
2011; Park et al., 2018). Autophagy can be induced by amino
acid starvation and the resulting inhibition of mechanistic
target of rapamycin complex 1 (mTORC1) (Kamada et al.,
2000; Chang and Neufeld, 2009, 1), which in turn leads to the
formation of autophagy initiation cluster composed of
activated UNC51-like kinase 1 (ULK1), Atg13, FIP200 (FAK
family kinase interacting protein 200 kDa), and Atg101
(Hosokawa et al., 2009). In a recent study we employed
CRISPR/Cas9 based genome editing to endogenously tag
ULK1 with the photoswitchable fluorescent protein mEos2

in HeLa cells and to perform a quantitative PALM
colocalization analysis with Atg13, a critical interaction
partner of ULK1 in activation cluster (Banerjee et al., 2020).
Our results showed that amino acid starvation induced the
formation of a small fraction of arc shaped and spherical
structures containing more than 30 ULK1 molecules that all
colocalized with Atg13 in proximity to the Endoplasmic
Reticulum. Therefore, a threshold number of ULK1 is
required to initiate the formation of autophagosomes. Here,
we demonstrate the application of our cross-correlation
approach to a modified data sets similar to the ones shown
in (Banerjee et al., 2020).

Two-color PALM data was recorded using endogenously
tagged ULK1-mEos2 and transiently transfected Atg13-
HaloTag in conjunction with the PALM compatible JF646
dye as described in (Banerjee et al., 2020). As can be seen in
Figure 4 A in both fed and starved cells ULK1 and Atg13
formed puncta that did and did not colocalize. However, in
starved cells a few larger structures with a higher number of
ULK1 molecules are visible. Due to the large number of
localizations in the 5 data sets (9,589 ± 904 ULK1
molecules, 1,270,045 ± 420,310 Atg13 localizations), a
traditional cross-correlation across the entire fields of view
is not feasible with commonly used computers or servers (our
server (2.68 GHz CPU, 94 GB RAM)—typical computer
(2.7 GHz CPU and 8–20 GB RAM) since it would require up
to 95 GB of RAM memory. We therefore employed
k-dimensional trees to efficiently calculate the distance
matrix for the cross-correlation across the entire field of
view (Figure 4B). The cross-correlation between ULK1 and
Atg13 was significantly larger in starved cells and exhibited a
pronounced peak up to distances of ∼100 nm, indicating the
formation of more densely colocalized structures. Using the
cross-correlation matrix, it is now possible to separate the
molecule list of ULK1 and Atg13 localizations that are closer
than 100 nm and considered to be colocalized. All remaining
localizations that are separated by more than 100 nm are
accumulated in a separate molecule list (Figure 4C).
Importantly, these separated molecule lists can now be
further processed with any secondary SMLM data analysis
approach. For instance, when plotting the number of ULK1
molecules in clusters against the radius of structures, it
becomes apparent that under starvation a unique but rare
population of structures with a large number of ULK1
molecules emerges (Figure 4D). Importantly, this
population of structures is not present in fed cells and
always colocalizes with Atg13. Based on this result and
further evidence provided in (Banerjee et al., 2020), these
structures are identified to be involved in autophagy and the
formation of autophagosomes.

Another commonly used secondary data analysis approach is
the use of pair-correlation or radial distribution functions to
determine the average density of pairs of localization with respect
to their distance (Puchner et al., 2013; van Lengerich et al., 2017;
Banerjee et al., 2020). We therefore calculated the radial
distribution function of ULK1 localizations that did and did
not colocalize with Atg13. ULK1 localizations that did not
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colocalize with Atg13 exhibited the lowest density and only a
small peak at short distances up to ∼74 molecules/µm2 in starved
and fed cells, indicating a small degree of basal clustering in the
absence of Atg13 (Figure 4E). Since no significant difference is
observed between fed and starved cell, these clusters are
interpreted to be passive and not involved in autophagy
initiation. ULK1 structures that did colocalize with Atg13
exhibited a significantly larger ULK1 density up to ∼234
molecules/µm2 in starved cells (Figure 4E). Since this density
is also significantly larger than in fed cells, these clusters are
interpreted to be dense initiation clusters that form in response to

starvation and aid in the formation of phagophores (Banerjee
et al., 2020) for details. Histograms of the ULK1 stoichiometry
show that ULK1 clusters colocalized and not colocalized with
Atg13 have identical stoichiometries in the fed case (Figure 4F)
but colocalized ULK1 clusters have a higher stoichiometry in the
starved case (Figure 4G). These results demonstrate that our
presented SMLM analysis approach is powerful to isolate protein
clusters and nanoscopic structures that are rare but of biological
significance. Furthermore, any secondary SMLM data analysis
such as quantification of molecule numbers, densities or sizes of
structures can be applied to the isolated molecule lists to gain

TABLE 1 | Performance Comparison of existing methods. This table compares our proposed kd-tree approach to three existing approaches, Clus-DoC, Coloc-Tesseler,
and full matrix approach. Clus-DoC utilizes Ripley’s K analysis and density based clustering using DBSCAN to segment localizations into clusters and separate
colocalized from non-colocalized clusters. Coloc-Tesseler uses Voronoi tessellations to assess whether molecules are co localized and uses the tessellation diagram to draw
boundaries around colocalized clusters. Datasets were simulated in a similar manner to those shown in Figure 2 and described in the methods section. Time was measured
as the entire time required to run program after data files were load. An F-score (described in the methods section) was used to compare colocalization accuracy among
all datasets. Since localization lists cannot be outputted from Coloc-Tesseler, the colocalization accuracy of this method cannot be calculated. Furthermore, due to large
memory requirement, Clus-DoC and the full matrix method cannot analyze datasets above 94 GB. Memory use by Coloc-Tesseler was estimated from task manager
since it is a GUI based executable program with no available source code but all simulated molecule lists could be analyzed in an efficient time window (seconds) while
only requiring between 0.2 and 1.5 GB of memory.

Number of
localizations in population
1

Number of
localizations in population

2

Full matrix
memory (GB)

Clus-DoC memory
(GB)

Coloc-Tessler
memory
(GB)

k-d tree
memory (GB)

20,000 25,000 4 4 0.21 0.15
30,000 40,000 9.6 9.6 0.22 0.31
50,000 70,000 28 28 0.43 0.61
70,000 100,000 56 56 0.58 0.91
170,000 250,000 340 Not possible to

compute
0.78 2.45

250,000 370,000 740 Not possible to
compute

0.85 3.74

310,000 460,000 1,140 Not possible to
compute

1.42 4.70

Number of localizations in
population 1

Number of localizations in
population 2

Full matrix time (s) Clus-DoC time (s) Coloc-Tessler
time (s)

k-d tree time (s)

20,000 25,000 30.5 48.26 1.35 7.11
30,000 40,000 63.7 103.42 1.53 8.47
50,000 70,000 138.2 340.26 2.57 15.88
70,000 100,000 289.2 739.30 3.54 23.36
170,000 250,000 Not possible to

compute
Not possible to

compute
9.72 70.45

250,000 370,000 Not possible to
compute

Not possible to
compute

25.3 95.39

310,000 460,000 Not possible to
compute

Not possible to
compute

42.54 120.38

Number of localizations in
population 1

Number of localizations in
population 2

Full matrix
accuracy

Clus-DoC
accuracy

Coloc-Tessler
accuracy

K-d tree
accuracy

20,000 25,000 0.99 0.98 Not possible to
compute

0.98

30,000 40,000 0.99 0.99 Not possible to
compute

0.99

50,000 70,000 0.99 0.99 Not possible to
compute

0.99

70,000 100,000 0.99 0.99 Not possible to
compute

0.99

170,000 250,000 Not possible to
compute

Not possible to
compute

Not possible to
compute

0.99

250,000 370,000 Not possible to
compute

Not possible to
compute

Not possible to
compute

0.99

310,000 460,000 Not possible to
compute

Not possible to
compute

Not possible to
compute

0.99
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further insight into the nanoscopic characteristic and differences
between different populations.

Comparison to Existing Colocalization
Methods
To demonstrate the advantages k-d tree-based cross-
correlation, we performed a comparison to existing
methods that employ radial threshold-based colocalization,
density-based cluster detection, and tessellation-based cluster
detection/colocalization. The MATLAB based Clus-DoC
program (Pageon et al., 2016a) combines a radial
threshold-based method to characterize colocalization with
a density-based cluster detection to identify colocalized
molecules. This method first utilizes Ripley’s K analysis to
calculate the radial distance distribution between the
colocalized molecule populations and then assigns each
localization a normalized score based on its proximity to
surrounding localizations of the opposite molecule
population. The algorithm sets a score cutoff that is akin to
a radial distance threshold to determine whether individual
molecules are colocalized. Then, Clus-DoC uses the density-
based clustering algorithm DBSCAN to segment localizations
into individual clusters. Both techniques are commonly used
in a variety of other clustering and colocalization algorithms
(Ester et al., 1996; Owen et al., 2010; Malkusch et al., 2012;
Lagache et al., 2018). The algorithm then combines both
approaches to separate colocalized clusters with a minimum
number of localizations from non-colocalized clusters.
Finally, the algorithm calculates size and density metrics of
colocalized clusters. This algorithm is most similar to our
approach as it employs a radial distance distribution analysis
to characterize the degree of colocalization between two
protein populations and defines a threshold based on the
radial distance to isolate colocalized molecules/cluster for
downstream analysis. When validated against simulated
datasets shown in Figure 2 and described in the methods
section, we find that the accuracy metrics are similar to ours
since cross-correlation analysis is similar to Ripley’s K analysis
(Table 1) and since both methods rely in part on a distance
threshold derived from the distance distribution. The main
advantage our method compared to the Clus-DoC approach is
the efficient analysis of the entire field of view of large datasets.
Though Clus-DoC employs k-d trees to calculate the Ripley’s
K distribution, it requires the calculation of the full distance
matrix to segment molecules into clusters and to isolate
colocalized clusters. Therefore, Clus-DoC cannot analyze
the full field of view for large 340 gigabyte-1.1 terabyte
datasets due to large memory requirement (Table 1). In
contrast, our method is able to efficiently analyze the full
field of view of 340 gigabyte-1.1 terabyte sized datasets while
needing a fraction of the available memory (Table 1). The
memory required for our largest 1.1 TB simulated dataset is
4.7 GB which is similar to the memory available on laptops.
Furthermore, using k-d trees for pair correlation analysis
allows us to efficiently calculate the distance distribution
across the full field of view to make an accurate assessment

of the cutoff distances needed to segment molecules into
clusters. Our k-d tree-based colocalization analysis also has
an improved run time when compared to Clus-DoC (Table 1).

We also compared our method to colocalization analysis
approaches based on Voronoi tessellation. These approaches
have gained popularity since the detection of colocalized
localizations does not require as a radial distance threshold,
Ripley’s K score, or density threshold (Levet et al., 2015, 2019;
Andronov et al., 2016). Instead, these algorithms use Voronoi
tessellations to determine cluster boundaries by using the
relative similarities in the areas of polygons and densities of
localizations. These techniques also allow for the direct
calculation of Spearman’s rank coefficients and Mander’s
coefficients to quantify the degree of clustering in the same
molecule population and the degree of colocalization between
multiple molecule populations. Coloc-Tesseler (Levet et al.,
2019) is a graphical user interface (GUI) based C++ program
that uses Voronoi tessellations to assess colocalization. Molecule
lists from both molecule populations are directly inputted into the
program through the GUI. The program then outputs colocalized
molecules of one population, colocalized molecules of the other
population, and non-colocalized molecules of both populations.
The Voronoi diagram visually highlights the density difference
between the colocalized and non colocalized population. Mander’s
and Spearman’s rank coefficients can be calculated for a defined
region of interest with the plot to quantify the degree of
colocalization in that area. The user is also able to further refine
co localization performance by altering relative density cutoffs used
by the program to define cluster boundaries. This program can
analyze large simulated datasets quickly while having a similar
memory requirement as our k-d tree-based program (Table 1). The
main drawback is that colocalized molecule lists or colocalized
cluster lists cannot be outputted by the program which makes
downstream analysis impossible. In addition, an accuracy analysis
via an F-score, which requires true positives, false positives, false
negatives, and true negatives cannot be calculated. The only other
program outputs besides the color coded Voronoi plot are a
quantification of colocalization via Mander’s and Spearman rank
coefficients. However, these metrics do not contain information
about the distance dependent degree of colocalizations that the
cross-correlation methods directly quantify. This distance
dependent degree of-colocalization is particularly useful when
comparing datasets across different states such as comparing the
degree of colocalization between fed and starved cells at various
distances (Figure 4).

In summary, while Voronoi tessellation efficiently detects
clustering and colocalization of SMLM data, it does not
contain the distance dependent density information of cross-
correlation methods, which is useful for comparing data sets and
for separating colocalized molecule lists for further downstream
analysis. Our implementation of k-d trees for calculating the
auto- or cross-correlation significantly lowers the computational
time and memory needs, which allows for the analysis of large
SMLM data sets that cannot be analyzed with existing cross-
correlation methods. The modular code can be interfaced from
existing SMLM data analysis packages for up- and downstream
analysis and therefore enables the detection of otherwise hidden
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features such as the critical number of ULK1 molecules in rare
clusters that initiate autophagy.
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Fluorescence-lifetime single molecule localization microscopy (FL-SMLM) adds the lifetime
dimension to the spatial super-resolution provided by SMLM. Independent of intensity and
spectrum, this lifetime information can be used, for example, to quantify the energy transfer
efficiency in Förster Resonance Energy Transfer (FRET) imaging, to probe the local
environment with dyes that change their lifetime in an environment-sensitive manner, or
to achieve image multiplexing by using dyes with different lifetimes. We present a thorough
theoretical analysis of fluorescence-lifetime determination in the context of FL-SMLM and
compare different lifetime-fitting approaches. In particular, we investigate the impact of
background and noise, and give clear guidelines for procedures that are optimized for FL-
SMLM. We do also present and discuss our public-domain software package
“Fluorescence-Lifetime TrackNTrace,” which converts recorded fluorescence
microscopy movies into super-resolved FL-SMLM images.

Keywords: FLIM (fluorescence lifetime imaging microscopy), CRLB (Cramér-Rao lower bound) analysis,
fluoresence lifetime fitting, super-resolution microscopy, lifetime uncertainty, SMLM (single molecule
localisation microscopy)

1 INTRODUCTION

The advent of super-resolutionmicroscopy (Hell, 2007; Huang et al., 2009) has revolutionized optical
microscopy over the last ca. 30 years, pushing the limits of spatial resolution by three orders of
magnitude down to the molecular length scale. The first of these super-resolution methods was
STimulated Emission Depletion (STED) microscopy (Hell and Wichmann, 1994; Klar et al., 2000),
developed by Stefan Hell and co-workers since the nineties of the last century, and later extended to
Ground State Depletion IMaging (GSDIM) (Fölling et al., 2008; Hell, 2009) and REversible Saturable
OpticaL Fluorescence Transitions (RESOLFT) imaging (Keller et al., 2007; Schwentker et al., 2007).
This spurred also the development of alternative methods that use single-molecule localization in
wide-field images (Single-Molecule Localization Microscopy or SMLM) (Klein et al., 2014). Among
these methods are PhotoActivated Localization Microscopy (PALM) (Betzig et al., 2006), Stochastic
Optical Reconstruction Microscopy (STORM) (Rust et al., 2006), fluorescence PALM (fPALM)
(Hess et al., 2006), direct STORM (dSTORM) (Van de Linde et al., 2011), Point Accumulation for
Imaging in Nanoscale Topography (PAINT) microscopy (Sharonov and Hochstrasser, 2006), and its
most common variant DNA-PAINT (Schnitzbauer et al., 2017; Auer et al., 2018). These methods rely
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on the fact that one can localize the center position of an emitting
molecule with much higher accuracy than the width of the
molecule’s image, the latter being defined by the optical
resolution of the used microscope. Roughly speaking, this
localization accuracy scales as the diffraction-limited resolution
divided by the square root of the number of detected photons, so
that, for example, a molecule that delivers 104 detectable photons
can be localized ca. 100 times better than the classical resolution
limit (neglecting here, for simplicity, all kinds of details such as
noise, background, or detector pixelation) (Ram et al., 2006). By
recording many images of well-separated molecules (by using
fluorescent labels that can be switched between non-fluorescent
and fluorescent states), one can generate a super-resolved image,
the resolution of which is only limited by the number of photons
detectable from a single molecule.

One powerful extension of fluorescence microscopy is
fluorescence lifetime imaging microscopy (FLIM) (Bastiaens
and Squire, 1999; van Munster and Gadella, 2005; Chang
et al., 2007) which measures, besides the intensity of the
fluorescence signal, also its lifetime. This lifetime information
can be, for example, used for multiplexing by using fluorophores
with different lifetimes (Niehörster et al., 2016), for Förster
Resonance Energy Transfer (FRET) imaging (Llères et al.,
2017), or to probe different environmental characteristics
when using fluorophores that change their lifetime as function
of specific parameters (e.g. pH, ion concentration, viscosity)
(Klymchenko, 2017). The two most common FLIM techniques
are based on a confocal microscope equipped with a pulsed laser
source, single-photon sensitive detectors and electronics for
Time-Correlated Single Photon Counting (TCSPC) (Becker,
2005; O’Connor, 2012), or on phase fluorometry using a time-
modulated excitation source and a wide-field detector with time-
modulated detection gain (Venetta, 1959; Spencer and Weber,
1969; Dong et al., 1995). However, both these approaches are
usually not suitable for SMLM: Confocal microscopy was until
recently rarely used for SMLM due to the limited frame rate, and
phase-fluorometry systems are by far to insensitive for single-
molecule imaging. In contrast, single-molecule sensitive wide-
field detectors such as emCCD or sCMOS cameras that are
generally used for SMLM do not provide any lifetime
information. Only recently, it has been shown that one can
use rapid-scanning confocal TCSPC microscopy for
fluorescence-lifetime SMLM (FL-SMLM) (Thiele et al., 2020).
In this case, one rapidly records confocal images with single-
molecule sensitivity and then analyses the stack of recorded scan
images in the same way as is done in conventional wide-field
SMLM. A drawback is that the light-throughput (or dwell-time
per position) in a confocal microscopy is much lower than that of
a camera-equipped wide-field microscope, but the advantage is
that one can obtain the lifetime information for each imaged and
registered molecule, and that the z-sectioning capability of the
confocal microscope can help to do SMLM even deeper into a
sample, where out-of-focus background light becomes a problem.
Alternatively to confocal TCSPC microscopy, new single-photon
sensitive wide-field cameras that can measure lifetime
information with TCSPC are more and more emerging. One
type of such cameras is based on an array of single-photon

avalanche diodes (Ulku et al., 2018; Morimoto et al., 2020)
and shows great promise for future SMLM applications. A
second type of wide-field TCSPC detectors is the commercially
available LINCam (PhotonScore GmbH, Magdeburg, Germany),
that has been successfully used for FL-SMLM (Oleksiievets et al.,
2020). Although this system has a relatively low quantum yield of
detection (5–15%), it shows nearly complete absence of any
readout or other camera noise, thus assuring sufficient high
signal-to-background ratios for successful single-molecule
imaging.

Thus, with the advent of FL-SMLM, the question arises what is
the most optimal and efficient way of TCSPC-based fluorescence-
lifetime determination for SMLM. Within the context of single-
molecule spectroscopy, different fitting methods have been
discussed and evaluated with experimental data, indicating
that maximum likelihood estimations outperform least-square
minimization techniques (Maus et al., 2001; Santra et al., 2016),
and theoretical limits have been derived analytically (for
background-free case) (Köllner and Wolfrum, 1992) and
numerically (for a large range of experimental parameters)
(Bouchet et al., 2019; Trinh et al., 2021). Here, we compare
the performance of different commonly used fit algorithms by
using simulated and experimental data, and we derive an analytic
expression for their theoretical limits. With experimental data, we
analyze the impact of sample inhomogeneity (intrinsic
fluorescence lifetime variation of dye molecules) on obtained
lifetime distributions, and we finally demonstrate that pattern-
matching algorithms can be much more efficient than full
lifetime-fitting in lifetime-based multiplexing.

2 THEORY OF LIFETIME DETERMINATION

In a TCSPC lifetime measurement, the sample is excited with a
train of sufficiently short laser pulses (ca. 100 femtoseconds to few
dozen picoseconds) with fixed inter-pulse time period T
(repetition period). For each detected photon, the arrival time
t with respect to the last excitation pulse is recorded. The
fluorescence lifetime τ can then be directly estimated from
these arrival times as the mean (or standard deviation) of
these t-values. However, this is only exact for a background-
free measurement and for sufficiently large values of the
repetition period T (T ≫ τ). For a precise lifetime
determination with background and finite T, photon detection
events are aggregated according to their arrival times, yielding the
so-called TCSPC histogram, which is then fitted with a suitable
model. Most fluorophores show a mono-exponential fluorescent
decay behavior, so that one used a mono-exponential decay
function with single decay time for fitting the TCSPC
histogram (Lakowicz, 2006). In that case, the probability p for
a photon to be detected at the time t is given by

p(t) � (1 − b) exp(−t/τ)
τ(1 − exp(−T/τ)) +

b

T
(1)

where b is the relative background amplitude (constant
background). Experimentally, photon arrival times are grouped
into K discrete TCSPC time channels ti of finite width Δt. In
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modern TCSPC systems, this time resolution Δt of measuring
photon detection times is usually much smaller than both the
lifetime τ and the width of the so-called instrument response
function (IRF) σIRF, which is the experimentally measured
TCSPC histogram for an ideal sample with infinitely fast
fluorescence decay time. Therefore, any error that may be
introduced by the TCSPC channel width is negligible, and the
probability to detect a photon within one TCSPC channel is
given by

pi � Δt (1 − b) exp −ti/τ( )
τ(1 − exp(−T/τ)) +

b

K
. (2)

For a total number N̂ of expected photons, the expectation
value for each bin is then given by

m̂i � N̂pi � N̂Δt (1 − b) exp −ti/τ( )
τ(1 − exp(−T/τ)) + N̂

b

K
. (3)

Here, m̂i denotes the expected number of photons falling into
the ith detection channel. It is important to note that the above
equation is only correct for an infinitely narrow, delta-function
like IRF, or when considering only TCSPC channels after a cut off
of the part containing the IRF (TCSPC histogram starting some
time tcut after the peak of the IRF). This cut off eliminates the
impact of the IRF on a TCSPC histogram and is a common
approach when working with IRFs sufficiently narrow compared
to the fluorescence lifetime. The values of τ, b, and, depending on
the method, N̂ are fitted by minimizing a suitable score function.
Table 1 summarizes the defined symbols.

2.1 Least-Square Estimators
The default score function for curve fitting with unknown error
distribution is the sum of least-squares, i.e. the sum of the squared
difference between data and estimate (L2-norm):

χ2LS � ∑K
i�1

m̂i −mi( )2 (4)

For single-photon detection, the number mi of detected photons
in channel i follows a Poissonian statistics, so that its variance is equal
to its mean value (expectation value). In a weighted least-square
minimization, each value in the χ2-sum is weighted by the inverse
of its variance, which requires to estimate, from the experimental
data, the value of this variance. Pearson’s χ2 used the model-fitted
values m̂i as an estimate for the variance, which leads to

χ2P � ∑K
i�1

m̂i −mi( )2
m̂i

. (5)

In contrast, Neyman’s χ2 directly uses the experimentally
measured values mi as an estimate of the variance,

χ2N � ∑K
i�1

m̂i −mi( )2
mi

. (6)

However, this expression becomes infinite whenever one of
the values mi becomes zero. Therefore, the denominator is either
set to one in these cases (χ2N1), or the sum skips all i where mi � 0

(χ2N2). In this work, we exclusively use χ2N1, because we observed
that χ2N2 leads to unstable fit results.

2.2 Maximum Likelihood Estimator
Unlike measurement in bulk or on densely labeled structures,
single molecule measurements are always limited by the number
of detected photons. Especially for low photon count numbers,
the variance of these numbers significantly deviates from a
Gaussian distribution which is, however, the basic assumption
behind all least-square estimators. A maximum likelihood
estimator (MLE) solves this problem by calculating the
probability that a given set of parameters leads to an
experimentally measured photon detection distribution. When
assuming that the probability of detecting a photon in the ith
channel of a TCSPC histogram is pi, then the likelihood of
measuring a TCSPC histogram {mi} is given by (Baker and
Cousins, 1984)

L � N!∏K
i�1

pi( )mi

mi!
. (7)

This likelihood function takes extremely small values that are
numerically difficult to handle and not very practical for
comparing different parameter sets. To facilitate computation,
constant factors are neglected, and one uses the negative
logarithm of L instead of L itself. This leads to the negative
log-likelihood function λ defined by

λ � −∑K
i�1

mi lnpi. (8)

A similar estimator is the Poisson deviance which is derived
from the likelihood ratio and relies on the estimated (fitted)
values m̂i instead of the probability (Baker and Cousins, 1984):

χ2λ � 2∑K
i�1

mi ln
mi

m̂i
− mi − m̂i( )( ) (9)

By minimizing λ, the estimated number of photons N̂ is
implicitly fixed to the detected number of photons N. When
replacing m̂i � N̂pi and fixing N̂ � N, Eq. 9 becomes Eq. 8with a
constant offset.

In the limit of high photon detection numbers N, both
weighted least-square methods as well as the MLE give similar
results (Bajzer et al., 1991).

2.3 Goodness of Fit
A widely used parameter for estimating the goodness of a fit is the
reduced χ2/] with degrees of freedom ] � K—3 (minus three
because we have the three fit parameters τ, b, and N̂). For a
perfect fit, χ2/] should be close to one. Smaller values indicate
over-fitting, which is in the case of a mono-exponential model
unlikely, and larger values indicate that the model does not
describe the data completely. Both Pearson’s χ2P and the MLE
χ2λ asymptotically approach the χ2 distribution. However, for low
number of counts per time bin (〈mi〉i≲ 1), the expectation value
of χ2λ/] deviates from the value one while the expectation value of
χ2P/] stays close to one at the cost of an increased variance. In
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practice, an increased variance is usually preferable over a count-
dependent expectation value. The bias of the expectation value of
χ2λ/] can be reduced by grouping adjacent time bins and thus
decreasing the time resolution.

2.4 Lifetime Uncertainty
The Cramér-Rao lower bound (CRLB) uses the Fisher
information of a measurement to calculate a lowest bound for
the variance that an unbiased estimator can have. The amount of
information conveyed by a measurement is shared between all
unknown parameters θ. For a mono-exponential decay with N
photons and the probability distribution p(t) of Eq. 1, the Fisher
matrix is given by:

I(θ)[ ]j,k � ∫T

0

z ln(Np(t))
zθj

z ln(Np(t))
zθk

Np(t) dt (10)

The CRLB for each parameter is then given by the
corresponding diagonal element of the inverse Fisher matrix:

σ2j � I(θ)−1[ ]
jj

(11)

For TCSPC-measurements, typically both the lifetime and
background need to be estimated: θ � {τ, b}. As discussed by
Köllner and Wolfrum (1992), an unknown number of photons
does not affect the uncertainty as off-diagonal elements IN,k≠N
become zero. A step-by-step derivation of the CRLB σ2τ for the
lifetime is provided in the supplemental information.

2.5 Pattern Matching
Pattern matching is an alternative to lifetime fitting when the core
task is to determine to which species a detected molecule belongs,
among a discrete number of different species. Unlike lifetime
fitting, pattern matching does not make any assumptions about
the shape of the decay, and the only prerequisite is that reference
decays of the separate species are available. To identify the most
likely species to which a molecule belongs, the different negative
log-likelihood values λα are calculated according to Eq. 8 by setting
{pi} equal to the normalized probability distributions {pi,α} for each
species α. The species with the lowest value of λ is then chosen as
the most likely species. The rate of misidentifications depends on
the number of photons N and the similarity of the patterns, see
discussion in Enderlein and Sauer (2001) for details. The relative
probability fα for species α among a total of S species is given by

fα � exp −λα( )∑S
β�1 exp −λβ( ). (12)

This equation is useful for rejecting molecules that cannot be
classified with a high probability (Thiele et al., 2020). The relative
probability is equivalent to the posterior probability of a Bayesian
model comparison when assuming equal prior probabilities. In
contrast to likelihoods or Bayes factors, the posterior probability
can be averaged over multiple molecules or many time points.

Unlike the situation in usual fitting, the {pi,α} are the same for
all TCSPC histograms. Therefore, the logarithms can be
calculated in advance, and Eq. 8 can be implemented as a
simple matrix multiplication. For this purpose, first the K × S-

dimensional pattern matrix Pln is calculated which contains the
logarithm of the normalized patterns as row vectors. Second, the
negative log-likelihood matrix Λ is obtained by multiplication
withmatrixM, which is the J ×K-dimensional matrix constructed
from the J TCSPC histograms (column vectors):

Λ � −M · Pln (13)

The resulting J × S-dimensional matrix Λ with entries λj,α
allows for a fast calculation of the relative probabilities fj,α with
Eq. 12, or to directly determine the most likely pattern xj for each
TCSPC histogram with

xj � arg
α

min λj,α. (14)

The a priori calculation of Pln, together with the single matrix
multiplication step, enables efficient calculation of λj,α for
thousands of TCSPC histograms in parallel and for many
species. By employing a library of calculated decays {pi,α}, this
approach allows for quick determination of the most likely
parameter set using a grid-based search. We provide example
code of pattern matching for classification and as well as for grid-
based fitting in the supplementary material (Thiele, 2021b).

2.6 Fitting Using the Instrument Response
Function
For lifetime values similar or shorter than the width of the IRF, it
can be necessary to explicitly take the shape of the IRF into
account. This is achieved by convolving the probability
distribution {pi} (1) or expectation values {m̂i} (Eq. 3) with the
normalized IRF {qi}:

p̂p
i � p̂i;qi, m̂p

i � m̂i;qi (15)

Here, ; denotes a discrete, circular convolution.
Subsequently, the score function is minimized with the
convolved probability distributions {p̂p

i } or expectation values
{m̂p

i }, respectively. This can be either performed for the tail of the
decay only, or, more commonly, for the entire decay curve.

The IRF can be measured experimentally, or it can be
approximated with a model. Typically, a Gaussian distribution
or a shifted Gamma distribution, which reflects a potential
asymmetry of the IRF, are used as parametric models. In this
work, we employed a shifted Gamma distribution of the form

qi � 0 ti ≤ t0
Δtκρ ti − t0( )ρ−1 exp −κ ti − t0( )[ ]/Γ(ρ) ti > t0

{ (16)

where the distribution depends on the following three parameters:
starting time of the peak t0, shape parameter ρ, and rate parameter κ.

3 METHODS

3.1 Simulations
The different least-square estimators and the maximum-
likelihood estimator were tested on simulated data. If not
stated otherwise, the following parameters were used: lifetime
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τ � 2 ns, background b � 0.2, repetition period T � 25 ns, TCSPC
time resolution Δt � 0.016 ns. Using these parameters and the
average total number N of detected photons, the expectation
values {m̂i} were calculated for each time bin following Eq. 3. To
generate a simulated decay {mi}, Poisson-distributed random
variables with expectation value {m̂i} were drawn. The
simulated data was fitted with the model function (Eq. 3) by
minimizing each estimator (Eqs 5, 6 and 8) with a Nelder-Mead
simplex algorithm. Initial fit values were calculated by
multiplying the true value with a random number between 0.5
and 1.5 to obtain a low-precision initial guess value. Simulation
and fitting was repeated 105 times to obtain a sufficiently large
distribution of fit results. The simulation was implemented in
Matlab (R2020a, The MathWorks Inc.).

To investigate the influence of the IRF on the fitted lifetime, a
dedicated simulation was performed. First, the experimental IRF
of the confocal microscope described in (Thiele et al., 2020) was
determined bymeasuring backscattering from a coverglass coated
with a 10 nm gold film. The substrate preparation is described in
detail in (Ghosh et al., 2021). A normalized experimental IRF is
obtained from the measured TCSPC histogram by subtracting the
background, defined as the average count level in the second half
of the TCSPC histogram, and dividing by its sum. A parametric
IRF was obtained by fitting the TCSPC histogram with (1 − b)qi +
b/K, where qi is defined as in Eq. 16, by minimizing the negative
log-likelihood (Eq. 8) for the parameters t0, ρ, κ, and b with a
Nelder-Mead simplex algorithm. Subsequently, the parametric
IRF was calculated with these t0, ρ, and κ.

Similar to the previous simulation, a decay with background
b � 0.2, repetition period T � 25 ns, and time resolutionΔt � 0.016
ns was calculated, while its lifetime was varied from 0.025 ns to
2.0 ns in 0.025 ns increments. The calculated decay was convolved
with the experimental IRF, and 105 TCSPC histograms with a
mean value of 2000 photons were simulated. From the TCSPC
histograms, the lifetime values were determined by an MLE grid
search based on the pattern matching described in Section 2.4
with 500 lifetime values linearly spaced from 0.01 ns to 3.00 ns
and 60 different background values. The reference decays were
calculated in three different ways: (1) mono-exponential decay
without IRF, (2) mono-exponential decay convolved with the
experimental IRF, and mono-exponential decay convolved with
the parametric IRF. For case (1), the likelihood was calculated
using the tail of the decay starting tcut � 0.2 ns after the maximum
of the sum of all decays. The correspondingly shortened reference
decays were normalized prior to calculating the likelihood values.
For case (2) and (3), the likelihood was calculated with the entire
TCSPC histogram.

3.2 Experimental Data
For checking the different lifetime-fitting approaches on real
experimental data, we used dSTORM images of three different
structures: Alexa 647-labeled microtubules, Atto 655-labeled
clathrin pits in fixed COS7 cells, and 3 µm polystyrene beads
decorated with Alexa 647-labeled DNA. All experimental data
were taken from (Thiele et al., 2020), where details on the sample
preparation and measurement can be found. The data was
processed with TrackNTrace (see below) to extract single-

molecule TCSPC histograms. The tail of the single-molecule
decay curves, starting 0.2 ns after the maximum in the sum of
all decays, were fitted by minimizing the negative log-likelihood
function (Eq. 8) with a Nelder-Mead simplex algorithm. Initial fit
values were determined by using a pattern matching of the decay
curves. For this purpose, 500 lifetime values linearly spaced from
0.01 to 5.00 ns and 60 different background values were used.

For the analysis of the experimentally obtained lifetime
distributions (Figure 3), the single molecule data was sorted
according to the number of photons per TCSPC histogram, and
then divided into 30 equally-sized groups. Only molecules with
an image size (standard deviation) between 100 and 180 nm, with
at least 25 photons in the TCSPC histogram, and with a reduced
Pearson’s χ2P/] of their lifetime fit between 0.8 and 1.2 were
included in the final analysis.

For each group, the standard deviation σ of the single molecule
lifetimes and the analytic CRLB based on the average number of
photons 〈N〉, the lifetime 〈τ〉 and the background 〈b〉, was
calculated. The width of the sample-intrinsic lifetime variation
σsample was determined by fitting the σ for 〈N〉 > 100 with an
decay of the form σ � a〈N〉−k + σsample with empirical fit
parameters a, k, and intrinsic sample-related variance σsample

by minimizing χ2LS with a Nelder-Mead simplex algorithm.
For exemplifying and checking the pattern-matching algorithm,

we used data obtained from COS7 cells labeled with either Alexa
647 or Atto 655, from which synthetic data with mixed labeling
were generated. Only molecules with an image size between 100
and 180 nm and at least 50 photons in the TCSPC histogram were
used for further analysis. As reference patterns, we used normalized
decay curves of pure samples of Alexa 647 and Atto 655,
respectively. With these reference patterns, the relative
probability that a localized molecule was either Alexa 647 or
Atto 655 was calculated, following Eq. 12. Based on these
relative probabilities and the known identities of the samples,
the receiver operating characteristic (ROC) and the area under
curve (AUC) were calculated. As comparison, the same curveswere
calculated using MLE fitted lifetime values as classification score.

4 RESULTS

4.1 Simulations and Analytical Results
The CRLB yields the minimum variance that can be attained by
an unbiased estimator. For a mono-exponential decay with
background and an infinite time resolution, an analytical
expression for the CRLB can be given. It has recently been
shown numerically that the TCSPC channel discretization does
not considerably affect the CRLB as long as the time bins are
much narrower than the lifetime (Trinh et al., 2021). In contrast,
background substantially affects a CRLB (Köllner and Wolfrum,
1992). The full expression of the CRLB for the variance σ2τ of the
lifetime τ as function of τ itself, the number of photons N, the
background fraction b, and the repetition period T, is given in the
supplementary information (see Supplementary Equation S1). It
is, however, useful to analyze some limiting cases. In the limiting
case of an infinitely large repetition period T, the estimator is only
limited by Poisson noise:
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lim
T→∞

σ2τ �
τ2

N

1
1 − b

(17)

Here, N(1 − b) photons correspond to the fluorescence signal
while the Nb background photons do not carry any lifetime
information. Since the off-diagonal elements of the Fisher matrix
vanish ([I(θ)]τ,b � 0) for T → ∞, the knowledge of the
background does not affect the result. For a finite value of T,
these off-diagonal elements become non-zero and do increase the
value of σ2τ . Therefore, it makes a difference whether the
background level needs to be estimated independently as an
additional fit parameter, or whether it is known in advance. If
it is known that the background is zero one finds

lim
b→0

σ2τ �
τ2

N

2(1 − cosh(χ))
2 + χ2 − 2 cosh(χ) with χ � T

τ
(18)

while for an unknown but zero background one finds the
generally larger value

lim
b→0

σ2
τ �

τ2

N

4 sinh χ
2( ) χ2 − 2 cosh(χ) + 2( )

χ4 + 12χ2 + 12( )sinh χ
2( ) − 4χ3 cosh χ

2( ) − 4 sinh 3χ
2( ).
(19)

A comparison between known and unknown background levels
and calculations for different combinations of background and
repetition period T are provided in Supplementary Figure S1.

To validate the performance of the different estimators,
simulated TCSPC histograms were fitted and the fit results
compared to the ground truth. Especially at low photon
counts, there is a striking difference between the estimators. In
Figure 1A, it is apparent that weighted least-square estimators are
biased and do not reproduce the correct decay curve. The
distribution of fitted lifetime values (Figure 1B) emphasizes
this count-dependent bias. In contrast, the median lifetime
value recovered by the unweighted LSQ and the MLE are very
close to the ground truth. However, the MLE achieves this with
much less uncertainty. The distribution of the fitted number of
photons, background level, and bias of median lifetime values in
dependence of the number of counts are given in Supplementary
Figure S2. As shown in Figure 1C, the standard deviation of the
lifetime values obtained with weighted LSQ and MLE do
approach the theoretical limit of the CRLB. However, solely
MLE provides a performance close to the CRLB with no
substantial bias of the lifetime values, even for photon
detection numbers of only a few hundred. This behavior is not
specific for the chosen simulation parameters. In the
supplementary material, see Supplementary Table S1, we
present additional simulations for lower lifetimes, for shorter
repetition rates, and for higher and lower background values,
confirming our results described above. In good agreement with
our results, Santra et al. (2016) found no bias for MLE but
substantial bias for least-square estimators when fitting
solution measurements and neglecting background.

4.1.1 Influence of the Instrument Response Function
The simulations so far neglected the influence of the IRF which is
equivalent to assuming a dirac-like IRF. In reality, the IRF has a

finite width and can influence the fitted lifetime. Figure 2 shows
an experimental IRF obtained by recording the back-scattered
light form a gold-covered coverslip, together with its parametric
fit. The parametric IRF was obtained by fitting the scattering
measurement and has a full width at half maximum (FWHM) of
0.58 ns. The good fit quality confirms that the shifted Gamma
distribution is an excellent model for the true IRF.

To evaluate the effect of the IRF, we simulated TCSPC
measurements using the experimental IRF and for sample
lifetimes (ground-truth) between 0.025 and 2.0 ns. The
computed TCSPC curves were then fitted with and without
IRF using an MLE grid search. Figure 2B shows that the tail
fit leads to a bias towards larger lifetime values when the actual
lifetime comes closer to the width of the IRF. For lifetime values
close to zero, the bias reaches 0.2 ns. This bias can be eliminated
by taking the IRF explicitly into account. Fits with the IRF, both
with the experimental IRF (which was used for the TCSPC
simulation) as well as with its parametric form, lead to
negligible bias for all tested lifetimes.

With a FWHM of above 0.5 ns, the IRF we used for the
simulation was rather broad due to the employed diode laser. For
a narrower IRF, e.g. with a typical white light laser, the influence
of the IRF will be even less pronounced and the bias of tail-fit
results reduced.

4.2 Experimental Results
4.2.1 Estimation of the Intrinsic Lifetime Distribution
In real measurements, single-molecule lifetime values are not
only affected by Poisson noise but also by intrinsic sample
inhomogeneity (variation of intrinsic lifetime values). Figure 3
compares two samples: Alexa 647 in a cellular environment
exhibits a broader lifetime distribution that cannot be
explained solely by the CRLB, while the lifetime distribution
of DNA-conjugated Alexa 647 on a polymer bead surface is close
to the CRLB. Unlike the CRLB, this sample-dependent
contribution to the lifetime variance does not dependent on
the number of detected photons. Therefore, it can be
estimated as the asymptotic limit of the standard deviation of
the lifetimes as a function of the number of detected photons, as
shown in Figures 3C,F. When taking this additional intrinsic
sample-related variance into account, the theoretical estimate
(green line in Figures 3B,E) does closely match the measured
lifetime distribution. By simulating a sample with a known
lifetime inhomogeneity (Supplementary Figure S13), we can
confirm this method recovers the intrinsic variance. In the
cellular environment, we observe a small dependence of the
average lifetime on photon number (Supplementary Figure
S14). This adds to the overall width of the lifetime
distribution (Figure 3B), but does not affect our estimation of
the intrinsic variance as the standard deviation is independent of
the mean.

The clear difference between the average lifetimes in the two
different samples matches results in the literature that the lifetime
of cyanines like Alexa 647 sensitively depends on the
environment (Buschmann et al., 2003; Klehs et al., 2014).

For experimental data, all lifetimes in this work are determined
with mono-exponential tail-fits. The interval of the TCSPC
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histogram which is used for lifetime fitting starts at or short time
(cut off tcut) after the maximum of the TCSPC histogram.
Figure 4C illustrates that the cut off does not notably affect
the resulting lifetime distribution for a mono-exponential sample.

4.2.2 Pattern Matching
A pattern matching compares the TCSPC histogram with a
library of reference patterns. This allows one to classify single
molecules without fitting their lifetime and setting a lifetime
threshold. Figure 4 compares the performance of pattern
matching (A) with lifetime-fitting based classification (B).
Pattern matching offers a higher sensitivity and specificity
which is reflected in the larger area under the curve (AUC) as
compared to lifetime-fitting based classification. The reference

patterns, shown in Supplementary Figure S15A, reveal that the
decay curves are not strictly mono-exponential. Therefore,
overlapping lifetime distributions (Supplementary Figure
S15B) can be separated better by pattern matching than by
lifetime fitting. The specificity can be improved by removing
molecules with low number of photons.

Pattern matching is also useful for quickly finding good guess
values over a limited parameter space using a parallel grid search.
Figure 4C shows that the lifetimes obtained by pattern matching
closely resemble the distribution obtained from MLE fitting. For
highest precision, the lifetime values could be refined with a
subsequent precise MLE fit.

5 DISCUSSION AND CONCLUSION

Using Monte-Carlo simulations, we have demonstrated that
MLE-based fitting outperforms common LSQ-based fitting and
achieves close to shot-noise limited accuracy. An analytic
expression for this limit, the CRLB for a mono-exponential
decay with unknown background and finite repetition period
was derived. In SMLM, the localization uncertainty derived from
the CRLB has become an indispensable parameter for data
filtering. We suggest to use the lifetime uncertainty in a
similar fashion for filtering lifetime-resolved single-molecule
data, to improve separation between different species or states,
and to estimate experimental limitations. To facilitate its
application, we provide a Python implementation of the CRLB
calculation (Thiele, 2021a).

Our simulations confirmed that the fit uncertainties
originating from photon statistics, background, and finite
repetition period can be well estimated by the CRLB.
However, in actual single-molecule lifetime experiments,
additional sources of uncertainty need to be considered. Many

FIGURE 1 | Performance of different lifetime estimators: Based on a calculated decay with 2 ns lifetime and 20% background photons, 105 decay curves with
Poissonian noise were simulated for different numbers of photons and fitted using different estimators. (A) Ground truth (black) and fit results of simulated decays with
200 photons (expectation value). The thick, colored lines indicate the median, and the thin, dashed lines the 5 and 95% quantiles. (B) Distribution of fitted lifetime values
for decays with 200 photons (left half) and 2000 photons (right half). (C) Standard deviation of the lifetime distributions and calculated CRLB as a function of the
number of photons in the decay.

TABLE 1 | Definitions of frequently used symbols.

Parameter Description

τ fluorescence lifetime
b background fraction
N total number of photons
T repetition period
t time since last pulse
K number of TCSPC time bins
Δt width of TCSPC time bins
p photon detection probability
mi counts in time bin i
m̂i expected counts in time bin i

N̂ expected total number of counts

tcut cut-off time for tail-fits
χ2LS least square error

] degrees of freedom (here, K − 3)
λ negative log-likelihood
σ2τ lifetime uncertainty (CRLB)

t0, ρ, κ parameters of model IRF
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fluorophores are known to be sensitive to their local environment.
This can be a desired effect, e.g. for lifetime-based environmental
sensing (Klymchenko, 2017). However, for many applications,
including lifetime-based multiplexing or FRET, the intrinsic

lifetime variation should be as narrow as possible because any
broadening increases final uncertainties of the results. Therefore,
it is important to quantify the intrinsic lifetime variation across a
single species of labels/dyes which is, unlike the CRLB,

FIGURE 2 | Influence of a non-ideal IRF on the fitted lifetime: (A) Experimental IRF measured from gold scattering (blue dots) and parametric IRF (green line). The
parametric IRF is described by a shifted Gamma distribution with the parameters given in the plot. (B)Median fitted lifetime for simulated decays with the experimental IRF
and different lifetimes. The fitted lifetimewas determined by fitting the tail of the decays with a mono-exponential function (tail fit) and by fitting the entire decay curve using
either the experimental IRF or the parametric IRF. The inset shows the absolute difference between the fitted and the true lifetime in dependence of the true lifetime.
All fits are grid-based MLE fits, and tail fits use a cut off tcut � 0.2 ns.

FIGURE 3 | Lifetime-resolved dSTORM of two different samples with Alexa 647: (A, B, C) immunostained microtubules in fixed COS7 cells and (D, E, F) DNA-
functionalized micro-beads. (A,D) Super-resolved FL-SMLM image. (B, E) Distribution of the single molecule lifetime values (red), CRLB-limited distribution assuming
equal lifetime values for all molecules, and CRLB-limited distribution with an additional broadening. (C, F) Dependence of the standard deviation of the fitted lifetime on
the number of photons. With an increasing number of photons, the standard deviation (red) approaches a limit which is caused by sample inhomogeneity (intrinsic
variation of lifetime values). In contrast, the corresponding CRLB (blue) approaches zero. The green line represents the square root of the sum of the variance as
predicted by the CRLB and the intrinsic variance of the sample.
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independent on the number of detected photons. We have shown
that this intrinsic lifetime variation can be extracted from the
photon-number dependence of the experimentally determined
lifetime distribution. As presented in Figure 3, the same
fluorophore but in different samples can show very different
lifetime variation, with measurements in cells exhibiting a
considerably broader variation. This suggests that single-
molecule lifetime measurements in cells might not always be
limited only by the instrument response function or the photon
statistics, but can be also limited by intrinsic lifetime variations of
a sample itself.

In FLIM experiments, the fluorescence lifetime is often used to
identify different states, e.g. high or low FRET efficiency, or
distinguish between different species with different lifetimes.
FL-SMLM extracts this information from single molecules and
allows for a discrete classification of imaged molecules based on
their lifetimes. For such an application, full lifetime fitting is not
always the most efficient way for classification. As demonstrated
in Figure 4, pattern matching outperforms lifetime-based
classification. Pattern matching compares a measured TCSPC
histogram with reference histograms, which can be done
extremely fast, and which does not require any specific
knowledge about the character of a fluorescence decay (e.g.
mono-exponential decay) while utilizing all photons of a
TCSPC histogram. When using a large number of calculated
decays, pattern matching can serve as a way of unbiased lifetime
estimation within a fixed parameter space. Since this is very fast, it
is attractive for initial parameter guesses and might be useful
when many thousands of lifetimes need to be determined, e.g. in
pixel-wise time-resolved data.

To facilitate the analysis of FL-SMLM data, we have amended
our open source software package TrackNTrace (Stein and
Thiart, 2016) with the ability to extract TCSPC histograms
and to fit lifetime values. It conveniently covers all required
computational steps, from reading raw data to reconstructing
FLIM images, all within a single GUI-based app. In this app,
lifetime values can be determined with fast pattern matching and,
optionally, by subsequent refinement with precise MLE-based
fitting.
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A Tribute to Professor Katharina Gaus
Marek Cebecauer*

J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia

Keywords: tribute, single molecule localisation microscopy, Laurdan, cluster analysis, membrane biophysics

“With new single-molecule tools, and our formidable team, the only limit to what we can achieve is our
imagination.”

It is with great sadness that I report that Professor Dr. Katharina (Kat) Gaus, aged 48, passed away
on March 3, 2021. She left with all her energy and enthusiasm, which she constantly devoted to us,
her friends, and a broad spectrum of scientific questions. I would like to share with you some brief
and personal memories of Katharina Gaus.

I met Kat in Sydney in 2011. She had invited me to stay for 1 month in her lab to learn about
single-molecule localization microscopy (SMLM), a modern super-resolution microscopy technique
that was already well-established in her laboratory a mere 6 years after appearing in the literature,
demonstrating the beauty of biological imaging beyond the diffraction limit. Commercial super-
resolution microscopes had just appeared on the market. Her young and productive team was
already extensively using SMLM to characterise molecular processes associated with the activation of
T lymphocytes (Williamson et al., 2011; Rossy et al., 2013). They were among the very few
laboratories that had managed to employ super-resolution microscopy to address key biological
questions in such a short time. In fact, this was a typical feature of Kat’s research. She was one of those
bold thinkers, who kept bringing new (imaging) technologies into a number of fields, such as
immunology, cell biology and virology, to name just a few. To illustrate the impact of Kat’s drive for
new technologies, I will mention the two main directions of her research: plasma membrane
biophysics and the organisation of signalling molecules on T cells.

Laurdan, a fluorescent membrane probe that is able to sense changes in its environment, was only
sparsely used in the community of biophysicists studying synthetic lipid bilayers when Kat harnessed
its properties to measure the physical heterogeneity of cellular membranes (Gaus et al., 2003; Gaus
et al., 2006). Although the results have been later superseded, Kat and her colleagues continued to
improve the Laurdan imaging technology, and the current images certainly are impressive (Ma et al.,
2018). Similarly, she pioneered the use of statistical analysis designed for geoinformation studies to
characterise surface topography of key players involved in the activation of immune cells
(Williamson et al., 2011; Rossy et al., 2013). Cluster analysis used in these early SMLM studies
seems a little outdated now and is limited to certain shapes and density levels, but Kat’s team together
with her alumni students kept developing more appropriate and advanced cluster analysis methods
to achieve more precise information about processes in immune cells (Pageon et al., 2016; Griffié
et al., 2017; Hinde et al., 2017; Williamson et al., 2020). Such a continuous effort to improve
available technologies underlines Kat’s dedication to advancing the field while delivering excellent
science.

Looking back at her publication history and her current team, it is apparent how Kat was able to
attract great talent to her laboratory. She built a lab with a mix of biologists, chemists, and physicists
at just the right ratio to attack, thanks to this scientific and cultural mixture, important unresolved
questions that required unconventional approach(es). This led to several great discoveries and
technological improvements, which will serve the community for many years to follow. To highlight
contributions to the field of SMLM, it is especially noteworthy how Kat’s team adapted this technique
for the quantitative analysis of receptor stoichiometry (Baker et al., 2019), the measurements of
intermolecular distances (Coelho et al., 2020), the three-dimensional distribution of molecules
(Coelho et al., 2021) and diffusional analysis (Hilzenrat et al., 2020). In collaboration with her
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partner’s group (Prof. Justin Gooding), they developed a variety
of nanostructures for functional and super-resolution imaging
and contributed to the application of “click chemistry” in SMLM
(Laxman et al., 2021). And I have probably forgotten to refer to
several other improvements to this field. However, this long list
emphasizes the special position of Kat Gaus in the hearts of
microscopists, especially those studying surface molecules on
lymphocytes like me. I would like to finish by mentioning that
I have never seen Kat frowning. She kept smiling constantly, at

least in my presence. I hope that many of you have similar
memories. She will be missed, certainly by her collaborators, and
the microscopy and SMLM community.
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Raw Data to Results: A Hands-On
Introduction and Overview of
Computational Analysis for
Single-Molecule Localization
Microscopy
Koen J. A. Martens1,2, Bartosz Turkowyd1,2,3 and Ulrike Endesfelder1,2,3*

1Department of Physics, CarnegieMellon University, Pittsburgh, PA, United States, 2Institute for Microbiology and Biotechnology,
Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 3Department of Systems and Synthetic Microbiology, Max
Planck Institute for Terrestrial Microbiology, LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany

Single-molecule localization microscopy (SMLM) is an advanced microscopy method that
uses the blinking of fluorescent molecules to determine the position of these molecules
with a resolution below the diffraction limit (∼5–40 nm). While SMLM imaging itself is
becoming more popular, the computational analysis surrounding the technique is still a
specialized area and often remains a “black box” for experimental researchers. Here, we
provide an introduction to the required computational analysis of SMLM imaging, post-
processing and typical data analysis. Importantly, user-friendly, ready-to-use and well-
documented code in Python and MATLAB with exemplary data is provided as an
interactive experience for the reader, as well as a starting point for further analysis. Our
code is supplemented by descriptions of the computational problems and their
implementation. We discuss the state of the art in computational methods and
software suites used in SMLM imaging and data analysis. Finally, we give an outlook
into further computational challenges in the field.

Keywords: SMLMPython andMATLAB code, temporal median filtering, SMLM localization and localizationmerging,
drift and chromatic aberration correction, SMLM image formation, single-particle tracking, SMLM clustering, SMLM
localization precision and structural image resolution

INTRODUCTION

Single-molecule localization microscopy (SMLM) is a collective term for microscopy techniques that
generate localization data of individual fluorescent molecule emission events, and can achieve
∼5–40 nm resolution at ∼10–100 Hz (Betzig et al., 2006; Rust et al., 2006; Sage et al., 2019).
Localization-based microscopy can be performed with relatively standard, albeit sensitive, wide-field
fluorescence microscopes. The key requirement is that the fluorescent molecules used are able to
switch between on and off states, ensuring that all molecules are read out individually (Endesfelder
et al., 2011). dSTORM (direct stochastic optical reconstruction microscopy) achieves this on/off-
switching via chemical equilibria of organic fluorophores, often assisted via (near-)UV light and/or
reactive chemicals (Rust et al., 2006; Heilemann et al., 2008). For in vivo SMLM imaging, PALM
(photo-activated localization microscopy) is a conceptually similar technique as dSTORM, but relies
on photo-induced chemical transitions of fluorescent proteins (Betzig et al., 2006; Manley et al.,
2008). Alternatively, the on/off-switching can be accomplished by repetitive binding/unbinding of
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the fluorophore as done by PAINT microscopy (points
accumulation for imaging in nanoscale topography) (Sharonov
and Hochstrasser, 2006). As long as the fluorophore is unbound,
it diffuses too rapidly to produce a well-formed point-spread
function (PSF). This binding/unbinding is often, but not
exclusively, induced via DNA complementarity, i.e. DNA-
PAINT (Schnitzbauer et al., 2017).

A further increase in spatiotemporal resolution can be
achieved by various improvements in sample, fluorophores,
instrument, or computational design. For instance, increasing
labeling density and specificity, increasing emitter fluorescence,
or decreasing the distance between fluorophore to structure of
interest will result in a better observed resolution (Grimm et al.,
2016; Virant et al., 2018; Vojnovic and Endesfelder, 2020;
Geertsema et al., 2021). Accurate axial drift correction and
experimental PSF descriptions also have an influence (Li et al.,
2018; Vojnovic and Endesfelder, 2020). Instrumentally, the on/
off-switching of organic fluorophores or photo-activatable
fluorescent proteins can be combined with structured
illumination profiles, reaching up to 2–3 nm spatial resolution
(Balzarotti et al., 2017; Gu et al., 2019; Cnossen et al., 2020;
Jouchet et al., 2021).

All SMLM methods fundamentally result in an identical
output: a movie of individual fluorophore emissions from
which a coordinate list, containing at least time, x, and y
positions of individual emitters, often complemented by
information on localization uncertainty, emitter intensity, and
axial (z) position, can be extracted. This output can principally be
used to explore two main avenues: super-resolution imaging or
single-particle tracking (spt).

In super-resolution imaging, the sample of interest is usually
chemically fixed. Resolving all fluorophores’ positions, the
fluorescently-tagged structure of interest can be visualized with
a resolution about 10–20-fold lower than the classical diffraction
limit [∼250 nm (Abbe, 1873)]. With the help of super-resolution
imaging several unknown molecular arrangements in structural
biology could be revealed and quantified andmany review articles
summarize these findings and achievements in detail (Huang
et al., 2009; Patterson et al., 2010; Turkowyd et al., 2016; Baddeley
and Bewersdorf, 2018; Sigal et al., 2018).

Alternatively, in spt, a natural biological sample (i.e. single
living cells) with fluorophore-tagged proteins of interest are
imaged (Manley et al., 2008). The behaviour of the individual
intracellular biomolecules can be quantified, providing detailed
information on molecular dynamics and interactions (Shen et al.,
2017; Kapanidis et al., 2018; Elf and Barkefors, 2019). Spt can also
be applied in ex vivo settings, such as membrane proteins in
synthetic membranes or material science (Schütz et al., 1997;
Martens et al., 2020).

Clearly, applications of SMLM imaging are highly diverse.
Nevertheless, all of them inherently make use of similar
computational analysis tools - from localization software, drift
correction or color channel overlays to clustering or tracking
routines. Over the past decades, a multitude of analysis methods
and tools for localization data have evolved. Understanding the
obligate computational details of SMLM imaging and knowing
which tools to apply (when), and how to expand or modify them

for a specific use case can be overwhelming, especially for
researchers without a background in computer science. In this
manuscript, we provide an overview of the most common
computational analysis procedures in single-molecule
localization microscopy and supply code written in Python
and MATLAB. The structure of this work focuses on
understanding of the problems and their solutions, rather than
providing the most efficient or theoretically best solution.
Wherever possible, information about less intuitive, but state-
of-the-art alternatives is provided, as well as references to relevant
software suites.

MATERIALS AND METHODS

Samples
The E. coli RNA polymerase (RNAP) data for fiducial drift
correction, image generation, clustering and Nearest Neighbor
based Analysis (NeNA, (Endesfelder et al., 2014)) were taken
from our previous work (Virant et al., 2017). Briefly, RNAPs were
tagged with mEos3.2-A69T at their β′-subunit. Red,
photoconverted mEos3.2-A69T fluorescence was read out
using primed photoconversion. Movies were recorded with
16.67 Hz image acquisition until no new spots appeared.
Localizations were obtained using RapidSTORM (Wolter et al.,
2012).

The vimentin-BC2-tag data for the Fourier Ring Correlation
(FRC) analysis were taken from our previous work (Virant et al.,
2018). Briefly, vimentin, transiently expressed from a plasmid in
HeLa cells, was tagged by the BC2 peptide tag sequence. After
chemical fixation, cells were stained with the bivalent anti-BC2
nanobody labeled by AlexaFluor 647. The region of interest was
imaged for 20,000 frames using the dSTORM imaging buffer (van
de Linde et al., 2011) and localizations were obtained using
RapidSTORM.

DNA-PAINT nanoruler SMLM data was recorded for the
temporal median filter, localization, chromatic aberration and
cross correlation drift correction modules. The GATTA-PAINT
80RG nanoruler was obtained fromGattaquant, Germany. 10.000
frames were recorded with 100 ms interval under 561 nm
(1.5 kW/cm2) and 640 nm (1 kW/cm2) excitation, using a
ZET405/488/561/640m dichroic, ZT405/488/561/640rpc
rejection filter, and respectively ET610/75 or ET655LP
bandpass filter.

For the single-particle tracking analysis, we prepared 20 nm
diameter red and 200 nm diameter dark-red fluorescent beads
(FluoSphere Thermo Fisher; 580 nm excitation/605 nm emission
and 660 nm excitation/680 nm emission, respectively) in
respectively a 1:1,000 and 1:10,000 dilution from the original
stock in milli-Q water. ∼10 µL solution was placed on a coverslip
and covered with another coverslip. Coverslips were gently
pressed together to remove excess liquid and air bubbles and
placed on the microscope. 10,000 frames were recorded with
15 ms interval, and 1 ms stroboscopic 488 and 561 nm laser
illumination set at 3 and 0.3 kW/cm2, respectively. No
bandpass filter was used. Localizations were obtained using
ThunderStorm (Ovesny et al., 2014).
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All movie and localization datasets used in the computational
modules can be found on https://github.com/Endesfelder-Lab/
SMLMComputational.

SMLM Imaging
Imaging was performed on a custom build setup based on an
automated Nikon Ti Eclipse microscope equipped with
appropriate dichroic and filters (ET dapi/Fitc/cy3 or ZET405/
488/561/640m dichroic, ZT405/488/561rpc or ZT405/488/561/
640rpc rejection filter, ET610/75 or ET655LP bandpass, all AHF
Analysentechnik, Germany), and a CFI Apo TIRF ×100 oil
objective (NA 1.49, Nikon). The 488 nm, 561 nm, and 637 nm
lasers (Coherent) was modulated via an acousto-optical tunable
filter (AOTF) (Gooch and Housego, United States). Fluorescence
was detected by an emCCD (iXON Ultra 888; Andor,
United Kingdom). The z-focus was controlled by a commercial
perfect focus system (Nikon, Germany). The sample was placed on
a heating stage and kept at the constant temperature 25°C.
Acquisitions were controlled by μManager (Edelstein et al., 2010).

Code
All code, sub-divided into modules (Scheme 1) is provided both
as Python code and as MATLAB code (https://drive.google.com/
drive/u/0/folders/1lOKvC_L2fb78–uwz3on4lBzDGVum8Mc and
https://github.com/Endesfelder-Lab/SMLMComputational) and
is further documented by Pseudo-code (Supplementary
information) and descriptions in the main text. The interactive
environment of the google colab implementation (https://colab.
research.google.com/) allows for direct, user-based testing and
adaptation on our example data.

RESULTS

SMLM data is typically analyzed in several, mostly consecutive
steps. The different analysis procedures in this manuscript follow
this workflow are thus subdivided in three major groups: “pre-
processing and localization”, “post-processing”, and “data

interpretation” modules (Scheme 1). The modules of the first
group “pre-processing and localization” all work on SMLM
movie data and concern analysis steps which are used to
properly translate the recorded movie material into
localization data. In the second group, called “post-
processing”, those raw localization lists are typically further
refined in several routines that raise the quality of the data or
combine different parts of data into final SMLM localization lists.
These data sets then are visualized, characterized and interpreted
by analysis routines which are grouped in “data interpretation”,
and provide additional data (images, parameters, bionumbers
and measurements etc.,) as output.

The order of our modules follows standard analysis practices,
but some modules can be skipped or performed in a different
order, and two modules (4 and 9) are subdivided into variant a
and b as they present alternatives for similar tasks (i.e. drift
correction and determination of structural resolution or
localization precision). For every module, well-documented
Pseudo-code, Python code, and MATLAB code is provided
(https://drive.google.com/drive/u/0/folders/1lOKvC_L2fb78–
uwz3on4lBzDGVum8Mc and https://github.com/Endesfelder-
Lab/SMLMComputational, Supplementary Pseudocode
S1–S9), which is accompanied by explanatory text and
illustrations, as well as software alternatives, in the following
text. We stress that this code is designed as “teaching material”
rather than best-practice software, especially relating to speed
optimization. An overview of existing SMLM analysis software
that implement at least one of this manuscript’s modules is
presented in Supplementary Table S1.

We encourage users of the codebase to not only run the analysis
with the provided raw data, but also to apply it on their own data,
and change the code accordingly and appropriately. To further
assist users new to programming language, we have included a
Supplemental Code environment (https://colab.research.google.
com/drive/1Ht-WL-W3tpFfavDMZjDofLOR9HKP-nVV), where
we show how to perform basic data handling, and include
region-of-interest selection, pixel size conversion and intensity
level correction. These little helper code snippets can be easily

SCHEME 1 | Overview of the modules.
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combined with the modules to filter, select and modify raw data as
input for the chosen module.

Within our modules we focus on intuitive solutions to
common SMLM analysis routines, and references to e.g. more
complex or less intuitive state-of-the-art alternatives are
provided. Specific analysis routines for highly specialized tasks
- mostly for the third module group “data interpretation”- are out
of scope of this work. These analysis procedures are not covered
within our modules but the interested reader is pointed towards
them in the discussion.

Module 1: Temporal Median Image Filtering
Raw single-molecule microscopy movie data often contains non-
structured background noise with different photophysical
characteristics as the fluorophores of interest, caused by for
example residual out-of-focus fluorophores e.g. in the
immersion oil or sample buffer, or by autofluorescence within
the biological sample itself (Turkowyd et al., 2019, 2020).
Additionally, out-of-focus fluorophores under HiLo or TIRF
illumination will display different blinking characteristics
compared to in-focus fluorophores, and can therefore also be
filtered out. It can have a detrimental effect on localization
efficiency (i.e. minimizing false positive and false negative
localizations) and accuracy when identifying single-molecule
emissions from the imaging data. The impact of background
noise can be lowered by globally subtracting average background
levels from the raw movie data. This, nevertheless, does not
adequately capture temporal changes. Temporal median image
filtering provides a solution to this problem (Figure 1).

Briefly, because on/off-switching of fluorophores in SMLM is
equilibrated towards the off-state, the median intensity of a pixel
is a good approximation of the background noise. Thus, the
operating principle of temporal median image filtering is that for
each pixel at time t, the median value of the pixel in the time
interval t−i/2 to t + i/2 is computed and subtracted at time t
(Figure 1B) (Hoogendoorn et al., 2014). The value i is user-
defined, and should be substantially higher than the longest on-
period of single emitters (at least twice; normally a value of ∼50
frames can be used), and is capped at high ends by unreasonable
analysis times or temporal fluctuations in background intensity.
A fast version of this algorithm is implemented as an ImageJ
plugin (Jabermoradi et al., 2021). Temporal median image
filtering should be avoided if the equilibrium of blinking is
favored towards the on-state (i.e. > 50% of the time
fluorescently active), since this would result in active removal
of fluorescent signal rather than background. Additionally, this
pre-processing step does not accurately reduce temporal
heterogeneous background fluctuations (i.e. non-specific
binding events).

Our code corresponding to module 1 can be found here:
(https://colab.research.google.com/drive/1XKMP5BQWhUkQuKAj
TkBgkaHy9bGjR23H or https://github.com/Endesfelder-Lab/
SMLMComputational, also Supplementary Pseudocode S1).
The required input is a raw SMLM movie, and the code
module outputs a temporally-median-filtered movie with
identical dimensions. Looping over every pixel in every frame,
the pixel intensity values from i/2 before the current frame to i/2
after the current frame are extracted. Alternatively, if the frame is

FIGURE 1 | Computational workflow of a temporal median filter. Fluorescence emissions from individual, blinking fluorophores are often present on top of an
inhomogeneous background (A). The intensities of individual pixels can be analysed over a period of time [(B), solid lines]. The median intensity value per pixel (dotted
lines) can be extracted and subtracted from the original intensity data to adequately remove the background from the dataset (C).
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at the beginning of the movie, the pixel values are extracted from
frame 0 onwards, and expanded further than i/2 after the current
frame (and similar at the end of the movie). The median value is
determined from this range, subtracted from the current pixel
intensity, and stored in a new data array. These steps are then
repeated for all pixels and all frames.

This concept can be taken one step further by first determining
a localization and then calculating the local background from the
spatiotemporal voxels in which no fluorescence of this emitter is
present, followed by repeating the localization step. This has been
realized by the SMALL-LABS software package (Isaacoff et al.,
2019; Martens et al., 2021). Alternatively, temporal filtering can
be based on minimum values to have a robust estimator at high
fluorophore densities (Ma et al., 2021), or heterogeneous
background can be assessed and restored via a neural network

(Krull et al., 2019; Möckl et al., 2020). sCMOS-induced noise
should be addressed separately (Diekmann et al., 2021; Zhang
et al., 2021).

Module 2: Localization
Determining the positions of individual fluorescent emitters
to translate the SMLM movie data into SMLM localization
data is the primary computational effort in SMLM imaging.
Here, localization algorithms determine the sub-pixel
accurate position of each point-spread function (PSF) of
single fluorophores in the raw movie data (Figure 2).
Principally, these localization routines consist of two steps,
although methods are developed that merge these steps: 1)
region-of-interest (ROI) selection, in which the presence or
absence of a PSF is determined; and 2) sub-pixel localization

FIGURE 2 | Typical localization methodology. A raw image (A) is filtered to enhance features that likely contain emitters (B). From this filtered image, ROIs (red
squares) are selected (C) and used to extract the PSF data from the original image (D). This region is then fitted by a PSF model (e.g. commonly a 2-dimensional
Gaussian) (E), and the localizations with sub-pixel precision are displayed or used for further analysis (F).

FIGURE 3 | Localization merging. In the shown example, two fluorophores are present. Both fluorophores are emitting for multiple frames, but are also blinking
during this period. The localization merging routine identifies emitters that emit over multiple frames, accounting for possible blinking periods. Merging the individual
localizations into one increases accuracy of fluorophore quantification and emitter localization precision.
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of the emitter in the ROI. These steps are the basis of many
user-friendly, open access software packages, such as
ThunderSTORM, rapidSTORM, SMAP, Picasso,
QuickPALM and GDSC SMLM (Henriques et al., 2010;
Wolter et al., 2012; Ovesny et al., 2014; Schnitzbauer et al.,
2017; Ries, 2020; Herbert, 2021).

Sub-pixel localization fitting procedures can benefit from
fitting raw SMLM movie input, rather than a temporal-
median-corrected movie (Module 1), if they e.g. take camera
noise models into account that are effectively removed by
temporal median image filtering. Thus, step 1 can be
performed on the output of Module 1, while step 2 should be
performed on ROIs extracted from the input of Module 1 (i.e. raw
SMLM movie). However, in certain cases, such as when
encountering hot pixels or patterned background fluorescence,
the increased localization precision from running localization on
raw movie data does not offset the removal of background.

The code belonging to thismodule can be found here: (https://colab.
research.google.com/drive/1Jir3HxTZ-au8L56ZrNHGxfBD0XlDkOMl
or https://github.com/Endesfelder-Lab/SMLMComputational, also
Supplementary Pseudocode S2). A raw SMLM movie, or
alternatively the output from Module 1 should be supplied as
input, and a localization list with (frame, x, y, intensity) columns
will be stored as output. Briefly, every frame in the temporal-
median-corrected movie undergoes a difference-of-Gaussian
(DoG) filtering to highlight PSFs. Local maximum positions are
then found in the corresponding frame in the raw movie, which
correspond to the approximate positions of PSFs. Looping over
these local maxima, a small region of interest (7 × 7 pixels) is
extracted, and the pSMLM code from (Martens et al., 2018) is used
to extract the sub-pixel PSF position. This sub-pixel position is then
added to the approximate PSF position, and added to the
localization list.

Commonly, the ROI selection is performed via image filtering
or feature enhancement. DoG filtering, like applied in this
module’s code, is a common method used for edge detection
(Marr et al., 1980). Alternatives to the DoG filter are the Laplacian
of Gaussians [LoG; (Tinevez et al., 2017)] or a β-spline wavelet
filter (Izeddin et al., 2012a).

Sub-pixel localization has seen many improvements in the
past decades and several localization software challenges
benchmarked different algorithms for different data scenarios
(Sage et al., 2019). Because a 2-dimensional Gaussian function is a
good approximation for the PSF of in-focus fluorophores,
iterative algorithms based on fitting a Gaussian function are
often used (Mortensen et al., 2010; Stallinga and Rieger, 2010),
providing good accuracy especially when using a maximum
likelihood estimator (MLE) fitting procedure (Smith et al.,
2010). Possible fast analysis methods are centroid-based
(Cheezum et al., 2001), phasor-based (Martens et al., 2018,
2021), which is used here because of the low computation
time and good accuracy, or radial-symmetry-based
(Parthasarathy, 2012). Another type of algorithms that more
accurately simulate and localize PSFs also exists, based on
theoretical or measured optical wavefronts (Liu et al., 2013;
Shechtman et al., 2014; Aristov et al., 2018; Xu et al., 2020) or
on measured PSFs (Babcock and Zhuang, 2017; Li et al., 2018).

Recently, deep-learning-based methods combine the ROI
selection and sub-pixel localization with excellent results
(Nehme et al., 2020; Speiser et al., 2021).

The sub-pixel localization step can additionally be used to
obtain information about the 3-dimensional position of
individual emitters. This requires additional optical
elements in the microscope’s emission path such as
elliptical lenses (Huang et al., 2008), deformable mirrors
(Izeddin et al., 2012b; Martens et al., 2021), or custom
phase masks (Shechtman et al., 2014), or is based on
simultaneously imaging slices at different depths (Juette
et al., 2008; Louis et al., 2020). In all cases, information
about the z-position is encoded in the shape of the PSF,
and thus more complex localization analysis needs to be
performed (Aristov et al., 2018; Li et al., 2018).

Importantly, it is assumed that every ROI only contains a
single fluorophore for most of these implementations. This is not
always the case, especially in high-density samples. While the
common approach in the SMLM community is to prevent these
high densities experimentally, there are computational
approaches designed specifically for high density and multi-
emitter fitting (Holden et al., 2011; Zhu et al., 2012; Marsh
et al., 2018; Nehme et al., 2020; Speiser et al., 2021).
Additionally, the localization result should be checked for
inhomogeneous distribution artefacts (e.g. bias towards the
center of a camera pixel), which can be especially important
when the experiment requires quantification of repeating
patterns.

Module 3: Localization Merging
The movie acquisition speed (i.e. time per imaging frame) during
SMLM imaging has to be optimized based on the method (i.e.
STORM, PALM, etc.,) and dependent on technical and biological
sample factors, e.g. whether a static or dynamic sample is imaged
(i.e. super-resolution imaging or single-particle tracking). During
imaging of static samples, fluorophores switched to their on-state
normally remain in this state for ∼10–50 ms (STORM) or
∼100–500 ms (PAINT), depending on the experimental set-up.
Additionally, the fluorophores can go in various temporary dark-
states (blinking), meaning that no emission can be detected for
several frames (Dickson et al., 1997; van de Linde and Sauer, 2014;
Berardozzi et al., 2016). Because SMLM acquisition speed is static,
it is likely that a single fluorophore can be in its on-state for more
than one imaging frame. This means that the same fluorescent
event is recorded multiple times over consecutive frames, but
could be “skipping” one or multiple frames due to fluorophore
blinking.

It can be advantageous to merge these multiple recordings of a
single emission down to a single event (Figure 3). First, this will
provide a more quantitative overview of the sample, which can
help with e.g. counting of fluorophores. Secondly, merging
multiple events allows for de facto higher photon levels (N)
per localization, which scales with localization precision by 1/
√N (Rieger and Stallinga, 2014). Merging is readily available in
the post-processing of many SMLM software packages, such as
ThunderSTORM, SMAP and Rapidstorm (Wolter et al., 2012;
Ovesny et al., 2014; Ries, 2020). In Rapidstorm, the merging is
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implemented as a Kalman-filter, which improves the merging
quality. Care should be taken when performing localization
merging on high-density datasets, as this could result in
linking different fluorophores to each other, rather than
linking multiple emissions from a single fluorophore.

Our code belonging to this module can be found here: (https://
colab.research.google.com/drive/16ooyjTonAP3xvsQKCv_
uxWcUp1hB8msC or https://github.com/Endesfelder-Lab/
SMLMComputational, also Supplementary Pseudocode S3). It
requires a localization list (at least containing frame, x, y position)
as input, and stores a corrected localization list as output. The
code itself loops over all localizations on a given frame. For every
localization, it is checked whether there are localizations in the
next 1 or 2 frames that are closer than a user-defined maximum
distance. This pair of localizations is then given an identical
“trajectory-id”. After looping over all localizations, the
localizations that have the same trajectory-id and do not
belong to special cases [e.g., on purpose placed fiducial
markers for drift correction (see Module 4a)] are merged. This
is performed by taking their collective, intensity-weighted mean
position, minimum frame value, and summed intensity. The
original localizations are then replaced by this merged
localization.

Localization merging can be reasonably expanded to work on
the level of the movie data. This would involve re-performing the
localization module on the summed raw data of merging events.

Module 4: Drift Correction
SMLM data is recorded in movies (and not in single image
snapshots), and thus the data is acquired over substantial time
periods, typically in the order of tens of minutes. The obtained
localization precision in the final reconstructed image, that
summarizes all localizations from all imaging frames, is in the
order of nanometers. But high image resolutions can only be
achieved and the results are only interpretable if some technical
criteria are fulfilled, e.g. sufficient fluorophore labeling density
and detection efficiency as well as an absence of temporal drift
during the movie acquisition (Vojnovic and Endesfelder, 2020).
For the latter, it thus is important that the sample itself moves
only very minimally with respect to the detector throughout the
acquisition. However, this is challenging, if not impossible, to
achieve via merely stabilizing hardware (even if the setup has
good heat dissipation and a vibration-damping module).
Therefore, additional drift correction procedures are used,
either on-line (directly during acquisition) or off-line (post-
processing and correcting the localization data after acquisition).

A distinction should be made between axial (i.e. in the
z-direction) and lateral (i.e. in the xy-direction) drift for two
reasons. First, axial drift is much more detrimental to the
acquisition, because the emitters are only in focus in an axial
slice of about 600 nm (Franke et al., 2017). Second, many
microscopes have axial stages equipped with piezo-stages that
provide accurate and repeatable precision of ∼1–5 nm, while the
lateral stage is usually not equipped with a piezo-stage, which
limits on-line correction of lateral drift to a micrometer-accuracy.
For these two reasons, axial drift correction is often performed
on-line via a hardware add-on based on the internal reflection of

an (infra) red laser (Liron et al., 2006), while lateral drift
correction is performed off-line using one of the numerous
variations of the methodology that we outline below. Briefly,
fiducial marker drift correction (Module 4a) can be used for any
sample, but requires introduction of steady-fluorescent markers
in the sample, while cross-correlation drift correction (Module
4b) calculates and corrects for drift directly from the samples’
features, but requires static data and thus cannot be used for
highly dynamic samples or particle tracking studies.

Module 4a: Drift Correction by Fiducial
Markers
A conceptually simple way to measure and correct sample drift is
to introduce stable fluorescent fiducial markers (Balinovic et al.,
2019). These markers are bright, non-blinking emitters [often
nanoparticles that have many individual fluorophores bound to a
support structure such as polystyrene beads, possibly excited
away from their absorption maximum (Balinovic et al., 2019)]
that emit stable and bright fluorescence throughout the
acquisition time. By incorporating and tracing the signal of
multiple fiducial markers in every field of view (FoV) that is
recorded, the drift of the sample can be assessed (Figure 4). The
displacement of this drift trace from its original position at time
point zero can then be subtracted from all localization data,
allowing for effective drift suppression that in practice achieves a
precision of about 3–5 nm (Balinovic et al., 2019). In case the
fluorescence of the fiducial markers is not stable, if the fiducial
markers cannot be distinguished from sample signal, or if the
marker moves separately from the sample, this method will
provide inaccurate results. Moreover, with high intensity
fiducial markers, camera oversaturation will result in bad
fitting, causing artefacts. Finally, if a marker with multiple
fluorophores is used, bleaching of a single fluorophore can
bias localization, if only a small number of fluorophores are
remaining on the marker (Balinovic et al., 2019).

The code belonging to this module can be found here: (https://
colab.research.google.com/drive/1U-
yiO56r4uG92hnq1KKAKAjy4IeW8n_I or https://github.com/
Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S4). For fiducial marker-based drift correction,
the fiducial localizations must be selected and isolated. In our
module, we identify the fiducials by their constant signal:
appropriately chosen fiducial markers will be present
throughout the entire movie acquisition. Alternatively, the
fiducial markers can be isolated based on higher fluorescence
intensity compared to dSTORM, PALM, or PAINT fluorophores,
or selected based on their position by hand (i.e. based on
coordinates). After performing a single-particle tracking
routine (see Module 3), the position of each marker is
compared to the position of the same marker in the first
frame of the movie. This yields time traces of the drift for
every single fiducial marker that have a temporal resolution of
one frame. These time traces of individual fiducial markers are
averaged to obtain a single drift trace. This averaged drift trace
usually has better accuracy than the individual traces because
inaccuracies in localization are averaged out. The drift trace is
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then subtracted from all localizations in the whole dataset, which
effectively removes the effects of sample drift. Fiducial marker
drift correction is normally applied to 2-dimensional data only,
but can easily be expanded to include axial drift, assuming that a
3-dimensional localization procedure is used.

Module 4b: Drift Correction by
Cross-Correlation Methods
Data belonging to structural samples that do not change
themselves during the acquisition (i.e. SMLM images of
immobilized, non-dynamic samples as being obtained by
dSTORM or PAINT imaging), can effectively be drift-
corrected by visualising the data at different time points and
comparing these visualisations (Mlodzianoski et al., 2011)
(Figure 4). In principle, drift correction by cross-correlation
methods is based on the fact that the image generated by the

localizations is identical throughout the acquisition time. This
means that e.g. for a dataset comprised of 1,000 frames, a
visualisation of the structure can be generated from imaging
frames 1–100, which can be compared with a visualisation
generated from imaging frames 101–200, etc. If drift is
present, the second visualisation will be offset from the first.
Measuring this offset over time using consecutive data subsets,
the overall drift trace can be obtained and corrected for. Drift
correction via cross-correlation requires stable, unmoving
datasets. In case the structure itself is flexible or moves
throughout the data acquisition, this method will silently fail.
In addition, heterogeneous sample drift or sample rotation (i.e.
caused by uneven matrix contraction) should be prevented.

In our module 4b found here: (https://colab.research.google.
com/drive/1DUhUxeCnYXxD7ZkL9NcIDxE6VV7fnzvQ or
https://github.com/Endesfelder-Lab/SMLMComputational, also
Supplementary Pseudocode S4), we therefore generate

FIGURE 4 | Drift correction methodologies. Most SMLM experiments exhibit sample drift, so the localizations obtained from each fluorophore depend on their
detection time within the SMLM acquisition. The reconstructed SMLM image, which combines all localizations from the SMLM experiment, is therefore affected by the
overall drift, which directly affects the structural resolution and as such can introduce misleading artifacts (e.g. smearing clusters to filaments). Drift correction methods
correct this. (A): Drift can be corrected by introducing fiducial markers that can be tracked with high precision. (B): Alternatively, the displacement of the biological
structure at different time points can be analysed via temporally cross-correlating the data.
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multiple images from different time bins.We then calculate cross-
correlations between the visualisations at each time bin and the
visualisation at the start of the SMLM acquisition (� first time
bin). The spatial position of the intensity maximum of each cross-
correlation provides a good measure for the drift. This position is
identified and attributed to the temporal centre of each bin. The
drift trace is based on these points, and—in our module as well as
for most cross correlation implementations—non-linearly
interpolated to smooth the trajectory. The drift trace is
subtracted from the original localizations. This can
additionally be expanded to three-dimensional data by taking
z-slices, and comparing those similarly.

This technique can be expanded to redundant cross-correlation
(RCC) (Wang et al., 2014), in which the temporal bins are not only
compared to the first, but to all bins. This increases computational
effort, but results in higher accuracy. Alternatively, the positions of
the emitters at different time points can be compared with each
other. The mean shift of the localizations over time is a measure for
the drift, similar to the shift of the maximum position of the cross-
correlation images, (Cnossen et al., 2021; Fazekas et al., 2021).

Module 5: Chromatic Aberration Correction
All optical components in a microscope experience chromatic
aberrations: light is refracted slightly differently based on its
wavelength (Figure 5A) (Erdelyi et al., 2013). Today, almost
every optical element in a fluorescence microscope is corrected
for chromatic aberrations. Thus, standard diffraction-limited
fluorescence microscopy can be performed without further
chromatic aberration corrections. Nevertheless, even for high-
quality optics, a residual chromatic shift in the nanometer range
shift remains. This is enough to hamper multicolor super-resolution
imaging and creates a mismatch of images generated by
fluorophores with different emission wavelengths (Zessin et al.,
2013) (Figure 5B, left). This chromatic aberration is microscope-
specific and directly dependent on the optical path and individual
components. It thus has to be measured for each setup individually.
Nevertheless, it is a static shift (as long as no components change), so
it does not need to be repeatedlymeasured for every new experiment.

In our module 5 (https://colab.research.google.com/drive/
1UH0BIuHUJFjF_hXtO3rwdOLTl45LkzLz or https://github.com/
Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S5), we correct the chromatic aberration by
comparing data with identical ground-truth positions
emitted at two different wavelengths. For the data-pairs, an

affine 2-dimensional transform matrix is estimated. For
microscopes with more than two color channels, such a
matrix has to be estimated for all channels in relation to one
reference channel. These transformation matrices can then be
used to correct the chromatic aberration from all datasets
measured with the same microscope and color channels.

As mentioned, a requirement for chromatic aberration correction
is a sample that is identical for multiple emission wavelengths. In this
module, we have used a so-called “DNA-PAINT nanoruler” which
has identical “docking positions” for both, ATTO542 and ATTO655
fluorophore DNA oligos used as reporters (emission peaks at 561 nm
(“green”) and 680 nm (“red”), respectively). Those reporters can
repeatedly bind and unbind during the SMLM acquisition. The
chromatic aberrations in our microscope results in green positions
that are localized slightly further to the outside of the image than the
red positions (Figure 5B, left). We then hand-picked green and red
DNA-PAINT position pairs, and used their relative positional shifts
to calculate the affine transformation matrix (Figure 5B, middle).
This transformation is then applied on either the image created from
the red localizations, or directly on the red localizations. This
effectively reduces the experienced chromatic aberration
(Figure 5B, right). We note that this analysis method can also be
applied for translational offsets, introduced in e.g. dual-view camera
systems.

Module 6: Image Generation
Amain goal of SMLM, but especially of structural super-resolution
imaging, is the generation of super-resolved images from the
localization data. However, this is not as straightforward as it
may sound, since ultimately the dataset of SMLM localizations are
essentially 0-dimensional points. While plotting these localizations
as a scatter plot may provide some information (Rust et al., 2006),
the symbol size and shape can be arbitrary and the scatter plot does
not adequately visualise local emitter density (Figure 6A). Thus, it
should normally not be used. Generally, it must be noted that all
forms of image visualisation decrease the resolution (as every
pixelation variant, even when adjusted to the experimental
localization precision of the data, ultimately sorts the data in
bins), but are often very useful for human interpretation. It is
therefore recommended that downstream quantitative efforts are
focused on the localization list rather than generated images.

One could reason that each localization can be visualised as the
central point of a 2-dimensional Gaussian function with a full-
width half maximum determined by the localization precision.

FIGURE 5 | Chromatic aberration correction. (A) Optical elements in any microscope will refract light of different wavelengths differently, causing chromatic
aberrations. (B)Chromatic aberrations can be corrected by calculating a transformation matrix based on pairwise positions of fluorescent markers measured at different
wavelengths. This transformation can be used to correct the instrument-specific chromatic aberration.
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This procedure would be conceptually very similar to the physical
representation of regular brightfield microscopy, which can be
interpreted as many simultaneous localizations generating PSFs
with a width determined by the optical resolution. However, this
methodology actually results in a loss of visual resolution, as it
effectively blurs the original structure by the visualization method
in addition to blurring caused by the localization error, resulting
in a √2 resolution loss (Baddeley et al., 2010). Moreover, the
rendering of several thousands to millions of 2-dimensional
Gaussian functions is computationally expensive and thus
unrealistic via a computation processing unit (CPU) only (and
instead requires e.g. using a graphical processing unit (GPU) that
works in a highly parallelized and optimized manner), unless
well-optimized code and functions are used (Ries, 2020).

A quantitatively better way for localization visualisation is to
place the localizations in user-defined sub-pixel bins, normally
∼10–15 sub-bins per original imaging pixel in each dimension
(Figure 6C) (Nieuwenhuizen et al., 2013). It is important to choose
this sub-bin value cautiously, as the super-resolution image pixel
size should be in the range of the localization precision (Nyquist-
Shannon sampling theorem) (Nyquist, 1928; Shannon, 1949),
also see Module 9 to determine the localization precision. If a
smaller sub-bin value is chosen, it could lead to visualisation of

non-existing details, hindering correct interpretation. This can
additionally be subject to a pseudo-Gaussian kernel to spread the
intensity to surrounding pixels, which is especially valuable on
datasets with sparse signals. This is the approach taken in our
module, but is also used standard in e.g. the ThunderSTORM
software (Ovesny et al., 2014).

Amore sophisticatedmethod, also shown in ourmodule and first
published with the software Rapidstorm, is to linearly interpolate the
localizations on a sub-pixel raster (Figure 6D) (Wolter et al., 2010).
In the basis, this method is similar to localization binning in sub-
pixel bins, but additionally, neighbouring pixels are also populated
based on the distance from the localization to the center of the main
sub-pixel bin, preventing discretization errors.

Our module (https://colab.research.google.com/drive/
14OCvRUAUFp9JXK6HVyj18fndGY92-Dsx or https://github.
com/Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S6) implements all three methods. Regular 2-
dimensional histogram visualisation is straightforward in Python
and MATLAB, since this is a built-in function in both languages.
For linearly interpolated histograms, for every localization, the
correct sub-pixel bin is found, as well as the distance to the
center of the sub-pixel bin. This distance in x and y is used to
calculate the relative intensity in the neighbouring pixels. Image

FIGURE 6 | Image generation methods. The simplest way for image generation is a scatter plot, although this does not reflect the localization density accurately (A).
The localizations (red crosses) can also be placed on a sub-pixel grid (B), and the bin intensities can be increased based on the position of the localizations. The methods
described in this manuscript are the creation of a 2D histogram (C), a linearly interpolated 2D histogram (D), or individually rendered Gaussians (E). Note the regions with
lower density (66% lower density compared to the surrounding) and the different intensity between the two horizontal lines (30% lower density) that are more clearly
interpreted by histogram images compared to a scatter visualisation.
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generation based on individual Gaussian reconstruction is done by
looping over every emitter and over every sub-pixel in the
reconstructed image, and increasing this value based on the
distance to the emitter position.

More involvedmethods are investigated by Baddeley et al. (2010),
and show that adaptive quad-tree histograms and visualisation based
on Delaunay triangulation have distinct advantages for SMLM
image generation, at the cost of computational complexity.

Module 7: Single-Particle Tracking (spt)
In contrast to structural SMLM imaging, spt is a methodology in
which moving fluorescently-labeled objects are tracked over time.
Rather than generating an image, assessing and interpreting this
movement is the goal of spt. Computational efforts are therefore
fundamentally different in spt from those in structural imaging
(Chenouard et al., 2014). Analysis consists of three main
computational efforts: 1) localizing moving PSFs, 2) linking
the localizations of single particles from consecutive imaging
frames into trajectories and 3) analysis of the dynamics and
diffusional states of the particles from their trajectories.

Localization
Localization efforts required in spt are largely similar to localization
efforts required in structural SMLM (Module 2). However, the
inherent movement of fluorophores in spt causes deviations of the
measured PSF from a theoretical PSF. Software explicitly designed
to localize static PSFs can therefore fail when localizing moving
PSFs. Downstream processing of spt also dictates that there is a
higher priority on detecting the fluorescent emissions than there is
on localization precision: because statistics from the fluorophore
trajectories are averaged over many linkages, this effectively lessens
the influence of localization errors. This results in localization
efforts designed for spt to be robust (i.e. high accuracy on
fluorophore detection) rather than precise, e.g. as implemented
in Trackmate (Tinevez et al., 2017).

Linking of single Fluorescent Emissions Into
Particle Trajectories
Linking single fluorescent emissions into particle trajectories is a
conceptually simple problem: localizations in subsequent frames
possibly belong to the same emitter, and these should be linked
together to obtain a trajectory through time, which can be further
analysed. In its easiest form, tracking can be performed by
determining the nearest localization in the next frame for each
localization. Then, as long as the jump distance (JD) between
these localizations is lower than a user-defined value, the
localizations are linked together and form a track. This
methodology is commonly known as nearest-neighbour tracking.

However, nearest-neighbour tracking is not a final method due
to several reasons. First, there could be several localizations within
the search radius and the closer one could simply be the wrong
choice (i.e. two trajectories are crossing each other, or localizations
are found due to autofluorescence). Second, fluorophores can blink
for one ormultiple frames, which effectivelymeans that a “gap” can
be present in the trajectory, which should be accounted for. Third,
since Brownian diffusion results in a noncentral chi (Rayleigh)

distribution of jump distances, there is no well-defined maximum
jump distance. Fourth, a population can consist of more than one
diffusive state, meaning that the user-chosen maximum jump
distance is even less well-defined. Last, nearest-neighbour
tracking is prone to introduce artifacts as there is no way to
end a trajectory if any localization is present within the defined
radius. This will introduce false linkages within the trajectories (e.g.
caused by autofluorescence or another molecule appearing in close
proximity, e.g. in molecular clusters). These artifacts can be
lessened by reducing the search radius, but this will lead to
many truncated trajectories (see third and fourth argument). All
that being said, nearest neighbor tracking in low density and low
noise datasets will experience a neglectable effect from all these
criticisms. Meanwhile, it does not introduce any algorithmic bias
which easily happens the more a priori knowledge and
assumptions are taken into account usingmore advancedmethods.

FIGURE 7 | Single-particle tracking computational approaches. Left:
Individual emitters have to be linked to create trajectories. Individual emitters
have been localized at multiple frames (A), and the nearest neighbour
localization in frame n+1 is determined for every localization at frame n,
and a linkage is created between these localizations (B,C). This creates
trajectories that can be further analysed (D). Right: quantification analysis of
trajectory data. See the main text for details on the methods.
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Still, solutions for more dense or background-intense spt are a
field of on-going method development (Chenouard et al., 2014).
All of those algorithms incorporate a priori knowledge. E.g. the
Icy software (de Chaumont et al., 2012) uses a Bayesian model
with multiple hypothesis tracking (MHT) that yields more
accurate results especially for weak fluorescent signals
(Chenouard et al., 2013). Or alternatively, in TrackMate
(Tinevez et al., 2017), tracking is formulated as a linear
assignment problem (LAP) (Jaqaman et al., 2008), in which a
computational cost factor balances localization-to-localization
linkages and track initialisation and termination (i.e.
minimizing wrong linkages). Also, localization and tracking
steps can be combined, e.g. alternatingly performing
localization and tracking to verify each other, as implemented
in multiple-target tracking (MTT) (Sergé et al., 2008).

Quantitative Analysis of Trajectories
After the localizations are linked into trajectories, the underlying
dynamics can be analysed to interpret the data (Figure 7, right).
The simplest method is to create a JD histogram, and fitting this
histogram with one or multiple diffusive populations from which
apparent diffusion coefficients (D*) can be extracted (Schütz et al.,
1997; Vrljic et al., 2002). However, analysis of a JD histogram does
not have sufficient resolving power if two ormore populations with
small differences are present; in this case, the mean jump distance
(mJD) of every trajectory can be determined, which provides
stronger differences, i.e. separated maxima, between populations
(Turkowyd et al., 2019; Martens et al., 2020). An analytical correct
solution of mJD histograms is impossible, as the underlying data
has different statistical origins due to varying trajectory length.
However, for sufficiently long trajectories, mJD values will
approach, and thus can be well-approximated by, a Gaussian
(central limit theorem) from which the diffusion coefficient can
be extracted. In our module, we implemented both analyses.

In our module (https://colab.research.google.com/drive/
1v4N6os8cdHqilDLguYUGrKmlRM8vcG_8 or https://github.
com/Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S7), we implemented nearest-neighbour tracking while
taking blinking into account. This is identical code to the tracking
performed in Module 3, albeit with a larger maximum jump
distance. Next, the script loops over every trajectory, and
consecutively over every localization in the trajectory, except for
the last one. The Euclidean distance between this localization and
the next localization is calculated and stored if there is 1 frame
temporal distance between these localizations. Localizations that do
not have a jump distance calculated like this get a value of −1 to
easily filter out in later steps. Next, the mean jump distance for the
complete trajectory is calculated for every trajectory. The jump
distances ormean jump distances are then extracted and plotted in a
histogram, after which a non-central chi distribution (JD) or
Gaussian approximation (mJD) is fitted to the histogram. This
analysis routine is performed on free diffusion of two populations of
beads with different sizes, and we show that fitting the data with a
single population does not provide satisfactory results. Please also
note that the number of bins in the histogram can have an effect on
the fitting procedure, and care should be taken to assure that fitting
is robust with respect to the bin size.

Another popular method involves calculating the mean
squared displacement (MSD) of the trajectories, by taking the
squared displacements over time (at Δt � 1, 2. . . n-1 for a
trajectory with length n), averaged over all possible starting
positions of the trajectory per Δt (Qian et al., 1991). These
displacements are then plotted as a function of Δt, and yield 1)
the diffusion coefficient D by the MSD curve slope; 2) the
localization uncertainty by the intersection with the y-axis;
and 3) the type of diffusion (i.e. pure diffusion, confined
diffusion, directed motion, relatively) by the shape of the
curve (i.e. linear, curved downwards, curved upwards) (Lee
et al., 2017). However, the MSD is sensitive to noise in the case
of short trajectories commonly obtained via sptPALM.

So far, these analysis methods assume that the diffusive state of
the underlying trajectory does not change. However, this is
commonly not the case in biological situations, e.g. in the case
of DNA-binding proteins, where the proteins can be diffusing or
be stably bound to the DNA. There are several software packages
available that quantify transient states and their state-changing
kinetics: (a)DDA [(analytical) diffusion distribution analysis]
allows for analysis with a temporal resolution faster than the
frametime (Martens et al., 2019; Vink et al., 2020a, 2020b), while
vbSPT (Persson et al., 2013) and SMAUG (Karslake et al., 2021)
specifically assume state-changing slower or on the same
timescale as the frametime.

Module 8: Clustering
By cluster analysis methods, localizations are grouped into
coherent structures which helps to visualize and interpret
structural data. There are several clustering approaches which
can be categorized by their clustering model, e.g. connectivity-
based (hierarchical), centroid-based, distribution-based, or
density-based methods. Generally, clustering algorithms can be
extended to colocalization algorithms when taking a second color
channel in consideration (Malkusch et al., 2012; Rossy et al., 2014).

A simple approach is Ripley’s K-functions and its normalized
variants (i.e. L- and H-functions), which measure the data density
as a function of radius around every point in the dataset and
compares it to random spatial distribution at same density (Ripley,
1977; Owen et al., 2010; Endesfelder et al., 2011). It does not require
initial parameters but can only reveal whether clusters are formed
and does not report cluster size accurately (Malkusch et al., 2013).
Since the Ripley’s functions provide a value that is non-
straightforward to interpret, it is normally compared against a
differing biological condition (Rossy et al., 2013).

A common clustering algorithm that defines individual clusters
is the K-means algorithm (Hartigan and Wong, 1979). It is a
centroid-based and unsupervised method that finds the centroids
of clusters by minimizing the summed distance of all localizations
to the nearest clusters’ centroids. However, this approach requires
the user to pre-determine how many clusters are expected, and is
based on a spherical cluster model without considering noise.

Density-based algorithms can account for irregular shapes and
noise. The most known algorithm of this kind in SMLM analyses
is DBSCAN (Density-based spatial clustering of applications with
noise), which is used in Module 8 (Figure 8) (Ester et al., 1996;
Endesfelder et al., 2013). DBSCAN requires two parameters: 1)

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 1 | Article 81725412

Martens et al. Hands-On Introduction into Computational Analysis for SMLM

115

https://colab.research.google.com/drive/1v4N6os8cdHqilDLguYUGrKmlRM8vcG_8
https://colab.research.google.com/drive/1v4N6os8cdHqilDLguYUGrKmlRM8vcG_8
https://github.com/Endesfelder-Lab/SMLMComputational
https://github.com/Endesfelder-Lab/SMLMComputational
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


the radius in which adjacent localizations are considered as
neighbours, and 2) the minimum number of points in this
neighborhood required to initiate the cluster formation. Based
on these criteria each point is labeled as a “core point”, “edge
point” or “noise point”. Core and edge points belong to clusters,
while noise points do not. This classification is then used to
uniquely define the individual clusters.

Note that clustering methods require care (Khater et al., 2020),
as all clustering algorithms tend to quantify clusters, even if these
do not exist in the dataset, i.e. most methods lack a quality control
and fail silently. Moreover, if blinking is not adequately corrected
for (Module 2), this could influence clustering results. Next, non-
spatially resolved clustering methods (i.e. Ripley’s functions) can
be influenced by edge effects, e.g. where a uniform distribution
inside a single cell can be quantified as non-uniform, because
higher localization density inside the cell is contrasting with lower
density outside the cell. Finally, DBSCAN could provide
quantitatively poor results when directional heterogeneity
exists on a same scale as the search radius.

Our module (https://colab.research.google.com/drive/
1ruLv02SWFtlEAlZTkWSgHnucoGAZPDcF or https://github.
com/Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S8) implements DBSCAN. The script loops over all
localizations, and first finds, counts, and stores the neighbouring
localizations (over all frames) in a table. Afterwards, the core and
cluster localizations are found based on the procedure described
earlier. Finally, a recursion algorithm is employed to determine the
individual clusters. Briefly, a loop is started over all core or cluster
points, which is set to the current label-id. Next, the same loop is
started over all neighbouring core and cluster points, if the original
point was a core point. Only if no more neighbours without an
assigned label-id can be found, the label-id is increased.

DBSCAN is widely used in SMLM analysis (Endesfelder et al.,
2013; Khater et al., 2020). However, as its input is a fixed density
[given by the two user-defined parameters (minimal number of
points) per (area defined by the input radius)] it is insensitive to
different densities of data points and it is not possible to perform

hierarchical clustering (e.g. identifying several dense clusters
grouping together to form some larger, higher-order clusters).
Data with varying cluster densities can be analysed by OPTICS
(Ordering Points to Identify the Clustering Structure) (Ankerst
et al., 1999) which returns clusters within their hierarchical
structure. Compared to DBSCAN however, OPTICS is
computationally demanding, especially for large datasets.
These clustering algorithms are implemented in the software
suites LAMA and PALMSiever (Pengo et al., 2015; Malkusch and
Heilemann, 2016).

Alternatively, clustering can be based on Voronoi polygons
(Levet et al., 2015; Voronoi, 1908a, 1908b). Based on the user-
defined maximal area of polygons (i.e. dependent on the local
density), localizations are assigned to clusters.

Module 9: Localization Precision and Image
Resolution
SMLM imaging is sensitive to experimental conditions, such as the
background noise, thermal drift of the sample, labeling strategy
(e.g. movement of fluorophore with respect to the target) and
imaging procedure (e.g. read-out intensities, camera settings,
optics). As a result, the experimental localization precision is
normally lower than the theoretically achievable localization
precision, which itself scales with the square root of the number
of photons emitted by the fluorophore (Mortensen et al., 2010;
Turkowyd et al., 2016). Therefore, quantification of the
experimental localization precision provides more accurate
results, especially concerning the best achievable resolution (i.e.
the optimum image resolution is at best twice the localization
precision (Nyquist-Shannon sampling theorem) (Nyquist, 1928;
Shannon, 1949). Two methods to compute either image resolution
or localization precision are described here: Fourier-ring
correlation (FRC) (Saxton and Baumeister, 1982; Van Heel
et al., 1982; Unser et al., 1987; Banterle et al., 2013;
Nieuwenhuizen et al., 2013) and nearest neighbor based analysis
(NeNA) (Endesfelder et al., 2014).

FIGURE 8 |Computational approach of the clustering method DBSCAN. (A): DBSCAN explanation. For every localization in a given FoV, the number of neighbours
in a user-defined radius are counted. If there are more neighboring points than a (by the user) set minimal number of points (left), these points are considered core points
(blue). All localizations that are not core points, but have a neighbour that is a core point, are considered an edge point (orange, second panel). Localizations that have
neither enough neighbours nor proximal core localizations are considered noise points (red, third panel). The core and edge localizations together are considered to
form a cluster. The identified clusters can be visualised and characterized (right). In this example, at least 3 neighbours are required for a localization to be considered a
core point in the radius indicated by the circle. (B): Application of the DBSCAN steps on an E. coli cell with fluorescently-labeled RNA polymerase.
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Module 9a: Fourier Ring Correlation (FRC)
FRC is a method used to calculate image resolution by comparing
two images taken from the same structure (Saxton and Baumeister,
1982; Van Heel et al., 1982). It can be reasonably applied to SMLM
data by splitting the dataset into two halves and assuming that a
structure rather thanmobile fluorophores are imaged (Banterle et al.,
2013; Nieuwenhuizen et al., 2013). The spatial frequency domain
spectra of these images are computed via a Fourier transform and are
correlated with each other at different distances from the frequency
center of the image (Figure 9A). The image resolution is estimated
by determining where the FRC value crosses a user-defined value,
typically 1/7≈ 0.143 (Rosenthal andHenderson, 2003; Banterle et al.,
2013; Nieuwenhuizen et al., 2013).

In our module (https://colab.research.google.com/drive/
1svyAqyjpdo_hIG8FSCjAmhNznqDq2sFm or https://github.com/
Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S9), a localization list is randomly split into two
arrays, and two images are created (see Module 6). Next, a
“distance map” is created with the same size as the two images,
which stores the distance to the center of the image. Three required
Fourier-transform-based images are then calculated from the two
generated images. Finally, the code loops over all distances found in
the distance map, and extracts the pixels in the distance map that
match this distance. The values in the Fourier-transform-based
images belonging to these pixels are then extracted, and the FRC

value at this distance is calculated. These distances are plotted in a
graph, and the intersection with 1/7 is calculated.

Due to its simplicity, FRC is a widely implemented and used
approach (Ovesny et al., 2014; Ries, 2020; Herbert, 2021).
However, it can only be used on structural data, as it
measures the image similarities via correlation. Also, FRC is
sensitive to the non-random division of the data into two bins,
e.g. splitting SMLM data into two sub-datasets with only odd or
even frames is typically overestimating image resolution as
fluorophores commonly fluoresce for more than one
consecutive frame. Such effects can be counterbalanced by a
correction factor (Nieuwenhuizen et al., 2013). Finally, FRC is
affected by the image pixel size used for the visualization and
Fourier transform, and additionally requires a structural density
that is higher than the localization precision.

Module 9b: Nearest Neighbor Analysis
(NeNA)
The localization precision of a SMLM (sub)dataset can be estimated
directly from the localization data using NeNA (Figure 9B)
(Endesfelder et al., 2014). As most nearest neighbor events in
adjacent frames from non-merged localization data are
originating from the same fluorophore which emits photons over
several frames, the true distance between these events is zero

FIGURE 9 | Computational methods to determine resolution in SMLM. (A) In FRC, the localization data is split randomly in two subsets, and the correlation of the
Fourier transforms of these images at rings with increasing radius is calculated. The resolution of the dataset can then be calculated by determining where the FRC
crosses the value of 1/7. (B) In NeNA, positions of identical emitters localized in subsequent frames are compared with each other, and the distribution of these distances
is fitted with a non-central chi distribution. This fit provides a measure for localization resolution.
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(assuming a static dataset). To estimate the localization precision,
NeNA estimates the apparent jump distances (and thus localization
precision) with a non-central chi distribution for two or three
dimensions, or a Gaussian for one dimension.

NeNA will only fail if the average lifetime of single
fluorophores is (much) less than a single frame, but this is a
setting that should be avoided in SMLM experiments to obtain
optimal data (Diekmann et al., 2020).

In our module (https://colab.research.google.com/drive/
1JbmbEL1XsF6ab4WmL96iLUijN8Tx0LCU or https://github.
com/Endesfelder-Lab/SMLMComputational, also
Supplementary Pseudocode S9), a two-dimensional
localization dataset is loaded, and the distance to the nearest-
neighbor in the next frame is calculated (see Module 3). Since the
data contains fiducial markers (see Module 4a) and PALM
localizations, the localizations are split by their emission
intensity. Finally, the jump distance calculated via nearest-
neighbor tracking for both PALM- and fiducial marker-
localizations are plotted as a histogram, and the distributions
are fitted.

DISCUSSION AND PERSPECTIVE

In the previous modules, we covered the most common
computational analysis procedures. However, there are other
approaches which can improve the efficiency of the analysis
and the quality of results or provide new insights into SMLM
data, but are not shown here, either due to their highly specific
implementation, niche usage, or computational complexity.

A possibility for any SMLMdata analysis is to confine the analysis
to user-defined ROIs, i.e. only performing analysis in specific
regions, or separating analysis based on these regions (e.g. per
cell). This ROI selection can be performed on a variety of
measures, but we will exemplify ROI selection via single-cell data
analysis, where an outline of the cell is used to separate data analysis.
This naturally requires (brightfield or phase-contrast) image data of
the cells in addition to SMLM data. Additionally, the cells need to be
segmented, either manually or via algorithms incorporated in e.g.
MorphoLibJ, SplineDist, or Oufti (Legland et al., 2016; Paintdakhi
et al., 2016; Berg et al., 2019; Mandal and Uhlmann, 2021). Recently,
machine-learning approaches have been created to perform cell
segmentation (Ronneberger et al., 2015; Berg et al., 2019; Falk et al.,
2019). Machine-learning approaches can be especially powerful,
considering it often provides good segmentation performance,
and its fast computation could allow for real-time (on-line)
segmentation. This opens up avenues for e.g. capturing only
subsets of the FoV where cells are present, reducing storage size
and downstream computational efforts.

If a structure of interest needs to be resolved with a resolution
higher than normally achievable in SMLM, particle averaging is
an interesting avenue. In particle averaging, the same structure
(e.g. nuclear pore complexes Thevathasan et al., 2019) are
visualised many times throughout the FoV. Then, their data is
combined, traditionally by mapping the repeated structure to a
template structure. Mapping onto a template nevertheless is
biased towards the template (e.g. rare but biologically

important deviations from the consensus structure will be not
detected), is sensitive to insufficient labeling, and requires image
generation rather than using the localization data directly
(Henderson, 2013). Recently, new particle averaging
approaches, namely “all-to-all” registrations and comparing
relative localization distances to a model description, have
arisen that circumvent these downsides (Curd et al., 2021;
Heydarian et al., 2018; Heydarian et al., 2021).

An improvement that concerns all computational analysis
procedures is to apply these in real-time; i.e. during the SMLM
acquisition rather than during post-processing. However, rapid
computations and feedback for online microscope control are
non-trivial to achieve. Nonetheless, an increasing number of tools
approaches real-time SMLM data analysis and online microscopic
feedback (Henriques et al., 2010; Kechkar et al., 2013; Holden et al.,
2014; Štefko et al., 2018; Li et al., 2019). These advancements can
eventually pave the way for intelligent and fully autonomous live-
cell, single-molecule microscopy.
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Don’t Be Fooled by Randomness: Valid
p-Values for Single Molecule
Microscopy
Magdalena C. Schneider and Gerhard J. Schütz *

Institute of Applied Physics, TU Wien, Vienna, Austria

The human mind shows extraordinary capability at recognizing patterns, while at the same
time tending to underestimate the natural scope of random processes. Taken together,
this easily misleads researchers in judging whether the observed characteristics of their
data are of significance or just the outcome of random effects. One of the best tools to
assess whether observed features fall into the scope of pure randomness is statistical
significance testing, which quantifies the probability to falsely reject a chosen null
hypothesis. The central parameter in this context is the p-value, which can be
calculated from the recorded data sets. In case of p-values smaller than the level of
significance, the null hypothesis is rejected, otherwise not. While significance testing has
found widespread application in many sciences including the life sciences, it is hardly used
in (bio-)physics. We propose here that significance testing provides an important and valid
addendum to the toolbox of quantitative (single molecule) biology. It allows to support a
quantitative judgement (the hypothesis) about the data set with a probabilistic assessment.
In this manuscript we describe ways for obtaining valid p-values in two selected
applications of single molecule microscopy: (i) Nanoclustering in single molecule
localization microscopy. Previously, we developed a method termed 2-CLASTA, which
allows to calculate a valid p-value for the null hypothesis of an underlying random
distribution of molecules of interest while circumventing overcounting issues. Here, we
present an extension to this approach, yielding a single overall p-value for data pooled from
multiple cells or experiments. (ii) Single molecule trajectories. Data from a single molecule
trajectory are inherently correlated, thus prohibiting a direct analysis via conventional
statistical tools. Here, we introduce a block permutation test, which yields a valid p-value
for the analysis and comparison of single molecule trajectory data. We exemplify the
approach based on FRET trajectories.

Keywords: single molecule microscopy, single molecule localization microscopy, FRET, statistical significance
testing, nanoclustering

1 INTRODUCTION

One fundamental problem behind the interpretation of biological data relates to the question
whether a specific data set agrees with a certain hypothesis or not. Typical examples include the
comparative analysis of different subgroups, or the compatibility of data with a specified model. The
basic problem arises from the fact that each reproduction of a biological experiment yields a slightly
different outcome, irrespective of the quality and precision of the experiment. The reason can be
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measurement errors or stochastic variations underlying the
physical processes. In consequence, it is the interpreter’s
problem to judge the compatibility of the data with the
hypothesis.

Significance testing has been developed to provide an exact
mathematical framework for this problem. The first step is to
formulate a null hypothesis, against which the data is to be tested;
a typical null hypothesis would be the absence of any effect or
difference. Let us introduce as an example the question whether
proteins are distributed randomly on a two-dimensional
membrane. This question has become central in many fields of
cellular biophysics (Garcia-Parajo et al., 2014; Goyette et al.,
2019). In our case, the null hypothesis would be a purely
random distribution. The idea is now to judge the validity of
this hypothesis, based on a binary classifier, which either rejects
the hypothesis or not. Naturally, one makes errors in this
judgement. One misjudgement is the false rejection of the null
hypothesis. The p-value together with significance testing is the
attempt to quantitatively assess such misjudgements. In a
nutshell, the lower the p-value, the likelier it is that the data
set disagrees with the null hypothesis. Ideally, the researcher
defines a significance level α before performing the experiment,
which is taken as threshold criterion for the decision: any p-value
below α is considered as a rejection of the null hypothesis,
whereas any p-value greater than α would count as agreement.

Significance testing can hence be considered as a powerful tool
for a quantitative assessment of a particular experimental
outcome. In this context, quantification does not relate to a
determination of the magnitude of certain biological
parameters, but to a probabilistic assessment of the likelihood
of the chosen null hypothesis or the deviation of it. Indeed, as
Figure 1A indicates, even random spatial protein distributions

contain accumulations that would be picked up as clusters by
standard clustering algorithms. Therefore, we consider it
important to first globally assess a data set via significance
testing before using more detailed analysis tools for a
quantification of the biological parameters of interest.

In this manuscript, we provide a guideline how to use p-values
for the analysis of single molecule microscopy data. In particular,
we address the following questions:

• What is the probabilistic basis of the significance level α and
the p-value?

• How can one handle situations in which the distribution of
the test statistic under the null hypothesis is not known
analytically?

• How can multiple experimental outcomes be combined into
one global p-value?

• How can one account for correlated data in significance
testing?

After a brief introduction into significance testing, we provide
the reader of this paper with instructions how to use significance
testing in two specific settings:

(i) Detection of protein nanoclusters in membranes. The spatial
organization of membrane proteins can be studied in
unprecedented detail via single molecule localization
microscopy (SMLM). In this superresolution technique,
the diffraction limit of light is circumvented by separating
the emission of individual fluorophores in time (Sigal et al.,
2018; Schermelleh et al., 2019; Lelek et al., 2021; Schütz and
Schneider, 2021). After recording and post-processing of
thousands of frames, a localization map is obtained. This
map is a list of coordinates representing the observed
molecule positions. Early studies conducting SMLM
experiments on cellular plasma membrane proteins have
consistently reported nanoclustering to different degrees
(Lillemeier et al., 2010; Rossy et al., 2013; Garcia-Parajo
et al., 2014). However, due to blinking of fluorophores the
same biomolecule of interest can be detected multiple times
during the image acquisition. In combination with
localization errors, this leads to localization clusters in the
localization maps, which can be easily mistaken for true
molecular nanoclustering. Here, we want to address the
question of biomolecular nanoclustering in the framework
of significance testing.

(ii) Comparative analysis of single molecule trajectories. In
SMLM, the high spatial resolution is traded for temporal
resolution. To complement this approach, cellular dynamics
can be investigated based on the recording of single particle
trajectories (Wieser and Schütz, 2008). Similar to SMLM, the
density of fluorescent molecules needs to be low enough to
distinguish individual molecules. A single molecule is then
imaged and tracked over a certain time span, yielding the
evolution of a recorded parameter over time. As observed
quantity, we considered here the Förster Resonance Energy
Transfer (FRET) (Roy et al., 2008). The FRET efficiency
corresponds to the non-radiative energy transfer between a

FIGURE 1 | Cluster analysis with DBSCAN. (A) Map of molecule
positions. Positions were generated by a spatial Poisson point process with a
density of 80 points per μm2. The point pattern was analyzed by DBSCAN
(Ester et al., 1996). Analysis parameters were set to r = 50 nm for the
search radius and n = 3 for the minimum number of points constituting a
cluster. The color code represents the cluster assignment. Unclustered points
are shown in gray. Although the molecule point pattern represents complete
spatial randomness, 22 clusters were identified by DBSCAN. (B) SMLM
localization map simulated based on the molecule positions from panel (A),
including overcounting according to the blinking statistics of SNAP-AF647
(Arnold et al., 2020). The localization map was analyzed by DBSCAN as
described in panel (A), yielding 116 clusters. Scale bars: 200 nm.
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donor and acceptor fluorophore, which is directly related to
the distance between the two fluorophores. Thus, distances
between molecules can be determined at a length scale of a
few nanometers. When performing a comparative analysis of
recorded samples, one difficulty relates to the correlation
within single trajectories. Here, we show how this problem
can be solved via a block permutation testing approach.

2 STATISTICAL SIGNIFICANCE

In the following, we discuss the concept of significance testing for
the analysis of biophysical data. As guiding example we will use
hypothetical data from SMLM experiments, which shall be
analyzed by a 2-color localization microscopy and significance
testing approach (2-CLASTA), which we recently developed
(Arnold et al., 2020). 2-CLASTA is based on competitive
labeling of the same type of biomolecule with labels of two
different colors, yielding a 2-color localization map. As the
method does not analyze the distribution of localizations
directly, but possible correlations between the two color
channels, it is independent of the blinking behavior and, in
particular, is compatible with any SMLM technique, including
PALM, STORM and PAINT [see Supplementary Figure S3 in
(Arnold et al., 2020)].

Let us start by considering a pattern generated by a spatial
Poisson point process, i.e., complete spatial randomness
(Figure 1A), which could correspond to the 2D positions of
single protein molecules in a cell membrane. As is apparent from
the image, several points will be in close spatial proximity due to
random chance alone. This can be easily seen when analyzing the

point pattern with clustering methods such as DBSCAN (Ester
et al., 1996). Although the point pattern is purely random,
multiple clusters were detected by the method.

The situation becomes more severe when considering SMLM-
inherent overcounts which arise from repetitive detections due to
the blinking kinetics of single dye molecules. Figure 1B shows the
same underlying biomolecular distribution as Figure 1A, but now
including overcounting which was simulated using typical
experimental blinking data. Obviously, more apparent
localization clusters arise and are detected by the DBSCAN
approach. Thus, a mere analysis of clustering without
considering its statistical significance in the context of the
global point pattern distribution may yield misleading results.

In a statistical analysis, the characteristics of a whole
population are estimated based on the analysis of a subsample
(Figure 2A); for example, the overall spatial distribution of
biomolecules is investigated based on the localization map
obtained from a subregion of a cell. The population follows an
underlying unknown spatial distribution, which shall be
characterized by the statistical test. The sample is a data subset
which should be representative of the population. For our
example of 2-color SMLM data, Figure 2A shows two samples
simulated with different sizes of the selected region of interest.
The key step now is to identify a sample summary statistic, which
will be used to infer information about the whole population. In
our previous publication, we analyzed the cross-nearest neighbor
distances between the two color channels (Arnold et al., 2020).
Figure 2C shows the empirical cumulative density function
(CDF) for a number of 10 000 different subsamples. In
principle, if an analytical and parameterized model of the
underlying spatial distribution was available, the empirical

FIGURE 2 | Sampling distribution and influence of sample size. Representative localization maps of an underlying random (A) and clustered (B) distribution of
biomolecules. The simulated regions comprise a number of N = 75 underlying molecules (top row) or N = 7500 molecules (bottom row). For the clustered scenario, we
simulated dimers. The degree of labeling was set to 100%. Scale bars: 100 nm (top row), 1 μm (bottom row). (C) Cumulative distribution functions (CDFs) of cross-
nearest neighbor distances between localizations of the red and blue color channel. Gray lines show the CDFs for 10 000 simulations of random biomolecular
distributions. The green line indicates the CDF for the clustered scenario from panel (B). (D) Probability distribution of the summary statistic, i.e. the sampling distribution.
As a summary statistic the integral of the CDF from 0 nm to 200 nm was calculated. The sampling distribution is shown for sample sizes corresponding to a number of
molecules from N = 75 (light gray line) to N = 7500 (black line). The larger the sample size, the narrower is the sampling distribution.
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CDFs could be fitted and the parameters determined. However, in
practice such a model is difficult to establish, making statistical
tools a valid choice for approaching this problem. What is
apparent at first glance is the rather large spread between the
different curves, which is particularly pronounced for smaller
subsample sizes. The large spread reflects random effects which
lead to variations between subsamples, also if they are drawn
from the same underlying population. In the following, we did
not use the empirical CDFs directly, but reduced them to the
integral over the curve, which was taken as a summary statistics
for the subsequent analysis. The sample summary statistics is a
random variable that follows a probability distribution
(Figure 2D). This probability distribution of the sample
summary statistic over all possible random samples of given
size n is called the sampling distribution ρ(s). The shape of the
sampling distribution depends both on the underlying population
and the sample size. For increasing sample sizes, the distribution
becomes narrower.

Let us apply the analysis via summary statistics to characterize
a simple model, which becomes the basis for the null hypothesis.
The null hypothesis H0 assumes the validity of this model, for
example a purely random spatial distribution of all biomolecules.
The central idea of significance testing is to quantify the
probability for obtaining a certain summary statistics. More
precisely, the p-value quantifies the probability that drawing
from the sampling distribution under the null hypothesis
yields a value which is as extreme or more extreme than a
given value s0 (Figure 3A). The p-value hence is given by the
integral p � ∫∞

s0
ρ(s)ds. Typically, s0 is the value of the summary

statistics obtained from an actual experimental observation.
Per definition, the p-value is a random variable in the interval

[0, 1]. A p-value is valid if it fulfills P(p≤a | H0)≤ a for every 0 ≤
a ≤ 1 under the null hypothesis; if equality holds true for all values

of a, the p-value is exact. This definition implies that—under the
null hypothesis—the p-value shows a uniform distribution. In
return, if the p-value is not distributed uniformly under the null
hypothesis, the null hypothesis does not follow the assumed
distribution and thus, the p-value is not valid. If the employed
test statistic is discrete, the distribution of p-values will also be
discrete. Hence, the p-value cannot be uniformly distributed over
the whole interval [0, 1], but can take on discrete values only.
Nevertheless, the p-value will be distributed uniformly in the
sense that P(p≤ a | H0) � a, if a is a value that can be taken on by
the p-value, and P(p≤ a | H0)< a otherwise. Hence, the p-value
is valid.

As the p-value is based on the sampling distribution, it not
only depends on the population but also the sample size
(Figure 3E). Hence, the same outcome for a summary
statistics may yield different p-values dependent on the sample
size as the width of the sampling distribution varies.

The p-value allows to assess statistical significance,
i.e., whether a result for a test statistic is more extreme than
what can be expected from random chance. It describes how
incompatible the observed data are with the statistical model
specified by the null hypothesis. Thus, the p-value can be used to
conduct a hypothesis test, in which the null hypothesis H0 is
tested against the alternative hypothesis H1. Of note, the two
hypotheses H0 and H1 should be mutually exclusive and their
union should cover the whole range of possible outcomes. The
test decision, i.e., whether the null hypothesis is rejected or kept, is
based on the p-value and a chosen threshold termed the level of
significance α. The null hypothesis is rejected if the obtained
p-value is lower than or equal to α. If the p-value is larger than α,
the null hypothesis is kept (Figure 3).

Let us consider three different scenarios for the application of
significance testing to the analysis of SMLM data. First, a test shall

FIGURE 3 | Calculation of the p-value. (A,B) Gray curves show the sampling distribution of the summary statistic under the null hypothesis. The value of the
summary statistic s0 obtained for one specific sample is shown as green vertical line. The p-value corresponds to the dashed green area. The gray area corresponds to
the level of significance, which was set to α = 0.05. If the p-value falls below the level of significance (i.e., s0 falls within the gray area), the null hypothesis is rejected (A).
Otherwise, the null hypothesis is kept (B). In panels (A) and (B) a right-sided test is depicted. (C) Left-sided test. (D) Two-sided test. (E) Influence of sample size.
The same value s0 of the summary statistics yields a different p-value dependent on the sample size (top to bottom). For a small sample size, the sampling distribution is
broad and the null hypothesis is kept (top). For a large sample size, the sampling distribution is narrow and the null hypothesis is rejected (bottom).
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be performed for the null hypothesis of a random distribution of
biomolecules against the alternative hypothesis of (nano-)
clustering. As indicated in Figures 2B,C, spatial clustering
leads to a steeper increase in the empirical CDFs concomitant
with a higher value of the determined summary statistics s0. In
this case, it is hence recommendable to use the right-sided p-value
(Figure 3A) and only reject the null hypothesis in case of
extremely high values of s0. Second, we assume as alternative
hypothesis a repulsion of the molecular positions. In this case,
molecules would be dispersed across the field of view,
concomitant with a smaller value of the determined summary
statistics s0. Consequentially, the left-sided p-value would be used
for the test (Figure 3C). Third, it may be the case that any
deviation from a random distribution is of interest to the
experimentalist. In this case, one would opt for choosing the
two-sided p-value, and reject the null hypothesis both in case of
extremely high and low values of s0 (Figure 3D).

For a valid analysis, the value of the significance level α needs
to be specified a priori, i.e., before calculating the p-value for a
particular experiment (Shine, 1980). Only in this case the level of
significance corresponds to the false positive rate of the test. If the
level of significance is selected a posteriori, the researcher may be
biased in the choice of α dependent on the obtained p-value.
Thus, the probability for an incorrect rejection of the null
hypothesis will be affected.

For the interpretation of results it should be kept in mind that
the outcome of a test decision, i.e. the rejection or acceptance of
the null hypothesis, may be incorrect. The type I and type II error
quantify the probability of a false decision. The type I error
corresponds to false positives: The null hypothesis is

erroneously rejected, i.e. an observed effect is assumed to be
real although it is due to random chance alone. Interestingly, the
probability of a type I error—i.e. the false positive rate—is directly
determined by the chosen level of significance. For a valid p-value
it holds that P(p≤ α | H0)≤ α for all α ∈ [0, 1]. In other words,
the probability of falsely rejecting the null hypothesis is smaller
than or equal to α. For an exact p-value the false positive rate is
exactly α. A type II error occurs in case of false negatives: the null
hypothesis is kept, although the alternative hypothesis is true. Of
note, the probability of a type II error depends on the sample size;
with increasing sample size the sampling variation decreases and
even small differences in the summary statistics can be attributed
to truly existing effects instead of random noise.

The outcome of the test decision always depends on the
chosen level of significance α, which usually affects the
probabilities for a type I and type II error. Notably, lowering
the chance for one error increases the other. The trade-off
between the two errors is best visualized by a ROC (receiver
operating characteristic) curve (Figure 4). In a ROC curve, the
true positive rate (= 1 − false negative rate = sensitivity) of a test is
plotted against the false positive rate (= 1 − true negative rate =
1 − specificity). A perfect binary classifier would yield a point in
the top left corner (0, 1) of the ROC plot, corresponding to 100%
sensitivity and 100% specificity. In general, however, a certain
probability for either of the two types of errors in the classification
remains. A classifier based on random guesses would yield a ROC
curve given by the diagonal (line of no discrimination, indicated
by the dashed line in Figure 4).

3 2-CLASTA

Often, the sampling distribution of the summary statistics under
the null hypothesis is not known analytically. In our 2-CLASTA
method, we create estimations of the summary statistics under the
null hypothesis of a random biomolecular distribution directly
from the recorded localization maps. For this, a toroidal shift is
applied to one of the color channels (Figures 5A,B): All
localizations are shifted by a random vector �v and moved back
into the regions of interest according to periodic boundary
conditions. The toroidal shift breaks possible correlations
between the two color channels while conserving the
characteristics of the localization map of each individual
channel. By repeating this procedure for randomly chosen
shift vectors, a set of random control images can be generated
on the computer which allows to calculate the corresponding
CDFs of cross-nearest neighbor distances (Figure 5C). Each
integral of these CDFs gives an estimate of the summary
statistics. Typically, we calculated n = 99 toroidal shifts,
yielding a good approximation of the sampling distribution of
our summary statistics (Figure 5D).

Finally, the obtained value s0 of the summary statistics for the
original data is compared with the values si obtained for the
sampling distribution under the null hypothesis. For the
calculation of a p-value, all values of the set S ≔ {si | i �
0, . . . , n} are sorted in descending order and a rank is assigned
to each value according to its position in the ordered sequence: A

FIGURE 4 | Receiver operating characteristic (ROC). The ROC curve
illustrates the trade-off between sensitivity and specificity for a binary classifier.
The true positive rate (sensitivity) is plotted against the false positive rate (1-
specificity). Note that for a hypothesis test the false positive rate
corresponds to the chosen level of significance α. The white dot in the top left
corner indicates the point of perfect discrimination, the dashed line indicates
the line of no discrimination. The solid lines indicate two scenarios for a binary
classifier with low discrimination (light gray) and better discrimination (dark
gray).
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value si has the rank j if it is the jth largest element; consequently,
the largest value of the set has rank 1. Since we want to test the
null hypothesis of a random distribution against the alternative
hypothesis of nanoclustering, we are interested whether the
original data shows a tendency towards shorter nearest
neighbor distances. Deviations towards larger distances are not
considered of importance here. Hence, we calculate

p � rank(s0,S)
n + 1

, (1)

where rank(s0,S) denotes the descending rank of s0 within the set
S. Under the null hypothesis the calculated values p show the
expected uniform distribution in the interval [0, 1] (Figure 6A)
and, hence, can be interpreted as right-sided p-values.

In order to perform the significance testing it is important now
to select a significance level α. In the following, we chose α = 0.05,
equivalent to a 5% false rejection rate of the null hypothesis of a
random biomolecular distribution. In our approach, the
obtainable p-values are constraint to discrete values in the set
{ i
n+1 | i � 1, . . . , n + 1}. It is hence important to ensure that α> 1

n+1.

FIGURE 5 | 2-CLASTA method. Analysis of localization maps with 2-CLASTA. (A) Simulated two-color localization maps for a random (top) and a clustered
(bottom) distribution of biomolecules. Images show a 2 × 2 μm2 region. For the simulation of blinking we used experimental data obtained for SNAP-AF488 (blue channel)
and SNAP-AF647 (red channel). (B) Shifting all localizations of the blue color channel by the shift vector �v breaks correlations between the two color channels. (C) The
CDF of cross-nearest neighbor distances, r, between the two color channels is plotted in green for the localization data shown in panel (A). The functions cdfrand(r) of
n = 99 control curves, generated with randomly chosen toroidal shifts, are depicted in light gray. (D) As a summary statistics, the integral of the CDFs was calculated.
Based on the rank of the summary statistics s0 for the original data (green line), we calculated a p-value p = 0.52 for the random case, and p = 0.01 for the clustered case.
Panels (A–C) adapted from (Arnold et al., 2020), CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

FIGURE 6 | Specificity and sensitivity of 2-CLASTA. (A) Specificity. The histogram of p-values shows a uniform distribution under the null hypothesis of a random
biomolecular distribution. (B) Sensitivity for a varying number of observed molecules. Results are shown for simulations of dimers (+), trimers (▲) and tetramers (■). The
sensitivity increases with a increasing number of observedmolecules. (C) Sensitivity for varying degree of labeling. Results are shown for simulations of dimers (+), trimers
(▲) and tetramers (■). For a degree of labeling above 30%, maximum sensitivity can be achieved. (D)ROC curves are plotted for simulations of dimers with a degree
of labeling varying from 10% (light gray) to 40% (black). With increasing degree of labeling the discrimination power of the test increases, i.e., the ROC curve approaches
the point of perfect classification in the top left corner. The gray dashed line indicates the line of no discrimination. The sensitivity for each parameter set was determined
based on 100 independent simulations. Panels (A–C) adapted from (Arnold et al., 2020), CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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In the example shown in Figure 5, we obtained a p-value of 0.52
for the random biomolecular distribution (top row) and a p-value
of 0.01 for the clustered scenario (bottom row). Our test hence
yielded a correct test decision in both cases.

While the validity of a p-value is described by the correct
rejection rate of the null hypothesis, its power is linked to the
sensitivity for detecting aberrant scenarios. In the following,
we give examples of the sensitivity of 2-CLASTA to detect
biomolecular oligomers from dimers up to tetramers. As
expected, the sensitivity strongly depends on the number of
analyzed molecules within the region of interest (Figure 6B).
This reflects the larger spread of the sampling distribution for
small data sets (cf. Figure 2). For data sets containing more
than 3000 molecules, the identification even of dimers works
robustly with a sensitivity above 80%. In a biological
experiment, it is difficult to achieve a degree of labeling of
100%. With decreasing degree of labeling, two-color
colocalization will be out-diluted by apparent monomeric
signals, which arise from underlabeled oligomers.
Figure 6C shows that a degree of labeling of 30% is
sufficient to reliable detect all analyzed cluster scenarios.
The improved sensitivity for high degree of labeling is also
apparent in the ROC plot (Figure 6D). While for 10% degree
of labeling we obtained results close to the line of no
discrimination, 40% degree of labeling approaches the
point of perfect discrimination extremely well. Of note, we
showed previously that minor chromatic aberrations hardly

affect the analysis, as they do not break correlations between
the two color channels [see Supplementary Figure S4 in
(Arnold et al., 2020)]. If one desires to use a single dye
only (e.g. due to its superior photophysical properties), one
can perform an Exchange-PAINT experiment (Jungmann
et al., 2014) with two different docking strands, which
would then be taken as the two different channels in the 2-
CLASTA analysis.

For a validation experiment, we previously generated
concatamers of SNAP-tags fused to a GPI-anchor, which
are located in the cellular plasma membrane (Arnold et al.,
2020). The fusion-constructs were labeled with mixtures of
blue and red substrates so that similar degrees of labeling were
achieved for both colors (Figure 7A). For each construct, we
recorded 2-color SMLM experiments on at least 25 cells,
analyzed them according to the 2-CLASTA method and
determined a p-value for each image (Figure 7B). The
resulting histograms in the case of monomeric constructs
yielded a rather uniform distribution, whereas all other
constructs showed a substantial deviation from this
uniform distribution, with an increased fraction of small
p-values with increasing oligomer degree. Importantly, the
rather small region of interest and suboptimal degree of
labeling generally compromise sensitive identification of
the presence of oligomers from a single experiment,
yielding multiple experiments with an outcome above the
significance threshold.

FIGURE 7 | Experimental validation of 2-CLASTA. (A) Illustrations and representative localization maps recorded for SNAP-monomers, -dimers, -trimers and
-tetramers (left to right). Scale bars: 250 nm (inset) and 2 μm. (B)Histograms of p-values obtained for multiple recorded cells, which were analyzed individually with the 2-
CLASTA method. For each SNAP construct, we also calculated the joint p-value p* according to Eq. 2, with the threshold p0 = 0.05. Panels (B) and (C) adapted from
(Arnold et al., 2020), CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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4 ACCOUNTING FOR MULTIPLE
EXPERIMENTS

In order to assess the overall outcome of multiple experiments in a
single joint statistical analysis, one straightforward option seems to
be taking the minimum of all observed p-values as overall p-value
and reject the null hypothesis if this minimum p-value is significant.
However, this procedure is not valid as it drastically increases type I
errors, i.e. the false positive rate. This can be seen from a simple
example: Form independent experiments, the probability that none
of the obtained p-values is significant under the null hypothesis can
be calculated as (1 − α)m. Form = 10 experiments and a significance
level of α = 0.05, the probability to incorrectly obtain a significant
result would be 1 − (1 − 0.05)10 = 0.4, which is much higher than the
significance level. This is also evident from the probability
distribution of the minimum p-value. In case of a continuous
p-value, the distribution of the minimum of m uniformly
distributed values pmin = min(p1,. . .,pm) is not uniform but
follows the probability density function m(1 − pmin)m−1.

In order to adjust the overall p-value for m experiments, Wieser
et al. (Wieser et al., 2008) suggested to apply the transformation
function p* � 1 − (1 − pmin)m, yielding a uniform distribution of p*
on the interval [0, 1]. However, in case of bootstrapping and Monte
Carlo approaches the p-value is not continuously distributed, but can
only take on discrete values i

n+1 for i = 1, . . ., n + 1, where n is the
number of bootstrapped or simulated control samples. Therefore,
the lower bound of p* is 1 − ( n

n+1)m, which approaches 1 for m
approaching infinity. Hence, for a large number of experiments m
the null hypothesis would never be rejected.

In case of discrete p-values we propose here a different method to
adjust the p-value for multiple experiments. The p-values for single
experiments then show a discrete uniform distribution under the
null hypothesis given by P(p � i

n+1) � 1
n+1 for i = 1, . . ., n + 1, where

n is the number of simulated controls. In order to combine the
p-values obtained from multiple experiments, we can determine
whether the number of observed p-values below a user-defined
threshold p0 agrees with a discrete uniform distribution. Under the
null hypothesis, the probability to obtain a p-value below or equal to
the threshold p0 in exactly k out of m experiments is given by a
Binomial distribution B(k | p0, m).

Therefore, we can perform a Binomial test in order to
determine whether the p-values obtained from m independent
experiments agree with the null hypothesis. In general, one is
interested in identifying significant results characterized by a high
proportion of low p-values. Hence, a right-sided Binomial test of
the null hypothesis is appropriate. The overall p-value p* for
multiple experiments is calculated as

p* � P(X≥ k) � ∑m
i�k

B(i |p0, m) � ∑m
i�k
(m

i
)pi

0(1 − p0)m−i

� 1 −∑k−1
i�0
(m

i
)pi

0(1 − p0)m−i, (2)

where k is the number of observed p-values below the chosen
threshold p0, and m the number of performed experiments. If p*

is smaller than the chosen level of significance α* for the joint
analysis of experiments, the null hypothesis is rejected.

The increase in sensitivity for the joint analysis of multiple 2-
CLASTA analyses compared to a single experiment is shown in
Figure 8A. For this, dimers were simulated with varying labeling
efficiency, assuming a 1 : 1 label ratio between the two colors. A
joint analysis of 25 or 50 simulated experiments yielded a drastic
increase of the sensitivity compared to the analysis of a single
experiment only. Interestingly, the method is very robust with
regard to the chosen threshold p0 (Figure 8B). As expected, the
higher the number of analyzed experiments, the higher is the
sensitivity of the method. Also in the ROC plot we observed a
strongly improved performance that approaches the ideal test
(Figure 8C). The proposed joint analysis of all performed
experiments was also applied to the experimental results
obtained on the SNAP constructs from our previous paper
(Arnold et al., 2020). The calculated overall p-values for
multiple experiments are indicated as p* in Figure 7B. As
anticipated, the null hypothesis of a random protein
distribution was not rejected for the monomeric 1-SNAP
construct. For all the oligomeric constructs representing
dimers, trimers and tetramers, the null hypothesis was rejected
and the biomolecular distribution was correctly identified as
clustered.

5 SINGLE PARTICLE TRAJECTORIES

As a final example, we will discuss here the application of
significance tests to the analysis of single particle trajectories.
In practice, such trajectories suffer from a limited observation
time due to restrictions in the overall imaging experiments,
diffusion of the molecule out of the region of interest, or
photobleaching of the fluorescence marker molecules. In the
following, we present a guideline how to compare sets of
single particle trajectories recorded under two different
conditions A and B via permutation tests (Good, 2000).

Figure 9 shows the typical workflow of such a test approach.
All data points recorded under condition A and B are combined,
yielding the average values μA for sample A and μB for sample B,
respectively. We choose here as summary statistics the difference
s0 = μA − μB. One may use as a realization of the null hypothesis,
i.e., no difference between the sample A and B, a random splitting
of the combined data sets in two new subsamples Ai and Bi each
containing the same amount of data points as the original samples
A and B. For each permutation, a new sample statistics si � μAi

−
μBi

is calculated. Finally, s0 is compared with the sampling
distribution of all obtained values of si. The p-value is
obtained via the rank of s0 as described in Section 3, Eq. 1.

To evaluate this approach, we simulated representative single
molecule trajectories, consisting of a time series of a recorded
parameter E(t). This could be the FRET efficiency in a single
molecule FRET experiment, the size of displacement steps in a
single particle tracking experiment, the excited state lifetime in a
spectroscopic experiment, to name a few. Representative
trajectories for this evaluation are shown in Figure 9A.
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To verify the validity of this approach for calculating a correct
p-value, we plotted the distribution of obtained p-values under
the null hypothesis for thousand repetitions of this hypothetical
experiment. As discussed in Figure 6A, a valid p-value has to
show a uniform distribution under the null hypothesis.
Interestingly, in our case we observed massive deviations from
such a uniform distribution, with a strong peak for small p-values
(Figure 10D). When applied to a significance test, the
experimenter would hence incorrectly reject the null
hypothesis too often.

To understand the reason for this incorrect judgement, let us
have a closer look on the single molecule trajectories. In our case,
we did not assign binary values to a time series randomly, but
instead we considered states with a specific duration
characterized by transition rate constants. In consequence, the
data used for the sampling distribution are not independent,
thereby violating a basic assumptions of most significance testing
approaches.

To solve this problem, we used a block permutation test
approach. In this approach, the trajectories recorded in the
samples A and B are not split, but instead kept together for
the permutations performed in step C in Figure 9. This approach
correctly accounts for the correlations in the trajectories when
generating the permuted samplesAi and Bi. Indeed, application of
this approach leads to uniform distribution of the p-value under
the null hypothesis (Figure 10E).

We applied the new method to experimental data recorded
previously in our lab, which shows the analysis of single
molecule FRET trajectories of a molecular force sensor
(Göhring et al., 2021). Briefly, T-cells were seeded on a
glass supported lipid bilayer, which was functionalized by
specific proteins to activate the T-cells. One of these
proteins was a force sensor, carrying a spider silk spring
element, which connected a membrane anchoring motive
with a specific ligand to the T-cell receptor on the T-cell
surface. A donor and an acceptor fluorophore were
conjugated to the spider silk region and used for reading
out the elongation of this spring element via single

molecule FRET, which was eventually used to calculate
forces. For each experimental run, two different conditions
were recorded: Condition A (orange) corresponding to the
FRET signal of the force sensor without T-cells, and condition
B (blue) corresponding to the FRET signal recorded in the
synapse between the T-cell and the supported lipid bilayer
(Figure 11).

When using a gel-phase lipid bilayer, we observed a clear
difference between the two conditions corroborated by a highly
significant p-value. In contrast, fluid-phase bilayers yielded
similar results when comparing the two conditions. The block
permutation test yielded p = 0.205, and hence, no significant
deviation from the null hypothesis for a chosen significance level
of α = 0.01. Of note, the simple permutation test not accounting
for correlations would have yielded a p-value of p = 0.004, and
hence, would have indicated a significant difference between the
two samples.

6 DISCUSSION

Calculating a p-value can be very useful for researchers in order
not to be fooled by random chance. Random variations often lead
to outcomes that can easily be misinterpreted as interesting
patterns. The p-value allows to quantitatively assess whether
an observed effect likely occurred due to random chance alone
or whether it is worth to study the effect in more detail. As an
example, SMLM experiments on cellular proteins often revealed
notable deviations from a random distribution of localizations
(Lillemeier et al., 2010; Rossy et al., 2013). When analyzed via
cluster detection methods such as Ripley’s K function, DBSCAN
or modified versions of it (Ripley, 1977; Ester et al., 1996; Rubin-
Delanchy et al., 2015), one would arrive at the conclusion of
biomolecular clustering in the sample of interest. More elaborate
analysis allowed to include the aspect of overcounting due to the
inherent blinking processes in SMLM (Annibale et al., 2011;
Sengupta et al., 2011; Baumgart et al., 2016; Rossboth et al., 2018;
Bohrer et al., 2021), putting some of these clusters into question.

FIGURE 8 | Sensitivity for joint analysis of multiple experiments. (A) Sensitivity for varying degree of labeling. Dimers were simulated and analyzed with 2-CLASTA.
The sensitivity for analysis of a single experiment is shown by the dotted line. The sensitivity in case of joint analysis of 25 and 50 cells is shown by the dashed and solid
lines, respectively; a threshold of p0 = 0.05 was chosen. (B) Influence of the threshold p0 and the number of experiments on the sensitivity. The obtained sensitivity is
indicated by color. (C) ROC plot for joint analysis of multiple experiments. For the simulations in panels B and D, the degree of labeling was set to 10%. Sensitivity
was calculated from 100 simulation runs; the level of significance was set to α* = 0.05.
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But also the application of these refined methods is not straight
forward as it requires either the adjustment of user-defined
parameters, or the recording of single molecule blinking traces.

In this paper, we proposed a different approach towards such
problems. Our idea is not a direct quantitative interpretation of
the data, but a statistical assessment of hypotheses (Baddeley and
Bewersdorf, 2018). If one opts for such an approach, two issues
need to be considered:

(i) Which hypothesis describes the problemmost appropriately?
In an SMLM experiment a typical example for the null
hypothesis would be: The spatial distribution of detected
localizations agrees with a random point pattern. Due to
overcounting this hypothesis will likely be rejected in most
data sets. A modified hypothesis may thus be: The spatial
biomolecular distribution agrees with a random point pattern.

We addressed this hypothesis in Section 3 of this paper. If
also this hypothesis is rejected, one may opt for coming up
with more precise hypotheses about the lateral extension of
the biomolecular clusters and the degree of clustering. The
result of such an approach will hence be rather similar to the
classical quantitative approaches; its advantage is that it
additionally provides a p-value. We previously used such a
strategy to test experimental results against thousands of
quantitatively well-defined hypotheses to analyze single
molecule tracking data (Wieser et al., 2008; Axmann et al.,
2012) and FRET recordings (Schrangl et al., 2018).

(ii) How can we derive a p-value to test the null hypothesis? Here,
the major limitation comes from the fact that the underlying
sampling distribution of the summary statistics is typically
unknown. In principle, one could derive such a sampling
distribution analytically or generate it on the computer. The

FIGURE 9 | Principle of permutation test. In the permutation test, the group A (left column, blue) is compared to the group B (right column, orange). Step (A):
Individual single molecule trajectories are recorded for both groups A and B. Step (B): The data obtained from all trajectories in each group is pooled. The summary
statistics s0 is calculated in order to compare the two groups. Step (C,D): Random permutations of the data in the two groups are generated, yielding new samples Ai

and Bi. For each permutation, the summary statistics si is calculated. Step (E): The p-value is obtained by comparing the value s0 (green line) to the values si
obtained for 1000 permutations.
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drawback of it is that additional experiments are required to
obtain the molecular parameters describing the behavior of
the single fluorophores (Platzer et al., 2020). We opted here
for a different approach, which makes use of the
experimental data themselves: In case of 2-CLASTA
(Section 3), a toroidal shift was used for reassigning
molecular positions in one of the two color channels,
which allowed to calculate a set of computer-generated
control samples representing the null hypothesis of the
absence of correlations between the two color channels. In

case of the single particle tracking experiments (Section 5),
the problem was different: Now, correlations present in the
data had to be correctly accounted for also in the computer-
generated control samples. We achieved this using a block
permutation strategy.

It should be noted that the p-value and significance testing
have recently become an issue of dispute. A variety of articles and
comments have been published, both arguing for and against the
validity of p-values (Halsey et al., 2015; Lazzeroni et al., 2016;

FIGURE 10 | Comparison of permutation test and block permutation test. (A) Representative simulated FRET efficiencies for 10 simulated trajectories of group A
(left, blue) and B (right, orange). Both groups were simulated using the same parameters (see Section 7). (B) Representative random permutation of the data from panel
(A). (C) Representative block permutation of the data from panel (A). Here, data from individual trajectories is kept together. (D,E) Histogram of p-values obtained for the
standard permutation test panel (D) and the block permutation test panel (E). As a test summary statistics the difference between the means of the groups A and B
was taken. As both groups were simulated using the same parameters, the null hypothesis of no difference between the groups was fulfilled. Importantly, only the block
permutation test provides a uniform distribution and hence a valid p-value.

FIGURE 11 | FRET data from T-cell experiments. (A) Sketch of a T-cell and the force sensor. If no force is applied, the sensor shows a high FRET signal (left). In the
presence of forces, a low FRET signal is detected (right). (B) FRET efficiencies for a gel-phase bilayer (left) and a fluid-phase bilayer (right). The two histograms show data
inside the T-cell synapse (blue) and in the absence of T-cells (orange). The p-values indicated in the figure are the results of the block permutation test. The standard
permutation test would yield a p-value of 0.001 and 0.004 for the gel- and fluid-phase bilayer, respectively. Figure adapted from (Göhring et al., 2021), CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

Frontiers in Bioinformatics | www.frontiersin.org March 2022 | Volume 2 | Article 81105311

Schneider and Schütz p-Values in Single Molecule Microscopy

133

https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Altman and Krzywinski, 2017; Amrhein et al., 2019; Lakens,
2021). This is mainly due to misinterpretations of how to
correctly interpret p-values. In 2016, the American Statistical
Association released a statement addressing several
misconceptions about the p-value (Wasserstein and Lazar, 2016).

Importantly, the p-value is not the probability that the null
hypothesis is true, but rather indicates how compatible the
observed data are with the null hypothesis. In other words, a
rejection of the null hypothesis does not prove that the null
hypothesis is false: The null hypothesis could still be true, but
instead a very unlikely event occurred. Vice versa, not
rejecting the null hypothesis does not prove its truth.
Strictly speaking, a non-significant test result has no
relevance at all.

The test decision always depends on the chosen level of
significance, which usually affects the probabilities for a type I
and type II error. Notably, lowering the chance for one error
increases the other, and a certain probability for either error
always remains. Hence, an outcome of a test should never be
taken as a proof for proving a hypothesis.

One major issue is known as fishing for p-values. In case of
a true null hypothesis, there is still a certain probability to
obtain a significant p-value. For one single hypothesis test,
this probability corresponds to the level of significance α. If
one conducts multiple experiments and performs a
hypothesis test for each, the probability to obtain a
significant p-value is given by 1 − (1 − α)m, where m
denotes the number of experiments. Evidently, 1 − (1 − α)
m approaches 1 for large values of m, i.e. for a large number of
experiments, one will obtain by chance a significant p-value
with high probability.

As p-values have been controversial, the use of alternatives
such as estimation statistics and confidence intervals have been
encouraged (Claridge-Chang and Assam, 2016). A confidence
interval is an interval estimate for an unknown parameter. It is
always associated with a certain confidence level, which
corresponds to the percentage of confidence intervals
containing the true parameter. Nevertheless, both p-values and
confidence intervals are based on the same statistical theories.
Inferences about statistical significance based on either are
directly linked: If a p-value is smaller than the level of
significance α, the 1 − α confidence interval will not include
the null hypothesis value. Vice versa, if the 1 − α confidence
interval does not include the null hypothesis value, the p-value
will be smaller than α.

In conclusion, as long as random variability is involved, no
effect can be strictly proven merely based on a (small) sample
of observations alone. Scientific conclusions must not merely
be based on whether a p-value passes a user-set threshold
without any other supporting evidence or reasoning.
Moreover, also a true but possibly small difference might
be of no essential practical importance. In general, it is
necessary that researchers are aware of what statistical
significance testing really means in order not to misuse it.
Merely replacing the p-value with other methods will not solve
the problem, but rather only shift it (Verhulst, 2016; Lakens,
2021). Particularly, completely abolishing any assessment of

statistical significance poses the risk of researchers being
fooled by random chance.

7 METHODS

7.1 2-CLASTA
7.1.1 Simulations
Simulations were performed as described previously (Arnold
et al., 2020). In short, the underlying distribution of
biomolecules was simulated on a region of interest of 10 ×
10μm2. For the simulation of dimers, two biomolecules were
assigned to each dimer position. Subsequently, two different
types of labels were assigned randomly and competitively to the
simulated molecules according to the specified label ratio. For
simulation of blinking, a random number of detections was
assigned to each label according to blinking statistics
determined previously for SNAP-AF647 and SNAP-AF488
(Arnold et al., 2020). Next, the localization coordinates were
displaced by random localization errors, which were distributed
normally with mean 0 and standard deviation according to the
localization precision of 30 nm. Further, to account for
experimental errors we included 5 unspecifically bound labels
per μm2 in each color channel. In addition, we added a
background of 1 and 2 signals per μm2 for the red and blue
color channel, respectively. Background signals were simulated
with blinking statistics obtained previously from unlabeled cells
(Arnold et al., 2020). If not mentioned otherwise, we used the
following parameters: 75molecules per μm2, 40% degree of labeling
and 1:1 label ratio. All simulations were carried out in MATLAB
(R2019b, The MathWorks Inc., Natick, MA) on a standard
personal computer.

7.1.2 Calculation of p-Value for Multiple Experiment
The overall p-value p* for multiple experiments was calculated as

p* � 1 − ∑k−1
i�1 (mi )pi

0(1 − p0)m−i, where m is the number of
performed experiments, k the number of observed p-values
smaller or equal to the threshold p0, and (mi ) denotes the
Binomial coefficient. If not stated otherwise, the level of
significance for the joint analysis of p-values was set to α* =
0.05. As input for the calculation we used the p-values derived in
(Arnold et al., 2020).

7.2 Single Particle Trajectories
7.2.1 Simulation of FRET Trajectories
Simulations were performed as described previously (Schrangl
et al., 2018). In short, we first simulated a ground truth state
transition trajectory. Here, a two-state model was simulated,
characterized by the FRET efficiencies E1 = 0.2 and E2 = 0.8
for the two states. Stochastic transitions between the two states
were simulated based on the lifetimes τ1 = 2 and τ2 = 4 for state 1
and 2, respectively. Subsequently, the state transition trajectory
was sampled with finite time resolution according to the exposure
time tex = 0.1 and a delay time tdel = 0.2. All times are given in
arbitrary units. For simulation of the fluorescence signal, the
donor brightness d(ti) and acceptor brightness a(ti) at each time
point ti were randomly drawn from a lognormal distribution with
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mean values mdon(ti) = nphot(1 − e(ti)) and macc(ti) = nphote(ti),
respectively, where e(ti) = (∑itiEi)/tex denotes the apparent FRET
efficiency and nphot = 200 the average number of emitted photons
(sum of donor and acceptor fluorophores). The standard
deviation σ of the lognormal distribution was calculated via σ
= 0.3 m − 13.61 for the donor, and σ = 0.3 m − 1.92 for the
acceptor, following values determined previously for the
fluorophores AF555 and AF647 (Schrangl et al., 2018). The
final FRET efficiency was calculated as E � a

d+a. For each
simulation run, we simulated 100 trajectories for each group.
The lengths of the trajectories was distributed randomly
according to a lognormal distribution with a mean of 27.1 and
a standard deviation of 35.5. All simulations were carried out in
Python on a standard personal computer.

7.2.2 Permutation Test
We compared two groups A and B and assessed whether they
originated from the same distribution, i.e. the null hypothesis.
First, the summary statistics s0 was calculated for the original
samples A0 and B0 with sample size nA and nB, respectively. As
a summary statistics, we used the difference between the mean
of the two samples, i.e. s0 � μA0

− μB0
. Second, the data from

the two samples was pooled to form the set M≔A ∪ B. Next,
permutations of the data were created, i.e. the set M was split

into new samples Ai and Bi. For the standard permutation test,
all data points were assigned randomly to one of the two
groups. The size of the new samples was nA and nB,
respectively. For the block permutation test, data from
individual trajectories were kept together, but each
trajectory was randomly assigned to one of the new groups
Ai or Bi. Both groups contained 100 trajectories. For each
random permutation i = 1, . . ., 1000 of the data, the summary
statistics si � μAi

− μBi
was calculated. Finally, The two sided

p-value was calculated as the proportion of generated
permutations for which the absolute difference |si| was
greater than the value |s0| observed for the original data.
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Multi-Dimensional Spectral Single
Molecule Localization Microscopy
Corey Butler1,2, G Ezequiel Saraceno1, Adel Kechkar3, Nathan Bénac1, Vincent Studer1,
Julien P. Dupuis1, Laurent Groc1, Rémi Galland1* and Jean-Baptiste Sibarita1*

1Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297F-33000, F-33000, Bordeaux, France,
2Imagine Optic, Orsay, France, 3Ecole Nationale Supérieure de Biotechnologie, Laboratoire de Bioengineering, Constantine,
El Khroub, Algeria

Single molecule localization (SML) and tracking (SPT) techniques, such as (spt)PALM, (u/
DNA)PAINT and quantum dot tracking, have given unprecedented insight into the
nanoscale molecular organization and dynamics in living cells. They allow monitoring
individual proteins with millisecond temporal resolution and high spatial resolution (<30 nm)
by precisely localizing the point spread function (PSF) of individual emitters and tracking
their position over time. While SPT methods have been extended to study the temporal
dynamics and co-organization of multiple proteins, conventional experimental setups are
restricted in the number of proteins they can probe simultaneously and usually have to
tradeoff between the number of colors, the spatio-temporal resolution, and the field of
view. Yet, localizing and tracking several proteins simultaneously at high spatial and
temporal resolution within large field of views can provide important biological insights. By
employing a dual-objective spectral imaging configuration compatible with live cell imaging
combined with dedicated computation tools, we demonstrate simultaneous 3D single
particle localization and tracking of multiple distinct species over large field of views to be
feasible without compromising spatio-temporal resolution. The dispersive element
introduced into the second optical path induces a spectrally dependent displacement,
which we used to analytically separate up to five different fluorescent species of single
emitters based on their emission spectra. We used commercially available microscope
bodies aligned one on top of the other, offering biologists with a very ergonomic and flexible
instrument covering a broad range of SMLM applications. Finally, we developed a powerful
freely available software, called PALMTracer, which allows to quantitatively assess 3D + t +
λ SMLM data. We illustrate the capacity of our approach by performing multi-color 3D
DNA-PAINT of fixed samples, and demonstrate simultaneous tracking of multiple
receptors in live fibroblast and neuron cultures.

Keywords: single molecule localization, single particle tracking, spectral imaging, multi-emitter fitting, live cell
imaging

1 INTRODUCTION

Single Molecule Localization Microscopy (SMLM) relies on the optical- (Betzig et al., 2006; Rust
et al., 2006; Heilemann et al., 2008) or binding-induced (Jungmann et al., 2014) spatial isolation and
computational localization of individual fluorophores attached to a protein of interest. It provides
unprecedented biological insight into the nanoscale organization and dynamics of biomolecules, and
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has allowed major discoveries in cell biology and neuroscience
(Choquet et al., 2021; Lelek et al., 2021). The combined analysis of
molecular clustering and diffusive properties, known as SPT,
allows to identify the organization of a population of a protein of
interest with nanometric resolution and single molecule
sensitivity (Cognet et al., 2014; Sibarita, 2014), opening up the
potential to infer their interactions with other partner proteins.
However, SMLM, as any light microscopy technique, suffers from
an inherent trade-off between spatial, temporal and spectral
resolutions. The localization accuracy, ie. the precision with
which the spatial coordinates of a single emitter can be
retrieved, scales with

��
N

√
, N being the number of detected

photons above the background per single molecule event
(Thompson et al., 2002). It determines the ultimate spatial
resolution that can be achieved and defines the minimum
displacement that can be distinguished between consecutive
frames. As a consequence, collecting and analyzing multicolor
3D SMLM data remains a very challenging problem, where the
light collected from single molecules must be allocated to specific
dimensions, resulting in an inherent need to sacrifice certain
dimensions for others. More specifically, imaging several species
with single molecule resolution requires either sacrificing time by
imaging each species sequentially, or localization precision by
optically slitting the wavelengths using dichroic filters (Friedman
et al., 2006; Testa et al., 2010). In live SMLM, sequential imaging is
not an option since the goal is usually to monitor simultaneous
events, but simultaneously imaging more than two colors in 3D
with single molecule resolution is challenging. High-density
based single molecule localization approaches can be used to
improve temporal resolution (Cox et al., 2012; Zhu et al., 2012;
Gustafsson et al., 2016), but at the expense of losing access to
single molecular coordinates and therefore single molecule
tracking capabilities.

To date, multicolor single molecule fluorescence detection has
mostly been implemented using band-pass filters to discriminate
between fluorophores (Friedman et al., 2006; Testa et al., 2010).
This requires the fluorescence emission spectra of each color to be
well separated for minimal signal crosstalk, which limits the
number of detectable fluorophores and increases the number
of laser lines required to excite all fluorophores. Moreover,
splitting the collected photons into several different channels
lowers the number of photons per localization event, reducing the
localization precision and spatial resolution. Finally, separating
the wavelengths with filters requires either splitting and reducing
the field of view, or using several cameras for each wavelength,
which become complex and expensive for more than two colors.
Overall, this strategy compromises the spatial resolution and the
acquisition throughput. One alternative is spectral demixing,
which allows to use a single excitation line and discriminate
up to three spectrally close fluorophores (Lampe et al., 2012;
Zhang et al., 2020), but has not been applied for single particle
tracking up to date.

Alternatively, a particularly powerful class of approaches aims
to distinguish different dyes’ species by directly measuring their
spectral signature instead of using emission filters. This is
achieved by measuring simultaneously the position and the
emission spectrum for each fluorophore. This can be done by

combining confocal (Lundquist et al., 2008) or line-scanning
excitation schemes (Cutler et al., 2013) with a spectrometer to
record the spectral signature. However, confocal-based detection
are slow and lack of sensitivity to achieve resolution at the
nanometric scale. Another strategy consists in using a
diffractive element, such as a prism (Zhang et al., 2015; Moon
et al., 2017; Huang et al., 2018; Yan et al., 2018) or a diffraction
grating (Bongiovanni et al., 2016; Dong et al., 2016; Liu et al., 2019;
Song et al., 2019), in a standard full-field single molecule localization
microscope. In these approaches, each fluorophore generates two
images: an image without light dispersion to access to the spatial
position of the molecules, and a spectral image using a dispersive
optical element. Single objective implementations, which split the
collected photons in two different detection paths for localization
and spectral information, have been proposed but at the cost of a
lower localization precision (Bongiovanni et al., 2016; Dong et al.,
2016; Moon et al., 2017; Yan et al., 2018). Other groups proposed a
4Pi configuration, i.e., using two objectives positioned on either side
of the samples, to preserve the localization precision while accessing
the spectral signature of the detected emitters (Zhang et al., 2015; Liu
et al., 2019).While these 4Pi configuration detected up to four colors
simultaneously on fixed cells using highly overlapping emission
spectra fluorophores, their horizontal implementations were not
compatible with live cell imaging, which is typically performed in an
inverted geometry, preventing powerful single particle tracking to be
performed. Huang et al. proposed a single objective implementation
combined with an environmental controlled chamber to track up to
three different proteins simultaneously on a living cell (Huang et al.,
2018), but with a reduced localization precision. All these
implementations aim also to probe the full spectra of the
molecules detected, imposing strong limitations on the single
molecule density per frames to separate those large spectra onto
the camera. They therefore limit the acquisition speed and/or
statistics achievable, and reduce the probability of the observation
of potential meeting of observed molecules, which could be the
signature of an interaction in between them.

We here detail an acquisition and analysis framework for
versatile multidimensional (3D + t + λ) SMLM (Figures 1A,B),
with a focus on its capability to perform 3D multicolor single
particle tracking using a spectral detection configuration.
Composed of commercially available standard equipment and
software, and a freely available analysis solution, we demonstrate
that optimal spectral SMLM (up to five colors) can be performed
without compromising the 2D and 3D localization and tracking
performance. We illustrate 3D multicolor imaging of various
fixed and living samples, including the simultaneous nanoscale
monitoring of neuronal synaptic receptors’ dynamics. We show
that using both the spatial and the spectral information we can
achieve optimal multidimensional single molecule localization.

2 MATERIALS AND METHODS

2.1 Microscopy Setup
We devised a custom spectral microscope with a 4Pi
configuration for versatile (3D + t + λ) SMLM. It is composed
of two commercially inverted microscope bodies (Nikon TiE)
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FIGURE 1 | Spectral single molecule microscopy set-up and analysis workflow. (A)Microscopy set-up overview: two inverted microscope bodies are positioned
one on top of the other to benefit from their stability, automation and active axial feedback through their respective Perfect Focus Systems. The lower (spatial) microscope
is equipped with a TIRF/HILO excitation module and a cylindrical lens for astigmatism-based 3D single molecule localization. The upper (spectral) microscope is
equippedwith a spectral detection armmade of a low dispersive prism (10°) and a ×1.5magnification relay that converts the spectral information of single molecules
into a spatial shift d. The insets show 100 nm TetraSpeck beads (excited at 488, 561 and 642 nm) detected by the lower microscope (bottom) and the upper microscope
(top) after dispersion, illustrating the spatial shift induced by the prism according to the emission wavelength. (B) Spectrally displaced localization workflow. The single
molecule localizations in spatial and spectral image stacks are computed using wavelet filtering and bidimensional Gaussian fitting. The localization of the single molecule
events in the image stack acquired on the spatial channel enables retrieving their 3D coordinates with nanometric accuracy and reconstruct their trajectories. The
spectrally displaced localization, which enables to compute the single molecule’s spectral signature, is performed by pairing the localizations of the same single molecule
in both channels and computing their relative distance d directly related to the emitted wavelength. (C) Spectrally displaced localization calibration. (i.) Left: superposition
of the localizations of a bead displaced throughout the cameras whole field of view obtained through the spatial (magenta, ×100 magnification) and spectral (cyan, ×90
magnification) channels before (left) and after (right) the field transformation. The insets in the right images shows zooms on two beads to illustrate the field transformation.
Right: Histograms of the distances between the paired spatial and spectral localizations before (top) and after (bottom) field transformation. After field transformation, the

(Continued )
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precisely aligned one on top of the other: a first microscope,
placed below, to perform state of the art (3D + t) SMLM (called
direct or spatial), equipped with an azimuthal TIRF/HiLo
illumination device (iLAS2, Gataca Systems); a second
microscope, placed on top, for spectral (λ) characterization
using photons usually lost in traditional mono objective
configurations (Figure 1A, Supplementary Figure S1). The
two microscope bodies are precisely aligned by translating the
bottom microscope using a (x, y, θ, φ) stage placed below the
bottom microscope (UMS, Scientifica). Such a geometry allows i)
to perform state of the art 3D localization using all the photons
collected by one high NA TIRF objective (×100 Oil NA1.49,
Nikon); ii) to determine the spectral signature of the detected
fluorophores using a second high NA objective (×60, Water
Dipping NA1, Nikon), without compromising the localization
performances (Figure 1B). The choice of using commercial
microscopes is to benefit from existing hardware (filter cube,
objective turret, TIRF illumination module, Perfect Focus
System), motorization, software control, and stability for long-
term acquisitions. It also provides a user-friendly environment
that biologists are familiar with. The whole 4Pi microscope is
caged in a custom plexiglass enclosure heated at 37°C for live cell
experiments (Life Imaging System) and driven by the
MetaMorph software (Molecular Devices). The conventional
vertical architecture enables using standard live sample
holders, simplifying live sample preparation protocols and
imaging. Two synchronized sensitive EMCCDs (Photometrics
EVOLVE 512B), one for each detection path, allow the
microscope to track bright quantum dots as well as dimmer
organic fluorophores and fluorescent proteins across the entire
field of view of the EMCCDs, nearly 80 µm × 80 µm @ 30Hz,
using conventional filter sets and dichroic mirrors. Axial stability,
a crucial parameter for maintaining the desired focal planes for
each imaging path, is ensured by their respective integrated
Nikon Perfect Focus System (PFS), allowing real-time axial
drift compensation based on LED reflection at the coverslip
surface. We used special custom filters to ensure the two PFS
systems to be used simultaneously without interfering
(Supplementary Figure S2). Before PFS activation, both
spatial and spectral imaging planes are precisely adjusted
independently to overlap to each other using fiduciary markers
adsorbed at the glass coverslip, and this focal plane overlap is
maintained post-PFS activation using the PFS’s axial offset.

On the lower detection path, we use an astigmatism-based
approach (manual N-STORM kit, Nikon) to achieve state of the
art 3D localization (Figure 2) and tracking (Figure 3). On the upper
spectral detection path, we use a low dispersive prism (10° edge
prism, PS814-A, Thorlabs) placed in the Fourier plane of a 4f

imaging relay to access to the spectral signature of the detected
emitters. This 4f system integrates a ~×1.5 zoom to optically match
the spatial and spectral FOVs as closely as possible, with a
magnification of ×100 and ×90 respectively. Such a relatively low
diffracting prism, compared to the highly dispersive element
commonly used in other hyperspectral systems so far (Zhang
et al., 2015; Bongiovanni et al., 2016; Dong et al., 2016; Moon
et al., 2017; Huang et al., 2018; Yan et al., 2018; Song et al., 2019),
enables computing the colour of the single emitters without
spreading their whole emission spectra onto the upper camera.
Hence, it allows higher single molecule density experiments to be
performed, which is particularly important to monitor statistically
rare events. This dispersive element converts each emitter’s
wavelength into a spatial displacement, laterally shifting the
localization of the single emitter linearly with respect to its
spectral mean. We measured a spectral dispersion of −8.1 ± 0.1
nm/pixel using multicolor diffraction limited microbeads (100 nm)
with well-defined fluorescence spectra. Once calibrated, the emission
wavelength of each localized molecule is precisely determined by
computing the dispersion-induced spatial displacement, thanks to
the localizations pairing between the upper and the lower detection
paths (see below) (Figure 1C). Critically, the low dispersion contains
the spectrum of common fluorescent dyes to just a few pixels, which
allows the use of conventional localization algorithms.

By building on top of commercial microscope bodies, we were
able to modify various components to optimize and streamline
the usability of the microscope, most notably with the objective
configurations.While the original implementation usedmatching
100X NA 1.49 oil objectives on the spatial and spectral paths, we
ran into several difficulties that limited routine use on living
samples in this configuration. Since our system supports
mismatched objectives, we chose to use a 60X NA1 water
dipping objective (90X after 1.5X additional magnification) on
the upper optical path, with a 100X NA1.49 oil immersion
objective on the lower path, thereby avoiding several optical
and mechanical limitations of the matched objective
configuration. Mismatching the objectives allowed us: (1) to
maintain the collection efficiency of oil immersion objectives
for 3D localization and the capacity to perform TIRF
illumination, (2) to simplify the sample mounting without the
need to mount samples in between two closely spaced coverslips
(≈30 µm), (3) to increase the field of view (by 10%) and the depth
of field (from ≈0.4 to 0.7 µm) of the spectral channel, and (4) to
reduce spherical aberrations induced by imaging 30 µm deep
through a coverslip with a high NA oil immersion objective.
Altogether, the use of a 60X NA1 water dipping objective on the
spectral channel greatly reduces the experimental complexity of
using the system by allowing the use of conventional, open-top

FIGURE 1 |mean shift in between the paired localization is below 12 nm. (ii.) Calibration of the prism-induced spectral displacement: The black curve represents a line
scan along the three emission peaks of a TetraSpeck bead detected on the spectral channel. Their individual localizations on 1,000 successive frames (histograms)
enabled to compute their respective spatial shift depending on their central wavelength (red dots). Linear regression (red curve) leads to the calibration of the prism-
induced spatial shift according to the emitted wavelength used for spectrally displaced localization. (iii.) Principle of the spectrally displaced localization process: The
localization of a single molecule on the spatial channel is reported in the spectral channel after field transformation. A pair search zone (green rectangle) defined according
to the prism dispersion axis and an a-priori knowledge of the molecule wavelength enables to pair it with its localization on the spectral channel. The pair distance allows
the precise determination of the emission wavelength to the localized molecule.
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sample holders and maximizing the probability that the upper
channel will collect spectral data for each localization on the
spatial channel.

2.2 Single Molecules Localization Analysis
We have developed a complete analysis software solution, called
PALMTracer, to analyze and represent multi-dimensional (x, y, z,
t, λ) SMLM data. It is developed as a plugin of MetaMorph
software, to be used either directly on the microscope during the

acquisition and provide rapid user-feedback, or in off-line mode
to analyze the data post-acquisition. It allows standard 2D and 3D
single molecule localization and tracking as well as advanced
spectral analysis, integrating quantitative analysis of diffusive
properties with various visualizations. It is the result of
10 years of developments with biologist end-users (Rossier
et al., 2012; Nair et al., 2013; Garcia et al., 2015; Chamma
et al., 2016; Beghin et al., 2017; Floderer et al., 2018; Jullié
et al., 2020; Compans et al., 2021), and comes with an

FIGURE 2 | Simultaneousmulti-color singlemolecule detection. (A) Simultaneous detection of five spectrally different Qdots. Left: Image of a field of view containing
five spectrally different populations of Qdots with their overlaid localization and emission wavelength determined by spectrally displaced localization. Right: Spectral
localizations of Qdots computed from 1,000 consecutive frames for each population of QDots with their localization histogram along the x- and z-axis and the associated
Gaussian fitting (black curves) for pointing accuracy estimation. The insets represent the images of those Qdots in the spectral (upper) channel inside the pair search
zone. (B) Simultaneous three colors 3D DNA-PAINT imaging. (i.) Experiment principle: Three biological structures of interest (microtubule, TOM20 and LaminB1) are
labelled within a COS-7 cell with orthogonal DNA docking strands each associated with an imager strand conjugated to a different fluorescent dye (Atto647N, Cy3b and
Atto700 respectively). (ii.) Depth color-coded super-resolved 3D reconstructions of the three structures of interest acquired simultaneously and filtered in wavelength to
extract each of the three dyes populations. Intensity images have been reconstructed using the ImageJ ThunderSTORM plugin to create a blur effect according to the
singlemolecule localization precision. The lower panels represent zoomed-in images of the dotted white boxes and their comparison with diffraction-limited images of the
same areas reconstructed using a fixed Gaussian blur of 100 nm (resp. 250 nm) standard deviation in XY (resp. Z), to simulate diffraction limited spatial resolutions of
230 nm (resp. 575 nm). (iii.) Histograms of the astigmatism-based PSF widths along the x- (σx ) and y-axis (σy ) for each dyes’ population computed by bidimensional
Gaussian fitting.
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intuitive graphical user interface (GUI) (Supplementary Figure
S3). It integrates a powerful batch engine enabling to
systematically and sequentially analyze several files in an
entirely automatic fashion, greatly speeding up the analysis of
various experiments. Many filtering options are available on the
various statistics that can be computed from SMLM localization
(Gaussian fit properties) and tracking analysis (diffusion
properties) as well as on the spectral characterization.

2.2.1 Single Molecule Localization and Tracking
Single molecule localization is performed using a combination of
wavelet decomposition and Gaussian fitting (Izeddin et al., 2012;
Kechkar et al., 2013). Wavelet decomposition allows detection of
isolated single emitters quickly and robustly to noise and
background (Izeddin et al., 2012), while Gaussian fitting
enables the precise coordinates determination of the detected
emitters, in two and three dimensions (Kechkar et al., 2013).
Once localized, molecule trajectories are computed from the
molecular coordinates using a simulated annealing algorithm
(Racine et al., 2006). Diffusion coefficients are extracted from
the trajectories by linear fitting the Mean Square Displacement
(MSD) curves, which represent the surface, or volume in 3D,
explored by a molecule over time (Sibarita, 2014). Localization
coordinates and trajectories, and their related quantitative
features (e.g., Gaussian fitting parameters, MSD, diffusion
coefficients, etc . . . ) are saved in various CSV files,
compatible with popular analysis and visualization software
such as VISP (El Beheiry and Dahan, 2013), ThunderSTORM
(Ovesný et al., 2014) or SR-TESSELER (Levet et al., 2015) for
advanced rendering and point-cloud analysis.

2.2.2 Spectral Analysis by Spectrally Displaced
Localization
The spectral determination of each localized molecule is achieved
by spectrally displaced localization. It consists in pairing the
localizations of single emitters obtained from the two images
of the same focal plane collected simultaneously from the direct
(lower) and spectral (upper) detection paths, and measuring the
spatial shift induced by the prism in the upper detection path
(Figure 1C–iii). Indeed, this dispersive element converts the
emitter wavelength (λ) into a spatial displacement (d), by
shifting in a first approximation the localization linearly as a
function of the emission wavelength. This spatial shift allows to
easily retrieve the emission wavelength of the emitters localized in
the lower detection path, allowing their accurate (x, y, z, t, λ)
determination.

Spectrally displaced localization is computationally simple and
intuitive, as it only relies on standard localization and pairing
algorithms. It is a three-step process:

(1) Superposition of the spatial and spectral channels: a
calibration step is required to compensate for differences
in magnification, rotation, or other field of view distortions
between the direct (lower) and spectral (upper) detection
paths. The field of view transformation is computed from
raster scanning images of a fiducial marker having a single
fluorescence emission peak (fluorescent nanodiamonds

excited at 647 nm in our case) in a 7 × 7 grid, covering
the whole field of view of the two detection paths (Figure
1C–i). The corresponding 49 centroids positions are first
localized in each channel and paired by nearest neighbor
search. Then, a two-dimensional 3rd order polynomial
transformation is computed from the paired coordinates
by least-squares Levenberg-Marquardt minimization
algorithm:

x′ � ax,1x
3 + ax,2y

3 + ax,3x
2y + ax,4xy

2 + ax,5x
2 + ax,6y

2

+ ax,7xy + ax,8x + ax,9y + ax,10 (1)
y′ � ay,1x

3 + ay,2y
3 + ay,3x

2y + ay,4xy
2 + ay,5x

2 + ay,6y
2

+ ay,7xy + ay,8x + ay,9y + ay,10 (2)

where x′ and y′ are the transformed coordinates of x and y,
respectively with coefficients ax,n and ay,n. This 3rd order
polynomial transformation requiring 10 coefficients per
spatial dimension is used to render the system as versatile
as possible and correct for any non-linear field of view
deformations induced by the spectral optics or the
cylindrical lens. Once calibrated, this transformation is
applied to the lower localizations to match the field of
view of the upper camera, resulting in a field-dependent
error after transformation typically ranging from 0 to
~60nm, with median values around ε = 12 nm (Figure
1C–i). Due to the prism in the spectral detection path, this
field of view transformation is wavelength dependent, and
this alignment process creates a transformation centered at
the spectral mean wavelength λ0 of the emission of the
fiducial marker used.

(2) Pairing of the detected molecules on both channels: Once the
direct (lower) coordinates are transformed to match the
spectral (upper) coordinates, a linear search around the
transformed lower localization is performed to find its
paired upper localization (Figure 1C–iii). The
displacement angle of the prism is aligned with the
EMCCD chip to induce a displacement of the localizations
in one axis direction as a function of the wavelength (y-axis in
our case). It allows minimizing the pair search zone to a
reduced linear zone. Minimizing the size of this pair search
zone is important as it defines the maximum density of
simultaneously fluorescing single molecules per image
frame, minimizing missed pairing. The width (Δx) and
height (Δy) of the search zone are both user-definable
based on a priori knowledge of the fluorescent species
being imaged. Once the localizations are matched, their
pair distance, d, is calculated as d � yupper−y’lower and
retained as a proxy for the spectral mean of the emitter.

(3) Wavelength determination: The wavelength (λ) of each
paired localization is assigned upon spectral calibration
using the following linear function: λ � λ0 + αd, λ0 being
the reference emission wavelength and α the calibration
spectral coefficient. The spectral calibration is performed
by imaging isolated tetraspeck multicolor beads (N = 7
beads, 100 planes) adsorbed on a glass coverslip, exciting
at λexc = 488 nm (blue), λexc = 561 nm (orange), and
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λexc = 640 nm (red). The system was aligned using the red
fluorophore as a reference (λ0 � 683 nm) and a distance of
20.90 ± 0.06 pixels (resp. 9.69 ± 0.04) was measured with the
blue (resp. orange) fluorophores. Distances were computed
from the localization of the three detected peaks of the
tetraspeck beads. We considered the mean emission
wavelength integrated over the quad-band filter used in
detection (λred � 683 nm; λorange � 607 nm; λblue � 514 nm).
This calibration allows the precise determination of the
spectral dispersion coefficient α � −8.1 ± 0.1 nm/Pix of our
spectral detection arm (Figure 1C–ii).

It is important to note that the spectrally displaced localization
process does not alter the accuracy of the spatial localizations
from the lower detection path, and merely provides additional
spectral information for each localization with no photon cost. In
addition, the spatial localization of the emitter’s signature in the
spectral (upper) channel can also provide additional spatial
information allowing overlapping spectrally different emitters
to be separated by spectrally-informed multi-Gaussian fitting
(Section 2.2.4). However, in this specific case of spatially
overlapping fluorophores, spectrally displaced localization
efficiency is limited by their spectral proximity to several tens
of nanometers, depending on the prism-induced spectral
dispersion and the spectral width of the fluorophores’
emission. This therefore limits the maximum number of
fluorophores that can be readily monitored simultaneously.

2.2.3 Lateral Drift Correction
Lateral drifts in either the lower or upper detection path affect the
pair distance between matched localizations, deteriorating the
spectrally displaced localization quality during the acquisition
(Supplementary Figure S4). To avoid time-dependence in the
spectral assignment, it is necessary to numerically compensate for
the drift on each path post-acquisition. We used fiduciary
markers to compute and compensate for lateral drifts on each
channel separately to correct for drifts incurred during the image
acquisition process. Additionally, lateral shifts between the fields
of view accumulated between acquisitions on the same coverslip
were corrected by simply updating the zero-order coefficients of
the field of view transformation (ax,10 and ay,10 of Eqs 1, 2),
allowing the use of a previously computed field transformation
while compensating for spatial drifts. These automatic
corrections of the FOV transformation and independent
channel drifts ensure that the two channels remain aligned
(pair distance = 0) at a fixed wavelength as long as the same
fiducial markers and filter sets are used.

2.2.4 Spectrally-Informed Multi-Gaussian Fitting
In order to distinguish overlapping single molecule signals,
occurring when single emitters are separated by less than
~200 nm one from each other, a common solution is to use
multi-Gaussian fitting algorithms (Holden et al., 2011; Huang
et al., 2011; Babcock et al., 2012). However, in absence of
knowledge of the number of single molecule candidates (n),
systematic multi-gaussian fitting can lead to artefacts,
especially for astigmatism-based 3D localization, which

requires more parameters to estimate (Sage et al., 2019). Here,
we take advantage of the localization information in the spectral
channel to determine the number of molecules to localize, and
select either a single or a multiple Gaussian fitting algorithm
(Figure 4A). Such spectrally-informed multi-Gaussian fitting
enables to (1) constrain the number of emitters that have to
be retrieved and (2) initialize the spatial positions of those
emitters perpendicular to the prism dispersion axis in the
fitting process. This is of course only possible if the
overlapping emitters have emission wavelengths sufficiently
different that they result in two distinct localizations on the
spectral channel. The number of single molecule candidates to
localize by spectrally-informed multi-Gaussian fitting, either one
or two, is determined by the number of localizations in the pairing
area (Δx, Δy) of the spectral image (Section 2.2.2 for definition).
We further exploit the information from the spectral channel to
improve the accuracy of the multi-Gaussian fitting algorithm by
initializing it with the spatial localization in the dimension
perpendicular to the spectral displacement, ie. with the
x-coordinates if the spectral dispersion is in the y-direction.
Such a capacity allows monitoring several proteins
simultaneously exploring the same nanoscopic environment
smaller than the diffraction limit, opening new venues to
monitor potential molecular interactions.

2.2.5 Simulations
The systematic use of a single- or a multi-emitter fitting process
may lead to under- or over-counting errors. Indeed, single emitter
localization cannot distinguish several emitters within a
diffraction limited area, whereas multi-emitter localization
sometime detects several emitters in a region where there is
only a single emitter (Figure 4A). In order to characterize and
validate the spectrally-informedmulti-Gaussian fitting algorithm,
we simulated dual-camera SMLM acquisitions using real-world
conditions (Figure 4B). We first generated a “ground-truth”
localization file containing two spectrally distinct emitters
(Qdot655 and Qdot705) on the spatial and spectral images for
320 frames. The intensity and spectral dispersion of the emitters
were assigned based on real acquisition data to ensure similar
spectrally displaced localization precision. Second, this ground-
truth localization file was used to generate image stacks with
simulated PSFs. Per-pixel noise statistics were analyzed from real
acquisitions and used as background, again to ensure a
localization precision similar to real-life conditions. Qdot705
was positioned statically at the center of the frame and
Qdot655 displaced horizontally across the field of view at
10 nm/frame, such that the emitters begin separated, then
overlap on the spatial image, but never on the spectral image,
and then separate again (Figure 4B–i). Finally, these simulated
image stacks were then analyzed using only the spatial
information by single- and multi-fitting algorithms, as well
as the spectrally-informed analysis, and compared with the
ground-truth localizations. We observed that, when only the
spatial information is used, conventional multi-Gaussian
fitting resulted in a mean fit error of 229 nm (Figure 4B–ii).
Such a large mean error stems mainly from pairing errors due to
over-localization obtained by systematic multi-Gaussian fitting.

Frontiers in Bioinformatics | www.frontiersin.org March 2022 | Volume 2 | Article 8134947

Butler et al. Spectral Single Molecule Localization Microscopy

143

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Analyzing the same dataset using the spectrally-informed multi-
Gaussian fitting resulted a mean fit error of 56 nm, a 4-times
improvement that enables more accurate SPT of two spatially
overlapping emitters (Figure 4B–ii). This difference is explained
by the elongation of the astigmatism-based point-spread function
with respect to the axial position of the emitters (Figure 4B–iii).

2.3 Imaging Experiments
2.3.1 Simultaneous Detection of Five Qdots
Five different populations of streptavidin conjugated Qdots
(Qdot525, Qdot565, Qdot605, Qdot655 and Qdot705,
Q10151MP, Invitrogen) were physically adsorbed onto an
18 mm clean coverslips at a very low concentration (Figure
2A). The exact concentration for each population was first
sequentially adjusted. A solution of a unique diluted
streptavidin labelled Qdot population was incubated for
10 min on a clean 18 mm coverslips along with 100 nm
fluorescent nanodiamond acting as fiduciaries and reference
for spectral calibration (1:1,000 from stock solution,
NDNV100 nmMd10ml, Adamas Nanotechnologies INC.)
and then rinsed three times with PBS. The coverslips were
then imaged on our spectral microscope in order to determine
the density of adsorbed streptavidin labelled Qdots and the
concentration adjusted accordingly to ensure single molecule
detection regime when mixed with four other Qdots
populations. Finally, five population of streptavidin Qdots
were incubated for 10 min on a coverslip (concentration:
Qdot525: 1:1.106; Qdot565: 1:2.106; Qdot605: 1:5.106;
Qdot655: 1:2.106; Qdot705: 1:2.106) along with
nanodiamonds, rinsed three times with PBS and mounted
onto a Ludin imaging chamber (Life Imaging System). For
imaging, all Qdots populations were excited at 488 nm through
a Quad-band filter (F66-04TN, AHF) in the lower (spatial)
microscope, and a triple laser lines rejection filter (ZET 405/
488/561, F67-408, AHF) was added into the upper (spectral)
detection path to reject excitation laser light.

2.3.2 Three Color DNA-PAINT Experiments
Cos-7 cells were plated onto 18 mm 1.5H coverslips at 50,000 cells
per coverslips for isolated cell experiments. After spreading
(around 4 h), cells were prepared using a fixation step with 4%
formaldehyde +0.1% Triton X-100 for 10 min, followed by the
quenching of the autofluorescence using 150 mM Glycine
(Sigma) in PBS for 10 min, and an additional permeabilization
step with 0.3% Triton X-100 for 10 min. Unspecific binding sites
were then blocked using 3% BSA (Sigma) in PBS for 2 h at room
temperature before primary antibodies incubation overnight at
4°C in the same blocking solution. Rat anti-alpha-tubulin (MA1-
80017, ThermoFisher) diluted at 1:300, goat anti-Lamin B1 (sc-
6217, Santa Cruz) diluted at 1:300 and Rabbit anti-TOM20 (sc-
11415, Santa Cruz) diluted at 1:600 were used. After three
washing steps with the blocking solution, cells were incubated
with the following DNA-PAINT secondary antibodies kindly
provided by Ralf Jungmann’s lab for 2 h at room temperature:
anti-rat conjugated with the P1 DNA handle (1:100), anti-rabbit
conjugated with the P3 DNA handle (1:100) and anti-goat
conjugated with the P5 DNA handle (1:100). Cells were finally

washed three times with the blocking solution and three times
with PBS before being stored at 4°C until imaging. Just before
imaging, coverslips were incubated with 100 nm nanodiamonds
as fiduciaries at 1:1,000 from the stock solution for 10 min and
then rinsed three times with PBS. For imaging, a solution
containing the following imager strands (Eurofins) were
prepared in an imaging solution (PBS +500 mM NaCl): P1*-
Atto647N diluted at 30 pM, P3*-Cy3b diluted at 300 pM and P5*-
Atto700 diluted at 200 pM and poured onto a coverslip mounted
into a Ludin imaging chamber (the star indicates the
complementary of the DNA strand). Concentrations of the
imager strands were first adjusted individually for each color
to ensure adequate single molecule density before being
combined for the simultaneous 3-colors experiment. For
acquisition, two laser lines at 561 and 642 nm were
simultaneously used to excite the fluorophore Cy3b and
Atto647N/Atto700 respectively thanks to a quad band filter set
in the lower (spatial) microscope. In the upper detection arm
(spectral microscope) a quad-band notch filter 400-410/488/561/
631-640 (F40-072, AHF) was added to filter out excitation laser
light. 120,000 frames were acquired at 5 Hz and then analyzed
with PALMTracer (Figure 2B).

2.3.3 Multiple 3D QDots Tracking of Membrane
Proteins on Living Fibroblasts
Cos-7 cells were electroporated with plasmids coding for the
protein NCAM:AP and the enzyme, BirAER according to the
manufacturer’s protocol (Lonza), using 2.5 µg (resp. 2 µg) of
DNA for 2 million cells. Electroporated cells were immediately
seeded on 18 mm 1.5H coverslips at 50,000 cells per coverslips
and incubated in high-glucose Dulbecco’s modified Eagle’s
medium (DMEM, Sigma) supplemented with 10% Fetal
Bovine Serum (FBS, 16000-044, ThermoFisher), 1%
GlutaMAX (35050-061, Gibco) and 1% penicillin-
streptomycin (Sigma) and with the addition of 10 µM of
biotin according the protocol described in Chamma et al.
(Chamma et al., 2017). 48 h post-electroporation, cells were
incubated with 100 nm nanodiamonds as fiduciaries at 1:1,000
from the stock solution and streptavidin labelled with
Qdot605, Qdot655 and Qdot705 diluted at 1:40,000, 1:
40,000 and 1:50,000 from stock solution respectively for
10 min. After washing excess of Qdots’ labelled streptavidin
with culture media, imaging medium (Fluorobright A1896702,
ThermoFisher) supplemented with 10% FBS, 1% Glutamax,
and 100 mM Hepes was poured onto the cells for imaging.
During imaging a single laser line at 561 nm was used to excite
all three Qdot populations through a quad-band filter set in the
lower (spatial) microscope, and a triple laser lines rejection
filter (ZET 405/488/561) in the upper (spectral) detection path
to filter out laser excitation light. Imaging was performed at
frame rates ranging from 20 to 100 Hz on field of views ranging
from 80 × 80 µm to 20 × 20 µm respectively (Figure 3A).

2.3.4Multiple 3DQDot Tracking of Synaptic Receptors
on Living Neurons
Mixed hippocampal cultures containing both neurons and glial
cells were prepared from embryonic stage (E18) Sprague-Dawley
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rats and maintained in Neurobasal Plus medium (Gibco,
A3585911) supplemented with GlutaMAX™ (Gibco, #35050-
038), B-27™ Plus (Gibco, A3653401), and 10% horse serum for
3–5 days in vitro (DIV), at which time the medium was changed to
a horse-serum free B27 Plus-containing Neurobasal Plus medium.
Neurons were transfected between DIV-7 and DIV-10 with
plasmids encoding D1R-cfp and EphrinB2-flag as well as
soluble GFP using the calcium-phosphate coprecipitation
method. In between DIV-12 and DIV-14, neurons were then
prepared for imaging. They were first incubated for 10 min with
a mix of rabbit anti-GFP (#A-6455, Thermo Fisher Scientific Inc.,
1:10,000) and mouse anti-Flag (#F-1804, Thermo Fisher Scientific
Inc., 1:1,000) primary antibodies, then washed and incubated for
10 min with F (ab’)2-Goat anti-Rabbit IgG-coupled Qdot655
(#Q11422MP, ThermoFisher Scientific Inc., 1:50000) or
Qdot705 (#Q11461MP, ThermoFisher Scientific Inc., 1:50000),
F (ab’)2-Goat anti-Mouse IgG-coupled Qdot605 (#Q11002MP,
ThermoFisher Scientific Inc., 1:50000), and nanodiamonds (1:
1,000) as fiduciaries and wavelength reference. All incubations
and imaging were done in conditioned 1% BSA-supplemented
Tyrode solution (in mM: 105 NaCl, 5 KCl, 2 MgCl2, 12 D-glucose,
25 HEPES, pH 7.4). Labelled receptors were imaged for 1,000
consecutive frames at 20 Hz frame rate (Figure 3B). During
imaging, a single laser lines at 561 nm was used to excite all
three Qdots populations through a quad-band filter set in the
lower (spatial) microscope, and a triple laser lines rejection filter
(ZET 405/488/561) was added in the upper (spectral) detection
path to filter out laser excitation light.

3 RESULTS

3.1 System Characterization
We first demonstrated the capacity of our method to detect
simultaneously five different colors, with single molecule
resolution. We imaged five different Qdot populations
adsorbed to the surface of a coverslip and excited with a single
488 nm laser (Section 2.3.1). 2,000 frames of the two full chip
CCD cameras were acquired at 20 Hz and analyzed by spectrally
displaced localization. Figure 2A shows a single frame with the
detected Qdots and their assigned wavelength, demonstrating the
homogeneity of the wavelength distributions for each quantum
dot population. As the 90X effective zoom (60X objective 1.5X
zoom) of the upper detection path images a slightly larger field of
view and greater depth of field than the lower 100X objective, it
maximizes the probability of matching the detected events on
the bottom (spatial) channel to a localization on the upper
(spectral) channel for their spatially displaced localization.
Localization accuracies were then computed for each
Qdot population by localizing the same Qdot for 1,000
consecutive frames and Gaussian fitting each localization
distribution. Lateral and axial localization accuracies were
estimated to (σxy � 15.0 nm, σz � 53.1 nm) for QDots525,
(15.9 nm, 53.6 nm) for QDots565, (7.5 nm, 12.9 nm) for
QDots605, (29.5 nm, 118.7 nm) for QDots655, and
(8.6 nm, 21.8 nm) for QDots565 depending on the brightness
of each Qdot population.

3.2 3D Multicolor DNA-PAINT Imaging
We then demonstrated the possibility to detect simultaneously up
to three organic dyes in a DNA-PAINT imaging strategy. Usually,
multi-color DNA-PAINT is made using a sequential approach
(Jungmann et al., 2014; Klevanski et al., 2020) but at the expense
of a very long acquisition time and numerous washing steps. Here
we labelled three cellular structures (microtubules, nucleus
envelope (lamin B1) and mitochondria (TOM20)) using three
orthogonal docking strands. Then we added the three
corresponding imager strands conjugated to three spectrally
different fluorophores (ATTO700, ATTO647N and Cy3b) into
the imaging media. It enabled us to record simultaneously the 3D
nanoscale organization of those three different proteins,
increasing by two the overall acquisition time as compared to
a sequential acquisition (Figure 2B–i). Super-resolution images
were reconstructed from 688,312 (TOM20), 4,501,791
(microtubule) and 636,483 (Lamin) localizations after
wavelength assignment and filtering on the goodness of
Gaussian fitting (range [0.6, 1]) representing respectively 3.2,
20.9 and 3% of the total localized single molecules that have been
assigned to a wavelength by spectrally displaced localization
(Figure 2B–ii). Figure 2B–iii shows the distributions of σx
and σy single molecule Gaussian fitting parameters for each
fluorophore revealing different mean depth of the structure
observed.

3.3 Multiple 3D QDot Tracking on COS-7
Cells
Next, we performed three color SPT experiments on the
biotinylated NCAM membrane protein, labelled with three
spectrally different streptavidin labelled Qdots (Qd705, Qd655
and Qd605). We demonstrated our ability to track
simultaneously three Qdot populations in 3D at up to 100Hz
frame rate (Figure 3A; Supplementary Figure S5). The use of
Qdots enables using a single laser line excitation (at 561 nm in our
case) for the three species, lowering the overall radiation dose on
the sample, and minimizing the phototoxicity. All of the Qdot
populations showed similar instantaneous diffusion coefficients
distributions (Figure 3A–iii.), validating our capacity to
accurately track three different populations simultaneously, in
3D, at high spatial and temporal resolution.

3.4 Multiple 3D QDot Tracking of Synaptic
Receptors on Living Neurons
Finally, we tracked simultaneously several membrane proteins
implicated in synaptic transmission and neurodegenerative
disorders on live mixed hippocampal neuron cultures. We
probed the same protein (D1R) with secondary antibodies
tagged with 2 different quantum dots species (Qdot655 and
Qdot705), and the Ephrin B2 receptor with Qdot605
(Figure 3B). Multicolor data were acquired using our spectral
microscope and analyzed using spectrally-informed multi-
Gaussian fitting and tracking, from which we could extract
Qdots trajectories in 3D for each species. Spectrally-informed
multi-Gaussian fitting allowed extracting 1.5 more localizations
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FIGURE 3 | Simultaneous multi-color 3D single molecule tracking. (A) Simultaneous three colors 3D single particle tracking on living COS-7 cells. (i.) Experiment
principle: NCAM membrane receptors in a COS cell are labelled with three populations of spectrally different QDots and tracked in 3D over time. (ii.) Reconstructed
trajectories of the detected Qdots color-coded for their depth (upper right corner) or for their assigned wavelength (bottom left corner). (iii.)Computed median and range
of diffusion coefficients for each QDots population (left) and histogram of the wavelengths detected during the acquisition revealing the three Qdot populations
(right). (B) Simultaneous three colors 3D single particle tracking on living neurons. (i.) Experiment principle: Hippocampal dissociated neurons culture are transfected at
DIV-10 with the plasmids coding for D1R-cfp, EphrinD2-Flag and soluble GFP. In between DIV12 and DIV15, expressed D1R-cfp proteins are labelled with two
populations of spectrally different Qdots (Qdot 655 and Qdots705) and expressed EphrinB2-flag proteins are labelled with Qdots605 before being imaged and analyzed
by spectrally informed localization and tracking. (ii.) Left: Reconstructed trajectories of the three Qdots populations. Right: Successive zooms of the white dotted regions
revealing the main and well distinct zones explored by the two receptors (top) and the trajectory of two spectrally different Qdots (Qd655 and Qd705) within a spine
(bottom). (iii.)Median and range of diffusion coefficients for each of the three different Qdots population, revealing that the two Qdots conjugated to the same receptors
(D1R) behave similarly whereas EphrinB2 receptors diffuse slower.
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and twice more trajectories, mostly occurring when localized
molecules are at a distance below 200 nm (Figure 4C). As
expected, both populations of D1R receptors were found on

the dendrites, while the Ephrin B2 receptors were mostly
localized along the axons (Figure 3B–ii.), validating the
specificity of the antibody labeling cocktail. Furthermore, the

FIGURE 4 | Spectrally-informedmulti-fitting principle and benchmarking through simulations. (A) Principle of the spectrally-informedmulti-Gaussian fittingmethod.
When two fluorescent single particles diffuse together within an area smaller than the diffraction limit of light, it becomes impossible to localize them individually and
extract their exact trajectories. A systematic single Gaussian-fitting approach leads to under-counting localization (top) whereas a systematic multi-Gaussian fitting
approach sometime leads to over-counting localizations (middle) (Stars indicate over- or under-counting errors in the localization process). If those particles have
different spectral signatures, they will be separated in the spectral channel, allowing to precisely determine the number of particles, and to use the multi-Gaussian fitting
algorithm when needed to retrieve their coordinates (bottom). The Spectrally-informed multi-Gaussian fitting (magenta) occurs when two emitters overlap on the spatial
channel (single localization) and two distinct localizations are detected on the spectral channel. (B) Multi-Gaussian fitting simulation for benchmarking. (i.) Simulation
principle: Two spectrally-distinct emitters (QDot 655 and QDot 705) were simulated for the spectral and spatial cameras for 320 frames. QD655 displaces horizontally
across the field of view at 10nm/frame such that the emitters begin separated, then overlapped on the spatial camera but not on the spectral camera, and finally
separated again. Right: True camera noise and PSF sizes were used in the simulations. The two emitters overlap on the spatial camera, but not on the spectral camera.
(ii.) The localization error for each of themulti-Gaussian fittingmethods (without andwith spectral information) is calculated and compared to the simulated localization for
simulated separation distances up to +/- 500 nm. Systematically performing the multi-Gaussian fitting results in a mean square error of 229 nm (magenta), while utilizing
the spectrally-informed multi-Gaussian fitting algorithm results in a 4x reduction of localization error to 56 nm (cyan). (iii.) The same horizontal-displacement simulation
was then performed for various simulated astigmatic z-positions between −500 and 500 nm. Mean error for each of z-position is plotted for each fitting method (without
(right) and with (left) spectral information), illustrating that the spectrally-informed multi-fitting significantly improves the localization precision across the range of
assignable axial positions. (C) Simultaneous three colors Qdots tracking within living neurons. Reconstructed trajectories computed from systematic single-emitter fitting
(left) or spectrally informed multi-Gaussian fitting (right). Spectrally-informed Gaussian fitting leads to ≈1.5 times more localizations and ≈2 times more trajectories.
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two sets of D1R receptors showed similar median diffusion
coefficients of 0.12 µm·s−1 and 0.14 µm·s−1, while Ephrin
receptors displayed lower median diffusion coefficients of
0.06 µm·s−1 (Figure 3B–iii), in agreement with the literature
(Mikasova et al., 2012; Ladepeche et al., 2013).

4 DISCUSSION

We described a powerful and versatile multidimensional single-
molecule localization microscopy workflow. It is composed of a
mix of commercially available hardware and software with
custom freely available analysis software named PALMTracer.
It integrates a spectrally-displaced single molecule localization
process and a spectrally-informed multi-Gaussian fitting method
allowing to precisely determine the emission wavelength of each
localized molecule, and separate overlapping single-molecule
signals with high reliability. As spectral determination is
performed by collecting and analysing the emitted photons
through a second microscope objective, it allows state of the
art 3D single molecule localization and tracking to be performed,
as well as simultaneous spectral analysis without compromising
the spatio-temporal resolution and the field of view. Spectral
information also permits to precisely determine the number and
3D coordinates of overlapping, yet spectrally distinct single-
molecule emitters.

We intentionally chose to use a low dispersive prism in our
spectral detection arm in order to spatially limit the spectral
extension onto the camera and allow higher single emitter density
to be detected while preserving our capacity to separate several
spectrally different populations. With the current configuration,
we demonstrated the capability of our approach to detect up to
five fluorophores simultaneously, which already represents a
substantial biological challenge, more especially for live single
molecule applications. This capacity could be further enhanced
using fluorescent emitters with sharper spectral emission peak, or
high-density based localization approaches and especially recent
deep learning-based methods (Nehme et al., 2020; Speiser et al.,
2021), whose last implementations outperform standard multi-
gaussian methods. Trained for spectrally-displaced localization, it
could further enhance the localization and spectral identification
precision as well as allow higher detection density, opening new
possibilities toward the detection of rare events like protein-
protein interactions in real-time. On the other side, certain
applications might benefit from higher dispersion capacity
that can be easily achieved by replacing the current prism
with a more dispersive one into the spectral detection path, in
order to observe finer spectral signatures. It could enable, for
example, to observe FRET events at the single molecules scale,
offering new possibilities to characterize interactions in
between bio-molecules. It could also provide a solution to
characterize the nano-environment using environment
sensitive dyes such a pH- or polar-sensitive dyes for
instance (Klymchenko and Mely, 2013; Bongiovanni et al.,
2016). It would require no fundamental modification of the

current analysis software, but simply a finer description of the
detected spectrum. Finally, with further developments to the
biological assays and the spectral single particle tracking
pipeline, we think our method could be extended in the
future to quantify live molecular interactions with nanoscale
resolution.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

CB performed experiments and contributed to the development
of PALMTracer. GES performed the biological experiments on
neurons. AK improved the localization performances of
PALMTracer. NB performed some biological experiments and
analysis. VS came with the initial idea of the spectral imaging. JPD
and LG supervised the experiments on neurons. RG developed
the instrument, performed experiments and co-supervised this
work. J-BS designed and developed PALMTracer software and
supervised this work.

FUNDING

This work was supported by the FranceBioImaging infrastructure
ANR-10-INBS-04, ANR NANOPLANSYN and the LabEx
BRAIN to J-BS, the ANR soLIVE 16-CE11-0015-01 to RG and
Human Frontier Science Program RGP0019/2016 to GS, JD,
and LG.

ACKNOWLEDGMENTS

We would like to thank Ralph Jungmann, Maximilian Strauss
and Thomas Schlichthärle for providing us the DNA-PAINT
labelling kits as well as Olivier Thoumine and Ingrid Chamma
for providing us the N-CAM-AP DNA plasmids. We would
also like to thank Philippe Rideau from Nikon France for his
support, as well as MIFOBIO and the GDR Imabio. We finally
would like to thank the Cell Biology Facility, especially
Emeline Verdier and L. Groc team’s technical staff, for
cellular tool productions and general cell biology activity
management.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbinf.2022.813494/
full#supplementary-material

Frontiers in Bioinformatics | www.frontiersin.org March 2022 | Volume 2 | Article 81349412

Butler et al. Spectral Single Molecule Localization Microscopy

148

https://www.frontiersin.org/articles/10.3389/fbinf.2022.813494/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2022.813494/full#supplementary-material
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


REFERENCES

Babcock, H., Sigal, Y. M., and Zhuang, X. (2012). A High-Density 3D Localization
Algorithm for Stochastic Optical Reconstruction Microscopy. Opt. Nanoscopy
1, 1–10. doi:10.1186/2192-2853-1-6

Beghin, A., Kechkar, A., Butler, C., Levet, F., Cabillic, M., Rossier, O., et al. (2017).
Localization-based Super-resolution Imaging Meets High-Content Screening.
Nat. Methods 14, 1184–1190. doi:10.1038/nmeth.4486

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino,
J. S., et al. (2006). Imaging Intracellular Fluorescent Proteins at Nanometer
Resolution. Science 313, 1642–1645. doi:10.1126/science.1127344

Bongiovanni, M. N., Godet, J., Horrocks, M. H., Tosatto, L., Carr, A. R.,
Wirthensohn, D. C., et al. (2016). Multi-dimensional Super-resolution
Imaging Enables Surface Hydrophobicity Mapping. Nat. Commun. 7, 13544.
doi:10.1038/ncomms13544

Chamma, I., Levet, F., Sibarita, J., Sainlos, M., and Thoumine, O. (2016). Nanoscale
Organization of Synaptic Adhesion Proteins Revealed by Single- Molecule
Localization Microscopy Proteins Revealed by Single-Molecule Localization.
Neurophotonics 3, 041810. doi:10.1117/1.NPh.3.4.041810

Chamma, I., Rossier, O., Giannone, G., Thoumine, O., and Sainlos, M. (2017).
Optimized Labeling of Membrane Proteins for Applications to Super-
resolution Imaging in Confined Cellular Environments Using Monomeric
Streptavidin. Nat. Protoc. 12, 748–763. doi:10.1038/nprot.2017.010

Choquet, D., Sainlos, M., and Sibarita, J.-B. (2021). Advanced Imaging and
Labelling Methods to Decipher Brain Cell Organization and Function. Nat.
Rev. Neurosci. 22, 237. doi:10.1038/s41583-021-00441-z

Cognet, L., Leduc, C., and Lounis, B. (2014). Advances in Live-Cell Single-Particle
Tracking and Dynamic Super-resolution Imaging. Curr. Opin. Chem. Biol. 20,
78–85. doi:10.1016/j.cbpa.2014.04.015

Compans, B., Camus, C., Kallergi, E., Sposini, S., Martineau, M., Butler, C., et al.
(2021). NMDAR-dependent Long-Term Depression Is Associated with
Increased Short Term Plasticity through Autophagy Mediated Loss of PSD-
95. Nat. Commun. 12, 1–18. doi:10.1038/s41467-021-23133-9

Cox, S., Rosten, E., Monypenny, J., Jovanovic-Talisman, T., Burnette, D. T.,
Lippincott-Schwartz, J., et al. (2012). Bayesian Localization Microscopy
Reveals Nanoscale Podosome Dynamics. Nat. Methods 9, 195–200. doi:10.
1038/nmeth.1812

Cutler, P. J., Malik, M. D., Liu, S., Byars, J. M., Lidke, D. S., and Lidke, K. A. (2013).
Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-
Scanning Microscope. PLoS One 8, e64320. doi:10.1371/journal.pone.0064320

Dong, B., Almassalha, L., Urban, B. E., Nguyen, T. Q., Khuon, S., Chew, T. L., et al.
(2016). Super-resolution Spectroscopic Microscopy via Photon Localization.
Nat. Commun. 7, 12290. doi:10.1038/ncomms12290

El Beheiry,M., andDahan,M. Vi. S. P. (2013). Representing Single-Particle Localizations
in Three Dimensions. Nat. Methods 10, 689–690. doi:10.1038/nmeth.2566

Floderer, C., Masson, J. B., Boilley, E., Georgeault, S., Merida, P., El Beheiry, M.,
et al. (2018). Single Molecule Localisation Microscopy Reveals How HIV-1 Gag
Proteins SenseMembrane Virus Assembly Sites in Living Host CD4 T Cells. Sci.
Rep. 8, 1–15. doi:10.1038/s41598-018-34536-y

Friedman, L. J., Chung, J., and Gelles, J. (2006). Viewing Dynamic Assembly of
Molecular Complexes by Multi-Wavelength Single-Molecule Fluorescence.
Biophys. J. 91, 1023–1031. doi:10.1529/biophysj.106.084004

Garcia, M., Leduc, C., Lagardère, M., Argento, A., Sibarita, J. B., and Thoumine, O.
(2015). Two-tiered Coupling between Flowing Actin and Immobilized N -
cadherin/catenin Complexes in Neuronal Growth Cones. Proc. Natl. Acad. Sci.
112, 201423455. doi:10.1073/pnas.1423455112

Gustafsson, N., Culley, S., Ashdown, G., Owen, D. M., Pereira, P. M., and
Henriques, R. (2016). Fast Live-Cell Conventional Fluorophore Nanoscopy
with ImageJ through Super-resolution Radial Fluctuations. Nat. Commun. 7,
1–9. doi:10.1038/ncomms12471

Heilemann, M., van de Linde, S., Schüttpelz, M., Kasper, R., Seefeldt, B., Mukherjee,
A., et al. (2008). Subdiffraction-resolution Fluorescence Imaging with
Conventional Fluorescent Probes. Angew. Chem. Int. Ed. Engl. 47,
6172–6176. doi:10.1002/anie.200802376

Holden, S. J., Uphoff, S., and Kapanidis, A. N. (2011). DAOSTORM: an Algorithm
for High- Density Super-resolution Microscopy. Nat. Methods 8, 279–280.
doi:10.1038/nmeth0411-279

Huang, F., Schwartz, S. L., Byars, J. M., and Lidke, K. A. (2011). Simultaneous
Multiple-Emitter Fitting for Single Molecule Super-resolution Imaging.
Biomed. Opt. Express 2, 1377. doi:10.1364/BOE.2.001377

Huang, T., Phelps, C., Wang, J., Lin, L. J., Bittel, A., Scott, Z., et al. (2018). Simultaneous
Multicolor Single-Molecule Tracking with Single-Laser Excitation via Spectral
Imaging. Biophys. J. 114, 301–310. doi:10.1016/j.bpj.2017.11.013

Izeddin, I., Boulanger, J., Racine, V., Specht, C. G., Kechkar, A., Nair, D., et al.
(2012). Wavelet Analysis for Single Molecule Localization Microscopy. Opt.
Express 20, 2081–2095. doi:10.1364/OE.20.002081

Jullié, D., Stoeber, M., Sibarita, J. B., Zieger, H. L., Bartol, T. M., Arttamangkul, S.,
et al. (2020). A Discrete Presynaptic Vesicle Cycle for Neuromodulator
Receptors. Neuron 105, 663–677. doi:10.1016/j.neuron.2019.11.016

Jungmann, R., Avendaño, M. S., Woehrstein, J. B., Dai, M., Shih, W. M., and Yin, P.
(2014). Multiplexed 3D Cellular Super-resolution Imaging with DNA-PAINT
and Exchange-PAINT. Nat. Methods 11, 313–318. doi:10.1038/nmeth.2835

Kechkar, A., Nair, D., Heilemann, M., Choquet, D., and Sibarita, J.-B. (2013). Real-
time Analysis and Visualization for Single-Molecule Based Super-resolution
Microscopy. PLoS One 8, e62918. doi:10.1371/journal.pone.0062918

Klevanski, M., Herrmannsdoerfer, F., Sass, S., Venkataramani, V., Heilemann, M.,
and Kuner, T. (2020). Automated Highly Multiplexed Super-resolution
Imaging of Protein Nano-Architecture in Cells and Tissues. Nat. Commun.
11, 1–11. doi:10.1038/s41467-020-15362-1

Klymchenko, A. S., and Mely, Y. (2013). Fluorescent Environment-Sensitive Dyes
as Reporters of Biomolecular Interactions. Prog. Mol. Biol. Translational Sci.
113, 35. doi:10.1016/b978-0-12-386932-6.00002-8

Ladepeche, L., Dupuis, J. P., Bouchet, D., Doudnikoff, E., Yang, L., Campagne, Y.,
et al. (2013). Single-molecule Imaging of the Functional Crosstalk between
Surface NMDA and Dopamine D1 Receptors. Proc. Natl. Acad. Sci. U. S. A. 110,
18005–18010. doi:10.1073/pnas.1310145110

Lampe, A., Haucke, V., Sigrist, S. J., Heilemann, M., and Schmoranzer, J. (2012).
Multi-colour Direct STORM with Red Emitting Carbocyanines. Biol. Cel. 104,
229–237. doi:10.1111/boc.201100011

Lelek, M., Melina, T. G., Gerti, B., Florian, S., Juliette, G., Suliana, M., et al. (2021).
Single Molecule Localization Microscopy. Nat. Rev. Methods Prim. 1. doi:10.
1038/s43586-021-00038-x

Levet, F., Hosy, E., Kechkar, A., Butler, C., Beghin, A., Choquet, D., et al. (2015).
SR-tesseler: a Method to Segment and Quantify Localization-Based Super-
resolution Microscopy Data. Nat. Methods 12, 1–9. doi:10.1038/nmeth.3579

Liu, X., Longfang, Y., Weidong, Y., Yiyan, F., Lan, M., and Jiong, M. (2019).
Spectroscopic Fluorescent Tracking of a Single Molecule in a Live Cell with a
Dual-Objective Fluorescent Reflection Microscope. Appl. Phys. Express 12,
112007. doi:10.7567/1882-0786/ab4b16

Lundquist, P. M., Zhong, C. F., Zhao, P., Tomaney, A. B., Peluso, P. S., Dixon, J.,
et al. (2008). Parallel Confocal Detection of Single Molecules in Real Time. Opt.
Lett. 33, 1026. doi:10.1364/ol.33.001026

Mikasova, L., De Rossi, P., Bouchet, D., Georges, F., Rogemond, V., Didelot, A.,
et al. (2012). Disrupted Surface Cross-Talk between NMDA and Ephrin-B2
Receptors in Anti-NMDA Encephalitis. Brain 135, 1606–1621. doi:10.1093/
brain/aws092

Moon, S., Yan, R., Kenny, S. J., Shyu, Y., Xiang, L., Li, W., et al. (2017). Spectrally
Resolved, Functional Super-resolution Microscopy Reveals Nanoscale
Compositional Heterogeneity in Live-Cell Membranes. J. Am. Chem. Soc.
139, 10944–10947. doi:10.1021/jacs.7b03846

Nair, D., Hosy, E., Petersen, J. D., Constals, A., Giannone, G., Choquet, D., et al.
(2013). Super-Resolution Imaging Reveals that AMPA Receptors inside
Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95.
J. Neurosci. 33, 13204–13224. doi:10.1523/JNEUROSCI.2381-12.2013

Nehme, E., Freedman, D., Gordon, R., Ferdman, B., Weiss, L. E., Alalouf, O., et al.
(2020). DeepSTORM3D: Dense 3D Localization Microscopy and PSF Design
by Deep Learning. Nat. Methods 17, 734–740. doi:10.1038/s41592-020-0853-5

Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z., and Hagen, G.M. Thunder. S. T.
O. R.M. (2014). A Comprehensive ImageJ Plug-In for PALM and STORMData
Analysis and Super-resolution Imaging. Bioinformatics 30, 2389–2390.

Racine, V., Hertzog, A., Jouanneau, J., Salamero, J., Kervrann, C., and Sibarita, J. B.
(2006). “Multiple-target Tracking of 3D Fluorescent Objects Based on
Simulated Annealing,” in 3rd IEEE International Symposium on Biomedical
Imaging: Nano to Macro, 2006, Arlington, VA, USA, 6-9 April 2006,
1020–1023. doi:10.1109/isbi.2006.1625094

Frontiers in Bioinformatics | www.frontiersin.org March 2022 | Volume 2 | Article 81349413

Butler et al. Spectral Single Molecule Localization Microscopy

149

https://doi.org/10.1186/2192-2853-1-6
https://doi.org/10.1038/nmeth.4486
https://doi.org/10.1126/science.1127344
https://doi.org/10.1038/ncomms13544
https://doi.org/10.1117/1.NPh.3.4.041810
https://doi.org/10.1038/nprot.2017.010
https://doi.org/10.1038/s41583-021-00441-z
https://doi.org/10.1016/j.cbpa.2014.04.015
https://doi.org/10.1038/s41467-021-23133-9
https://doi.org/10.1038/nmeth.1812
https://doi.org/10.1038/nmeth.1812
https://doi.org/10.1371/journal.pone.0064320
https://doi.org/10.1038/ncomms12290
https://doi.org/10.1038/nmeth.2566
https://doi.org/10.1038/s41598-018-34536-y
https://doi.org/10.1529/biophysj.106.084004
https://doi.org/10.1073/pnas.1423455112
https://doi.org/10.1038/ncomms12471
https://doi.org/10.1002/anie.200802376
https://doi.org/10.1038/nmeth0411-279
https://doi.org/10.1364/BOE.2.001377
https://doi.org/10.1016/j.bpj.2017.11.013
https://doi.org/10.1364/OE.20.002081
https://doi.org/10.1016/j.neuron.2019.11.016
https://doi.org/10.1038/nmeth.2835
https://doi.org/10.1371/journal.pone.0062918
https://doi.org/10.1038/s41467-020-15362-1
https://doi.org/10.1016/b978-0-12-386932-6.00002-8
https://doi.org/10.1073/pnas.1310145110
https://doi.org/10.1111/boc.201100011
https://doi.org/10.1038/s43586-021-00038-x
https://doi.org/10.1038/s43586-021-00038-x
https://doi.org/10.1038/nmeth.3579
https://doi.org/10.7567/1882-0786/ab4b16
https://doi.org/10.1364/ol.33.001026
https://doi.org/10.1093/brain/aws092
https://doi.org/10.1093/brain/aws092
https://doi.org/10.1021/jacs.7b03846
https://doi.org/10.1523/JNEUROSCI.2381-12.2013
https://doi.org/10.1038/s41592-020-0853-5
https://doi.org/10.1109/isbi.2006.1625094
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Rossier, O., Octeau, V., Sibarita, J. B., Leduc, C., Tessier, B., Nair, D., et al. (2012).
Integrins β 1 and β 3 Exhibit Distinct Dynamic Nanoscale Organizations inside
Focal Adhesions. Nat. Cel. Biol. 14, 1057–1067. doi:10.1038/ncb2588

Rust, M. J., Bates, M., and Zhuang, X. (2006). Imaging by Stochastic Optical
Reconstruction Microscopy ( STORM ). Nat. Methods 3, 793–795. doi:10.1038/
nmeth929

Sage, D., Pham, T. A., Babcock, H., Lukes, T., Pengo, T., Chao, J., et al. (2019).
Super-resolution Fight Club: Assessment of 2D and 3D Single-Molecule
Localization Microscopy Software. Nat. Methods 16, 387–395. doi:10.1038/
s41592-019-0364-4

Sibarita, J.-B. (2014). High-density Single-Particle Tracking: Quantifying Molecule
Organization and Dynamics at the Nanoscale. Histochem. Cel. Biol. 141,
587–595. doi:10.1007/s00418-014-1214-1

Song, K.-H., Zhang, Y., Wang, G., Sun, C., and Zhang, H. F. (2019). Three-
dimensional Biplane Spectroscopic Single-Molecule Localization Microscopy.
Optica 6, 709. doi:10.1364/optica.6.000709

Speiser, A., Müller, L. R., Hoess, P., Matti, U., Obara, C. J., Legant, W. R., et al.
(2021). Deep Learning Enables Fast and Dense Single-Molecule Localization
with High Accuracy. Nat. Methods 18, 1082. doi:10.1038/s41592-021-01236-x

Testa, I., Wurm, C. A., Medda, R., Rothermel, E., von Middendorf, C., Fölling, J.,
et al. (2010). Multicolor Fluorescence Nanoscopy in Fixed and Living Cells by
Exciting Conventional Fluorophores with a Single Wavelength. Biophys. J. 99,
2686–2694. doi:10.1016/j.bpj.2010.08.012

Thompson, R. E., Larson, D. R., and Webb, W. W. (2002). Precise Nanometer
Localization Analysis for Individual Fluorescent Probes. Biophys. J. 82,
2775–2783. doi:10.1016/S0006-3495(02)75618-X

Yan, R., Moon, S., Kenny, S. J., and Xu, K. (2018). Spectrally Resolved and
Functional Super-resolution Microscopy via Ultrahigh-Throughput
Single-Molecule Spectroscopy. Acc. Chem. Res. 51, 697–705. doi:10.1021/acs.
accounts.7b00545

Zhang, Y., Schroeder, L. K., Lessard, M. D., Kidd, P., Chung, J., Song, Y., et al.
(2020). Nanoscale Subcellular Architecture Revealed by Multicolor Three-
Dimensional Salvaged Fluorescence Imaging. Nat. Methods 17, 225–231.
doi:10.1038/s41592-019-0676-4

Zhang, Z., Kenny, S. J., Hauser, M., Li, W., and Xu, K. (2015). Ultrahigh-
throughput Single-Molecule Spectroscopy and Spectrally Resolved Super-
resolution Microscopy. Nat. Methods 15, 935–938. doi:10.1038/nmeth.3528

Zhu, L., Zhang, W., Elnatan, D., and Huang, B. (2012). Faster STORM Using
Compressed Sensing. Nat. Methods 9, 721–723. doi:10.1038/nmeth.1978

Conflict of Interest: Author CB was employed by the company Imagine Optic
under a PhD Cifre contract.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Butler, Saraceno, Kechkar, Bénac, Studer, Dupuis, Groc, Galland
and Sibarita. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Bioinformatics | www.frontiersin.org March 2022 | Volume 2 | Article 81349414

Butler et al. Spectral Single Molecule Localization Microscopy

150

https://doi.org/10.1038/ncb2588
https://doi.org/10.1038/nmeth929
https://doi.org/10.1038/nmeth929
https://doi.org/10.1038/s41592-019-0364-4
https://doi.org/10.1038/s41592-019-0364-4
https://doi.org/10.1007/s00418-014-1214-1
https://doi.org/10.1364/optica.6.000709
https://doi.org/10.1038/s41592-021-01236-x
https://doi.org/10.1016/j.bpj.2010.08.012
https://doi.org/10.1016/S0006-3495(02)75618-X
https://doi.org/10.1021/acs.accounts.7b00545
https://doi.org/10.1021/acs.accounts.7b00545
https://doi.org/10.1038/s41592-019-0676-4
https://doi.org/10.1038/nmeth.3528
https://doi.org/10.1038/nmeth.1978
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores innovation in the analysis and 

interpretation of biological data

An innovative journal that provides a forum for 

new discoveries in bioinformatics. It focuses on 

how new tools and applications can bring insights 

to specific biological problems.

Discover the latest 
Research Topics

See more 

Frontiers in
Bioinformatics

https://www.frontiersin.org/journals/bioinformatics/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Single-molecule image analysis
	Table of contents
	Editorial: Single-Molecule Image Analysis
	Author Contributions
	Acknowledgments

	NOBIAS: Analyzing Anomalous Diffusion in Single-Molecule Tracks With Nonparametric Bayesian Inference
	Introduction
	Methods
	Hidden Markov Model
	Dirichlet Process for Nonparametric Bayesian
	Hierarchical Dirichlet Process and Sticky Extension
	Multivariate Normal Model
	Trajectory Simulation
	Anomalous Diffusion
	Recurrent Neural Network for NOBIAS
	Single-Molecule Tracking in Living Bacteroides thetaiotaomicron Cells

	Results
	The NOBIAS HDP-HMM Module Recovers the Number of Diffusive States and the Associated Diffusion Parameters
	The NOBIAS RNN Module Predicts the Diffusion Type for Each Diffusive State
	Performance of NOBIAS on Experimental Data for the Diffusion of SusG-HaloTag in Bacteroides thetaiotaomicron Cells

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	An Efficient GUI-Based Clustering Software for Simulation and Bayesian Cluster Analysis of Single-Molecule Localization Mic ...
	1 Introduction
	2 Results
	2.1 Structure of the GUI
	2.2 Benchmarking

	3 Discussion
	4 Materials and Methods
	4.1 Cell Culture and Preparation
	4.2 Cell Staining
	CV-1 GPI-GFP Cells
	HeLa CLC-GFP Cells
	T98G CD95-GFP Cells

	4.3 (d)STORM Imaging
	4.4 (d)STROM Reconstruction
	4.5 Grouping in SMAP
	4.6 Simulations
	Simulations Used for Cluster Algorithm Comparison
	Simulations Used for Computational Time Evaluations
	Simulations With Blinking Molecules

	4.7 Computational Runtime Measurements
	4.8 Bayesian Analysis
	Cluster Algorithms
	Bayesian Parameters
	Statistical Analysis


	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Fourier Ring Correlation and Anisotropic Kernel Density Estimation Improve Deep Learning Based SMLM Reconstruction of Micro ...
	Introduction
	Materials and Methods
	Cell Culture, Fixation, and Staining
	dSTORM Imaging
	Anisotropic Kernel Density Estimate
	Fourier Ring Correlation Loss
	Deep Neural Network for Image Restoration
	Network Training

	Results
	Anisotropic Kernel Density Estimate
	Fourier Ring Correlation and Localization Density
	Training Neural Networks With FRC Loss
	Quantification of Reconstruction Quality

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

	K-Neighbourhood Analysis: A Method for Understanding SMLM Images as Compositions of Local Neighbourhoods
	Introduction
	Materials and Methods
	Cell Culture
	Constructs
	CAR Ligand and PI3K PAINT Probe Production
	Bilayer Preparation
	Antibody Conjugation
	T Cell Activation on Bilayer and Immunostaining
	dSTORM and PAINT Imaging
	Statistical Description of Localisations
	Choice of K
	Comparison of Image Localisations to Spatially Random Localisations
	Principal Component Analysis (PCA) of the Nearest Neighbour Feature Table (NNFT)
	Local Density
	Comparison of Images and Standardised Frequency Table
	Simulations
	Phosphorylation Enrichment Score

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

	Spatiotemporal Clustering of Repeated Super-Resolution Localizations via Linear Assignment Problem
	1 Introduction
	2 Materials and Methods
	2.1 Pre-Clustering
	2.2 Estimating Local Emitter Densities and Kinetic Rates
	2.3 Frame-Connection via Minimization of Costs
	2.4 Simulated SMLM Data
	2.5 Comparison to “Ideal” Results

	3 Results
	3.1 Uniformly Distributed Emitters
	3.2 Simulated Dimer Emitters
	3.3 High Duty Cycle Actin With Multi-Emitter Fitting

	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Corrigendum: Spatiotemporal Clustering of Repeated Super-Resolution Localizations via Linear Assignment Problem
	3D Structure From 2D Microscopy Images Using Deep Learning
	1 Introduction
	2 Methods
	2.1 Modelling Pose Using Deep Learning
	2.2 The Output Is a Structural Model Rather Than a Trained Network
	2.3 Simulated Data Models
	2.4 Experimental Data From Biological Structures
	2.5 Input Images
	2.6 Sigma
	2.7 Loss Function
	2.8 Reconstructed 3D Model Matrix and Normalisation
	2.9 Hyper-Parameter Choices
	2.10 Implementation

	3 Results
	3.1 Evaluation Criteria
	3.2 Simulated Results
	3.2.1 Baseline Experiments - Stanford Bunny
	3.2.2 Baseline Experiments - Utah Teapot
	3.2.3 Baseline Experiments - Approximation of the CEP152/HsSAS-6 Complex

	3.3 Modelling Experimental Noise in Simulated Results
	3.3.1 Scatter
	3.3.2 Missing Fluorophores
	3.3.3 Multiple Binding and Scatter
	3.4 SMLM Dataset of the CEP152 Complex
	3.5 SIM/Expansion Microscopy Dataset of Glutamylated Tubulin in Centrioles
	3.6 Handedness

	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Efficient Cross-Correlation Filtering of One- and Two-Color Single Molecule Localization Microscopy Data
	Introduction
	Materials and Methods
	Workflow
	Simulated Data
	Cross-Correlation and Cluster Separation Analysis

	Benchmarks
	Memory Efficiency
	Time Efficiency

	Mammalian Cell Analysis

	Results
	Cluster Separation to Remove Noise From Simulated Data
	Benchmarks
	Isolating Co-clustered ULK1 and Atg13 Structures That Form Phagophores
	Comparison to Existing Colocalization Methods

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Advanced Data Analysis for Fluorescence-Lifetime Single-Molecule Localization Microscopy
	1 Introduction
	2 Theory of Lifetime Determination
	2.1 Least-Square Estimators
	2.2 Maximum Likelihood Estimator
	2.3 Goodness of Fit
	2.4 Lifetime Uncertainty
	2.5 Pattern Matching
	2.6 Fitting Using the Instrument Response Function

	3 Methods
	3.1 Simulations
	3.2 Experimental Data

	4 Results
	4.1 Simulations and Analytical Results
	4.1.1 Influence of the Instrument Response Function

	4.2 Experimental Results
	4.2.1 Estimation of the Intrinsic Lifetime Distribution
	4.2.2 Pattern Matching


	5 Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A Tribute to Professor Katharina Gaus
	Author Contributions
	References

	Raw Data to Results: A Hands-On Introduction and Overview of Computational Analysis for Single-Molecule Localization Microscopy
	Introduction
	Materials and Methods
	Samples
	SMLM Imaging
	Code

	Results
	Module 1: Temporal Median Image Filtering
	Module 2: Localization
	Module 3: Localization Merging
	Module 4: Drift Correction
	Module 4a: Drift Correction by Fiducial Markers
	Module 4b: Drift Correction by Cross-Correlation Methods
	Module 5: Chromatic Aberration Correction
	Module 6: Image Generation
	Module 7: Single-Particle Tracking (spt)
	Localization
	Linking of single Fluorescent Emissions Into Particle Trajectories
	Quantitative Analysis of Trajectories
	Module 8: Clustering
	Module 9: Localization Precision and Image Resolution
	Module 9a: Fourier Ring Correlation (FRC)
	Module 9b: Nearest Neighbor Analysis (NeNA)

	Discussion and Perspective
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Don’t Be Fooled by Randomness: Valid p-Values for Single Molecule Microscopy
	1 Introduction
	2 Statistical Significance
	3 2-CLASTA
	4 Accounting for Multiple Experiments
	5 Single Particle Trajectories
	6 Discussion
	7 Methods
	7.1 2-CLASTA
	7.1.1 Simulations
	7.1.2 Calculation of p-Value for Multiple Experiment

	7.2 Single Particle Trajectories
	7.2.1 Simulation of FRET Trajectories
	7.2.2 Permutation Test


	Author Contributions
	Funding
	References

	Multi-Dimensional Spectral Single Molecule Localization Microscopy
	1 Introduction
	2 Materials and Methods
	2.1 Microscopy Setup
	2.2 Single Molecules Localization Analysis
	2.2.1 Single Molecule Localization and Tracking
	2.2.2 Spectral Analysis by Spectrally Displaced Localization
	2.2.3 Lateral Drift Correction
	2.2.4 Spectrally-Informed Multi-Gaussian Fitting
	2.2.5 Simulations

	2.3 Imaging Experiments
	2.3.1 Simultaneous Detection of Five Qdots
	2.3.2 Three Color DNA-PAINT Experiments
	2.3.3 Multiple 3D QDots Tracking of Membrane Proteins on Living Fibroblasts
	2.3.4 Multiple 3D QDot Tracking of Synaptic Receptors on Living Neurons


	3 Results
	3.1 System Characterization
	3.2 3D Multicolor DNA-PAINT Imaging
	3.3 Multiple 3D QDot Tracking on COS-7 Cells
	3.4 Multiple 3D QDot Tracking of Synaptic Receptors on Living Neurons

	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back cover



