
EDITED BY : Gui-Quan Sun, Yongping Wu, Bai-Lian Li and Yipeng Guo

PUBLISHED IN : Frontiers in Physics and Frontiers in Climate

IMPACTS OF GLOBAL WARMING ON 
ECOLOGY AND METEOROLOGY AND 
THE RELATED PHYSICAL MECHANISMS, 
EVALUATION AND PREDICTION

https://www.frontiersin.org/research-topics/18478/impacts-of-global-warming-on-ecology-and-meteorology-and-the-related-physical-mechanisms-evaluation
https://www.frontiersin.org/research-topics/18478/impacts-of-global-warming-on-ecology-and-meteorology-and-the-related-physical-mechanisms-evaluation
https://www.frontiersin.org/research-topics/18478/impacts-of-global-warming-on-ecology-and-meteorology-and-the-related-physical-mechanisms-evaluation
https://www.frontiersin.org/research-topics/18478/impacts-of-global-warming-on-ecology-and-meteorology-and-the-related-physical-mechanisms-evaluation
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org/research-topics/18478/impacts-of-global-warming-on-ecology-and-meteorology-and-the-related-physical-mechanisms-evaluation


1 November 2022 | Impacts of Global Warming on EcologyFrontiers in Physics

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-83250-853-4 

DOI 10.3389/978-2-83250-853-4

http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact
https://www.frontiersin.org/research-topics/18478/impacts-of-global-warming-on-ecology-and-meteorology-and-the-related-physical-mechanisms-evaluation
https://www.frontiersin.org/journals/physics


2 November 2022 | Impacts of Global Warming on EcologyFrontiers in Physics

Topic Editors: 
Gui-Quan Sun, North University of China, China
Yongping Wu, Yangzhou University, China
Bai-Lian Li, University of California, Riverside, United States
Yipeng Guo, Nanjing University, China

Citation: Sun, G.-Q., Wu, Y., Li, B.-L., Guo, Y., eds. (2022). Impacts of 
Global Warming on Ecology and Meteorology and the Related Physical 
Mechanisms, Evaluation and Prediction. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-83250-853-4

IMPACTS OF GLOBAL WARMING ON 
ECOLOGY AND METEOROLOGY AND 
THE RELATED PHYSICAL MECHANISMS, 
EVALUATION AND PREDICTION

http://doi.org/10.3389/978-2-83250-853-4
https://www.frontiersin.org/research-topics/18478/impacts-of-global-warming-on-ecology-and-meteorology-and-the-related-physical-mechanisms-evaluation
https://www.frontiersin.org/journals/physics


3 November 2022 | Impacts of Global Warming on EcologyFrontiers in Physics

05 Editorial: Impacts of Global Warming on Ecology and Meteorology and 
the Related Physical Mechanisms, Evaluation and Prediction

Gui-Quan Sun, Yongping Wu, Bai-Lian Li and Yipeng Guo

07 A 3D Copula Method for the Impact and Risk Assessment of Drought 
Disaster and an Example Application

Wei Hou, Pengcheng Yan, Guolin Feng and Dongdong Zuo

21 Typical Modes of the Wind Speed Diurnal Variation in Beijing Based on the 
Clustering Method

Pengcheng Yan, Dongdong Zuo, Ping Yang and Suosuo Li

34 Combining Snow Depth From FY-3C and In Situ Data Over the Tibetan 
Plateau Using a Nonlinear Analysis Method

Aixia Feng, Feng Gao, Qiguang Wang, Aiqing Feng, Qiang Zhang, Yan Shi, 
Zhiqiang Gong, Guolin Feng and Yufei Zhao

41 The Physical Mechanisms Behind the Change in the Precipitation 
Recycling Rate in the Mid- and Lower Reaches of the Yangtze River

Wen-Kang Guo, Xi-Yu Wang, Wang-Ze Gao, Jia-Hua Yong, Xin-Yue Bao, 
Yong-Ping Wu, Guo-Lin Feng and Wen-Jie Dong

51 An Economy-Climate Model for Quantitatively Projecting the Impact of 
Future Climate Change and Its Application

Jieming Chou, Yuan Xu, Wenjie Dong, Weixing Zhao, Jiangnan Li and 
Yuanmeng Li

65 Trend, Seasonal, and Irregular Variations in Regional Actual 
Evapotranspiration Over China: A Multi-Dataset Analysis

Tao Su, Taichen Feng, Bicheng Huang, Zixuan Han, Zhonghua Qian,  
Guolin Feng and Wei Hou

76 Simulated Variation Characteristics of Oceanic CO
2
 Uptake, Surface 

Temperature, and Acidification in Zhejiang Province, China

Kuo Wang, Han Zhang, Gao-Feng Fan, Zheng-Quan Li, Zhen-Yan Yu and 
Pei-Pei Liu

86 Pattern Dynamics of Vegetation Growth With Saturated Water Absorption

Li Li, Jia-Hui Cao and Xin-Yue Bao

97 The Effect of the Arctic Oscillation on the Predictability of Mid-High 
Latitude Circulation in December

Zhihai Zheng, Jin Ban and Yongsheng Li

107 Remote Effects of IOD and ENSO on Motivating the Atmospheric Pattern 
Favorable for Snowfall Over the Tibetan Plateau in Early Winter

Hongyan Shen, Zhiqiang Gong, Boqi Liu, Yipeng Guo, Xiaoli Feng,  
Tingting Wen, Xiaojuan Wang and Guolin Feng

120 Unprecedented Climate Change in India and a Three-Pronged Method for 
Reliable Weather and Climate Prediction

Vadlamudi Brahmananda Rao, Karumuri Ashok and Dandu Govardhan

Table of Contents

https://www.frontiersin.org/research-topics/18478/impacts-of-global-warming-on-ecology-and-meteorology-and-the-related-physical-mechanisms-evaluation
https://www.frontiersin.org/journals/physics


4 November 2022 | Impacts of Global Warming on EcologyFrontiers in Physics

128 Climate Change Characteristics of Coastal Wind Energy Resources in 
Zhejiang Province Based on ERA-Interim Data

Nan Wang, Kai-Peng Zhou, Kuo Wang, Tao Feng, Yu-Hui Zhang and  
Chao-Hui Song

141 Assessment of CMIP6 Model Performance for Wind Speed in China

Lijun Zhao, Shuanglong Jin, Xiaolin Liu, Bo Wang, Zongpeng Song, Ju Hu 
and Yuyang Guo

149 A Dynamic Statistical Subseasonal Forecast Model for OLR Over Tropical 
Pacific Region

Kuo Wang, Gao-Feng Fan and Guo-Lin Feng

158 Dominant Role of Meridional Circulation in Regulating the Anomalous 
Subsidence of the Western Pacific Subtropical High in Early Summer 2020

Yuheng Zhao, Jianbo Cheng, Guolin Feng, Zhihai Zheng, Rong Zhi, 
Zengping Zhang, Jinlong Yan and Dongdong Zuo

166 Response of Temperature-Related Rice Disaster to Different Warming 
Levels Under an RCP8.5 Emission Scenario in a Major Rice Production 
Region of China

Shuangyi Luo, Zhihong Jiang, Jieming Chou, Gang Tu and Shuyu Wang

182 An Attempt to Appreciate Climate Change Impacts From a Rank-Size Rule 
Perspective

Kazuya Hayata

https://www.frontiersin.org/research-topics/18478/impacts-of-global-warming-on-ecology-and-meteorology-and-the-related-physical-mechanisms-evaluation
https://www.frontiersin.org/journals/physics


Editorial: Impacts of global
warming on ecology and
meteorology and the related
physical mechanisms, evaluation
and prediction

Gui-Quan Sun1*, Yongping Wu2, Bai-Lian Li3 and Yipeng Guo4,5

1Department of Mathematics, North University of China, Taiyuan, China, 2College of Physics Science
and Technology, Yangzhou University, Yangzhou, China, 3Department of Botany and Plant Sciences,
University of California, Riverside, Riverside, CA, United States, 4Key Laboratory of Mesoscale Severe
Weather/Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing, China,
5Nanjing Normal University Nanjing, Nanjing, China

KEYWORDS

global warming, ecology, meteorology, physical mechanisms, prediction

Editorial on the Research Topic

Impacts of global warming on ecology andmeteorology and the related

physical mechanisms, evaluation and prediction

Global warming refers to changes in climate over a period of time in which the

temperatures of the atmosphere and seas on Earth dramatically rise due to the greenhouse

effect, and it plays a dominant role in climate change, rising sea levels, increasing

frequency and intensity of extreme events, ecological imbalances, and loss of

biodiversity [1–4]. Consequently, global warming has an adverse effect on

meteorology and ecology, both of which inevitably affect human life and social

development. As a result, how we can effectively mitigate global warming has become

an urgent problem for the survival and development of mankind. In this sense, analysis of

the features of meteorological and ecological change, quantification of the influence of

climate warming on ecology and meteorology, and the uncovering of the underlying

physical mechanisms contribute to a much deeper comprehension of the impact of global

warming.

This Research Topic accepted many manuscripts across multiple research fields,

including mathematics, meteorology, and ecology. These research studies mainly focus on

construction or using models to quantify influence and predict future trends. For instance,

Zhao et al. have, based on the CMIP6 model, evaluated the performance of wind speed in

China, providing available guidance for wind prediction in specific regions; Hou et al.

developed a model based on a three-dimensional Copula function to quantify the effects

of drought on cropland area and assess the risk of drought, which is important for

understanding and reducing the negative effects associated with drought; Feng et al. used a
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nonlinear time series analysis method of phase space

reconstruction to quantify the snow depth over the Tibetan

Plateau; Chou et al. proposed an economic climate model to

quantify the effects of climate change on the economy; Wang

et al. utilized Earth system model simulations to assess oceanic

CO2 uptake, surface temperature, and acidity for Zhejiang

offshore; and, to investigate the influence of saturated water

absorption on vegetation systems, Li et al. established a

vegetation-water model with a saturated water absorption effect.

This Research Topic has also received some papers that

use a variety of data to analyze the characteristics of

meteorological elements. Su et al. used a multi-dataset to

analyze trends—seasonal and irregular variations of actual

evapotranspiration. Wang et al. analyzed the climate change

characteristics of coastal wind energy resources in Zhejiang

Province based on ERA-medium-term data. Based on wind

speed data and machine learning, Yan et al. studied the daily

characteristics of wind speed changes in Beijing and analyzed

the spatial and temporal characteristics of wind speed diurnal

changes, which is conducive to predicting pollutant emissions.

We also collected some papers on the physical mechanisms

of climate change. Guo et al. utilized Chinese meteorological

station data and reanalysis data to explore the physical

mechanism behind the variation of precipitation cycling rate

in the middle and lower reaches of the Yangtze River. Zhao et al.

explored the dominant factors causing the subtropical

atmospheric anomaly in the western Pacific.

The situation of global warming is becoming more and more

serious, and the impact on ecology and meteorology is

intensifying, which means human beings and our

development are facing unprecedented threats. The purpose of

this research topic is to use a variety of methods to analyze the

characteristics of meteorological and ecological changes in the

context of global warming, quantify the impact of extreme events

on agriculture, meteorology, and oceans, and reveal the physical

mechanisms of their changes. We hope that this Research Topic

will provide a platform to promote multidisciplinary and

integrated research at a deeper level in the fields of

meteorology, ecology, epidemiology, and mathematics.
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Droughts have more impact on crops than any other natural disaster. Therefore, drought

risk assessments, especially quantitative drought risk assessments, are significant in

order to understand and reduce the negative impacts associated with droughts, and

a quantitative risk assessment includes estimating the probability and consequences of

hazards. In order to achieve this goal, we built a model based on the three-dimensional

(3D) Copula function for the assessment of the proportion of affected farmland areas

(PAFA) based on the idea of internally combining the drought duration, drought

intensity, and drought impact. This model achieves the “internal combination” of drought

characteristics and drought impacts rather than an “external combination.” The results

of this model are not only able to provide the impacts at different levels that a drought

event (drought duration and drought intensity) may cause, but are also able to show

the occurrence probability of impact at each particular level. We took Huize County and

Mengzi County in Yunnan Province as application examples based on the meteorological

drought index (SPI), and the results showed that the PAFAs obtained by the method

proposed in this paper were basically consistent with the actual PAFAs in the two

counties. Moreover, due to the meteorological drought always occurring before an

agricultural drought, we can get SPI predictions for the next month or months and can

further obtain more abundant information on a drought warning and its impact. Therefore,

the method proposed in this paper has values both on theory and practice.

Keywords: drought, risk assessment, three-dimensional Copula function, Huize county, Mengzi County

INTRODUCTION

Droughts are a complex and recurrent natural disaster that result in widespread effects on humans
and natural systems, including agriculture, ecosystems, energy, economics, and so forth [1–8]. A
drought can be commonly classified into four types: meteorological, agricultural, hydrological, and
socioeconomic, and the meteorological drought has received more attention as it usually occurs
before the other three types of drought [1, 9].
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Hou et al. 3D-Copula Method for Drought Assessment

Over the past decades, droughts around the world have
caused tremendous economic losses on an annual basis [10, 11];
furthermore, droughts are a major cause of unexpected crop
failure (in corn, rice, and wheat). In China, problematically
frequent occurrences of drought have resulted in great impacts on
social and economic development and human life [12, 13], and
historical disaster data show that the average annual area of crop
damage due to drought accounted for 50% of all areas affected
by meteorological disasters over the period of 2004–2013 [14].
Due to rising temperatures and increasing climatic variability
[15–18], it is widely recognized that droughts may become
more frequent and more serious globally in the coming decades
on regional and temporal levels [17, 19, 20]. In this context,
the challenges faced by agricultural production will become
more severe. In addition, the possibility of soil desertification
will increase under prolonged drought, so sand prevention and
control also face major challenges [21, 22]. Therefore, drought
risk assessment, especially quantitative drought risk assessment,
is required in order to reduce the negative impacts associated
with droughts [23–26].

Quantitative drought risk assessment includes estimating
the probability and consequences of a drought disaster [27].
To achieve this, we need on three levels to (i) characterize
the drought statistically in terms of its relative severity; e.g.,
exceeding probability [28], (ii) quantify the consequences of a
given drought event [29], and (iii) estimate the consequences
of droughts with varying severity. The key point here is to
separate “droughts” from “non-droughts” [30]. Although studies
have proven that risk assessment results on the impacts or losses
provided by statistical methods and physical models are reliable
and valid [31–36], the accurate assessment of drought impacts on
agricultural production is not easy to calculate, and there are still
various data-related and methodological problems that need to
be solved [37, 38]. In particular, these include the requirement
of (i) the time series of drought index with sufficient spatial
and temporal details in order to obtain enough information on
the local meteorological and hydrological conditions, and (ii)
the accurate, high-resolution, long-term yield or economic loss
databases [36]. Therefore, a complete description of a drought
disaster requires multiple related variables, and the appropriate
option is a multivariate analysis using the Copula function [39].
The Copula function is a statistical tool, which can used to
construct a multivariate joint distribution function for analyzing
the statistical characteristics of dependent variables. However, the
applications of the Copula technique in assessing the impacts of
droughts on agricultural production are very limited in published
literature, and almost all research has been performed to obtain
the qualitative relationships between drought characteristics and
the degree of a potential disaster [32, 40–46]. Moreover, most
previous studies use two-dimensional Copula functions, and crop
damage data are not often used as a variable to be substituted
into the Copula function, but are instead used as an independent
variable in combination with the comprehensive features of a
drought obtained by the Copula function.

The goal pursued by many international researchers is
to obtain objective results and reduce subjective judgments
through the use of statistical methods and physical models to

provide more accurate drought information and warnings for
the prevention of disasters and to reduce losses. It is of more
practical significance to assess the specific impacts of droughts
with different severities and durations, and to see how crop
damage data are substituted directly into the Copula function as
one of the variables in assessing the impact of droughts. However,
there is no published work that uses the above ideas to study
the impact of droughts, so it is, therefore, worth studying in
further detail. Therefore, the objective of this paper is to make
a breakthrough in this respect.

Combining the above reasons, in this paper we propose
a three-dimensional (3D) Copula model for the assessment
of drought risks in terms of agriculture. We built a model
based on the three-dimensional (3D) Copula function for the
assessment of the proportion of affected farmland areas for the
purpose of quantitative drought risk assessment. We calculated
the proportion of affected farmland areas (PAFA) based on the
farmland areas affected by droughts and the annual agricultural
planting area, and then obtained the PAFA time series caused
by each drought event. The reason behind using PAFA as the
assessment object is that the affected area is a result of drought;
thus, the impacts of “droughts” can be clearly separated from
those of “non-droughts.” Next, we extracted drought events from
a monthly standardized precipitation index (SPI) time series,
which is calculated based on precipitation data and satisfies a
standard normal distribution. After, we calculated the parameters
of the duration and the severity of a drought, as well as the
PAFA, and thus, the marginal distribution functions of duration,
severity, and PAFA were obtained, and their joint distribution
function was then computed using a three-dimensional Copula
function. The joint probability and the classification of these
three variables were both achieved using this 3D statistical
model. Different types of drought events were identified based
on the combination of these variables, and the probabilities of
occurrence of the drought events were calculated. Thus, the
estimation of the PAFA of a drought event could be obtained by
integrating this method with the monitoring of current droughts
and the prediction of future droughts.

STUDY AREA AND DATA

Study Area
Yunnan Province, located in the southwest of China, is
influenced primarily by the South Asian monsoon and also
impacted by the East Asian monsoon, the Tibetan Plateau
monsoon, and westerlies [47]. The soil in Yunnan Province is
covered by a large area of karst landforms and characterized by
poor water conservation. Due to the complicated land surface
terrain, as well as the control and influence of different general
circulation patterns, the seasonal and geographical distributions
of precipitation are extremely uneven in Yunnan, and droughts
have become one of the most extensive, frequent, and severe
natural disasters in Yunnan Province [48–50]. Yunnan’s crops
mainly include rice, wheat, and corn, among others, and the crops
are normally fed and cultivated with rain.

Because in this article we are trying to build a Copula-
based three-dimensional (3D) risk analysis model, including the
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duration and intensity of the drought, as well as the PAFA,
only the areas where the three types of data (SPI, affected
farmland areas caused by droughts, and annual agricultural
planting area) that meet the following three requirements can
therefore be used as the research area in this article: (i) the
daily precipitation series as long as possible without missing
values, (ii) the number of disaster loss records (affected farmland
areas caused by droughts) from 1984 to 2012 should be as
much as possible, and (iii) the annual agricultural planting
area from 1984 to 2012 requires as much continuous data as
possible. Figure 1 shows the spatial distribution of the number
of disaster loss records caused by droughts from 1984 to
2012 submitted by each county in Yunnan Province, and the
stations that comply with the requirement in Yunnan Province
are also shown in Figure 1. After a survey of all the stations
(counties) in Yunnan Province, it was found that two stations
(counties) met the above three requirements: Huize county and
Mengzi county.

In this paper, we take Huize County and Mengzi County
in Yunnan Province as examples to demonstrate the three-
dimensional (3D) Copula model for the assessment of drought
risk on agriculture.

Data
The data used in this study on damages caused by droughts come
from China’s Meteorological Disaster Loss Databases at County
Level (1984–2012, including county name, geographic location,
category of meteorological disasters, starting and ending time of
meteorological disaster, number of affected populations, affected
farmland areas, and direct economic losses) compiled by the
China Meteorological Administration (CMA). Currently, the
database is stored in the National Climate Center, and applied to
the scientific research [51] and operational works (http://10.28.
107.46:8084/MDMIS_oneMap/) of meteorological disaster risk
management. The data on the affected farmland areas caused by
drought was obtained between 1986 and 2012; of these, there are
20 records in Huize County and 21 records in Mengzi County.
The two counties did not experience drought in 1984 and 1985.

It is known that agricultural yields vary continuously with
the hydro-climatic conditions; it is also influenced by many
other factors such as field management and specific varieties
of crops. In addition, the direct economic loss of agriculture
caused by droughts is also related to the current price of
crops, and the factors affecting prices are so complex that
they far exceed the drought itself. Therefore, in this study, we
used the data of affected farmland areas caused by droughts
because they have an intuitive cut-off between “drought” and
‘‘non-drought” conditions.

The exposure of crops to drought will also change with
changes in the agricultural planting areas. Even if a drought
occurs with the same duration and intensity, the larger the
agricultural planting area, the larger affected the farmland area
is. This makes it difficult to compare and analyze the impact
of droughts when the data on the affected farmland areas in
different years are used directly. Thus, the PAFA in each year
was used for analysis in this study. In order to cooperate with
the data on the affected farmland areas, we also need the

continuous data of annual agricultural planting areas to calculate
the PAFA. The data on the annual agricultural planting areas
were taken between 1986 and 2012 (Figure 2) in Huize and from
1995 to 2012 in Mengzi. These data were obtained from the
yearbook of Huize and Mengzi. Because of the establishment
of the marginal distribution functions of duration and intensity
of drought, it is necessary to use a time series of drought
index. The monthly SPI [52] was calculated after processing daily
precipitation data into monthly data. It should be noted that
the Gamma distribution is used as the distribution function of
precipitation in the calculation of SPI. The Kolmogorov-Smirnov
distribution test results show that all stations in Figure 1 have
passed the distribution test. In order to obtain more accurate
and stable marginal distribution functions of drought duration
and drought intensity, the daily precipitation data without
missing values from 1961 to 2012 from Huize County and
Mengzi County were acquired from the National Meteorological
Information Center of the China Meteorological Administration
(http://www.nmic.cn).

Methods
Description of Drought Characteristics
We described drought events based on the two major
characteristics: drought duration and severity, which were both
extracted from monthly SPIs. The most applied index is the SPI
that concerns meteorological drought. As a powerful index, the
SPI has been widely used to analyze droughts in different parts of
the world, and the advantage of the SPI over other indices is that
the SPI depends only on precipitation, the flexibility of timescales
at which this index can be calculated, as well as being comparable
in time and space. The SPI obtained based on the precipitation
of 1 month is called a monthly scale index, the SPI obtained
based on the precipitation of 3 months is called a seasonal scale
index, and the SPI obtained based on the precipitation of 6
months is called an semi-annual scale index. SPI for 1 month is
suitable for describing meteorological drought, SPI for 3 months
is suitable for describing agricultural drought, and SPI for more
than 6 months is suitable for describing drought in watersheds or
groundwater. Since the SPI can characterize short- and long-term
droughts, various research on drought risk assessment has been
carried out using the SPI, and the results show that the SPI is ideal
for performing a risk assessment in comparison to other drought
indices [53–56]. Recently, a piece of research applied six drought
indices to estimate the drought onset, and the results showed that
meteorological drought indices predict the onset of a drought
earlier than hydrological and agricultural drought indices [57].
Therefore, in this paper, we use the SPI to allow the method to be
more practical in terms of risk warnings of droughts.

For an SPI time series, the definitions of drought duration
and drought intensity that are adopted in the run theory [58]
are shown in Figure 3. Run theory is a method of time series
analysis, which is widely used in the identification of drought
events [44, 59–61]. Drought duration (d) represents the number
of months during which the SPI index is continuously below
the threshold value (s0 = 0). Because the SPI of the monthly
scale is used in this paper, the drought duration lasts for at least
1 month, and the range of the d value is within [1, + ∞]

Frontiers in Physics | www.frontiersin.org 3 April 2021 | Volume 9 | Article 6562539

http://10.28.107.46:8084/MDMIS_oneMap/
http://10.28.107.46:8084/MDMIS_oneMap/
http://www.nmic.cn
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Hou et al. 3D-Copula Method for Drought Assessment

FIGURE 1 | The distribution of the number of damage records (affected farmland areas by drought, 1984–2012) in the counties of Yunnan Province, China (black

symbols represent the location of meteorological stations).

month. Drought severity refers to the accumulation of the value
of the SPI index within the ranges of the drought duration, and
can be calculated by using the formula s = −

∑d
i=1 SPIi, and

the range of the s value is within (0,+∞). Thus, the duration

(d1,d2,d3 · · · ) and severity (s1,s2,s3 · · · ) of drought events can be
extracted from an SPI time series [62, 63]. Based on previous
studies, the classification of drought duration and severity was
defined, and is shown in Tables 1, 2.
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FIGURE 2 | Changes of the agricultural planting areas over time.

The Distribution Characteristics of Three Variables
The proportion of affected farmland area (PAFA) in each year was
used for analysis. The mathematical expression is:

I =
Ad

AP
×100%, (1)

where I refers to PAFA, Ad is the affected farmland area, and AP

is the annual agricultural planting area. An exponential function
is applied to describe the distribution of the index I, and the
mathematical expression is defined as:

FI (i)= 1−e−λi, (2)

Some studies [62, 64] have reported that drought duration
and severity follow exponential and Gamma distributions,
respectively. The mathematical expressions of the two
distributions are:

FD
(

d
)

= 1−e−λd, (3)

FS (s)=

∫ s

0

sα−1

βαŴ (α)
e
− s

β ds, (4)

where D and S refer to the sample set of drought duration and
severity, respectively, d and s denote the element in the sample
set of drought duration and severity, respectively, FD

(

d
)

refers to
the probability that drought duration d is equal to or less than D,
FS (s) denotes the probability that drought severity s is equal to or
less than S, and λ, α, and β are the distribution parameters.

According to Equations (2–4), the Copula function was used
to establish the joint distribution function of the three variables
(the duration and intensity of the drought, as well as the PAFA
caused by drought) in this study.

Copula Function
The Copula function is an effectivemethod that uses themarginal
distribution functions of different random variables to build a
joint distribution function. As each marginal distribution of the
variables is known, the joint distribution can be constructed with
the Copula function. According to the theory of Sklar [39], the
joint distribution function F (x1, x2, · · · , xn) can be decomposed
intomarginal distribution functions F (x1), F (x2), · · · , F (xn) and
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FIGURE 3 | Descriptions of drought characteristics.

TABLE 1 | The classification of drought duration.

D (month) Level

0 < D ≤ 1 1 (within 1 month)

1 < D ≤ 3 2 (within one season)

3 < D ≤ 6 3 (cross-quarter)

6 < D 4 (over 6 months)

a Copula function C (·). The mathematical expression is:

F (x1,x2, · · · ,xn)= C (F (x1) , F (x2) , · · · , F (xn)) , (5)

The Copula function can be classified into three classes: the
elliptic type, Archimedean family, and quadric form. The
Archimedean Copula function has been widely used [62, 64], and
therefore, it has also been used in our study. The common 3D
Archimedean Copulas functions [40, 65] are as follows.

Clayton

Cθ (µ, v,ω)=
(

µ−θ+v−θ+ω−θ−2
)

−1
θ , (6)

Frank

TABLE 2 | The classification of drought severity.

S Level

0 < S ≤ 0.5 0 (Normal)

0.5 < S ≤ 1 1 (Slight drought)

1 < S ≤ 1.5 2 (Moderate drought)

1.5 < S ≤ 2.0 3 (Severe drought)

2.0 < S 4 (Extreme drought)

Cθ (µ, v,ω)=−
1

θ
ln

[

1+

(

e−µθ−1
) (

e−vθ−1
) (

e−wθ−1
)

(

e−θ−1
)2

]

, (7)

Gumbel-Hougaard

Cθ (µ, v,ω)= exp

{

−

[

(

−lnµ
)θ

+
(

−lnv
)θ

+
(

−lnω
)θ

]
1
θ

}

, (8)

Where, µ, v,ω are the marginal distribution functions, and θ is
the parameter of the Copula function.

In this study, the parameter θ is estimated through the
maximum log-likelihood estimation. The function can be written
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TABLE 3 | The statistical characteristics of the drought events.

County Size ρ (D,S) Drought duration (month) Drought severity

Mean Std Min Max Mean Std Min Max

Huize 161 0.80 1.88 1.38 1 8 1.53 1.48 0.01 8.43

Mengzi 153 0.88 1.95 1.71 1 12 1.60 1.79 0.03 12.12

as follows:

ln L(θ)=
n

∑

i=1

ln c(µi,vi,ωi, θ)+
n

∑

i=1

(

lnµ
′

i+ ln v
′

i +lnω
′

i

)

, (9)

where µ, v,ω are marginal distributions, and c(µ, v,ω, θ) is
defined as c (µ, v,ω, θ) =

∂C(µ,v,ω,θ)
∂µ∂v∂ω

. The log-likelihood function
ln L can bemaximized in order to obtain the estimation of Copula
parameter θ̂ . Furthermore, the root-mean-square error method
[66, 67] was used to select the optimal Copula function:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Pei−Pi)
2 , (10)

where Pei is the empirical probability value obtained directly
from the sample size, and Pi is the theoretical probability value
under different Copula functions.

We compared and analyzed three Archimedes Copula
functions, suggesting that the difference between the three
Copula functions is not significant. However, the Gumbel-
Hougaard function has an upper tail dependency, which is more
suitable for the analysis of the dependence among three variables
(the duration and intensity of a drought, as well as the PAFA
caused by a drought). Thus, our subsequent analyses were all
based on the Gumbel-Hougaard type Copula function.

Joint Distribution
In recent years, some researchers have begun to use three-
dimensional Copula functions in their research [68, 69]. The
joint distribution function can be obtained from the marginal
distribution functions FD

(

d
)

, FS (s), and FI (i), as well as the
Copula function of drought duration, severity, and PAFA.

F
(

d, s, i
)

= P
(

D ≤ d, S ≤ s, I ≤ i
)

= C
[

FD
(

d
)

,FS (s) ,FI (i)
]

, (11)

The joint distribution describes the probability that the drought
duration, severity, and PAFA are all equal to or less than a given
value of the drought event.

Analysis Process
The main analysis process in this paper is as follows: first, the
Run theory was used to extract the drought events by using
the SPI sequences in Huize County and Mengzi County from
1961 to 2011. Then, the marginal distribution functions and their
parameters were obtained using the data on drought durations
and drought intensities, respectively. After that, we calculated
the PAFA, and the marginal distribution functions and their

TABLE 4 | Kendall’s tau among drought duration (D), drought severity (S), and

PAFA (I).

County τ (D,S) τ (D, I) τ (S, I)

Huize 0.63 0.10 0.63

Mengzi 0.47 0.42 0.47

parameters of PAFA were obtained by using the data from Huize
County from 1986 to 2011 and Mengzi County from 1995 to
2011. Finally, by using the data on drought durations, drought
intensities, and the PAFA of Huize County from 1986 to 2011
and Mengzi County from 1995 to 2011, the 3D joint distribution
functions and the parameters of the two counties were obtained,
respectively, based on a maximum likelihood estimation. The
data on drought durations, drought intensities, and the PAFA for
2012 would be used to verify the evaluation of the model.

RESULTS AND DISCUSSION

The Establishment and Analysis of the 3D
Joint Probability Distribution
The SPI sequences of the Huize and Mengzi counties were
applied to extract drought events during the period between 1961
and 2011. Statistical characteristics were obtained and shown in
Table 3, with s0 = 0 set as the threshold.

The number of drought events extracted from the SPI
sequence were 161 (Huize County) and 153 (Mengzi County)
from 1961 to 2011. The statistical indicators of drought duration
and severity in Mengzi County were slightly larger than in
Huize County. The average drought duration of both counties
was close to 2 months, and the average drought severity of
both counties reached the level of severe drought. The longest
drought duration in Mengzi County was 12 months, and its
cumulative drought severity reached the maximum recorded
value (12.12) in history. The Pearson correlation coefficient
of drought duration and drought severity indicated that there
was a strong correlation between the two variables in the two
counties, showing that the duration and severity of the droughts
in the two counties were both strongly synchronized (Table 3).
Moreover, each pairwise relationship among drought duration,
drought severity, and PAFA is measured using Kendall’s tau
coefficient (Table 4), the results indicating that there exists a
positive interrelated relationship between any two of these three
variables in the two counties because the values of Kendall’s tau
are all > 0.
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FIGURE 4 | The scatter diagrams and the frequency diagrams of the drought duration and severity in (A) Huize County and (B) Mengzi County.

TABLE 5 | The P-value of goodness of fit based on the KS test for drought

duration severity, PAFA.

County Drought duration Drought severity PAFA

Huize 0.999 0.984 0.998

Mengzi 0.957 0.955 0.997

Figure 4 shows the scatter diagrams and statistical histograms
of the drought duration and severity in the two counties,
respectively. The distribution characteristics of drought duration
and severity in the two counties were basically consistent
(Figure 4). In most cases, the drought durations were all under
2 months and the drought severities were lower than the level of
a severe drought in the two counties.

In order to confirm that the distributions of the drought
durations of the two counties satisfy the exponential distribution,
drought severities of the two counties satisfy the gamma
distribution, as well as having the distributions of the PAFA
of the two counties satisfy the exponential distribution, the
Kolmogorov-Smirnov (KS) test was used to analyze the difference
between the empirical distribution function and the theoretical
distribution function at the 0.05 significance level. The results
according to the KS test are shown in Table 5. Table 5 shows
that the results had passed the statistical test and were reliable;
namely, the distributions of the drought durations of the
two counties were subject to exponential distribution, the
distributions of the drought severities of the two counties were
subject to gamma distribution, and PAFA of the two counties
were subject to exponential distribution.

In this study, Copulas are employed to construct the joint
distribution function. A three-variable joint distribution function
was obtained by using Equations (1–11), and the probability
distributions of PAFA were then calculated based on different

drought durations and severities. Figure 5 shows the three-
variable joint probability distribution of different PAFAs in Huize
County, and the distribution characteristics were similar in
Mengzi County.

The Z coordinate in Figure 5 represents the probability when
the random variables are less than given values. Taking Figure 5A
as an example, the meaning of the curved surface in the figure is
the probability P

(

D ≤ d, S ≤ s, PAFA ≤ 10%
)

. The meaning in
Figure 5B is the same as Figure 5A, except that the PAFA is less
than a different value. As shown in Figure 5A, with regard to all
drought events, 40% of the drought events caused PAFAs of no
more than 10%; in other words, the farmland areas affected by
40% of the drought events did not exceed 10% of the planted
areas. In addition, 80% of the drought events caused PAFAs of no
more than 30%, meaning that the drought events, which caused
PAFA to exceed 30% occurred rarely in history (Figure 5B).
Then, the 3D joint probability distribution and the statistical
relationships between the PAFA, the drought duration, and the
drought severity could be obtained.

In this paper, more attention was actually paid to the
practical application of the 3D joint probability distribution
rather than the statistical relationships between the PAFA, the
drought duration, and the drought severity, so we propose a
classification scheme. By combining the classification method of
drought duration and severity (Tables 1, 2) with the classification
standard of PAFA (Table 6) (National Standard of the People’s
Republic of China: Grade of drought disaster GB/T 34306-2017),
the probability distribution of various combinations of different
drought durations, severities, and PAFAs could be determined, as
shown in Figure 6.

Figure 6 shows the joint probability distributions of Huize
County that drought duration and drought severity are within
a given interval. Figure 6A shows the occurrence probability
(P

(

d1 < D ≤ d2, s1 < S ≤ s2, 10% < PAFA ≤ 30%
)

) of drought
events with different durations and severities when the PAFA is
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FIGURE 5 | The 3D joint probability distribution (A) when PAFA is 10%, and (B) when PAFA is 10, 30, 50, and 80% in Huize County.

at the level of 2. The durations of drought events with a high
probability of occurrence are at levels 1 (0 < D ≤ 1 within
1 month) and 2 (1 < D ≤ 3 within one season); that is, the
durations do not exceed one season. If the drought duration is
in level 1 (0 < D ≤ 1 within 1 month), the severity of the
most likely drought events is in level 1 (0.5 < S ≤ 1 slight
drought), but the severity of the most likely drought events is in
level 4 (2.0 < S extreme drought) while the drought duration
is in level 2 (1 < D ≤ 3 within one season). The probability
of drought events with other durations and severities is very
small. Similarly, Figures 6B–D gives the occurrence probability
of drought events with different durations and severities when
the PAFA is at three other levels. When the PAFA is at level 3
(30% < I ≤ 50%) (Figure 6B), the durations of drought events
with a high probability of occurrence are at levels 2 (1 < D ≤ 3
within one season) and 3 (3 < D ≤ 6 cross-quarter), as well
as severity level 4 (2.0 < S extreme drought); when the PAFA
is at level 4 (50% < I ≤ 80%) (Figure 6C), the durations of
drought events with a high probability of occurrence are at levels
3 (3 < D ≤ 6 cross-quarter) and 4 (6 < D over 6 months), as well
as severity level 4 (2.0 < S extreme drought). The conclusion
of Figure 6D is similar to Figure 6C but for the PAFA being at
level 5 (80% < I). As the PAFA increases, the joint probability of
drought duration and severity also increases with the increase in
their levels.

The Application of the 3D Joint Probability
Distribution
Figure 7 shows the SPI index sequences in Huize and Mengzi
counties in 2012. According to Figure 7, Huize (Figure 7A) and
Mengzi (Figure 7B) counties experienced several drought events

during this period, especially between January and March 2012.
Huize County experienced a drought event with a duration of 2
months and a severity of 1.9 from January 2012 to February 2012.
Similarly, Mengzi County experienced a drought event with a
duration of 5months and a severity of 3.09 from February 2012 to
June 2012. Furthermore, the disaster data indicated that drought
disasters occurred in Huize andMengzi counties from January to
April in 2012. Table 7 shows the disaster data during this period.

There was one piece of recorded disaster drought data in
Huize County in 2012 (during the period between January and
March); at the same time, there were three records in Mengzi
County in 2012 (Table 7). By comparison, it was found that the
start and end times of the drought disasters given by the recorded
disaster data were basically consistent with the calculation results
of the SPI index sequences in the two counties. The calculation
result of the SPI index shows that the drought event in Huize
County lasted for 2 months from January to February 2012 and
the severity was 1.90, and the drought event in Mengzi County
lasted for 5 months from February to June 2012 and the severity
was 3.09, although the drought intensity in April-June was weak.
The levels of drought duration and severity in Huize County were
2 (1 < D ≤ 3 within one season) and 3 (1.5 < S ≤ 2 Moderate
drought), respectively, while the levels of drought duration and
severity in Mengzi County were 3 (3 < D ≤ 6 cross-quarter) and
4 (2 < S Extreme drought), respectively. Equation (8) was used to
estimate the occurrence probability of PAFAs that correspond to
the two drought events in the two counties in 2012, respectively,
and the results are shown in Table 8.

Table 8 shows that in Huize County, the highest probability
of an occurrence of a PAFA was 10% < I ≤ 30%; that is, the
maximum risk corresponded to a PAFA of 10%; and in Mengzi
County, the highest probability of an occurrence of PAFA was
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FIGURE 6 | The joint probability distribution characteristics of Huize County corresponding to the level (A) 2, (B) 3, (C) 4, and (D) 5 of PAFA in Table 6.

TABLE 6 | The classification of PAFA.

Level 1 2 3 4 5

I I ≤ 10% 10% < I ≤ 30% 30% < I ≤ 50% 50% < I ≤ 80% 80% < I

30% < I ≤ 50%; i.e., the maximum risk corresponded to a
PAFA of 30% < I ≤ 50%. In a practical situation, the actual
PAFA in Huize County was 14.3%, and in Mengzi County it was
50.3%. The PAFA results obtained by themethod proposed in this
paper were consistent with the actual PAFAs in the two counties,
the PAFA of Huize County was evaluated well, and the PAFA of
Mengzi County was slightly underestimated.

On the one hand, the underestimation of Mengzi County
can be understood from a statistical point of view because we
gave the occurrence probabilities of different levels of PAFA in
a certain drought event, and while the probability is precisely
an expression of risk, and on the other hand, the drought
index used in this study (i.e., the SPI) is a meteorological

drought index rather than a direct indicator of agricultural
drought. Therefore, there is still a certain difference between the
duration/severity of a drought obtained through the SPI index
and the actual agricultural drought. However, a meteorological
drought always occurs before an agricultural drought, so a
meteorological drought index could be used to forecast and
forewarn farmers of an agricultural drought and its effects
in advance. In practical applications, compared with simple
drought monitoring indicators, we can get SPI predictions for
the following month or months based on monthly or seasonal
precipitation forecasts, and can further obtain more abundant
information about a drought warning and its impact through the
method proposed in this paper so that relevant countermeasures
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FIGURE 7 | The SPI sequences of (A) Huize County and (B) Mengzi County from January to December 2012.

can be taken according to the probability of occurrence of
different levels of PAFA in order to achieve the purpose of disaster
prevention, mitigation, and relief.

CONCLUSIONS AND DISCUSSIONS

Copula-based distribution has been used by researchers from
different countries around the world in multivariate analyses of
hydrological or meteorological events such as droughts due to its
advantages in modeling the non-linear dependence structure of
variables regardless of their marginal distributions. However, the
applications of the Copula technique in assessing the impacts of a
drought on agricultural production are very limited in published
literature, and the damage data are often not used as a variable to
be substituted into the Copula function, but are instead used as
an independent variable in combination with the comprehensive
features of a drought obtained by the Copula function. This
assessment is actually based on an “external combination” of
drought characteristics and drought impacts.

In order to achieve the “internal combination” of drought
characteristics and drought impacts, as well as assessing the
specific impacts of droughts with different severities and

TABLE 7 | The disaster data of droughts in Huize County and Mengzi counties.

County Start Time End Time The areas of affected

farmland (hectare)

Huize 2012-1-15 2012-3-2 15296.7

Mengzi 2012-1-21 2012-2-17 19093.3

Mengzi 2012-2-21 2012-2-29 3077.2

Mengzi 2012-3-1 2012-3-31 405.5

TABLE 8 | The occurrence probability of PAFAs.

County I ≤ 10% 10% < I ≤ 30% 30% < I ≤ 50% 50% < I ≤ 80% 80% < I

Huize 0.0145 0.0264 0.0095 0.0028 0.0003

Mengzi 0.0049 0.0396 0.0403 0.0147 0.0009

durations, we used three variables of drought events and their
impacts; namely, the drought duration, drought intensity, and
the proportion of affected farmland areas (PAFA), and built a
model based on the three-dimensional (3D) Copula function
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for the assessment of the PAFA for the purpose of quantified
drought risk analysis. The result of the model can provide
occurrence probabilities for different levels of PAFA in a certain
drought event, and while probability is precisely an expression
of risk, we took Huize County and Mengzi County in Yunnan
Province as application examples, and the results showed that the
PAFAs obtained by the method proposed in this paper were both
consistent with the actual PAFAs in the two counties.

Based on thismodel, the loss size and uncertainty (probability)
under a given drought intensity can be well-expressed, which is
the expected result of risk analysis. What’s more, according to the
division of drought grade, what kind of loss and its probability
caused by a certain type of drought event can be clearly given.
Moreover, in order to take risk control and mitigation measures,
it is necessary to assess the impacts of a drought on agricultural
production based on current drought conditions, and, more
importantly, based on the forecast and predicted drought
conditions in the future. A meteorological drought always occurs
before an agricultural drought. In practical applications, we can
obtain SPI predictions for the following month or months and
can obtain further abundant information on drought warnings
and their impact according to the probability of occurrence of
different levels of PAFA. Therefore, the method proposed in this
paper has values both on theory and practice.
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Wind speed is an important meteorological condition affecting the urban environment.
Thus, analyzing the typical characteristics of the wind speed diurnal variation is helpful for
forecasting pollutant diffusion. Based on the K-means clustering method, the diurnal
variation characteristics of the wind speed in Beijing during 2008–2017 are studied, and
the spatiotemporal characteristics of the wind speed diurnal variations are analyzed. The
results show that there aremainly five to seven clusters of typical characteristics of the wind
speed diurnal variation at different stations in Beijing, and the number of clusters near the
city is smaller than that in the suburbs. The typical number of the wind speed diurnal
variation during 2013–2015 is smaller than that in other periods, which means the
anomalous clusters of the diurnal variation are reduced. Besides, the numbers of
different clusters in different years are often switched. Especially, the switch between
clusters five and six and the switch between clusters six and seven are frequent. Based on
the second cluster analysis of the clustering results at the Beijing station, we find 12
clusters of the diurnal variation, including nine clusters of “large in the daytime, while small
at night,” two clusters of “monotonous,” and one cluster of “strong wind.” Furthermore, the
low-speed clusters of wind mainly locate in the city with a significant increasing trend, while
the high-speed clusters and the monotonous clusters of wind locate in the suburbs with a
decreasing trend.

Keywords: diurnal variation of wind speed, typical wind modes, K-means, clustering method, second clustering

1 INTRODUCTION

There are significant environmental problems in big cities and industrial areas [1]. Surface
meteorological conditions are important factors affecting the air quality [2], and the strong wind
is associated with the rapid diffusion of the pollutant [3]. With the rapid expansion of cities, the
urban heat island effect is significant, and the heat island circulation in the daytime is more
significant than that at night, which means the characteristics of the wind speed diurnal variation
have been changed [4, 5]. Beijing is one of the largest cities in China located at the northern foot of
the North China Plain, which is the intersection of the Taihang Mountains and the Yanshan
Mountains. The special terrain leads to increasingly serious environmental problems, which become
more significant with the expansion of the city [6]. In Beijing, the main concentration of pollutants is
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a two-peak pattern being coincident with rush hour [7]. If the
wind speed is not big enough during these two periods, the
pollutants are not easy to dissipate. The appearance time of strong
wind is important for pollution.

Extracting the typical modes of daily variation of wind speed is
helpful to study the appearance time of strong wind. The
classification method has been verified to be useful to extract the
typical modes, which can obtain more information from the system
[8, 9]. In the classification, the typical spatial modes can be extracted
by taking the spatial field as the sample (Makra et al. [10]). Taking
the diurnal variation as the sample, the typical diurnal variation
modes can be extracted. The clustering is an effective technique for
extracting the typical modes. The K-means clustering method [11,
12] is the most widely used clustering method, which classifies a set
of samples into k clusters according to the average distance from
each sample to the cluster center. The clustering method is
unsupervised learning, which does not rely on predefined
samples and can automatically learn and label samples through
iteration [13]. At present, it is widely used in fields such as machine
learning [14], image recognition [15, 16], speech recognition [17],
and climate change [18]. Because the K-means clustering method is
based on calculating the spatial distance, it is generally used in
numerical samples. Therefore, when it comes to texts, risk levels, and
logical decisions, quantification is needed [19]. The clustering
analysis algorithm is simple and easy to operate. However, on the
one hand, clustering tends to fall into the local optimization and
instability due to the randomness of the initial value; that is, the
clustering result depends on the selection of the initial value [20]. On
the other hand, the selection of the k value is generally subjective and
lacks self-adaptability. To solve the problem of selecting the initial
values, improved K-means algorithms such as the Kd-tree [21], the
K-means++ [22], the cluster center initialization algorithm [23], and
the fast search and find of density peaks [24] were proposed.. For
self-adaptation of the k value, the author in Ref. 13 proposed a new
method based on the degree of dispersity and aggregation, which
automatically determines the k value by presetting a large k value and
then degenerating. The authors in Ref. 25 also proposed a support
vector machine decision tree method to determine the k value based
on the dichotomy K-means. In addition, the elbowmethod is widely
used to determine the k value because it is simple to operate. The
authors in Ref. 26 proposed a new method to automatically obtain
the k value based on the elbowmethod. The application of these new
methods makes up the shortcoming of the K-means method, and
effectively promotes the development and application of the
K-means clustering method. Time consumption of the clustering
algorithm in the iteration process is another problem that must be
considered. Time consumption increases linearly along with the
increase of the database. Therefore, a second clustering method is
proposed in this study to reduce time consumption and promote
clustering efficiency.

In this study, the clustering analysis of characteristics of the
wind speed diurnal variation in Beijing is carried out based on the
K-means clustering method. In “Results and Analyses” section,
the data and the method are introduced briefly. In “First
Clustering: The Number of Clustering” section, the clustering
analysis is carried out for each station based on the hourly
wind speed data at 160 observation stations during 2008–2017.

The typical characteristics of the diurnal variation and the
number of main clusters are obtained. In “Second Clustering:
Typical Characteristics of the Wind Speed Diurnal Variation”
section, according to the classification results, a second clustering
is carried out to obtain the typical modes of the characteristics of
the wind speed diurnal variation in Beijing. The temporal and
spatial variations of the typical modes are analyzed too.

2 DATA AND METHOD

2.1 Data
Based on the observed meteorological data at Beijing station,
relatively complete hourly wind speed data at 160 stations are
retained after the quality control, covering the period from January
1, 2008 to December 31, 2017. The distribution of the stations is
shown in Figure 1. Most of them are in the flat region in Beijing.
The altitudes at some stations in Yanqing district, Mentougou
district, and Fangshan district are more than 1, 000 m above sea
level. The city and suburbs are divided by the Fifth Ring Road.
The stations in the city are significantly more than those in the
suburbs.

2.2 K-Means Clustering Method and Its
Improvements
The K-means algorithm is an unsupervised learning algorithm,
which is often applied to the field of data mining [26], and it is a
common clustering algorithm. The calculation steps are as
follows:

1) The number of samples is N, and k samples are selected
randomly as the initial cluster centers.

2) Do calculation of Euclidean distances (Di,j) from one sample
represented with xi to each clustering center represented with
cj according to Eq. 1. The sample xi is assigned to the cluster
center cj when the Euclidean distance Di,J is the shortest.

FIGURE 1 | The distribution of 16 districts and stations in Beijing. The red
line indicates the Fifth Ring Road.
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Calculate all the samples like this and assign them to different
cluster centers.

3) In order to ensure that the cluster centers can be representative
asmuch as possible, the cluster centers are recalculated by using
the samples assigned in different clusters.

4) Repeat steps 2 and 3 until the cluster centers of each sample no
longer change.

Di,j �
∣
∣
∣
∣xi − cj

∣
∣
∣
∣, i ∈ [1,N], j ∈ [1, k], (1)

xi → cJ ,Di,J � min|kj�1Di,j, i ∈ [1,N]. (2)

There are two shortcomings of the K-means method. The first
is that the randomness of selecting the initial value results in
different results. The method of the ensemble is used in this
study. We repeat the clustering several times (the random
selection of the initial value), then calculate the ensemble
results, and finally determine the clustering results. The
second shortcoming is that the selection of the k value
directly impacts the clustering results. The optimal number
of the samples is related to the structure of the data themselves,
but the latter is hard to determine. It is very difficult to
determine the optimal solution of the k value. Therefore,
the elbow method is used to determine the k value in
this study.

2.3 Second Clustering
If the number of samples is too large to be clustered directly, a
second clustering method can be used. According to the
characteristics of samples, the first clustering is carried out

first. Then, the clustering results are used as samples for the
second clustering. As shown in Figure 2, the cluster of each
station is carried out first, and the second clustering is taken by
using the clusters’ results. The distributed clustering can greatly
reduce the calculating time and save computing resources. Yij (i �
1, 2, 3,..., m; j � 1, 2, 3, ..., n) represents the samples for the first
clustering, where m represents a station and n represents
moment. Cil (i � 1, 2, 3, ..., m; l � 1, 2, 3, ..., k) represents the
first clustering results, and it also represents the samples of second
clustering, where k represents the number of first clustering for
each station. Pt (t � 1, 2,3, ...,o) represents the clustering result of
second clustering.

3 RESULTS AND ANALYSES

3.1 First Clustering: The Number of
Clustering
3.1.1 Analyses of the Clustering Results at a Single
Station
Taking Shunyi station as an example, we illustrate the process of
the K-means clustering. The hourly data during 2008–2017 are
taken as samples, and the total number of samples is 87,600. First,
the elbow method is used to determine the k value, as shown in
Figure 3A. The X-axis represents the k value, and the Y-axis is the
average of the Euclidean distance between different samples and
their corresponding clusters. It is noted that the average distance
is 0 when k �N. In the actual clustering analyses, we hope that k is
as small as possible, but the clusters can represent the samples. In
Figure 3, with the increase of k, the average distance decreases

FIGURE 2 | The schematic diagram of the two-step clustering analysis.
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continuously. When k>10, the average distance is nearly
constant. Thus, k is set to 10. Next, the ensemble method is
used to minimize the influence of the initial value selection. In
this study, the initial values are selected randomly 100 times,
and the cluster frequency of each time is shown in Figure 3B
with the percentage box line chart. The 10 clusters are marked as
C1, C2,. . ., and C10, respectively. Their average sample
proportions are 29.80, 19.01, 12.25, 9.96, 8.56, 6.10, 4.90,
4.14, 3.03, and 2.25%, respectively. However, their variances
are small, which means that the clustering of most samples has
not changed. For one sample, it may belong to different cluster
center. We assign this sample to the cluster center which
appears most in 100 clusters. Finally, 10 cluster centers of
wind speed at Shunyi station are obtained and shown in
Figure 4. Among them, the wind speed cluster of C1 shows
the diurnal variation characteristic of “small at night and large
in the daytime” with the maximum wind speed around 12:00
CST (China Standard Time; the same below). The wind speed
cluster of C2 shows a skewed distribution, with the maximum
wind speed in the afternoon. The diurnal variation
characteristic of the wind speed cluster of C3 is similar to
that of C1, but the wind speed is higher than that of C1. The
diurnal variation of C4 is similar to that of C2, but the wind
speed is higher than that of C2. The wind speed cluster of C5 is
different from other clusters, showing a monotonous increasing
diurnal variation. The diurnal variation cluster of C7 is
significantly different from that of other clusters, showing a
decreasing characteristic. The wind speed of C8 keeps low before
10:00 CST and increases rapidly from 11:00 to 16:00 CST. The
wind speed diurnal characteristic of C9 presents the
characteristics of linear increasing and linear decreasing. The
diurnal variation of wind speed of C10 is similar to that of C6.

Using the clustering method, we can obtain the typical
characteristics of the wind speed diurnal variation. However,
the temporal and spatial distributions of the typical
characteristics are not clear. Also, the number of the typical
characteristics (clusters) that can be obtained at different stations

is not clear. Therefore, the observed wind speed data of other 159
stations in Beijing are clustered like those of Shunyi station.

3.1.2 Numbers of the Clusters at Different Stations
The above analyses show that the diurnal variation of the wind
speed in Beijing is diverse. The sample numbers of different clusters
can be greatly different from those of each other. Thus, typical
clusters are analyzed. Cluster analyses are carried out based on the
diurnal variations of the wind speed at 160 stations in Beijing. The
cluster number (k) is 10. According to Figure 3B, the frequencies
of the first few clusters’ samples are larger, which can represent
more samples, and these clusters are considered to be typical
clusters. In this study, if the sample percentage of one cluster is
greater than 5%, the cluster is considered as a typical cluster.

The spatial distribution of the typical cluster number at
different stations is shown in Figure 5A. The number of
typical clusters in urban and flat areas is less than that of
clusters in suburban mountainous areas. There are six stations
with four clusters, which are mainly in the suburbs including
Shunyi district, Huairou district, and Daxing district, with a low
average altitude of 80.83 m (Figure 5B). There are 29 stations
with 5 clusters, which are mainly located in the city (including
Chaoyang district, Haidian district, Fengtai district,
Shijingshan district, Dongcheng district, and Xicheng
district) and areas near the city (including Shunyi district,
Changping district, and the south of Huairou district). Their
average altitude is 113.17 m. There are 79 stations with 6
clusters, which are mainly in the urban area, and the
average altitude is 172.85 m. There are 31 stations with 7
clusters. Parts of them are located in the city, and the
others are in the area far away from the city, including
Miyun district, Pinggu district, and the south of Daxing
district. The average altitude is 243.48 m. There are 12
stations with eight and three stations with nine clusters,
respectively, which are mainly in the northern area such as
Yanqing district, Miyun district, and Pinggu district. The
average altitudes are 335.75 and 588.00 m, respectively.

FIGURE 3 | (A) The average distance between the sample and the center corresponding to different k values. (B) Percentage box line chart of clustering samples
(k � 10).
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In conclusion, the number of clusters with a lower altitude is
less, including five clusters in urban areas and seven clusters in the
suburb area. In the areas with high altitudes, there are mainly 8
and 9 clusters.

3.1.3 The Interannual Variation of the Cluster Number
at Different Stations
The spatial and temporal variations of the typical cluster numbers
in different years are further studied. The relationship between
the typical cluster number and the station number is shown in

Figure 6. During 2008–2012, the station numbers with four
clusters (abbreviated to four clusters) and 5 clusters hardly
changed. The average station numbers were 6.00 and 30.00,
respectively. The station numbers with six to nine clusters
were significantly different before and after 2010. The average
station numbers during 2008–2010 were 48.00, 41.67, 22.67, and
10.33, respectively. During 2011–2012, the average station
numbers were 69.50, 29.50, 15.50, and 4.00, respectively. The
stations with 6 clusters increased significantly, while the stations
with seven to nine clusters decreased significantly. During

FIGURE 4 | The cluster analysis results of the hourly wind speed in 3,650 days at Shunyi station in Beijing. The X-axis is 00:00–23:00 CST, the Y-axis is the wind
speed, and C1–C10 represent the 10 clusters, respectively. The black line represents the sample average at different times, and the shade represents one standard
deviation of the corresponding sample.
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2013–2015, the stations with four to five clusters increased
significantly, reaching 20.67 and 53.00, respectively. The
stations with six to eight clusters decreased to 44.67, 24.00,
and 10.33, respectively. During 2016–2017, the stations with
four to five clusters decreased to 16.00 and 37.00, respectively.
The stations with six to nine clusters increased. Among them, the
station numbers with seven to nine clusters increased
significantly by 5.00, 8.17, and 5.50, respectively. Therefore, in
the past 10 years, during 2011–2012, the stations with six clusters
increased, and during 2013–2015, the stations with four to five
clusters increased, which indicates that the clustering numbers at
stations in Beijing are decreasing. However, after 2016, the
clustering numbers are increasing.

The spatial distribution of the annual cluster numbers is
shown in Figure 7. Before 2011, the cluster numbers in
Yanqing district, Miyun district, Pinggu district, and

Tongzhou district, which are all suburban areas, were mainly
seven to nine, while those in the other areas were mainly 5–6.
During 2011–2012, the cluster numbers in the urban area,
including Yanqing district, and Miyun district changed from
8–9 to 6, while the cluster numbers in the urban area and Shunyi
district changed from 7 to 6. During 2013–2015, the cluster
numbers in Yanqing district, Huairou district, Fangshan
district, and Daxing district, and the urban area changed from
6–7 to 4–5. The variation shows that the number of main clusters
was decreasing. While during 2016–2017, the cluster numbers in
the urban areas, including Yanqing district, Changping district,
and Pinggu district, changed from four to five to six to seven,
which means the diurnal variation of wind speed has become
more significant. The variation of the cluster numbers in recent
years is further studied, as shown in Figure 8. Five to seven
clusters remain unchanged before and after the transformation.

FIGURE 5 | (A) Spatial distribution of typical cluster numbers at different stations. (B) Relationship between the typical cluster number and the station altitude. The
orange contour represents the station altitude, the scatter chart represents the cluster number of the corresponding station, and the histogram is the number of different
clusters and the average altitude of the number. The x-axis represents the stations, and the y-axis represents these stations’ altitude.

FIGURE 6 | Interannual variation characteristics of the total clustering numbers in different years. The x-axis represents time (year), and the y-axis represents the
number of stations.
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The annual average station numbers are 17.44, 23.56, and 10.11.
The frequency of decreased clusters is 450 after the
transformation, that is, 50 stations per year on average.
Among them, there are 12.22 stations per year with cluster
numbers changing from 6 to 5 and 11.11 stations changing
from 7 to 6 per year. The frequency of increased clusters is
400 after the transformation, that is, 44.44 stations per year on
average. Among them, 10.11 stations change from 5 to 6, and 9.00
stations change from 6 to 7 per year.

In summary, the cluster numbers of the wind speed diurnal
variation in different regions of Beijing are significantly
different. In urban areas, the cluster numbers are mainly 5
and 6. In the suburbs, the cluster numbers are mainly 7–9.
Before 2015, the cluster numbers mainly changed from 7–9 to
4–5. The numbers increased after 2016. In the recent 10 years,
the cluster numbers at most stations change from 5 to 6 and
from 6 to 7, and the decreasing transformations are more than
the increasing ones.

FIGURE 7 | Spatial distribution of typical cluster numbers at different stations in different years. (A–J) 2008–2017.
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3.2 Second Clustering: Typical
Characteristics of the Wind Speed Diurnal
Variation
3.2.1 Classification and Diurnal Variation of Different
Wind Speeds
The cluster results at different stations are simplified by the second
clustering. The cluster results at all stations in Beijing are used as new
samples for the second clustering analyses. Figure 9A is the elbow
diagram of the second cluster. When the cluster number k is larger
than 12, the average distance is almost the same. Therefore, the cluster
number is set to 12, and different clusters are marked as P1, P2,. . .,
and P12, respectively. Figure 9B shows the percentage of cumulative
days at stations with different clusters. P1–P3 clusters are more than

10%, accounting for 39.85, 21.04, and 11.39%, respectively. The
cumulative percentage is 72.28%, representing most of the wind
speed diurnal variation. The proportions of P4, P5, and P6 are 9.04,
4.64, and 4.31%, respectively. The days represented byP7–P12 are less
than the others, accounting for only 9.73% as shown in Figure 10.

The wind speed diurnal variations of different types are shown in
Figure 10. The wind speeds of P1–P3 clusters are significantly lower
than those of other clusters, and the diurnal average wind speeds are
1.07, 1.56, and 1.95m s−1, respectively. The wind speed diurnal
variation of P1 cluster presents a quasi-symmetric structure, which
is in a stable stage (about 1.00 m s−1) during 18:00–08:00 CST and
increases during 8:00–14:00 CST. The maximum wind speed is
1.46 m s−1. Then, the wind speed decreases during 14:00–18:00. The
wind speed of P2 cluster is asymmetric. The wind speed is almost
constant (1.00m s−1) during 00:00 to 8:00 CST and increases during
08:00–15:00 CST, with a maximum of 2.63m s−1. The wind speed
decreases during 15:00–19:00 CST and decreases slowly during 19:
00–23:00 CST. The wind speed of P3 cluster is also distributed
asymmetrically. The wind speed is about 2 m s−1 during 00:00–8:00
CST and then increases. The maximum wind speed is at 11:00 and
12:00 CST (both are 2.53m s−1). Then, the wind speed decreases
slowly and remains constant after 19:00 CST (the average wind
speed is 1.43 m s−1).

Compared with the average wind speeds of P1–P3 clusters, the
average wind speeds of P4–P6 clusters are higher, which are 2.24,
3.03, and 2.14 m s−1, respectively. The wind speed diurnal variation
of P4 cluster is similar to that of P2 cluster. The wind speed hardly
changes during 00:00–8:00 CST (the average wind speed is
1.31m s−1), and then increases. The maximum wind speed is at
15:00 CST, which is 3.99 m s−1. The wind speed decreases at 15:
00–19:00 CST and becomes constant during 19:00–23:00. The
wind speeds of P5 and P6 clusters are monotonous. P5 cluster is a
monotonously decreasing type, and P6 is a monotonously
increasing type. The wind speed diurnal variation of P7 and P8
is slightly similar to that of P4, but the maximum wind speeds
appear at different times. The maximum wind speeds of P7 and P8
clusters occur at 12:00 and 15:00 CST, with the maximum wind
speeds of 4.41 and 5.07m s−1, respectively. Before reaching the

FIGURE 8 | Transformation of clustering numbers in different years. t
represents the cluster number in the current year, and t+1 represents the
cluster number in the next year.

FIGURE 9 | (A) Sum of square error of different cluster numbers. (B) Experiments for the cluster number of 10.
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maximum wind speed, the wind speed of P9 cluster also keeps
constant (the average wind speed is 2.24m s−1 during 00:00–8:00
CST) at first and then increases. The maximum wind speed of
5.47m s−1 appears at 15:00 CST. The wind speed decreases rapidly
during 15:00–23:00 CST to 3.84 m s−1 at 23:00, which is higher
than 2.20 m s−1 at 00:00 CST. The average wind speeds of P10–P12
are significantly higher than those of other clusters, which are 4.39,
5.05, and 9.53m s−1, respectively. The wind speed of P10 cluster
reaches 3.71m s−1 at 00:00 CST and reaches the maximum value
(5.41 m s−1) at 13:00 CST. Then, the wind speed decreases and
reaches the minimum value (3.20 m s−1) at 23:00 CST. The wind
speed of P11 cluster increases during 00:00–13:00 CST with the

maximum of 6.96 m s−1, which decreases during 13:00–23:00 CST.
The variation of P12 cluster is different from that of other clusters.
The diurnal variation is insignificant. The wind speed shows a
linear increasing trend during 00:00–8:00 CST. Then, the wind
speed decreases rapidly during 08:00–10:00 CST and nearly
remains constant during 11:00–23:00 CST, which is 8.88m s−1.

To sum up, the diurnal variation of wind speed at all stations
in Beijing can be divided into 11 clusters. Except for P5, P6, and
P12, the wind speed diurnal variations of other clusters show the
characteristics of “large in the daytime and small at night.”
However, the different time of the maximum wind speed and
the different wind speed lead to multiple clusters of the wind

FIGURE 10 | Diurnal variation characteristics of different clusters.
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speed diurnal variation of this type. P5 is a monotonic increasing
cluster. P6 is a monotonic decreasing cluster. The wind speed of
P12 is high without significant diurnal variation.

3.2.2 Interannual Variation and Trend of Different Wind
Speed Clusters
Furthermore, the interannual variations of different wind speed
cluster frequencies are analyzed, as shown in Figure 11. For P1
cluster, the frequency increases rapidly during 2008–2013, with a
trend of 672.54 a−1 (significant at the 98% confidence level,
according to the linear trend regression test (LTRT)), which
means more and more wind speed is getting smaller. In
2014–2017, the increasing trend stops (the annual average

frequency is 2.37 × 104). P1 cluster is mainly distributed in
the fifth ring, which might be related to the larger roughness
of the city. The frequency of P2 cluster does not increase or
decrease significantly in the past 10 years, with an annual average
frequency of 1.23 × 104. The frequency of P3 cluster shows a
significant negative trend of −105.89 a−1 (significant at the 95%
confidence level, according to the LTRT). The frequency of P4
cluster in 2009 (6,062 times) is significantly higher than the
annual average (5,193.44 times). After removing this year,
there is a significant increasing trend of 42.39 a−1 (significant
at the 95% confidence level, according to the LTRT). The
frequencies of P5 and P6 significantly decrease with the trends
of −87.55 a−1 and −71.99 a−1, respectively (both significant at the

FIGURE 11 | Interannual variation of different wind speed clusters (P1–P12). The X-axis represents time, and the Y-axis represents the total frequency (unit: days) of
one wind speed cluster at all stations. The coefficient in the figure represents the multiple of the actual data.
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99% confidence level, according to the LTRT). The frequencies of
P7–P10 clusters show the variation characteristics of “first
decrease and then increase,” with the minimum frequency in
2014. The frequency trends of the four clusters during 2008–2014
are −42.29, −66.39, −28.57, and −49.54 a−1 (all significant at the
98% confidence level, according to the LTRT), respectively. The
frequencies of the four clusters increase to varying degrees during
2015–2017. The frequency of P11 is significantly higher in 2010
and during 2015–2017. The frequency of P12 increases
significantly during 2015–2017.

In conclusion, there are significant differences in the variation
trend of different wind speed clusters in different years. The
variation trend of P2 is not significant. P1 and P4 show significant
increasing trends. P3, P5, and P6 show significant decreasing
trends. The frequencies of P7–P10 decrease before 2014 and then
increase. The frequencies of P11 and P12 increase after 2014.

3.2.3 Clusters of Wind Speed at Different Stations
There are regional differences in the frequency of the wind speed
clusters at different stations. The frequencies of P1–P12 clusters at

FIGURE 12 | Cluster frequency at different stations. The black line is the Fifth Ring Road.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 67592211

Yan et al. Typical Modes of Wind Speed

31

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


each station during 2008–2017 are calculated, as shown in Figure 12.
P1 cluster is the most common type. As for the spatial distribution,
the frequencies at stations in urban areas are significantly higher than
those in suburban areas. There are 25 stations more than 2,400 times.
The station number with the frequency more than 1,200 times in the
whole area is 81, showing that P1 cluster is the main cluster at most
stations. Stations with frequencies less than 800 times are mainly in
Yanqing district, Pinggu district, and Fangshan district, and the total
number is 12. The stations of P2 cluster with a frequency more than
1,200 times are mainly distributed in Yanqing district, Huairou
district, Miyun district, and Pinggu district, and the station
number is 24. However, the frequency at most urban stations is
less than 400. The stations with high frequencies of P3 cluster are
mainly in the suburbs. There are 56 stations with frequencies more
than 500 times, which are mainly distributed in Fangshan district,
Changping district, Yanqing district, Miyun district, Pinggu district,
and Shunyi district. The frequency of P3 cluster inmost urban areas is
less than 400 times. P4 cluster mainly occurs in the northwest of
Beijing, including Mentougou district, Yanqing district, and
Changping district. The number of stations with more than
500 times is 26. The frequency of P4 cluster in most urban
stations is less than 300. As for P5 cluster, the number of stations
with more than 400 times is 17, which are mainly distributed in
Yanqing district, Changping district, and Pinggu district. As for P6
cluster, the number of stations with more than 400 times is 12, which
are mainly distributed in the urban area and Miyun district. The
frequencies of P7 and P8 clusters are low. There are 9 and 10 stations
with more than 300 times, respectively, which distribute in the west
and northwest of Beijing. There are few stations with P9–P12 clusters.
As for P9 cluster, there are seven stations with a frequency of more
than 200 times, which are mainly in Changping district, and most of
the other stations are less than 100 times. As for P10 cluster, there are
nine stations with a frequency of more than 200 times, which are
mainly in Changping district and Yanqing district. As for P11 cluster,
there are 15 stations with a frequency of more than 200 times, which
are mainly distributed in Yanqing district. There are only four
stations with P12 cluster. Among them, the frequency at Lingshan
station in Mentougou district is 440 times, and the frequency at
Foyeding station in Yanqing district is 396 times. At these two
stations, the altitudes are 1,669 and 1,217m, respectively.
Therefore, the wind speeds are always high.

To sum up, there are differences in the main areas of different
clusters of wind speed. P1 cluster mainly appears in urban areas.
P2 cluster is mainly distributed in urban areas and northern areas.
P3 cluster is mainly distributed in the central and northern areas.
P4 and P5 clusters are mainly distributed in the northwest. P6
cluster is mainly distributed in the central area.

4 CONCLUSION AND DISCUSSION

In this study, the initial value of the K-means clustering method
is selected using an ensemble method. The hourly observation
data at 160 observation stations in Beijing in recent 10 years are
used for cluster analyses. The different clusters of the wind
speed diurnal variation at different stations are studied, and the
spatial and temporal variations of the cluster numbers and types

at different stations are analyzed. The conclusions are as
follows.

1) The cluster analyses are carried out at each station. The wind
speed at most stations can be divided into four to nine clusters, and
themain clusters are five to seven clusters. There aremainly five to six
clusters near the urban area and seven clusters far away from the
urban area. The altitudes are high at the stations with 8 and 9 clusters.

2) As for the long-term variation, the number of stations with
cluster numbers of four to five increased significantly during
2013–2015, and the number of stations with cluster numbers of
six to eight decreased, which means the total number of the wind
speed clusters decreased during this period. As for the
transformation of cluster numbers in the recent 10 years, the
stations with five to six clusters and six to seven clusters tend to
transform more than the others, and the transformation to fewer
cluster numbers is more than that to more cluster numbers.

3) For all stations, the diurnal variation of the wind speed can
be divided into 12 clusters including 9 clusters of “large in the
daytime and small at night,” with 1 cluster of monotonous
increase, 1 cluster of monotonous decrease, and 1 cluster of
strong wind. Among them, nine different clusters of “large in
the daytime and small at night” are mainly caused by the different
time and value of the maximum wind speed.

4) As for the long-term variation trend, P1 and P4 increase
significantly. P3, P5, and P6 decrease. P7–P12 show opposite trends
before and after 2014. As for the spatial distribution, P1 cluster is
mainly in urban areas, while other types are mainly in suburbs.

The daily variation of wind speed at the station near the urban
area is consistent, while in the suburban area, the diurnal
variation of wind speed at different stations is quite different,
especially for the stations with high altitude. The difference of
daily variation of wind speed at more and more stations is small,
and the wind speed is small too. Under the background of
urbanization, more and more buildings increase the surface
roughness, reduce the wind speed, and reduce the difference
of daily variation of wind speed at different stations [27]. It is not
conducive to the dissipation of urban pollutants and should be
paid more attention by the government.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

PY and PY contributed to the conception of the study. PY and DZ
performed the data analyses and wrote the manuscript. DZ and
SL helped preform the analysis with constructive discussions.

FUNDING

This research has been supported by the Ministry of Science
and Technology of China (2018YFA0606302), the Open

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 67592212

Yan et al. Typical Modes of Wind Speed

32

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Project of Key Laboratory of Land Surface Process and Climate
Change in Cold and Arid Regions (LPCC2019002), and the
National Natural Science Foundation of China (41775078,

42005058, 41675092). The data used in this study can be
obtained by contacting the corresponding author: Ping
Yang (zz96998@163.com).

REFERENCES

1. Cassiani M, Stohl A, Eckhardt S, Stohl A, and Eckhardt S. The Dispersion
Characteristics of Air Pollution from the World’s Megacities. Atmos Chem
Phys (2013) 13:9975–96. doi:10.5194/acp-13-9975-2013

2. Li XF, Zhang MJ, Wang SJ, Zhao AF, Ma Q, Zhang MJ, et al. [Variation
Characteristics and Influencing Factors of Air Pollution index in China].
Environ. Sci. (2012) 33:1936–43. doi:10.13227/j.hjkx.2012.06.035
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Combining Snow Depth From FY-3C
and In Situ Data Over the Tibetan
Plateau Using a Nonlinear Analysis
Method
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Snow cover over the Tibetan Plateau plays a vital role in the regional and global climate
system because it affects not only the climate but also the hydrological cycle and
ecosystem. However, high-quality snow data are hindered due to the sparsity of
observation networks and complex terrain in the region. In this study, a nonlinear time
series analysis method called phase space reconstruction was used to obtain the Tibetan
Plateau snow depth by combining the FY-3C satellite data and in situ data for the period
2014–2017. This method features making a time delay reconstruction of a phase space to
view the dynamics. Both of the grids and their nearby in situ snow depth time series were
reconstructed with two appropriate parameters called time delay and embedding
dimension. The values of the snow depth for grids were averaged over the in situ
observations and retrieval of the satellite if their two parameters were the same. That
implies that the two trajectories of the time series had the same evolution trend. Otherwise,
the snow depth values for grids were averaged over the in situ observation. If there were no
in situ sites within the grids, the retrieval of the satellite remained. The results show that the
integrated Tibetan Plateau snow depth (ITPSD) had an average bias of –1.35 cm and
1.14 cm, standard deviation of the bias of 3.96 cm and 5.67 cm, and root mean square
error of 4.18 cm and 5.79 cm compared with the in situ data and FY-3C satellite data,
respectively. ITPSD expressed the issue that snow depth is usually overestimated in
mountain regions by satellites. This is due to the introduction of more station observations
using a dynamical statistical method to correct the biases in the satellite data.

Keywords: snow depth, Tibetan Plateau, phase space reconstruction, FY-3C satellite, nonlinear analysis method
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INTRODUCTION

Snow over the Tibetan Plateau plays a prominent role in the
climate system, hydrological cycle, and biogeochemical cycle
[1–5]. It is also a primary indicator of climate change and
significantly impacts local and global climate, water resources,
and economic and society development [1, 6, 7]. Long-term and
high-resolution data are prerequisites for climate change
monitoring and assessments, and climate forecast, especially
for snow depth [1, 8, 9] because snow depth can provide
quantitative information about the material and energy of
snow. Thus, there is an urgent need for operations and
research on climatology and hydrology.

Conventional snowmeasurement through in situ devices has a
long history [10]. For China, systematic observations can be
traced back to the 1950s. The measure is high in accuracy and
usually used to validate satellite retrieval snow products and
reanalysis products. However, observational networks suffer
from low station density in complex terrains due to the
Tibetan Plateau’s remoteness, high altitude, and harsh weather
conditions, especially for the western andmiddle Tibetan Plateau.
The installation and maintenance of stations in the Tibetan
Plateau are the main challenges [11, 12].

The past four decades witnessed the development of passive
microwave remote sensing to acquire large-scale snow datasets
[13]. It has become an effective way to estimate snow depth for
providing all-day and all-weather monitoring and spatially
continuous information of snow depth variation derived from
the Scanning Multichannel Microwave Radiometer (SMMR), the
Special Sensor Microwave/Imager (SSM/I), the Advanced
Microwave Sounding Unit (AMSU), the Advanced Microwave
Scanning Radiometer for EOS (AMSR-E), and the Microwave
Radiation Imager (MWRI). The MWRI is onboard the FY-3
series satellite. It is important for snow monitoring of the Tibetan
Plateau. However, it usually overestimates the snow depth by
mistaking the cold surface as snow cover in the retrieval
algorithms in the Tibetan Plateau. This issue needs to be
investigated.

One way is to combine the snow depth from the remote
sensing data and station observations. There are two classical
approaches to do this. One includes using a semiempirical snow
emission model. In the model, the passive microwave brightness
between 20 and 150 GHz is assimilated and the in situ snow depth
values are used as input to estimate snow grain size at the station
locations. The disadvantages of this method are as follows: the
model is in the progress stage and forward modeling of the
microwave brightness in the above frequency range exhibits large
uncertainties [14]. Another approach is statistical interpolation
taking both satellite and in situ snow depth increments and
terrain-dependent error correlations of snow depth increments
into consideration. However, currently, snow depth is not
assimilated due to the perceived unreliability of satellite
estimates [15].

Phase space reconstruction is a nonlinear time series analysis
method to reveal dynamic characteristics by expanding the time
series to high dimensions, that is, a state space reconstruction
method of delayed coordinates. This is a common method to

predict the now and future state based on the past state in
nonlinear time series analysis [7, 16]. It has achieved great
success in climate prediction and analysis [17–22]. However,
phase space reconstruction has rarely been applied to blend and
analyze snow depth from satellites and in situ data. This study
aimed to obtain accurate snow depth by integrating FY-3C
satellite data and in situ data based on phase space reconstruction.

The remainder of the article is organized as follows. In Section
2, the study area and data used are described. The nonlinear
analysis method—phase space reconstruction—and integrated
Tibetan Plateau snow depth (ITPSD) bias correction model
are introduced in Section 3. Section 4 presents the processes
of combining snow depth observations from the FY-3C satellite
and meteorological stations. In Section 5, the evaluation criteria
of ITPSD are presented and the validation results are also
provided in this section. The discussion and conclusion are
presented in Section 6.

STUDY AREA AND DATA

The study area is located at 25°N–40°N and 73°E–105°E and
confines the Tibetan Plateau. It is about 2.6 million square
kilometers in area. Most of it lies at an altitude of more than
4,000 m above sea level, making it peculiarly cold for its
latitude—colder than anywhere else outside the polar regions,
leading it to be known as the Third Pole [23]. It has an abundance
of snow and ice cover. When they melt, the runoff from the
region’s mountain feeds major rivers in Asia, such as the Yangtze,
Yellow, Mekong, and Indus rivers. With the warming climate,
snow cover is becoming even more important to gauge what is
happening to the Tibetan Plateau and understand its potential
impact on regional or global climate and water supply.

Due to the region’s remoteness, high altitude, and harsh
weather conditions, there are only 340 meteorological stations
which is much fewer than that in East China. The locations of the
stations can be found in Figure 1. Some of the stations began
operating in the 1950s. But they are insufficient to meet the needs
for understanding the snow spatial variation of the Tibetan
Plateau. The other common source of snow cover observation
is remote sensing data. The Microwave Radiometer Imager
(MWRI) is onboard the FY-3C satellite which was launched in
2014. Therefore, the study period was from 2014 to 2017. The
MWRI daily product of snow depth and snow water equivalent
was produced by the National Satellite Meteorological Center and
is available at http://satellite.nsmc.org.cn/portalsite/default.aspx?
currentculture�en-US#.

METHODOLOGY

A nonlinear prediction method called phase space reconstruction
was used here to retrieve ITPSD. For nonlinear systems, it is a
commonmethod to view the dynamical factors of their evolution.
For a grid point or an in situ site, its time series can be described
by x1, x2, ..., xt, ..., xm, where m is the length of the record time. To
reduce noise and view the dynamics of the time series, it was
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extended to three or even more dimensions, that is, a delayed
coordinates phase space reconstruction (DCPSRC) was created.
For a f (n), the vector time series is given by the following
equation:

X(ti) � (x(ti), x(ti + τ),/, x(ti + (n − 1)τ)), (1)

where i denotes a grid point or an in situ site and τ is an
appropriate time delay. Based on the decay of the auto-
correlation function to 1/e, the appropriate time delay can be
determined for each time series [24]. As for embedding
dimension, the false nearest neighbor (FNN) approach was
used to calculate the optimal embedding dimension [25].

In this study, to obtain ITPSD, DCPSRC was first applied to
the time series of the in situ sites and grids from FY-3C,
respectively. Then the optimal time delay (τ) and embedding
dimension (n) for each site and grid were given and analyzed.
Finally, ITPSD data were combined as per the following strategy.
For a grid, if there were matched sites and its dynamic factors
(i.e., the time delay and the embedding dimension) were similar
to those of the sites, snow depth values of the grid were averaged
over all the sources. If its dynamic factors were far from those of
the sites, snow depth values of the grid were averaged over all the
sites. If there were no matched sites, then its original values were
referred to as the ITPSD.

PROCESSESOFCOMBINING INTEGRATED
TIBETAN PLATEAU SNOW DEPTH

The process of integrating data from multiple sources into the
ITPSD dataset takes four steps: 1) choosing stations for whose
snow depth is greater than zero and include records of more than

30 days, and match the snow depth from FY-3C; 2) applying
DCPSRC to the time series of the stations and grids from FY-3C;
3) deriving all the dynamic factors of the stations and grids; and 4)
combining the data from the in situ sites and FY-3C satellite
according to the strategy in part 3 to form comprehensive
records.

In the initial step, records that have snow fall for more than
30 days from stations and the satellite are considered to meet
the statistics of applying DCPSRC. There are 5,461 records
meeting the conditions in total. The statement of records of
snow cover of the stations and FY-3C satellite are shown in
Table 1: 1) the missing rate of snow cover in stations is low,
accounting for only 0.19%, while that of the FY-3C satellite is
much higher and accounts for 37.98%; 2) both rates of no snow
cover for the two sources are very high and that of the stations
is higher with the value of 97.2%; 3) for trace snow, the rate of
station records is 0.63%. However, it is hard for the satellite to
retrieve this kind of snow information and the rate of satellite
records is 0; and 4) as for snow depth greater than 1 cm, the
rates of the stations and satellite are 1.98% and 1.30%, which
are closer to each other than in other situations. This type of
snow is concentrated on in this study. The records chosen in
the first step match the records of the stations and satellite of
this type.

The second and third steps are key to determining how to
integrate the station and satellite data in the final step. The second
step is to construct the delayed phase space for all the data to find
their dynamic factors. The third step is to give the time delay and
the embedding dimension of the stations and the grids. Table 2
shows the site information of 18 stations and their dynamic
factors. Meanwhile, these stations have matched satellite grids
and these grids’ dynamic factors are identified with those of

FIGURE 1 | Location of the in situ sites over the Tibetan Plateau.
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stations. Their time delay is between 3 and 4, and the embedding
dimension is between 8 and 9.

As shown in the Figure 2, the stations are Alpine stations and
located at the edge of the Tibetan Plateau. This can be contributed
to the fact that these sites have an abundance of snow cover and
the atmosphere is clean due to less pollution. Therefore, the
MWRI onboard the FY-3C satellite can penetrate the atmosphere
more easily and reach the surface, and the bias correction effect is
better.

ASSESSMENT AND RESULTS

Evaluation Matrices
To evaluate the data, four statistical accuracy measures were
applied. The averaged bias (AB) was used for an assessment of the
whole dataset bias between ITPSD, FY-3C satellite data, and in

situ data. Standard deviation of the bias (SDB) evaluated the
amount of variation or dispersion of the AB. Root mean square
error (RMSE) measured their differences. Correlation coefficient
(CC) assessed their relationships.

abi � Ii − Di, (2)

AB � 1
N

∑

N

i�1
abi, (3)

SDB �
�����������

1
N
(abi − AB)2

√

, (4)

RMSE �
�����

1
N
ab2i

√

. (5)

Here, Ii means the ITPSD or FY-3C at site i or grid i,Di means the
snow depth of the site or the FY-3C of the grid i, and abi means
the bias of them.

TABLE 1 | Snow cover of stations and FY-3C satellite over the Tibetan Plateau.

Source No snow cover Snow depth greater than 1 cm Trace snow Missing

Number of records Rate Number of records Rate Number of records Rate Number of records Rate

Stations 41,2679 97.20% 8,388 1.98% 2,688 0.63% 811 0.19%
FY-3C satellite 25,7783 60.72% 5,537 1.30% 0 0 16,1246 37.98%

Note: trace snow means that the daily snow depth was less than 0.1 mm.

TABLE 2 | Site information and dynamic factors of 18 stations which have the same dynamic factors as that of the satellite.

ID Province Station name Latitude (°) Longitude (°) Elevation(m) Time delay Embedding dimension

1 Xinjiang Wuqia 39.7 75.2 2,175.7 4 9
2 Gansu Subei 39.5 94.9 2,137.2 4 8
3 Gansu Minle 38.5 100.8 2,281.4 4 9
4 Gansu Gulang 37.5 102.9 2072.4 3 9
5 Qinghai Zeku 35 101.5 3,662.8 4 8
6 Gansu Hezheng 35.4 103.3 2,162.8 3 8
7 Gansu Huajialing 35.4 105 2,450.6 3 8
8 Xizang Nielamu 28.2 86 3,810 4 9
9 Qinghai Qumalai 34.1 95.8 4,175 4 8
10 Qinghai Maduo 34.9 98.2 4,272.3 3 9
11 Qinghai Qingshuihe 33.8 97.1 4,415.4 3 9
12 Sichuan Shiqu 33 98.1 4,200 4 9
13 Qinghai Gande 34 99.9 4,050 3 9
14 Qinghai Dari 33.8 99.7 3,967.5 3 9
15 Qinghai Jiuzhi 33.4 101.5 3,628.5 3 8
16 Gansu Hezuo 35 102.9 2,910 3 9
17 Sichuan Hongyuan 32.8 102.6 3,491.6 3 8
18 Sichuan Emeishan 29.5 103.3 3,047.4 4 9

TABLE 3 | Comparison of different types of FY-3C satellite data and in situ data. The number of samples, CC, AB, SDB, and RMSE are listed.

Type of snow Samples CC AB(cm) SDB(cm) RMSE(cm)

Blizzard and heavy snow 1,565 –0.17 3.34 10.43 10.95
Blizzard 721 –0.07 7.40 3.38 8.13
Heavy snow 844 –0.23 –0.13 12.87 12.87
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Assessment Results of Snow Depth
Blizzards and heavy snow were of great concern in the assessment
(details just shown in Table 3), that is, when the snow depth was
between 1 cm and 3 cm for blizzards and greater than 3 cm for
heavy snow. The FY-3C satellite data and in situ data were not well
correlatedwith negative values of CC around 0. The AB of them for
heavy snow was rather low with a value of –0.13 cm, which meant
that the FY-3C could easily identify heavy snow with little negative
bias. The bias of blizzards between the FY-3C satellite data and in
situ data was higher and the value was up to 7.4 cm. This indicates

FIGURE 2 | Location of 18 stations with the same dynamic factors as satellite data.

FIGURE 3 | Scatter plots of ITPSD and in situ data. The corresponding
RMSE and other statistics can be found in Table 4.

TABLE 4 | Comparison of ITPSD with FY-3C satellite data and in situ data. The
CC, AB, SDB, and RMSE are listed.

Data CC AB(cm) SDB(cm) RMSE(cm)

In situ data 0.93 –1.35 3.96 4.18
FY-3C satellite data 0.30 1.14 5.67 5.79

FIGURE 4 | Scatter plots of ITPSD and FY-3C satellite data.
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that blizzards were overestimated by the satellite, and blizzards
also had low variation (SDB equaled 3.38 cm) but heavy snow had
large variability (SDB was up to 12.87 cm). The RMSE was large
both for blizzards and heavy snow.

The ITPSD and in situ data were highly correlated with the
value of 0.93 for CC. While ITPSD and FY-3C satellite data were
positively correlated, their CC was much lower with a value of
0.30 cm. The AB between the ITPSD and in situ data was
–1.35 cm, while that between the ITPSD and FY-3C satellite
data was 1.14 cm. The absolute value of them was around
1 cm, which meant that ITPSD had low bias both between the
FY-3C satellite data and the in situ data. The variation of their
bias was low with an SDB of 5.67 cm and 3.96 cm, respectively.
The differences of the ITPSD between the FY-3C satellite data
and in situ data were not apparently significant with an RMSE of
5.79 cm and 4.18 cm, respectively. Figure 3 shows the
comparison of ITPSD and in situ data. The scatter plot is
concentrated along two lines. And the slopes of them are
about 1 and 0.3, respectively, as shown in Table 4. As for
Figure 4, the ITPSD and FY-3C satellite data have moderate
positive linear association with more outlier points.

DISCUSSION AND CONCLUSION

In this study, a nonlinear time series analysis method called phase
space reconstruction was introduced to improve the accuracy of
the snow depth over the Tibetan Plateau by combining FY-3C
satellite data and in situ data in the period 2014–2017. The results
show that the method can integrate the FY-3C satellite data and
in situ data effectively. This can be attributed to considering the
evolution facts of snow with time to correct satellite bias and
introducing more in situ observations. Other useful conclusions
are as follows:

1) Eighteen stations and their matched FY-3C satellite grids were
identified with the same dynamic factors (time delay and
embedding dimension) of the method. The time delays were
between 3 and 4 days.

This meant the snow depth time series had a short range of
correlation. The embedding dimensions were between 8 and 9
indicating that in those dimensions the snow depth time series
was ideal and noise free. The locations of the stations are at the
edge of the Tibetan Plateau and they are Alpine stations. This can
be attributed to the abundance of snow cover and the cleanness of
the atmosphere in these stations. Therefore, the FY-3C satellite
could retrieve snow data better.

2) A negative bias and a positive bias between the FY-3C snow
depth and in situ snow depth for heavy snow and blizzards

indicated that the FY-3C underestimated heavy snow but
overestimated blizzards. For heavy snow, it was less
underestimated with a value of –0.13 cm for the averaged
bias. Blizzards were more likely to be overestimated with a
value of 7.4 cm.

3) Integrated Tibetan Plateau snow depth had a positive linear
association with the FY-3C snow depth and in situ snow
depth. This relationship was strong between the integrated
Tibetan Plateau snow depth and in situ snow depth, while that
between the integrated Tibetan Plateau snow depth and the
FY-3C snow depth was moderate.

Although the integrated Tibetan Plateau snow depth dataset is
much accurate than that of the in situ and FY-3C data, more work
needs to be done to extend the time span and density of the
dataset. Furthermore, more datasets should be included, such as
the ERA5 reanalysis dataset, to increase the samples of the data on
dynamic integration.
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The Physical Mechanisms Behind the
Change in the Precipitation Recycling
Rate in theMid- and Lower Reaches of
the Yangtze River
Wen-Kang Guo1, Xi-Yu Wang1, Wang-Ze Gao1, Jia-Hua Yong1, Xin-Yue Bao2,
Yong-Ping Wu1*, Guo-Lin Feng1,3,4* and Wen-Jie Dong4,5

1College of Physical Science and Technology, Yangzhou University, Yangzhou, China, 2Yangzhou Shuren School, Yangzhou,
China, 3Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China,
4Guangdong Provincial Laboratory of Marine Science and Engineering, Zhuhai, China, 5School of Atmospheric Sciences and
Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai, China

The precipitation recycling rate (PRR) is an important index when trying to understand the
physical mechanisms behind the effects of different sources of water vapor on regional
precipitation. We studied the change in the PRR in the mid- and lower reaches of the
Yangtze River (MLRYR), the correlation between the PRR and the external source of water
vapor and local evaporation, and the possible reasons for the interannual variation of the
PRR. Our study was based on an evaluation model of the PRR and used precipitation data
from meteorological stations in China and NCEP/NCAR reanalysis datasets. Our results
show that the mean PRR in the MLRYR for the time period 1961–2017 was largest in
autumn (about 0.3) and smallest in summer (about 0.23), with a clear upward trend
(passed the 95% significance F-test), except in summer. The highest trend coefficient of
the PRR was in autumn (0.38), indicating that the contribution of an external source of
water vapor to local precipitation was reduced. The PRR of the MLRYR was strongly
correlated with the input of water vapor through the western and southern boundaries.
Water vapor was mainly sourced from the Northwest Pacific Ocean, the South China Sea
and the Bay of Bengal. The anomalous Northwest Pacific cyclone induced by the Pacific
sea surface temperature restrained the input of water vapor into the MLRYR from the
Western Pacific, the South China Sea and the Bay of Bengal, contributing to the upward
trend in the PRR. We suggest that increases in the sea surface temperature in the Pacific
Ocean, South China Sea and especially the Indian Ocean will have an important impact on
precipitation in East Asia.

Keywords: the middle and lower reaches of the Yangtze River, precipitation recycling rate, water vapor flux,
regression analysis, influence mechanism

INTRODUCTION

The mid- and lower reaches of the Yangtze River (MLRYR) are located in the East Asian monsoon
region and have a higher annual precipitation than most other regions of China. The global climate
has significantly warmed in recent decades [1]. Many studies have shown that the total rainfall in the
MLRYR has not changed significantly, but the number of extreme precipitation events has
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significantly increased [2–5], which poses new challenges in the
prediction of precipitation [6]. The source of water vapor for
regional precipitation depends on the amount of water vapor
produced by local evaporation and the amount of water vapor
transported into the region by horizontal movement through the
atmosphere [7–12]. Many researchers have used the precipitation
recycling rate (PRR) to quantitatively evaluate the contribution of
these two sources of water vapor to regional precipitation. The
PRR is defined as the proportion of precipitation formed by the
local evaporation of water vapor in the total precipitation [7,
13–17]. However, water vapor that forms precipitation through
local evaporation cannot be observed, so numerous precipitation
recycling models have been developed to assess the regional PRR
[7, 8, 13–19].

Budyko [13, 14] developed a one-dimensional linear model to
estimate the recycling of precipitation in large-scale regions and
analyzed the PRR in the former Soviet Union, showing that the
annual average PRR was about 10%. Brubaker et al. [7] extended
the Budyko model to the two-dimensional plane and evaluated
the PRR in some parts of the global continent. The highest PRR
was seen in Africa (up to 48% in August) and the lowest in Eurasia
(almost zero in February) and the PRR in dry areas was higher
than that in humid areas. Guo et al. [20] adopted this two-
dimensional model to study the trend of PRR over the
Qinghai–Tibetan Plateau. They showed that, with increasing
temperatures, the PRR in the arid region of the western
Qinghai–Tibetan Plateau showed a downward trend (−2.5%/
10a), whereas that in other regions presented an upward
trend. The PRR in the northeastern Qinghai–Tibetan Plateau
showed the strongest growth trend of 3.1%/10a.

Burde et al. expanded the Budyko model into a two-
dimensional model [15] and refined and improved it [21],
showing that the average annual PRR in the Amazon basin
was 41% [22]. Eltahir et al. [16, 17] fundamentally improved
the Budyko model by eliminating the influence of the non-
uniformity of the regional spatial distribution and studied the
precipitation recycling process in the Amazon region. Their
results showed that the average annual PRR in the Amazon
basin was about 35%.

Hai et al. [23] used the Eltahir model to study the
characteristics of the hydrological cycle in the Tarim river
basin. They showed that about 14% of the water vapor for the
annual precipitation came from evaporation in the Tarim river
basin and 86% from the surrounding area. Schär et al. [18]
simplified the Brubaker model based on the whole-layer
moisture balance model. Li et al. [24] then used this model to
study the PRR in arid and semi-arid regions in the northern
hemisphere and showed that the PRR in arid regions has a clear
seasonal variation (from <1 to >25%) and that the PRR in arid
regions showed a significant negative correlation with
precipitation.

Dominguez et al. [8] considered the influence of the water
vapor content of the atmosphere on the recirculation of
precipitation and established a dynamic recirculation model to
study the spatiotemporal distribution of the summer PRR in the
United States. They concluded that the average summer PRR in
the United States was between 11 and 28% and that the PRR in

the southeastern United States was the highest in August,
reaching 36%.

Amey Pathak et al. [25] used the Dominguez dynamic
recirculation model to study the recirculation of precipitation
in the Indian subcontinent during the monsoon period and
showed that the PRR in India was high in the northeast and
low in the southwest. The PRR in northern India was highest in
August, with some areas >40%. Hua et al. [26] used this model to
conduct a systematic study on precipitation recycling in China
and concluded that the PRR in China was low in the southeast
and high in the west (range 8–28%). Van der Ent et al. [19]
proposed a complex numerical scheme to evaluate the PRR of the
global continent. They showed that the PRR of the whole
continent was about 40% and the regional PRR increased with
an increase in the regional spatial scale.

Previous studies have shown that the PRR is helpful in
understanding the causes of changes in precipitation in the
MLRYR. It is therefore important to discuss the variation of
the PRR in the MLRYR. Yi et al. [27] calculated and analyzed
different sources of water vapor for precipitation in the MLRYR
based on the Eltahir and Brubaker models and found that the
average annual PRR in the Yangtze river basin was about 10% and
the PRR was highest (about 19%) in late summer and early
autumn and lowest (about 3%) in early spring.

Fu Xiang et al. [28] used the Eltahir model to study
precipitation recycling in the MLRYR in the context of global
climate change and found that, on average, about 30% of the
precipitation in the MLRYR in the summer rainstorm period
came from local evaporation. Kang et al. [29] used the Eltahir
model to evaluate the PRR in central and southern China. They
showed that 20% of the precipitation in the upper reaches of the
Yangtze River was from the evaporation of water vapor in central
and southern China, as was 40% of the precipitation in the
MLRYR. The PRR was highest (about 40%) in August,
September and October and was <25% in May, June and July.
The PRR has shown an increasing trend over the last 20 years.

These studies on the PRR of the MLRYR reflect the
contribution of the circulation of internal and external sources
of atmospheric water, but the models are calculated based on the
average value for the whole region and the results are
approximate. Previous research on the PRR of the MLRYR has
mostly been limited to annual changes and the interannual and
trend analyses need to be supplemented. The mechanism for the
changes in the PRR of the MLRYR requires further study.

We improved the evaluation model for the PRR based on
gridded data and studied the characteristics of the annual and
trend changes of the PRR in the MLRYR. We then analyzed the
mechanism for the variation in the PRR in the MLRYR from the
perspective of the sea surface temperature (SST) and atmospheric
circulation.

Datasets and Methods
We used the specific humidity (q), wind field (V→), surface
pressure (psurface) and other daily data from the National
Centers for Environmental Prediction/National Center for
Atmospheric Research NCEP/NCAR (2.5° × 2.5°) reanalysis
dataset [30] to calculate the water vapor flux in the whole layer Q

→
:
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Q
→ � −1

g
∫

300 hPa

psurface

qV
→
dp. (1)

The evaporation data were calculated using the method proposed
by Su et al. [31], who integrated multiple datasets, including the
NCEP-R1, NCEP-R2, MERRA (Modern-Era Retrospective
analysis for Research and Applications), ERA-Interim and
JRA-55 (Japanese 55-year Reanalysis) datasets. Su et al. [31]
showed that evaporation data calculated by this method are
more reliable because it avoids dependence on a single
dataset.

The precipitation data were daily data from meteorological
stations in China between 1961 and 2017, which were
interpolated onto a (2.5° × 2.5°) grid for subsequent
calculations. The Western Pacific subtropical high index was
provided by the National Climate Center, China
Meteorological Administration. The SST was from the
monthly mean COBE-SST data provided by the National
Oceanic and Atmospheric Administration (NOAA). The
research area was the MLRYR (110–122.5° E, 25–35° N)
(Figure 1).

We based the calculation of the PRR on the evaluation model
proposed by Eltahir [16, 17]. The water vapor provided by region
Ω forms the proportion of precipitation in subregion ΔA—that is,
the contribution rate of regionΩ to precipitation in the subregion
is ρ � (IΩ + e)/(I + e), where I is the total amount of water vapor
flowing into subregion ΔA through the advection term, IΩ is that
part of I sourced from the parent region Ω and e is the
evaporation in the subregion. Because this model is calculated
based on the average value for the whole region, the settlement

result is approximate. Based on gridded data within the region, we
improved this calculation as follows:

ρΩ(x, y) �
I(x, y)

e(Ω) − e(x, y)
e(Ω) − e(x, y) + I(Ω) + e(x, y)

I(x, y) + e(x, y)
. (2)

where I(x, y) is the water vapor input to the grid point (x, y),
I(Ω) is the total water vapor input to region Ω, region Ω is
regarded as a whole and the total water vapor input through each
boundary represents the water vapor input into the whole region,
e(x, y) is the water vapor evaporated from grid point (x, y) and
e(Ω) is the total water vapor evaporated from area Ω. IΩ is the
water vapor input into the study area from outside through the
four boundaries. It can be calculated from the vertically integrated
water vapor flux, which can be expressed as Eq. 1. It is worth
noting that only the water vapor flowing into the region needs to
be calculated as IΩ.

The PRR rΩ(Δt) in the region within time Δt is then:

rΩ(Δt) �
∑

t�tend

t�tbegin
[∑(x,y)∈ΩP(x, y, t) · ρΩ(x, y, t)]

∑

t�tend

t�tbegin
[∑(x,y)∈ΩP(x, y, t)]

. (3)

In this equation, tend � tbegin + Δt and P(x, y, t) is the
precipitation of grid point (x, y). As long as the improved
ρΩ(x, y, t) is substituted into Eq. 3, the PRR can be calculated.
We also compared several other major PRR models, include the
Schär and Brubaker models, which are based on Euler
hydrodynamics. However, these models may underestimate the

FIGURE 1 | Location of the study area. The color shading indicates the altitude (units: m) and the black rectangle indicates the MLRYR.
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PRR, so we improved the calculation scheme of the model based
on its physical meaning and then compared the results with those
of the Lagrange trajectory tracking method [32]. The results for
the PRR in summer using the Schär, Brubaker, our model and the
Lagrange method were 16.8, 9.3, 22.7 and 23.97%, respectively.
The results of our PRR model (22.7%) were therefore close to
those of the Lagrange method (23.97%). This further verifies the
rationality of our model from the perspective of both Euler and
Lagrange.

We used conventional meteorological statistical
methods—such as regression and correlation analysis, the
climatic trend coefficient and the climatic tendency rate
(regression coefficient) [33]—to analyze the increase and
decrease in the time series.

RESULTS

Temporal Variation of the Precipitation
Recycling Rate in the Mid- and Lower
Reaches of the Yangtze River
Figure 2 shows the annual mean and seasonal PRR in the
MLRYR. The average annual PRR in the MLRYR was about
0.26 and there were clear interannual variations. From 1961 to
2016, the linear trend was increasing with a trend coefficient of
0.51 (regression coefficient 0.48%/10a) that passed the 95%

significance test. The PRR in spring, summer, autumn and
winter were about 0.24, 0.23, 0.3 and 0.28, respectively, and all
seasons showed an upward trend with trend coefficients of 0.36,
0.09, 0.38 and 0.35, respectively (regression coefficients 0.44, 0.09,
0.68 and 0.61%/10a, respectively). The 95% significance test was
passed in spring, autumn and winter.

Correlation Between the Precipitation
Recycling Rate and External Sources of
Water Vapor and Local Evaporation
The PRR was affected by the input of external sources of
water vapor and local evaporative water vapor: the greater the
input of external sources of water vapor, the smaller the PRR
and the larger the local evaporative water vapor, the larger
the PRR.

FIGURE 2 | (A) Annual PRR and the PRR in (B) spring, (C) summer, (D) autumn and (E) winter in the MLRYR. The blue line is the time series of the PRR, the black
line is the linear fit of the PRR and the red line is the mean of the PRR.

TABLE 1 | Correlation coefficients between the seasonal PRR in the MLRYR and
the input of water vapor through each boundary and local evaporation.

MAM JJA SON DJF

Eastern boundary 0.2 −0.12 −0.09 0.02
Western boundary −0.7** −0.41** −0.76** −0.68**
Northern boundary 0.3* 0.14 0.26 −0.06
Southern boundary −0.78** −0.27* −0.63** −0.51**
Evaporation 0.42** −0.02 0.28* 0.33**

*Passed the 95% significance test; **passed the 99% significance test.
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The correlation between the PRR in each season along the
MLRYR and the input of water vapor at each boundary and local
evaporation (Table 1) shows that the PRR of the MLRYR was
mainly related to the input of water vapor through the western
and southern boundaries. This further suggests that the PRR of
the MLRYR is mainly affected by the input of water vapor from
the western and southern boundaries and local evaporation.

The water vapor transported into the MLRYR was mainly
from the Northwest Pacific Ocean, the South China Sea and the
Bay of Bengal (Figure 3), which is consistent with previous
research [32, 34–37]. The input of water vapor into the
MLRYR was mainly from the western and southern
boundaries, with less water vapor from the northern and
eastern boundaries (Figure 3).

Possible Reasons of the Interannual
Variation of the PrecipitationRecycling Rate
Anomalous Northwest Pacific anticyclones (cyclones) promote
(inhibit) the transport of water vapor over the Northwest Pacific,
the South China Sea and the Bay of Bengal [38, 39]. The
Mongolian cyclonic (anticyclonic) anomaly promotes (inhibits)
the transport of water vapor by westerly winds. The regression
coefficients of the PRR and the 850 hPa wind field show that, in
the lower troposphere, the PRR in the MLRYR is affected by the
Northwest Pacific cyclone in every season. This means that the
MLRYR is dominated by northerly winds, which inhibits the

input of water vapor from the Western Pacific, the South China
Sea and the Bay of Bengal. The anticyclone near Lake Baikal also
weakens the input of water vapor in the zone of westerly winds.
The PRR in the MLRYR is therefore higher under the combined
action of the Northwest Pacific cyclone and the anticyclone near
Lake Baikal. By contrast, the input of water vapor through the
southern and western boundaries is promoted, which favors a
lower PRR in the MLRYR (Figure 4).

Figure 5 shows the regression coefficient field of the PRR and the
500 hPa height field in the mid-troposphere in each season. The
spatial distribution of the Northwest Pacific to East Asia continent
mainly presents a “− +” pattern. Previous studies [40] have shown
that when themid- and high-latitude height field of Eurasia presents
a “+ − +” distribution from west to east, then Eurasia has a “two
ridges and one trough” distribution, which favors the frequent
formation of a blocking high in Central Asia. The distribution of the
regression field for spring and summer is similar.

There are significant negative anomalies in the Northwest
Pacific, which weaken the Northwest Pacific subtropical high.
When the Northwest Pacific subtropical high is strong, the
southwesterly air flow in the west of the Northwest Pacific
enhances the transport of water vapor, whereas a weak
Northwest Pacific subtropical high weakens the transport of
water vapor. Table 2 shows that the PRR in the MLRYR was
mainly negatively correlated with the area index, intensity index
and ridge index of the Western Pacific subtropical high (the
correlation between the PRR and the ridge index was better). At

FIGURE 3 |Water vapor flux of the whole layer in (A) spring, (B) summer, (C) autumn and (D) winter in the MLRYR (units: kg m−1 s−1). The vectors represent the
direction of the water vapor flux in the whole layer and the color shading indicates its specific value. The black rectangular box represents the MLRYR.
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the same time (except in autumn), East Asia showed a “+ −”
dipole distribution from north to south, which suppressed the
transport of water vapor to the north.

The SST is an important factor affecting the atmospheric
circulation, regional precipitation and its recycling through
atmospheric circulation. Previous studies have shown that the
anomalous anticyclone in the Philippine Sea may be caused by the
response of Rossby waves to restrained convective heating. It is

induced by both in situ cooling of the ocean surface and the
subsidence forced remotely by warming of the central Pacific. The
development of the anticyclone almost coincides with the
increased local cooling of the sea surface [41, 42].

Huang et al. [43] showed that the dynamic effect of the
atmospheric circulation and zonal wind anomalies in the
lower troposphere over the tropical Western Pacific on the El
Niño Southern Oscillation cycle may be through the excitation of

FIGURE 4 | Regression coefficients of the PRR and the 850 hPa wind field in (A) spring, (B) summer, (C) autumn and (D)winter in the MLRYR [units: %/(m/s)]. The
shaded area indicates that the results passed the 95% significance test and the black rectangle box represents the MLRYR.

FIGURE 5 | Regression coefficient field of the PRR in the MLRYR and the 500 hPa height field in (A) spring, (B) summer, (C) autumn and (D) winter in the MLRYR
(units: 10–4/m). The color shading represents the regression coefficient, the dotted area represents the 95% significance test and black rectangular box represents the
MLRYR.
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equatorial oceanic Kelvin waves and Rossby waves in the
equatorial Pacific. Wu et al. [44] showed that the western
North Pacific anticyclone is maintained by the combined
effects of local forcing of the negative SST anomalies in the
western North Pacific and remote forcing from the Indian Ocean
basin mode. During the mature phase of El Niño, the convective
cooling anomalies over the western tropical Pacific caused by
weakened convection trigger an atmospheric Rossby wave
response, resulting in the generation of the western North
Pacific anticyclone [45]. The western North Pacific anticyclone
can persist from the winter when El Niño is at its peak to the
subsequent summer. It is maintained by a number of factors,
including the sustained presence of convective cooling anomalies,
the local air–sea interaction over the western tropical Pacific and
the persistent SST anomalies in the tropical Indian and tropical
North Atlantic oceans.

The western North Pacific anticyclone can influence
atmospheric circulation over East Asia and rainfall in China,
not only simultaneously, but also in the subsequent summer
after an El Niño year, leading to more rainfall over southern
China. The El Niño Southern Oscillation is an important

system for transporting water vapor from the Northwest Pacific
and the South China Sea to China. We therefore analyzed the
regression coefficient field of the PRR in the MLRYR and the SST
in the same time period (Figure 6). The regression field was similar
to the La Niña distribution. This is shown in Table 2, where the
PRR is negatively correlated with the oceanic El Niño index. The
equatorial Central Eastern Pacific and the northern Indian Ocean
present negative anomalies, whereas the Northwest Pacific presents
positive anomalies. This suppresses the anomalous anticyclone
near the Philippines and inhibits the northward transport of water
vapor. The situation is the opposite in autumn and the specific
reasons for this need further investigation.

Combined with the regression coefficient field of the PRR and
the 500 hPa vertical velocity (Figure 7), the SST of the Northwest
Pacific is abnormally warm, which favors ascending motion and
inhibits the development of the anomalous anticyclone in the
Northwest Pacific. The downdraft near Lake Baikal also favors the
development of the anticyclone.

Previous studies [46, 47] have shown that precipitation,
temperature, cloud cover and wind speed are important factors
affecting evaporation. In general, evaporation is higher when
precipitation is abundant in arid areas, whereas there is an
inverse correlation between precipitation and evaporation in
humid regions such as the MLRYR [48]. Table 3 shows that the
PRR of the MLRYR is inversely correlated with precipitation in all
seasons, with more precipitation leading to less evaporation and a
lower PRR, which also conforms to this relationship. There is a good
inverse correlation between the PRR and cloud cover because more
cloud covermeansmore precipitation in humid regions. The PRR is
also related to both temperature and wind as a result of their
influence on evaporation. Higher temperatures mean greater local
evaporation and therefore a higher regional PRR. By contrast, a
higher the wind speed leads to higher local evaporation and a higher

TABLE 2 | Correlation coefficients of the seasonal PRR in the MLRYR with the
Northwest Pacific subtropical high index (area index, intensity index, ridge line
index, ridge point index) and oceanic El Niño index.

MAM JJA SON DJF

Area −0.09 −0.16 0.23 −0.06
Intensity −0.13 −0.15 0.16 −0.08
Ridge line −0.31* −0.13 −0.33* −0.47**
Ridge point 0.13 0.21 −0.29* −0.04
Oceanic El Niño index −0.32* −0.05 0.23 −0.30*
*Passed the 95% significance test; **passed the 99% significance test.

FIGURE 6 | Regression coefficient field of the PRR in the MLRYR and the SST in (A) spring, (B) summer, (C) autumn and (D) winter (units: %/K). The dotted area
indicates that it passed the 95% significance test.
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regional PRR. There is an inverse correlation between the PRR and
the surface wind speed in the MLRYR (Table 3), which may be
because the influence of the monsoon on the external input of water
vapor is greater than that on local evaporation.

DISCUSSION AND CONCLUSION

We improved the calculation method in the previously proposed
PRR evaluation model.We used precipitation data from stations in
China from 1961 to 2017 and the corresponding NCEP/NCAR
specific humidity and wind field reanalysis datasets to study the
change in the PRR in theMLRYR. Our results showed that the PRR
in the MLRYR was largest in autumn (0.3), followed by winter
(0.28) and the smallest in summer (0.23). The PRR in the MLRYR
showed an upward trend in all seasons (all, except summer, passed
the 95% significance test). The trend coefficient of the PRR was
largest (0.38) in autumn and smallest (0.09) in summer. The
regression coefficient was highest in autumn (0.68%/10a),
followed by winter (0.61%/10a) and the smallest in summer
(0.09%/10a). The PRR showed a clear interannual variation.

We analyzed the physical factors influencing the change in the
PRR in the MLRYR from the perspectives of the SST and

atmospheric circulation using the reanalysis and SST datasets.
We found that a high SST in the Northwest Pacific promotes local
upward motion, which favors the development of cyclones and
inhibits the input of water vapor from the Western Pacific, the
South China Sea and the Bay of Bengal. The anomalous
anticyclone near Lake Baikal inhibits the input of water vapor
from westerly winds.

In the regression coefficient field of the PRR and the 500 hPa
height field, the Northwest Pacific–Asian continent mainly
presents a “+ −” spatial distribution, which weakens the
Northwest Pacific subtropical high. By contrast, East Asia
(except in autumn) presents a “+ −” dipole distribution from
north to south, which inhibits the northward transport of water
vapor and leads to a higher PRR in the MLRYR.

In terms of local factors, the PRR in the MLRYR is mainly
affected by precipitation and cloud cover.When precipitation and
cloud cover are small, evaporation is high, increasing the PRR in
the MLRYR. By contrast, the PRR is low when precipitation and
cloud cover are high and evaporation is low.

The anticyclonic circulation of the Northwest Pacific Ocean is
the key system for the transport of water vapor from the Western
Pacific, the South China Sea and the Bay of Bengal to the MLRYR.
Previous studies have linked the anticyclonic circulation in the
Northwest Pacific with the local wind–evaporation–SST feedback
in the western North Pacific and the propagation of Kelvin waves
caused by warming of the tropical Indian Ocean [41–45, 49].
However, the characteristics of the regression field of the PRR and
SST in the MLRYR in autumn are almost the opposite of those in
other seasons (Figure 7). Yoo [50] showed that climate change
caused by global warming weakened the atmospheric
response in the central Pacific during El Niño years and
atmospheric feedback increased during La Niña years.
Huang et al [51] showed that the response of the vertical
circulation of the atmosphere to local SST anomalies may be

FIGURE 7 | Regression coefficient field of the PRR in the MLRYR and the 500 hPa vertical velocity in (A) spring, (B) summer, (C) autumn and (D)winter [units: /(Pa/s)].
The dotted area indicates that it passed the 95% significance test and the black rectangular box represents the MLRYR.

TABLE 3 | Correlation coefficients of the PRR in different seasons with the local
average precipitation, total cloud cover, surface temperature and surface wind
speed in the MLRYR.

MAM JJA SON DJF

Precipitation −0.62** −0.14 −0.54** −0.49**
Cloud cover −0.74** −0.47** −0.67** −0.74**
Temperature 0.29* 0.14 0.23 −0.17
Wind −0.34** −0.26 −0.43** −0.03
*Passed the 95% significance test; **passed the 99% significance test.
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weakened under global warming. These results may explain
the abnormal situation of the regression field of the PRR and
SST in autumn and require further research.

Previous studies have shown that the East Asian winter and
summer monsoons have both weakened with global warming
[52–55]. The MLRYR are located in the monsoon region and the
weaker monsoon has led to a decrease in the input of water
vapor to this region. Global warming has also increased
evaporation, which favors an increase in the PRR. These
factors may explain the increasing trend of the PRR in the
MLRYR. The contribution and influence of different sources of
water vapor on the regional precipitation were evaluated using
the PRR, which provides a new perspective for analyzing the
cause of precipitation and further improving our ability to
predict precipitation [7]. Future work will analyze the
respective roles of water vapor from external advection and
local evaporation in the precipitation process and the
contribution of external inputs of b water vapor and local
evaporation to precipitation in different stages of the meiyu
in the MLRYR on an hourly scale.
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Application
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Quantitatively projecting the impact of future climate change on the socio-economy and
exploring its internal mechanism are of great practical significance to adapt to climate
change and prevent climate risks. Based on the economy-climate (C-D-C) model, this
paper introduces a yield impact of climate change (YICC) model that can quantitatively
project the climate change impact. The model is based on the YICC as its core concept
and uses the impact ratio of climate change (IRCC) indicator to assess the response of the
economic system to climate change over a long period of time. The YICC is defined as the
difference between the economic output under changing climate condition and that under
assumed invariant climate condition. The IRCC not only reflects the sensitivity of economic
output to climate change but also reveals the mechanism of the nonlinear interaction
between climate change and non-climatic factors on the socio-economic system. Using
the main grain-producing areas in China as a case study, we use the data of the ensemble
average of 5 GCMs in CMIP6 to project the possible impact of climate change on grain
production in the next 15–30 years under three future scenarios (SSP1-2.6, SSP2-4.5,
SSP5-8.5). The results indicate that the long-term climate change in the future will have a
restraining effect on production in North region and enhance production in South region.
From 2021 to 2035, climate change will reduce production by 0.60–2.09% in North region,
and increase production by 1.80–9.01% in South region under three future scenarios.
From 2021 to 2050, compared with the climate change impact in 2021–2035, the negative
impact of climate change on production in North region will weaken, and the positive
impact on production in South region will enhance with the increase in emission
concentration. Among them, climate change will reduce grain output in North region
by 0.52–1.99%, and increase output in South region by 1.35–9.56% under the three future
scenarios. The combination of economic results and climate change research is expected
to provide scientific support for further revealing the economic mechanism of climate
change impacts.
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INTRODUCTION

The impact of climate change on the social economy is an
important field and a main link in research on climate change
impacts. The sustainable development of human society and the
economy has been severely affected by climate change, and this
phenomenon will continue. From the Chinese region at the small
scale to the global region at the large scale, climate not only has
the characteristics of drastic seasonal and interannual changes at
the short time scale [1–3] but also has obvious interdecadal
changes at the long time scale [4,5]. Climate change not only
indirectly affects the economic system through direct impacts on
water resources, ecosystems, and land surface conditions but also
increases the negative effects of meteorological disasters caused
by extreme events on the economic system [6]. The risk climate
change poses for the economic system is expected to increase with
global warming at 1.5°C and further increase with warming at 2°C
[1]. How humans respond and adapt to climate change is an issue
of combining natural science with socioeconomic applications. It
is necessary to link the results of climate change with economic
theories to conduct multidisciplinary studies on the impact of
future climate change [7,8]. Therefore, exploring a quantitative
method for projecting the impact of future climate change on the
economic system is of great significance to the prevention of
climate change risks.

In the future, the impact of climate change on the
socioeconomic system may become greater under different
greenhouse gas emission scenarios [3]. At present, there are
many methods used to study the economic impact of climate
change in China and abroad, which mainly include non-model
methods and model-based methods. Non-model methods
include statistical regression [9,10], historical experience
comparison [11], questionnaire survey [12], literature
review [13], and meteorological output methods [14].
However, most statistical regression methods have the
disadvantages of ignoring the long-term trend climatic
changes and the nonlinear interaction between climate
change and the economy. The other methods are subjective
and uncertain. The model methods include empirical
statistical models [15], natural mechanism models [16,17],
and economic mechanism models, which are currently
common methods for studying the impact of future climate
change. Among them, the natural mechanism model based on
crop models is a purely natural experimental research method,
which requires a solid experimental observation basis and
generally does not involve socioeconomic factors. Economic
mechanism models quantitatively assess the impact of climate
change on different economic systems from an economic
perspective, including the Ricardian model [18–20],
computable general equilibrium (CGE) model [21,22], and
economy-climate (C-D-C) model [23,24]. Among them, the
C-D-C model can integrate climatic and economic factors and
deal with the climatic factor parameters on the average climate
state, taking into account the long-term trend of climatic
factors. In addition, the model is relatively simple, with
convenient data acquisition and easy operation. Therefore,
we select the economy-climate model to develop a model that

can project the impact of future climate change on the
economic system on a long-term scale.

The C-D-C model is mainly applicable for evaluating the
impact of climate change on economic output by the
incorporation of climatic and socioeconomic factors.
Essentially, it does not focus on the natural science of climate
change itself but uses climate change as an economic factor to
analyze its contribution to economic development. Its
effectiveness has been tested mostly on wheat, maize, and rice
in China’s grain-producing areas [25,26]. The climate change
impact assessment part of the model focuses on analyzing the
impact of climate change on economic output based on the
output elasticity of climatic factors. In recent years, studies
have used the C-D-C model to analyze the effects of
temperature and precipitation changes on the rice yield in
different regions [27,28], initially developed the concept and
method of “the yield impact of climate change” [24], and
assessed the regional sensitivity of crop yields to changes in
comprehensive climate factors [26]. The persistent
improvement in the simulation capabilities of climatic models
and the continuous emergence of future prediction data of
CMIP6 have enabled the use of the C-D-C model, and
prediction data have made it possible to quantitatively predict
the impact of future climate change.

Based on the above, this study aims to further introduce and
popularize the yield impact of the climate change (YICC) model
to explore the impact of future climate change on economic
output. In addition, it carries out a case study on the model in the
North and South regions of China’s main grain-producing areas.
In other words, this study’s objective is to derive a YICC model
based on the C-D-C model, use the impact ratio of the climate
change index to project the impact of future climate change on
economic output, and apply it to China’s main grain-producing
areas. As critical areas in China, the main grain-producing areas
are a breadbasket but also areas vulnerable to climate change.
Among them, the North region presents a warm, dry trend with
increasing temperature and decreasing precipitation, while the
South region presents a warm-humidification trend with
increasing temperature and precipitation [29]. This uneven
and obvious trend of climate change inevitably affects
agricultural production and economic development. The goal
is therefore to use the findings to inform and support policies
towards preventing the risk climate change poses to crops and
improving the sustainable development of the agricultural
economy. The section that follows discusses the methods and
case study.

THEORETICAL BASIS OF THE
ECONOMY-CLIMATE MODEL

The economic system is a complex system, an organic
combination of the relationships among economic elements
[24]. Economic output is subject to the combined influence of
socio-economic and climatic factors. Climate change impacts
are a complex nonlinear system that is subject to the
interaction of many factors, and it is necessary to integrate
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economics and climatology for cross-disciplinary study
[30,31]. In addition, climate change has economic
characteristics. First, climate change is an exogenous factor
and has external effects. As a public natural resource, climate
change is regarded as a public good in the field of economics
and is not controlled by any individual or state. Therefore, it
has randomness and uncertainty. Climate change,
characterized by rising global temperatures, is mainly
caused by excessive emissions of greenhouse gases in certain
countries, and its impacts not only involve the emitting regions
but also spread across borders to other countries and regions
[32]. Climate change has no borders. Second, climate resources
are not restricted by national boundaries, so they are shared
natural resources. They do not require investment or payment
of any usage fees and entail no cost and profit calculations.
Third, economic growth is mainly caused by external
environmental factors and internal economic activities. As
one of the external factors, climate change needs to be
combined with economic activity factors to take effect.
Evaluation of the economic impact of climate change does
not focus on the natural science of climate change itself but
uses climate change as an economic factor to analyze its
contribution to or impact on economic development, that
is, to analyze the economic impact of climate change from a
socio-economic perspective [30]. Climate change has these
economic characteristics that are basically consistent with
economic growth. Scholars have used “climate change” as
an economic input factor to construct an economy-climate
(C-D-C) model to evaluate the impact of climate change on
economic growth [23].

The Cobb-Douglas production function model (C-D
model) is a classic mathematical model in the field of
economics. It is easy to operate and widely used and has
the advantages of convenient parameter retrieval in modeling
[33]. The C-D-C model is based on the C-D production
function model and adds climatic factors to construct an
econometric model to evaluate the impact of climate
change on the economic system [23]. In addition, with this
study, we introduce into the model the comprehensive climate
factor (CCF), a new factor constructed in previous studies,
and analyze the economic impact of changes in the
comprehensive climate factor on the yields of different
crops in China’s main grain-producing areas over the past
35 years (1981–2015) [5]; [26]. The C-D-C model represents
the functional relationship between the number of input
factors and the economic output in the production process
over a long period of time (more than 10 years), and its
formula is shown in Eq. 1. where Y is the economic
output, xi is the economic factor (i ≥ 3), βi is the output
elasticity corresponding to the economic factor, C is the
comprehensive climate factor, c is the output elasticity
corresponding to the climatic factor (also called “climatic
output elasticity”), α represents the sum of the influence of
factors other than economic and climatic factors, and N � α ·
xβ11 · xβ22 · · · xβii is expressed as the sum of the effects of factors
other than climate change on economic output. This model
has some advantages:

A. The dimension of variables does not need to be considered in
modeling, and the function formula can be logarithmically
linearized into Eq. 2, which is easier to process and calculate.

B. Both short time scale meteorological factors and long time
scale climatic factors can be added as input factors.

C. The comprehensive climate factor is a combination of a
variety of climate factors (such as temperature,
precipitation, sunshine hours), reflecting the main change
trend of a variety of climatic factors, and its formula is shown
in Eq. 3, where n represents the number of climate factor
variables, ci is the i-th climatic factor, and δi is the weight
corresponding to the i-th climatic factor. This factor was
calculated by principal component analysis (PCA) method.

D. Themodel expresses the relationship between economic output
and its influencing factors in the form of an exponential
product, reflecting the nonlinear interaction between
economic and climatic factors in the production process.

E. Output elasticity is an economic concept. It reveals the change
rate of economic output caused by the change rate of an input
factor under the condition that other input factors remain
unchanged. The sensitivity to changes in the input factors can
also simply distinguish the influence of climatic and economic
factors on economic output. For example, the output elasticity
corresponding to the climate change factor is γ, which means
that under the condition that non-climatic factors remain
unchanged, every 1% increase in climatic factors increases
economic output by γ%.

Y � α · xβ11 · xβ22 · · · xβii · Cγ � N × Cγ (1)

lnY � β1lnx1 + β2lnx2 + · · · · · · +βilnxi + γlnC + lnα (2)

C � ∑

n

i�1
(δi × ci) � δ1 × c1 + δ2 × c2 + · · · + δn × cn (3)

When assessing the impact of climate change on economic
output, we mainly use climatic output elasticity as the evaluation
index to focus on the analysis of the impact of changes in climatic
factor C, and use the output elasticity of climate change factors to
reflect the contribution of climate change to economic output. The
model schematic diagram is shown in Figure 1, which mainly
includes three parts. The first part is the selection of indicators,
including input and output factors. The input factors are composed
of climatic and non-climatic factors. The second part is the
construction of the model. The selected indicators are
introduced into the model for calculation and simulation to
obtain the output elasticity corresponding to the climatic factor.
The third part is the impact assessment, which analyzes the impact
of climate change on economic output by the output elasticity of the
climatic factors.

From Equations 1–2, it can be seen that as long as the
economic data and climate change data are obtained, the
output elasticity of each input element can be calculated.
Historical economic data can be obtained through the
National Bureau of Statistics and the Statistical Yearbook in
China. Historical and future climatic data can be obtained not
only through observational data from the National
Meteorological Administration in China but also through
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simulations using different climate models in the international
CMIP6 experiment. However, due to the randomness and
uncertainty of the economic development laws of the country
and society, it is difficult to obtain future economic data.
Therefore, the C-D-C model has been widely used to assess
the impact of historical climate change on food production
[26–28]. To solve the difficulty of predicting the impact of
future climate change, it is necessary to further explore a new
method based on the C-D-C model.

MECHANISM OF THE YICC MODEL

Global climate change has significant interdecadal characteristics,
and there are multiple time-scale changes in China [4]. Climate
has its own changing trend on the interdecadal time scale, which
affects the economic system. As the output of the production
system, economic output is the result of the nonlinear interaction
between socio-economic factors and natural factors rather than
the linear superposition of their individual effects. To distinguish
the impact of climate change on economic output under
nonlinear conditions and to compensate for the limitations of
the C-D-C model in predicting the impact of future climate
change, we introduce a method for projecting the impact of
climate change—the yield impact of climate change
(YICC) model.

The Yield Impact of Climate Change
The yield impact of climate change is different from the
meteorological yield, which linearly decomposes crop yield
into three parts: technical yield, meteorological yield and
random yield. However, it does not consider the long-term

trend of climatic factors and the changes in yield caused by
factors such as crop sown area [14,34]. On decadal or even longer
time scales (decades or even hundreds of years), the climate has a
changing trend. Therefore, in the process of studying the impact
of future climate change, long-term climate change cannot be
ignored and must be considered.

The variation in economic output not only depends on the
input of production factors but is also affected by many factors,
such as the scientific level, technological progress, policies, and

FIGURE 1 | Schematic diagram of the economy-climate (C-D-C) model. Y is an economic output, xi is an economic factor (i≥3), βi is an output elasticity
corresponding to the economic factor, C is a climatic factor, c is an output elasticity corresponding to climatic factor (called “climatic output elasticity”), α represents the
sum of the influence of factors other than economic and climatic factors.

FIGURE 2 | Schematic diagram of the yield impact of climate change. Y1
is the economic growth state (idealized state) when the climate does not
change, and Y2 is the actual state of future economic growth. Δ represents the
impact of climate change on economic output, that is, the difference
between Y2 and Y1. (−) indicates that the impact of climate change is negative,
(+) indicates that the impact of climate change is positive.
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the natural environment. It is the result of the combined effects of
various factors. Therefore, under the comprehensive effects of
climatic and economic factors, the following method
quantitatively distinguishes the effects caused by climatic factors.

After n years (the first n years, n≥ 15), economic output presents
a state of economic growth. After another n years (next n years), we
assume that the climatic state remains unchanged in the first n years,
and the economic output will have another state of economic growth
under continuous changes in nonclimatic factors, denoted as Y1. It is
important to emphasize here that Y1 is a hypothetical situation. If
continuous changes in climatic state are taken into account, there
will be another growth state in economic output, denoted as Y2. It
needs to be highlighted that Y2 is an actual situation, that is, the
economic state under the influence of continuous changes in both
climatic and nonclimatic factors. Compared with the former, the
latter will change. In short, the remaining state after Y1 is removed
from Y2 is the influence caused by climatic factors. Thus, the goal of
quantitatively distinguishing the influence caused by climatic factor
is achieved. This change is the impact of climate change on economic
output. We define this change as the yield impact of climatic change
(YICC). In other words, the impact of climate change is the
difference between Y2 and Y1, denoted as Δ � Y2 − Y1. The
schematic diagram is shown in Figure 2. What we want to study
is the difference between economic output under a changing climatic
state and that under a constant climatic state to indicate the impact
of climate change on economic output.

Model Mechanism
Over time, climatic factors and nonclimatic factors change, so the
actual economic outputs are the result of the comprehensive
effect of these two changes. The C-D-C model reflects this
situation. In the YICC, Y1 is only a hypothetical value and has
no actual data, so the results of climate model predictions can be
used. Therefore, the C-D-C model cannot be used directly to
predict the impact of climate change in the future, and further
derivation is needed. First, four preconditions need to be made:

A. Assume that the mean states of economic output, nonclimatic
and climatic factors are Y0,N1, and C1 in the first n years (1, 2,
3..., n, n≥ 15), respectively. The climatic output elasticity is c1,
as shown in Eq. 4.

B. Assuming that the climatic state does not undergone
continuous changes during the next n years (still C1) and
the economic state does undergone continuous changes (N2),
then Y1 is the amount of economic output that meets this
condition, as shown in Eq. 5

C. Assuming that the climatic and economic states in the next n
years (n + 1, n + 2..., 2n) will undergone continuous changes,
then the mean states of economic output, nonclimatic factors
and climatic factors are Y2, N2, and C2. The climate output
elasticity is c2, as shown in Eq. 6.

D. Since statistical data on the future economy are not available,
the climatic output elasticity c2 in the future cannot be
calculated by the C-D-C model. We thus set c2 � c1, which
is based on the historical climatic output elasticity, and assume
that the future climate factors will continue to change in
accordance with the elastic changes over historical time.

Finally, we define the difference (ΔY) between Y2 and Y1 as the
“yield impact of climate change” in the next n years. The
mathematical formula is shown in Eq. 7. It should be
emphasized that the mean state values here are all multi-year
averages for n years.

Y0 � N1 × Cγ1
1 (4)

Y 1 � N2 × Cγ1
1 (5)

Y 2 � N2 × Cγ2
2 (6)

ΔY � Y 2 − Y 1 � Y2 × Cγ1
2 − Cγ1

1

Cγ1
2

(7)

Indicator for the Impact Ratio of Climate
Change
The yield impact of climate change (ΔY) is mainly determined by
the future economic output (Y2), the mean state of future climatic
factor change (C2), and the mean state of past climatic factor
change (C1). The inability to accurately know the future economic
output (Y2) and other socio-economic factor data make it difficult
to directly calculate the impact of climate change. Y1 is an
imaginary value, and there are no actual data to use.
Therefore, to project the impact of future climate change on
economic output, ΔY needs to be further derived and transformed
into Eq. 8. ΔY/Y2 is called the impact ratio of climate change
(IRCC).

IRCC � ΔY
Y 2

� Cγ1
2 − Cγ1

1

Cγ1
2

� 1 − Cγ1
1

Cγ1
2

(8)

The impact ratio of climate change is a benefit indicator that
measures the impact of climate change on economic output and

FIGURE 3 | A framework diagram of the economy-climate model for
predicting the yield impact of climate change. Y is an economic output, xi is an
economic factor (i≥3), βi is an output elasticity corresponding to the economic
factor, C is a climatic factor, c is an output elasticity corresponding to
climatic factor (called “climatic output elasticity”), α represents the sum of the
influence of factors other than economic and climatic factors. ΔY/Y2 is the
impact ratio of climate change (IRCC).
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reflects the weight of the impact of climate factors on actual
economic output. From an economic point of view, the greater
the ratio is, the greater the proportion of the yield impact of
climate change, in other words, the greater the impact of climate
change on economic output. If the ratio is positive, it means that
climate change has a positive effect on economic output. If the
impact ratio of climate change is negative, it means that climate
change has a negative impact on economic output. In addition,
the forecast of the IRCC reflects that future economic output is
the result of the nonlinear interaction of climatic factors and
nonclimatic factors. We apply the IRCCmodel to the main grain-
producing areas in China to project the impact of climate change
on grain production in the next 15–30 years. The framework
diagram of the economy-climate model is shown in Figure 3.

CASE STUDY

Study Area
The main grain-producing areas are important bases for grain
production and an important contribution to food security. A
total of 72.2% of the country’s mean annual grain production
comes from 13 main grain-producing areas in China (Figure 4),
and their mean annual grain production concentration from 1981
to 2015 totaled 73.8% [29]. According to previous studies, the
main grain-producing areas can be divided into the North and
South regions [26]. The North region includes Heilongjiang

(HeiLJ), Jilin (JiL), Liaoning (LiaoN), Hebei (HeB), Shandong
(ShanD), and Henan (HeN) Provinces. The South region includes
Anhui (AnH), Jiangsu (JiangS), Jiangxi (JiangX), Hubei (HuB),
Hunan (HuN), Guangdong (GuangD), and Sichuan (SiC)
Provinces.

Data
The climate model data include historical data and future
scenario data of average temperature (unit: K), precipitation
(unit: mm), surface downward shortwave radiation flux (unit:
w/m2) and CO2 concentration (unit: mol/mol), which are derived
from five global climate models tested in Coupled Model
Intercomparison Project Phase 6 (CMIP6) (https://esgf-node.
llnl.gov/search/cmip6/). The historical period is from April to
September in 1981–2014, and the future period is from April to
September in 2021–2050. The basic information of the five global
climate model data is shown in Table 1. The future scenario data
are predicted data under three different shared socio-economic
paths (SSP1-2.6, SSP2-4.5, SSP5-8.5). The SSP-RCP scenario is an
SSP scenario constructed based on the RCP scenario. This
comprehensive scenario can better analyze the links and
impacts of climate change and the social economy [35].
Among them, SSP1-RCP2.6 (SSP1-2.6) is the scenario with the
lowest greenhouse gas emissions under sustainable development
conditions. SSP2-RCP4.5 (SSP2-4.5) is described as a scenario
with moderate greenhouse gas emissions under moderate
development conditions. SSP5-RCP8.5 (SSP5-8.5) is described

FIGURE 4 | The main grain-producing areas in China. The yellow area presents the North region, and the blue area shows the South region.
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TABLE 1 | Information regarding five CMIP6 climate models used in this study.

Model Institution Resolution (latitude ×
longitude)

BCC-CSM2-MR Beijing Climate Center (BCC), China 1.1° × 1.125°
CESM2 National Center for Atmospheric Research (NCAR), USA 0.9° × 1.25°
GFDL-ESM4 National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory (GFDL), USA 1.0° × 1.25°
NorESM2-LM NorESM Climate modeling Consortium consisting of CICERO, Norway 1.9° × 2.5°
MRI-ESM2-0 Meteorological Research Institute (MRI), Japan 2.8° × 2.8°

FIGURE 5 | The interdecadal changes in the grain production in the China’s main grain-producing areas. (A), the interdecadal grain production changes in the
North and South regions from 1981 to 2014. (B), the interdecadal changes in grain production in 13 provinces from 1981 to 2014, the first six provinces belong to the
North region, and the last seven provinces belong to the South region. The North region (NR) includes Heilongjiang (HeiLJ), Jilin (JiL), Liaoning (LiaoN), Hebei (HeB),
Shandong (ShanD) and Henan (HeN) Provinces. The South region (SR) includes Anhui (AnH), Jiangsu (JiangS), Jiangxi (JiangX), Hubei (HuB), Hunan (HuN),
Guangdong (GuangD) and Sichuan (SiC) Provinces.
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as the scenario with the highest greenhouse gas emissions under
conventional development conditions. Since the resolution of
each model is different, we need to first interpolate the model data
to a grid station with a resolution of 0.5˚ × 0.5˚ through the
bilinear interpolation method. Multi-model ensemble average
(MME) is the equal-weight arithmetic average of multi-model
simulation results. The climatic index (C) selected in this study is
the comprehensive climate factor (CCF). It is constructed by the
principal component analysis method from the average
temperature, precipitation, radiation flux, and CO2

concentration. The method description is shown in a previous
study by Chou et al. [5].

The economic indices include the number of rural employed
persons (unit: 10,000 persons), sown area of grain crops (unit:
1,000 ha), total power of agricultural machinery (unit:
10,000 kW), volume of effective component of chemical
fertilizer (unit: 10,000 tons) and areas covered by natural
disasters (unit: 1,000 ha). The economic output index is the
output of grain crops (unit: 10,000 tons). The economic data
come from the National Bureau of Statistics (http://www.bjstats.
gov.cn) and the “Statistical Yearbook” of the provinces from 1981
to 2015. Since economic data are statistical data and cannot be
used directly, they need to be preprocessed to enhance the
credibility, rationality and consistency of the variable data
used in the modeling. Both climatic data and economic data
were preprocessed by the administrative area weight method and
the three-point moving average method. The processed data can
be found in Supplementary Tables 1–4.

The Current Situation of Grain Production in
China
In the past 34 years (1981–2014), the interdecadal variation in
total grain production in the North region has shown a clear
increasing trend, while the interdecadal variation in production
in the South region has shown a decreasing trend (Figure 5A). In
particular, the total grain production in the North region has
increased at a faster rate, reaching 9,669,300 tons/(10a). There
have been obvious interdecadal differences in the grain
production level of each province over the past 34 years
(Figure 5B). In the North region, the total grain production of
Heilongjiang and Henan Provinces has increased rapidly. In the
South region, the production of Anhui Province has increased
rapidly, but the interdecadal changes in the production of
Guangdong and Sichuan Provinces have shown a
downward trend.

Characteristics of Future Climate Change
Temperature, sunshine, and water are the most direct natural
conditions for crops, and they are also important natural
factors that affect crop production and sustainable
development. In our previous research, we have found that
changes in the climate elements in various provinces show
complex, varying and regional characteristics of cold-warm and
dry-wet cycles [29]. Different climatic conditions and regions
have various possible impacts on grain production in China
during the growth season. We thus chose average temperature,

precipitation, radiant flux and CO2 concentration as input
factors for climate.

Driven by the complex and changeable climate system, the
global climate model has become a powerful tool for studying
future climate change and a vital tool for climate projection under
different greenhouse gas emission scenarios [36]. With the
increase in anthropogenic greenhouse gas emissions and
changes in land use, the CMIP6 plan provides key data
support for future climate change mechanism research and
climate change mitigation and adaptation research based on
various shared social and economic paths [37]. However, the
climate models in the plan differ greatly in terms of mechanisms,
climate forcing, model resolution, and scenario design, so they
have different performances in simulating climate change. We
first interpolate each model data to a grid with a resolution of 0.5˚
× 0.5˚ through the bilinear interpolation method, and then
perform equal-weight arithmetic averages on the five model
data. To visually observe the changing trend of future climate
factors, we determine the difference between the average state of
climate factors in the future time and the past time period.

The climate change in China’s main grain-producing areas in
the next 15 and 30 years will be similar under three different
climate scenarios. Compared with the past 34 years (1981∼2014),
the climate change in the North region in the next 15 years
(2021–2035) will present a trend of increasing temperature,
slightly increasing precipitation and radiation flux, and a
significant increase in CO2 concentration. The trend of climate
change in the South region is a slight increase in temperature, a
slight decrease in precipitation, and a significant increase in
radiant flux and CO2 concentration (Figure 6). The
temperature change in the North region is larger than that in
the South region, and the radiant flux change in the South region
is greater than that in the North region, mainly due to the latitude.
The climate change in the next 30 years (2021∼2050) is consistent
with the change trend in 2021∼2035, and climate change will be
strengthened (Figure 7).

In fact, the growth and development of crops is not an
independent impact of a single climatic factor but is an
integrated effect of multiple climatic factors. This study
constructed the main climatic factors (i.e., air temperature,
precipitation, radiation flux and CO2 concentration) into a
Comprehensive Climate Factor (CCF) and quantitatively
analyzed the impacts of integrated climate change in China’s
main grain-producing areas. This is a creative research method
that combines complex factors in order to study main trends. The
CCF is an important evaluation indicator that integrates
information from climatic factors and provides a new
perspective for research on regional responses to integrated
climate change.

Projection of the Yield Impact of Future
Climate Change
The year 2021 is the first year of China’s “14th Five-Year Plan”,
and China has entered a new stage of accelerating the
development of agricultural modernization and
comprehensively promoting rural revitalization. The year 2035
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is the last year for China to basically realize socialist modernization,
and the grain planting area will remain generally stable by 2035
[38]. The year 2050 is the last year for China to become a powerful
modern socialist country. China’s social and economic
development trends and patterns will inevitably undergo great

changes from 2021 to 2050. Moreover, 2035 and 2050 can reflect
China’s phased economic development and changes. Based on this,
we use the years 1981∼2014 as the base period to predict the
average change in the next 15 years (2021∼2035) and the next
30 years (2021∼2050).

FIGURE 6 | Distribution of changes in climatic factors in China’s main grain-producing areas in the next 15 years (2021–2035) under three future scenarios. (A, B,
C) are the spatial distribution of mean temperature in SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, respectively. (D, E, F) are the spatial distribution of precipitation in
SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, respectively. (G, H, I) are the spatial distribution of radiation in SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios,
respectively. (J, K, L) are the spatial distribution of CO2 concentration in SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, respectively. The value is the difference
between the mean annual value from 2021 to 2035 and the mean annual value from 1981 to 2014.
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First, the climatic output elasticity of the North and South
regions from 1981 to 2014 is calculated. According to Eqs. 1, 2 of
the C-D-C model, the comprehensive climate factor and economic
factor data are introduced into the C-D-C model to obtain the
output elasticity of the comprehensive climate factor. Among
them, the climatic output elasticity is 0.037 in the North region

and -0.211 in the South region. The climatic output elasticity of the
North region passes the 1% significance level, which shows that
climate change in the past 34 years has promoted the total grain
production. The climate output elasticity of the South region is
negative, but the negative impact of climate change on the total
grain output is not significant. Under the condition that other

FIGURE 7 | Distribution of changes in climatic factors in China’s main grain-producing areas in the next 30 years (2021–2050) under three future scenarios. (A, B,
C) are the spatial distribution of mean temperature in SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively. (D, E, F) are the spatial distribution of precipitation in
SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, respectively. (G, H, I) are the spatial distribution of radiation in SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios,
respectively. (J, K, L) are the spatial distribution of CO2 concentration in SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, respectively. The value in the figure is the
difference between the mean annual value from 2021 to 2050 and the mean annual value from 1981 to 2014.
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nonclimatic factors remain unchanged, for every 10% increase in
the comprehensive climate factor, the production in the North
region increases by 0.37%, and the production in the South region
decreases by 2.11%. The main reason may be that: environment
and climate in the North region are affected by global warming,
which reduces the damage caused by natural disasters (e.g., low
temperature and frost damage). Moreover, agricultural production
conditions have improved significantly, such as gradual
improvements in agricultural production, the strengthening of
agricultural infrastructure construction, increase in agricultural
subsidy support policies, and continued agricultural
technological development, which has increased the enthusiasm
of farmers to grow food production in the North region. Based on
these findings, the total grain production in the North region has
increased rapidly, particularly in Northeast China. However, the
increases in temperature and precipitation in the South region
might increase the impact of agricultural natural disasters, such as
those caused by high temperature, heat damage, and summer
drought. In addition, the rapid development of industry in the
South region has reduced the crop planting area, and the rural
labor force has been continuously diminishing, which has
accelerated the decrease in grain prodution in the South region.

Finally, the impact ratio of climate change in the next
15– years is calculated. The impact ratio of climate change
reflects the weight of the impact of CCF on actual grain
output. Taking the climatic output elasticity from 1981 to
2014 as the benchmark, the climatic output elasticity and the
mean annual of CCF under the three future scenarios of
2021–2035 and 2021–2050 are introduced into the YICC
model to obtain the IRCC, according to Eq. 8.

From 2021 to 2035, the impact ratio of climate change in the
North region is negative, and decreases with the increase of
emission concentration. The ratio in the South region is
positive, and increases with the increase of emission
concentration (Figure 8). Under the SSP1-2.6 scenario, climate
change will cause a 0.60% drop in grain output in the North region
and an increase of 1.80% in grain output in the South region. Under

the SSP2-4.5 scenario, climate change will cause a 2.09% drop in
grain output in the North region and an increase of 9.01% in the
South region. Under the SSP5-8.5 scenario, climate change will
cause a 1.86% drop in grain output in the North region and an
increase of 7.17% in the South region. Themain reasonmay be that
temperature and CO2 concentration in the North region increase
with the increase of the emission concentration, which leads to a
warmer climate and is not conducive to the suitable growth of
crops. The reduction in precipitation and radiation may cause
damage to crops by natural disasters such as high temperature or
drought, leading to a decline in grain output. The temperature in
the South region may be suitable, the precipitation increases, and
the radiation increases, which is conducive to the growth of crops.
The future climate change in the South region will have a greater
positive impact on food production than in the North region. The
increase in CO2 concentration is beneficial to alleviate or offset the
negative effects caused by climate warming and increase grain
production.

The change trend of the impact ratio of climate change from
2021 to 2050 is consistent with the change region from 2021 to
2035. Compared with the impact of climate change in the next
15 years (2021–2035), the negative impact of climate change on the
grain production in the North region in the next 30 years will
weaken as the emission concentration increases (Figure 9). Among
them, the grain output affected by climate change in the North
region is reduced by 0.52% under the SSP1-2.6 scenario, 1.99%
under the SSP2-4.5 scenario, and 1.76% under the SSP5-8.5
scenario. The main reason may be that the temperature and
precipitation in the next 30 years will be higher than the
changes in the next 15 years, which may reduce the impact of
natural disasters such as low temperature and cold damage and
provide sufficient water resources for crop growth. As a result, the
negative impact of climate change is reduced in the North region.
For the South region, climate change still has a positive impact on
grain production. Compared with the impact of climate change in
the next 15 years, the climate impact in the next 30 years on grain
production in the South region will be strengthened under the

FIGURE 8 | The impact ratio of climate change in the main grain-
producing areas from 2021 to 2035.

FIGURE 9 | The impact ratio of climate change in the main grain-
producing areas from 2021 to 2050.
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SSP2-4.5 and SSP5-8.5 scenarios, and weakened under the SSP1-
2.6 scenario.

CONCLUSIONS AND DISCUSSIONS

1) Based on the traditional C-D-C model and the method for
projecting the climate change impact, this paper introduces a
comprehensive climate factor to improve the accuracy of the
model and simplify the parameters. Combined with the new
prediction achievements of the climate model of CMIP6, we
further introduce the concept of the yield impact of climate
change (YICC). The YICC represents the difference between
economic output under a changing climatic state and a constant
climatic state. It not only comprehensively considers the
interaction between climate change and socio-economic
factors but also takes into account the influence of the
interdecadal climate change trend, thereby improving the
accuracy of projecting the impact of future climate change.

2) To improve the impact assessment system of the economy-
climate model, the yield impact of climate change (YICC)
model is further introduced on the basis of the C-D-C model.
The model can well project the impact of long-term climate
change on economic output and reflect the sensitivity of
economic output change to climate change by the impact
ratio of climate change (IRCC) indicator in the model.

3) A case study of the yield impact of climate change model
applied to the main grain-producing areas in China finds that
the impact of climate change in the future 15– years on the
grain output in the South region is beneficial under the three
future scenarios, but it will have a negative impact on the grain
output in theNorth region. From 2021 to 2035, the increase rate
of grain production in the South region will range from 1.80 to
9.01% under the three future scenarios, and the rate of
production reduction in the southern region will range from
−2.09% to −0.60%. From 2021 to 2050, the production increase
rate in the South region will be between 1.35% and 9.56%, and
the production reduction rate in the North region will be
between −1.99% and −0.52%. This modeling method has
good prospects for application, and we will pay more
attention to its application and promotion in future research.

To accurately and quantitatively project the impact of climate
change on economic output in the next 15–30 years, this study
combines the prediction achievements of the climatic model with
econometrics and provides a new idea and method for studying
the impact and adaptation of global change. It also provides a
scientific basis for responding to climate change and preventing
climate change risks in the socio-economic system. This study
selects 5 GCMs in CMIP6, based on the shared socio-economic
paths, and simulates the change range of future grain production
in China and quantitatively gives the probability of increasing or
decreasing grain production under the low-force scenario (SSP1-
2.6), the medium-force scenario (SSP2-4.5), and the high-force
scenario (SSP5-8.5). The application of the multi-model
ensemble averaging method to the research of agricultural
impact assessment can reduce the uncertainty of the impact of

climate change on crop production. Grain production is affected
by many factors, such as nature, economy and society. Among
these factors, agricultural policies and government decisions play
a leading role in China’s agricultural production. For example, in
1998, China began to actively promote the strategic adjustment of
agricultural and rural economic structures. In 2006, China
exempted agriculture from taxes and other regulatory policies.
Increasing grain production has been an important policy focus.
In 2012, China has introduced a food security policy of “ensuring
basic self-sufficiency of grain and absolute security of staple food”
and established a national strategy on food security featuring self-
sufficiency based on domestic grain production, guaranteed food
production capacity, moderate imports, and technological
support. Socioeconomic and climate change factors jointly
affect China’s grain production. Facing the changes in the
spatial and temporal patterns of climate change in China’s
main grain-producing areas, humans can use real-time
agricultural technology, combined with meteorological
monitoring and forecasting techniques to monitor the real-
time dynamics of climate factors such as temperature and
precipitation and to prevent possible natural disasters.

Among previous studies, Ma et al. [39] found that climate
change in northeast China from 2031 to 2040 would lead to a 5.3%
reduction in maize production using the integral regression
method. Li et al. [40], Li et al. [41], and Sun et al. [42] using
crop models, found that the average production reduction of
maize, rice, and wheat in China would be 3.7, 7.49, and 5.2%,
respectively, under the background of a temperature increase of
1.5°C. Although the method in this study is not as strong as the
mechanism of the crop model, it uses long-term economic and
climatic data to project the impact of climate change for analysis. It
analyzes the relationship between climatic factors and economic
output under the interaction of climate factors and economic
factors. When projecting the future, it still includes the
interaction between climate and economy and the long-term
change trend. Therefore, the results may be more consistent
with the actual situation. Of course, this method has some
issues to be improved, such as the limitations of the economic-
climate model itself and the uncertainty of the scenario data
predicted by the climate model. The existence of these problems
will inevitably lead to uncertainty in the assessment results of the
impact of climate change, which needs to be further explored in
future work.
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Actual evapotranspiration (AE) is a crucial processes in terrestrial ecosystems. Global
warming is expected to increase AE; however, various AE estimation methods or models
give inconsistent trends. This study analyzed AE variability in China during 1982–2015
based on the Budyko framework (AE_Budyko), a complementary-relationship-based
product (AE_CR), and the weighted average of six reanalyses (AE_WAR). Because the
response of AE to driving factors and the performances of AE datasets are both scale-
dependent, China has been categorized into six distinct climatic areas. From a regional
perspective, the X-12-ARIMA method was used to decompose monthly AE into the trend,
seasonal, and irregular components. We examined the main characteristics of these
components and the relationships of climate factors with AE. The results indicate that the
trend component of AE increased from the mid-1990s to the early 2000s and more
recently in the hyper-arid and arid areas. Increasing AE was observed from 1982 to the
early 1990s in the semi-arid and dry sub-humid areas. AE increased significantly and had
substantial interannual variability for the entire period in the sub-humid and humid areas.
Increased precipitation and water supply from terrestrial water storage contributed
significantly to increasing AE in the drylands. The simultaneous occurrence of
increasing precipitation and wet-day frequency caused increasing AE in the dry sub-
humid area. Increased AE could be explained by the increased energy supply and
precipitation in the sub-humid and humid areas. Precipitation had the strongest
influence on the irregular component of AE in drylands. AE and potential
evapotranspiration had a strong positive correlation in the sub-humid and humid areas.
Regarding data availability, a discrepancy existed in the trend component of AE_CR
because soil moisture was not explicitly considered, whereas the irregular component of
AE_Budyko contained distinct variations in humid and sub-humid areas.

Keywords: actual evapotranspiration, X-12-ARIMA method, Budyko framework, reanalyses, potential
evapotranspiration, China, Water supply
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INTRODUCTION

Actual evapotranspiration (AE) is the process by which the
Earth’s surface water enters the atmosphere through
evaporation or evapotranspiration [1]. Land AE plays an
essential role in hydrology and climate change, as it links the
water and energy cycles [1, 2] and affects water-energy balances
significantly. On average, AE accounts for about 60% of the
Earth’s total land rainfall [3]. Meanwhile, AE as latent heat flux is
a central component of the heat transfer. A drop in evaporative
cooling generally causes higher surface air temperature [4].
Global warming is expected to increase AE rates, further
accelerating warming via water vapor feedback, since water
vapor is a potent greenhouse gas [5]. It should be noted that,
however, AE is influenced by both local and global factors [1, 6].
The response of AE to global warming, if fully realized, can vary
regionally across a continent [7].

AE is well known to be one of the most difficult variables to
observe [8]. For now, only relatively few flux tower sites operate
in China, and the period is concise [9]. The sparse observations
are difficult to capture long-term variations in regional AE.
Numerous theoretical and empirical methods have been
proposed for estimating AE indirectly. For example [10],
developed a data-oriented AE product by integrating a
variety of data sources in a model tree ensemble approach,
demonstrated that the majority of China (78%) showed an
increasing trend in AE. [11], using a complementary
relationship model, showed that annual AE increased
significantly in western and northeastern parts of China.
Recent improvements in retrospective analyses (or
reanalyses) also enable AE estimates to be obtained at
multiscale [12]. AE variability largely depends on local
microclimatic conditions in a given region [13]. Various
methods or models generally provide inconsistent AE
estimates [11]. AE variability over China under global
warming remains highly uncertain.

Due to the influence of the monsoon, the annual cycle is the
major component of many climate variables in China [8].
Nevertheless, seasonality in time series can obscure
movements of other parts that are operationally more
important for climatological analysis. The annual cycle in
most climate studies is assumed as a regular and recurring
change with no interannual variation, whereas in reality
climate change is reflected not only in the annual mean shift
in climate variables, but also in their annual cycles [14].
Therefore, the seasonal, interannual, and interdecadal
variations in AE and the associated drivers should be studied
separately. Many deseasonalization methods and procedures
have been proposed to deal with seasonal adjustment [14, 15].
The widely used X-12-ARIMA method allows for interannual
variations in terms of seasonality [15] and has the advantage of
diagnosing AE variability.

Various AE estimation methods or models give inconsistent
trends, a single AE dataset is insufficient [12, 16]. Therefore, we
examined AE variability over China derived from three sources,
namely the Budyko framework, a complementary-relationship-
based product [11], and a weighted average of six reanalyses.

The X-12-ARIMA method was then used to comprehensively
evaluate the performance of these three datasets in reproducing
the trend, seasonal, and irregular variations in AE for China’s six
climatic areas. The six areas are divided according to the
aridity index, and coincide roughly with China’s climatic
characteristics. Furthermore, the differences in the
contributing factors to AE variations were determined. Our
results mainly focused on the recent changes in and attributions
of regional AE.

DATA AND METHODS

Actual Evapotranspiration Data
Reanalyses (or retrospective analyses) have been produced by
various institutes. In this study, AE data from six different
reanalyses are used—namely, ERA-Interim reanalysis (ERA-I)
from ECMWF [17], MERRA and MERRA2 from the NASA
Goddard Space Flight Center [18], the Japanese 55-years
Reanalysis (JRA-55), NCEP/NCAR reanalysis I (NCEP-R1),
and NCEP/DOE reanalysis II (NCEP-R2) (available online
https://rda.ucar.edu/). These reanalyses were generated by
various forecast models, assimilation systems, or input
datasets. Different reanalyses provide a measure of uncertainty
in estimating the AE variability. For detailed descriptions of the
selected reanalyses, refer to [12, 13]; or the original dataset
citations.

In China, many studies have attempted to estimate AE [8–10,
19]. For comparison, the calibration-free nonlinear
complementary relationship modelled AE dataset (AE_CR)
was also used [11].

Meteorological Data and NDVI Data
To clarify the primary cause for variations in AE, we analyzed the
relation between AE and the climate variables, which include
surface net solar radiation derived from ERA-I, mean
temperature, maximum and minimum temperatures, diurnal
temperature range, cloud cover, potential evapotranspiration,
precipitation, wet-day frequency, and vapor pressure derived
from the University of East Anglia CRU TS4.00 version
dataset (available online https://crudata.uea.ac.uk/cru/data/hrg/
cru_ts_4.00/; [20]. In addition, the 8 km Global Inventory
Modeling and Mapping Studies (GIMMS) normalized
difference vegetation index (NDVI) dataset was derived from
the Advanced Very High Resolution Radiometer (AVHRR)
sensor (available online https://www.ncei.noaa.gov/data/), and
was used to estimate vegetation coverage [21]. Each dataset
has a different time span, but all cover our analysis period of
1982–2015. For easy comparison and for computation purposes,
all datasets were interpolated into a 0.5° × 0.5° grid using bilinear
interpolation.

Methods
The X-12 Seasonal Adjustment Procedure
Seasonal adjustment corresponds to an estimate of seasonal variation
and its elimination froma time series [15, 22]. Seasonally adjusted data
can be used to better visualize the long-term development of the data
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series. We adopted a widely-used seasonal adjustment method, which
is known as the X-12-ARIMA-based filter, to give a richer diagnosis
and clearer interpretation of climate variations in AE. To be more
precise, the original series (Xt) can be decomposed into three
components, as

Xt � Tt + St + It (1)

where Tt, St, and It are defined as the trend, seasonal, and irregular
components, respectively [22]. The trend component (Tt) captures the
direction of the time series, thus the nonparametric Mann–Kendall
test was applied to detect its linear trend. Irregular fluctuations were
generally due to unpredictable and unexpected factors. For more
sophisticated analyses, it was preferable to include both the seasonally
adjusted data and its seasonal component to obtain maximum
information from the data [15].

Weighted Average of AE From Six Reanalyses
Reanalysis AE is generally estimated from bulk flux formulas with
inputs of surface temperature, wind, and surface air temperature

and humidity [16]. Discrepancies in AE among reanalyses can be
substantial [12, 13]. An intercomparison of different datasets is a
key step in reducing uncertainties in AE estimates. After seasonal
adjustment of AE, multiple linear regression, a sophisticated and
quantitative analysis method, was used to analyze consistency
across the six reanalyses.

For the X-12 trend, seasonal, and irregular components of AE
from reanalysis X1, a multiple linear regression was performed
with the remaining five reanalyses (Xi, i � 2, . . . , 5), respectively,
that is,

X1 � β0 + β1X2 + β2X3 + β3X4 + β4X5 + β5X6 (2)

where βi (i � 0, . . . , 5) are the parameters generally estimated
by least squares. Based on this, the corresponding squared
multi-correlation coefficient (R2

i ) was used as the weight
coefficient of each reanalysis. Then we calculated the
weighted average of AE (AE_WAR) from the six reanalyses
using Eq. 3,

FIGURE 1 | The climatological distribution of (A) aridity index, (B) annual mean actual evapotranspiration (AE_MRE; mm d−1) derived from the average of six
reanalyses, (C) vegetation cover, and (D) annual mean precipitation (mm d−1) for 1982–2015.
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AE WAR � X1R2
1 + X2R2

2 + X3R2
3 + X4R2

4 + X5R2
5 + X6R2

6

∑

6
1R

2
i

(3)

where the subscript i of R2
i represents different reanalysis data

mentioned above.

AE Estimation Based on the Budyko Framework
In the Budyko framework, long-term AE (AE_Budyko) is largely
controlled by the ratio of energy supply (potential
evapotranspiration, PET) to water supply (precipitation, PRE).
Several previous studies have developed various but somewhat
similar coupled water–energy balance equations on the basis of
the Budyko hypothesis [23]. Because of its strong theoretical basis
and low data requirements, the Budyko equation has been widely
used [24]. As pointed out by [25]; various types of Budyko-like
equations have given broadly similar results. One of the most
popular Budyko equation is expressed as [21]:

AE Budyko � PRE · PET
(PREn + PETn)1/n (4)

where n is a catchment-specific parameter that modifies the
Budyko curve [24, 25]. China occupies a vast land territory,
thus the parameter n shows a large spatial variation (ranging from

0.4 to 3.8) [25]. It should be noted that higher values of n denote a
higher estimate of AE for a given PRE and PET in general [24]. To
simplify the Budyko framework, the parameter n is traditionally
set to be 1.8 [13, 23]. In the absence of better knowledge, we
assume here that n remains constant over time.

RESULTS AND DISCUSSION

Climatic Characteristics of China
Climate variations in China are complicated because of the
influence of various factors. Precipitation varied widely across
space (Figure 1D). Generally, wetter environments had a higher
vegetation cover (Figure 1C), indicating that long-term
vegetation cover was sensitive to water availability.
Considering geographical complexity, the response of regional
AE to a warming climate should be investigated separately [13].
Meanwhile, the quality of the AE products may differ spatially as
well. We thus differentiated the climatic areas in China and
performed an attribution analysis on AE for each area.

According to the aridity index (AI) [26], the Budyko
hypothesis generally separates catchments into energy-limited
(AI < 1) and water-limited (AI > 1) areas [27]. As shown in

FIGURE 2 | X-12-ARIMA seasonal components (St) of actual evapotranspiration (AE) derived from AE_WAR, AE_CR, AE_Budyko, and reanalyses over the (A)
hyper-arid, (B) arid, (C) semi-arid, (D) dry sub-humid, (E) sub-humid, and (F) humid regions.
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Figure 1A, AI had a similar spatial distribution to precipitation
(Figure 1D) and vegetation cover (Figure 1C). Consequently, the
definition of AI was deemed reasonable and reliable. According to
this index, China could be roughly divided into six climatic areas,
namely, the hyper-arid (H-arid), arid, semi-arid (S-arid), dry sub-
humid (DS-humid), sub-humid (S-humid), and humid
areas [13].

Figure 1B shows the spatial distribution of climatological
mean AE during 1982–2015, calculated from the average of six
reanalyses. Generally, AE across China decreased from south to
north and from east to west. For the mean annual water
balance, the moisture supplied by precipitation was sufficient
in most regions. In contrast, AE could be higher than
precipitation in northwestern China, where glaciers have a
direct impact on the water resource system [39].
Precipitation is used to measure water availability in the
Budyko framework. It means that AE_Budyko may be biased
low in some areas (discussed below).

Multi-Timescale Variability of AE
Figure 2 shows the seasonal component of AE for the six
climatic areas. AE showed strong seasonality with different
amplitudes over time. In comparison, seasonal variations in
AE revealed by different datasets were generally consistent for

most areas. The largest discrepancies were observed for the
hyper-arid area (Figure 2A). Overall, AE_WAR agreed better
with AE_CR (correlation 0.926) than with AE_Budyko
(correlation 0.856). Modest differences also existed in the
seasonal component for the arid area (Figure 2B). Seasonal
variation is an essential aspect of climate change. As shown in
Figure 2, seasonal components of AE in the hyper-arid and arid
areas exhibited substantial interannual variations, which is a
nonnegligible part of the original time series. It suggested that
the conventional approach assuming fixed seasonality did not
apply in these areas.

The trend components (Tt) of AE are shown in Figure 3.
Compared to AE_CR, AE_WAR agrees better with AE_Budyko,
as evidenced by the correlation coefficients shown in Figure 4
(0.589, 0.623, 0.708, 0.540, 0.387, and 0.288 for the six areas,
respectively). Despite the general similarity, disparities existed
among the three datasets, partly owing to their differing linear
trends (Figure 5). The statistical significance of the
Mann–Kendall test for the increasing trend in AE_WAR
exceeded the 99% confidence level in all areas (Figure 5).
This was consistent with the traditional view that AE is
likely to increase under global warming [7]. AE_Budyko also
showed an increasing trend in most areas, whereas a significant
negative trend was found for the hyper-arid area and no

FIGURE 3 | X-12-ARIMA trend components (Tt) of actual evapotranspiration (AE) derived from AE_WAR, AE_CR, AE_Budyko, and reanalyses over the (A) hyper-
arid, (B) arid, (C) semi-arid, (D) dry sub-humid, (E) sub-humid, and (F) humid regions.
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significant trend existed for the arid area (Figure 5). AE_CR
displayed a significantly decreasing trend in all areas, except
for the arid area. The spatial patterns of the linear AE
trends, and indeed the signs of the trends, differed between
the datasets.

Compared to AE_WAR and AE_Budyko, AE_CR showed
a significant discrepancy in the trend component (Figure 4).
Specifically, AE_CR for many areas peaked in 1997
(Figure 3), increasing during 1982–1997 and declining
after 1997. We suspected that the aforementioned weak
correlation might have been caused by the effect of the
spurious changes in AE_CR around 1997. A correlation
analysis between AE_CR and AE_ WAR was performed for
1982–1995 and 1999–2015, respectively. Correlation
coefficients were highly improved during 1982–1995. The
correlations between AE_CR and AE_WAR were 0.500,
0.692, 0.702, 0.712, 0.519, and 0.413 (p < 0.001) for the six
regions, respectively. The relationship between AE_CR and
AE_Budyko showed roughly similar behavior. A comparison
of various datasets revealed substantial uncertainties in the
trend component of AE_CR, which was likely overestimated
around 1997. It is therefore questionable whether a
calibration-free AE estimation method without the use of
precipitation or runoff rates could predict long-term changes
in AE.

AE_WAR increased from the mid-1990s to the early 2000s
and more recently in the hyper-arid area (Figure 3A); this was
generally consistent with the AE_Budyko trend. Similar
results were found for the arid area (Figure 3B), where

AE_WAR also had an increasing trend in the late 1980s. At
a regional scale, AE_WAR agreed better with AE_Budyko for
the semi-arid area (Figure 3C), with both indicating a distinct
increase in AE from 1982 to the early 1990s. During the same
period, an increasing trend in AE_WAR was observed for the
dry sub-humid area, whereas AE_Budyko showed no
discernible trend (Figure 3D). Another significant shift in
both AE_WAR and AE_Budyko occurred from the late 2010s
onwards. Considerable differences in the trend components of
AE among the three datasets were found in the sub-humid
(Figure 3E) and humid (Figure 3F) areas. For these two areas,
AE_WAR had a significantly increasing trend along with
substantial interannual variability, which agreed with
AE_Budyko. As noted above, both AE_WAR and
AE_Budyko agreed well with AE_CR during 1982–1996.
However, variations in AE obtained from the three datasets
were not consistent and exhibited conflicting trends during
1997–2015.

At a regional level, multiple factors determined how much
water evaporated from the land [1]. The irregular component of
AE showed high variability (Figure 6). Considerable
inconsistencies existed between the three datasets.
Specifically, AE_WAR showed reasonable agreement with
AE_Budyko for the drylands (i.e., hyper-arid, arid, and semi-
arid areas). By contrast, only a weak negative correlation existed
between AE_WAR and AE_Budyko for the humid area (Figure
5F). One possible reason for this was that changes in both
rainfall and soil water storage significantly influenced the
interannual variability of the hydrological responses [28]. For
example, vegetation and the interactions between climate
seasonality and soil water storage changes have also been

FIGURE 4 | Plot of correlation coefficients betweenAE_WARandAE_CR vs
correlation coefficients between AE_WAR and AE_Budyko in six climatic areas of
China from1982 to 2015 for the X-12-ARIMA trend and irregular components. The
local 99.9% confidence levels are about ± 0.164 based on Student’s t-test.

FIGURE 5 |Mann–Kendall trends for X-12-ARIMA trend component (Tt)
of actual evapotranspiration (AE) derived from various datasets for six climatic
areas of China from 1982 to 2015. The local 99% confidence levels are
about ± 2.32.
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found to play important roles [25]. The magnitude of any
change in the interannual variability of AE caused by
variations in catchment vegetation was related to pre- and
post-change vegetation types. Compared to the drylands, the
vegetation cover in wetter environments tended to be denser
(Figure 1C). Because of the mutual interactions among
climate, hydrological processes, and land surface
characteristics, AE had a nonlinear relationship with
precipitation and potential evapotranspiration [24, 29],
which led to deviations in the Budyko relationship [28]. As
a result, the performance of AE_Budyko in reproducing the
irregular component of AE remains doubtful for the humid
area (Figure 6F).

Agreement between AE_WAR and AE_CR was observed for
the humid and sub-humid areas (Figure 4). As the above
mentioned, a calibration-free nonlinear complementary
relationship model was utilized for monthly AE_CR taking air
and dew-point temperature, wind speed, and net radiation as
inputs [11, 30]. AE from surfaces with abundant moisture was
mainly controlled by energy conditions [27, 31]. Atmospheric
evaporative demand was primarily driven by two major
components, namely radiative and aerodynamic components,
both of which were associated with the AE_CR inputs.
Therefore, the irregular component of AE_CR performed

better than that of AE_Budyko for the humid and sub-humid
areas (Figure 4).

Causes and Implications of Changes in AE
The response of AE to climate variables varies spatially (Figure 7).
The causes of variations in AE are closely related to local climatic
characteristics. The trend component of AE showed a strong
positive correlation with precipitation, wet-day frequency, and
vapor pressure (p < 0.001) (Figure 7) in the hyper-arid, arid,
and semi-arid areas. This was consistent with the convention that
AE is mainly controlled by water conditions in drylands. In water-
limited environments, a substantial fraction of the variations in
precipitation become variations in AE. Although precipitation was
the dominant factor for the trend component of AE in the
drylands, the increase in precipitation (Figure 8) was lower
than that in AE (Figure 4) according to the Mann–Kendall test.

In fact, increased wet-day frequency could promote AE
increase, even if there is no change in total precipitation.
Besides, changes in runoff and water storage should be
considered in the amount of moisture available for AE [31,
32], especially in drylands. Human activities and climate
change have intensely influenced the ecohydrological pattern
of many basins. For example, the Tarim River Basin is the
most heavily glacierized watershed in arid northwestern China.

FIGURE 6 | X-12-ARIMA irregular components (It) of actual evapotranspiration (AE) derived fromAE_WAR, AE_CR, AE_Budyko, and reanalyses over the (A) hyper-
arid, (B) arid, (C) semi-arid, (D) dry sub-humid, (E) sub-humid, and (F) humid regions.
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The water supply from the mountains to the Tarim River Basin is
favorable in recent decades; however, local human activities (such
as irrigation and domestic water use) have reduced its runoff [33].
[34] also indicated that the influence of irrigation on AE
variability became increasingly evident with the increase of
irrigation in the Tarim River Basin. Accordingly, the increased
water supply from catchment storage likely resulted in increased
AE in the drylands.

AE_WAR and AE_Budyko were significantly correlated (p <
0.001) with diurnal temperature range, net solar radiation, and
cloud cover in the drylands. The Mann–Kendall test indicated
that diurnal temperature range decreased significantly in the
drylands, mostly because of a more significant increase in

minimum temperature relative to maximum temperature
(Figure 8). This decrease in diurnal temperature range was
mainly attributed to increased cloud cover, precipitation, and
soil moisture [35]. Diurnal temperature range can represent the
combined influence of these variables and hence has a strong
relationship with AE [36].

Increased AE can modulate the climate by reducing the sensible
heat flux, enhancing the air humidity, increasing the minimum
temperature, and decreasing the maximum temperature [35]. It
means that increased AE is a possible reason for the increase in
minimum temperature has been higher than that in maximum
temperature, that is, the decrease in diurnal temperature range
might have resulted from the increased AE (Figure 8).

FIGURE 7 | Temporal correlation coefficients between X-12-ARIMA trend components of actual evapotranspiration and influencing factors, namely potential
evapotranspiration (PET), mean temperature (TMP), maximum and minimum temperatures (TMX and TMN, respectively), diurnal temperature range (DTR), net solar
radiation (NSR), cloud cover (CLD), precipitation (PRE), wet-day frequency (WET), and vapor pressure (VAP), over the (A) hyper-arid, (B) arid, (C) semi-arid, (D) dry sub-
humid, (E) sub-humid, and (F) humid regions from 1982 to 2015. The local 99.9% confidence levels are about ± 0.164 based on Student’s t-test.
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The correlations ranged more widely between the datasets in
wetter areas. Vapor pressure was an essential factor influencing
AE in the dry sub-humid area (Figure 7D). Increased AE led to
increasing vapor pressure, thus increased vapor pressure could be
interpreted as a sign of increasing AE [6]. Similar relationships
were found in the sub-humid area (Figure 7E). Overall, the
simultaneous increases in precipitation and wet-day frequency
increased AE in the dry sub-humid area (Figure 7D). Increased
minimum temperature was likely an essential cause of the
increased AE in the sub-humid area (Figure 7E). For the
humid area, the trend component of AE was less sensitive to
precipitation than that in the drylands. AE increased under the
integrated influence of potential evapotranspiration, mean
temperature, and maximum and minimum temperatures
(Figure 7F). Changes in AE were generally controlled by
energy supply rather than precipitation.

In general, AE was driven mainly by climatic factors, regulated
by land surface condition, and limited by water supply [19]. The
trend component of AE_CR showed little correlation with
climatic factors. An explanation is that AE_CR may fail in
reproducing the long-term variation in AE. In contrast,
AE_Budyko showed reasonable consistency with AE_WAR,
demonstrating that AE_Budyko is more reliable in terms of
long-term, large-scale changes in AE.

Figure 9 illustrates the influencing factors of the irregular
component of AE at regional scales. As expected, precipitation
had the strongest influence on AE in the hyper-arid, arid, and
semi-arid areas. In the drylands, precipitation is temporarily
stored in soil and then totally evaporates into the atmosphere
[1]. In contrast, AE_WAR and AE_CR were significantly
negatively correlated with precipitation in the humid area

(Figure 9F), where AE was more sensitive to energy supply
than water supply (Figure 1A). The irregular component of
precipitation made a much smaller contribution to AE.
Furthermore, precipitation usually coincides with an increase
in cloud cover and a decrease in radiation, resulting in a reduction
of energy supply to AE (Figure 9F). For this reason, precipitation
had a negative effect on AE in the humid area. Similarly, positive
correlations between AE and cloud cover dominated in drylands,
but significantly negative associations existed between AE and
surface net solar radiation.

AE was significantly negatively correlated with potential
evapotranspiration in the drylands (Figure 9). [29] suggested
that a complementary relationship between AE and potential
evapotranspiration occurs in non-humid areas because these two
factors are correlated via precipitation. In contrast, AE and
potential evapotranspiration had a strong positive correlation
in wet areas (Figures 9E,F). The inclusion of the regional
dimension of AE drivers allows the scenarios both of
increasing AE and potential evapotranspiration in water-rich
areas and of increasing AE and decreasing potential
evapotranspiration to be encompassed in the drylands (Figure 9).

FIGURE 8 | Mann–Kendall trends in X-12-ARIMA trend components of
influencing factors in six climatic areas of China from 1982 to 2015. The local
99% confidence levels are about ± 2.32.

FIGURE 9 | Temporal correlation coefficients between X-12-ARIMA
irregular component of actual evapotranspiration and influencing factors over
the (A) hyper-arid, (B) arid, (C) semi-arid, (D) dry sub-humid, (E) sub-humid,
and (F) humid regions from 1982 to 2015. The local 99.9% confidence
levels are about ± 0.164 based on Student’s t-test.
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In the humid area, surface net solar radiation was the most
crucial variable regulating the irregular component of AE_WAR
(Figure 9F), which was reasonable, as radiation is the energy
source for AE. Overall, the result of AE_WAR matched that of
AE_CR (Figure 9F). [37] also reported that in humid climates,
such as northeast India, solar radiation supplied most of the
energy required for water to change from a liquid to a vapor.
Furthermore, AE was strongly correlated with diurnal
temperature range. [1] pointed out that the variability in
diurnal temperature was consistent with that in surface
incident solar radiation at monthly to decadal timescales.
Since surface incident solar radiation heats daytime air only,
its variation was related to changes in diurnal temperature.

AE is a complex process that regulates land-atmosphere
interactions. Increased water supply from catchment storage
could be a primary contributor to increased AE. Nevertheless,
accurate detection and attribution of complex variability in AE at
multi-time scales remain challenging [33, 38]. The implications of
variations in AE remain unclear.

CONCLUSION

According to the aridity index, China was divided into six
climatic areas. This study analyzed regional AE variability
across China using data from the weighted average of six
reanalyses (AE_WAR), the Budyko framework (AE_Budyko),
and a complementary-relationship-based AE product (AE_CR).
Since seasonal variation complicates the detection of changes in
AE, the X-12-ARIMA method was used to study the trend,
seasonal, and irregular components of AE as well as the
significant drivers.

According to the trend component, AE increased from the
mid-1990s to the early 2000s and more recently in the hyper-
arid and arid areas. An increasing trend in AE was also
observed from 1982 to the early 1990s in the semi-arid and
dry sub-humid areas. In the sub-humid and humid areas, AE
had a significantly increasing trend along with substantial
interannual variability. Increased precipitation and water
supply from terrestrial water storage contributed
significantly to increasing AE in drylands. The simultaneous
occurrences of increased precipitation and wet-day frequency
caused high AE in the dry sub-humid area. In contrast,
increased AE in the sub-humid and humid areas could be
explained by increased energy supply and precipitation.

Precipitation had the strongest influence on the irregular
component of AE in the drylands. In contrast, AE_WAR and
AE_CR were significantly negatively correlated with precipitation
in the humid area. Negative correlations between AE and
potential evapotranspiration occurred in the drylands, whereas
positive relationships existed in the sub-humid and humid areas.
The irregular component of AE was positively correlated with
vapor pressure across China. Positive relationships between AE
and cloud cover dominated in drylands, but significantly negative
associations existed between AE and surface net solar radiation.

Considering data availability, the seasonal variations in AE
revealed by the different datasets were generally consistent. The

largest discrepancies occurred in the hyper-arid area. Compared
to AE_WAR and AE_Budyko, the trend component of AE_CR
showed inconsistent behavior across many areas, which was
mainly caused by spurious changes around 1997. AE_CR did
not consider soil moisture explicitly, which may have limited its
ability to detect AE trends. The Budyko model is useful in large-
scale hydrological research; however, the irregular component of
AE_Budyko remains dubious for humid and sub-humid areas
because of the complex interactions between climate, vegetation,
and soil.

Water loss through AE is a major consideration in the design
and management of water supply reservoirs. Efforts to evaluate
AE in natural settings are made difficult by spatial heterogeneity
in soil and unevenly distributed vegetation in addition to other
biophysical processes. This study thoroughly compared different
AE products for various climatic areas of China. Such knowledge
is meaningful to hydrological, climatological, and ecological
research.
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Simulated Variation Characteristics of
Oceanic CO2 Uptake, Surface
Temperature, and Acidification in
Zhejiang Province, China
Kuo Wang1, Han Zhang1, Gao-Feng Fan1*, Zheng-Quan Li1, Zhen-Yan Yu1 and Pei-Pei Liu2

1Zhejiang Climate Center, Meteorological Bureau of Zhejiang Province, Hangzhou, China, 2Ankang Meteorological Bureau of
Shaanxi Province, Ankang, China

Since preindustrial times, atmospheric CO2 content increased continuously, leading to global
warming through the greenhouse effect. Oceanic carbon sequestration mitigates global
warming; on the other hand, oceanic CO2 uptake would reduce seawater pH, which is
termed ocean acidification. We perform Earth system model simulations to assess oceanic
CO2 uptake, surface temperature, and acidification for Zhejiang offshore, one of the most
vulnerable areas to marine disasters. In the last 40 years, atmospheric CO2 concentration
increased by 71 ppm, and sea surface temperature (SST) in Zhejiang offshore increased at a
rate of 0.16°C/10a. Cumulative oceanic CO2 uptake in Zhejiang offshore is 0.3 PgC, resulting
in an increase of 20% in sea surface hydrogen ion concentration, and the acidification rate
becomes faster in the last decade. During 2020–2040, under four RCP scenarios, SST in
Zhejiang offshore increases by 0.3–0.5°C,whereas cumulative ocean carbon sequestration is
0.150–0.165 PgC. Relative to RCP2.6, the decrease of surface pH in Zhejiang offshore is
doubled under RCP8.5. Furthermore, simulated results show that the relationship between
CO2 scenario and oceanic carbon cycle is nonlinear, which hints that deeper reduction of
anthropogenic CO2 emission may be needed if we aim to mitigate ocean acidification in
Zhejiang offshore under a higher CO2 concentration scenario. Our study quantifies the
variation characteristics of oceanic climate and carbon cycle fields in Zhejiang offshore, and
provides new insight into the responses of oceanic carbon cycle and the climate system to
oceanic carbon sequestration.

Keywords: oceanic carbon sequestration, climate change, ocean acidification, UVic model, Zhejiang province

INTRODUCTION

Atmospheric CO2 concentration has reached 410.07 ± 0.10 ppm (parts per million) by 2019, and
increased by 46% since preindustrial time, which is primarily resulting from human activities of fossil
fuel burning and land use changes [1]. Observational-based estimates showed that during
1750–2019, total anthropogenic CO2 emissions were 700 ± 75 Pg C (1 Pg C � 1015 g of carbon)
[1]. About 41% of these emissions stayed in the atmosphere, whereas about 24% of these emissions
were absorbed by the ocean, which is considered as a main sink of atmospheric CO2 [1]. Besides, the
ocean also plays an important role in regulating climate by key air–sea interaction processes [2–6].

Increased atmospheric CO2 causes global warming (GW) through the greenhouse effect. Global
warming has become one of the most challenging global issues and the core issue of global change
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[7–11]. Carbon capture and sequestration is a major player in
reducing atmospheric CO2 concentrations and the resultant global
warming. However, the absorption of anthropogenic CO2 by the
ocean would also decrease seawater pH, causing ocean acidification
and having important effects on the oceanic carbon cycle and
ecosystem [12]. Therefore, it is important to investigate the response
mechanisms of oceanic carbon cycle and climate system to oceanic
CO2 sequestration. In addition, owing to the inhomogeneous
physical and biogeochemical features in different oceanic basins
or areas, vulnerability assessment of different oceanic areas under
the impacts of climate change has become a forefront topic of
international scientific research [13–16].

Besides GW, ocean acidification is another significant impact
induced by greenhouse gas emissions [12, 17, 18]. With the
increased annual CO2 emissions, ocean acidification has been
exacerbated in recent years [19]. The main concern of ocean
acidification originates from its potentially adverse effects of
CaCO3 saturation state (Ω) reductions on marine calcifying
organisms. Reduced Ω would decrease the calcification rate and
increase the CaCO3 dissolution rate of calcifying organisms, making
their skeletons or shells vulnerable [20–23]. For instance, aragonite
is themain constituent of corals’ calcareous endoskeleton; therefore,
corals surrounded by seawater which is undersaturated with respect
to aragonite (ΩA < 1) could encounter adverse effects. There are
intriguing evidences that CaCO3 could also dissolve even in
supersaturated seawater [24, 25].

Marine organisms in the China seas are ecologically and
economically important. China is known as one of the most
important countries of ocean aquaculture industry, where more
than 70% of the major cities and 50% of the populations are
concentrated in the eastern and southern coastal regions.
Maintaining sustainable development of resources and environment
in offshore and coastal regions is an urgent strategic requirement for
the future development of the country [26, 27]. Zhejiang is a highly
developed province in East China, which takes a leading position in the
national marine economic development strategy. Therefore, it is
necessary to assess the variation characteristics of oceanic climate,
carbon cycle, and acidification in Zhejiang offshore. However, due to
the lack of historical observational data in oceanic physical and
chemical fields, uncertainties exist in assessing changes in oceanic
climate, acidification, and biogeochemical processes in regional areas.

In this study, the variation characteristics of oceanic CO2

uptake, SST, and ocean acidification in historical times and future
trends in Zhejiang offshore are quantified. In order to acquire
reasonable assessments, reanalysis data and numerical simulated
results are used. The data and model used are introduced in Data
and Method section, changes in oceanic carbon cycle and climate
system are analyzed in Results section, and the summary and
advice for adapting to climate change and ocean acidification are
in Conclusion and Discussion section.

DATA AND MODELING

Data and Method
The historical SST data used in this article are from ERA-Interim
high-precision reanalysis data published by the ECMWF

(European Center for Medium-Range Weather Forecasts) [28].
The time span is 1980–2019, and the resolution is 0.125° × 0.125°.

Seawater pH is a measurement to quantify the degree of ocean
acidification [29]. The increased hydrogen ion concentration tended
to reduce carbonate ion concentration ([CO2−

3 ]) via the following:

H+ + CO2−
3 →HCO−

3 (1)

Model and Simulations
The University of Victoria Earth System Climate Model (UVic ESCM)
version 2.9 used in this study is an intermediate complexity Earth system
model [30]. The UVic model is composed of an energy–moisture
balance atmospheric model, a 3-D ocean general circulation model, a
thermodynamic/dynamic sea ice model, and land and ocean carbon
cycle models [31–34]. The model’s horizontal resolution is 1.8°

(latitude)×3.6° (longitude), which is similar to most coupled
atmosphere–ocean general circulation models (AOGCMs). The ocean
model of UVic is the modular ocean model (MOM) version 2.2
developed by the Geophysical Fluid Dynamics Laboratory (GFDL),
which has a vertical resolution of 19 levels [35].

First, the UVic model was spun up for 10,000 model years with a
fixed preindustrial CO2 concentration of 280 ppm to reach a quasi-
equilibrium state of carbon cycle and the climate system. Then, this
preindustrial state was used as an initial condition for the calendar
year of 1800, 300-years transient simulations were performed
(i.e., from 1800 to 2100) [36, 37]. From 1800 to 2019,
atmospheric CO2 concentration data were taken from
observation-based estimates [38], and after 2019, CO2

concentrations were taken from the Representation
Concentration Pathway scenarios (RCPs) and their extensions up
to 2100. The four scenarios used are RCP2.6, RCP4.5, RCP6.0, and
RCP8.5, based on different mitigation policies for greenhouse gases
[39, 40]. The numbers after “RCP” represent that by 2100, the
radiative forcing reaches 2.6, 4.5, 6.0, and 8.5Wm−2, respectively.

Analysis of Marine Chemistry Fields
In this study, we calculate ocean carbonate chemistry fields, such
as pH, based on equations in the Ocean Carbon-Cycle Model
Intercomparison Project phase 3 (OCMIP-3, http://ocmip5.ipsl.
jussieu.fr/OCMIP/). UVic-simulated ocean temperature, salinity,
DIC (dissolved inorganic carbon), ALK (alkalinity), and data-
based estimates of ocean silicate and phosphate concentrations
from the GLODAP (Global Ocean Data Analysis Project) [41] are
used. The calculations are shown as follows [42].

Thermodynamic carbonate chemistry fields generally include
the following six variables: DIC, ALK, [H+], [CO2], [CO3

2-], and
[HCO3

−]. Here, [CO2] represents the sum of aqueous carbon
dioxide concentrations and H2CO3 (carbonate acid); [HCO3

−]
denotes bicarbonate ion concentration. Equilibrium expressions
for H2CO3 dissociation are as follows:

K*
1 �

[HCO−
3 ][H+]

[CO2] (2)

K*
2 �

[CO2−
3 ][H+]

[HCO−
3 ]

(3)
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Expressions for DIC and ALK are as follows:

DIC � [CO2] + [HCO−
3 ] + [CO2−

3 ] (4)

ALK ≈ [HCO−
3 ] + 2[CO2−

3 ] + [OH−] − [H+] (5)

Based on the above six variables (DIC, ALK, [H+], [CO2],
[CO3

2-], and [HCO3
−]) and four equations (Eqs 2–5), and

given two known variables, we can calculate the rest of the
four variables [43].

Regions of Interest
This study investigates historical and future variation characteristics
of oceanic CO2 uptake, SST, and ocean acidification in Zhejiang
offshore, China. Our regions of interest include the oceanic area of
27.0°–31.0° latitude and 120.0°–124.2° longitude (Figure 1). Zhejiang
offshore locates in North West of the East China Sea, the subtropical
humid climate zone [44]. In addition to the atmospheric circulation
system, including East Asian monsoon, the climate system in
Zhejiang offshore could also be affected by the continental climate
system and oceanic currents, such as the Kuroshio and coastal
upwelling currents [45]. Zhejiang is a highly developed province
in East China, which takes a leading position in national marine
economic development strategy. Changes in oceanic carbon cycle and
climate system in Zhejiang offshore could have drastic effects on
millions of people who depend on marine resources.

RESULTS

Model-simulated historical oceanic CO2 uptake for the global
ocean is consistent with observation-based estimates reported by
IPCC AR5 (Intergovernmental Panel on Climate Change Fifth
Assessment Report) [46]. For example, UVic-simulated cumulative

oceanic CO2 uptake during preindustrial time to 2011 was
147 Pg C, which compares well with the observational range of
155 ± 30 Pg C reported by IPCC AR5 (Table 1). Model-simulated
averaged oceanic CO2 uptake during 2002 to 2011 was 2.4 Pg C
yr−1, within the observed value of 2.4 ± 0.7 Pg C yr−1 (Table 1).

Model-simulated key carbon-related tracers are also compared
with observation-based estimates from the GLODAP [46]. As
shown in Figure 2, simulated vertical profiles of DIC and ALK
for Zhejiang offshore largely agree with observed estimates. In
addition, UVic-simulated large-scale distributions of key variables
in the oceanic carbon cycle [45–47], climate [48–50], and historical
oceanic uptake of carbon and its isotopes [42] also compare well
with observation-based estimates.

SST and Ocean Acidity of Zhejiang Offshore
in the Last 40Years
Zhejiang offshore SST ranges from 19 to 22°C, with higher SST
farther offshore at the same latitude. From 1980 to 2019, the hottest

FIGURE 1 | Spatial distributions of simulated decadal mean (A–D) oceanic CO2 uptake and (E–H) trends of oceanic CO2 uptake in Zhejiang offshore. Results are
shown for (A,E) 1980–1989, (B,F) 1990–1999, (C,G) 2000–2009, and (D,H) 2010–2019.

TABLE 1 | Model-simulated global oceanic CO2 uptake compared with
observation-based estimates reported by IPCC AR5, which show
uncertainties as 90% confidence intervals [46].

IPCC AR5 UVic ESCM

Preindustrial-2011 cumulative 155 ± 30 147

1980–1989 average (Pg C yr−1) 2.0 ± 0.7 1.8

1990–1999 average (Pg C yr−1) 2.2 ± 0.7 2.0

2000–2009 average (Pg C yr−1) 2.3 ± 0.7 2.3

2002–2011 average (Pg C yr−1) 2.4 ± 0.7 2.4
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season in Zhejiang offshore sea surface is summer, with SSTmainly
in the range of 25–28°C, whereas the coldest season is winter, with
SST in the 13–17°C range. Across the four seasons, SST spatial
gradient is larger in spring and winter, and the smallest in summer.

Observation-based estimates show that during 1980–2019,
atmospheric CO2 concentration increased from 339 to 410 ppm.
The increment of atmospheric CO2 concentration led to rising SST
through the enhanced greenhouse effect (Figure 3). During
1980–2019, SST of Zhejiang offshore increased at a rate of
0.16°C/10a, which reached its highest level in 1998 (21.8°C), and
the lowest in 1981 (20.5°C) (Figure 3). From the perspective of
interdecadal change, SST of Zhejiang offshore mainly increased
from 1980s to late 1990s, decreased at the beginning of the 21st
century, and increased again in the 2010s. Annual mean SST of
Zhejiang offshore reached 21.5°C in 2019.

In addition to rising seawater temperatures, another important
impact of CO2 emissions on marine environment is ocean
acidification. With the increasing of atmospheric CO2

concentration, the ocean, as an important carbon sink,
continuously absorbs anthropogenic CO2 from the atmosphere
(Figures 1, 4). For instance, simulated results show that during

1980–2019, cumulative oceanic CO2 uptake in Zhejiang offshore is
0.3 Pg C. The increase of annual oceanic CO2 uptake in Zhejiang
offshore is largely related to the rise of atmospheric CO2

concentration. Continuous oceanic CO2 uptake would lead to
ocean acidification, resulting in the rise of seawater hydrogen
ion concentration, reducing the calcification rate of marine
organisms, making their skeletons or shells vulnerable, and
consequently, having adverse impacts on the marine ecosystem.

In the last 40 years, atmospheric CO2 concentration increased
by 21%. Simulated results show that the decrease rate of pH in
Zhejiang sea surface is closely related to the increasing rate of
atmospheric CO2 concentration and oceanic CO2 uptake. With
the increase of atmospheric CO2, the ocean’s continuous
absorption of CO2 leads to the exacerbation of ocean
acidification in Zhejiang offshore (Figures 1, 4-6).

Compared with low- and high-latitude sea surface, sea surface
of Zhejiang offshore, which is located in the mid-latitude, suffered
greater acidification. During 1980–2019, sea surface pH at low
and high latitudes decreased by 0.06 units, while that at Zhejiang
offshore decreased by 0.08 units, 23% greater than the decrease
rate of sea surface pH in the global ocean. As atmospheric CO2

increases, the acidification rate of seawater also accelerates. For
the past 20 years, especially the last 10 years (2010–2019), the
reduction rate of Zhejiang offshore sea surface pH significantly
accelerated compared to 1980–1999. The pH reduction rate
increased from 0.017/10a in 1980–1989 to 0.023/10a in
2010–2019 (accelerated by 35%, Figure 6).

Zhejiang offshore is the habitat of a large number of marine
organisms, where fisheries amount to about 220,000 km2. The
main fishery products include fish, shrimp, crab, shellfish, and
other calcified organisms. The total allowable catch in Zhejiang
offshore ranks the first in China, and in recent years, the annual
production all reached three million tons. By conducting pCO2/
pH perturbation experiments, Wu and Gao concluded that, the
effects of ocean acidification and solar UV changes would also
suppress photosynthesis in the China seas [51]. Physiology,
morphology, and behavior of some marine organisms (e.g.,
cnidarians and molluscs) would also be influenced by seawater

FIGURE 2 | Modeled mean vertical profiles for Zhejiang offshore of (A) dissolved inorganic carbon (DIC) and (B) alkalinity (ALK) (1990–1999 average) compared
with observed estimates from GLODAP data (gray shaded areas denote estimated uncertainties) [41].

FIGURE 3 | Annual mean variation and linear trend of SST in Zhejiang
offshore from 1980 to 2019.
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acidification [52]. Therefore, ocean acidification would have
important effects on the basic biochemical processes and
ecosystem in Zhejiang offshore, leading to reductions in fisheries
and aquaculture production, resulting in economic losses and
important impacts on millions of people depending on seafood
and other marine resources. Meanwhile, acidified seawater could
accelerate the corrosion of building materials, having adverse

impacts on the quality of marine constructions, causing economic
losses.

SST Changes and Ocean Acidification of
Zhejiang Offshore in the Next 20Years
The UVic model was used to quantify changes in SST and
ocean acidification in Zhejiang offshore from 2020 to 2040,
under different greenhouse gas emission scenarios (RCP2.6,
RCP4.5, RCP6.0, and RCP8.5). Under four RCP scenarios,
atmospheric CO2 concentration would increase by
28–74 ppm in the next 20 years, resulting in a rise of
0.3–0.5°C in Zhejiang offshore SST (Figures 7A,C).

With the continuing increases in atmospheric CO2 content,
Zhejiang offshore keeps absorbing atmospheric CO2, resulting
in continuous acidification of seawater. During 2020–2040,
under different RCP scenarios, simulated cumulative CO2

uptakes of Zhejiang offshore are 0.150–0.165 Pg C
(Figure 7B). Under RCP8.5, from 2020 to 2040, Zhejiang sea
surface pH decreases by 0.07, corresponding to an increase of
17% in hydrogen ion concentration, while under the RCP2.6
scenario, Zhejiang sea surface pH decreases by 0.03,
corresponding to an increase of 7% in hydrogen ion
concentration (Figure 7D). Therefore, in the next 20 years,

FIGURE 4 | (A) Prescribed atmospheric CO2 concentration and (B) model-simulated time series of annual cumulative oceanic CO2 uptake in Zhejiang offshore
(lines). Changes of atmospheric CO2 concentration relative to the previous year and oceanic CO2 uptake per year are also shown by the boxes.

FIGURE 5 |Model-simulated time series of annual mean sea surface pH
in Zhejiang offshore (line). Changes of surface pH relative to the previous year
are also shown by the boxes.
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resulting from the rises in atmospheric CO2 concentration,
Zhejiang offshore SST would rise continuously, and risks of
ocean acidification would further increase. Consequently,
further studies would be needed to develop a better
understanding of the effects of climate change on the marine
ecosystem; meanwhile, the capacity of climate change
adaptation in Zhejiang should be improved.

The Nonlinear Relationship Between
Atmospheric CO2 Scenario and Oceanic
Carbon Cycle
Simulated results under different scenarios show that the
relationships among the atmospheric CO2 scenario used,
oceanic climate, and carbon cycle fields in Zhejiang offshore

FIGURE 6 | Spatial distributions of simulated decadal mean (A–D) sea surface pH and (E–H) trends of sea surface pH in Zhejiang offshore. Results are shown for
(A,E) 1980–1989, (B,F) 1990–1999, (C,G) 2000–2009, and (D,H) 2010–2019.

FIGURE 7 | (A) Prescribed atmospheric CO2 concentration and model-simulated time series of annual mean (B) cumulative oceanic CO2 uptake, sea surface (C)
temperature, and (D) pH in Zhejiang offshore. Results are shown for the four simulations using the four RCP scenarios depicted in the Data and Modeling section.
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are nonlinear (Figure 8). First, the RCP scenario of high CO2

emissions does not necessarily correspond to high atmospheric
CO2 concentration. For example, during 2020–2040, atmospheric
CO2 concentration of RCP4.5 is higher than that of RCP6.0.
Therefore, the RCP scenario of higher CO2 emissions does not
necessarily lead to larger oceanic CO2 uptake, higher SST, or
lower surface pH. For instance, at 2040, simulated oceanic CO2

uptake in Zhejiang offshore is larger under RCP4.5 than that
under RCP6.0 (0.0076 Pg C in RCP4.5 and 0.0074 Pg C in
RCP6.0, respectively). In 2040, Zhejiang offshore seawater
would experience greater warming and acidification under
RCP4.5 than under RCP6.0 (Figures 8B,C). In addition, the
RCP scenario of higher CO2 emissions not necessarily leads to
faster change of oceanic CO2 uptake, SST, or surface pH. For
example, at 2040, Δsurface pH/ΔCO2 is faster under RCP4.5 than
that under RCP6.0 (−0.40 units/100 ppm in RCP4.5 versus −0.37
units/100 ppm in RCP6.0, Figure 9).

Second, the relationship among atmospheric CO2

concentration, ocean climate, and carbon cycle fields in
Zhejiang offshore is nonlinear. For instance, at 2040, for
Zhejiang offshore sea surface pH, ΔpH RCP8.5-RCP4.5/ΔCO2

RCP8.5-RCP4.5 � -0.0749 units/100 ppm, ΔpH RCP4.5-RCP6.0/ΔCO2

RCP4.5-RCP6.0 � -0.0796 units/100 ppm, while ΔpH RCP6.0-RCP2.6/
ΔCO2 RCP6.0-RCP2.6 � -0.0803 × 10−4 units/100 ppm, indicating

faster acidification rates under scenarios of lower atmospheric CO2

concentration. In comparison, the relationships among atmospheric
CO2 concentration, oceanic CO2 uptake, and SST are far more
nonlinear (Figures 8A,B). For example, at 2040, for SST in
Zhejiang offshore, ΔSST RCP8.5-RCP4.5/ΔCO2 RCP8.5-RCP4.5 � -0.44°C/
100 ppm, ΔSST RCP4.5-RCP6.0/ΔCO2 RCP4.5-RCP6.0 � -0.52°C/100 ppm,
while ΔSST RCP6.0-RCP2.6/ΔCO2 RCP6.0-RCP2.6 � -0.35°C/100 ppm. The
nonlinearity between atmospheric CO2 concentration and ocean
acidification is noteworthy because it hints that if we aim to
mitigate ocean acidification in Zhejiang offshore under a high
emission scenario, deeper reductions of anthropogenic CO2

emission may be needed.

CONCLUSION AND DISCUSSION

Under the background of greenhouse gas emissions and GW, it is
an important issue to analyze the variation characteristics in ocean
climate and carbon cycle fields, which determines the capacity of the
ocean to capture atmospheric CO2 [53–55]. In this article, changes
of oceanic CO2 uptake, SST, and acidification in Zhejiang offshore
in last 40 years are assessed. Future changes in the next 20 years are
also simulated by the UVic Earth systemmodel. In addition, we also
quantify the differences of oceanic carbon cycle under different RCP

FIGURE 8 | Prescribed atmospheric CO2 concentration against model-simulated (A) oceanic CO2 uptake, (B) sea surface temperature, and (C) sea surface pH in
Zhejiang offshore at 2040. Results are shown for the four simulations using the four RCP scenarios depicted in the Data and Modeling section, revealing the nonlinearity
relationships among the atmospheric CO2 scenario used, oceanic climate, and carbon cycle fields.

FIGURE 9 | Model-simulated time series of (A) Δoceanic CO2 uptake/ΔCO2, (B) Δsea surface temperature/ΔCO2, and (C) Δsea surface pH/ΔCO2 in Zhejiang
offshore. Results are shown for the four simulations using the four RCP scenarios depicted in the Data and Modeling section.
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scenarios, which contributes to develop a better understanding of
oceanic carbon capture and climate adaptation.

Our results show that over the past 40 years, with the increasing
atmospheric CO2 content, SST in Zhejiang offshore increased at a
rate of 0.16°C/10a. Meanwhile, the increase of annual oceanic CO2

uptake in Zhejiang offshore is also closely related to the rise of
atmospheric CO2 concentration, which results in an increase of
20% in sea surface hydrogen ion concentration over the past
40 years, and accelerated acidification over the past 10 years.

Previous projects and studies also reported data-based
estimates of changes in oceanic climate and seawater acidity.
For instance, Kennedy et al. announced an increase in global SST
of 0.124 ± 0.030°C/10a in 1979–2012 by using observation-based
HadSST3 data [56]. Smith et al. reported an increase in global SST
of 0.105 ± 0.031°C/10a in 1979–2012 by using ERSSTv3b data
[57]. These assessed SST growth rates are relatively slower than
our result of 0.16°C/10a for Zhejiang offshore. Ishii et al. analyzed
observations in the coast of western North Pacific, reporting a
decrease rate of 0.020 ± 0.007 units/10a in surface pH during
1994–2008 [58], consistent with our simulated results, faster than
central Pacific of 0.014 ± 0.002 units/10a in 1998–2007 [59] and
Eastern North Atlantic Ocean of 0.015 ± 0.002 units/10a in
1995–2004 [60]. Therefore, Zhejiang offshore is one of the
most vulnerable areas to climate change and ocean acidification.

Four CO2 emission scenarios are used to simulate oceanic CO2

uptake, SST, and pH in Zhejiang offshore during 2020–2040. By
2040, with the rise of atmospheric CO2 concentration under four
RCP scenarios, SST in Zhejiang offshore increases by 0.3–0.5°C,
whereas cumulative oceanic CO2 uptake is 0.150–0.165 Pg C,
leading to a decrease of sea surface pH by 0.03–0.07.
Compared to RCP2.6, the decrease of surface pH in Zhejiang
offshore is doubled under RCP8.5. In addition, the relationship
between the CO2 scenario used and oceanic carbon cycle is
nonlinear, which is important because if we want to mitigate
ocean acidification in Zhejiang offshore under a higher CO2

concentration scenario, more effective anthropogenic CO2

emission reductions may be needed.
This study has investigated the variation characteristics of

oceanic climate and carbon cycle fields in Zhejiang offshore on
timescales of decades by using an Earth system model. Some
processes or feedbacks that are not considered in this study
may also have impacts on the ocean carbon cycle and climate
system. For instance, ocean acidification tends to decrease the
calcification rate of some ocean calcifying organisms, increasing sea
surface alkalinity, promoting oceanic CO2 sequestration, and
mitigating ocean acidification. Moreover, this study has not
included the interactive effects between ocean acidification and

CaCO3 in the sediments, which is considered to mitigate the
chemistry change in the deep ocean on millennia timescales.

Until now, although Zhejiang has taken steps to develop climate
change adaptation and emission reduction policies, more
meteorological and climatological measures still need to be
adopted to reduce the impacts of extreme climate events on
coastal regions, for example, 1) strengthening the monitoring and
early warning system for marine disasters in Zhejiang province; 2)
paying more attention to the adverse impacts of future climate
change on marine fisheries, aquaculture, ecosystems, major
infrastructure constructions, and city planning in coastal regions;
and 3) investigating innovations to cope with the adverse effects of
marine disasters, which is crucial for the sustainable development of
the oceans. In addition, further observational and modeling studies
would be required to develop a better understanding of the response
of oceanic carbon cycle and the climate system to oceanic carbon
sequestration, which is vital for more reliable projections of future
climate and marine ecosystem changes.
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Pattern Dynamics of Vegetation
Growth With Saturated Water
Absorption
Li Li 1,2*, Jia-Hui Cao3 and Xin-Yue Bao4
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Test and Measurement Laboratory, North University of China, Taiyuan, China, 3Complex Systems Research Center, Shanxi
University, Taiyuan, China, 4Yangzhou Shuren School, Yangzhou, China

Regular pattern is a typical feature of vegetation distribution and thus it is important to study
the law of vegetation evolution in the fields of desertification and environment conservation.
The saturated water absorption effect between the soil water and vegetation plays an
crucial role in the vegetation patterns in semi-arid regions, yet its influence on vegetation
dynamics is largely ignored. In this paper, we pose a vegetation-water model with
saturated water absorption effect of vegetation. Our results show that the parameter
1/P, which is conversion coefficient of water absorption, has a great impact on pattern
formation of vegetation: with the increase of P, the density of vegetation decrease, and
meanwhile it can induce the transition of different patterns structures. In addition, we find
that the increase of appropriate precipitation can postpone the time on the phase transition
of the vegetation pattern. The obtained results systematically reveal the effect of saturated
water absorption on vegetation systems which well enrich the findings in vegetation
dynamics and thus may provide some new insights for vegetation protection.

Keywords: vegetation pattern, saturated water absorption, pattern transition, dynamical model, desertification

1 INTRODUCTION

In nature, vegetation is very widely distributed in different places all over the world. At the same
time, vegetation, as a producer in nature, converts carbon dioxide into carbohydrates through
photosynthesis, which ensures the food source for humans and animals and keeps the content of
carbon dioxide and oxygen in the environment relatively stable [1, 2]. Moreover, the soil and
water conservation function of vegetation is also very significant. For example, vegetation can
reduce the loss of rainwater on the surface and the erosion of the surface soil, and protect the
sloping land. Vegetation stems and leaves release water vapor into the atmosphere by
transpiration, so that water vapor emitted into the atmosphere and condensed water
alleviates drought. Based on the above functions of vegetation, it is particularly necessary to
study vegetation dynamics [3–6].

In recent years, duo to the impact of the greenhouse effect on human life and climate, vegetation
plays an indispensable role in climate regulation [7, 8]. As for vegetation, people are always
concerned about its growth and distribution. There are many factors affecting vegetation
distribution, among which climate, geographical conditions and human factors are the most
important. Moreover, different conditions will form different vegetation structure, and
inhomogeneous distribution of vegetation is called vegetation pattern [9]. Pattern is a kind of
non-uniform macroscopic structure with some regularity in space or time, which is ubiquitous in
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nature, such as stripes of clouds in the sky, waves on the water,
figures on the animals and regular spatial pattern which observed
in spatiotemporal systems far from equilibrium states [10, 11].

Patterns have been extensively studied and a wide range of
patterns are found including vegetation patterns [12], infectious
disease patterns [13], and patterns on predator-prey systems
[14–16]. They are induced by different mechanisms and it is
vital to understand these mechanisms. Mathematical modeling
has become one of the most useful tools in exploring the
mechanisms on vegetation dynamics including pattern
formation and ecological functions [17]. There are many
studies on vegetation pattern. In 1997, Lefever and Lejeune
established a single-variable model, which revealed a resource
competition mechanism among vegetation communities, namely
promotion at short distance and inhibition at long distance [18].
In 1999, Klausmeier firstly proposed the classical vegetated-water
model, explaining the regular stripes on the slopes and irregular
mosaics on the ground, and pointed out that nonlinear
mechanisms play a major role in determining the spatial
structure of plant communities [19]. In 2013, Sun et al.
revealed the relationship between precipitation and pattern
formation: when rainfall is small, the vegetation will form spot
pattern; when precipitation increases, the density of the spot
pattern will increase, and vegetation appears as spot-stripes
mixed pattern with low density [20]. In 2018, Liu et al.
proposed a cross-diffusion vegetation system, in which the
phenomenon of spot pattern transition was found [17]. In
addition, cross-diffusion increased the vegetation density. In
2017, Zhang et al. proposed a vegetation-soil model and
explained that wind can induce the generation of vegetation
spot pattern. These models do not take into account that
vegetation water absorption is not immoderate [21]. When
vegetation water absorption reaches a certain degree,
vegetation water absorption rate will decrease, which is called
the saturation effect of vegetation water absorption. Yuval
revealed that high water absorption and rapid diffusion of
water in perennial herbs [22]. Of particular interest, this work
showed that the pattern transition between multi-steady states is
not necessarily catastrophic, yet it can be gradually phase-
changed. Based on the observation data of mathematical
model, the cause of fairy circles vegetation patch is explained
as intra specific competition and the scale dependent effect of
vegetation between animals that capture from plants [23]. There
are also some work on the early warning signal of desertification
[24–26].

Water absorption by vegetation is an important process of
vegetation growth. The existed work assumed that water
absorption is a linear function of vegetation biomass [6, 9, 19].
However, many types of vegetation have a saturation effect when
absorbing water [27–30], which is generally not well studied by
scientists. In fact, this saturated water absorption may have great
influences of the vegetation pattern. In this sense, we will show
the effect of saturation on the dynamical behavior of vegetation
system.

The paper is organized as follows. In Section 2, we pose a
vegetation-water model with saturated water absorption of
vegetation and mathematical analysis on the emergence of

Turing patterns is presented. In Section 3, we reveal the
influences of saturated water absorption of vegetation on the
patterns and persistence of vegetation system. In the last section,
we give some discussion and conclusion.

2 MATHEMATICAL ANALYSIS

In this section, we will introduce two-dimensional model to
descrbe the interactions of vegetation and water, which is
posed by Klausmeier [19]:

zW
zT

� A − LW − RWN2 + V
zW
zX

,

zN
zT

� RJWN2 −MN + DΔN.

⎧⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(1)

In the abovemodel, there are seven parameters, which are used
to depict vegetation physiological phenomena and the change of
water. They are all positive depend on what the parameters mean.
The first equation of the model (1) represents the change of water.
A represents precipitation and water is reduced by evaporation at
rate LW. Vegetation absorbs water at rate RG(W)F(N)N, where
G(W) � W is saturated water absorption on vegetation, and take
F(N) � N. The second equation of the model (1) is used to
simulate the growth process of vegetation, where J is the
conversion rate of vegetation into biomass through water
absorption and M is lost through mortality. Water flow
downhill at speed V and vegetation dispersal is modeled by a
diffusion term with diffusion coefficient D.

In this work, we introduce a model contains two variables with
saturated vegetation water absorption. This model is more
reasonable compare with that model, in which the saturation
of vegetation in absorbing water is not taken into account. It is
because that the physiological process by which vegetation
absorbs water from the soil and forms vegetation biomass is
not inordinate, instead, as water increases, it is absorbed by

FIGURE 1 | Saturated water absorption on vegetation. When the water
concentration is small, the water absorption of vegetation will increase with the
increase of water concentration. However, as the water concentration
continues to increase, the water absorption of vegetation tends to be
constant.
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vegetation to a state of saturation. Therefore, we take F(N) � aN
1+bN

to model the saturated water absorption of vegetation (Figure 1).
At the same time, due to the diffusion of water, we will add

D1Δ �W to our system, namely:

z �W

z�T
� A − L �W − R �W

a �N2

1 + b �N
+ D1△ �W,

z �N

z�T
� RJ �W

a �N2

1 + b �N
−M �N + D2Δ �N ,

⎧⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(2)

where the biological meanings and units of the parameters in
system (2) can be found in Table 1.

Let

t � L�T , N � b �N , B � M
L
, S � RJaA

L2b
, P � Ra

Lb2
,

W � RJa
Lb

�W, x �
����

bD2

L

√

X, y �
����

bD2

L

√

Y , D � D1RJa
D2Lb2

.

After the original system (2) is dimensionless, the following
system is obtained:

zW
zt

� S −W − P
WN2

1 + N
+ D△W,

zN
zt

� WN2

1 + N
− BN +△N .

⎧⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(3)

The initial conditions and boundary conditions are as follows:

W(x, y, 0)> 0, N(x, y, 0)> 0, (x, y) ∈ Ω � 0, Lx[ ] × 0, Ly[ ], (4)

zW
zn⃗

� zN
zn⃗

� 0, (x, y) ∈ zΩ,

where Lx and Ly give region size in the directions of x and y
respectively, n⃗ is the outward unit normal vector of the boundary
zΩ, here we consider the boundary zΩ with no flux, namely,
Neumann boundary [31–33].

In the absence of diffusion, we consider the following
system:

dW
dt

� S −W − P
WN2

1 + N
bf (W,N),

dN
dt

� WN2

1 + N
− BNbg(W,N).

⎧⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(5)

It is easy to gain that system (3) has a boundary equilibrium
E0 � (S, 0) and two positive equilibriums

E1 � W1,N1( ) � B+ 2PB2

S−B+
������������

(B− S)2 − 4PB2

√ ,
S−B+

������������

(B− S)2 − 4PB2

√

2PB
⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠,

E2 � W2,N2( ) � B+ 2PB2

S−B−
������������

(B− S)2 − 4PB2

√ ,
S−B−

������������

(B− S)2 − 4PB2

√

2PB
⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠.

provided that

(1)S>B; (2)(B − S)2 − 4PB2 > 0; (3)
�������������

(B − S)2 − 4PB2

√

< S − B.

Under conditions (1), (2), (3), we focus on the stability of three
equilibriums E0, E1, and E2. The Jacobian matrix corresponding
to equilibrium (Wp, Np) as follows:

J � a11 a12
a21 a22

( ),

where a11 �−1− PN2

1+N, a12 � −2PWN
1+N + PWN2

(1+N)2, a21 �
N2

1+N, a22 � 2WN
1+N − WN2

(1+N)2.

Then we can gain the linearized system:

dW
zt

� a11W + a12N ,

dN
zt

� a21W + a22N .

⎧⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(6)

And characteristic equation is:

λ2 − a11 + a22( )λ + a11a22 − a12a21 � 0, (7)

where

− a11 + a22( ) � b1,

a11a22 − a12a21 � b2.

i) When we consider E0(S, 0), one can obtain

|λE − J|E0 � (λ + B)(λ + 1),
and thus it is clear that E0(S, 0) is stable.

ii) When we consider E1 � (W1, N1), then one can obtain the
Jacobian matrix of system (5) at equilibrium E1:

TABLE 1 | Description of the parameters in the model (2).

Parameter Units Description

A kg/m2yr−1 Precipitation rate
L yr−1 Water evaporation rate
R (kg/m2)−1yr−1 Water consumption rate
J (kg/m2)−1yr−1 Conversion coefficient of plant water absorption into biomass
A − Water absorption rate
B − Saturated rate
M yr−1 Mortality rate
D1 m2/yr−1 Diffusion coefficient of seed
D2 m2/yr−1 Diffusion coefficient of soil-water
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J|E1 �
−1 − PN2

1

1 + N1
−PB N1 + 2( )

1 + N1

N2
1

1 + N1

B
1 + N1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F(λ)|E1 � |λE − J‖E1 � λ2 + b11λ + b12,

where

b11 � 1 + PN2
1 − B

1 + N1
, b12 � B PN2

1 − 1( )

1 + N1
.

Therefore the necessary and sufficient conditions for the
equilibrium E1 being stable is b11 > 0 and b12 > 0.

Now combining biological significance of each parameter, S >
B holds. Then

b12 � △ +(S − B) ��

△
√

S − B + ��

△
√ + 2PB

> 0,

where △ � (B−S)2− 4PB2. In the following, we consider the sign
of b11,

b11 � 1 + (S − B + ��

△
√ )2 − 4PB3

2B(S − B + ��

△
√ + 2PB)

� 1 +△ +(S − B) ��

△
√ + 2PB2(1 − B)

B(S − B + ��

△
√ + 2PB) .

When S(S − B) + S
��

Δ
√

> 2PB3, b11 > 0 holds.

iii) Next, we investigate the stability of E2 � (W2, N2). Similarly,
we note the above equation as:

F2(λ) � λ2 + b21λ + b22,

b21 � 1 + PN2
2 − B

1 + N2
, b22 � B PN2

2 − 1( )

1 + N2
.

Substituting N2 for b21 and b22, then we can obtain:

b21 � Δ −(S − B) ��

Δ
√ + 2PB(1 − B)

B(S − B − ��

Δ
√ + 2PB) + 1, b22 � Δ −(S − B) ��

Δ
√

S − B − ��

Δ
√ + 2PB

.

Then analyzing the sign of b21 and b22. Because

��

Δ
√ �

�������������

(S − B)2 − 4PB2

√

< S − B,

therefore b22 < 0. So the equilibrium E2 is unstable.
Therefore the system has only one stable positive equilibrium

E1. From biological perspective, we are interested in studying the
stability behavior of E1. The Jacobian matrix corresponding to E1
is as follows:

J � a111 a112
a121 a122

( ),

where

a∗11 � −1 − (S − B + ��

Δ
√ )2

2B(S − B + ��

Δ
√ + 2PB)< 0,

a∗12 � −PB 1 + 2PB

S − B + ��

Δ
√ + 2PB

( )< 0,

a∗21 � − (S − B + ��

Δ
√ )2

2PB(S − B + ��

Δ
√ + 2PB)< 0,

a∗22 �
2PB2

S − B + ��

Δ
√ + 2PB

> 0.

In the absence of diffusion, E1 is stable, whereas become
unstable when diffusion is added, which is called Turing instability.

zW
zt

� a11W + a12N + DΔW,

zN
zt

� a21W + a22N + ΔN .

⎧⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(8)

Nonuniform perturbation near the equilibrium point E1:

w
n

( ) � w∗

n∗( ) + ε
wk

nk
( )eλt+ikn⃗ + c · c · +O ε2( ), (9)

where λ is the growth rate of perturbations in time t, and i is the
imaginary unit, k is the wave number, r

⃗ � (x, y) is the spatial
vector in two dimensional space and c. c. stands for the complex
conjugate. Substituting (Eq. 9) into (Eq. 8), we obtain
characteristic equation:

λ2 − tr(k)λ +△k � 0,

where

trk � a11 + a22 −(1 + D)k2 � tr0 − k2(1 + D), (10a)

Δk � a11a22 − a12a21 − k2 a11 + a22D( ) + k4D � Δ0 − k2 a11 + a22D( ) + k4D.

(10b)

It is easy to get trk < 0 for any k due to that tr0 < 0, while the
sign of △k is indeterminate. Hopf bifurcation occurs when Im
(λ0) ≠ 0, Re (λ0) � 0, that is a11 + a22 � 0, a11a22 − a12a21 > 0, then
we obtain critical Hopf bifurcation curve a11 + a22 � 0. Then
choosing S as Hopf bifurcation parameter, then

SH � B2

B − 2
, (11)

Im (λk) � Re (λk) � 0 at k � kT ≠ 0, that is ΔkT � 0. And critical
wave number satisfies

k2T � a11 + a22D( )
(2D) .

We take S as Turing bifurcation parameter, and its critical
value ST satisfies the following equation:

B2D2 + 2BD + 1( )S4(

+ P2D4B4 + 16B3P2D3 − 20B3PD3 + 4B3D3 + 64B2P2D2 − 16B2PD2

+ 26B3PD3 − 12B3D3 + 64B2PD2 − 8B2D2
( )S

+ −6B3PD3 + 12B3D3 − 14B2PD2 + 17B2D2 − 16BPD + 4BD( )S2

+ −4B3D3 − 10B2D2 − 6BD( )S3)B � 0.
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In this paper, takingD � 30, B � 5, we gain the Turing region of
system (3). In this region, stationary patterns can be observed
(Figure 2). In addition, we obtain the dispersion relation, and
find that the real part of the eigenvalueR(λ) increases as the value
of P increases. Moreover, Turing pattern will appear within the
appropriate parameter range. Dispersion relation shows that
when there is no space, the equilibrium point E1 is stable.
When combined with space, loss of stability occurs in relation
to the wave numbers. These curves reveal that saturated water
absorption induces the instability of system (3).

3 MULTIPLE SCALE ANALYSIS FOR
TURING PATTERNS

The standard multiple-scale analysis yields the well-known
amplitude equations. Close to the onset S � ST, the eigenvalues
associated to the critical modes are close to zero, and they are
slowly varying modes, whereas the off-critical mode relax quickly
[15, 34]. Consequently, the whole dynamical behaviors can be
mainly determined by the dynamics of the active slowmodes. The
stability and the selection of the different patterns close to onset
can be derived from the amplitude equations that govern the
dynamics of these active modes. Turing patterns (e.g., hexxagon
and stripe patterns) are thus well described by a system of three
active resonant pair of modes (kj,−kj) (j � 1, 2, 3) making angles of
2π
3 and |kj � kT|. We obtain the linearized form of model (3) at the
equilibrium point E1 as follows:

zx
zt

� a11x + a12y − PN∗ N∗ + 2( )
1 + N∗( )2 xy − PW∗

1 + N∗( )3y
2 − P

1 + N∗( )3 xy
2 + PW∗

1 + N∗( )4y
3 + DΔx,

zy
zt

� a21x + a22y + N∗ N∗ + 2( )
1 + N∗( )2 xy + W∗

1 + N∗( )3y
2 + 1

1 + N∗( )3 xy
2 − W∗

1 + N∗( )4y
3 + Δy.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(12)

We note

a13 � −PN
∗ N∗ + 2( )
1 + N∗( )2 ; a14 � − PW∗

1 + N∗( )3; a15 � − P

1 + N∗( )3;

a16 � PW∗

1 + N∗( )4;

a23 � N∗ N∗ + 2( )
1 + N∗( )2 ; a24 � W∗

1 + N∗( )3; a25 �
1

1 + N∗( )3;

a26 � − W∗

1 + N∗( )4;
and we will gain:

zx
zt

� a11x + a12y + a13xy + a14y
2 + a15xy

2 + a16y
3 + DΔx,

zy
zt

� a21x + a22y + a23xy + a24y
2 + a25xy

2 + a26y
3 + Δy.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(13)

Close to onset S � ST, the solutions of model (5a) (5b) can be
expanded as

U � US + Σ3
j�1U0 Ajexp ikj · r⃗( ) + Ajexp −ikj · r⃗( )[ ]. (14)

At the same time, the solution of model (12) can be
expanded as

U0 � Σ3
j�1U0 Ajexp ikj · r⃗( ) + Ajexp −ikj · r⃗( )[ ], (15)

where US represents the uniform steady state. Aj and the
conjugate Aj are the amplitudes associated with the modes kj
and −kj, respectively. The amplitude equations are described
through the equations:

FIGURE 2 | (Color online) (A) The bifurcation diagram for system (3) in P—S plane. In Turing region, Turing pattern will form. (B)Dispersion relation of system (3) with
different P, other parameter values are taken as: S � 10, B � 5, D � 30, which reveals that the real-part of eigenvalues R(λ) increases with P increasing.
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τ0
zA1

dt
� μA1 + hA2A3 − g1|A1|2 + g2 |A2|2 + |A3|2( )( )A1,

τ0
zA2

dt
� μA2 + hA1A3 − g1|A2|2 + g2 |A1|2 + |A3|2( )( )A2,

τ0
zA3

dt
� μA3 + hA1A2 − g1|A3|2 + g2 |A1|2 + |A2|2( )( )A3.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(16)

where μ � (ST − S)/ST is a normalized distance to onset, τ0 is a
typical relaxation time. In the following, we will give the exact
expressions of the coefficient τ0, h, g1 and g2. Setting X � (x, y)T,
N � (N1, N2), model (12) can be converted to the following
system:

zX
zt

� LX + N , (17)

where

L � a11 + DΔ a12
a21 a22 + Δ( ),

N1

N2
( )

−PN
∗ N∗ + 2( )
1 + N∗( )2 xy − PW∗

1 + N∗( )3y
2 − P

1 + N∗( )3 xy
2 + PW∗

1 + N∗( )4y
3

N∗ N∗ + 2( )
1 + N∗( )2 xy + W∗

1 + N∗( )3y
2 + 1

1 + N∗( )3 xy
2 − W∗

1 + N∗( )4y
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

During the calculation, we just analysis the behavior of the
parameter close to onset S � ST. With this method, we can
expanded S in the following term:

ST − S � εS1 + ε2S2 + ε3S3 + O ε4( ), (18)

where ε is a small parameter. Expanding the variable X and the
nonlinear term N according to this small parameter, we have the
following results:

X � x
y

( ) � ε
x1
y1

( ) + ε2
x2
y2

( ) + O ε3( ), (19)

N � ε2h2 + ε3h3 + O ε4( ). (20)

where h2 and h3 are corresponding to the second and the
third order of ε in the expansion of the nonlinear term N. At
the same time, the linear operator L can be expanded as
follows:

L � LT + ST − S( )M, (21)

where

LT � a∗11 + DΔ a∗12
a∗21 a∗22 + Δ( ),

M �
a11 − a∗11
ST − S

a12 − a∗12
ST − S

a21 − a∗21
ST − S

a22 − a∗22
ST − S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� m11 m12

m21 m22
( ).

Here one can have the expression of a∗ij by substituting AT for
A in aij and bij is easy to be obtained. As for multiple-scale
analysis, what really pivotal is that we can separate the dynamic
behavior according to different time or spatial scale. We only

need to separate the time scale for model (16) (i.e., T0 � t, T1 � εt,
T2 � ε2t). Each time scale Ti can be considered as independent
variable. The derivative with respect to time becomes the
following form:

z

zt
� z

zT0
+ ε

z

zT1
+ ε2

z

zT2
+ O ε3( ). (22)

Since that amplitude A is a variable that changes slowly, the
derivative with respect to time z

zT0
, which changes fast does not

effect on the amplitude A. As a result, we have the following
result:

zA
zt

� ε
zA
zT1

+ ε2
zA
zT2

+ O ε3( ). (23)

By using the Eq. 19, Eq. 20, Eq. 21, Eq. 22, and expanding Eq.
15. according to different orders of ε, we can obtain three
equations as follows: The first order of ε:

LT
x1
y1

( ) � 0;

The second order of ε:

LT
x2
y2

( ) � z

zT1

x1
y1

( ) − S1M
x1
y1

( )

−
−PN∗ N∗ + 2( )

1 + N∗( )2 xy − PW∗

1 + N∗( )3y
2

N∗ N∗ + 2( )
1 + N∗( )2 xy + W∗

1 + N∗( )3y
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

The third order of ε:

LT
x3
y3

( ) � z

zT1

x2
y2

( )+ z

zT2

x1
y1

( )− S1M x2
y2

( )− S2M x1
y1

( )−Z,

Z �
−PN∗ N∗ + 2( )

1 + N∗( )2 x1y2 + x2y1( ) − 2PW∗

1 + N∗( )3y1y2 −
P

1 + N∗( )3x1y
2
1 +

PW∗

1 + N∗( )4y
3
1

N∗ N∗ + 2( )
1 + N∗( )2 x1y2 + x2y1( ) + 2W∗

1 + N∗( )3y1y2 +
1

1 + N∗( )3x1y
2
1 −

W∗

1 + N∗( )4y
3
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As for the first order of ε:

LT
x1
y1

( ) � 0, (24)

as LT is the linear operator of the system close to the onset,
(x1, y1)

T is the linear combination of the eigenvectors that
corresponding to the eigenvalue 0. Solving the first order of ε,
we can obtain:

x1
y1

( ) � l
1

( ) W1e
ik1 r⃗ +W2e

ik2 r⃗ +W3e
ik3 r⃗

( ) + c.c., (25)

where |kj| � k∗T , l � a∗11−a∗22D
2a∗12D

. Wj is the amplitude of the mode eikjr⃗

when the system is under the first order perturbation.
For the second order of ε, we can obtain:
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LT
x2
y2

( ) � z

zT1

x1
y1

( ) − S1M
x1
y1

( ) −
−PN∗ N∗ + 2( )

1 + N∗( )2 xy − PW∗

1 + N∗( )3y
2

N∗ N∗ + 2( )
1 + N∗( )2 xy + W∗

1 + N∗( )3y
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� Fx
Fy

( ). (26)

According to the Fredholm solubility condition, the vector
function of the right hand of Eq. 25. must be orthogonal with
the zero eigenvectors of operator L+c , where L+c is the adjoint
operator of L+c . In this system, the zero eigenvectors of operator
L+c are

1
−lD( )e−ikj r⃗ + c.c.(j � 1, 2, 3) (27)

The orthogonality condition is

1,−lD( )

Fi
x

Fi
y

( ) � 0, (28)

where Fi
x and Fi

y , separately, represent the coefficients

corresponding to eikjr⃗ in Fx and Fy. Taking eik1 r⃗ for instance,

we will gain

l(1 − D) zW1

zT1
� S1 m11l +m12( ) − lD m21l +m22( )[ ]W1

+ 2 a13l + a14( ) − lD a23l + a24( )[ ] �W2
�W3. (29)

The coefficient in Eq. 30. are obtained by solving the sets
of the linear equations about exp (0), exp(ikjr⃗ ),
exp(i2kjr⃗ ), exp(i(kj − kk)r⃗ ).

With this method, we have

FIGURE 3 | Snapshots of contour pictures of the time evolution of vegetation at different instants with p � 0.15, S � 10, D � 30 and B � 5. (A) 0 iteration; (B) 1,000
iterations; (C) 2000 iterations; (D) 4,000 iterations; (E) 10,000 iterations; (F) 20,000 iterations.

FIGURE 4 | Snapshots of the countour pictures of evolution of vegetation with different values of P, (A) p � 0.14286; (B) p � 0.15; (C) p � 0.16; (D) p � 0.18;
(E) p � 0.21; (F) p � 0.22. The other parameters are taken as S � 10, B � 5, and D � 30.
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X0

Y0
( ) � f0

g0
( ) |W1|2 + |W2|2 + |W3|2( ),

Xi � lYi,

Xjj

Yjj
( ) � s

t
( )W2

j ,

Xjk

Yjk
( ) � p

q
( )Wj

�Wk,

For the third order, we can gain

LT
x3
y3

( ) � z

zT1

x2
y2

( ) + z

zT2

x1
y1

( ) − S1M
x2
y2

( ) − S2M
x1
y1

( ) − Z. (30)

Using the Fredholm solubility condition again, we can obtain

l(1 − D) zW1

zT2
+ zY1

zT1
[ ]

� S1 m11l +m12( ) − lD m21l +m22( )[ ]Y1 + S2 m11l +m12( ) − lD m21 l +m22( )[ ]W1

+ 2 a13 l + a14( ) − lD a23l + a24( )[ ] �Y2
�W3 + �Y3

�W2( )

− G1|W1|2 + G2 |W2|2 + |W3|2( )( )W1 ,

where

G1 � a13 − lDa23( ) lg0 + f0( ) + 6 a15l + a16( ) − lD a25l + a26( )[ ]
G2 � a13 − lDa23( ) lg0 + f0( ) + 9 a15l + a16( ) − lD a25l + a26( )[ ]
By transformation of W, the other two equations can be

obtained and the amplitude Ai can be expanded as

Ai � εWi + ε2Yi + O ε3( ). (31)

For the order ε2 and ε3, we can obtain the amplitude equation
corresponding to A1 as follows:

τ0
zA1

zt
� μA1 + h�A2

�A3 − g1|A1|2 + g2 |A2|2 + |A3|2( )( )A1, (32)

where

τ0 � l
H
ST(1 − D), μ � ST − S

ST
, h � 2C

lHST
,

g1 � G1ST
Hl2

, g2 � G2ST
Hl2

.

withH � [(m11l +m12) − lD (m21l +m22)], C � 2 [(a13l + a14) − lD
(a23l + a24)].

The other two equations we can gain by transforming the
subscript of A. Based on Ref. [10], one can calculate the values of
μi (i � 1, 2, 3, 4). When the controlled parameter μ increase to the
critical point μ2 � 0, the stationary state of the system begins to
lose stability. If μ1 < μ < μ2, then the system exists a bistable region
in the range of the controlled parameter. The emergence of Stripe
patterns derives from supercritical bifurcation which are unstable

FIGURE 5 | (Color online) The time series of vegetation with P taking
different values.

FIGURE 6 | Snapshots of the countour pictures of evolution of vegetation with different values of P, (A) p � 0.16; (B) p � 0.17; (C) p � 0.18; (D) p � 0.23;
(E) p � 0.238; (F) p � 0.25. The other parameters are taken as S � 10.5, B � 5, and D � 30.
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for μ < μ3 and stable for μ > μ3. When the controlled parameter μ
exceed μ4, there is coexistence of hexagon and stripe pattern.

4 MAIN RESULTS

In order to verify the above theoretical results, we carry out
numerical simulation by taking B � 5, D � 30, and S � 10. This
paper focuses on the spatial distribution of vegetation with the
change of parameter P.

Currently, the desertification phenomenon is particularly austere, so
it is the fundamental way for people to understand the cause of
desertification correctly to master the law of vegetation evolution
[35, 36].

Figure 3 shows the evolution of the spatial pattern of vegetation at 0,
1,000, 2000, 4,000, 10,000 and 20,000 iterations with p � 0.15. In (A),
the vegetation distribution presents an irregular uniform mixing state,
and the vegetation is uniformly distributed in the two-dimensional
space. Then in (B), the vegetation can be observed to begin to gather
into spot and stripe, but the density is not high.With time going by, in
(C), the vegetation density increased. In (D), the spatial distribution of
vegetation changes, forming a low-density stripe state. However, in (E),
the structure of vegetation changes from low density stripe to higher
stripe state gradually. At last, in (F), the density of the mixed pattern
increases to form a clearer mixed pattern, and it doesn’t change for a
long time. The above figures show the change and evolution of
vegetation structure over time. It can be concluded from this figure
that random distribution can result in mixed patterns.

In Figure 4, we can find that the pattern is self-organizing.
When the parameter(P) describing the saturated water
absorption of vegetation changes, self-organizing patterns of
different states can be obtained. Figure 4 shows the transition
of the vegetation pattern with p � 0.14286, 0.15, 0.16, 0.18, 0.21
and 0.22, where B � 5, D � 30, S � 10. From the simulation results

of Figure 5, we can conclude that vegetation density get smaller
and smaller with P increasing, which is consistent with the fact
that 1/P is proportional to the rate at which vegetation absorbs
water to generate vegetation. Meanwhile, we can find that the
pattern changes from honeycomb pattern to mixed pattern, then
changes from mixed pattern to labyrinth pattern, at last pattern
changes from labyrinth pattern to spot pattern. As a result, we can
conclude that the change of P induces pattern phase transition.
Many researchers have proposed that spot pattern is the early
warning of desertification [31, 37, 38], therefore we can get that P
is of great significance in indicating desertification. Moreover,
from the tendency of pattern phase transition, it can be found that
P also has a vital influence on the ecosystem robustness. The
larger P is, the more unstable the system tends to be. In general,
the bigger vegetation density corresponds to a more robust
ecosystem.

It is well known that precipitation plays a very significant role in
vegetation growth. However, the relationship between precipitation
and saturated water absorption of vegetation is still unclear. To reveal
the relationship between them, we take S � 10.5, B � 5 andD � 30 and
perform simulations. Then we gain the effect of P on the pattern phase
transition and find several types of typical patterns in Figure 6.

On the circumstance of the increase of S, the pattern phase
transition is insensitive to P. That is to say, when P changes from
0.1428 to 0.15 with S � 10, the pattern structure changes from
honeycomb pattern to mixed pattern, however, when S � 10.5, the
same transition tendency of which pattern structure from
honeycomb pattern to mixed pattern will need a change of P
from 0.16 to 0.23. Of course, the increase of the value of
precipitation also increases the density of vegetation (Figure 7).

5 CONCLUSION

In this work, we show the effect of saturated water absorption on the
vegetation dynamics based on a mathematical model in the form of
reaction-diffusion equations. We gain rich pattern structures including
spotted,mixed, stripe, honeycomb, and labyrinth patterns. It is revealed
that there is a negative correlation between P and vegetation density.
That is to say, the vegetation biomass decreases as the increase ofP, and
saturated water absorption can induces the pattern transition of
vegetation structures in two-dimensional space. In addition, we also
conclude that appropriate precipitation increase can postpone the
pattern phase transition.

In this work, we focused our attention on the influences of
parameter change on the dynamical behaviors. The results
showed that small change may induce the behavior shift
between different dynamical regions [39]. The findings can
also be applied in other related fields, such as ecosystems,
disease transmission, evolutions and so on.

It needs to point out that climatic factors are important impact
factors for vegetation dynamics [40, 41]. In this sense, we need to
combine these factors including temperature, illumination and
wind to the mathematical models. Furthermore, big data analysis
is useful to explore the inherent law of vegetation evolution in
both space and time [42, 43]. These topics will be well addressed
in the further study.

FIGURE 7 | (Color online) The average density map of vegetation is
compared when precipitation is taken S � 10 and S � 10.5 respectively.
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The Effect of the Arctic Oscillation on
the Predictability of Mid-High Latitude
Circulation in December
Zhihai Zheng1, Jin Ban2* and Yongsheng Li2

1National Climate Center, Laboratory for Climate Studies, China Meteorological Administration, Beijing, China, 2Heilongjiang
Meteorological Bureau, Harbin, China

The impact of the Arctic Oscillation (AO) on the predictability of mid-high latitude circulation
in December is analysed using a full set of hindcasts generated form the Beijing Climate
Center Atmospheric General Circulation Model version 2.2 (BCC_AGCM2.2). The results
showed that there is a relationship between the predictability of the model on the Eurasian
mid-high latitude circulation and the phase of AO, with the highest predictability in the
negative AO phase and the lowest predictability in the normal AO phase. Moreover, the
difference of predictability exists at different lead times. The potential sources of the high
predictability in the negative AO phase in the BCC_AGCM2.2 model were further
diagnosed. It was found that the differences of predictability on the Eurasian mid-high
latitude circulation also exist in different Arctic sea ice anomalies, and the model performs
well in reproducing the response of Arctic sea ice on the AO. The predictability is higher
when sudden stratospheric warming (SSW) events occur, and strong SSW events tend to
form a negative AO phase distribution in the Eurasian mid-high latitudes both in the
observation and model. In addition, the model captured the blocking over the mid-high
latitudes well, it may be related to the relatively long duration of the blocking. Changes in the
AOwill affect the blocking circulations over the mid-high latitudes, which partly explains the
high predictability of the model in negative AO phases from the aspect of the internal
atmospheric dynamics.

Keywords: The Arctic Oscillation, predictability, prediction skill, blocking, Arctic sea ice, interaction between
stratosphere and troposphere

INTRODUCTION

The Arctic Oscillation (AO) is the dominant mode of the interannual variability in the
extratropical regions of the Northern Hemisphere in winter. Its typical feature is the
opposite change in pressure between the polar regions and the mid-high latitudes in the
Northern Hemisphere [1, 2]. The AO exerts a strong impact on the climate of North America,
Eurasia, and North Africa through the zonal variation in the North Atlantic storm track and the
related temperature, precipitation, and cyclone activities in winter [3–9]. Changes in the East
Asian winter monsoon (EAWM) and winter surface climate that have a great social impact on
East Asia are closely related to the interannual and interdecadal changes in the AO. The
atmospheric circulation anomaly corresponding to the negative AO phase tends to be a strong
EAWM and cold surface air temperature (SAT) anomaly in East Asia in winter and often brings
strong cold wave events [10, 11], and vice versa [12–14].
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The AO is most common in winter and occurs on time scales
ranging from intraseasonal to interdecadal [15]. On subseasonal
to interannual time scales, the predictability of the AO is mainly
affected by the chaotic characteristics of the air-sea system and
the nonlinear dynamics of the extratropical atmosphere [16, 17].
Many studies have focused on the forecast skill of the AO on the
scale of the winter average [18–21]. Recent studies have shown
that advanced seasonal forecast models have significantly
improved the forecast skill of the AO in winter [22, 23]. In
terms of predictable sources on the seasonal scale, in addition to
the internal atmospheric dynamics, the predictability of the AO in
winter is related to underlying surface anomalies, such as the
North Atlantic sea surface temperature and the snow cover
anomalies in the Northern Hemisphere [24–26].

However, the forecast skill of the AO is more challenging on the
subseasonal scale. Currently, there are relatively few assessments on
this time scale. The forecast skills of some operational dynamical
forecast systems, such as the National Centers for Environmental
Prediction (NCEP), the European Centre for Medium-Range
Weather Forecasts (ECMWF) and the Beijing Climate Center,
were evaluated, the results showed that the forecast skills were low
at the subseasonal scale [20, 27, 28]. The low forecast skill of the AO
on the subseasonal scale is related to a lack of understanding of its
predictable sources. The variability in the stratospheric polar vortex
may also provide an important source for the predictability of the
subseasonal AO. Studies have shown that the stratospheric polar
vortex can propagate downward through westerly and easterly wind
anomalies. Sudden stratospheric warming (SSW) can dramatically
weaken the stratospheric polar vortex, and the weakened Northern
Hemispheric stratospheric polar vortex is beneficial for the turning of
the tropospheric and near-surface AO to the negative phase in winter
[29, 30]. In addition, the recent accelerated reduction in Arctic sea ice
is also considered to be a possible factor in the changes in the mid-
high latitude circulation in winter, and the response characteristics of
circulation are often similar to AO modes, especially in some
numerical models [31, 32]. However, the relatively short
observational record and the low mid-latitude signal-to-noise ratio
(SNR) lead to difficulties when explaining the physical connection
between Arctic sea ice and the AO mode, so this connection is still
controversial.

Existing studies have shown that the ability of a model to forecast
the AO differs in different months, including winter months. At the
same time, the relationship between the AO and the East Asian
climate shows intraseasonal variability, and the impact of the AO on
the temperature in southernChina inDecember is different from that
in January-February [8]. Meanwhile, the circulation anomalies
affected by the December AO for December and for the following
January are primarily confined to the Euro-Atlantic sector while they
extend to East Asia during the following February [33]. In addition,
the standard deviation of the AO has increased significantly in
December since the 1990s, while this phenomenon has not been
observed inNovember and January [34]. Therefore, this study aims to
evaluate the predictability of mid-high latitude circulation in
BCC_AGCM2.2, with a focus on December. More importantly,
we investigate the differences of predictability in different AO
phases and the possible causes for the differences are also further
analysed.

Data
The BCC_AGCM2.2 has a horizontal resolution of T106 and
includes 26 vertical levels [35]. The top of the model is at 2.3 hPa.
The model is initialized using the atmospheric conditions from the
NCEP Reanalysis dataset [36] and sea-surface conditions from
NOAA Optimum Interpolation Sea Surface Temperature V2 [37].
Four model runs (00Z, 06Z, 12Z, and 18Z) are initialized every day
starting on January 1, 1983 and run for 55 days each. The lagged
average forecasting (LAF) technique is used to produce the ensemble
mean. The LAF ensemble includes the latest 5 days (A total of 20
members) operational forecasts, and also forecasts for the same
verification time stated one or more days earlier than the latest
one. The model output is interpolated to a 2.5 × 2.5 horizontal
resolution prior to analysis. To verify the model hindcast, we use the
daily and monthly NCEP-NCAR reanalysis dataset for the period
1983–2015. TheNCEP-NCAR reanalysis data are gridded at 2.5× 2.5
resolution. The SST data gridded at 2× 2 resolution used in this study
are taken from the National Oceanic and Atmospheric
Administration extended reconstructed SST version 4 (ERSST V4)
[38]. The optimal interpolated global sea ice density data from
December 1981 to December 2015 are provided by NOAA, with
a horizontal resolution of 1.0 ×1.0. The observed monthly AO index
derive from the Climate Prediction Center of NOAA (https://www.
cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml), which
is defined as the first leading mode of empirical orthogonal
function (EOF) analysis of area-weighted monthly mean 1000mb
anomalies north of 20°N. The predicted index is calculated using the
1000mb anomalies of ensemble mean.

Methods
The Signal-to-noise ratio (SNR) is used to account for the
predictability of mid-high latitude circulation, which is
estimated by the ratio of the variances of ensemble mean (the
signal) to the deviations or spreads among the ensemble members
(the noise) [39, 40]. At a given location, the prediction of a single
ensemble member is denoted by Fij, where j is the year index that
goes from 1 to 33 and i is the case number of the ensemble that
goes from 1 to 20. For year j, the climate signal Fj is estimated as
the mean of all 20 members, that is

Fj � 1
20

∑

20

i�1
Fi,j, (1)

The yearly mean climatology F could be recalculated as

F � 1
33

∑

33

j�1
Fj, (2)

The variance of ensemble mean represents the climate
signal as

σs � 1
33 − 1

∑

33

j�1
(Fj − F)

2
, (3)

Note that the denominator is 32 instead of 33 because the degrees
of freedom are one less than the total number for a second
moment. Similarly, the deviations or spreads among the ensemble
members represents the noise as
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σn � 1
33 × (20 − 1) ∑

33

j�1
∑

20

i�1
(Fi,j − F)

2

j
, (4)

The Signal-to-noise ratio is recalculated as

R � σs

σn
. (5)

The anomaly correlation coefficient (ACC) is also chosen as a
measure to gauge the predictability that we are interested in. The
ACC is defined as:

ACC �
∑

N

i�1
(ΔRf − ΔR�f)(ΔR0 − ΔR�0)

����������������������������

∑

N

i�1
(ΔRf − ΔR�f)

2

∑

N

i�1
(ΔR0 − ΔR�0)

2
√ , (6)

Where ΔRfand ΔR0 denote the predicted and observed anomaly
fields, respectively, and their averages are �ΔRf and �ΔR0. N is the
number of points.

The composite is employed to compare prediction skill in
different AO phases. The wave activity flux is used to provide
information about the large-scale wave source and sink [41].

Prediction Skill and Predictability of AO and
Mid-high Latitude Circulation
To test the forecast skill of AO, we first decomposed the 1,000 hPa
extratropical height in the Northern Hemisphere (0–360°E, 20°N-
90°N) using the empirical orthogonal function (EOF) and then
projected the result onto the observed first mode to obtain the AO
index series predicted by the model. Figure 1 shows the temporal
evolution of December AO index hindcast by BCC_AGCM2.2 at
0-days, 5-days, and 10-days lead times for the ensemble mean
from 1983 to 2015. The results showed that the temporal
evolution of AO index predicted at different lead times were

relatively consistent with the observation. The correlation
coefficients between the AO indexes predicted at 0-days, 5-
days, and 10-days lead times and the observed AO indexes
were 0.71, 0.68, and 0.69, respectively, which all exceed 99.9%
confidence, indicating that the dynamic model can well capture
the AO interannual variability in December. In addition, in the
typical positive and negative phase years, the AO index predicted
by the model were also very close to the observed AO index.

The AO is the dominant mode of the interannual variability in
atmospheric circulation in the mid-high latitude regions of the
Northern Hemisphere. Figure 2 shows the ACC of the 500 hPa
geopotential height over the Eurasian region (20°-80°N, 50°-
180°E) predicted by the model at 0-days, 5-days, and 10-days
lead times. According to the AO index and its standard
deviations, the 33 years for 1983–2015 were divided into
negative AO phase, normal AO phase and positive AO phase.
Negative AO years include 1985, 1995, 2000, 2005, 2009, 2010,
and 2012, and the index is greater than 1 standard deviation.
Positive AO years include 1988, 1991, 1992, 1998, 2006, 2011,
2013, and 2015, and the index is greater than 1 standard
deviation. The remaining 18 years are the normal AO years. In
terms of the average over all years, the forecast skill decreased
rapidly with the extension of the lead time, the ACCs predicted at
0-days, 5-days, and 10-days lead times were approximately 0.5,
0.4, and 0.27, respectively. Additionally, the ACC predicted at 0-
days lead time was 0.76 in the negative AO phase, 0.48 in the
positive AO phase, and 0.4 in the normal AO phase. Although the
forecast skills at 5-days and 10-days lead times were both lower
than those at 0-days lead time, the ACC was still highest in the
negative AO phase, followed by the positive AO phase, and lowest
in the normal AO phase. Interestingly, when the AO phase was
positive, the forecast skill decreased the slowest with the extension
of the lead time.

To further examine the prediction skill in the lower
troposphere, Figure 3 displays the composites of 1,000 hPa
geopotential height for different AO phases in the model and

FIGURE 1 | Temporal evolution of December AO index hindcast by BCC_AGCM2.2 at 0-days (yellow), 5-days (Cyan), and 10-days (red) lead times for the
ensemble mean, and the observations (black).
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observations. Due to different lead times the skill changes are
similar, we only chose the prediction at 0-days lead time. In the
negative AO phase, a huge positive anomaly occupies the
entire northern Eurasia continent, and a negative anomaly
is seen over the Northwest Pacific. The large zonal gradient
between the anomalous Eurasia continent high and the
subtropical North Pacific low implies strong EAWM. The
distributions in the model and observation were very
similar, including the significant positive and negative

anomaly region. The anomalous distributions in positive
AO phase were also quite similar, with a major trough
extending southward along the Ural Mountain and a ridge
extending northward along the Mongolia. However, the
intensity of the trough and ridge in the model prediction is
obviously weak, and the significant positive anomaly in
Eastern China and Mongolia is not seen in prediction. The
anomalous center in prediction and observation are not
significant in the normal AO Phase.

FIGURE 2 | ACC of the 500 hPa geopotential height in the Eurasian region predicted by BCC_AGCM2.2 in negative, positive, and normal AO phases.

FIGURE 3 | Composites of 1,000 hPa geopotential height for the negative AO phase in (A) model (B) observations (C) The difference between prediction and
observation (D–F) As in (A–C), but for the positive AOphase (G–I) As in (A–C), but for the normal AO phase. Light, middle, and dark shading indicate the 90, 95, and 99%
confidence levels based on a Student’s t-test, respectively.
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Based on the above analysis, the model has a high
predictability for the geopotential height in the Eurasian
region in the negative AO phase. On this basis, the SNR
method was applied to further analyse the predictability of the
model over the Eurasian region in different AO phases (Figure 4).
In the case of a negative AO phase, the SNR of the model was
greater than 1 from east of Japan to the northwest Pacific,
indicating that the model can generally well capture the
strength and location of the East Asian trough in the negative
AO phase. The model predicted a high SNR in the Sea of Okhotsk
region and West Pacific in positive AO phase. Additionally, The
SNR in the normal AO phase was the lowest.

Causes for the Different Predictability
The above results show that the prediction skill of the negative
AO phase is higher than that of the positive and normal AO
phases. To explain the origins of the potential predictable sources
of the high forecast skill of the negative AO phase in the
BCC_AGCM2.2 model, the possible causes were analysed
from the aspects of the Arctic sea ice, sudden stratospheric
warming (SSW), and the internal atmospheric dynamics.

As a component of the Earth’s climate system, Arctic sea ice
plays an important role in the surface energy budget of the high
latitudes in the Northern Hemisphere by regulating the surface
albedo and the turbulent heat and momentum fluxes at the
ocean-atmosphere interface. The atmospheric response to
reductions in Arctic sea ice is often associated with changes in

the AO [31, 32]. Figure 5 shows the composite Arctic sea ice
anomalies in the negative and positive AO phases. The figure
shows that when the AO is in the negative phase, the Arctic sea ice
has a significantly negative anomaly centre in the Kara Sea region,
which exceeds the 95% confidence level. When the AO is in the
positive phase, the positive Arctic sea ice anomaly only exceeds
the 95% confidence level in the vicinity of the Kara Sea, and the
region that passes the 95% confidence level is significantly smaller
than that in the negative AO phase.

We define the sea ice in the Barents Sea-Kara Sea region (60°-
90°E, 70°-80°N) in October as the Arctic sea ice index, they are
area weighted and linearly detrended before the analysis. The
correlation coefficient between the December AO index and the
autumn Arctic sea ice index is 0.40 (Figure 6B), which exceeds
the 95% confidence. Then, 5 years with less sea ice (1984, 1985,
1995, 2009, and 2012) and 5 years with more sea ice (1992, 1996,
1998, 1999, and 2002) were selected for comparing the prediction
skill. The ACC of the 500 hPa geopotential height in the Eurasian
region predicted by BCC_AGCM2.2 in less Arctic sea ice years at
0-days and 5-days lead times were 0.63 and 0.62, respectively,
which were significantly higher than those (0.4 and 0.35) in years
with more ice (Figure 6A). This finding is consistent with the
observed and model-predicted negative feedback between the sea
ice and the atmosphere, indicating that less Arctic sea ice is one of
the predictable sources of the Eurasian mid-high latitude
circulation. The composites of the 500 hPa geopotential height
in years with less and more sea ice was further analysed in

FIGURE 4 | The signal-to-noise ratio distributions for the AO in the (A) negative phase, (B) positive phase, (C) normal phase, and (D) all years.
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Figure 7. There are significant negative anomalies over most
areas of China in years with less Arctic sea ice, while the
anomalies are not clearly significant in years with more Arctic
sea ice, indicating that the response to less Arctic sea ice forcing
over the Eurasian mid-high latitudes is much obvious than more
Arctic sea ice.

The influence of the stratospheric polar vortex can last for
several weeks or even several months, and SSW can dramatically
weaken the stratospheric polar vortex. The zonal geopotential
height anomalies of 90°N and 60°N at 10 hPa were averaged
separately, and then the mean zonal geopotential height anomaly

of 60°N was subtracted from the mean zonal geopotential height
anomaly of 90°N to obtain the index [29]. The specific formula is
ΔH � [H′]90°N − [H′]60°N, where [H′] represents the mean value
of the zonal geopotential height anomalies, and ΔH represents
the SSW index. Figure 8 shows the SSW index in November and
the AO index in December. The correlation coefficient between
the two was -0.51, which exceed the 99% confidence. It is
indicated that when a strong SSW event occurs, the 500 hPa
height field in the troposphere rapidly adjusts, forming a negative
AO phase distribution in the Eurasian mid-high latitudes. Based
on the above definition, 4 years (1987, 1996, 2000, and 2009) with
an SSW index greater than 200 were selected to compare the
prediction skill. Figure 9 shows the average ACC in Eurasia
predicted by the years with strong SSW events. The ACC at 0-
days and 10-days lead times in SSW events was higher than the
average of all years, indicating that strong SSW has a certain
contribution for predictability in negative AO years.

Some studies pointed out that the blocking high over the Ural
Mountains in winter occurs more frequently in years with a weak
AO and less frequently in years with a strong AO [42]. The
composite of the observed 500 hPa geopotential high is computed
based on the mean of years with the positive AO minus that with
the negative AO (Figure 10A). The strong high pressure anomaly
is located at the Ural Mountains and the Sea of Okhotsk, and the
low pressure anomaly is located at the Northern China and
Mongolia. The anomalous high over Ural Mountains and the
Sea of Okhotsk are conductive to the activity of blocking. The
similar distribution is also seen in model (Figure 10B), which
implies good prediction of blocking in extreme years of AO. To
further explain that the predictability of the model under different
AO phases is related to the blocking high situation over the mid-
high latitudes, the average of 500 hPa geopotential high over the
Ural Mountains (40°N-50°N, 40°E-80°E), the Lake Baikal (60°N-
70°N, 80°E-120°E), and the Sea of Okhotsk (60°N-70°N, 120°E-
160°E) were defined as the blocking indices, and their normalized
indices were shown in Figure 11. Blocking activity in the three
regions were obvious for 6 out of 7 negative AO years. However,
there were only 4 years with active blocking in 8 positive AO
phase years. Therefore, the probability of the occurrence of a
blocking high over the mid-high latitudes is higher in the negative
AO phase and lower in the positive AO phase. The model can
capture most of the blocking, but all three blocking in 2000,

FIGURE 5 | Composite of autumn Arctic sea ice in the (A) negative AO
phase and (B) positive AO phase years. Light, middle, and dark shading
indicate the 90, 95, and 99% confidence levels based on a Student’s t-test,
respectively.

FIGURE 6 | (A) ACC of the 500 hPa geopotential height in the Eurasian region predicted by BCC_AGCM2.2 in less, more, and average Arctic sea ice, (B) temporal
evolution of December AO index and Arctic sea ice.
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blocking of the Sea of Okhotsk in 2009 and the blocking of the
Ural Mountains in 2010. In summary, changes in the AO will
affect the blocking circulations over the mid-high latitudes, and
the model can well capture the blocking over the mid-high

latitudes, it may be related to the long duration and
persistence of blocking [43]. It partly explains the high
predictability of the model in negative AO phases from the
aspect of the internal atmospheric dynamics.

FIGURE 7 | Composite of the 500 hPa geopotential height in years with (A) less and (B) more Arctic sea ice. Light, middle, and dark shading indicate the 90, 95,
and 99% confidence levels based on a Student’s t-test, respectively.

FIGURE 8 | The SSW index in November and the AO index in December.

FIGURE 9 | ACC of the 500 hPa geopotential height in the Eurasian region predicted by BCC_AGCM2.2 in SSW events and all years.
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The wave source is in the North Atlantic Ocean and gradually
propagates along Europe to the mid-high latitudes of Asia in the
negative AO phase (Figure 12). The model also predicts a
westward propagating wave source in the North Atlantic
Ocean, which also moves towards the mid-high latitudes of
Asia, but there are differences in magnitude and propagation
phase. However, the wave activity center over Tibetan Plateau is
underestimated by BCC_AGCM2.2. In general, the internal
atmospheric dynamics of the model in the negative AO phase
are better than those in positive AO phase.

DISCUSSION AND CONCLUSIONS

The Arctic Oscillation (AO) is the dominant mode of the
interannual variability in atmospheric circulation in the
extratropical regions of the Northern Hemisphere in winter.
The impact of the AO on the predictability of mid-high

latitude circulation in December was analysed using a full set
of hindcasts generated form the Beijing Climate Center
Atmospheric General Circulation Model version 2.2
(BCC_AGCM2.2). The results showed that there is a
relationship between the predictability of the model on the
Eurasian mid-high latitude circulation and the phase of AO,
with the highest predictability in negative AO phase and lowest
predictability in normal AO phase. Moreover, the difference of
predictability exists in different lead times.

To explain the origins of the potential predictable sources of
the high forecast skill of the negative AO phase in the
BCC_AGCM2.2 model, the possible causes of these conditions
were diagnosed.We found that the differences of predictability on
the Eurasian mid-high latitude circulation also exist in different
Arctic sea ice anomalies. When Arctic sea ice decreases, the AO
response is likely to be in a negative phase. The model also
performs well in reproducing the response of Arctic sea ice on the
AO. Sudden stratospheric warming is another potential source of

FIGURE 10 | The composite of the 500 hPa geopotential height in (A) observation and (B) model, which are defined as the mean of years with the positive AO
minus that with the negative AO. Light, middle, and dark shading indicate the 90, 95, and 99% confidence levels based on a Student’s t-test, respectively.

FIGURE 11 | Blocking high indexes of the Ural Mountains, Lake Baikal, and the Sea of Okhotsk.
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higher predictability on the Eurasian mid-high latitude
circulation in negative AO phase. The ACC at 0-days and 10-
days lead time in SSW events was higher than the average of other
years, and strong SSW events tend to form a negative AO phase
distribution in the Eurasian mid-high latitudes. In addition, the
model captures the blocking over the mid-high latitudes well,
which may be related to the relatively long duration of the
blocking. Further, changes in the AO will affect the blocking
circulations over the mid-high latitudes, which explains the high
predictability of the model under negative AO phases from the
aspect of the internal atmospheric dynamics.

Although BCC_AGCM2.2 has relatively high predictability of
mid-high latitude circulation in December in negative AO phase,
the predictability is still much lower in other conditions and other
months. Apart from the AO, other factors such as Madde–Julian
Oscillation (MJO) and the sea surface temperature over the North
Atlantic Ocean and Indian Ocean are also important for the
predictability of Eurasian mid-high latitude circulation [44, 45];
meanwhile, the predictability of models are different; these would
be worthwhile to address in further works.
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The interannual variation of snowfall over the Tibetan Plateau (TP) in early winter

(November–December) and its related atmospheric attribution are clarified. Meanwhile,

the influence of tropical sea surface temperatures (SSTs) on TP snowfall is investigated by

diagnostic analyses and Community Atmosphere Model (CAM5) simulations. The leading

mode of TP snowfall in early winter features a spatially uniform pattern with remarkable

interannual variability. It is found that the Indian Ocean Dipole (IOD) and El Niño Southern

Oscillation (ENSO) are main external forcing factors for TP snowfall. Positive IOD with

positive ENSO and positive IOD with neutral ENSO cases both have remote impact on

motivating Southern Eurasia (SEA) pattern, which can induce an anomalous cyclone

around the TP. The corresponding anomalous ascending motion and cold air in the

mid-upper troposphere provide the dynamical and thermal conditions for heavy snowfall.

The low-level southwesterly winds are enhanced over the Arabian Sea and Bay of

Bengal, bringing abundant water vapor into the TP for excessive snowfall. Furthermore,

CAM5 simulation experiments forced by IOD- and ENSO-related SST anomalies are

performed to verify their combined and independent effects on TP snowfall in early winter.

It is confirmed that either positive IOD or El Niño has certain impacts on motivating

circulation anomalies favorable for snowfall over the TP. However, IOD plays a leading

role in producing the excessive snowfall-related atmospheric conditions, and there is an

asymmetric influence of ENSO and IOD on the TP snowfall.

Keywords: snowfall, Indian Ocean Dipole, El Niño-Southern Oscillation, remote effects, early winter

INTRODUCTION

Although winter precipitation accounts for a relatively small fraction of total annual rainfall
comparing to summer season, it experiences obvious annual variability over some regions such as
the Tibetan Plateau (TP). Snowfall is solid precipitation formed by condensation of moisture in the
air. Heavy snowfall may be a natural hazard to life and property. Severe cold surges accompanied
with heavy snowfall during winter can significantly impact agriculture, transportation, livestock
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production, and water resources, resulting in serious economic
losses. In the context of climate warming, intense snowfall has
hit China more frequently in recent winters and caused severe
damages to the sustainability of the society. For instance, a severe
snowfall event that occurred in later winter 2008 over southern
China led to an economic loss of above 20 billion US dollars
and affected more than 100 million people (Zhou et al., 2009,
2011).

The Tibetan Plateau (TP), known as the third pole and Asia’s
water tower, frequently suffers from severe snowfall events due
to the combined effects of its steep topography, the East Asian
winter monsoon (Webster, 1998; Wu et al., 2011, 2012), and the
westerly circulation (Schieman et al., 2009). Entering early winter,
the TP ground becomes frozen, and snow is the main form of
precipitation over the TP. Snowfall is an important element of the
hydrological cycle, replenishing soil moisture, and contributing
runoff to river basins through spring melt (Lettenmaier and
Gan, 1990; Groisman et al., 2001). Therefore, understanding
the mechanism of TP snowfall can provide insights on better
prediction of winter climate.

The El Niño-Southern Oscillation (ENSO), which is the
strongest atmosphere-ocean coupled mode on the interannual
scale, is one of the most important factors that can influence
winter climate variability in Eurasia (Wang et al., 2000; Sun and
Wang, 2010; Zhou and Wu, 2010; Jia and Lin, 2011; Wang and
Feng, 2011; Gong et al., 2014, 2017; Wang and Chen, 2014; Ge
et al., 2016). Yang (1996) found that the Eurasian winter snow
cover increased during El Niño winters (and decreased during
La Niña winters). Using a global atmospheric general circulation
model (GCM), Meehl (1997) proposed a hypothesis that the
tropical sea surface temperature (SST) has crucial impact on
the south Asian monsoon, which can further affect the mid-
latitude snow, especially over the Eurasia. Dong and Valdes
(1998) also found evidence that El Niño conditions lead to
increased snow in Eurasia. Wang and Chen (2010) point out
that the western Pacific subtropical high can act as a bridge for
ENSO’s influence on the East Asian climate. During El Niño
events, this system can enhance the moisture transport to China
and cause abnormally wet conditions. El Niño might excite the
stationary Rossby waves extending along the North African-
Asian jet, resulting in anomalous increase of potential vorticity
and snow depth over the TP in winter, based on the Nimbus-7
ScanningMultichannel Microwave Radiometer (SMMR) satellite
estimates of snow depth (Shaman and Tziperman, 2005). This
mechanism was confirmed by Wang and Xu (2018), who used
snow water equivalent data from 1987 to 2007.

On the other hand, based on satellite data, Yuan et al. (2009,
2014) reported that the interannual variability of the winter TP
snow cover is linked to Indian Ocean dipole (IOD) rather than
ENSO, and emphasized that in the pure ENSO years with no
co-occurrences of IOD, the influence of ENSO on TP snow
cover is negligible (Yuan et al., 2009). Using the ERA-Interim
reanalysis data, Zhang et al. (2019) also found the IOD forcing
on snow depth over the TP. Jiang et al. (2013, 2019) claimed that
anomalous convection over the western Indian Ocean related
to the positive IOD could generate a wave train propagating
northeastward and induce an anomalous cyclonic circulation

over the central western TP, then transport extra moisture from
the tropics to the central western TP, causing deep snow depth
there. The above studies concentrated on TP snow cover/depth
affected by IOD or ENSO through the low-latitude circulations,
but less has been investigated in the mid- and high-latitude
circulation pattern.

In addition, it is interesting why these studies have obtained
different conclusions regarding the impacts of ENSO and IOD
on snow over the TP. It is confusing whether the ENSO
can affect snow over the TP or not. Of note is that two
satellite-based or reanalysis-based snow parameters have been
investigated in these studies: snow cover and snow depth
(Shaman and Tziperman, 2005; Yuan et al., 2009, 2014; Wang
and Xu, 2018; Zhang et al., 2019). The snow depth derived
from satellites shows considerable biases (Frei et al., 2012).
Thus, it is necessary to use in situ snowfall data to re-
investigate the relationship of TP snowfall with ENSO and
IOD. Direct observations of snowfall in situ have a certain
length of record and spatial coverage. They are issued after
strict quality control, which can promote the study reliability
about TP snow. On the other hand, snowfall is the major
precipitation event over the TP in winter. Heavy snowfall and
freezing temperature lead to snow cover/depth on the ground
for a long time. Therefore, snowfall is the leading and direct
factor that produces and maintains snow cover/depth. As a
result, the changes in TP snowfall have yet to be systematically
addressed, and what processes decides the severe TP snowfall is
still not fully understood. Given the serious impacts of snowfall
events, investigating the possible causes in snowfall is an urgent
necessity for disaster prevention and mitigation. Furthermore,
most previous studies investigating the contributions of ENSO
and/or IOD to the precipitation variation over China only
considered a single index for ENSO or IOD. Results obtained
without considering the interdependence of ENSO and IOD
might include the impacts of both factors. Since ENSO and
IOD sometimes co-occur, it is also necessary to identify their
respective and combined influences on TP snowfall. Moreover,
it is important to explore the influences of IOD and ENSO on
the snowfall over TP in early winter utilizing the statistic and
simulation approaches.

This paper examines the interannual variability of the
early winter snowfall over the TP and the underlying physical
mechanisms, especially focusing on independent and joint
roles of IOD and ENSO on influencing the TP early winter
snowfall. The paper is organized as follows. Section Data,
Method, and Model introduces the data and methodology.
Section Spatial-Temporal Features of TP Early Winter
Snowfall presents the characteristics of snowfall over the
TP in early winter. Section SSTAs Associated With Early
Winter TP Snowfall discusses the SSTAs associated with early
winter snowfall over the TP. Section Numerical Experiments
analyzes IOD and ENSO associated with TP early winter
snowfall by statistics, and then validates the observed and
statistical results utilizing the Community Atmosphere
Model version 5 (CAM5) model. Section Conclusion and
Discussion provides a brief conclusion and discussion of
this study.
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FIGURE 1 | The EOF-1 (A) mode and detrended PC1 (B) of early winter snowfall on TP.

DATA, METHOD, AND MODEL

In this paper, snowfall data are collected from 85 observation
stations over the TP, which are released by the National
Meteorological Information Center of China Meteorological
Administration. These stations are located in Qinghai (45
stations), Xizang (19 stations), Gansu (4 stations), and Sichuan
(17 stations) Provinces, respectively. The monthly snowfall
during early winter (November–December) was derived from
the daily observation records during 1961–2018. The large-
scale atmospheric state is obtained from the NCEP/NCAR
reanalysis data (Kalney et al., 1996). The variables include
geopotential height, horizontal wind, humidity, and vertical
velocity, with a horizontal resolution of 2.5◦ × 2.5◦. Monthly
mean sea surface temperature (SST) data were based on the
Extended Reconstruction SST version 5 (ERSST5) dataset,
which is provided by the NOAA/Oceanic and Atmospheric
Research (OAR)/Earth System Research Laboratory of Physical
Science (Huang and Cai, 2017). The period of the dataset
is from 1961 to 2018, and early winter in this article refers
to November–December.

A wave-activity flux (WAF) derived by Takaya and Nakamura
(2001) is used to diagnose the mid–high-latitude wave train
(Equation 1).
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In which (U,V) are the climatological winds in the zonal
and meridional directions;(λ,ϕ) are longitude and latitude, a is
the earth’s radius; z = –Hlnp; p = pressure/1000 hPa; H is the
constant scale height;ψ is the perturbation of geostrophic stream

function;
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where ps is the surface pressure; pu is the pressure of the top
moisture layer (300 hPa); p is pressure; q is the specific humidity;
and (u, v) are horizontal velocity components. a is earth radius, λ
is longitude, ϕ is latitude.

The present study also used the statistical analysis to show
the features and circulation associated with the early winter
snowfall over the TP, including the empirical orthogonal function
(EOF) analysis, correlation and partial correlation analysis, and
composite analysis methods.

The Community Atmosphere Model version 5 (CAM5)
model is utilized for validating the observed and statistical
results. As stated in the introduction, it is derived from the
model used in Khairoutdinov and Randall (2001) and is a
component of Community Earth System Model developed at
NCAR with many external collaborators. This model uses a
default finite-volume dynamical core with a hybrid pressure-
sigma vertical coordinate (Simmons and Burridge, 1981) that
has 30 levels with a top at 2.255 hPa. The CAM5 has the
same land, ocean, and sea ice components as in CCSM4, with
the biggest change occurring in the atmosphere. The CAM5
is essentially new atmospheric model with improved and more
realistic formulations of radiation, boundary layer, and aerosols.
CAM5 features (1) a new shallow convection scheme and a
new moist turbulence scheme developed by the University of
Washington, (2) a two-moment cloud microphysics scheme,
and a cloud macrophysics scheme from the parameterizations
of clouds.
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The model code can be downloaded from the NCAR
code repository online and was run locally at the National
Meteorological Information Center (NMIC) of the China
Metrological Administration (CMA). Thismodel has beenwidely
used to investigate the effects of the underlying condition on the
winter climate. Four sets of numerical experiments are designed
with CAM5 driven by the global SST data of Hadley Center. One
is a control experiment forced by the global SST climatology of
observational monthly SST data in early winter, and the other
three are sensitivity experiments forced by combined IOD and
ENSO, independent IOD with no co-occurrence of El Niño, and
independent El Niño with no co-occurrence of IOD. The first
principal component (PC1) of TP snowfall in early winter by
using the Empirical Orthogonal Function (EOF) expansion is
defined as the TP snowfall index. We add the regression SST
value against this index to the climatology as SST external forcing
signal. The three sensitivity experiments represent the single IOD
and ENSO forcing, respectively, and IOD-ENSO joint forcing.
Each experiment includes 10 members with different initial states
in order to verify the sensitivity to different atmospheric initial
values, and the 10-member average results will be used for
analysis. The differences between the sensitivity and control runs
show the influences of SSTAs on the early winter snowfall over
the TP.

SPATIAL-TEMPORAL FEATURES OF TP
EARLY WINTER SNOWFALL

Interannual Variation of TP Snowfall
Interannual variability of the early winter snowfall over the TP
is revealed by using the Empirical Orthogonal Function (EOF)
expansion (Figure 1) based on solid precipitation observations
over the TP from 85 stations. The first EOF mode (EOF-
1) explains about 32.2% of the total variance and exhibits
a regional consistency of snowfall anomaly (Figure 1A). The
higher loading value lies in the Northeast and center of TP, which
is the frequent location of snow disaster. The corresponding
first principal component (PC1) shows a remarkable interannual
variability (Figure 1B). For example, in winter 2018, heavy
snowfall occurred in the northeast of the Tibetan Plateau.
Such an extreme snowfall is enhanced as a possible response
to climate warming. Sun and Wang (2010) claimed that
heavy snow events of more than 5 mm/day increased in the
eastern of TP since the 1960s. At the same time, the snow
days have increased (Zhou et al., 2017). Danco et al. (2016)
used phase 5 of the Coupled Model Inter-comparison Project
(CMIP5) to reveal that snow rate and heavy snowfall frequency
will increase during 2021–2050 and 2070–2100 over the TP.
Therefore, TP snow disaster may become a severe challenge in
the future.

Atmospheric Circulation
Nowwe discuss the atmospheric circulation affecting the TP early
winter snowfall. Firstly, simultaneous regressions of 200- and
500-hPa geopotential height (GPH) against PC1 of TP snowfall
in early winter show a wave train with barotropic structure

FIGURE 2 | (A) 200-hPa Geopotential height (shadings, gpm) and wave

activity fluxes (vectors, m2 s−2) and 500-hPa geopotential height (contours,

gpm), (B) 400 hPa vertical velocity (Pa s−1) and (C) surface temperature (◦C),

(D) 500-hPa horizontal wind (m s−1) regressed against PC1 of TP snowfall in

early winter. Black dots in (A–C) and the bold vector in (D) indicate the values

exceeding the 95% confidence level.
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FIGURE 3 | Regression of global sea surface temperature (unit: ◦C) in early winter against PC1 of TP snowfall in early winter (black dots indicate the values exceeding

the 95% confidence level).

from Southwest Europe-Northwest Africa to East Asian at mid-
high latitude (Figure 2A). The WAF suggests that the wave
train originates from Greenland and then extends to Northeast
Asia with two propagating pathways (Figure 2A). One is from
Greenland to North Atlantic and Sahara as the North path, and
the other one stems from the Arabian Peninsula and propagates
northeastward to TP and Northeast Asia. We defined two indices
to describe the two pathways of the wave train (Equation 4). The
South index (SI) is based on averaged anomalous geopotential
height at level 500 hPa over the TP, Arabian Peninsula, and
Northeast Asia as formula (4). TheNorth index (NI) also includes
three centers over Greenland, North Africa, and North Atlantic,
respectively. These two indices properly reflect features of remote
connections across the Eurasia continent, which can be used
to identify whether the northern or southern wave train has
more significant impact on the atmospheric circulations over the
TP region.

SI = HTP(80− 105◦E, 25− 32◦N)−HAP(32− 60◦E, 10
−20◦N)−HNEA(100− 140◦E, 45− 60◦N)

NI = HGL(58− 32◦W, 60− 70◦N)+HNA(15W − 15◦E, 25
−40◦N)−HNAT(50− 20◦W, 40− 50◦N)

(4)

The SI and NI are two indices, respectively. The HTP is
the Tibetan Plateau region (100–140◦E, 45–60◦N) geopotential
height departure; similarly, HAPrefers to Arabian Peninsula (32–
60◦E, 10–20◦N), HNEA Northeast Asian (100–140◦E, 45–60◦N),
HGL Greenland (58–32◦W, 60–70◦N), HNA North Atlantic (50–
20◦W, 40–50◦N), and HNAT North Atlantic (50–20◦W, 40–
50◦N).

TABLE 1 | Temporal correlation coefficients (TCC) between PC1 and IOD/ENSO

indices.

IOD ENSO

Correlation 0.50 0.31

Partial correlation 0.45 0.10

The SI and NI present significant negative correlation with
−0.48 temporal correlation coefficient (TCC). The TCC between
PC1 and SI (NI) is −0.52 (0.39), respectively. All the TCCs have
exceeded the 99.9% confidence level. This results implicate more
the important role of the southern path on early winter snowfall
over TP. Actually, the southern path of this wave train is similar
to the Southern Eurasian (SEA) teleconnection (Xu et al., 2012;
Li, 2016). It is one of the Eurasian (EU) patterns (Wallace and
Gutzler, 1981). In boreal winter, the SEA teleconnection pattern
is an important intermediate track linking the NAO and weather
climate over East Asia (Xu et al., 2012; Li, 2016). Five main
centers of action lie in the following regions: Southwest Europe,
the Middle East, the Arabian Sea, the Tibetan Plateau/Southwest
China, and Northeast Asia (Li et al., 2019).

In Figure 2A, the prominent positive geopotential height
anomalies embedded in the wave train exist in the Southwest
of Europe, Northwest of Africa, TP, and Northeast Asia. This
anomalous center at 500 hPa level is in agreement with the
characteristic of the SEA pattern. The positive (negative) SEA
pattern in boreal winter indicates positive (negative) geopotential
height anomalies over Southwest Europe and the Arabian
Sea, as well as Northeast Asia (the Middle East and Tibetan
Plateau/Southwest China), and more (less) precipitation in
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TABLE 2 | Frequency (number of years) corresponding to IOD and ENSO

combinations during 1961–2018.

I+ I0 I− Total

P+ 6 8 1 15

P0 4 21 5 31

P− 1 5 7 12

Total 11 35 12 58

I+, I0, and I− represent the strong positive (IOD index value higher than 0.7 standard

deviations), neutral (IOD index value between −0.7 and 0.7 standard deviations), and

negative (IOD index value lower than −0.7 standard deviations) cases, respectively. P+,

P0, and P− represent the same meaning but for ENSO index.

TABLE 3 | Years of IOD and ENSO combinations.

Categories I+P+ I+P0 P+I0 I−P− I−P0 P−I0

Frequency 6 4 8 7 5 5

Years 1963 1961 1965 1974 1966 1983

1972 1967 1969 1984 1971 1988

1997 1977 1982 1998 1973 1995

2006 2012 1986 2005 1993 1999

2015 1991 2007 1996 2011

2018 1994 2010

2002 2016

2009

The meaning of I+, I0, I−, P+, P0, and P− are the same as that in Table 2.

FIGURE 4 | Boxplot of PC1 anomaly of TP snowfall in case of IOD and ENSO

combinations. Red shorts line denote the median, black short lines are

minimum and maximum value, the top and bottom of the box are the 25th and

75th percentile, respectively.

Southwest China (Li et al., 2019). Therefore, the SEA pattern
may have a close connection to TP snowfall. The significant
negative center is also observed at 200 hPa over the TP. They
accompany the 500 hPa anticyclonic anomalies over the Arabian
Sea at lower latitude and anomalous cyclone around the TP at
mid–high latitude from North Africa to East Asia (Figure 2D).
The southerly wind gets enhanced around the TP, which can
transport more water vapor from the Bay of Bengal into the TP.
In the meantime, an anomalous ascending branch occurs over

the TP and Southeastern China (Figure 2B), along with the land
surface cooling surrounding the TP with above-normal snowfall
in early winter (Figure 2C).

SSTAS ASSOCIATED WITH EARLY WINTER
TP SNOWFALL

Previous studies (Yuan et al., 2014; Jiang et al., 2019) implied
that the anomalies of TP snow cover/depth and circulation in
early winter can be ascribed to the heat forcing of low-latitude
SSTAs. Figure 3 indicates that the significant positive SSTAs
regressed against PC1 of early winter TP snowfall appear in
the western Indian Ocean, while weak negative SSTAs emerge
in the eastern Indian Ocean, constituting a positive Indian
Ocean Dipole (IOD) pattern (Saji et al., 1999). Additionally, IOD
can also preserve its footprints on the Tibetan Plateau via the
Tibetan snow anomalies and influence the subsequent spring
and summer climate even after its disappearance (Kripalani and
Kulkarni, 1999). It is also found that another positive SSTA exists
in the eastern equatorial Pacific, corresponding to an El Niño
event (Figure 3). At the same time, wintertime air temperature
over southeastern TP is related to convection anomaly over the
western North Pacific, which is significantly affected by ENSO
(Jiang et al., 2013). Is it possible that ENSO can affect snowfall
over the TP?

Statistical Analysis
In general, IOD and ENSO peak in autumn and winter,
respectively. Both of them have strong climate effects on the cold
season of the Northern Hemisphere. The monthly Niño 3.4 and
IOD indices used to measure the ENSO and IOD events are
obtained from https://www.cpc.ncep.noaa.gov/data/indices. An
intimate TCC exists between IOD and ENSO with a significant
correlation coefficient of 0.47 during 1961–2018. As to the early
winter snowfall over TP, the significant TCCs between PC1 and
IOD and ENSO reach 0.50 and 0.31, respectively. The partial
TCC between PC1 and ENSO dramatically decreases to 0.10 after
removing the IOD signal (Table 1). In contrast, the partial TCC
between PC1 and IOD is 0.45 and remains remarkable while
excluding the effect of ENSO. Therefore, IOD not only exerts
a direct influence on the early winter snowfall over the TP but
is also crucial for maintaining the linkage between PC1 and the
ENSO event.

As a consequence, ENSO impacts on TP snowfall by
depending on IOD; meanwhile, ENSO has contributed to the
relationship between IOD and PC1. It is assumed that the early
winter IOD and ENSO may affect the Tibetan Plateau snowfall
both independently and concurrently. Yamagata et al. (2004)
found that one-third of IOD events are connected with ENSO.
Behera and Yamagata (2003) also verified that a significant
fraction of IOD events were correlated with tropical Pacific
variability, including ENSO. The influence of ENSO on Indian
Ocean SSTs is characterized by taking the complex development
of ENSO into account: the spatiotemporally varying impact of
both canonical and non-canonical ENSO variability is estimated
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FIGURE 5 | The early winter circulation at positive IOD and ENSO combinations (A–C). For 200 hPa geopotential height (gpm), (D–F). For moisture flux (kg m−1 s−1).

(A,D) refer to the positive IOD and El Niño combination case, (B,E) refer to the case of positive IOD and neutral ENSO, (C,F) refer to the case of positive El Niño and

neutral IOD.

and filtered prior to the search for recurrent modes of SST
variability in the Indian Ocean (Yamagata et al., 2004).

For further examination of the effects of IOD and ENSO,
we divide the 58 years (during 1961–2018) into some categories
based on the combinations of IOD and ENSO indices (Table 2).
In this study, the strong IOD (ENSO) events are defined as the
absolute value of the IOD (Nino 3.4) index above 0.7 standard
deviation, whereas the other cases are in the neutral conditions.
During 1961–2018, there are 6 (7) years with a strong positive
(negative) IOD–ENSO combination, and 21 years with a normal
IOD–ENSO combination (Tables 2, 3). Other years with either
strong IOD or ENSO mainly represent the individual influence
of strong IOD or ENSO.

As shown in Figure 4, the variation of early winter snowfall
over the TP is quite different with IOD and ENSO combinations.
The medium values of snowfall anomaly are above normal in the
combinations of strong positive IOD events (I+) with positive
(P+) or normal (P0) ENSO events, while the snowfall is below

normal in the combinations if the IOD presents the strong
negative values (I−). It is also noted that the medium PC1 of
TP snowfall is positive when both IOD and ENSO are positive
(I+P+) but lower than the combination with positive IOD
and normal ENSO (I+P0), indicating the positive ENSO won’t
further enhance the IOD’s effect on producing more snowfall
over the TP in early winter. Besides, the uncertainty of the PC1
of TP snowfall is large in the years with only a strong ENSO
event (P+), which is consistent with the insignificant partial
TCC between ENSO and PC1 without an IOD event (Table 1).
The early winter snowfall anomaly is quite close to zero with
large uncertainty in the neutral IOD–ENSO combinations (I0P0).
Accordingly, the individual strong positive IOD or ENSO has a
remote effect on motivating the early winter snowfall over the
TP, but IOD plays a more important role than ENSO. It has also
been verified in the study of the respective influences of IOD
and ENSO on the TP snow cover in early winter (Yuan et al.,
2009).

Frontiers in Climate | www.frontiersin.org 7 September 2021 | Volume 3 | Article 694384113

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Shen et al. Climate Prediction

FIGURE 6 | As in Figure 5, but for the negative phases of IOD and ENSO.

Composite Results
We further investigate the combined effect of IOD and ENSO
on TP snowfall in early winter by means of composite analysis
for each category. In case of positive IOD and ENSO (I+P+),
the circulation anomaly is similar to the SEA-like pattern at
200-hPa level from western Europe to East Asia. Especially,
the anomaly centers including Greenland, western Europe, and
Northwest Africa just lie in the North pathway. That is consistent
with the circulation facilitating the above-normal TP snowfall
in early winter (Figures 2A, 5A). It is worth noting that the
most remarkable negative anomaly occurs in the TP and its
neighboring regions, which is in agreement with Figure 2A.
These circulation anomalies are associated with warm and
humid southwesterly anomalies to enter the TP and cause
moisture convergence that dominates the whole TP region
(Figure 5D). A strong ascending motion may imply an unstable
atmospheric condition.

Figures 5B,E illustrate the circulation anomalies in positive
IOD and neutral ENSO (I+P0) case. A zonal wave train pattern
across North Atlantic to Asia is observed at 200-hPa level. It
is a Eurasian-like pattern and TP has been covered by negative
anomaly, thus weaker than in Figures 5A,B. The maximum
moisture convergence occurs in south of TP affected by air

flow from the northwest Pacific and Arabian sea via the India
Peninsula (Figure 5E), leading to above-normal snowfall in situ.
It is dynamically consistent with the regression of geopotential
height and wind anomalies against the PC1 of TP snowfall
(Figure 2). It reflects that the positive IOD is conducive to
motivating the atmospheric condition of TP snowfall in early
winter. As demonstrated by Yamagata et al. (2004), positive IOD
can cause convergence anomalies over theMediterranean/Sahara
region at the upper troposphere. With positive ENSO and neutral
IOD (P+I0) (Figures 5C,F), the circulation anomaly and water
vapor transfer from the low-latitude region become more weaker
than in I+P0 case.

Figure 6 gives the circulation anomalies based on the opposite
combination including negative IOD and ENSO (I−P−), negative
IOD and neutral ENSO (I−P0), and negative ENSO and neutral
IOD (P−I0). It presents almost opposite characteristics to I+P+,
I+P0, and P−I0 cases, which illustrates that IOD avails for the
North pathway wave train development and negative anomalies
on the TP.

In conclusion, the individual IOD can stimulate the SEA-like
pattern from the Arabian sea via the TP to Northeast Asia; thus,
the effect of the individual effect became weaker. Yuan et al.
(2009) also revealed that the Eurasia waves can be generated by
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TABLE 4 | Schemes of the four CAM5 simulations.

Experiment name Schemes Integral times

Control experiment (E0) CAM5 is forced by

global SST climatology

10

Sensitivity experiment

in both Indian and

Pacific Ocean (E1)

CAM5 is forced by SST

anomaly within both

tropical Indian and

Pacific Ocean

10

Sensitivity experiment

in Indian Ocean (E2)

CAM5 is forced by SST

anomaly within the

tropical Indian Ocean

related to the

independent IOD with

no co-occurrence of El

Niño

10

Sensitivity experiment

in Pacific Ocean (E3)

CAM5 is forced by SST

anomaly within the

tropical Pacific Ocean

related to the

independent El Niño

with no co-occurrence

of IOD

10

the IOD-related convection anomalies over the western/central
Indian Ocean. The anomalies of moisture supply and surface
temperature over the TP are significant. All of which suggested
the crucial influences of IOD on early winter TP snowfall, while
the influences of ENSO is weaker.

NUMERICAL EXPERIMENTS

In order to further verify the effects of IOD and ENSO, one
control experiment and three sensitivity experiments by CAM5
are implemented, respectively. The experiment schemes are
listed in Table 4. As described in section Data, Method, and
Model, the differences between the sensitivity and control runs
show the influences of SSTA on TP early winter snowfall. In
the first sensitivity experiment (E1), we prescribe the positive
SST anomaly in the tropical western Indian and Pacific Ocean
featured with positive IOD and ENSO phase (Figure 7A). The
second experiment (E2) denotes an IOD-like pattern with the
positive–negative anomaly seesaw in the western and eastern
Indian Ocean (Figure 7B). The third experiment (E3) is referred
to as El Niño condition in the tropical Pacific (Figure 7C). Based
on these simulation experiments, we may able to further verify
the individual or joint roles of IOD and ENSO on motivating the
early winter snowfall-related atmospheric patterns over the TP
and its surrounding regions.

Figure 8 shows the circulation response in the above three SST
external forcing conditions. Compared with Figure 6, simulation
results reproduce the circulation pattern, i.e., SEA-like pattern
can be reproduced by forces of the positive IOD and ENSO
(I+P+) (Figure 8A) or force of positive IOD (I+) (Figure 8B).
Maybe due to model uncertainty, the I+ corresponding pattern is
a little bit weaker than I+P+.

Compared with the observations (Figure 5), the simulated
anomaly phase and the location of anomaly centers are very

similar to each other. Although the center of TP cannot be
simulated exactly in the condition of positive IOD, it is still
covered by the negative geopotential height anomalies south of
the TP and the mid-low latitude, which is consistent with the
above analysis. Besides, it is also presented that the simulated
geopotential height anomalies for the P+I0 are quite weak
over the TP region, which is consistent with the feature of
Figure 6C. Therefore, individual positive ENSO has limited effect
on motivating the SEA-like pattern and circulation anomalies
around the TP region. Therefore, CAM5 simulation further
confirmed that I+P+ and I+P0 cases have remote effects on
motivating the SEA-like pattern across Euro-Asia continent then
cause geopotential height anomaly over the TP. Noteworthily,
the anomaly of horizontal wind field have consistent in
I+P+ (Figure 9A) and P+ cases (Figure 9C), the northwesterly
prevailed over TP and an anticyclone occur in the southeastern
TP, which can hinder the warm moisture entering into the TP.
On the contrary, in Figure 9B, the I+P0 force can produce an
anticyclone at the southeastern TP, transporting more water
vapor into the TP, providing the moisture condition for snowfall.

Besides, in Figures 10A–C, a 400-hPa vertical velocity field
shows an anomalous ascending motion in I+P+ and I+P0 cases,
which avails for more snowfall over the TP region. Therefore,
the I+P+ or I+P0 corresponding wind field and vertical motion
in the middle troposphere can lead to heavy snowfall over the
TP in early winter, while the function of I0P+ is quite weak.
Jiang et al. (2019) also revealed that anomalous convection over
the western Indian Ocean related to the positive IOD could
generate a wave train propagating northeastward and induce an
anomalous cyclonic circulation over the central western of TP.
The associated anomalous circulation transports extra moisture
from the tropics to the central western TP, providing favorable
conditions for more snowfall over the central western of TP.

CONCLUSION AND DISCUSSION

In this paper, we examine the interannual variability of TP
snowfall in early winter and its underlying physical mechanisms
based on observational and NCEP reanalysis data, and the
mechanisms of respective and combined IOD and ENSO effects
on TP snowfall are investigated using the CAM5 model.

The interannual oscillation indicated by the first EOF mode
of TP snowfall in early winter shows good uniformity regionally,
which is closely related to the SEA-like pattern from the North
Atlantic to East Asian at mid and high latitudes. The TP region
is characterized by negative geopotential height anomalies at
200 hPa, the vertical ascending motion at 400 hPa, and the
negative temperature anomalies. Cyclonic circulation anomalies
around the TP region intensified southwesterly moisture flow
into the TP from the Arabians Sea and Bay of Bengal. All
these circulation anomalies provide the favorable thermal and
dynamical conditions for more snowfall over the TP.

Either the respective effect of IOD and ENSO, or their
combined effect can motivate negative geopotential anomalies
and cyclone water vapor flow in the surrounding area of TP.
We note that the positive IOD could excite the obvious SEA-like
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FIGURE 7 | The SST anomalous forcing scheme in model experiments. (A) SST forcing added in both western Indian ocean and tropical Pacific ocean, (B) SST

forcing added only in the western Indian ocean, (C) SST forcing added only in the tropical Pacific ocean.

pattern, southerly moisture supply and vertical ascendingmotion
over the TP. Therefore, IOD plays a leading role in producing
uniform pattern of TP snowfall. While the respective effect of
positive ENSO is weak and wouldn’t enhance the IOD’s effect on
the early winter snowfall related atmospheric pattern over the TP
and its surrounding region.

We have utilized the CAM5 model (the Community
Atmosphere Model version 5) to reproduce the observed
circulation anomalies related to the positive IOD and ENSO,
which can explain their combined and respective effects on
the TP snowfall in early winter. One control experiment
and three sensitivity experiments by the CAM5 model were
implemented to further verify the different roles of IOD and
ENSO in motivating the SEA-like pattern and uniformed
snowfall pattern over the TP. The differences in the influence
of SSTA on the early winter snowfall over the TP are shown
in the control and sensitivity runs. The simulated results
further confirmed that the CAM5 model can depict the positive

IOD and the remote effect of ENSO in motivating the SEA-
like circulation pattern, especially verifying that positive IOD
can significantly enhance the moisture supply from the low-
latitude region and cause sufficient snowfall over the TP. As
demonstrated by Jiang et al. (2019), convection anomalies over
the western Indian Ocean associated with IOD could generate
a barotropic Rossby wave that propagates northeastward along
the South Asian wave guide. This Rossby wave induces an
anomalous cyclonic circulation across the northern India, which
transports more moisture to the TP from the tropics, providing
a favorable condition for heavy snowfall and deepening of
snow depth over the TP region. Sardeshmukh and Hoskins
(1988), using a vorticity model, demonstrated that a divergence
center over the tropical western Indian Ocean can directly
generate the mid-latitude stationary Rossby waves with negative
geopotential height anomalies north of India. More recently,
Barlow et al. (2007) put an additional deep diabatic heating
over the eastern Indian Ocean around the eastern pole of
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FIGURE 8 | A 200-hPa geopotential height anomaly (gpm) of the CAM5 simulation experiments forced by (A) positive IOD and ENSO simultaneously, (B) individual

positive IOD, and (C) individual El Niño, respectively. Black dots indicate that the values exceeding the 95% confidence level.

FIGURE 9 | As in Figure 8, but for 500-hPa horizontal wind anomaly field (m s−1). Bold vectors indicate that the values exceeding the 95% confidence level.

IOD in winter. Therefore, the Rossby waves along the wave
guide in the early winter of pure IOD years may be caused
by the IOD-related convection anomalies over the tropical
Indian Ocean.

It is also noted that there is an uncertainty in the CAM5model
in climate simulation, especially for themiddle- and high-latitude
regions, which may lead to a certain bias in the simulated results
presented in this study relative to the observation.

Frontiers in Climate | www.frontiersin.org 11 September 2021 | Volume 3 | Article 694384117

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Shen et al. Climate Prediction

FIGURE 10 | As in Figure 8, but for the 400-hPa vertical velocity anomaly field (m s−1). Black dots indicate that the values exceeding the 95% confidence level.
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India, one of the most disaster-prone countries in the world, has suffered severe

economic losses as well as life losses as per the World Focus report.1 More than 80% of

its land and more than 50 million of its people are affected by weather disasters. Disaster

mitigation necessitates reliable future predictions, which need focused climate change

research. From the climate change perspective, the summer monsoon, the main lifeline

of India, is predicted to change very adversely. The duration of the rainy season is going

to shrink, and pre-monsoon drying can also occur. These future changes can impact

the increase of vector-borne diseases, such as malaria, dengue, and others. In another

recent study, 29 world experts from various institutions found that the largest exposure

to disasters, such as tropical cyclones (TCs), river floods, droughts, and heat waves,

is over India. For improved and skillful prediction, we suggest a three-stage cumulative

method, namely, K is for observational analysis, U is for knowledge and understanding,

and M is for modeling and prediction. In this brief note, we report our perspective of

imminent weather disasters to India, namely, monsoons and TCs, and how the weather

and climate forecasting can be improved, leading to better climate change adaptation.

Keywords: KUMmethod, extreme weather, human suffering, tropical cyclone, monsoon, Indian summer monsoon

(ISM)

INTRODUCTION

The Indian economy still significantly depends on agriculture, which, in turn, depends on the
summer monsoon rains occurring from June to September. In the present scenario of climate
change, it is essential to know how the Indian summer monsoon rainfall is going to change in
the future. In a recent detailed study with regional climate model projections, Ashfaq et al. (2020)
suggest that an important adverse signal of future climate change over the Indian monsoon region
in the RCP8.5 scenario (Krishnan et al., 2020; Jyoteeshkumar Reddy et al., 2021) can occur. The
sinking of the Indian monsoon rainy season onset is projected to delay by five to eight pentads and
a shrinking of the monsoon rainy season. India can experience pre-monsoon drying as well.

1World focus-special issue July 2014, editorial (peer-reviewed, refereed research journal).
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In a recent innovative study, 29 world experts (Lange et al.,
2020) from different institutions and different countries, reached
some important conclusions. These inferences deserve urgent
attention and action plans by policymakers. They considered six
categories of extreme climate impact events, namely, river floods,
cyclones, crop failures, wildfires, heat waves, and droughts. These
authors (Lange et al., 2020) quantified the pure effect of climate
change on the exposure of the global population to the events
mentioned. One important conclusion, which is of grave concern
to India, is that the largest increase in exposure is projected here.
Thus, to avoid huge damages due to these disasters, such as
deaths and loss of property, urgent and more reliable predictions
are needed. We, however, must clarify that there has been
tremendous improvement in numerical prediction of tropical
cyclones (TCs) in the last few decades in India [e.g., Pattanaik and
Mohapatra, 2021; Saranya Ganesh et al., 2021; Sarkar et al., 2021,
and all other papers in January 2021 ofMausam, a special issue on
the state of the art on TC prediction in the North Indian Ocean
(NIO)], but what we claim is that applying theory can enhance
the skills from the current day model outputs substantially more
as discussed in the following section. To provide an analogy, in a
recent study, Rao et al. (2021) attempted to connect observations,
theory, and a prediction plan for heat waves. This prediction
method can be applied to a numerical weather prediction model
to predict deadly heat waves; thus, Rao et al. (2021) used a
K, U, and M approach for the prediction of deadly heat waves
over India.

From the context of the three-pronged K, U, and M method
(hereafter, KUM), there are sufficient observational studies,
or K, and also some attempts have been made using highly
sophisticated, state-of-the-art (atmosphere and ocean) coupled
models for predictions, M. What is most lacking, however, are
theoretical studies (U) aiming to find out the causes for disastrous
TCs or the highly complex regional monsoons.

According to a recent 2021 overview of current research
results by the Geophysical Fluid Dynamics Laboratory of Global
Warming and Hurricanes2, the severity and frequency of
TCs are increasing globally. A recent study (Balaguru et al.,
2015) also suggests an increase of TCs globally even over
the NIO. Essentially, the increase in the strong TCs has far-
reaching implications for society because these include the most
harmful aspects, namely, storm surges and heavy rains with
intense wind speeds. Indeed, TC rainfall rates will possibly
increase in the future due to various anthropogenic effects
and accompanying increases in atmospheric moisture. Rapid
intensification of TCs poses forecast challenges and increased
risks for coastal communities (Emanuel, 2017). Recent modeling
studies (Emanuel, 2020) show an increase of 10–15% for
precipitation rates averaged within about 100 km of the cyclone
for a 2◦C global warming scenario. As per IPCC AR5, higher
levels of coastal flooding due to TCs are expected to occur, all
else assumed to be constant due to rising sea levels. In this
situation, together with the rise in sea level, the impact due to the
strong TCs deteriorates the conditions of the increasing coastal
population across India and the neighborhood. As the NIO is

2https://www.gfdl.noaa.gov/global-warming-and-hurricanes/

one of the typical regions with a population of 1.353 billion
(2018), about 18% of the global population by 2020, it is highly
susceptible to strong TCs causing adverse living conditions, and
the implication is that stronger TCs will be worse.

According to reports from a respected BBC newspaper3,4, and
a potential report5 from the Indian Meteorological Department,
Amphan is a very severe cyclone that transited the west coast
of India in 2020 and also caused a lot of damage. The super
cyclonic storm Amphan is the costliest case in the recorded
history of TCs with damage of US$15.78 billion and also total
fatalities of 269. Similarly, in the year 2019, a loss of US$11
billion occurred due to TCs. In the year 2020, there was a record-
breaking occurrence of eight TCs over the NIO: five cyclones and
three major cyclones compared to the climatology of 4.9, 1.5,
and 0.7. We note a drastic increase in category 3 and beyond
hurricanes occurring in the NIO and also a significant increase in
the Northern and Southern hemispheres (Figure 1). Also, there
is a substantial increase in accumulated cyclone energy (ACE)
in the last two decades in the NIO and Northern and Southern
hemispheres (Figure 2). In 2019, record-breaking ACE of 85 ×

104 knots2, occurred in the NIO, nearly twice the previous record
(Singh et al., 2021; Wang et al., 2021, BAMS). The decrease in the
projected number of TCs found in some studies (Sugi et al., 2017)
is overcompensated by the huge increase in intensity similar to
that found over the NIO in 2019 and 2020. Furthermore, as if to
worsen the situation in a colloquial sense, Wang and Murakami
(2020) show that the general atmospheric and ocean parameters,
which show a high global correlation with the number of TCs,
nevertheless show only a very low correlation with TCs of the
NIO. Thus, urgent research should be carried out to understand
the causes of the occurrence of TCs over the NIO. Even globally,
in the last 39 years (1980–2018), weather disasters caused about
23,000 fatalities and US$100 billion in damages worldwide. Each
year, weather events displace huge populations, drive people into
poverty, and dampen economic growth globally (Kousky, 2014;
Munich, 2020; Hoegh-Guldberg et al., in press). The underlying
causes show a marked signal of anthropogenic roots and global
warming (e.g., Sobel et al., 2016; Im et al., 2017).

Henceforth, we focus on the TCs as well as summer
monsoons, which are the two most relevant weather and climate
phenomena for the Indian region.

A THREE-STAGE METHOD TO STUDY AND
PLAN RELIABLE PREDICTION

Because India is rigorously prone to natural disasters as well as
impacts due to anticipated changes in the summer monsoon in
the future, there is indeed a serious question as to how to study
the causal mechanisms of these disasters and plan to mitigate
them. In this context, the late Gill (1985), an accomplished
geosciences expert, suggested almost 35 years ago the KUM
method, namely, knowledge, understanding, and modeling,
a three-pronged approach. The first step (K) is to improve

3https://www.bbc.com/news/world-asia-india-52749935
4https://en.wikipedia.org/wiki/2020_North_Indian_Ocean_cyclone_season
5https://mausam.imd.gov.in/Forecast/marquee_data/indian111.pdf
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FIGURE 1 | The number of category 3+ hurricanes that occurred in the Northern and Southern hemispheres and the NIO (black dotted line indicates a linear trend,

and orange line indicates significance at the 95% confidence level) (http://tropical.atmos.colostate.edu/Realtime/index.php?archandloc=northindian).

observational knowledge of calamity-causing weather events and
next a theoretical understanding to find out the cause of a specific
effect, probably utilizing linear analytical mathematical solutions
(U). Finally, the third one (M), using the presently available
highly complex coupled (atmosphere and ocean) models giving
numerical solutions to non-linear equations, pioneered by
Phillips (1956), predicting future occurrences. The order of
KUM seems to be important. Although relatively substantial
observational results are available in the Indian context for
meteorological and oceanographic events, very few theoretical
studies have been made delineating the causal mechanisms.
Thus, this aspect should be given priority. In a recent comment,
Emanuel (2020) also stressed the need for theoretical studies.
Finally, only after acquiring the observational, knowledge, and

cause-and-effect relationships in theoretical studies, only then,
should one embark on numerical or climate modeling to
successfully predict the future.

In this context, it is illuminating to recall the comments
of Phillips (1970), one of the founding fathers of theoretical
meteorology and numerical weather prediction: “in making
a numerical forecast, one takes a set of numbers...regardless
of...synoptic structures...by another set of numbers, representing
the forecast. The computation of a set of numbers depicting
the formation of a front, is of course, not a theory of fronts
(unless one is content to point to the equation of motion as
theory!!!!!)” Thus, one should be very careful using numerical
models to develop a theory of TCs, and in the Indian
context, monsoon depressions (MDs) are crucial for monsoon
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FIGURE 2 | ACE (in 104 Knots2 ) in the Northern and Southern hemispheres and the NIO (black dotted line indicates a linear trend, and orange line indicates

significance at 95% confidence level) (http://tropical.atmos.colostate.edu/Realtime/index.php?archandloc=northindian).

rainfall. Today, many students and scientists worldwide spend
most of their valuable time dealing with huge data sets
and running numerical models to simulate rather than to
develop a theory. Tellingly, Emanuel (2020), mentions that
presently there is “computing too much and thinking too
little.” Indeed, there is an urgent need for curiosity-driven
theoretical research even in the Indian context. One interesting
example to stress the importance of theory is, today, that
the best numerical weather prediction is in mid and high
latitudes in winter. This is because the basic theory behind the
mechanism of winter weather changes, the baroclinic instability,
was discovered more than 70 years ago by Charney (1947),
and models and observations evolved accordingly. Thus, it is
important to realize, without the correct understanding of the

causal mechanisms through theory, one will never be able
to predict correctly and completely the required weather or
climate or its changes with just the brute force of computers
available today!!!

TCS OVER THE NIO

Regarding the theory of the generation mechanisms of TCs,
there are two well-known hypotheses, namely, (a) the conditional
instability of the second kind (CISK) and (b) wind-induced
surface heat exchange (WISHE) (please refer to Tomassini,
2020 for a comprehensive discussion of these two processes).
A detailed discussion of these two is beyond the scope of the
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present short article. However, the authors quickly discuss these
two mechanisms in the context of TCs over NIO.

In the case of TCs, the pre-synoptic disturbances get their
energy by the complex interaction of two different horizontal
scales, namely, cumulus convection of about 1 km and synoptic
systems of about 500 km. How this interaction happens is a topic
of debate, though, and most of the research in the published
literature is about TCs in tropical ocean basins other than the
NIO region.

Briefly, we discuss the basic characteristics of CISK and quasi-
equilibrium (or WISHE). In the process of CISK, the buoyant
convection can occur only when low-level stability is weakened
(see Figure 2; Ooyama, 1969), and in the other, moist convection
is governed by the vertically integrated measure of instability.
As noted by Tomassini (2020), meteorological conditions vary
greatly from one region to the other in the tropics and also
in the same region from one season to another (see Ashok
et al., 2000; Rao et al., 2000; Raymond et al., 2015). Raymond
mentions two tropical places, Sahel and the Western Pacific,
where conditions are very different. Now, how do the conditions
vary, during (i) pre-monsoon, (ii) MDs, and (iii) post-monsoon
TCs? Similar to Bony et al. (2017), we suggest that more detailed
observations of both satellite measurements and data developed
in field programs should be used to understand the convection
and circulation coupling of TCs over NIO. For example, the
INCOMPASS IOP field program, which collects data from
strategically installed ground-based instruments in India, is one
such program (Fletcher et al., 2018).

Another, synoptic disturbance of importance is a MD.
Despite several observational and theoretical studies by many
authors (for example, Sikka, 1977; Mishra and Salvekar, 1979;
Aravequia et al., 1995; Boos et al., 2017) trying to understand
the basic mechanism of origin, some fundamental questions
remain unanswered. Similar to TCs, the lack of understanding
of how convection and MD circulation couple hinders the
prediction. For both TCs and MDs, we suggest analyzing time
vertical sections of potential temperature, equivalent potential
temperature, and saturated equivalent potential temperature
such that one can get an idea of the relative importance of CISK
or the quasi-equilibrium hypothesis discussed briefly above.

Another method for elucidating the study is to examine the
system’s energetics, i.e., TCs or MDs. Lorenz (1960) mentions,
“one enlightening method of studying the behaviour of the
atmosphere, or a portion of it, consists of examining the
behaviour of the energy involved.” Earlier Mishra and Rao (2001)
used limited area energetics to infer the mechanism of generation
of Northeast Brazil’s upper tropospheric vortices. Also, Rao and
Rajamani (1972) examined the energetics ofMDs. Thesemethods
of energy analysis, for example, can be used to isolate or single out
the basic mechanism of generation of TCs or MDs, using more
recent well-covered data, such as the INCOMPASS IOP program
(Turner et al., 2019). Later, targeted numerical model studies
should be used to not only verify the process/processes identified
in energetic and diagnostic studies, but to design dynamics-
based indices related to TC formation that are relatively easier
to predict. For example, a CISK parameter may be easier to
predict with a longer lead as compared with the TC rainfall.

These methods are again akin to the KUM approach. Such
carefully verified and designed indices, when operationalized,
will substantially help in extending the lead prediction time.
Probabilistic dynamical-statistical downscaling tools can also be
developed to relate local rainfall with these indices. This will
also potentially enhance the lead time of the TC-related deluge.
Similarly, a better understanding of model ability in capturing the
conversions between different forms of energy.

MONSOONS

Again, several aspects of monsoons, particularly, the Indian
Monsoon are still not completely clear and hinder the
mechanisms of prediction. In a recent exhaustive study, Geen
et al. (2020), discussed several aspects, primarily from a
theoretical standpoint even though this study was developed
based on the concept of a global monsoon, Figure 2 of Geen
et al. (2020) shows only a very low correlation in interannual
variations of rainfall, the main meteorological element that must
be predicted. However, the different regions of monsoons with
different geographical boundaries raise serious objections about
the global monsoon concept.

Several studies exist in the literature regarding the observed
aspects of the Indian summer monsoon (the K part of the three-
pronged method), and modern numerical models are employed
to improve prediction skills (Sahai et al., 2016; Rao et al., 2019;
Mohanty et al., 2020). From an almost zero skill, we have reached
a stage at which the skills for predicting the area-averaged Indian
summer monsoon are found to be statistically significant. This is
great progress. Having said that, there is a great scope for further
improvement. Although the broad regionally averaged skills are
statistically significant, they are modest. Further, improving the
skills such that they are locally useful is the obvious goal but
still a long way ahead. Although the prediction skill improved
through better methods of, for example, data assimilation and
parametrization schemes, to improve the predictions further, we
need to diagnose the improved representation (e.g., Halder et al.,
2016; Saha et al., 2019; Hazra et al., 2020), better replication of
physical processes and scale interactions.

Notwithstanding all these technical improvements, the
large-scale physical causal mechanisms are not clear yet.
This can only be done with the studies aiming to understand
the cause-and-effect relation or the U in the three-pronged
method. As mentioned earlier, with more observational studies
aiming to identify the correct interaction mechanism over
NIO between convection and large-scale monsoon circulation
(either CISK or WHISE), then this mechanism can be included
in the numerical models. Also, controlled experiments using
simple models, such as the one by Rao et al. (2000), can
be used to identify relative roles of mountains and thermal
contrast in generating the Indian summer monsoon. In
the state-of-the-art coupled models, because of extremely
complex non-linear interactions among various physical
mechanisms, it is almost impossible to isolate the cause of a
specific effect.
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Again, the diagnostic study based on energetics, such as
the generation of available potential energy (PE) by latent
heat and the baroclinic conversions, for example, may reveal
relative roles of some physical processes, such as convection
in the Indian monsoon. In a recent companion study (Rao
et al., under review), comparing the South American and Indian
monsoons, we found that, in the Indian monsoon, the baroclinic

conversions P (mean available PE) to P′ (eddy PE) to kinetic
energy (KE) is non-existent, and the KE of monsoon is mainly
furnished by the generation of perturbation PE by latent heating
(rainfall) and subsequent conversion to KE. In contrast, over the
South American monsoon, both the baroclinic conversions and
generation terms are equally important. This is probably because
the Himalayas extend from East to West across the cardinal
northern border of the country, which does not allow mid-
latitude baroclinic waves to penetrate at lower levels while the
Andesmountains in South America extend alongNorth to South,
permit these waves to penetrate even as low latitude as Manaus,
where even austral summer cold waves (FRAIAGENS) are noted.
Furthermore, studies are necessary to verify how energetics vary
between wet and dry monsoons in these two regions.

In a review article by Geen et al. (2020), the authors discuss
attempts to understand fundamental dynamics (U in our three-
prongedmethod). Geen et al. (2020)mention a very similar KUM
approach formonsoons (their section 3). Such efforts are urgently
needed from the context of the Indian monsoon. They even
discuss the south Asian monsoon (their section 3.1.2). Although
they tried to reconcile between global and regional monsoon
features, the differences are more striking as we mentioned
earlier, regarding the Indian and South American monsoons. In
the case of the East Asian monsoon, at least one author (Molnar
et al., 2010) mentions, “‘monsoon’ is somewhat of a misnomer.”

Although there are some uncertainties in the methods used
by Lange et al. (2020), the importance of their conclusion
is unambiguous. They mention that “anthropogenic” climate
change has already substantially increased the exposure to
extreme global climatic impacts, and anthropogenic warming is
projected to exacerbate the pattern of climate change that we
are already noticing nowadays. Thus, it is urgent to restrain the
increase in global average temperature well below 2◦C, which
would significantly reduce the risks and impacts of climate
change6 (Benitez, 2009; Dash et al., 2013). All this, therefore,
underscores the urgency for climate action expressed in the Paris
agreement of 2015. Even in a climate change context, using the
KUM approach will help in a better diagnosis of the changes
in regional implications for large-scale instabilities to diabatic
processes. These can help in design model-based indices that can
inform the stakeholders working on climate change mitigation
and adaptation.

6https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-
agreement

RECOMMENDATIONS

We are in an era in which observational data availability
in the tropics has improved significantly and is going to be
further improved. In this context, it is recommended that the
forecasters and researchers of Indian weather and climate use this
excellent opportunity to build theoretical knowledge unique to
the regional weather and climate. The knowledge gained should
be translated to identify tangible, large-scale dynamical process
indices. Such indices will be very useful to extend the lead
prediction skills of important weather and climate phenomenon,
such as TCs,MDs, etc. Similarly, (i) evaluating themodel capacity
in predicting and calibration of association between hindcast
perturbation PE, latent heating, and subsequent conversion
to KE, and (ii) comparing the observations will potentially
provide us with indices that can be directly used to predict
subseasonal monsoonal rainfall with longer leads. The above
recommendations are just examples. In summary, identifying the
key dynamics behind important weather and climate processes
at discernible time scales and designing useful dynamical indices
that can be used to extend the lead forecast envelope will be the
way forward.
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Climate Change Characteristics of
Coastal Wind Energy Resources in
Zhejiang Province Based on
ERA-Interim Data
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The reanalysis of sea surface wind speed is compared with the measured wind speed of five
offshore wind towers in Zhejiang, China. The applicability of reanalysis data in the Zhejiang
coastal sea surface and the climatic characteristics of sea surface wind power density is
analyzed. Results show that the reanalysis of wind field data at the height of 10m can well
capture the wind field characteristics of the actual sea surface wind field. The sea surface wind
power density effective hours increases from west to east and north to south. Then Empirical
orthogonal function (EOF) is used to analyze the sea surface wind power density anomaly field,
and the first mode is a consistent pattern, the secondmode is a North-South dipole pattern, the
third mode is an East-West dipole pattern respectively. The stability of wind energy resources
grows more stable with increasing distance from the coast, and the northern sea area which is
far away from the coastal sea is more stable than that of the southern sea area. The yearly linear
trend of sea surfacewind power density is in an East-West dipole pattern respectively. Thewind
energy resources are more stable farther from the coast, and the wind energy resources in the
northern sea aremore stable than that of the southern sea. The yearly linear trend of sea surface
wind power density is the East-West dipole type, the seasonal linear trend is a significant
downward trend fromWest to East in spring, and on the contrary in summer, a non-significant
trend in autumn and winter. The monthly change index shows that the linear trend near the
entrance of Hangzhou Bay in Northern Zhejiang is of weak increase or decrease, which is good
for wind energy development. When the wind power density is between 0 and 150W·m−2, its
frequency mainly shows the distribution trend of high in the West and low in the East, but the
wind power density is between 150 and 600W·m−2, its distribution is the opposite.

Keywords: wind tower, empirical orthogonal function, wind power density, linear trend, zhejiang province

INTRODUCTION

With the rapid development of human society, all kinds of fossil fuels have been overdeveloped and used,
and further causing a dramatic increase in greenhouse gases [1–3]. As renewable and clean energy
resources, wind and wave energy resources are of great significance for environmental protection and
greenhouse effect mitigation. In recent decades, wind energy, especially offshore wind energy, has
developed rapidly all over the world [4–7]. In 2015, the total installed capacity of wind energy in the world
surpassed that of nuclear power, becoming themainstream formof clean energy development [8]. China, as
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a developing country with large energy consumption, actively
encourages and guides the development and utilization of
renewable energy [9]. In 2011, the China Meteorological
Administration completed and released the detailed investigation
and assessment results of national wind energy resources. Based on
the annual average wind power density of 70m high layer greater than
300W/m2, the technical development volume ofwind energy resources
within thewater depth of 5–50m is 500millionKW[10]. According to
the scale and total amount of wind energy resources that can be
developed inChina,maturity of development technology and economy,
and soon, all indicators are in linewith the basic principles in thefield of
renewable energy development in China. It is expected that the
development of near sea wind fields will be a key direction of wind
power development after 2020, and the technologies of wind power
complementation and energy storage will be actively developed to
increase the utilization rate of wind energy [11]. A study by the Global
Wind Energy Council (GWEC) shows that the global installed capacity
of offshore wind reached a record of 6.1 GW in 2019, accounting for
10% of new installed capacity; 2020 is expected to be a new record year
for wind energy, and China’s offshore wind project development and
investors will commission their offshore wind projects before 2021 in
order to make good use of relevant subsidies [12]. Wind energy
resource observation is an essential way for assessment [13, 14]. The
conventional offshore observation ismainly point observation [15], that
is, through the on-site real-time observation methods such as island
meteorological stations [16], buoy station, lidars, windmeasuring tower,
etc., to obtain the wind speed of the nearby sea area and evaluate the
local wind energy resources. In addition, satellite remote sensing [17,
18], numerical simulation [19], reanalysis data [20, 21] and other
methods can also obtain the offshore wind speed.

Zhejiang Province is located on the southeast coast. The
coastline is 6,696 km long, the longest of any Chinese province.
The development and utilization of wind energy resources have a
very broad prospect. There are relatively few studies on the trend of sea
surface wind energy changes, which is closely related to the medium
and long-term planning of wind energy resources development. At
present, the observation and evaluation of wind energy resources in
Zhejiang coastal areas are mostly scattered observation models of
offshore wind towers. The observation time of wind towers is short
and the distribution is uneven [22]. At the same time, typhoons and
tropical cyclones attack Zhejiang every year, which makes the
observation results less representative for the adjacent sea areas
[23]. To better analyze the characteristics of wind energy resources
in the Zhejiang area, this paper uses the reanalysis data from the
European Center of Medium-Range Weather Forecast (ECMWF) to
analyze the climate change characteristics of sea surfacewind energy in
the coastal areas of Zhejiang, and the data of five local wind towers are
selected to calibrate the reanalysis data. In addition, wind energy
resource development and utilization in Zhejiang coastal areas are
discussed against the background of climate change.

DATA SELECTION AND CALCULATION
METHOD

According to the suggestion of relevant literature [24], the data used
in this paper mainly include: 1) the real-time observation data of

Zhejiang coastal wind towers, with a time resolution of 10min, and
the observation data and location information are shown in Table 1
and Figure 1; 2) The reanalysis data of ERA-Interim is published by
ECMWF, including the sea surface 10m wind speed, sea surface
temperature, sea surface pressure. The spatial resolution is 0.125° ×
0.125°, the spatial range is 120° E-125° E, 27.125° N-30.75° N. The
time resolution is four times every day (UTC: 00, 06, 12, 18) from
1979 to 2018, the reanalysis data can be obtained from https://apps.
ecmwf.int/datasets/data/interim-full-daily/levtype�sfc/ [25, 26].

The amount of wind energy resources in a place is usually
characterized by density of wind power (Dwp), which refers to the
power per unit area perpendicular to the wind direction. The
calculation method is as follows:

DWP � 1
2n

�ρ∑
n

i�1
v3i (1)

in the formula, DWP is the average wind power density (w/m2), n
is the number of records in the set time period, vi is the wind
speed value of the ith record, and �ρ is the air density (kg/m3), the
calculation method is as follows:

�ρ � �P

R�T
(2)

Among them, �P is the mean sea level pressure of the Zhejiang
coastal sea surface for years, R is the air gas constant, �T is the
mean absolute temperature of the Zhejiang coastal sea surface for
many years, and the mean air density of the Zhejiang sea surface
for years is 1.212 kg/m3.

EOF is a common way for atmospheric study to get the
distribution characteristics [27, 28]. EOF analysis of the wind
power density anomaly field for a total of 40 years from 1979 to
2018 was carried out. First, we calculate the output of its standardized
eigenvector and time series, i.e., solve the covariance matrix of sea
surface wind energy resource anomaly, and then calculate its
eigenvalues and eigenvectors. Then the main spatial distribution
modes of the wind power density anomaly field are obtained.

To obtain the variation coefficient analysis of the wind power
density near the Zhejiang coast for the most recent 40 years [29], we
first calculated the standard deviation of the wind power density, and
the average wind power density across the 40 years. Then, the
variation coefficient which the standard deviation is divided by the
average value could be carried out.

COMPARISON OFWIND SPEEDS BETWEEN
REANALYSIS DATA AND WIND TOWER

Themost effective way to evaluate the reliability of reanalysis data is to
compare it with observation data. As shown in Figure 2, the daily
wind speed correlation between a wind tower and the ERA-Interim of
the adjacent grid is close, and the correlation coefficients are above
0.8, passing the t-test of significance level α � 0.001. The ERA-
Interim data can capture the wind speed better in the north sea
area than the south sea area of Zhejiang. Due to the high
correlation, their trends are generally consistent, so the
reanalysis of wind speed data at the height of 10 m is credible.
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In the following parts, the climate characteristics of sea surface
wind energy are estimated by reanalysis data.

WIND ENERGY DISTRIBUTION
CHARACTERISTICS OF ZHEJIANG SEA
SURFACE

Climatic Pattern of Zhejiang Sea Surface
Wind Energy
Generally, a wind speed of 3 to 25 m/s is the most efficient for
the collection and conversion of wind energy resources, which

is called effective wind speed [30, 31]. Wind towers #1 and #2
have more hours of effective wind speed, as shown in Table 2.
The effective wind energy hours near the wind tower are all
more than 80%, and the percentage of effective wind energy
hours in Hangzhou Bay is over 86%. The percentage of effective
wind energy hours near wind tower #2 is 90%, which indicates that
effective wind energy hours are positively correlated with the coastal
distance. The percentage of effective wind energy hours near wind
towers #4 and #5 is 83%. As shown in Figure 3, the percentage of
offshore effective wind energy hours increases with latitudinal
offshore distance, and decreases southward with longitudinal
distance.

TABLE 1 | Information of Zhejiang coastal wind towers.

Wind tower number Start time of
wind speed observation

Altitude
of anemometer (m)

Average
wind speed (m/s)

The standard deviation (m/s)

1# 2014.1.1∼2014.12.31 22 6.25 2.17
2# 2013.1.1∼2014.12.31 20 6.72 2.57
3# 2008.1.1∼2009.12.31 20 6.27 2.25
4# 2013.1.1∼2013.12.31 38 6.54 2.76
5# 2010.11.7∼2011.11.6 20 6.52 2.97

FIGURE 1 | Coastal distribution of wind towers.
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In order to provide a reference for the development and
utilization of offshore wind energy resources, the spatial and
temporal distribution characteristics of coastal wind energy

resources in Zhejiang are analyzed. As shown in Figure 4, the
spatial distribution of the climate mean value of wind energy
resources on the Zhejiang sea surface across 1979–2018 is
calculated, and the mean value of sea surface wind power density
near Hangzhou Bay is lower than other coastal areas. The climatic
mean value of sea surface wind power density increases with distance
from the coastline, and decreases from south to north with the same
offshore distance in different latitudes. From the perspective of wind
power density, the location of offshore wind fields should be toward
to the south, yielding higher benefits. However, moving south leads
to greater risk of typhoon disasters being undertaken, meaning the
necessary wind resistance design standard becomes higher and so
does the cost.

The amount of offshore wind energy resources is affected by
wind speed, which changes with the seasons, especially in winter
and summer when the sea surface wind speed is more sensitive to
the influence of sea-land temperature difference. The spatial
distribution of climate average wind power density on the
Zhejiang sea surface in each season from 1979 to 2018 is
calculated, as shown in Figure 5. In terms of season, the
surface wind power density near the Hangzhou bay estuary

FIGURE 2 | The relevant information between measured wind speed
and reanalysis data of ERA-Interim (units:m·s−1). The blue point represents the
wind speed, the red dotted line represents the linear trend.

TABLE 2 | Wind energy effective hours percentage of Zhejiang coastal.

Station no. Effective
wind hours (h)

Effective wind hours
percentage (%)

Observation time

1# 7,797 89 1 year
2# 15,525 90 2 years
3# 15,129 86 2 years
4# 7,243 83 1 year
5# 7,273 83 1 year

FIGURE 3 | The percentage of effective wind energy of the Zhejiang
coastal area (units:w·m−2).
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and the Zhejiang coastal sea does not change significantly with
seasons. In other areas of the sea surface wind power density is the
highest in winter, followed by autumn, and the lowest in spring

and summer. In terms of space, the seasonal variation range of sea
surface wind power density increases with the increase of offshore
distance.

In order to further clarify the distribution of sea surface wind
energy resources in various time periods, the spatial distribution
of climatic average wind power density of Zhejiang in each month
from 1979 to 2018 is calculated, as shown in Figure 6, the
Zhejiang coastal wind power density generally shows a “V”
change trend as the month goes on, the variation of the wind
power density near the coast of Zhejiang is not obvious, on the
contrary, the variation of the sea surface wind power density far
from the coast of Zhejiang with the month is obvious, which is
similar to the seasonal variation. The evolution speed of sea
surface wind power density from high to low is faster than that
from low to high. The reason may be that the strong
southward cold air of the north in winter causes the
obvious increasement of the sea surface wind speed, and
then the power density of the sea surface wind is greater
than that in other seasons.

Spatial-Temporal Distribution
Characteristics of Zhejiang Surface Wind
Energy
The sea area of Zhejiang is vast and the sea surface wind speed has
much differences, which directly leads to the strong locality of the
spatial distribution of sea surface wind energy. In order to further

FIGURE 4 | The climate average of Zhejiang coastal wind energy
resource in 1979–2018 (units:w·m−2).

FIGURE 5 | The seasonal climate averageof Zhejiang coastalwind energy resource (units:w·m−2):(a) the springDwp; (b) the summerDwp; (c) the autumnDwp; (d) thewinter Dwp.
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analyze the spatial and temporal variation characteristics of sea
surface wind energy, EOF analyzed the annual average power
density anomaly field of sea surface wind energy in 40 years, as
shown in Figure 7, the variance contribution rate of the first three
modes reached 87.3% and passed the North significance test. The
spatial and temporal fields of the first three modes can basically
reflect the variation characteristics of the sea surface wind power
density in the Zhejiang coastal area.

The variance contribution rate of the first mode has reached
61.1%, which is much higher than the other modes. As shown in
Figure 7A, the first mode mainly reflects a consistency increasing
or decreasing trend of sea surface wind power density in Zhejiang
coastal sea area. The center is in the southeast of Zhejiang coastal
sea area, the value of space field contours near Zhejiang coastal is
small, which indicates that the inter-annual variation of the wind
power density in the Zhejiang coastal area is smaller than that in
the eastern sea area, the time coefficient in Figure 7D shows an
obvious upward trend, and it mainly presents positive anomaly
value in recent years.

As shown in Figure 7B, the second mode mainly reflects that the
sea surface wind power density along the coast of Zhejiang presents a
North-South dipole type change trend with north latitude of 28°N as

the boundary, the variation range of time coefficient in Figure 7E is
small, so the trend of inter-annual variation can be ignored.

As shown in Figure 7C, the third mode mainly reflects that the
wind power density in the Zhejiang coastal region shows the
trend of East-West dipole type change trend, and the change
range on the west side is larger than that on the east side, and the
center on the west side is in the southwest coastal Zhejiang. The
variation range of time coefficient in Figure 7F shows an upward
trend with the change of time, and in recent years it has shown a
weak positive anomaly.

The Stability of Wind Energy in Zhejiang Sea
Surface
For wind power development enterprises and the State Grid, the
stability of offshore wind energy directly affects the development
potential of wind energy resources and the rational planning of
power generation into the grid. In the energy assessment of wave
energy, tidal energy, the coefficient of variation has been widely
used [32]. The smaller the coefficient of variation, the better the
stability of energy. In this paper, the coefficient of variation is
introduced to measure the stability of wind energy resources.

FIGURE 6 | The monthly climate average of Zhejiang coastal wind energy resource (units:w·m−2). (a-l) represent January to December respectively.
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The formula of variation coefficient is:Cv � S
�x,Cv is the coefficient

of variation, S is the standard deviation, and �x is the 40 years
average value.

The coefficient of variation was calculated for the annual
average wind power density. As shown in Figure 8, the
variation coefficient is inversely related to the distance from
the coast. The variation coefficient is the smallest in the sea
area of Taizhou, which means that the interannual variation of
the annual average wind power density near the coast is greater
than that of the other areas of Zhejiang. The interannual variation
of the annual average wind power density reached the maximum
in Hangzhou bay, the variation coefficient is the smallest in the
offshore sea surface of Taizhou, then followed by Wenzhou. The
interannual variation of the northern part of the distant sea is
smaller than that of the southern part.

The reason for the great difference in the interannual variation
of the sea surface wind power density near the coast of Zhejiang
may be that the urbanization process is too fast, which is affected
by the change of the topography and geomorphology onshore.

The Trend of Sea Surface Wind Energy in
Zhejiang
Under the influence of human activities and air-sea interaction, there
are large differences in the tendency of interannual change of sea
surface wind energy in different regions. In this section, the tendency

coefficient of one-dimensional linear regression is used to estimate the
interannual trend of wind power density over the past 40 years.

FIGURE 7 | (A–C)Distribution patterns and (D–F) time coefficients of the first three modes of sea surface wind power density anomaly field in Zhejiang coastal area:
(A,D) the first mode; (B,E) the second mode; (C,F) the third mode.

FIGURE 8 | Multi-year averaged coefficient of variation of the wind
power density.
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Taking time as the independent variable and interannual wind
power density as the dependent variable, linear regression
statistics were performed, as shown in Figure 9, where the
dotted line indicates the downward trend and the solid line
indicates the upward trend. The interannual variation of wind
power density in coastal areas of Zhejiang shows an obvious
East-West pattern, the wind power density in the whole coastal
area of Zhejiang shows a downward trend, and the downward
trend is most obvious in the coastal area of Taizhou, the
tendency estimate is about −0.5 W·m−2·a−1. The downward
trend in the offshore area of Hangzhou Bay is not obvious, the
tendency estimate is about −0.1 W·m−2·a−1, the corresponding
correlation coefficient does not pass a 95% reliability test.
Therefore, the overall wind power density on the west side
of the offshore area tends to decline, which is consistent with
the observation results of the actual meteorological station, but
the trend is not obvious. On the contrary, the significance of
the correlation coefficient passes the 95% reliability test in the
east side of the offshore shaded area, the wind power density
shows an obvious upward trend, and there are two centers in
the North and South. The northern upward trend center
estimate is more than 0.7 W·m−2·a−1, the southern upward
trend center is more than 1.0 W·m−2·a−1, so the trend of
interannual change is larger in the South. Generally
speaking, the rate of rising in the east sea area is faster than
the rate of decline in the west sea area.

The interannual variation trend of wind power density in each
season is statistically analyzed. As shown in Figure 10, the spring
interannual variation trend in the whole coastal area of Zhejiang
shows a significant downward trend which passes the 95%
reliability test. The trend is −0.75∼−2.0 W·m−2·a−1 near the
coast and −4.5∼−6.0 W·m−2·a−1 in the east sea area, and the
downward trend increases from west to east. The summer
interannual variation trend in the whole coastal area of
Zhejiang shows a significant upward trend which passes the
95% reliability test. The trend is 1.0∼2.0 W·m−2·a−1 near the
coast and 3.5∼4.5 W·m−2·a−1 in the east sea area, and the
upward trend increases from west to east. The autumn
interannual variation trend shows an insignificant slight
upward trend in the near coast, the trend is 0∼1.0 W·m−2·a−1,
but there is a significant upward trend in the east sea area, the
trend is 2.0∼3.0 W·m−2·a−1, and the upward trend increases from
west to east. The winter interannual variation trend shows an
insignificant slight upward trend in the whole sea area, the trend
estimation value is 0∼1.0 W·m−2·a−1, and the upward trend
increases from north to south.

The monthly variation range of wind energy resources has a
great influence on the collection of wind energy, the life of wind
turbines, and the utilization ratio of power grid connection. In the
evaluation of wave energy, the monthly variability index can
better reflect the change of wave energy [33], the smaller the
index, the better the energy stability in each month. Here, the

FIGURE 9 | Interannual trend of wind power density (the contour line is the tendency value, the shaded part is the area put through the significance test).
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monthly variability index is introduced to measure the monthly
variation trend of wind energy resources.

The formula of the monthly variability index is:Mv � dmax−dmin
dave

,
Mv is the monthly variability index, dmax is the maximum average
monthly wind power density in the year, dmin is the minimum
average monthly wind power density in the year, dave is the
average monthly wind power density in the year.

According to the calculation method of the monthly variability
index, we calculated the index every year, and then calculated the
annual variation trend of the index in the past 40 years, as shown
in Figure 11. The positive trend of the index means the monthly
energy differential increases. On the contrary, the negative trend
of the index means the differential narrows, which is conducive to
wind energy development. The shaded part in the figure passes
the 95% reliability test. The sea area passing the test has two
centers of positive annual variation trends, the interannual
variation trend value of the index in the east sea reaches 0.012
and near Taizhou to Wenzhou reaches 0.011, which means that
the monthly differential increases. The interannual variation
trend of the monthly variability index near the Hangzhou bay
is insignificantly weak growth or decrease. Compared with the
shaded area, the interannual variation of the index changes little,
which is beneficial to the development of wind energy.

Frequency Distribution of Sea Surface Wind
Power Density in Zhejiang
The wind power density frequency of 0–600w·m−2 at the sea
surface in the last 40 years in Zhejiang is analyzed, and the results
are shown in Figure 12. When the wind power density is between
0–150W·m−2, the frequency in the coastal area of Zhejiang shows
a trend of gradual decline from west to east, with a large gradient.
The frequency near Hangzhou bay reaches a maximum of 80%,
and in the eastern sea, the area is between 40% and 50%. When
the wind power density is between 150–300W·m−2, the frequency
in the coastal area of Zhejiang shows a trend of gradual increase
from west to east, with a small gradient. The wind power density
frequency near Hangzhou bay reaches about 10%, in the area
south of Hangzhou Bay is about 16–18%, and in the eastern sea
area is about 20%. When the wind power density is between
300–450W·m−2, the frequency also shows a trend of gradual
increase from west to east, with a small gradient. The wind power
density frequency near the Hangzhou bay reaches about 6%, in
the south of Hangzhou Bay is about 10%, and in the eastern sea
area is about 12%. When the wind power density is between
450–600W·m−2, the frequency shows a trend of gradual increase
from northwest to southeast, with a small gradient also. The
frequency near the Hangzhou bay reaches about 4%, in the area

FIGURE 10 | Seasonal trend of wind power density (the contour line is the tendency value, the shaded part is the area put through the significance test): (a) the
spring linear trend; (b) the summer linear trend; (c) the autumn linear trend; (d) the winter linear trend.
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FIGURE 11 | Longterm annual trend of monthly variability index for the period 1979 to 2018.

FIGURE 12 | Frequency distribution of wind energy resources on the coastal sea surface: (a) the frequency of Dwp from 0 to 150; (b) the frequency of Dwp from 150
to 300; (c) the frequency of Dwp from 300 to 450; (d) the frequency of Dwp from 450 to 600.
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south of Hangzhou Bay is about 6–15%, and in the eastern sea
area is about 27%.

In general, when the wind power density is between
0–150W·m−2, the frequency mainly shows the distribution
trend of high in the west and low in the east, when the wind
power density is between 150–600W·m−2, the frequency mainly
shows the distribution trend of high in the east and low in
the west.

CONCLUSION AND DISCUSSION

The applicability of ERA-interim data in the Zhejiang sea area
was analyzed by comparing the reanalysis data of wind speed at
the height of 10 m in a fixed year with the wind speed measured
by the wind tower. Furthermore, the climate change
characteristics of sea surface wind power were analyzed based
on the ERA-interim data.

1) We compared the measured wind speed data of the five
offshore wind towers with the reanalysis wind speed data
of the adjacent grid of the same period. The correlation
coefficient reached more than 0.8 which passes the
significance level test of α� 0.001. The reanalysis of the sea
surface wind at the height of 10 m can well represent the actual
sea surface wind speed characteristics, and sea surface wind
speed increases as latitude decreases.

2) Zhejiang is rich in sea surface wind energy resources:
according to the effective wind energy hours, the actual
effective wind energy hours measured by the offshore wind
tower exceed 80%. In the east-west direction, the
percentage of effective wind energy hours increases with
longitude; in the north-south direction, it increases as
latitude decreases. From the perspective of the spatial
distribution of the average wind power density over
many years, the mean value of sea surface wind power
density near Hangzhou Bay is lower than other coastal areas.
The climatic mean value of sea surface wind power density
increases with the distance from the coast, on the contrary, the
gradient of mean surface wind power density increases as distance
from coast decreases. From the perspective of the spatial
distribution of multi-year seasonal average wind power density,
the wind power density is the highest in winter, followed by
autumn, and the lowest in spring and summer. From the spatial
distribution of multi-year monthly average wind power density,
the wind power density along the coast of Zhejiang generally
shows a v-shaped change trend, among them, it does not change
significantly near the Zhejiang coast, while it changes significantly
far away from the coastal waters of Zhejiang.

3) EOF decomposition of the Zhejiang sea surface wind power
density anomaly field was carried out, the variance
contribution rate of the first mode reached 61.1%, the
spatial field was consistency type, and the time coefficient
showed an obvious upward trend; the variance contribution
rate of the second mode was 16.9%, and the spatial field was of
north-south dipole type, with a small range of time coefficient;
the variance contribution rate of the third mode was 9.3%, and

the spatial field was of west-east dipole type, and the time
coefficient showed an obvious upward trend.

4) The stability of wind energy in the coastal sea surface of
Zhejiang is one of the factors considered by wind power
generation. Due to the rapid urbanization, the change of
shore topography, geomorphology, and other factors, the
stability of wind energy resources near the coast is low,
and wind energy stability away from the coast gradually
increases from south to north.

5) The linear trend of interannual, seasonal, and monthly
variation coefficients of the sea surface wind power density
was calculated: the coastal areas of Zhejiang show an obvious
interannual variation trend of east-west dipole type. Spring is
a significant downward trend from west to east, summer is a
significant upward trend fromwest to east, autumn and winter
are an insignificant weak upward trend. The linear trend of the
monthly variability index in the Hangzhou bay estuary in
northern Zhejiang is insignificant weak growth or weak
decrease. Compared with the south coastal area and the
eastern sea area, the interannual change of the index is not
significant, which is beneficial to the development of wind
energy.

6) When the wind power density is between 0–150W·m−2, the
frequency mainly shows the distribution trend of high in the
west and low in the east, and the wind power density is
between 150–600W·m−2, the frequency mainly shows the
distribution trend of high in the east and low in the west.

It should be pointed out that there is a certain deviation
between the reanalyzed wind speed and themeasured wind speed.
This article makes a macro analysis of the trend of wind energy
resources in the Zhejiang marine economic demonstration area.
Subsequent work can be combined with higher resolution SAR
satellite data to carry out a refined evaluation of wind energy
resources in the region [34, 35].

Until now, the green development concept of peak carbon
dioxide emissions and carbon neutrality is deeply rooted in
people’s hearts, and Zhejiang have also taken relevant
measures to save energy and reduce emissions. However, as
one of the developing coastal provinces in eastern China, the
demand for and consumption of energy, especially electric
energy, is increasing day by day, which requires our province
to take more energy supply measures to deal with it, and the
rational use of offshore wind energy will alleviate the problem of
electric energy supply to a certain extent. For example, by 1)
strengthening the analysis of high-resolutionmeteorological data,
and excavating the sea area which is rich in wind energy resources
and suitable for developing wind power along the coast of
Zhejiang; and 2) paying more attention to the long-term
changes of offshore wind speed, accurately estimating the
wind power generation capacity in different time periods
and reasonably integrate it into the power grid to promote the
efficient use of energy. In addition, it is necessary to further
study the future trend of sea-surface wind energy resources in
the context of global climate change, which is of forward-
looking significance for guiding the future development of
sea-surface wind energy in the Zhejiang Province.
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As the major renewable energy, wind can greatly reduce carbon emissions. Following

the “carbon neutral” strategy, wind power could help to achieve the realization

of energy transformation and green development. Based on ERA5 reanalysis data

and the multi-ensemble historical and scenario simulations of the Coupled Model

Intercomparison Project Phase 6 (CMIP6), a variety of statistical analyses are used

to evaluate the performance of CMIP6 simulating the wind speed in China. The

conclusions are as follows: spatial patterns of the nine CMIP6 models are similar with

ERA5, but BCC-CSM2-MR and MRI-ESM2-0 highly overestimate the wind speed in

northwest China. CESM2-WACCM, NorESM2-MM, and HadGEM3-GC31-MM behave

better than the other six CMIP6 models in four specific regions are chosen for detailed

study. CESM2-WACCM, NorESM2-MM, and HadGEM3-GC31-MM tend to simulate a

larger wind speed than ERA5 except the yearly averaged wind speed in region II and

region IV. CESM2-WACCM and NorESM2-MM simulate a large monthly mean wind

speed, but the value is relatively close with ERA5 in the summer. HadGEM3-GC31-

MM overestimates wind speed in region I and region II from April to October, but gets

closer with ERA during winter. CESM2-WACCM, NorESM2-MM, and HadGEM3-GC31-

MM simulate an increasing trend in Tibetan Plateau and Xinjiang in the next 100 years,

while NorESM2-MM projects rising wind speed in the eastern part of Inner Mongolia,

and HadGEM3-GC31-MM simulates increasing wind speed in the northeast and central

China. The future wind speed in three models is projected to decline in region I, and

the value of HadGEM3-GC31-MM is much larger. In region II, wind speed simulated

by three models is projected to decrease, but the wind speed from HadGEM3-GC31-

MM in region III and modeled wind speed in region IV from NorESM2-MM would climb

with the slope equal to 0.0001 and 0.0012, respectively. This study indicates that the

CMIP6 models have certain limitations to perform realistic wind changes, but CMIP6

could provide available reference for the projection of wind in specific areas.

Keywords: model assessment, carbon neutral, renewable energy, wind, CMIP6
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INTRODUCTION

Renewable energy, energy efficiency, and electrification are three
drivers of deep de-carbonization, and developing renewable
energy is an important measure for global climate governance
and achieving the goal of carbon neutrality. It is estimated that
by 2050, the proportion of renewable energy supply will exceed
50% (IRENA, 2018). As one of the primary carbon-free resources,
wind energymeets the electricity demand dramatically. However,
a significant decreasing trend of wind speed is reported in
numerous studies. Near-surface wind speed over the globe
is dropping at 5–15% since 1960, which is called as global
stilling (Pryor et al., 2009). The global average wind speed
trend is −0.014 m/s/a, while the wind speed over the low-
to middle-latitude areas is declining and the wind speed of
high-latitude areas is rising (McVicar et al., 2012). There was
a decreasing wind speed trend with −0.005 m/s/a in the
USA (Hobbins, 2004). The declining wind speed trend across
the Australia has reached 0.009 m/s/a since 2006 (McVicar
et al., 2008). A significant declining wind speed of −0.017
m/s/a is showed in western Canada (Tuller, 2004; Wan et al.,
2010). The downward change of wind speed in Italy is −0.013
m/s/a, while the falling trend is −0.026 m/s/a before 1975 and
decreased to −0.002 m/s/s after 1975 (Pirazzoli and Tomasin,
2003).

As one of the countries with abundant wind resource, China
has a large amount of wind power capacities and plays a
dominant role in developing renewable energy. The annual mean
wind speed in China is 4.09 m/s, while the wind power density
is 164.1 W/m2. Northeast China is the most potential area with
an annual mean wind speed 4.64 m/s while the wind power
density is 204 W/m2, and coastal areas in east China have wind
power density larger than 500 W/m2 (Liu et al., 2019). The
annual mean wind speed and maximum wind speed in China
were decreasing since 1956 (Jiang et al., 2013), and reanalysis

FIGURE 1 | The spatial distribution of multi-year (1986–2014) mean 10-m wind speed (left) and surface roughness length (right) over China. The four specific regions

are shown as black rectangles.

datasets and station observational data showed the near-surface
wind speed had been decreasing by −0.109 m/s per decade
from 1958 to 2015 (Zhang et al., 2019). In the catchment of
Yangtze River, the downward trend of wind speed was −0.008
m/s/a between 1960 and 2000 (Xu et al., 2006). The near-surface
wind speed in the Loess Plateau of China had declined by
−0.01 m/s/a (McVicar et al., 2005). Previous researches have
been done to evaluate the possible factors related with the
surface wind speed decrease in China. The land-use and cover
change over the Eastern China Plain could lead a 0.17-m/s wind
speed decrease every decade in China. The primary cause is the
pressure-gradient force, and the surface drag force also has a
significant effect on the declining wind speed (Wu et al., 2017).
The weakening of the East Asian monsoons mainly causes the
decreasing average and maximum wind speed, and the relatively
less land-falling typhoons and cold waves lead to the reduced
maximum wind speed in southeast coastal China (Jiang et al.,
2013).

As for now, the climate models cannot well-quantify the effect
from climate change (IPCC, 2007). The World Climate Research
Program’s (WCRP) Coupled Model Intercomparison Project
(CMIP) has been operated since 1990s, aiming to understand
the past, the present, and the future of climate. The new
Coupled Model Intercomparison Project Phase 6 (CMIP6) is
designed to better estimate the climate (Eyring et al., 2016).
To better know the future of wind energy, the simulations of
updated climate models could be helpful to predict the change of
wind speed.

DATA AND METHODOLOGY

ERA5
ERA5 is a fifth-generation European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanalysis
of the global climate and is doing well in depicting the
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TABLE 1 | CMIP6 models used in this study.

Model name Modeling center Resolution

BCC-CSM2-MR Beijing Climate Center, China 320 × 160

CESM2 National Center for Atmospheric

Research, USA

288 × 192

CESM2-WACCM National Center for Atmospheric

Research, USA

288 × 192

CESM2-WACCM-FV2 National Center for Atmospheric

Research, USA

144 × 96

HadGEM3-GC31-MM Met Office Hadley Centre, UK 432 × 324

MRI-ESM2-0 Meteorological Research Institute,

Japan

320 × 160

NorESM2-MM NorESM Climate Modeling

Consortium, Norway

288 × 192

SAM0-UNICON Seoul National University, South

Korea

288 × 192

TaiESM1 Research Center for Environmental

Changes, Taiwan, China

288 × 192

atmospheric circulation. ERA5 is produced by 4D-Var data
assimilation in CY41R2 of the Integrated Forecasting System
(IFS), providing global atmospheric, land-surface, and sea-
state parameters. The dataset is on regular latitude–longitude
grids at 0.25◦ × 0.25◦ resolution with 37 pressure levels
vertically and covers the period from 1950 to the present. In
this study, the near-surface wind speed from 1986 to 2014
over China is used to evaluate the CMIP6 models. Since the
north China is abundant with wind resources, four specific
regions from I to IV shown in Figure 1 are chosen for further
study: region I (80◦∼90◦E, 37◦∼42◦N), region II (92◦∼100◦E,
35◦∼40◦N), region III (101◦∼117.5◦E, 37◦∼41.5◦N), and region
IV (120◦∼130◦E, 43◦∼49◦N).

CMIP6
CMIP6 historical simulations take the natural causes and human
factors into consideration and reproduce the historical variability
of climate from 1850 to 2014. The historical simulations
could be used for assessing model performance in climate and
weather (Eyring et al., 2016). Moreover, the Scenario Model
Intercomparison Project (ScenarioMIP) could provide a new
set of emissions and land-use scenarios, which, along with
the Shared Socioeconomic Pathways (SSPs), allows twenty-
first century projections to be assessed from the new future
forcing experiments. SSP585 used in our study is the updated
scenario of RCP8.5 using the rapid fossil energy evolution
with SSP5 following the high greenhouse emissions (O’Neill
et al., 2014, 2017). Multi-ensembles are averaged to maintain
the quality of evaluation, and the group of nine newest
CMIP6 global climate models from China, USA, UK, Japan,
Norway, and South Korea is used in this study. Model name,
modeling centers, and resolution of models are described in
Table 1.

Methodology
Based on the different latitude-longitude grids between CMIP6
and ERA5, the ERA5 is interpolated to the grid of corresponding
CMIP6 models before comparison. The metrics of bias,
spatial correlation coefficient (R), and root mean square
error (RMSE) are used to evaluate the models’ performance,
and the equations of calculating are shown in following.
Wm is the wind speed of CMIP6, WE represents the
ERA5 wind speed, and i is the pixel where CMIP6 and
ERA5 coincide.

Bias =

∑N
i=1 (Wmi −WEi)

N
(1)

R =

∑N
i=1

(

Wmi −Wm

) (

WEi −WE

)

√

∑N
i=1

(

Wmi −Wm

)2
√

∑N
i=1

(

WEi −WE

)2
(2)

RMSE =

√

√

√

√

√

(Wm1 −WE1)
2 + (Wm2 −WE2)

2 + · · ·

+ (Wmn −WEn)
2

N
(3)

RESULTS

Spatial Pattern of ERA5
Figure 1 shows the spatial distribution of multi-year mean
10-m wind speed and surface roughness length over China.
Larger values of wind speed are shown in north China and
Tibetan Plateau, and relatively smaller wind speed is shown
in southwest China and southeast China. Comparing with the
surface roughness length, the spatial distribution of wind speed
is negatively related with the spatial pattern of surface roughness
length. Wind speed tends to be smaller while the surface
roughness length is larger, which is similar with the finding of
a previous study (Vautard et al., 2010).

Spatial Pattern of CMIP6 Models
The multi-year mean 10-m wind speed (1986–2014) of the nine
CMIP6 models is shown in Figure 2. Spatial patterns of the nine
CMIP6 models are similar with ERA5 shown in Figure 1, but the
wind speed in north China is larger and the wind speed in the
Sichuan Basin ismuch smaller. However, the values of wind speed
in north China and northeast China are highly overestimated
by BCC-CSM2-MR and MRI-ESM2-0, and the maximum of
simulated wind speed tends to be over 8.78 m/s, which is far
higher than ERA5.

Metrics of Spatial Distributions
The metrics of comparison are shown in Figure 3; higher R and
lower RMSE represent that the corresponding model has better
consistency with ERA5. CESM2-WACCM, HadGEM3-GC31-
MM, and NorESM2-MM behave better than the other six CMIP6
models; the RMSE ranges from 0.48 to 2.41, and the R is between
0.52 and 0.90. From the results above, the spatial difference
between BCC-CSM2-MR and MRI-ESM2-0 is much larger, and
in Figure 3, the RMSE of these two models over the four regions
is still large and the R tends to be negative, which means that in
either the whole country or the specific regions, the simulation of
wind speed of BCC-CSM2-MR and MRI-ESM2-0 tends to result
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FIGURE 2 | Spatial distribution of mean 10-m wind speed (1986–2014) in CMIP6 historical simulations.

in large bias and uncertainty. Based on the performance of these
three CMIP6 models, the temporal variability of wind speed over
the four specific regions is also analyzed for further study.

Temporal Variability of the Four Regions
To quantitatively measure the performances of three CMIP6
models, the temporal correlation coefficients of near-surface
wind speeds during 1979 to 2014 over the four regions between
ERA5 and three CMIP6 models are shown in Table 2. The
temporal correlation coefficients in region I are higher than the
other regions, and the CESM2-WACCM and HadGEM3-GC31-
MM are 0.84 and 0.86 with p < 0.05, respectively, which indicate
the better correlation with the ERA5 in region I. In the other
three regions, HadGEM3-GC31-MM simulates the wind speed
in region II better and CESM2-WACCM does relatively better in
region III and region IV.

Figures 4A–D shows the yearly mean 10-m wind speed of
CMIP6 and ERA5 over the four specific regions (black line
represents ERA5, and the blue, red, and green lines represent
the CESM2-WACCM, NorESM2-MM, and HadGEM3-GC31-
MM, respectively). In region I and region II, three CMIP6
models overestimate the wind speed largely, and in region III and

region IV, comparing with ERA5, the wind speed of HadGEM3-
GC31-MM is underestimated, while the wind speed simulated by
NorESM2-MM and HadGEM3-GC31-MM are much larger.

Figure 5 shows the monthly mean 10-m wind speed of
CMIP6 and ERA5 over the four specific regions (the black line
represents ERA5, and the blue, red, and green lines represent
the CESM2-WACCM, NorESM2-MM, and HadGEM3-GC31-
MM, respectively). In the four regions, the 10-m wind speed
of ERA5 gets larger from January and reaches peak at April
(region II, region III, and region IV) or May (region I). In
region II and region IV, the wind speed tends to increase again
after August. The seasonal cycles of near-surface wind speed in
HadGEM3-GC31-MM, CESM2-WACCM, and NorESM2-MM
are similar with ERA5, but different in the values of monthly
mean 10-m wind speed. CESM2-WACCM and NorESM2-
MM tend to overestimate the wind speed from January to
May and October to December, and the value is closer with
ERA5 between June and September. For HadGEM3-GC31-
MM, the simulated wind speed could be closer or smaller
than ERA5 from January to May and October to December,
and the wind speed tends to be overestimated from June
to September.
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FIGURE 3 | The bar plots of metrics root mean square error (RMSE) and spatial correlation coefficient (R). Four different colors represent the four specific regions.

TABLE 2 | The temporal correlation coefficients of near-surface wind speeds

during 1979 to 2014 over the four regions between ERA5 and three CMIP6

historical simulations.

Model Region I Region II Region III Region IV

CESM2-WACCM 0.84 0.46 0.55 0.63

HadGEM3-GC31-MM 0.86 0.57 0.48 0.37

NorESM2-MM 0.79 0.37 0.42 0.61

Future Spatial and Temporal Variability of
the Four Specific Regions
The spatial bias between the historical and ssp585 simulations
from CESM2-WACCM, NorESM2-MM, and HadGEM3-GC31-
MM in China is shown in Figure 6. The wind speed projected
by the three models shows an upward trend of wind speed in
western China in the future, especially over the Tibetan Plateau
and Xinjiang. From the simulation of NorESM2-MM, the wind
speed in the eastern part of Inner Mongolia tends to increase
in the next 100 years. Different with CESM2-WACCM and

NorESM2-MM, the wind speed simulated by the HadGEM3-
GC31-MM tends to slightly increase over a relatively wider range
in China.

The wind speed of ssp585 simulation in the four specific
regions from CESM2-WACCM, NorESM2-MM, and
HadGEM3-GC31-MM is shown in Figure 7. In region I,
the linear regression shows that all three CMIP6 models show
a downward trend in the future 100 years, especially during the
2050 to 2083, there is an obvious jump of wind speed. The wind
speed of HadGEM3-GC31-MM in region I is much higher than
the other two models, which is distinct comparing with the other
three regions. Different with region I, the simulated wind speed
of HadGEM3-GC31-MM falls behind CESM2-WACCM and
NorESM2-MM in the other three regions. In region II, the linear
regression shows that the wind speed simulated by the three
models is projected to decrease with the slope of−0.004,−0.003,
and −0.001, respectively. HadGEM3-GC31-MM simulates a
slight climb of wind speed in region III, which is distinct from
the other two models, CESM2-WACCM and NorESM2-MM
represent a similar fluctuation from 2015 to 2050 while the
HadGEM3-GC31-MM shows an adverse change. NorESM2-MM
simulates a relatively strong increasing trend of wind speed with
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FIGURE 4 | Yearly mean 10-m wind speed (1986–2014) of CMIP6 and ERA5 (black line represents ERA5, and the blue, red, and green lines represent

CESM2-WACCM, NorESM2-MM, and HadGEM3-GC31-MM, respectively). (A–D) Region I, region II, region III, and region IV, respectively.

FIGURE 5 | Monthly mean 10-m wind speed (1986–2014) in CMIP6 and ERA5 (black line represents ERA5, and the blue, red, and green lines are the

CESM2-WACCM, NorESM2-MM, and HadGEM3-GC31-MM, respectively). (A–D) Region I, region II, region III, and region IV, respectively.

FIGURE 6 | The spatial distribution of wind speed bias (ssp5-8.5 minus historical) from CESM2-WACCM, NorESM2-MM, and HadGEM3-GC31-MM.
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FIGURE 7 | The wind speed of ssp585 simulation in the four specific regions from CESM2-WACCM, NorESM2-MM, and HadGEM3-GC31-MM. (A–D) Region I,

region II, region III, and region IV, respectively.

the slope of 0.0012 in region IV, which is totally different from
HadGEM3-GC31-MM and CESM2-WACCM.

DISCUSSION

This study uses the ERA5 reanalysis data to evaluate the near-
surface wind speed of nine global climate models in China.
Spatial patterns of the nine CMIP6models are similar with ERA5,
but BCC-CSM2-MR and MRI-ESM2-0 highly overestimate the
wind speed in northwest China. Focusing on four specific regions
in China, nine CMIP6 models are assessed by using correlation
coefficient R and RMSE, and CESM2-WACCM, NorESM2-MM,
and HadGEM3-GC31-MM behave better than the other six
CMIP6 models, which are chosen for further study. Except
the yearly averaged wind speed in region II and region IV
underestimated by HadGEM3-GC31-MM, three CMIP6 models
tend to simulate a larger wind speed. As for the monthly change,
CESM2-WACCM and NorESM2-MM simulate a large wind

speed, and the value is relatively close with ERA5 in the summer.
HadGEM3-GC31-MM overestimates wind speed in region I and
region II from April to October, but gets closer with ERA5
during winter.

In the future, CESM2-WACCM, NorESM2-MM, and
HadGEM3-GC31-MM simulate an increasing trend in the
Tibetan Plateau and Xinjiang, while NorESM2-MM projects
rising wind speed in the eastern part of Inner Mongolia and
HadGEM3-GC31-MM simulates increasing wind speed in the
northeast and central China. In region I, the future wind speed
in the three models is projected to decline and the value of
HadGEM3-GC31-MM is much larger. Except region I, the wind
speed simulated by HadGEM3-GC31-MM is the lowest. In
region II, wind speed modeled by the three models is projected
to decrease, but the wind speed from HadGEM3-GC31-MM
in region III and modeled wind speed in region IV from
NorESM2-MM would climb with the slope equal to 0.0001 and
0.0012, respectively.
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How to improve the subseasonal forecast skills of dynamic models has always been an
important issue in atmospheric science and service. This study proposes a new
dynamical-statistical forecast method and a stable components dynamic statistical
forecast (STsDSF) for subseasonal outgoing long-wave radiation (OLR) over the
tropical Pacific region in January-February from 2004 to 2008. Compared with 11
advanced multi-model ensemble (MME) daily forecasts, the STsDSF model was able
to capture the change characteristics of OLR better when the lead time was beyond
30 days in 2005 and 2006. The average pattern correlation coefficients (PCC) of STsDSF
are 0.24 and 0.16 in 2005 and 2006, while MME is 0.10 and 0.05, respectively. In addition,
the average value of PCC of the STsDSF model in five years is higher than MME in 7–11
pentads. Although both the STsDSF model and MME show a similar temporal correlation
coefficient (TCC) pattern over the tropical Pacific region, the STsDSF model error grows
more slowly than the MME error during 8–12 pentads in January 2005. This phenomenon
demonstrates that STsDSF can reduce dynamical model error in some situations.
According to the comparison of subseasonal forecasts between STsDSF and MME in
five years, STsDSFmodel skill depends strictly on the predictability of the dynamical model.
The STsDSF model shows some advantages when the dynamical model could not
forecast well above a certain level. In this study, the STsDSF model can be used as an
effective reference for subseasonal forecast and could feasibly be used in real-time
forecast business in the future.

Keywords: subseasonal forecast, dynamic-statistical method, STsDSF model, stable components, multi-model
ensemble

INTRODUCTION

The atmosphere is a complex nonlinear giant system with external forcings and internal dissipations.
Under the impact of external forcing factors, such as the sun, ocean, land, and human activities, a
series of physical and chemical changes and interactions occur in the atmosphere, which brings great
difficulties to weather and climate prediction [1–3]. A small error can be dramatically amplified over
time, which allows for a predictable limit on the weather forecast. Moreover, some studies suggest
that the chaotic effects could prove the predictable limits of weather systems in theoretical ways [4, 5].
It is now accepted that the upper limit on the predictability of actual weather systems is
approximately 2 weeks [6, 7]. However, studies have shown that the predictability of some large-
scale components is significantly higher than that of small-scale components, which could be more
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than 2 weeks [8, 9]. At the same time, some low frequency
weather systems with a duration of more than 2 weeks were
found in the observations.

Based on the theory of predictability, the prediction error of
dynamic models mainly results from the following aspects: the
initial error of observation data, the error caused by the set
scheme in the dynamic model simulation, and the systematic
error of the model in the single variable simulation [10]. The
initial error of the observation data is mainly caused by the
inaccuracy of the observation value and the uneven distribution
of observation stations. The error of set scheme in dynamic mode
simulations is mainly caused by the numerical set in order to
deduct the random error. The systematic error of the single
variable simulation is mainly caused by the performance of
the model itself, such as the model resolution,
parameterization scheme for the physical processes, and the
calculations of the discrete numerical difference scheme
[11–13]. The reasons described above limit the forecast
accuracy of dynamic models and are the main obstacles to the
further improvement of the subseasonal forecast.

Given the shortcomings of error growth theory based on the
linear framework, Chen et al. andDing et al. developed a new theory
of nonlinear error growth to measure the predictability of
atmosphere and the nonlinear local Lyapunov exponent (NLLE),
revealing the temporal and spatial distribution of the predictable
duration in different weather and climate variables [14, 15].
Theoretical studies show that climate variables are composed of
climate signals and noises, and climate signal is mainly affected by
the external boundary conditions of the climate system [16, 17]. For
example, the heat capacity of subsurface water during an El Niño
event can significantly enhance the East Pacific tropical cyclone [18].
When the proportion of climate signals in variables is large enough
to overcome the destructive effects of noises, climate anomalies may
show a certain degree of predictability [19]. Observational studies
show that there are some slow changing processes in atmospheric
evolution above the level of weather noises, these slow changing
processes are associated with large-scale atmospheric motions and a
timescale of several weeks, which is much longer than that estimated
by nonlinear hydrodynamics [20–22]. There are still some
predictable meteorological characteristics in the subseasonal time
scale, and the atmospheric stable component can be robustly
predicted [23, 24].

Although the development of extended period forecast skills is
remarkable, its technical difficulty can not be covered up. On the
one hand, it is difficult to use commonly used methods to predict
the intensity and duration of the weather process objectively. On
the other hand, the ability of the daily weather forecast depends
on the increase of initial error by chaotic motion in the
atmosphere [25, 26]. According to the chaotic characteristics
of the atmospheric system, Chou et al. expounded the extraction
method of the predictable components in the 10–30 days
extended period, and further suggest that different strategies
and methods should be adopted for predictable components
and random components [27]. However, if each time step
needs to be checked in the actual forecast process, the
computation expenses will be very large. Ren et al. proposed a
similar evolution method, assuming that similar initial conditions

have similar prediction errors in the allowable time range [28]. By
synthesizing and analyzing the prediction errors of historical
similar initial conditions, the current prediction errors are
estimated. The calculations are greatly simplified and more
easily incorporated into numerical prediction models. Zheng
et al. discussed the properties of predictable components in the
extension period and their application in numerical models [29].

Based on predictable components theory, the model
subseasonal forecasts can be divided into two parts: the
predictable component and the random component. The
numerical model error can also be reduced in the process of
integration by using historical observation data. Therefore, it is
obvious that the method exists on model dependence. For
different numerical models, the model performance is
different, and the definition and extraction of predictable
components are different too. Focusing on the prediction of
weather or climate at different time and spatial scales, the
stable components should be especially investigated. To
improve subseasonal process diagnosis and prediction skills, it
is important to grasp the main characteristics of the subseasonal
stable component [30, 31]. Under the same initial and exogenous
forcing characteristics, the atmospheric system with a large-space
time scale is more predictable. Therefore, it is necessary to
distinguish the stable components from atmospheric
circulation on a subseasonal scale and analyze the properties
and improve subseasonal prediction skills by using stable
components [32, 33]. Moreover, because the extraction
method of stable components is based on historical
observation data instead of model data, it can overcome the
shortcoming of model dependence.

Subseasonal precipitation prediction is one of the most
important aspects of weather forecasting [34, 35]. The tropical
area accounts for about half of the total global area, of which the
ocean accounts for about 3/4. The solar radiation energy received
in the tropical area is much more than that be reflected into space,
which makes the tropical ocean a vital energy source for global
atmospheric circulation movement [36, 37]. In addition, the
tropical ocean is one of the most important water vapor sources
for the global atmosphere [38, 39]. Due to the abundant water
vapor contents in tropical marine areas, precipitation generation is
closely related to atmospheric vertical convection intensity. The
intensity of precipitation can be characterized by OLR in the
tropics. If the subseasonal variability of OLR can be forecasted
well, the tropical precipitation forecast skills will be robust [40, 41].
Therefore, this study mainly uses a dynamic statistical forecast
model (STsDSF) to improve the subseasonal forecast skills of 11
advanced multi-model ensembles for OLR over the tropical Pacific
region (140°E-100°W, 30°S-30°N) and discusses the predictability of
STsDSF in January and February from 2004 to 2008. It proposes a
new application of the dynamic-statistical method in subseasonal
forecast.

DATA AND METHODOLOGY

The daily OLR data was published by the National Oceanic and
Atmospheric Administration (NOAA) over the period from 1979
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to 2008 with a horizontal resolution of 2.5° × 2.5° [42]. The
external boundary conditional forcing of sea surface temperature
(SST) is represented by Oceanic Niño Index (Niño 3.4), which is
also published by NOAA.

The hindcast data of the dynamical model is from
Intraseasonal Variability Hindcast Experiment (ISVHE), which
is jointly supported by the Asian Pacific Climate Center (APCC),
NOAA, Climate Variability and Predictability (CLIVAR) Asian-
Australian Monsoon Panel, and some other organizations [43].
The model products of ISVHE have been studied at the
predictability of intraseasonal variability as a whole [44, 45].
In total, ten one-tier hindcasts and one two-tier hindcast from
ISVHE were used in this study, including the Australian Bureau
of Meteorology (AOBM) coupled model, the coupled model of
Euro-Mediterranean Center on Climate Change (CMCC), the
European Centre for Medium-Range Weather Forecasts
(ECMWF) model, the Geophysical Fluid Dynamics Laboratory
(GFDL) model, the Japan Meteorological Agency (JMA) coupled
model, the Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) model, the NCEP/Climate Prediction
Center (CPC) coupled model, the Pusan National University
(PNU) model, the Seoul National University (SNU) coupled
model, University of Hawaii (UH)/International Pacific
Research Center (IPRC) model, and the European Centre (EC)
model [46–51]. The details of the model data and operation
scheme are briefly shown in Table 1. Because the skill of MME is
better than that of any single model in seasonal forecasting [52,
53], the improvement of STsDSF is mainly based on the MME
forecast. In this study, five daily OLR forecast cases were selected.
The start time of each was January 1 every year from 2004 to 2008.

STsDSF is a hybrid dynamical-statistical method for
subseasonal prediction, which consists of four steps 1)
distinguish the stable components from climatic state vector
by training daily contribution rate of variance and persist time
2) divide the dynamical model output into predictable
components and random components by projection 3)
forecast predictable components in dynamical simulation and
forecast random components in statistical estimation 4) make
ensemble predictands for dynamical simulation and statistical
estimation. Figure 1 is the schematic diagram of the STsDSF

model, and the details of the STsDSFmodel have been introduced
in [32, 33]. In this study, the Niño 3.4 index is considered as a
similarity criterion that represents the external boundary
conditions of tropical SST, and three similar years chosen for
statistical estimation in the STsDSF model from 1979 to 2003.

In this study, the subseasonal forecast skill of OLR is measured
by PCC and TCC. The PCC formula is expressed as follows:

PCC �
∑

n

i�1
(Xf −Xc −Mf,c)i

(Xv −Xc −Mv,c)i cos ϕi

��

∑

n

i�1

√

(Xf −Xc −Mf,c)
2

i
cos ϕi•

��

∑

n

i�1

√

(Xv −Xc −Mv,c)
2
i cos ϕi

(1)

where Xf, Xv, and Xc are the predicted value, observed value, and
climate mean, respectively; Mf,c and Mv,c represent the deviation
means of Xf and Xv fromXc, respectively; n represents the number
of grids in the chosen area, and cosφi is the latitude of grid i.

The TCC formula is expressed as follows:

TCC �
∑

n

t�1
(Xf − �Xf)t

(Xv − �Xv)t

��

∑

n

t�1

√

(Xf − �Xf)
2

t
• ∑

n

t�1
(Xv − �Xv)

2

t

(2)

where Xf and Xv are the predicted value and observed value; �Xf

and �Xv represent the means of Xf and Xv, respectively; and n
represents the number of times. Every grid TCC is calculated by
formula (2).

SUBSEASONAL FORECAST SKILL OFMME
AND STSDSF MODEL

For subseasonal forecast products, the development trend is more
reliable than daily outputs [54, 55]. In this study, five-day mean
PCCs for both MME and STsDSF are calculated as 12 pentads.
The comparison between MME PCC and STsDSF PCC shows
that the trend of STsDSF is similar to MME. However, the
variance of MME PCC is greater than STsDSF PCC. For
example, MME PCC ranges from 0.80 to -0.18, while STsDSF
PCC ranges from 0.36 to -0.15 in 2004 (Figure 2A). The reason

TABLE 1 | One-Tier and Two-Tier System description of models and experiments.

Model Control ISO hindcast

Run Period Ens No Initial condition

ABOM POAMA 1.5 & 2.4 (ACOM2+BAM3) CMIP (100years) 2004–2008 10 The first day of every month
CMCC CMCC (ECHAM5+OPA8.2) CMIP (20years) 2004–2008 5 Every 10 days
ECMWF ECMWF (IFS + HOPE) CMIP (11yeaear) 2004–2008 15 Every 15 days
GFDL CM2 (AM2/LM2+MOM4) CMIP (50years) 2004–2008 10 The first day of every month
JMA JMA CGCM CMIP (20years) 2004–2008 6 Every 15 days
JAMSTEC SINTEX-F CMIP (20years) 2004–2008 9 The first day of every month
NCEP/CPC CFS v1 (GFS + MOM3) and v2 CMIP (100years) 2004–2008 5 Every 10 days
PNU CFS with RAS scheme CMIP (13years) 2004–2008 3 The first day of each month
SNU SNU CM (SNUAGCM + MOM3) CMIP (20years) 2004–2008 1 Every 10 days
UH/IPRC UH HCM CMIP (20years) 2004–2008 6 Every 10 days
EC GEM AMIP (21years) 2004–2008 10 Every 10 days
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for this is that MME is effective at simulating OLR at the start
time, but the accuracy drops quickly over time. According to five
OLR subseasonal forecasting cases from 2004 to 2008 (Figure 2),
the PCC of STsDSF was higher than that of MME when the lead
time was beyond 6 pentads.

During 7–12 pentads, the average value PCC of STsDSF is 0.24
and 0.16 in 2005 and 2006, verses 0.10 and 0.05 from MME,
respectively. For instance, the PCC of STsDSF is higher than
that of MME during 7–12 pentads in 2005 and 7–11 pentads in

2006 (Figures 2B,C). In 2007, the PCC of STsDSF is higher than
that of MME in 9–11 pentads (Figure 2D), while the forecasting
skill of STsDSF is worse than MME in 2008 (Figure 2E). The
possible reason may be attributed to the PCC of the MME
forecast being very accurate compared to other cases, which
means MME PCC drop slowly over time, and there is no
capacity for improvement by STsDSF in 2008. The OLR
forecast skill of STsDSF depends on the performance of the
model simulation. If the model can reasonably capture the

FIGURE 1 | Schematic diagram of the STsDSF model.

FIGURE 2 | PCC of STsDSFmodel andMME for OLR subseasonal forecasting over the tropical Pacific region during 2004–2008: (A) 2004; (B) 2005; (C) 2006; (D)
2007; (E) 2008. Red line is STsDSF model and blue line is MME.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 6658284

Wang et al. A New Subseasonal Forecast Model

152

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


climatic patterns on a subseasonal scale, the forecast skill of
STsDSF will be reduced.

Different from 1–6, the STsDSF model shows some
advantages in 7–12 pentads. The five-year mean PCC of the
STsDSF model is compared with MME for OLR in 7–12 pentads
in Figure 3. The PCC of the STsDSF model ranges from -0.03 to
0.20, and the PCC of MME ranges from 0.10 to 0.18. Besides 12
pentads, the STsDSF model is more skillful than MME in 7–11
pentads. Therefore, the numerical simulation for the five
consecutive year average also agrees with the conclusion
above. Only when the skill of MME reduces to a certain level,
the improvement of MME by STsDSF can show some advantages.

The standard deviation of STsDSF PCC is less than that of
MME PCC (Figure 3), which indicates that the STsDSF model is
more stable. The reason is that the principle of the STsDSF model
is to distinguish model predictable information based on climate
state and to replace random information with climate analogue.
For the subseasonal OLR forecast over tropical Pacific region after
30 days, statistical methods still have the potential to surpass the
dynamic model. To further investigate the STsDSF model
performance in subseasonal time scale pentad by pentad, in
the next section of the article, a case study from 2005 is
presented to analyze the characteristics of OLR forecast error
over the Pacific region.

SUBSEASONAL FORECAST OF STSDSF
MODEL AND MME IN 2005

In this section, a forecast case covering January-February 2005 is
selected as an example for specific analysis. TCC is a common
way to investigate the predictability distribution. The TCC of the

STsDSF model and MME is shown in Figure 4. The red area
indicates that the forecasting skill is high, and the blue area
indicates that the forecasting skill is low. As shown in Figure 4B,
MME forecasts well in most tropical regions, with TCC exceeding
0.993. Only in two meridional zonal regions (180° and 120°W),
the TCC is lower than 0.989 and the distribution patterns of the
two regions are very similar. The corresponding TCC of the
STsDSF model in Figure 4A shows that the overall distribution
pattern is the same as that of MME, and the values are close.
However, the TCC of the STsDSF model is more complete and
more continuous in the blue areas, and the TCC of MME is more
dispersed. Comparing Figure 4A with Figure 4B, the overall
forecast skill pattern has no great change in the subseasonal
period, and the distribution characteristics of MME are retained
in the STsDSF model.

The variation of MME forecast error for OLR in January-
February 2005 is exhibited pentad by pentad (Figure 5). MME
can capture the movement of OLR very well in pentad 1
(Figure 5A). During pentad two to five, the forecast error
increases to 60W/m2, and the discrete anomaly is mainly
distributed in the southwest and northeast of the tropical
Pacific (Figures 5A–E). During pentads 8–12, the forecast
error increases to 80 W/m2, and the error region are complete
and continuous. Overall, MME forecast error is mainly negative
anomalous, and the skill is poor over southwest and northeast of
the tropical Pacific. MME can capture the patterns of OLR over
the tropical Pacific in the beginning, and the error grows
gradually over time, which is consistent with the PCC changes
in the above analysis (Figure 2).

Different from the error distribution of MME for OLR
subseasonal forecasts, the forecast error of the STsDSF model
shows larger negative anomalies in 1–4 pentads (Figures 6A–D).

FIGURE 3 | Five-year mean PCC of (A) STsDSF model and (B) MME for OLR subseasonal forecasting over the tropical Pacific region in 7–12 pentads. The
standard deviation is marked as a vertical black line.
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The error is smaller in equatorial and larger in the higher latitudes
over the Pacific. In addition, the pattern and intensity of STsDSF
model error change little during 5–12 pentads (Figure 6E–l).
Based on the diagnosis of OLR subseasonal forecast skill of
STsDSF model and MME in January-February 2005, although
STsDSF model error is larger than MME at the beginning, it
grows slowly and shows some advantages in 8–12 pentad
(Figure 6H–l).

DISCUSSION AND SUMMARY

The predictability of atmospheric stable component mainly comes
from three aspects: outer boundary condition forcing, a continuous
component of low frequency wave, and atmospheric periodic
component. Furthermore, these atmospheric components are
statistically regular [56, 57]. In this study, a new method called
the STsDSFmodel is proposed, to improve the subseasonal dynamic
model for OLR over the tropical Pacific region in January-February
from 2004 to 2008. We compare subseasonal forecast skills of the
STsDSF model and MME of 11 advanced models and analyze the
growth characteristics of subseasonal forecast error.

The conclusions of this study reveal that the performance of
the STsDSF model is largely determined by the forecasting skill of
the dynamical model. The STsDSF model only provides
additional improvement information when the dynamical

model output incredible data. According to five OLR
subseasonal forecasting cases from 2004 to 2008, the PCC of
STsDSF will be higher than that of MME when the lead time is
beyond 6 pentads. These results demonstrate that the STsDSF
model can be used as an important reference for subseasonal
forecasting after 30 days. The numerically simulated results for
five consecutive years on average have a good agreement with the
above discussion.

Moreover, the overall OLR TCC pattern of the STsDSF model
is similar to that of MME, and the TCC values are close over the
tropical Pacific. The change characteristics of MME are retained
in the STsDSF model in time scale, as well as in the space scale. In
addition, by comparing the subseasonal forecast error pentad by
pentad, the error of the STsDSF model grows more slowly than
that of the MME model in 12 pentads.

The STsDSF model only uses the initial condition and
historical observation data to improve the subseasonal
dynamical model and could feasibly be incorporated into
existing business real-time forecast products. However, further
studies are still needed. For example, we focus on the subseasonal
forecast over tropical Pacific OLR in January-February
2004–2008. Further investigations of the STsDSF model,
considering different meteorological elements, periods, and
regions, needs more modeling studies. In this study, the
similarity criterion of selecting historical data is Niño 3.4,
considered as an important external boundary forcing signal.

FIGURE 4 | TCC of (A) STsDSF model and (B) MME for OLR subseasonal forecasting over tropical Pacific region.
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FIGURE 5 | The error distribution of MME for OLR subseasonal
forecasts over the tropical Pacific region in 1(A)–12(L) pentad. (Unit: W/m2).

FIGURE 6 | The error distribution of STsDSF model for OLR
subseasonal forecasts over tropical Pacific region in 1(A)–12(L) pentad. (Unit:
W/m2).
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However, Niño 3.4 is a Pacific index and can not stand for all SST
forcings [58, 59]. Therefore, a more comprehensive index
considering different weights for different ocean forcings could
be developed. In addition, when we analyze the subseasonal
forecast skill of the STsDSF model, considering El Niño-
Southern Oscillation (ENSO) cycle in interannual timescale, the
relationship between subseasonal forecast skill and ENSO cycle is
intriguing, a new story which could be further discussed in the
future.

The hindcast skill of ISVHE performs better than the business
model, so it needs to be further verified whether the improvement
effect of the STsDSF model is different for the dynamical model
forecasts with different forecasting skills. Moreover, due to the
limitation of the time span of dynamical model data, we only
select cases of five consecutive years for comparative analysis.
Therefore, more simulation experiments are needed in further
studies.
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Dominant Role of Meridional
Circulation in Regulating the
Anomalous Subsidence of the
Western Pacific Subtropical High in
Early Summer 2020
Yuheng Zhao1, Jianbo Cheng2,3*, Guolin Feng2,4*, Zhihai Zheng1, Rong Zhi1,
Zengping Zhang2, Jinlong Yan3 and Dongdong Zuo5

1Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China, 2College of
Physical Science and Technology, Yangzhou University, Yangzhou, China, 3School of Environmental Science and Engineering,
Yancheng Institute of Technology, Yancheng, China, 4Southern Marine Science and Engineering Guangdong Laboratory
(Zhuhai), Zhuhai, China, 5School of Mathematics and Physics, Yancheng Institute of Technology, Yancheng, China

Anomalous subsidence over the western part of the western Pacific subtropical high
(WPSH) caused record-breaking precipitation anomalies over the Yangtze-Huaihe River
catchment in early summer 2020 (June–July 2020). Themeridional circulation (MC) made a
positive contribution to this anomalous subsidence, while the zonal circulation (ZC) made a
negative contribution. The quantitative contributions of the MC and ZC to this anomalous
subsidence were approximately 110% and –10% in June, 130% and –30% in July, and
120% and –20% for the mean of June and July, respectively, suggesting that the MC
played a dominant role in the anomalous subsidence of the western part of theWPSH. The
anomalous MC, with a rising branch located at the Maritime Continent and a descending
branch located over South China, was forced by the warming of the northern tropical
Indian Ocean and the rapidly developed La Niña event, which further resulted in the
intensification and southwestward expansion of the WPSH and thus in heavy rainfall over
the Yangtze River region.

Keywords: anomalous subsidence, western pacific subtropical high, meridional circulation, meiyu rain, early
summer 2020

1 INTRODUCTION

The Meiyu in China or the Baiu in Japan and Changma in Korea is the major rainy season over
the East Asian with duration from early-June to mid-July, which can have vital importance on
the economic development and human society of East Asian regions [1–7]. The Meiyu rain
season in 2020 started early (began on June 1, 7 days earlier than usual) and ended late (ended on
August 2, 15 days later than usual), lasting for 62 days, which was the longest since 1961
(Figure 1A) [1–7]. The amount of precipitation averaged over the Yangtze and Huaihe Rivers
during this season reached 759.2 mm, recording a precipitation anomaly that was higher than
the precipitation anomaly in the second year of a strong El Niño, ranking the highest amount
since 1961. In early summer 2020 (June–July), the mid–lower reaches of the Yangtze River
catchment experienced more than 10 heavy rainfall events, leading to direct economic losses of
approximately 116 billion Chinese yuan [3].
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To investigate the underlying causes of the Meiyu in summer
2020, many efforts have been made. Takaya et al. [2] and Zhou et al.
[7] proposed that the extraordinary rainfall was originated from the
tropical Indian Ocean warming, and this warming was possibly
resulted from the enhanced western Pacific subtropical high
(WPSH) [5]. Zheng and Wang [6] suggested that all three oceans
of the Pacific, Indian, and Atlantic Oceans contributed to theMeiyu,
and the Atlantic Ocean made the dominate contribution. Liu et al.
[1] and Qiao et al. [5] investigated the causes of the Meiyu from the
subseasonal time scale. Liu et al. [1] divided the duration of Meiyu
into two periods and claimed that the sequential warm and cold
Meiyu front regulated by the North Atlantic Oscillation was
responsible for this unexpected extreme Meiyu event. Qiao et al.
[5] divided the duration of Meiyu into three stages: advanced-onset,
strong-persisting, and delayed-withdrawal, and suggested different
causes in different periods. Although these studies suggested
different causes of the extraordinary Meiyu in summer 2020, they
consistently emphasized the role of the anomalous WPSH.

Climatologically, the WPSH can transport the water vapor
from the western Pacific toward mainland China by the low-level
southwesterly jet along the edge of the WPSH, which can
influence the rainfall over the Yangtze River catchment [8–15].
The above-normal (subnormal) precipitation over the Yangtze
River catchment in early summer is commonly accompanied by
an intensification and westward shift (a weakening and eastward
shift) of the WPSH [11–15]. Thus, the location, intensity, and
variability of the WPSH are vitally important to the precipitation
anomaly over the Yangtze River catchment in early summer
[8–10]. In June and July of 2020, the area of exceptionally strong
WPSH showed a strong anomalous subsidence, especially in the
western part of the WPSH (Figures 2A,D,G), which caused
record-breaking precipitation anomalies over the Yangtze
River catchment in early summer 2020. Therefore, it is
necessary to investigate the source of the anomalous
subsidence in the western part of the WPSH.

Recently, to achieve a uniform description of the general
circulation of the atmosphere from a global perspective and to
reveal the mechanism of the complicated interactions and
connections of the circulations between the low latitudes and
mid–high latitudes, a novel three-pattern decomposition of global
atmospheric circulation (3P-DGAC) method was proposed
[16–21]. Hu et al. [17] suggested that tropical overturning
circulations consist of a couple of orthogonal overturning
circulations, i.e., meridional circulation (MC) and zonal
circulation (ZC). Climatologically, the MC averaged over
135°E–160°E is characterized as the anticlockwise circulation in
both hemispheres, while the ZC averaged over 15°N–25°N is
characterized as the anticlockwise circulation in Indian Ocean
and the clockwise circulation in the Pacific and Atlantic Ocean
(Supplementary Figure S1). The sinking motion of the MC
between 15°N and 25°N makes positive contribution to the
WPSH, while the rising motion of the ZC between
135°E–160°E makes the negative contribution (Supplementary
Figure S1). Since the tropical overturning circulation can be
decomposed into the MC and ZC, the vertical wind contains two
components, i.e., the vertical winds of the MC and ZC
(Supplementary Figure S2). Supplementary Figure S2 shows
that when analyzing the MC (ZC), the vertical velocity of the MC
(ZC) should be used, and the vertical velocity of the ZC (MC) is
regarded as the deviation if the total vertical velocity is used. Thus,
there may be a bias in studying the MC and ZC in some previous
studies because the total vertical velocity has commonly been
used. Additionally, the anomalous subsidence in the western part
of the WPSH in early summer 2020 could be decomposed into
two parts that corresponded to anomalous MC and anomalous
ZC (Figure 2), and thus the quantitative contribution of the MC
and ZC to the anomalous WPSH can be clarified, which is not
investigated in previous studies. Therefore, we would like to
address the question: what were the effects of the MC and the
ZC on the anomalous subsidence of the western part of the

FIGURE 1 | (A) Time-latitude cross-section of the climatological precipitation (1981–2010, contour interval: 1 mm day−1) and precipitation anomaly in 2020
(shading, mm day−1) averaged over 110°E–120°E from 26 May to 2 August. (B) Horizontal distribution of the geopotential height anomaly at 850 hPa in early summer
2020 (1 June–31 July 2020, shading, gpm). Dashed and solid black lines in (B) represent the 5,880 gpm contour of the 500 hPa geopotential height in climatology and
2020, respectively. The blue box in (B) (110°E–140°E, 15°N–25°N) indicates the region of the western part of the western Pacific subtropical high (WPSH).
Anomalies were computed based on the climatology of 1981–2010.
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WPSH in early summer 2020? This issue was investigated by
using the 3P-DGAC method in this study.

DATA AND METHODS

Data
In this study, we employed monthly horizontal winds and vertical
velocity data from five reanalysis datasets as follows: the Climate
Forecast System Reanalysis Version 1 and Version 2 (hereafter
CSFR) [22, 23], the fifth generation of European Centre for
Medium-Range Weather Forecast (ECMWF) atmospheric
reanalysis of the global climate (hereafter ERA5) [24], the
Japanese Meteorological Agency 55-years reanalysis (hereafter

JRA-55) [25], the National Centers for Environmental Prediction
(NCEP)/National Center for Atmospheric Research (NCAR)
reanalysis (hereafter NCEP1) [26], and the NCEP/Department
of Energy (DOE) reanalysis (hereafter NCEP2) [27]. The daily
precipitation data were obtained from the Climate Prediction
Center (CPC) Global Daily Unified Gauge-Based Analysis of
Precipitation [28], and the monthly precipitation data were
obtained from the Global Precipitation Climatology Project
monthly precipitation dataset [29]. The monthly geopotential
height data were obtained from ERA5 reanalysis datasets. The
monthly sea surface temperature (SST) data were taken from the
Extended Reconstructed SST version 5 (ERSST5) dataset [30].
For consistency, all datasets used in this study were interpolated
to a 2.5°× 2.5° horizontal resolution. The time period analyzed in

FIGURE 2 | (A) Horizontal distribution of the vertical velocity anomaly at 500 hPa in June 2020 derived from the ensemble means of five reanalysis data sets
(shading, Pa s−1). (B) and (C) Same as (A) but for the vertical velocity anomalies of meridional circulation (MC) and zonal circulation (ZC), respectively. (D–F) and (G–I)
Same as (A–C) but for the results in July and the mean of June and July, respectively. The blue box in each plot indicates the region of the western part of the WPSH.
Anomalies were computed based on the climatology of 1981–2010. The decomposition of the vertical velocity anomaly was based on the three-pattern
decomposition of the global atmospheric circulation (3P-DGAC) method.
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this study was early summer 2020 (i.e., June–July 2020), and the
climatology of variables was defined as the climatological mean
from 1981 to 2010.

Three-Pattern Decomposition of Global
Atmospheric Circulation
A simple introduction of the 3P-DGAC method is offered in this
section. To solve the unit discrepancy in calculating the three-
dimensional (3D) vorticity vector in the pressure coordinates, the
spherical σ-coordinate system was adopted [17], namely:

u′ � u

a
, v′ � v

a
, _σ � ω

Ps
, σ � p

Ps
(1)

where a is the Earth’s radius, p is the pressure, and Ps �
1000 hPa is the pressure at the Earth’s surface. (u′, v′, _σ) and
(u, v,ω) represent the three velocity components in the spherical
σ-coordinate system and spherical p-coordinate system,
respectively. Thus, the 3D velocity field in the spherical
σ-coordinate system can be represented as follows:

�V′(λ, θ, σ) � u′(λ, θ, σ) �i + v′(λ, θ, σ) �j + _σ(λ, θ, σ) �k (2)
which satisfies the following continuity equation:

1
sin θ

zu′
zλ

+ 1
sin θ

z(sin θv′)
zθ

+ z _σ

zσ
� 0 (3)

Based on the features of the Rossby wave in the middle–high
latitudes and the Hadley and Walker circulations in the low
latitudes, Hu et al. [17] defined the 3D horizontal circulation �V′R,
MC �V′H, and ZC �V′W as follows:
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and the following continuity equations were satisfied:
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Eq. 5 is the sufficient condition that the components of �V′R,
�V′H, and �V′W can be represented by the stream functions
R(λ, θ, σ), H(λ, θ, σ), and W(λ, θ, σ), respectively, as follows:
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,
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zσ
, _σW � − 1

sin θ
zW

zλ
.

(6)

Because three-pattern circulations (horizontal circulation,
MC, and ZC) exist in both the low and the middle–high
latitudes, the global atmospheric circulation can be expressed
as the superposition of the horizontal circulation, MC, and ZC, as
follows:

�V′ � �V
′
H + �V

′
W + �V

′
R (7)

with the following components:

⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

u′ � u′W + u′
R � zW

zσ
− zR

zθ
,

v′ � v′R + v′H � 1
sin θ

zR

zλ
− zH

zσ
,

_σ � _σH + _σW � 1
sin θ

z(sin θH)
zθ

− 1
sin θ

zW

zλ
.

(8)

The following restriction condition is needed to pick up the
correct decomposition:

1
sin θ

zH

zλ
+ 1
sin θ

z(W sin θ)
zθ

+ zR

zσ
� 0. (9)

Eq. 9 guarantees the uniqueness of the stream functions R,H,
and W.

By combining Eqs. 8, 9, the following equations were obtained:

⎧⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

Δ3R � ζ ,

zH

zσ
� 1
sin θ

zR

zλ
− v′,

zW

zσ
� zR

zθ
+ u′,

(10)

where Δ3 � 1
sin2 θ

z2

zλ2
+ 1

sin θ
z
zθ (sin θ z

zθ) + z2

zσ2 is the 3D Laplacian
in the spherical σ-coordinates, and ζ � 1

sin θ
zv′
zλ − 1

sin θ
z(u′ sin θ)

zθ is
the vertical vorticity of the entire atmospheric layer. The
stream functions R, H, and W can be obtained by using
Eq. 10. The global atmospheric circulation �V′ is then
decomposed into the three-pattern circulations �V

′
R, �V

′
H,

and �V
′
W by using Eq. 6.

Since the MC and ZC can be effectively separated from the
tropical atmospheric circulation by using the 3P-DGAC method
(Eq. 8, Supplementary Figure S2), the 3P-DGAC method is
potentially useful for analyzing the relative contributions of the
MC and the ZC to the anomalous sinking motion of the western
part of the WPSH. Therefore, in this study, the 3P-DGAC
method was used to investigate the effects of the MC and the
ZC on the anomalous subsidence of the western part of
the WPSH.

In addition to the 3P-DGAC method, by using the traditional
two-dimensional (2D) decomposition method of the vortex and
divergent circulations [31, 32], the vertical velocity could also be
decomposed into two parts, i.e., the vertical velocity of the
regional Hadley circulation (RHC) and regional Walker
circulation (RWC) (Supplementary Figure S3, Supplementary
Figure S4). Thus, the traditional 2D method was also adopted in
this study. However, the results derived from the traditional 2D
method were displayed in the Supplementary Materials. More
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information of the traditional 2D method and 3P-DGACmethod
can be found in [17–19].

RESULTS

Figure 2 displays the horizontal distribution of the vertical
velocity anomaly at 500 hPa in early summer 2020. The
anomalous subsidence of the western part of the WPSH can
be decomposed into two parts that correspond to the anomalous
MC and ZC by using the 3P-DGAC method, and the vertical
velocity anomaly of MC was positive, while the vertical velocity
anomaly of ZC was negative in the region of the western part of
the WPSH from June to July, implying that the MC (ZC) made a
positive (negative) contribution to the anomalous subsidence of
the western part of the WPSH (Figure 2). Additionally, by
comparing the first and second rows of Figure 2
(i.e., comparing Figures 2A,D,G and Figures 2B,E,H), it was
found that the original vertical velocity anomaly and the vertical
velocity anomaly of MC were quite similar, suggesting that the
MC played a dominating role in the anomalous subsidence of the
western part of the WPSH. Although Figure 2 displays the
qualitative contributions of the MC and the ZC to the
anomalous subsidence, further quantitative analysis is needed.

Figure 3 displays the quantitative contributions of theMC and
the ZC to the anomalous subsidence of the western part of the
WPSH at 500 hPa in early summer 2020 based on the 3P-DGAC
method derived from five reanalysis datasets. The quantitative
contributions of the MC and the ZC to the anomalous subsidence
of the western part of the WPSH were approximately 110% and
–10% in June, 130% and –30% in July, and 120% and –20% for the
mean of June and July, respectively (Figure 3). Specifically, the
quantitative contributions of the MC (ZC) were 110, 109, 108,
114, and 114% (–10%, –9%, –8%, –14%, and –14%) in June for the
CFSR, ERA5, JRA-55, NCEP1, and NCEP2 reanalysis datasets,
respectively. In July, the quantitative contributions of the MC
(ZC) were 131, 136, 121, 133, and 146% (–31%, –36%, –21%,
–33%, and –46%) for the five reanalysis datasets. For the mean of
June and July, the quantitative contributions of theMC (ZC) were
119, 121, 114, 123, and 129% (–19%, –21%, –14%, –23%, and

–29%) for the five reanalysis datasets. Although discrepancies
existed in the quantitative contributions of the MC and the ZC to
the anomalous subsidence based on the five different reanalysis
datasets, the main results obtained from all five reanalysis datasets
indicated that the MC played a dominant role in the anomalous
subsidence of the western part of WPSH in early summer 2020.
Additionally, although the quantitative contributions of the RHC
and the RWC to the anomalous subsidence of the western part of
the WPSH based on the traditional 2D decomposition method
were different from those based on the 3P-DGAC method, the
results derived from the two methods both supported the
conclusion that meridional circulation played a dominant role
in the anomalous subsidence of the western part of the WPSH in
early summer 2020 (Figure 3, Supplementary Figure S5).

Since the MC played a dominating role in the anomalous
subsidence of the western part of the WPSH in early summer
2020, we then wondered how the MC caused this anomalous
subsidence. Figures 4A–D display the correlation between the
regionally averaged vertical velocity anomaly of the MC over the
region of the western part of the WPSH in June–July and the SST
anomaly (SSTA) from December–January to June–July based on the
seasonalmeans for the period 1979–2020. The correlationmaps show
that the correlated SSTA in the tropics is characterized by the
persistent warming of the northern tropical Indian Ocean and the
La Niña developing phase (Figures 4A–D), which was also observed
from the actual SSTA (Supplementary Figures S6A–D). The
warming of the northern tropical Indian Ocean is strengthened
from December–January to June–July, and the northern tropical
Indian Ocean warming can heat the troposphere and force the
equatorial Kelvin wave to propagate eastward [33, 34], which
triggers a positive Pacific–Japan (PJ) pattern (Figure 4E) and
strengthens the northwest Pacific anomalous anticyclone (vectors
in Figure 4D). Additionally, an enhanced zonal SST gradient is
caused by the rapidly developed La Niña event, forcing anomalous
easterly winds in the equatorial western Pacific (vectors in
Figure 4D), which generates anomalous convection and
precipitation anomalies over the Maritime Continent (Figures 4F,
Supplementary Figure S6F) [5]. These two processes can lead to
anomalous MC with a rising branch located on the Maritime
Continent and a descending branch located over South China

FIGURE 3 |Contributions of theMC (red bars) and ZC (blue bars) to the anomalous vertical velocity of the western part of theWPSH at 500 hPa in (A) June, (B) July,
and (C) the mean of June and July 2020 based on the 3P-DGAC method derived from the CFSR, ERA5, JRA-55, NCEP1, and NCEP2 reanalysis data sets. The
quantitative contributions are shown at the top of each bar.
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(Figures 2B,E,H), which can enhance the subsidence of the western
part of the WPSH and lead to the southwestward expansion of the
WPSH (Figure 4E, Supplementary Figure S6E) [33, 34].

DISCUSSION

The results in this study show that the anomalous subsidence over
the western part of the WPSH is vitally important because the
WPSH was stronger and inclined more toward the west, which

caused record-breaking precipitation anomalies over the Yangtze
River catchment in early summer 2020. The MC made a positive
contribution to the anomalous subsidence of the western part of the
WPSH, while the ZC made a negative contribution. This finding is
also obtained by previous studies [1–7]. However, in this study, the
quantitative contribution of the MC and ZC to the anomalous
WPSH is obtained by using the 3P-DGAC method, which is not
investigated in previous studies. The quantitative contributions of
theMC and the ZC to the anomalous subsidence of the western part
of the WPSH were approximately 110% and –10% in June, 130%

FIGURE 4 | Correlation between the regionally averaged vertical velocity anomaly of the MC over the region of the western part of the WPSH (110°E–140°E,
15°N–25°N) in June–July derived from the ensemble means of five reanalysis data sets and the sea surface temperature (SST) anomaly (shading) and horizontal wind
anomaly (vector) in (A) December–January, (B) February–March, (C) April–May, and (D) June–July from 1979 to 2020 based on the seasonal means. (E) Same as (D)
but for the correlation between the regionally averaged vertical velocity anomaly of the MC and the geopotential height anomaly at 500 hPa in June–July. (F) Same
as (D) but for the correlation between the regionally averaged vertical velocity anomaly of the MC and the precipitation anomaly in June–July. Stippling over the shading
indicates that these correlation coefficients are significant above the 95% confidence level based on Student’s t-test.
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and –30% in July, and 120% and –20% for themean of June and July,
respectively, suggesting that the MC played a dominant role in the
anomalous subsidence of the western part of theWPSH. It should be
noted that these results are obtained from the seasonal time scale and
results may not the same in different periods from the subseasonal
time scale, as Liu et al. [1] andQiao et al. [5] suggested that the causes
of the extraordinary Meiyu rain vary in different periods. Thus, the
relative contribution of the MC and ZC to the extraordinary Meiyu
rain from the subseasonal time scale should be investigated in the
future. Chen et al. [35] proposed that the regional MC over the
110°E–160°E has intensified from 1979 to 2010, and the
intensification of the regional MC is maintained under global
warming [36]. Whether the rainfall over the Yangtze River
catchment has intensified accompanied by the enhancement of
the MC under global warming should also be explored.

The warming of the northern tropical Indian Ocean and the
rapidly developed La Niña event forced anomalous MC with a rising
branch located on the Maritime Continent and a descending branch
located over SouthChina, which further resulted in the intensification
and southwestward expansion of the WPSH and anomalous
precipitation over the Yangtze and Huaihe River catchment. The
relative role of the warming of the northern tropical Indian Ocean
and the rapidly developed LaNiña events in forcing anomalousMC is
not clear and should be investigated in the future.

According to Hu et al. [19], the dynamical equations of the
three-pattern circulations have been established by combining
the primitive equations and the 3P-DGAC method. The novel
dynamical equations can be used to diagnose and predict the
changes of the horizontal, meridional, and zonal circulations.
Thus, the novel dynamical equations are potentially useful for
prediction of the anomalous WPSH since the anomalous WPSH
is closely related to the anomalous MC.
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Rice is the basic food for about 50% of the global population, and feeds two-thirds

of the Chinese population. Under the influence of global change, extreme weather, and

climate events increase in frequency, duration, and intensity, which affect food production

substantially. In the medium-to-long term in the future, the impacts of climate change

on food availability are likely to grow. In this work, we first define the rice damage

indices and then use surface observation and regional climate downscaling results from

the variable resolution model LMDZ4 driven by the six Coupled Model Intercomparison

Project phase 5 (CMIP5) global climate models (GCMs) to describe the temporal-

spatial characteristics and the future changes of the temperature-related rice damages

in Northeast China and Central and East China, the major commercial rice production

regions in China. Compared with the observation, LMDZ4 demonstrates its ability to

reproduce the regional characteristics of both heat and chilling rice damages. Based

on the future regional projections under the RCP8.5 pathway, future changes of rice

damage under four temperature-rising categories of 1.5, 2, 3, and 4◦C are estimated. In

the two rice production regions, the future extent of heat-related damage for Northeast

China is mostly limited to the western area, and the occurrence of heat damage generally

increases with global warming levels, particularly when it is higher than 2◦C. For Central

and East China, the heat-related rice damage increases in both coverage and intensity.

The region is also likely to have a faster increasing rate of heat damage than in Northeast

China. When global warming reaches 3 and 4◦C, the median heat-related damage

spreads over almost the whole region of Central and East China. Moreover, the probability

of regional-scale heavy level heat damage would be over 50% by the end of twenty-first

century. On the other hand, the disastrous impact of a cold event affecting rice yield is

reduced in both coverage and duration although the model projections over Northeast

China show larger intermodel variability and uncertainty.

Keywords: heat and chilling damage, damage index, global warming, regional climate, rice production

166

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://doi.org/10.3389/fclim.2021.736459
http://crossmark.crossref.org/dialog/?doi=10.3389/fclim.2021.736459&domain=pdf&date_stamp=2022-02-15
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles
https://creativecommons.org/licenses/by/4.0/
mailto:shenxintu@aliyun.com
mailto:wsy@nju.edu.cn
https://doi.org/10.3389/fclim.2021.736459
https://www.frontiersin.org/articles/10.3389/fclim.2021.736459/full


Luo et al. Projection of Temperature-Related Rice Disaster

INTRODUCTION

Rice is the basic food for about 50% of the global population,
providing 20% of global food energy. In Asia, more than
2 billion people depend on rice for more than 60–70% of
their daily diet (FAO, 2017; Sekhar, 2018). Economically, rice
cultivation is the main source of income for approximately
300 million people globally and an important contribution to
national GDP in Asian agricultural countries. Rice production
in Asia accounts for more than 90% of the global rice yield
and about 70% of global exports. The largest Asian rice-
producing countries are China, India, Indonesia, Bangladesh,
Vietnam, and Thailand, and 40% of the harvested area is
from rain-fed lowland, deep water/intertidal wetland, and some
highland. Consequently, the Asian rice industry is fragile to water
demand and regional hydrological cycles, which are associated
strongly with the accelerated warming climate and related natural
disasters, including storms, floods, and droughts.

Due to the combined effects of natural variability of the
Asianmonsoon system and anthropogenic forcings, the observed
changes in the Asian regional climate for the past few decades
are evident and significant. Studies demonstrate that the
regional warming trend continues in China and other Asian
countries, and the extreme climate events have increased in
intensity, frequency, and duration (IPCC, 2013; CMA Climate
Change Centre, 2019). At the regional level, the impacts of
multiple factors, such as rising temperature, higher evaporation,
and changing rainfall variability, show substantial impact on
water resources and affect the regional food production and
national GDP (IFPRI, 2016). The natural variability of the
hydrological cycle, the exuberant human consumption, and
increased intensity of agricultural water management put further
stress on the already scarce water resources in some Asian
agriculture regions, and consequently, the increasing water
shortage damaged the major important food crops, including
rice, corn, and wheat, in many parts of Asia (Wijeratne, 1996;
Aggarwal et al., 2000; Fischer et al., 2002; Tao et al., 2003, 2004).

Temperature is one of the main environmental factors that
affects the growth and development of crops. Studies indicate
that current temperature change has a negative impact on
global and regional crop yields. Without taking the effects of
CO2 fertilization, effective adaptation measurement, and genetic
improvement of plants into consideration, the major global food
yields will suffer a reduction of 6.0% for wheat, 3.2% for rice, 7.4%
for maize, and 3.1% for soybean per 1◦C global warming (Zhao
et al., 2017). The rice yield and quality are also constrained by the
temperature. When the temperature exceeds or falls below the
critical value that favors rice growth, it damages the growth and
development of rice, resulting in a decline in yield or poor quality.
Therefore, the temperature-related agri-meteorological disasters
can be divided into two categories: high temperature heat damage
and low temperature chilling damage of rice.

Rice is extremely sensitive to temperature. For rice
production, the high-temperature hazard occurring in the
booting-flowering and grain-filling stages is one of the major
factors that limits the crop yield and quality (Yang et al., 2020). It
is agreed by observational analysis and future climate projection

that, with global warming, high temperature stress occurs more
frequently. Regionally, the occurrence of rice heat damage in East
China is consistent with the temporal evolution of the surface air
temperature, and consequently, global warming is a major factor
that caused the reduction of rice yield (Bao et al., 2012).

In the meantime, a low-temperature event that damaged rice
production in the high latitude region of Northeast China was
observed in the 1960s and 1970s, and chilling damage can lead
to a yield loss of more than 10%—up to 20% if the damages are
serious ones. However, the frequency and intensity of large-scale
sterile-type rice chilling damage have decreased due to intensified
warming in recent years. Even so, the obstacle-type chilling
damage tended to be more frequent, affecting the rice growth
especially in northern Heilongjiang and eastern Northeast China.

Regional climate projection shows that the magnitude of
warming in Asia is likely to be higher than the global average, and
the annual precipitation increases in high latitudes and decreases
in subtropical latitudes, leading to the continuation of the current
dry pattern in some areas (Bates et al., 2008; Huang et al.,
2013; Hui et al., 2018a,b). Compared to 1960–1990 averages, the
temperatures are projected to increase by up to 4.5◦C in the
north and west and by up to around 3◦C in the southeast by
2100. In the medium term, annual mean temperature is likely
to increase by 1.5–2.4◦C from 2031 to 2040 and by 2.3–3.0◦C
from 2051 to 2060. These findings are comparable to those
reported in the IPCC’s AR5. The effect of climate change on
crops varies with the crop and land types (IFPRI, 2016). For
example, with the higher variability of rainfall pattern at the
regional level, global warming would damage the rainfed farms
while benefiting irrigated cropland (Wang et al., 2010). The
wide application of agriculture irrigation and water management
systems further implicates assessing the climate change impact on
food production.

Rice is the leading cereal in Chinese food consumption, and
it is mainly produced in Central and East China, South and
Southwest China, and Northeast China (Mei et al., 1988; Li
et al., 2015). In China, food production was greatly affected by
regional climate change. According to the 2019 Blue Book on
Climate Change in China (CMA Climate Change Centre, 2019),
the increase of the national averaged surface air temperature
warming rate of China is significantly higher than the global
average. With the warming conditions during the past 50 years,
the frequency of extreme high temperature events demonstrated
a clear interdecadal variability, and the frequency of extreme
daily precipitation events showed an increasing tendency. Since
the late 1990s, extreme weather and climate events, such as
drought, heavy rainfall, floods, and heatwaves have been widely
observed and show extensive socioeconomic impacts. Climate
change in China shows a negative impact on agriculture and food
production as it affects the major crops, livestock, and fisheries
production adversely (Bates et al., 2008; IPCC, 2013). In the near
to far future, the negative impacts of regional climate change on
food security in China are expected to grow with time.

As hydrological factors are major constraints of China food
production (Tao et al., 2003), higher temperature-related heat
hazards also damage the growth andmaturation of various crops.
Study shows that the global rice yield decreases by 3.2% on
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TABLE 1 | Basic information of models.

Driving GCM Research Institutions Resolution

BCC-csm1-1m China, BCC 1.125◦ × 1.12◦

FGOALS-g2 China, IAP 2.8◦ × 2.8◦

IPSL-CM5A-MR France, IPSL 2.5◦ × 1.26◦

CNRM-CM5 France, CNRM 1.4◦ × 1.4◦

MPI-ESM-MR Germany, MPI 1.875◦ × 1.875◦

MPI-ESM-LR Germany, MPI 1.875◦ × 1.875◦

average for every 1◦C increases in global average temperature
(Yang et al., 2020). The regional response of rice heat damage
to different and higher global warming levels over the Chinese
rice production region were evaluated in previous work (Xiong
et al., 2016; Wang et al., 2020). However, the uncertainty in
chilling/hot rice damage from climate models are not well-
addressed. Meanwhile, though the high-latitude region, such
as northeastern China, has experienced the most significant
warming during a few decades in the past, low temperature
events and chilling damage occur from time to time (Ma et al.,
2011; Shi et al., 2020). Under such circumstances, the accurate
projection and evaluation of occurrence of future low- and high-
temperature events as well as the heat and cold rice damage will
contribute to the regional effective adaptation and to prevention
of the rice yield loss.

In this paper, we use a high-resolution observation data set
over China (CN05.1) and simulations of the regional climate
model LMDZ4 driven by six Coupled Model Intercomparison
Project phase 5 (CMIP5) models to study the changes in
frequency and intensity of future rice-related heat and chilling
damages in the near and far future under different warming
levels. The regional temperature changes that threaten the
already fragile carrying capacity of rice fields was assessed.

The paper is organized as follows: the observational data,
model, and definition of extreme temperature-related rice
damage indexes are introduced in section Data and Methods.
In section Results, the projected changes of the above indexes
under various global warming levels in China are presented, and
section Conclusion gives a summary of the main conclusions of
this study.

DATA AND METHODS

Model Information and Data
The dynamic downscaling in this study is performed with
LMDZ4, a variable resolution stretched grid atmospheric general
circulation model developed at the Laboratoire de Météorologie
Dynamique (Li, 1999; Frédéric et al., 2006). In this study, LMDZ4
was used as a limited area model and integrated with enhanced
and fine resolution of 60 km over East Asia, covering the region of
5.52–54.87N in latitude, 85.98–134.53 E in longitude. In vertical,
there are 19 sigma-pressure hybrid layers. The LMDZ4 model
physics and parameterization schemes can be found described in
Frédéric et al. (2006) and Dufresne et al. (2013) for more details.

FIGURE 1 | The research domain. The region with green color denotes the

northeast China, and the region with red color is Central and East China.

Driven by six CMIP5 global models in the lateral
and lower boundaries (Table 1), LMDZ4 was integrated
from 1961 to 2005. We selected 1986 to 2005 as the
reference climate, and 2006–2100 for future climate
under RCP8.5 emission scenario. The equal-weighted
ensemble average of six downscaling results, referred to as
LMDZ MME in the following text, was used for extreme
temperature and rice disaster analysis for both reference and
future climate.

The analysis region is centered at 30◦N/110◦E, covering 5◦–
55◦N in latitude and 85◦–135◦E in longitude. The region is
further divided into northeast China and Central and East China,
according to rice cultivation in China (Figure 1, Mei et al.,
1988).

LMDZ4 can generally well-simulate the regional climate
of East Asia (Yang et al., 2016; Gao et al., 2017; Guo et al.,
2018). Yang et al. (2016) compare differences between model
simulation results before and after downscaling by LMDZ,
showing that LMDZ can evidently improve depiction of
regional terrain. Gao et al. (2017) suggest that LMDZ4
can reproduce the spatial pattern of extreme temperature
in Central and East China better compared with forcing
global climate models (GCMs). Guo et al. (2018) project
the response of three extreme temperature indices to
1.5 and 2◦C global warming in Central and East China
by a corrected LMDZ daily temperature data set under
RCP4.5 scenario.

For the purposes of model assessment, the 0.25◦× 0.25◦

resolution data sets, CN05.1, which are based on the interpolation
form more than 2,400 observing stations in China, are used as
observations (Wu and Gao, 2013). We further interpolate model
data to the same resolution of observation by Earth System
Modeling Framework (ESMF) software, a regridding function
incorporated into NCL.
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TABLE 2 | Definitions of heat and chilling damage indices.

Index Definition Rank

Light Medium Heavy

Ha Hazardous accumulated temperature (unit: ◦C·day) 0 < Ha ≤ 15 15 < Ha ≤ 30

TMX Maximum temperature during heat damage (unit: ◦C) 35 ≤ TMX < 38 38 ≤ TMX < 40

SDHD Duration of single heat damage event (unit: day) 3 ≤ D < 5 5 ≤ D < 10 D ≥ 10

MDHD Duration of multiple heat damage events (unit: day) 6 ≤ D < 12 12 ≤ D < 24 D ≥ 24

DCD Consecutive days with daily average temperature lower than 17/19◦C

(To the South/North of Yangtze River Reaches, unit: day)

2 3–4 5

Time Windows of Reaching 1.5, 2, 3, and
4◦C Global Warming Threshold
To evaluate the impacts of various warming levels to rice
production in China, we choose 1986–2005 as the reference
time period, during which the climate is 0.61◦C warmer than
the preindustrial level of 1850–1900 (IPCC, 2013; Chen et al.,
2017). According to the method of Chen et al. (2017), the
ensemble mean of driving GCMs reach the 1.5, 2, 3, and 4◦C
global warming levels above the preindustrial period by the time
windows of 2019–2039, 2033–2053, 2055–2075, and 2076–2096,
respectively. Here, the time series of global mean temperature
were smoothed by the 21-year moving average first, and the
time window of reaching the warming threshold was defined
as the first year when temperature reaching the corresponding
threshold with 10 years before and after it. Correspondingly, the
warming in the individual time windows are 0.89, 1.39, 2.39, and
3.39◦C above mean temperature of 1986–2005.

Definitions of Heat and Chilling Damage
Indices
In this study, we mainly consider the changes of extreme high
and low temperatures and their impacts to rice during the key
time periods of grain-filling and heading periods. Therefore, for
the heat damage that affects Northeast China, a time slice of July
15–August 31 is selected, and for Central and East China, a time
slice of August 1–September 10 is selected. Correspondingly, the
low temperature events damage the physiological function of
the rice during its booting and heading periods, forming empty
grains and reducing yield. The heat and chilling damage indices
to rice used in this study are generated with the ensemble mean of
LMDZ downscaled daily maximum and minimal temperatures.

To describe the damage quantitatively, we define several
indices (Table 2). Their calculations are based on the Chinese
National Standards for Grade of Chilling damage for rice
and maize (People Republic of China Meteorological Industry
Standard, 2009) andMeteorological grades of heat damage to rice
(People Republic of China National Standard, 2020).

For heat damage, we firstly identify the days with daily
maximum temperature higher than 35◦C (referred to as heatday
in the following figure and text) and then calculate the index of
Ha to describe the heat damage to rice:

(1) Ha: Hazardous accumulated temperature. When consecutive
heatdays with daily maximum temperature Tmax higher

than 35◦C are 3 days or longer, Ha is calculated as
the accumulation of difference between daily maximum
temperature Tmax to 35◦C. Ha is then used to calculate the
single point heat damage intensity HDI.

(2) TMX : Maximum temperature during heat damage.

In addition to themagnitude of heat damage, we also consider the
length of heat damage to rice by calculating following indices:

1. Duration of high temperature during heat damage (DHD):
Here, high temperature event are divided into two types: single
and multiple events. The former is for the case when only one
heat damage occurs during the entire growing season of rice
for a particular year, recording its duration as DHD. Duration
of multiple events is the accumulation amount of days when
more than one heat damage event happens in 1 year;

2. Duration of low temperature event (DCD): For the chilling
damage index, we only consider damages that affect the
rice productivity, that is, the low temperature events during
the rice reproductive period that physiologically destroy the
rice plant and cause empty grains. The chilling damage is
estimated by the duration of low temperature event (DCD)
and can be categorized into three levels, that is, light damage
with DCD equaling 2 days, middle damage with DCD lasting
for 3–4 days, and heavy damage with DCD longer than 5 days.

The threshold to define DCD varies with regions. For the area
to the south of the Yangtze River, daily temperatures lower than
17◦C are considered to cause chilling damage to rice production
and used to calculate DCD, and for the region to the south of
the Yangtze River, the threshold of daily temperature lower than
19◦C is used to calculate the DCD.

(3) The regional impact of heat/cold events to rice production is
estimated by defining SH/SC index:

SH(SC)

=
Number of grid points Seffering from Heat (Cold) damagages

total grid points of analysis region

We then use SHi and SCi to estimate the regional coverage of
heat and cold events with different intensity. Here, i stands for
the intensity levels.

SH1/SH2/SH3(SC1/SC2/SC3)

=
Number of grid points witH LigHt/middle/HigH Heat/Cold Events

Number of grid points with Heat/Cold Events in the region
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RESULTS

Evaluation of Model’s Ability to Simulate
Current Temperature Related Damages
Heat Damage
As a major single-cropping rice production region of China,
Northeast China experiences little heat-related damages in
observation (figure not shown) with the observed heat days <1
day, Ha smaller than 4◦C·day, and TMX no more than 36◦C.
There are no multiple heat events, and the single heat event
is limited to the small area of northern Heilongjiang province.
The LMDZ MME well-reproduce the observed distributions of
Ha, TMX, SDHD, and MDHD, suggesting that LMDZ has the
ability to describe the intensity and duration of heat damage in
Northeast China.

In contrast to Northeast China, the rice production region in
the lower latitude of Central and East China is greatly affected
by heat damage represented by TMX, Ha, SDHD, and MDHD. In
observation, the Ha and TMX show south–north gradients with
higher Ha of more than 12◦C·day in eastern Hunan and north
Zhejiang provinces. Most of Hunan, Hubei, Henan, Anhui, and
Zhejiang observe TMX over 36◦C during the filling and heading
seasons. The LMDZ MME is unable to reproduce the south–
north gradients of Ha and TMX. Instead, the high Ha is limited
to the narrow band across the center of Henan and Hubei, and
TMX is evidently underestimated, especially for the area south
of 30N. Consequently, the index for a single heat event SDHD
ranges between 5 and 10 days. The index for multiple events
MDHD lasts between 6 and 12 days in most parts of Central and
East China, but Zhejiang province has enduring multiple events
withMDHDof 24 days. LMDZMME can reasonably produce the
distributions of the heat damage of Henan, Anhui, and Shandong
provinces, but it greatly underestimates the magnitude of all
indices for the area lower than 32N and shows overestimation
for the area higher than 34N. For example, LMDZ MME has
a negative bias for Hunan, Zhejiang, Anhui, and the southern
part of Jiangsu provinces. The model’s cold bias in maximum
temperature in Zhejiang and Hunan provinces induces large
underestimation in both SDHD and MDHD in Zhejiang and
Hunan provinces by 5 and 6–20 days, respectively. On the other
hand, LMDZ MME has overestimation of SDHD due to its
overestimation of maximum temperature at southern Hebei and
northern Henan provinces. The LMDZ MME also overestimates
SDHD for Anhui by almost 5 days (Figure 2).

Chilling Damage
Compared with the heat damage, Northeast China experiences
frequent chilling damage during 1986–2005 (Figure 3B) with the
least damage of 2 days. The heaviest damage that lasts longer
than days mainly happens along the range of the Xiaoxing’an
and Changbai Mountains, displaying the possible impact of
terrain. Damage with medium intensity that lasts for 3–4 days
distributes on both sides of the mountain range, located in the
Sanjiang and Songnen plains. The southern part of northeast
China has the relatively small-scale light damage of 2 days. The
rice production area of Northeast China is mainly in the plains,
such as the Sanjiang and Songnen plains around the south slope

of the Xiaoxing’anMountains and is definitely affected by chilling
damage with various intensity.

Compared with the observation, LMDZ reproduces well the
pattern of chilling damage (Figure 3A). The simulated heaviest
chilling damage is along the mountains, which well-agrees with
the observation. However, LMDZ shows a warm bias in the west
of the mountain range and reduces the length of regional chilling
damage by 1 day. The extent of damage with medium intensity
decreases largely and location of light damage shifts to north of
the Songnen plain. Similarly, in LMDZ simulations, the southern
and central part of Northeast China has chilling damage <2 days
in the historical period due to the model’s warm bias.

Chilling damage in Central and East China is mainly observed
in northern and part of the western area (figure not shown).
Shandong, Anhui, Hunan, and Zhejiang provinces also have
scattered distributions. The damage of the highest intensity
in Central and East China distributes along the mountainous
terrain, i.e., the Yanshan and Taihang Mountains, similar to the
case in Northeast China. A medium-level event spreads around
the mountains and in the western part of Central China. The
extent of the damage with light intensity is slightly larger than
that of the medium level. The main rice production area of
Central and East China is in the lower latitude provinces of
Anhui, Jiangsu, Hunan, southern Hubei, and Zhejiang. Scattered
rice fields are located on the south bank of the Yellow River and
northern provinces of Shanxi andHebei. Therefore, though north
of Hebei, Shanxi provinces and the west part of Henan, Hubei
provinces have light-to-heavy cold events, the overall loss of rice
from chilling damage in Central and East China is manageable.

LMDZ can basically represent the characteristic of the heaviest
chilling damage, but large bias exists for damage with medium
and light intensities as the model’s cold event concentrates along
the mountain range and surrounding areas.

Above all, LMDZ is able to reproduce the pattern of chilling
damage in the rice production region of China; it especially well-
represents the distribution of the heaviest chilling damage in
Northeast China.

Future Projection of Extreme
Temperature-Related Damage to Rice
Under Different Warming Levels
Heat Damage

Spatial Distribution
As shown in Figure 4, in Northeast China, the maximum
temperature TMX, the accumulated hazardous Ha, and the
duration of both single and multiple events increases in
magnitudes with increasing warming levels. Meanwhile, they all
spatially spread eastward and reach 120E. If the warming limited
to 1.5◦C, the Ha, TMX, and SDHD is confined to the west corner
of Jilin province, and a multiple heat event would not happen as
that of the reference time period.When the warming level reaches
more than 3◦C, both intensity and duration of heat damage
in the east part of Northeast China are intensified (Figure 4).
Compared with the reference time, the SDHD and MDHD can
increase by more than 20 and 18 days at most, and the heat
damage could spread eastward and cover northwest Liaoning,
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FIGURE 2 | Spatial distributions of observed and multimodel averaged heat damage indexes in Central and East China during 1986–2005. (A,F) The number of

high-temperature days (unit: day), (B,G) hazardous heat accumulation temperature (unit: ◦C·day), (C,H) maximum temperature in the process of heat damage (unit:
◦C), (D,I) single-process duration of heat damage (unit: day), and (E,J) multiple-process duration of heat damage process (unit: day).

FIGURE 3 | Spatial patterns of chilling damage duration (unit: day) for (A)

LMDZ-MME and (B) observation in Northeast China during 1986–2005.

western Jilin, and southwest Heilongjiang. The intensity indices
share the similar distributions to those of duration indices, and
themagnitudes of TMX andHa increase with warming levels until
reaching more than 38 and 12◦C day when 4◦C warming occurs.
Both tensity (i.e., Ha and TMX) and duration heat damage (e.g.,
Heatday, SDHD and MDHD) indices show increasing trends
with time (Figure 5). The trend from the temporal evolution of
MDHD shows that it increases by 0.91 d/10a, and for the duration
of single event by 0.19 d/10a (Figure 5D).

In Central and East China, which produces more than 45%
of rice yield in the last 20 years, higher warming levels are
inevitably accompanied by the wider spread of heat damage

from the center of the rice-production region to the whole
center-east China (Figure 6). For the reference time, the highest
TM is 38.1◦C located at 37.75N, 116.25 E (boundary region
of Hubei and Hunan provinces). Associated with strengthening
warming, the TMX increase from 38.9◦C at 1.5◦C to 41.5◦C at
4◦C warming. The high TMX area with value higher than 38◦C
extends southward from southern Hebei province to cover most
of Hebei, Hubei, and Hunan provinces, and regional averaged
TMX for the whole rice production region can be more than 35◦C
for 4◦C warming. The hazardous accumulation temperature Ha

is projected to have similar spatial distributions to that of TMX

for different warming levels. Comparing the distributions under
2◦Cwarming, it can be seen that Ha is reduced by about 20◦C·day
in Hebei, Hubei, and Hunan provinces under the 1.5◦C warming
scenario, greatly lowering the dangers of heat damage to the rice.

For each individual warming level, the duration indices of heat
damage, SDHD and MDHD, in Central and East China have
the similar spatial distributions (Figure 6), that is, the most hit
area from heat damage gradually enlarges southwestward until it
finally covers the whole region below 36N. Compared with the
reference time, the regional average of single heat event duration
increases by 2.06, 4.25, 7.05, and 11.05 days for 1.5, 2, 3, and
4◦C warming; and for multiple events, the changes will be 2.02,
4.46, 6.09, and 8.95 days. If the 4◦C warming occurs, even if
the yearly heat damage comes from a single event, it is likely to
last for more than 15 days regionally in the whole 41-day grain-
filling periods. Moreover, it is likely that more than 90% of the
Central and East China’s rice production region will be hit by
either single or multiple heat events, and the total lasting time
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FIGURE 4 | Spatial distribution of (A–E) the number of high-temperature days (unit: day), (F–J) hazardous heat accumulation temperature (unit: ◦C·day), (K–O)

maximum temperature in the process of heat damage (unit: ◦C), (P–T) single-process duration of heat damage (unit: day), and (U–Y) multiple-process duration of heat

damage (unit: day) simulated (the first column) and projected by LMDZ-MME (the second to fifth columns) in Northeast China. The reference time period is

1986–2005. For future projection, the warming levels of 1.5, 2, 3, and 4◦C are presented under the emission pathway of RCP8.5.
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FIGURE 5 | Time series of (A) the number of high-temperature days (unit: day), (B) hazardous heat accumulation temperature (unit: ◦C·day), (C) maximum

temperature in the process of heat damage (unit: ◦C), (D) single- and multiple process durations of heat damage (unit: day) simulated and projected by LMDZ-MME

averaged over Northeast China. The reference time period is 1986–2005, and for future projection, the time period of 2006–2100 is taken under the emission pathway

of RCP8.5. The black and gray dots, and gray dotted line denote the historical simulation results. The red and magenta solid lines denote the multimodel projections

under RCP8.5 pathway. In the plot, all the long dashed lines are for the linear regressions of different indexes with the vertical magenta short lines and corresponding

years indicating the first occurrence times of individual hot extreme indexes.

of such heat damage will be longer than 35 days, which accounts
for more than half of the grain-filling season. Combining the
damage intensity and duration, we can see that the severest heat-
related disaster coincides with the major rice production area of
Henan, Hubei, and Anhui provinces and leads to massive rice
production cuts.

The temporal evolution of intensity and duration of heat
damage in Central and East China is shown in Figure 7. Under
the RCP8.5 emission scenario, the heat damage would endure as
indicators of heat duration of SDHD increased by 1.68 d/10a, and
MDHD by 1.89d/10a. Meanwhile, the TMX increases by the rate
of 0.22◦C/10a. All the above changes are statically significant and
pass the 95% confidence level.

Changes of Intensity, Duration, Danger Level, and Coverage
The danger level of rice heat damage grows with increasing global
warming levels in both intensity and duration. It is evident that

the uncertainty ranges of projected indices that are induced by
various driving GCMs enlarge with warming level, especially
for Ha and MDHD (Figure 8). We further divide TMX and Ha

into three categories to describe the risk level of heat damage
to better describe the severity of potential risk. As shown in
Figure 8A, rice-producing Northeast China is a region that is
seldom troubled by heat-related damage in the current climate. In
the future, the intense heat damage affecting the rice production
can be avoided in Northeast China with global warming limited
below 3◦C; otherwise, the region will have “light” level heat
damage with Ha increasing up to 6◦C·day. On the other hand,
the risk level measured by TMX is categorized as light for all
four warming levels (Figure 8A). To identify risk arising from
an enduring heat event, the indices of MDHD and SDHD are
categorized into “short,” “medium,” and “long” according to their
lasting days. Over Northeast China, the impact level from the
single heat event remains short for all four warming levels. In

Frontiers in Climate | www.frontiersin.org 8 February 2022 | Volume 3 | Article 736459173

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Luo et al. Projection of Temperature-Related Rice Disaster

FIGURE 6 | Same as Figure 4 but for Central and East China.
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FIGURE 7 | Same as Figure 5 but averaged over Central and East China.

FIGURE 8 | Boxplots of the number of high-temperature days (unit: day), hazardous heat accumulation temperature (unit: ◦C·day), maximum temperature in the

process of heat damage (unit: ◦C), durations of single- and multiple-process of heat damage (unit: day) of control (1986–2005), and projected climate (2006–2100) by

LMDZ-MME averaged over the (A) Northeast China and (B) Central and East China. For future climate projection, warming levels of 1.5, 2, 3, and 4◦C under emission

pathway of RCP8.5 are considered. The top and bottom whiskers are the 10th and 90th percentiles. The black and purple dotted lines indicate the corresponding

rank of each event.
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FIGURE 9 | Time series of indexes of regional impact of heat damage (SH, unit: %) and regional coverage of heat damage with different intensity (SH1/SH2/SH3, unit:

%) for reference (years 1986–2005) and projected (years 2006–2100 under the RCP8.5 pathway) climate by LMDZ-MME. (A,B) are for regional average of Northeast

China, and (C,D) for Central and East China. The light gray, dark gray, and black solid lines denote the historical temporal variations of indexes and magenta, orange,

and red solid lines for projection results under RCP8.5 scenario. The corresponding long dashed lines indicate the linear trends of individual index.

Northeast China, the occurrence ofmultiple heat events increases
with the warming levels. In the last 40 years of the twenty-first
century, all enduring heat events can be categorized as multiple
type. In conclusion, the risk of havingmultiple heat events cannot
be avoided if the warming is over 1.5◦C, andNortheast China will
have short multiple heat events under 2, 3, and 4◦C warming.

For Central and East China, the risk level for intensified heat
is measured by the variation of the TMX, and the damage level is
below light when warming is <3◦C and strong when it is 4◦C
warming. Ha can also be used to describe the severity of heat
damage from intensified high temperature. From variation of Ha,
it can be seen that theHDI would keep being light with the global
warming below 2◦C. With the warming reaching 4◦C globally,
the HDI in Central and East China would develop into the
stage of heavy with Ha up to 37◦C by LMDZ MME (Figure 8B).
Examining the endangerment of enduring high temperatures to
rice production, the danger level for a single heat event is medium
for 1.5 and 2◦C in Central and East China, but extends to long
when the warming level is 3◦C and above. Meanwhile, the risk

level of multiple heat events varies between short and medium
levels according to the variations of MDHD under different
warming levels.

During the 20-year reference time, the percentages of area
affected by hot weather are <3% in Northeast China. Global
warming increases the risks of heat damage as the highest
percentage of area that suffered from heat damage reaches
25% with the linear tendency of 1.57%/10a during 2034–2100
(Figure 9A). In contrast to the reference time when there are no
medium and heavy types of heat damage, Northeast China has a
large chance to witness a drastic increase in light-type heat events
with the percentage of the affected area more than 50% for year
of 2040–2100. Scattered cases of heavy heat damage are projected
for Northeast China though the affected area may be <10–
20%. The area affected by medium type events ranges from 5 to
40% (Figure 9B). As shown in Figure 9C, the overall coverage
of the heat-damaged area, indicated by the index of SH, in
Central and East China has a clear annual variability for reference
time periods and a linear increasing tendency by 5.35%/10a for
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FIGURE 10 | Spatial distributions of chilling damage duration (unit: day) for (A) reference (1986–2005) and (B–E) future projection by LMDZ-MME in Northeast China.

FIGURE 11 | Time series of chilling damage duration (unit: day) for reference (1986–2005) and future projection (2006–2100) by LMDZ-MME averaged over (A)

Northeast China and (B) Central and East China. The black solid line indicates the historical simulation, and the blue solid line indicates the projection results under the

RCP8.5 scenario; the dotted line indicates the linear regressions. The vertical light blue line and corresponding year represents the last time of event occurrence.

warming future. By the time of 2090–2100, the area hit by heat
damage would be five times the reference value of 5% during
1986–2005. Examining the three risk levels of severity from heat
damage, the heavy type shows the most conspicuous increasing
tendency, whereas the medium type shows slight increasing
during 2006–2100, and the light type decreases drastically by
−11.5%/10a (Figure 9D).

Chilling Damage

Spatial Distribution
Under the emission scenario of RCP8.5, both intensity and
extent of chilling damage in Northeast China decrease gradually
(Figure 10). Pattern of DCD under 1.5◦C global warming is
similar with that in reference period except extent of light damage
narrows northward slightly. When global warming reaches 2◦C,
the range of the heaviest chilling damage in the Xiaoxing’an
Mountains decreases rapidly and almost diminishes in the
Changbai Mountains. The area that might be hit with medium-
intensity damage (3–4 days) shrinks further toward the north
mountains. A light event with duration of 2 days widely spreads

in the east Songnen plain. When global warming continues to
rise to 3◦C, the heaviest chilling damage remains largely the same
in the area to the north 50N, but coverage of the two other
levels of DCD contracts and is limited in the plains between the
Xing’anling and Changbai mountains. For 4◦C global warming,
the extent of light chilling damage further decreases, and there
would be no more chilling damage in the Changbai Mountains.

The temporal variation of chilling damage of Northeast
China during reference and projection time periods is shown in
Figure 11A. During the reference time, the duration decreases at
a rate of −0.20 d/10a, and the longest one exceeds 9 days. For
2006–2100, the duration of cold days decreases significantly at a
rate of −0.39 d/10a with a significance level of 0.05. In addition,
projected DCD shows a decadal variability, as Northeast China
has longer low temperature days during 2006–2030 than the
current climate by about 1.3 days. With regard to the effects of
chilling damage on rice, both the extent and duration of a cold
event in Northeast China decrease significantly with time, which
indicates that rice is unlikely to be affected by severe chilling
damage under the RCP8.5 emission scenario.
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FIGURE 12 | Boxplots of chilling damage duration (unit: day) during the reference time period (1986–2005) and for 1.5, 2, 3, and 4◦C warming levels in the future by

LMDZ-MME over Northeast China and Central and East China. The top and bottom whiskers are the 10th and 90th percentiles. The black dotted lines indicate the

corresponding rank of durations.

With global warming intensifying, a decrease of DCD also
occurs in Central and East China (figure not shown). Similar
to the pattern in the reference period, chilling damage mainly
concentrates in the mountainous area under 1.5◦C global
warming. The heaviest damage in the TaihangMountains reduces
slightly, and two other level events basically maintain. With
global warming reaching 2◦C, the range of the heaviest chilling
damage further reduces. If the global average warming reaches
3◦C, cold events with duration longer than 5 days would not exist
in Central and East China. Meanwhile, the extent of medium
and light damage decreases gradually. With the global warming
reaching 4◦C, only the moderate and light chilling damage can
be detected in Hebei and Shanxi provinces. Similar to those
in Northeast China, chilling damage would greatly reduce in
coverage, scattering over a few rice-producing areas in the north
of Central and East China.

The DCD in Central and East China also has a decreasing
tendency during both historical and projection time periods
(Figure 11B). During the reference period, the duration has large
interannual variability and linearly decreases with time at a rate
of −0.52 d/10a. For 2006–2100, the DCD decreases at a rate
of −0.42 d/10a with a significant level of 0.05. Notably, few
chilling damages exist in Central and East China after 2093
under RCP8.5.

Changes of Impact Intensity and Coverage
As shown in Figure 12, DCD decreases gradually in both
Northeast China and Central and East China though the
discrepancies among different global warming thresholds
are evident.

For Northeast China, light level chilling damage occurs over
25% of the area during the reference period. Under 1.5◦C global

warming, the median and mean are even greater than that in
the reference period although the range of duration between
10th and 90th percentiles decreases by comparison. When global
warming reaches 2◦C, themedian andmean reduces rapidly from
4.57 to 3.00 and 5.62 to 3.89 days, respectively (the former is
the corresponding value under 1.5◦Cwarming). Projection under
2◦C warming associates with a much smaller interquartile model
spread compared with that under 1.5◦C warming, showing a
larger proportion of light cold events and smaller of the heaviest
one among cold events. However, a range between the 10th and
90th percentiles reduces slightly, which indicates that there is
larger uncertainty in model projection under the warmer case.
The response of DCD to 3◦C global warming is similar to
that of 2◦C warming with a little bit lower median (2.67 days)
and close mean (3.84 days). With the global warming rising to
4◦C, the median, mean, and interquartile spread increase again.
Proportion of medium-level chilling damage becomes greater.

Compared with Northeast China, the spread and intermodel
variability of DCD differ among four global warming thresholds
more obviously in Central and East China. During the reference
period, although the heaviest chilling damage exists only at
the north of Hebei and Shanxi province, it takes nearly half
of the extent of cold events when a medium level event takes
another. Under 1.5◦C global warming, the range of duration
decreases rapidly, particularly the 90th percentile end. The
median and mean values reduce from 4.65 to 4.08 days and
5.39 to 4.34 days, respectively. When global warming is 2◦C, the
interquartile model spread further reduces evidently withmedian
and mean decreasing by nearly 1 day. Medium chilling damage
predominates the area. After global warming reaching 3 and
4◦C, significantly, there is hardly any existence of the heaviest
chilling damage. Light-intensity events become the main trend
of damage.
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FIGURE 13 | Time series of control and projected indexes of regional impact of chilling damage (SC, unit: %) and of regional coverage of chilling damage with different

intensity (SC1/SC2/SC3, unit: %) averaged over the (A,B) Northeast China and (C,D) Central and East China during 1986–2100. The light gray, dark gray, and black

solid lines are for the historical simulation, and the light, bright, and dark blue lines represent the projection results under RCP8.5 scenario. The corresponding dotted

lines indicate the linear regressions.

To examine the response of regional coverage of cold events
from various severity to different warming levels, we define SC
and SCi (i stands for the intensity levels) indices to focus on this
part through investigating their temporal variation (Figure 13).

In Northeast China, the range of cold events (SC) increases
at a rate of 6.55%/10a with a maximum percentage close to 80%
during the reference period (Figure 13A). Among these events,
the proportion of the heaviest (SC1) and light (SC3) damage
continue to increase with time at rate of 5.05% and 4.39% per
decade, respectively. Instead, the percentage of damage with
medium intensity (SC2) decreases at rate of−9.89%/10a, and the
trend passes the significant test at the 0.05 significance level.

However, SC decreases sharply at a significant rate of
−5.76%/10a in 2006–2100 under the RCP8.5 scenario, especially
after 2040s. By the end of the twenty-first century, the extent of
occurrence of chilling damage is almost zero. On the other hand,
different from the simulation, projected SC1 and SC2 both show
the slow rise tendency at rate of 1.20 and 0.59% per decade with

the former passing the significant test. On the contrary, projected
SC3 declines at a significant rate of −1.73%/10a, which is faster
than two other level events. These results indicate that, in the
warming future, the range and intensity of chilling damage in
Northeast China decrease constantly.

Events in Central and East China are similar to those in
Northeast China with much slower trends at a rate of 0.58%/10a
(Figure 13C). Because of wider domains and lower latitude, SC of
Central and East China has a smaller value and the maximum is
about 16%. Considering the different intensity level of the event,
both SC2 and SC3 reduce at a rate of −2.43 and −4.89% per
decade. SC1 has the opposite trend and increases at a significant
rate of 5.89%/10a. What is more, in common with events in
Northeast China, SC declines rapidly at a rate of −1.54%/10a
under RCP8.5 scenario. Particularly, the range of chilling damage
reaches zero first around the 2070s. Besides this, SCi in Central
and East China has the same tendency as in Northeast China, i.e.,
SC1 and SC2 increase at rate of 3.93% and 2.43% per decade, and
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SC3 declines at a rate of −5.44%/10a. All tendencies in Central
and East China under the RCP8.5 scenario pass the significance
test at the 0.05 significance level. Note that the amplitude of SCi
in Central and East China is much larger that in Northeast China,
SC1 even varying from 0 to 100% in the late twenty-first century.

In summary, chilling damage in Northeast China and Central
and East China have similar characteristics of variation under
global warming; that is, the spatial scale and duration of chilling
damage reduces continuously with time. Events in Central
and East China change at faster and more dramatic rates in
comparison. The rice production area affected by cold events
is also reducing gradually with global warming, particularly for
areas in Northeast China.

CONCLUSION

Most of the rice yield of China is produced in the east, northeast,
and central parts of the country, where the regional climate
is dominated by the large-scale atmospheric circulations, such
as the East Asia summer monsoon as well as regional scale
climate processes. The regional climate change, including the
occurrence of high temperatures and heavy rainfall events, can
greatly affect regional crop production under future warming
scenarios. Globally, the potential crop reduction in the future
warming and increased extreme climate would enlarge the
undernourished population and obscure the opportunities to
fight poverty. Therefore, accurate evaluation of changes in rice-
production related climate extremes can reduce the uncertainty
in estimation of global food yields, improving the strategies
and actions to secure regional food availability, guaranteeing
the future sustainable agricultural development. In this study,
we apply a stretch grid global model LMDZ4 to downscale six
CMIP5 GCMs for historical and future regional climate under
the emission pathway of RCP8.5. The temperature-related rice
damage indexes were then generated using an ensemble average
of six LMDZ4 downscaling runs (LMDZ MME). Our analysis
shows that LMDZ can well-reproduce the spatial characteristics
of both heat and chilling damage in Northeast China and Central
and East China, especially in terms of presenting the heaviest
chilling damage. LMDZ MME underestimates the magnitude of
heat damage indexes for the area south of 32N when it shows an
overestimation for the area north of 34N.

As temperatures are rising under the RCP8.5 emission
pathway globally, significant changes in heat damage in the future
are projected. For Northeast China, the extent of heat events
continuously spread eastward with rapid increasing intensity,
particularly under the 2◦C threshold of global warming and
above. For Central and East China, the rice heat damage spreads
from a narrow band in Central China to the surrounding areas.
When global warming reaches 4◦C, almost the whole region is
under the influence of a rice heat event of various intensities.

In the next 95 years, all of the heat indexes increase at a
significant rate. Among the indices, Ha has the fastest increasing
rate, followed by SDHD and MDHD, and finally TMX in both
regions. In terms of coverage of heat damage, the proportion of
medium and heavy events gradually increases and light events
decrease dramatically with the whole damage extent spreading,

especially in Central and East China. Meanwhile, DCD and its
spatial range inNortheast China andCentral and East China both
decrease with time for different global warming thresholds. It can
be concluded that the rice production in the future will be less
affected by the chilling events. Regionally, the chilling damage
in Central and East China drops faster in coverage, whereas
in Northeast China, relatively larger uncertainty is observed in
model projected chilling events.

Chou et al. (2021) also show that Ha in North and
Central China increased by 3.4–4.3◦C/day and low-temperature
damage decreased steadily in Northeast China when the global
temperature rises from 1.5 to 2◦C under SSP245 scenario. Similar
results here confirm that Northeast China and Central and
East China will experience a significant rise in risk of extreme
heat disasters, significantly increasing the negative impact on
rice production. With the growing population, unbalanced
geographic distribution of wealth and resources, meeting the
requirement/need for basic food and nutrition is a task in many
regions and countries. At the same time, the urbanization in the
major rice production countries of East and South Asia continues
to expand, accelerating the transfer of precious paddy fields and
other cropland into urban areas. In the future, the shortage of
land and intensified natural disasters related to warmer climates
would damage the already fragile rice production, adding an extra
dimension of challenges and uncertainties in assessing the future
food security. This paper is committed to estimate the responses
of extreme temperature and related rice disasters to various
warming thresholds in a major rice production area of China.
So far, the influence of rice varieties, prices, planting techniques,
and other socioeconomic factors is not considered in our study
though we believe they all play important roles on rice security
at various spatial and temporal scales. In the future, by applying
the Earth SystemModel that contains the socioeconomicmodule,
more thorough assessment can be performed.
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An Attempt to Appreciate Climate
Change Impacts From a Rank-Size
Rule Perspective
Kazuya Hayata*

Department of Economics, Sapporo Gakuin University, Ebetsu, Japan

For representative observational stations on the globe, rank-size analyses are made for
vectors arising from sequences of the monthly distributions of temperatures and
precipitations. The ranking method has been shown to be useful for revealing a
statistical rule inherent in complex systems such as texts of natural languages. Climate
change is detectable through the rotation angle between two 12-dimensional vectors. The
rankings of the angle data for the entire station are obtained and compared between the
former (from 1931 to 1980) and the latter (from 1951 to 2010) period. Independently of the
period, the variation of the angles is found to show a long tail decay as a function of their
ranks being aligned in descending order. Furthermore, it is shown that for the
temperatures, nonlinearities in the angle-rank plane get stronger in the latter period,
confirming that the so-called snow/ice-albedo feedback no doubt arises. In contrast to the
temperatures, no sign of a feedback is found for the precipitations. Computed results for
Japan show that the effect is consistent with the global counterpart.

Keywords: global warming, climate crisis, climate emergency, snow/ice-albedo feedback, vectorial rotation
method, rank-size rule, long tail phenomena

INTRODUCTION

All the governments in the world are currently confronted with the difficult problem of both
mitigating climate change and maintaining sustainable development. Of the climate change impacts
[1–3], in particular, global warming has become the most serious problem necessary to be dealt with
urgently in cooperation with the developed and developing countries. In recent years, research
articles of climate change have grown substantially in number, even if we restrict our attention within
interdisciplinary physics [4–19]. For the analytical methods, besides conventional techniques that
have been adopted in statistical physics, novel approaches have been attempted such as wavelet
transformation methods [9–13], multiscale entropy analysis [10], convergent cross mapping (CCM)
[12], a method using Minkowski distance functions [18], and the vectorial rotation method [19]. In
this paper, for representative observational stations in the world as dotted on the map in Figure 1
[19], rank-size analyses are made for vectors that reflect sequential variations of the monthly
temperatures and precipitations. The ranking method has been applied principally to revealing a
statistical rule or law hidden in texts of natural languages; the most typical example is no doubt the
Zipf’s law, being known as a power law relation in the word occurrence versus its rank that is aligned
in descending order [20–26]. To our knowledge, however, no attempt has been made to apply the
rank-size methodology to the study of climate change impacts. Through specific numerical results we
can examine whether, along with conventional applications to complex systems, the rank-size
approach is useful for revealing climate change impacts both in the global and in the regional scale.
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METHODOLOGY

Generating Angle Data
From the original data of the monthly temperatures and
precipitations [27–29], the angle data can be obtained
according to the procedure detailed in Ref. [19]. The cross
angle θ between two twelve-dimensional vectors, p and q, of
the subsequent periods can be obtained by

θ � arccos[(p · q)/(∣∣∣∣p∣∣∣∣∣∣∣∣q∣∣∣∣)], (1)

which corresponds to climate change from the former to the latter
periods. Here p·q indicates the scalar product between p and q.
For instance, for the temperatures, the magnitude of the angle at a
certain station with relatively high latitude increases substantially
because of the snow/ice-albedo feedback [30–32].

Rank-Size Analysis
The intersecting angles θi (0 ≤θi ≤ 180°;i � 1, 2, . . . , n; n being the
size of samples, i.e. the number of stations) will be analyzed
statistically. Specifically, as regressions on the angles versus the
ranks, three modellings are possible:

Linear : θ � a − bχ, (2)

Exponential : log θ � a − bχ, (3)

Logarithmic : θ � a − b log χ, (4)

where log abbreviates the common logarithm; χ represents the
rank variable in descending order; a and b are positive constants
to be determined with the least squares fit. The accuracy of the
respective model can be examined by the degree of fit, |r|, namely

with the Pearson’s coefficient (0 < |r| < 1), and with the Durbin-
Watson ratio, d (0 < d < 4) [33–35]. In what follows, to exclude
unnecessarymeanderings of dots in the θχ-plane we shall restrict our
attention to n less than the Dunbar’s number, i.e., n ≲ 150. Provided
that the best logarithmic fit is established, Eq. 4 will subsequently be
modified with introducing a positive parameter q [36–38]

θq � a − b log χ. (5)

Note that with the additional parameter the optimal values for (a,
b) are renewed. Although, mathematically, extending a domain of q to
the complex number might be interesting, we confine the domain
within the real number. It should be noted here that because the
relative angle is confinedwithin [0, 180°], no problem arises inmaking
regression of an angular response variate on a set of linear explanatory
variables [39, 40]. In order to analytically examine the behavior of the
regression curve, the first derivative of θ is given

θ′/θ � −b/(qχθq)∝ − 1/(qθq), (6)

where θ’ � dθ/dχ. Eq. 6 shows that for θ > 1, |θ’/θ| gets larger with
decreasing q.

Finally, to comprehend the link with the power law (i.e., log-
log) relation, with the use of the Box-Cox transformation [41],
Eq. 5 will be rewritten as

(log e)(θq − 1)/q � a’ − b’log χ, (7)

a’ � (log e)(a − 1)/q, b’ � (log e)b/q, (8)

where e is the Napier’s constant. In the derivation of Eq. 7 the
formula [41]

FIGURE 1 | The plots of observational stations (pink dots) in the world [19].
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(log e)(θq − 1)/q → log θ as q → 0, (9)

has been implied. The smaller themagnitude of q, the stronger the
kurtosis (i.e., nonlinearities with the positive curvature) in the

plane on the rotation angle versus the rank. Thus, along with ΔT
(K) and ΔH (mm), by tracing the change of the key parameter q,
one can appreciate a sign of a global-scale positive feedback. Here
ΔT (K) (ΔH (mm)) stands for the increment of the mean
temperature (the mean annual precipitation) from the former
to the latter period.

Examples of Rank-Size Rules
To date, sustained efforts have been made to find nontrivial rules
in the ranking of a variety of complex systems, not only in
linguistics but in geometry, geography, demography, and
sciences on social phenomena [20–26, 36–38]. More recently
has ranking been regarded as a tool useful for condensing large-
scale data that have been accumulating in contemporary sciences
such as, e.g., computational metallurgy [42] and gravitational
wave astronomy [43], though the results are not yet ready for
finding a rule. Below, to illustrate the rank-size rule, three
examples of the preceding analysis are selected in Figure 2:

1) The Metropolis of Tokyo with the entire area 2,187 km2

consists of 62 municipalities, nine of which are located off
the main land [44]. Figure 2A shows the rank dependence of
the areas of municipalities (excluding those on islands) in the
Metropolis of Tokyo. The line in the figure indicates the
optimal fit to Eq. 5 (|r| � 0.9961 with d � 1.861 for q �
0.21 and n � 53). The rank-size rule has been preserved at least
for several decades because this prefecture has not experienced
a large-scale municipal consolidation. The magnitude of qwas
found to be smallest among all the prefectures in Japan.
Indeed, the value tends to be larger as the number density
of municipalities of a prefecture gets lower [36, 37]. In
computational geometry, an analog with such an extremely
squeezed configuration as seen for Tokyo Metropolis can be
found in squared squares [36]. For instance, for theWillcocks’
square [45], q � 0.78 with |r| � 0.9945 and d � 1.450, while for
the Duijvestijin’s square [46], q � 0.84 with |r| � 0.9977 and
d � 1.521.

2) Japan is divided into 47 prefectures, each of which has been
playing a battle to increase its share of the market for the
foreign visitors from East Asian countries as well as the
United States, Europe, and Australia. Figure 2B plots the
rank dependence of the numbers of foreign visitors in the 47
Japanese prefectures (data from January to December, 2016
[47]). The line in the figure indicates the optimal fit (|r| �
0.9988 with d � 1.160 for q � 0.27 and n � 47). With the
extremely high degree of fit to the function of Eq. 5 a series of
47 dots align in an exquisite harmony. The top three on the
ranking are Tokyo Metropolis, Osaka Prefecture, and
Hokkaido. The arrangement of dots on the line bears the
strong nonlinearity (q � 0.27), which reminds one of the so-
called Matthew effect [48–51] that implies ‘rich-get-richer.’

3) Japanese texts can be written with 45 syllabaries. Figure 2C
depicts the dependence of the frequencies of Japanese syllabics
in 1,000 male given names [52]. The line in the figure indicates
the optimal fit to Eq. 5 (|r| � 0.9977 with d � 2.041 for q � 1.01
and n � 41). It is surprising to note that without interactions
among godparents the distribution of the syllabics exhibits

FIGURE 2 | Examples of rank-size rules. (A) Rank dependence of the
areas of municipalities in the Metropolis of Tokyo. The line indicates the
optimized fit (|r| � 0.9961 with d � 1.861 for q � 0.21 and n � 53). (B) Rank
dependence of the numbers of foreign visitors in the 47 Japanese
prefectures (data from January to December, 2016). The line indicates the
optimized fit (|r| � 0.9988 with d � 1.160 for q � 0.27 and n � 47). (C) Rank
dependence of the frequencies of Japanese syllabics in 1,000 male given
names. The line indicates the optimized fit (|r| � 0.9977 with d � 2.041 for q �
1.01 and n � 41).
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such a simple rule. Incidentally it should be remembered here
that instead of the power law (Zipf’s law) for the word
occurrence, alphabetical frequencies in English texts obey
the logarithmic law with q � 1 [20].

RESULTS

Global Analysis
Computed results of the temperatures and precipitations,
respectively, are given in Figures 3, 4. In both cases, of the

FIGURE 3 | Rank dependence of the cross angles of the monthly
temperatures on the World stations (Supplementary Tables S1,S2 in
Supplementary Material). (A) From Period I (from 1931 to 1960) to Period II (from
1951 to 1980). The line indicates the optimized fit (|r| � 0.9974 with d � 0.594
for q � 1.61 and n � 115). (B) From Period II (from 1951 to 1980) to Period III (from
1981 to 2010). The line in the plots indicates the optimized fit (|r| � 0.9961 with d �
0.784 for q � 1.01 and n� 116). (C)Scattergram of rank data of Period II to III versus
the data of Period I to II (rS � 0.7907 with d � 2.021 for n � 116).

FIGURE 4 | Rank dependence of the cross angles of the monthly
precipitations on the World stations. (A) From Period I (from 1931 to 1960) to
Period II (from 1951 to 1980). The line indicates the optimized fit (|r| � 0.9675
with d � 0.409 for q � 1.21 and n � 106). (B) From Period II (from 1951 to
1980) to Period III (from 1981 to 2010). The line indicates the optimized fit (|r| �
0.9863 with d � 0.709 for q � 1.51 and n � 107). (C) Scattergram of rank data
of Period II to III versus the data of Period I to II (rS � 0.5183 with d � 1.994 for
n � 108).

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 9 | Article 6879004

Hayata Rank-Size Rule of Climate Change

185

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


four modellings (Eqs. 2–5) the best fit to the logarithmic function,
Eq. 5, has been confirmed. Specifically, for the temperatures, over
Period I (from 1931 to 1960) to Period II (from 1951 to 1980), |r|
� 0.9974 with d � 0.594 for q � 1.61 (n � 115), while over Period II
(from 1951 to 1980) to Period III (from 1981 to 2010), |r| � 0.9961
with d � 0.784 for q � 1.01 (n � 116). For the precipitations, over
Period I to II, |r| � 0.9675 with d � 0.409 for q � 1.21 (n � 106),
while over Period II to III, |r| � 0.9863 with d � 0.709 for q � 1.51

(n � 107). The reason why the number of dots fluctuates within
106 ≤ n ≤ 116 will be mentioned below. The top-twenty rankings
of the rotation angle are listed, respectively, in Tables 1A, 1B, and
in Tables 2A, 2B. With these results we comment as follows:

1) For Period I (from 1931 to 1960) to Period II (from 1951 to
1980), rank dependence of the rotation angles of the monthly
distributions of temperatures on the World stations is shown
in Figure 3A. The line in the figure indicates the optimized fit
to Eq. 5 (|r| � 0.9974 with d � 0.594 for q � 1.61 and n � 115),
where an exceptional datum on the top ranking, Urumchi, is
excluded. It can be seen that the dots are regularly arranged
according to the rank-size rule, but there exist three clusters in
the dots’ aggregations. The magnitude of q considerably larger
than unity (q � 1.61) indicates that the effect due to the snow/
ice-albedo feedback is not yet so critical in this period
(Table 1A).

2) For Period II (from 1951 to 1980) to Period III (from 1981 to
2010) the rank dependence of the cross angles is given in
Figure 3B. The line in the figure indicates the optimal fit with
Eq. 5 (|r| � 0.9961 with d � 0.784 for q � 1.01 and n � 116). It is
found that although the rank-size rule is preserved, the
magnitude of q decreases substantially in comparison with
the former period, suggesting that the snow/ice-albedo
feedback becomes critical in particular on the highly
latitudinal stations in the Northern Hemisphere (for
specific numeric, Table 1B).

3) In Figure 3C, scattergram is plotted for rank data of Period II
to III versus those of Period I to II (rS � 0.7907 with d � 2.021
for n � 116). Here rS denotes the Spearman’s coefficient of
rank correlation

rS � 1 − kn ∑
i

(χi − Ψ i)
2, kn � 6/[n(n2 − 1)] (10)

with the summation Σi for i � 1 to n; χi and ψi are the rank data
along the axis of abscissas and ordinates, respectively. It is
evident from the plots that, like a stomach bounded by the
bottom of an esophagus and the top of a duodenum, the
envelope of the intermediate dots swells out, indicating that
the ranks exhibit higher mobilities in comparison with those
aggregated in the vicinity of the top and bottom.

4) For Period I (from 1931 to 1960) to Period II (from 1951 to
1980), rank dependence of the rotation angles of the monthly
distributions of precipitations on the World stations is shown
in Figure 4A. The line in the figure indicates the optimized fit
with Eq. 5 (|r| � 0.9675 with d � 0.409 for q � 1.21 and n � 106),
wherein two exceptional data on the top ranking, Asswan and
Kashgar, are foreclosed. First, it is found in the plots that in
sharp contrast to the temperature counterpart (|r| � 0.9974 in
Figure 3A) the degree of fit, |r|, reduces substantially. Indeed,
the arrangement of the dots creates a sigmoid curve rather than
a straight line.

5) For Period II (from 1951 to 1980) to Period III (from 1981 to
2010) the rank dependence of the precipitations is given in
Figure 4B. The line in the figure indicates the optimal fit to
Eq. 5 (|r| � 0.9863 with d � 0.709 for q � 1.51 and n � 107).

TABLE 1A | Top-twenty World stations in the intersecting angle of the monthly
temperatures from Period I (from 1931 to 1960) to Period II (from 1951 to
1980).

Rank Station Lat. (°ʹ) θ (°) Δ T (K)

01 Urumchi 43 47 N 10.93 +2.9
02 Oslo 60 12 N 4.81 −0.6
03 Reykjavik 64 08 N 4.14 −0.4
04 Ostrov Dikson 73 30 N 3.90 −1.4
05 Edmonton 53 34 N 3.70 +0.4
06 Sofia 42 39 N 3.57 −0.2
07 Omsk 55 01 N 3.50 +0.4
08 Luxembourg 49 37 N 3.47 −0.5
09 Helsinki 60 19 N 3.17 +0.3
10 Vladivostok 43 07 N 2.98 −0.1
11 Warszawa 52 09 N 2.91 −0.1
12 Stockholm 59 21 N 2.77 −0.4
13 Atlanta 33 39 N 2.75 −0.5
14 Kashgar 39 28 N 2.73 0.0
15 Damascus 33 25 N 2.70 −1.5
16 Moskva 55 50 N 2.68 +0.2
17 Ankara 39 57 N 2.64 0.0
18 Tashkent 41 20 N 2.57 +0.4
19 Winnipeg 49 55 N 2.56 −0.3
20 Addis Ababa 09 02 N 2.52 +1.1

ΔT stands for the increment of the mean temperature from the former to the latter period.

TABLE 1B | Top-twenty World stations in the intersecting angle of the monthly
temperatures from Period II (from 1951 to 1980) to Period III (from 1981 to
2010).

Rank Station Lat. (°ʹ) θ (°) Δ T (K)

01 Edmonton 53 34 N 9.05 +1.2
02 Oslo 60 12 N 8.57 +1.1
03 Anchorage 61 09 N 8.56 +1.0
04 Moskva 55 50 N 7.26 +1.2
05 St. Petersburg 59 58 N 6.93 +1.2
06 Irkutsk 52 16 N 6.31 +1.3
07 Omsk 55 01 N 6.05 +1.3
08 Winnipeg 49 55 N 5.98 +0.7
09 Chang-chun 43 54 N 5.63 +0.8
10 Stockholm 59 21 N 5.00 +0.5
11 Helsinki 60 19 N 4.90 +0.6
12 Kiev 50 24 N 4.80 +0.8
13 Vladivostok 43 07 N 4.52 +0.7
14 Warszawa 52 09 N 4.35 +0.7
15 Urumchi 43 47 N 4.34 +0.1
16 Muenchen 48 21 N 4.21 +1.3
17 Dalian 38 54 N 4.05 +0.2
18 London 51 28 N 3.82 +2.3
19 Koebenhavn 55 41 N 3.75 +0.6
20 Sapporo 43 03 N 3.62 +0.9
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Aside from the increase of q, there is no substantial change from
the result of the former period (Figure 4A). One can see a
discontinuity across the rank nine (Urumchi) and ten (Sydney).
To conclude, comparison between Figure 4A and Figure 4B
indicates that in contrast to the temperatures, there exists no
evidence of the climatic positive feedback for the precipitations.

6) In Figure 4C scattergram is plotted for rank data of Period II
to III versus the data of Period I to II (rS � 0.5183 with d �
1.994 for n � 108). In comparison with the temperatures (rS �
0.7907 for Figure 3C) the rank correlation coefficient reduces
substantially. It can be concluded that the reduction in the
rank correlation is caused by the stochastic nature of the
precipitations.

Regional Analysis
Results of the temperatures and precipitations, respectively, are
given in Figures 5, 6. In both cases, of the four modellings (Eqs.
2–5) the best fit to the logarithmic function (Eq. 5) has been
confirmed. Specifically, for the temperatures, over Period I (from
1931 to 1960) to Period II (from 1951 to 1980), |r| � 0.9973 with
d � 0.662 for q � 1.89 (n � 75), while over Period II (from 1951 to
1980) to Period III (from 1981 to 2010), |r| � 0.9883 with d �
0.477 for q � 0.91 (n � 75). For the precipitations, over Period I to
II, |r| � 0.9705 with d � 0.666 for q � 3.77 (n � 74), while over
Period II to III, |r| � 0.9932 with d � 0.540 for q � 2.49 (n � 75).
The reason why the number of dots fluctuates between n � 74 and
75 will be mentioned below. The top-twenty rankings of the
rotation angle are listed in Tables 3A, 3B for the temperatures
and in Tables 4A, 4B for the precipitations. With these results we
remark as follows:

1) For Period I (from 1931 to 1960) to Period II (from 1951 to 1980),
rank dependence of the cross angles of the monthly temperatures
on the Japanese stations is shown in Figure 5A. The line in the
figure indicates the optimized fit to Eq. 5 (|r| � 0.9973 with d �
0.662 for q � 1.89 and n � 75). It can be seen that as has been
found in the World counterpart (Figure 3A) the dots are linearly
arranged according to the rank-size rule with several clusters in the
dots’ aggregations. Again, the magnitude of q becomes
considerably larger than unity (q � 1.89), suggesting that the
effect arising from the snow/ice-albedo feedback is not yet so
apparent in the present period.

2) For Period II (from 1951 to 1980) to Period III (from 1981 to
2010) the rank dependence of the cross angles is given in
Figure 5B. The line in the figure indicates the optimized fit to
Eq. 5 (|r| � 0.9883 with d � 0.477 for q � 0.91 and n � 75). It is
found that although the rank-size rule is preserved, the magnitude
of q decreases substantially in comparison with the former period
(1.89→0.91), revealing that the snow/ice-albedo feedback
becomes critical in particular on the highly latitudinal stations
in Japan (for specific numeric, see Table 3B).

3) InFigure 5C, scattergram is plotted for rank data of Period II to III
versus those of Period I to II (rS � 0.6381 with d � 2.125 for n �
75). The dots’ pattern shares a feature with the one in the World
temperatures (Figure 3C). Namely, the envelope of the
intermediate dots tends to swell out, indicating that except
several spots in the vicinity of the top and bottom the ranking
shows relatively high mobilities.

4) For Period I (from 1931 to 1960) to Period II (from 1951 to
1980), rank dependence of the rotation angles of the
monthly distributions of precipitations on the Japanese
stations is shown in Figure 6A. The line in the figure
indicates the optimized fit to Eq. 5 (|r| � 0.9705 with

TABLE 2A | Top-twenty World stations in the intersecting angle of the monthly
precipitations from Period I (from 1931 to 1960) to Period II (from 1951 to
1980).

Rank Station Lat. (°ʹ) θ (°) Δ H (mm)

01 Asswan 23 57 N 90.00 −1.5
02 Kashgar 39 28 N 48.06 −33.9
03 Riyadh 24 42 N 31.06 +21.4
04 Cairo 30 06 N 22.73 −3.6
05 Urumchi 43 47 N 20.80 −97.4
06 Amman 31 59 N 18.83 +8.5
07 Damascus 33 25 N 17.59 −82.6
08 Kingston 17 56 N 15.75 +5.4
09 Ostrov Dikson 73 30 N 14.97 +77.4
10 Wuhang 30 36 N 13.78 −53.9
11 Taipei 25 02 N 13.43 −96.1
12 Buenos Aires 34 35 S 13.06 +122.9
13 Dalian 38 54 N 12.73 +52.0
14 Peshawar 34 01 N 12.72 −5.0
15 Luxembourg 49 37 N 12.15 +40.0
16 Tunis 36 50 N 11.82 +27.7
17 Dar Es Salaam 06 52 S 11.65 +87.5
18 Istanbul 40 54 N 11.32 −102.7
19 New Delhi 28 35 N 11.25 +71.9
20 Barcelona 41 17 N 11.01 +55.6

ΔH stands for the increment of the mean annual precipitation from the former to the latter
period. Without their precipitation data available, Tehran, Khartoum, Djibouti, Bogota, La
Paz, Lima, Maputo, and Honiara are excluded.

TABLE 2B | Top-twenty World stations in the intersecting angle of the monthly
precipitations from Period II (from 1951 to 1980) to Period III (from 1981 to
2010).

Rank Station Lat. (°ʹ) θ (°) Δ H (mm)

01 Asswan 23 57 N 52.52 +2.6
02 Kashgar 39 28 N 27.12 +19.4
03 Amman 31 59 N 21.46 −13.0
04 Karachi 24 54 N 19.37 −57.6
05 Kingston 17 56 N 18.00 +12.7
06 Las Vegas 36 05 N 17.88 +1.9
07 Cairo 30 06 N 17.33 +13.2
08 Melbourne 37 39 S 17.08 −239.7
09 Lyon 45 43 N 17.05 +24.4
10 Sydney 33 56 S 17.00 −212.9
11 Urumchi 43 47 N 14.85 +110.6
12 Shanghai 31 25 N 14.50 +36.5
13 Tunis 36 50 N 14.28 −26.8
14 Athinai 37 44 N 13.58 −12.8
15 Dar-EI-Beida 36 41 N 13.57 −148.4
16 Madrid 40 24 N 13.43 −41.8
17 Lisboa 38 43 N 13.39 −39.0
18 Sofia 42 39 N 13.20 −67.0
19 Gibraltar 36 09 N 12.98 +23.2
20 Nairobi 01 19 S 12.81 −260.5

Without their precipitation data available, Tehran, Khartoum, Djibouti, Bogota, La Paz,
Lima, Maputo, and Honiara are excluded.

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 9 | Article 6879006

Hayata Rank-Size Rule of Climate Change

187

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


d � 0.666 for q � 3.77 and n � 74), wherein an exceptional
datum on the top ranking, Karuizawa, is foreclosed. First, it
is found in the plots that in contrast to the temperatures
(Figure 5A) the degree of fit, |r|, reduces substantially. As
has been seen in the World precipitations the arrangement
of the dots bears a sigmoid feature rather than a
straight one.

5) For Period II (from 1951 to 1980) to Period III (from 1981 to
2010) the rank dependence of the precipitations is given in
Figure 6B. The line in the figure indicates the optimized fit to

Eq. 5 (|r|� 0.9932with d� 0.540 for q� 2.49 and n� 75). One can
see a discontinuity across the rank four (Obihiro) and five
(Owase). Aside from the increase in |r| (0.9705→0.9932) and
the decrease in q (3.77→2.49), there is no noticeable change from
the result of the former period (Figure 6A). To conclude,
comparison between Figure 6A and Figure 6B indicates that

FIGURE 6 | Rank dependence of the cross angles of the monthly
precipitations on the Japanese stations. (A) From Period I (from 1931 to 1960)
to Period II (from 1951 to 1980). The line indicates the optimized fit (|r| � 0.9705
with d � 0.666 for q � 3.77 and n � 74). (B) From Period II (from 1951 to
1980) to Period III (from 1981 to 2010). The line indicates the optimized fit (|r| �
0.9932 with d � 0.540 for q � 2.49 and n � 75). (C) Scattergram of rank data of
Period II to III versus the data of Period I to II (rS � 0.3797 with d � 1.992 for
n � 75).

FIGURE 5 | Rank dependence of the cross angles of the monthly
temperatures on the Japanese stations (Supplementary Table S3 in
Supplementary Material). (A) From Period I (from 1931 to 1960) to Period II
(from 1951 to 1980). The line indicates the optimized fit (|r| � 0.9973 with
d � 0.662 for q � 1.89 and n � 75). (B) From Period II (from 1951 to 1980) to
Period III (from 1981 to 2010). The line indicates the optimized fit (|r| � 0.9883
with d � 0.477 for q � 0.91 and n � 75). (C) Scattergram of rank data of Period
II to III versus the data of Period I to II (rS � 0.6381 with d � 2.125 for n � 75).
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in contrast to the temperatures, there exists no evidence of the
climatic positive feedback for the precipitations.

6) In Figure 6C scattergram is plotted for rank data of Period II to III
versus those of Period I to II (rS� 0.3797with d� 1.992 for n� 75).
In comparison with the temperatures (rS � 0.6381 for Figure 5C)
the rank correlation coefficient reduces substantially. In the same
way as the World precipitations (Figure 4C), this reduction of the
rank correlation is attributable to the stochastic nature inherent in
the statistics of precipitations.

DISCUSSION

Global Analysis
The results of Figure 3 along with Tables 1A, 1B indicate
quantitatively that indeed the climate change has arisen in the
global scale, but the circumstances are more critical in the
northern countries on the Northern Hemisphere than those on
the Southern Hemisphere. For the Northern Hemisphere (n � 97)
regression analysis of the intersecting angle versus the latitude has

TABLE 4A | Top-twenty Japanese stations in the intersecting angle of the monthly
precipitations from Period I (from 1931 to 1960) to Period II (from 1951 to
1980).

Rank Station Lat. (°ʹ) θ (°) Δ H (mm)

01 Karuizawa 36 21 N 11.67 −41
02 Izuhara 34 12 N 9.06 +50
03 Tokushima 34 04 N 9.03 +118
04 Hamada 34 54 N 8.04 +85
05 Murotomisaki 33 15 N 7.56 +12
06 Takamatsu 34 19 N 7.55 −43
07 Hamamatsu 34 45 N 7.50 −5
08 Sakata 38 55 N 7.31 −33
09 Abashiri 44 01 N 7.31 −6
10 Obihiro 42 55 N 7.28 +9
11 Nagoya 35 10 N 7.23 +29
12 Fukuoka 33 35 N 7.19 −13
13 Kofu 35 40 N 7.14 −114
14 Tsu 34 44 N 7.11 +4
15 Nagano 36 40 N 7.09 −14
16 Aikawa 38 02 N 7.02 +17
17 Yokohama 35 26 N 7.01 −69
18 Kochi 33 34 N 6.93 +20
19 Saigo 36 12 N 6.83 −72
20 Ushiomisaki 33 27 N 6.82 +185

TABLE 4B | Top-twenty Japanese stations in the intersecting angle of the monthly
precipitations from Period II (from 1951 to 1980) to Period III (from 1981 to
2010).

Rank Station Lat. (°ʹ) θ (°) Δ H (mm)

01 Tokushima 34 04 N 11.02 −289
02 Nemuro 43 20 N 10.44 −51
03 Urakawa 42 10 N 9.79 −110
04 Obihiro 42 55 N 9.58 −64
05 Owase 34 04 N 8.75 −269
06 Abashiri 44 01 N 8.75 −51
07 Murotomisaki 33 15 N 8.57 −198
08 Matsumoto 36 15 N 8.32 −36
09 Kofu 35 40 N 8.27 +42
10 Shimizu 32 43 N 8.26 +6
11 Hamamatsu 34 45 N 8.16 −119
12 Naze 28 23 N 8.13 −213
13 Sakata 38 55 N 8.01 +9
14 Tsu 34 44 N 7.76 −127
15 Hachijojima 33 07 N 7.64 −60
16 Kumagaya 36 09 N 7.60 +79
17 Ida 35 31 N 7.59 −70
18 Matsumoto 36 15 N 7.55 −36
19 Nagoya 35 10 N 7.48 −40
20 Wakayama 34 14 N 7.34 −137

TABLE 3A | Top-twenty Japanese stations in the intersecting angle of the monthly
temperatures from Period I (from 1931 to 1960) to Period II (from 1951 to
1980).

Rank Station Lat. (°ʹ) θ (°) Δ T (K)

01 Karuizawa 36 21 N 2.90 +0.2
02 Obihiro 42 55 N 2.64 +0.4
03 Kushiro 42 59 N 2.58 +0.3
04 Sapporo 43 04 N 2.46 +0.4
05 Aomori 40 49 N 2.31 +0.5
06 Sendai 38 16 N 2.21 +0.6
07 Tokyo 35 41 N 2.17 +0.6
08 Abashiri 44 01 N 2.16 0.0
09 Asahikawa 43 46 N 2.02 +0.3
10 Nemuro 43 20 N 1.89 +0.1
11 Yamagata 38 15 N 1.87 +0.4
12 Morioka 39 42 N 1.82 +0.3
13 Hakodate 41 49 N 1.79 +0.2
14 Akita 39 43 N 1.74 +0.3
15 Urakawa 42 10 N 1.73 +0.2
16 Sakata 38 55 N 1.70 +0.2
17 Yokohama 35 26 N 1.67 +0.6
18 Wakkanai 45 25 N 1.66 +0.1
19 Osaka 34 41 N 1.66 +0.7
20 Fukushima 37 46 N 1.64 +0.4

TABLE 3B | Top-twenty Japanese stations in the intersecting angle of the monthly
temperatures from Period II (from 1951 to 1980) to Period III (from 1981 to
2010).

Rank Station Lat. (°ʹ) θ (°) Δ T (K)

01 Kushiro 42 59 N 4.07 +0.6
02 Obihiro 42 55 N 3.94 +0.7
03 Sapporo 43 04 N 3.62 +0.9
04 Abashiri 44 01 N 3.60 +0.6
05 Nemuro 43 20 N 3.39 +0.5
06 Asahikawa 43 46 N 3.30 +0.6
07 Hakodate 41 49 N 3.09 +0.8
08 Wakkanai 45 25 N 2.73 +0.5
09 Aomori 40 49 N 2.71 +0.8
10 Okayama 34 40 N 2.49 +1.6
11 Takayama 36 09 N 2.08 +0.7
12 Utsunomiya 36 33 N 2.07 +0.9
13 Karuizawa 36 21 N 2.01 +0.4
14 Kagoshima 31 33 N 2.00 +1.3
15 Sendai 38 16 N 1.94 +0.5
16 Sakata 38 55 N 1.93 +0.8
17 Urakawa 42 10 N 1.91 +0.2
18 Akita 39 43 N 1.91 +0.7
19 Aikawa 38 02 N 1.81 +0.8
20 Shimonoseki 33 57 N 1.80 +1.2
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shown the typical exponential growth with r � 0.8195 (d � 1.234) for
Period II to III, whereas r � 0.7063 (d � 1.754) for Period I to II. For
the Southern Hemisphere (n � 19), however, the degree of fit has
reduced substantially, i.e., r � 0.5151 (d � 2.113) for Period II to III,
while r � 0.5080 (d � 2.708) for Period I to II, though both of them
barely maintain the exponentiality. In striking contrast to the
temperatures, for the results of the precipitations, no effect arising
from the positive feedback has been observed (Figures 4A, B).
Instead of the latitudinal dependence, the relations of the
rotation angles as a function of the mean annual
precipitations on the Entire Sphere (n � 108) have been
shown to obey the logarithmic decay as r � −0.7609 (d �
1.332) for Period I to II, and r � −0.6795 (d � 1.611) for Period
II to III. Here, as specific data of the annual precipitations, the
arithmetic mean of the two subsequent periods has been
adopted. The results suggest that a forthcoming large-scale
rainmaking or artificial rain project using cloud seeding by
spreading silver iodide [53] might make possible arbitrarily
(not spontaneously) perturbing the upper ranking in the
statistics of World precipitations.

Regional Analysis
For the Japanese stations (n � 75) regression analysis of the
intersecting angle versus the latitude has shown the
logarithmic growth with r � 0.7361 (d � 1.976) for Period I
to II, in contrast to the exponential growth with r � 0.7373 (d �
1.639) for Period II to III. In remarkable contrast to the
temperatures, for the results of the precipitations, similarly
to the global counterpart, no effect due to the positive feedback
has been observed (Figures 6A,B with Table 4A, 4B).
Incidentally, for the present, Japan takes no potential
interest in the artificial rain project on his territory.

Comparison With Other Methods
The procedure mentioned in Subsection 2.1 can be modified
with joining the first differences [19].

p � (<u1> , <u2> , ..., <u12> ; <v1> , <v2> , ..., <v11> ), (11)

q � (<x1> , <x2> , ..., <x12> ; <y1> , <Y2> , ..., <Y11>), (12)

<vj> � <uj+1> − <uj> , (13)

<yj> � <xj+1> − <xj> . (14)

Here j� 1, 2, . . . , 11. Note that< vj> and<yj> stand for the rate of
change. To discriminate this method from the original one (i.e., <vj
>≡0 and <yj >≡0, respectively, in Eqs. 11, 12), we will use the terms,
Method A (original; 12 dimensions) and Method B (modified as Eqs.
11, 12; 23 dimensions), respectively. The vectors can be expanded
further by adding the second differences [19].

p � (<u1> , <u2> , ..., <u12> ; <v1> ,
<v2> , ..., <v11> ; <w1> , <w2> , ..., <w10>), (15)

q � (<x1> , <x2> , ..., <x12> ; <y1> ,
<y2> , ..., <y11> ; <z1> , <z2> , ..., <z10>),

(16)

<wk> � <vk+1> − <vk> , (17)

<zk> � <yk+1> − <yk> . (18)

Here k� 1, 2, . . . , 10. Note that<wk> and<zk> imply the ‘monthly
change of curvature.’ To discriminate this method from other
methods we will term it Method C (ultimately modified; 33
dimensions).

In Table 5 comparison among these methods is made for
optimized fitting parameters in the rank dependence of the
rotation angle of the monthly temperatures on the 116 World
stations. For Period I to II an exceptional spot, Urumchi, has been
excluded. First, one can find, irrespective of the period as well as the
method, the high degree of fit is preserved to the function ofEq. 5. For
the optimal value of q, however, one can see a significant difference,
i.e., the median of the parameter decreases in the subsequent period;
this tendency is most remarkable in Method A (q: 1.61→1.01). It is
interesting to investigate the results in the data of precipitations. In
Table 6 comparison among the three methods is made for optimized
fitting parameters in the rank dependence of the intersecting angle of
the monthly precipitations on the 108 World stations for which data
on precipitations are available. Note that in addition to the eight
stations the following spots that include exceptional data have been
excluded: for Period I to II, Asswan and Kashgar; for Period II to III,
Asswan. In comparison between Table 5 (temperatures versus ranks)
and Table 6 (precipitations versus ranks), the degree of fit, |r|, reduces
substantially in the latter, indicating that for the ranking of
precipitations, there might be a difficulty in adopting the function

TABLE 5 |Comparison of optimal fitting parameters in the rank dependence of the
intersecting angle of the monthly temperatures on the World stations. (a) From
Period I (from 1931 to 1960) to Period II (from 1951 to 1980); (b) From Period II
(from 1951 to 1980) to Period III (from 1981 to 2010).

(a) Period I to II

Method n q |r| d

A 115 1.61 0.9974 0.594
B 115 1.43 0.9961 0.526
C 115 1.32 0.9961 0.856

(b) Period II to III

A 116 1.01 0.9961 0.784
B 116 1.28 0.9969 1.088
C 116 1.44 0.9966 0.688

TABLE 6 |Comparison of optimal fitting parameters in the rank dependence of the
intersecting angle of the monthly precipitations on the World stations. (a) From
Period I (from 1931 to 1960) to Period II (from 1951 to 1980); (b) From Period II
(from 1951 to 1980) to Period III (from 1981 to 2010).

(a) Period I to II

Method n q |r| d

A 106 1.21 0.9675 0.404
B 106 1.11 0.9768 0.176
C 106 1.60 0.9880 0.420

(b) Period II to III

A 107 1.51 0.9863 0.709
B 107 1.69 0.9924 0.415
C 107 1.83 0.9873 0.397
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of Eq. 5. With respect to the change of q, in Table 6 the tendency is
reversed, i.e., its value increases in the latter period. The comparative
results of the regional analysis are listed in Tables 7 and 8. The
principal features that have been confirmed in the global analysis are
found to be shared with those in the domestic counterpart. Note that
for the temperatures (Table 7), independently of themethod, the value
of q in Period II to III becomes smaller than unity (q < 1). The blanks
in Table 7 have arisen from a certain ill-posed behavior in the prosses
of parameter optimization.

CONCLUSION

Independently of the period, the variation of the angles has been
found to show a long-tailed decay as a function of their ranks being
aligned in descending order. For the temperatures this trend has
been shown to get more remarkable in the latter period, confirming
that indeed the albedo feedback arises. In contrast to the
temperatures (Figure 3 and Table 5), no indication of the
feedback has yet been found for the precipitations (Figure 4 and
Table 6). To examine the validity of the rank-size analysis in more
detail, a regional analysis for 75 stations in Japan has been made as
well. Computed results have shown a coherence with the global
counterpart. To conclude, through the numerical results of this
paper we have confirmed that, along with conventional applications
to complex systems, the rank-size approach is useful for revealing
climate change impacts not only in the global but in the regional

scale. With the current pace in the warming being preserved, the
worse (i.e., q � 1.61→q � 1.01→q < 1) for theWorld temperatures is
anticipated for Period III (from 1981 to 2010) to the subsequent
Period IV (from 2011 to 2040). The worst scenario will be q→0, in
which θ versus χ obeys the power law as suggested in Eqs. 7, 9.

Extension of the methodology to arbitrary circular data in
climatic studies [39, 40], such as the wind direction and the
animal migration, might be interesting as a future research topic.
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