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To deal with the abundant amount of information in the environment in order to achieve our 
goals, human beings adopt a strategy to accumulate some information and filter out other infor-
mation to ultimately make decisions. Since the development of cognitive science in the 1960s, 
researchers have been interested in understanding how human beings process and accumulate 
information for decision-making. Researchers have conducted extensive behavioral studies and 
applied a wide range of modeling tools to study human behavior in simple-detection tasks and 
two-choice decision tasks (e.g., discrimination, classification).

In general, researchers often assume that the manner in which information is processed for deci-
sion-making is invariant across individuals given a particular experimental context. Independent 
variables, including speed-accuracy instructions, stimulus properties (i.e., intensity), and charac-
teristics of the participants (i.e., aging, cognitive ability) are assumed to affect the parameters in a 
model (i.e., speed of information accumulation, response bias) but not the way that participants 
process information (e.g., the order of information processing). Given these assumptions, much 
modeling has been accomplished based on the grouped data, rather than the individual data. 
However, a growing number of studies have demonstrated that there were individual differences 
in the perceptual decision process. In the same task context, different groups of the participants 
may process information in different manners. The capacity and architecture of the decision 
mechanism were found to vary across individuals, implying that humans’ decision strategies 
can vary depending on the context to maximize their performance.

In this special issue, we focused on a particular subset of cognitive models, particularly accumu-
lator models, multinomial processing trees and systems factorial technology (SFT) as applied 
to perceptual decision making. The motivation for the focus on perceptual decision-making is 
threefold. Empirical studies of perception have grown out of a history of making a large num-
ber of observations for each individual so as to achieve precise estimates of each individual’s 
performance. This type of data, rather than a small number of observations per individual, is 
most amenable to achieving precision in individual-level and group-level cognitive modeling. 
Second, the interaction between the acquisition of perceptual information and the decisions 
based on that information (to the extent that those processes are distinguishable) offers rich data 
for scientific exploration. Finally, there is an increasing interest in the practical application of 
individual variation in perceptual ability, whether to inform perceptual training and expertise, 
or to guide personnel decisions. Although these practical applications are beyond the scope of 
this issue, we hope that the research presented herein may serve as the foundation for future 
endeavors in that domain.
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The contributions of Fific, Chechile, and Zhang et al. each represents fundamental advances 
in individual difference modeling that will be useful in future research on perceptual deci-
sion-making. Chechile’s contribution argues for the viability of multinomial processing tree 
as a more informative model of perceptual decision-making than the more traditional signal 
detection approach. In the article, he demonstrates the use of a hierarchical application of the 
model to account for both group-level and individual-level performance. Fific’s article gives an 
overview of SFT, a framework that is applied in many of the articles in this special issue, and 
contributes new analyses and details on the application of SFT. This new contributions include 
demonstrations of SFT’s advantages for studying individual differences and group-level analyses, 
a consequence of the fact that the diagnostic SFT statistics are estimated at the individual level 
rather than from data aggregated across subjects. Next, Zhang et al. demonstrate a new approach 
to fitting a particular type of accumulator model to individual subject data: diffusion models 
with flexible, time-varying decision boundaries.

Yang & Wu’s contribution includes an example of the dangers of averaging data across individ-
uals: important patterns of performance at the individual level can be obscured when averaging 
across participants. In their contribution, they argue that an empirical phenomenon known as 
the category variability effect, which is important for distinguishing among models of perceptual 
categorization, may be common but often overlooked due to averaging across participants. By 
applying individual-level modeling, they found clear evidence for the category variability effect 
in some, but not all, individuals.

Blunden et al. also contribute to knowledge on individual differences in perceptual categorization. 
They explore the effect of categorization training on perceptual discrimination among faces 
generated by combining four different base faces. By applying multiple quantitative approaches 
(General Recognition Theory, multidimensional scaling, SFT and the logical-rules framework) 
they are able to classify individual participants based on whether they use parallel self-terminating 
processes and what type interactions occur between the perception of each stimulus dimension.

Yu et al. and Endres et al. investigate the connections between processing capacity and working 
memory capacity. Yu et al. systematically explore the connection between SFT capacity measures 
in three different target detection tasks and an operations span task score (a commonly used 
measure of working memory capacity). Endres et al. develop a new task to examine the relative 
effects of loading either visual-spatial items or phonetic items into working memory on visual 
processing capacity as a function of operation span task scores.

Houpt et al. examine variation in visual processing capacity as a function of a different construct, 
reading ability and particularly dyslexia diagnoses. Building on earlier work measuring word-su-
periority type effects across words, pseudowords and non-words with SFT, they demonstrate 
how various subpopulations within those diagnosed with dyslexia might be identified.

Nunez et al. explore the connection between cognitive models and EEG measures of attention. 
They find that individual differences in task performance are explained by parametric variation 
in an evidence accumulation model. Furthermore, the parametric differences across individuals, 
particularly in the evidence accumulation rates, are highly correlated with the EEG measure of 
attentional control.

Chang & Yang’s article examines the connection between cultural differences, particularly indi-
vidual thinking style, and visual processing capacity. Using both accumulator models and SFT, 
they find that individuals that have higher “middle-way thinking” scores (roughly, the tendency 
to consider many alternative perspectives) had higher visual processing capacity as well.

Citation: Houpt, J. W., Yang, C-T., Townsend, J. T., eds. (2016). Modeling Individual Differences 
in Perceptual Decision Making. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-056-5
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The Editorial on the Research Topic

Modeling Individual Differences in Perceptual Decision Making

Researchers have been interested in how human beings accumulate and process information
for decision-making since the development of experimental psychology in the late nineteenth
century and then its renaissance in cognitive science in the 1960s. Whereas psychometrics and
test theory, which also got their start in the nineteenth century have made individual differences the
foundation of their fields, the study of cognitive processes has traditionally, and over many decades,
assumed that the manner in which information is processed for decision-making is invariant across
individuals given a particular experimental context.

The typical approach in cognitive psychology has assumed that individual variation affects
perceptual processing parametrically (e.g., rate of information accumulation, response bias), but
not structurally (e.g., the order of information processing). For example, when using information
in working memory, some individuals may be faster, but it is assumed that all individuals use the
information in the same manner. With that assumption, the usual practice of developing models is
based on grouped data, rather than the individual data.

However, a growing number of studies have demonstrated systematic individual differences
in perceptual decision-making. These individual differences can be reflected in both parametric
variation corresponding to characteristics of the participants (e.g., working memory span) and
structural differences (i.e., in the same task context, different individuals search across visual-
spatial information and phonetic information in sequence while others search in parallel). Hence,
we as researchers need more complex modeling tools than traditional linear models with null-
hypothesis testing to investigate the influences of task, context, and individual differences as well as
the potential for interactions among these factors.

In this special issue, we focused on a particular subset of cognitive models that explicitly
allow for both structural and parametric variation across individuals, particularly multinomial
processing trees, and systems factorial technology (SFT) applied to perceptual decision-making.
The motivation for the focus on perceptual decision-making is threefold. Empirical studies of
perception have grown out of a history ofmaking a large number of observations for each individual
so as to achieve precise estimates of each individual’s performance. This type of data, rather than a
small number of observations per individual, is most amenable to achieving precision in individual-
level and group-level cognitive modeling. Second, the interaction between the acquisition of
perceptual information and the decisions based on that information (to the extent that those
processes are distinguishable) offers rich data for scientific exploration.

Finally, there is an increasing interest in the practical application of individual variation in
perceptual ability, whether to inform perceptual training and expertise, or to guide personnel
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decisions. That is, some research trajectories seem to be in the
process of synthesis of contemporary cognitive psychology with
the above mentioned psychometrics tradition.

The contributions of Fific et al., Chechile et al. and Zhang
et al. represent fundamental theoretical advances in individual
difference modeling.

Chechile’s contribution argues for the viability of multinomial
processing trees as a more informative model of perceptual
decision-making than the traditional signal detection approach.
His contribution includes a hierarchical application of the
multinomial processing tree model. As signal detection theory
is a fundamental tool in perceptual decision-making research,
the potential information gain from a multinomial processing
tree model could be significant across the field. Furthermore,
the hierarchical modeling approach accommodates group-level
analysis of individual differences.

Fific’s article gives an overview of SFT, a framework that
is applied in many of the articles in this special issue, and
contributes new analyses and details on the application of
SFT. These new contributions include demonstrations of SFT’s
advantages for studying individual differences and group-level
analyses, a consequence of the fact that the diagnostic SFT
statistics are estimated at the individual level rather than from
data aggregated across subjects. This allows for the empirical
investigation of structural individual differences in perceptual
decision-making.

Next, Zhang et al. demonstrate a new approach to fitting a
particular type of accumulator model to individual subject data:
Diffusionmodels with flexible, time-varying decision boundaries.
This approach can reveal individual differences in accumulating
evidence toward a decision bound.

Yang and Wu’s contribution includes an example of the
dangers of averaging data across individuals: Important patterns
of performance at the individual level can be obscured when
averaging across participants. In their contribution, they argue
persuasively that an empirical phenomenon known as the
“category variability effect,” which is important for distinguishing
among models of perceptual categorization, may be common
but often overlooked due to averaging across participants. By
applying individual-level modeling, they found clear evidence for
the category variability effect in some, but not all, individuals.

Blunden et al. explore individual differences in the effect
of categorization training on perceptual discrimination among
faces. They use faces generated by combining four different
base faces. By applying multiple quantitative approaches (general
recognition theory, multi-dimensional scaling, SFT, and the
logical-rules framework) they were able to classify individual
participants based on whether they use parallel self-terminating
processes and what types of interactions occur between the
perceptions of each stimulus dimension. This approach leads to
a better understanding of individual perceptual categorization
training for faces and demonstrates an improved method for
exploring individual differences in perceptual categorization in
general.

Yu et al. systematically explore the connection between
individual variation in SFT capacity measures in three different
redundant-target detection tasks and an operations span task
score (a commonly used measure of working memory capacity).

They find that only the SFT capacity in an audiovisual
detection task was positively correlated to the working memory
capacity, suggesting that perceptual processing for audiovisual
information and the executive function in workingmemory share
similar cognitive resources. The contribution of this study is to
demonstrate the use of individual-level modeling to further the
understanding of the theoretical links between different levels of
capacity measures.

Like Yu et al., Endres et al. focus on connections between SFT
capacity measures and individual differences in working memory
using parametric models. They develop a new task to examine the
relative effects of loading either visual-spatial items or phonetic
items into working memory on visual processing capacity as
a function of operation span task scores. Standard analyses of
response times and accuracy indicated clear differences between
individuals with high working memory span and those with low
working memory span. Despite this difference, there was no
evidence of a difference across groups in the efficiency with which
individuals were able to combine the two sources of information.
By applying models to the study of individual differences in
working memory, Endres et al. better isolate the behavioral locus
of working memory deficiencies, which can in turn be used to
better understand the mechanism by which working memory
varies across individuals.

Houpt et al. examine variation in visual processing capacity
as a function of a different construct, reading ability, and
particularly dyslexia diagnoses. Building on earlier work
measuring word-superiority-type effects across words,
pseudowords, and non-words with SFT, they demonstrate how
various subpopulations within those diagnosed with dyslexia
might be identified. Even with clear differences between those
with dyslexia and the control participants on standard diagnostic
measures, some of the participants with dyslexia exhibited word
superiority effects that were not distinguishable from control
participants while others with dyslexia were clearly different.
These data inform the current debate about the heterogeneity
of dyslexia and indicate that the model-based measure of word
superiority may offer additional diagnostic insights.

Nunez et al. explore the connection between cognitive models
and EEG measures of attention. They find that individual
differences in task performance are explained by parametric
variation in an evidence accumulation model. Furthermore, the
parametric differences across individuals, particularly in the
evidence accumulation rates, are highly correlated with the EEG
measure of attentional control.

Chang and Yang’s article examines the connection between
cultural differences, particularly individual thinking style, and
visual processing capacity. Using both accumulator models
and SFT, they find that individuals who have higher “middle-
way thinking” scores (roughly, the tendency to consider many
alternative perspectives) had higher visual processing capacity as
well. These findings provide a reasonable cognitive mechanical
account for the behavior of high middle-way thinkers. The
contribution of this work is to demonstrate that the application of
individual-level modeling to study the culture-sensitive behavior.

In sum, many of the “laws” of human thought and behavior
garnered over the past one hundred thirty-seven years since
Wilhelm Wundt epochally established his laboratory in
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Leipzig, are based on grouped means and, given the increasing
appearance of individual differences in even elementary
perceptual, cognitive, and motor tasks, they will likely come
under increased scrutiny. Together, the articles gathered in this
special issue, demonstrate both the need for models of individual
differences in perceptual decision-making and the strength of
applying such models. We believe this imposing body of research
offers a significant advance toward having the necessary tools
for studying the joint influences of task, context, and individual
differences on perception.
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Inferences we make about underlying cognitive processes can be jeopardized in two ways
due to problematic forms of aggregation. First, averaging across individuals is typically
considered a very useful tool for removing random variability. The threat is that averaging
across subjects leads to averaging across different cognitive strategies, thus harming
our inferences. The second threat comes from the construction of inadequate research
designs possessing a low diagnostic accuracy of cognitive processes. For that reason we
introduced the systems factorial technology (SFT), which has primarily been designed to
make inferences about underlying processing order (serial, parallel, coactive), stopping
rule (terminating, exhaustive), and process dependency. SFT proposes that the minimal
research design complexity to learn about n number of cognitive processes should be
equal to 2n. In addition, SFT proposes that (a) each cognitive process should be controlled
by a separate experimental factor, and (b) The saliency levels of all factors should be
combined in a full factorial design. In the current study, the author cross combined the
levels of jeopardies in a 2× 2 analysis, leading to four different analysis conditions. The
results indicate a decline in the diagnostic accuracy of inferences made about cognitive
processes due to the presence of each jeopardy in isolation and when combined. The
results warrant the development of more individual subject analyses and the utilization of
full-factorial (SFT) experimental designs.

Keywords: individual differences, averaging across subjects, factorial design, inferring cognitive processes, SFT

INTRODUCTION
The central goal of cognitive modeling is to learn the underly-
ing structure of mental processes, which essentially take place in a
black box. Learning about cognitive mechanisms inside the box is
challenging, as many mental processes are not consciously acces-
sible. Therefore, a reverse engineering procedure has been used
to learn about these cognitive processes: an input in the form of
stimuli variations is carefully selected and fed to a black box, and
an output in the form of response behavior is observed. Knowing
a device’s blueprint, a good engineer can control input, examine
output, and identify the organization of the device’s subsystems.

Unlike engineers, cognitive psychologists have to infer a
blueprint from the input-output relationship. Take for example
two proposed models of short-term-memory (STM) search. In a
serial system the memory items are scanned in a sequential fash-
ion. In a parallel system items are scanned simultaneously. To
differentiate between these two models scientists have used mem-
ory load (number of memorized items 1–6) as the input and the
response time (RT) as the output. In theory, the serial and paral-
lel systems would make different predictions for the relationship
between memory load and RT. A serial system (of limited capac-
ity) would predict linearly increasing RT as a function of memory
load size. A parallel system (but of unlimited capacity) would
predict a flat RT as a function of memory load size. Thus, to
learn the blueprint of the STM black box a scientist would use an
input consisting of a varying number of items to be memorized,
then would record the output response times. Then she would
compare the results with the predictions of the serial and parallel

systems and decide which is the most likely model supported by
the results.

However, it is not quite that simple. One of the main obsta-
cles to unveiling the content of a black box is noisy output. A
novice scientist would be (unpleasantly) surprised to learn that
hardly any two human response times are of a similar value,
even when the exact same task is repeated. To illustrate, here are
four recorded responses times belonging to a single subject who
repeated the same STM task: 455, 245, 300, and 801 ms. The out-
put response measures varied widely although the input to the
black box had a fixed memory load size (one memorized item).
The question is: Why would the same set of processes used to pro-
cess one item show variability when repeated? One answer, is that
RTs may vary so much because the cognitive processes, operat-
ing in a black box, are not deterministic and can naturally vary in
their duration over time. Another source of measurement error
can arise from individual subject differences. RT measures will
vary across different subjects even when the same task is used.
Although subjects might employ the same set of processes in a
task, their responses will vary because the processes of interest
may rely on cognitive components that process at different rates.

All of these random response fluctuations are known as mea-
surement errors, in which each observation is considered a ran-
dom departure of the response from the true value associated with
the process of interest.

The question remains: Is it possible to remove the measure-
ment error from the output variable? The most robust method for
doing so is the averaging tool (data aggregation) on an increased
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sample size. Scientists of all different disciplines have used the
averaging tool to calculate precise distances between stellar bod-
ies, plot brain activity, compare smokers with non-smokers or
simply to determine the longevity of a 9-volt battery. Fueled by
the central limit theorem and the law of large numbers, the sam-
ple’s average value converges to the true (expected) value. The
averaging tool would replace the aforementioned noisy data set
with a single sample mean RT value. The simplicity and effec-
tiveness of the averaging tool has justified its widespread use in
research. However, this simplicity does not guarantee that the data
averaging tool is free of conditional assumptions.

When using the averaging tool to make correct inferences
about the organization of cognitive processes1, researchers must
be aware of an unfortunate double jeopardy.

DOUBLE JEOPARDY
Thefirstwaycorrect inferencescanbe jeopardizediswhenobserved
data is averaged across subjects. Free of random variability, the
averaged data should show the true results pertaining to the
underlying processes. But before choosing to average data a
scientist should be aware of the necessary conditional assumption:
that all subjects use an identical set of cognitive operations2 .
The validity of the data averaging tool depends heavily on this
assumption. Take for example a group of subjects who are all serial
STM processors but each subject scans an item with a different
processing rate (that is constant across different memory loads).
The individual results would show a set of linearly increasing
response times (RTs) as a function of memory load size, each
with a different slope value. Such a slope value would indicate
a measure of processing rate per one item in a serial system
(Sternberg, 1966). When the averaging tool is used across subjects,
the resulting function would also be linearly increasing with a
slope value that is the average of the individual slope values. Thus,
that averaged result is an unbiased indicator of the underlying
processes, presumably showing the true parameter value of an
item’s serial processing rate, and not a value of random individual
variations.

Several major cognitive theories have advocated the idea that
humans use identical cognitive operations. Such theories include
the conventionally adopted ideal observer approach, or the con-
cept of a rational decision maker. However, that hypothesis is not
tenable, and it is likely false. Consider the following case in which
researchers aim to explore the cognitive processes engaged in the
multiplication of numbers. Suppose that they randomly sampled
half of the subjects from a Western Caucasian population and
another half from an East Asian population. Westerners are more
likely to use their known method of long multiplication; one mul-
tiplies the multiplicand by each digit of the multiplier and then

1In this study the terms cognitive strategies and cognitive operations are used
interchangeably to refer to a set of mental processes organized in an iden-
tifiable mental network used in a specific task. In relevant literature these
networks are also defined as mental architectures. In contrast, a cognitive
process is subordinate term and indicates a single mental operation or a
component of more complex cognitive system (mental architecture).
2Even this is not sufficient, e.g., every subject is exponential but their average
appears to be from a different type of process (e.g., Brown and Heathcote,
2003).

adds up all the appropriately shifted results. Easterners may use
the traditional Asian stick method (sometimes referred to as the
Chinese or Japanese stick multiplication method), a more visual
way of using drawn lines to find the result. The average of such
data would describe a non-existing method for multiplication, as
the average result placed the expectations between two very dif-
ferent cognitive strategies. Averaging across subjects could have
a clearly detrimental effect on inferences about the processes of
interest and would lead to false conclusions.

In the last decade many researchers have voiced concerns
about the futility of the averaging tool in learning about the true
values associated with specific cognitive operations (e.g., Estes,
1956; Maddox, 1999; Gallistel, 2009; Fific et al., 2010; Fitousi and
Wenger, 2011; Koop and Johnson, 2011; Hills and Hertwig, 2012;
Benjamin, 2013; Pachur et al., 2014). There is a rapidly increasing
trend toward accounting for individual-specific cognitive opera-
tions in contrast to testing models based on universal cognitive
operations. Accounting for individual differences is essential to
assessing which model provides the best fit to experimental data
(Broder and Schutz, 2009; Dube and Rotello, 2012; Kellen et al.,
2013a,b; Turner et al., 2013). Evidence for individual differences
has been reported in judgment strategies (e.g., Hilbig, 2008;
Regenwetter et al., 2009), and the analyses of individual data
have been called for repeatedly when investigating fast and frugal
heuristics (Gigerenzer and Brighton, 2009; Marewski et al., 2010).
On the other hand there are good reasons why aggregate data
should be considered under some circumstances (Cohen et al.,
2008; Chechile, 2009).

The second way correct inferences about underlying cogni-
tive processes can be jeopardized occurs when researchers fail
to create the appropriate input—that is—fail to create a mini-
mally complex research design that is sufficient and necessary to
obtain diagnostic response outputs. A non-diagnostic design does
not permit differentiation between tested cognitive models as the
models can mimic each other in the output. It logically follows
then that the input (namely a research design), should be com-
plex enough to allow for confident model differentiation in the
output. But a more complex design is more expensive. Then the
question becomes: What is the “price” one has to pay in the com-
plexity of a design so that one can make correct inferences, and
when do we start to see diminishing returns?

As in real life, the price of learning complex relations is some-
times underpaid. Take for example the above STM task research
design used to make inferences about underlying serial/parallel
STM processing. The design has only one independent variable
of memory load and a dependent variable of response time. A
researcher might believe that using say six memorized items in the
input is the necessary and sufficient “price” to pay to learn about
how six mental processes are organized. Here is the supposed bill:
the sufficient and necessary price to pay to learn about the mental
organization of a total of n cognitive processes (say six item com-
parisons) is a research design that has one independent variable
with n number of levels. The price for one learned process is paid
by one stimulus condition.

Unfortunately, using such a research design is likely to under-
estimate the true costs of diagnosing serial and parallel process-
ing. This is because the serial and parallel cognitive models can
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easily mimic each other when only a memory load variable is used
(Townsend, 1969, 1971, 1990; Townsend and Ashby, 1983).

Without a rigorous theory of how to define and measure the
fundamental cognitive operations involved, minimal criteria for
design complexity cannot be specified. In the absence of these cri-
teria researchers will usually seek to increase the complexity of the
research design. This is the case when cognitive models are tested
by how well they can account for data across various tasks, that
is, by seeking generalizability. In general it is advisable to chal-
lenge a cognitive model to account for as many possible findings
when different inputs are manipulated. Only the model that can
provide a good fit to as many different research conditions as pos-
sible is considered the most likely model, and those that fail to
account for anything less than that are falsified3 . So for example,
the likely STM model should be able to account for all (various)
observed effects (memory load, target serial position, stimulus
modality, etc. ) and should also be able to generalize easily to other
conditions (e.g., Nosofsky et al., 2011). Although useful, general-
izability doesn’t precisely quantify the research design complexity
value that is sufficient and necessary to diagnose the underlying
cognitive structure of mental processes.

THE MINIMAL CRITERIA FOR THE COMPLEXITY OF A RESEARCH
DESIGN
A recently proposed approach—the systems factorial technol-
ogy (SFT)—sets the precise minimum required criteria for how
complex a research design should be in order to be both suf-
ficient and necessary to differentiate between several known
properties of cognitive systems. The proposed SFT approach was
designed to explore conditions under which the fundamental
properties of mental processes, such as the order of processing
(serial, parallel, coactive), stopping rule (terminating, exhaus-
tive), process independence and capacity, could be inferred from
data (e.g., Townsend and Ashby, 1983; Schweickert, 1985; Egeth
and Dagenbach, 1991; Townsend and Nozawa, 1995; Schweickert
et al., 2000). The SFT has been used in the context of vari-
ous cognitive tasks: For perceptual processes (e.g., Townsend and
Nozawa, 1995; Eidels et al., 2008; Fific et al., 2008a; Johnson
et al., 2010; Yang, 2011; Yang et al., 2013), for visual and mem-
ory search tasks (e.g., Egeth and Dagenbach, 1991; Wenger and
Townsend, 2001, 2006; Townsend and Fific, 2004; Fific et al.,
2008b; Sung, 2008), for face perception tasks (Ingvalson and
Wenger, 2005; Fific and Townsend, 2010), and for classification
and categorization (e.g., Fific et al., 2010; Little et al., 2011, 2013).

3The current study doesn’t evaluate model complexity as a quantitative cri-
terion for model selection and falsification. The reasons are two-fold: (a)
Current instantiation of SFT doesn’t depend on model complexity to diag-
nose underlying cognitive models, it rather relies on recognition of qualitative
patterns of RT and is completely non-parametric (for the parametric SFT
approach see Fific et al., 2010). Nevertheless, one can argue that in the cur-
rent paper the quantitative model comparison is possible as hypothesis testing
is used to falsify certain classes of cognitive models. For example, in this
paper the linear regression design is compared to the full factorial 2× 2
ANOVA. (b) However, model selection is not necessary in this study: The
linear regression model although a simpler model than the comparable full-
factorial SFT design, makes logically incorrect inferences (as demonstrated in
Supplementary Material). In such a case model complexity is a less important
criterion to consider as one of the models is logically flawed.

To correctly diagnose an n number of cognitive processes,
of an unknown cognitive system that is organized with respect
to processing order, stopping rule and process dependency, SFT
prescribes the following minimal criteria for a research design’s
complexity:

(a) The number independent variables used should be equal to
the number of processes under examination, n.

(b) Each independent variable should vary between (at least)
binary values of saliency. The saliency is operationally
defined as a manipulation that selectively influences a sin-
gle process of interest, such that the process is speeded up
(H= high saliency) or slowed down (L= low saliency).

(c) The levels of all independent variables should be factorially
combined, that is, orthogonally crossed with all other levels
of the other variables. Thus, the total number of experimental
conditions is equal to 2n.

So, if a cognitive system under investigation consists of two pro-
cesses that could be organized in either a serial or a parallel
fashion, then the design should include two independent vari-
ables with two levels each, factorially combined, resulting in
22 = 4 conditions. If a cognitive system consists of four pro-
cesses, the design should include four factors, factorially com-
bined with at least two levels of each factor, thus resulting in
24 = 32 experimental conditions.

The required research design’s complexity increases exponen-
tially with research aspirations. In practice as the number of
conditions increases this means that the SFT minimal crite-
ria for differentiating between cognitive models could require
lots of conditions and trials. So it is quite understandable that
researchers usually use generalizability as criteria for model test-
ing instead. The truth is that many of these research designs do
not meet the minimal SFT criteria for testing different cognitive
models, leading to conclusions that could be flawed.

In studies of the optimal research design, the SFT approach
utilizes a so-called full-factorial design enabling a detailed pro-
cessing structure analysis. If only a fraction of the full factorial
design is used then this is broadly defined as a fractional-factorial
design (FFD). In general FFD designs are useful as they can
provide some important insights about the processes under con-
sideration while saving on the complexity of a research design and
thus saving time and effort. However, they may fail to identify
important interactions between factors. As will be detailed in the
next section, it is exactly the interaction information that provides
the critical insights necessary to differentiate between cognitive
processes. Although there is a great deal of published research
about cognitive properties that can’t be characterized as utiliz-
ing the FFD research design (e.g., Sternberg, 1966; Bradshaw and
Wallace, 1971; Lachmann and van Leeuwen, 2004) this study will
not analyze it in detail. For simplicity sake, this paper will refer to
any incomplete SFT full-factorial design as an FFD design.

The second way correct inferences can be jeopardized is when
using an FFD research design a researcher acts as if he/she has
reduced the dimensionality of a full-factorial design. As such
the important critical information about how to differentiate
between cognitive systems is lost. So for example, the full-factorial
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SFT design prescribes six variables and 26 = 64 conditions to
learn about six STM processes. Such could be a design in which
each memory item’s saliency (high-low) is factorially combined
with all other memory items’ saliencies (for n = 2 see Townsend
and Fific, 2004; for up to n = 4 see Yang et al., 2014). If instead
a researcher collapses the load variable across saliency, then the
resulting design is a FFD design having only the memory load
variable in the input. By collapsing across the input variables
the critical test conditions are dropped out, and the minimal
SFT diagnostic criteria have not been reached. Thus, the likeli-
hood of making correct inferences about any underlying cognitive
processes decreases dramatically.

The remainder of this paper will outline the basic SFT tools
applied on cognitive systems with two processes. Then the author
will proceed with the empirical evidence showing how SFT com-
bined with individual subject analysis can be used to improve
inferences rendered unreliable by the two jeopardies.

A GENERIC COGNITIVE TASK
Take for example a generic short-term memory/visual memory
search task: the search set consists of two items (n = 2) and the
task is to decide whether a target item was in the search set.
For simplicity the author limits the analysis to target-absent tri-
als only, in which a subject has to search an entire search set.
This is the case of an exhaustive search. The question is whether
processing is serial, parallel, coactive, or none of the above. In
general, limiting the analysis only on target-absent responses
potentially can harm diagnostic accuracy as it neglects a possi-
ble decision criteria trade-off between target-present and target
absent responses. The analysis of target-absent responses only
would still be sufficient for the current illustration purposes.

THE SFT FULL-FACTORIAL DESIGN
The adequate minimal SFT research design of the above task
should include two factors with at least two levels, thus the total
number of conditions should be 22 = 4.

The first factor is operationally defined as the saliency of the
first item in the search set, and the second factor is defined as
the saliency of the second item in the search set. The saliency
has binary values which allow for speeding up or slowing down
of a particular process. (In what follows, H indicates a fast pro-
cess, or high item-to target dissimilarity, and L a slow process, or
low item-to-target dissimilarity). The idea here is that the memo-
rized item with high saliency is processed faster than the item with
low saliency, as the H item is more dissimilar to the target. In the
generic task described above the cognitive operation of item scan-
ning requires less processing time to determine that an H item is
not a target, and can reject it quicker than an L item.

In each trial two items make a search set, and thus the factorial
combination of items’ saliencies will result in four experimental
conditions: HH, HL, LH, and LL—the so-called double factorial
design (2× 2, as employed in an analysis of variance). For exam-
ple, HLindicates a condition where the first factor (processing the
first item) is of high saliency and the second factor (processing of
the second item) is of low saliency (see Figure 1A).

It is important to note that using the double factorial design,
the different cognitive processing orders will exhibit different data

FIGURE 1 | (A) A schematic representation of the full-factorial design. (B) A
schematic representation of the FFD, which is obtained by collapsing the
full-factorial design to a one-dimensional design across the item position
factors.

patterns of mean reaction times, which brings us to the main
statistical tests used in SFT.

Mean Interaction Contrast (MIC): The MIC statistic calculates
the interaction between the factors, similarly as in an interac-
tive analysis of variance (ANOVA) (Sternberg, 1969; see also
Schweickert, 1978; Schweickert and Townsend, 1989):

MIC = (RTLL − RTLH)− (RTHL − RTHH) = RTLL

−RTLH − RTHL + RTHH (1)

where RT is response time. This statistic is obtained by taking
the double difference of mean RTs associated with each level of
separate experimental factors (in this case, 2× 2 factorial condi-
tions). So, for example, mean RTHL indicates mean response time
for the condition where the first factor (processing the first item)
is of high saliency and the second factor (processing the second
item) is of low saliency. Figure 2 shows typical patterns of MIC
tests that are expected for different processing orders, for the fixed
exhaustive stopping rule.

MIC is considered a valid test providing that the following con-
ditional assumptions hold: (a) Processing rate for any position L
is always slower than H, (b) The single factors selectively influ-
ence only single sub-processes (position one and two), and (c)
The independence between processes hold. Violation of any or all
assumptions leads to a violation of the mean RT orderings of the
experimental situations RTLL > RTLH, RTHL > RTHH, which is
considered a quick test of the conditional assumptions.

The pattern of “additivity” is reflected by an MIC value of 0
(Figure 2). In an ANOVA, additivity is indicated by an absence of
interaction between factors, thus implying that the effects of indi-
vidual factors simply “add” together. This finding supports serial
processing, in which the total response time is the sum of individ-
ual times stemming from each factor. Likewise, “overadditivity”
is reflected by an MIC > 0 (a positive MIC), and “underadditiv-
ity” is reflected by an MIC < 0 (a negative MIC). Formal proofs
of the results expressed below are provided by Townsend (1984),
Townsend and Nozawa (1995) for parallel and serial systems, and
for a wide variety of stochastic mental networks by Schweickert
and Townsend (1989). Townsend and Thomas (1994, also see
Dzhafarov et al., 2004) showed the consequences of the failure
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FIGURE 2 | Schematic illustration of three main patterns of mean RTs,

mean interaction contrasts (MICs), and the corresponding underlying

cognitive processes when the stopping rule is fixed to be exhaustive.

of selective influence when channels (items, features, etc.) are
correlated.

If processing is strictly serial, then the MIC value will equal
zero; that is, the pattern of mean RTs will show additivity. For
instance, if processing is serial exhaustive, then the increase in
mean RTs for LL trials relative to HH trials will simply be the
result of the two individual processes slowing down, giving us
the pattern of additivity illustrated in Figure 2, top panel. Parallel
exhaustive processing results in a mean RT pattern of under-
additivity (MIC < 0) (Figure 2, middle panel). Finally, coactive
processing will lead to a pattern of overadditivity of the mean RTs
(MIC > 0), as illustrated in Figure 2 bottom panel. Coactive pro-
cessing is a form of parallel processing in which information from
parallel processing units are pooled together into one unit, by the
virtue of summation of signals from the two units. Coactivation
gives rise to perceptual unitization, forming perceptual objects
whose features are not analytically separable.

The SFT provides strong grounds for model comparison and
model falsification, in both the non-parametric and paramet-
ric treatments of the theoretical processes. Useful statistical tools
are described in several publications and are available online
(Townsend et al., 2007; Houpt et al., 2014).

THE FRACTIONAL-FACTORIAL DESIGN (FFD)
To get an FFD the author reduces the dimensionality of the above
full-factorial design (Figures 1A,B). The resulting FFD design

uses only 3 conditions from the original full-factorial design. The
collapse of the full factorial design across the item position factors
could be visualized as a projection of the conditions to a new sin-
gle dimension (Figure 1B). I define this dimension as the number
of items in a search set that are dissimilar to the target. In the HH
condition, both items are dissimilar. Thus, the value is two. In the
HL and LH conditions, only one item is dissimilar thus the value
is one; and in the LL condition both items are similar, and thus the
number of dissimilar items is zero. The observed mean RT can be
plotted as a function of the number of dissimilar items, defining
the RT-dissimilarity function.

Surprisingly this particular FFD design has been used in sev-
eral studies to explore cognitive processes. The RT-dissimilarity
function has been employed previously in the same-different
judgment task (Nickerson, 1965, 1969; Egeth, 1966; Miller, 1978;
Proctor, 1981; Farell, 1985; see Sternberg, 1998 for review).The
general finding was that RT decreased as a number of differ-
ing dimensions between the items (Goldstone and Medin, 1994),
number of dissimilar items in search set, or as a function of the
structural complexity (Checkosky and Whitlock, 1973; Schmidt
and Ackermann, 1990; Lachmann and van Leeuwen, 2004).

The important diagnostic feature here is the shape of the
RT-dissimilarity function: if the function is strictly linear it indi-
cates serial processing (Egeth, 1966; Posner and Mitchell, 1967;
Lachmann and van Leeuwen, 2004), and if the function is non-
linear it indicates parallel processing (Posner, 1978). The property
of linearity can be assessed by conducting a linear regression
analysis and would be shown in the coefficient of determination
R2-value (e.g., Lachmann and Geissler, 2002; Lachmann and van
Leeuwen, 2004, p. 11, inferred serial processing by showing linear
functions, 0.98 ≤ R2 ≤ 0.99).

Indeed different cognitive models predict the characteristic
change in RT-dissimilarity function shape. Serial exhaustive mod-
els predict that the mean RT would linearly decline as a function
of item-to-target dissimilarity. Provided that a low-dissimilar
item is processed slower than a high-dissimilar item, and that pro-
cessing is conducted in the item-to-item fashion, the mean RT
should decline with the same rate as the number of dissimilar
items increases in the search set. Parallel exhaustive models pre-
dict a convex non-linear RT-dissimilarity function. In contrast,
the coactive model predicts a concave non-linear RT as a func-
tion of target-to-item dissimilarity (see Supplementary Material
for the derivations).

It is important to note that even though the mean RT-
dissimilarity function is FFD, some diagnostic cues enable
differentiation between cognitive processing strategies.

The robustness of the SFT and FFD designs to the first jeop-
ardy: Averaging across subjects’ mixed cognitive strategies and
predictions of the two designs.

Neither of the two approaches is immune to the first jeopardy.
When we average results of subjects who used different cognitive
strategies, the resulting MIC signature and RT-dissimilarity func-
tion could reveal the most dominant cognitive system or could
indicate a ghost cognitive system—a non-existing one.

Consider the generic task in which the stopping rule was set
to be exhaustive. In order to make a correct decision all memo-
rized items in the search set have to be processed. Each cognitive
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strategy (serial, parallel, and coactive) could be used to search
the search set, but some strategies may be more preferable under
certain conditions. Serial processing could be employed when
it is advantageous to invest all attention to one unit at a time
with a possibility for early termination. Parallel processing may
be employed when all information is available and the cogni-
tive system does not see possible limitations due to capacity
sharing between multiple concurrently processed items. Coactive
processing may be involved with processes that have historically
occurred together and thus built a joint path in the cognitive sys-
tem (perhaps a neural unit). More importantly, what is unknown
to researchers is whether or not each of these cognitive processing
strategies may be individual subject specific. It could be expected
that some human subjects have developed more reliance on some
of these strategies than on the others.

In the SFT design the following three MIC signatures could be
observed. Subjects could either exhibit a parallel search, showing
the underadditive MIC pattern (Figure 2 middle), a serial search
showing the additive MIC (Figure 2, top), or a coactive search
(parallel but not independent processes) showing the overadditive
MIC pattern (Figure 2 bottom). Provided that the base rate for
each processing strategy is the same, the results of averaging across
subjects would predict convergence to the MIC additive signature.

Similarly in the FFD design, the subjects would show all three
types of curving in the RT-dissimilarity function, concave, convex
and linear. The average outcome RT-dissimilarity function would
tend to converge to the linear function.

A surprising result will occur when sampled subjects are only
parallel and coactive processors: a ghost cognitive strategy will be
inferred. Both the averaged MIC and the RT-dissimilarity would
indicate serial processing (additive MIC and linear RT function),
despite that not a single subject could be characterized as such.

THE COMPARISON TEST
The main goal of the current paper is to explore how effective the
mean RT analysis methods are in inferring the organization of
cognitive processes when both jeopardies are in place. Thus, this
study cross combined the two jeopardies and compared the four
resulting conditions (Table 1).

As a reference point the author will analyze the data from
Condition 0 which both adheres to the SFT minimal criteria for

Table 1 | Cross combination of the levels of the two jeopardies in a

2 × 2 analysis, leading to four different analysis conditions.

Analysis level

Individual Group

RESEARCH DESIGN

Full factorial (MIC) 0 1

Fractional factorial (regression) 2 3

The first jeopardy is defined as the difference between the individual and group

subject analyses with regard to inferring the details associated with the cog-

nitive processes of interest. The second jeopardy is defined as the difference

between the full- and fractional-research designs with regard to inferring those

same details.

the correct diagnosing of cognitive processes, and is based on
individual subjects analyses (Table 1). Condition 0 uses the previ-
ously published MIC results of individual subject data on a large
number of trials possessing lots of statistical power (Townsend
and Fific, 2004; Fific et al., 2008b).

In Condition 1, the author tests the effect of the across-subject
averaging on MIC test accuracy in identifying cognitive pro-
cesses. In Condition 2 the author tests the effect of using an FFD
design on making inferences regarding the individual subjects’
data, using a regression analysis of the RT-dissimilarity function.
Finally, in Condition 3 the data will be exposed to both jeopar-
dies: the averaging across subjects and the design marginalization
using FFD. In this condition the author analyzes the group mean
RT-dissimilarity functions using linear regression analysis.

The expectation is that when compared to Condition 0 the
three conditions will show deterioration in their ability to cor-
rectly diagnose cognitive processes. Most of the misdiagnoses
should be observed in Condition 3. Although the current expecta-
tions could be logically derived from earlier works, such system-
atic evidence is sparse. The author hopes that the current study
will illuminate both the role of individual subject analysis and the
application of SFT in learning about cognitive processes.

METHODS
The results reported in this section are based on the reanalysis of
data collected in previous studies (Townsend and Fific, 2004; Fific
et al., 2008b). Specific details about the participants and stim-
uli are presented in the original papers. Here I outline the details
which are pertinent to the current investigation.

PARTICIPANTS
Five participants, 2 females and 3 males participated in a short-
term memory search study (Townsend and Fific, 2004). Four
participants, two females, and two males participated in a visual
search study (Fific et al., 2008b); four participants, three females,
and one male participated in the visual search study on pat-
terns (Fific et al., 2008b). All participants were paid for their
participation.

STIMULI
Short-term memory study (Townsend and Fific, 2004)
Stimuli were pseudo-words in consonant-vowel-consonant
(CVC) form. Two items made a search set, presented on different
search-set positions (first, second). To produce the saliency effect,
we manipulated phonemic dissimilarity of a search set-item to
the target item. The items were drawn from two sets of phonolog-
ically confusable Serbian language consonants: fricatives (F, S, V)
and semi-vocals (L, M, N). We generated different dissimilarity
of search-set items to the target item by constructing the target
and test items from letters drawn either from the same group or
from different groups.

Visual search on pseudowords (Experiment 1, Fific et al., 2008b)
Stimuli were Cyrillic letter-strings constructed from letters of
the Serbian alphabet. The visual complexity of the letter-string
stimuli was manipulated by varying the number of letters that
made up a single item (1, 2, or 3 consonants). The saliency effect
was produced by manipulating the degree of visual dissimilarity
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between the item and the target items. We employed two sets of
letters: letters with curved features and letters with straight-line
features. We generated different dissimilarity of search-set items
to the target item using the same principles as in the above study.

Visual search on visual patterns (Experiment 2: Fific et al., 2008b)
As stimuli, we used meaningless visual patterns taken from
Microsoft’s Windows standard fonts.

DESIGN AND PROCEDURE
Short-term memory search (Townsend and Fific, 2004)
Each trial consisted of a fixation point and warning low-pitch tone
for 1 s, successive presentation of two items in the search set for
1200 ms, an inter-stimuli interval (ISI), and a target. The ISI was
defined as the interval between the offset of a search set and the
onset of the target. The ISI period started with a fixation point
and a second warning high-pitch tone which lasted for 700 ms.
Onset of this second warning signal was activated so that its end
coincided with the end of the ISI period.

The task was to decide whether a target was presented in
a search set. The target was randomly chosen to be present in
one-half of the memory set trials and absent in the other half
Participants signified their answer, “yes” with one index finger
and “no” with the other. Only target-absent trials were analyzed.

The analyzed research design consisted of the three within-
subject factors: Inter-stimulus interval (ISI, 700 and 2000 ms) ×
Dissimilarity of item in position one (H,L) × Dissimilarity of
item in position two (H, L). The last two factors constituted the
full factorial SFT design permitting the assessment of processing
order.

Participants ran around 44 blocks of 128 trials each. Each block
was divided into 6 sub-blocks of 20 trials (except the last one
which had 28 trials). The participants were requested to achieve
very high accuracy, and usually only one block was completed on
a particular test day. Thus, each mean RT in a specific ISI con-
dition and particular factorial combination possessed between
300 and 400 trials per participant (depending on duration of
participation). Brief rest periods were allowed every 24 trials.

The ISI was manipulated between blocks, whereas factorial
combinations (HH, HL, LH, LL) varied within blocks.

Visual search on pseudowords (Experiment 1, Fific et al., 2008b)
Each trial started with a fixation point that appeared for 700 ms
and a low-pitch warning tone of 1000 ms, followed by the presen-
tation of the target item for 400 ms. Then, a mask was presented
for 130 ms, followed by two crosshairs that indicated the positions
of the two upcoming test items that made the search set. A high
pitch warning tone was then played for 700 ms, followed by the
presentation of the two items in the search set.

The task was to decide whether or not the target was presented
in the search set. Half of the trials were target present and half
were target absent. On each trial, the participant had to indi-
cate whether or not the target item appeared on the search set
by pressing either the left or the right mouse key with his or her
corresponding index finger. RTs were recorded from the onset of
the test display, up to the time of the response. Participants were

asked to respond both quickly and accurately. Only target-absent
trials were analyzed.

The analyzed research design consisted of three within-subject
factors: Stimulus complexity (C = 1, 2, or 3) × Dissimilarity
of item in the left position (H, L) × Dissimilarity of item in
right position (H, L). The stimulus complexity was operationally
defined as the number of letters used to form the stimulus items.
The last two factors constituted the full factorial SFT design
permitting the assessment of processing order.

The two test items in the most complex condition (C= 3, with
the widest stimuli) spanned 5 cm horizontally. At a viewing dis-
tance of 1.7 m from the computer screen, this width corresponds
to a visual angle of 1.86 degrees, well within the fovea.

Each participant performed on 30 blocks of 128 trials each.
The order of trials was randomized within blocks. The complexity
of the presented items (i.e., the number of letters: C = 1, 2, or 3)
was manipulated between blocks, whereas factorial combinations
(HH, HL, LH, LL) varied within blocks. For each participant, the
mean RT for each conjunction of item complexity and factorial
combination was calculated from approximately 200 trials.

Visual search on visual patterns (Experiment 2, Fific et al., 2008b)
This condition was identical to the C = 1 condition of the pre-
vious study, except that it employed visual patterns as stimuli
instead of letters. Each participant performed in 10 blocks of 128
trials.

RESULTS
CONDITION 0: INDIVIDUAL SUBJECT DATA, MIC ANALYSIS
The results of the MIC tests are published elsewhere (Townsend
and Fific, 2004; Fific et al., 2008b). The author summarizes the
findings in Table 2.

All subjects’ results satisfied the ordering of mean RTs (RTLL >

RTLH, RTHL > RTHH), except for the first subject in the C = 1
condition of the visual search task (Table 2). In addition, all sub-
jects showed significant main effects of the single factors, that is,
the effect of high and low dissimilarity for each item position.
Highly dissimilar items always showed on average faster process-
ing rates than the low dissimilar items, for both item positions
(1 and 2). These findings indicated that the basic manipulation
of item-to-target dissimilarity produced the expected cognitive
effect and furthermore that the processing of an item in each par-
ticular position occurred. Being uniform for all subjects, these
results were not reported in the table.

The critical MIC test results were based on the inspection of
the significance of an interactive component and the sign value
of the MIC score. As reported in Table 2 the individual-subject
analyses showed individual subject variability in MIC values. All
MIC values were interpretable (except the first subject in the C=
1 condition), and the signatures each fell into one of the expected
categories.

Conclusion
The subjects’ MIC values showed large variability across the three
experiments. In the two visual studies subjects showed primarily
over-additive results (9 subjects) and some additive results (6 sub-
jects), thus implying coactive and serial processing. One subject’s
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Table 2 | Summarized ANOVA results for the MIC tests at different levels of subject analysis.

MIC test ANOVA Full-factorial design conditions

df 2 F η2 LL (ms) LH (ms) HL (ms) HH (ms) MIC (ms) Inference

GRAND MEAN

23992 15.4 0.001 772 662 662 572 20 Coactive

VISUAL SEARCH: PSEUDOWORDS

Mean subjects 7458 50.2** 0.007 984 730 762 587 78 Coactive

Complexity

C = 1 595 3.1† 0.005 619 564 623 530 −38 –

C = 2 633 34.9** 0.052 1106 711 802 581 175 Coactive

C = 3 631 4.4* 0.007 1302 885 934 579 63 Coactive

C = 1 591 1.2 0.002 557 506 509 470 12 Serial

C = 2 630 41.0** 0.061 908 649 681 554 132 Coactive

C = 3 626 3.1† 0.005 1149 799 848 549 51 Serial

C = 1 590 0.9 0.001 622 577 561 534 19 Serial

C = 2 632 59.4** 0.086 963 671 643 527 176 Coactive

C = 3 628 14.0** 0.022 1191 856 808 578 106 Coactive

C = 1 595 2.0 0.003 678 639 631 609 17 Serial

C = 2 633 33.8** 0.051 1194 869 949 766 142 Coactive

C = 3 630 11.7** 0.018 1446 995 1113 753 91 Coactive

VISUAL SEARCH: PATTERNS

Mean subjects 2346 5.4* 0.002 668 577 587 532 36 Coactive

Complexity

C = 1 587 2.1 0.004 863 699 746 630 49 Serial

C = 1 576 4.7* 0.008 750 642 655 617 70 Coactive

C = 1 584 2.0 0.003 520 469 465 432 17 Serial

C = 1 587 4.4* 0.007 545 494 482 452 22 Coactive

SHORT-TERM MEMORY SEARCH

Mean subjects 14180 11.0** 0.001 676 641 622 571 −15 Parallel

Interstimulus interval

ISI = 700 1375 0.8 0.001 606 565 559 507 −12 Serial

ISI = 700 1645 0.2 0.000 632 607 595 565 −5 Serial

ISI = 700 1202 11.4** 0.009 598 590 562 518 −37 Parallel

ISI = 700 1394 2.2 0.002 747 706 690 664 15 Serial

ISI = 700 1439 0.3 0.000 786 703 666 593 10 Serial

ISI = 2000 1379 0.3 0.000 628 567 561 507 7 Serial

ISI = 2000 1710 3.7† 0.002 640 628 600 567 −21 Serial

ISI = 2000 1201 14.7** 0.012 613 592 577 512 −43 Parallel

ISI = 2000 1387 5.6* 0.004 748 730 717 672 −27 Parallel

ISI = 2000 1412 4.2* 0.003 761 708 680 591 −36 Parallel

**p < 0.01, *p < 0.05, †p < 0.08. The df1s were 1.

results were inconclusive, violating the conditional assumptions
of selective influence and or process independence. The subject
could also exhibit an unknown type of cognitive strategy. In con-
trast, the subjects in the memory study showed either additivity
(6 subjects) or under-additivity (4 subjects), thus implying the
presence of both serial and parallel processing across subjects. See
Table 3 for summary.

CONDITION 1: AVERAGED SUBJECTS DATA, MIC ANALYSIS
First I analyzed the MIC results averaged across subjects and
then across all experimental conditions (the visual and mem-
ory search conditions) to and obtained the grand mean MIC
data (Figure 3A). Then, using ANOVA I tested the significance

of the interaction between two factors. Each factor is defined as
the item’s item-to-target-dissimilarity (high, low), for one of the
two positions in the search set position. The interaction test is
used to provide a statistical significance finding for the MIC test.
The interaction between the two factors was found to be sig-
nificant F(1, 23992) = 15.37, p < 0.01, η2 = 0.001. The observed
MIC= 20 ms, indicating overadditivity (Figure 3, top left panel).

Conclusion: all subjects processing (26) was based on the coactive
processing model
Next, I conducted the MIC test conditioned on the type of cog-
nitive task used. I break down the overall mean RT results into
three different experimental studies: the visual search task using
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pseudowords, visual search task using visual patterns, and short-
term memory task. The results of MIC tests are presented in
Table 2 (the rows “Mean subjects,” and also in Figures 3B–D).

Conclusion
The results indicated that when the MIC is calculated by aver-
aging across all subjects the MIC test showed overadditivity
(MIC > 0) in both of the visual search tasks, thus implying coac-
tive processing (for 12+ 4 subjects). In a sharp contrast, the MIC
indicated underadditivity (MIC < 0) in the short-term memory
experiment, thus implying parallel processing, for all 10 subjects.

CONDITION 2 : INDIVIDUAL SUBJECT DATA, REGRESSION ANALYSIS
The individual mean RT-dissimilarity functions are analyzed. The
author conducted the linear regression analysis between mean RT
and the number of item-to-target dissimilar items in a search
set (0, 1, 2 items in a search set dissimilar to the target) for

Table 3 | Summary of the inferences across different comparison

conditions from Table 1.

Serial Parallel Coactive Unaccounted

Condition 0 (full) 12 4 9 1

Condition 1 (jeop 1) – 10 16 –

Condition 2 (jeop 2) 13 4 9 –

Condition 3 (jeop 1 and 2) 26 – – –

each individual subject across different experimental conditions
(Table 4, left hand side).

Using linear regression, the linear relationship accounts for
a large percent of mean RT variability for most of the subjects
(it ranged from 94 to 100% across all subjects, with the mean
R2 = 98% and SD = 0.0282).

Conclusion 1
Extremely high R2-values of linear function fits among subjects
implied a strict serial exhaustive process.

It is questionable whether the results would indicate signifi-
cant curving of the mean data points, either of the convex or
concave type. The standard way to test whether the data could be
better explained by the linear or non-linear (polynomial of a sec-
ond degree) model, is to conduct the regression analysis using the
second-order polynomial regression function (quadratic). But in
this study the use of quadratic regression is precluded as there are
only three data points to be fitted. That is, there would be the same
number of free parameters as the number of points, so the test for
the significant R2 change from a linear to non-linear model would
not be valid.

To provide the alternative test for curvature of the mean RT
dissimilarity data the author conducted another regression anal-
ysis on the individual subject RT data this time by using all RTs
not averaged across the dissimilarity conditions (0, 1, 2). Now
the author compared whether the adding of a second order poly-
nomial component could be used to significantly improve the
goodness of fit (R2-value) (Table 4, right hand side).

FIGURE 3 | (A) Mean RT averaged across the subjects, and (C,D) the MIC test results for different experimental conditions.
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Table 4 | Summarized linear regression results for different levels of subject analysis.

Linear regression Concavity/convexity test

R2 F Intercept (ms) Slope (ms) R2 change df2 F change Inference

GRAND MEAN

1.00 299.4 769 −100 0.001 23993 15.38** Coactive

VISUAL SEARCH PSEUDOWORDS

Mean subjects 0.99 74.7 965 −196 0.005 7459 49.97** Coactive

Complexity

C = 1 0.94 16.4 625 −44 0.005 596 2.97† Serial

C = 2 0.97 27.3 1077 −263 0.026 634 33.86** Coactive

C = 3 1.00 399.2 1292 −361 0.002 632 4.33* Coactive

C = 1 0.99 169.5 555 −44 0.002 592 1.20 Serial

C = 2 0.96 21.5 886 −177 0.032 631 40.64** Coactive

C = 3 1.00 419.0 1140 −300 0.002 627 3.10† Serial

C = 1 0.99 68.0 619 −44 0.001 591 0.86 Serial

C = 2 0.95 18.4 934 −218 0.042 633 59.21** Coactive

C = 3 0.99 100.4 1173 −306 0.009 629 13.90** Coactive

C = 1 0.98 49.2 675 −35 0.003 596 2.05 Serial

C = 2 0.97 27.6 1170 −214 0.026 634 32.57** Coactive

C = 3 0.99 174.8 1431 −347 0.006 631 10.91* Coactive

VISUAL SEARCH PATTERNS

Mean subjects 0.97 36.0 663 −69 0.002 2347 5.36* Coactive

Complexity

C = 1 0.99 69.4 855 −116 0.003 588 2.08 Serial

C = 1 0.92 10.8 739 −67 0.008 577 4.69* Coactive

C = 1 0.99 76.4 517 −44 0.003 585 2.05 Serial

C = 1 0.98 54.1 542 −47 0.006 588 4.41* Coactive

MEMORY SEARCH

Mean Subjects 0.99 152.8 679 −53 0.001 14181 10.93** Parallel

Interstimulus interval

SI = 700 1.00 222.6 608 −50 0.001 1376 0.81 Serial

ISI = 700 1.00 465.7 633 −33 0 1646 0.21 Serial

ISI = 700 0.94 14.4 605 −40 0.009 1203 11.27** Parallel

ISI = 700 0.99 97.6 745 −42 0.001 1395 2.16 Serial

ISI = 700 1.00 1132.0 785 −97 0 1440 0.35 Serial

ISI = 2000 1.00 926.6 627 −60 0 1380 0.32 Serial

ISI = 2000 0.97 35.2 644 −37 0.002 1711 3.77† Serial

ISI = 2000 0.94 16.6 620 −50 0.011 1202 14.64** Parallel

ISI = 2000 0.96 23.7 753 −38 0.004 1388 5.57* Parallel

ISI = 2000 0.99 68.7 767 −85 0.003 1413 4.07* Parallel

**p < 0.01, *p < 0.05, †p < 0.08. Each linear regression was conducted with 1 degree of freedom for the concavity/convexity test. The first dfs were 1 as stated,

and the df2s are reported in the table.

Conclusions 2
The results of the regression analysis showed a signifi-
cant curving of the individual subject data (Table 4, under
Concavity/convexity test). The inferences about cognitive pro-
cesses paralleled those of the MIC tests conducted on individual
subjects’ data (Table 2).

The only exception was the first subject whom was catego-
rized now as a serial processor unlike in the MIC test in which
this subject couldn’t be classified in one of the three processing
strategies.

CONDITION 3: AVERAGED SUBJECTS’ DATA, REGRESSION ANALYSIS
First, I analyzed the data when averaged across subjects (indi-
vidual data combined from the three experimental condi-
tions). I conducted the linear regression analysis between mean
RT and the number of item-to-target dissimilar items in a
search set (0, 1, 2 items in a search set dissimilar to the
target).

The significant proportion of explained variability indicates
that the mean RT linearly decreases with increasing the number
of items that are dissimilar to the target (see Figure 4, and Table 4
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FIGURE 4 | Linear regression analyses between Mean RT averaged

across the subjects and the number of item-to-target dissimilar items

in a search set, for different experimental conditions.

the first row Grand Mean). This relationship accounts for 100%
of mean RT variability, R2 = 1 (Figure 4).

Conclusion 1
All subjects (26) processed the stimuli using the serial processing
strategy. The rate of sequential processing per item is defined by
the value of the regression function slope which was estimated
from data to be 100 ms per item.

Second, I conducted the regression analysis on RT averaged
across subjects but sorted by type of experimental condition. I
break down the overall mean RTs into three different experimen-
tal studies: the visual search task using pseudowords, the visual
search task using visual patterns, and the short-term memory
task.

The results of the linear regression analysis between the mean
RT and the number of dissimilar items are presented in Table 4
(the rows Mean subjects) and Figure 4. All three relationships
accounted for between 97 and 99% of mean RT variability (0.97≤
r2 ≤ 0.99). The explained variability indicated that the mean RT
linearly decreases with the number of items that are dissimilar to
the target (Figure 4).

Conclusion 2
All subjects (26) used the serial cognitive processing strategy
across different conditions. The rate of sequential processing
per item was different for different experimental studies (see
Figure 4) and varied between 196 ms per unit for pseudowords to
68 and 53 ms per unit for simple visual stimuli and STM search.

GENERAL DISCUSSION
The main goal of the current paper was to explore the diagnostic
accuracy of identifying the true underlying organization of cog-
nitive processes in different experimental situations. The author
discussed and analyzed two major concerns that could negatively
impact the chances of achieving the main goals present in modern
cognitive modeling trends.

The first concern deals with analyzing aggregated subjects
data to infer the details associated with cognitive processes. Data
aggregation across subjects has a long history of practice in
the field. The main rationale is to use this powerful averaging
tool to reduce random noise from observations and increase the
power of diagnostic tests. The averaging tool rests on the condi-
tional hypothesis that different subjects use the same cognitive
operations. However, this hypothesis is rarely stated and sub-
stantiated. This is unfortunate, because when a researcher relaxes
the conditional hypothesis that subjects use the same cognitive
operations, surprising outcomes of averaging across subjects can
occur. One of the most dramatic outcomes is inferring ghost cog-
nitive processes. This error occurs when we average across two
very different cognitive strategies. The resulting averaged data
would support a strategy that may not exist and/or may not be
theoretically feasible.

Research in the cognitive domain has over the years reached
a critical view of the issue of individual differences in cogni-
tive operations. It has become a pressing matter to address the
issue of individual subject analysis. Scanning the current litera-
ture, the author found several such publications in the Journal of
Psychological Review (Fific et al., 2010; Hills and Hertwig, 2012;
Benjamin, 2013; Kellen et al., 2013b; Turner et al., 2013), the
leading edge in theoretical advances relevant to the problem of
averaging data across subjects.

The second concern deals with selection of the most appropri-
ate research design to provide the best diagnostic performance in
detecting cognitive processing details. A major trend in the cog-
nitive domain relies on the principle that more complex designs
make for better inferences. This is common practice in all areas of
psychological research, which follows up on a recommendation
for external generalizability. In that sense validation of a cogni-
tive model should be based on the model’s ability to generalize
to as many as possible results and conditions as possible. In prin-
ciple this is the right way to make scientific advances, especially
in an area where it is not possible to precisely specify the mini-
mal criteria for a research design complexity. For that reason the
author introduced the SFT, which has been primarily designed to
make inferences about underlying processing order (serial, paral-
lel, coactive), stopping rule (terminating, exhaustive), and process
dependency. The SFT approach proposes criteria for minimal
research design complexity that can be used to construct the most
effective diagnostic tools.

In this study the author reported the analysis of the effects
of two possible ways inferences about cognitive processes can
be jeopardized. The effect of the first jeopardy was measured
by comparing the analysis of data averaged over the subjects to
the analysis of individual subjects’ data. The effect of the sec-
ond jeopardy was measured by comparing the results of the
analysis of the full factorial design (MIC) to the comparable
FFD (linear regression on RT-difference function). More impor-
tantly the author cross combined the levels of jeopardies in
a 2× 2 analysis, leading to four different analysis conditions
(Table 1). Condition zero served as a reference condition as it
was the least influenced by both jeopardies. Table 3 shows the
summary of inferences about the cognitive processes across the
conditions.
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Aggregating the data across subjects (Jeopardy 1) reduced the
diagnostic accuracy of our inferences about cognitive process to
about half (accuracy = 13/26). The analyses of the effect of sub-
jects’ data aggregation (Condition 1 and 0), showed not only
omissions in detecting of some cognitive strategies, such as miss-
ing to detect 12 cases of serial processing, but also showed a
number of false recognitions of parallel or coactive processing.
Comparing the diversity of individual strategies revealed by the
MIC test in Condition zero to the strategies inferred after the data
aggregation shows an interesting finding. The resulting aggre-
gated inferences are not necessarily affected by the most inferred
individual cognitive processes. As shown in the memory search
experiment, the individual MIC analyses indicated 6 serial and
4 parallel subjects (Table 2 bottom part—short term memory
search). However, the inferences based on the aggregated val-
ues indicated parallel processing for all subjects (Table 2 the line
“mean subjects” for short-term memory). This could happen as
the aggregated MIC score accumulated the size of effects from
the individual subjects’ data. The individual MIC scores showed
7 negative values, of which only 4 reached significance and were
inferred to occur in parallel (Table 2, bottom).

Collapsing across the full-factorial research design to create a
less complex design (Jeopardy 2) showed very good diagnostic
accuracy of cognitive processes. Using the FFD as an alternative to
the full-factorial design led to 25/26 correct inferences (see sum-
mary in Table 3, Condition 2, the individual results in Table 4).
The study can conclude that the shape of the RT-difference
function can be used as a complement to the MIC test.

However, this comes with three caveats. First, using the FFD
would be very ineffective if the data was aggregated over the
subjects (as presented in Figure 4). The results of regression
analysis on the data aggregated over the subjects showed impres-
sive fits to linear functions and showed very high R2-values
for each experiment. These results all point to the across sub-
ject uniform conclusion: serial processing (with low accuracy
= 12/26). Second, even when the mean RT-difference functions
are calculated for each separate subject (the Results Section,
Condition 2, Conclusion 1) the curving of RT-difference func-
tions may be difficult to detect using the conventional statisti-
cal test to reject the null hypothesis. To get the 25/26 correct
detections, not only is the individual subjects analysis recom-
mended but it is also recommended to use all data for each
subject to test the curvature hypothesis (left-hand side Table 4,
Concavity/convexity test). And the third and the most impor-
tant caveat: using the FFD will very likely lead to increasing false
alarm rates in detecting the known cognitive strategies, serial,
parallel, or coactive. When scrutinized closely (Supplementary
Material), the proposed FFD design shows good performance
in inferring the correct cognitive strategy when all SFT condi-
tional assumptions were met. However, if some of these assump-
tion were not met, then FFD may not be able to detect that
a violation occurred and will proceed to the incorrect infer-
ence. This is because FFD cannot test the mean RT ordering
RTLL > RTLH, RTHL > RTHH, as the two LH and HL situ-
ations are aggregated. One such case is shown in Table 3 and
also in Table 2, the first row with C = 1. The subjects’ MIC
RT data showed a violation of the mean RT ordering RTLL >

RTLH, RTHL > RTHH (Table 2, RTLL = 619 ms, RTLH = 564 ms,
RTHL = 623 ms, RTHH = 530 ms) rendering the MIC test not
valid for making inferences. The MIC test indicated that it is
highly likely that some part of the conditional hypothesis was
violated, thus preventing us from reaching a clear conclusion.
However, when the FFD design is used the ordering of mean RTs
allows for inferences (RTLL = 619 ms, RTLHandHL = (564 ms+
623 ms)/2 = 593 ms, RTHH = 530 ms). The FFD design falsely
inferred that this subject was a serial processor. In general the
proposed FFD design is not an accurate test for the detection
of “unknown” cognitive processes. The proof is shown in the
corollary Supplementary Material.

Combining both jeopardies led to 12/26 correct inferences of
serial processing (Table 3, Condition 3, see also Figure 4, “grand
mean”). The linear regression analysis of RT-difference functions
showed very high R2-values of linear functions across different
experiments, leaving practically no room for curving, and detec-
tion of either parallel or coactive processing. Thus, the results
did not infer any parallel or coactive strategies which constitute
almost half of the individual result’s analyses. The disappointingly
low level of 46% correct inferences clearly warrants the use of bet-
ter methods. In the relevant published work so far the author was
able to find several studies that may be characterized as using the
Condition 3 methods (for example, Lachmann and Geissler, 2002;
Lachmann and van Leeuwen, 2004) and thus could be challenged
for the validity of their inferences about cognitive processes.

The results of the current study lead to the following rec-
ommendations. To improve the diagnostic accuracy of cognitive
process, it is advisable to avoid the jeopardies by both adopting
the minimal research design criteria as proposed by SFT, and also
by conducting individual subject analysis, rather than conducting
the analysis on aggregated subject data. Both jeopardies have been
recognized in the scientific community as having detrimental
effects on inferences but infrequently taken care of.

A review of current research trends reveals a number of
researchers who are ready to switch from the subject aggregating
procedures, and instead consider using individual subject analy-
sis, if they are not already en route to developing and using such
methods (e.g., Myung et al., 2000; Brown and Heathcote, 2003;
Estes and Maddox, 2005; Soto et al., 2014). The main challenge
in using individual subject data is to provide an integral assess-
ment of such data that can enable clear communication between
researchers. This is the case when one has to report a variety
of individual differences in a large data set. Another issue is the
question of what the best statistical methodology is for analyzing
data while allowing for individual assessment. Some researchers
have suggested using hierarchical Bayesian statistical inference
as a principle tool for hypotheses testing, as it allows for natu-
ral incorporation of individual difference as a part of statistical
tests (e.g., Rouder and Lu, 2005; Lee, 2008; Liu and Smith, 2009;
Bartlema et al., 2014).

In this paper the author recommends that the research com-
munity pay attention to recent methodological advances that
allow for specification of criteria for the minimal complexity of
research designs. The SFT proposes that (a) each cognitive pro-
cess should be controlled by a separate experimental factor over
the manipulated process saliency, and (b) The saliency levels of
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all factors should be combined in a full factorial design. The fac-
tor’s saliency is a manipulation designed to selectively influence the
speed of a certain cognitive process, so that the process is either
speed up or slowed down (by provision of the selective influ-
ence). The minimal research design complexity is defined to be
composed of 2n experimental conditions. If your research design
of exactly n number of processes has less than 2n experimental
conditions it is likely that the results of such a study will not be
conclusive about the organization of the cognitive processes of
interest. In that case, you may rather seek external generalizability,
which will improve the likelihood of making correct inferences
about the cognitive processes, though at an unknown rate.
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In the area of memory research there have been two rival approaches for memory
measurement—signal detection theory (SDT) and multinomial processing trees (MPT).
Both approaches provide measures for the quality of the memory representation, and
both approaches provide for corrections for response bias. In recent years there has been a
strong case advanced for the MPT approach because of the finding of stochastic mixtures
on both target-present and target-absent tests. In this paper a case is made that perceptual
detection, like memory recognition, involves a mixture of processes that are readily
represented as a MPT model. The Chechile (2004) 6P memory measurement model is
modified in order to apply to the case of perceptual detection. This new MPT model is
called the Perceptual Detection (PD) model. The properties of the PD model are developed,
and the model is applied to some existing data of a radiologist examining CT scans. The
PD model brings out novel features that were absent from a standard SDT analysis. Also
the topic of optimal parameter estimation on an individual-observer basis is explored with
Monte Carlo simulations. These simulations reveal that the mean of the Bayesian posterior
distribution is a more accurate estimator than the corresponding maximum likelihood
estimator (MLE). Monte Carlo simulations also indicate that model estimates based on
only the data from an individual observer can be improved upon (in the sense of being
more accurate) by an adjustment that takes into account the parameter estimate based on
the data pooled across all the observers. The adjustment of the estimate for an individual
is discussed as an analogous statistical effect to the improvement over the individual MLE
demonstrated by the James–Stein shrinkage estimator in the case of the multiple-group
normal model.

Keywords: signal detection theory, multinomial processing tree models, perceptual learning, mixture detection,

shrinkage estimators

1. INTRODUCTION
The title of this special issue implies two very different questions.
The first question is: how should perceptual decision-making be
modeled? The second question is: how should individual differ-
ences be estimated? This paper addresses both of these questions
from a perspective that has been informed by research in the
area of model-based memory measurement. The recommenda-
tions from this perspective result in some novel techniques for
examining perceptual detection data.

Signal detection theory (SDT) is the classic method for mea-
suring the perceived strength of a stimulus (Tanner and Swets,
1954; Green and Swets, 1966). The original applications of SDT
typically dealt with cases of detecting the presence of a slight
intensity increase on a single sensory dimension such as the
loudness of white noise or an increase in the brightness of a
color patch. The data from these studies are multinomial fre-
quencies that are used to estimate either a signal sensitivity
measure (d′) associated with the separation between two pre-
sumed distributions on a psychological strength continuum, or
a non-parametric measure such as A′ associated with the area
under the receiver-operator characteristic (ROC) curve. For such

applications there has been a general consensus that SDT is valid,
accurate and useful. SDT has also been extended to the case of
multiple dimensions (e.g., Ashby and Townsend, 1986).

Egan (1958) first noted that the target-present versus target-
absent test trials used in a yes/no recognition memory study
correspond to the signal-present versus signal-absent tests used
in a sensory-based signal detection task. It therefore followed
that SDT provided a method for measuring memory strength.
In fact Macmillan and Creelman (2005) observed that contem-
porary applications of SDT in the memory area outnumbered
the psychophysical applications. Malmberg (2008) and Yonelinas
(2002) provide extensive reviews of recognition memory from
the perspective of strength-based SDT models. Yet despite the
widespread use of the SDT approach toward recognition mem-
ory measurement, there also has been substantial criticism of this
approach (Chechile, 1978, 2013; Bröder and Schütz, 2009; Kellen
et al., 2013). These critics argue instead for the use of multino-
mial process tree (MPT) models for a variety of reasons. MPT
models have a number of desirable statistical properties and can
result in measurements of important latent cognitive processes.
For example Chechile and Meyer (1976) first used MPT models

www.frontiersin.org June 2014 | Volume 5 | Article 641 | 22

http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.00641/abstract
http://community.frontiersin.org/people/u/149992
mailto:richard.chechile@tufts.edu
http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Chechile PD model

for recognition memory data as well as recall data in order to
obtain separate probability measures for trace storage and for the
retrieval of stored traces, because forgetting was more suitably
described in terms of either storage failures or retrieval failures
rather than simply a change in “memory strength.” The implicit-
explicit separation (IES) model is another example of a MPT
model rather than a SDT model for memory (Chechile et al.,
2012). With the IES model separate probability measures are esti-
mated for explicit storage, implicit storage, fractional storage and
non-storage. In these examples, the MPT modeler deliberately
prefers to measure cognitive processes other than a SDT strength
measure. See Erdfelder et al. (2009) and Batchelder and Riefer
(1999) for additional examples of MPT models in psychology.

MPT models are mixture models because with this approach it
is assumed that there are possibly different knowledge states that
have differential consequence for behavior. For example, some-
times there is enough information stored in memory that the
individual can reproduce the target event entirely, provided that
the information is accessible at the time of test. But for other tests,
the requisite information is either incomplete or totally missing.
In the Chechile (2004) 6P model there are separate tree pathways
for these two different knowledge states. The overall proportion of
traces that are sufficiently stored is defined as the storage proba-
bility θS. The θS parameter is thus a mixture component. Similarly
the other parameters in the 6P model are also probabilities and
can be regarded as conditional mixture probabilities. Chechile
(2013) provided strong evidence for the necessity of consider-
ing mixtures for both target-present memory tests as well as for
target-absent tests. Evidence was also provided that mixtures are
difficult to detect, i.e., data can be generated where a mixture is
present but where conventional density plots or quantile–quantile
plots fail to detect the mixture. In contrast MPT models are an
excellent method for detecting mixtures. Moreover, the absence
of a mixture is a special case of a MPT model where the tree paths
have probabilities of either 0 or 11.

While there is an ongoing debate about SDT and MPT mod-
els in the memory literature, there has not been a corresponding
contemporary debate in perceptual psychology about the relative
merits of SDT and MPT approaches. Yet the possibility of stochas-
tic mixtures is quite plausible for perceptual detection studies,
so there are reasons for considering MPT models for perceptual
detection.

One rationale for suspecting that there are mixtures comes
from the Stevens (1957, 1961) distinction between prothetic and
metathetic continua. Stevens (1961); Stevens (p. 41) illustrated
a prothetic dimension with loudness and distinguished it from
pitch, which is regarded as a metathetic continuum:

1Some MPT models have been characterized as threshold models by the
authors of the model (e.g., the two high-threshold model of Snodgrass and
Corwin, 1988). A threshold is an activation level on an underlying strength
continuum that triggers the memory to be in a given state. The assumption of
thresholds in MPT models has been vigorously challenged by researchers who
prefer a SDT perspective (viz. Dube and Rotello, 2012). However, the concept
of a mixture over different knowledge states does not require the assumption
of a threshold. For example in the Chechile (2004) 6P model, the knowledge
states discussed above are not driven by an underlying strength, but rather it
is based simply on the existence or not of specific memory content.

. . . it is interesting that some of the better known prothetic con-
tinua seem to be mediated by an additive mechanism at the
physiological level, whereas the metathetic continua appear to
involve substitutive processes at the physiological level. Thus we
experience a change in loudness when excitation is added to exci-
tation already present on the basilar membrane, but we note a
change in pitch when new excitation is substituted for excitation
that has been removed, i.e., the pattern of excitation is displaced

The Stevens distinction stresses the difference between changes
in intensity on a single dimension and changes in qualities. A
homogeneous process (as opposed to a mixture) is more likely
when dealing with a prothetic continuum; although DeCarlo
(2002, 2007) has pointed out that trial-by-trial shifts in atten-
tion or phasic alertness can produce a stochastic mixture even
in a perceptual detection task on a single dimension. However,
if the stimuli are complex and possess qualitative features, then
stochastic mixtures are even more likely. Consider, for example, a
sonar operator attempting to detect any enemy threats. The oper-
ator might detect a clear auditory pattern that is a prototypical
signal of a particular class of an enemy submarine. With train-
ing and experience the sonar operator can be highly skilled in
detecting the complex set of features that are associated with an
enemy threat; after all perceptual learning is a well established
fact (Kellman, 2002). From this framework, the operator might
confidently detect a target, not because of a greater strength or
intensity, but because the metathetic pattern exhibited by the
stimulus is linked through training to a particular type of target.
Yet there might be other cases when a threat is present, but the
sonar signal is too poorly defined to be identified as a threat. The
operator has to guess in these cases. Hence, from this perspective
targets stimuli can be considered a mixture of occasions where
the target is confidently and correctly identified and other occa-
sion where the operator guesses. A mixture is also possible over
all the target-absent cases. For example, a sonar operator might
decide that the stimulus is something other than an enemy threat
(e.g., a party boat, or a whale), but for other target-absent events
the signal might be too poorly defined for the sonar operator to
confidently identify. In this paper, a variation of a MPT model
will be advanced for perceptual-detection applications in order to
capture the possibility that there are mixtures reflected in the data.

The second focus for this paper concerns the relative accuracy
of various statistical procedures for modeling individual differ-
ences in terms of the key parameters of a perceptual detection
MPT model. There is a widespread belief that the maximum
likelihood estimates (MLE) of model parameters, done on an
individual basis, is the optional method for obtaining estimates
of individual differences. This belief is mistaken; there is now con-
siderable evidence that the MLE can be non-optimal and biased
for a number of important practical cases. Even in the case of
the Gaussian model with more than two conditions, the MLE
estimates are known to be biased and “inadmissible” due to the
Stein paradox (Stein, 1956; James and Stein, 1961; Efron and
Morris, 1977). These insights have led to empirical Bayes, James–
Stein estimators, and other shrinkage estimators as improvements
to the MLE (Efron and Morris, 1973; Gruber, 1998). Moreover,
based on Monte Carlo simulations of multinomial data,
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Chechile (2009) found that the averaging of individual parameter
estimates resulted in greater error than pooling the multinomial
data across individuals and fitting the MPT model once. This
finding foreshadows a relatively surprising result that is simi-
lar to the James–Stein shrinkage estimate for individual model
parameter estimates.

2. THE PERCEPTUAL-DETECTION (PD) MPT MODEL
2.1. DATA STRUCTURE AND TREE MODEL
The Perceptual-Detection (PD) model is essentially the Chechile
(2004) 6P model for old/new recognition test trials. The 6P model
for storage and retrieval components of memory also has a recall
test that is not a part of the perceptual-detection task. The data
categories for target-present and target-absent trials as well as
the notation for the corresponding population proportions for
each response category are shown in Figure 1. The PD tree is dis-
played in Figure 2. The MPT model has five parameters; the 6P
model had an additional retrieval parameter that is not relevant
for perceptual detection. The subscripts for the five parameters
have been labeled differently in order to better match the per-
ceptual detection context. The θd parameter is the proportion
of target-present tests when the operator clearly and confidently
detects the target stimulus; this parameter corresponds to the suf-
ficient storage parameter θS in the 6P model. The θnt parameter is
the proportion of the target-absent trials when the operator can
confidently identify a stimulus that is different than the target;
this parameter corresponds to the knowledge-based foil rejection
parameter θk in the 6P model.

The θd and 1− θd parameters are mixing rates for target-
present trials. When the target is not clearly detected, the observer
can still decide that the stimulus is a target (with conditional
probability θg) by a secondary process that is simply labeled as
a guessing process. Similarly on target-absent tests, the operator
(with probability 1− θnt) fails to confidently identify a non-target
but can still guess (with probability θg′) that the stimulus is more
likely a non-target than a target. The two guessing parameters in
the PD model are the same as the guessing parameters in the 6P
model. Finally the θh parameter is a “nuisance” parameter because
it is a conditional probability that is only important as a correc-
tion for overly confident guessing. This parameter corresponds to
the θ1 parameter in the 6P model.

2.2. PARAMETER ESTIMATION AND A RADIOLOGY EXAMPLE
A great deal is known about the 6P model, and this information
directly transfers to the PD model. For example, Chechile (2004)

FIGURE 1 | Data categories and population proportions for the PD

model.

formally proved that the model is likelihood identifiable, i.e.,
each configuration of the model parameters results in a unique
multinomial likelihood function2. Chechile (2004) also showed
how the maximum likelihood estimates (MLE) are obtained for
the model parameters. In that same paper, an exact Bayesian
method for drawing random vectors of values from the posterior
distribution was described; the method is called the population
parameter mapping (PPM) method (see Chechile, 1998, 2010a).
With the PPM method there is a full probability distribution
for each model parameter, and there is a probability for the
coherence of the model itself. Software also exists for obtaining
random vectors from an approximate Bayesian posterior dis-
tribution by means of a Markov chain Monte Carlo (MCMC)
sampling system3. For both the PPM method and the MCMC
method, there is a point estimate for each parameter along with

2See Chechile (1977, 1998, 2004) for a more detailed discussion of model
identifiability.
3The MCMC method is an implementation of the Metropolis–Hastings algo-
rithm after an initial “burn in” period of 300,000 cycles for sampling each
model parameter.

A

B

FIGURE 2 | Process tree for the PD model for (A) target-present test

trials and (B) target-absent test trials.

www.frontiersin.org June 2014 | Volume 5 | Article 641 | 24

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Chechile PD model

a Bayesian posterior probability distribution4. The PPM method
has several advantages over the MCMC method. First, it does
not require a “burn in” period. Second, the posterior distribution
is exact as opposed to asymptotically exact. Third, the samples
from the posterior distribution are not autocorrelated. Fourth,
the PPM method has a probability for the coherence of the model
itself.

As an example of parameter estimation for the PD model, let
us consider the actual case of the detection characteristics of a sin-
gle radiologist who was assessing 109 CT scans in order to detect
abnormal versus normal scans. Hanley and McNeil (1982) pro-
vided the frequencies in four response categories. The categories
were labeled as (1) “definitely normal,” (2) “probably normal,” (3)
“probably abnormal,” and (4) “definitely abnormal.” There were a
total of 58 patients who were later determined to be normal, and
51 patients who were determined later to have an abnormality.
The frequencies in these four respective categories for the normals
(target-absent) are (33, 9, 14, 2)5. The corresponding frequen-
cies for the abnormals (target-present) are (3, 3, 12, 33)6. The
PPM, MCMC, and MLE point estimates for each parameter in
the PD model are displayed in Table 1.

The PD model point estimates fit the multinomial frequen-
cies very well as indicated by a non-significant goodness-of-
fit difference between the observed and predicted frequencies,
i.e., G2(1) = 0.262. In addition to the point estimates, the two
Bayesian methods have a posterior probability distribution for
each model parameter, and these distributions provide a method
for testing some important questions about the radiologist. One
of the central ideas in the PD model is the concept that there is

4There is a difference in the prior distributions used for the MCMC method
and for the PPM method. For the MCMC approach, a flat prior is assumed for
each of the PD model parameters, i.e., the (θd, θnt , θg , θg′ , θh) parameters.
However, for the PPM method the prior is a flat distribution for the multi-
nomial cell proportions shown in Figure 1, i.e., the (φi) parameters. The joint
posterior distribution for the (φi) parameters is a product of two Dirichlet dis-
tributions. With the PPM method, random samples of (φi) values are taken
from the posterior distribution, and each vector of (φi) values is mapped to a
corresponding vector of the PD model parameters.
5There were six cases for the normals where the radiologist used another cat-
egory called questionable. Three of these cases are assigned here to the second
category (probably normal), and three cases were assigned here to the third
category (probably abnormal).
6There were two CT scans for the abnormals that the radiologist gave the
response of questionable. One of these cases was assigned here to the second
category, and one was assigned here to the third response category.

Table 1 | PPM, MCMC, and MLE values for the PD model parameters

from 109 CT scans by one radiologist reported in the Hanley and

McNeil (1982) study.

Parameter PPM MCMC MLE

θd 0.552 0.555 0.578

θnt 0.496 0.507 0.523

θg 0.734 0.711 0.721

θg′ 0.405 0.438 0.421

θh 0.250 0.259 0.227

a mixture of states for both target-present cases (abnormals) and
for target-absent cases (normals). From the posterior distribution
of the θd parameter, it can be stated that the probability exceeds
0.95 that the θd parameter is at least 0.39, i.e., P(θd > 0.39) >
0.95. Similarly the posterior distribution for the θnt parameter
results in the high probability statement that θnt is at least 0.37,
i.e., P(θnt > 0.37) > 0.95.

Using a standard SDT model analysis of the radiological data
results in an estimate of d′ = 2.332 and a ratio of the stan-
dard deviations between the signal and noise conditions of σS

σN
=

1.409. This model also fits the data well as indicated by a non-
significant difference between the observed and expected frequen-
cies, G2(1) = 0.220. However, the SDT model does not posit that
there are mixtures, so the finding that the θd and θnt parameters
are reliably different than zero demonstrates that the conventional
signal detection model is missing an important feature exhibited
by the radiologist. If there were an absence of mixtures, then the
PD model would have estimated the θd and θnt parameters as
approximately 0.

For MPT models, the mean of the Bayesian posterior distri-
bution for a parameter is usually a different value than the MLE.
Chechile (2004) conducted a series of Monte Carlo simulations
to see which of these estimates is more accurate for the 6P model;
these simulations directly apply to the PD model. For each Monte
Carlo run, a random configuration of the model parameters was
selected. These parameter values became the true values that are
compared later to the estimated values. Also based on the true
values, there is a corresponding set of true multinomial cell pro-
portions, i.e., the φi values in Figure 1. From the multinomial
likelihood distributions, n random “observations” were drawn
for the target-present frequencies and another n random obser-
vations were drawn for the target-absent frequencies7. Using the
cell frequencies, the PPM and MLE parameter estimates are com-
puted. For each estimate there is thus an error score based on
the absolute value difference between the estimated value and
the true value for that particular Monte Carlo run. For each
sample size there was a total of 10,000 Monte Carlo runs. The
mean absolute value across the 10,000 runs for PPM and MLE
methods are denoted respectively as MAE(ppm) and MAE(mle).
The standard deviation of the absolute value errors was also
found for both estimation methods. Representative results from
these Monte Carlo simulations are shown in Table 2 for the θd

parameter.
The Bayesian PPM estimates are more accurate for all the sam-

ple sizes. Although the MLE and PPM errors are approaching
each other, the rate of approach is relatively slow. Notice that even
for the case of n = 1000, there is still a smaller standard devia-
tion of the errors for the PPM estimates. The greater accuracy for

7Given the values for p1 = φ1, p2 = φ1 + φ2, and p3 = φ1 + φ2 + φ3 there
are three decision points for randomly assigning a simulated “observation”
to one of the four cells. For each simulated observation, a random score is
sampled from a uniform distribution on the (0, 1) interval. If the random
score is less than p1, then the observation is for cell 1. If the random score is in
the [p1, p2) interval, then it is an observation for cell 2. If the random score is
in the [p2, p3) interval, then the observation is for cell 3. If the random score
is greater or equal to p3, then it is an observation in cell 4.
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Table 2 | The mean absolute value error (MAE) for the θd parameter

for both the PPM and MLE methods.

n MAE(ppm) MAE(mle) SDE(ppm) SDE(mle)

10 0.129 0.198 0.090 0.174

20 0.102 0.143 0.076 0.135

30 0.090 0.124 0.070 0.123

40 0.082 0.112 0.064 0.115

50 0.075 0.099 0.061 0.104

100 0.059 0.071 0.050 0.074

300 0.039 0.043 0.035 0.047

600 0.029 0.030 0.027 0.031

1000 0.023 0.023 0.022 0.025

Also shown are the standard deviations of the errors (SDE). Each entry is based

on 10,000 Monte Carlo runs from Chechile (2004).

the Bayesian PPM estimates has been also demonstrated for other
MPT models (Chechile, 2009, 2010a).

2.3. INTERPRETING THE GUESSING PARAMETERS
The θg and θg′ parameters have actually been used in mem-
ory applications since the original storage-retrieval separation
paper by Chechile and Meyer (1976). In the memory context it
was hypothesized that the guessing parameters involve a mix-
ture of processes that include the possibility of partial storage
as well as response bias factors. For memory applications, these
parameters are both typically greater than 1

2 , (viz. Chechile and
Ehrensbeck, 1983; Chechile and Meyer, 1976; Chechile, 1987,
2004, 2010b; Chechile and Roder, 1998). If the guessing param-
eters were strictly response bias, then both parameters should
not exceed 1

2 , but if there is sometimes partial storage, then that
information can be helpful and result in the two guessing param-
eters exceeding 1

2 . Although the possibility of partial storage was
likely, it was not possible to estimate fractional storage with only
the yes/no recognition data along with confidence ratings. Later
Chechile and Soraci (1999) and Chechile et al. (2012) used differ-
ent test protocols that enabled the measurement of partial storage.
These other MPT models did find evidence for partial storage
on some test trials; consequently, the finding of both guessing
parameters being greater than 1

2 is a reasonable outcome.
For the PD model, there is a counterpart to the educated

guessing based on partial storage. For the perceptual detection
task, there might be occasions where a stimulus is judged more
likely a target than not but the quality of the perception is not
good enough to constitute a confident classification. On other
occasions, the stimulus might be judged more likely a particular
“non-target” than a target, but again because the stimulus quality
is degraded, the observer is uncertain. For both cases the stimulus
is not in a clear detection state, but nonetheless, the person is still
able to make informed decisions above a random guessing level.

An interesting special case is when the guessing in both target-
present and target-absent conditions are purely response bias, i.e.,
when θg = 1− θg′ . However, if there is something like the par-
tial storage found for some memory studies, then the stimulus
is more likely to yield a yes response in the target-present condi-
tion than in the target-absent condition. Note that the radiologist

measured with the PD model exhibited guessing better than
pure response bias because θg = 0.734 > 1− θg′ = 0.595. These
results are consistent with the interpretation that the radiolo-
gist was relatively conservative because the doctor guessed that
the patient had an abnormality at a rate of 0.595 for the subset
of difficult scans from healthy patients. Nonetheless for the sub-
set of difficult scans from patients with an abnormality, the rate
for deciding on the abnormal categorization increased to 0.734.
Consequently on these more challenging CT scans the physician
did have some differential tendency to use the abnormal classi-
fication when in fact the CT scan came from a patient with an
abnormality.

2.4. PROPERTIES OF THE ROC FOR THE PD MODEL
The Receiver Operator Characteristic (ROC) in SDT is a curved
plot of the hit rate versus the false alarm rate. In standard SDT, any
point on the ROC is a possible operating point depending on the
decision criterion used by the subject. Hence in standard SDT, the
ROC is an iso-sensitivity curve. In standard SDT, the points (0, 0)
and (1, 1) are on the ROC curve; these points are the extrema. If
the subject had no ability to detect the target, and the data are
identical in the target-absent and target-present conditions, then
the ROC would be the line of slope 1 connecting the extrema. If
there is some greater tendency to detect the target in the target-
present condition, then in standard SDT the ROC is a smooth
curve in the region of the unit square where y ≥ x.

Empirical ROC plots have been used in numerous experi-
mental papers as a method for comparing theories, but it is
challenging to statistically discriminate between models based on
only a few points on the empirical ROC. However, given the
historical interest in the ROC in psychology, it is instructive to
consider the theoretical ROC for the PD model. See Figure 3 for
a general ROC illustration for the PD model. Also see Table 3 for
the PD model equations that are linked to key operating points.
The table caption describes the definition of the three discrete
points illustrated by the open squares in Figure 3, i.e., points P2,
P3, and P4. These three points and the two extreme points for the
PD model, P1 and P5 are a function of the five parameters in the
PD model. If 0 < θd < 1, 0 < θnt < 1, and θg > 1− θg′ , then the
ROC path is along two linear segments. Note that the single-high
threshold model discussed by Macmillan and Creelman (2005) is
the special case of the PD model when θnt = 0 and θg = 1− θg′ .
The double-high threshold model also discussed in Macmillan
and Creelman (2005) is another special case of the PD model
when θnt = θd and θg = 1− θg′ .

To better understand the PD ROC, consider points P2 and P3.
If we were to define an affirmative response as strictly a “yes” with
high confidence, then the corresponding false alarm rate and hit
rate would be illustrated by P2 and have the values corresponding
to the prediction equation shown in Table 3 for that point. Next
we redefine an affirmative response as any “yes” response, then
the false alarm rate and hit would be illustrated by P3 and the
corresponding prediction equation in Table 3. The slope between
P2 and P3 is denoted as s23 and is given as

s23 = (1− θd) θg

(1− θnt) (1− θg′)
, (1)
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FIGURE 3 | ROC for the PD model. See Table 3 for a description of the
points Pi , i = 0, · · · , 6. The open squares are the three theoretical
“operating” points, and the extrema points are P1 = (0, θd ) and
P5 = (1− θnt , 1).

Table 3 | The PD model equations for the key points shown in

Figure 3.

Point x = False alarm y = Hit

P0 0 0

P1 0 θd

P2 (1− θnt )(1− θg′ )θh θd + (1− θd )θgθh

P3 (1− θnt )(1− θg′ ) θd + (1− θd )θg

P4 (1− θnt )(1− θg′θh) θd + (1− θd )(1− (1− θg )θh)

P5 1− θnt 1

P6 1 1

Point P2 corresponds to the case where a positive response is considered

as a high confident yes, but for point P3 a positive is regarded as any yes

response. For point P4 a positive is considered as any response that is not a

high confident no.

and the slope between points P1 and P2 is also equal to s23. The
linear path from points P1 and P3 can be described in terms of
a hypothetical variable v that varies on the [0, 1] interval. The
false alarm rate x and hit rate y on this path is described by the
following equations:

x = (1− θnt) (1− θg′)v, (2)

y = θd + (1− θd) θgv. (3)

The least risky point P1 corresponds to when v = 0. Point P2

corresponds to the more risky case when v = θh. Point P3 cor-
responds to the even more risky case of v = 1. Of course the
only observable points on this path from P1 to P3 are P2 and P3.

Interestingly the slope from P3 to P4 is in general different than
the slope from P1 to P3. Let us denote the slope from P3 to P4 as
s34, and it is given as

s34 = (1− θd) (1− θg)

(1− θnt) θg′
. (4)

It is also the case that the slope from P4 to P5 is also equal to
s34. Moreover, the linear path from P3 to P5 can be described in
terms of another hypothetical variable w that varies from 0 to 1
as the risk increases. The false alarms x and hits y on this path is
characterized by the following equations:

x = (1− θnt) (1− θg′ + θg′ w), (5)

y = θd + (1− θd) θg + (1− θd)(1− θg) w. (6)

The P3 point corresponds to w = 0; whereas the P4 point corre-
sponds to w = 1− θh and P5 corresponds to w = 1.

Figure 4 illustrates the PD model ROC path from one extreme
point to the other in terms of the v and w variables. As v varies
from 0 to 1 it traces points on the P1 to P3 line as stipulated by
Equations (2, 3). Similarly as w varies from 0 to 1, (Equation 5)
and (Equation 6) traces points on the P3 to P5 line. Notice that
θh determines the separation from each of the two extreme ends.
This feature is a property of the PD model because there is a
common parameter of incorrectly using the high confidence rat-
ing when guessing regardless if the guessing is done in either the
target-present condition or the target-absent condition. Chechile
(2004) also presented another identifiable memory MPT model
where there are separate parameters for over confidence when
using the “yes” response (θ2) versus over confidence when using
the “no” response (θ1). This model is the 7B model. Other than
the difference in the handling of over confidence, the 7B and 6P
models are identical, i.e., the 6P model is the special case of 7B
where θh = θ1 = θ2. Model 7B can also be applied to the percep-
tual detection task (lets denote that model as the PD∗ model).
In the PD* model the θ2 parameter determines the location for
the v variable for the P2 point, and the θ1 parameter determines
the separation for the w variable from the maximum of 1. Hence,
the spacing for the points on the v − w plot is different for the
PD* model than the spacing shown in Figure 4 for the PD model.

In general the slope from P3 to P5 is less than the slope from
P1 to P3. Given Equations (1), and (4) the ratio of the slopes can
be written as

r = s35

s13
= (1− θg)(1− θg′)

θgθg′
. (7)

If there is some partial or degraded perception, then the tendency
to respond “yes” is at least equal or greater in the target-present
condition as it is in the target-absent condition. It follows that

θg

1− θg
≥ 1− θg′

θg′
. (8)

It also follows from Equations (7, 8) that r ≤ 1. Consequently, if
θg > 1− θg′ , then the slope from P1 to P3 is larger than the slope
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FIGURE 4 | Illustration of the relative position of the v and w variables

that determine the points on the PD ROC. See Figure 3 for the definition
of the points.

from P3 to P5. The case where r = 1 corresponds to when θg =
1− θg′ or when there is the same “yes” guessing in the target-
present condition as in the target-absent condition. In this special
case, there is no partial detection, and the ROC does not have two
linear components, but there is instead a single line of slope 1−θd

1−θnt
between P1 and P5.

The area under the ROC has been used as a measure of sensi-
tivity in standard SDT. It is straightforward to show that area Ac

between the P1-P5 dashed line in Figure 3 and the main diago-
nal line of y = x is 1

2 (θd + θnt − θdθnt)8. This region is a function
of certain perceptual detection and does not depend on guess-
ing. Because the total area in the upper half of the unit square
where y > x is 1

2 , it is advantageous to multiply Ac by 2, so that
the area measure of certain detection is placed on a 0 to 1 scale.
This measure is defined as a certain detection Dc, and

Dc = θd + θnt − θdθnt . (9)

The area of the P1 P3 P5 triangle is a function of guessing. This
area is denoted as Ag , and it can be found from Heron’s for-

mula, i.e., Ag = 1
2 (1− θnt)(1− θd)[θg − (1− θg′)]. We can put

this measure of effective guessing on a 0 to 1 scale by defining
Dg = 2Ag or

Dg = (1− θnt)(1− θd)[θg − (1− θg′)]. (10)

8Note that the total area above the main diagonal is 1
2 , and the area above

the dashed line is 1
2 (1− θd)(1− θnt ), so Ac can be determined by subtracting

these quantities.

Thus the total detection measure can be defined as twice the area
between the ROC and the main diagonal; this metric is D = Dc +
Dg or

D = θd + θnt − θdθnt + (1− θnt)(1− θd)[θg − (1− θg′)], (11)

As an example, let us compute these area-based metrics for the
radiological data discussed in section 2.2. Using PPM estimates
for θd and θnt , it follows from Equation (9) that Dc = 0.774. The
corresponding Dg measure from Equation (10) is 0.031, so the
overall D metric is 0.805.

Although the detection measure D is on a proportional basis, it
is, nonetheless, a confounded measure because it does not delin-
eate how the detection was achieved. For example suppose that
θnt = 0.805 and θd = 0, then the resulting D value would be the
same as for the radiologist discussed above. Clearly the hypothet-
ical observer with θd = 0 and θnt = 0.805 would be very good
at recognizing a normal CT scan, but would not be capable of
detecting an abnormal scan, which would be a rather serious
problem for the diseased patients of that hypothetical radiologist!
Consequently, the area-based D metric, along with its component
metrics of Dc and Dg , is less informative as the original PD model
parameters. The detection of the target increases with the value of
the θd parameter, and the identification of a non-target increases
with the value of the θnt parameter. Those two types of detec-
tion can be quite different. It is also informative to know how
the observer does for the unclear cases where there is guessing.
The D metric does not pull out the many different perceptual
and decision-making characteristics of the observer’s behavior.
Also the standard SDT metrics of d′ and the ratio of the standard
deviations do not extract the different properties of the observer’s
perceptual-detection performance.

3. INDIVIDUAL DIFFERENCE ESTIMATION FOR THE PD
MODEL

A fundamental issue that arises in mathematical psychology is the
basis for fitting a model. One method is to fit the model sep-
arately for each individual and to average individual estimates
for the group average. Another method is to aggregate the data
across a group of individuals for a particular experimental con-
dition and then fit the model once for that condition9 . The
estimates from these two approaches differ. Although there are
applications where each of these pure approaches is reasonable, in
this paper a hybrid of these two methods will be recommended.
Consequently, the answer to the question as to how to fit a model
depends on the purpose of the analysis.

There are several contexts that necessitate the fitting of the
model on an individual basis. For example, if the model is a
non-linear function of an independent variable, then many inves-
tigators have demonstrated that group-averaged data can result
in biased fits (Estes, 1956; Sigler, 1987; Ashby et al., 1994). Also

9A third approach also exists for obtaining individual and group effects by
means of a hierarchical Bayesian model similar to the analysis developed for
MPT models by Klauer (2010). This method is computationally challenging,
and it has not yet been assessed to see if it has improved accuracy relative to
the simple model advanced in the present paper.

www.frontiersin.org June 2014 | Volume 5 | Article 641 | 28

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Chechile PD model

the theoretical issue being examined can require that the analy-
sis be done on an individual basis. For example, Chechile (2013)
examined the memory hazard function to see if there was evi-
dence of a mixture over stimuli. Had that analysis been done on a
grouped-data basis, then any results suggesting a mixture could
have been a mixture over individuals with different memory
properties instead of a mixture over stimuli.

There are also cases when pooling the data prior to the model
fit is the preferred analysis (Cohen et al., 2008; Chechile, 2009).
Chechile (2009), for example, studied four prototypic MPT mod-
els with an extensive series of Monte Carlo simulations in order
to examine the relative accuracy of averaging versus data pool-
ing. For any given Monte Carlo run, a group of ng simulated
“subjects” with slightly different true values for the model param-
eters was constructed, and for each artificial subject there were
nr “observations” that were randomly sampled from the appro-
priate multinomial likelihood distribution10. Based on this set of
simulated outcome frequencies, the model was fit in two dif-
ferent ways: (1) the averaging method and (2) the data-pooling
method. For the averaging method the MPT model was fit sep-
arately for each of the ng subjects, and these estimates were
averaged to obtain an estimate for each model parameter. For
an arbitrary model parameter, θx, the group average estimate

is θ̄x = 1
ng

∑ng

i=1 θ̂x i where θ̂x i is the parameter estimate for the

ith subject. For any Monte Carlo run, the absolute value dif-
ference was computed between θ̄x and the true mean for that
parameter θx(true) = 1

ng

∑ng

i=1 θx i(true). This difference is taken

as the error for the averaging method for that one Monte Carlo
run. The process was then repeated so that in total there were
1000 separate Monte Carlo runs for each combination of ng and
nr . Across these separate Monte Carlo runs the model parame-
ters were varied, so the model was simulated over a vast set of
configurations of the parameters. The overall error for the aver-
aging method is the mean error across the 1000 Monte Carlo
data sets for each combination of ng and nr . For the identical
data as described above, a corresponding error was also found
for the pooling method. For the pooling method the frequen-
cies in each multinomial response category was summed across
the ng subjects in a group, and the model was fit once with the
pooled data. The estimate based on pooling for the jth simulated
data set is denoted as θ̂x j(pooled). The absolute value difference
between this estimate and the true value for that run is the pool-
ing error for the jth Monte Carlo data set, and mean error across
all 1000 data sets is the overall error for the pooling method11. For
all four models reported in Chechile (2009) and for most com-
binations of ng and nr , the mean error for the pooling method
was less than the corresponding error obtained for the averaging
method12. Consequently, Chechile (2009) reported a pooling

10Each individual was within±0.03 of the group mean.
11This whole procedure of estimating the model with both the averaging and
pooling method was done for both PPM and MLE estimates for each of the
four typical MPT models.
12Only eight cases out of 640 cases reported in Chechile (2009) had greater
error for the pooling method, and all of these exceptions were when the MLE
was used. Generally the MLE was not the optimal estimator for the model
parameters because the corresponding Bayesian PPM estimator had greater
accuracy.

advantage score that was the difference between the mean
averaging error and the mean pooling error. For example, a posi-
tive value for the pooling advantage score of 0.07 means that the
averaging mean error was larger by 0.07 than the correspond-
ing pooling error. A negative pooling advantage score would
mean that the averaging method had less error than the pooling
method.

One of the models examined in Chechile (2009) was a four-cell
MPT model that is identical to the structure of the process trees
for either the target-present or the target-absent test conditions
with the PD model. Consequently, those Monte Carlo simulations
directly apply to the PD model. Table 4 provides a condensed
summary of the Monte Carlo results from Chechile (2009). The
θd parameter in Table 4 corresponds to the θS parameter in Model
A; whereas θg and θh, respectively, correspond to the θg and θ1

parameters in Model A.
The pooling advantage scores in Table 4 exhibit a number

of interesting properties that were also found with the other
MPT models. First, the pooling advantage scores are posi-
tive indicating that there is greater accuracy for the pooling
method. Second, although the magnitude of the pooling advan-
tage decreases with the number of observations per subject (nr),
there is still a non-trivial advantage for pooling even when nr =
400. It is challenging to do an experiment with large values for
nr . For example, a replication number of 50 is larger than all
but two of the memory studies reported from my laboratory.
Consequently, the idea of running a large number of replica-
tion trials per subject is not a practical option. Third, the size
of the pooling advantage increases with group size ng . This
effect is due to the fact that the error for the pooling method
decreases rapidly with increasing group size; whereas the error
for the averaging method slowly decreases with increasing ng ,

Table 4 | The difference in mean error between averaging and pooling

for ng individuals in a group and for nr trials in the target-present

condition.

Pooling Advan. score

ng nr θd θg θh

20 20 0.069 0.076 0.078

20 50 0.045 0.050 0.051

20 100 0.034 0.035 0.034

20 400 0.015 0.013 0.013

40 20 0.078 0.086 0.087

40 50 0.054 0.059 0.059

40 100 0.037 0.040 0.040

40 400 0.017 0.015 0.015

80 20 0.087 0.096 0.098

80 50 0.059 0.065 0.064

80 100 0.043 0.043 0.045

80 400 0.020 0.016 0.016

This difference is a pooling advantage score. Positive values indicate less error

for the pooling method. Monte Carlo simulations from Chechile (2009).
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so the net effect is that the pooling advantage score increases
with ng .

It might not seem intuitive as to why the pooling of data results
in superior estimates for the group mean. This result is more rea-
sonable when viewed from a Bayesian perspective. From Bayes
theorem it does not matter if the data are examined in aggre-
gate or one observation at a time, provided that the same starting
prior probability is used. Suppose we use a uniform distribution
as the prior distribution for each combination of the parameters
(θd, θg , θh). Let us call this prior the “vague” prior. Furthermore
suppose we examine the model parameters for the first individual
in the group via Bayes theorem to yield a posterior distribution.
The posterior distribution after the first individual should then be
the prior distribution for examining the data for the second sub-
ject, i.e., it is no longer appropriate to maintain the vague prior
after examining the first subject. Similarly the prior distribution
for Subject 3 should be the posterior distribution after consid-
ering the first two subjects. This one-subject-at-a-time method
eventually yields a posterior distribution that is the same as the
posterior distribution achieved by pooling the multinomial cate-
gories and applying Bayes theorem once. Had the Bayesian analyst
used a vague prior for each of the ng subjects and averaged the
estimates, then the analysis would not be consistent in the appli-
cation of Bayes theorem. The averaging of separate estimates is
not an operation by which probability distributions are revised
via Bayes theorem. In terms of this framework, the findings in
Table 4 are quite reasonable. The pooling method should be more
accurate, and the pooling advantage should grow with the size of
the group.

Despite the above demonstration of a pooling advantage for
estimating the group mean, it is still an open question as to what
should be the basis for estimating the model parameters for an
individual. Two choices seem reasonable. One method is simply
to use the data for just the individual, e.g., for the θd parameter it
would be θ̂d i for the ith observer. For the second method the data
for the individual is used but there is a fixed correction so that the
mean across all observers is equal to the pooled estimate for the

group. For the θd parameter this estimate is denoted as θ̂ (a)
d i and is

defined as

θ̂
(a)
d i = θ̂d(pooled)− θ̄d + θ̂d i. (12)

Note that the two methods have estimates that are perfectly cor-

related because the adjusted estimate θ̂ (a)
d i is a constant plus the

individual estimate θ̂d i. The constant correction term is equal to
θ̂d(pooled)− θ̄d. The correction makes the mean of the adjusted
estimates equal to the pooling method estimate because

1

ng

ng∑

i=1

θ̂
(a)
d i = θ̂d(pooled)− θ̄d + θ̄d = θ̂d(pooled).

The estimate based on Equation (12) is similar in principle to
a James–Stein estimator used for the linear model for Gaussian
random variables because the estimate for the individual is shifted
based on properties of the group.

Another Monte Carlo simulation was designed for a widely
different group of simulated observers in order to assess the
relative accuracy of the two methods for estimating the param-
eters for individuals. The group consisted of 10 observers for
each of the 3× 3 combinations of values for θd and θnt . The
three values were 0.2, 0.5, and 0.8. For each of the 90 simu-
lated observers the values for θh were randomly selected from
a beta distribution with coefficients of 2 and 4, and the θg and
θg′ parameters were randomly selected from a beta distribution
with coefficients of 28 and 14. Consequently true scores were
established for each simulated observer. For each observer, 20
simulated observations were randomly sampled for the target-
present condition, and another 20 observations were randomly
sampled for the target-absent condition. These observations were
based on the appropriate multinomial likelihood distribution for
each subject. The PD model was then estimated by each method
described above. Because θd and θnt are the two key parameters
of interest in the PD model, the root mean square (rms) error
was found between the true score point {θd i(true), θnt i(true)}
and the estimated point for the individual {θ̂d i, θ̂nt i}. The rms

error for the adjusted score point {θ̂ (a)
d i , θ̂

(a)
nt i} was also found.

The rms errors for the individual and the adjusted method
are respectively 0.1671 and 0.1385. Thus, the adjusted esti-
mates based on Equation (12) resulted in a 17% reduction in
the rms error. This simulation illustrates the improvement in
the accuracy of model estimation by the use of the adjusted
score method.

4. DISCUSSION
In this paper the Chechile (2004) 6P memory measurement
model was modified and applied to perceptual detection. The
resulting PD model is a MPT model that has two mixture rate
parameters (θd and θnt) that measure the proportion of times
that the observer confidently detects something that belongs to
an identifiable category. The categories are different for targets
and non-targets, but in both cases something is being identi-
fied. The measurement of these detection rates is an important
part of the psychometric assessment of perceptual performance.
The PD model also has three other parameters that come into
play when the observer is unable to confidently classify the
stimulus.

The PD model differs from standard SDT on the issue of
stochastic mixtures. MPT models, like the PD model, are essen-
tially probability mixture models. In contrast, SDT developed in
the context of assuming separate but homogeneous distributions
for target-present and target-absent conditions. The success of the
PD model in accounting for the radiological judgments described
earlier in this paper occurred because the PD model was sensi-
tive to the fact the radiologist was able to know sometimes that
a CT scan was normal and to know at other times that a CT
scan revealed an identifiable abnormality. This attribute of cat-
egorical and sophisticated perception is not an isolated property
of experts. More than 120 years ago William James discussed the
importance of perceptual learning; in fact perception according to
James differed from a pure sensation because of the information
that the person associates and adds to the sensation (James, 1890).
There is now a vast literature describing the improvement in
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perception with practice (Kellman, 2002). With experience peo-
ple can develop refined perceptual categories that sharpen their
ability to process and to interpret stimuli.

It is noteworthy that the prototypic experiments in the early
history of SDT used stimuli that were designed to be feature-
less and varied on only a single prothetic intensity dimension.
For example the stimulus-absent stimulus for some experiments
was white noise; whereas the target-present stimulus was a louder
white noise (Tanner et al., 1956). Perceptual categories and per-
ceptual learning is limited for such impoverished stimuli. SDT is
expected to be quite successful for such applications, but SDT is
expected to be problematic when stimuli possess rich perceptual
features and when the observer has some experience with the class
of stimuli. For those applications, the PD model would be a more
suitable cognitive psychometric tool for assessing the properties
of the observer.

The PD model is a minimalistic model that intentionally
eschews delineating any specific cognitive representation of the
stimulus. Like other MPT models, there are probability measures
for specific states. The states for the PD model are: (1) a state of
certain target recognition, which occurs on θd proportion of the
target-present trials, and (2) the state of certain identification of
something other than a target, which occurs on θnt proportion of
the target-absent trials. These probability measures provide for a
characterization of the observer’s detection ability.

MPT models have many desirable statistical properties and
can be estimated by a variety of methods. Monte Carlo simu-
lations with large sample sizes demonstrated that the MLE and
the Bayesian posterior mean for the PD model were very close,
but the accuracy of these estimates differed more substantially
for smaller sample sizes. When the estimates differ, the Bayesian
mean was found to be more accurate. In addition, an improved
estimate was found for the individual observer when the estimate
based on the individual’s data was adjusted. The adjustment was
a fixed amount for all observers, and it equated the mean of the
adjusted scores to the mean of the estimate based on pooled data.
This adjustment was discussed as an analogous adjustment to the
James–Stein shrinkage improvements to the MLE found for the
multiple-group Gaussian model.
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Diffusion models are widely-used and successful accounts of the time course of
two-choice decision making. Most diffusion models assume constant boundaries, which
are the threshold levels of evidence that must be sampled from a stimulus to reach
a decision. We summarize theoretical results from statistics that relate distributions of
decisions and response times to diffusion models with time-varying boundaries. We
then develop a computational method for finding time-varying boundaries from empirical
data, and apply our new method to two problems. The first problem involves finding
the time-varying boundaries that make diffusion models equivalent to the alternative
sequential sampling class of accumulator models. The second problem involves finding
the time-varying boundaries, at the individual level, that best fit empirical data for
perceptual stimuli that provide equal evidence for both decision alternatives. We discuss
the theoretical and modeling implications of using time-varying boundaries in diffusion
models, as well as the limitations and potential of our approach to their inference.

Keywords: accumulator model, collapsing bounds, model equivalence, sequential sampling, first-passage time

1. INTRODUCTION
Being able to make a timely choice between two alternatives is
a cornerstone of human cognition, and a long-standing focus
of experimentation and theorizing in cognitive psychology. One
widely used approach to modeling the time course of deci-
sion making comes from the class of sequential sampling models
(Link and Heath, 1975; Ratcliff, 1978; Vickers, 1979; Luce, 1986;
Busemeyer and Townsend, 1993; Usher and McClelland, 2001;
Ratcliff and McKoon, 2008). In these models, people are assumed
to gather information, piece by piece, until they have accrued
enough evidence in favor of one or other alternative to justify
that decision. The most prominent and popular sequential sam-
pling models are diffusion models, which make the assumption
that the samples of evidence come from a Gaussian distribution,
and are accumulated according to a random walk that becomes a
diffusion process as the time-step between samples approaches a
limit of zero (Ratcliff, 1980, 1985, 1988, 2013; Ratcliff and Rouder,
1998, 2000; Ratcliff et al., 1999).

The basic diffusion model assumptions and operation are
shown graphically in Figure 1A. Evidence values are sampled
from a Gaussian with mean μ and standard deviation σ . These
values are accumulated in a single tally until the tally reaches
either the upper or lower boundaries shown by solid black
lines. Once the tally reaches a boundary, evidence accumula-
tion stops, and the model makes the decision associated with
the boundary that was reached, with a response time corre-
sponding to the number of samples taken. Figure 1A shows 10
example tallies by thin gray lines. It also shows by histograms
at the boundaries the distribution of response times for each
decision.

When applied to account for human decision-making, diffu-
sion models are usually extended beyond the basic form shown in
Figure 1A. Most often, additional parameters are added, intro-
ducing variability to the evidence accrual process, or incorpo-
rating encoding and retrieval processes, or processes that cause
leakage or drift in the tallies (e.g., Ratcliff, 1978; Busemeyer
and Townsend, 1992; Usher and McClelland, 2001; Ratcliff and
McKoon, 2008). In these expanded forms, diffusion models have
been widely applied to model human decision-making for a vari-
ety of tasks, including: many simple perceptual decisions like
coherent motion detection, line length comparison, and bright-
ness discrimination (e.g., Ratcliff and Rouder, 1998; Ratcliff
et al., 2003); simple cognitive tasks, like lexical decision (e.g.,
Ratcliff et al., 2004a; Wagenmakers et al., 2008); basic informa-
tion processing tasks like choice reaction time (e.g., Laming, 1968;
Link and Heath, 1975); memory processes (e.g., Ratcliff et al.,
2004b; White et al., 2009); and a range of more complex cog-
nitive decision tasks, including categorization and classification
(e.g., Nosofsky and Palmeri, 1997), heuristic decision-making
(e.g., Lee and Cummins, 2004; Lee and Zhang, 2012), and judg-
ment and choice (e.g., Wallsten and Barton, 1982; Busemeyer
and Rapoport, 1988; Busemeyer and Townsend, 1993; Diederich,
1997).

One area that has been under-explored in diffusion modeling
involves the use of time-varying boundaries. The vast majority
of diffusion models in psychology use constant boundaries, as
shown in Figure 1A. Constant boundaries were originally moti-
vated by optimality properties, in the sense that setting a bound-
ary corresponds to setting a Type I error rate, as in the sequential
probability ratio test (Wald and Wolfowitz, 1948). Some previous
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FIGURE 1 | The basic drift diffusion sequential sampling model of

two-choice decision-making and response times (A), and variants

involving time-varying boundaries (B–E). In each case, evidence values are

sampled from the same Gaussian distribution with mean μ and standard
deviation σ , but different boundaries lead to different response time
distributions for the two alternative decisions.

diffusion models, however, have considered within-trial changes
in boundaries, usually in the form of that converge over time (e.g.,
Pickett, 1968; Rapoport and Burkheimer, 1971; Clay and Goel,
1973; Viviani, 1979; Hockley and Murdock, 1987; Busemeyer and
Rapoport, 1988; Heath, 1992; Frazier and Yu, 2008; Milosavljevic
et al., 2010). Considering time-varying boundaries has become an
active area of research recently, both in the context of models that
combine neuro-psychological data with formal modeling of deci-
sion processes (e.g., Cisek et al., 2009; Gluth et al., 2012; Ratcliff
and Frank, 2012; Thura et al., 2012), and in the context of study-
ing the theoretical relationships between, and the falsifiability of,
sequential-sampling models (Jones and Dzhafarov, 2014).

Figures 1B–E show examples of different time-varying bound-
aries, and the distributions of decisions and response times they
produce for the same Gaussian evidence distribution. It is clear
that allowing this flexibility in diffusion models makes them capa-
ble of capturing both qualitatively and quantitatively different
decision and response time patterns. One reason for wanting
this flexibility is to accommodate patterns seen in empirical data,
especially arising from experimental task demands. Time-varying
boundaries could be regarded, for example, as implementing time
pressure, urgency-gating, or deadlines within a single decision
trial (Ditterich, 2006; Frazier and Yu, 2008; Cisek et al., 2009).
Another reason for considering time-varying boundaries is to
broaden the types of optimality in decision-making that can be
considered by diffusion models (e.g., Drugowitsch et al., 2012;
Ratcliff and Frank, 2012). While constant boundaries, as noted
above, optimize single decisions with respect to a fixed Type I

error rate, this is not the only possible criterion decision mak-
ers might optimize. For example, in some situations—such as
when there is not fixed number of decisions to be made, but
rather a fixed length of time in which any number of decisions
can be made—it might be more important to optimize the rate
at which correct decisions are made, rather than focus on the
correctness of each individual trial. A specific example is pro-
vided by Drugowitsch et al. (2012, Figure 3C), who showed
that the optimal boundaries for the Wiener diffusion model are
decreasing when there are multiple levels of difficulty and inter-
mixed trials in a 2-alternative-forced-choice (2AFC) task1. It is
when there is only one level of difficulty in the task that the
SPRT Optimality Theorem guarantees that the Wiener process
with constant boundaries (among all possible models) maximize
any reward criteria that are monotonically non-increasing with
respect to the response time (e.g., Bogacz et al., 2006, A.1.1).
Many real-world decision-making situations are more general,
and so afford possibility that time-varying boundaries may be
optimal. In general, different time-varying boundaries can often
be interpreted as optimizing different sorts of criteria relevant to
different decision-making situations.

In this paper, we develop a computational method for find-
ing time-varying boundaries from response time distributions

1Simulations in Khodadadi et al. (2014), on the other hand, show that a
Wiener process with constant boundaries is optimal for 2AFC with multiple
difficulty levels, when a cue is added before each trial indicating the difficulty
level of the upcoming trial.
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that does not constrain their form and does not commit to
specific theoretical assumptions about optimality. Our method
is motivated by relevant results from statistics that relate pat-
tern of decisions and response times to diffusion models with
time-varying boundaries. Our method does not constrain the
time-varying boundaries to a parametric family, but does require
knowing the mean and standard deviation of the Gaussian
evidence distribution.

To demonstrate our method, we apply it to two concrete prob-
lems. The first problem involves equating diffusion models with
an alternative class of sequential sampling models, known as
accumulator models, and requires applying our method to simu-
lated data. The second problem involves finding the time-varying
boundaries in a perceptual decision-making task in the case where
the visual stimulus provides the same level of evidence in favor of
either decision alternative. Applying our method at the individual
level, this second application allows us to consider basic indi-
vidual differences in the thresholds people use to make a simple
perceptual decision. We conclude with a discussion of the theoret-
ical and modeling implications of using time-varying boundaries
for diffusion models, as well as considering the limitations and
potential of our method.

2. FINDING TIME-VARYING BOUNDARIES
We approach the problem of finding time-varying boundaries as
one of solving an inverse problem numerically. There are three
important elements to our approach. The first element is hav-
ing a method for generating the decision and response time
distributions that are produced by a known Gaussian evidence
distribution and known time-varying boundaries. The second
element is a theoretical result that guarantees that any decision
and response time distribution, for a given Gaussian evidence dis-
tribution, is generated by unique time-varying boundaries. The
third element is a numerical method for finding those bound-
aries, given the Gaussian evidence distribution and decision and
response time distribution. In this section, we present each of
these three elements in turn.

2.1. GENERATING DATA FROM DIFFUSION MODELS WITH
TIME-VARYING BOUNDARIES

We study a diffusion model sampling evidence from the Gaussian
distribution with constant mean μ and standard deviation σ , but
with the additional flexibility of having time-varying boundaries.
This model generates a decision probability pdiff and response
time distributions rdiff

A and rdiff
B for the two decisions. Denoting

the decision boundaries as aA and aB for the two decisions,
where aA and aB are both time-dependent functions, the diffusion
model can be conceived as a mapping

mdiff : (μ, σ, aA, aB
)→ (

pdiff, rdiff
A , rdiff

B

)
. (1)

The mapping mdiff has been studied in the statistics literature,
and an effective approach using the analysis of renewal equa-
tions has been developed (Durbin, 1971; Buonocore et al., 1987,
1990). Buonocore et al. (1990) provide an efficient algorithm to
compute the response time distributions for time-varying bound-
aries. A summary of these methods well-suited for psychologists

is given by Smith (2000). In particular, data can be generated from
a diffusion model with flexible boundaries using general Markov
process methods. Because (Smith, 2000) does not provide results
for exactly the diffusion model we use (we use a special case of a
more general one that is provided), we give explicitly the details
needed to reproduce our results.

The basic idea is to specify how sample evidence paths X(t) are
generated, and then use existing results that give the first passage
time distributions through arbitrary boundaries that are contin-
uously differentiable. The diffusion model we study corresponds
to a Wiener process with a constant drift ξ and infinitesimal vari-
ance s2.2 Specifying the sample paths for this process is done by
specifying the transition density

f
(
x, t | y, τ

) = d

dx
F
(
x, t | y, τ

) = 1√
2π s2 (t − τ) exp

(
−
(
x − y − ξ (t − τ))2

2s2 (t − τ)

)
(2)

where F
(
x, t | y, τ

)
is the probability of the tally being less than

or equal to x at time t, given its value at an earlier time τ was
y. Notice that both f and F are the densities when there is no
boundary.

The first passage time densities through the time-
varying absorbing boundaries, aA and aB, are denoted by
gA(aA(t), t|x0, t0) and gB(aB(t), t|x0, t0), where x0 and t0 are the
initial state and time. Analysis using the renewal equation (e.g.,
Durbin, 1971) yields the Volterra equations of the relationship
between the transition density and the first passage time densities
(Smith, 2000, Equation 41):

f (aA(t), t|x0, t0) = ∫ t
t0

gA(aA(τ ), τ |x0, t0)f (aA(t), t|aA(τ ), τ )dτ

+∫ t
t0

gB(aB(τ ), τ |x0, t0)f (aA(t), t|aB(τ ), τ )dτ

f (aB(t), t|x0, t0) = ∫ t
t0

gB(aB(τ ), τ |x0, t0)f (aB(t), t|aB(τ ), τ )dτ

+∫ t
t0

gA(aA(τ ), τ |x0, t0)f (aB(t), t|aA(τ ), τ )dτ
(3)

In principle, these equations are soluble, but f
(
x, t | y, τ

)
is

singular as t approaches τ , therefore Equation 3 needs to be trans-
formed stably for practical approximation methods. A detailed
description of the equation and the singularity issue can be
found in Smith (2000, pp. 430–432). The kernels of the trans-
formed equations can be found using the method developed
by Buonocore et al. (1987, 1990) and detailed by Smith (2000,
pp. 441–446). By letting μ(s) = μ = constant in Equation 57 of
Smith (2000), the proper function is

2We use μ and σ to denote the mean and standard deviation of the evidence
distribution, or incremental distribution, when we discretize the process to take
samples from N (

μ, σ
)
. We use the standard notation ξ and s for the drift

and the diffusion coefficient for the corresponding continuous drift diffusion
process.
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�
(
a (t) , t | y, τ

) = f
(
a (t) , t | y, τ

)

2

(
a′ (t)− a (t)− y

t − τ
)

(4)

where a(t) takes the form of aA or aB, and a′(t) denotes the first
derivative of the boundary. With these results in place, diffu-
sion model data can be produced directly from the first passage
time densities, gA and gB, which are the same as g1 and g2 in
Equations 47a and 47b of Smith (2000).

2.2. THEORETICAL RESULTS FOR THE INVERSE PROBLEM
The inverse first passage time problem—finding the boundaries,
given the evidence distribution and decision and response time
distribution—is much harder than the first passage time problem.
It has, however, been studied in the fields of applied mathemat-
ics and statistics (e.g., Capocelli and Ricciardi, 1972; Cheng et al.,
2006; Chen et al., 2011).

Analytic expressions for the boundaries are rarely available and
previous research has usually focused on developing numerical
methods for computing the boundary. Theoretical work has been
relatively scarce. Early work by Capocelli and Ricciardi (1972)
addressed the problem of under what conditions an arbitrary
density function can be interpreted as the first passage density
function for a continuous one-dimensional Markov process with
constant boundaries and a known starting value. Some relevant
results, in the context of the types of sequential sampling models
used to model human decision-making, were obtained. In par-
ticular, Capocelli and Ricciardi (1972, corollary 2.2) found the
technical conditions that guarantee the uniqueness of the solu-
tion, if it exists, for the Wiener-Lévy and the Ornstein-Uhlenbeck
diffusion processes with specified initial condition.

Cheng et al. (2006) were the first to study the well-posedness—
that is, the existence and uniqueness—of a specific inverse first-
passage time problem close to that of interest in our study. Cheng
et al. (2006) addressed the case where a diffusion model has a
single boundary, so that there is only one possible decision, and
the response time for that decision is being measured. For that
case, they proved that for any probability density function q, there
exists a unique viscosity solution to the inverse-first-passage-time
problem (i.e., a unique boundary exists under weak assumptions
of differentiability). Analogous results for the two-boundary case
of direct interest remain an open (and active) research question in
the statistics literature. To date, there is no proof that the numeri-
cal method developed in the next section of the paper always finds
a unique solution.

2.3. A NUMERICAL METHOD FOR FINDING TIME-VARYING
BOUNDARIES

Zucca and Sacerdote (2009) and Song and Zipkin (2011) devel-
oped numerical methods for finding time-varying boundaries
in the one-boundary case. Because we are interested in diffu-
sion models with two time-varying boundaries, we rely on the
approach used by Buonocore et al. (1990). In essence, our method
applies this approach, previously used as a forward method only,
to the problem of finding two time-varying boundaries.

Algorithm 1 presents the main part of our numerical method
for computing the time-varying boundaries as pseudo code. The
aim of the algorithm is to find the two boundaries such that the

Algorithm 1 | Compute the discretized boundaries aA (n) and aB (n),

n = 1, 2, · · · , with input μ, σ , PA,n, and PB,n.

Discretize [0, 1] into I small intervals (grid for the boundary)

for n = 1 to N do

Compute PA,n and PB,n

for i = 1 to I do

cA(i) = i/I

cB(i) = −i/I

qA(i)← gA(cA(i),nλ | x0 = 0, t0 = 0)

qB(i)← gB(cB(i), nλ | x0 = 0, t0 = 0) gA, gB as in
Smith (2000), Equation 47

end for

aA (n)← arg mini
∣∣qA

(
i
)
λ− PA,n

∣∣ /I
aB (n)←− arg mini

∣∣qB
(
i
)
λ− PB,n

∣∣ /I
end for

first passage time densities of the process through those bound-
aries are equal to two desired specific density functions. The
algorithm sets the interval between sampling steps to be a small
value λ, and calculates the probabilities PA,n and PB,n that deci-
sion alternatives “A” and “B,” respectively, will be chosen after n
samples. In practice, PA,n and PB,n can be obtained by discretiz-
ing the empirical RT distributions for the two alternatives. For the
diffusion model discretized to the same sampling interval λ, and
using the same Gaussian evidence distribution, the drift rate is
ξ = μ/λ and the diffusion coefficient is s, where s2 = σ 2/λ. The
first-order derivative of the boundary at step n can be approxi-
mated by a′ (n) = [a (n)− a (n− 1)] /λ. These values allow the
calculation of Equations 2 and 4 above.

The algorithm finds the time-varying boundary through a
point-wise approach to its construction, receiving samples from
the same Gaussian evidence distribution with mean μ and stan-
dard deviation σ . Because the boundaries scale with σ without
changing shape, and our assumption that the decision process
starts without bias, the initial values of the boundaries can be
fixed at+1 and−1, without loss of generality.

The algorithm now sets the equalities gA (2) λ = PA,2 and
gB (2) λ = PB,2, allowing for the solution of the boundaries at
the second sample aA (2) and aB (2). These steps of the algorithm
are now repeated for all of the samples, to find both boundaries
in their entirety. Once aA (1) , . . . aA (n), and aB (1) , . . . aB (n)
are available, it is possible to solve for aA (n+ 1) and aB (n+ 1)
by setting the first passage time densities to be equal, so that
gA (n+ 1) λ = PA,n+1 and gB (n+ 1) λ = PB,n+1.

Our algorithm solves the equations at each sample using a sim-
ple grid search approach. Values between 0 and 1 are examined
by a small increment l = 0.01 up to N, where N is a large number
chosen such that the value of the response time distribution at Nλ
is negligibly small for both decisions.

The recursive nature of the algorithm means that numeri-
cal precision errors accumulate as the sample being considered
progresses. In practice, we found this sometimes necessitates a
second corrective part to our numerical method. For later sam-
ples beyond a critical value, we fit the boundary a piece-wise
linear curve, each segment containing 2–3 steps, minimizing the
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deviation between the simulated and the target first passage time
distributions. The boundary that is found is thus a combination
of the values returned by the algorithm up to the critical step, and
brute-force piece-wise linear curve fitting.

3. APPLICATIONS OF OUR ALGORITHM
In this section, we apply our algorithm to two problems. The first
problem is theoretical, and involves the relationship between dif-
fusion classes of sequential-sampling models. The second prob-
lem is empirical, and involves finding the time-varying bound-
aries for individual subjects from their behavioral data in key
trials of a simple perceptual decision-making task.

3.1. EQUATING ACCUMULATOR AND DIFFUSION MODELS
Within the sequential sampling framework, an alternative to
the class of diffusion model is the class of accumulator models
(Vickers, 1970, 1979). As shown in Figure 2, accumulator mod-
els maintain two separate evidence tallies, one for each alternative
decision. Each sampled piece of evidence favors one or the other
decision, and only those samples that favor a decision are added
to their corresponding tally. The first tally to reach the boundary
results in that decision being made, and the response time is the
number of samples required for this to happen.

Because of their different evidence accrual mechanisms, diffu-
sion and accumulator model are usually regarded as being qual-
itatively different, and treated as competing accounts of human
decision making. Empirically, the standard conclusion is that dif-
fusion models are superior accounts of data (e.g., Ratcliff and
Smith, 2004), although there are some studies that find in favor
of accumulator models (e.g., Lee and Corlett, 2003). Bogacz et al.
(2006) compare diffusion and accumulator models theoretically,
in terms of a set of optimality properties, and conclude that
accumulator models cannot be reduced to diffusion models.

Complementing this focus on the two models as competing
accounts of human decision-making, a natural application of
our method is to find the time-varying boundaries that make a
diffusion model equivalent to an accumulator model with con-
stant boundaries and the same Gaussian evidence distribution.
This goal can be seen as a natural extension of the long-standing
equivalence result presented by Pike (1968) between random-
walk and race models, which are the discrete analogs, respectively,
of diffusion and accumulator models. Pike (1968, Section 4.3)

showed that, when the evidence samples are unit increments
or decrements, simple time-varying boundaries, decreasing one
unit in each time step, make the random-walk decisions and
response-time distributions equivalent to the race model.

Formally, we consider the accumulator model sampling evi-
dence from the Gaussian distribution with mean μ and standard
deviation σ , and with a fixed starting point 0 and symmetric
thresholds. This model generates a decision probability pacc for
choosing decision A, and response time distributions racc

A and
racc

B for the two decisions. Thus, the accumulator model can be
conceived as the mapping

macc : (μ, σ )→ (
pacc, racc

A , racc
B

)
. (5)

Equating accumulator and diffusion models requires finding
the boundaries aA (n) and aB (n), such that

(
pacc, racc

A , racc
B

) =(
pdiff, rdiff

A , rdiff
B

)
.

The mapping macc has been well-studied. Smith and Vickers
(1988) provided an analytical expression, in the form of con-
volutions of the evidence distribution. For Gaussian evidence
distributions, there is no closed-form solution, but a discrete
approximation method is provided by Smith and Vickers (1989).
In particular, we used the method detailed by Smith and Vickers
(1989, Appendix A). Their Equations A3a and A3b define PA,n

and PB,n which are, respectively, the probability the accumulator
model will choose alternative “A” or “B” after n samples.

Figure 3 shows four examples of the boundaries found by our
algorithm. Each example corresponds to a different Gaussian evi-
dence distribution, using means of μ = 0.01 and μ = 0.05 and
standard deviations of σ = 0.1 and σ = 0.12. For these parame-
ter combinations, we generated response-time distributions from
an accumulator model. These distributions provided the input to
our algorithm.

The boundaries found by the algorithm are shown in the main
left-hand panel for each example in Figure 3. The part of the
boundary found by the main algorithm is shown as a solid line,
while the part found by the piece-wise approximation is shown as
a broken line.3 The basic result is that the decision probabilities

3The Appendix provides more detail on the piece-wise approximation in this
application.

FIGURE 2 | The accumulator sequential sampling model.

www.frontiersin.org December 2014 | Volume 5 | Article 1364 | 37

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Zhang et al. Diffusion models with time-varying boundaries

FIGURE 3 | Examples of the boundaries that equate a diffusion evidence

accrual process with an accumulator model using constant boundaries.

The four examples correspond to four different evidence distributions, with
values for the means μ and standard deviations σ indicated in the panels. In
each example, the left-hand panel shows the time-varying boundaries found
by our algorithm, with the part of the boundary found by the main algorithm

shown as a solid line, while the part found by the piece-wise approximation
shown as a broken line. The right-hand panels show the response time
distributions for the two boundaries, weighted by the decision probability for
each alternative. The accumulator distributions are shown as solid lines, and
the diffusion distributions are shown by gray histograms. The values in the
top-right corners show the choice probabilities.

and response-time distributions generated by accumulator mod-
els correspond to those generated by a diffusion evidence accrual
process with time-varying boundaries.

The right-hand panels in Figure 3 correspond to the two-
decision alternatives, and show the accumulator and diffusion
response-time distributions, as solid lines and gray histograms,
respectively. These distributions are weighted by the decision
probabilities, and so capture all of the aspects of model behavior
that need to be equated. It is clear that the decision probabilities
and response times generated by the diffusion evidence accrual
process with the time-varying boundaries are very close to the
target accumulator model distributions.

The four evidence distributions illustrated in Figure 3 span
the interesting range of possibilities. They include cases where
the response time distributions are skewed as well as symmetric,
and cases where the mean response times for the two decisions
are very different as well as very similar. They also include a wide
range of decision probabilities, ranging from close to 50% down
to about 1%.

The basic result is that diffusion models with time-varying
boundaries, of the type shown in Figure 3, produce the same
decisions and response time distributions as accumulator mod-
els with constant boundaries. An important aspect of this result
is that the boundaries are established before any particular evi-
dence sequence is encountered. The nature of the boundaries is
not developed or changed as evidence is sampled within a trial.

While establishing equivalence dynamically by adapting to cur-
rent evidence is an interesting research problem in its own right
(e.g., Hockley and Murdock, 1987), the current results establish a
more general equivalence. They show what sorts of time-varying
boundaries make the diffusion approach to evidence accrual the
same as standard accumulator approaches.

An interesting aspect of the results in Figure 3 is that it is
clear that the time-varying boundaries are, in general, asymmet-
ric. For example, when the evidence distribution is a Gaussian
with μ = 0.05 and σ = 0.10, the lower boundary converges to
zero more quickly than the upper boundary. Figure 4 presents
a follow-up analysis, exploring how important symmetry is to
equate accumulator and diffusion approaches to evidence accrual.
Figure 4 shows the response-time distributions for the same
examples considered in Figure 3, but using a modified algorithm
that constrains the boundaries to be symmetric. For the evidence
distributions with mean μ = 0.01 there is still close agreement
between the accumulator and diffusion response time distribu-
tions. For the more extreme examples with mean μ = 0.05, the
qualitative properties of different mean response times and neg-
ative skew are preserved, but there is quantitative disagreement
between the accumulator and diffusion distributions.

3.2. BOUNDARIES FOR AMBIGUOUS PERCEPTUAL STIMULI
One of the most intuitive motivations for considering diffu-
sion models with time-varying boundaries relates to the case
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FIGURE 4 | Accumulator and diffusion response time distributions, under the constraint of symmetric boundaries, for four example evidence

distributions.

of non-evidential stimuli. These are stimuli that provide equal
evidence for both response alternatives, and so the expecta-
tion of the evidence distribution is zero (i.e., μ = 0). For these
stimuli, constant boundaries predict at least some extremely
long response times, even though there is no information to
be gained from repeated sampling from the stimulus. This pre-
diction seems problematic, both empirically and theoretically,
and has even led to sequential sampling models of human
decision-making being lambasted in non-psychological litera-
tures (Lamport, 2012). Converging boundaries provide a natural
mechanism for ensuring a decision is made in a reasonable time,
without needing to invoke additional psychological assumptions
like over-riding termination processes.

Against this background, one interesting application of our
method is to find the type of boundaries consistent with behav-
ioral data for non-evidential stimuli. We consider data collected
and analyzed by Ratcliff and Rouder (1998), which have also
been examined by a number of other authors (e.g., Brown and
Heathcote, 2005; Vandekerckhove et al., 2008). The Ratcliff and
Rouder (1998) data involve three individual subjects each doing
about 8000 trials over 11 days on a brightness discrimination task,
under both speed and accuracy instructions. The stimuli con-
sist of visual arrays of black and white dots, with the number of
black and white dots controlling the evidence they provide for the
choice alternatives bright and dark. Of the 33 different levels of
brightness considered by Ratcliff and Rouder (1998), we focus on
just those stimuli with equal numbers of black and white dots that
(objectively) provide no evidence for either response alternative.

To apply our algorithm to these data, we had to make a
number of simplifying assumptions. First, we assumed that the

drift rate was zero, because of the objective properties of the stim-
uli. Obviously, it is possible that psychologically the stimuli are
perceived as favoring one alternative or the other, through some
form of bias. Secondly, we shifted the response time distributions
according to the smallest response time observed for each indi-
vidual in each condition. This is a simple empirical approach
that probably only roughly approximates the underlying time
to encode and respond that requires the shift. Finally, because
our method proved unstable with respect to the multi-modalities
inherent in binned characterizations of the data, we first fit a
Weibull function to the response time distributions, and applied
our algorithm to samples from these distributions.

Figure 5 shows the results of our method on the
Ratcliff and Rouder (1998) data, as applied to the accuracy
condition.4 We used the Pearson’s Chi-square tests standardly
used in this literature5 to evaluate the goodness-of-fit of the
Weibull distributions, binning the response times by decile,
d.f . = 7. For subject “JF,” the Chi-square statistics and corre-
sponding p-values for both alternatives are 7.14 (p = 0.41) and
13.02 (p = 0.07); for subject “KR,” they are 4.69 (p = 0.70) and
9.01 (p = 0.25); for “NH," they are 10.02 (p = 0.19) and 10.99
(p = 0.14). The three rows in Figure 5 correspond to the three
individual subjects:“JF,” “KR,” and “NH.” The main panels on
the left show the boundaries found by our algorithm, with

4We focused only on the accuracy condition, because we found the Weibull
to be an inadequate characterization of the response time distributions in the
speed condition.
5We are aware of the limitations of both the chi-square statistics and the use
of p-values on which this analysis is based.
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FIGURE 5 | Results of applying our algorithm to the three subjects

from the Ratcliff and Rouder (1998) data, when viewing non-evidential

perceptual stimuli in a brightness discrimination task under accuracy

instructions. The rows correspond to the three individual subjects:“JF,”
“KR,” and “NH.” The main panels on the left show the boundaries found by
our algorithm for the two decisions. The smaller panels on the right show
the distribution of empirical response times (as gray histograms) and the
distributions of response times generated by the boundaries (as solid lines)
for the two decisions. The values in the top-right corners show the choice
probabilities.

respond to discretized samples of 0.01 s duration. Here, we
assume that every subject has the same evidence distribution,
arbitrarily chosen to be N(0, 0.01), thus the starting values of the
boundaries are now free parameters. The smaller panels on the
right show the distributions of empirical response times (as gray
histograms) and the distributions of response times generated by
the time-varying boundaries found by our algorithm (as solid
lines) for the two decision alternatives, measured in seconds.
There is reasonably good agreement between these distributions,
although it is better for some subjects (e.g., “JF”) than others. It is
also clear that there are significant individual differences between
the subjects, with “KR” taking longer to make decisions for these
non-evidential stimuli.

Most interestingly, Figure 5 shows, once again, that the bound-
aries found are ones that converge asymmetrically. After an
extended period of requiring the same level of evidence, both
boundaries drop sharply toward zero and converge. They com-
mence their descents at different times, though, with the lower
boundary always converging first, but less sharply. Intuitively,
when the stimulus favors neither alternative, symmetric bound-
aries should be able to fit the data well. We calculate the
boundaries using the algorithm with the symmetry constraint
in Appendix B, and find that the restricted algorithm finds

boundaries close to the boundaries found by the original
algorithm.

4. DISCUSSION
Sequential sampling models are compelling accounts of the time
course of human decision-making, based on the simple assump-
tion that people sample information from a stimulus until they
have enough evidence to make a decision. The default assump-
tion in psychological modeling has been that the level of evidence
required to make a decision does not change during this sampling
process. The more general idea that the level of evidence might
change during sampling is an appealing one, and the possibility
that the evidence boundaries triggering decisions converge over
time is an important one.

Most previous work dealing with time-varying boundaries
has either involved assuming a parametric form for time-varying
boundaries and fitting them to data (e.g., Milosavljevic et al.,
2010; Ratcliff and Frank, 2012), fitting more general stochastic
processes (e.g., Viviani, 1979), or making theoretical assumptions
about optimality from which boundaries are derived by meth-
ods like dynamic programming (e.g., Frazier and Yu, 2008). In
this paper, we have taken the first steps toward a more general
approach that places minimal constraints on the form of time-
varying boundaries, with the aim of finding their form from the
response time distributions they produce.

We developed a method for finding time-varying boundaries
that tries to solve the inverse problem of finding the boundaries
that generate a given response time distribution for a known
Gaussian evidence distribution. This method is related to cur-
rent theoretical and practical work in statistics (e.g., Capocelli
and Ricciardi, 1972; Cheng et al., 2006; Zucca and Sacerdote,
2009; Chen et al., 2011; Song and Zipkin, 2011). There remain
important theoretical and practical gaps in these links, how-
ever, that future work should address. Theoretically, guarantees
for the existence of time-varying boundaries being able to gen-
erate any response time distribution are available only for the
single-boundary case. Practically, our current approach of solv-
ing an inverse problem can and should be generalized to one of
solving an inference problem, placed priors on the time-varying
boundaries that are possible, and expressing uncertainty over
those possibilities based on available data. Our current algo-
rithm, for example, does not allow for any characterization, such
as a credible interval, of the uncertainty inherent in the fitted
boundaries. Future work should aim to approach the problem as
one of inference rather than inversion to provide this important
information.

For these reasons, we think the two applications we pre-
sented of our method highlight the potential of the general
approach, but constitute a starting point rather than a mature
method. The theoretical application of our method showed that
diffusion processes for accruing evidence, when allowed time-
varying boundaries, produce the same behavior as the alternative
class of accumulator accrual processes. This result is important,
because it encourages a more general modeling perspective than
seeing diffusion and accumulator models as incommensurable
rivals. It also raises theoretical challenges, such as understand-
ing the difference between what standard diffusion models with
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constant boundaries and standard accumulators are optimizing,
and understanding the asymmetry of the boundaries that are
inferred.

One interpretation of the asymmetry and its behavioral con-
sequences is that accumulator evidence accrual is, in fact, fun-
damentally different from diffusion evidence accrual, in those
situations where the decision-maker must be able to specify deci-
sion boundaries before a trial starts. This is because there is no
way of knowing a priori which decision is favored by the stim-
ulus, and so symmetry of the decision boundaries is a basic
requirement. A counter-argument is that Figure 4 shows that
imposing symmetry on the time-varying boundary still leads to
close mimicry, and retains agreement on the fundamental quali-
tative features of the decisions and response times. Thus, it might
be argued that there is a practical equivalence, in which empir-
ical data might be equally well-explained by either model. In
this sense, our analysis of the asymmetry raised more theoret-
ical questions than it answered, but these questions would not
have arisen or be able to be addressed without the capability to
examine time-varying boundaries. Thus, we view this application
of our method as one of those results that serves to sharpen the
theoretical questions, and so usefully advances the field.

Similarly, our analysis of the response time distributions peo-
ple produce when faced with perceptual stimuli that favored
neither alternative is incomplete. We had to make a number
of strong simplifying assumptions to apply our algorithm, and
we think the boundaries we found should be treated as indica-
tive rather than definitive. But this application did constitute
a first productive step toward the important general goal of
being able to find time-varying boundaries for diffusion models
directly from individual-level behavioral data. The ultimate goal
is an approach in which all of the relevant parameters, includ-
ing properties of the evidence distribution, biases, encoding and
responding times, and other properties of the decision-making
process can be inferred simultaneously with unconstrained time-
varying boundaries needed to account for a large set of empirical
data varying across stimuli, task instructions, and other relevant
manipulations.

Sequential sampling models are a powerful, popular, and
important approach to understanding human decision-making.
Extending these models to allow for time-varying boundaries
has the potential to enhance greatly what they might help us
learn about nature of human decision-making. We hope that the
method developed and applied in this paper constitutes a first step
toward realizing that potential.
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APPENDIX A
Figure A1 shows the numerical problem in the main algorithm
that requires the addition of the piece-wise linear correction. It
shows the results of applying the unmodified Algorithm 1 to the
response time distribution generated by an accumulator model
with with Gaussian evidence distribution parameters μ = 0.01
and σ = 0.1 considered in the top-left of Figure 3. The left hand
panel of Figure A1 shows the boundaries found, which differ
from those in Figure 3 after the 26th sample, as indicated by
the broken lines. The right hand panel of Figure A1 shows the
target response time distributions generated by the accumulator
model as solid lines, and the distributions generated from the

boundary found by the unmodified algorithm as a line with aster-
isk markers. Using a small tolerance for the difference between
these expected and generated distributions, it is possible to iden-
tify the critical point, highlighted by the magnification in the
right hand panel, beyond which the piece-wise linear correction is
applied.

APPENDIX B
Figure A2 shows the results of applying a modified version of our
algorithm that is constrained to find symmetric boundaries to the
data from non-evidential stimuli for the three subjects considered
by Ratcliff and Rouder (1998).

FIGURE A1 | Illustration of numerical problems with the basic

algorithm The left-hand panel shows the boundary returned by

the algorithm without correction. The right-hand panel shows with

asterisks the response time distributions generated by the boundaries
in the left-hand panel. The target densities generated by the
accumulator model are shown in solid lines.

FIGURE A2 | Symmetric boundaries (shown as the broken lines)

found for the three subjects using the restricted algorithm,

superimposed with the asymmetric boundaries as in Figure 5.
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The category variability effect refers to that people tend to classify the midpoint item
between two categories as the category more variable. This effect is regarded as evidence
against the exemplar model, such as GCM (Generalized Context Model) and favoring the
rule model, such as GRT (i.e., the decision bound model). Although this effect has been
found in conceptual category learning, it is not often observed in perceptual category
learning. To figure out why the category variability effect is seldom reported in the past
studies, we propose two hypotheses. First, due to sequence effect, the midpoint item
would be classified as different categories, when following different items. When we
combine these inconsistent responses for the midpoint item, no category variability effect
occurs. Second, instead of the combination of sequence effect in different categorization
conditions, the combination of different categorization strategies conceals the category
variability effect. One experiment is conducted with single tones of different frequencies
as stimuli. The collected data reveal sequence effect. However, the modeling results with
the MAC model and the decision bound model support that the existence of individual
differences is the reason for why no category variability effect occurs. Three groups
are identified by their categorization strategy. Group 1 is rule user, placing the category
boundary close to the low-variability category, hence inducing category variability effect.
Group 2 takes the MAC strategy and classifies the midpoint item as different categories,
depending on its preceding item. Group 3 classifies the midpoint item as the low-variability
category, which is consistent with the prediction of the decision bound model as well
as GCM. Nonetheless, our conclusion is that category variability effect can be found in
perceptual category learning, but might be concealed by the averaged data.

Keywords: category variability effect, sequence effect, perceptual category learning, memory and comparison,

decision bound model

The seminal study of Rips (1989) showed that people tend to
classify an item (e.g., a 3-inches circular object) at the mid-
point between two categories (e.g., QUATER and PIZZA) as the
category with a larger variability (i.e., PIZZA), although the mid-
dle item is more similar to the low-variability category (i.e.,
QUATER). This finding attracts many researchers’ attention, for
it indicates that category variability is one of the sources for cate-
gorization and challenges the exemplar-based model, specifically
GCM (Generalized Context Model; Nosofsky, 1986, 1987). Since
the exemplars of low-variability category vary in a smaller range
than those of high-variability category, the total distance from
exemplars to the middle item is shorter for the low-variability cat-
egory than the high-variability category. Thus, the middle item is
more similar to the low-variability category. Based on similarity,
GCM would always classify the middle item as the low-variability
category. Only when the two categories in the same psychological
space have different specificities for similarity computation, can
GCM predict Rips (1989)’ finding (see Nosofsky and Johansen,
2000).

In contrast, the famous rule-based model GRT (Generalized
Recognition Theory; Ashby and Townsend, 1986; Ashby and

Gott, 1988; Ashby and Maddox, 1992; Maddox and Ashby, 1993)
is thought to be able to account for this phenomenon. According
to GRT, learning categories is to generate a category bound-
ary. The boundary divides the psychological space into different
regions, each of which corresponds to a category. An item would
be classified as a category, if its percept is located in the region
corresponding to that category. Each category is assumed to be
represented as a normal distribution with the mean location hav-
ing the largest likelihood to be classified as that category. The
optimal boundary between two categories is located on where
the percept of item has an equally high likelihood to be classified
as either category. According to the nature of normal distribu-
tion, the likelihood of a value is a function of the distribution
variance. Thus, the optimal category boundary will be influenced
by the variance of category distribution and always close to the
low-variability category. This is why the middle item would be
predicted as the high-variability category by GRT.

Although this phenomenon is observed in conceptual cate-
gory learning, it is not often reported in the studies of perceptual
category learning. Thus, the purpose of this study is to exam-
ine whether the variability of category would influence perceptual
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categorization. Specifically, how the midpoint item between two
categories would be classified is our focus. For the convenience
of discussion, we follow Stewart and Chater (2002) to call this
phenomenon category variability effect (CVE). In the later sec-
tions, we review the past studies, discussing the possible reasons
for the low reliability of them, including the sequence effect in
category learning and individual differences, and then introduce
our experiment, discussing the empirical data, and modeling
results.

1. CATEGORY VARIABILITY EFFECT IN PERCEPTUAL
CATEGORY LEARNING

In the study of Cohen et al. (2001), two categories were defined
as high-variability and low-variability categories by their cov-
ering range on the stimulus dimension. In the learning phase,
the participants learned to correctly classify the exemplars of
these two categories. In the transfer phase, the critical item was
presented for the participants to predict its category label. The
results showed that the probability of high-variability category
for the critical item became higher when the exemplar number
of high-variability category increased from two to seven, with
the exemplar number of low-variability category fixed to one.
However, the probability of high-variability category for the crit-
ical item is still not significantly larger than 0.50, namely no CVE
occurred.

Stewart and Chater (2002) used a circle with a dot attaching
on its periphery as stimulus. The dot position was the stimulus
dimension and the high-variability and low-variability categories,
respectively, cover a larger and a smaller portion of the periph-
ery. Their results showed no CVE when the participants were
presented with one stimulus on each trial. However, when all
exemplars of each category were presented together to the par-
ticipants in the learning phase, CVE was observed. Thus, it seems
critical to CVE that people should be aware of the variability of
category.

Similar to Cohen et al. (2001), Hsu and Griffiths (2010) also
used lines of different lengths as stimuli to examine CVE. In
the discrimination condition, the participants were instructed to
predict the category label, given the current line length. In the
generation condition, the participants were instructed to predict
which category would be more likely to have a line of this length.
The results showed no CVE in the discrimination condition and
a clear CVE in the generation condition. These behavioral results
were correctly simulated by their Bayes network models. For the
generative condition, the model aimed to estimate the probabil-
ity distribution over the input given the category label, namely
p(x|c). However, for the discrimination condition, the model
aimed to find a direct mapping between inputs and category
labels, namely p(c|x). The success of their models implied that the
occurrence of CVE demands the knowledge about candidate cat-
egories. Together with the findings of Stewart and Chater (2002),
this knowledge should include the variability of each category.

According to the previous review, it is not clear whether CVE
would occur in category learning. To figure out why the past stud-
ies did not observe CVE is the purpose of this study. We seek
for the answer by checking out the nature of category learning
task, instead of testing people in some new experimental design.

Our focus is on the sequence effect and individual differences in
category learning.

2. SEQUENCE EFFECT IN CATEGORY LEARNING
Normally, the category representation (i.e., rule or exemplars)
is assumed to be quite stable during category learning, as it is
the representation of category structure, which would not change
throughout the experiment. Thus, with the stable category repre-
sentation, one item would be classified to the same category under
any circumstances. However, recent studies show that the same
item might be classified as different categories when following dif-
ferent items (Stewart et al., 2002; Stewart and Brown, 2004). This
finding instead suggests the possibility of short-term representa-
tion (i.e., the information of the preceding item) to be adopted in
category learning. Inspired by this finding, in the case of CVE, the
midpoint item may be classified as one category when following a
certain items and the other category when following some other
items. Accordingly, when mixing up these conditions, the aver-
aged result would show no CVE. If this is true, we should expect
some sequence effect in the experiment for examining CVE.

The sequence effect of our interest is suggested by Stewart
et al. (2002)’s MAC (Memory and Comparison) strategy for cat-
egorization. The MAC strategy is very simple. Suppose we know
that one category takes larger values and the other takes smaller
values, just like the one-dimensional category structure used for
examining CVE. When item n− 1 is from the large category and
item n is even larger than it, Xn ≥ Xn−1, item n must be the large
category. Likewise, when item n− 1 item is from the small cate-
gory and Xn ≤ Xn−1, item n must also be the small category. That
is, when the sign of the difference between successive items can
guarantee the category of the latter one, the probability to repeat
the preceding category label as the response for the latter item
is 1.00. When this heuristic cannot be applies to categorization,
that is Xn < Xn−1 when item n− 1 is from the large category or
Xn > Xn−1 when item n− 1 is from the small category, the prob-
ability to repeat the preceding category as the current response is
the similarity between item n− 1 and item n. The MAC model
can be expressed as

p =
{

1.00
exp−c|Xn −Xn− 1|, (1)

where c is the specificity, when c is large, items would be less sim-
ilar and vice versa. The similarity between item n− 1 and item
n is exponentially transferred from their psychological distance.
The smaller the distance, the larger the similarity.

According to the MAC strategy, we define the sequence effect
as the tendency to repeat the preceding category label as current
response. In this study, we would like to examine the sequence
effect in categorization. Specifically, we would like to check if this
effect is the reason for the inconsistent reports about CVE in the
past studies.

3. INDIVIDUAL DIFFERENCES IN CATEGORY LEARNING
In addition to sequence effect, whether there are individual
differences concealed in the averaged data is our second con-
cern. In the literature of category learning, heaps of individual
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differences are reported, providing us clues to understand indi-
vidual participant’s categorization strategy (Nosofsky et al., 1989;
Johansen and Palmeri, 2002) and to evaluate models (Maddox
and Ashby, 1993; Nosofsky et al., 1994). For instance, Yang and
Lewandowsky (2004) examined human’s category learning with
multi-dimensional stimuli. Among all dimensions, one was the
context dimension. In their experimental design, no matter the
context dimension was attended to or not, participants could
get perfect learning performance. The results showed a clear
difference on categorization strategy. One group of participants
learned to attended to the context dimension for categorization,
whereas the other group did not. The modeling results further
showed that ATRIUM (Erickson and Kruschke, 1998) (with rule
plus exemplar) can account for the performance of both groups,
whereas ALCOVE (Kruschke, 1992) (with exemplar only) had
difficulty doing so. Thus, these authors suggested that multiple
representations are used in categorization.

Perhaps, the most salient contribution of individual-difference
analysis is to turn over our understanding of an old phenomenon.
For instance, in order to examine the allocation of attention over
stimulus dimensions during category learning, Lee and Wetzels
(2010) reanalyzed the data of Kruschke (1993) study. In the con-
densation condition of this study, the category structure could be
perfectly learned, if the information from two stimulus dimen-
sions were integrated for categorization. Lee and Wetzels (2010)
first fit GCM to the averaged data. The estimated attention
weight on one dimension was about 0.55, suggesting that the
participants did spread their attention equally on the two dimen-
sions. However, when fitting GCM to the individual data, clear
individual differences were observed. One group of participants
focused their attention on one dimension, whereas the other
group strongly attended to the other dimension. The averaged
data disguised this fact and erroneously suggested that people
evenly divided attention on the two dimensions when learning
the condensed category structure. Therefore, the individual dif-
ferences provide a more transparent understanding about how
attention can be allocated during category learning.

Back to the issue of CVE. The past studies all reported the
averaged data. As shown by Lee and Wetzels (2010)’s work, the
averaged data might be not too much informative. Thus, it is
reasonable to suspect that the non-CVE result reported in the
past studies might actually contain the positive evidence of CVE
as well. Thus, in this study, we would also like to examine the
occurrence of CVE via the analysis of individual differences.

4. EXPERIMENTS
According to previous discussions, we proposed two hypotheses
to address the question why CVE was not consistently observed
in category learning. First, there might be some individual dif-
ferences buried under the averaged data. Perhaps those non-CVE
reports actually included some participants who did show CVE
and some others did not. Second, the classification for the mid-
point item might be influenced by the preceding item, namely
the sequence effect. As a result, the midpoint item may be clas-
sified as the high-variability category following some precedent
and not following some others. In order to get rid of confounding
from the regimen of experiment, we conducted this experiment

in the conventional feedback-learning paradigm. All participants
were asked to do the learning phase and then the transfer phase.
The emphasis of data analysis was placed on verifying these two
hypotheses.

In addition, we used single tones varying in frequency as stim-
uli in this experiment. In order to make the scale of stimuli
equal in distance from one another, we transferred the fre-

quency f to the psychological scale mel, mel = 1127loge( f
700 + 1)

(Steinberg, 1937; Stevens et al., 1937). The category structure
was shown in Figure 1. There were five items in each category.
The low-variability category (called Category 1) took the region
between 480 and 520 mel and the high-variability category (called
Category 2) took the region between 670 and 970 mel. The inter-
val between the members of Category 1 was 10 mel and that of
Category 2 was 75 mel. The critical item was the tone of 595 mel,
which was denoted as the white bar in Figure 1. Therefore, if
the probability of Category 1 for the critical item was less than
0.50, CVE occurred. All tones were played at a constant amplitude
of 60 dB.

4.1. METHODS
4.1.1. Participants and apparatus
In total, 41 undergraduate students from National Chengchi
University aged from 18 to 30 were recruited in this experiment.
The whole experiment was conducted in a quiet dim booth.
The display of stimuli, the procedure of testing, and the data
collection were all controlled by the scripts of MATLAB on an
IBM compatible PC. On average, every participant would finish
this experiment in 30 min and got reimbursed with NTD$ 60
(� US$ 2) for their time and travel expense. Before doing the
experiment, all participants were confirmed to be able to hear
two extreme tones (i.e., 470 and 980 mel, covering the range of
stimulus tones) each presented twice in a headset.

FIGURE 1 | The category structures. HV, high variability; LV, low variability.
Axis X represents tones and axis Y shows the mel of the stimuli.
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4.1.2. Materials and procedure
Following the design of past studies (e.g., Sakamoto et al., 2008;
Hsu and Griffiths, 2010), the two categories were defined as two
uniform distributions. In the low-variability category, there were
5 tones equally spreading from 480 mel to 520 meal with 10 mel
as the interval. In the high-variability category, there were also
5 tones equally spreading from 670 to 970 mel with 75 mel as the
interval. There were 5 learning blocks, each of which was followed
by a transfer block. Therefore, there were in total 10 blocks in
this experiment. In the learning block, the 10 tones of the two
categories were presented twice in random order. In the transfer
block, the transfer stimuli consisted of 2 tones randomly sampled
from each category and 1 critical item, which was 595 mel at the
mid point between the edges of two categories. The transfer stim-
uli were presented once, except that the critical item was presented
twice. Thus, there were 6 trials in total in the transfer block, which
of course were presented in random order.

On each learning trial, a tone was presented to the participants
from a headset for 1 s. After the stimulus disappeared, the par-
ticipants were asked to predict which alien (i.e., Category 1 or
Category 2) would make this sound by pressing the “s” key or
the “;” key. Once the response was made, a “correct” or “wrong”
feedback signal was presented on the computer screen for 500 ms.
After 2 s, next trial began. The participants were instructed to do
this task as accurately as they can. On each transfer trial, the pro-
cedure was the same as on the learning trial, except that there was
no corrective feedback.

4.2. RESULTS
4.2.1. Learning phase
The participants learn the categories quite well. The accuracy in
the first block is as high as 0.86 and it increases significantly to
0.95 in the fifth block, F(4, 160) = 13.08, MSe = 0.003, p < 0.01.
Clearly, this task is very easy to the participants.

4.2.2. Transfer phase
The mean probability of Category 1 on transfer item across five
transfer blocks is shown in Figure 2. Axis X denotes the item mel
and axis Y the probability of Category 1 predicted by the partic-
ipants. For the items which have been presented in the learning
phase, a Category (2) × Block (5) within-subject ANOVA shows
that they are correctly classified as their own categories [F(1, 40) =
3786, MSe = 0.02, p < 0.01]. However, the overall tendency to
make a Category 1 response is influenced by the transfer block
[F(4, 160) = 6.564, MSe = 0.018, p < 0.01]. This is because there
is a drop on the mean probability of Category 1 (0.46) in the final
block. With no doubt, the response for the item from each cate-
gory is not changed in different blocks [F(4,160) = 1.364, MSe =
0.016, p = 0.25]. Thus, the participants’ categorization for the
learning items is accurate and consistent through the transfer
blocks.

Of most interest is how the participants would predict the cat-
egory of the critical item. The mean probability of Category 1 on
the critical item across five blocks is 0.54, which is not signifi-
cantly different from 0.50 [t(40) = 0.96, p = 0.34]. Thus, there is
no evidence of CVE, as the critical item is not significantly classi-
fied as Category 2 (the high-variability category). However, the

FIGURE 2 | The transfer performance.

critical item is decreasingly classified as Category 1 in a linear
trend from the first block [p(Category1) = 0.68] to the fifth block
[p(Category1) = 0.41], with F(1, 40) = 15.63, MSe= 0.15, p < 0.01.
In the final block, the probability of Category 1 for the critical
item is still not different from 0.50 [t(40) = −1.42, p = 0.16].

4.2.3. Sequence effect
As discussed in the previous section, how to classify an item might
depend on which item it follows. In this experiment, the criti-
cal item is presented twice in every transfer block, once following
a different item. Thus, it is reasonable to suspect that the criti-
cal item actually be classified as the high-variability category in
one time, but as the low-variability category in another, so the
aggregated result shows no CVE.

In order to verify this hypothesis, we examine for any sequence
effect in our transfer data. Following the idea of the MAC strategy,
we redefine the trials to four cases (C1+Up, C1+Down, C2+Up,
and C2+Down)1 , according to the category of the preceding
item (Category 1 or Category 2) and the change of direction on
frequency from the preceding item to the current one (Up or
Down). One point is worth noting. In the transfer phase, there
is no feedback, hence no correct answer for the preceding item.
We substitute the participants’ response for the category answer,
due to the high learning accuracy they made in the experiment
(mean = 0.94). If the participants rely on some long-term rep-
resentations to do categorization (i.e., rule or exemplars of the
two categories), the preceding category has nothing to do with
the current response and so is the direction change between the
frequencies of successive tones.

1Thus, the first trial is omitted.
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FIGURE 3 | Sequence effect in learning phase, transfer phase, and on the critical item.

The results are revealed in Figure 3. See the left and middle
panels for the overall results in the learning and transfer phases.
Visual inspection shows when the direction of frequency change
provides sufficient information, namely the cases of C1+Down
and C2+Up, the participants strongly repeat the preceding cat-
egory as the current response. For the cases of C1+Up and
C2+Down, this tendency is not as strong. Across the learning
and transfer phases, when the tone sounds higher than the pre-
ceding one, the participants tend to make a Category 2 response
and when the tone sounds lower, they tend to make a Category
1 response [F(1, 40) = 2695, MSe = 0.005, p < 0.01]. However,
regardless of the direction of frequency change, the participants
seem to repeat the preceding category as the current response to
a certain extent that the main effect of the preceding category is
significant [F(1, 40) = 513.60, MSe = 0.01, p < 0.01]. The over-
all mean probability of Category 1 made for the current item is
not different between the learning phase and the transfer phase
[F(1, 40) = 3.29, MSe= 0.006, p = 0.07]. The response pattern of
the cases when the preceding item is from different categories is
not different in different phases [F(1, 40) = 1.03, MSe= 0.01, p =
0.32]. Also, the response pattern of the cases when the frequency
change in different directions is not different in different phases
[F(1, 40) < 1]. There is no significant interaction effect between
the preceding category and the direction of frequency change
across all phases [F(1, 40) < 1]. However, the three-way interac-
tion effects between the experiment phase, the preceding category,
and the frequency change direction is significant [F(1, 40) = 5.55,
MSe= 0.006, p < 0.05].

We also examine sequence effect on the critical item. See the
right panel in Figure 3. Recall the critical item is actually higher
in frequency than the members of Category 1 and lower than
the members of Category 2. Thus, the cases of C1+Down and
C2+Up theoretically do not exist. The two bars for these two
cases represent the response made for the current critical item
when the preceding item was also the critical item. However, for
some participants who have never seen the critical item being
presented twice in turn, we substitute the mean of the rest par-
ticipants’ data for the missing value. A Category (2) × Direction
(2) within-subject ANOVA shows that the prediction for the criti-
cal item is influenced by the preceding response [F(1, 40) = 139.2,
MSe = 0.08, p < 0.1] and the change in direction of frequency
from the preceding item [F(1, 40) = 46.57, MSe= 0.08, p < 0.01].
However, there is no interaction effect between Category and
Direction [F(1, 40) < 1].

Although these results seem to be the evidence of sequence
effect, the two cases C1+Down and C2+Up are actually not that
informative. As the current item in these two cases can also be
correctly categorized by a rule or by all exemplars of categories.
Thus, the cases of C1+Up and C2+Down are our focus. It is clear
that the participants tend to predict the current item as the cat-
egory which is contrasting to the preceding one in the left and
middle panels in Figure 3. However, this pattern is not held in
the right panel for the critical item. In fact, the participants seem
to predict the critical item as the same category of the preceding
item, although the tendency is not strong. This is not surpris-
ing. When the critical item is in the C1+Up or C2+Down cases,
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similarity to the preceding item is the sole basis to predict its
category. As the critical item is at the center position of all stim-
uli, the similarity between it and any other item is on average
higher than that between any other pairs. Thus, in the C1+Up
and C2+Down cases, the critical item would be more likely classi-
fied as the category of its preceding item. The analysis of sequence
effect seems to suggest that the negative finding of CVE results
from mixing all different influences brought by the preceding
items in different testing situations. However, this conclusion
is better not made quickly until we check out the individual
differences.

4.3. INDIVIDUAL DIFFERENCES ANALYSIS
The sequence effect on the critical item may provide an expla-
nation to why there is no CVE observed in the averaged data.
However, we do not know whether this is a general case for all
participants or there are some rule-use strategies2 mixed up in the
averaged data. In fact, it is hard to detect those rule users by sim-
ply looking at the averaged sequence effect data. This is because
their predictions for the critical item would be independent of the
preceding item, that makes their influence as a constant added to
the four categorization conditions. Therefore, we intend to inves-
tigate the individual differences by fitting the MAC model and
the decision bound model3 to each participant’s data. If the MAC
model provides a better fit, the participant is regarded as a MAC
strategy user. If the decision bound model provides a better fit, the
participant is regarded as a rule user. Presumably, the participants
who show CVE must be in the group of rule user. We can check
out the probability of high-variability category predicted for the
critical item to identify them. If there exist rule users, especially
those who show CVE, the sequence effect should not be regarded
as the reason for not observing CVE.

For each participant, we fit these two models to the transfer
data separately. For the MAC model, only the specificity c is freely
estimated. If the preceding item is from Category 2, the output
will be transferred to p(1) = 1− p(2) to make sure all MAC pre-
dictions are the probability of Category 1. For the decision bound
model, the probability of Category 2 for item X is transferred
from the area below the percept of X on the normal distribution
with category boundary b as mean and perceptual error ε as stan-
dard deviation. The larger the covered area, the larger probability
of Category 2 is4. The parameters b and ε are freely estimated. The
stimulus values are normalized between 0 and 1 for modeling.
The aim of parameter estimation is to maximize the likelihood
of the model to predict the observed probability of Category 1
in the four categorization conditions (i.e., C1+Up, C1+Down,
C2+Up, and C2+Down). The goodness of fit is AIC = −2LogL+
2N (Aakike’s Information Criterion; Akaike, 1974) with N =
parameter number. The smaller AIC the better fit. The log
likelihood is

2Since the exemplar model such as GCM is evident to have difficulties
accounting for CVE, in order to detect the participants who actually show
CVE, we search for them in rule users.
3GCM is precluded, as GCM is known unable to predict CVE.
4For fitting the participants data, probability of Category 2 would be trans-
ferred to probability of Category 1 by p(1) = 1− p(2).
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where k is the number of categories and i is the number of the
categorization conditions.

According to the modeling results, the participants can be
divided into three groups. See the AIC of each model for each
group in Table 1. The group number is made in accordance with
the tendency to predict the critical item as Category 1. Group 1
(n = 11) and Group 3 (n = 12) are consistent with the decision
bound model, except that Group 1 tends not to classify the criti-
cal item as Category 1 and Group 3 strongly predicts the critical
item as Category 1. Group 2 (n = 18) is identified as the MAC
strategy user. The observed probability of Category 1 on the crit-
ical item made for each group is shown as the bars in Figure 4.
Here we present the data collected in the C1+Up and C2+Down
conditions. This is because the critical item is in between the
two categories and it is always larger than a preceding item from
Category 1 and smaller than a preceding item from Category 2.
Thus, the cases of C1+Down and C2+Up are nearly impossible
to happen for the critical item.

Group 1 strongly classifies the critical item as Category 2, mean
p(1) = 0.26, in either the C1+Up or C2+Down case. The perfor-
mance of Group 1 in these two cases is not significantly different
[t(10) = 0.10, p = 0.92]. This result is better accommodated by
the decision bound model. See the triangle in Figure 4, which
represents the prediction of the winning model. For Group 1,
the winning model is the decision bound model. See Table 2 for

Table 1 | Model performance (AIC) on fit to transfer performance.

MAC Decision bound

Group 1 52.34 43.50

Group 2 74.59 106.29

Group 3 61.84 53.34

FIGURE 4 | The observed and predicted group difference on the critical

item.
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Table 2 | Best-fitting parameter values.

MAC Decision bound

c b ε

Group 1 1.32 0.137 0.035

Group 2 1.10 0.079 0.007

Group 3 1.06 0.244 0.029

the parameter values, which provide best fits. The mean best-fit
boundary b is 0.137, which equals 543 mel, locating in between
the highest edge of Category 1 (520 mel) and the critical item
(595 mel). Consequently, Group 1 shows CVE with no doubt.

Group 2 clearly shows sequence effect on classifying the critical
item. On classifying the critical item, when following a Category
1 item [p(1) = 0.71 for C1+Up], Group 2 tends to make a
response of Category 1, whereas when following a Category 2
item, Group 2 tends to make a response of Category 2 [p(1) =
0.28 for C2+Down]. The difference on probability of Category
1 between these two cases is significant [t(17) = 3.89, p < 0.01].
The mean probability of Category 1 is about 0.50. The trian-
gle shown for Group 2 in Figure 4 is the prediction of the MAC
model.

Group 3 is a bit tricky, as these participants predict the crit-
ical item as Category 1 in the C1+Up case [p(1) = 0.81] and
the C2+Down case [p(1) = 0.75]. For Group 3, the tendency to
make classification for the critical item is not different in different
categorization conditions [t(11) = 0.91, p = 0.38]. The perfor-
mance of Group 3 is better fit by the decision bound model. The
mean best-fit boundary b is 0.244, which equals 599.56 mel. This
boundary is larger than the critical item, hence predicting the
critical item as Category 1. The decision bound model’s predic-
tion for Group 3 can be seen in Figure 4. However, this result
presumably can also be accommodated by GCM. Since GCM
would always predict the critical item as the low-variability cate-
gory (i.e., Category 1), it is hard to say that Group 3 relies on rule
or exemplars for categorization. One thing for sure is that Group
3 does not show CVE and does not rely on some short-term
representation for categorization.

To sum up, a number of interesting findings in this experiment
are listed as follow. First, CVE does occur in perceptual category
learning (i.e., Group 1). Second, although some participants show
CVE, some others do not, suggesting clear individual differences.
Third, among those participants who do not show CVE, some
take on the MAC strategy for categorization (i.e., Group 2) and
some can be realized as doing categorization without considering
the category variability (i.e., Group 3).

5. GENERAL DISCUSSION
In this study, we would like to figure out why CVE is seldom
reported in the past studies. The analysis for the averaged data
shows that there is no CVE. This is the same as what is reported
in the past studies. We further examine two hypotheses for this
result. One hypothesis is that the sequence effect in four catego-
rization conditions, when being combined, would conceal CVE.
The other is that the non-CVE report results from mixing up

the uses of different categorization strategies, including the one
which shows CVE. Although we find clear sequence effect, indi-
vidual differences seem to provide a better account for why CVE is
seldom reported. We fit the MAC model and the decision bound
model to participants’ transfer data with the attempt to detect any
individual differences. The modeling results show three different
groups. Group 1 shows CVE and is consistent with the decision
bound model. Group 2 obviously adopts the MAC strategy, as
supported by the clear sequence effect. Group 3 again is fit bet-
ter by the decision bound model. However, this group tends to
classify the critical item as the low-variability category.

In spite of positive evidence for CVE, a few constraints of
this study need to mention. First, although it should be clear
that Group 1 adopts rule for categorization and Group 2 adopts
the MAC strategy, it is still not clear which representation, rule
or exemplars, Group 3 forms for categorization. Second, we use
only one item, namely the critical item, as the probe to examine
CVE, that might decrease the power of our experiment. Instead
of using one item, a line of novel items between two categories
might be better as transfer items. Third, due to the randomiza-
tion of trial orders, we cannot guarantee that the odds of each of
the four categorization conditions (C1+Up, C1+Down, C2+Up,
and C2+Down) are the same. Nonetheless, the implications of
this study are discussed as follow.

5.1. INDIVIDUAL DIFFERENCES
Of our great interest is the individual differences revealed in this
study. Group 1 classifies the critical item as the high-variability
category, Group 2 classifies it as both categories depending on
which item precedes it, and Group 3 classifies the critical item
as the low-variability category. The reason why we have these
individual differences might be relevant to the design of category
structure and the individual participant’s cognitive capacity. As
to the category structure, the two categories in our experiment
can be perfectly distinguished by a category boundary located
on anywhere between them. When the boundary is put close to
the low-variability category, we have Group 1, whereas when the
boundary is put close to the high-variability category, we have
Group 3.

Similarly, the study of Yang and Lewandowsky (2004) showed
clear individual differences with a particular category structure,
which could be represented by at least two different ways. The cat-
egories were constructed in a three-dimensional space, in which
one dimension was context and could not directly predict the cat-
egories. The perfect learning performance could be achieved via
either focusing on the related dimensions, ignoring the context
dimension, to generate the true rule for categorization, or gener-
ating two different partial 2-D rules for categorization in different
contexts. The participants did not know in advance this tricky
part of the experiment, yet some of them learned to ignore context
and some others learned to apply different rules for categorization
in different contexts.

In a following study, the participants who relied on con-
text to generate different rules for categorization were found to
have a larger working memory capacity (operational span) than
those who ignore context (Yang et al., 2006). This is reason-
able, as attending more information does require more cognitive
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resource. In addition, a psychometric-approach study provides
evidence that working memory capacity which is measured by the
tasks of operational span, sentence span, memory updating, and
spatial short-term memory is correlated with learning accuracy
(r = 0.44) (Lewandowsky et al., 2012). Therefore, it is reasonable
to expect that working memory capacity might have something
to do with the individual differences we observed in this study. At
least, we can expect that Group 2 might have a smaller working
memory capacity than the other two groups. This is because they
only need to retain the preceding item’s information for current
categorization, that consumes not too much cognitive capacity.
The other two groups might need more efforts to generate the
rule, which should be suitable for classifying all items. In the
future study, the relationship between working memory capacity
and category learning performance is worth investigating in more
detail.

5.2. SHORT-TERM vs. LONG-TERM CATEGORY REPRESENTATION
Most of contemporary models for category learning posit that
categorization is accomplished by some long-term representation.
For Group 1 and Group 3 in our study, it is true that some long-
term representation must be formed for categorization. It could
be a rule or exemplars of categories. Although Group 3 is fit
better by the decision-bound model than the MAC model, it pre-
sumably is consistent with the prediction of GCM. Nonetheless,
for Group 2, it is implied that the short-term exemplar memory
might be relied on for categorization. Also, we should be able
to find the evidence for the use of short-term representation in
other experiments, as long as more one test trial is adopted. In
fact, Navarro et al. (2013) recently ask the participants to learn
the category structure, which varies along with learning trials.
The task is not easy to learn, yet the participants’ performance
is above the chance level. They also report that the conventional
exemplar model and prototype model cannot account for their
data. Instead, their data can be fit by a heuristic model, which
based on the preceding item to predict the category boundary
for the next item. That is, the category boundary keeps shifting
from one trail to the next. Together with their finding, the role
of short-term representation in categorization should be more
emphasized.

5.3. CONCEPTUAL vs. PERCEPTUAL PROCESSING IN CATEGORIZATION
Although the present study provides insights to why CVE was
not reported in the perceptual categorization task, we do not
think that these findings can properly benefit the conceptual
categorization task, as the conceptual and perceptual processing
differs substantially. In perceptual categorization, a rule can be
defined mathematically as a boundary in the psychological space.
Thus, as which category an item would be classified depends on
which region in the psychological space the percept of this item
locates in.

However, in conceptual categorization, a rule is often a logical
statement such as “If necessary feature Y, then category X.” For
example, an animal with a feature of “being born of cat parents”
must be a cat, as our lay theory of animals demands that they must
be of the same species as their parents. In the study of Rips (1989),
the rule might state “If an object is more than 1 inch in diameter,

it must be a PIZZA,” since quarters are severely restricted in size
but pizzas are not. The feature “3-inches in diameter” is not
characteristic of either PIZZA or QUARTER, but diagnostic of
PIZZA, as a pizza can be as small as 3 inches in diameter. As shown
in the study of Smith and Sloman (1994), when no characteristic
features of QUARTER (e.g., silver colored) are present, the rule-
based categorization is triggered and classifies the circular object
with a 3-inches diameter as PIZZA. Clearly, CVE with conceptual
categories is construed in a very different way.

In addition, in our study, the understanding of each category
is established in the trial-by-trial learning experience, whereas the
structure of conceptual category reflects our common knowledge
of the world, which is acquired out of laboratory. Thus, the MAC
strategy is not possible to be applied in the conceptual categoriza-
tion task. On the other hand, it is expected that the sequence effect
or the MAC strategy can be observed in other perceptual category
learning tasks.

To sum up, our study provides evidence for the individual dif-
ferences on classifying the critical item. This is regarded as one
reason for why some studies report CVE but some others do not.
Also, sequence effect is clearly observed in our experiment, which
suggests the use of short-term representation for categorization.
However, the success of the decision bound model suggests that
long-term representation would also be used for categorization.
Therefore, we find evidence for both short-term and long-term
representation in a single study. However, it is still not clear why
these individual differences occur, or how to induce a particu-
lar categorization strategy. These issues need to be addressed in
future studies.
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A variety of converging operations demonstrate key differences between separable
dimensions, which can be analyzed independently, and integral dimensions, which are
processed in a non-analytic fashion. A recent investigation of response time distributions,
applying a set of logical rule-based models, demonstrated that integral dimensions are
pooled into a single coactive processing channel, in contrast to separable dimensions,
which are processed in multiple, independent processing channels. This paper examines
the claim that arbitrary dimensions created by factorially morphing four faces are
processed in an integral manner. In two experiments, 16 participants completed a
categorization task in which either upright or inverted morph stimuli were classified in
a speeded fashion. Analyses focused on contrasting different assumptions about the
psychological representation of the stimuli, perceptual and decisional separability, and the
processing architecture. We report consistent individual differences which demonstrate a
mixture of some observers who demonstrate coactive processing with other observers
who process the dimensions in a parallel self-terminating manner.

Keywords: integrality, separability, serial vs. parallel, coactivation, holistic processing, categorization,

computational modeling, reaction time

INTRODUCTION
Understanding how our perceptual systems process multidimen-
sional stimuli provides fundamental insights into basic cognitive
operations such as categorization (Ashby and Gott, 1988; Fifić
et al., 2010; Little et al., 2011), object representation (Folstein
et al., 2013), and recognition memory (Nosofsky et al., 2011,
2012). Of critical importance is the difference between stimuli
that consist of either separable or integral perceptual dimensions.
Separable dimensions are those which can be attended to and
analyzed in isolation, such as size and shape (Attneave, 1950;
Torgenson, 1958; Shepard, 1964; Garner, 1974, 1978). In contrast,
integral dimensions are thought to be psychologically “fused,”
such that one integral dimension cannot be attended to at the
expense of the other; both must be processed together (Garner,
1974; Burns and Shepp, 1988).

Although many stimulus dimensions have been studied in
the information processing literature, research demonstrating the
integrality of stimulus dimensions has focused primarily on the
dimensions of brightness and saturation of Munsell colors for
visual stimuli (Shepard and Chang, 1963; Garner, 1974; Nosofsky,
1987; Shepard, 1987; Burns and Shepp, 1988; Nosofsky and
Palmeri, 1996; Fifić et al., 2008; Little et al., 2013) and pitch and
loudness for auditory stimuli (Grau and Kemler-Nelson, 1988).
Though these dimensions meet several empirical criteria for inte-
grality (defined further below), there is also a sense in which these
dimensions are easily used to form a mental representation of the
stimuli; that is, given a set of stimuli which vary in brightness
and saturation, individuals are likely to form a psychological

representation of the stimuli using dimensions which corre-
spond to brightness and saturation. Consequently, these dimen-
sions are psychologically privileged and fall short of Grau and
Kemler-Nelson’s (1988) notion of the “extreme-end” of integral-
ity, where the individual dimensions are unable to be accessed
at all.

More recently, Goldstone and Steyvers (2001; see also Gureckis
and Goldstone, 2008; Hendrickson et al., 2010; Folstein et al.,
2012; Jones and Goldstone, 2013) have utilized a set of morph
dimensions which are thought to have no perceivable dimen-
sional structure yet still meet the empirical criteria for integrality;
consequently, these arbitrarily-defined morph stimuli may ful-
fill Grau and Kemler-Nelson’s (1988) notion of an “extreme”
integral stimulus. This renders these morphs useful for study-
ing the difference between integral and separable dimensions.
In this paper, we test whether these arbitrarily-defined morph
dimensions demonstrate evidence of integrality in a task which
goes beyond the classic converging operations by utilizing not
only mean response time (RT) and choice comparisons, but
also analysis of the full RT distributions and the time course
of information processing. Our measure thus provides a more
nuanced understanding of integrality than previous empirical
criteria.

CONVERGING EMPIRICAL OPERATIONS FOR INTEGRALITY
There are a number of converging operations suggesting that
integral dimensions are processed differently from separable
dimensions (Garner, 1974):
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(1) The distances between stimuli derived from proximity
estimates (e.g., similarity ratings, identification confusions
and so on) using multidimensional scaling (MDS) are better
described by an Euclidean distance metric if the dimen-
sions are integral but by a city-block distance metric if the
dimensions are separable (Attneave, 1950; Torgenson, 1958;
Shepard, 1964, 1987; Nosofsky, 1992).

(2) People tend to sort integral-dimensioned stimuli based on
overall similarity but separable-dimensioned stimuli based
on individual dimensions (Imai and Garner, 1968; Handel
and Imai, 1972; Garner, 1974).

(3) Learning to attend to important attributes takes place more
efficiently for separable-dimensioned stimuli (Shepard et al.,
1963; Posner, 1964; Nosofsky, 1986) than for integral-
dimensioned stimuli (Shepard and Chang, 1963; Nosofsky,
1987; Nosofsky and Palmeri, 1996).

(4) Integral dimensions, but not separable dimensions, tend to
interfere with each other if one of the dimensions must be
ignored, but tend to facilitate one another if the dimensions
are varied in a correlated manner (Lockhead, 1966; Egeth,
1967; Garner, 1969; Garner and Felfoldy, 1970; Biederman
and Checkosky, 1970; Garner, 1974).

Each of these operations suggests that integral dimensions are
processed as an entire object (Lockhead, 1966, 1972), but sepa-
rable dimensions are processed as independent, component parts
of an object.

Despite this wealth of converging operations, Cheng and
Pachella (1984) argue that integrality may be an artifact of testing
perceptual dimensions which do not correspond to an observer’s
psychological representation. For example, results showing a
failure of converging operations (e.g., an interference effect
between purported integral dimensions but no facilitation effect,
(Garner, 1974; see also Biederman and Checkosky, 1970; Levy
and Haggbloom, 1971; Gottwald and Garner, 1975; Pomerantz
and Sager, 1975; Smith and Kemler, 1978) reduce the “explana-
tory power” of the concept of integrality (Cheng and Pachella,
1984, p. 283). In order to conclusively demonstrate integrality,
Cheng and Pachella (see also Grau and Kemler-Nelson, 1988)
argue that one must demonstrate that the experimenter-defined
and participant-defined dimensions are commensurate and that
the dimensions still satisfied the empirical criteria for integrality.
Obviously, this presents a problem for empirically justifying the
integrality of dimensions at the extreme-end of integrality which
are meant to be without perceivable dimensional structure.

ARBITRARY DIMENSIONS AND INTEGRALITY
One possible set of dimensions that might satisfy the criteria
of being both integral and having no identifiable dimensional
structure, are the factorially-generated morph dimensions shown
in Figure 1 (top panel). These stimuli are created by morphing
together four base faces (e.g., Goldstone and Steyvers, 2001). The
morphed stimuli vary on two dimensions, with each of these
dimensions representing the transition between two of the base
faces (faces A–D in Figure 1). Hence, each stimulus can be defined
by its proportional value on each of the morph dimensions, but
the morph dimensions are very difficult to analyze independently.

The dimensions are termed arbitrary because, although each
stimulus varies systematically along two face morph axes, the
face morph axes do not correspond to any naturally interpretable
dimensions.

Goldstone and Steyvers (2001) showed that the morph dimen-
sions demonstrated an interference effect in the filtration condi-
tion of the Garner (1974) speeded classification task, supporting
the claim that the dimensions are processed in an integral fash-
ion. Furthermore, Folstein et al. (2012) found that there was no
advantage for learning an orthogonal boundary compared to a
diagonal boundary in a factorially-generated morph space such as
the space shown in Figure 1 (although it is important to note that
Folstein et al., used morph cars and not morphed faces). Taken
together these results indicate the arbitrary morph dimensions
seem to fulfill Grau and Kemler-Nelson’s (1988) criteria for the
extreme-end of integrality.

Despite the large number of converging operations to identify
integrality, we argue that these operations are, in fact, some-
what equivocal with regard to the actual theoretical mechanism
underlying the processing of integral dimensions. For example,
there have been suggestions that integrality is a continuum from
completely integral to completely separable (Torgenson, 1958;
Shepard, 1964; Lockhead, 1972; Garner, 1974; Foard and Kemler,
1984; Grau and Kemler-Nelson, 1988; Melara and Marks, 1990)
and that separable stimuli, with practice, may become integral
over time (Ashby and Maddox, 1991; Goldstone, 2000; Blaha
et al., 2009). Consequently, it is unclear whether integral dimen-
sions are always processed in a consistent fashion, especially
for those dimensions which, unlike brightness and saturation
or pitch and loudness, may not involve “a positive correlation
between the ranges of variation of stimuli associated with impor-
tant consequences” in the environment (Shepard, 1991, p. 68).
Indeed, many purportedly integral dimensions are not perfectly
described by a Euclidean metric, but instead by a metric some-
where in-between city-block and Euclidean (Grau and Kemler-
Nelson, 1988). Hence, the converging operations typically used to
identify integrality do not always converge.

Furthermore, some converging operations, such as finding
slower RTs in Garner’s (1974) classic filtration task when com-
pared to the corresponding control task, are open to multiple
interpretations about the underlying processing architecture. For
instance, in a filtration task, the number of stimuli is increased
from two to four stimuli compared to the control condition. Like
the control task, only one of the dimensions is relevant for clas-
sification, and the increased RT in the filtration task compared
to the control task is taken as evidence that the variation on
the irrelevant dimension interferes with selective attention to the
relevant dimension. Such a result is used to diagnose integral-
ity. However, rather than reflecting interference due to irrelevant
variation, the increase in RT in the filtration task might sim-
ply reflect increased confusability due to the increased number
of stimuli (Maddox, 1992). Indeed, increased RTs in a filtration
task have been reported for stimuli that appear to be nominally
separable (Shepp, 1989).

Determining whether the arbitrary morph dimensions are, in
fact, processed coactively is a fundamental question, as a number
of important learning results are predicated on this assumption
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FIGURE 1 | Top: Example of morph stimuli for Experiment 1. Each of the
dimensions are created by morphing between two base faces. Each morph
stimulus is a proportional mixture of all four base faces. Bottom: Schematic
illustration of category space indicating the nomenclature used in the text.
Stimuli which lie above and to the right of the decision boundary (dotted line),
belong to the target category (category A), stimuli which low below and to

the left of the decision boundary belong to the contrast category (category
B). Stimuli in the target category are referred to by their salience which can
be high (H) or low (L) depending on whether an item is far from or close to
the category boundary, respectively. Contrast category items are referred to
as internal (I), external (E), and redundant (R) depending on their positions in
the stimulus space.

(e.g., Goldstone and Steyvers, 2001; Gureckis and Goldstone,
2008; Hendrickson et al., 2010; Jones and Goldstone, 2013).
For example, Goldstone and Steyvers (2001) trained participants
to categorize face morphs using a single orthogonal category

boundary; then in a second phase, transferred participants to
a new boundary which was either a 90◦ or 45◦ rotation of the
originally trained boundary. Participants were able to perform
more accurately with the new 90◦ boundary than with the 45◦
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boundary suggesting that the initially integral morph dimen-
sions were differentiated into two orthogonal dimensions which
mapped directly onto the dimensions used to create the stim-
uli. Although, the morph dimensions were not confirmed to be
processed separably (e.g., using a Garner interference task) after
training, better performance with the 90◦ boundary rotation than
the 45◦ rotation suggests that the dimensions are “psychologically
privileged” after training. This effect provides strong empirical
evidence that learning changes perception by creating a featu-
ral or dimensional vocabulary which perceptual processes can
use for future learning and decision making (Goldstone, 1998;
Goldstone et al., 2000, 2008). The emergence of psychologically
privileged dimensions, termed differentiation, has been suggested
as one of the key perceptual changes underlying human develop-
ment from infancy (Smith, 1989; Goldstone et al., 2011) and the
development of expertise (Burns and Shepp, 1988).

This finding is somewhat controversial as other researchers
have found that differentiation does not occur with other inte-
gral dimensioned stimuli (e.g., “blobs” created via the convo-
lution of sine waves in polar coordinates varying in amplitude
and frequency; Op de Beeck et al., 2003) or even other morph
dimensions created using a different morphing technique (i.e., by
blending four base stimuli rather than factorially combining the
base stimuli as in Figure 1; see Folstein et al., 2012, for a detailed
explanation of the difference). By contrast, Hockema et al. (2005)
found that differentiation did occur for blob stimuli if an adap-
tive learning procedure, which started with categorization of the
easiest items and increased the difficulty of the task by gradually
moving the selection of items closer to the category boundary, was
used.

In this paper, we investigate whether the morph stimuli used
to demonstrate differentiation (Goldstone and Steyvers, 2001;
Folstein et al., 2012) are initially processed in an integral fash-
ion by examining a more theoretically motivated test of integrality
than previously used for these stimuli. We draw on two theoret-
ical frameworks for understanding integrality. The first, General
Recognition Theory (GRT; Ashby and Townsend, 1986) grew out
of the signal detection theory tradition (Green and Swets, 1966)
but allowed for rigorous theoretical definition of several empir-
ically defined notions of independence and separability (both
perceptual and decisional). The second, logical rule models of
categorization (Fifić et al., 2010), utilizes the representational

concepts from GRT but combines these representations with
processing assumptions based on sequential sampling models
(Ratcliff, 1978; Busemeyer, 1985) and information processing
approaches to response time (Kantowitz, 1974; Townsend and
Ashby, 1983; Townsend, 1984). A further aim of this paper
is to investigate the combination of assumptions necessary for
explaining an individual’s categorization decisions using these
face morph stimuli.

THEORETICAL FRAMEWORKS FOR UNDERSTANDING SEPARABILITY
AND INTEGRALITY
General recognition theory
General Recognition Theory (Ashby and Townsend, 1986) is a
multivariate generalization of signal detection theory (Green and
Swets, 1966). In this framework, each stimulus is represented by
a distribution, often a bivariate or multivariate normal distribu-
tion, capturing the mean location of the stimulus in a multidi-
mensional perceptual space as well as the perceptual variability
associated with that stimulus. A theory of categorization decisions
is made possible in this framework by assuming that a decision
boundary is established in the category space (Ashby and Gott,
1988) and integrating the perceptual distribution in each category
region. This value provides the probability with which a particular
categorization decision is made given a particular stimulus.

GRT provides a theoretical unification of differing ideas about
perceptual independence, perceptual separability and decisional sep-
arability. For example, the category space shown in Figure 2A
(GRT PS + DS) shows the isoprobability contours for nine two-
dimensional stimuli. The isoprobability contours can be thought
to represent a top view of a slice through the bivariate normal
distributions representing each stimulus. Note that the distribu-
tions are circular representing the idea that there is no statistical
correlation between the perceived values of the dimensions. This
absence of correlation is termed perceptual independence and is a
construct which refers to a single stimulus.

By contrast, separability and integrality are constructs which
refer to collections of stimuli. To explain, perceptual separability
occurs when the mean locations, and variability, of the stimuli
are aligned along a dimension making it possible to represent the
collection of the stimuli by the same marginal distribution along
that dimension. Note that perceptual separability can occur with
or without perceptual independence. A violation of perceptual

FIGURE 2 | (A) Isoprobability contours when perceptual separability
and decisional separability hold. (B) Isoprobability contours when
there is a violation of perceptual separability due to mean shift

integrality but decisional separability holds. (C) Isoprobability
contours with mean shift integrality and an optimal decision
bounds.
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separability occurs if the perceptual effect of one dimension is
affected by the level of another dimensions. Although there are
many ways in which this can occur, two of these violations are
through varying the means of the distributions, termed mean
shift integrality, or by altering the variances between the stim-
uli, termed variance shift integrality (Ashby and Maddox, 1994).
Figures 2B,C illustrate mean shift integrality. In contrast to vari-
ation of the stimulus characteristics, decisional separability refers
to the alignment of decision bounds with the dimensional axes
of the stimuli. When decisional separability holds, the decision
bound is orthogonal to the dimensional axis to which it applies.
By contrast, violations of decisional separability occur when the
boundaries are not orthogonal. For instance, in Figure 2C, the
placement of the decision boundaries at an optimal orientation
with respect to the stimuli represents a violation of decisional
separability.

These constructs are important and useful because they pro-
vide a quantitative framework which can be used to predict some
of the different empirical operations which differentiate perfor-
mance with integral and separable dimensions; though predicting
the response time effects in, for instance, Garner’s (1974) classic
experiments, requires auxiliary assumptions about how RTs are
generated. For instance, Maddox (1992) adopted the RT-distance
hypothesis which posits that RTs are a monotonically decreas-
ing function of the distance of a stimulus from the decision
boundary (Ashby and Maddox, 1991). Within this framework,
facilitation for integral dimensioned stimuli when there is cor-
related variation between dimensions can then be explained by
assuming optimal decision boundaries. By contrast, interference
effects due to irrelevant dimensional variation can be explained
by an increase in perceptual variability.

Nosofsky and Palmeri (1997) examined these predictions by
examining the full RT distributions from a replication of Garner’s
(1974) conditions. These authors argued that if perceptual vari-
ability increases with irrelevant variation, then under the RT-
distance hypothesis the fastest RTs from the filtration condition
should be faster than in those in a control condition (with no
irrelevant variation). That is the increase in perceptual variability
would mean that some proportion of the RTs would be gener-
ated when the perception of the stimulus was further from the
decision boundary than in a control condition. Nosofsky and
Palmeri’s results, however, showed that RTs were slower overall
with irrelevant variation at all quantiles of the RT distribution.
This result argues against the RT-distance hypothesis (see also
Nosofsky and Little, 2010). However, coupling the GRT frame-
work with other mechanisms for generating response times, such
as sequential sampling models, does not make this prediction
since the integrated distribution can be thought to provide a “drift
rate” which represents the evidence for which a stimulus belongs
to each category (cf., Ashby, 2000; Fifić et al., 2010). Furthermore,
new theoretical insight can be gained by combining GRT with
mental architecture approaches to understanding when stimu-
lus dimensions are processed independently and when they are
pooled together into a single process.

In summary, in the present work, we utilize the represen-
tational assumptions defined in GRT but couple these with
processing-based assumptions that allow us to predict RTs for

each item in the task. This is a novel departure from GRT
because it allows a theoretical definition of integrality which is
not based on the representation of the stimulus dimensions but
on how those dimensions are processed. In the following sec-
tion, we present coactivity (i.e., the pooling of information from
all stimulus dimensions into a common processing channel) as
a plausible theoretical definition of how integral dimensions are
processed.

Coactivity as a theoretical definition of integrality
A novel, theoretically-driven definition of integrality can be
achieved by directly contrasting the information processing of
multidimensional stimuli. In particular, by using factorial exper-
iments and analyzing full RT distributions, one can differentiate
between processing which analyzes each of the dimensions inde-
pendently (i.e., either in serial or in parallel) and processing which
pools the dimensions together into a single processing channel
(hereafter, termed coactive processing; Townsend and Nozawa,
1995; Townsend and Wenger, 2004). Independent channel pro-
cessing and coactive processing provide a novel theoretical dis-
tinction between separability and integrality that coheres with the
traditional definitions of these concepts that emphasize analytic
vs. non-analytic or holistic processing.

Using a combination of non-parametric analyses and para-
metric response time models, Little et al. (2013 see also Fifić
et al., 2008; Fifić and Townsend, 2010; Little et al., 2011) demon-
strated that integral dimensions of brightness and saturation are
pooled into a single, coactive processing channel, but separable
dimensions, such as brightness and size, are processed indepen-
dently and in multiple channels. In this paper, we test whether
the arbitrarily-defined face morph dimensions also demon-
strate coactivity. Before turning to our experimental results, we
first briefly introduce our methodology, the logical-rule models
framework, which allows identification of independent chan-
nel and coactive processing, and in turn, we describe how our
experiment implements this methodology.

Logical-rule model framework
The logical rule-based models (Fifić et al., 2010) synthesize the
representational assumptions of GRT and decision-bound the-
ory (Ashby and Townsend, 1986; Ashby and Gott, 1988), along
with sequential sampling (e.g., random walk models; Ratcliff,
1978; Townsend and Ashby, 1983; Busemeyer, 1985; Luce, 1986;
Link, 1992; Ratcliff and Rouder, 1998) and mental architecture
frameworks (e.g., serial vs. parallel; Sternberg, 1969; Kantowitz,
1974; Townsend, 1984; Schweickert, 1992). The models are
best explained with reference to the stimulus space shown in
Figure 1. In this space, nine face-morph stimuli are created by
orthogonally combining two dimensions, each varying in three
levels.

The four stimuli in the upper right quadrant, which are
assigned to the target category, Category A, factorially com-
bine an easy or high discriminability (H) boundary decision
and a difficult or low discriminability (L) boundary decision
across two dimensions; hence, the four target category stimuli
are referred to as LL, LH, HL, and HH. The target category is
defined by a conjunctive rule; that is, a stimulus must have a
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value on dimension X greater than the vertical category bound-
ary and a value on dimension Y greater than the horizontal
boundary to belong to the target category. Because the stimuli
in the target category must satisfy both rules, the dimensions of
these stimuli must be processed exhaustively (i.e., both dimen-
sions must be processed before a target category decision can be
made).

Like GRT, the logical rule-based models (Fifić et al., 2010)
assume that the perception of each stimulus dimension is repre-
sented by a normal distribution of perceptual effects. In order to
make a decision, evidence is sampled from these distributions and
used to drive a random walk process (see Figure 3). More specif-
ically, following decision-bound theory (Ashby and Townsend,
1986; Ashby and Gott, 1988), observers are assumed to establish
a decision boundary (represented by the dashed line in Figure 3)
to separate Category A and Category B. In order to make a cate-
gory decision the observer samples from the stimulus distribution
using a random walk process. A sample from Category A, for
example, will lead to a step toward the criterion +A. This process

of evidence accumulation continues until a criterion is reached.
The logical-rule models assume that the closer a stimulus is to a
decision boundary in space, the more difficult it is to classify, and
therefore the larger the RT.

The possible combinations of separate random-walk processes
can be described using three mental architectures (i.e., serial, par-
allel, and coactive). For serial and parallel processes, two separate
random walks occur, each driven by samples from each separate
dimension. These independent random walks can occur in a serial
or parallel fashion. In the case of a self-terminating stopping rule,
the dimension that finishes first determines the final categoriza-
tion decision and RT. In the case of an exhaustive stopping rule,
however, final categorization decisions and RTs are determined by
the output of both random walks.

In contrast to serial and parallel processing, coactive process-
ing assumes that a single random walk model is driven by samples
from a joint bivariate normal distribution on both dimensions X
and Y. At each time step, a sample is drawn from the bivariate dis-
tribution representing the particular stimulus. If the sample falls

FIGURE 3 | Illustration of the random-walk process. Left: Each
stimulus is represented by a bivariate normal distribution. The
dotted line represents the decision boundary. Right: Example of
the serial (top), parallel (middle), and coactive (bottom) processing

models. The serial and parallel models are driven by samples from
the marginal stimulus distributions; the coactive model is driven by
samples from the bivariate stimulus distribution. See text for more
details.
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in the Category A region, the model will take a step toward the
decision criterion+A. However, if the sample falls in the Category
B region, the random walk will take a step toward the decision
criterion−B. This single, pooled random-walk process continues
until one of the criteria is reached.

ANALYSIS OF MODEL PREDICTIONS
As described by Fifić et al. (2010), the double factorial com-
bination of the dimensional values in the target category
allows us to leverage several non-parametric measures known as
Systems Factorial Technology (SFT; Townsend and Nozawa, 1995;
Townsend and Wenger, 2004) to qualitatively differentiate the
candidate models. For example, the mean interaction contrast
(MIC) and survivor interaction contrasts (SIC) can be used to
differentiate serial, parallel, and coactive information process-
ing architectures. These non-parametric analyses require correct
stochastic ordering (i.e., stochastic dominance) for items in the
target category. To explain, the RT for the HH face is expected
to be faster than RT for the LL face since the former is further
away from the category boundary than the latter. In order for the
qualitative predictions to provide meaningful diagnostic infor-
mation, the RTs for the HL and LH faces should be between
the HH and LL faces. This ordering is reflective of the effec-
tive selective influence (Townsend and Nozawa, 1995; Heathcote
et al., 2010; see also Schweickert et al., 2000; Dzhafarov, 2003;
Dzhafarov et al., 2004; Dzhafarov and Gluhovsky, 2006) of each of
the dimensions on the RT. Under the condition of selective influ-
ence, the MIC and SIC provide an empirically-observable, non-
parametric measure which speaks directly to theoretical questions
about the processing architecture and the underlying stopping
rule.

Piloting of the experimental stimuli revealed that most par-
ticipants demonstrated a violation of stochastic dominance, even
after extended categorization training. Consequently, the cur-
rent experiments will not report the SFT analyses to differentiate
between information processing architectures. Instead, we will
only fit RT distributions to the logical-rule models, and utilize
model comparison to differentiate between mental architectures.
(Further information about these analyses is available from the
authors upon request).

PROCESSING DIFFERENCES FOR SEPARABLE AND
INTEGRAL-DIMENSIONED STIMULI
To date, a number of different dimensions and stimulus manip-
ulations have been analyzed using this logical-rules framework.
Across experiments, the largest differences in processing have
been observed between separable-dimensioned and integral-
dimensioned stimuli. For instance, when the stimulus dimensions
were separable and located in spatially-separated locations (Fifić
et al., 2010; Little et al., 2011) processing of the dimensions was
best explained by a serial and self-terminating model. When sep-
arable dimensions were spatially overlapped (Little et al., 2011;
Experiment 2), processing was best described as a trial-by-trial
mixture of serial and parallel processing. By contrast, when the
stimulus dimensions were integral (i.e., Munsell colors varying
in brightness and saturation; Fifić et al., 2008; Little et al., 2013),
processing conformed to the predictions of the coactive model.

To highlight the large effects of separability and integrality on
processing, it is worthwhile noting that several manipulations had
very little effect on processing (Fifić et al., 2010; Little et al., 2011).
For instance, with separable dimensions, processing was serial
regardless of whether observers were given the rule that defined
the categories upfront, whether the rule had to be learned via
trial-by-trial feedback, whether observers were instructed to focus
on responding quickly or on responding accurately, and whether
the dimensions were spatially separated or part of a single object
(cf. Fifić et al., 2010; Little et al., 2011).

RELATIONSHIP TO GRT’s DEFINITIONS OF SEPARABILITY AND
INTEGRALITY
In previous studies, the application of the logical rule models has
always assumed perceptual independence, perceptual separability,
and decisional separability. In those studies, the full RT distribu-
tions from the entire collection of stimuli from both categories
could be accounted for by varying only the architecture used to
determine how the information from each dimension was inte-
grated over time. Little et al. (2013) tested whether allowing mean
shift integrality and diagonal decision boundaries would allow,
for instance, a parallel model to mimic a coactive model when
fitting the integral dimensioned data. In that analysis, mean shift
integrality was introduced by shifting the means of the stimuli so
that they lied on a tilted parallelogram rather than a square grid.
Even with this systematic violation of perceptual separability, nei-
ther a serial model nor a parallel model could mimic the coactive
model’s predictions.

Nonetheless, it is reasonable that less systematic shifts in stim-
ulus location might require allowing for violations of perceptual
separability and decisional separability. In the following, we ana-
lyze the RT distributions from individual categorization responses
using the face morph stimuli shown in Figure 1. In analyzing this
data, we fit several models which allow for differences in pro-
cessing architecture (serial, parallel, and coactive), stopping rule
(self-terminating vs. exhaustive) as well as violations of percep-
tual and decisional separability. To limit the scope of the project,
in addition to the categorization data, we also collected similarity
ratings for each pair of stimuli which we use to derive an MDS
solution that can inform whether perceptual separability holds or
is violated. For example, by constraining the MDS solution to lie
on a grid (e.g., Borg and Groenen, 2005) we enforce perceptual
separability, but by allowing the mean locations of the stimuli to
vary, we capture any violations of perceptual separability.1 The
MDS solutions also act as a further independent empirical assess-
ment of stimulus integrality since we can also test whether the
scaling solution is better fit using a city-block or Euclidean metric
(Attneave, 1950; Torgenson, 1958; Shepard, 1964, 1987; Nosofsky,
1992). Our approach therefore combines three major theoretical

1We do not examine variance shift integrality (or other violations of per-
ceptual separability) in this paper because when coupled with the decision
boundary, the effect of changing the mean or changing the variance of a per-
ceptual distribution in the logical rule models is to change the probability that
the random walk takes a step up or down toward the+A or−B boundary. We
considered it unlikely that we would be able to differentiate these two accounts
using the present design and instead leave that for future research.
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approaches to understanding separability and integrality: GRT,
MDS and the logical-rule modeling framework.

Finally, we also assumed that the decision boundaries might
be either orthogonal to the decision axes or rotated to capture
the optimal discrimination between stimuli from the target and
contrast categories. Consequently, for each of the mental archi-
tectures, we tested three different sets of the assumptions about
the perceptual representation:

(1) By assuming perceptual separability (represented by using
stimulus coordinates found using a constrained MDS
solution) and decisional separability (orthogonal decision
bounds).

(2) By assuming violations of perceptual separability (by using
an unconstrained MDS solution) and decisional separability
(orthogonal decision bounds).

(3) By assuming violations of both perceptual and decisional sep-
arability (represented by using stimulus coordinates found
using an unconstrained MDS solution and by allowing
optimal decision boundaries).

EXPERIMENT 1
We examined a set of purportedly integral stimuli created from
arbitrary morph dimensions. By using the conjunctive category
design shown in Figure 1, we test whether the morph stimuli are
processed in a coactive fashion or whether the morph dimen-
sions are better described by an independent channel processing
model (i.e., parallel or serial processing). We utilized these face
morphs in both an upright and inverted orientation to extend the
generalizability of our basic procedure. There is a possibility that
upright faces are processed holistically, whereas inverted faces are
not (Yin, 1969). However, there is a dimensionality to these face
morphs which is relevant for categorizing both the upright and
inverted faces (i.e., unlike for, say, recognizing upright vs. inverted
faces in daily life), and consequently, we do not a priori expect a
difference between them.

METHOD
Participants
Eight participants from the University of Melbourne commu-
nity with normal or corrected-to-normal vision were randomly
assigned into the upright condition and the inverted condi-
tion with four in each condition (labeled U1–U4 and I1-I4 for
the upright and inverted conditions, respectively). Participants
received $12 for each session plus an extra $3 bonus for accurate
performance (over 90% accuracy) during categorization sessions.
All procedures were approved by the University of Melbourne
Human Ethics Advisory Group.

Apparatus and stimuli
A category space was created using a field morphing technique
(Steyvers, 1999), to morph four base faces together into a two-
dimensional array (i.e., each dimension was a systematic blend
from one face to a second face; Figure 1), creating a 3× 3 matrix
of faces, that are composed of factorial proportions of each of the
four base faces. The base faces used in this study were identical
to base faces used in Goldstone and Steyvers (2001, Experiment

1; Kayser, 1984). Dimension X was formed using the morph
between faces C and D and Dimension Y was formed using the
morph between faces A and B (see Figure 1). Each face in the
stimulus space can be defined by a factorial combination of values
on Dimension X and Dimension Y. Stimuli in the inverted condi-
tion were rotated 180◦, but were otherwise identical. The stimuli
were presented at a monitor resolution of 1280× 1024 and sub-
tended a visual angle of approximately 10◦. RTs for categorization
sessions were collected using a calibrated response time box (Li
et al., 2010).

PROCEDURE
Categorization
Each participant completed a series of 1-h sessions on consecu-
tive or near consecutive days for five sessions. At the beginning
of each session, participants were shown experimental instruc-
tions, including example stimuli relevant to their condition (i.e.,
upright or inverted faces).

Each session consisted of 819 trials (9 practice trials and 810
experimental trials, divided into 9 blocks of 90 trials). Although
each stimulus was presented 10 times during each block, pre-
sentation of stimuli was randomized. In between each block,
participants were instructed to take a short break and were given
feedback on their percentage accuracy. Participants advanced to
the next block by pressing any button on the RT box. During each
trial a fixation cross was presented for 1170 ms. After 1070 ms
a warning tone was presented for 700 ms. A face was then pre-
sented and the participant was required to decide whether the face
belonged to Category A or Category B. Faces were presented until
a response was made. Feedback was provided only after incorrect
responses; feedback “too slow” was provided for RTs greater than
5000 ms.

Similarity ratings
We ran a similarity rating study using Amazon Mechanical Turk
to obtain similarity ratings for the faces shown in Figure 1. In
two conditions, participants rated the similarity of the stimuli
in either the upright or inverted condition of Experiment 1. A
single Human Intelligence Task (HIT) was created on Amazon
Mechanical Turk with 40 assignments. We restricted access to the
HIT by requiring users to have at least a 90% acceptance rate (i.e.,
90% of a user’s completed HITs were accepted by the requester),
having completed at least 1000 approved HITs, and were located
in the United States. Participants were paid $2.00 USD to com-
plete the task, which took approximately 25 min to complete.
Allocation of participants to conditions was random; this resulted
in 20 participants in upright condition and 20 participants in the
inverted condition.

On each trial, a pair of stimuli was presented in the upper-
left and upper-right of the screen. Subjects rated the similar-
ity of each pair from 1, “least similar” to 8 “most similar.”
Subjects were instructed to try to use the full range of ratings,
and were given examples of high, medium, and low similarity
pairs using a different set of upright faces before commencing
the task. For each condition, there were 36 unique pairings of
the 9 stimuli. Each pair was presented six times for each sub-
ject; the order of presentation was completely randomized as
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was the left-right presentation of each face. The experiment was
self-paced.

RESULTS
For the categorization task, any trials with RTs less than 200 ms
or greater than 3 SDs above the mean were removed from the
analysis. No trials were removed using this method. The first ses-
sion was considered practice and discarded from these analyses.
Mean RTs and error rates for each participant are reported in
Table 1. In the upright condition, error rates across items were
low; only three items showed error rates above 10% (LH and
EX for U2, and LH for U3). As expected the greater difficulty in
processing of inverted faces resulted in higher error rates for all
four participants in the inverted condition. Participants I1 and I2

showed high error rates across all items (>20%), with very poor
accuracy for items HL, LH, LL, and EX and EY . Overall error rates
for participants I3 and I4 were comparatively lower (12 and 16%
respectively). Similar to I1 and I2, items HL, LL, EX, and EY were
poorest for I3 and I4. All four participants showed high error rates
for item LL. This is unsurprising since LL lies adjacent to both
decision boundaries.

COMPUTATIONAL MODELING
Multidimensional scaling of similarity ratings
We first sought to identify participants who utilized the entire
rating scale as instructed; consequently, we computed the
multinomial likelihood of the counts of each rating value 1 to 8
(i.e., across all pairs) assuming that responses were (a) generated

Table 1 | Mean RTs and error rates for each stimulus.

Subject HH HL LH LL Ex Ix Ey Iy R

EXPERIMENT 1

Mean RTs

U1 846.65 1045.90 1092.50 1083.70 749.29 757.55 1034.40 834.62 739.03

U2 726.59 824.60 928.07 762.62 779.13 781.31 946.26 787.91 707.82

U3 643.29 812.05 766.35 741.77 626.60 627.55 708.08 604.06 525.17

U4 504.02 570.28 582.97 535.11 492.51 497.92 520.67 524.22 450.07

I1 820.75 840.61 888.08 949.38 910.41 815.71 858.14 769.13 746.85

I2 764.86 851.34 878.78 924.04 1036.00 830.62 752.88 740.32 685.86

I3 1362.50 1656.30 1459.90 1847.00 1534.70 1653.50 1624.00 1528.20 1551.00

I4 978.05 1424.90 1198.40 1394.00 1292.90 1152.80 1341.50 1376.10 966.11

Error rates

U1 0.03 0.08 0.06 0.23 0.10 0.01 0.16 0.00 0.00

U2 0.03 0.18 0.14 0.20 0.12 0.04 0.12 0.18 0.01

U3 0.00 0.00 0.04 0.03 0.01 0.01 0.01 0.00 0.00

U4 0.02 0.03 0.12 0.08 0.04 0.01 0.09 0.07 0.00

I1 0.05 0.06 0.21 0.17 0.03 0.00 0.10 0.30 0.03

I2 0.01 0.02 0.03 0.10 0.11 0.01 0.06 0.02 0.00

I3 0.01 0.15 0.07 0.08 0.11 0.09 0.09 0.03 0.00

I4 0.00 0.03 0.05 0.08 0.04 0.02 0.09 0.01 0.01

EXPERIMENT 2

Mean RTs

U5 738.05 769.17 790.8 853.55 792.6 696.99 821.56 701.51 642.98

U6 842.46 890.03 962.3 957.15 867.32 830.68 866.29 906.27 777.98

U7 577.65 641.28 711.48 782.32 653.74 635.23 677.29 637.93 549.97

U8 1105.4 1514 1662.4 1713.8 1302.1 1097 1311.1 1643 983.33

I5 861.98 1000.6 1021.1 1056.7 787.89 717.57 940.36 1048.7 813.29

I6 752.23 916.65 918.9 1202.3 998.28 737.51 1020.9 821.31 664.97

I7 917.49 1410 1183.3 1696.5 1082.7 1188.7 1235.6 1121.1 951.46

I8 829.3 1038.3 1006.8 1140.5 965.36 1038.9 1016.6 921.6 910.21

Error rates

U5 0.01 0.02 0.08 0.09 0.01 0.00 0.03 0.02 0.00

U6 0.00 0.03 0.12 0.01 0.02 0.01 0.11 0.02 0.00

U7 0.01 0.08 0.12 0.03 0.02 0.10 0.07 0.03 0.00

U8 0.00 0.04 0.05 0.01 0.01 0.02 0.02 0.02 0.00

I5 0.09 0.24 0.25 0.58 0.47 0.14 0.34 0.10 0.04

I6 0.07 0.19 0.26 0.60 0.47 0.13 0.14 0.06 0.01

I7 0.01 0.12 0.08 0.29 0.13 0.18 0.18 0.07 0.03

I8 0.00 0.29 0.06 0.40 0.19 0.09 0.14 0.21 0.02
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uniformly for each rating value, (b) assuming that responses were
sampled primarily from only one rating value and (c) assuming
that responses were sampled primarily from only two rating val-
ues. That is, each of these assumptions was used to generate a
prior probability of selecting each of the response options [e.g.,
(a) with equal probability for each response option, (b) with most
of the probability on one response option, or (c) with most of
the probability spread across two response options]. Using these
prior probability distributions and a multinomial likelihood, we
computed the posterior probability for each hypothesis given the
observed distribution of counts across rating values, using Bayes’
rule. We then removed any observer with a posterior probabil-
ity less than 0.5 for the uniformly distributed rating hypothesis.
This resulted in the removal of two participants from the upright
condition and six participants from inverted condition

We computed the averaged similarity rating for each pair of
stimuli and found the two-dimensional scaling solutions for each
condition. This was done by fitting the averaged ratings using a
model which assumed a negative linear relationship between the
predicted similarity ratings and the Euclidean distance between
the estimated coordinates. To find the best fitting coordinates,
we minimized the sum-of-squared deviations between the pre-
dicted and observer ratings from 100 starting points chosen to
span the coordinate space. There were 20 parameters in total
(the nine coordinate values, and the slope and the intercept
of the negative linear distance-to-similarity function) used to
fit the 36 similarity ratings. The estimated two-dimensional-
scaling solution accounted for 97 and 99% of the variance in
the averaged ratings for the upright and inverted conditions,
respectively. To display the scaling solutions, we first performed
a Procrustes rotation (Borg and Groenen, 2005) to the ideal
coordinate values (see Figure 1). The rotated scaling solutions
for the upright and inverted condition are shown in Figure 4.
In general, both the inverted and upright scaling solutions con-
formed to the ideal category space outlined in Figure 1. In the
upright condition, the scaling solution showed a pattern whereby
the interior stimuli are positioned further from the (presumed
location of) the orthogonal boundary compared to the exte-
rior stimuli. In the inverted condition, the overall shape of the
scaling solution is best described by a parallelogram. In partic-
ular, both the interior and exterior stimuli of the A-B and C-D
morph dimensions appear to “slope” away from the orthogonal
boundary.

For each condition, we also fitted a scaling solution that con-
strained each of the nine co-ordinates to a 3× 3 grid. This
model only had six free parameters and allowed only the distance
between values on the A,B and C,D morph dimensions to vary.
This constrained scaling solution accounted for 85 and 79% of
the variance in the averaged ratings for the upright and inverted
conditions, respectively. As explained above, the constrained and
unconstrained scaling solutions allow for the examination of
whether changing the perceptual representation affects the model
fitting.

Finally, we fitted additional scaling solutions that assumed
city-block distance instead of Euclidean distance between the
estimated coordinates. The unconstrained model accounted for
94 and 98% of the variance in the averaged ratings for the

FIGURE 4 | Average multidimensional scaling solutions collected via

Amazon Mechanical Turk for Experiment 1. The top panels show the
unconstrained and constrained scaling solutions for the Upright condition.
The lower panels show the corresponding solutions for the Inverted
condition.

upright and inverted conditions, respectively. In contrast, the
constrained model accounted for 77 and 73% of the variance
in the upright and inverted conditions. As illustrated in Table 2,
the models assuming city-block distance provided worse fitting
scaling solutions than the models assuming Euclidean distance.
Consequently, better fitting scaling solutions with a Euclidean
distance metric suggests that these face morph dimensions are
integral dimensions.

Model fitting
Having established the coordinate values from the scaling anal-
ysis, we then estimated, for each model, the variances of the
perceptual distributions, the decision boundaries, and the ran-
dom walk parameters. For simplicity, we assumed equal variance
across all levels of a given dimension, but allowed for differ-
ences in the variances between dimensions. As illustrated in
Figure 4, the unconstrained scaling solution for both conditions
deviates greatly from the ideal 3× 3 grid layout. Given that the
logical-rule models (Fifić et al., 2010) utilize the representational
assumptions of GRT (Ashby and Townsend, 1986; Ashby and
Gott, 1988), we can use the GRT framework to fit models that
vary in the assumption of the perceptual representation of the
stimuli.

We fitted three sets of models, each set containing the five
possible logical-rule models, which accounted for violations of
perceptual and/or decisional separability. The first set of models
allowed violations of perceptual separability but maintained the
assumption of decisional separability; we label this set of models
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Table 2 | Summary of the fits of the scaling models for Experiment 1 and 2.

Cityblock Euclidean

Condition Model SSD BIC R2 SSD BIC R2

EXPERIMENT 1

Upright Full 4.73 −27.80 0.94 2.51 −50.56 0.97

Constrained 17.25 −31.40 0.77 11.45 −46.15 0.85

Inverted Full 1.00 −66.97 0.98 0.59 −85.72 0.99

Constrained 12.86 −24.99 0.73 9.88 −34.48 0.79

EXPERIMENT 2

U5 Full 1.06 10.26 0.82 1.21 15.01 0.79

Constrained 2.92 −3.43 0.50 2.82 −4.71 0.52

U6 Full 2.76 −15.76 0.91 3.17 −10.76 0.90

Constrained 12.23 −12.29 0.61 9.27 −22.28 0.70

U7 Full 6.52 −28.17 0.94 4.44 −41.98 0.96

Constrained 21.38 −35.57 0.80 10.10 −62.56 0.90

U8 Full 4.88 −31.62 0.94 3.27 −45.99 0.96

Constrained 21.04 −29.18 0.76 12.07 −49.20 0.86

I5 Full 1.37 −82.87 0.99 1.55 −78.31 0.98

Constrained 11.38 −56.72 0.89 9.65 −62.65 0.90

I6 Full 4.57 −27.17 0.94 2.93 −43.22 0.96

Constrained 13.85 −37.43 0.81 9.90 −49.53 0.86

I7 Full 11.32 −21.13 0.92 8.92 −29.73 0.94

Constrained 35.59 −30.07 0.76 28.51 −38.04 0.81

I8 Full 3.94 −16.67 0.91 2.93 −27.30 0.94

Constrained 11.83 −27.29 0.74 8.26 −40.20 0.82

SSD, Sum of Squared deviations; BIC, Bayesian Information Criterion.

The best model for each observer is shown in bold.

MSI and DS for mean shift integrality and decisional separability.
In effect, these models were fitted using the unconstrained scal-
ing solutions and assumed orthogonal decision bounds. The
second set of models assumed both perceptual and decisional
separability (hereafter, PS and DS). These models were fitted
using the constrained scaling solutions. The third family of
models assumed both violations of perceptual and decisional sep-
arability (hereafter, MSI and OP, because the boundaries were
rotated to an optimal orientation). A diagonal decision bound-
ary was estimated using the unconstrained scaling solution. We
freely estimated for each participant and each model perceptual
variances, σX and σY , and decision boundaries, DX and DY, for
Dimensions X and Y, respectively. For the optimal decision bound
models, the slope (in degrees) of the decision boundaries along
the X and Y dimensions was calculated prior to model fitting. The
intercepts of these bounds (called Offset1 and Offset2) were esti-
mated as free parameters and they replaced parameters DX and
DY from the previously described models. For the random walk
components of the models, we freely estimated response criteria
+A and –B. We also assumed an additional non-decision time
(i.e., time associated with encoding and movement time) was
generated from a log-normal distribution \with location, μr , and
scale, σr and added to the decision time generated from the ran-
dom walk. We further assumed that each step in the random walk
was scaled to milliseconds by a multiplicative scaling constant, k.
Hence, each of the logical rules models has nine free parameters.

The sole exception is the serial self-terminating model for which
we also estimated the probability that dimension X was processed
before dimension Y, pX .

We fitted the models simultaneously to the correct-RT distri-
butions and the error rates for each item by using quantile-based
maximum likelihood estimation (Heathcote et al., 2002). For each
item, correct RT predictions were generated for the 10, 30, 50,
70, and 90% quantiles. We did not attempt to fit the error-RT
distributions since error rates were generally low. The fit of the
models to the data was given using the multinomial log-likelihood
function:

ln L =
n∑

i= 1

ln (Ni!)−
n∑

i= 1

m+ 1∑

j= 1

ln
(
fij!
)+

n∑

i= 1

m+ 1∑

j= 1

fij · ln
(
pij
)

where Ni is the total number of times each item i (i = 1, n) was
presented, fij is the frequency with which item i had a correct RT
in the jth bin (j = 1, m) or was an error response (m+ 1), and pij

is the predicted probability that each item i had a correct RT in the
jth bin or was an error. We compared each model’s log-likelihood
adjusted for model complexity using the Bayesian information
criterion (BIC; Schwarz, 1978). The complexity penalty in the
BIC is based on the number of free parameters and the size of
the sample as follows:

BIC = −2 ln L+ np ln (M) ,
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where np is the number of free parameters and M is the total
number of observations in the sample. Models with smaller
BIC values are preferred. Predictions were generated by sim-
ulating 10,000 RTs for each item; details of the simulation
method for each model are given in Fifić et al. (2010, pp.
311–317; numerical methods for generating model predictions
are given in Little, 2012). The model fits for each subject
in the upright and inverted conditions are shown in Table 3
and the parameters of the best fitting model are shown in
Table 4.

Upright condition
Table 3 shows the best fitting model (serial, parallel, or coac-
tive) for each participant within each set of models. Inspection
of Table 3 shows that the coactive model was the best fit-
ting model for all participants in the models assuming MSI
and DS. When both PS and DS was assumed, the parallel
self-terminating was the best fitting model for three of four
participants (U1, U2, and U4); the serial exhaustive model
best fits U3 within this set of models. However, when MSI
and OP were assumed, the parallel self-terminating model
provided the best fit for all four observers in the upright
condition.

Overall, there was a consistency of the best fitting model (par-
allel self-terminating or coactive) within each set of models. That
is, we can rule out serial processing and, for the most part,
any exhaustive processing, which accords with previous findings
regarding integral dimensioned stimuli (Little et al., 2013) and
stimuli with dimensions in the same spatial location (Little et al.,
2011). However, in considering the best fitting model for each
individual participant across all stimulus sets, there were marked
individual differences. For instance, the parallel self-terminating
model, was the best fitting model for participants U1 BIC =
546.51) and U2 (BIC = 821.08), and the coactive model was the
best fitting model for U3 (BIC= 753.72) and U4 (BIC= 505.62).
The assumption of PS also varied between these participants. The
best fitting model assumes MSI and DS for U3 and U4, but the
best fitting models assume PS and DS for U1, and MSI and OP
for U2. The predictions of the best fitting parameters are plotted
against individual RT distributions in Figure 5.

Inverted condition
For the inverted condition, the coactive model was the best fit-
ting model for all participants in the two sets of models that
assume perceptual integrality (regardless of decisional separabil-
ity or integrality). For the set of models that assume both PS and

Table 3 | Model Fits to subjects in Experiment 1 (model with the lowest BIC in each set is bolded; best overall model is bolded an italics).

Subject Coactive Parallel exhaustive Parallel Self-terminating Serial exhaustive Serial self-terminating

-lnL BIC -lnL BIC -lnL BIC -lnL BIC -lnL BIC

PS AND DS

U1 290.07 616.04 471.95 979.8 255.26 546.41 380.75 797.41 308.04 655.97

U2 437.07 910.04 448.34 932.58 419.45 874.79 489.27 1014.4 443.56 927

U3 462.32 960.55 533.06 1102 452.12 940.13 427.55 891.01 441.19 922.27

U4 314.04 663.98 442.85 921.6 264.83 565.55 384.25 804.39 341.48 722.84

I1 231.62 499.14 376.03 787.96 267.22 570.33 514.06 1064 280.39 600.67

I2 215.65 467.2 400.75 837.4 256.6 549.09 531.55 1099 253.04 545.97

I3 306.93 649.76 288.92 613.75 258.91 553.72 366.95 769.8 258.42 556.73

I4 289.2 614.29 413.1 862.1 236.11 508.11 542.26 1120.4 268.18 576.24

MSI AND DS

U1 277.82 591.54 418.40 872.69 307.71 651.31 349.33 734.56 309.52 658.93

U2 417.36 870.61 486.76 1009.40 419.94 875.78 470.07 976.04 425.09 890.06

U3 358.91 753.72 579.67 1195.20 444.50 924.90 462.10 960.09 446.36 932.61

U4 234.86 505.62 387.66 811.23 263.47 562.84 396.34 828.59 344.65 729.19

I1 291.25 618.41 536.66 1109.20 435.17 906.25 639.92 1315.70 457.87 955.64

I2 296.89 629.68 616.82 1269.50 481.39 998.68 716.87 1469.60 498.94 1037.80

I3 325.64 687.19 515.23 1066.40 494.15 1024.20 561.77 1159.40 504.63 1049.20

I4 208.42 452.73 558.00 1151.90 424.44 884.77 608.31 1252.50 503.77 1047.40

MSI AND OP

U1 277.46 590.82 380.43 796.76 263.48 562.86 302.37 640.64 894.47 1828.84

U2 413.13 862.16 472.74 981.38 392.59 821.08 459.87 955.64 1026.32 2092.53

U3 373.81 783.52 541.82 1119.54 366.98 769.86 369.01 773.92 1115.98 2271.84

U4 275.87 587.64 419.63 875.16 274.94 585.78 358.00 751.90 1011.85 2063.59

I1 331.61 699.12 456.14 948.18 427.00 889.90 569.69 1175.28 586.19 1212.28

I2 444.62 925.14 610.14 1256.18 605.07 1246.04 726.03 1487.96 791.77 1623.42

I3 466.31 968.52 588.70 1213.30 585.75 1207.40 727.57 1491.04 786.34 1612.56

I4 307.18 650.26 645.95 1327.80 631.75 1299.40 817.53 1670.96 808.54 1656.97
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Table 4 | Parameters for the best fitting model for subjects in Experiment 1 and 2.

Subject Set Model -lnL BIC Dx Dy σx σy +A +B μr σr k

EXPERIMENT 1

U1 PS and DS ParallelST 255.26 546.41 1.35 1.59 0.76 0.19 5 3 6.38 0.36 38.71

U2 MSI and OP ParallelST 392.59 821.08 1.34 1.73 0.46 0.25 4 3 6.15 0.23 45.07

U3 MSI and DS Coactive 358.91 753.72 1.40 1.27 0.19 0.24 3 2 5.58 0.38 99.09

U4 MSI and DS Coactive 234.86 505.62 1.43 1.28 0.13 0.13 3 2 5.81 0.16 50.40

I1 PS and DS Coactive 231.62 499.14 1.18 0.50 4.17 2.98 4 3 6.13 0.14 37.60

I2 PS and DS Coactive 215.65 467.20 1.44 0.50 1.61 6.12 3 3 6.04 0.16 53.86

I3 PS and DS ParallelST 258.91 553.72 1.47 1.51 2.27 2.78 6 7 6.87 0.49 15.68

I4 MSI and DS Coactive 208.42 452.73 0.76 1.08 1.83 7.87 7 7 6.34 0.17 18.36

EXPERIMENT 2

U5 PS and DS Coactive 289.90 615.70 2.20 1.51 4.25 2.98 9 5 6.31 0.17 7.48

U6 PS and DS ParallelST 253.97 543.83 2.50 2.48 2.02 0.95 3 3 6.09 0.14 56.98

U7 MSI and DS ParallelST 244.73 525.37 1.68 1.57 1.89 1.57 8 8 5.97 0.02 9.48

U8 MSI and DS ParallelST 338.97 713.84 1.66 1.43 1.53 1.24 6 6 5.69 0.07 48.81

I5 MSI and OP ParallelST 304.50 644.89 1.66 1.59 2.88 2.89 5 6 6.19 0.09 18.44

I6 MSI and DS Coactive 290.12 616.13 1.46 1.16 1.35 0.46 5 4 5.96 0.14 47.22

I7 PS and DS ParallelST 261.63 559.17 2.50 2.50 1.98 1.37 5 5 5.93 0.06 46.72

I8 PS and DS ParallelST 299.58 635.06 2.50 2.38 1.52 0.99 6 5 6.24 0.18 26.94

For U2 and I5, Dx and Dy refer to Offset1 and Offest2, the slope of decision bound for dimension X and Y. The value of Offset1 and Offset2 are -2.21 and 97.45◦ ,
respectively, for U2, and -1.21 and 86.79◦ for I5.

DS, the coactive model was the best fitting model for participant
I1, I2, and I4 but the parallel self-terminating model was the best
model for I3.

Examining the best model across all model sets, participants
I1 (BIC = 499.14) and I2 (BIC = 467.20) demonstrated coactive
processing under the assumption of PS and DS. Under the same
assumptions, the parallel self-terminating model was the best
model for I3 (BIC = 553.72). Finally, I4 (BIC = 452.73) demon-
strated coactive processing under the assumptions of MSI and DS.
The predictions of the best fitting parameters are plotted against
individual RT distributions in Figure 6.

In each of the logical rule models there are two key compo-
nents which determine the types of predictions that are generated.
The first component is the architecture of the model. The sec-
ond component is the psychological representation of the stim-
uli, which can vary based on the nature of perceived similarity
between each of the stimuli. For the current set of stimuli, we fit-
ted a series of models by varying the assumption of perceptual
and decisional separability. It is clear that changing these assump-
tions affects the best model for each participant. A benefit of the
parametric approach taken here is that we are able to test these
different assumptions in a systematic fashion.

DISCUSSION
Experiment 1 highlighted two important findings. First, there
were individual differences in the processing of the face morph
dimensions. In the general, participants in the upright and
inverted conditions were best explained by either the coactive
or parallel self-terminating models. Specifically, two of four par-
ticipants processed the face morphs coactively in the upright
condition, and three of four participants showed coactivity in the
inverted condition.

Second, the best fitting model for each participant varied
with changes in the perceptual representation of the stimuli. In
the upright condition for example, the coactive model provided
the best fit for all participants when the perceptual representa-
tion was not assumed to conform to a 3× 3 grid-layout (see
Figure 1) and when an orthogonal decision boundary was uti-
lized. However, a parallel self-terminating model best fitted these
participants when the model assumed an optimal (diagonal) cat-
egory boundary. This highlights the necessity of accounting for
not only architecture, but also the perceptual representation of
the stimuli.

A potential caveat on this interpretation is that the scal-
ing solution was obtained from averaged similarity ratings of
online participants. Given the individual differences in processing
architecture, it is highly possible that there are also individ-
ual differences in the psychological representation of the face
morphs shown in Figure 1. For example, averaging the simi-
larity data might result in greater symmetry than is observed
in any of the individual participants (Ashby et al., 1994); fur-
thermore, the results from the average data may exhibit proper-
ties which are not found in any of the individual participants.
Consequently, using a single scaling solution for the computa-
tional modeling of individual participant data may mask indi-
vidual differences in the MDS, and possibly also, in processing
architecture. A better method would be to fit an MDS model such
as INDSCAL, which allows for differential dimension weightings
for each observer (Carroll and Chang, 1970). However, this would
have still necessitated using an MDS solution collected from
observers different from those who completed our categoriza-
tion task. As an alternative, we conducted a second experiment
in which in which RT distributions and scaling solutions were
obtained for each participant. For this experiment, we also varied
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FIGURE 5 | Distribution predictions for each item using the best fitting model for each participant from Experiment 1, Upright condition (A, Subject

U1—Parallel self-terminating model; B, Subject U2—Parallel self-terminating model; C, Subject U3—Coactive model; D, Subject U4—Coactive model).

the stimulus parameters to further increase the generality of our
results.

EXPERIMENT 2
Experiment 2 replicated the upright and inverted conditions of
Experiment 1 with two important alterations. First, a different
stimulus space was created by swapping the positions of the two of
the base faces from the set used in Experiment 1. The result of this
change in base faces is that all of the stimuli except for EY, LL, and
EX are different in Experiment 2 than in Experiment 1 (though
similar because they are comprised of the same four base faces).
Second, each participant completed a session of similarity ratings
following their categorization sessions. Thus, participant-specific
scaling solutions were used in the computational modeling.

METHOD
Participants
Eight participants from the University of Melbourne commu-
nity with normal or corrected-to-normal vision were randomly
assigned into the upright condition and the inverted condi-
tion with four in each condition (labeled U5–U8 and I5-I8 for
the upright and inverted conditions, respectively). Participants

received $12 for each session plus an extra $3 bonus for accurate
performance (over 90% accuracy) during categorization sessions.

Apparatus and stimuli
The apparatus was identical to Experiment 1. The base faces used
to create the stimulus space were also identical to those used in
Experiment 1, however, the positions of base faces A and C were
swapped. This led to a morph sequence between faces A and D,
and B and C. This resulted in a different stimulus space, which
was nonetheless similar as it comprised the same base faces (see
Figure 7). The stimuli were presented at four degrees of visual
angle.

Procedure
The procedure was identical to the categorization sessions of
Experiment 1. Each participant completed five 1-h sessions on
consecutive or near consecutive days, and only the final four ses-
sions of categorization were used for analysis. In order to improve
overall performance accuracy, participants were first shown the
entire stimulus space with decision boundaries removed and were
instructed take some time to study these faces to improve their
performance during the experiment.
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FIGURE 6 | Distribution predictions for each item using the best fitting model for each participant from Experiment 1, Inverted condition (A, Subject

I1—Coactive model; B, Subject I2—Coactive model; C, Subject I3—Parallel self-terminating model; D, Subject I4—Coactive model).

FIGURE 7 | Comparison of stimulus spaces for Experiment 1 and 2.
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After completing the categorization sessions, participants were
asked to return for a subsequent 1 h session in which they rated
the similarity of the morphed faces used in the categorization task.
There were 36 unique combinations of these stimuli, which were
presented to participants 20 times each. On each of the 720 tri-
als, a fixation cross was presented for 500 ms, then one of the
combinations of faces was presented (i.e., two faces appeared on
the screen, one face in the center of the upper right quadrant
and the other in the center of the upper left quadrant of the
monitor) and participants were then asked to rate the faces on
the number pad using a scale of 1–8, where 1 was least similar
and 8 was most similar. The presentation order of each unique
pair was counterbalanced across the 20 repetitions. Comparisons
were randomized for each participant. Participants in the upright
condition made similarity judgments for upright faces, and par-
ticipants in the inverted condition made similarity judgments for
inverted faces.

RESULTS
For the categorization task, any trials with RTs less than
200 ms or greater than 3 SDs above the mean were removed
from the analysis. This resulted in the removal of less than
1% of trials. The mean RTs and error rates are shown in
Table 1, respectively. Overall, the error rates for the upright and
inverted conditions were lower in Experiment 2 compared to
Experiment 1, with comparable error rates between the upright
and inverted conditions in Experiment 2. This shows that accu-
racy was approximately equal between conditions for this exper-
iment. As seen in Experiment 1, error rates for stimulus LL in
Experiment 2 were generally higher than the remaining eight
stimuli.

Multidimensional scaling of similarity ratings
The scaling solutions for participants in the upright and inverted
conditions are presented in Figure 8. Overall, scaling solutions
for each participant in the upright condition adhered to the
general layout presented in Figure 1. However, participants U5
and U6 demonstrated greater deviations from the grid-layout
than U7 and U8. Moreover, the unconstrained solutions revealed
violations of perceptual separability for all four participants, as
values on the A–D morph dimension changes with each level
of the B,C morph dimension. A similar pattern of results was
observed for participants in the inverted condition. Participants
I6–I8 showed a perceptual representation in which items LL
and IX were lower on the B,C dimension than the corre-
sponding items at that level (i.e., IY and HL, and R and EX).
Participant I5, however, showed a pattern in which the items
were more dispersed along the B,C dimension than the A–D
dimension.

Similar to Experiment 1, unconstrained and constrained mod-
els assuming city-block and Euclidian distance between the esti-
mated coordinates were fitted for each participant. A summary
of the two sets of scaling solutions is provided in Table 2. For the
constrained scaling solutions, models that assumed a Euclidean
distance metric provided better fits of the scaling solution. A sim-
ilar pattern of results was observed for the unconstrained scaling
solutions. The only exception was that best fitting unconstrained

solutions for subjects U5, U6, and I5 assumed city-block distance
metric. Taken across all observers, the pattern suggests that these
face morphs are consistent with integrality in that most observer’s
scaling solutions are better fit by assuming a Euclidean metric.
The unconstrained model fit better but was typically less preferred
based on BIC due to the larger number of parameters. Hence,
based on the MDS modeling along we would conclude that for
seven of our observers, there was no violation of perceptual sepa-
rability. Nevertheless, we continued to utilize the unconstrained
solution when fitting the different architectures to capture the
assumption of MSI. As before, we also fit each of the models
assuming either PS or MSI and assuming either DS or optimal
category boundaries.

COMPUTATIONAL MODELING
The model fits for each subject in the upright and inverted condi-
tions are shown in Table 5 and the parameters of the best fitting
model are shown in Table 3.

Upright condition
Inspection of Table 5 reveals that the parallel self-terminating
model was the best fitting model for three participants in the
upright condition. For the set of models assuming MSI and DS,
the parallel model was the best model for U7 and U8, but the
coactive and serial models were the best models for U5 and U6
respectively. The parallel self-terminating model was the best fit-
ting model for U6–U8, when assuming both MSI and OP; the
coactive model was the best model for U5. For the models assum-
ing both PS and DS, the coactive model was the best model
for U5, U7, and U8, but the parallel model was the best model
for U6.

Individually, participant U5 demonstrated coactive processing
under all three different assumptions of perceptual representa-
tion, but the model that assumes PS and DS was the overall
best fitting model (BIC = 615.70). The parallel self-terminating
model best fitted U6 (BIC = 543.83) with the same assump-
tions of perceptual representation. The parallel self-terminating
model best fitted U7 (BIC = 525.37) and U8 (BIC = 713.84)
under the assumption of MSI and DS. The predictions of the best
fitting models are plotted against individual RT distributions in
Figure 9.

Inverted condition
The model fits of the inverted condition present a clear picture.
The parallel self-terminating model best fitted the data for par-
ticipants I5, I7, and I8 under all three different assumptions of
perceptual representations. Participant I5 (BIC = 644.89) was
best fitted with the assumption of MSI and OP, but participants
I7 (BIC = 559.17) and I8 (BIC = 635.06) were best fitted with
the assumption of PS and DS. For participant I6, the coactive
model with the assumption of MSI and DS was the overall best
fitting model (BIC = 616.13). The predictions of the best fit-
ting parameters are plotted against individual RT distributions in
Figure 10.

DISCUSSION
In sum, parallel self-terminating processing was observed for
three of the four participants in both the upright and inverted
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FIGURE 8 | (A,B) shows the individual multidimensional scaling solutions for the Upright and Inverted conditions in Experiment 2, respectively.

conditions of Experiment 2. This is in contrast to Experiment 1
in which a majority of participants demonstrated coactive pro-
cessing of upright and inverted face morphs dimensions. Taken
together with Experiment 1, and given the small number of
observers, our conclusion is that there are individual differences
in the manner in which the face morph dimensions are pro-
cessed. Regardless of whether the morphs are presented in an
upright or inverted fashion, processing may be coactive or par-
allel depending on the individual observer. Similar to Experiment

1, Experiment 2 showed that changing the assumption of the
underlying perceptual representations affects the best fitting
model.

GENERAL DISCUSSION
In this paper, we examined processing of purportedly inte-
gral, arbitrary morph dimensions, comparing both upright and
inverted face morphs. Our primary finding was that some indi-
viduals process the dimensions in a parallel self-terminating
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Table 5 | Model fits to subjects in Experiment 2 (model with the lowest BIC in each set is bolded; best overall model is bolded an italics).

Coactive Parallel exhaustive Parallel self-terminating Serial exhaustive Serial self-terminating

Subject -lnL BIC -lnL BIC -lnL BIC -lnL BIC -lnL BIC

PS AND DS

U5 289.90 615.70 492.62 1021.14 361.32 758.54 517.10 1070.09 409.43 858.75

U6 272.71 581.32 376.66 789.23 253.97 543.83 454.94 945.78 354.61 749.11

U7 264.74 565.39 495.81 1027.51 282.97 601.85 525.06 1086.02 402.50 844.89

U8 366.41 768.72 502.23 1040.37 368.20 772.31 491.54 1018.98 458.31 956.52

I5 472.66 981.22 657.95 1351.79 444.75 925.40 744.24 1524.38 492.54 1024.97

I6 290.34 616.58 737.07 1510.05 365.19 766.28 716.51 1468.91 533.73 1107.35

I7 412.70 861.30 518.87 1073.64 261.63 559.17 514.43 1064.76 376.34 792.58

I8 372.39 780.67 368.31 772.52 299.58 635.06 410.63 857.17 353.91 747.72

MSI AND DS

U5 367.95 771.80 552.57 1141.04 455.15 946.19 591.10 1210.13 447.10 934.10

U6 408.12 852.14 361.11 758.12 364.58 765.06 433.45 894.82 340.58 721.05

U7 294.90 625.71 531.11 1098.12 244.73 525.37 519.29 1066.50 286.60 613.10

U8 515.94 1067.78 538.03 1111.97 338.97 713.84 508.53 1044.99 406.77 853.43

I5 439.36 914.62 553.70 1143.29 320.56 677.02 602.31 1232.55 328.97 697.84

I6 290.12 616.13 737.84 1511.59 350.37 736.65 693.59 1415.10 468.98 977.84

I7 568.12 1172.14 610.76 1257.43 379.92 795.74 650.95 1329.82 474.17 988.22

I8 446.98 929.87 393.25 822.40 351.66 739.22 467.70 963.32 366.24 772.36

MSI AND OP

U5 409.46 854.82 731.59 1499.09 1055.75 2147.40 807.25 1650.41 482.32 1004.54

U6 496.00 1027.90 490.14 1016.19 477.51 990.92 570.76 1177.42 870.17 1780.23

U7 395.85 827.60 488.78 1013.45 309.05 654.01 550.07 1136.03 1000.76 2041.40

U8 507.92 1051.75 590.52 1216.93 356.71 749.31 568.15 1172.21 1288.88 2617.65

I5 455.77 947.44 512.42 1060.74 304.50 644.89 596.91 1229.73 1202.71 2445.32

I6 720.69 1477.27 860.90 1757.70 662.16 1360.23 865.15 1766.20 1588.40 3216.69

I7 860.90 1757.70 803.03 1641.97 801.66 1639.22 837.51 1710.93 1108.51 2256.90

I8 833.26 1702.42 784.05 1603.99 759.12 1554.14 827.49 1690.87 1385.56 2811.00

fashion and others process the dimensions coactively for both
upright and inverted face morphs.

A strength of the present study is the comparison of the model
fits under different assumptions of the underlying perceptual
representation. The scaling solutions from both experiments
reveal deviations from the 3× 3 grid-layout outline in Figure 1.
Experiment 1 showed that the preferred model varied based on
the underlying representational assumption. For example, the
coactive model was the best fitting model in the upright condition
for all participants when perceptual integrality and decisional sep-
arability were assumed; however, once the model assumed either
optimal responding or mean shift integrality, the parallel model
was superior in terms of BIC. A clear benefit of the parametric
approach taken here that we are able to tease apart differences in
representation from differences in architecture.

Overall, more participants used a coactive strategy in
Experiment 1 compared to Experiment 2. There are two possible
reasons for this difference. Firstly, participants may have per-
ceived the face morphs differently since the visual angle and the
face morph dimensions were altered between experiments (i.e.,
the position of two base faces were swapped). Secondly, model
fitting for Experiment 1 utilized the averaged scaling solution
of independent participants, but model fitting for Experiment 2

utilized individual scaling solutions after categorization training.
In general, there is high variability in the perceptual represen-
tation of these face morphs between individuals and thus the
average scaling solution may not have adequately represented the
perceptual representation of each participant in Experiment 1.

IMPLICATIONS FOR PREVIOUS RESEARCH
The finding of individual differences in processing face morph
stimuli implies that previous studies employing these stimuli on
the assumption that they are processed in an integral fashion
need to be interpreted with caution. On the one hand, the stim-
uli clearly satisfy one of the empirical operational definitions
of integrality in that for most observers, the best fitting scal-
ing metric was Euclidean. On the other hand, only half of the
observers required assuming a violation of perceptual separabil-
ity. Furthermore, only half of the observers were best fit by a
coactive processing architecture, and of those, only two observers
from Experiment 2, where individual scaling solutions were used,
were found to be coactive. Consequently, the evidence that the
face morph stimuli provide consistent and converging evidence
of coactive processing is rather weak.

In their study of perceptual differentiation, Goldstone and
Steyvers (2001) found that the face morph dimensions were

Frontiers in Psychology | Quantitative Psychology and Measurement January 2015 | Volume 5 | Article 1531 | 70

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Blunden et al. Arbitrary integral dimensions

FIGURE 9 | Distribution predictions for each item using the best

fitting model for each participant from Experiment 2, Upright

condition (A, Subject U5—Coactive model; B, Subject

U6—Parallel self-terminating model; C, Subject U7—Parallel

self-terminating model; D, Subject U8—Parallel self-terminating

model).

independently analyzable after training on a boundary orthogo-
nal to the stimulus dimensions. Goldstone and Steyvers acknowl-
edge the possibility that because of the grid-like arrangement of
the stimuli, participants may have realized that there was a con-
sistent dimensional structure. Indeed, in their Experiment 3, they
utilized a stimulus space which did not have a grid-like struc-
ture (i.e., the face morphs were arranged in a circle), yet they
still found evidence for differentiation. Consequently, it would
seem prudent to limit our conclusions of individual differences
to the case in which the face morphs are aligned to a grid mak-
ing potentially making the dimensional structure particularly
identifiable.

An alternative interpretation of our result would be to assume
that differentiation is not precluded by training a category bound-
ary on both stimulus dimensions, and that our observation that
some observers processed the dimensions independent (in a par-
allel, self-terminating fashion) is evidence of that differentiation.
In support of this idea, the MDS solution from Experiment 1,
which was the only data collected prior to category learning (con-
cerns about averaging notwithstanding; Ashby et al., 1994), is best
fit by a Euclidean distance metric suggesting integrality. However,

we note that a Euclidean metric was also found for most of our
observers in Experiment 2 after extensive category learning. It is
clear from the present results that individuals differ with regard
to how they represent and process the face morphs used in the
present study. Whether this results from a difference in the time
course of differentiation and learning (i.e., across sessions) is left
for future research. Nonetheless, we note that the MDS solu-
tions found in Experiment 2 were found using data collected after
extensive category learning. These solutions all indicate that a
constrained solution (i.e., which exhibits perceptual separability
as defined by GRT) provides a better account of the similarity
data. This result is in line with the hypothesis that the stimulus
dimensions were differentiated after category learning.

Finally, a further caveat on the implications of the present
research is that we tested a relatively small number of individuals.
This is a consequence of the experimental design which necessi-
tates collecting large numbers of observations from each observer.
Nevertheless, we can clearly rule out a large number of models
including all serial models and all exhaustive models. This leaves
coactivity and parallel self-termination as the remaining candi-
date processing models for the present face morph stimuli. That
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FIGURE 10 | Distribution predictions for each item using the best

fitting model for each participant from Experiment 2, Inverted

condition (A, Subject I5—Parallel self-terminating model; B,

Subject I6—Coactive model; C, Subject I7—Parallel

self-terminating model; D, Subject I8—Parallel self-terminating

model).

we found, essentially, the same sorts of individual differences in
both experiments suggests that the individual differences are real
and not due to small idiosyncratic differences between subjects.

IMPLICATIONS OF THEORETICAL NOTIONS OF INTEGRALITY
Here we have shown that stimuli which were previously thought
to be integral on the basis of one empirical test of integrality, do
not necessarily meet all other tests of integrality (cf. Cheng and
Pachella, 1984). The face morph dimensions used in this exper-
iment had been previously shown to result in an interference
effect when variation on an irrelevant dimension was introduced
suggesting integrality. In the current study, the scaling solutions
demonstrated clear violations of perceptual separability (Ashby
and Townsend, 1986; Ashby and Maddox, 1991; Maddox, 1992;
Maddox and Ashby, 1996) and the Euclidean metric was pre-
ferred for most observers, but for observers in Experiment 2 a
constrained solution was preferred after taking the complexity of
the solution into account. Taken in conjunction with the RT data,
however, there was a good deal of variation in whether perceptual
separability was violated or not. Little et al.’s (2013) experiments
using Munsell color stimuli suggest a theoretical definition of

integrality in terms of coactive processing. For the present stim-
uli, however, we also did not find consistently coactive processing
suggesting that the face morphs used here do have some iden-
tifiable structure which can be processed in an independent
fashion.

Yet, one may question why additional theoretical definitions of
integrality are necessary. GRT offers a theoretical definition of
perceptual representation, which rigorously defines violations
of perceptual independence, perceptual separability and deci-
sional separability, so is there any need to posit coactivity as a
theoretical representation for integrality? As a background con-
sideration, it is worthwhile to note that GRT does not predict
RTs without additional mechanisms, and aside from the logi-
cal rule models presented here, only the distance-from-boundary
hypothesis has been applied to explain some of the empirically
observable definitions of integrality (Ashby and Maddox, 1991;
Maddox, 1992). Though, as previously discussed, the distance-
from-boundary hypothesis makes untenable predictions for the
speed of the fastest RTs when perceptual variability is increased
(Nosofsky and Palmeri, 1997). Consequently, we feel that GRT
provides a representational-level theory of integrality, but does
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not extend adequately to understanding how integral dimensions
are processed. Though we highlight recent advances in develop-
ing a non-parametric dynamic GRT, which extends the concepts
defined within GRT to a class of parallel processing models
(Townsend et al., 2012); these models have not yet been applied
to differentiating separable and integral dimensioned stimuli. By
contrast, the logical rule models approach are a process-level the-
ory of integrality but one which offers a way to simultaneously
consider both the perceptual representation and the underlying
processing architecture.

There are two somewhat orthogonal ideas that might be
considered when addressing the question of whether aligning
integrality with coactivity is necessary. The first is that defining
integrality as coactivity might confound integrality at the per-
ceptual and decisional stages. For instance, one could imagine
that perceptual separable dimensions might be pooled together
at a decisional stage. While this is a conceptually possible, we
do not consider this to be very plausible in the present case.
This hypothesis would capture ideas present in many two-stage,
salience-based models of visual search (Neisser, 1967; Wolfe et al.,
1989; Wolfe, 1994; Found and Muller, 1996) that an initially inde-
pendent parallel stage selects out information for later processing
by an apparently coactive system. In the present case, however, the
stimuli are presented until a response is generated; consequently,
the early system is likely completely saturated. In this case, the
GRT representations likely do not capture the early, salience-
based perceptual qualities of the stimulus dimensions, but rather
capture something like the relative similarity between each of the
stimuli (Ashby and Perrin, 1988). Under extended display condi-
tions, representations of the dimensions that are independent and
driven by the marginal representation of the dimensions are not
likely to exhibit patterns of effects which are the empirical hall-
marks of integrality. The present approach allows one to test these
assumptions parametrically by varying both the representation
and the architecture thereby separating perceptual and decisional
separability from the architecture used to generate the RTs.

A second issue arising from consideration of the mechanisms
used to generate the RTs is that to the extent that integrality
is aligned with the notion of holism and to what extent coac-
tivity captures what is typically meant by that latter concept.
For instance, in a task similar to the task used here, Fifić and
Townsend (2010) examined the processing of secondary holistic
features (e.g., the distance between the eyes or the between the lips
and the nose) which are thought to be part of the underlying con-
figural advantage underlying face perception. In that study, under
conditions conducive to holistic processing, observers were found
to demonstrate coactivation. Strong definitions of holistic pro-
cessing seem commensurate with the theoretical notions implied
by coactivity; the same is true when ideas of holistic processing
are applied to dimensional integrality.

Fifić and Townsend’s (2010) finding of coactivation using faces
with secondary-level facial feature differences stands in contrast
to the relative lack of consistent coactivation in the present exper-
iments using face morphs. One possibility is that, like Fifić and
Townsend’s study, coactivation would develop over time with
repeated presentation of the stimuli as the individual morph
dimensions are unitized into a holistic representation. Although

this is possible, it is the opposite of the direction of perceptual
learning assumed by Goldstone and Steyver’s (2001) in which
the face morph dimensions became more separable with train-
ing. A key difference in that study was that the training only
utilized discriminations along a single dimension, whereas here,
both dimensions are relevant. Nonetheless, we find mixed evi-
dence of coactivation when both dimensions are relevant. This
also did not vary based on whether faces were presented in an
upright or inverted fashion. We tentatively suggest that the morph
dimensions we use here do not contain the sort of individual
identification information that seems to drive superior face iden-
tification performance but instead contain dimensional structure
which can be utilized by some observers. This clearly renders
overarching inferences based on averaged data problematic. We
argue that without factorial manipulations to tease apart how
dimensional information is integrated for each observer, general
conclusions may be misleading.

Finally, although the logical rules framework that we adopt
here combines many existing approaches to studying integrality
and separability, it is worth considering whether some deeper
theoretical insight can be used to understand the variety of
converging operations. Three converging operations are worth
considering: the MDS metric (Attneave, 1950; Torgenson, 1958;
Shepard, 1964, 1987; Nosofsky, 1992), the efficiency of selective
attention (Nosofsky, 1987), and Garner’s (1974) facilitation and
interference results. When coupled with our modeling results, the
finding that a Euclidean metric persists after extensive category
learning suggests the distance metric is an unreliable indicator of
integrality (Grau and Kemler-Nelson, 1988). This suggests that a
target for future research is to determine how different process-
ing architectures predict the types of proximity measures which
are used to derive the scaling solutions. For instance, one ques-
tion of interest is whether serial and parallel processing models,
which compare dimensions independently necessarily always lead
to solutions with city-block distance metrics. A second question
is whether coactivity always leads to solutions with Euclidean dis-
tance metrics. At present, these relations are intuitive, but the
strength of this relationship is unclear.

With regard to the efficiency of selective attention, in the log-
ical rules models, there are at least two possible ways by which
selective attention might influence processing. One mechanism
is to increase the processing rate of attended dimensions and
decrease the rate of less attended dimensions (see for example,
Nosofsky and Palmeri, 1997; Ashby and Perrin, 1988). A second
possibility is that selective attention might be linked to selec-
tive, fixed-order serial processing. That is, dimensions which are
learned to be relevant for categorization or are more salient might
be selected to be processed before (or to the exclusion of, in a
self-terminating model) less relevant or less salient dimensions. In
support of this idea, Lamberts (1995; 1998; 2000; see also Cohen
and Nosofsky, 2003) showed that for separable-dimensioned
stimuli, attributes vary in their temporal order within the deci-
sion process with more salient dimensions processed before other
dimensions. These results are consistent with the logical rules
account of serial processing of separable dimensioned stimuli (see
Fifić et al., 2010), and by contrast, support the idea that integral
dimensions should be process coactively (Little et al., 2013).
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As noted in the introduction, Garner’s (1974; Garner and
Felfoldy, 1970) tasks do not allow one to differentiate between
different processing architectures. The reason for this is that these
tasks involve categorization using a single relevant dimension.
Under these conditions, there is no difference in the processing
rate predicted using the joint bivariate distributional represen-
tation and the marginal distribution representation. Likewise,
there is only one processing channel (i.e., the relevant dimen-
sion). Hence, separable dimensions, which show no facilitation
(i.e., with correlated variation) or interference (i.e., with irrele-
vant variation) might be processed either in a serial, a parallel,
or a coactive fashion. On the other hand, the signature inte-
gral result of facilitation and interference could indicate either
coactivity or some form of parallel processing. To explain, we
consider coactivity to be likely for integral dimensions, but a
change in architecture alone cannot predict Garner’s results for
integral dimensions. As discussed in Little et al. (2013, p. 817),
other representational mechanisms would need to vary to predict
facilitation and interference. For instance, one might expect opti-
mal responding (i.e., a diagonal decision bound; Maddox, 1992)
with correlated variation or an increase in perceptual variabil-
ity (Maddox, 1992; Nosofsky and Palmeri, 1997) with irrelevant
variation. However, the latter interference result could also be
predicted via other mechanism; for instance, parallel processing
with increased response caution could cause a slowing of RTs with
irrelevant dimensional variation. We offer the method we employ
in the present paper, which combines both processing and rep-
resentational assumptions, as a framework for addressing these
complex issues.
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We investigated the relationship between working memory capacity (WMC) and workload
capacity (WLC). Each participant performed an operation span (OSPAN) task to measure
his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC
was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment
2). Both levels of analyses showed that participants high in WMC had larger WLC
than those low in WMC only when redundant information came from visual and
auditory modalities, suggesting that high-WMC participants had superior processing
capacity in dealing with redundant visual and auditory information. This difference was
eliminated when multiple processes required processing for only a single working memory
subsystem in a color-shape detection task and a double-dot detection task. These results
highlighted the role of executive control in integrating and binding information from the
two working memory subsystems for perceptual decision making.

Keywords: executive function, linear ballistic accumulator model, systems factorial technology, working memory

capacity, workload capacity

INTRODUCTION
The present study aimed to investigate the relationship between
two capacity measures: working memory capacity (WMC) in the
literature of working memory (Baddeley and Hitch, 1974; Barrett
et al., 2004) and workload capacity (WLC) in the literature of per-
ceptual decision making (Townsend and Ashby, 1978; Townsend
and Nozawa, 1995; Townsend and Eidels, 2011). Although both
measures assess an individual’s information processing capacity,
it was unclear whether the two capacity measures assess a uni-
tary, central capacity of an information processing system. We
used a non-parametric approach (systems factorial technology,
SFT) (Townsend and Nozawa, 1995) and a parametric approach
(linear ballistic accumulator model, LBA) (Brown and Heathcote,
2008; Eidels et al., 2010) to assess WLC in different task contexts
and examined individual differences in WLC and WMC. We will
briefly introduce the concepts of the two capacity measures.

Working memory refers to aspects of on-line cognition, such
as monitoring, processing, and maintenance of information. A
key component of Baddeley and Hitch’s (1974) model of working
memory, also known as the “short-term storage” of informa-
tion (Henderson, 2013), is the central executive system, which
is a modality-free function that supervises two slave systems of
working memory: the phonological loop and the visuospatial
sketchpad. The central executive system plays an important role
in integrating information from the two subsystems for manip-
ulation and operation. Following Baddeley and Hitch (1974),
many theories regarding the construct of the central executive sys-
tem have been proposed—for example, the supervisory attention
system (SAS) in Norman and Shallice (1986) and the executive
control in Posner and Digirolamo (2000). WMC is an index that
denotes the capability of attention control in central executive
of a working memory system and researchers typically use a

counting span task (Case et al., 1982), an operation span task
(OSPAN task) (Turner and Engle, 1989), and a reading span
task (Daneman and Carpenter, 1980) to measure one’s WMC.
Measures of WMC are strongly related to general fluid intel-
ligence (Conway et al., 2003) and show considerable construct
validity insofar as they predict performance on a wide range of
tasks that require domain-general controlled attention. WMC
is different from the traditional concept of short-term memory
capacity, which is thought to reflect primarily domain-specific
storage. One of the most widely supported theories, particularly
when applied to individual differences in working memory, is the
attention control theory of working memory (Engle and Kane,
2004). Individuals with high WMC have greater attention con-
trol in integrating information from different domain-specific
subsystems (Rosen and Engle, 1997; Engle et al., 1999; Barrett
et al., 2004; Engle and Kane, 2004). These results have been sup-
ported by computational modeling research (Anderson, 2013)
and neurobiological research (Miller and Cohen, 2001).

At approximately the same time, another capacity measure,
WLC was developed (Townsend and Ashby, 1978; Wenger and
Gibson, 2004; Townsend and Eidels, 2011). WLC is also known
as perceptual capacity. In contrast to WMC, which measures
an individual’s capacity to maintain and process information,
WLC measures the efficiency of perceptual processing as work-
load (i.e., the number of channels or signals to be processed)
increases. If the processing rate of an individual channel does
not change as the workload increases, the system is described as
unlimited-capacity processing. If the individual-channel process-
ing speed slows down with an increasing workload, the system is
described as limited-capacity processing, and if processing speeds
up, the system is described as supercapacity processing. WLC
is commonly measured with a redundant-target detection task
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(Miller, 1982; Townsend and Nozawa, 1995) where participants
are required to monitor two sources of information. Participants
have to make a positive response when they detect the presence of
both of the targets (redundant-target condition) or either target
(single-target condition); otherwise, they have to make a negative
response when they detect neither target (no-target condition).
WLC can be assessed by comparing the reaction time distri-
butions between the redundant-target and single-target condi-
tions. For more theoretical derivations, please see Townsend and
Nozawa (1995) and Wenger and Gibson (2004). Previous stud-
ies have widely applied the measure of WLC to study how people
process multiple sources of information and how this measure is
related to different aspects of human cognition. For example, in a
double-dot detection task, participants were of limited-capacity
in processing redundant spatially-independent visual informa-
tion (Townsend and Nozawa, 1995; Eidels et al., 2010), which was
against the prediction from the unlimited-capacity, independent,
parallel (UCIP) model. In a redundant color-shape detection task,
participants were of unlimited-capacity in processing separable
perceptual dimensions when inter-stimulus contingency infor-
mation was removed (Mordkoff and Yantis, 1991, 1993). In a
visual search task, participants were of supercapcity in searching
for a feature singleton defined by luminance and/or orienta-
tion (Zehetleitner et al., 2009). In a visual-auditory detection
task, participants were of supercapacity in processing multisen-
sory information (Miller, 1982), which was known as an effect
of “multisensory integration” (Hugenschmidt et al., 2010; Altieri
and Townsend, 2011).

In addition to WLC, there are two other important character-
istics to describe information processing in a system, including
the processing architecture (serial vs. parallel vs. coactive) that
denotes the order of multiple-signal processing and the decisional
stopping rule (self-terminating vs. exhaustive) that denotes the
amount of information required for a decision. Although WLC
and the processing architecture are two independent measures
of information processing (Townsend and Nozawa, 1995), WLC
may constrain the order of multiple-signal processing. For exam-
ple, a standard serial model is assumed to involve limited-capacity
processing (Townsend and Ashby, 1983); an independent paral-
lel model usually involves unlimited-capacity processing, which is
known as the UCIP (Houpt and Townsend, 2012); and a coactive
model is assumed to involve supercapacity processing (Wenger
and Townsend, 2001). On the other hand, a recent simulation
study (Eidels et al., 2011) demonstrated that a parallel model
with supercapacity processing suggests the existence of facilita-
tory between-channel crosstalk during the stage of information
accumulation, whereas a parallel model with limited-capacity
processing suggests an inhibitory interaction between channels.

Both WMC and WLC represent a system’s capacity to pro-
cess information, but they are different constructs in nature. The
processing capacity in a working memory system describes the
capacity of domain-general controlled attention to maintain and
process information and, especially, integrate information from
the two subsystems. In contrast, WLC represents a system’s capac-
ity of multiple-signal processing and is referred to as the variation
of the processing efficiency of an individual channel as a function
of workload. The relationship between WMC and WLC remains

unclear, however, and to our knowledge, no prior studies have
investigated the relationship between the two constructs, except
for a recent study conducted by Heathcote et al. (2014).

The present study examined the relationship between WMC
and WLC. To measure WMC, participants were asked to per-
formed an OSPAN task, in which they had to remember a
few words while solving an arithmetic equation at the same
time (Turner and Engle, 1989). In addition, they performed
three different redundant-target detection tasks to measure their
WLC. Modalities that the participants had to supervise in three
redundant-target detection tasks were well defined; redundant
information may come from a single visual modality (two visual
features, two distinct spatial positions) or two different modal-
ities (i.e., visual and auditory modalities). The reasons why we
chose these tasks were as follows: (1) These redundant-target
detection tasks have been widely used to study multiple-signal
processing in the previous literature (Miller, 1982; Mullin et al.,
1988; Townsend and Nozawa, 1995; Eidels et al., 2010), but less is
known about the individual variation of the perceptual process-
ing capacity in different tasks. (2) Relating WLC and WMC in
different task contexts enables us to examine whether it requires
a unitary, central capacity of information processing to process
multiple signals that come from the same or different modalities.
If both WMC and WLC assess the central processing capacity,
we expect WLC to be positively related to WMC, regardless of
whether redundant information is from the same modality. These
results can shed light on the nature of the working memory
system and the role of executive control in processing multiple
signals for perceptual decision making.

EXPERIMENT 1
In Experiment 1, an OSPAN task was conducted to measure the
participants’ WMC and three redundant-target detection tasks—
i.e., a color-shape detection task, a double-dot detection task, and
a visual-auditory detection task— were conducted to measure
their WLC. We expect that participants high in WMC would have
larger WLC in multiple-signal processing.

METHOD
Participants
Fifty-seven (29 males and 28 females) undergraduates with a
mean age of 20.63 years (SD = 2.72) at National Cheng Kung
University volunteered in this experiment. All the participants
had normal or corrected-to-normal vision and hearing. They
signed a written informed consent prior to the experiment and
received NTD 120 per hour after they completed the experiment.

Equipment
All the stimuli were presented on a 19-inch CRT monitor (CTX)
with a refresh rate of 85 Hz and a display resolution of 1024×
768 pixels. The viewing distance was 60 cm. Auditory stimuli were
presented via a Philips Shm6500 headphone. The experiment was
programmed with E-prime 1.1 (Schneider et al., 2012).

Stimuli, design, and procedure
Each participant performed three redundant-target detection
tasks to measure his/her WLC and an OSPAN task to measure
the capacity of a dynamic working memory system that involved
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both the storage and processing of information. Each task last for
approximate 1 hour and four tasks were conducted on different
days.

In the color-shape detection task, a test display consisted of a
letter that was either an O or an X in shape, either green or cyan in
color, and 1◦ (horizontal) × 1◦ (vertical) in size. The target color
was defined as green, and the target shape was defined as X. In the
redundant-target condition, the test stimuli consisted of both the
target color and target shape (green X). In the single-target con-
dition, the test stimuli consisted of either the target color or target
shape (green O, cyan X). In the no-target condition, the test stim-
uli consisted of neither the target color nor target shape (cyan O).
Each condition was equally probable and randomly intermixed
within a block. After the participants practiced for 40 trials, they
performed 12 blocks of 80 test trials.

Each trial began with a 500 ms fixation point (see Figure 1A
for an illustration). Following a uniformly distributed ran-
dom foreperiod ranging from 50 to 850 ms, a test stimulus
was presented until participants responded or 1000 ms elapsed.
Participants had to make a go/no-go response as quickly as possi-
ble when they detected either target feature (green or X). If either
or both target features were detected, participants were required
to press the “/” button (go response); if neither target feature was
detected, they had to hold their response and wait for the next
trial (no-go response). The inter-trial interval (ITI) was 500 ms.

In the double-dot detection task, the design and procedure
were the same as those used in the color-shape detection task,
except for the test stimuli. A 1◦ × 1◦ light dot (luminance =
0.031 cd/m2) was presented 6◦ above and/or below the fixation
point1 . There were three types of test trials: redundant-target
condition (both locations contained a light dot), single-target
condition (either the top or bottom location contained a light
dot), and no-target condition (neither location contained a light
dot). Participants had to detect the presence of either or both dots
as quickly as possible; otherwise, they had to hold their response
and wait for the next trial (see Figure 1A).

In the visual-auditory detection task, the design and procedure
were also the same as the former two tasks, except for the test
stimuli, which consisted of a star sign (1◦ × 1◦, luminance = 29.4
cd/m2) and/or a 750-Hz pure tone (47.5 db). There were three
types of test trials: redundant-target condition (both visual and

1One might argue that the distance between the two dots was too far, such
that participants may adopt a serial processing strategy with reduced WLC.
However, in Yang et al. (2014), we used a similar display setting and we found
that participants adopted parallel processing when they did not have any prior
information about the target location. In addition, in one of our unpublished
studies, we used an eye tracker to record the participants’ eye movements
when they were detecting the double dots and no eye movements were found
even when the distance between the two dots was 16 degree.

FIGURE 1 | (A) An illustration of the experimental procedure in the color-shape, double-dot, and visual-auditory detection tasks. (B) An illustration of the
experimental procedure in the OSPAN task.
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auditory signals were presented), single-target condition (either
visual or auditory signal was presented), and no-target condition
(neither visual nor auditory signal was presented). Participants
had to detect the presence of either or both the visual and auditory
targets as quickly as possible; otherwise, they had to hold their
response (see Figure 1A).

In the OSPAN task, participants first saw an arithmetic
equation, for example, 8× 8 = 64, then they had to indicate
whether the presented answer was correct, and finally saw a
to-be-remembered (TBR) two-character Chinese word for later
recall (see Figure 1B for an illustration). In each trial, there
were two to six such processing-and-storage presentations. After
the presentations, participants were required to write down the
TBR words in correct serial order. There were a total of 15
trials that consisted of 5 presentation conditions (2/3/4/5/6)
and three trials per condition. All the trials were randomly
presented.

Data analysis
Reaction time data of the correct responses in the redundant-
target detection tasks was analyzed to estimate WLC. According to
SFT (Townsend and Nozawa, 1995; Townsend and Eidels, 2011),
the capacity coefficient is expressed as follows:

C (t) = log
[
S1,2 (t)

]

log [S1 (t)× S2 (t)]
(1)

for t > 0, S1(t), S2(t), and S1,2(t) represent the survivor function,
the complement of the cumulative probability function [1-F(t)],
of the two single-target conditions and a redundant-target condi-
tion, respectively. The capacity coefficient provides a comparison
of the amount of work that is completed by the system while pro-
cessing redundant targets and the summed amount of work that
is completed by each single target processed individually at the
same amount of time. A value of C(t) = 1 suggests unlimited-
capacity processing: the processing efficiency of an individual
channel is not affected by the change in workload. C(t) > 1
suggests supercapacity processing: increasing the to-be-processed
signals speeds up the processing time of an individual chan-
nel. C(t) < 1 indicates limited-capacity processing: increasing
the workload slows down the processing time of an individual
channel.

To assess WMC for each participant, we first computed the
recall score for each trial, which was defined as the number of
TBR words fully recalled in correct serial order. WMC was com-
puted by summing the recall scores of all the trials. The recall
score ranges from 0 to 60.

Result
The number of correct answers on the processing component of
the OSPAN task (i.e., solving the arithmetic equation) was ana-
lyzed. Four participants’ data were excluded from further analysis
because their processing accuracy was below 0.7. Under this cri-
terion, the mean processing accuracy was 0.85 with a standard
deviation of 0.06. We then computed the total number of items
recalled from the storage component of the OSPAN task (i.e.,
recall score). The mean recall score was 36.38 with a standard
deviation of 10.49.

We then conducted an extreme-group approach to investigate
the relationship between WMC and WLC. This approach has
been widely used to analyze continuous variables (Preacher et al.,
2005). We selected the subject for further analysis on the basis of
the extreme WMC scores (i.e., recall scores in the OSPAN task) to
emphasize the differences in WLC between the high-WMC and
low-WMC groups. The high-WMC group included the partici-
pants with the top 30% of recall scores (M = 47.33, SD = 4.45,
N = 18), and the low-WMC group included the participants
with the bottom 30% of recall scores (M = 24.44, SD = 5.49,
N = 18). The recall scores of the two groups were significantly
different [t(34) = 13.75, p < 0.0001].

To do further analysis, we then excluded the trials with reac-
tion time less than 150 ms in the redundant-target detection
tasks. This criterion was selected because simple reaction times
are generally slower than 150 ms. The mean performance of the
redundant-target detection tasks for each group was summa-
rized in Table 1. Accuracies were very high across conditions
for both groups of participants except for the performance in
the no-target condition of the color-shape detection task (0.89),
suggesting a potential response bias in detecting color and/or
shape. A Two-Way (high-WMC/low-WMC group × redundant-
target/single-target condition) analysis of variance (ANOVA) was
conducted to analyze the accuracy and correct reaction time data
of the three tasks. We found that all the effects were not signifi-
cant for the accuracy data of all the tasks. For reaction time data,
there were significant main effects of group [CS2 : F(1, 68) = 9.00,
p < 0.005; DD: F(1, 68) = 7.27, p < 0.01; VA: F(1, 68) = 13.31,
p < 0.001] and condition [CS: F(1, 68) = 33.50, p < 0.001; DD:
F(1, 68) = 8.33, p < 0.01; VA: F(1, 68) = 47.09, p < 0.001]. The
interaction effects were not significant (ps > 0.5), suggesting that
the redundancy gain (RG), which is defined by the difference in
mean reaction times between the single-target and redundant-
target conditions, was consistently found for both groups in all
the tasks.

C(t)s of the three redundant-target detection tasks were com-
puted individually and were plotted by group. Figure 2 showed
the results of C(t) as a function of reaction time for each group
and for each task3. From visual inspection, all the results, except
for those in the double-dot detection task, showed unlimited-
capacity to supercapacity processing. Specifically, in the color-
shape detection task, we did not observe any difference in
C(t) between the high-WMC and low-WMC groups. In this
task, both groups of participants had unlimited-capacity (most
of the participants had C(t) equal to 1) to supercapacity (a
few participants had C(t) greater than 1 at the faster reaction
times). In the double-dot detection task, most participants had
limited-capacity processing with C(t) less than 1. Lastly, in the
visual-auditory detection task, both groups of participants had
unlimited-capacity (a few participants had C(t) equal to 1) to

2CS, DD, and VA are the abbreviations of the color-shape, double-dot, and
visual-auditory detection tasks, respectively.
3We thank Dr. James T. Townsend for providing us the guideline to draw the
figure of C(t). He suggested re-scaling the figure to emphasize the value of 1
because the inference of processing capacity is made based on the comparison
between the value of C(t) and the value of 1.
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Table 1 | Mean performance for both groups of participants in each

task in Experiment 1.

Mean accuracy Mean reaction time (ms)

Task Group RT ST NT RT ST RG

CS High 1.00 1.00 0.89 374.90 421.76 46.86

Low 1.00 1.00 0.89 396.02 446.95 50.93

DD High 1.00 1.00 0.99 370.34 393.59 23.25

Low 1.00 1.00 0.99 391.13 419.69 28.55

VA High 1.00 1.00 0.99 310.42 373.99 63.57

Low 1.00 1.00 0.99 338.19 413.03 74.83

“CS,” “DD,” and “VA” are the abbreviations of the color-shape, double-dot,

and visual-auditory detection tasks, respectively. “High” and “Low” denote the

high-WMC and low-WMC group. “RT,” “ST,” and “NT” represent the redundant-

target, single-target, and no-target conditions, respectively. RG is the abbrevia-

tion of redundancy gain and is defined as the difference in mean reaction times

between the single-target and redundant-target conditions. Note that the mean

reaction time of the no-target condition is not shown because any response

in this condition is incorrect for a go/no-go version of the redundant-target

detection task.

supercapacity (most of the participants had C(t) greater than 1
at the faster reaction times). Specifically, more high-WMC par-
ticipants had C(t) greater than 1 at the faster reaction times
than low-WMC partipipants, suggesting that high-WMC partici-
pants processed redundant visual and auditory information more
efficiently.

To verify these observations, we adopted a non-parametric
bootstrapping method to simulate 1000 samples for each con-
dition and to construct the 95% confidence interval for C(t)
individually (Van Zandt, 2000). If the 95% confidence inter-
val for C(t) exceeds 1 at some times t, we conclude that the
participant adopts supercapacity processing to process multiple
signals. If the 95% confidence interval for C(t) includes 1 for
all times t, we conclude that the participant adopts unlimited-
capacity processing. Otherwise, we conclude that the participant
adopts limited-capacity processing. Table 2 presents the classifi-
cation results of the inferences based on the simulated data for
each group in each task4.

Based on the classification results, we then did two levels
of analyses. First, we computed the odds ratios between the
supercapacity/limited-capacity of the high-WMC group and the
supercapacity/limited-capacity of the low-WMC group in differ-
ent tasks. If the odds ratio equals 1, it suggests that high-WMC
and low-WMC groups are classified into different WLC categories
similarly, and that they have similar WLC in processing multi-
ple signals. Otherwise, we can conclude that they have different
WLC in processing multiple signals. Results showed that the
odds ratio in the color-shape detection task was 1.17, suggesting
that two groups of participants did not differ from each other
in their WLC. In the double-dot detection task, the corrected

4Figure 2 presents the estimated C(t) for each group. We do not plot the con-
fidence interval individually in Figure 2 due to information complexity. We
summarize the inferences based on the bootstrapping results in Table 2.

odds ratio was 15, suggesting that both the high-WMC and low-
WMC groups processed multiple signals with limited capacity. In
the visual-auditory detection task, the odds ratio was 7.63, sug-
gesting that more high-WMC participants adopted supercapacity
processing than low-WMC group participants did.

Second, we fitted the classification data of each task with a
multinomial loglinear model which can describe the log expected
frequency of each WLC category of different groups (Agresti,
1996). The model consists of a log equation with separate param-
eters for each WLC category of different groups. We chose the
limited-capacity category of the low-WMC group as the base-
line category for dummy coding. The intercept describes the log
expected frequency of being classified into the baseline category
and the estimated parameters for the other category describe the
log expected frequency of being classified into the other WLC
categories. The Wald test was conducted to examine whether
each estimated parameter was significantly different from the fre-
quency of the baseline category. The estimated proportion of
being classified into one category and the baseline category can
be computed. Results showed that in the color-shape detection
task, all the estimated parameters were not significant (ps > 0.2),
suggesting that the frequencies of being classified into different
WLC categories for the high-WMC and low-WMC groups were
comparable. That is, both groups had similar WLC in process-
ing multiple signals. In the double-dot detection task, due to
all participants being classified as limited-capacity, no further
analysis was required. In the visual-auditory detection task, the
estimated parameter of the high-WMC group being classified into
the supercapacity category was significant [χ2

1 = 6.63, p < 0.05],
and the estimated proportion between this category and the base-
line category was 7. In addition, the estimated parameter of the
low-WMC group being classified into the supercapacity category
was marginal significant [χ2

1 = 3.7, p = 0.054], and the esti-
mated proportion between this category and the baseline category
was 4.5. Although for both groups, there were more participants
classified into supercapacity category compared to the baseline
category, the estimated proportion between the frequency of
supercapacity category and that of the baseline category was larger
for the high-WMC group than for the low-WMC group, verify-
ing that high-WMC group had larger WLC than the low-WMC
group in processing redundant visual and auditory signals.

These results suggested that performance on the OSPAN
task can predict the capacity of processing redundant informa-
tion from different modules; however, WMC cannot predict the
capacity for processing redundant featural information of an
object and the capacity for processing visual information from
two spatial locations.

EXPERIMENT 2
The results of Experiment 1 showed that high-WMC and low-
WMC participants differed in their WLC when performing
a visual-auditory detection task, but not in the other tasks.

5Because the value of some cells is zero, we followed Haldane’s correction
(Haldane, 1956) to compute the corrected odds ratio by adding 0.5 to each
cell.
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FIGURE 2 | Plots of the capacity coefficient C(t) for the high-WMC and low-WMC groups in each task in Experiment 1. The red dashed line was the
reference line with a value of 1.

Table 2 | The WLC classification results of the inferences based on the

simulated data for both groups in each task.

Task Group Supercapacity Unlimited-capacity Limited-capacity

CS High 3 9 6

Low 3 8 7

DD High 0 0 18

Low 0 0 18

VA High 14 4 0

Low 9 7 2

“CS,” “DD,” and “VA” are the abbreviations of the color-shape, double-dot, and

visual-auditory detection tasks, respectively. “High” and “Low” denote the high-

WMC and low-WMC group. The table shows the number of participants who

were classified as supercapacity, unlimited-capacity, or limited-capacity for both

groups in each task.

However, there were a few limitations in Experiment 1. For exam-
ple, the results drawn from the non-parametric approach (SFT)
can only provide a discrete distinction between the high-WMC
and low-WMC groups. We were curious about whether there

is a linear relationship between WLC and WMC. Second, with
the SFT, we only analyzed the correct reaction times; thus, the
incorrect responses were not taken into consideration. Third,
we observed a potential response bias in the color-shape detec-
tion task in Experiment 1; however, we did not collect reaction
time data for the no-go response. Therefore, Experiment 2 was
motivated to use a yes/no version of redundant-target detec-
tion task and adopt a parametric approach LBA (Brown and
Heathcote, 2008) to estimate WLC, the LBA-based capacity, for
each participant. With this approach, we incorporated both cor-
rect and incorrect reaction times and both target-present and
target-absent trials into analyses. The estimated LBA-based capac-
ity can be used to correlate with WMC to test whether there is a
linear relationship between WMC and WLC. We aimed to provide
converging evidence to support the relationship between WLC
and WMC found in Experiment 1.

METHOD
Participants
Participants included 131 undergraduates at National Cheng
Kung University who had not participated in the first experiment.
Three participants were not considered in this study because they

Frontiers in Psychology | Quantitative Psychology and Measurement December 2014 | Volume 5 | Article 1465 | 82

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Yu et al. Working memory

could not participate in the OSPAN task. There were 53 males
and 75 females with an average age of 19 and a standard deviation
of 1.33. All the participants had normal or corrected-to-normal
vision and hearing. They signed a written informed consent prior
to the experiment and received NTD 120 per hour for their
participation.

Stimuli, design, and procedure
The stimuli, design, and procedure were the same as those used
in Experiment 1, except that a yes/no response was required.
We adopted a yes/no task instead of a go/no-go task because we
needed to collect the reaction times of the no-target condition
to estimate the drift rates (rates of the information accumula-
tion) and estimate the parametric measure of WLC (see details in
the following Data analysis Section). Participants were instructed
to press the “/” button when either or both target features were
detected and press the “z” button when neither target feature was
detected.

Data analysis
To estimate the parametric measure of WLC, we adopted the LBA
model to analyze the reaction time data of the redundant-target
detection tasks. Take the color-shape detection task for an exam-
ple. Two target features, color (C) and shape (S), require four
independent, parallel accumulators that collect evidence: (1) tar-
get color is present (i.e., green), (2) target color is absent (i.e.,
cyan), (3) target shape is present (i.e., X), and (4) target shape
is absent (i.e., O). We denoted these accumulators C, ∼C, S, and
∼S, respectively. Each accumulator collects evidence from a start-
ing point, which is uniformly distributed and ranges from 0 to
A. A decision is made when the amount of accumulated evidence
collected by one of the accumulators reaches the threshold b. The
information accumulation rate (drift rate) of an accumulator is
drawn from a normal distribution with a mean of ν and a stan-
dard deviation of s. The reaction time can be separated into two
components: (1) decision time: the time taken for an accumulator
to reach the threshold, and (2) non-decision time (t0), also called
base time, i.e., the time taken for sensory preparation and motor
execution. There are a total of five parameters used to describe an
accumulator: θ = (b, A, ν, s, t0) .

In the redundant-target detection task, participants were
required to make a yes/no response. A “YES” response, indicating
that either or both target features are present, is made if either
C or S reaches the threshold while ∼C, ∼S, or both have not
reached the threshold. Hence, the overall likelihood of a posi-
tive response at time t is the sum of the likelihoods of the two
events (i.e., C reaches the threshold and S has not, and vice versa.):

L(YES, t) = [1− F∼C(t) · F∼S(t)] ·
[
fC(t) · SS(t)+ fS(t) · SC(t)

]
(2)

where Si(t), fi(t), and Fi(t) represent the survivor function,
probability density function, and the cumulative distribution
function of the accumulator i at time t, respectively. A “NO”
response (neither the target color nor the target shape is present)
is made if both ∼C and∼S reach the threshold and both C and S

have not reached the threshold. Hence, the overall likelihood of
a negative response is the sum of the likelihood of the two events
(i.e., ∼C reaches threshold after ∼S reaches the threshold, and
vice versa):

L(NO, t) = SC(t) · SS(t)·
[
f∼C(t) · F∼S(t)+ f∼S(t) · F∼C(t)

]
(3)

Given a set of parameters for each condition, Equations (2) and
(3) were used to evaluate the likelihood of all the correct and
incorrect reaction time data. We adopted an optimization algo-
rithm to find a set of parameters that maximized the likelihood
separately for each participant. In accordance with Eidels et al.
(2010), a total of eleven free parameters were used (i.e., A, bT,
bNT, t0RT, t0ST , t0NT, vRT, vST , vNT, v∼T, v∼NT). Because the stim-
ulus encoding of base time may decrease with two targets versus
one target due to perceptual factors, we estimated separate base
time parameters of t0RT, t0ST , and t0NT for the redundant-target,
single-target, and no-target conditions, respectively. Due to the
unequal number of trials between target-present (i.e., redundant-
target and single-target condition) and target-absent conditions
(i.e., no-target condition), participants might be biased toward
making a positive response. Therefore, we estimated separate
threshold parameters bT and bNT for the target-present and
target-absent conditions, respectively. We estimated a single value
A for the starting point across all responses and conditions. The
standard deviation of the drift rate (s) was fixed at 1 in the
double-dot and visual-auditory detection tasks and at 0.25 in
the color-shape detection task in order to obtain the best fit
for our models (see Eidels et al., 2010). We assumed five free
drift rate parameters, although there could be up to 16. These
five parameters were three drift rate parameters when the tar-
gets were present (vRT, vST , vNT) and two drift rate parameters
(v∼T, v∼NT) when the targets were absent. The drift rate param-
eters were summarized in Table 3. We chose only five parameters
because we assumed that drift rates were equivalent for process-
ing C and S and for processing ∼C and ∼S. This assumption
may not be true; however, when we incorporated these param-
eters into further analysis, we can draw the same conclusion even
with a general model that possessed a larger Bayesian informa-
tion criterion (BIC), indicting a worse fitting than the restricted
model.

We used the relative difference between vRT and vST as a para-
metric measure of the WLC. The LBA-based capacity can be
expressed as follows:

vdiff = νRT − νST . (4)

If vRT = vST then unlimited-capacity processing is suggested. If
the drift difference is greater or less than 0, a supercapacity pro-
cessing (when vRT > vST) or limited-capacity processing (when
vRT < vST) is suggested.

Result
As in Experiment 1, we estimated the participants’ WMC by
using the data of the OSPAN task. Ten participants’ data were
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Table 3 | The simplified set of five drift rate parameters (right-hand

side) used in the LBA model and their corresponding drift rates of all

accumulators (left-hand side) in the redundant-target detection task.

Target color

Present (C) Absent (∼C)

Target shape Present (S) vC|CS = vRT vC|∼CS = v∼T

vS|CS = vRT vS|∼CS = vST

v∼C|CS = vNT v∼C|∼CS = v∼NT

v∼S|CS = vNT v∼S|∼CS = vNT

Absent (∼S) vC|C∼S = vST vC|∼C∼S = v∼T

vS|C∼S = v∼T vS|∼C∼S = v∼T

v∼C|C∼S = vNT v∼C|∼C∼S = v∼NT

v∼S|C∼S = v∼NT v∼S|∼C∼S = v∼NT

Subscripts for the simplified set of five drift rates are described in the Data

analysis Section of Experiment 2. Subscripts for the full set of sixteen drift rate

parameters denote the drift rate for a specific accumulator given any of the four

test trials. For instance, vC|CS represents the drift rate for the accumulator C

when both the target color and target shape are present and is mapped to the

drift rate for the redundant-target accumulator vRT .

excluded from further analysis because their processing accuracy
was below 0.7. Another eleven participant’ data were excluded
as well because they had relatively slow mean reaction times
or low accuracies in the no-target condition when they per-
formed the redundant-target detection tasks. Under these criteria,
the mean processing accuracy was 0.86 with a standard devia-
tion of 0.07. The mean recall score was 35.75 with a standard
deviation of 10.20. The high-WMC group included the par-
ticipants with the top 30% of recall scores (M = 46.86, SD =
5.42, N = 36), whereas the low-WMC group included the par-
ticipants with the bottom 30% of recall scores (M = 24.69,
SD = 5.38, N = 36). The difference in recall scores between the
high-WMC and low-WMC groups was significant [t(70) = 17.41,
p < 0.0001].

We then excluded the trials with reaction times less than
150 ms in the redundant-target detection tasks for further anal-
yses. The mean performance of the redundant-target detection
tasks for each group was summarized in Table 4. Accuracies were
very high across conditions for both groups of participants except
for the no-target conditions of the color-shape detection task
(High: 0.88; Low: 0.89), suggesting a potential response bias in
detecting color and/or shape. We will limit the remainder of our
analyses to the reaction time. A two-way (high-WMC/low-WMC
group × redundant-target/single-target condition) ANOVA was
conducted to analyze the accuracy and correct reaction time
data of the three tasks. For accuracy data, there were significant
main effects of condition [CS: F(1, 140) = 148.09, p < 0.001; DD:
F(1, 140) = 16.77, p < 0.001; VA: F(1, 140) = 187.81, p < 0.001],
showing lower accuracy in the no-target conditions than in the
other two conditions. These results were different from what
we found in Experiment 1 where accuracy in most conditions
reached the ceiling. For reaction time data, there were significant
main effects of group in the color-shape and double-dot detection
task [CS: F(1, 140) = 12.76, p < 0.001; DD: F(1, 140) = 5.14, p <

Table 4 | Mean performance for both groups of participants in each

task in Experiment 2.

Mean accuracy Mean reaction time (ms)

Task Group RT ST NT RT ST NT RG

CS High 1.00 0.97 0.88 346.72 390.01 454.67 43.29

Low 1.00 0.98 0.89 369.78 418.83 491.96 49.05

DD High 0.99 0.98 0.93 400.13 420.46 574.43 20.33

Low 0.99 0.98 0.93 417.35 440.78 595.11 23.43

VA High 1.00 0.97 0.93 323.27 382.87 539.70 59.60

Low 1.00 0.97 0.91 329.31 391.29 556.98 61.99

“CS,” “DD,” and “VA” are the abbreviations of the color-shape, double-dot,

and visual-auditory detection tasks, respectively. “High” and “Low” denote

the high-WMC and low-WMC groups. “RT,” “ST,” and “NT” represent the

redundant-target, single-target, and no-target conditions, respectively. RG is the

abbreviation of redundancy gain and is defined as the difference in mean reaction

times between the single-target and redundant-target conditions.

0.05; VA: F(1, 140) = 0.82, p = 0.37] and condition in all the tasks
[CS: F(1, 140) = 40.42, p < 0.001; DD: F(1, 140) = 6.98, p < 0.01;
VA: F(1, 140) = 58.05, p < 0.001]. The interaction effects were not
significant in all the tasks for both groups (ps > 0.2), suggest-
ing that the RG was consistently found for both groups in all the
tasks.

C(t)s of the three redundant-target detection tasks were com-
puted individually and were plotted by group. Figure 3 showed
the results of C(t) as a function of reaction time for both groups
in each task. The results in Experiment 2 were comparable to
those in Experiment 1. In the color-shape and double-dot detec-
tion task, no difference in C(t) between the high-WMC and
low-WMC groups was observed. Both groups of participants had
unlimited-capacity in processing color and shape with C(t) equal
to 1 for all times t; however, we found a few participants had C(t)
greater than 1 at the faster RTs. In the double-dot detection task,
most participants had limited-capacity processing with C(t) less
than 1. Finally, in the visual-auditory detection task, both groups
of participants had C(t) greater than 1 at the faster RTs, sug-
gesting supercapacity processing. In addition, more high-WMC
participants showed this pattern than low-WMC participants
did, suggesting that high-WMC participants processed redundant
visual and auditory information more efficiently. The results of
Experiment 1 can be generalized to a yes/no task.

To verify these observations, we adopted the non-parametric
bootstrapping method as Experiment 1 to construct the 95% con-
fidence interval for C(t) of all the tasks and for each participant.
Table 5 presents the classification results of the inferences based
on the simulated data for both groups in each task.

We then computed the odds ratios between the
supercapacity/limited-capacity of the high-WMC and the
supercapacity/limited-capacity of the low-WMC group in
the three tasks. Results showed that the odds ratios were 1.42
in the color-shape detection task and 0.97 in the double-dot
detection task, suggesting that the two groups were classified
into different WLC categories similarly. In the visual-auditory
detection task, the odds ratio was 3.55, suggesting that more
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FIGURE 3 | Plots of the capacity coefficient C(t) for the high-WMC and low-WMC groups in each task in Experiment 2. The red dashed line was the
reference line with a value of 1.

Table 5 | The WLC classification results of the inferences based on the

simulated data for both groups in each task.

Task Group Supercapacity Unlimited-capacity Limited-capacity

CS High 2 26 7

Low 2 24 10

DD High 2 1 33

Low 2 2 32

VA High 13 21 1

Low 11 21 3

“CS,” “DD,” and “VA” are the abbreviations of the color-shape, double-dot, and

visual-auditory detection tasks, respectively. ”High” and “Low” denote the high-

WMC and low-WMC group. The table shows the number of participants who

were classified as supercapacity, unlimited-capacity, or limited-capacity for both

groups in each task.

participants adopted supercapacity processing in the high-WMC
group than in the low-WMC group.

The results analyzed with the multinomial loglinear model
also supported our observations. Results showed that in the

color-shape detection task, the estimated parameters of the high-
WMC group being classified into the supercapacity category
and unlimited-capacity category were significant (supercapac-
ity: χ2

1 = 4.32, p < 0.05; unlimited-capacity: χ2
1 = 6.59, p <

0.05), and the estimated proportions between these categories
and the baseline category were 0.2 and 2.6. Also, the esti-
mated parameters of the low-WMC group showed a similar
pattern of results (supercapacity: χ2

1 = 4.32, p < 0.05; unlimited-
capacity: χ2

1 = 5.41, p < 0.05), and the estimated proportions
between these categories and the baseline category were 0.2 and
2.4. These results suggested that the two groups were classi-
fied into different WLC categories similarly. In the double-dot
detection task, the results of the estimated parameters were sig-
nificant for both the high-WMC (supercapacity: χ2

1 = 14.47,
p < 0.001; unlimited-capacity: χ2

1 = 11.65, p < 0.001) and low-
WMC groups (supercapacity: χ2

1 = 14.47, p < 0.001; unlimited-
capacity: χ2

1 = 14.47, p < 0.001). The estimated proportions
between high and supercapacity, high and unlimited-capacity,
low and supercapacity, and low and unlimited-capacity cate-
gories and the baseline category were 0.06, 0.03, 0.06, and 0.06,
respectively, suggesting more participants were classified into
limited-capacity category for both groups. In the visual-auditory
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task, the estimated parameters were significant for both the high-
WMC (supercapacity: χ2

1 = 5.24, p < 0.05; unlimited-capacity:
χ2

1 = 9.94, p < 0.005) and low-WMC groups (supercapacity:
χ2

1 = 3.98, p < 0.05; unlimited-capacity: χ2
1 = 9.94, p < 0.005).

The estimated proportions between high and supercapacity, high
and unlimited-capacity, low and supercapacity, and low and
unlimited-capacity categories and the baseline category were 4.33,
7, 3.67, and 7, respectively. The estimated proportion between the
supercapacity category and the baseline category was larger for
the high-WMC group than for the low-WMC group, verifying
that the high-WMC group had larger WLC than the low-WMC
group in processing redundant visual and auditory signals.

However, comparing the results between the two experiments,
we found that fewer participants were classified into supercpacity
category in Experiment 2 than in Experiment 1. This discrepancy
may be due to the nature of the tasks used in the two experiments
(go/no-go vs. yes/no tasks). It is worthy to note that our findings
were consistent with the previous research (Blurton et al., 2014),
in which the race-model inequality was easily violated in a go/no-
go task compared to a forced-choice task.

Next, we used the LBA model to analyze the reaction time data
and estimated a set of parameters that maximized the likelihood
function described in the Method Section for each participant.
Table 6 presented the average of 11 estimated parameters for
both groups in different tasks. We then used the average of the
estimated parameters to simulate data and plotted the model pre-
dictions based on the simulated data on top of the empirical his-
togram (see Figure 4). Results showed that the LBA model fitted
the participants’ reaction time data because the predicted density
from the model can capture the empirical density successfully.

We then computed the LBA-based capacity for both groups
in each task (see Figure 5). Results showed a significant differ-
ence in the LBA-based capacity between the high-WMC and
low-WMC groups in the visual-auditory detection task [t(70) =
2.36, p < 0.05]; however, this difference was not observed in
the color-shape detection task (p = 0.35) and in the double-dot
detection task (p = 0.55). Finally, we computed the Pearson’s
product-moment correlation (r) between the recall scores and
the LBA-based capacity. A significant positive correlation between
the WMC and WLC was found in the visual-auditory detection
[r = 0.25, p < 0.01, 95% CI = (0.06, 0.41)], whereas the correla-
tions in the color-shape detection task [r = 0.02, p = 0.83, 95%

CI = (−0.17, 0.21)] and double-dot detection task [r = 0.05,
p = 0.61, 95% CI= (−0.14, 0.24)] did not reach the significance
level (see Figure 6). These results provided converging evidence
showing that participants high in WMC had larger WLC only in
the visual-auditory detection task.

DISCUSSION
We examined the relationship between WMC and WLC, and
tested whether the two capacity measures assessed a unitary, cen-
tral capacity of information processing. We used an OSPAN task
to assess WMC and three different redundant-target detection
tasks to assess WLC. We conducted an extreme-group approach
to split the participants’ data according to their WMCs and com-
pared them to their WLCs in both experiments, and computed
the Pearson’s product-moment correlation to verify the linear
relationship between the two capacity measures in Experiment
2. WLC was estimated with the reaction time data of the
redundant-target detection tasks both non-parametrically (SFT
in Experiments 1 and 2) and parametrically (LBA in Experiment
2). The results from the two experiments showed that partici-
pants high in WMC had a larger perceptual processing capacity in
detecting multiple signals from different modalities (the visual-
auditory detection task); this difference was eliminated when
multiple signals came from different object features (the color-
shape detection task) and from different spatial locations (the
double-dot detection task). These results suggested that the indi-
vidual differences in WMC can predict the ability to process
multiple sources of information in a certain perceptual task and
shed light on the functioning of the central executive system of
working memory in multiple-signal processing. Further impli-
cations on the nature of a working memory system will be
discussed.

In the model of working memory (Baddeley and Hitch, 1974),
central executive system plays an important role in maintain-
ing, updating, operating, and integrating information between
percepts and the two subsystems, which store visuospatial and
phonological information, respectively. In previous research on
working memory, measures of WMC are strongly correlated to
performance in various complex cognitive tasks, such as read-
ing comprehension (McVay and Kane, 2012), logical reasoning
(Oberauer et al., 2007), problem solving (Hoffman and Schraw,
2009), and creative thinking (Dietrich, 2004). In addition,

Table 6 | The average values of eleven estimated parameters and the LBA-based capacity (vDiff ) for both groups of participants in each task.

Estimated parameters

Task Group A t0RT t0ST t0NT bT bNT vRT vST vNT v∼T v∼NT vDiff

CS High 165.64 54.81 51.45 26.79 439.67 532.07 1.08 1.06 0.42 0.67 1.23 0.02

Low 199.93 60.86 63.15 23.59 476.50 609.03 1.07 1.08 0.38 0.62 1.27 −0.02

DD High 477.73 156.91 175.91 159.98 1080.78 1031.60 2.67 3.28 −0.85 −0.82 2.47 −0.61

Low 516.01 140.98 164.25 136.27 1214.55 1104.19 2.72 3.41 −0.29 −0.46 2.44 −0.69

VA High 269.24 104.98 101.26 89.21 841.62 948.63 2.63 2.52 −0.38 0.09 2.39 0.11

Low 296.69 90.34 93.20 50.35 930.58 1060.69 2.64 2.81 −0.51 0.28 2.40 −0.18

“CS,” “DD,” and “VA” are the abbreviations of the color-shape, double-dot, and visual-auditory detection tasks, respectively. “High” and “Low” denote the high-WMC

and low-WMC groups.
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FIGURE 4 | Plots of the predicted density functions (the red solid line) on top of the empirical histograms of the redundant-target and single-target

conditions for each group in each task.

differences in WMC can account for variation in individuals’
general intelligence quotient (IQ) (Engle et al., 1999; Kane and
Engle, 2002; Conway et al., 2003). Previous researchers suggest
that WMC reflects the efficiency of the central executive system
in maintaining and processing information (see Barrett et al.,
2004 for a review), most notably the ability to selectively maintain
task-relevant information (Redick et al., 2007; Lecerf and Roulin,
2009; Minamoto et al., 2010). WMC also reflects individual dif-
ferences in the ability to focus and maintain attention in binding
and integrating multiple sources of information (Barrett et al.,
2004), particularly when a salient distractor is likely to capture

attention; this ability may decrease with age (Palladino and Beni,
1999). Recently, a number of neuroimaging studies have demon-
strated the role of the prefrontal cortex in executive function (e.g.,
Miller and Cohen, 2001; Kane and Engle, 2002).

On the other hand, WLC measures the variation of the pro-
cessing efficiency of an individual channel as a function of work-
load (Townsend and Ashby, 1978; Townsend and Nozawa, 1995;
Wenger and Gibson, 2004; Townsend and Eidels, 2011). In pre-
vious research, WLC has been assessed with a redundant-target
detection task (see Townsend and Nozawa, 1995 for a review) in
various perceptual domains, such as simple detection (Townsend
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FIGURE 5 | Boxplots of the LBA-based capacity of the high-WMC and

low-WMC groups in each task. The green dashed line was the reference
line with a value of 0. The difference in the LBA-based capacity between
the high-WMC and low-WMC groups reached the significance level only in
the visual-auditory detection task, but not in the other two tasks.

and Eidels, 2011), visual search (Fifić et al., 2008), memory
search (Townsend and Fifić, 2004), face perception (Fifić et al.,
2008), categorization (Fifić et al., 2010), multisensory percep-
tion (Altieri and Townsend, 2011), and change detection (Yang,
2011; Yang et al., 2011, 2013). WLC is likely to constrain the
order of multiple-signal processing. For example, a coactive sys-
tem is usually of supercapacity (Wenger and Townsend, 2001);
an independent parallel system is found to be of unlimited-
capacity (Houpt and Townsend, 2012); a standard serial model
is of limited-capacity (Townsend and Ashby, 1983). In addition,
according to Eidels et al. (2011), multiple processes may inter-
act with each other when a parallel system is of supercapacity or
limited-capacity processing. Therefore, it is reasonable to spec-
ulate that when participants have a system of larger processing
capacity, especially supercapacity, they can process redundant
information more efficiently and the multiple processes can be
completed in a coactive fashion, or that there would be facilita-
tory between-channel crosstalk during information accumulation
such that the participants can optimize the use of multiple sig-
nals in perceptual decision making. In contrast, when participants
have a system of limited-capacity processing, they are limited
in processing multiple signals such that multiple processes may
be completed in a serial fashion. Limited-capacity processing
may also indicate that there is an inhibitory interaction dur-
ing information accumulation, such that processing one channel
of information can inhibit the other process, leading to slower
individual-channel processing.

Instead of aggregating all the participants’ data to do group
analysis, a few recent studies inferred individuals’ information
processing characteristics by examining their reaction time data,
focusing mostly on the individual differences in their processing

FIGURE 6 | Scatter plots of the LBA-based capacity and the WMC

scores with a regression line (solid colored line) and its 95%

confidence interval (band-shaped gray area) of each task. A significant
positive correlation between WMC and WLC was found in the
visual-auditory detection task, but not in the other two tasks.

strategies and processing capacity. For example, Yang et al. (2011)
found individual differences in processing strategies when par-
ticipants were required to detect a luminance change and an
orientation change of a Gabor patch, and the relative decision
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difficulty between the two feature-changes were not controlled.
One group of participants adopted serial self-terminating pro-
cessing with limited capacity, and the other group adopted
coactive processing with supercapacity. In Yang’s (2011) study,
when relative saliency existed in detecting an orientation change
and a frequency change of a Gabor patch, three participants
adopted serial self-terminating processing with limited-capacity
to unlimited-capacity processing to detect changes, while one
participant adopted parallel self-terminating processing with
unlimited-capacity processing. Similarly, in a categorization task,
Fifić et al. (2010) found that participants used multiple sources
of information differently to make a categorization decision.
However, these studies did not explain the causes of individual
differences in processing strategies. We speculated that limits in
the processing capacity might constrain the information process-
ing strategy. These individual variations in processing capacity
can be predicted by ones’ capacity of executive attentional control
of a working memory system in processing information.

Although WMC and WLC were proposed around the same
time, no prior studies, except for a recent one conducted by
Heathcote et al. (2014), investigated the relationship between
the two capacity measures. Theoretically, the two capacity mea-
sures assessed some similar characteristics of information pro-
cessing. Most notably, controlled attention played an important
role in a working memory system (Rosen and Engle, 1997; Engle
et al., 1999; Barrett et al., 2004; Engle and Kane, 2004) and in
multiple-signal processing at perception, such as feature integra-
tion (Treisman and Gelade, 1980), goal-derived visual selection
(Bargh, 1982), perceptual organization (Mack et al., 1992), and
perceptual learning (Shiffrin and Schneider, 1977). Thus, it was
reasonable to hypothesize that these two measures may relate to
each other to a certain extent.

Heathcote et al. (2014) adopted a mnemonic redundant-target
task to measure WLC. Participants were required to respond
if either the auditory or visual target was presented two-back
in a trial sequence. This task incorporated the test for work-
ing memory into the measurement of WLC, which was different
from the OSPAN task used in assessing WMC. They also fol-
lowed the SFT to estimate WLC by comparing the reaction time
data between the redundant-target and single-target conditions.
Unfortunately, their preliminary results did not show a clear rela-
tionship between the measurements of WLC and WMC. They
suggested that these two capacity measures did not assess a uni-
tary, central processing capacity. However, the fact that they could
not find a significant correlation may be due to the lack of
statistical power.

The present study used three perceptual redundant-target
detection tasks instead of the mnemonic redundant-target task
used by Heathcote et al. (2014) and tested the relationship
between WLC and WMC. We found interesting results. First, we
found significant differences in the LBA-based capacity between
different perceptual tasks [F(2, 210) = 47.57, p < 0.0001] (see
Figure 5), and the results from the non-parametric analyses con-
firmed this pattern of results (see Figures 2, 3, Tables 2, 5); how-
ever, the non-parametric results also showed variations between
individuals. Generally, processing capacity was the largest in the
visual-auditory task, then in the color-shape detection task, and

smallest in the double-dot detection task. These results were
consistent with prior research. For example, a number of stud-
ies have demonstrated that processing multisensory information
was of supercapacity, which was known as an effect of “mul-
tisensory integration” (Hugenschmidt et al., 2010; Altieri and
Townsend, 2011). One of the best-known studies conducted by
Miller (1982) showed that when participants performed a visual-
auditory detection task, the race-model inequality (RMI) was
violated, suggesting that participants adopted coactive process-
ing with supercapacity in processing multisensory information.
Our study found that the LBA-based capacity was greater than
or equal to 0 and that most participants had C(t) greater than 1
at the faster RTs, indicating supercapacity processing of informa-
tion from different modalities. On the other hand, Mordkoff and
Yantis (1991, 1993) have tested the processing for color and shape
of an object. In their studies, the race-model inequality was vio-
lated when inter-stimulus contingency existed, while it was not
violated when there was no inter-stimulus contingency. In the
present study, we did not manipulate the inter-stimulus contin-
gency, and we found that the LBA-based capacity was equal to 0,
which was consistent with Mordkoff and Yantis’s (1991) findings
of unlimited-capacity processing without any manipulation of
probability information. Lastly, a few studies have demonstrated
limited-capacity processing in double-dot detection. The present
study also found that the LBA-based capacity was less than
1 in the double-dot detection task, indicating limited-capacity
processing. However, when we looked at the non-parametric
results (see Figures 2, 3), we found a few participants had C(t)
greater than or equal to 1 at the faster RTs, indicating that
they may process multiple spatial locations with supercapacity
or unlimited-capacity processing. Even though, most participants
had C(t) less than 1 for all times t, indicating limited-capacity
processing.

Most interestingly, we found differences in WLC between the
high-WMC and low-WMC groups. The differences were only
found in the visual-auditory detection task, but not in the other
two tasks, and this difference was comparable between the two
experiments (see Figures 2, 3, 5). Figure 6 also shows that there
was a significant positive correlation between WMC and WLC
only when participants performed a visual-auditory detection
task. These results suggested that WMC correlated to WLC only
when a system needed to integrate multiple signals from two
different subsystems (i.e., visuospatial sketchpad and phonolog-
ical loop) for manipulation, operation, and decision making.
This relationship was not observed when a system integrated
multiple signals that only required resources from a single subsys-
tem (i.e., the visuospatial sketchpad in the present study). These
results indicated that a domain-general resource was required
for the controlled attention to integrate and bind multisensory
information for decision making. On the other hand, process-
ing redundant information from a single modality required
a domain-specific resource that was not necessarily related to
WMC. Nonetheless, future studies should examine the individ-
ual differences in information processing of a single subsystem,
as we did not test the processing of redundant information that
originated from a single auditory modality. Individual differences
can be discovered by increasing the sample size to increase the
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statistical power and by testing its generalizability in different
experimental contexts.

CONCLUSION
We examined the relationship between WMC and WLC. Both
the non-parametric and parametric analyses showed that partic-
ipants high in WMC had larger WLC in processing redundant
information from different modalities, suggesting that they pro-
cessed redundant visual and auditory signals more efficiently and
multiple processes were likely to be completed in a coactive fash-
ion. However, the difference was not observed when processing
redundant information from a single visual modality. The results
highlighted the role of controlled attention in information inte-
gration of working memory and multiple-signal processing at
perception and further contributed to the understanding of the
nature of a working memory system.
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Working memory capacity (WMC) is typically measured by the amount of task-relevant

information an individual can keep in mind while resisting distraction or interference

from task-irrelevant information. The current research investigated the extent to which

differences in WMC were associated with performance on a novel redundant memory

probes (RMP) task that systematically varied the amount of to-be-remembered (targets)

and to-be-ignored (distractor) information. The RMP task was designed to both facilitate

and inhibit working memory search processes, as evidenced by differences in accuracy,

response time, and Linear Ballistic Accumulator (LBA) model estimates of information

processing efficiency. Participants (N = 170) completed standard intelligence tests and

dual-span WMC tasks, along with the RMP task. As expected, accuracy, response-time,

and LBA model results indicated memory search and retrieval processes were facilitated

under redundant-target conditions, but also inhibited under mixed target/distractor and

redundant-distractor conditions. Repeated measures analyses also indicated that, while

individuals classified as high (n = 85) and low (n = 85) WMC did not differ in the

magnitude of redundancy effects, groups did differ in the efficiency of memory search and

retrieval processes overall. Results suggest that redundant information reliably facilitates

and inhibits the efficiency or speed of working memory search, and these effects are

independent of more general limits and individual differences in the capacity or space of

working memory.

Keywords: working memory capacity, systems factorial technology, linear ballistic accumulator, individual

differences, memory retrieval

1. Introduction

Working memory can be described as a multifaceted limited-capacity information processing
system, comprising interrelated attention and memory subsystems that govern the controlled
processing of goal-relevant information over short periods of time and in light of interference
or distraction from goal-irrelevant information (Baddeley and Hitch, 1974; Baddeley, 1986,
2000; Baddeley and Logie, 1999). Complex or dual span tasks have been typically used to
measure the processing “capacity” of working memory, quantifying the total “amount” of to-be-
remembered information that can be accurately held in mind while resisting distraction from
to-be-ignored information (Conway and Engle, 1994; Conway et al., 2005). Researchers have
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consistently shown dual span task performance decreases as
a function of increases in to-be-remembered and ignored
information, supporting the hypothesis that working memory
is limited capacity in nature. Although this work has provided
strong evidence that working memory capacity is limited, little
is yet understood about the effect that redundant information
has on working memory processing capacity and efficiency.
The current research used an extreme groups approach and
a novel redundant memory probes (RMP) task to investigate
(a) the extent to which the “efficiency” or “speed” of working
memory visual-search processes were affected by redundancies
in target and distractor information, and (b) whether such
redundancy effects depend on individual differences in “capacity”
or “amount” of working memory resources. Here, a simplified
linear ballistic accumulator (LBA) model (Brown and Heathcote,
2008; Donkin et al., 2009) of RMP task accuracy and response
time was used to characterize working memory efficiency, while
working memory capacity was characterized by performance on
standard dual span tasks.

The redundant-target paradigm has been commonly used
to investigate the efficiency or workload capacity of visual-
search processes in divided-attention and short-term memory.
In such experiments, participants are presented with stimuli
containing 2, 1, or 0 target features. The participant’s task
is to decide whether or not stimuli contain at least 1 target
feature as quickly and as accurately as possible. Redundancy
gain effects are demonstrated by decreases in reaction time
(RT) performance under redundant-target conditions relative to
single-target conditions, indicating increases in the amount of
target information facilitates processing efficiency or workload
capacity (e.g., Townsend and Eidels, 2011) or potentially
statistical facilitation (Raab, 1962). Conversely, increases in RT
performance under no-target or distractor conditions relative to
all others indicates that increases in the amount of distractor
information inhibits processing efficiency or workload capacity
(e.g., Townsend and Eidels, 2011), or potentially statistical
inhibition (cf. Townsend and Wenger, 2004).

This work has shown redundant target information facilitates
speed, and in some cases the accuracy, of visual-search processes
while distractor identification is inhibited because it is defined
based on the conjunction of multiple properties. Although
redundancy effects have been reliably shown in tasks that
index divided attention or short-term memory processes, little
work has been done to characterize redundancy effects in tasks
designed to measure working memory processes. The present
research assumed that if workingmemory governs the interaction
between divided attention and short-term memory processes,
then tasks that tap both processes index more general working
memory resources. Following from this assumption, it was
hypothesized that redundant target and distractor information
presented during short-term memory search would yield classic
redundancy gain and loss effects on decision-making accuracy
and RT that can be attributed to facilitation and inhibition of
working memory information processing efficiency or workload
capacity

Recently, Eidels et al. (2010) used an LBA model to quantify
the efficiency and workload capacity of cognitive processes

underlying redundant-target effects in a divided-attention
experiment. Results showed that the LBA model was sensitive to
the redundancy gain effects observed for choice accuracy and RT,
such that model estimates of internal evidence accumulation or
drift-rates showed greater efficiency in divided attention under
redundant-target conditions relative to single-target conditions.
Model simulations of participant drift-rate data also predicted
individual differences in workload capacity as indicated by
Townsend and colleagues’ capacity coefficient (e.g., Townsend
and Nozawa, 1995; Townsend and Wenger, 2004; Houpt and
Townsend, 2012; Burns et al., 2013; Houpt et al., 2014) which
characterized participant’s divided attention as super, unlimited,
or limited capacity. Crucially, results showed participants with
larger differences between redundant-target and single-target
drift-rates showed super capacity in divided attention, whereby
redundant targets facilitated or increased the workload capacity
of target recognition. In contrast, participants with smaller drift-
rate differences tended to show limited capacity in divided
attention, whereby redundant targets inhibited or decreased
the workload capacity of target recognition. In sum, drift-rate
efficiency and workload capacity measures showed convergent
evidence that suggested individuals can differ in the magnitude
of redundancy gain effects on divided attention, whereby some
individuals show facilitation in processing efficiency, and others
experience inhibition. The present research builds from this work
by using the LBA model to (a) investigate redundancy gain
and loss effects using a novel working memory experiment, and
(b) determine the extent to which such effects differ between
individuals classified as having low or high working memory
capacity on dual span tasks.

In our current work, we deviate from the (Eidels et al.,
2010) approach by using the average of the single conditions
processing rates as the baseline for comparison to the dual
conditions. The advantage to our approach was that it did not
require additional complexity and model development beyond
the standard LBA. The disadvantage of our approach compared
to the Eidels et al. approach is that the baseline model does not
match the traditional unlimited-capacity, independent parallel
model baseline (cf. Townsend and Nozawa, 1995; Houpt et al.,
2014); instead, our baseline is essentially a fixed-capacity coactive
model. A fixed-capacity coactive model predicts the processing
rates in the dual conditions will be the sum of one half the
processing rates in the single conditions because in that model
information regarding target presence or absence is summed
across the two sources, but each process is only half as efficient
due to spreading a fixed amount of resources across the sources
(cf. Houpt and Townsend, 2011). While we do not have a
strong argument for a fixed-capacity coactive baseline over an
unlimited-capacity parallel model, our focus is not to determine
whether individual participants exhibit super, unlimited, or
limited workload capacity in the RMP task. Rather, our focus
is on the extent to which redundancy effects in the RMP task
vary as a function of individual differences in performance on
other well-established working memory span tasks. This focus
minimizes the issue of specifying a baseline model because
redundancy effects are operationalized experimentally, as
given by the magnitude of differences between performance
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indicators obtained under redundancy and singleton
conditions.

As in Figure 1, the current LBA model had 5 parameters
(t0,A, b, v, and s = 1) that were assumed to govern the process
of scanning short-term memory and deciding whether a given
memory probe contained target (match) or distractor (non-
match) information. Although alternative sequential sampling
models are capable of characterizing RMP task performance (e.g.,
Ratcliff, 1978), these models tend to lead to similar conclusions
(Donkin et al., 2011). The current LBA model used full RT
distributions for correct and incorrect choices to estimate the rate
at which evidence for target and distractor responses accumulate
during the memory search process. A decision is made whenever
the first accumulation process reaches an internal threshold
criterion for sufficient evidence. In Figure 1, the b parameter
represents the threshold of sufficient evidence for a response.
High b-values reflect a preference for more information before
making a decision. The A parameter represents the amount
of evidence in each accumulator at the beginning of the trial.
Higher values of A reflect a preference for responding fast. The t0
parameter represents elements of the RT distribution that are not
associated with the decision-making process, such as perceptual
encoding or motor execution latencies. Higher values of t0
reflect slower perceptual encoding and response execution. The
v parameter represents the average rate of evidence accumulation
for either the target (vT) or distractor (vD). High values of v reflect
steeper or faster rates of evidence accumulation. The s parameter
represents the standard deviation of the v parameter estimate,
and is set to 1. Here, an accuracy adjusted drift rate, denoted (V),
operationalized the process of accumulating accurate evidence
for target and distractor decisions. The V measure was calculated

FIGURE 1 | Linear ballistic accumulator (LBA) model of working

memory search and decision- making process assuming an underlying

coactive mental architecture. On any given trial, this LBA unit governs the

time taken to execute a target (T) or distractor (D) response in the presence of

some memory probe stimulus. Working memory search and decision-making

process begins and ends with some non-decision time (t0) related to sensory

input and motor response output. A decision is determined by the rate at

which evidence accumulates for target (VT) and distractor (VD), with drift-rates

initiating from some starting point (A) and racing one another toward some

threshold for sufficient evidence (b). Whichever drift-rate crosses threshold first

governs the response. Evidence accumulates according to a standard normal

distribution with mean 0 and unit variance.

by subtracting v obtained on incorrect trials from v on correct
trials (V = vcorrect − vincorrect).

In terms of LBA parameters, our baseline prediction was
formalized as VRedundantProbe = 0.5(VSingleProbe1 + VSingleProbe2).
Specifically, redundancy effects were evaluated as the inequality
resulting from contrasting V obtained under redundancy
conditions vs. the V obtained under singleton conditions, e.g.,
VRedundantTarget versus 0.5(VColorTarget + VLetterTarget). Note that
using a single information accumulator to represent information
accumulation for the redundant probe trials, and assuming that
drift rate is a linear combination of the drift rate of the single
probe processes, implies a coactive (i.e., information pooling)
process. The “fixed-capacity” comes from the fact that we scale
the sum by 0.5, or one over the number of information sources,
when we take the average of the single probe drift rates.

The LBA model output t0, A, and b parameter values, along
with 10 separate drift-rates, reflecting correct (vcorrect) and
incorrect (vincorrect) evidence accumulation rates over each of the
memory probe conditions (RT, ST, TD, RD, ST). Five accuracy
adjusted drift-rates (V) were then derived by subtracting vincorrect
from vcorrect for each condition separately, yielding the VRT, VST,
VTD, VRD, and VSD values.

The present research investigated twomain aims. The first was
to examine the effects of redundancy on performance in a novel
task designed to study the interaction between divided-attention
and short- term memory processes in working memory, which
we call the redundant memory probes (RMP) task. Illustrated in
Figure 2, and described in greater detailed later, the RMP task
systematically varied the amount of to-be-remembered (target)
and to-be-ignored (distractor) information present during short-
term memory search. Consistent with previous research, choice
accuracy, mean response time (mRT), and LBA model drift-
rate measures were used to quantify redundancy effects in the
RMP task. Based on previous research, it was hypothesized

FIGURE 2 | Double-factorial redundant memory probes task factor 2

manipulation of target and distractor memory probe redundancy.

Memory probe stimuli vary in the amount of to-be- remembered (target) or

to-be-ignored (distractor) color and letter features. RT, redundant target; TD,

target and distractor; DT, distractor and target; RD, redundant distractor; ST,

single target; SD, single distractor. For simplicity, TD and DT were combined to

form a single two-dimensional target/distractor TD condition, and

one-dimensional color and letter stimuli were combined to form separate SD

and ST conditions.
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that a redundant-target (RT) condition would yield higher
accuracy, faster mean reaction time (mRT), and larger LBA
model drift-rates when contrasted against single-target (ST)
conditions (VRT > VST). A redundant-distractor condition
also was hypothesized to yield lower accuracy, slower mRT, and
smaller drift-rates when contrasted against the single-distractor
(SD) condition (VRD < VSD). Mixed-target and distractor (TD
and DT) conditions also were included to investigate the effects
of overlapping target-distractor information on choice accuracy,
mRT, and drift-rates, although we did not have any a priori
predictions about the ordering of those drift rates relative to the
other trial types (VTD,VDT?VST).

The second aim was to examine whether individuals classified
as having high or low working memory capacity (WMC), as
determined by performance on traditional dual span tasks,
differed in the magnitude of redundancy gain and loss effects
on the RMP task. This extreme groups approach was used
to determine whether individuals who are known to differ
on well-established measures of WMC also differ with regard
to their sensitivity to redundancy gain and loss effects and
overall efficiency in working memory visual search. Based on
previous working memory individual differences research, it
was hypothesized that individuals with low WMC would show
lower accuracy, slower mRT, smaller drift-rates, and be more
susceptible to distractor information while processing target
information than those with highWMC.We also expected to find
an interaction between experimentally driven redundancy effects
and WMC individual differences. Specifically, we hypothesized
that themagnitude of redundancy effects would depend onWMC
individual differences, such that individuals with low WMC
would show less redundancy gain and loss effects.

2. Materials and Methods

2.1. Participants
2.1.1. Sample Characteristics
The sample consisted of 170 young adults (96 men, 74 women;
χ
2 = 2.85, p > 0.05) ranging in age from 18 to 30 (mean =

20.89± 2.31). The sample was 77%White, 8% African American,
6% Asian, Indian, or Middle Eastern, 6% Hispanic or Latino, and
3% multiple ethnicities. Men were older than women [t(168) =

1.96, p < 0.05]. However, gender was not associated with
differences on any other study variable.

2.1.2. Study Recruitment
Participants were recruited from a subject pool of participants
who completed a larger study on the personality, cognitive,
and decision making correlates of substance use and antisocial
behavior problems in young adults. Participants in the larger
study were recruited using advertisements posted around the
campus and surrounding community of a large Midwestern
university. Advertisements were also placed in local and student
newspapers. Advertisements were designed to attract individuals
with varying degrees of lifetime problems with substance use
and impulse control. This approach has been effective in
attracting responses from individuals who vary in performance
on cognitive tasks assessing intelligence, associative learning,

short-term memory, working memory, and approach-avoidance
decision making (Finn et al., 2002, 2009; Endres et al., 2011,
2014).

Advertisement respondents were telephone screened for
inclusion criteria of being between 18 and 30 years of age, able
read/speak English, at least 6th grade education, and without
a history of psychosis or head trauma. On the day of testing
subjects were further screened to ensure participants did not use
alcohol or drugs in the past 12 hours, were not experiencing
symptoms of withdrawal or fatigue, and had a breath alcohol
content of 0.0%.

Participants in the current sub-study were recruited based
on a stratified random sample of main study participants (N
= 507). Participants who completed the entire main study
protocol were categorized as having low, moderate, or high
histories of substance use and antisocial behavior based on
an unsupervised cluster analysis of participant self-reported
history with alcohol, drugs, childhood conduct problems, and
adult antisocial behavior. A total of 180 participants (60 from
each of the three groups) were solicited for participation in
the present study with a final response rate of 94.44%. Based
on previous research noting a negative association between
executive cognitive functioning (e.g., intelligence, associative
learning, and working memory) and individual’s history of
substance use and antisocial behavior (Finn et al., 2009),
participants in the current stratified sample also were expected
to vary greatly with respect to working memory and executive
decision-making ability.

2.1.3. Dual Span Tasks
Working memory capacity (WMC) was assessed using two
different complex-span tests, the Operation-Word Span test
(OW; Conway and Engle, 1994) and a modified version of the
Auditory Consonant Trigram test (AC; Brown, 1958; Finn et al.,
2009; Endres et al., 2011). These tasks operationalize WMC as
the total number of primary memory items that can be correctly
recalled after performing a second unrelated cognitive task.
The OW test was experimenter based and assessed the total
number of words that were correctly recalled after performing
a mathematical operation. For example, participants were asked
to determine whether a mathematical operation was correct and
presented with a word to-be-remembered (2 ×5 = 12? DOG).
After a series of operation-word trials, participants were asked
to recall the words in there correct order of presentation in the
series. The AC test also was experimenter based and assessed the
total number of consonant letters, from a string of letters (e.g., r,
d, t, and l), that could be remembered after counting backwards
by 3’s from a random three-digit number (e.g., 379) for a pre-
determined length of time (e.g., 18 or 36 s). Several studies
indicated that the OW and AC tests are valid indicators of the
limited capacity nature of working memory, wherein accuracy
decreases as a function of increases in primary memory items
and secondary cognitive loads (Engle et al., 1999; Endres et al.,
2011). Consistent with previous research, a composite WMC
factor score was created by estimating the covariance among the
total number of items correctly recalled on the OW and AC tasks
using maximum likelihood extraction (Engle et al., 1999; Finn
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et al., 2009; Endres et al., 2011). This WMC factor score variable
was eventually dichotomized to reflect individual differences in
high and low WMC in repeated measure analyses. Individuals
were classified as having low or high WMC based on a median
split (median = 0.03) of maximum likelihood estimated WMC
factor scores (Cronbach’s Alpha = 0.67, mean = 0, SD = 0.88,
skew=−0.34, kurtosis=−0.36).

2.1.4. Redundant Memory Probe Tasks
The redundant memory probes (RMP) task was designed
to study the interaction between divided- attention and
short-term memory processes in working memory. The task
used basic study-test (Sternberg, 1966) and varied response
mapping (Schnieder and Shiffrin, 1977) procedures embedded
within a double-factorial design Townsend and Wenger (2004)
to examine the effects of redundant target and distractor
information on the processes of searching short-term memory
for color and letter information.

The study-test procedure (Figure 3) involved the initial
rehearsal of memory lists varying in length and composition
of color and letter items (Factor 1), followed by the serially
matching of 16 memory-test probes with and without redundant
target and distractor features (Factor 2). During the study phase,
participants rehearsed memory lists containing either 1 or 3
color items and 1 or three letter items for a period of time
lasting 1 s per memory list item. Memory lists were 2, 4, or
6 items in length, and there were 4 list types (1-color/1-letter,

1-color/3-letter, 3-color/1-letter, and 3- color/3-letter) each with
6 different memory sets, totaling 24 lists in the task.

During the test phase, participants were briefly shown
memory-test probes. Each probe was a single character. Probes
that were colored (non-white) letters are referred to as dual
probes. Probes that were either a white letter or a colored hash
symbol are referred to as single probes. Probes could have 0,
1, or 2 target or distractor features. There were 8 probe types
(Figure 2): redundant dual targets (RT) or distractors (RD),
mixed color and letter dual targets and distractors (TD and
DT), single color or letter targets (ST), and single color or letter
distractors (SD).

Note that the participants were asked to say yes if either the
color or letter of the probe was in the memory set. Hence, the
dual probes to which the participants should have responded no
(distractors) were defined by the conjunction of the color being
outside of the memory set and the letter being outside of the
memory set. The probes for which both color and letter were
in the memory set had redundant target information. Memory
test probes representing targets in a given study-test procedure
could be distractors in other study-test sets (varied response
mapping procedure), which was assumed to generate proactive
interference.

2.1.5. Dependent Measures
Consistent with previous research, choice accuracy, mRT,
and LBA model drift-rate estimates, which incorporates

FIGURE 3 | Redundant memory probe (RMP) task example of a

block with a 6 item (3 color and 3 letter) memory list and

potential memory probes. The left side indicates the task flow within

a block. The participants are first exposed to a study list for 1000ms

per item in the list, then the test phase begins. The test phase consists

of 16 trials where the probe on each trial is one of the types indicated

on the right side. Redundant target probes are letters from the study

list with one of the study list colors. Target-distractor trials contain a

color from the study list but a letter that was not on the list.

Distractor-target trials contain a letter from the study list but a color that

was not on the list. Redundant distractor trials have a letter and a color

that were both not on the study list. Single color targets were a hash

mark with a color from the list. Single letter targets were a letter from

the list in white. Single color distractors were colored hash marks with

colors that were not on the list. Single letter distractors trials were white

letters that were not on the list.
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both accuracy and RT information, were used to investigate
redundancy effects on test- phase performance by contrasting
RT and RD with ST and SD, respectively. Performance estimates
were aggregated across Factor 1, study set size, because
memory probe redundancies were manipulated during the
test phase (Factor 2). As in Figure 2, performance estimates
also were aggregated across the mixed TD and DT, as well
as single target (ST) and single distractor (SD) test probe
types, because the task was designed so that: (a) color and
letter elements had equal a priori stimulus presentation
probabilities across the 24 study lists and 8 test probe types,
and (b) target- distractor discriminability was held constant for
the different color and letter elements of study lists and test
probes.

2.2. Data Analyses
Separate 2× 2 repeatedmeasures ANOVAswere used to examine
the within-subjects effects of redundant information on RMP
task performance measures as a function of between-subjects
differences in WMC on dual span tasks. Based on previous
research, the within-subjects factor in repeatedmeasures analyses
reflected planned comparisons for redundancy gain (RT vs.
ST conditions), loss (RD vs. SD), and mixed (TD vs. ST)
effects. Planned comparisons were conducted separately for
gain, loss and mixed effects. Based on subject recruitment, the

dichotomized (median split)WMC factor score variable was used
as the between-subjects factor in all repeated measures analyses.
Analyses were conducted separately for choice accuracy (percent
correct), mRT (on correct trials), and accuracy adjusted LBA
drift-rate performance measures. Within-subjects and between-
subjects effect sizes were examined with partial eta-square
estimates.

3. Results

3.1. Descriptive Statistics
The low (n = 85) and high (n = 85) WMC groups did not
differ in gender composition (χ2 = 2.16, p > 0.05) or average
age [t(168) = 1.06, p > 0.05]. However, groups did differ in
average IQ [t(167) = −3.66, p < 0.001] and years of education
[t(168) = −3.66, p < 0.001].

3.2. Individual LBA Model Fits
Model fit was examined by using subject’s LBAmodel parameters
to simulate accuracy and RT data, and then comparing these
simulations to subject’s actual accuracy and RT data. For
example, Figure 4 shows one subject’s LBA model simulated
defective cumulative density functions (CDF) plotted against
that subject’s actual defective CDFs. In Figure 2, LBA model
simulated CDFs for correct and incorrect responses in RT, TD,

FIGURE 4 | Example subject’s defective cumulative density functions

illustrating the probability of observing correct (green font) and

incorrect (red font) responses on or before some response time (RT).

Subject’s actual (open circles) data LBA simulated (lines) data plotted against

each other for RT, redundant target; TD, mixed target/distractor; RD,

redundant distractor; ST, single target; SD, single distractor conditions.
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ST, RD, and SD test-probe conditions showed consistent overlap
with actual CDFs collected in these respective conditions. The
mean parameter value and standard deviation across participants
is shown in Table 1.

3.3. Effects of WMC on LBA Model Non-Decision
Time, Starting Point, and Threshold
No WMC group differences were found for LBA model
parameters t0 [t(168) = 0.67, p > 0.05], A [t(168) = −0.16,
p > 0.05], or b [t(168) = −1.36, p > 0.05]. For the
High EMW capacity group, mean non-decision time, starting
point, and threshold were 73.01 ± 65.4, 7.30 ± 1.28 and
8.66 ± 0.22 respectively. For the low EMW capacity group,
mean non-decision time, starting point, and threshold were
67.12 ± 48.38, 7.33 ± 1.28, and 8.65 ± 0.23 respectively.
These results suggest WMC individual differences are not
involved in RMP task decision-making processes related to early
perceptual coding and later response execution latencies, nor
setting preferences for response types or sufficient evidence for
responding.

3.4. Effects of Redundant Target Information and
WMC on RMP Task Performance
3.4.1. Accuracy
Figure 5A, hit rates were facilitated by redundant-target
information. These effects did not depend on WMC differences,
even though those with high WMC were generally better
at recognizing targets than those with low WMC. Within
subjects tests showed target percent correct (PC) was higher for
redundant color and letter targets, relative to single color targets

TABLE 1 | Accuracy adjusted drift-rates by redundancy condition and

percentile grouping.

Low 20% (n = 34) High 80% (n = 34)

Condition Mean (SD) Mean (SD)

Non-decision time (t0) 64.34 50.24 73.56 65.61

Starting point (A) 7.35 1.33 7.22 1.25

Threshold criterion (b) 8.67 0.25 8.58 0.22

Redundant target (VRT ) 3.00 0.94 3.68 1.32

Single target (VST ) 2.63 0.74 3.09 0.63

Target and distractor (VTD) 1.96 0.93 2.33 0.83

Redundant distractor (VRD) 2.19 0.71 2.37 0.62

Single distractor (VSD ) 2.25 0.73 2.80 0.82

Low 50% (n = 85) High 50% (n = 85)

Non-decision time (t0) 67.12 48.38 73.01 65.40

Starting point (A) 7.33 1.28 7.30 1.22

Threshold criterion (b) 8.65 0.23 8.60 0.22

Redundant target (VRT ) 3.30 1.37 3.66 1.34

Single target (VST ) 2.86 0.78 3.11 0.64

Target and distractor (VTD) 1.95 1.08 2.28 0.89

Redundant distractor (VRD) 2.24 0.80 2.43 0.69

Single distractor (VSD ) 2.39 0.87 2.69 0.71

or single letter targets [RT > ST, F(168) = 7.14, p < 0.01, partial
η
2 = 0.04]. Between subjects tests showed those classified as high

WMC had higher overall target PC than those classified as low
WMC [F(168) = 6.67, p < 0.01, η2 = 0.04]. No interaction
between redundant targets and WMC differences was found for
target PC [F(168) = 0.38, p > 0.05, η2 < 0.01].

3.4.2. Correct Trials mRT
Figure 5B, shows mRT on for hits were facilitated by redundant
target information, and these effects did not depend on WMC
differences. Although those with highWMC tended to be faster at
recognizing targets than those with low WMC, these differences
did not reach statistical significance.

Within subjects tests showed mRT was shorter for redundant
color and letter targets, relative to single color targets or single
letter targets [RT < ST, F(168) = 116.65, p < 0.001, partial
η
2 = 0.41]. Between subjects tests showed those classified as

high WMC did not differ in mRT from those classified as low
WMC in overall mRT for targets [F(168) = 2.46, p > 0.05, partial
η
2 = 0.01]. No interaction between redundant targets andWMC

differences was found for mRT [F(168) = 0.99, p > 0.05, partial
η
2 = 0.01].

FIGURE 5 | Bar graphs with 95% confidence intervals for mean

accuracy (A) and response time (B) by redundancy condition and

working memory capacity (WMC) groupings. RT, redundant target; TD,

target and distractor; DT, distractor and target; RD, redundant distractor; ST,

single target; SD, single distractor.
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3.4.3. LBA Drift-Rates
Figure 6 shows accuracy adjusted drift-rates (V) were facilitated
by redundant-target information; and, these effects did not
depend onWMC differences, even though those with highWMC
were generally more efficient in target recognition than those
with low WMC. Within subjects tests showed V was larger for
redundant color and letter targets, relative to single color targets
or single letter targets [VRT > VST, F(168) = 25.03, p < 0.001,
partial η2 = 0.13]. Between subjects tests showed those classified
as highWMChad larger overallV for targets than those classified
as low WMC [F(168) = 5.41, p < 0.05, partial η

2 = 0.03]. No
interaction between redundant targets andWMC differences was
found for V [F(168) = 0.36, p > 0.05, partial η2 < 0.019].

3.5. Effects of Redundant Distractor Information
and WMC on RMP Task Performance
3.5.1. Accuracy
Figure 5A, shows redundant-distractor information had an
inhibitory effect on correct rejection rates, but these effects did
not reach statistical significance. However, those with highWMC
were generally better at recognizing distractors than those with
low WMC. Within subjects tests showed PC for redundant color
and letter distractors was not significantly different from PC
for single color distractors or single letter distractors [RT = ST,
F(168) = 3.27, p > 0.05, partial η

2 = 0.02]. Between subjects
tests showed those classified as high WMC had higher distractor
PC than those classified as low WMC [F(168) = 9.25, p <

0.01, partial η
2 = 0.05]. No interaction between conjunctive

distractors and WMC differences was found for PC [F(168) =

0.57, p > 0.05, partial η2 < 0.01].

FIGURE 6 | Bar graphs with 95% confidence intervals for mean LBA

model accuracy adjusted drift-rates by redundancy condition and

working memory capacity (WMC) groupings. RT, redundant target; TD,

target and distractor; DT, distractor and target; RD, redundant distractor; ST,

single target; SD, single distractor.

3.5.2. Correct Trials mRT
Figure 5B, shows mRT on correct trials was inhibited for
redundant distractors, and these effects did not depend onWMC
differences. Those with high WMC were generally faster at
recognizing distractors than those with low WMC, but these
effects did not reach statistical significance. Within subjects
tests showed mRT was longer for redundant color and letter
distractors, relative to single color distractors or single letter
distractors [RD > SD, F(168) = 273.75, p < 0.001, partial
η
2 = 0.62]. Between subjects tests showed those classified

as high WMC did not differ from those classified as low
WMC in distractor mRT [F(168) = 3.26, p > 0.05, η2 =

0.02]. No interaction between conjunctive distractors and WMC
differences was found for mRT [F(168) = 3.26, p > 0.05, partial
η
2

< 0.01].

3.5.3. LBA Drift-Rates
Figure 6 shows accuracy adjusted drift-rates (V) reduced for
redundant-distractor information. These effects did not depend
on WMC differences, even though those with high WMC were
generally more efficient at recognizing distractors than those
with low WMC. Within subjects tests showed V was smaller for
redundant color and letter distractors, relative to single color
distractors or single letter distractors [VRD < VSD, F(168) =

9.86, p < 0.01, partial η
2 = 0.06]. Between subjects tests

showed those classified as high WMC had larger overall V for
distractors than those classified as low WMC [F(168) = 6.40, p <

0.05, partial η
2 = 0.04]. No interaction between conjunctive

distractors and WMC differences was found for V [F(168) =

0.69, p > 0.05, partial η2 < 0.01].

3.6. Effects of Mixed Target/Distractor
Information and WMC on RMP Task Performance
3.6.1. Accuracy
Figure 5A, shows mixed target-distractor information had an
inhibitory effect on hit rates, and these effects did not depend
on WMC differences. Those with high WMC were better at
recognizing targets while ignoring distractors than those with
low WMC, but these effects did not reach statistical significance.
Within subjects tests showed PC was lower for mixed color and
letter targets and distractors, relative to single color targets or
single letter targets [TD < ST, F(168) = 76.32, p < 0.001,
partial η2 = 0.31]. Between subjects tests showed those classified
as high WMC did not significantly differ from those classified
as low WMC in PC for mixed color and letter targets and
distractors [F(168) = 3.47, p > 0.05, η2 = 0.02]. No interaction
between mixed color and letter targets and distractors andWMC
differences was found for PC [F(168) = 0.34, p > 0.05, partial
η
2

< 0.01].

3.6.2. Correct Trials mRT
Figure 5B, shows mRT on correct trials was inhibited by mixed
target-distractor information, and these effects did not depend on
WMC differences. Those with high WMC were generally faster
at recognizing targets while ignoring distractors than those with
low WMC, but these effects did not reach statistical significance.
Within subjects tests showed mRT was longer for mixed color

Frontiers in Psychology | www.frontiersin.org May 2015 | Volume 6 | Article 594 | 99

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Endres et al. Working memory and redundant information

and letter targets and distractors, relative to single color targets
or single letter targets [TD > ST, F(168) = 513.49, p < 0.001,
partial η2 = 0.75]. Between subjects tests showed those classified
as high WMC did not differ from those classified as lowWMC in
mRT for mixed color and letter targets and distractors [F(168) =
3.05, p > 0.05, η2 = 0.02]. No interaction between mixed color
and letter targets and distractors andWMCdifferences was found
for mRT [F(168) = 2.74, p > 0.05, η2 = 0.02].

3.6.3. LBA drift-rates
Figure 6 shows accuracy adjusted drift-rates (V) were inhibited
by mixed target-distractor information. These effects did not
depend on WMC differences, even though those with high
WMC were generally more efficient at recognizing targets while
ignoring distractors than those with low WMC. Within subjects
tests showed V was smaller for mixed color and letter targets and
distractors, relative to single color targets or single letter targets
[VTD < VST, F(168) = 175.79, p < 0.001, partial η

2 = 0.51].
Between subjects tests showed those classified as high WMC had
larger V for mixed color and letter targets and distractors than
those classified as low WMC [F(168) = 6.38, p < 0.05, partial
η
2 = 0.04]. No interaction betweenmixed color and letter targets

and distractors and WMC differences was found for V [F(168) =
0.37, p > 0.05, partial η2 < 0.01].

3.7. Additional Analyses
To examine the stability of our findings, we conducted
supplemental analyses using a more extreme percentile grouping
criterion for dual span task WMC factor scores than a median
split. As shown in Table 1, for adjusted drift rates, the direction
and pattern of repeated measures effects did not differ by
characterizing extreme (Low and High) WMC groups using a
20% and 80% (top) or using a 50% and 50% (bottom) percentile
grouping. Regardless of 20/80 and 50/50 percentile grouping,
results showed high WMC had larger drift-rates (V) than low
WMC (i.e., main effect of group), but redundancy gain (RT vs.
ST) and loss (RD vs. SD) did not depend on WMC individual
differences (i.e., no group by redundancy condition interaction).
Critically, both analyses show high EWM had larger drift-rates
(V) than low EWM (i.e., main effect of group), but redundancy
gain (RT vs. ST) and loss (RD vs. SD) effects did not depend on
EWMcapacity individual differences (i.e., no interaction between
group and redundancy effects).

4. Discussion

The main findings of the present study were twofold. First,
working memory visual-search processes were found to be both
facilitated and inhibited under a novel redundantmemory probes
(RMP) task using accuracy, RT, and LBA measures of “how
much” (i.e., capacity) and “how fast” (i.e., efficiency) information
is processed. Second, although individuals classified as having
high or low WMC with traditional dual span tasks differed
in accuracy, RT, and rates of evidence accumulation on the
RMP task, groups did not differ in the magnitude of facilitation
(redundancy gain) and inhibition (redundancy loss) effects
observed under the RMP task. When taken together, these results

suggest redundant information reliably facilitates and inhibits the
efficiency or speed of working memory visual search, and these
effects are independent of more general limits and individual
differences in the capacity or space of working memory.

4.1. Redundancy Effects on Working Memory
Visual Search
Consistent with previous research, results showed that memory
probes with redundant-target features significantly improved
or facilitated the accuracy and mean RT of working memory
visual search relative to memory probes with only one target
feature (i.e., redundancy gain). In contrast, results showed that
memory probes with redundant-distractor features significantly
reduced or inhibited the accuracy and mean RT of working
memory visual search relative to memory probes with only one
distractor feature (i.e., redundancy loss). Similarly, inhibition
effects also were found for memory probes with mixed target and
distractor features relative to memory probes with one distractor
feature. These results also were confirmed with an LBA model
of decision-making accuracy and RT that implicitly assumed a
coactive mental architecture with fixed-capacity drove the rate
or efficiency in which internal evidence accumulates (drift-rates)
during working memory visual search. For this model, drift-
rates were (i) larger (facilitated) for redundant target probes than
for single target probes, (ii) smaller (inhibited) for redundant
distractor probes than for single distractor probes, and (iii)
smaller (inhibited) for mixed target and distractor probes than
for single target probes.

In the context of Eidels et al. (2010)’s findings, the current
evidence of redundancy gains in LBA model drift-rates suggest
that the RMP task facilitated participant’s workload efficiency
to that of “super-capacity,” such that increases in the amount
of to-be-processed target information lead to an increase in the
rate at which evidence accumulated during working memory
visual-search process. This interpretation of the current findings
is inconsistent with the dominant conceptualization of working
memory processes being limited capacity in nature (Baddeley,
2000). Crucially, the expectation for limited capacity would be
that of inhibition or a decrease in workload efficiency, such
that redundant target conditions lead to reduced accuracy, RT,
and drift-rates relative to single target conditions. Therefore,
the limited-capacity assumption did not hold in the present
study, because evidence of “super capacity” processing was
found via significant redundancy gain effects. However, the
limited-capacity assumption did hold under distractor probe
conditions, such that accuracy, RT, and drift-rates where impeded
when contrasting (i) redundant-distractor vs. single-distractor
conditions, and (ii) mixed target/distractor conditions vs. single-
target conditions (see Figure 6).

One explanation for the present findings could be that the
locus of working memory limited capacity is specific to short-
term memory processes, and not necessarily divided-attention
processes. That is, perhaps domain-specific short-term memory
space is limited in capacity and can hold only a certain amount
of contents, while controlled divided-attention speed is not
limited in efficiency or workload capacity and can be facilitated
or inhibited by the stimulus-context. Toward this end, a key
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limitation of the present research was that we did not take into
account variability in performance as a function of variability in
memory-set size (i.e., Factor 1). Specifically, RMP task memory
lists were either 2, 4, or 6 items long, and thus, it could be that
facilitation and inhibition effects on workload capacity during
working memory visual search depend onmemory list or set size.
Future work with the RMP task should attempt to disentangle the
interactive effects of memory set size (short-term memory) and
memory probe redundancy (divided-attention search).

Another possible explanation for the present finding of “super
capacity” processing under redundant-target conditions is that
these effects were simply an artifact of implicitly selecting a
fixed-capacity coactive process as a baseline for our LBA model.
Perhaps fitting an LBA model that assumed a more conservative
UCIP baseline would not yield evidence of facilitation. Therefore,
the present findings are limited by questions concerning LBA
model specification, and the exact configuration of mental
processes driving performance in the RMP task. Future work
with the RMP task might attempt to identify the best fitting
baseline model at the individual subjects level, and/or use the
standard UCIP model to determine the extent to which model
derived differences in workload capacity (i.e., super, unlimited,
or limited capacity classifications) correspond with differences in
WMC on dual span tasks.

4.2. Working Memory Capacity Effects on
Working Memory Visual Search
Consistent with previous research, results showed that
individuals classified as high WMC on traditional dual
span tasks had generally more accurate and faster RMP task
performance than those classified as low WMC. These results
also were confirmed with the LBA model of performance that
indicated higher WMC was associated with higher drift-rates.
Evidence of a link between WMC and RMP task drift-rates is
consistent with previous research demonstrating that WMC
individual differences are predicted by drift-rates obtained under
other simple reaction time tasks (Schmemiedek et al., 2007). Our
findings also could be interpreted to suggest that capacity and
efficiency measurements of working memory processing could
stem from the same underlying source of individual differences,
such that greater working memory “capacity” or processing
“space” is associated with greater working memory “efficiency”
or processing “speed.”

However, our results also suggest an important caveat in
that redundancy gain and loss effects were not dependent
on WMC. Specifically, both high and low WMC individuals
showed comparable redundancy gains (facilitation) and losses
(inhibition) effects in the RMP task. In fact, low and
high WMC groups showed comparable evidence of “super-
capacity” processing for redundant targets and “limited capacity”
processing for mixed and redundant-distractors. This could be
interpreted to mean that the efficiency with which individuals
integrate information in working memory (i.e., workload
capacity) may not depend on individual differences in working
memory capacity or space limitations. However, it is important
to point out that our sample recruitment and extreme groups
approach may limit the generalizability of the present findings.

Mainly, the use of a dichotomized WMC variable and categorical
analysis (i.e., repeated measures) method limited the statistically
power of the current results. Perhaps other dimensional or
factor analytic methods might reveal an interaction between
WMC individual differences and redundancy effects. However,
it is suspected that any potential interaction effects revealed by
dimensional or factor analytic approaches would be weak at best,
given that the current analyses did not reveal statistical trends in
favor of rejecting the null hypothesis of an interaction between
WMC differences and redundancy effects.

Finally, limitations in analytic approach notwithstanding,
the results of the current study have broader implications for
clinical research, because working memory impairments are
known to characterize individuals with a history of substance
use and antisocial behavior (Finn et al., 2009; Endres et al.,
2011, 2014). Current results using the extreme group approach
revealed that individuals with low WMC showed poorer RMP
task performance than those with high WMC. Indeed, these
effects could be largely due to clinical problems, given that
individuals with low WMC also tend to have a greater
history of chronic, severe, and co-occurring substance abuse
and antisocial behavior than those with high WMC. In this
regard, another study limitation was that participants were
recruited based on individual differences in clinical history, but
such individual differences were not included as covariates in
repeated measures analyses. Perhaps redundancy gain and loss
effects are more or less apparent in those with a history of
substance use and antisocial behavior. This has important clinical
implications because, to the extent that the RMP task could be
used to disentangle the interaction between working memory
subsystems, it would be interesting to know whether the source
of working memory impairments stems from deficits in divided
attention, short-term memory, or both. To our knowledge,
research has yet to identify the exact psychological processes and
mechanisms driving working memory impairments in substance
use and antisocial behavior. It is also unclear whether individuals
with such conditions are more or less sensitive to redundancy
information in working memory tasks. Such knowledge and
specificity could provide valuable information to emerging
treatment models for substance use and antisocial behavior
problems that utilize working memory training or remediation
as a means to improve self-regulation and impulse control.
Future research with the RMP task should examine the effects of
individual differences in externalizing disorders on performance,
and attempt to uncover the latent psychological mechanisms
driving the known working memory impairments associated
with this condition.

4.3. Linear Ballistic Accumulator Model of the
Redundant Memory Probes Task
Lastly, results from the current study added to the growing body
of research applying quantitative modeling approaches to the
study of individual differences (Neufeld et al., 2002; Yechiam
et al., 2005; Johnson et al., 2010; Endres et al., 2011, 2014).
Here, evidence showed that measures of performance accuracy
and RT we not always sensitive to differences in RMP task
condition and dual span task related WMC. Specifically, for the
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3 possible RMP task effects: RT vs. ST, RD vs. SD, and TD vs.
ST, the accuracy (percent correct) measure detected 2 of 3, the
RT (mean) measure detected 2 of 3, and the LBA drift-rates
(accuracy adjusted) measure detected 3 of 3. For the 3 group
effects that were possible for each RMP task effect, the accuracy
(percent correct) measure detected 2 of 3, the RT (mean)measure
detected 0 of 3, and the LBA drift-rates (accuracy adjusted)
measure detected 3 of 3. There were no significant interaction
effects between task and group for any of the 3 contrasts. These
comparisons could be interpreted to mean that LBA model drift-
rates were more psychometrically reliable than accuracy and RT
measures, showing the greatest sensitivity to task and groupmain
effects, while being equally selective at ruling out task by group
interactions. However, it is important to note that a key limitation
with the current LBA model was its specification. Specifically,

we implicitly assumed that a fixed-capacity, coactive mental
architecture drove visual search processes for all subjects, rather
than taking steps to identify exactly which mental architecture
was driving visual-search processes in the RMP task. Future
quantitative modeling work should investigate this issue of
model specification and identify whether RMP visual search
is best represented by a coactive, parallel or serial mental
architecture.
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Developmental dyslexia is a complex and heterogeneous disorder characterized by

unexpected difficulty in learning to read. Although it is considered to be biologically based,

the degree of variation has made the nature and locus of dyslexia difficult to ascertain.

Hypotheses regarding the cause have ranged from low-level perceptual deficits to higher

order cognitive deficits, such as phonological processing and visual-spatial attention.

We applied the capacity coefficient, a measure obtained from a mathematical cognitive

model of response times to measure how efficiently participants processed different

classes of stimuli. The capacity coefficient was used to test the extent to which

individuals with dyslexia can be distinguished from normal reading individuals based on

their ability to take advantage of word, pronounceable non-word, consonant sequence

or unfamiliar context when categorizing character strings. Within subject variability of

the capacity coefficient across character string types was fairly regular across normal

reading adults and consistent with a previous study of word perception with the capacity

coefficient—words and pseudowords were processed at super-capacity and unfamiliar

characters strings at limited-capacity. Two distinct patterns were observed in individuals

with dyslexia. One group had a profile similar to the normal reading adults while the

other group showed very little variation in capacity across string-type. It is possible

that these individuals used a similar strategy for all four string-types and were able to

generalize this strategy when processing unfamiliar characters. This difference across

dyslexia groups may be used to identify sub-types of the disorder and suggest significant

differences in word level processing among these subtypes. Therefore, this approach

may be useful in further delineating among types of dyslexia, which in turn may lead to

better understanding of the etiologies of dyslexia.

Keywords: capacity, dyslexia, configural processing, word superiority effect, individual differences

1. Introduction

Developmental dyslexia is a neurobiologically based, lifelong learning disability that specifically
affects the ability to read skillfully and is estimated to be present in 5–17.5% of children (Shay-
witz, 1998). Reading deficits in dyslexia are considered unexpected and independent of factors
such as intelligence and opportunity (see however Stanovich, 1996). There is no consensus on
the etiology or core deficit in dyslexia and several theories have been proposed. It is generally
associated with deficits in spelling, phonological/orthographical processing, rapid auditory pro-
cessing, and short-term verbal memory (Ramus, 2003; Shaywitz and Shaywitz, 2005). Dyslexia has
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also been linked to other more domain general impairments
such as automaticity (Nicolson and Fawcett, 2011), magnocellu-
lar functioning (Stein, 2001), and temporal auditory processing
(Tallal, 1980). While phonological awareness has remained the
most consistent explanatory marker (Ramus, 2003) of dyslexia,
the cause of phonological impairment remains controversial.
Dyslexia is often diagnosed in childhood andmany dyslexic read-
ers may build reading proficiency in adolescence and adulthood,
however, reading often remains slow and effortful and there
remains a phonological processing deficit (Wilson and Lesaux,
2001; Shaywitz and Shaywitz, 2005).

1.1. The Word Superiority Effect and Dyslexia
From the early days of experimental psychology, researchers
have noted that normal reading adults are better at perceiv-
ing letters in the context of a word than alone or in random
sequences (e.g., Cattell, 1886). Even when the informativeness
of a word context is eliminated through careful experimental
control (Reicher, 1969; Wheeler, 1970) normal reading adults
perform better with a word context. The pervasive advantage is
frequently referred to as the word superiority effect. The word
superiority effect is a classical example of a configural superiority
effect (cf. Pomerantz et al., 1977), but there is still some uncer-
tainty as to the nature of the context advantage. Possible explana-
tions have ranged from holistic processing of the word form (e.g.,
Healy, 1994) to independent processing of letters with some cor-
rection of letter level errors based on word level properties (e.g.,
Massaro, 1973; Pelli et al., 2003). Given that there is argument
about the presence of a superiority effect, we focus on the degree
of superiority rather than the locus of the superiority effect in this
paper.

Given the robustness of the word superiority effect, one might
inquire as to whether the effect is intact among individuals with
developmental dyslexia. With dyslexia, reading is a generally
slower and more effortful process. Potential loci of the reading
deficit range from sub-word level, such as letter-phoneme corre-
spondence (e.g., Blau et al., 2009; Blomert, 2011), to sentence level
syntactic deficits. Tests of word superiority isolate one attribute
of reading performance, and the extent to which individuals with
dyslexia have a reduced or absent word superiority effect may be
informative as to the nature of their deficits. Likewise, variation in
the word superiority effect when comparing those with dyslexia
and controls may also inform our understanding of the nature of
the word superiority effect in the normal reading population.

Although research on dyslexia and the word superiority
effect is limited, Grainger et al. (2003) have compared children
with dyslexia and reading-age matched controls on the Reicher-
Wheeler task (the standard paradigm for measuring the word
superiority effect). Despite clear differences between the groups
in ability to pronounce pseudowords, both groups were signifi-
cantly better at identifying letters in the context of a word than
in a non-word. The magnitude of the difference between words
and non-words was nearly the same in both groups, and, if any-
thing, slightly larger in the dyslexia group. This same basic effect
was replicated by Ziegler et al. (2008), although they found sta-
tistically significant superiority effects in only response times, not
accuracy.

Since the original demonstrations of the word superiority
effect, researchers have also shown a pseudoword superior-
ity effect: letters are more easily identified in pronounceable
non-words (henceforth referred to as pseudowords to distin-
guish from unpronounceable non-words) than letters alone (e.g.,
McClelland and Johnston, 1977) or letters in non-word contexts
(e.g., Baron and Thurston, 1973; Spoehr and Smith, 1975). Given
that difficulty pronouncing pseudowords is one of the identi-
fying characteristics of developmental dyslexia (for review, see
Rack et al., 1992), one might predict that there would be a more
dramatic difference between those with dyslexia and controls in
the magnitude of a pseudoword superiority effect. Nonetheless,
Grainger et al. (2003) also found no difference between groups
on the pseudoword superiority effect: The effect was present in
both the children with dyslexia and the reading-agematched con-
trols and the magnitude was roughly the same in both groups.
Hence, any explanation of the differing ability to pronounce
pseudowords cannot depend solely on processes involved in the
pseudoword superiority effect. In particular, Grainger et al. claim
that this finding rules out the common explanation of dyslexia as
a deficit in letter (or letter clusters) to phoneme translation.

A third finding in the Grainger et al. work was that, with both
dyslexic and control groups of children, there was no difference
in the magnitude of the word superiority effect and of the pseu-
doword superiority effect. That is, the increase in performance for
letters in words over letters in isolation was roughly the same size
as the increase in performance for letters in pseudowords over
letters in isolation. In contrast, the normal-reading adults in their
study had a larger advantage for word context compared to pseu-
doword context, a difference that has been found in many other
studies (Manelis, 1974; McClelland and Johnston, 1977; Estes and
Brunn, 1987; Jacobs and Grainger, 1994).

Houpt et al. (2014) recently demonstrated a new approach
to measuring the word superiority effect based on response
times to whole letter strings rather than accuracy of single let-
ter identification. Their approach is based on a comparison of
an individuals response latency to a full string, such as a word
or pseudoword, to his predicted response time if he had iden-
tified each letter independently and in parallel. This method
has multiple potential advantages for studying word superi-
ority among those with dyslexia. First, it is an individualized
measure so we can study both differences across groups as
well as heterogeneity within those with dyslexia. Second, even
though compensated dyslexic adults may increase word recog-
nition and accuracy, reading is often still less automatic, fluid,
and fast (Lefly and Pennington, 1991; Shaywitz et al., 1999), so
the fact that the Houpt et al. approach is based on response times
may make it more likely to pick up on differences between the
groups. Finally, it is a model based approach, so the results can
informmodels of word perception by both normal-reading adults
and those with dyslexia.

The main statistic used by Houpt et al. (2014) was the capac-
ity coefficient (Townsend and Nozawa, 1995; Townsend and
Wenger, 2004; Houpt and Townsend, 2012), which uses the
cumulative reverse hazard function of the response times to pre-
dict hypothetical independent, parallel performance and com-
pare it to participants actual performance. For more details see
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(Houpt et al., 2014). For each participant the cumulative reverse
hazard function is estimated from single character conditions
by the sum over all response times less than a given time of
1/number of response times less than or equal to t, i.e.,

K(t) = 1/n
∑

1/Y(t).

The independent parallel model prediction for a participant is
given by summing the cumulative reverse hazard functions over
each of the characters (Townsend and Wenger, 2004; Houpt
et al., 2013). The participants actual performance with words (or
pseudowords, etc.) is then compared to the predicted indepen-
dent, parallel performance to get a measure of the degree of the
advantage or disadvantage of the context.

C(t) = KLetter1 + KLetter2 + KLetter3 + KLetter4 − Kword

When the capacity coefficient is positive, indicating participants
performed better with context, it is referred to as super-capacity.
If the capacity coefficient is negative, which occurs if participants
perform worse, it is referred to as limited capacity. Finally, if their
performance is approximately equal to the predicted independent
parallel model, it is referred to as unlimited-capacity.

The participants reported in Houpt et al. (2014), who had no
reported reading difficulties, were nearly all super-capacity with
words and pseudowords, while they tended to be limited-capacity
with unpronounceable non-words and were nearly all limited
capacity with upside-down, unpronounceable, non-words and
unfamiliar characters (Katakana). They found that words and
pseudowords were higher capacity than the other string-types.
However, unlike the larger advantage for words over pseu-
dowords normally reported (including for adults in Grainger
et al., 2003), they only found higher capacity for words compared
to pseudowords when the stimuli were not masked.

There aremultiple potential outcomes to applying the capacity
approach to analyzing dyslexia. If the time based measures follow
the accuracy based results of Grainger et al., then we would expect
to see super-capacity for words and pseudowords and unlimited
or limited capacity for non-words for both dyslexic and control
participants.With normal reading adults, we would also expect to
see higher capacity with words than with pseudowords, although
this prediction is less certain given that Houpt et al. only found
the difference in capacity in one of their two experiments. If
the deficits present in dyslexia are specific to word perception
speed, but not accuracy, then we would expect word and pseu-
doword capacity to be unlimited or limited, more on par with
non-word capacity. We would also predict that the participants
with dyslexia would have generally lower capacity with words and
pseudowords than the control group.

2. Method

To measure the cumulative hazard function for responses to
strings, we had a block of trials dedicated to each string type
in which the same target and distractors were used. Targets
were all four character strings: “care” for the word blocks, “lerb”
for the pseudoword blocks, “rlkf” for the non-word blocks and

“ ” for the unfamiliar character blocks. For each target, a
set of four distractors was chosen that was within the same cate-
gory, e.g., all of the distractors for the word-target block were also
words. Each distractor was created by changing a single character
in the target string, with one distractor for a change in each char-
acter position, e.g., for the target “rlkf,” the distractors were “vlkf,”
“rtkf,” “rlhf,” and “rljk.” This is essentially the same task as Houpt
et al. (2014).

To measure the cumulative hazard function for characters in
isolation, we had blocks of trials in which participants needed to
discriminate between each of the two possible characters in each
position. For example, because “vlkf” was a distractor for the tar-
get “rlkf,” we had a block of trials during which the participants
were required to distinguish between “v” and “r” in isolation. The
full set of stimuli we used are shown in Table 1.

2.1. Participants
Participants were 19 students (Mean age = 21; 15 female)
recruited from the Indiana University community. 11 partici-
pants had a formal dyslexia diagnosis and one dyslexia partic-
ipant was left handed. Two of the participants with dyslexia
(both Male) were dropped from the analyses because they did
not complete 2 days of each of the experimental sessions.
All control participants had no history of neurological condi-
tions. All participants provided written informed consent, as
approved by the Institutional Review Board of Indiana Univer-
sity, Bloomington. The participants completed a battery of tests
to measure cognitive performance. They completed theWechsler
Abbreviated Scale of Intelligence (WASI; Weschler, 1999), Word
Attack (pseudoword naming) from the Woodcock-Johnson III
tests of Achievement (Woodcock et al., 2001), the Edinburgh
Handedness Questionnaire (Oldfield, 1971), Dyslexia Checklist
(Vinegrad, 1994), and the Adult Reading History Questionnaire
(Lefly and Pennington, 2000). As shown in Table 2, the groups
did not differ on intelligence measurements, but did differ on
measures of phonological processing and verbal working mem-
ory. Also, although all but one participant reported being right
handed, the groups differed in degree of handedness with the
dyslexics having a weaker absolute handedness measure.

Groups did not differ in age or intelligence measures. On aver-
age, verbal IQ was higher than non-verbal IQ (M = 7.26, SD =

9.63, p < 0.005), but this did not differ by group.

2.2. Stimuli
Table 1 gives the complete list of stimuli used for both the single
character and exhaustive trials for each type, which are a subset of
the stimuli in Houpt et al. (2014). There were four categories of
stimuli used: words, pronounceable non-words (pseudowords),
unpronounceable non-words and strings of Katakana charac-
ters. All strings used were four characters long. Word frequency
counts (based on Kucera and Francis, 1967) are available in the
appendix of Houpt et al. (2014). Pseudowords were taken from
the ARC Non-word Database (Rastle et al., 2002). The neighbor-
hood size and summed frequency of the neighbors for each of the
pseudowords are also included in the appendix of Houpt et al.
(2014). Strings and characters were presented in black Courier
font on a gray background. Characters were approximately 0.33◦
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TABLE 1 | Full set of character sequences used for stimuli.

Target Distractors Single character

Word care bare cure cave card c b a u r v e d

Pseudoword lerb nerb larb lemb lerf l n e a r m b f

Non-word rlkf vlkf rtkf rlhf rljk r v l t k h f k

Katakana

TABLE 2 | Descriptive measures of participant groups.

Control Dyslexia t BF

(n = 8) (n = 9)

M SD M SD

Age 21.5 (2) 21.3 (1.3) 0.20 0.43

WASI verbal 113 (12.6) 118 (10.9) −0.87 0.55

WASI non-verbal 105.4 (5.5) 110.7 (10.3) −1.34 0.73

WASI full 110.5 (9.6) 115.6 (11.3) −1.00 0.58

Verbal - Non-verbal 7.6 (9.2) 7.33 (9.34) 0.06 0.42

Handedness 81.8 (17.6) 57.9 (19.9) 2.63 3.23

Dyslexia checklist 4 (3.3) 14.9 (3.3) −6.79 2120

Reading history 29.9 (11.2) 67.3 (10.3) −7.14 3650

Reading span 3.1 (0.7) 2.1 (0.22) 3.55 17.4

Word attack (GE) 15.26 (3.7) 7.36 (1.95) 4.92 159

BF refers to the Bayes Factor comparing a model in which there is a difference between

groups to a model in which there is no difference between groups. BF larger than 1

indicates evidence in favor of a difference with > 3.2 considered substantial evidence,

> 10 strong and > 100 decisive. BF below 1 indicates evidence in favor of no difference

between groups (< 0.31 substantial, < 0.1 strong, < 0.01 decisive).

horizontally and between 0.30◦ and 0.45◦ vertically. Strings were
about 1.5◦ horizontally.

2.3. Procedure
All experimental conditions were run using Presentationr soft-
ware version 14.9 (www.neurobs.com). Stimuli were presented
on a 17′′ Dell CRTmonitor running in 1280× 1024mode. Partic-
ipants used a two-button mouse for their responses. Participants
were paid $8 per session, and received a $20 bonus upon comple-
tion of all 10 sessions. Each session lasted between 45 and 60min.
The first session was dedicated to general cognitive and read-
ing ability assessment. The second through ninth sessions were
each dedicated to one of the four stimulus types (e.g., word, pseu-
doword, . . . ), so there were two sessions of each type. The order
of string-types was randomized across participants. At the begin-
ning of each session, we read the participant the general instruc-
tions for the task while those instructions were presented on the
screen. The instructions encouraged participants to respond as
quickly as possible while maintaining a high level of accuracy.
Each session was divided into five blocks, one block of string
stimuli and a block for each of the corresponding single character
stimuli. The final session was a dedicated EEG session, although
those data are not further discussed here.

Each block began with a screen depicting the button corre-
sponding to each of the categories. Participants first completed

30 practice trials of the stimulus type in that block. Next, par-
ticipants completed 170 trials. Half of the trials were with the
target stimulus and the other half were divided evenly among
the distractor set. Each trial began with a 500ms presentation of
the block instruction screen which included a diagram of a com-
puter mouse that depicted which button to press for the target
and distractors, respectively. One button of the mouse was asso-
ciate with the target string (e.g., “care”) and the other button was
associated with the distractor(s) (e.g., “bare,” “cure,” “cave,” and
“card”). In the single character trials, there was only one stimulus
associated with each button (e.g., left button: “c”; right button:
“b”). The instruction screen was followed by a 500 presentation
of a fixation cross. The stimulus was then presented for 100ms.
Participants had a maximum of 1600ms to respond. Participants
did not receive feedback about the correctness of their response.
The session order was counterbalanced among the participants so
that participants completed the different types on different days
and in different orders.

2.4. Analysis
All data were analyzed using R statistical software (R Devel-
opment Core Team, 2011). We computed Bayesian ANOVA of
the correct target response times using the BayesFactor package
(Rouder et al., 2012). The Bayes factor (BF) approach to ANOVA
uses model comparison to give evidence for or against including
independent variables as predictors for the dependent variables.
The BF indicates the ratio of posterior probability of observed
data given the model for a pair of models. A rough scale for
interpretation of the BF is as follows: <0.01 decisive evidence
against; <0.1 strong evidence against; 0.31 substantial evidence
against; 0.32–1; minimal evidence against; 1–3.2 is minimal evi-
dence for; >3.2 substantial evidence for; >10 strong evidence
for;>100 decisive evidence for (Jeffreys, 1961). Capacity analyses
were completed using the sft package (Houpt et al., 2013).

3. Results

3.1. Mean Response Time and Accuracy
For each analysis, we computed the Bayes Factor for a full
model, which included string-type (word, pseudoword, random,
or Katakana), target/distractor, day (1 or 2), and group (con-
trol or dyslexia), relative to a subject intercept only model.
We then compared that Bayes factor to successively sim-
pler models which were derived by first removing interactions
terms then main effects while maintaining a component for
any lower order effects that were included in an interaction
term.
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Accuracy and mean correct response times with the string
blocks for each string-type are shown in Figure 1 with error
bars representing the 95% credible intervals from the full
model. The highest Bayes factor model for correct response
times included a three-way interaction among string-type, day
and group along with two-way interactions between string-
type and target/distractor and day and target/distractor. This
model had a Bayes factor of 19.9 (strong evidence) over the
next best model, which included a group by target/distractor
interaction and was otherwise the same. There was deci-
sive evidence for the best model over all other models
(BF > 125).

Analysis of the posterior of the full model indicated that the
three-way interaction was driven by the control group speeding
up on Katakana on Day 2 compared to Day 1, while the dyslexia
group was relatively faster on non-words on Day 2 compared
to Day 1. The string-type by target/distractor interaction was
driven by a cross-over targets being slower for words and pseu-
dowords and faster for Katankana. The string by day interaction,

marginalized across group, showed a cross-over between faster
performance for words on Day 1 relative to Day 2 and slower
performance for Katakana on Day 1 relative to Day 2. A marginal
interaction between string-type and group was mostly driven by
faster performance by the controls on the non-word stimuli.

Marginalized over the other factors, words were faster than
pseudowords (Posterior Mean = 20.7, 95% HDI = [15.6, 25.7]),
non-words (Posterior Mean = 89.3, 95% HDI = [84.1, 94.6]),
and Katakana (Posterior Mean = 164, 95% HDI = [159,
170]). Additionally pseudowords were faster than non-words
(Posterior Mean = 68.7, 95% HDI = [64.4, 73.4]) and Katakana
(Posterior Mean = 144, 95% HDI = [138, 149]) and non-
words were faster than Katakana (Posterior Mean = 74.9, 95%
HDI = [69.6, 80.3]). Targets were slower than distractors (Pos-
terior Mean = −20.1, HDI = [−23.6, −16.6]). Response time
on Day 1 were slower than on Day 2 (Posterior Mean = −14.7,
HDI = [−18.6, −10.9]). There was not clear evidence for one
group being faster than the other overall (Posterior Mean of
Control minus Dyslexia=−25.4, HDI= [−106, 54.5]).

FIGURE 1 | Mean correct response times and mean accuracies for all string types across days, targets/distractors and group. Error bars indicate 95%

confidence intervals.
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The highest Bayes Factor model for accuracy included a three-
way interaction among string-type, day and target/distractor and
a two-way interaction between string-type and group. There was
strong evidence for this model over a model which also included
a group by target interaction (BF = 12.0) and over a model
that included a group by day interaction (BF = 29.8). There
was decisive evidence for the best model over all other models
(BF > 159).

The three-way interaction in accuracy comes from the large
increase in distractor performance across days on Katakana and a
slight increase in performance for distractors relative to target on
words and non-words compared to a unchanged relative perfor-
mance on the pseudowords across days. Overall there was a larger
increase in performance for Katakana than the other string-
types, with the smallest changes in the word and pseudoword
blocks. Between groups, there was a larger difference in accuracy
in the non-word blocks and the smallest difference for pseu-
dowords. Between targets and distractors, the largest difference
was for Katakana and the smallest differences were for the word
and pseudoword string-types. Generally, distractor performance
improved more between the days than target performance.

Marginalized over the other factors, accuracy with words was
nearly the same as accuracy on pseudowords (Posterior Mean =

0.00323, 95% HDI = [−0.00667, 0.00129]), slightly better than
non-words (Posterior Mean = 0.0351, 95% HDI = [0.0254,
0.0448]), and much better than Katakana (Posterior Mean =

0.146, 95% HDI = [0.136, 0.156]). Additionally pseudowords
were slightly more accurate than non-words (Posterior Mean =

0.0318, 95% HDI = [0.0219, 0.0416]) and much more accurate
than Katakana (Posterior Mean = 0.143, 95% HDI = [0.133,
0.153]) and non-words were more accurate than Katakana (Pos-
terior Mean = 0.111, 95% HDI = [0.101, 0.121]). Targets were
more accurate than distractors (Posterior Mean= 0.0724, HDI=
[0.0654, 0.0794]). Accuracy on Day 2 was higher than on Day
1 (Posterior Mean = 0.0326, HDI = [0.0256, 0.0395]). There
was not clear evidence for one group being more accurate than
the other overall (Posterior Mean of Control minus Dyslexia =
0.0353, HDI= [−0.0476, 0.117]).

Mean correct response time and accuracy with the single
character blocks for each type are shown in Figure 2.

As in the string data, the best model included a three-
way interaction among character-type, day and group. There

FIGURE 2 | Mean correct response times and mean accuracies on single characters for all types across days, targets/distractors and group. Error bars

indicate 95% confidence intervals.
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were also two-way interactions between character-type and day,
character-type and group, day and group, and group and tar-
get/distractor. There was very strong evidence for this model
over the next best, which also included a character-type by tar-
get/distractor interaction (BF = 65.7), and the third best model
which included a day by target/distractor interaction (BF= 81.2).
There was decisive evidence for the best model over all others
(BF > 2600).

The three-way interaction was driven by the slow-down for
control participants on the non-word task between days, while
there was no such change for the dyslexia group. The character-
type by day interaction was also mainly due to the slow down
on the non-words between days. The control group was rela-
tively faster on words and Katakana, while there was a smaller
group difference on the non-word characters and nearly no group
differences on the characters from pseudowords. The control
group slowed down less from Day 1 to Day 2 than the dyslexia,
although the magnitude of this difference was small. Control
participants were had a relatively larger speed up for distractors
over targets on Day 1 than dyslexia participants compared to the
second day.

There was a small response time advantage for word
characters compared to pseudoword characters when the
other factors were marginalized (Posterior Mean = −2.89,
HDI = [−4.73, −1.00]) and large advantages for word char-
acters over non-word characters (Posterior Mean = −17.5,
HDI = [−19.3, −15.6]) and Katakana characters (Posterior
Mean = −26.1, HDI = [−27.9,−24.2]). Pseudoword characters
were faster than non-word characters (Posterior Mean = −14.6,
HDI = [−16.5,−12.7]) and Katakana characters (Posterior
Mean = −23.2, HDI = [−25.0,−21.3]). Non-word characters
were faster than Katakana characters (Posterior Mean = −8.55,
HDI = [−10.4,−6.67]). The marginal group response times
were again indistinguishable (Posterior Mean = −15.6, HDI =
[−74.0, 40.7]).

For the single character accuracy data, the best fit model
again included the three-way interaction among character-
type, day and group. There was decisive evidence for this
model over all alternative models (BF ≥ 138). There was a
small advantage for word characters over pseudoword char-
acters (Posterior Mean = 0.00756, HDI = [0.00372, 0.0115])
and non-word characters (Posterior Mean = 0.0129, HDI
= [0.00906, 0.0168]) but not a clear difference between
word and Katakana characters (Posterior Mean = 0.00239,
HDI = [−0.00146, 0.00624]). Participants were slightly
more accurate characters with pseudoword characters than
non-word characters (Posterior Mean = 0.00531, HDI =

[0.00138, 0.00918]) but less accurate with pseudoword char-
acters compared to Katakana characters (Posterior Mean
= −0.00517, HDI = [−0.00905,−0.00126]). Participants
were also slightly less accurate with non-word characters
than with Katakana characters (Posterior Mean = −0.0105,
HDI = [−0.0143,−0.00658]). There were no clear marginal
differences between days (Posterior mean of Day 2 minus
Day 1 = 0.00232, HDI = [−0.000389, 0.00505] or groups
(Posterior mean of Control minus Dyslexia = 0.0148, HDI =
[−0.0494, 0.0789]).

Because response time distributions tend to be skewed, and
these data are no exception, we also ran an analysis on the log-
transformed response time data and found no difference in which
model had the highest Bayes factor and only a small difference
in the magnitude of that Bayes factor compared to the next best
model for the string data (BF = 17.8) and resulted in stronger
evidence for the character data (BF = 217).

3.2. Capacity Analyses
Capacity coefficients are shown for each individual (collapsed
across days) in Figure 3. Using the capacity statistic from Houpt
and Townsend (2012), participants tended to be super-capacity
in the Word (Control: Day 1 = 7/8, Day 2 = 8/8; Dyslexia:
Day 1 = 7/9, Day 2 = 7/8 significantly better than baseline) and
Pseudoword string-types (Control: Day 1 = 7/8, Day 2 = 8/8;
Dyslexia: Day 1= 9/9, Day 2= 7/8 significantly better than base-
line). Figure 4 summarizes the overall capacity statistic for each
group on each day. There was more variable performance with
Katakana (Control: Day 1= 2/8 above and 5/8 below, Day 2= 1/8
above and 5/8 below; Dyslexia: Day 1= 3/9 above and 3/9 below,
Day 2 = 3/9 above and 4/9 below) and the non-words (Control:
Day 1 = 3/8 above and 2/8 below, Day 2 = 2/8 above and 2/8
below; Dyslexia: Day 1 = 4/9 above and 4/9 below, Day 2 = 1/8
above and 2/8 below).

The best model based on a Bayesian ANOVA measuring day,
group and string-type predicting the individual capacity z-scores
included a group by string-type interaction as well as main effects
of group and string-type. The evidence was nearly equivocal
when compared to a model with only a main effect of string-type
(BF = 1.73) but had at least substantial evidence over all other
models (BF ≥ 4.00). Table 3 shows the Bayes Factor for the best
model relative to all models over which there was not very strong
or decisive evidence.

Capacity z-scores were close between words and pseudowords
(Posterior Mean = 1.44, HPD = [−0.367, 3.19]) and higher
for words than non-words (Posterior Mean = 6.29, HPD =

[4.49, 8.10]) and Katakana (Posterior Mean = 8.35, HPD =

[6.56, 10.1]). Pseudoword capacity z-scores were higher than
both non−words (Posterior Mean = 4.86, HPD = [3.06, 6.64])
and Katakana (Posterior Mean = 6.91, HPD = [5.08, 8.75]).
Non-words had higher capacity z-scores than Katakana (Poste-
rior Mean = 2.06, HPD = [0.292, 3.82]). There was nearly no
marginal difference between groups (Posterior Mean = −0.526,
HPD= [−3.16, 2.04]).

The capacity z-score gives a summary of the capacity func-
tion across time. To check for differences in the shape of capacity
coefficient functions, we tested the factor scores obtained from
functional principal components analysis (fPCA) of the capacity
coefficients (Burns et al., 2013). fPCA is a dimensionality reduc-
tion technique that is essentially the same as the more famil-
iar principal components analysis for vectors. The main differ-
ence in fPCA is that the data are described in terms of a linear
combination of functions rather than vectors.

Because the best model of capacity effects did not include day
and better estimates of capacity functions lead to more accu-
rate principal component representation, these analysis were per-
formed with data collapsed across day. The fPCA indicated that
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FIGURE 3 | Difference capacity coefficients for each participant in each string type, collapsed across days. Under the null-hypothesis of

unlimited-capacity, independent, parallel character recognition, the function would be equal to zero for the full time range.

FIGURE 4 | Mean capacity statistic values across days, string-type and group. Under the null-hypothesis of unlimited-capacity, independent, parallel character

recognition, the statistic would be have a standard normal distribution at the individual level. Error bars indicate 95% confidence intervals.

the variation across capacity functions was well-represented by
three factors related to early, middle and late response time
regions (see Figure 5).

According to the Bayes factor analyses reported in Table 4,
there was clear evidence of variation in the capacity functions due
to string type in the middle and late time regions. Evidence was
present, but less clear, against an effect of group. The analysis was
nearly equivocal with respect to meaningful variation in the early
time region beyond the variation due to individual subject.

A visual inspection of the individual participant capacity plots
in Figure 3 suggest different patterns of results across string-
types for different participants. First, some participants showed
much higher capacity for words and pseudowords than for
Katakana, with lower capacity for non-words, but not as low
as Katakana (e.g., Controls 1, 2, and 3 and Dyslexia 5). This is
basically the pattern of results reported in Houpt et al. (2014).
Another set of participants had mostly similar capacity functions
across string-type (e.g., Controls 7 and 8 and Dyslexia 9).
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To investigate these patterns of differences and the extent to
which they may be predictive of the basic behavioral measures,
we used k-means clustering on the fPCA scores. Inspection of
a scree plot indicated three clusters would be appropriate for
these data. The capacity functions represented by the three clus-
ter means are shown in Figure 6. The pattern in Cluster 2 is most
similar to the results in Houpt et al. (2014) whereas Cluster 3 rep-
resents the participants who had less variation in capacity across
string-type. Similar to Cluster 2, Cluster 1 had higher capacity for
words and pseudowords and limited capacity for Katakana, but
Cluster 2 also had fairly limited capacity for non-words. Control
participants were all in either Cluster 2 (4/8) or Cluster 3 (3/8)
except Participant C4, who was in Cluster 1. Four of the nine
Dyslexia participants were in Cluster 1, three in Cluster 3 and

TABLE 3 | Bayes Factors for the highest model relative to the next best

models for predicting capacity z-scores.

Model BF

String-type + Subject 1.00

String-type + Group + Subject 0.417

String-type + Day + Subject 0.194

String-type × Group + String-type + Group + Subject 0.181

two in Cluster 2. Note that neither dyslexia status nor the reading
and cognitive performance measures contributed to discovering
the clusters.

Probing deeper into the connection between the capacity task
and the reading and cognitive task, we also examined the vari-
ation in those measures across clusters. Figure 7 shows the dis-
tribution (after standardizing across participants) of the basic
behavioral measures across each cluster. Generally speaking,
Cluster 1 was distinguished in these measures by being have
lower handedness scores and lower scores on the Grade Equiv-
alent Word Attack; Cluster 2 had lower Dyslexia checklist scores,
higher reading span scores and lower reading history scores; and
Cluster 3 had slightly lower verbal IQ scores. Despite the pattern
of differences across the measures, Bayesian ANOVAs did not
indicate strong evidence either for or against differences among
the clusters on any single measure (0.4 ≤ BF ≤ 2.5 due to the
small number of participants in the study.

4. Discussion

In the current study we aimed to explore word perception
differences in dyslexia using a novel approach, capacity mea-
sures designed to investigate response time latencies. We com-
pared participants with dyslexia and age-matched controls on

FIGURE 5 | Functional principal components analysis of the capacity

functions across all participants and stimulus types. The first panel

shows the component functions after the varimax rotation. The second and

third panels show the scores for the first and second component function.

The scores are separated for the control group and those with dyslexia,

however the fPCA solution was computed for all data together.

TABLE 4 | Bayes Factors relative to the highest model for predicting fPCA capacity scores.

Model Middle (D1) Late (D2) Early (D3)

String-type + Subject 1.00 1.00 1.00

String-type + Group + Subject 0.437 0.633 0.345

String-type × Group + String-type + Group + Subject 0.131 0.270 0.083

Group + Subject 2.96× 10−6 8.25× 10−11 0.194

Subject 7.83× 10−6 1.83× 10−10 0.580
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FIGURE 6 | Capacity functions representing the center of each of

the three k-means clusters. These are derived by using the mean vector

of the cluster on the fPCA scores to as factor weights to determine the

functions. The colors indicate the string types using the same scheme as

the preceding figures. Word: Green; Pseudoword: Blue; Nonword: Red;

Katakana: Purple.

FIGURE 7 | Representation of the variation in the diagnostic tests across the clusters which were derived from the capacity analysis. The points

(triangles, squares, and circles) represent the mean value and the lines represent the standard error of the mean.

a discrimination task with four types of stimuli: words, pseu-
dowords, non-words, and Katakana.

The lack of a marginal level difference in either response time,
accuracy or capacity based on dyslexia diagnosis replicates and
extends the basic finding of Grainger et al. (2003) and the repli-
cation in Ziegler et al. (2008):Word superiority effects are present
at a group level for those with a dyslexia diagnosis and at a sim-
ilar magnitude to age-matched control groups. This finding is
extended in this paper to a new group, college aged students, and
a new paradigm, the design from Houpt et al. (2014).

However, in our current study, the response latency showed a
three-way interaction between group, string-type, and day, sug-
gesting that there are some subtle differences between controls
and dyslexics. Additionally, the mean capacity results were simi-
lar to those found in a previous study by Houpt et al. (2014) using
this technique—words and pseudowords had similarly higher

capacity than non-words and non-words had higher capacity
than Katakana. Interestingly, when the capacity results were
inspected, individual differences emerged such that three differ-
ent capacity profiles emerged. One group was similar to the non-
dyslexics reported in the Houpt study while the other two groups
had capacity profiles that diverged in important ways.

The k-means clustering analysis indicated three distinct
capacity profiles. In an attempt to characterize these three profiles
we also explored the cognitive/behavioral scores of the individu-
als that composed them. The profile that most resembled (Houpt
et al., 2014), Cluster 2, had scores more similar to those expected
of normal reading adults (i.e., lower dyslexia checklist and read-
ing history scores and higher reading span scores). Indeed, the
two dyslexic participants whose capacity profiles were included
in Cluster 2 had the lowest dyslexia checklist and reading history
scores among those with dyslexia.
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Like Cluster 2, the capacity profile for Cluster 1 showed high
capacity for words and pseudowords and lower capacity for
Katakana, but also showed lower capacity for non-words that was
similar to Katakana. The individuals that made up Cluster 1 on
average had lowWordAttack scores and reading span scores, and
high reading history and dyslexia checklist scores, all of which
are indicative of dyslexia. The one control participant who was
included in this cluster had the highest dyslexia checklist and
reading history scores. Interestingly, with the exception of one
dyslexic in Cluster 3, the dyslexics in Cluster 1 showed the lowest
Word Attack Grade Equivalent scores (all below 7th grade) and
the members of this group appear to show an efficiency divide
between pronounceable and non-pronounceable string-types.
Low performance on Word Attack, particularly in college stu-
dents, may suggest that the grapheme-to-phoneme processes for
this group are particularly affected. This may prompt a “whole
word” strategy when reading. They do appear to be efficient
in visually recognizing whole regular words and whole pseu-
dowords. The efficiency for pseudowords may be due to repe-
tition causing them to be processed more like words. Although
the participants in Cluster 1 had low Word Attack scores, the
pseudowords in this study were four-letter, single-syllable pseu-
dowords that are relatively easy to pronounce. Therefore, they
may have treated pseudowords like words once they were learned
(e.g., on day 2). However, this may not be possible for non-
pronounceable consonant strings or foreign characters because
they were unable to be learned as words (e.g., non-words are
orthotactically invalid and Katakana is not linguistically mean-
ingful). A study by Siegel et al. (1995) suggested that dyslexics
with low phonological awareness rely more on orthographic pro-
cessing. Specifically, they noted a group of dyslexics with poor
performance on Word Attack, but high orthographic awareness
compared to controls with higher Word Attack scores.

The final profile identified by k-means clustering, Cluster 3,
revealed little differences among the four stimulus types. The
individuals who showed this profile included both dyslexic and
control participants. In terms of test scores, only Word Attack
and verbal IQ differentiate Cluster 3 and Cluster 1. On aver-
age, individuals in Cluster 3 had higher Word Attack scores and
lower verbal IQ. This suggests that these individuals may not
have a weaknesses related to grapheme-to-phoneme conversion,
but may have deficits in other language-related processes that
account for the lower verbal IQ. The finding that the capacity
scores were similar across stimulus types suggests that individ-
uals in Cluster 3 used a generalized strategy. Because all partic-
ipants were naive to Katakana, a generalized strategy could not
have depended on linguistic processing but may instead have
depended on visual feature processing. This strategy is appar-
ently very efficient and able to handle complex unfamiliar visual
stimuli. It is possible that this is a global, holistic process. Some
evidence to support such a strategy comes from a study exam-
ining high school students that found dyslexics were faster, but
not more accurate, at detecting impossible objects (von Károlyi,
2001). They found that these students relied on global process-
ing of the objects (e.g., recognizing features simultaneously and
discerning if they contradict each other). While Katakana does
not have any inherent contradictory features in this study, if we

situate the target Katakana string as the goal this contextualizes
the distractor strings as somewhat contradictory. It is possible
that the participants who were efficient at Katakana (as well as the
other string-types) were processing the strings as whole objects.
It is also possible that many of the dyslexic members of Clus-
ter 3 were especially good at Katakana because language pro-
cessing could not “get in the way.” They may then have been
able to generalize a visual, non-linguistic strategy into the other
categories.

While it may be that individuals in Cluster 3 used a non-
linguistic strategy, an alternative explanation is that a linguistic
strategy was used for non-word and Katakana stimuli. In anMEG
study of visual word recognition in dyslexia, Salmelin et al. (1996)
found that non-dyslexics displayed a typical sharp negativity
around 180ms in temporo-occipital regions to words, but dyslex-
ics only activated this region after 200ms with a slowly increasing
signal that peaked closer to 450ms. Some of the participants in
the current study also participated in an pilot EEG session of
the task after completing the study. Generally, participants who
showed a profile similar to Cluster 3 failed to show a sharp left
N170 in response to the stimuli, but instead showed a more grad-
ual negativity in less lateralized posterior electrodes that peaked
between 220-350ms; this pattern was fairly consistent across
string-type (Sussman et al., 2011). In contrast, a control with a
non-clumping capacity pattern, similar to Cluster 2, showed a
more typical pattern of an N180 in left temporo-occipital elec-
trodes for words, pseudowords, and non-words; but for Katakana
did not show this N180 response. The correspondence between
our EEG data and (Salmelin et al., 1996) potentially suggests that
the participants who show similarity in capacity across all four
string-types are generalizing a strategy from words to Katakana
and not vice versa. This also suggests, however, that the presumed
compensatory strategy they are using requires visual language
processes. Interestingly, the Cluster 3 pattern is not unique to
the dyslexia participants and was, in fact, used by some controls.
That most (all three dyslexics and one control) of the subjects
in Cluster 3 showed super-capacity for Katakana suggests that
the strategy was more generalized across string-types, but not
always efficient. It is possible that particularly the dyslexics in
this group are more practiced at using a generalized strategy. Fur-
ther research is necessary to determine the strategy being used by
individuals in Cluster 3.

Together with the results from Grainger et al. (2003) and
Ziegler et al. (2008), these results indicate that there is no general
deficit in orthographic recognition, either at the single character
or configural level, with dyslexia. Some of the participants with
dyslexia were differentiated frommost of the control participants
in this task, but the main difference was in their performance on
non-words. Given the low Word Attack scores, it is unlikely that
the participants with dyslexia are using phonological information
for better performance in the word and pseudoword condition,
so they are potentially relying on information from the ortho-
graphic configurations. The subgroup that performed worse on
non-words may have relied more on statistical regularities in
letter combinations (cf. Pelli et al., 2003) than the participants
who were not much worse with non-words. Although previ-
ous research has shown that the effect of orthographic regularity
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across languages (English and German) is similar across partici-
pants with and without dyslexia (Landerl et al., 1997), in future
research it would be worthwhile to investigate whether there is a
difference in the effect of orthographic regularity associated with
the different capacity profiles reported herein.

One potential limitation of the current study, and of the
approach in Houpt et al. (2014), is that only a single string
is used for each string-type. In the standard Reicher–Wheeler
paradigm, a different word is used on each trial. Because the
repeated presentation of the string, there is ample opportunity
for the participants to use encoding strategies that are efficient
for those particular strings, but are not necessarily representative
of the participants’ ability across the whole class of string-types
that is represented by that string. Despite this possibility, Houpt
et al. (2014) found a clear differentiation among the string types.
Although it is more parsimonious to assume, that the same per-
ceptual process differences underly the word and pseudoword
superiority effects observed in both (Houpt et al., 2014) and the
Reicher-Wheeler design, it leaves open the possibility that the
individual differences in this study were due to differences in per-
ceptual learning rather than differences in more general, stable,
perceptual encoding strategies.

Another limitation of the current work is that the participants
were undergraduate and graduate students at a major univer-
sity. These participants may not be representative of the wider
range of adults with dyslexia. Furthermore, these participants
have had many years of reading practice to develop strategies for
ameliorating the effects of dyslexia. In future work, it would be
informative to use this paradigmwith younger children who have

not had access to as many years of remediation training as the

participants in this study. This would facilitate further connec-
tion between the effects reported here and the previous studies
of dyslexia and the word superiority effect (Grainger et al., 2003;
Ziegler et al., 2008). It would be particularly interesting to test if
the same clusters of capacity performance emerge with younger
participants or perhaps if there is some effect of remediation
training on the capacity patterns. More generally speaking, this
is a relatively small sample of participants for individual differ-
ences research and we hope to expand these results to a much
larger sample.

To conclude, the results presented here emphasize the impor-
tance of exploring individual differences. The dyslexic group, like
the control group, is not homogeneous; they do not all process
word and word-like strings in the same way. Here, when exam-
ining capacity profiles, three different subgroups were observed
and there were both control and dyslexic participants in each
of these groups. While it is difficult to detect these patterns by
only examining the accuracy data from tasks designed to explore
the word superiority effect (e.g., Grainger et al., 2003), by using
response latency data to predict independent, parallel processing,
group differences emerged. These types of analyses may prove
to be informative and provide information regarding how indi-
viduals are processing word stimuli, which can then be used
to develop remediation tools that are tailored to an individual
dyslexic.

Funding

This work was supported by AFOSR Grant FA9550-13-1-0087
awarded to JH and NIH-NIMHMH 057717-07 awarded to JT.

References

Baron, J., and Thurston, I. (1973). An analysis of the word-superiority effect. Cogn.

Psychol. 4, 207–228.

Blau, V., van Atteveldt, N., Ekkebus, M., Goebel, R., and Blomert, L. (2009).

Reduced neural integration of letters and speech sounds links phonolog-

ical and reading deficits in adult dyslexia. Curr. Biol. 19, 503–508. doi:

10.1016/j.cub.2009.01.065

Blomert, L. (2011). The neural signature of orthographic–phonological binding

in successful and failing reading development. Neuroimage 57, 695–703. doi:

10.1016/j.neuroimage.2010.11.003

Burns, D. M., Houpt, J. W., Townsend, J. T., and Endres, M. J. (2013). Func-

tional principal components analysis of workload capacity functions. Behav.

Res. Methods 45, 1048–1057. doi: 10.3758/s13428-013-0333-2

Cattell, J. M. (1886). The time it takes to see and name objects.Mind 11, 63–65.

Estes, W. K., and Brunn, J. L. (1987). Discriminability and bias in the word-

superiority effect. Percept. Psychophys. 42, 411–422.

Grainger, J., Bouttevin, S., Truc, C., Bastien, M., and Ziegler, J. (2003). Word

superiority, pseudoword superiority, and learning to read: a comparison of

dyslexic and normal readers. Brain Lang. 87, 432–440. doi: 10.1016/S0093-

934X(03)00145-7

Healy, A. F. (1994). Letter detection: a window into unitization and other cognitive

processes in reading text. Psychon. Bull. Rev. 3, 333–344.

Houpt, J., Townsend, J., and Donkin, C. (2014). A new perspective on

visual word processing efficiency. Acta Psychol. 145, 118–127. doi:

10.1016/j.actpsy.2013.10.013

Houpt, J. W., Blaha, L. M., McIntire, J. P., Havig, P. R., and Townsend, J. T. (2013).

Systems factorial technology with R. Behav. Res. Methods 46, 307–330. doi:

10.3758/s13428-013-0377-3

Houpt, J. W., and Townsend, J. T. (2012). Statistical measures for workload

capacity analysis. J. Math. Psychol. 56, 341–355. doi: 10.1016/j.jmp.2012.

05.004

Jacobs, A. M., and Grainger, J. (1994). Models of visual word recognition: sampling

the state of the art. J. Exp. Psychol. 20, 1311–1334.

Jeffreys, H. (1961). The Theory of Probability, 3rd Edn. Oxford.

Kucera, H., and Francis, W. (1967). Computational Analysis of Present-day Ameri-

can Engish. Providence, RI: Brown University Press.

Landerl, K., Wimmer, H., and Frith, U. (1997). The impact of orthographic consis-

tency on dyslexia: a German–English comparison. Cognition 63, 315–334.

Lefly, D. L., and Pennington, B. F. (1991). Spelling errors and reading fluency in

compensated adult dyslexics. Ann. Dyslexia 41, 141–162.

Lefly, D. L., and Pennington, B. F. (2000). Reliability and validity of the

adult reading history questionnaire. J. Learn. Disabil. 33, 286–296. doi:

10.1177/002221940003300306

Manelis, L. (1974). The effect of meaningfulness in tachostiscopic word perception.

Percept. Psychophys. 16, 182–192.

Massaro, D.W. (1973). Perception of letters, words, and nonwords. J. Exp. Psychol.

100, 349–353.

McClelland, J. L., and Johnston, J. C. (1977). The role of familiar units in perception

of words and nonwords. Percept. Psychophys. 22, 249–261.

Nicolson, R. I., and Fawcett, A. J. (2011). Dyslexia, dysgraphia, procedural

learning and the cerebellum. Cortex 47, 117–127. doi: 10.1016/j.cortex.2009.

08.016

Oldfield, R. C. (1971). The assessment and analysis of handedness: the edinburgh

inventory. Neuropsychologia 9, 97–113.

Pelli, D. G., Farell, B., and Moore, D. C. (2003). The remarkable inef-

ficiency of word recognition. Nature 423, 752–756. doi: 10.1038/nature

01516

Frontiers in Psychology | www.frontiersin.org April 2015 | Volume 6 | Article 482 | 115

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Houpt et al. Dyslexia and configural perception

Pomerantz, J. R., Sager, L. C., and Stoever, R. J. (1977). Perception of wholes and

of their component parts: some configural superiority effects. J. Exp. Psychol.

3, 422.

R Development Core Team. (2011). R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing.

Rack, J. P., Snowling, M. J., and Olson, R. K. (1992). The nonword reading deficit

in developmental dyslexia: a review. Read. Res. Q. 27, 29–53.

Ramus, F. (2003). Developmental dyslexia: specific phonological deficit or gen-

eral sensorimotor dysfunction? Curr. Opin. Neurobiol. 13, 212–218. doi:

10.1016/S0959-4388(03)00035-7

Rastle, K., Harrington, J., and Coltheart, M. (2002). 358,534 nonwords:

the ARC nonword database. Q. J. Exp. Psychol. 55A, 1339–1362. doi:

10.1080/02724980244000099

Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of

stimulus material. J. Exp. Psychol. 81, 274–280.

Rouder, J. N., Morey, R. D., Speckman, P. L., and Province, J. M. (2012).

Bayes factors for anova designs. J. Math. Psychol. 56, 356–374. doi:

10.1016/j.jmp.2012.08.001

Salmelin, R., Kiesil, A. P., Uutela, K., Service, E., and Salonen, O. (1996). Impaired

visual word processing in dyslexia revealed with magnetoencephalography.

Ann. Neurol. 40, 157–162.

Shaywitz, S. E. (1998). Dyslexia. N. Engl. J. Med. 338, 307–312.

Shaywitz, S. E., Fletcher, J. M., Holahan, J. M., Shneider, A. E., Marchione,

K. E., Stuebing, K. K., et al. (1999). Persistence of dyslexia: the connecticut

longitudinal study at adolescence. Pediatrics 104, 1351–1359.

Shaywitz, S. E., and Shaywitz, B. A. (2005). Dyslexia (specific reading disability).

Biol. Psychiatry 57, 1301–1309. doi: 10.1016/j.biopsych.2005.01.043

Siegel, L. S., Share, D., and Geva, E. (1995). Evidence for superior orthographic

skills in dyslexics. Psychol. Sci. 6, 250–254.

Spoehr, K. T., and Smith, E. E. (1975). The role of orthographic and phonotactic

rules in perceiving letter patterns. J. Exp. Psychol. 104, 21–34.

Stanovich, K. E. (1996). Toward a more inclusive definition of dyslexia. Dylexia 2,

154–166.

Stein, J. (2001). The magnocellular theory of developmental dyslexia. Dyslexia 7,

12–36. doi: 10.1002/dys.186

Sussman, B. L., Houpt, J. W., Townsend, J. T., and Newman, S. D. (2011). “EEG

correlates of visual word processing efficiency in dyslexia,” in Poster Presented

at: Society for Neuroscience Annual Meeting (Washington, DC).

Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities

in children. Brain Lang. 9, 182–198.

Townsend, J. T., and Nozawa, G. (1995). Spatio-temporal properties of elementary

perception: an investigation of parallel, serial and coactive theories. J. Math.

Psychol. 39, 321–360.

Townsend, J. T., and Wenger, M. J. (2004). A theory of interactive parallel pro-

cessing: new capacity measures and predictions for a response time inequality

series. Psychol. Rev. 111, 1003–1035. doi: 10.1037/0033-295X.111.4.1003

Vinegrad, M. (1994). A revised adult dyslexia checklist. Educare 48, 21–23.

von Károlyi, C. (2001). Visual-spatial strength in dyslexia: rapid dis-

crimination of impossible figures. J. Learn. Disabil. 34, 380–391. doi:

10.1177/002221940103400413

Weschler, D. (1999).Weschler Abbreviated Scale of Intelligence (WASI). San Anto-

nio, TX: Harcourt Assesment.

Wheeler, D. D. (1970). Processes in word recognition. Cogn. Psychol. 1, 59–85.

Wilson, A. M., and Lesaux, N. K. (2001). Persistence of phonological process-

ing deficits in college students with dyslexia who have age-appropriate reading

skills. J. Learn. Disabil. 34, 394–400. doi: 10.1177/002221940103400501

Woodcock, R. W., McGrew, K. S., and Mather, N. (2001). Woodcock-Johnson III

Tests of Achievement. Itasca, IL: Riverside Publishing.

Ziegler, J. C., Castel, C., Pech-Georgel, C., George, F., Alario, F., Perry, C.,

et al. (2008). Developmental dyslexia and the dual route model of reading:

simulating individual differences and subtypes. Cognition 107, 151–178. doi:

10.1016/j.cognition.2007.09.004

Conflict of Interest Statement: The Guest Associate Editor Cheng-Ta Yang

declares that, despite having collaborated with authors James T. Townsend and

Joseph W. Houpt, the review process was handled objectively and no conflict of

interest exists. The authors declare that the research was conducted in the absence

of any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2015 Houpt, Sussman, Townsend and Newman. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org April 2015 | Volume 6 | Article 482 | 116

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


ORIGINAL RESEARCH ARTICLE
published: 05 February 2015

doi: 10.3389/fpsyg.2015.00018

Individual differences in attention influence perceptual
decision making
Michael D. Nunez1*, Ramesh Srinivasan1,2 and Joachim Vandekerckhove1,3

1 Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
2 Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
3 Institute for Mathematical Behavioral Sciences, University of California, Irvine, Irvine, CA, USA

Edited by:

James T. Townsend, Indiana
University, USA

Reviewed by:

Adele Diederich, Jacobs University
Bremen, Germany
Joseph Glavan, Wright State
University, USA

*Correspondence:

Michael D. Nunez, Department of
Cognitive Sciences, University of
California, Irvine, 2201 Social &
Behavioral Sciences Gateway
Building, Irvine, CA 92697-5100,
USA
e-mail: mdnunez1@uci.edu

Sequential sampling decision-making models have been successful in accounting for
reaction time (RT) and accuracy data in two-alternative forced choice tasks. These
models have been used to describe the behavior of populations of participants, and
explanatory structures have been proposed to account for between individual variability
in model parameters. In this study we show that individual differences in behavior from
a novel perceptual decision making task can be attributed to (1) differences in evidence
accumulation rates, (2) differences in variability of evidence accumulation within trials, and
(3) differences in non-decision times across individuals. Using electroencephalography
(EEG), we demonstrate that these differences in cognitive variables, in turn, can be
explained by attentional differences as measured by phase-locking of steady-state visual
evoked potential (SSVEP) responses to the signal and noise components of the visual
stimulus. Parameters of a cognitive model (a diffusion model) were obtained from
accuracy and RT distributions and related to phase-locking indices (PLIs) of SSVEPs with a
single step in a hierarchical Bayesian framework. Participants who were able to suppress
the SSVEP response to visual noise in high frequency bands were able to accumulate
correct evidence faster and had shorter non-decision times (preprocessing or motor
response times), leading to more accurate responses and faster response times. We
show that the combination of cognitive modeling and neural data in a hierarchical Bayesian
framework relates physiological processes to the cognitive processes of participants,
and that a model with a new (out-of-sample) participant’s neural data can predict that
participant’s behavior more accurately than models without physiological data.

Keywords: electroencephalography (EEG), steady-state visual evoked potential (SSVEP), Phase-locking,

hierarchical Bayesian modeling, diffusion models, individual differences, perceptual decision making

1. INTRODUCTION
The joint analysis of physiological and behavioral data has been
a topic of recent interest. In a string of publications, a number
of research groups (Forstmann et al., 2010; Turner et al., 2013;
Cassey et al., 2014) have presented work in which neurophysio-
logical data are linked to parameters of cognitive or behavioral
process models (see also Palmeri et al., in preparation). The goal
of these modeling exercises is not only to evaluate the predic-
tive power of brain activity for behavior, but also to elucidate the
nature of this prediction. The use of cognitive models with neu-
ral data and cognitive parameters permits more psychologically
interpretable labeling of the neurophysiological measurements,
providing links between brain activity, cognition, and behavior.

In the present paper, we apply a cognitive model constrained
by EEG data to fit accuracy and response times of multiple indi-
viduals from a perceptual decision making task. The goal of the
model fit is twofold: (1) to demonstrate the superior generaliz-
ability of such a model as compared to model variants without
neural input components and (2) to evaluate the hypothesis that
individual differences in enhancement or suppression of visual

attention, as measured by EEG, contribute to individual differ-
ences in cognition and thus to individual differences in accuracy
and/or reaction time in the task.

In order to show out-of-sample generalizability, we first fit the
model to a training set of participants and obtain the requisite
(population-level) linking parameters, and then make predictions
about the behavior of a new participant to which the model was
not trained. In the sections that follow, we will describe (1) the
cognitive process model that we have chosen, (2) the task to which
it is applied and the EEG data that we collected, (3) a series of
three models of increasing complexity, of which the model with
external attentional EEG covariates is the most complex, (4) the
results of the generalization exercise and (5) evaluation of the
hypothesis.

1.1. STEADY-STATE VISUAL EVOKED POTENTIALS AS A MEASURE OF
ATTENTION

In this study, we will demonstrate how attentional mechanisms
can explain individual differences in perceptual decision making
as estimated by a cognitive model. In a typical visual attention
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experiment, the signal stimulus is attended and preferentially pro-
cessed while competing stimuli (i.e., visual noise) are not further
processed. A number of studies have demonstrated that a measure
of the deployment of attention can be obtained by using flicker-
ing stimuli and electroencephalographic (EEG) recordings of the
(frequency tagged) steady-state visual evoked potentials (SSVEPs)
(Morgan et al., 1996; Müller et al., 1998; Ding et al., 2006; Bridwell
and Srinivasan, 2012; Garcia et al., 2013). SSVEPs are narrow
band responses at the visual flicker frequencies and flicker har-
monics of a stimulus (Regan, 1977). When a stimulus is attended,
the SSVEP is enhanced, and when a stimulus is not attended or
suppressed, the SSVEP is diminished. This approach has been
used to investigate individual differences in attention strategy in
detection and discrimination tasks. Bridwell et al. (2013) found
that only a subset of participants could deploy the optimal atten-
tion strategy and modify their strategy by the task demands. An
SSVEP approach has also been used to show that individuals are
trained by their own experiences. Individuals with attentional
training due to a history of fast-action video gaming have been
found to preferentially suppress noise rather than enhance the
signal, and those individuals performed better at vigilance tasks
(Krishnan et al., 2013).

1.2. DIFFUSION MODELS FOR TWO-CHOICE RESPONSE TIMES
Diffusion models are a class of sequential-sampling models for
reaction time (RT) and response data that can capture the joint
distribution of RT and accuracy in speeded choice tasks. This
family of models has been useful in explaining between- and

within-participant variability in two-alternative forced choice
decision making experiments (Vandekerckhove et al., 2008,
2011). Diffusion models also add to the analyses of participants’
behavior by assuming underlying cognitive processes which have
some empirical validation (Voss et al., 2004). In particular, they
assume that at each trial, participants obtain relative evidence
from a stimulus over time until sufficient evidence is accumu-
lated to exceed the threshold for one of the two choices (Stone,
1960; Link and Heath, 1975; Ratcliff, 1978). This process of rel-
ative evidence accumulation is modeled as a Wiener diffusion
process (or Brownian motion) and can be thought of as a con-
tinuous random walk process—that is, a random walk process
where in each infinitesimal time step, the evidence increases by
a random amount according to a normal distribution with some
mean and some instantaneous variance (Ratcliff, 1978). A visual
representation of the model is provided in Figure 1.

Fitting RT and choice behavior using the diffusion model is
a useful behavioral analysis tool since the model’s parameters
have interpretable psychological correlates. The drift rate δj rep-
resents the mean rate of evidence accumulation of participant j
during their decision process. The drift rate is thought to reflect
the quality of evidence the participant obtains during an exper-
imental trial (Ratcliff et al., 2001). The diffusion coefficient ςj

is the parameter that represents the amount of variability in the
evidence accumulation process within one trial (i.e., the instanta-
neous variance). The bias parameter βj is the proportion of bias a
participant j has in favor of choice A over choice B (it should be
noted that we fix the bias parameter to 1

2 in this paper since we

FIGURE 1 | A visual representation of the diffusion model. The orange
line represents the participant’s stochastic evidence accumulation process
during one trial. When a participant accumulates enough evidence over
time for a correct or incorrect response (graphically represented by the
top and bottom boundaries at 0 and α, respectively) a decision is made.
The drift rate δ is the mean rate of evidence accumulation (evidence
units per second) during the participant’s decision time on one trial. The
bias parameter β represents a bias of the participant toward one choice
or the other (set to 1

2 when the model parameters are expressed in
terms of correct over incorrect evidence instead of choice A over choice
B evidence). The non-decision time τ is the portion of the participant’s
reaction time (RT) during the trial not associated with decision making,
equal to the sum of encoding/preprocessing time τ (a) and motor response

time τ (b) which are not estimable. The boundary separation parameter α
represents the amount of relative evidence needed to make a decision.
Another parameter is the variability in the evidence accumulation
process, the diffusion coefficient ς . In this trial the diffusion coefficient is
large in comparison to a smaller diffusion coefficient as shown by the
light blue dashed line. The teal shaded areas represent the correct (top)
and incorrect (bottom) reaction time distributions. In this example the
systematic component of the decision making process is positive δ > 0
indicating a mean trend toward correct responses. However, incorrect
responses can still be reached due to the random component of the
decision making process (the diffusion coefficient ς ). Larger ς indicate
that a participant would be increasing likely to make faster decisions, but
have closer to chance performance (i.e., an accuracy of β).
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model behavior as correct vs. incorrect trials instead of choice A
over choice B trials). The non-decision time τj is the amount
of time during the response process that is not associated with
the decision making process, such as preprocessing of the stimu-
lus and/or motor response time. Finally, the boundary separation
parameter αj represents the amount of relative evidence needed to
make a decision and is typically manipulated by task instructions
emphasizing either speed or accuracy (Ratcliff et al., 2001; Voss
et al., 2004). It is important to note that the model is not identifi-
able unless we constrain at least one of the parameters that pertain
to the evidence dimension (i.e., diffusion coefficient ς , drift rate
δ, or boundary separation α).

1.3. THE CASE FOR HIERARCHICAL BAYESIAN MODELS
Recent advances in mathematical psychology have introduced
hierarchical Bayesian versions of cognitive models (Rouder et al.,
2005; Vandekerckhove et al., 2011). The advantages of these
hybrid modeling–measurement strategies include more princi-
pled (Bayesian) statistical inference, increased statistical power
(Vandekerckhove et al., 2010), and interpretability of results in
terms of psychological concepts rather than statistical summary
(Vandekerckhove, 2014). The use of cognitive models as mea-
surement tools has become known as cognitive psychometrics (e.g.,
Batchelder, 2010).

The hierarchical Bayesian process modeling framework is ide-
ally suited for the joint analysis of multiple modes of data—
(Turner et al., 2013) describe three such joint modeling strategies
and (Vandekerckhove, 2014) describes a fourth. One strategy
afforded by hierarchical Bayesian models involves constraining
the estimation of cognitive process models by introducing the
brain data as (fixed) covariate information. This strategy carries
the disadvantage that it does not by default allow for mea-
surement variance on the neurophysiological side, but has the
advantage of being relatively straightforward to implement in a
computationally efficient fashion. By conditioning the estima-
tion of the cognitive parameters on brain data (or other external
covariates), it is expected that unexplained variability between
participants can be reduced, and consequently that such a model
should perform better in generalization tests.

Interindividual variability (i.e., variability in the participant-
level cognitive parameters; changes over subscript j) in diffu-
sion models has been previously analyzed by fitting a diffusion
model to each participant individually then comparing parame-
ters across model fits. The individual differences were then gauged
by statistical analyses on the models’ resulting maximum like-
lihood parameter estimates (Ratcliff et al., 2001; Wagenmakers
et al., 2008). Some limitations to this technique are that large
sample sizes are needed for diffusion model parameter estima-
tion, that shared condition-level differences across individuals
cannot be easily evaluated (Wagenmakers, 2009; Vandekerckhove
et al., 2011), and that statistical uncertainty is not propagated
across stages of the analysis. Hierarchical Bayesian methods along
with Monte Carlo sampling techniques allow for the estimation
of complex models. These methods have been used to explain
individual differences in the diffusion model and other cognitive
models without the need for large sample sizes (Lee, 2008; Lee
and Newell, 2011; Vandekerckhove et al., 2011). Additionally, the

hierarchical framework allows for between-participant variability
to be explained when each participant’s diffusion model param-
eters are functionally related to known exogenous data (e.g.,
physiological data).

1.4. CONSTRAINING MODEL PARAMETERS WITH EEG DATA
We assume that brain activity compels cognition, which in turn
drives participant behavior. Assuming attention constrains one
or more of the cognitive processes in perceptual decision mak-
ing, then as a consequence of attentional mechanisms we expect
SSVEPs to help explain between-participant variability in the
parameters of the diffusion model and thus between-participant
variability in RT and accuracy. In one study, an occipital SSVEP
amplitude was shown to track visual sensory evidence over the
time course of a trial, suggesting that SSVEPs can reflect the
evidence accumulation process itself (O’Connell et al., 2012).
The experimental stimulus used in this study involves a flick-
ering signal overlayed on time-varying visual noise, designed to
evoke separate SSVEP responses to the signal and the visual noise,
which we expect will explain individual differences in the model
parameters and behavior.

We hypothesize increased within-trial evidence accumulation
rates, reflected by increased drift rates, for those subjects who
suppressed attention to the visual noise. We further hypothe-
size that another benefit of attention for RT and accuracy is
a result of reduced within-trial variability in the accumulation
of evidence. Thus, we predict an across-individuals relationship
between enhanced attention to the signal and decreased diffusion
coefficients.

As mentioned above, one of the parameters of the diffu-
sion model must be fixed rather than estimated (either diffusion
coefficient ς , drift rate δ, or boundary separation α). For the
present study a variable boundary separation across conditions
is not a valid interpretation of the data since the changes between
conditions occur unannounced, leaving the participant with no
opportunity to adapt strategies (e.g., switch between a speed or
accuracy strategy) in response to stimulus changes. In our param-
eterization, we leave the diffusion coefficient ς free to vary, set α
to one evidence unit, and assume no bias (β = 1

2 ) toward cor-
rect responses. The joint density f of RT t and accuracy w of this
simplified diffusion model is given in Equation 1. The density is
derived from the limiting approximation given by Ratcliff (1978)
where z = 1

2α and α = 1.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (t,w = 0 | ς2, τ, δ) = πς2e
− 1

2

[
δ
ς
+δ2(t−τ)

]

+∞∑

k= 1

[
k sin

( 1
2πk

)
e−

1
2 k2π2ς2(t−τ)]

f (t,w = 1 | ς2, τ, δ) = f (t,w = 0 | ς2, τ,−δ)

(1)

In what follows, we will use the effect of attention, as measured by
SSVEPs, to constrain diffusion model parameter estimates (in our
case δj, ςj, and τj). In particular, we assume that, on each trial, a
participant’s attention is reflected in phase locking (i.e., SSVEPs)
to the attended visual signal and decreased phase locking to the
unattended visual noise.
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We will demonstrate that the hierarchical Bayesian SSVEP-
driven diffusion model has predictive ability as well as descriptive
ability—more specifically, that our ability to predict each partic-
ipant’s accuracy and RT behavior is improved by including the
SSVEP measures of attention processes.

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
The following study was approved by the University of California,
Irvine Institutional Review Board and was performed in accor-
dance with APA standards. Informed consent was obtained from
each of the seventeen participants (8 females and 9 males) who
took part in the study. The mean age of 16 of the participants
was 25 with an age range of 21–30. Another participant was over
45 years of age. Sixteen participants self-identified as being right
handed while another identified as being left or ambidextrous. All
participants had at least 20/30 vision or corrected vision as mea-
sured by a visual acuity chart available on the internet (Olitsky
et al., 2013). No participants reported any history of neurologi-
cal disorder. Each participant completed the experiment in one
session within 2.5 h.

2.2. EXPERIMENTAL STIMULUS
The participants were given a two-alternative forced-choice per-
ceptual decision making task in which they were asked to differ-
entiate the mean rotation of bars within a circular field of bars
that deviated randomly from mean rotation. One half of the trials
had a mean bar rotation of 45◦ while the other half had a mean
rotation of 135◦. The bar field was flickered against a time-varying
noise pattern.

The participants viewed each trial of the experimental stim-
ulus on a monitor in a dark room. The time course of one trial
is shown in Figure 2. Participants were positioned such that the
entire circular field of small oriented bars had a visual angle of
9.5◦. Within each trial the participant first saw a black cross for
750 ms in the middle of the screen on which they were instructed
to maintain fixation throughout the trial. The participant then
observed visual contrast noise changing at 8 Hz for 750 ms; this

time period of the trial will be referred to later in this paper as
the noise interval. The participant then observed a circular field of
small oriented bars flickering at 15 Hz overlaid on the square field
of visual noise pattern changing at 8 Hz and responded during
this time frame, henceforth referred to as the response interval.
The visual noise and bar field are modulated at constant rates
(8 and 15 Hz, respectively) to evoke frequency-tagged signal and
noise responses in the cortex which we measured as steady-state
visual evoked potentials (SSVEPs). The SSVEP responses at the
signal frequencies (15 Hz and its harmonics) and at the contrast
noise frequencies (8 Hz and its harmonics) were used to measure
the effect of attention to the signal stimulus and noise stimulus.
The display time of the response interval was sampled between
1000 and 2000 ms from a uniform distribution. After this display
period the black fixation cross was shown in isolation for 250 ms
to alert the participant the trial was over and to collect any delayed
responses.

Three levels of variance of bar rotation and three levels of con-
trast noise were used to modulate the task difficulty. In the first
level of bar rotation variance, each bar was drawn from a uni-
form U(− 30◦, 30◦) distribution centered on the mean angle.
In the two other levels, the rotations of each bar were drawn
from U(− 35◦, 35◦) and U(− 40◦, 40◦), respectively. The three
levels of contrast noise were 30% contrast noise, 45% contrast
noise and 60% contrast noise. The 30% contrast noise condi-
tion was obtained by the addition of a random draw from a
U(− 15%, 15%) distribution to the luminance of each pixel in
a square field. Baseline luminance was 50%. The other contrast
noise conditions were obtained similarly. Each participant was
shown 90 trials from each bar rotation-noise condition combi-
nation.

The bar rotation (BR) variance manipulation was hypothe-
sized to modulate each participant’s diffusion coefficient since
the participant would have more variable information in harder
trials. Considering each bar’s rotation as a unit of information
contributing to a “left” or “right” response, information would be
more variable in trials that sampled the BRs from wider uniform
distributions. It was thought that contrast noise would degrade

FIGURE 2 | The time course of one trial of the experimental stimulus.

The participant first fixated on a black cross for 750 ms indicating the
beginning of a trial. The participant then observed visual contrast noise
changing at 8 Hz for 750 ms while maintaining fixation. A circular field of small
oriented bars flickering at 15 Hz overlaid on the changing visual noise was
then shown to the participant for 1000–2000 ms. The task was to indicate

during this response interval whether the bars were on average oriented
toward the “top-right” (45◦ from the horizontal line; as in this example) or
“top-left” (135◦) corners. It was assumed that the participant’s decision
making process began at the start of the response interval. After the
response interval, the fixation cross was shown in isolation for 250 ms to alert
the participant that the trial was over and to collect remaining responses.
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the amount of information each bar gave to the decision pro-
cess thus leading to smaller drift rates in trials with higher noise
contrast.

2.3. BEHAVIOR AND EEG COLLECTION
Participants first completed a training session of 36 trials each.
Participants were asked to complete a second training set if their
percentage accuracy was subjectively judged by the experimenter
to not converge to a stable value. Each participant completed
6 blocks of 90 trials each for a total of 540 trials with breaks
between each block of variable time. Each trial lasted randomly
(uniformly) from 2.75–3.75 s. Participants were asked to respond
during the 1–2 s response interval as accurately as possible, with
no-answer trials considered as incorrect. To maintain partici-
pant performance, auditory feedback was given after the response
interval to the alert the participant if they were correct or incor-
rect. Performance feedback was also provided between blocks
by displaying on the screen the percentage of trials answered
correctly in that block. The behavioral data consists of each
participant’s accuracy and RT during each trial.

High-density electroencephalography (EEG) was collected
using Electrical Geodesics, Inc.’s 128-channel Geodesic Sensor
Net and Advanced Neuro Technology’s amplifier with electrodes
sitting on the participant’s scalp throughout the duration of the
experiment. Electrical activity from the scalp was recorded at a
sampling rate of 1024 samples per second with an online average
reference using Advanced Neuro Technology’s digitization soft-
ware. The EEG data was then imported into MATLAB for offline
analysis.

Linear trends were removed from the EEG data. As we
were only interested in 1–50 Hz EEG, the following filters were
applied to each channel: (1) A high pass Butterworth filter
with a 1 Hz pass band with 1 dB ripple and 0.25 Hz stop band
with 10 dB attenuation, (2) a stopband Butterworth filter with
59 and 61 Hz pass bands with 1 dB ripple and 59.9–60.1 Hz
stop band with 10 dB attenuation (to remove power-line noise),
and (3) a low pass Butterworth filter with a 50 Hz pass band
with 1 dB ripple and 60 Hz stop band with 10 dB attenuation.
Artifactual data thought to be generated by phenomena out-
side of the cortex were removed from the EEG data using a
paradigm involving Independent Component Analysis (ICA):
First, any trials or channels were rejected that had time-courses
unusual for cortical activity and/or had properties that ICA
is deemed to not extract well, such as trials with high fre-
quency activity indicative of muscle activity, trials or channels
with high 60 Hz amplitude indicative of power-line noise sug-
gesting poor electrode-to-skin connection, or trials with sudden
high amplitude peaks that cannot be generated by cortical activ-
ity (Delorme et al., 2007). Second, ICA was used to remove
linear mixtures of channel time-courses that did not subjec-
tively correspond to EEG data in spatial map on the scalp, in
power spectrum, and/or in event-related potential (ERP). Typical
artifactual components include: those components with spa-
tial maps of highly weighted electrodes near the eyes suggestive
of eye movements, those components with high amplitudes at
high frequencies and low amplitudes at low frequencies sug-
gestive of muscle activity, and spatial maps of highly weighted

singular electrodes suggestive of poor electrode-scalp connec-
tivity. A final cleaning step was performed by rejecting any
trials that had high amplitudes not typical of cortical electrical
activity.

For each participant, steady-state visual evoked potentials
(SSVEPs) to the visual noise and signal (the circular bar field)
were found at each electrode. In this experiment a steady-state
response was defined by the consistency in phase at the frequen-
cies of the stimulus (8 and 15 Hz) and the harmonic frequencies
of the stimulus (16, 24, 32, 40, 48, 30, and 45 Hz). The unifor-
mity of phase across trials was measured by the Phase Locking
Index (PLI) across trials. The PLI is a statistical characterization
of phase synchronization resulting from an experimental stimu-
lus and has been shown to be successful in characterizing cortical
signals (Rosenblum et al., 1996; Sazonov et al., 2009). The PLI
ignores signal amplitude and ranges from 0 (all trials out-of-
phase) to 1 (all trials in-phase; Tallon-Baudry et al., 1996). The
equation used for PLI is provided in Equation 2. PLI is the aver-
age of ≈ 540 trials of amplitude normalized Fourier coefficients
of the time interval. For each electrode e and participant j, PLI is
defined as a function of frequency f .

PLIej(f ) =
∣∣∣∣

1

540

540∑

i= 1

Fiej(f )∣∣Fiej(f )
∣∣

∣∣∣∣ (2)

The steady-state responses to the visual noise were analyzed based
on both the 750 ms noise interval and the first 1000 ms of the
response interval while the steady-state responses to the signal
were analyzed based only on the first 1000 ms of the response
interval. Because steady-state responses located in parietal elec-
trodes have been successfully related to attentional mechanisms
in past studies (Ding et al., 2006; Bridwell and Srinivasan, 2012),
electrical activity at parietal electrodes was hypothesized to be
most descriptive of cognitive processes in the visual decision mak-
ing task. The subject mean PLI at all frequencies averaged over
parietal channels is shown in Figure 3. Topographic maps of the
distribution of the PLI are shown at the fundamental and first
two harmonics for signal and noise frequencies. It is clear that
the SSVEP is broadly distributed over frontal, parietal, and occip-
ital networks, as has been found in other studies (Ding et al.,
2006; Bridwell and Srinivasan, 2012; Krishnan et al., 2013). The
mean PLIs over prefrontal, frontal, central, parietal, and occipital
electrode groups for each of the evoked frequencies were used as
predictors in the model.

We expect the evoked cortical networks to change depen-
dent upon the flicker frequencies of the stimulus (Ding et al.,
2006; Bridwell and Srinivasan, 2012), as shown by the stimulus
response in Figure 3 where the spatial distributions of the fun-
damental and harmonic responses are quite different. However,
we do not expect the behavior of these harmonics to be uncor-
related. To avoid multicollinearity, we performed two principal
components analyses (PCAs; on the noise and signal frequen-
cies separately) to obtain a smaller number of PLI measures
from uncorrelated cortical networks. The first PCA reduced 60
PLI variables (5 cortical locations by 6 noise harmonics in both
the noise and response intervals) to 16 principal components.
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FIGURE 3 | The subject mean parietal channel PLI at all frequencies in

the noise interval (top panel) and the response interval (bottom). The
resolution of the the PLI spectra in the top plot is approximately 1.3 Hz due to
the PLI being a function of Fourier transforms of 750 ms epochs. The
resolution of the PLI spectra in the bottom plot is 1 Hz as the Fourier
transforms are of 1000 ms epochs. The 15 and 16 steady-state responses
during the response interval are separable when using 1000 ms epochs. Also
shown are subject mean PLI topographies (at 8, 16, and 24 Hz during the

noise interval and 15, 30, and 45 Hz during the response interval, each on a
standardized scale) indicating where the maximum subject mean PLI is
located on the scalp in relation to the parietal electrodes (highlighted green).
It is clear from these topographies that using only parietal electrodes will not
capture all of the steady-state response information. An index of electrode
locations is also provided in the top right. Prefrontal, frontal, central, parietal,
and occipital electrode groups are colored light blue, teal, orange, green, and
blue, respectively.

The second PCA transformed 15 PLI variables (5 cortical loca-
tions by 3 signal harmonics) to 15 principal components. Our
criteria for which principal components to include in the hierar-
chical Bayesian models were (1) based upon the improvement of
in-sample predictive power as we increased the number of prin-
cipal components, resulting in candidate principal components
and (2) then based upon the out-of-sample predictive power of
the candidate principal components.

2.4. HIERARCHICAL BAYESIAN MODELS
All trials from every participant were used for model fitting except
those trials in which there was deemed to be EEG artifact and
those trials during which the participant made no response or
responded more than once. Since our models do not account
for non-decision making trials, exceedingly fast trials (faster than
250 ms) were excluded as well.

The marginal likelihood for the model—that is, the predicted
distribution of the data conditional on all parameters—is the first
passage time distribution of a Wiener process with constant drift.
We call this probability density function the Wiener distribution.
For each trial i, subject j, and condition k, the observed accuracy
wijk and RT tijk were combined in a two-element vector yijk. These
values were then assumed to be drawn from a joint distribution:

yijk ∼W(δijk, ςijk, τijk). (3)

We applied a sequence of three models—each adding a new
feature—to the data.

2.5. MODEL 1: NO INDIVIDUAL DIFFERENCES
We assumed in Model 1 that all three diffusion model parameters
were constant across participants (i.e., that all participants were
identical), and depended only on the experimental condition k.
The diffusion model was fit to the RT and accuracy data of all 17
participants under the assumption that all participants had the
same drift rate δk, diffusion coefficient ςk, and non-decision time
τk that were variable across condition k but not variable across
participant j. Here k denotes both the particular BR condition
and the particular contrast noise condition-level, k = 1, . . . , 9. A
graphical representation of Model 1 is provided in Figure 4A.

The assumptions of the model, together with the prior dis-
tributions for the parameters, appear below. The priors for the
drift rate δk and non-decision time τk were truncated normal
distributions due to the knowledge of the natural constraints of
the diffusion model and prior knowledge of acceptable values
for similar tasks. Note that the second parameter of the normal
distributions below represent the variance.
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A B

FIGURE 4 | A graphical representation of Model 1 (A) and Model 2 (B). In
Model 1, drift rates δk , diffusion coefficients ςk , and non-decision times τk
were assumed to vary over conditions k but remain invariant across
participants j and trials i. There were three bar rotation conditions and three
contrast noise conditions. Here k denotes each bar rotation and contrast

noise pair. In Model 2, drift rates δjk , diffusion coefficients ςjk , and
non-decision times τjk were assumed to vary over both conditions and
participants. Each of these parameters are in turn assumed to be drawn from
normal distributions with means that varied over conditions k and with
variances that did not vary across conditions.

δjk = δk, δk ∼ N (0.0, 5) ∈ (− 9, 9)
ςjk = ςk, ςk ∼ N (0.5, 4)
τjk = τk, τk ∼ N (0.3, 4) ∈ (0, 1)

2.6. MODEL 2: INDIVIDUAL DIFFERENCES
In Model 2 we assumed that participants differ but are draws from
a single superordinate population (i.e., participants are exchange-
able). Consequently, the drift rate δjk, diffusion coefficient ςjk,
and non-decision time τjk varied by both subject j and con-
dition k. Subject-level parameters were assumed to be drawn
from normal distributions with means that were variable over
condition only. Variances were assumed to be invariant across
conditions to maintain model simplicity (i.e., the model assumes
homoscedasticity in the parameters). The prior distributions of the
parameters are listed below.

(
δjk | νk, η

) ∼ N (νk, η) ∈ (− 9, 9), νk ∼ N (0.0, 5), η ∼ 
(6, 0.10)(
ςjk | μk, ψ

) ∼ N (μk, ψ), μk ∼ N (0.5, 4), ψ ∼ 
(4, 0.05)(
τjk | θk, χ

) ∼ N (θk, χ) ∈ (0, 1), θk ∼ N (0.3, 4), χ ∼ 
(5, 0.01)

A graphical representation of Model 2 is provided in Figure 4B.

2.7. MODEL 3: INDIVIDUAL DIFFERENCES WITH NEURAL CORRELATES
With Model 3, we will attempt to explain any individual dif-
ferences in cognitive parameters by introducing the neural data
as explanatory variables. The model is similar to Model 2,
but additionally includes a regression structure to explain vari-
ability in subject-level model parameters with steady-state PLI
values.

In order to avoid multicollinearity, PLIs were first subjected
to a principal component analysis (PCA), and the resultant
independent components were used as predictors. The PCA was

performed on the noise and signal frequencies separately. The first
PCA reduced 60 PLI variables to 16 principal components and the
second PCA transformed 15 PLI variables into 15 components.
The criterion used to determine which principal components to
include was the out-of-sample predictive power of each model.
Predictive power was measured as R2

pred, a measure of the per-
centage of total between-subject variance explained, in this case
of the correct-RT medians of each condition. The equation used
for R2

pred is provided in the Supplemental Materials.
Subject-level drift rates δjk, diffusion coefficients ςjk, and non-

decision times τjk were assumed to be drawn from normal distri-
butions with means of the form αk + xᵀ

j γ where αk is condition

k’s effect on the subject-level cognitive parameter, xj is a vec-
tor of principal components, and γ is a vector of regression
coefficients (i.e., the effect of each principal component on the
cognitive parameter). The graphical representation of the model
is provided in Figure 5. The priors of the variance parameters are
the same as in Model 2. Weakly informative prior distributions
of N (0.0, 10) were given to the weight variables that make up
the vectors γ(δ), γ(ς), and γ(τ ). The other hyperpriors and priors
were:

(
δjk | α(δ)k, γ(δ), η

) ∼N
(
α(δ)k + xᵀ

j γ(δ), η
)
∈ (− 9, 9), α(δ)k ∼N (0.0, 5)

(
ςjk | α(ς)k, γ(ς), ψ

)∼N
(
α(ς)k + xᵀ

j γ(ς), ψ
)
, α(ς)k ∼N (0.5, 4)

(
τjk | α(τ )k, γ(τ ), χ

) ∼N
(
α(τ )k + xᵀ

j γ(τ ), χ
)
∈ (0, 1), α(τ )k ∼N (0.3, 4)

2.8. POSTERIOR SAMPLING
We used the JAGS software (Plummer, 2003) to analyze the
data by drawing samples from the joint posterior distribution
of the parameters of the hierarchical models. To compute the
likelihood function associated with the assumed decision mak-
ing process (the Wiener distribution), we used the jags-wiener
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FIGURE 5 | Graphical representation of Model 3. Drift rates δjk , diffusion
coefficients ςjk , and non-decision times τjk were assumed to vary over both
conditions and participants. Each of these parameters are assumed to be
drawn from normal distributions with means of the form αk + xᵀ

j γ , where
xj is the vector of SSVEP responses of subject j, and with variances that did
not vary across conditions. As an example, α(τ )k is the condition effect on
the non-decision time and γ(τ ) reflects the change in non-decision time
(seconds) due to a one SSVEP unit difference across two participants.

module (Wabersich and Vandekerckhove, 2013). This allowed us
to explain accuracy and response time distributions within con-
ditions and across subjects. For each model, samples from the
posterior distributions of the parameters were found by run-
ning JAGS with six Markov Chain Monte Carlo (MCMC) chains
of length 21000, with 1000 burn-in (discarded) samples and a
thinning parameter of 10 (keeping only every 10th sample) result-
ing in six joint posterior distribution estimates of 2000 samples
each. We used the R̂ statistic to compare within-chain variance
to between-chain variance in order to assess convergence of the
MCMC algorithm (Gelman and Rubin, 1992).

2.9. POSTERIOR PREDICTIVE DISTRIBUTIONS
To quantify model fit, in-sample posterior predictive distributions
of accuracy-RTs from 5000 simulated experiments were estimated
by sampling from the posterior distributions of subject-level
parameters for each of the three models. That is, s = 1, . . . , 5000
samples were randomly drawn from the subject-level posterior
distributions of the model parameters producing 5000× 1 col-

umn vectors for each drift rate δ
(s)
jk , diffusion coefficient ς

(s)
jk , and

non-decision time τ
(s)
jk . The samples

(
δ

(s)
jk , ς

(s)
jk , τ

(s)
jk

)
were used

to generate accuracy-RT samples from the Wiener distribution
[with the rejection sampling algorithm described in Tuerlinckx
et al. (2001)].

In order to find candidate PLI predictors for Model 3 and also
to gauge the ability of each model type to predict new subjects’
behavioral data, in-sample and out-of-sample posterior predic-
tive distributions were generated using the PLI coefficients and
posterior distributions of the condition-level parameters to find

predictive distributions of the subject-level parameters. This pro-
cedure does not use samples from the subject-level posterior
distributions directly, but estimates the subject-level parameters
from the posteriors of the condition-level parameters and EEG
covariates before finding a posterior predictive distribution of
accuracy-RTs. Samples from the posterior predictive distribution
of subject j’s mean drift rate on a trial in condition k are drawn

from a normal distribution with mean α
(s)
(δ)k + G(s)

(δ)xj where xj

is the vector of subject j’s principal component PLI values, α
(s)
(δ)k

are samples from the posterior distribution of condition k’s effect

on drift rate, and G(s)
(δ) is a matrix consisting of samples from the

posterior distributions of the PLI coefficients for drift rate. For in-
sample prediction, we fit different possible forms of Model 3, with
different numbers of principal components, 17 times each to gen-
erate in-sample posterior distributions to find candidate principal
components. Then for out-of-sample prediction, we fit different
possible forms of Model 3, with the resulting candidate principal
components, 17 times with each participant removed from the
data set. In the previously mentioned example, both the condi-
tion effect on drift rate and PLI coefficients are estimated from
the model with all subjects except j for out-of-sample prediction.

3. RESULTS
For all models and all parameters, convergence of the Monte
Carlo chains was satisfactory: R̂ ≤ 1.01 for all parameters (R̂ ≥
1.10 is conventionally taken as evidence for non-convergence;
Gelman and Rubin, 1992).

3.1. MODEL 1: NO INDIVIDUAL DIFFERENCES
Marginal posterior distributions of the parameters of Model 1
are plotted in the Supplemental Materials’ Figure 8. The vari-
ability of evidence units gained per second ςk increased as BR
variance grew. Evidence units gained per second, drift rate δk,
was found to decrease both with larger contrast noise and larger
BR. The parameter estimates seem to show a complex interaction
effect of BR and contrast noise on non-decision time τk. However,
the results from Model 2 will indicate that Model 1 is suffi-
ciently misspecified that this interaction cannot be interpreted in
a meaningful way.

3.2. MODEL 2: INDIVIDUAL DIFFERENCES
The marginal posterior distributions of the condition-level
parameters are shown in Figure 8 of the Supplementary Materials.
At the condition level, the effects of the experimental manipula-
tions on drift rate and the diffusion coefficient remain similar to
the results of Model 1: Mean drift rates νk were found to decrease
as BR variance grew, smaller mean drift rates were observed in
the high visual noise condition, and mean diffusion coefficients
μk increased as BR variance grew. Main effects on the condition-
level non-decision time not clearly observable in Model 1 were
found in Model 2. Mean non-decision time θk was slow when the
BR variance was high, and participants were estimated to have
quick non-decision times in low visual noise conditions.

The complex interactive pattern of non-decision times
obtained in Model 1 no longer appears.

By adding subject-level parameters, the current model not
only provides a clearer picture of condition-level behavior of all
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participants, but describes the individual differences of the par-
ticipants modeled by the subject-level parameters, δjk, ςjk, and
τjk. Posterior distributions for the subject-level parameters of the
easiest condition (±30◦ BR and 30% noise) are provided in the
Supplemental Materials’ Figure 9. Due to subject-level parame-
ters deviating from the condition-level parameter’s means, this
model is able to predict within-sample data well-compared to the
previous model. Percent variances explained (R2

pred) of correct-
RT subject medians by within-sample posterior prediction are
provided in Table 1. Model 2 explains at least 86.3% of median
correct-RT between-subject variance in each condition.

3.3. MODEL 3: INDIVIDUAL DIFFERENCES WITH NEURAL CORRELATES
The results of Model 2 clearly demonstrate differences between
participants’ cognition in the perceptual decision making task. We
were further able to explain the differences in the cognitive vari-
ables using the neural data: Model 3 was fit in a similar manner to
Model 2, but additionally included principal components of the
steady-state PLIs as regressors, as represented by the vector xj, on
the subject-level model parameters.

We generated in-sample posterior predictive distributions
using condition-level parameter posterior distributions (as
opposed to in-sample posterior prediction from subject-level
parameters), PLI coefficient posterior distributions, and PLI
variables from each subject to find principal components that
best predicted correct RT distributions. A plot of in-sample
unexplained median correct-RT between-subject variance as a
decreasing function of number of principal component (PC)
regressors included in the model is provided in Figure 10 of
the Supplemental Materials. Based on this analysis, PCs 2, 4,
and 7 of both the noise and signal sets were tested further to
find the model that best predicted out-of-sample RT of correct
responses.

Model 3 was the model that best predicted out-of-sample
correct-RT distributions by using noise component 2 and signal
component 7 as exogenous PLI regressors on the diffusion model
parameters. It should be noted that the amount of variance of the
original PLI data explained by each PC is not reflective of each
PC’s out-of-sample predictive power, just as the amount of vari-
ance of the original data explained by each PC is not reflective
of its contribution to the model (Jolliffe, 1982). A table of per-
cent between-subject variance of median correct-RT explained
(R2

pred) by out-of-sample prediction is provided in Table 1. Tables
of percent between-subject variance of mean, 25th percentile, and
75th percentile correct-RT explained by out-of-sample prediction
are provided in the Supplemental Materials. A new paricipant’s
correct-RT distribution in each condition can be more accurately
predicted using the participant’s EEG in Model 3’s framework
than by using Model 1’s or Model 2’s framework. 31.9% of
the between-subject variance of the easiest condition’s median
correct-RT is explained by out-of-sample prediction.

To aid in interpretation, the posterior distributions of the
regression coefficients for each PC were projected into the PLI
coefficient space by multiplying the matrix of PC coefficient pos-
terior samples G by the inverse-weight matrix V from the PCA
algorithm which projects the PCs into the PLI data space. The
result GV are samples from the posterior distributions of the
regression coefficients for each PLI variable. This transformation
was performed once for each of the noise and signal variable sets.

The posterior distributions of the signal PLI coefficients are
provided in Figure 6 with means, medians and 95% and 99%
credible intervals. From the PC coefficient and PLI coefficient
posteriors, it was clear that there is a complex signal response
at multiple frequencies and cortical locations on the diffusion
coefficient and non-decision time. Participants with larger signal
occipital 15 and 45 Hz PLIs are expected to have smaller variances

Table 1 | Percentage of between-subject variance in correct-RT medians explained by in-sample and out-of-sample prediction (R2
pred ) for each

experimental condition.

Rotation Noise In-sample prediction Out-of-sample prediction

M1 M2 M3 M1 M2 M3

±30◦ 30% −0.1% 94.3% 95.0% −13.5% −11.8% 31.9%

±35◦ 30% −0.1% 95.6% 95.8% −12.3% −11.7% 27.6%

±40◦ 30% −0.5% 92.2% 92.1% −12.5% −11.5% 19.9%

±30◦ 45% −1.2% 86.3% 87.4% −15.1% −11.7% 29.4%

±35◦ 45% −0.2% 92.3% 91.6% −12.0% −13.6% 22.8%

±40◦ 45% 0.2% 92.6% 91.9% −11.9% −15.0% 28.0%

±30◦ 60% −0.7% 93.1% 92.8% −12.9% −13.0% 18.6%

±35◦ 60% −2.3% 92.5% 92.6% −14.7% −13.5% 13.3%

±40◦ 60% −0.6% 90.9% 91.2% −13.8% −18.0% 26.2%

The in-sample predictive ability of the no-individual differences Model 1 was unsurprisingly poor, while the in-sample predictive ability of individual differences

models (with and without EEG regressors, Model 2 and Model 3, respectively) explained most of the variance of correct-RT subject medians. Out-of-sample

prediction was performed by using an iterative leave-one-subject-out procedure, first by obtaining posterior distribution estimates for each parameter by modeling

all but one participant’s behavior and EEG data and then estimating the left-out participant’s correct-RT distribution using the resulting model fit and the left-out

participant’s EEG. Models without EEG regressors (i.e., Model 1 and Model 2) are poor choices for new participant behavior prediction. The model with a noise

principal component and a signal principal component of the phase-locked EEG as covariates of diffusion model parameters (Model 3) more accurately predicts new

participants’ correct-RT behavior. Negative values indicate overdispersion of the model prediction (due to posterior uncertainty) relative to the real data.
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in the evidence accumulation process (diffusion coefficients) than
those participants with smaller occipital signal PLIs. However,
the opposite effect is found in the frontal electrodes with large
15 and 45 Hz PLIs being associated with larger evidence accu-
mulation variances. Larger signal responses at 30 and 45 Hz in
parietal electrodes is also associated with larger diffusion coeffi-
cients. The effect of signal response on non-decision time is also
complex but closely related to the effect of signal response on the
diffusion coefficient. No evidence of an association between par-
ticipants’ differences in signal response to differences in evidence
accumulation rates (drift rates) was found.

The posterior distributions of the noise PLI coefficients from
the response interval are provided in Figure 7. The posterior dis-
tributions of the noise PLI coefficients from the noise interval are
provided in the Supplemental Materials’ Figure 11. In all noise
harmonic frequencies during the noise interval and most har-
monic frequencies (16, 24, 32, and 48 Hz) during the response
interval, those subjects who had smaller PLIs at all electrode loca-
tions had faster evidence accumulation rates (drift rates). This
finding suggests that those subjects who better suppressed the
stimulus noise accumulated correct evidence faster. Furthermore,
a similar effect was found on non-decision time. Noise suppres-
sion in the harmonic frequencies was associated with smaller

non-decision times across subjects. However, smaller PLIs at 8 Hz
were associated with slower evidence accumulation and faster
non-decision times. Looking at these effects as a whole, those
subjects with more suppressed responses to the noise at all fre-
quencies had larger drift rates and smaller non-decision times
leading to faster, more accurate responses. As a plausible but
oversimplified example, a participant whose PLI responses at all
frequencies and locations was suppressed 0.2 units more than
another participant during both the noise and response intervals
is expected to accumulate 0.418 evidence units per second faster
than another participant and have a 70 ms faster non-decision
time. There was little to no evidence of an effect of individual
variation in brain responses to noise on within-trial evidence
accumulation variability (the diffusion coefficient).

4. DISCUSSION
We have shown that a Bayesian diffusion model framework with
hierarchical participant-level parameters is useful in describ-
ing individual differences in the rate of evidence accumulation,
variance in evidence accumulation process, and preprocessing
and/or motor response time in a novel perceptual decision mak-
ing paradigm. Assuming the model describes the relationship
between cognition and behavior sufficiently well, we are able to
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FIGURE 6 | The marginal posterior distributions of the signal PLI

coefficients. I.e., the effects of signal enhancement, as measured by a
steady-state phase-locking index (PLI), on the evidence accumulation rate
(drift rate; in evidence units per second), variance in the evidence
accumulation process (the diffusion coefficient; in evidence units per
second), and non-decision time during the response interval (in seconds).
Dark blue posterior density lines indicate 95% credible intervals while smaller
teal lines indicate 99% credible intervals. Small horizontal green lines
embedded in density curves indicate the median of the posterior

distributions while the orange crosses indicate posterior means. There is an
effect of signal response on the diffusion coefficient and non-decision time
that is complex across frequencies and scalp location. A participant whose
PLI responses at all locations and frequencies are 0.2 units greater than
another participant’s responses is expected to have 0.061 evidence units per
second larger evidence accumulation variances (where α = 1 evidence unit is
required to make a decision) and have 18 ms faster non-decision times,
leading to faster but less accurate responses. There was no evidence of an
effect of attention to the signal on evidence accumulation rate (the drift rate).
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FIGURE 7 | The marginal posterior distributions of the noise PLI

coefficients. I.e., the effects of noise suppression, as measured by a
steady-state phase-locking index (PLI), on the evidence accumulation rate
(drift rate; in evidence units per second), variance in the evidence
accumulation process (the diffusion coefficient; in evidence units per
second), and non-decision time (in seconds) during the response interval.
Dark blue lines indicate 95% credible intervals, smaller teal lines indicate
99% credible intervals, horizontal green lines indicate posterior medians, and
the orange exes indicate posterior means. At noise harmonic frequencies (16,
24, 32, and 48 Hz) during the response interval, those subjects who
suppressed noise had faster evidence accumulation rates; this effect was

found at all electrode groups. However, noise enhancement at 8 Hz was
associated with slower evidence accumulation. Furthermore, those subjects
who better suppressed noise at the same harmonic frequencies had faster
non-decision times. For example, a participant whose PLI responses were
suppressed 0.2 units more than another participant’s responses at all
locations and frequencies during the response interval is expected to
accumulate 0.288 evidence units per second faster (where α = 1 evidence
unit is required to make a decision) and have 48 ms faster non-decision
times, leading to faster and more correct responses. There was no evidence
of an effect of attention to the visual noise on variance in evidence
accumulation (the diffusion coefficient).

infer cognitive differences among participants. Furthermore, we
have shown that differences in participants’ attention as measured
by SSVEPs relate to some of these differences in participants’
cognition.

Individual differences in the rates of evidence accumula-
tion (drift rates) were partially explained by individual differ-
ences in noise suppression as measured by SSVEPs. Participants
who better suppressed noise at high frequencies during the
both the preparatory period (noise interval) and the decision
period (response interval) were able to accumulate correct evi-
dence faster, which led to more accurate, faster response times.
Furthermore, those individuals who better suppressed noise in
the same frequency bands and locations had faster non-decision
times (preprocessing and/or motor response speed). This effect
on non-decision time is hypothesized to be reflective of faster pre-
processing time in subjects who better suppressed noise since we
do not expect noise suppression to affect motor response speed.
Both findings suggest a role of noise suppression in beta and
gamma EEG frequency bands on the speed of evidence accu-
mulation and preprocessing prior to evidence accumulation in
perceptual decision making tasks.

Enhancement of signal was found to describe individual vari-
ation in “randomness” of evidence accumulation within trials (as
measured by the diffusion coefficient). Participants who did not
properly enhance signal in occipital, central, and pre-frontal elec-
trodes had the most variable evidence accumulation processes.
There is also evidence that a participant’s enhancement of sig-
nal may have affected their preprocessing time in a complex way
across frequencies and cortical locations. This suggests that sig-
nal enhancement in beta and gamma EEG frequency bands affect
within-trial evidence accumulation variance and preprocessing in
perceptual decision making.

In summary, from the results of the modeling procedure it
was found that some individual variation in evidence accumu-
lation speed (drift rate) is explained by noise suppression, some
individual variation in evidence accumulation variance (diffusion
coefficient) is explained by signal enhancement, and some indi-
vidual variation in non-decision time (presumably preprocess-
ing time) is explained by both noise suppression and signal
enhancement.

The usefulness of the model with SSVEP attention measures
as regressors is not only in its descriptive ability, but also in its
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predictive ability. New subject correct-RT behavior was not accu-
rately described by the model without individual differences nor
the model with individual differences. But by explicitly includ-
ing individual differences with neural covariates in hierarchical
models, the correct RT distributions of new subjects with known
neural measures are more accurately predicted. We expect the
addition of the phase-locking index of SSVEPs to be predictive
of behavior in any perceptual decision making paradigm, espe-
cially if used in a hierarchical Bayesian framework. Theoretically
the hierarchical EEG-diffusion model will also be able to predict
the PLI measures of a missing participant given a participant’s
behavioral data. We will explore the practicality of such predic-
tions in future studies. Possible applications of behavioral and
neural data prediction include: (a) the ability to interpolate data
from incomplete behavioral data sets (b) the ability to interpolate
data from incomplete neural data sets (c) more powerful statis-
tical inference through simultaneous accounting for changes in
behavior and neural data.

In the future for both hypothesis testing and response-RT pre-
diction, latent variables linearly or non-linearly related to the
EEG covariates can be included with the cognitive model in a
hierarchical Bayesian framework (see Vandekerckhove, 2014, for
details). The benefits of such an analysis would be: to choose
neural covariates maximally descriptive or predictive of the data,
choose electrodes and frequencies maximally descriptive or pre-
dictive of the data, reduce the number of covariates, and reduce
the multicollinearity of the covariates by assuming there exist
underlying variables related to multiple EEG covariates. In the
present study, the problems of multicollinearity and variable
overabundance were overcome with two principal component
analyses (PCAs). PCAs do not extract mixtures of the data which
are most descriptive or predictive of the model parameters but
instead extract mixtures of the data which are uncorrelated. A
shortcoming of this study is that we did not pick frequencies
and cortical locations that were maximally predictive of behav-
ior as exogenous variables. Cortical locations naively based upon
large non-focal groupings were chosen. Instead of performing
a non-Bayesian PCA before submitting the neural data to the
Bayesian algorithm, a linear mixture of neural data that best
describes the cognitive model parameters could be extracted from
the Bayesian algorithm itself, analogous to a partial least squares
regression in a non-Bayesian approach (see Krishnan et al., 2013,
for an example). In order to use this latent variable technique,
the model must be run on a training set using a subset of the
EEG data and then run on a test set to measure out-of-sample
model predictive ability. This would result in a data reduction
of the EEG that best predicts behavior in the context of the
model.
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The present study investigated how an individual’s Zhong-Yong tendency is related
to his/her perceptual processing capacity. In two experiments, participants completed
a Zhong-Yong Thinking Style Scale and performed a redundant-target detection task.
Processing capacity was assessed with a non-parametric approach (systems factorial
technology, SFT) and a parametric (linear ballistic accumulator model, LBA) approach.
Results converged to suggest a positive correlation between Zhong-Yong tendency
and processing capacity. High middle-way thinkers had larger processing capacity in
multiple-signal processing compared with low middle-way thinkers, indicating that they
processed information more efficiently and in an integrated fashion. Zhong-Yong tendency
positively correlates with the processing capacity. These findings suggest that the
individual differences in processing capacity can account for the reasons why high
middle-way thinkers tend to adopt a global and flexible processing strategy to deal with the
external world. Furthermore, the influence of culturally dictated thinking style on cognition
can be revealed in a perception task.

Keywords: individual differences, linear ballistic accumulator model, systems factorial technology, workload

capacity, Zhong-Yong

INTRODUCTION
People in different cultures differ psychologically, and they know
different things, believe different things, and have different tastes.
An increasing number of studies have investigated whether cul-
ture affects an individual’s behavior and recent findings show that
culture plays an important role in shaping human perception and
cognition (Norenzayan and Nisbett, 2000; Masuda and Nisbett,
2001, 2006; Kitayama et al., 2003; Nisbett and Miyamoto, 2005;
Miyamoto et al., 2006). Although it is still unclear whether this
cultural influence is a result of collective unconsciousness, which
is inherited through genes, or cumulative learning of the cultures,
within-culture and cross-culture comparisons reveal the within-
and between-cultural variation and reveal how human behavior
is affected by social-cultural factors. The present study focuses on
one of the most influential Chinese thinking styles, Zhong-Yong
thinking style, to see how it affects the processes in perceptual
decision making.

Middle-way thinking, also known as Zhong-Yong in Chinese,
is a culturally dictated thinking style originating from Confucian
philosophy. Being without inclination to either side is called
Zhong; admitting of no change is called Yong. Zhong-Yong, the
law of mind, was handed down from one to another in the
Confucian school, until Tsze-Sze wrote a book chapter titled “The
Doctrine of the Mean.” In The Doctrine of the Mean, the state of
“equilibrium” and the state of “harmony” are emphasized and
people are encouraged to achieve these mind states. In Chapter
1, Tsze-Sze states that “While there are no stirrings of pleasure,
anger, sorrow, or joy, the mind may be said to be in the state of
equilibrium. When those feelings have been stirred, and they act

in their due degree, there ensues what may be called the state of
harmony. Equilibrium is the great root from which grow all the
human acting in the world, and harmony is the universal path
which they all should pursue.” Also, written in the Analects of
Confucius, the cognitive style of “middle-way” is described as the
rule of thumb to deal with things and get along with other peo-
ple. By a simplified definition, Zhong-Yong emphasizes that one
should “. . . consider things carefully from different perspectives,
avoid going to extremes, behave in situationally appropriate ways,
and maintain interpersonal harmony. . . ” (Ji et al., 2010). Middle-
way thinking is regarded as a “good” individual attribute that the
Chinese praise and pursue, and it has a major impact on Chinese
daily life (see Yang, 2010 for a review).

Since C.-F. Yang and C.-Y. Zhao initiated a project to study
different aspects of Zhong-Yong thinking in the early 1990s, an
increasing number of studies have used the Zhong-Yong Thinking
Style Scale (Chiu, 2000; Wu and Lin, 2005; Huang et al., 2012)
to investigate the relationship between Zhong-Yong tendency and
behavior. The results of these investigations converge to suggest
that high middle-way thinkers tend to adopt a more global and
flexible cognitive processing strategy when interacting with the
external world. For example, in Huang et al. (in press) recent
study, the researchers primed the participants with a neutral word
or an emotional word prior to showing them a global-local stimu-
lus on each trial. They found that the global precedence effect was
larger for the high middle-way thinkers than the low middle-way
thinkers only when emotion was primed. These results suggest
that the global processing strategy, i.e., stepping back to see the
whole picture, characterizes a high middle-way thinker’s cognitive
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processing style. These results also imply that Zhong-Yong, served
as an emotional regulator, affected an individual’s cognitive pro-
cessing strategy; this emotion regulation mechanism has not been
reported in the previous models of emotion. In another study,
Wang et al. (2013) examined how Zhong-Yong tendency is corre-
lated with behavioral aspects of viewing banner ads. Participants
were presented with banner ads of different levels of information
complexity. The eye tracking data showed that high middle-way
thinkers, compared to low middle-way thinkers, viewed banner
ads of lower complexity with a larger and more distributed scan
path, suggesting that they adopted a more global strategy to
integrate information from all regions of the ads. In addition,
high middle-way thinkers started to fixate on the banner ads of
lower complexity at earlier time points. Wang et al. (2013) inter-
preted these findings as evidence that high middle-way thinkers
were more efficient and flexible in switching from global pro-
cessing (e.g., processing banner ads’ gist) to local processing (e.g.,
processing banner ads’ details).

Although the relationship between Zhong-Yong thinking style
and cognitive processing style has been widely investigated, less is
known about how an individual’s perceptual processing capacity
is related to his/her Zhong-Yong tendency. Perceptual process-
ing capacity, also known as workload capacity, is defined as the
change in processing efficiency of an information processing sys-
tem that occurs as the workload (the number of to-be-processed
signals) increases (Townsend and Nozawa, 1995; Wenger and
Gibson, 2004; Eidels et al., 2011; Townsend and Eidels, 2011;
Houpt and Townsend, 2012). Perceptual processing capacity is
measured with a redundant-target detection task (Miller, 1978,
1982; Townsend and Nozawa, 1995), where participants moni-
tor two sources of information and make a decision based on
either one or both sources of information. If the processing
speed of an individual channel is not affected by an increase
in workload, the information processing system is defined as
being unlimited in capacity; if the processing speed speeds up,
the processing system is considered to have supercapacity; and
lastly, if the processing speed slows down, the processing system
is considered to have limited capacity. An individual’s percep-
tual processing capacity is assumed to be independent of the
way he/she processes information (Townsend and Nozawa, 1995);
however, some multiple-signal processing strategies may be con-
strained by a system’s processing capacity. For example, a coactive
system usually has supercapacity, whereas the processing capac-
ity of a standard serial system is limited (Townsend, 1972, 1974;
Colonius and Townsend, 1997; Townsend and Nozawa, 1997;
Wenger and Townsend, 2001; Wenger and Gibson, 2004; Eidels
et al., 2011; Townsend and Eidels, 2011). In addition, a paral-
lel system with supercapacity or limited capacity may imply that
there are facilitatory or inhibitory between-channel interactions
during the stage of information accumulation (Colonius and
Townsend, 1997; Wenger and Gibson, 2004; Eidels et al., 2011).
Thus, uncovering individual differences in perceptual process-
ing capacity between high and low middle-way thinkers can help
researchers understand the causes of differences in their cognitive
processing styles.

The present study aimed to investigate the relationship
between middle-way thinking style and perceptual processing

capacity. In two experiments, participants completed the Zhong-
Yong Thinking Style Scale (Wu and Lin, 2005) and performed
a redundant-target detection task. We estimated the partici-
pants’ perceptual processing capacity using a non-parametric
approach (systems factorial technology, or SFT, see Townsend and
Nozawa, 1995 for a review) in both experiments and a paramet-
ric approach (linear ballistic accumulator model, or LBA model,
Brown and Heathcote, 2008; Eidels et al., 2010) in Experiment 2.
These two approaches provide converging measures of workload
capacity and have complementary advantages in the assessment
(Eidels et al., 2010). We hypothesized that high middle-way
thinkers tend to adopt a more global processing strategy to pro-
cess information compared to low middle-way thinkers; thus,
they process information in a more efficient way, especially when
the workload increases, leading to supercapacity processing. On
the other hand, low middle-way thinkers are more limited in
perceptual processing capacity such that they are more prone to
interference by information complexity.

EXPERIMENT 1
In Experiment 1, a Go/No-go version of the redundant-target
detection task was conducted to measure individuals’ percep-
tual capacity for processing an object’s color and shape. We used
a non-parametric approach (SFT, see Townsend and Nozawa,
1995 for a review) to estimate perceptual processing capacity. The
experimental design and data analysis followed the suggestions of
SFT, which will be extensively described in the Method Section.
The participants were split into two groups according to their
Zhong-Yong scores, and the capacity coefficient of each group was
plotted as a function of reaction time. We expected to observe
qualitatively different capacity coefficient functions between high
and low middle-way thinkers.

METHODS
Participants
Fifty-seven undergraduate students (29 males and 28 females)
at National Cheng Kung University participated in this experi-
ment. All participants had normal or corrected-to-normal vision,
and their mean age was 20.63 years with a standard deviation of
2.72. Prior to the experiment, each participant signed a written
informed consent, which has been proved by the review board of
the National Cheng Kung University, Department of Psychology.

Apparatus
A personal computer with a 2.40 G-Hz Intel Pentium IV proces-
sor controlled the display and recorded the manual responses. The
display resolution was 1024× 768 pixels. Stimuli were presented
on a 19-inch CRT monitor with a refresh rate of 85 Hz. The exper-
iment was programmed with E-prime 1.1 (Schneider et al., 2002).
The viewing distance was 60 cm. A chin-rest was used to prevent
head movements.

Questionnaire
The participants’ Zhong-Yong tendency was measured with a
Zhong-Yong Thinking Style Scale, which was developed by Wu
and Lin (2005). The Zhong-Yong Thinking Style Scale is com-
posed of 13 items which are divided into three subscales that
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measure the three different aspects of Zhong-Yong, including
diversification (i.e., considering things carefully from different
aspects), integrity (i.e., integrating one’s and others’ perspectives),
and harmony (i.e., acting in a manner for maintaining interper-
sonal harmony). Each item is scored on a 7-point Likert-type
scale from “Strongly Disagree” (1) to “Strongly Agree” (7). An
individual’s Zhong-Yong score is defined as the mean score of
the average scores of the three subscales. The Zhong-Yong score
ranges from 1 to 7. Wu and Lin (2005) tested two samples in
Studies 1 (n = 96) and 2 (n = 216) to measure the reliability and
validity of the Zhong-Yong thinking style scale. They found that
the coefficient of the internal consistency was 0.87 for both sam-
ples and the test-retest reliability was 0.81 (n = 46). The results
of factor analysis showed that this scale is a single-factor scale
and the factor loading for each item was greater than 0.40, sug-
gesting that all the items are good measures of the construct of
Zhong-Yong. In addition, Zhong-Yong score is positively corre-
lated to self-consciousness, self-reflection, and inclusion of other
in the self, showing high construct validity of the scale (Wu,
2006).

Design, stimuli, and procedure
In the redundant-target detection task, each test display con-
sisted of a colored letter (X or O) presented at the cen-
ter of the screen. Its color was either green (x = 0.30, y =
0.60, luminance = 1.90 cd/m2) or cyan (x = 0.33, y = 0.33,
luminance = 2.71 cd/m2). The size of the letter was 1◦ × 1◦. The
target color was defined as green and the target shape was defined
as X; the distractor color was defined as cyan and the distractor
shape was defined as O. The test display consisted of both tar-
get features (i.e., a green X, redundant-target condition), either
target feature (i.e., a green O or a cyan X, single-target condi-
tion), or neither target feature (i.e., a cyan O, no-target condition)
(see Figure 1A for all the possible test trials). Each condition was
equally probable and was randomly intermixed within each block
such that the participants would not anticipate the presence of the
redundant-target trials (Mordkoff and Yantis, 1991, 1993). There
were 40 practice trials and twelve blocks of 80 formal test trials in
each experiment.

The experiment was conducted in a dimly lit room. A trial
began with a 500 ms fixation cross, accompanied with a 750 Hz
pure tone (see Figure 1B for an illustration of the experimental
procedure). After a blank interval ranging from 50 to 850 ms, a
test display was presented. Participants were instructed to press
the “/” key if they detected either target feature (color green
or shape X) and they were instructed to hold their responses if
they detected neither target feature. The test display disappeared
after a response was made (Go trial); otherwise, it remained on
the screen until 2000 ms had passed (No-go trial). The inter-
trial interval (ITI) was 500 ms. Both speed and accuracy were
emphasized.

Data analysis
According to SFT, the capacity coefficient C(t) was computed to
infer an individual’s perceptual processing capacity. The capac-
ity coefficient C(t) can be expressed as follows (Townsend and
Nozawa, 1995; Townsend and Eidels, 2011; Houpt and Townsend,

2012; Houpt et al., 2014):

C (t) = log S1,2(t)

log [S1 (t) · S2 (t)]
, (1)

for t > 0, where S1, S2, and S1,2 represent the survivor func-
tions of the two single-target conditions and the redundant-target
condition, respectively. The ranges of values of C(t) and their
implications are as follows: if C(t) > 1, the system is supercapac-
ity; if C(t) = 1, the system is unlimited-capacity; if C(t) < 1, it is
limited-capacity; and if C(t) � 0.5, the system is extremely limited
in capacity.

RESULTS AND DISCUSSION
We first analyzed the participants’ Zhong-Yong tendency. The
mean Zhong-Yong score for all of the participants was 5.80 with
a standard deviation of 0.63. The participants were split into two
groups according to their Zhong-Yong scores: the high middle-
way thinkers (N = 10, M = 6.69, SD = 0.17) were the ones who
scored at the top one-fifth on the Zhong-Yong scores and the
low middle-way thinkers (N = 12, M = 4.93, SD = 0.32) were
the ones who scored at the bottom one-fifth on the Zhong-Yong
scores1 . There was a significant difference in the Zhong-Yong
scores between groups [t(17.25) = 16.40, p < 0.0001]2.

Next, we examined the mean performance on the redundant-
target detection task for each group of participants (see Table 1).
Correct reaction times ranging from 150 to 1000 ms were
extracted for further analysis. This range was chosen because sim-
ple reaction time is generally not faster than 150 ms and is not
longer than 1000 ms. Under this criterion, a total of 1.4% data
points were excluded from analysis. The mean accuracy was very
high across conditions for both groups of participants except for
the no-target conditions, suggesting a potential response bias in
making a decision. We limited the remainder of our analyses to
the reaction times. The mean reaction time in the redundant-
target condition was faster than that in the single-target condition
for the high middle-way thinkers [t(9) = 12.30, p < 0.0001] and
for the low middle-way thinkers [t(11) = 3.47, p < 0.01], sug-
gesting that the redundant-target effect was consistently found

1The reason why we adopted the extreme-group approach is to emphasize the
differences between high and low Zhong-Yong groups since the SFT results
were somewhat noisy. However, even when we used median-split to analyze
the data, we still obtained a similar pattern of results.
2We thank the anonymous reviewer for raising this question: both high and
low Zhong-Yong groups show Zhong-Yong tendency even though there are
significant differences in their Zhong-Yong scores. Unfortunately, there is no
norm for the Zhong-Yong Thinking Style Scale. Therefore, we used the data
reported in Wu and Lin (2005) to estimate the mean and standard deviation
of their participants’ Zhong-Yong scores (n = 216 in Study 2). The mean is
5.44 and the standard deviation is 0.32. Compared to our current findings
[high middle-way thinkers: M = 6.69, SD = 0.17; low middle-way thinkers:
M = 4.93, SD = 0.32], our high/low Zhong-Yong group had the score sig-
nificantly higher/lower than the average score reported in the original study.
Therefore, we can claim that the high and low Zhong-Yong groups in the
current study had different Zhong-Yong tendency than the average of the
Taiwanese population, although it is still possible that all the Taiwanese partic-
ipants have a stronger Zhong-Yong tendency than other people from different
culture backgrounds. Future studies are required to explore the cross-cultural
variation.
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FIGURE 1 | (A) Illustration of all possible test trials. (B) Illustration of the experimental procedure of the redundant-target detection task.

Table 1 | Mean performance of the redundant-target detection task

for each group of participants in Experiment 1.

Group Accuracy Reaction time (ms)

RT ST NT RT ST RG

High 0.99 0.99 0.86 397.79 441.64 43.85

Low 0.99 0.96 0.81 399.10 438.05 38.95

“High” and “Low” denote the high and low middle-way thinkers, respectively.

“RT,” “ST,” and “NT” represent the redundant-target, single-target, and no-target

conditions, respectively. Redundancy gain (RG) is defined as the difference in

mean reaction times between the redundant-target and single-target conditions.

Note that mean reaction time of the no-target condition was not shown because

in Experiment 1 any response in this condition is incorrect for the Go/No-go

version of the redundant-target detection task.

in both groups of participants. In addition, the redundancy gain
was not significantly different between the groups [t(13.16) = 0.42,
p = 0.68].

We then computed C(t) for each participant and plotted the
estimated C(t) by group. Figure 2A shows C(t) as a function
of reaction time for each group. From visual inspection, the
results showed that for most high middle-way thinkers, C(t) was
larger than 1 for the faster reaction times, suggesting supercapac-
ity processing. By contrast, for most low middle-way thinkers,
C(t) was less than 1 for all times t and a few values of C(t)
were hovering between ∼0 and 0.5, suggesting limited-capacity
to extremely limited-capacity processing. To verify these obser-
vations, we adopted a non-parametric bootstrapping method
to simulate 1000 samples for each condition and to construct
the 95% confidence interval for C(t) individually (Van Zandt,
2000). If the 95% confidence interval for C(t) exceeds 1 at some
times t, we conclude that the participant adopts supercapac-
ity processing to process multiple signals. Otherwise, we con-
clude that the participant adopts unlimited-capacity or limited-
capacity processing. Table 2 presents the classification results
of the inferences based on the simulated data for each group.
Results showed that 4 out of 10 high middle-way thinkers adopted

supercapacity processing; in contrast, only 1 (out of 12) low
middle-way thinkers showed this pattern of results. When apply-
ing Fisher’s exact test to test whether processing capacity and
Zhong-Yong tendency are independent, the results, however, did
not reach the significance level (p = 0.14). It is perhaps due
to the small sample size that we did not obtain a significant
result. Though, there is a trend showing that more high middle-
way thinkers had a supercapacity system than low middle-way
thinkers.

The results of Experiment 1 were consistent with our expec-
tations. The high middle-way thinkers had systems with larger
perceptual processing capacity than the low middle-way thinkers.
The high middle-way thinkers generally exhibited supercapacity
processing, suggesting that they adopted coactive processing to
process multiple sources of information or that there were facilita-
tory between-channel cross-talks during the stage of information
accumulation (Eidels et al., 2011). In contrast, the low middle-
way thinkers exhibited limited-capacity or extremely limited-
capacity processing when processing multiple signals, suggesting
that they processed information in sequence or that there were
inhibitory interactions between channels (Eidels et al., 2011).
Therefore, the current findings provided empirical support for
the notion that the high middle-way thinkers process redun-
dant information more efficiently and in an integrative fashion,
and the low middle-way thinkers were much more limited in
capacity such that they serially processed multiple sources of
information and were prone to interference as the workload
increased.

EXPERIMENT 2
In Experiment 1, we adopted a non-parametric approach (SFT)
to estimate perceptual processing capacity, and the results of the
visual inspection showed that the high middle-way thinkers had
larger perceptual processing capacity than the low middle-way
thinkers. However, there are a few limitations in Experiment
1. First, we only used correct reaction times for capacity esti-
mation while ignoring the incorrect reaction times. Second,
the lower accuracy in the no-target condition may reflect a
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FIGURE 2 | (A) Plots of the capacity coefficient C(t) for the high and low middle-way thinkers in Experiment 1. (B) Plots of the capacity coefficient C(t) for the
high and low middle-way thinkers in Experiment 2.

Table 2 | The classification results (frequency) of the inferences based on the simulated data for each group in Experiments 1 and 2.

Group Experiment 1 Experiment 2

Supercapacity Non-supercapacity Supercapacity Non-supercapacity

High 4 6 6 7

Low 1 11 2 13

“High” and “Low” denote the high and low middle-way thinkers, respectively.

potential response bias in target detection. Third, the extreme-
group approach adopted in Experiment 1 only provides a discrete
distinction between the high and low middle-way thinkers. It is
unclear whether there is a linear relationship between Zhong-
Yong tendency and perceptual processing capacity. Hence, a
parametric approach, LBA model (Brown and Heathcote, 2008;
Eidels et al., 2010), was adopted in Experiment 2 to estimate
perceptual processing capacity in order to obtain a continuous
measurement of the relationship between the Zhong-Yong ten-
dency and perceptual processing capacity. This approach also
provides researchers with a parametric testing tool to identify
the perceptual processing capacity of a system. To implement
the LBA model in this experiment, a yes/no version of the

redundant-target detection task was used instead of a Go/No-
go version of the redundant-target detection task because the
analysis required reaction time data in both the target-present
condition and the target-absent condition. We expected that the
relationship between Zhong-Yong tendency and perceptual pro-
cessing capacity observed in Experiment 1 would generalize to the
choice reaction time experiment.

METHODS
Participants
Seventy-three undergraduate students (27 males and 46 females)
at National Cheng Kung University who had not participated
in Experiment 1 participated in this experiment. All of the
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participants had normal or corrected-to-normal vision, and their
mean age was 19.27 years with a standard deviation of 1.34. Prior
to the experiment, each participant signed a written informed
consent, which has been proved by the review board of the
National Cheng Kung University, Department of Psychology.

Design, stimuli, and procedure
The stimuli, design, and procedure used in the redundant-target
detection task were the same as those in Experiment 1, except
that the participants were instructed to make a yes/no response
for target detection. When the participants detected either target
feature, they had to press “/” key; otherwise, they had to press
“z” key.

Data analysis
We used both a non-parametric approach (SFT, Townsend and
Nozawa, 1995) as in Experiment 1 and a parametric approach
(LBA model, Brown and Heathcote, 2008; Eidels et al., 2010) to
estimate the participants’ perceptual processing capacity. First,
the estimated C(t) for the high and low middle-way thinkers
were plotted separately and a non-parametric bootstrapping
method was used to construct each participant’s 95% confi-
dence interval for C(t) to infer the perceptual processing capac-
ity. Second, we computed the Pearson’s product-moment cor-
relation coefficient (r) between the LBA-based capacity and
Zhong-Yong score to verify the relationship between the two
measurements.

The following is a brief description of the LBA model (Brown
and Heathcote, 2008; Eidels et al., 2010). The LBA model takes
both correct and incorrect reaction times in the target-present
and the target-absent conditions into consideration in the anal-
ysis. In a redundant-target detection task, four parallel accumu-
lators are assumed to accumulate evidence independently and
simultaneously about the presence of the target color (C), the
absence of the target color (∼C), the presence of the target shape
(S), and the absence of the target shape (∼S), respectively. Each
accumulator starts to accumulate evidence from a random initial
starting point, which is distributed as a uniform distribution in [0,
A]. Evidence is accumulated linearly at a drift rate that is drawn
from a normal distribution with a mean v and a standard devia-
tion s. Accumulation is terminated and a decision is made when
the amount of evidence reaches a threshold b. The reaction time is
the decision time (i.e., the time for the accumulation reaching the
threshold) plus the base time t0 (i.e., the time for the perceptual
processing and motor execution).

In a redundant-target detection task, either of the yes/no
responses can be made on each trial: “YES” for the presence of
either target feature, and “NO” for the absence of both target
features. Specifically, a “YES” response occurs when accumulator
C reaches the threshold but accumulator S has not reached the
threshold or when accumulator S reaches the threshold but accu-
mulator C has not reached the threshold. The overall likelihood
of a “YES” response occurring at time t is expressed as

L (YES, t) = [1 − F∼C (t) · F∼S (t)] · [fC (t) · SS (t)

+fS (t) · SC (t)
]
, (2)

where F, f, and S denote the cumulative distribution function,
density function and survivor function for each accumulator,
respectively. Similarly, a “NO” response occurs when accumula-
tors∼C and∼S reach the threshold before accumulators C and S
have not reached the threshold. The overall likelihood of a “NO”
response occurring at time t is expressed as

L (NO, t) = SC (t) · SS (t) · [f∼C (t) · F∼S (t)

+ f∼S (t) · F∼C (t)
]
. (3)

Likelihood functions, L(YES,t) and L(NO,t), were used to obtain
the maximum likelihood estimates of the parameters for each
accumulator given the correct and incorrect reaction times. The
initial starting point A was fixed across conditions, and the
standard deviation s was set as 0.25 in reference to Donkin
et al. (2009). We assumed two decision threshold parameters
for the target-present condition (bT) and target-absent condi-
tion (bNT) because the participants may set different criteria for
making “YES” and “NO” responses due to the unequal presen-
tation probability across the two conditions. However, bT was
assumed to not vary across the redundant-target condition and
the two single-target conditions because changes in the bound-
ary parameter were unlikely to occur when all target-present
conditions were randomly intermixed within a block (Ratcliff,
1978). Base times for the redundant-target accumulator (t0RT),
the single-target accumulator (t0ST), and the no-target accumu-
lator (t0NT) were estimated separately because sensory encoding
time may vary as a function of the number of signals to be
processed.

Drift rate estimation is the most important part of the esti-
mation of the LBA-based capacity measure. When the target
was present, we assumed three drift rate parameters for the
redundant-target accumulator (vRT), the single-target accumula-
tor (vST), and the no-target accumulator (vNT). When the target
was absent, we assumed two drift rate parameters for the no-
target accumulator (v∼NT) and the target accumulator (v∼T).
Note that there are 16 possible drift rate parameters (see Table 3),
but we only estimated five of them because we assumed that
the drift rates for accumulator C and accumulator S were the
same and the drift rates for accumulator ∼C and accumula-
tor ∼S were also the same. These two assumptions need not to
be true; however, similar pattern of results was observed when
we allowed the variation between all the 16 drift rate parame-
ters. Therefore, a total of 11 free parameters (A, bT , bNT , t0RT ,
t0ST , t0NT , vRT , vST , vNT , v∼T , v∼NT) were estimated for each
participant.

The LBA-based capacity is defined as the relative magnitudes
between drift rates in the redundant-target condition and the
single-target condition, which can be expressed as

vdiff = vRT − vST. (4)

If vdiff > 0, the system is supercapacity processing; if vdiff = 0, the
system is unlimited-capacity processing; if vdiff < 0, the system is
limited-capacity processing.
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Table 3 | The simplified set of five drift rate parameters (right-hand

side) used in the LBA model and their corresponding drift rates of all

accumulators (left-hand side) in the redundant-target task.

Target color

Present (C) Absent (∼C)

Target shape

Present (S) vC|CS = vRT vC|∼CS = v∼T

vS|CS = vRT vS|∼CS = vST

v∼C|CS = vNT v∼C|∼CS = v∼NT

v∼S|CS = vNT v∼S|∼CS = vNT

Absent (∼S) vC|C∼S = vST vC|∼C∼S = v∼T

vS|C∼S = v∼T vS|∼C∼S = v∼T

v∼C|C∼S = vNT v∼C|∼C∼S = v∼NT

v∼S|C∼S = v∼NT v∼S|∼C∼S = v∼NT

Subscripts for the simplified set of five drift rates are described in the Data

Analysis section of Experiment 2. Subscripts for the full set of 16 drift rate param-

eters denote the drift rate for a specific accumulator given any of the four test

trials. For instance, vC|CS represents the drift rate for accumulator C when both

the target color and shape are present and is mapped to the drift rate for the

redundant-target accumulator vRT .

RESULTS AND DISCUSSION
Data from two participants were excluded because they were
unable to follow the experimental instructions. The mean Zhong-
Yong score for all of the participants was 5.72 with a stan-
dard deviation of 0.70. We used an extreme-group approach,
as we did in Experiment 1. The participants who scored at
the top one-fifth on the Zhong-Yong score were regarded as
high middle-way thinkers (N = 13, M = 6.56, SD = 0.16), and
the participants who scored at the bottom one-fifth on the
Zhong-Yong score were considered as low middle-way thinkers
(N = 15, M = 4.67, SD = 0.58). There was a significant differ-
ence in the Zhong-Yong scores between groups [t(16.31) = 12.13,
p < 0.0001].

Next, we examined the mean performance of the redundant-
target detection task for each group of participants (see Table 4).
Using the same criterion as Experiment 1, a total of 6.1%
reaction time data of the redundant-target detection task was
excluded from further analysis. Similar to Experiment 1, accuracy
was lower in the no-target conation than the other condi-
tions, suggesting a potential response bias in target detection.
Although the mean performance in this experiment was worse
than that in Experiment 1 [accuracy: t(105.40) = 2.06, p < 0.05;
reaction time: t(114.70) = 10.89, p < 0.0001], we still observed
the redundant-target effect for both the high middle-way
thinkers [t(12) = 10.76, p < 0.0001] and the low middle-way
thinkers [t(14) = 10.04, p < 0.0001. In addition, the redun-
dancy gain was not significantly different between the groups
[t(25.33) = 1.14, p = 0.27].

As in Experiment 1, we computed C(t) and constructed the
95% confidence interval for C(t) for each participant to infer the
perceptual processing capacity. Figure 2B plots the results of C(t)
for each group of participants. The results of the non-parametric
measures of capacity replicated what we found in Experiment 1;
that is, C(t) was generally larger for the high middle-way thinkers

Table 4 | Mean performance of the redundant-target detection task

for each group of participants in Experiment 2.

Group Accuracy Reaction time (ms)

RT ST NT RT ST NT RG

High 0.99 0.96 0.88 348.81 396.14 457.98 47.33

Low 0.99 0.96 0.83 362.99 403.53 477.95 40.54

“High” and “Low” denote the high and low middle-way thinkers. “RT,” “ST,” and

“NT” represent the redundant-target, single-target, and no-target conditions,

respectively. Redundancy gain (RG) is defined as the difference in the mean

reaction times between the redundant-target and single-target conditions.

than for the low middle-way thinkers. Based on the simulated
data (see Table 2), we inferred that 6 out of 13 high middle-way
thinkers had a system of supercapacity processing, while only
2 out of 15 low middle-way thinkers showed this pattern of
results. Note that a few low middle-way thinkers had C(t) that
was greater than 1 at early time points (see Figure 2B); how-
ever, compared to high middle-way thinkers, the values of C(t)
were relatively small, suggesting that low middle-way thinkers
were less efficient in processing multiple sources of information.
We then conducted a Fisher’s exact test to test whether pro-
cessing capacity and Zhong-Yong tendency are independent. The
result still did not reach the significance level (p = 0.10) although
there is a trend showing that more high middle-way thinkers
were classified in the supercapacity category than low middle-
way thinkers and less high-middle-way thinkers were classified
in the non-supercapacity category than low middle-way thinkers.
Nevertheless, when we combined the data of Experiments 1 and 2
to increase the sample size, the result of the Fisher’s exact test was
significant (p < 0.05), verifying that Zhong-Yong tendency and
processing capacity are dependent on each other.

Next, we adopted the LBA model to analyze the reaction time
data to estimate a set of parameters that maximized the likelihood
function described in the Method Section for each participant.
Table 5 presents the average of 11 estimated parameters for each
group. None of the parameters differed between high and low
middle-way thinkers (ps > 0.12). We then used the average of
the estimated parameters to generate model predictions from
the LBA model and plotted the empirical histograms for cor-
rect responses along with corresponding model predictions (see
Figure 3). The results showed that the LBA model successfully
captured the underlying distributions of the reaction time data,
suggesting that the LBA model fit the participants’ reaction time
data well.

We then computed the LBA-based capacity (vdiff ) for each
group (see Table 5). The results showed that the drift difference
for the high middle-way thinkers (M = 0.07, SD = 0.17) was
larger than that of the low middle-way thinkers (M = −0.04,
SD = 0.16) [t(24.40) = 1.87, p < 0.05]. Lastly, we computed the
Pearson’s product-moment correlation (r) between the LBA-
based capacity and the Zhong-Yong score, and we found a sig-
nificant positive correlation between the two measurements [r =
0.35, p < 0.01, 95% CI = (0.13, 0.54)] (Figure 4), suggesting
that the perceptual processing capacity monotonically increases
as Zhong-Yong tendency increases.
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Table 5 | The average values of 11 estimated parameters and the LBA-based capacity (vdiff ) for the high and low middle-way thinkers.

Group Estimated parameters

A bT bNT t0RT t0ST t0NT vRT vST vNT v∼T v∼NT vdiff

High 288.06 507.53 581.60 112.59 101.32 79.45 1.29 1.22 0.66 0.37 1.34 0.07

Low 313.75 493.60 576.45 120.25 114.32 78.51 1.17 1.21 0.64 0.35 1.31 -0.04

“High” and “Low” denote the high and low middle-way thinkers.

FIGURE 3 | Plots of the predicted density functions on top of the empirical reaction time histograms of the redundant-target, single-target, and

no-target conditions for each group.

GENERAL DISCUSSION
In the present study, two experiments were conducted to inves-
tigate how an individual’s Zhong-Yong tendency is related
to his/her perceptual processing capacity. The Zhong-Yong
Thinking Style Scale (Wu and Lin, 2005) was used to assess
the participant’s Zhong-Yong tendency. The redundant-target
detection task was adopted to infer the participants’ percep-
tual processing capacity in a non-parametric manner (SFT in
Experiments 1 and 2) as well as in a parametric manner (LBA
model in Experiment 2). The results from the non-parametric
and parametric analyses converged to suggest that participants
with a strong Zhong-Yong tendency had larger perceptual capac-
ity in processing redundant information for decision mak-
ing. High middle-way thinkers had an unlimited-capacity to
supercapacity processing system, suggesting that the processing
time of an individual channel was unaffected or even sped up
when workload increased. In contrast, low middle-way thinkers
had a limited-capacity processing system, suggesting that the

individual-channel processing time slowed down as a result of the
increasing workload.

ZHONG-YONG TENDENCY AND PERCEPTUAL PROCESSING CAPACITY
The current results were consistent with our expectation that high
middle-way thinkers have larger perceptual processing capac-
ity and process multiple signals more efficiently as workload
increases. Two possible accounts may explain the reasons why
the high middle-way thinkers had larger perceptual processing
capacity than the low middle-way thinkers. First, it is worth-
while to note that although the processing architecture (i.e., the
way that redundant information is processed) and the process-
ing capacity (i.e., the variation in the efficiency of a system
as a function of workload) are independent measures of infor-
mation processing (Townsend and Nozawa, 1995), processing
capacity may constrain the processing order of multiple signals.
For example, a coactive system is commonly assumed to have
supercapacity, while a standard serial model is assumed to be
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FIGURE 4 | Scatter plot of the drift difference and Zhong-Yong score

with a trend line (solid blue line) and the 95% confidence interval for

the trend (band-shaped gray area).

limited in capacity, although the standard serial model and the
unlimited-capacity parallel model can mimic each other theo-
retically(Townsend, 1972, 1974; Colonius and Townsend, 1997;
Townsend and Nozawa, 1997; Wenger and Townsend, 2001;
Wenger and Gibson, 2004; Eidels et al., 2011; Townsend and
Eidels, 2011). Our results showed that the high middle-way
thinkers had supercapacity processing, implying that they tended
to process redundant information in a coactive fashion. That is,
multiple signals are processed in parallel and simultaneously, and
separate activations from multiple channels are accumulated and
summed into a single accumulator. A decision is made when the
accumulated evidence reaches the decision criterion. By contrast,
the low middle-way thinkers exhibited limited-capacity process-
ing, implying that they had less capacity for multiple-signal
processing such that they may process redundant information in a
serial fashion. Namely, one of the target features is processed first,
and if the information is sufficient for decision making, the other
processing is terminated as predicted by a serial self-terminating
model.

However, individual differences in perceptual processing
capacity do not necessarily mean that high and low middle-
way thinkers adopt different processing strategies. Assuming that
multiple signals are processed in a parallel fashion for all partic-
ipants, differences in processing capacity may suggest differences
in the way multiple processes interact with each other during
information accumulation. According to Eidels et al. (2011), dif-
ferent types of between-channel interactions explain the variation
in the processing efficiency of an individual channel as work-
load increases. They simulated a parallel model with different
levels of between-channel interactions and found that a parallel
model with supercapacity processing suggests that there are facil-
itatory (positive) interactions between channels during informa-
tion accumulation, while a parallel model with limited-capacity

processing suggests that there are inhibitory (negative) between-
channel cross-talks. Accordingly, high middle-way thinkers can
integrate multiple signals more efficiently with positive between-
channel interactions; by contrast, low middle-way thinkers are
more prone to interference by information complexity due to
negative between-channel interactions that result in mutual inhi-
bitions between each process.

Future studies are required to further examine the possibil-
ity that high and low middle-way thinkers may adopt differ-
ent multiple-signal processing strategies for decision making.
An ongoing study has been designed following Townsend and
Nozawa (1995) suggestions to use a standard double factorial
paradigm in which nine test stimuli with simultaneous manip-
ulation of the target feature and the target intensity are used to
directly test the processing architecture adopted by high and low
middle-way thinkers. In addition, this study may also enable us
to uncover differences in between-channel interactions during
information accumulation.

ZHONG-YONG TENDENCY AND COGNITIVE PROCESSING STYLE
Many researchers are interested in understanding how culture
shapes behavior. In regard to middle-way thinking, or Zhong-
Yong, Chinese culture has long regarded middle-way thinking as
one of the most important meta-cognitive factors that regulate
one’s emotions and attitudes (Ji et al., 2010; Yang, 2010). People
who have a strong Zhong-Yong tendency can be characterized by
their global and flexible cognitive processing styles (Wang et al.,
2013; Huang et al., in press). In addition, a recent study showed
that Zhong-Yong can moderate the relationship between per-
ceived creativity and innovation behavior in Chinese companies
(Yao et al., 2010).

The present study, which tested individual differences in per-
ceptual processing capacity, can offer further insights into aspects
of how Chinese culture influences individuals’ behavior. First,
individual differences can be observed in a relatively fundamen-
tal perceptual task (i.e., the color-shape detection task used in the
present study). These findings are in line with previous research
on cross-cultural comparisons between East Asian and West
Caucasian (Norenzayan and Nisbett, 2000; Masuda and Nisbett,
2001, 2006; Kitayama et al., 2003; Nisbett and Miyamoto, 2005;
Miyamoto et al., 2006). One distinction that has been revealed in
cross-cultural research is the contrast between individualist cul-
tures (Western culture) and collectivist cultures (Eastern culture)
(see Triandis, 1995). Individualists emphasize individual achieve-
ments and goal; collectivists emphasize group membership and
value group cohesion and success above personal achievement.
Nisbett and colleagues conducted a large body of research, which
suggests that members of individualist and collectivist cultures
tend to have measurably different cognitive processing styles. That
is, East Asians (collectivist) are field-dependent, and they pro-
cess information more holistically, seeing the relation between
things; by contrast, West Caucasians (individualist) are field-
independent and they process information analytically, focusing
on individual objects. The cultural variation in cognition and
perception allows us to challenge the idea that the rules used
in thought are fixed by a hard-wired mental logic and provides
empirical supports for the top-down influence on perception.
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Second, the current findings oppose the argument proposed
by a few Zhong-Yong studies that the mechanism of Zhong-Yong
thinking, the wisdom of “middle way,” is akin to the mechanism
of Western wisdom, and its influence can be revealed only when
conflicts, dilemmas, or affections are raised (Grossmann et al.,
2010, 2013). This argument was empirically supported by Huang
et al. (in press), in which differences were found in the global
precedence effect between high and low middle-way thinkers only
when participants’ emotions were primed. Nonetheless, in the
present study, we found individual differences in a perceptual task
without manipulating emotions. One possibility to explain the
inconsistent findings is the difference between the scales used in
the current study and Huang et al.’s study. In the current study,
we used the scale developed by Wu and Lin (2005) which mea-
sures three aspects of Zhong-Yong; by contrast, Huang et al. used
the Zhong-Yong Belief-Value Scale developed by Huang et al.
(2012) which emphasizes the harmony dimension of Zhong-
Yong. Therefore, we suggest that the influence of Zhong-Yong can
be context independent in terms of the way Zhong-Yong tendency
is assessed. The culturally induced wisdom or thinking style is a
stable meta-cognitive factor that regulates one’s behavior and is
not specific to any context. Perceptual processing capacity may
play an important role in mediating the influence of Zhong-Yong
thinking on cognitive processing style. Future investigations are
required to verify the mediating role of perceptual capacity in
dealing with complex cognitive tasks.

ADVANTAGES AND LIMITATIONS OF THE PRESENT STUDY
The present study adopted both parametric (LBA model) and
non-parametric (SFT) mathematical modeling approaches to
study individual differences in perceptual processing capacity,
and both levels of analyses showed similar patterns of results.
Compared to previous research that tested mean reaction time
by aggregating the data of each group (Wang et al., 2013; Huang
et al., in press), this study considered the reaction time distribu-
tion and inferred the information processing characteristics indi-
vidually. In addition, SFT and the LBA model have compensatory
advantages in analyzing reaction time distributions (Eidels et al.,
2010). SFT only considers correct reaction time data but allows
researchers to examine the processing architecture (serial vs. par-
allel vs. coactive), the decisional stopping rule (self-terminating
vs. exhaustive), and the processing capacity (limited-capacity vs.
unlimited-capacity vs. supercapacity) (Townsend and Nozawa,
1995). By contrast, the LBA model assumes that two processes
occur in a parallel fashion, but it incorporates reaction time and
accuracy data into the analysis (Brown and Heathcote, 2008;
Eidels et al., 2010). In addition, the LBA model provides a statis-
tical basis for making inferences about the perceptual processing
capacity of an information processing system (Eidels et al., 2010).

However, testing the processing capacity does not directly test
the processing order of multiple-signal processing, given that
the perceptual capacity and the processing architecture are two
independent measures of information processing (Townsend and
Nozawa, 1995). To further understand how middle-way thinking
influences information processing strategies, a standard double
factorial paradigm (Townsend and Nozawa, 1995) is required, as
stated in the previous section. With a closer examination of the

variation of the processing characteristics of information process-
ing, we can further our understanding of cultural differences in
cognitive processing.

CONCLUSION
The present study is the first study to elucidate the relation-
ship between Zhong-Yong tendency and perceptual processing
capacity. We found that individual differences in perceptual pro-
cessing capacity are predicted well by an individual’s Zhong-Yong
tendency. Specifically, participants with stronger Zhong-Yong
tendencies had larger perceptual processing capacities. These
individual differences provide insight into the reasons why high
middle-way thinkers are more flexible and efficient in processing
multiple sources of information in an integrative fashion. These
results emphasize that culture can shape an individual’s cognitive
processing style, and that the cultural shaping of cognitive style
can be revealed in a fundamental perceptual task.
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