About this Research Topic
Data documenting biological and ecological information on plant species are numerous and diverse. These data span specimens observed in culture, in the field, and across natural history collections. They contain rich information often linked with textual annotations. Automating the extraction and analysis of this information offers new opportunities to explore trait diversity, trait plasticity, and the spatiotemporal dynamics of species. However, a large number of methodological and algorithmic limitations need to be overcome to speed the exploration of these data and to conduct studies on unprecedented taxonomic, temporal, and spatial scales. Although promising results have been obtained from recent advancements, we are far from unleashing the full potential of these technologies.
In our proposed Research Topic, we are seeking original scientific contributions that apply deep learning technologies to characterize and scale plant biodiversity data from the individual, to the species, to the ecosystem. Contributions will cover, but are not limited to, the following topics:
- Development, integration, and evaluation of novel deep learning methods for detection, characterization, and classification of plant communities, plant species, and plant traits;
- Automated visual analysis of digitized natural history collections and related biodiversity visual datasets;
- AI-based automation of field plant image analysis for landscape management, including conservation planning and ecological restoration;
- Machine learning and AI approaches for the interpretation and analysis of botanical visual data from autonomous or mobile sensors;
- Plant mapping and features extraction from large scale visual datasets;
- AI applications in plant ecology, conservation and agriculture.
Keywords: natural history collections, field plant observation, plant feature detection, plant classification, plant identification, artificial intelligence, big data, automated visual analysis, image recognition, deep learning, convolutional neural network, transfer learning, image segmentation
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.