
EDITED BY : Edoardo Angelo Di Napoli, Paolo Bientinesi, Jiajia Li and

André Uschmajew

PUBLISHED IN : Frontiers in Applied Mathematics and Statistics

HIGH-PERFORMANCE TENSOR
COMPUTATIONS IN SCIENTIFIC
COMPUTING AND DATA SCIENCE

https://www.frontiersin.org/research-topics/18335/high-performance-tensor-computations-in-scientific-computing-and-data-science
https://www.frontiersin.org/research-topics/18335/high-performance-tensor-computations-in-scientific-computing-and-data-science
https://www.frontiersin.org/research-topics/18335/high-performance-tensor-computations-in-scientific-computing-and-data-science
https://www.frontiersin.org/research-topics/18335/high-performance-tensor-computations-in-scientific-computing-and-data-science
https://www.frontiersin.org/journals/applied-mathematics-and-statistics

Frontiers in Applied Mathematics and Statistics 1 October 2022 | High-Performance Tensor Computations

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-83250-425-3

DOI 10.3389/978-2-83250-425-3

https://www.frontiersin.org/research-topics/18335/high-performance-tensor-computations-in-scientific-computing-and-data-science
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact

Frontiers in Applied Mathematics and Statistics 2 October 2022 | High-Performance Tensor Computations

HIGH-PERFORMANCE TENSOR
COMPUTATIONS IN SCIENTIFIC
COMPUTING AND DATA SCIENCE

Topic Editors:
Edoardo Angelo Di Napoli, Julich Research Center, Helmholtz Association of
German Research Centres (HZ), Germany
Paolo Bientinesi, Umeå University, Sweden
Jiajia Li, College of William & Mary, United States
André Uschmajew, Max Planck Institute for Mathematics in the Sciences,
Germany

Citation: Di Napoli, E. A., Bientinesi, P., Li, J., Uschmajew, A., eds. (2022).
High-Performance Tensor Computations in Scientific Computing and Data
Science. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-83250-425-3

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/research-topics/18335/high-performance-tensor-computations-in-scientific-computing-and-data-science
http://doi.org/10.3389/978-2-83250-425-3

Frontiers in Applied Mathematics and Statistics 3 October 2022 | High-Performance Tensor Computations

04 Editorial: High-Performance Tensor Computations in Scientific
Computing and Data Science

Edoardo Di Napoli, Paolo Bientinesi, Jiajia Li and André Uschmajew

07 A Block-Sparse Tensor Train Format for Sample-Efficient
High-Dimensional Polynomial Regression

Michael Götte, Reinhold Schneider and Philipp Trunschke

22 Dictionary-Based Low-Rank Approximations and the Mixed Sparse
Coding Problem

Jeremy E. Cohen

41 Block Row Kronecker-Structured Linear Systems With a Low-Rank Tensor
Solution

Stijn Hendrikx and Lieven De Lathauwer

58 CPD-Structured Multivariate Polynomial Optimization

Muzaffer Ayvaz and Lieven De Lathauwer

82 Iterator-Based Design of Generic C++ Algorithms for Basic Tensor
Operations

Cem Savas Bassoy

96 Accelerating Jackknife Resampling for the Canonical Polyadic
Decomposition

Christos Psarras, Lars Karlsson, Rasmus Bro and Paolo Bientinesi

107 Tensor Processing Primitives: A Programming Abstraction for Efficiency
and Portability in Deep Learning and HPC Workloads

Evangelos Georganas, Dhiraj Kalamkar, Sasikanth Avancha,
Menachem Adelman, Deepti Aggarwal, Cristina Anderson, Alexander Breuer,
Jeremy Bruestle, Narendra Chaudhary, Abhisek Kundu, Denise Kutnick,
Frank Laub, Vasimuddin Md, Sanchit Misra, Ramanarayan Mohanty,
Hans Pabst, Brian Retford, Barukh Ziv and Alexander Heinecke

144 Ubiquitous Nature of the Reduced Higher Order SVD in Tensor-Based
Scientific Computing

Venera Khoromskaia and Boris N. Khoromskij

164 A Practical Guide to the Numerical Implementation of Tensor Networks
I: Contractions, Decompositions, and Gauge Freedom

Glen Evenbly

178 ExaTN: Scalable GPU-Accelerated High-Performance Processing of
General Tensor Networks at Exascale

Dmitry I. Lyakh, Thien Nguyen, Daniel Claudino, Eugene Dumitrescu and
Alexander J. McCaskey

Table of Contents

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/research-topics/18335/high-performance-tensor-computations-in-scientific-computing-and-data-science

TYPE Editorial

PUBLISHED 23 September 2022

DOI 10.3389/fams.2022.1038885

OPEN ACCESS

EDITED AND REVIEWED BY

Daniel Potts,

Chemnitz University of Technology,

Germany

*CORRESPONDENCE

Edoardo Di Napoli

e.di.napoli@fz-juelich.de

SPECIALTY SECTION

This article was submitted to

Mathematics of Computation and Data

Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

RECEIVED 07 September 2022

ACCEPTED 08 September 2022

PUBLISHED 23 September 2022

CITATION

Di Napoli E, Bientinesi P, Li J and

Uschmajew A (2022) Editorial:

High-performance tensor

computations in scientific computing

and data science.

Front. Appl. Math. Stat. 8:1038885.

doi: 10.3389/fams.2022.1038885

COPYRIGHT

© 2022 Di Napoli, Bientinesi, Li and

Uschmajew. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Editorial: High-performance
tensor computations in scientific
computing and data science

Edoardo Di Napoli1*, Paolo Bientinesi2, Jiajia Li3 and

André Uschmajew4

1Simulation and Data Lab Quantum Materials, Jülich Supercomputing Centre, Forschungszentrum

Jülich, Jülich, Germany, 2Department of Computing Science, Umeå University, Umeå, Sweden,
3Department of Computer Science, North Carolina State University, Raleigh, NC, United States,
4Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

KEYWORDS

tensor operation, tensor decomposition, tensor network, multilinear algebra, high

performance optimization, low-rank approximation, Deep Learning, tensor library

Editorial on the Research Topic

High-performance tensor computations in scientific computing and

data science

Introduction

In the last two decade, tensor computations developed from a small and little known

subject to a vast and heterogeneous field with many diverse topics ranging from high-

order decomposition and low-rank approximation to optimization and multi-linear

contractions. At the same time, several of these operations with tensors are progressively

and diversely applied to many, rather distinct domains; from Quantum Chemistry to

Deep Learning, and from Condensed Matter Physics to Remote Sensing. These domain-

specific applications of tensor computations present a number of particular challenges

originating from their high dimensionality, computational cost, and complexity. Usually,

because these challenges could be quite diverse among application areas, there is not an

homogeneous and uniform approach in the development of software programs tackling

tensor operations. On the contrary, very often developers implement domain-specific

libraries which compromise their use across disciplines. The end result is a fragmented

community where efforts are often replicated and scattered [1].

This Research Topic represents an attempt in bringing together different

communities, spearheading the latest cutting-edge results at the frontier of tensor

computations, and sharing the lessons learned in domain-specific applications. The issue

includes ten research articles written by experts in the field. For the sake of clarity, the

articles can be somewhat artificially divided in four main areas: (i) decompositions, (ii)

low-rank approximations, (iii) high-performance operations, and (iv) tensor networks.

In practice, many of the works in this Research Topic spill over the boundaries of such

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

4

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.1038885
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.1038885&domain=pdf&date_stamp=2022-09-23
mailto:e.di.napoli@fz-juelich.de
https://doi.org/10.3389/fams.2022.1038885
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2022.1038885/full
https://www.frontiersin.org/research-topics/18335/high-performance-tensor-computations-in-scientific-computing-and-data-science
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Di Napoli et al. 10.3389/fams.2022.1038885

areas and are interdisciplinary in nature, thus demonstrating

how cross-fertilizing the field of tensor computations is.

Decompositions

In multilinear algebra, the Canonical Polyadic

decomposition (CP) is one of several generalization of the

matrix Singular Value Decomposition (SVD) to tensors. The

problem considered in Psarras et al. is the estimation of the

uncertainty associated with the parameters of a Canonical

Polyadic tensor decomposition. The authors demonstrate that it

is possible to perform such an estimation (jackknife resampling)

without altering the input tensor at the cost of a modest

increase in floating point operations. This observation makes it

possible to take advantage of a recent technique—Concurrent

Alternating Least Squares (CALS, [2])—to accelerate the

computation of jackknife resampling. The authors make the

software generated publicly available.

Khoromskaia and Khoromskij present the reduced higher-

order SVD (RHOSVD), which is an efficient version of the

high-order SVD (HOSVD) applicable to tensors in CP format.

The authors focus on the important step of rank truncation

necessary in domain-specific computations with large scale

tensors in scientific computing. Besides a survey, the article

offers new error and stability results for the RHOSVD, as

well as several applications to problems for computational

physics, notably the rank-structured computations involving

multi-particle interaction potentials by using range-separated

tensor format.

While recovering the decomposition of a tensor can be

seen as an a-posterior operation on a given tensor, a specific

tensor decomposition can be a-priory imposed as initial

condition to the solution of a given problem. The work by

Hendrikx et al. studies problems that can be formulated as

a block row Kronecker-structured (BRKS) linear system with

a constrained tensor as the solution. The authors consider

low-rank multilinear singular value decomposition (MLSVD),

CP, and tensor train (TT) as the constrained tensors. Efficient

algorithms to find these solutions are provided for large and

high-order data tensors. This work also derives conditions under

which the constrained tensors can be retrieved from a BRKS

system. The experimental results demonstrate effectiveness of

the proposed algorithms including an application to hyper-

spectral image reconstruction.

Low-rank approximations

One important application of low-rank tensors is the

representation of high-dimensional functions. In their

respective papers, Ayvaz et al. and Götte et al. demonstrate how

low-rank tensor decomposition can be used for representing

and optimizing certain classes of multivariate polynomials,

essentially by using a low-rank model for their coefficient

tensors. This approach provides practical access to quite a rich

set of nonlinear classes of multivariate polynomials in low-

parametric format that can be used as models in several tasks

of data science and machine learning. These applications are

amply demonstrated in the papers and used as a confirmation of

the efficacy and correctness of the methods. While in Ayvaz et

al. the authors focus on the CP format and efficient optimization

based on Gauss-Newton-type algorithms, the work presented in

Götte et al. proposes a block sparse TT format in combination

with alternating least squares optimization.

Cohen introduces a framework for structured low-rank

approximations of matrices and tensors in which the columns

of one of the factor matrices are known or required to be

sparse with respect to a fixed dictionary. Such a model subsumes

several special cases with important applications in signal

processing and data science. The focus of the work is on efficient

optimization algorithms, especially on the sparse-coding sub-

problem that appears when applying an alternating optimization

strategy, which is of interest in itself. Several approaches,

both convex and non-convex, are considered for handling

this important problem and their performance is compared.

The paper therefore also serves as a valuable overview on

the subject.

HPC operations

In their rather comprehensive paper Georganas et al.

present a programming abstraction (the Tensor Processing

Primitives or TPP for short) striving for efficient and portable

implementation of tensor operations, with a special focus on

Deep Learning (DL) workloads. The aim of these primitives

is to provide a ’middle way’ between the monolithic and

inflexible operators offered by DL libraries and the high level

of abstraction provided by Tensor Compilers. The TPP attempt

to strike a balance between these two extremes by providing

relatively low-level 2D tensor primitives that act as building

blocks for more complex and high-level DL operators. In

other words, the TPP specification are platform agnostic while

their implementation is platform specific. The article provides

numerous practical examples where TPP are used in the

realm of DL workloads as well as HPC tasks not specific to

data science.

On a completely different direction, Bassoy presents a

technique to implement basic tensor operations in C++

avoiding pointer arithmetic and instead relying on iterators.

The technique is incorporated into the uBlas extension of

Boost, and is demonstrated on element-wise tensor operations

(e.g., tensor addition), as well as tensor multiplications

(tensor-times-vector, tensor-times-matrix, and tensor-times-

tensor). The aim is a modular design to deal with tensors

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

5

https://doi.org/10.3389/fams.2022.1038885
https://doi.org/10.3389/fams.2022.830270
https://doi.org/10.3389/fams.2022.826988
https://doi.org/10.3389/fams.2022.832883
https://doi.org/10.3389/fams.2022.836433
https://doi.org/10.3389/fams.2021.702486
https://doi.org/10.3389/fams.2022.836433
https://doi.org/10.3389/fams.2021.702486
https://doi.org/10.3389/fams.2022.801650
https://doi.org/10.3389/fams.2022.826269
https://doi.org/10.3389/fams.2022.806537
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Di Napoli et al. 10.3389/fams.2022.1038885

and sub-tensors of arbitrary dimension, abstracting from

storage formats.

Tensor Networks

Tensor Networks methods originated from Condensed

Matter Physics but their application nowadays can span diverse

fields such as Quantum Computing and Artificial Intelligence

and has emerged as a mainstream field in tensor computations

[3]. This Research Topic includes two publications which are

at the crossroad between HPC and Tensor Networks. The

paper by Lyakh et al. considers the processing of tensor

networks. Specifically, it introduces a high-performance library

to build, transform, and numerically evaluate tensor networks

with arbitrary graph structures and complexity. The library

is designed to run on laptops, workstations, as well as HPC

platforms, including shared-memory, distributed-memory, and

GPU-accelerated systems.

While Lyakh et al. focus on the specifics of tensor networks

operations, the work by Evenbly maintains an high-level

approach and is aimed at researchers already familiar with the

theoretical setup of Tensor Networks that want to code their

own software programs. It provides a practical description of

how such programs need to be designed and implemented if

they are going to ripe the benefits of High-Performance low-

level numerical libraries and parallel architectures. The content

is organized in sections, each covering a specific building block

appearing in Tensor Network algorithms, such as contractions,

decompositions, and gauge transformations. At the end of each

section a useful summary is provided as a sort of recipe to realize

in practice the specific Tensor Network operation in terms of the

building blocks.

Author contributions

EDN wrote the introduction and finalized the manuscript.

All authors contributed to the manuscript a short

summary for the papers they edited, and approved the

submitted version.

Acknowledgments

We would like to thank the effort and

contribution of all review editors whose meticulous

and time-consuming work made this Research

Topic possible.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.

References

1. Psarras C, Karlsson L, Li J, Bientinesi P. The landscape of software for tensor
computations. CoRR. abs/2103.13756 (2021) doi: 10.48550/arXiv.2103.13756

2. Psarras C, Karlsson L, Bro R, Bientinesi P. Algorithm XXX: concurrent
alternating least squares for multiple simultaneous canonical polyadic
decompositions. ACM Trans Math Softw. (2022) 48:1–20. doi: 10.1145/3519383

3. Silvi P, Tschirsich F, Gerster M, Jünemann J, Jaschke D,
Rizzi M, et al. The Tensor Networks Anthology: Simulation
techniques for many-body quantum lattice systems. SciPost
Phys Lect Notes. (2019) 8:8. doi: 10.21468/SciPostPhysLectNo
tes.8

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

6

https://doi.org/10.3389/fams.2022.1038885
https://doi.org/10.3389/fams.2022.838601
https://doi.org/10.3389/fams.2022.838601
https://doi.org/10.3389/fams.2022.806549
https://doi.org/10.48550/arXiv.2103.13756
https://doi.org/10.1145/3519383
https://doi.org/10.21468/SciPostPhysLectNotes.8
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

A Block-Sparse Tensor Train Format
for Sample-Efficient
High-Dimensional Polynomial
Regression
Michael Götte, Reinhold Schneider and Philipp Trunschke*

Department of Mathematics, Technische Universität Berlin, Berlin, Germany

Low-rank tensors are an established framework for the parametrization of multivariate
polynomials. We propose to extend this framework by including the concept of block-
sparsity to efficiently parametrize homogeneous, multivariate polynomials with low-rank
tensors. This provides a representation of general multivariate polynomials as a sum of
homogeneous, multivariate polynomials, represented by block-sparse, low-rank tensors.
We show that this sum can be concisely represented by a single block-sparse, low-rank
tensor.

We further prove cases, where low-rank tensors are particularly well suited by showing that
for banded symmetric tensors of homogeneous polynomials the block sizes in the block-
sparse multivariate polynomial space can be bounded independent of the number of
variables.

We showcase this format by applying it to high-dimensional least squares regression
problems where it demonstrates improved computational resource utilization and sample
efficiency.

Keywords: sample efficiency, homogeneous polynomials, sparse tensor networks, alternating least square,
empirical L2 approximation

1 INTRODUCTION

An important problem inmany applications is the identification of a function frommeasurements or
random samples. For this problem to be well-posed, some prior information about the function has
to be assumed and a common requirement is that the function can be approximated in a finite
dimensional ansatz space. For the purpose of extracting governing equations the most famous
approach in recent years has been SINDy [1]. However, the applicability of SINDy to high-
dimensional problems is limited since truly high-dimensional problems require a nonlinear
parameterization of the ansatz space. One particular reparametrization that has proven itself in
many applications are tensor networks. These allow for a straight-forward extension of SINDy [2]
but can also encode additional structure as presented in [3]. The compressive capabilities of tensor
networks originate from this ability to exploit additional structure like smoothness, locality or self-
similarity and have hence been used in solving high-dimensional equations [4–7]. In the context of
optimal control tensor train networks have been utilized for solving the Hamilton–Jacobi–Bellman
equation in [8,9], for solving backward stochastic differential equations in [10] and for the

Edited by:
Edoardo Angelo Di Napoli,

Helmholtz-Verband Deutscher
Forschungszentren (HZ), Germany

Reviewed by:
Mazen Ali,

École centrale de Nantes, France
Katharina Kormann,

Uppsala University, Sweden
Antonio Falco,

Universidad CEU Cardenal Herrera,
Spain

*Correspondence:
Philipp Trunschke

ptrunschke@mail.tu-berlin.de

Specialty section:
This article was submitted to
Mathematics of Computation

and Data Science,
a section of the journal

Frontiers in Applied Mathematics and
Statistics

Received: 29 April 2021
Accepted: 21 July 2021

Published: 07 September 2021

Citation:
Götte M, Schneider R and Trunschke P
(2021) A Block-Sparse Tensor Train

Format for Sample-Efficient High-
Dimensional Polynomial Regression.
Front. Appl. Math. Stat. 7:702486.
doi: 10.3389/fams.2021.702486

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 7024861

ORIGINAL RESEARCH
published: 07 September 2021

doi: 10.3389/fams.2021.702486

7

http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2021.702486&domain=pdf&date_stamp=2021-09-07
https://www.frontiersin.org/articles/10.3389/fams.2021.702486/full
https://www.frontiersin.org/articles/10.3389/fams.2021.702486/full
https://www.frontiersin.org/articles/10.3389/fams.2021.702486/full
https://www.frontiersin.org/articles/10.3389/fams.2021.702486/full
http://creativecommons.org/licenses/by/4.0/
mailto:ptrunschke@mail.tu-berlin.de
https://doi.org/10.3389/fams.2021.702486
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2021.702486

calculation of stock options prices in [11,12]. In the context of
uncertainty quantification they are used in [13–15] and in the
context of image classification they are used in [16,17].

A common thread in these publications is the parametrization of
a high-dimensional ansatz space by a tensor train network which is
then optimized. In most cases this means that the least-squares error
of the parametrized function to the data is minimized. There exist
many methods to perform this minimization. A well-known
algorithm in the mathematics community is the alternating least-
squares (ALS) [18,19], which is related to the famousDMRGmethod
[20] for solving the Schrödinger equation in quantum physics.
Although, not directly suitable for recovery tasks, it became
apparent that DMRG and ALS can be adapted to work in this
context. Two of these extensions to the ALS algorithm are the
stablilized ALS approximation (SALSA) [21] and the block
alternating steepest descent for Recovery (bASD) algorithm [13].
Both adapt the tensor network ranks and are better suited to the
problem of data identification. Since the set of tensor trains of fixed
rank forms a manifold [22] it is also possible to perform gradient
based optimization schemes [48]. This however is not a path that we
pursue in this work. Our contribution extends the ALS (and SALSA)
algorithm and we believe that it can be applied to many of the fields
stated above.

In this work we consider ansatz spaces of homogeneous
polynomials of fixed degree and their extension to polynomials of
bounded degree. We introduce the concept of block-sparsity as an
efficient way to parametrize homogeneous polynomials with low
rank tensors. Although, this is not the first instance in which sparsity
is used in the context of low-rank tensors (see [24–26]), we believe,
that this is the first time where block-sparsity is used to parametrize
homogeneous polynomials. The sparsity used in the previous works
is substantially different to the block-sparsity discussed in this work.
Block-sparsity is preserved under most tensor network operations
such as summation, orthogonalization and rounding and the
parametrization of tangent spaces which is not the case for
standard sparsity. This is important since orthogonalization is an
essential part of numerically stable and efficient optimization
schemes and means that most of the existing tensor methods,
like HSVD (see [27]), ALS, SALSA or Riemannian optimization
can be performed in this format.We also show that, if the symmetric
tensor of a homogeneous polynomial is banded, it can be represented
very efficiently in the tensor train format, since the sizes of the non-
zero blocks can be bounded independently of the number of
variables. In physics this property can be associated with the
property of locality, which can be used to identify cases where
tensor trains work exceptionally well.

Quantum physicists have used the concept of block-sparsity for at
least a decade [28] but it was introduced to the mathematics
community only recently in [29]. In the language of quantum
mechanics one would say that there exists an operator for which
the coefficient tensor of any homogeneous polynomial is an
eigenvector. This encodes a symmetry, where the eigenvalue of this
eigenvector is the degree of the homogeneous polynomial, which acts
as a quantum number and corresponds to the particle number of
bosons and fermions.

The presented approach is very versatile and can be combined
with many polynomial approximation strategies like the use of

Taylor’s theorem in [30] and there exist many approximation
theoretic results that ensure a good approximation with a low
degree polynomial for many classes of functions (see e.g. [31]).

In addition to the approximation theoretic results, we can
motivate these polynomial spaces by thinking about the sample
complexity for successful recovery in the case of regression
problems. In [32] it was shown that for tensor networks the
sample complexity, meaning the number of data points needed, is
related to the dimension of the high-dimensional ansatz space.
But, these huge sample sizes are not needed in most practical
examples [14]. This suggests that the regularity of the sought
function must have a strong influence on the number of samples
that are required. However, for most practical applications,
suitable regularity guarantees cannot be made — neither for
the best approximation nor for the initial guess, nor any
iterate of the optimization process. By restricting ourselves to
spaces of homogeneous polynomials, the gap between observed
sample complexity and proven worst-case bound is reduced.

In the regression setting, this means that we kill two birds with
one stone. By applying block-sparsity to the coefficient tensor we
can restrict the ansatz space to well-behaved functions which can
be identified with a reasonable sample size. At the same time we
reduce the number of parameters and speed up the least-squares
minimization task. Finally, note that this parametrization allows
practitioners to devise algorithms that are adaptive in the degree
of the polynomial, thereby increasing the computational resource
utilization even further. This solves a real problem in practical
applications where the additional and unnecessary degrees of
freedom of conventional low-rank tensor formats cause many
optimization algorithms to get stuck in local minima.

The remainder of this work is structured as follows. Notation
introduces basic tensor notation, the different parametrizations of
polynomials that are used in this work and then formulates the
associated least-squares problems. In Theoretical Foundation we
state the known results on sampling complexity and block
sparsity. Furthermore, we set the two results in relation and
argue why this leads to more favorable ansatz spaces. This
includes a proof of rank-bounds for a class of homogeneous
polynomials which can be represented particularly efficient as
tensor trains. Method Description derives two parametrizations
from the results of Theoretical Foundation and presents the
algorithms that are used to solve the associated least-squares
problems. Finally,Numerical Results gives some numerical results
for different classes of problems focusing on the comparison of
the sample complexity for the full- and sub-spaces. Most notably,
the recovery of a quantity of interest for a parametric PDE, where
our approach achieves successful recovery with relatively few
parameters and samples. We observed that for suitable problems
the number of parameters can be reduced by a factor of almost 10.

2 NOTATION

In our opinion, using a graphical notation for the involved
contractions in a tensor network drastically simplifies the
expressions making the whole setup more approachable. This
section introduces this graphical notation for tensor networks, the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 7024862

Götte et al. A Block-Sparse Tensor Train Format

8

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

spaces that will be used in the remainder of this work and the
regression framework.

2.1 Tensors and Indices
Definition 2.1. Let d ∈ N. Then n � (n1, . . . , nd) ∈ Nd is called a
dimension tuple of order d and x ∈ Rn1×/×nd �: Rn is called a
tensor of order d and dimension n. LetNn � {1, . . . , n} then a tuple
(l1, . . . , ld) ∈ Nn1 ×/ × Nnd � : Nn is called amulti-index and the
corresponding entry of x is denoted by x (l1, . . ., ld). The positions
1, . . ., d of the indices l1, . . ., ld in the expression x (l1, . . ., ld) are
called modes of x.

To define further operations on tensors it is often useful to
associate each mode with a symbolic index.

Definition 2.2.A symbolic index i of dimension n is a placeholder
for an arbitrary but fixed natural number between 1 and n. For a
dimension tuple n of order d and a tensor x ∈ Rn we may write x (i1,
. . ., id) and tacitly assume that ik are indices of dimension nk for each
k � 1, . . ., d. When standing for itself this notation means
x(i1, . . . , id) � x ∈ Rn and may be used to slice the tensor

x i1, l2, . . . , ld() ∈ Rn1

where lk ∈ Nnk are fixed indices for all k � 2, . . ., d. For any
dimension tuple n of order d we define the symbolic multi-index
in � (i1, . . ., id) of dimension n where ik is a symbolic index of
dimension nk for all k � 1, . . ., d.

Remark 2.3. We use the letters i and j (with appropriate
subscripts) for symbolic indices while reserving the letters k, l and
m for ordinary indices.

Example 2.4. Let x be an order 2 tensor with mode
dimensions n1 and n2, i.e. an n1-by-n2 matrix. Then x (ℓ1, j)
denotes the ℓ1-th row of x and x (i, ℓ2) denotes the ℓ2-th
column of x.

Inspired by Einstein notation we use the concept of symbolic
indices to define different operations on tensors.

Definition 2.5. Let i1 and i2 be (symbolic) indices of
dimension n1 and n2, respectively and let φ be a bijection

φ: Nn1 × Nn2 →Nn1n2.

We then define the product of indices with respect to φ as
j � φ(i1, i2) where j is a (symbolic) index of dimension n1n2. In
most cases the choice of bijection is not important and we will
write i1 · i2dφ(i1, i2) for an arbitrary but fixed bijection φ. For a
tensor x of dimension (n1, n2) the expression

y i1 · i2() � x i1, i2()
defines the tensor y of dimension (n1n2) while the expression

x i1, i2() � y i1 · i2()
defines x ∈ Rn1×n2 from y ∈ Rn1n2 .

Definition 2.6. Consider the tensors x ∈ Rn1×a×n2 and
y ∈ Rn3×b×n4 . Then the expression

z in1 , in2 , j1, j2, i
n3 , in4() � x in1 , j1, i

n2() · y in3 , j2, i
n4() (1)

defines the tensor z ∈ Rn1×n2×a×b×n3×n4 in the obvious way.
Similary, for a � b the expression

z in1 , in2 , j, in3 , in4() � x in1 , j, in2() · y in3 , j, in4() (2)

defines the tensor z ∈ Rn1×n2×a×n3×n4 . Finally, also for a � b the
expression

z in1 , in2 , in3 , in4() � x in1 , j, in2() · y in3 , j, in4() (3)

defines the tensor z ∈ Rn1×n2×n3×n4 as

z in1 , in2 , in3 , in4() �∑a
k�1

x in1 , k, in2() · y in3 , k, in4().

We choose this description mainly because of its simplicity
and how it relates to the implementation of these operations in
the numeric libraries numpy [33] and xerus [34].

2.2 Graphical Notation and Tensor
Networks
This section will introduce the concept of tensor networks [35] and a
graphical notation for certain operationswhichwill simplify working
with these structures. To this end we reformulate the operations
introduced in the last section in terms of nodes, edges and half-edges.

Definition 2.7. For a dimension tuple n of order d and a tensor
x ∈ Rn the graphical representation of x is given by.

where the node represents the tensor and the half-edges represent
the d different modes of the tensor illustrated by the symbolic
indices i1, . . ., id.

With this definition we can write the reshapings of Defintion
2.5 simply as

and also simplify the binary operations of Definition 2.6.
Definition 2.8. Let x ∈ Rn1×a×n2 and y ∈ Rn3×b×n4 be two

tensors. Then Operation Eq. 1 is represented by

and defines z ∈ R/×a×b×/. For a � b Operation Eq. 2 is
represented by

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 7024863

Götte et al. A Block-Sparse Tensor Train Format

9

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

and defines z ∈ R/×a×/ and Operation Eq. 3 defines
z ∈ R/×/ by.

With these definitions we can compose entire networks of
multiple tensors which are called tensor networks.

2.3 The Tensor Train Format
A prominent example of a tensor network is the tensor train
(TT) [19,36], which is the main tensor network used
throughout this work. This network is discussed in the
following subsection.

Definition 2.9. Let n be an dimensional tuple of order-d.
The TT format decomposes an order d tensor x ∈ Rn into d
component tensors xk ∈ Rrk−1×nk×rk for k � 1, . . ., d with r0 � rd � 1.
This can be written in tensor network formula notation as

x i1,/, id() � x1 i1, j1() · x2 j1, i2, j2()/xd jd−1, id().
The tuple (r1, . . ., rd−1) is called the representation rank of this

representation.
In graphical notation it looks like this.

Remark 2.10. Note that this representation is not unique. For
any pair of matrices (A, B) that satisfies AB � Id we can replace xk
by xk (i1, i2, j) · A (j, i3) and xk+1 by B (i1, j) · x (j, i2, i3) without
changing the tensor x.

The representation rank of x is therefore dependent on the
specific representation of x as a TT, hence the name.
Analogous to the concept of matrix rank we can define a
minimal necessary rank that is required to represent a tensor
x in the TT format.

Definition 2.11. The tensor train rank of a tensor x ∈ Rn with
tensor train components x1 ∈ Rn1×r1 , xk ∈ Rrk−1×nk×rk for k � 2, . . .,
d − 1 and xd ∈ Rrd−1×nd is the set

TT − rank(x) � r1, . . . , rd()
of minimal rk’s such that the xk compose x.

In [[22], Theorem 1a] it is shown that the TT-rank can be
computed by simple matrix operations. Namely, rk can be
computed by joining the first k indices and the remaining d − k
indices and computing the rank of the resulting matrix. At last,
we need to introduce the concept of left and right orthogonality
for the tensor train format.

Definition 2.12. Let x ∈ Rm×n be a tensor of order d + 1. We
call x left orthogonal if

x im, j1() · x im, j2() � Id j1, j2().

Similarly, we call a tensor x ∈ Rm×n of order d + 1 right
orthogonal if

x i1, j
n() · x i2, j

n() � Id i1, i2().
A tensor train is left orthogonal if all component tensors x1, . . .,

xd−1 are left orthogonal. It is right orthogonal if all component
tensors x2, . . ., xd are right orthogonal.

Lemma 2.1 [36]. For every tensor x ∈ Rn of order d we can find
left and right orthogonal decompositions.

For technical purposes it is also useful to define the so-called
interface tensors, which are based on left and right orthogonal
decompositions.

Definition 2.13. Let x be a tensor train of order d with rank
tuple r.

For every k � 1, . . ., d and ℓ � 1, . . ., rk, the ℓ-th left interface
vector is given by

τ≤k,ℓ(x) i1, i2, . . . , ik() � x1 i1, j1() . . . xk jk−1, ik, ℓ()
where x is assumed to be left orthogonal. The ℓ-th right interface
vector is given by

τ≥k+1,ℓ(x) ik+1, . . . , id() � xk+1 ℓ, ik+1, jk+1() . . . xd jd−1, id()
where x is assumed to be right orthogonal.

2.4 Sets of Polynomials
In this section we specify the setup for our method and define the
majority of the different sets of polynomials that are used. We
start by defining dictionaries of one dimensional functions which
we then use to construct the different sets of high-dimensional
functions.

Definition 2.14. Let p ∈ N be given. A function dictionary of
size p is a vector valued function Ψ � (Ψ1, . . . ,Ψp): R→Rp.

Example 2.15. Two simple examples of a function dictionary
that we use in this work are given by the monomial basis of
dimension p, i.e.

Ψmonomial(x) � 1 x x2 . . . xp−1()T (4)

and by the basis of the first p Legendre polynomials, i.e.

ΨLegendre(x) � 1 x
1
2

3x2 − 1() 1
2

5x3 − 3x() . . .()T . (5)

Using function dictionaries we can define the following
high-dimensional space of multivariate functions. Let Ψ be
a function dictionary of size p ∈ N. The d-th order product
space that corresponds to the function dictionary Ψ is the
linear span

Vd
p d〈 ⊗d

k�1Ψmk
: m ∈ Nd

p〉. (6)

This means that every function u ∈ Vd
p can be written as

u x1, . . . , xd() � c i1, . . . , id()∏d
k�1

Ψ xk() ik() (7)

with a coefficient tensor c ∈ Rp where p � (p, . . ., p) is a dimension
tuple of order d. Note that equation Eq. 7 uses the index notation

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 7024864

Götte et al. A Block-Sparse Tensor Train Format

10

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

from Definition 2.6 with arbitrary but fixed xk’s. Since R
p is an

intractably large space, it makes sense for numerical purposes to
consider the subset

Tr Vd
p()d u ∈ Vd

p : TT − rank(c)≤ r{ } (8)

where the TT rank of the coefficient is bounded. Every u ∈ Tr(Vd
p)

can thus be represented graphically as

where the Ck’s are the components of the tensor
train representation of the coefficient tensor c ∈ Rp of
u ∈ Vd

p .
Remark 2.16. In this way every tensor c ∈ Rp (in the

tensor train format) corresponds one to one to a function
u ∈ Vd

p .
An important subspace of Vd

p is the space of homogeneous
polynomials. For the purpose of this paper we define the
subspace of homogeneous polynomials of degree g as the
space

Wd
gd〈⊗d

k�1Ψmk : m ∈ Nd
p and ∑d

k�1
mk � d + g〉, (10)

where again 〈•〉 is the linear span. From this definition it is easy
to see that a homogeneous polynomial of degree g can be
represented as an element of Vd

p where the coefficient tensor c
satisfies

c m1, . . . ,md() � 0, if ∑d
k�1

mk ≠ d + g.

In Theoretical Foundation we will introduce an efficient
representation of such coefficient tensors c in a block sparse
tensor format.

Using Wd
g we can also define the space of polynomials of

degree at most g by

Sdg � ⊕g
̃g�0W

d
̃g . (11)

Based on this characterization we will define a block-sparse
tensor train version of this space in Theoretical Foundation.

2.5 Parametrizing Homogeneous
Polynomials by Symmetric Tensors
In algebraic geometry the spaceWd

g is considered classically only
for the dictionary Ψmonomial of monomials and is typically
parameterized by a symmetric tensor

u(x) � B i1, · · ·, ig() · x i1() · · · x ig(), x ∈ Rd (12)

where d � (d, . . ., d) is a dimension tuple of order g and B ∈ Rd

satisfies B (m1, . . .,mg) � B (σ(m1, . . .,mg)) for every permutation
σ in the symmetric group Sg. We conclude this section by showing
how the representation Eq. 7 can be calculated from the

symmetric tensor representation Eq. 12, and vice versa. By
equating coefficients we find that for every (m1, . . . ,md) ∈ Nd

p
either m1 + / + md ≠ d + g and c (m1, . . ., md) � 0 or

c m1, . . . ,md() � ∑
σ(n) : σ∈Sg{ }

B σ n1, . . . , ng()() where n1, . . . , ng()
� (1, . . . , 1︸︷︷︸

m1−1 times

, 2, . . . , 2︸︷︷︸
m2−1 times

, . . . ,) ∈ N
g
d.

Since B is symmetric the sum simplifies to

∑
σ(n) : σ∈Sg{ }

B σ n1, . . . , ng()() � g
m1 − 1, . . . ,md − 1()B n1, . . . , ng().

From this follows that for (n1, . . . , ng) ∈ N
g
d

B n1, . . . , ng() � 1
g

m1 − 1, . . . ,md − 1() c m1, . . . ,md() where

mk � 1 +∑g
ℓ�1

δk,nℓ for all k � 1, . . . , d

and δk,ℓ denotes the Kronecker delta. This demonstrates how our
approach can alleviate the difficulties that arise when symmetric
tensors are represented in the hierarchical tucker format [37] in a
very simple fashion.

2.6 Least Squares
Let in the following Vd

p be the product space of a function
dictionary Ψ such that Vd

p 4 L2(Ω). Consider a high-
dimensional function f ∈ L2(Ω) on some domain Ω ⊂ Rd and
assume that the point-wise evaluation f(x) is well-defined for
x ∈ Ω. In practice it is often possible to choose Ω as a product
domain Ω � Ω1 × Ω2 ×/ Ωd by extending f accordingly. To find
the best approximation uW of f in the spaceW4Vd

p we then need
to solve the problem

uW � argminu∈W‖f − u‖2L2(Ω). (13)

A practical problem that often arises when computing uW is
that computing the L2(Ω)-norm is intractable for large d. Instead of
using classical quadrature rules one often resorts to a Monte Carlo
estimation of the high-dimensional integral. This means one draws
M random samples {x(m)}m�1,...,M from Ω and estimates

‖f − u‖2L2(Ω) ≈
1
M

∑M
m�1

‖f x(m)() − u x(m)()‖2F,
where ‖·‖F is the Frobenius norm. With this approximation we
can define an empirical version of uW as

uW,M � argmin
u∈W

1
M

∑M
m�1

‖f x(m)() − u x(m)()‖2F. (14)

For a linear space W, computing uW,M amounts to solving a
linear system and does not pose an algorithmic problem. We

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 7024865

Götte et al. A Block-Sparse Tensor Train Format

11

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

use the remainder of this section to comment on the
minimization problem Eq. 14 when a set of tensor trains is
used instead.

Given samples (x(m))m�1,...,M we can evaluate u ∈ Vd
p for each

x(m) � (x(m)1 , . . . , x(m)d) using Eq. 7 If the coefficient tensor c of u
can be represented in the TT format then we can use Eq. 9 to
perform this evaluation efficiently for all samples (x(m))m�1,...,M at
once. For this we introduce for each k � 1, . . ., d the matrix

Ξk � Ψ x(1)k() . . . Ψ x(M)
k()() ∈ Rp×M . (15)

Then theM-dimensional vector of evaluations of u at all given
sample points is given by.

where we use Operation Eq. 2 to join the differentM-dimensional
indices.

The alternating least-squares algorithm cyclically updates each
component tensor Ck by minimizing the residual corresponding
to this contraction. To formalize this we define the operator
Φk ∈ RM×rk−1×nk×rk as

.

(16)

Then the update for Ck is given by a minimal residual solution
of the linear system

Ck � argmin
C∈Rrk−1×nk×rk

‖Φk j, i1, i2, i3() · C i1, i2, i3() − F(j)‖2F

where F(m)dy(m)df (x(m)) and i1, i2, i3, j are symbolic indices of
dimensions rk−1, nk, rk, M, respectively. The particular algorithm
that is used for this minimization may be adapted to the problem at
hand. These contractions are the basis for our algorithms inMethod
Description. We refer to [19] for more details on the ALS algorithm.

Note that it is possible to reuse parts of the contractions in Φk

through so called stacks. In this way not the entire contraction has
to be computed for every k. The dashed boxes mark the parts of

the contraction that can be reused. Details on that can be found
in [38].

3 THEORETICAL FOUNDATION

3.1 Sample Complexity for Polynomials
The accuracy of the solution uW,M of Eq. 14 in relation to uW is
subject to tremendous interest on the part of the mathematics
community. Two particular papers that consider this problem are
[32,39]. While the former provides sharper error bounds for the
case of linear ansatz spaces the latter generalizes the work and is
applicable to tensor network spaces. We now recall the relevant
result for convenience.

Proposition 3.1. For any set W 4 L2(Ω) ∩ L∞(Ω), define the
variation constant

K(W)d sup
v∈W\ 0{ }

‖v‖2L∞(Ω)
‖v‖2L2(Ω)

.

Let δ ∈ (0, 2−1/2). If W is a subset of a finite dimensional linear
space and kdmax{K ({f − uW}), K ({uW}−W)} <∞ it holds that

P ‖f − uW,M‖L2(Ω) ≤ (3 + 4δ)‖f − uW‖L2(Ω)[]≥ 1 − q

where q decreases exponentially with a rate
of ln (q) ∈ O(−Mδ2k−2).

Proof. Since k <∞, Theorems 2.7 and 2.12 in [32] ensure that

‖f − uW,M‖L2(Ω) ≤ 1 + 2

����
1 + δ

1 − δ

√⎛⎝ ⎞⎠‖f − uW‖L2(Ω).

holds with a probability of at least 1 − 2C exp (− 1
2Mδ2k−2). The

constant C is independent ofM and, sinceW is a subset of a finite
dimensional linear space, depends only polynomially on δ and

k−1. For δ ∈ (0, 2−1/2) it holds that
���
1+δ
1−δ

√
≤ 1 + 2δ. This concludes

the proof.
Note that the value of k depends only on f and on the setW

but not on the particular choice of representation of W.
However, the variation constant of spaces like Vd

p still
depends on the underlying dictionary Ψ. Although the
proposition indicates that a low value of k is necessary to
achieve a fast convergence, the tensor product spaces Vd

p
considered thus far does not exhibit a small variation
constant. The consequence of Proposition 3.1 is that
elements of this space are hard to learn in general and
may require an infeasible number of samples. To see this
consider Ω � [−1,1]d and the function dictionary ΨLegendre of
Legendre polynomials Eq. 5. Let L4Nd

p and define
Pℓ(x)d∏d

k�1
������
2ℓk − 1

√
(ΨLegendre(xk))ℓk for all ℓ ∈ L. Then,

{Pℓ}ℓ∈L is an L2-orthonormal basis for the linear subspace
Vd〈Pℓ: ℓ ∈ L〉4Vd

p and one can show that

K(V) � sup
x∈Ω

∑
ℓ∈L

Pℓ(x)2 �∑
ℓ∈L

∏d
k�1

2ℓk − 1(), (17)

by using techniques from [[32], Sample Complexity for Polynomials]
and the fact that each Pℓ attains its maximum at 1. If L � Nd

p , we can

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 7024866

Götte et al. A Block-Sparse Tensor Train Format

12

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

interchange the sum and product in Eq. 17 and can conclude that
K(Vd

p) � p2d . This means that we have to restrict the space Vd
p to

obtain an admissible variation constant.We propose to use the space
Wd

g of homogeneous polynomials of degree g. Employing Eq. 17
with L � {ℓ : |ℓ| � d + g} we obtain the upper bound

K Wd
g()≤(d − 1 + g

d − 1
) max

|ℓ|�d+g
∏d
k�1

2ℓk − 1()

≤(d − 1 + g
d − 1

) 2⌊g
d
⌋ + 3()g mod d

2⌊g
d
⌋ + 1()d−g mod d

where the maximum is estimated by observing that (2 (ℓ1 + 1) −
1) (2ℓ2 − 1) ≤ (2ℓ1 − 1) (2 (ℓ2 + 1) − 1) 5 ℓ2 ≤ ℓ1. For g ≤ d this
results in the simplified bound K(Wd

g)≤ (3e
d−1+g

g)g , where e is the
Euler number. This improves the variation constant substantially
compared to the bound K(Vd

p)≤ p
2d , when g ≪ d. A similar

bound for the dictionary of monomials Ψmonomial is more
involved but can theoretically be computed in the same way.

In this work, we focus on the case where the samples are drawn
according to a probability measure on Ω. This however is not a
necessity and it is indeed beneficial to draw the samples from an
adapted samplingmeasure. Doing so, the theory in [32] ensures that
K(V) � dim(V) for all linear spaces V — independent of the
underlying dictionary Ψ. This in turn leads to the bounds K(Vd

p) �
pd and K(Wd

g) � (d−1+gd−1)≤(e d−1+g
g)g for g ≤ d. These optimally

weighted least-squares methods however, are not the focus of this
work and we refer the interested reader to the works [39,40].

3.2 Block Sparse Tensor Trains
Now that we have seen that it is advantageous to restrict ourselves
to the spaceWd

g we need to find a way to do so without loosing the
advantages of the tensor train format. In [29] it was rediscovered
from the physics community (see [28]) that if a tensor train is an
eigenvector of certain Laplace-like operators it admits a block
sparse structure. This means for a tensor train c the components
Ck have zero blocks. Furthermore, this block sparse structure is
preserved under key operations, like e.g. the TT-SVD. One
possible operator which introduces such a structure is the
Laplace-like operator

L �∑d
k�1

⊗
k−1
ℓ�1Ip()⊗ diag(0, 1, . . . , p − 1)⊗ ⊗

d

ℓ�k+1Ip(). (18)

This is the operator mentioned in the introduction encoding a
quantum symmetry. In the context of quantum mechanics this
operator is known as the bosonic particle number operator but we
simply call it the degree operator. The reason for this is that for the
function dictionary of monomials Ψmonomial the eigenspaces of L for
eigenvalue g are associated with homogeneous polynomials of degreee
g. Simply put, if the coefficient tensor c for the multivariate polynomial
u ∈ Vd

p is an eigenvector ofLwith eigenvalue g, thenu is homogeneous
and the degree of u is g. In general there are polynomials in Vd

p with
degree up to (p − 1)d. To state the results on the block-sparse
representation of the coefficient tensor we need the partial operators

L≤k � ∑k
m�1

⊗
m−1
ℓ�1Ip()⊗ diag(0, 1, . . . , p − 1)⊗ ⊗

k

ℓ�m+1Ip()
L≥k+1 � ∑d

m�k+1
⊗
m−1
ℓ�k+1

Ip()⊗ diag(0, 1, . . . , p − 1)⊗ ⊗
d

ℓ�m+1Ip(),
for which we have

L � L≤
k ⊗ ⊗

d

ℓ�k+1Ip + ⊗
k

l�1Ip ⊗ L
≥
k+1.

In the following we adopt the notation x � Lc to abbreviate the
equation

x i1, . . . , id() � L i1, . . . , id , j1, . . . , jd()c j1, . . . , jd()
where L is a tensor operator acting on a tensor c with result x.

Recall that by Remark 2.16 every TT corresponds to a
polynomial by multiplying function dictionaries onto the
cores. This means that for every ℓ � 1, . . ., r the TT τ≤k,ℓ(c)
corresponds to a polynomial in the variables x1, . . ., xk and the TT
τ≥k+1,ℓ(c) corresponds to a polynomial in the variables xk+1, . . ., xd.
In general these polynomials are not homogeneous, i.e. they are
not eigenvectors of the degree operators L≤k and L≥k+1. But since
TTs are not uniquely defined (cf. Remark 2.10) it is possible to
find transformations of the component tensors Ck and Ck+1 that
do not change the tensor c or the rank r but result in a
representation where each τ≤k,ℓ(c) and each τ≥k+1,ℓ(c) correspond
to a homogeneous polynomial. Thus, if c represents a
homogeneous polynomial of degree g and τ≤k,ℓ(c) is
homogeneous with deg(τ≤k,ℓ(c)) � ̃g then τ≥k+1,ℓ(c) must be
homogeneous with deg(τ≥k,ℓ(c)) � g − ̃g.

This is put rigorously in the first assertion in the subsequent
Theorem 3.2. There Sk, ̃g contains all the indices ℓ for which the
reduced basis polynomials satisfy deg(τ≤k,ℓ(c)) � ̃g. Equivalently, it
groups the basis functions τ≥k+1,ℓ(c) into functions of order g − ̃g.
The second assertion in Theorem 3.2 states that we can only
obtain a homogeneous polynomial of degree ̃g +m in the
variables x1, . . ., xk by multiplying a homogeneous polynomial
of degree ̃g in the variables x1, . . ., xk−1 with a univariate
polynomial of degree m in the variable xk. This provides a
constructive argument for the proof and can be used to ensure
block-sparsity in the implementation. Note that this condition
forces entire blocks in the component tensor Ck in equation (20)
to be zero and thus decreases the degrees of freedom.

Theorem 3.2 [[29], Theorem 3.2]. Let p � (p, . . ., p) be a
dimension tuple of size d and c ∈ Rp {0}, be a tensor train of rank
r � (r1, . . ., rd−1). Then Lc � gc if and only if c has a representation
with component tensors Ck ∈ Rrk−1×p×rk that satisfies the following
two properties.

1. For all ̃g ∈ {0, 1, . . . , g} there exist Sk, ̃g4{1, . . . , rk} such that
the left and right unfoldings satsify

L≤
kτ

≤
k,ℓ(c) � ̃gτ≤k,ℓ(c)

L≥
k+1τ

≥
k+1,ℓ(c) �(g − ̃g)τ≥k+1,ℓ(c) (19)

for ℓ ∈ Sk, ̃g .
2. The component tensors satisfy a block structure in the sets

Sk, ̃g for m � 1, . . ., p

Ck ℓ1,m, ℓ2()≠ 0 0 ∃ 0≤ ̃g ≤ g −(m − 1):
ℓ1 ∈ Sk−1, ̃g∧ℓ2 ∈ Sk, ̃g+(m−1) (20)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 7024867

Götte et al. A Block-Sparse Tensor Train Format

13

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

where we set S0,0 � Sd,g � {1}.
Note that this generalizes to other dictionaries and is not

restricted to monomials.
Although, block sparsity also appears for g + 1 ≠ p we restrict

ourselves to the case g + 1 � p in this work. Note that then the
eigenspace of L for the eigenvalue g has a dimension equal to the
dimension of the space of homogeneous polynomials, namely(d − 1 + g
d − 1) . Defining ρk, ̃gd|Sk, ̃g |, we can derive the following

rank bounds.
Lemma 3.3 [[29], Lemma 3.6]. Let p � (p, . . ., p) be a

dimension tuple of size d and c ∈ Rp {0}, with Lc � gc. Assume
that g + 1 � p then the block sizes ρk, ̃g from Theorem 3.2 are
bounded by

ρk, ̃g ≤ min (k + g ̃ − 1
k − 1

),(d − k + g − g ̃ − 1
d − 1

){ } (21)

for all k � 1, . . ., d − 1 and ̃g � 0, . . . , g and ρk,0 � ρk,g � 1.
The proof of this lemma is based on a simple combinatorial

argument. For every k consider the size of the groups ρk−1, ̄g for
̄g ≤ ̃g. Then ρk, ̄g can not exceed the sum of these sizes. Similarly,
ρk, ̄g can not exceed ∑ ̄g≤ ̃gρk+1, ̄g . Solving these recurrence relations
yields the bound.

Example 3.1 (Block Sparsity). Let p � 4 and g � 3 be given
and let c be a tensor train such that Lc � gc. Then for k � 2, . . .,
d − 1 the component tensors Ck of c exhibit the following
block sparsity (up to permutation). For indices i of order rk−1
and j of order rk

Ck(i, 1, j) �
* 0 0 0
0 * 0 0
0 0 * 0
0 0 0 *

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Ck(i, 2, j) �
0 * 0 0
0 0 * 0
0 0 0 *
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Ck(i, 3, j) �

0 0 * 0
0 0 0 *
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Ck(i, 4, j) �
0 0 0 *
0 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

This block structure results from sorting the indices i and j in
such a way that maxSk,g ̃ + 1 � minSk,g ̃+1 for every ̃g.

The maximal block sizes ρk,g ̃ for k � 1, . . ., d − 1 are given by

ρk,0 � 1, ρk,1 � min k, d − k{ }, ρk,2 � min k, d − k{ },
ρk,3 � 1.

As one can see by Lemma 3.3 the block sizes ρk,g ̃ can still be
quite high.

The expressive power of tensor train parametrizations
can be understood by different concepts, such as locality or
self similarity. We use the remainder of this section to
provide d-independent rank bounds in the context of
locality.

Definition 3.2. Let u ∈ Wd
g be a homogeneous polynomial and

B be the symmetric coefficient tensor introduced in
Parametrizing homogeneous polynomials by symmetric tensors
We say that u has a variable locality of Kloc if B (ℓ1, . . ., ℓg) � 0 for
all (ℓ1, . . . , ℓg) ∈ N

g
d with

max |ℓm1 − ℓm2| : m1,m2 � 1, . . . , g{ }>Kloc.

Example 3.3. Let u be a homogeneous polynomial of
degree 2 with variable locality Kloc. Then the symmetric
matrix B (cf. Eq. 12) is Kloc-banded. For Kloc � 0 this means
that B is diagonal and that u takes the form

u(x) �∑d
ℓ�1

Bℓℓx
2
ℓ
.

This shows that variable locality removes mixed terms.
Remark 3.4. The locality condition in the following

Theorem 3.4 is a sufficient, but in no way necessary,
condition for a low rank. But since locality is a prominent
feature of many physical phenomena, this condition allows us
to identify an entire class of highly relevant functions which
can be approximated very efficiently.

Consider, for example, a many-body system in one dimension,
where each body is described by position and velocity coordinates. If
the influence of neighboring bodies is much higher than the
influence of more distant ones, the coefficients of the polynomial
parts that depend on multiple variables often can be neglected. The
forces in this system then exhibit a locality structure. An example of
this is given in equationEq. 6 in [3], where this structure is exhibited
by the force that acts on the bodies. A similar structure also appears
in the microscopic traffic models in Notation of [41].

Another example is given by the polynomial chaos expansion
of the stochastic process

Xt ξ1, . . . , ξt()dc i1, . . . , it()∏t
k�1

Ψ ξk() ik()

for t ∈ N, whereΨ is the function dictionary of Hermite polynomials.
Inmany applications, it is justified to assume that themagnitude of the
covariance Cov(Xt1,Xt2) decays with the distance of the indices |t1− t2|
If the covariance decays fast enough, the coefficient tensor exhibits
approximate locality, i.e. it can be well approximated by a coefficient
tensor that satisfies the locality condition. Examples of this areGaussian
processes with a Matérn kernel [42,43] or Markov processes.

Theorem 3.4. Let p � (p, . . ., p) be a dimension tuple of size d
and c ∈ Rp {0} correspond to a homogeneous polynomial of degree
g + 1 � p (i.e. Lc � gc) with variable locality Kloc. Then the block
sizes ρk, ̃g are bounded by

ρk, ̃g ≤ ∑Kloc

ℓ�1
min

⎧⎨⎩ Kloc − ℓ + 1 + ̃g − 2
Kloc − ℓ

⎞⎠, ℓ + g − ̃g − 2
ℓ − 1

()⎫⎬⎭⎛⎝ (22)

for all k � 1, . . ., d − 1 and ̃g � 1, . . . , g − 1 as well as ρk,0 � ρk,g � 1.
Proof. For fixed g > 0 and a fixed componentCk recall that for each

l the tensor τ≤k,l(c) corresponds to a reduced basis function vl in the
variables x1, . . ., xk and that for each l the tensor τ≥k+1,l(c) corresponds
to a reduced basis function wl in the variables xk+1, . . ., xd. Further
recall that the sets Sk, ̃g group these vl and wl. For all l ∈ Sk, ̃g it holds
that deg(vl) � ̃g and deg(wl) � g − ̃g. For ̃g � 0 and ̃g � g we know
from Lemma 3.3 that ρk, ̃g � 1. Now fix any 0< ̃g < g and arrange all
the polynomials vl of degree ̃g in a vector v and all polynomials wl of
degree g − ̃g in a vector w. Then every polynomial of the form vuQw
for some matrix Q satisfies the degree constraint and the maximal

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 7024868

Götte et al. A Block-Sparse Tensor Train Format

14

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

possible rank of Q provides an upper bound for the block size ρk, ̃g .
However, due to the locality constraint we know that certain entries of
Q have to be zero. We denote a variable of a polynomial as inactive if
the polynomial is constant with respect to changes in this variable and
active otherwise. Assume that the polynomials in v are ordered
(ascendingly) according to the smallest index of their active
variables and that the polynomials in w are ordered (ascendingly)
according to the largest index of their active variables. With this
ordering Q takes the form

Q �

0
Q1

* Q2

* * Q3

« « « 1
* * * / QKloc

⎛⎜⎜⎝
⎞⎟⎟⎠.

This means that for ℓ � 1, . . ., Kloc each block Qℓ matches a
polynomial vl of degree ̃g in the variables xk−Kloc+ℓ, . . . , xk with a
polynomial wl of degree g − ̃g in the variables xk+1, . . ., xk+ℓ.

Observe that the number of rows in Qℓ decreases while the
number columns increases with ℓ. This means that we can
subdivide Q as

Q �
0 0 0
QC 0 0
* QR 0

⎛⎜⎝ ⎞⎟⎠,

where QC contains the blocks Qℓ with more rows than columns (i.e.
full column rank) and QR contains the blocks Qℓ with more columns
than rows (i.e. full row rank). So QC is a tall-and-skinny matrix while
QR is a short-and-wide matrix and the rank for general Q is bounded
by the sumover the column sizes of theQℓ inQC plus the sumover the
row sizes of the Qℓ in QR i.e.

rank(Q) � ∑Kloc

ℓ�1
rank Qℓ().

To conclude the proof it remains to compute the row and
column sizes of Qℓ. Recall that the number of rows of Qℓ equals
the number of polynomials u of degree ̃g in the variables
xk−Kloc+ℓ, . . . , xk that can be represented as
u(xk−Kloc+ℓ, . . . , xk) � xk−Kloc+ℓũ(xk−Kloc+ℓ, . . . , xk). This corresponds
to all possible ũ of degree ̃g − 1 in the Kloc − ℓ + 1 variables
xk−Kloc+ℓ, . . . , xk. This means that

#rows Qℓ()≤ Kloc − ℓ + 1 + ̃g − 2
Kloc − ℓ

⎞⎠⎛⎝
and a similar argument yields

#columns Qℓ()≤ ℓ + g − ̃g − 2
ℓ − 1

().
This concludes the proof.
This lemma demonstrates how the combination of the model

space Wd
g with a tensor network space can reduce the space

complexity by incorporating locality.
Remark 3.5. The rank bound in Theorem 3.4 is only sharp for

the highest possible rank. The precise bounds can be much

smaller, especially for the first and last ranks, but are quite
technical to write down. For this reason, we do not provide them.

One sees that the bound only depends on g and Kloc and is
therefore d-independent.

Remark 3.6. The rank bounds presented in this section do not
only hold for the monomial dictionary Ψmonomial but for all
polynomial dictionaries Ψ that satisfy deg(Ψk) � k − 1 for all
k � 1, . . ., p. When we speak of polynomials of degree g, we mean
the space Wd

g � {v ∈ Vd
p : deg(v) � g}. For the dictionary of

monomials Ψmonomial the space Wd
g contains only homogeneous

polynomials in the classical sense. However, when the basis of
Legendre polynomialsΨLegendre is used one obtains a space in which
the functions are not homogeneous in the classical sense. Note that
we use polynomials since they have been applied successfully in
practice, but other function dictionaries can be used as well. Also
note that the theory is much more general as shown in [29] and is
not restricted to the degree counting operator.

With Theorem 3.4 one sees that tensor trains are well suited to
parametrize homogeneous polynomials of fixed degree where the
symmetric coefficient tensor B (cf. Eq. 12) is approximately banded
(see also Example 3.3). This means, that there exist an Kloc such that
the error for a best approximation of B by a tensor B

̃
with variable

locality Kloc is small. However, Kloc is not known precisely in practice
but can only be assumed by physical understanding of the problem at
hand. Therefore, we still rely on rank adaptive schemes to find
appropriate rank and block sizes. Moreover, the locality property
heavily depends on the ordering of the modes. This ordering can be
optimized, for example, by using entropymeasures for the correlation
of different modes, as it is done in quantum chemistry (cf. [[44],
Remark 4.2]) or by model selection methods (cf. [25,27,45,46]).

4 METHOD DESCRIPTION

In this section we utilize the insights of Theoretical Foundation to
refine the approximation spaces Wd

g and Sdg and adapt the
alternating least-squares (ALS) method to solve the related
least-squares problems. First, we define the subset

Bρ Wd
g()d{u ∈ Wd

g : c is block−sparse with ρk, ̃g ≤ ρ for

0≤ ̃g ≤ g, k � 1, . . . , d} (23)

and provide an algorithm for the related least-squares problem in
Algorithm 1 which is a slightly modified version of the classical
ALS [19].1 With this definition a straight-forward application of
the concept of block-sparsity to the space Sdg is given by

Sdg,ρ � ⊗
g

̃g�0
Bρ Wd

̃g(). (24)

This means that every polynomial in Sdg,ρ can be represented by
a sum of orthogonal coefficient tensors2

1It is possible to include rank adaptivity as in SALSA [21] or bASD [13] and we
have noted this in the relevant places.
2The orthogonality comes from the symmetry of L which results in orthogonal
eigenspaces.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 7024869

Götte et al. A Block-Sparse Tensor Train Format

15

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

∑g
̃g�0
c(̃g) where Lc(̃g) � ̃gc(̃g). (25)

There is however another, more compact, way to represent this
function. Instead of storing g + 1 different tensor trains c(0), . . ., c(g) of
order d, we can merge them into a single tensor c of order d + 1 such
that c(id , ̃g

̃
) � c(̃g)(id). The summation over ̃g can thenbe represented

by a contraction of a vector of 1’s to the (d + 1)-th mode. To retain the
block-sparse representationwe can view the (d+1)-th component as an
artificial component representing a shadow variable xd+1.

Remark 4.1. The introduction of the shadow variable xd+1
contradicts the locality assumptions of Theorem 3.4 and implies
that the worst case rank bounds must increase. This can be
problematic since the block size contributes quadratically to the
number of parameters. However, a proof similar to that of
Theorem 3.4 can be made in this setting and one can show
that the bounds remain independent of d

ρk, ̃g ≤ 1+ ∑Kloc

ℓ�1
min Kloc − ℓ + 1 + ̃g − 2

Kloc − ℓ
(), ℓ +1 + g − ̃g − 2

ℓ +1 − 1
⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭

(26)

where the changes to Eq. 22 are underlined. This is crucial, since
in practice one can assume locality by physical understanding of
the problem at hand. With this statement, we can guarantee that
the ranks are only slightly changed by the auxiliary contraction
and the locality property is not destroyed.

We denote the set of polynomials that results from this
augmented block-sparse tensor train representation as

Sd,augg,ρ (27)

where again ρ provides a bound for the block-size in the representation.
Since Sd,augg,ρ is defined analogously to Bρ(Wd

g) we can use
Algorithm 1 to solve the related least-squares problem by
changing the contraction Eq. 16 to

. (28)

To optimize the coefficient tensors c(0), . . ., c(g) in the space Sdg,ρ
we resort to an alternating scheme. Since the coefficient tensors

are mutually orthogonal we propose to optimize each c(̃g)

individually while keeping the other summands {c(k)}k≠ ̃g fixed.
This means that we solve the problem

u(̃g) � argmin
u∈Wd

̃g

1
M

∑M
m�1

‖f x(m)() − ∑g
k�0
k≠ ̃g

u(k) x(m)() − u x(m)()‖2F (29)

which can be solved usingAlgorithm1. The original problemEq. 14 is
then solved by alternating over g

̃
until a suitable convergence criterion

is met. The complete algorithm is summarized in Algorithm 2.
The proposed representation has several advantages. The

optimization with the tensor train structure is computationally less
demanding than solving directly in Sdg . Let D � dim(Sdg) � (d

d+g).
Then a reconstruction on Sdg requires to solve a linear system of size
M × D while a microstep in an ALS sweep only requires the solution
of systems of size less thanMpr2 (depending on the block sizes ρk, ̃g).
Moreover, the stack contractions as shown in Least Squares also
benefit from the block sparse structure. This also means that the
number of parameters of a full rank r tensor train can bemuch higher
than the number of parameters of several c(m)’s which individually
have ranks that are even larger than r.

Remark 4.2. Let us comment on the practical pondering behind
choosing Sd,augg,ρ or Sdg,ρ by stating some pros and cons of [1]these
parametrizations.We expect that solving the least-squares problem for
Sd,augg,ρ will be faster than for Sdg,ρ since it is computationalmore efficient
to optimize all polynomials simultaneously than every degree
individually in an alternating fashion. On the other hand, the
hierarchical scheme of the summation approach may allow one to
utilizemulti-levelMonte Carlo approaches. Together with the fact that
every degree g

̃
possesses a different optimal sampling density thismay

result in a drastically improved best case sample efficiency for the
direct method. Additionally, with Sdg,ρ it is easy to extend the ansatz
space simply by increasing gwhich is not so straight-forward for Sd,augg,ρ .
Which approach is superior depends on the problem at hand.

Algorithm 1 | Extended ALS (SALSA) for the least-squares problem on Bρ(W
d
g)

input: Data pairs (x(m) , y(m)) ∈ Rd × R form � 1, . . .,M, a function dictionaryΨ,
a maximal degree g, and a maximal block size ρ.

output: Coefficent tensor c of a function u ∈ B(Wd
g) that approximates the data.

For k � 1, . . ., d compute Ξk according to Eq. 15;
Initialize the coefficient tensor c for u ∈ B(Wd

g);
Initialize SALSA parameters;
while not converged do

Right orthogonalize c;
for k � 1, . . ., d do

Compute Φk according to Eq. 16;
Compute the index set I of the non-zeros components in Ck according to
Eq. 20;
Update Ck by solving the SALSA-regularized version of Φk (j, i

3) · Ck(i
3) � y(j)

restricted to i3 ∈ I ;
Left orthogonalize Ck and adapt the kth rank while respecting block size
bounds ρ and Eq. 21;

end
Update SALSA parameters;

end
return c

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 70248610

Götte et al. A Block-Sparse Tensor Train Format

16

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

5 NUMERICAL RESULTS

In this section we illustrate the numerical viability of the proposed
framework on some simple but common problems. We estimate
the relative errors on test sets with respect to the sought function f
and are interested in the required number of samples leading to
recovery. Our implementation is meant only as a proof of concept
and does not lay any emphasis on efficiency. The rank is chosen a
priori, the stopping criteria are naïvely implemented and rank
adaptivity, as would be provided by SALSA, is missing all
together.3 For this reason we only compare the methods in
terms of degrees of freedom and accuracy and not in terms of
computing time. These are relevant quantities nonetheless, since
the degrees of freedom are often the limiting factor in high
dimensions and the computing time is directly related to the
number of degrees of freedom.

In the following we always assume p � g + 1. We also restrict
the group sizes to be bounded by the parameter ρmax. In our
experiments we choose ρmax without any particular strategy but
ideally, ρmax would be determined adaptively by the use of SALSA,
which we did not do in this work. For every sample size the error
plots show the distribution of the errors between the 0.15 and 0.85
quantile. The code for all experiments has been made publicly
available at https://github.com/ptrunschke/block_sparse_tt.

5.1 Riccati Equation
In this section we consider the closed-loop linear quadratic
optimal control problem

minimize
u

‖y‖2L2([0,∞] ×[−1,1]) + λ‖u‖2L2([0,∞])
subject to zty � z2xy + u(t)χ[−0.4,0.4],

(t, x) ∈ [0,∞] ×[−1, 1]
y(0, x) � y0(x), x ∈ [−1, 1]
zxy(t,−1) � zxy(t, 1) � 0

After a spatial discretization of the heat equation with finite
differences we obtain a d-dimensional system of the form

minimize
u

∫∞

0
y(t)uQy(t) + λu(t)2 dt subject to _y

� Ay + Bu and y(0) � y0.

It is well known [47] that the value function for this problem
takes the form v(y0) � yu0 Py0 where P can be computed by

solving the algebraic Riccati equation (ARE). It is therefore a
homogeneous polynomial of degree 2. This function is a perfect
example of a function that can be well-approximated in the space
Wd

2 . We approximate the value function on the domain Ω �
[−1,1]d for d � 8 with the parameters g � 2 and ρmax � 4.

In this experiment we use the dictionary of monomials Ψ �
Ψmonomial (cf. Eq. 4) and compare the ansatz spaces W8

2,
B4(W8

2), T6(V8
3) and V8

3. Since the function v(x) is a general
polynomial we use Lemma 3.3 to calculate the maximal block
size 4. This guarantees perfect reconstruction since
B4(W8

2) � W8
2. The rank bound 6 is chosen s.t.

B4(W8
2)4T6(V8

3). The degrees of freedom of all used spaces
are listed in Table 1. In Figure 1 we compare the relative
error of the respective ansatz spaces. It can be seen that the
block sparse ansatz space recovers almost as well as the sparse
approach. As expected, the dense TT format is less favorable
with respect to the sample size.

A clever change of basis, given by the diagonalization ofQ, can
reduce the required block size from 4 to 1. This allows to extend
the presented approach to higher dimensional problems. The
advantage over the classical Riccati approach becomes clear when
considering non-linear versions of the control problem that do
not exhibit a Riccati solution. This is done in [8,9] using the dense
TT-format Tr(Vd

p).

5.2 Gaussian Density
As a second example we consider the reconstruction of an
unnormalized Gaussian density

f (x) � exp −‖x‖22().

Algorithm 2 | Alternating extended ALS (SALSA) for the least-squares problem
on Sd

g,ρ

input: Data pairs (x(m) , y(m)) ∈ Rd × R for m � 1, . . ., M, a function dictionary Ψ, a
maximal degree g, and a maximal block size ρ.

output: Coefficent tensors c(0), . . ., c(g) of a function u ∈ Sd
g,ρ that approximates the

data.
Initialize the coefficient tensors c(̃g) of u(̃g) ∈ Bρ(W

d
̃g) for g̃ � 0, . . . , g;

while not converged do
for g̃ � 0, . . . , g do

Compute z(m)dy(m) −∑k≠ ̃gu
(k)(x(m)) for m � 1, . . ., M;

Update c(̃g) by using Algorithm 1 on the data pairs (x
(m)
, z

(m)
) form � 1, . . .,M;

end
end
return c(̃g) for g̃ � 0, . . . , g

TABLE 1 | Degrees of freedom for the full spaceWd
g of homogeneous polynomials

of degree g �2, the TT variant Bρmax
(Wd

g) with maximal block size ρmax �4, the
space Tr (V

d
p) with TT rank bounded by r �6, and the full space Vd

p for
completeness.

W8
2 B4(W8

2) T6 (V8
3) V8

3

36 94 390 6561

FIGURE 1 | 0.15–0.85 quantiles for the recovery error in W8
2 (blue),

B4(W
8
2) (orange), and T6(V

8
3) (green). The relative error is computed with

respect to the L2-norm using a Monte Carlo estimation with 106 samples.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 70248611

Götte et al. A Block-Sparse Tensor Train Format

17

https://github.com/ptrunschke/block_sparse_tt
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

again on the domain Ω � [−1,1]d with d � 6. For the dictionary
Ψ � ΨLegendre [cf. Eq. 5] we chose g � 7, ρmax � 1 and r � 8 and
compare the reconstruction w.r.t. Sdg , S

d
g,ρmax

and Tr(Vd
p), defined

in (11), (24) and (8). The degrees of freedom resulting from these
different discretizations are compared in Table 2. This example is
interesting because here the roles of the spaces are reversed. The
function has product structure

f (x) � exp −x21() . . . exp −x2d()
and can therefore be well approximated as a rank 1 tensor train with
each component Ck just being a best approximation for exp (−x2k) in
the used function dictionary. Therefore, we expect the higher degree
polynomials to be important. A comparison of the relative errors to
the exact solution are depicted inFigure 2. This example demonstrates
the limitations of the ansatz space S67 which is not able to exploit the
low-rank structure of the function f. Using S67,1 can partially remedy
this problem as can be seen by the improved sample efficiency. But
since S67,14S67 the final approximation error of S67,1 can not deceed
that of S67. One can see that the dense formatT1(V6

8) produces the best
results but is quite unstable compared to the other ansatz classes. This
instability is a result of the non-convexity of the set Tr(Vd

p) and we
observe that the chance of getting stuck in a local minimum increases
when the rank r is reduced from 8 to 1. Finally, we want to address the
peaks that are observable at M ≈ 500 samples for T8(V6

8) and M ≈
1716 samples for S67. For this recall that the approximation in S67
amounts to solving a linear systemwhich is underdetermined forM <
1716 samples and overdetermined for M > 1716 samples. In the
underdetermined case we compute the minimum norm solution
and in the overdetermined case we compute the least-squares

solution. It is well-known that the solution to such a
reconstruction problem is particularly unstable in the area of
this transition [39]. Although the set S67,1 is non-linear we take
the peak at M ≈ 500 as evidence for a similar effect which is
produced by the similar linear systems that are solved in the micro
steps in the ALS.

5.3 Quantities of Interest
The next considered problem often arises when computing
quantities of interest from random partial differential
equations. We consider the stationary diffusion equation

∇xa(x, y)∇xu(x, y) � f (x) x ∈ D
u(x, y) � 0 x ∈ zD

on D � [−1,1]2. This equation is parametric in y ∈ [−1,1]d. The
randomness is introduced by the uniformly distributed random
variable y ∼ U([−1, 1]d) that enters the diffusion coefficient

a(x, y)d1 + 6
π2
∑d
k�1

k−2 sin ϖ̂kx1()sin ϖ̌kx2()yk
with ϖ̂k � π⌊k2⌋ and ϖ̌k � π⌈k2⌉. The solution u often measures the

concentration of some substance in the domain Ω and one is
interested in the total amount of this substance in the entire domain

M(y)d∫
Ω
u(x, y) dx.

An important result proven in [31] ensures the ℓp summability, for
some 0 < p ≤ 1, of the polynomial coefficients of the solution of
this equation in the dictionary of Chebyshev polynomials.
This means that the function is very regular and we presume
that it can be well approximated in Sdg for the dictionary of
Legendre polynomials ΨLegendre. For our numerical
experiments we chose d � 10, g � 5 and ρmax � 3 and
again compare the reconstruction w.r.t. Sdg , the block-
sparse TT representations of Sdg,ρmax

and Sd,augg,ρmax
and a dense

FIGURE 2 | 0.15–0.85 quantiles for the recovery error in S6
7 (blue), S

6
7,1 (orange), T1(V

6
8) (green), and T8(V

6
8) (red). The relative error is computed with respect to the

L2-norm using a Monte Carlo estimation with 106 samples.

TABLE 2 | Degrees of freedom for the full space Sd
g , the TT variant Sd

g,ρmax
with

maximal block size ρmax �1, the space Tr (V
d
p) with TT rank bounded by r �1,

the space Tr (V
d
p) with TT rank bounded by r �8, and the full space Vd

p for
completeness.

S6
7 S6

7,1 T1(V6
8) T8(V6

8) V6
8

1716 552 48 2,176 262,144

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 70248612

Götte et al. A Block-Sparse Tensor Train Format

18

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

TT representation of Tr(Vd
p) with rank r ≤ 14. Admittedly, the

choice d � 10 is relatively small for this problem but was
necessary since the computation on Sdg took prohibitively long
for larger values. A comparison of the degrees of freedom for the
different ansatz spaces is given in Table 3 the relative errors to the
exact solution are depicted in Figure 3. In this plot we can
recognize the general pattern that a lower number of parameters
can be associated with an improved sample efficiency. However, we
also observe that for small M the relative error for Sdg,ρ is smaller
than for Sd,augg,ρ . We interpret this as a consequence of the regularity
of u since the alternating scheme for the optimization in Sdg,ρ favors
lower degree polynomials by construction. In spite of this success,
we have to point out that optimizing over Sdg,ρ took about 10 times
longer than optimizing over Sd,augg,ρ . Finally, we observe that the
recovery in T14(V10

6) produces unexpectedly large relative errors
when compared to previous results in [13]. This suggests that the
rank-adaptive algorithm from [13] has a strong regularizing effect
that improves the sample efficiency.

6 CONCLUSION

We introduce block sparsity [28,29] as an efficient tool to
parametrize, multivariate polynomials of bounded degree.
We discuss how to extend this to general multivariate
polynomials of bounded degree and prove bounds for the
block sizes for certain polynomials. As an application we

discuss the problem of function identification from data for
tensor train based ansatz spaces and give some insights into
when these ansatz spaces can be used efficiently. For this we
motivate the usage of low degree multivariate polynomials by
approximation results (e.g. [30,31]) and recent results on
sample complexity [32]. This leads to a novel algorithm for
the problem at hand. We then demonstrate the applicability
of this algorithm to different problems. Up until now block
sparse tensor trains are not used for these recovery tasks. The
numerical examples, however, demonstrate that at least dense
tensor trains can not compete with our novel block-sparse
approach. We observe that the sample complexity can be much
more favorable for successful system identification with block
sparse tensor trains than with dense tensor trains or purely
sparse representations. We expect that the inclusion of rank-
adaptivity using techniques from SALSA or bASD is straight
forward, which we therefore consider an interesting direction
from an applied point of view for forthcoming papers. We
expect, that this would improve the numerical results even
further. The introduction of rank-adaptivity would moreover
alleviate the problem of having to choose a block size a-priori.
Finally, we want to reiterate that the spaces of polynomials with
bounded degree are predestined for the application of least-squares
recovery with an optimal sampling density (cf [39]) which holds
opportunities for further improvement of the sample efficiency. This
leads us to the strong believe that the proposed algorithm can be
applied successfully to other high dimensional problems in which
the sought function exhibits sufficient regularity.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories.
The names of the repository/repositories and accession number(s) can
be found below: https://github.com/ptrunschke/block_sparse_tt.

AUTHOR CONTRIBUTIONS

MG is themain contributor of the block-sparse tensor train section.
RS is the main contributor of the method section. PT is the main
contributor of the sample complexity section, the implementation
of the experiments and contributed to the proof of the main
Theorem. All authors contributed to every section and
contributed equally to the introduction and to the discussion.

FUNDING

MG was funded by DFG (SCHN530/15-1). RS was supported by
the Einstein Foundation Berlin. PT acknowledges support by the
Berlin International Graduate School in Model and Simulation
based Research (BIMoS).

FIGURE 3 | 0.15–0.85 quantiles for the recovery error in S10
5 (blue), S10

5,3

(orange), S10,aug
5,3 (green), and T14(V

10
6) (red). The relative error is computed with

respect to the L2-norm using a Monte Carlo estimation with 106 samples. The
experiment for T14(V

10
6) was stopped early at M �1,200 due to its prohibitive

computational demand and because the expected behaviour is already observable.

TABLE 3 | Degrees of freedom for the full space Sd
g , the TT variant Sd

g,ρmax
with

maximal block size ρmax �3, the space Tr (V
d
p) with TT rank bounded by r �14,

and the full space Vd
p for completeness.

S10
5 S10

5,3 S10,aug
5,3 T14(V10

6) V10
6

3,003 1726 803 7,896 60,466,176

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 70248613

Götte et al. A Block-Sparse Tensor Train Format

19

https://github.com/ptrunschke/block_sparse_tt
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

REFERENCES

1. Brunton SL, Proctor JL, and Kutz JN. Discovering Governing Equations from
Data by Sparse Identification of Nonlinear Dynamical Systems. Proc Natl Acad
Sci USA (2016) 113(15):3932–7. doi:10.1073/pnas.1517384113

2., Gelß P, Klus S, Eisert J, and Schütte C. Multidimensional Approximation of
Nonlinear Dynamical Systems. J Comput Nonlinear Dyn (2019) 14(6).
doi:10.1115/1.4043148

3. Goeßmann A, Götte M, Roth I, Ryan S, Kutyniok G, and Eisert J. Tensor
Network Approaches for Data-Driven Identification of Non-linear Dynamical
Laws (2020). NeurIPS2020 - Tensorworkshop.

4. Kazeev V, and Khoromskij BN. Low-Rank Explicit QTT Representation of the
Laplace Operator and its Inverse. SIAM J Matrix Anal Appl (2012) 33(3):
742–58. doi:10.1137/100820479

5. Kazeev V, and Schwab C. Quantized Tensor-Structured Finite Elements for
Second-Order Elliptic PDEs in Two Dimensions. Numer Math (2018) 138(1):
133–90. doi:10.1007/s00211-017-0899-1

6. Bachmayr M, and Kazeev V. Stability of Low-Rank Tensor Representations
and Structured Multilevel Preconditioning for Elliptic PDEs. Found Comput
Math (2020) 20(5):1175–236. doi:10.1007/s10208-020-09446-z

7. Eigel M, Pfeffer M, and Schneider R. Adaptive Stochastic Galerkin FEM with
Hierarchical Tensor Representations. Numer Math (2016) 136(3):765–803.
doi:10.1007/s00211-016-0850-x

8. Dolgov S, Kalise D, and Kunisch K. Tensor Decomposition Methods for High-
Dimensional Hamilton-Jacobi-Bellman Equations. arXiv (2021). 1908.01533
[cs, math].

9. Oster M, Sallandt L, and Schneider R.Approximating the Stationary Hamilton-
Jacobi-Bellman Equation by Hierarchical Tensor Products. arXiv (2021). arXiv:
1911.00279 [math].

10. Richter L, Sallandt L, and Nüsken N. Solving High-Dimensional Parabolic
PDEs Using the Tensor Train Format. arXiv (2021). arXiv:2102.11830 [cs,
math, stat].

11. Christian B, Martin E, Leon S, and Philipp T. Pricing High-Dimensional
Bermudan Options with Hierarchical Tensor Formats. arXiv (2021). arXiv:
2103.01934 [cs, math, q-fin].

12. Glau K, Kressner D, and Statti F. Low-Rank Tensor Approximation for
Chebyshev Interpolation in Parametric Option Pricing. SIAM J Finan Math
(2020) 11(3):897–927. Publisher: Society for Industrial and Applied
Mathematics doi:10.1137/19m1244172

13. Eigel M, Neumann J, Schneider R, and Wolf S. Non-intrusive Tensor
Reconstruction for High-Dimensional Random PDEs. Comput Methods
Appl Math (2019) 19(1):39–53. doi:10.1515/cmam-2018-0028

14. Eigel M, Schneider R, Trunschke P, and Wolf S. Variational Monte
Carlo–Bridging Concepts of Machine Learning and High-Dimensional
Partial Differential Equations. Adv Comput Math (2019) 45(5):2503–32.
doi:10.1007/s10444-019-09723-8

15. Zhang Z, Yang X, Oseledets IV, Karniadakis GE, and Daniel L.
Enabling High-Dimensional Hierarchical Uncertainty
Quantification by Anova and Tensor-Train Decomposition. IEEE
Trans Comput.-Aided Des Integr Circuits Syst (2015) 34(1):63–76.
doi:10.1109/tcad.2014.2369505

16. Klus S, and Gelß P. Tensor-Based Algorithms for Image Classification.
Algorithms (2019) 12(11):240. doi:10.3390/a12110240

17. Stoudenmire E, and Schwab DJ “Advances in Neural Information Processing
Systems,” in Supervised Learning with Tensor Networks. Editors D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Curran Associates,
Inc. (2016) 29. Available at: https://proceedings.neurips.cc/paper/2016/file/
5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf/

18. Oseledets IV. DMRG Approach to Fast Linear Algebra in the TT-Format.
Comput Methods Appl Math (2011) 11(3):382–393. doi:10.2478/cmam-2011-
0021

19. Holtz S, Rohwedder T, and Schneider R. The Alternating Linear Scheme for
Tensor Optimization in the Tensor Train Format. SIAM J Sci Comput (2012)
34(2):A683–A713. doi:10.1137/100818893

20. White SR. Density Matrix Formulation for Quantum Renormalization
Groups. Phys Rev Lett (1992) 69(19):2863–6. doi:10.1103/physrevlett.69.2863

21. Grasedyck L, and Krämer S. Stable ALS Approximation in the TT-Format for
Rank-Adaptive Tensor Completion. Numer Math (2019) 143(4):855–904.
doi:10.1007/s00211-019-01072-4

22. Holtz S, Rohwedder T, and Schneider R. OnManifolds of Tensors of Fixed TT-
Rank. Numer Math (2012) 120(4):701–31. doi:10.1007/s00211-011-0419-7

23. Lubich C, Oseledets IV, and Vandereycken B. Time Integration of
Tensor Trains. SIAM J Numer Anal (2015) 53(2):917–41.
doi:10.1137/140976546

24. Chevreuil M, Lebrun R, Nouy A, and Rai P. A Least-Squares Method for Sparse
Low Rank Approximation of Multivariate Functions. Siam/asa J Uncertainty
Quantification (2015) 3(1):897–921. doi:10.1137/13091899x

25. Grelier E, Anthony N, and Chevreuil M. Learning with Tree-Based Tensor
Formats. arXiv (2019). arXiv:1811.04455 [cs, math, stat].

26. Grelier E, Anthony N, and Lebrun R. Learning High-Dimensional Probability
Distributions Using Tree Tensor Networks. arXiv (2021). arXiv:1912.07913 [cs,
math, stat].

27. Haberstich C. Adaptive Approximation of High-Dimensional Functions with
Tree Tensor Networks for Uncertainty Quantification (2020) Theses, École
centrale de Nantes.

28. Singh S, Pfeifer RNC, and Vidal. G. Tensor Network Decompositions in the
Presence of a Global Symmetry. Phys Rev A (2010) 82(5):050301. doi:10.1103/
physreva.82.050301

29. Markus B, Michael G, and Max P. Particle Number Conservation and Block
Structures in Matrix Product States. arXiv (2021). arXiv:2104.13483 [math.NA,
quant-ph].

30. Breiten T, Kunisch K, and Pfeiffer L. Taylor Expansions of the Value Function
Associated with a Bilinear Optimal Control Problem. Ann de l’Institut Henri
Poincaré C, Analyse non linéaire (2019) 36(5):1361–99. doi:10.1016/
j.anihpc.2019.01.001

31. Hansen M, and Schwab C. Analytic Regularity and Nonlinear Approximation
of a Class of Parametric Semilinear Elliptic PDEs.Mathematische Nachrichten
(2012) 286(8-9):832–60. doi:10.1002/mana.201100131

32. Eigel M, Schneider R, and Trunschke P. Convergence Bounds for Empirical
Nonlinear Least-Squares. arXiv. arXiv:2001.00639 [cs, math], 2020.

33. Oliphant T. Guide to NumPy (2006).
34. Huber B, and Wolf S. Xerus - A General Purpose (2014). Tensor Library.
35. Espig M, Hackbusch W, Handschuh S, and Schneider R. Optimization

Problems in Contracted Tensor Networks. Comput Vis Sci. (2011) 14(6):
271–85. doi:10.1007/s00791-012-0183-y

36. Oseledets IVV. Tensor-Train Decomposition. SIAM J Sci Comput (2011)
33(5):2295–317. doi:10.1137/090752286

37. Hackbusch W. On the Representation of Symmetric and Antisymmetric
Tensors. Preprint. Leipzig, Germany: Max Planck Institute for Mathematics
in the Sciences (2016).

38. Wolf S. Low Rank Tensor Decompositions for High Dimensional Data
Approximation, Recovery and Prediction. [PhD thesis]. TU Berlin (2019).

39. Cohen A, and Migliorati G. Optimal Weighted Least-Squares Methods. SMAI
J Comput Math (2017) 3:181–203. doi:10.5802/smai-jcm.24

40. Haberstich C, Anthony N, and Perrin G. Boosted Optimal Weighted Least-
Squares. arXiv (2020). arXiv:1912.07075 [math.NA].

41. Göttlich S, and Schillinger T.Microscopic andMacroscopic Traffic FlowModels
Including Random Accidents (2021).

42. Rasmussen CE, and Williams CKI. Gaussian Processes for Machine Learning.
Cambridge: MIT Press (2006).

43. Cornford D, Nabney IT, andWilliams CKI. Modelling Frontal Discontinuities
in Wind fields. J Nonparametric Stat (2002) 14(1-2):43–58. doi:10.1080/
10485250211392

44. Szalay S, Pfeffer M, Murg V, Barcza G, Verstraete F, Schneider R, et al. Tensor
Product Methods and Entanglement Optimization Forab Initioquantum
Chemistry. Int J Quan Chem. (2015) 115(19):1342–91. doi:10.1002/qua.24898

45. Michel B, and Nouy A. Learning with Tree Tensor Networks: Complexity
Estimates and Model Selection. arXiv (2021). arXiv:2007.01165 [math.ST].

46. Ballani J, and Grasedyck L. Tree Adaptive Approximation in the Hierarchical
Tensor Format. SIAM J Sci Comput (2014) 36(4):A1415–A1431. doi:10.1137/
130926328

47. Curtain RF, and Hans Z. An Introduction to Infinite-Dimensional Linear
Systems Theory. New York: Springer (1995).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 70248614

Götte et al. A Block-Sparse Tensor Train Format

20

https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1115/1.4043148
https://doi.org/10.1137/100820479
https://doi.org/10.1007/s00211-017-0899-1
https://doi.org/10.1007/s10208-020-09446-z
https://doi.org/10.1007/s00211-016-0850-x
https://doi.org/10.1137/19m1244172
https://doi.org/10.1515/cmam-2018-0028
https://doi.org/10.1007/s10444-019-09723-8
https://doi.org/10.1109/tcad.2014.2369505
https://doi.org/10.3390/a12110240
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf/
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf/
https://doi.org/10.2478/cmam-2011-0021
https://doi.org/10.2478/cmam-2011-0021
https://doi.org/10.1137/100818893
https://doi.org/10.1103/physrevlett.69.2863
https://doi.org/10.1007/s00211-019-01072-4
https://doi.org/10.1007/s00211-011-0419-7
https://doi.org/10.1137/140976546
https://doi.org/10.1137/13091899x
https://doi.org/10.1103/physreva.82.050301
https://doi.org/10.1103/physreva.82.050301
https://doi.org/10.1016/j.anihpc.2019.01.001
https://doi.org/10.1016/j.anihpc.2019.01.001
https://doi.org/10.1002/mana.201100131
https://doi.org/10.1007/s00791-012-0183-y
https://doi.org/10.1137/090752286
https://doi.org/10.5802/smai-jcm.24
https://doi.org/10.1080/10485250211392
https://doi.org/10.1080/10485250211392
https://doi.org/10.1002/qua.24898
https://doi.org/10.1137/130926328
https://doi.org/10.1137/130926328
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

48. Steinlechner M. Riemannian Optimization for High-Dimensional Tensor
Completion. SIAM J Sci Comput (2016) 38(5):S461–S484. doi:10.1137/15m1010506

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Götte, Schneider and Trunschke. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 70248615

Götte et al. A Block-Sparse Tensor Train Format

21

https://doi.org/10.1137/15m1010506
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

ORIGINAL RESEARCH
published: 25 February 2022

doi: 10.3389/fams.2022.801650

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 February 2022 | Volume 8 | Article 801650

Edited by:

André Uschmajew,

Max Planck Institute for Mathematics

in the Sciences, Germany

Reviewed by:

Yunlong Feng,

University at Albany, United States

Jiajia Li,

College of William & Mary,

United States

*Correspondence:

Jeremy E. Cohen

jeremy.cohen@cnrs.fr

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 25 October 2021

Accepted: 19 January 2022

Published: 25 February 2022

Citation:

Cohen JE (2022) Dictionary-Based

Low-Rank Approximations and the

Mixed Sparse Coding Problem.

Front. Appl. Math. Stat. 8:801650.

doi: 10.3389/fams.2022.801650

Dictionary-Based Low-Rank
Approximations and the Mixed
Sparse Coding Problem
Jeremy E. Cohen*

Univ Lyon, INSA-Lyon, UCBL, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, Villeurbanne, France

Constrained tensor andmatrix factorization models allow to extract interpretable patterns

from multiway data. Therefore crafting efficient algorithms for constrained low-rank

approximations is nowadays an important research topic. This work deals with columns

of factor matrices of a low-rank approximation being sparse in a known and possibly

overcomplete basis, a model coined as Dictionary-based Low-Rank Approximation

(DLRA). While earlier contributions focused on finding factor columns inside a dictionary

of candidate columns, i.e., one-sparse approximations, this work is the first to tackle

DLRA with sparsity larger than one. I propose to focus on the sparse-coding subproblem

coinedMixed Sparse-Coding (MSC) that emerges when solving DLRA with an alternating

optimization strategy. Several algorithms based on sparse-coding heuristics (greedy

methods, convex relaxations) are provided to solve MSC. The performance of these

heuristics is evaluated on simulated data. Then, I show how to adapt an efficient MSC

solver based on the LASSO to compute Dictionary-based Matrix Factorization and

Canonical Polyadic Decomposition in the context of hyperspectral image processing and

chemometrics. These experiments suggest that DLRA extends the modeling capabilities

of low-rank approximations, helps reducing estimation variance and enhances the

identifiability and interpretability of estimated factors.

Keywords: dictionary, tensors, sparse, low-rank, non-convex optimization, LASSO

1. INTRODUCTION

Low-Rank Approximations (LRA) are well-known dimensionality reduction techniques that allow
to represent tensors or matrices as sums of a few separable terms. One of the main reasons
why these methods are used extensively for pattern recognition is their ability to provide
part-based representations of the input data. This is particularly true for Nonnegative Matrix
Factorization (NMF) or Canonical Polyadic Decomposition (CPD), see section 2 for a quick
introduction and the following surveys and book for more details [1–3]. In order to fix notations
while retaining generality, let us make use of the following informal mathematical formulation
of LRA.

22

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.801650
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.801650&domain=pdf&date_stamp=2022-02-25
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jeremy.cohen@cnrs.fr
https://doi.org/10.3389/fams.2022.801650
https://www.frontiersin.org/articles/10.3389/fams.2022.801650/full

Cohen Dictionary-Based Low Rank Approximations

DEFINITION 1 (Low-Rank Approximation). Given a data matrix
Y ∈ R

n×m and a small nonzero rank r ∈ N, compute so-called
factor matrices A ∈ R

n×r and B ∈ R
m×r in

arg,min
A∈�A , B∈�B

‖Y − ABT‖2F . (1)

The set �A is an additional constraint set for A, such as
nonnegativity elementwise. The set �B is the structure required on
B to obtain a specific LRA model; for instance in the unconstrained
CPD of an order three tensor,�B is the set of matrices written as the
Khatri-Rao product of two factor matrices. A precise qualification
of “small” rank depends on the sets � and is omitted for simplicity.

Among LRA models, identifiability1 properties vary
significantly. While CPD is usually considered to have mild
identifiability conditions [4], NMF on the other hand is often
not essentially unique [3]2. Generally speaking, additional
regularizations are often imposed in both matrix and tensor
LRA models to help with the interpretability of the part-based
representation. These regularizations may take the form of
constraints on the parameters or penalizations, like the sparsity-
inducing ℓ1 norm [5, 6]. They can also take the form of a
parameterization of the factors [7, 8] if such a parameterization
is known.

This work focuses on imposing an implicit parameterization
on A. More precisely, each column of factor A is assumed to be
well represented in a known dictionary D ∈ R

n×d using only a
small number k < n of coefficients. In other words, in this work
the set �A is the union of subspaces of dimension k spanned by
columns of a given dictionary D, and there exist a columnwise k-
sparse code matrix X ∈ R

d×r such that A = DX. A low-rank
approximation model which such a constraint on at least one
mode is called Dictionary-based LRA (DLRA) thereafter.

DEFINITION 2 (Dictionary-based Low-Rank Approximation). Given a
data matrix Y ∈ R

n×m, a small nonzero rank r ∈ N, a sparsity
level k < n and a dictionary D ∈ R

n×d, compute columnwise
k-sparse code matrix X ∈ R

n×r and factor matrix B ∈ R
m×r in

arg,min
X∈�X , ∀i≤r, ‖Xi‖0≤k, B∈�B

‖Y − DXBT‖2F , (2)

where Xi is the i-th column of X. The set �X is an additional
constraint set for X, such as nonnegativity elementwise. The set
�B is the structure required on B to obtain a specific LRA model.
Additionally, assume that B is full column-rank.

Abbreviations: LRA, low-rank approximation; CPD, canonical polyadic

decomposition; DLRA, dictionary-based LRA; DCPD, dictionary-based CPD;

DNMF, dictionary-based Nonnegative Matrix Factorization; NMF, nonnegative

matrix factorization; DMF, dictionary-based matrix factorization; MSC, mixed

sparse coding; AO, alternating optimization; HT, hard thresholding; IHT, iterative

hard thresholding; OMP, orthognal matching pursuit; FISTA, fast iterative soft

thresholding algorithm; HOMP, hierarchical OMP; SNR, signal to noise ratio;

SAM, spectral angular mapper.
1Informally, the parameters of a model are identifiable if they can be uniquely

recovered from the data.
2Essential uniqueness means uniqueness up to trivial scaling ambiguities and

rank-one terms permutation.

1.1. Motivations
To better advocate for the usefulness of DLRA, below two
particular DLRA models are introduced:

• Dictionary-based Nonnegative Matrix Factorization (DNMF)

may be formulated as

arg,min
X∈Rd×r

+ , ∀i≤r, ‖Xi‖0≤k, B∈Rm×r
+

‖Y − DXBT‖2F . (3)

To ensure that A = DX is nonnegative, dictionary D is
supposed to be entry-wise nonnegative so that the constraint
X ≥ 0 is sufficient. NMF is known to have strict identifiability
conditions [3, 9], and in general one should expect that NMF
has infinitely many solutions. The dictionary constraint can
enhance identifiability by restraining the set of solutions. For
instance setting D = Y and k = 1 yields the Separable NMF
model, which is solvable in polynomial time and which factors
are generically identifiable even in the presence of noise [10].
Moreover, DNMF is also a more flexible model than NMF.
In section 5.2, it is shown that DNMF can be used to solve a
matrix completion problem with missing rows in the data that
NMF cannot solve.

• Dictionary-based Canonical Polyadic Decomposition (DCPD),

for an input tensor Y ∈ R
n×m1×m2 may be formulated as

arg,min
X∈Rd×r , ∀i≤r, ‖Xi‖0≤k, B∈Rm1×r , C∈Rm2×r

‖Y − DX (B⊙ C)T ‖2F .

(4)
where ⊙ is the Khatri-Rao product [1]. Unlike NMF,
CPD factor are identifiable under mild conditions [4]. But
in practice, identifiability may still be elusive, and the
approximation problem is in general ill-posed [11] and
algorithmically challenging [12]. Therefore, the dictionary
constraint can be used to reduce estimation variance given an
adequate choice of dictionary D. It was shown when k = 1
in Equation (4) that it enhances identifiability of the CPD and
makes the optimization problem well-posed [13].

Note that these models have known interesting properties when
k = 1, but have not been studied in the general case. Amotivation
for this work is therefore to expand these previous works to the
general case n > k ≥ 1, focusing on the algorithmic aspects.
Section 2 provides more details on the one-sparse case.

1.2. Contributions
The first contribution of this work is to propose the new DLRA
framework. The proposed DLRA allows to constrain low-rank
approximation problems so that some of the factor matrices are
sparse columnwise in a known basis. This includes sparse coding
the patterns estimated by constrained factorization models such
as NMF, or tensor decomposition models such as CPD. The
impact of the dictionary constraint on the LRA parameter
estimation error is studied experimentally in section 5.2
dedicated to experiments with DLRA, where the flexibility of
DLRA is furthermore illustrated on real applications. I show that
DLRA allows to complete entirely missing rows in incomplete
low-rank matrices. I also show the advantage of finding the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 February 2022 | Volume 8 | Article 80165023

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

best atoms algorithmically when imposing smoothness in DCPD
using B-splines.

A second contribution is to design an efficient algorithm to
solve Problem (2). To that end, I shall focus on (approximate)
Alternating Optimization (AO), understood as Block Coordinate
Descent (BCD) where each block update consists in minimizing
almost exactly the cost with respect to the updated block
while other parameters are fixed. There are two reasons for
this choice. First, AO algorithms are known to perform very
well in many LRA problems. They are state-of-the-art for
NMF [3] and standard for Dictionary Learning [14, 15] and
tensor factorization problems [16, 17]. Nevertheless inexact BCD
methods and all-at-once methods are also competitive [18–
21] and an inertial Proximal Alternating Linearization Method
(iPALM) for DLRA is quickly discussed in section 5.1.2. The
proposed algorithm is coined AO-DLRA.

As a third contribution, I study the subproblem in Problem (2)
with respect to X. Developing a subroutine to solve it for known
B allows not only for designing AO-DLRA, but also for post-
processing a readily available estimation of A. In fact a significant
part of this manuscript is devoted to studying the subproblem of
minimizing the cost in Problem (2) with respect to X, which is
labeled Mixed Sparse Coding (MSC),

arg,min
∀i≤r, ‖Xi‖0≤k

‖Y − DXBT‖2F . (MSC)

In this formulation of MSC, no further constraints are imposed
on X and therefore �X is R

d×r . While similar to a matrix
sparse coding, which is obtained by setting B to the identity
matrix, it will become clear in this manuscript that MSC should
not be handled directly using sparse coding solvers in general.
For instance, it is shown in section 3.1.4 that while having an
orthogonal dictionary D yields a polynomial time algorithm to
solve MSC when r = 1 using Hard Thresholding, this does not
extend when r > 1. In this work, the MSC problem, which is NP-
hard as a generalization of sparse coding, is studied in order to
build several reasonable heuristics that may be plugged into an
AO algorithm for DLRA.

1.3. Structure
The article is divided in three remaining sections. The first
section provides the necessary background for this manuscript.
The second one is devoted to studying MSC and heuristics
to solve it. The third section shows how to compute DLRA
using the heuristics developed in the first part. In section 3.1,
we study formally the MSC problem and its relationship with
sparse coding. In section 3.2, we study a simple heuristic based
solely on sparse coding each column of YB†. Two ℓ0 heuristics
similar to Iterative Hard Thresholding (IHT) and Orthogonal
Matching Pursuit (OMP) are also introduced, while two types
of convex relaxations are studied in Section 3.3. Section 3.5 is
devoted to compare the practical performance of the various
algorithms proposed to solve MSC and shows that a columnwise
ℓ1 regularization coined Block LASSO is a reasonable heuristic
for MSC. Section 5.1 shows how Block LASSO can be used
to compute various DLRA models, while section 5.2 illustrates
DLRA on synthetic and real-life source-separation problems.

All the proofs are deferred to the Supplementary Material

attached to this article, as well as the pseudo-codes of some
proposed heuristics and additional experiments.

1.4. Notations
Vectors are denoted by small letters x, matrices by capital letters
X. The indexed quantity Xi refers to the i-th column of matrix
X, while Xij is the (i, j)-th entry in X. A subset S of columns of
X is denoted XS, while a submatrix with columns in Si and rows
in Sj is denoted XSiSj . The submatrix of X obtained by removing
the i-th column is denoted by X−i. The i-th row of matrix X is
denoted by X·i and X·I is the submatrix of X with rows in set I.
The ℓ0(x) = ‖x‖0 map counts the number of nonzero elements
in x. The product ⊗ denotes the Kronecker product, a particular
instance of tensor product [22]. The Khatri Rao product ⊙ is
the columnwise Kronecker product. The support of a vector or
matrix x, i.e., the location of its nonzero elements, is denoted
by Supp(x). If S = Supp(x), the location of the zero elements
is denoted S. The list [M,N, P] denotes the concatenation of
columns of matricesM,N and P. A set I contains |I| elements.

2. BACKGROUND

Let us review the foundations of the proposed work, matrix and
tensor decompositions and sparse coding, as well as existing
models closely related to the proposed DLRA.

2.1. Matrix and Tensor Decompositions
Matrix and tensor decompositions can be understood as pattern
mining techniques, which extract meaningful information out of
collections of input vectors in an unsupervised manner. Arguably
one of the earliest form of interpretable matrix factorization
is Principal Component Analysis [23, 24], which extract a few
orthogonal significant patterns out of a given matrix while
performing dimensionality reduction.

Other matrix factorization models exploit other constraints
than orthogonality to mine interpretable patterns. Blind source
separation models such as Independent Component Analysis
historically exploited statistical independence [25], while NMF,
which assumes all parameters are elementwise nonnegative,
has received significant scrutiny over the last two decades
following the seminal paper of Lee and Seung [26]. Sparse models
such as Sparse Component Analysis exploit sparsity on the
coefficients [27]. It can be noted that while all those factorization
techniques aim at providing interpretable representations, they
are typically identifiable under strict conditions not necessarily
met in practice [9, 28, 29]. It should be noted that the
most important underlying hypothesis in matrix factorization
is the linear dependency of the input data with respect to the
templates/principal components stored in matrix A following the
notations of Equation (1).

In practice, to compute for instance NMF, one solves an
optimization problem of the form

arg,min
A≥0, B≥0

‖Y − ABT‖2F (5)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 February 2022 | Volume 8 | Article 80165024

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

which is non-convex with respect to A,B jointly but convex
for each block. A common family of methods therefore uses
alternating optimization in the spirit of Alternating Least
Squares [30]. Other loss functions can easily be used [26].
However, computing matrix factorization models is often a
difficult task; in fact NMF and sparse component analysis are
both NP-hard problems in general and existing polynomial time
approximation algorithms should be considered heuristics [31,
32].

Tensor decompositions follow the same ideas of unsupervised
pattern mining and linearity with respect to the representation
basis, but extract information out of tensors rather than
matrices. Tensors in this manuscript are considered simply
as multiway arrays [1] as is usually done in data sciences.
Tensors have become an important data structure as they appear
naturally in a variety of applications such as chemometrics [33],
neurosciences [34], remote sensing [35], or deep learning [36].

At least two families of tensor decomposition models can
be considered, with quite different identifiability properties
and applications. A first family contains intepretable
models such as the Canonical Polyadic Decomposition,
often called PARAFAC [37], or closely related models
such as PARAFAC2 [38]. Contrarily to constrained matrix
decomposition models, the addition of at least a dimension
compared to matrix factorization fixes the rotation ambiguity
inherent to matrix factorization models, and therefore the
CPD model is identifiable under mild conditions [4, 39, 40].
Nevertheless, additional constraints are commonly imposed
on the parameters of these models to refine the interpretability
of the parameters, reduce estimation errors or improve the
properties of the underlying optimization problem [41, 42].
A second family is composed of tensor formats, in particular
the Tucker decomposition [43] and a wide class of tensor
networks such as tensor trains [44]. These models are not used in
general for solving inverse problems but rather for compression
or dimensionality reduction. Nevertheless, they turn into
interesting pattern mining tools given adequate constraints such
as nonnegativity [45, 46].

2.2. Sparse Coding
Spare Coding (SC) and other sparse approximation problems
typically try to describe an input vector as a sparse linear
combination of well-chosen basis vectors. A typical formulation
for sparse coding an input vector y ∈ R

n in a code book or
dictionary D ∈ R

n×d is the following non-convex optimization
problem

arg,min
‖x‖0≤k

‖y− Dx‖22, (SC)

where k ≤ n is the largest number of nonzero entries allowed in
vector x, i.e., the size of the support of x. As long as the dictionary
D is not orthogonal, this problem is difficult to solve efficiently
and is in fact NP-hard [31]. The body of literature of algorithms
proposed to solve SC is very large, see for instance [47] for a
comprehensive overview. Overall, there exist at least three kind
of heuristics to provide candidate solutions to SC:

• Greedy methods, such as OMP [48, 49] which is described
in more details in section 3.2.3. These methods select indices
where x is nonzero greedily until the target sparsity level or a
tolerance on the reconstruction error is reached. They benefit
from optimality guarantees when the dictionary columns,
called atoms, are “far” from each others. In that case the
dictionary is said to be incoherent [50].

• Nonconvex first order methods, such as IHT [51], that
are based on proximal gradient descent [52] knowing that
the projection on the set of k-sparse vectors is obtained
by simply clipping the n − k smallest absolute values
in x. Convergence guarantees for first order constrained
optimization methods is a rapidly evolving topic out of the
scope of this communication, but a discussion on optimality
guarantees of IHT is available in section 3.2.2.

• Convex relaxation methods, such as Least Absolute Shrinkage
and Selection Operation (LASSO). The non-convex ℓ0
constraint in Equation (SC) is replaced by a surrogate convex
constraint, typically using the ℓ1 norm. This makes the
problem convex and easier to solve, at the cost of potentially
changing the support of the solution [53]. Solving the LASSO
can be tackled with the Fast Iterative Soft Thresholding
Algorithm (FISTA) [54, 55] which is essentially an accelerated
proximal gradient method with convergence guarantees.

2.3. Models Closely Related to DLRA
While this work is interested in constraining the factor matrix
A in Equation (1) so that its columns are sparse in a known
dictionary (in other words, sparse coding the columns of A), a
few previous works have been concerned with encoding each
such column with only one atom. Most related to this work is
the so-called Dictionary-based CPD [13], which I shall rename
as one-sparse dictionary-based LRA. Within this framework, a
model such as NMF becomes

arg,min
K∈Pr([1,d]), B≥0

‖Y − DKB
T‖2F (6)

where Pr([1, d]) is the set of all parts of [1, d] with r elements,
therefore K is a set of r indices from 1 to d. This problem is a
particular case of the proposed DLRA framework because DK

can be written as DX where the columns of X are one-sparse.
It was shown that one-sparse DLRA makes low-rank matrix
factorization identifiable under mild coherence conditions on
the dictionary, and makes the computation of CPD a well-posed
problem. Intuitively, the dictionary constraint may be used to
enforce a set of known templates to be used as patterns in the
pattern mining procedure, and therefore one-sparse DLRA may
be seen as a glorified pattern matching technique.

Other works in the sparse coding literature are related to
DLRA, in particular the so-called multiple measurement vectors
or collaborative sparse coding [56–58], which extends sparse
coding when several inputs collected in a matrix Y are coded
with the same dictionary using the same support. Effectively this
means solving a problem of the form

arg,min
‖
∑r

i=1 Z
2
i ‖0≤kr

‖Y − DZT‖2F (7)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 February 2022 | Volume 8 | Article 80165025

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

where the square is meant elementwise. DLRA can also be seen as
a collaborative sparse coding by noticing that Z : = XBT is at least
kr row-sparse in Equation (2). However the low-rank hypothesis
is lost, as well as the affectation of at most k atoms per column of
matrix A.

3. MIXED SPARSE CODING HEURISTICS

3.1. Properties of Mixed Sparse Coding
In order to design efficient heuristics to solve MSC, let us first
cover a few properties of MSC such as uniqueness of MSC
solutions, relate MSC with other sparse coding problems, and
check whether special simpler cases exists such as when support
of the solution is known or when the dictionary is orthogonal.
The following section covers this material.

3.1.1. Equivalent Formulations and Relation to

Sparse Coding
Let us start our study by linking MSC to other sparse coding
problems. For reference sake, in this work the standard matrix
sparse coding problem is formulated as

arg,min
∀i≤r, ‖Xi‖0≤k

‖Y − DX‖2F . (8)

which is equivalent to solving r vector sparse coding problems as
defined in Equation (SC).

Because the Frobenius norm is invariant to a reordering
of the entries, it can be seen easily that Problem (MSC) is
equivalent after vectorization3 to a structured vector sparse
coding Problem (SC) with block-sparsity constraints:

arg,min
∀i≤r, ‖vec(Xi)‖0≤k

‖vec(Y)−(D⊗B)
[
vec(X1), . . . , vec(Xr)

]
‖22 . (9)

It appears that MSC is therefore a structured sparse coding
problem since the dictionary is a Kronecker product of two
matrices. Moreover, the sparsity constraint applies on blocks of
coordinates in the vectorized input vec(X), as studied in [60].
To the best of the author’s knowledge, block sparse coding
with Kronecker structured dictionary have not been specifically
studied. In particular, the conjunction of Kronecker structured
dictionary [61] and structured sparsity leads to specific heuristics
detailed in the rest of this work. Nevertheless, in section 3.2, it is
shown that MSC reduces to columnwise sparse coding under a
small noise regime.

On a different note, consider the following problem

min
‖Y−DXBT‖2F≤ǫ1

max
i

‖Xi‖0 . (10)

for some positive constant ǫ1. Just like how Quadratically
Constrained Basis Pursuit and LASSO are equivalent [47], one
can show using similar arguments that Problems (MSC) and (10)
have the same solution given a mild uniqueness assumption.

3Vectorization in this manuscript is row-first [59].

PROPOSITION 1. Suppose that Problem (10) has a unique solution
X∗ with ǫ1 ≥ 0. Then there exist a particular instance of
Problem (MSC) such that X∗ is the unique solution of (MSC).
Conversely, a unique solution to Problem (MSC) is the unique
solution to a particular instance of Problem (10).

Formulation (10) of MSC could also be expressed with matrix
induced norms. Indeed, defining ℓ0,0(X) : = sup‖z‖0=1‖Xz‖0 =

maxi ‖Xi‖0 as an extension of matrix induced norms4 ℓp,q(X) : =
sup‖z‖p=1‖Xz‖q [62], Problem (10) is equivalent to

min
‖Y−DXBT‖2F≤ǫ1

ℓ0,0(X) , (11)

a clear structured extension of quadratically constrained sparse
coding [47]. Some authors preferably work with Problem (10)
rather than (MSC) because in specific applications, choosing an
error tolerance ǫ1 is more natural than choosing the sparsity level
k. While heuristics introduced further are geared toward solving
Problem (MSC), they can be adapted to solve Problem (10).

The quadratically constrained formulation also sheds light on
the fact that, if there exist some solution X to MSC such that
the residual ‖Y − DXBT‖2F is zero, then MSC is equivalent to
matrix sparse coding Problem (8). Indeed, since it is assumed that
B is full column rank, any such solution yields YB(BTB)−1 =

DX. Consequently, noiseless formulations of MSC will not be
considered any further.

3.1.2. Generic Uniqueness of Solutions to MSC
In sparse coding, sparsity is introduced as a regularizer to enforce
uniqueness of the regression solution. It is therefore natural to
wonder if this property also holds for MSC. It is not difficult
to observe that indeed generically the solution to MSC will be
unique, under the usual spark condition on the dictionaryD [63].

PROPOSITION 2. Define spark(D) as the smallest number of
columns of D that are linearly dependent. Suppose that spark(D) >

2k and suppose B is a full column rank matrix. Then the set of Y
such that Problem (MSC) has strictly more than one solution has
zero Lebesgue measure.

This result basically states that in practice, most MSC
instances will have unique solutions as long as the dictionary is
not too coherent.

3.1.3. Solving MSC Exactly When the Support Is

Known
Solving the NP-hard MSC problem exactly is difficult because
the naive, brute force algorithm implies testing all combinations

of supports for all columns, which means computing
(k
d

)r

least squares and is significantly slower than brute force for
Problem (8). However, in the spirit of sparse coding which boils
down to finding the optimal support for a sparse solution, MSC
also reduces to a least squares problem when the locations of
the zeros in a solution X are fixed and known. Below is detailed

4Mind the possible confusion with the Lp,q convention ℓ0,∞ commonly

encountered.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 February 2022 | Volume 8 | Article 80165026

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

how to process this least squares problem to avoid forming the
Kronecker matrix D⊗ B explicitly.

From the observation in Equation (9) that the vectorized
problem is really a structured sparse coding problem, one can
check that for a given support S = Supp(vec(X)), solving MSC
amounts to solving a linear system

arg,min
z∈Rkr

‖y− (D⊗ B)Sz‖
2
2 . (12)

where y : = vec(Y).
It is not actually required to form the full Kronecker product

D ⊗ B and then select a subset S of its columns, nor is it
necessary to vectorize Y . More precisely, one needs to compute

two quantities:
(
(D⊗ B)S

)T
(D ⊗ B)S and

(
(D⊗ B)S

)T
y to feed

a linear system solver, and these products can be computed
efficiently. Denote Si the support of column Xi. Formally, one
may notice that (D⊗B)S is a blockmatrix [DS1⊗b1, . . . ,DSr⊗br].
Therefore, using the identity (D ⊗ b)T(D ⊗ b) = bTbDTD, one
may compute the cross product by first precomputingU = DTD5

and V = BTB, then computing each block (DSi ⊗ bi)
T(DSj ⊗ bj)

as vijUSiSj .
For the data and mixing matrix product, notice that (DSi ⊗

bi)
Ty = DSiYb

T
i . Therefore, the model-data product can be

obtained by first precomputing N = YBT , then computing each

block
(
(D⊗ B)Si

)T
y as DSiNi.

Remark on regularization: It may happen that for a fixed

support, the linear system (12) is ill-posed. This may be caused
by a highly coherent dictionary D or the choice of a large rank
r. To avoid this issue, when the system is ill-conditioned in later
experiments, a small ridge penalization may be added.

3.1.4. MSC With Orthogonal Dictionary Is Easy for

Rank One LRA
An important question is whether the problem generally becomes
easier if the dictionary is left orthogonal. This is the case for
Problem (8), where orthogonal D allows to solve the problem
using only Hard Thresholding (HT) onDTY columnwise. Below,
it is shown that a similar HT procedure can be used when r = 1,
but not in general when r > 1.

Supposing D is left orthogonal, the MSC problem becomes

arg,min
‖Xi‖0≤k ∀i∈[1,r]

‖DTY − XBT‖2F . (13)

When r = 1, matrix BT is simply a row vector, which is
a right orthogonal matrix after ℓ2 normalization such that
solving Problem (13) amounts to minimizing ‖ 1

‖b‖22
DTYb − x‖22.

Then the solution is obtained using the thresholding operator
HTk(

1
‖b‖22

DTYb) which selects the k largest entries of its input.

Sadly when r > 1, matrix BT is not right orthogonal in general
and neither isD⊗B. Therefore this thresholding strategy does not
yield a MSC solution in general despite D being left orthogonal.

5If this is not possible because D is too large, one may instead compute the blocks

USiSj without pre-computing DTD.

3.2. Non-convex Heuristics to Solve Mixed
Sparse Coding
We now focus on heuristics to find candidate solutions to
MSC. Similarly to sparse coding, MSC is an NP-hard problem
for which obtaining the global solution typically requires
costly algorithms [64, 65]. Therefore, in the following section,
several heuristics are proposed that aim at finding good sparse
approximations in reasonable time.

• A classical sparse coding algorithm [here OMP [49]] applied
columnwise on YB(BTB)−1. Indeed in a small noise regime,
columnwise sparse coding on YB(BTB)−1 is proven to be
equivalent to solving MSC.

• A Block-coordinate descent algorithm that features OMP as a
subroutine.

• A proximal gradient algorithm similar to Iterative Hard
Thresholding.

• Two convex relaxations analog to LASSO [66], which are
solved by accelerated proximal gradient in the spirit of
FISTA [55]. Maximum regularization levels are computed, and
a few properties concerning the sparsity and the uniqueness of
the solutions are provided.

The performance of all these heuristics as MSC solvers is studied
in section 3.5.

3.2.1. A Provable Reduction to Columnwise Sparse

Coding for Small Noise Regimes
At first glance, one may think that projecting Y onto the row-
space of BT maps solutions of Problem (MSC) to solutions of
Problem (8). Indeed, writing Y = YB + Y−B with YB : =

YB(BTB)−1BT the orthogonal projection of Y on the row-space
of BT , it holds that Problem (MSC) has the sameminimizers than

min
‖Xi‖0≤k ∀i∈[1,r]

‖YB − DXBT‖2F . (14)

This problem is however not in general equivalent to matrix
sparse coding because BT distorts the error distribution.

Even though they are not equivalent, one could hope to solve
MSC, in particular settings, by using a candidate solution to the
matrix sparse coding Problem (8) with YB(BTB)−1 as input. The
particular case of k = 1 is striking: matrix sparse coding is solved
in closed form whereas MSC has no general solution as far as I
know. This kind of heuristic replacement of Problem (MSC) by
Problem (8) has been used heuristically in [13] when k = 1, and
can be interpreted as “First find Z that minimizes ‖Y − ZBT‖2F ,
then find a k-sparse matrix X that minimizes ‖Z − DX‖2F”.

We show below that in a small perturbation regime, for
a dictionary D and a mixing matrix B satisfying classical
assumptions in compressive sensing, the matrix sparse coding
solution has the same support than the MSC solution.

LEMMA 1. Let X,X′ columnwise k-sparse matrices and ǫ >

0, δ > 0 such that ‖Y − DXB‖2F ≤ ǫ and ‖YB(BTB)−1 −

DX′‖2F ≤ δ. Further suppose that spark(D) > 2k and that B has

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 February 2022 | Volume 8 | Article 80165027

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

full column-rank. Then

‖X − X′‖F ≤
1

σ
(2k)
min (D)

√
δ +

ǫ

σ 2
min(B)

(15)

where σmin(B) is the smallest nonzero singular value of B and

σ
(2k)
min is the smallest nonzero singular value of all submatrices of

D constructed with 2k columns.

Remarkably, if k = 1, then Problem (8) has a closed-form
solution, and one may replace δ by the best residual to remove
this unknown quantity in Lemma 1. On a different note, variants
of this result can be derived under similar assumptions, for
instance if D satisfies a 2k restricted isometry property.

We can now derive a support recovery equivalence between
MSC and SC.

PROPOSITION 3. Under the hypotheses of Lemma 1, supposing
that X and X′ are exactly columnwise k-sparse, if

min
j≤r

√
min

i∈Supp(Xj)
Xij

2 + min
i′∈Supp(X′

j)
X′
i′j
2

>
1

σ
(2k)
min (D)

√
δ +

ǫ

σ 2
min(B)

,

(16)
then Supp(X) = Supp(X′).

In practice, this bound can be used to grossly check whether
support estimation in MSC may reduce to support estimation in
matrix sparse coding or not. To do so, one may first tentatively
solve Problem (8) with YB(BTB)−1 as input and obtain a
candidate value X′ as well as some residual δ. Furthermore,
while this is costly, the values of σmin(B) and σ

(2k)
min (D) may be

computed. Then removing the termXij from Equation (16) yields
a bound of the noise level ǫ:

σmin(B)

(
−δ + (σ

(2k)
min (D))

2
min

j,i∈Supp(X′)
X′
ij
2
)

> ǫ (17)

under which the reduction is well-grounded.
These observations lead to the design of a first heuristic,

which applies OMP to each column of YB(BTB)−1. The obtained
support is then used to compute a solutionX toMSC as described
in section 3.1.3. This heuristic will be denoted TrickOMP in
the following.

3.2.2. A First Order Strategy: Iterative Hard

Thresholding
Maybe the most simple way to solve MSC is by proximal gradient
descent. In sparse coding, this type of algorithm is often referred
to as Iterative Hard Thresolding (IHT), and this is how I will
denote this algorithm as well for MSC.

Computing the gradient of the differentiable convex term
f (X) = ‖Y − DXB‖2F with respect to X is easy and yields

∂f

2∂X
= −DTYB+ DTDXBBT . (18)

Note that depending on the structure �B, products D
TYB and

BTBmay computed efficiently.

Then it is required to compute a projection on the set
of columnwise k-sparse matrices. This can easily be done
columnwise by hard thresholding. However, for the algorithm
to be well-defined and deterministic, we need to suppose
that projecting on the set of columnwise k-sparse matrices
is a closed-form single-valued operation. This holds if, when
several solution exist, i.e., when several entries are the k-th
largest, one picks the right number of these entries in for
instance the lexicographic order. The proposed IHT algorithm
leverages the classic IHT algorithm and is summarized in
the Supplementary Material. However, contrarily to the usual
IHT, the proposed implementation makes use of the inertial
acceleration proposed in FISTA [55]. Compared to using IHT
for solving sparse coding, as hinted in Equation (9), here IHT
is moreover applied to a structured sparse coding problem. This
does not significantly modify the practical implementation of the
algorithm.

IHT benefits from both convergence results as a
(accelerated) proximal gradient algorithm with semi-algebraic
regularization [51, 67] and support recovery guaranties for
sparse coding [47, 68]. While the convergence results directly
apply to MSC, extending support recovery guaranties to MSC is
an interesting research avenue.

3.2.3. Hierarchical OMP
Before describing the proposed hierarchical algorithm, it might
be helpful to understand how greedy heuristics for sparse coding,
such as the OMP algorithm, are derived. Greedy heuristics
select the best atom to reconstruct the data, then remove its
contribution and repeats this process with the residuals. The key
to understanding these techniques is that selecting only one atom
is a problem with a closed-form solution. Indeed, for any y ∈ R

n,

arg,min
‖x‖0≤1

‖y− Dx‖22 = arg,min
z∈R

arg,min
j∈[1,d]

‖y− zDj‖
2
2 (19)

and after some algebra, for a dictionary normalized columnwise,

‖y− zDj‖
2
2 = ‖y‖22 + z2 − 2zDT

j y = cst(j)− 2zDT
j y (20)

which minimum with respect to j does not depend on the value z
of the nonzero coefficient z in the vector x (except for the sign of
z). Therefore the support of x is argmaxj|D

T
j y|.

Reasoning in the same manner for MSC does not yield a
similar simple solution for finding the support. Indeed, even
setting k = 1,

arg,min
‖Xi‖0≤1

‖Y−DXBT‖2F = arg,min
∀i≤r, zi∈R

arg,min
∀i≤r, ji∈[1,d]

‖Y−

r∑

i=1

ziDjiB
T
i ‖

2
F

(21)
and the interior minimization problem of the right-hand side
is still difficult, referred to as dictionary-based low-rank matrix
factorization in [13]. Indeed, the cost can be rewritten as ‖Y −

D(:,K)Diag(z)BT‖2F with K the list of selected atoms in D. As
discussed in section 3.2.1, the solutions to this problem in a
noisy setting are in general not obtained by minimizing instead
‖YB(BTB)−1 − D(:,K)Diag(z)‖2F with respect to K which would
be solved in closed form.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 February 2022 | Volume 8 | Article 80165028

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

Therefore, even with k = 1, a solution to MSC is not
straightforward. While a greedy selection heuristic may not be
straightforward to design, one may notice that if the rank had
been set to one, i.e., if r = 1, then for any k one actually ends up
with the usual sparse coding problem.

Indeed, given a matrix V ∈ R
n×m, the rank-one case means

we try to solve the problem

arg,min
x∈Rd ,‖x‖0≤k

‖V − DxbT‖2F (22)

which is equivalent to

arg,min
x∈Rd ,‖x‖0≤k

‖
1

‖b‖22
Vb− Dx‖22 . (23)

This is nothing more than Problem (SC). Consequently, we are
now ready to design a hierarchical, i.e. block-coordinate, greedy
algorithm. The algorithm updates one column of X at a time,
fixing all the others. Then, finding the optimal solution for that
single column is exactly a sparse-coding problem.

This leads to an adaptation of OMP for MSC that I call
Hierarchical OMP (HOMP), where OMP is used to solve
each sparse coding subproblem, see Algorithm 1. The routine
OMP(x,D, k) applies Orthogonal Matching Pursuit to the input
vector x with normalized dictionary D and sparsity level k and
returns estimated codes and support. Note that after HOMP
has stopped, it is useful to run a least square joint final update
with fixed support as described in section 3.1.3 because the
final HOMP estimates may not be optimal for the output
support. HOMP does not easily inherit from OMP recovery
conditions [50] because it employs OMP inside an alternating
algorithm. On a practical side, any optimized implementation of
OMP such as batch OMP [69] can be used to implement HOMP
as a subroutine.

A note on restart: A restart condition is required, i.e.,
checking if the error increases after an inner iteration and
rejecting the update in that case. Indeed OMP is simply a
heuristic which, in general, is not guarantied to find the best
solution to the sparse coding subproblem. When restart occurs,
simply compute the best update with respect to the previously
known support and move to the next column update. If restart
occurs on all modes, then the algorithm stops with a warning.
Due to this restart condition, the cost always decreases after each
iteration, therefore it is guarantied that the HOMP algorithm
either converges or stops with a warning.

3.3. Convex Heuristics to Solve MSC
The proposed greedy strategies TrickOMP and HOMP may
not provide the best solutions to MSC or even converge to a
critical point, and the practical performance of IHT is often not
satisfactory (see section 3.5). Therefore, taking inspiration from
existing works on sparse coding, onemight as well tackle a convex
problem which solutions are provably sparse. This means, first of
all, finding convex relaxations to the ℓ0,0 regularizer.

In what follows, we study two convex relaxations and propose
a FISTA-like algorithm for each. In both cases, the solution is

Algorithm 1Hierarchical OMP.

Input: data Y , dictionary D, sparsity level k, initial value X.
Output: estimated codes X, support S
Precompute DTD and DTY if memory allows.
while stopping criterion is not reached do

for p from 1 to r do
Set Vb = 1

‖Bp‖
2
2
(Y − DX−pB

T
−p)Bp.

Compute Xp, Sp = OMP(Vb,D, k)
If error increased, reject this update, and perform a least
squares update with the previous support. End if rejection
happened for each column.

end for

end while

Set X as the least squares solution following section 3.1.3 with
support S.

provably sparse and there exist a regularization level such that
the only solution is zero. Therefore, these regularizers force the
presence of zeros in the columns of the solution.

3.3.1. A Columnwise Convex Relaxation: The Block

LASSO Heuristic
A first convex relaxation of MSC is obtained by replacing
each sparsity constraint ‖Xi‖0 ≤ k by an independent ℓ1
regularization. This idea has already been theoretically explored
in the literature, in particular in [60] where several support
recovery results are established.

Practically, fixing a collection {λi}i≤r of positive regularization
parameters, the following convex relaxed problem, coined Block
LASSO,

arg,min
X∈Rd×r

1

2
‖Y − DXBT‖2F +

r∑

i=1

λi‖Xi‖1 (CVX1)

provides candidates solutions to MSC. This is a convex problem
since each term is convex. Moreover, the cost is coercive so that
a solution always exists. However, it is not strictly convex in
general, thus several solutions may co-exist.

Adapting the proof in [47], one can easily show that under
uniqueness assumptions, solutions to Problem (CVX1) are
indeed sparse.

PROPOSITION 4. Let X∗ a solution to Problem (CVX1), and
suppose that X∗ is unique. Then denoting Si the support of each
column X∗

i , it holds that DSi is full column-rank, and that |Si| ≤ n.

This shows that the Block LASSO solutions have at most
n non-zeros in each column. Therefore, the columnwise ℓ1
regularization induces sparsity in all columns of X and solving
Problem (CVX1) is relevant to perform MSC. But this does
not show that the support recovered by solving Block LASSO
is always the support of the solution of MSC, see [60] for
such recovery results given assumptions on the regularizations
parameters λi.

Conversely, it is of interest to know above which values of λi
the solutionX is null. Proposition 5 states that such a columnwise

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 February 2022 | Volume 8 | Article 80165029

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

maximum regularization can be defined. This can be used to set
the λi regularization parameters individually given a percentage
of λi,max and provide a better intuition for choosing each λi.

PROPOSITION 5. A solution X∗ of Problem (CVX1) satisfies X∗ =

0 if and only if for all i ≤ r, λi ≥ λi,max where λi,max = ‖DTYBi‖∞
(element-wise absolute value maximum). Moreover, if X∗

i = 0 is a
column of a solution, then λi ≥ λi,max.

Relation with other models: Vectorization easily transform
the matrix Problem (CVX1) into a vector problem reminiscent
of the LASSO. In fact, if the regularization parameters λi = λ

are set equal, then Problem (CVX1) is nothing else than the
LASSO. A related but different model is SLOPE [70]. Indeed, in
SLOPE, it is possible to have a particular λji for each sorted entry
Xσi(j)i, but in Problem (CVX1) the regularization parameters
are fixed by blocks and the relative order of elements among
the blocks changes in the admissible space. Thus the relaxed
Problem (CVX1) cannot be expressed as a particular SLOPE
problem.

Solving block LASSO with FISTA: A workhorse algorithm for

solving the LASSO is FISTA [55]. Moreover, the regularization
term is separable in Xi, and the proximal operator for each
separable term is well-known to be the soft-thresholding operator

Sλi (x) = [|x| − λ]+sign(x), S[λ1 ,...,λr](X) = [Sλ1 (X1), . . . , Sλr (Xr)]

(24)
understood element-wise. Therefore, the FISTA algorithm can
be directly leveraged to solve Problem (CVX1), see Algorithm 2

coined Block-FISTA hereafter. Convergence of the cost iterates of
this proposed extrapolated proximal gradient method is ensured
as soon as the gradient step is smaller than the inverse of the
Lipschitz constant of the quadratic term, which is given by
σ (D)2σ (B)2 with σ (M) the largest singular value of M. The
resulting FISTA algorithm is denoted as Block FISTA. Note that
after Block FISTA returns a candidate solution, this solution’s
support is extracted, truncated to be of size k columnwise using
hard thresholding, and an unbiased MSC solution is computed
with that fixed support.

3.3.2. Mixed ℓ1 Norm for Tightest Convex Relaxation
The columnwise convex relaxation introduced in section 3.3.1
has the disadvantage of introducing a potentially large number
of regularization parameters that must be controlled individually
to obtain a target sparsity level columnwise. Moreover, this
relaxation is not the tightest convex relaxation of the ℓ0,0
regularizer on [−1, 1].

It turns out that using the tightest convex relaxation of the
ℓ0,0 regularizer does solve the proliferation of regularization
parameters problem, and in fact this yields a uniform
regularization on the columns of X. This comes however at the
cost of loosing some sparsity guaranties as detailed below.

PROPOSITION 6. The tightest convex relaxation of ℓ0,0 on
[−1, 1]d×r is ℓ1,1 :X 7→ maxi ‖Xi‖1 = : ‖X‖1,1.

According to Proposition 6, Problem (MSC) may be relaxed
into the following convex optimization problem coined Mixed

Algorithm 2 FISTA for Block LASSO (Block-FISTA)

Input: data Y , dictionary D, mixing matrix B, regularization
ratio α ∈ [0, 1]r , sparsity level k, initial value X.
Output: estimated codes X, support S.
Precompute DTD,DTYB and BTB if memory allows.
Compute λi,max as in Proposition 5, and set λi = αiλi,max, λ =

[λ1, . . . , λr]
Compute stepsize η = 1

σ (D)2σ (B)2

Initialize Z = X, β = 1.
while stopping criterion is not reached do

Xold = X
X = Sηλ

(
Z − η(DTDZBTB− DTYB)

)

βold = β

β = 1
2 (1+

√
1+ 4β2)

Z = X +
βold−1

β
(X − Xold)

end while

Estimate the support S = S(X)
Set X as the least squares solution following section 3.1.3 with
support S.

LASSO hereafter:

arg,min
X∈Rd×r

1

2
‖Y − DXBT‖2F + λ‖X‖1,1 . (25)

To again leverage FISTA to solve Problem (25) and produce a
support for a solution of MSC requires to compute the proximal
operator of the regularization term. For the ℓ1,1 norm, the
proximal operator has been shown to be computable exactly
with little cost using a bisection search [71–73]. In this work I
used the low-level implementation of [72]6. The resultingMixed-
FISTA algorithm is very similar toAlgorithm 2 but using the ℓ1,1
proximal operator instead of soft-thresholding, and its pseudo-
code is therefore differed to the Supplementary Material.

Properties of the Mixed LASSO: Differently from the Block
LASSO problem, the Mixed LASSO may not have sparse
solutions if the regularization is not set high enough.

PROPOSITION 7. Suppose there exist a unique solution X∗ to the
Mixed LASSO problem. Let I the set of indices such that for all i in
I, ‖X∗

i ‖1 = ‖X∗‖1,1. Denote S the support of X
∗. Then there exist

at least one i in I such that DSi is full column rank, and ‖X∗
i ‖0 ≤ n.

Moreover, if D is overcomplete, I = {1, . . . , r}.

This result is actually quite unsatisfactory. The uniqueness
condition, which is generally satisfied for the LASSO, seems
a much stricter restriction in the Mixed LASSO problem. In
particular all columns of the solution must have equal ℓ1 norm
in the overcomplete case. Moreover sparsity is only ensured for
one column. However, from the simulations in the Experiment
section, it seems that in general the Mixed LASSO problem does
yield sparser solutions than the above theory predicts.

Maximum regularization: Intuitively, by setting the

regularization parameter λ high enough, one expects the

6https://github.com/bbejar/prox-l1oo.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 February 2022 | Volume 8 | Article 80165030

https://github.com/bbejar/prox-l1oo
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

solution of the Mixed LASSO to be null. Below I show that this is
indeed true.

PROPOSITION 8. X∗ = 0 is the unique solution to the Mixed
LASSO problem if and only if λ ≥ λmax where λmax =∑r

i=1 ‖D
TYBi‖∞.

Similarly to Block-FISTA, this result can be used to chose the
regularization parameter as a percentage of λmax.

3.4. Nonnegative MSC
In this section I quickly describe how to adapt the Block LASSO
strategy in the presence of nonnegativity constraints on X. This
is a very useful special case of MSC since many LRA models
use nonnegativity to enhance identifiability such as Nonnegative
Matrix Factorization or Nonnegative Tucker Decomposition.

The nonnegative MSC problem can be written as follows:

arg,min
X≥0, ‖Xi‖0≤k

‖Y − DXBT‖2F . (26)

Block LASSO minimizes a regularized cost which becomes
quadratic and smooth due to the nonnegativity constraints:

arg,min
X≥0

‖Y − DXBT‖2F +

n∑

i=1

λi1
TXi . (27)

The Nonnegative least squares Problem (26) is easily solved by a
modified nonnegative Block-FISTA, where the proximal operator
is a projection on the nonnegative orthant.

While in the general case a least-squares update with fixed
support is performed at the end of Block-FISTA to remove
the bias induced by the convex penalty, in the non-negative
case a nonnegative least squares solver is used on the estimated
support with a small ridge regularization. One drawback of this
approach is that the final estimate for X might have strictly
smaller sparsity level than the target k in a few columns. In the
Supplementary Material, a quick comparison between Block-
FISTA and its nonnegative variant shows the positive impact of
accounting for nonnegativity for support recovery.

3.5. Comparison of the Proposed
Heuristics
Numerical experiments discussed hereafter provide a first
analysis of the proposed heuristics to solve MSC. A few natural
questions arise upon studying these methods:

• Are some of the proposed heuristics performing well or poorly
in terms of support recovery in a variety of settings?

• Are some heuristics much faster than others in practice?

We shall provide tentative answers after conducting synthetic
experiments. However, because of the variety of proposed
methods and the large number of experimental parameters
(dimensions, noise level, conditioning of B and coherence
of D, distribution of the true X, regularization levels), it is
virtually impossible to test out all possible combinations and the
conclusions of this section can hardly be extrapolated outside our
study cases. All the codes used in the experiments below are freely

available online7. In particular, all the proposed algorithms are
implemented in Python, and all experiments and figures can be
reproduced using the distributed code.

In the Supplementary Material, I cover additional questions
of importance: the sensitivity of convex relaxation methods to
the choice of the regularization parameter, the sensitivity of all
methods to the conditioning of B and the sensitivity to random
and zero initializations.

3.5.1. Synthetic Experiments
In general and unless specified otherwise we set n = 50,m =

50, d = 100, k = 5, r = 6. The variance of additive Gaussian
white noise is tuned so that the empirical SNR is exactly
20dB. To generate D, its entries are drawn independently from
the Uniform distribution on [0, 1] and its columns are then
normalized. The uniform distribution is meant to make atoms
more correlated and therefore increase the dictionary coherence.
The entries of B are drawn similarly. However, the singular
value decomposition of B is then computed, its original singular
values discarded and replaced with linearly spaced values from
1 to 1

cond(B)
where cond(B) = 200. The values of the true X

are generated by first selecting a support randomly (uniformly),
then sampling nonzero entries from standard Gaussian i.i.d.
distributions. The initial X is set to zero.

In most test settings, the metric used to assess performance
is based on support recovery. To measure support recovery, the
number of correctly found nonzero position is divided by the
total number of non-zeros to be found, yielding a 100% recovery
rate if the support is perfectly estimated and 0% if no element in
the support of X is correctly estimated.

The input regularization in Mixed-FISTA and Block-FISTA
is always scaled from 0 to 1 by computing the maximum
regularization, see Propositions 5 and 8. To choose the
regularization ratio α, before running each experiment, Mixed-
FISTA and Block-FISTA are ran on three instances of separately
generated problems with the same parameters as the current
test using a grid [10−5, 10−4, 10−3, 10−2, 10−1]. Then the average
best α for these three tests is used as the regularization level for
the whole test. This procedure is meant to mimic how a user
would tune regularization for a given problem, generating a few
instances by simulation and picking a vaguely adequate amount
of regularization.

The stopping criterion for all methods is the same: when

the relative decrease in cost |errit+1−errit |
errit

reaches 10−6, the
algorithm stops. The absolute value allows for increasing the
cost. Note that the cost includes the penalty terms for convex
methods. Additionally, the maximum number of iterations is set
to 1,000.

3.5.2. Test 1: Support Recovery vs. Noise Level
For the first experiment, the noise level varies in
power such that the SNR is exactly on a grid
[1, 000, 100, 50, 40, 30, 20, 15, 10, 5, 2, 0]. A total of 50
realizations of triplets (Y ,D,B) are used in this experiment,

7https://github.com/cohenjer/mscode and https://github.com/cohenjer/dlra.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 February 2022 | Volume 8 | Article 80165031

https://github.com/cohenjer/mscode
https://github.com/cohenjer/dlra
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

as well as in Test 2 and 3. Results are shown in
Figure 1.

It can be observed that IHT performs poorly for all noise
levels. As expected, TrickOMP performs well only at low
noise levels. HOMP and the FISTA methods have degraded
performance when the SNR decreases, but provide with
satisfactory results overall. Block-FISTA seems to perform the
best overall.

3.5.3. Test 2: Support Recovery vs. Dimensions (k,d)
This time the sparsity level k is on a grid [1, 2, 5, 10, 20] while
the number of atoms d is also on a grid [20, 50, 100, 200, 400].
Figure 2 shows the heat map results.

The TrickOMP has strikingly worse performance than the
other methods. Moreover, as the number of atoms d increases
or when the number of admissible supports

(d
k

)
, correct atom

selection becomes more difficult for all methods. Again, Block-
FISTA seems to perform better overall, in particular for large d.

3.5.4. Test 3: Runtime vs. Dimensions (n,m) and (k,d)
In this last test, all algorithms are run until convergence for
various sizes n = [10, 50, 1, 000] and m = [10, 50, 1, 000], or for
various sparsity parameters k = [5, 10, 30] and [50, 100, 1, 000].
Table 1 provides runtime and number of iterations averaged for
N = 10 runs.

From Table 1, it can be inferred that HOMP is often much
slower than the other methods. TrickOMP is always very fast
since it relies on OMP which runs in exactly k iterations. Block-
FISTA generally runs faster than Mixed-FISTA. Moreover, it is
notmuch slower than fastermethods such as IHT and TrickOMP,
in particular for larger sparsity values.

4. DISCUSSION

In all the experiments conducted above and in the
Supplementary Material, the Block-FISTA algorithm provides
the best trade-off between support recovery and computation

FIGURE 1 | Support recovery (in %) of the proposed heuristics to solve MSC at various Signal to Noise ratios. A total of 50 problems instances are used, with a single

random but shared initialization for all methods.

FIGURE 2 | Support recovery (in %) of the proposed heuristics to solve MSC for different sparsity levels k and different number of atoms d in the dictionary. A total of

50 problems instances are used, with a single random but shared initialization for all methods. When k = d = 20, the support estimation is trivial thus all methods

obtain 100% support recovery.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 February 2022 | Volume 8 | Article 80165032

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

TABLE 1 | Average computation time in seconds and number of iterations with respect to (n,m) and (k,d).

(n,m) (10, 10) (10, 50) (10, 1,000) (50, 10) (50, 50) (50, 1,000) (1,000, 10) (1,000, 50) (1,000, 1,000)

HOMP 0.8, 148 0.9, 149 2, 88 2.6, 450 2, 330 10, 290 13, 280 13, 247 70, 376

M.-FISTA 0.4, 1000 0.4, 950 0.5, 875 0.4, 842 0.4, 799 1.6, 734 0.6, 393 1, 365 4.4, 388

B.-FISTA 0.3, 998 0.3, 898 0.3, 907 0.3, 843 0.3, 764 1, 724 0.5, 376 0.7, 369 4.2, 388

IHT 0.1, 356 0.2, 354 0.1, 254 0.07, 121 0.09, 105 0.2, 116 0.1, 92 0.2, 63 0.9, 80

TrickOMP 0.03, – 0.03, – 0.03, – 0.03, – 0.03, – 0.04, – 0.08, – 0.07, – 0.09, –

(d,k) (50, 5) (50, 10) (50, 30) (100, 5) (100, 10) (100, 30) (1,000, 5) (1,000, 10) (1,000, 30)

HOMP 0.59, 95 2.2, 185 64, 886 0.39, 50 4.3, 345 14, 176 1.3, 40 3.9, 53 53, 161

M.-FISTA 0.1, 356 0.3, 467 0.5, 456 0.37, 691 0.56, 814 0.78, 609 8.9, 1000 9.6, 1000 9.5, 1000

B.-FISTA 0.12, 492 0.23, 319 0.57, 373 0.23, 668 0.38, 679 0.63, 619 5.2, 1000 4.7, 369 5.4, 1000

IHT 0.05, 103 0.15, 92 0.69, 1000 0.06, 111 0.15, 100 0.52, 324 2.5, 215 3.3, 353 4.6, 528

TrickOMP 0.02, – 0.08, – 0.57, – 0.43, – 0.14, – 0.55, – 0.04, – 0.13, – 0.67, –

The format is (time, it). Computations are single threaded, and use a Intelr CoreTM i7-8650U CPU @ 1.90 GHz × 8 processor. TrickOMP exactly runs k steps of OMP equivalent to one

HOMP inner iteration, therefore TrickOMP iterations are not reported in the table. Maximal number of iteration was set to 1,000.

time. Moreover, it is very easy to extend to nonnegative low-rank
approximation models which are very common in practice.
Therefore, to design an algorithm for DLRA, we shall make use
of Block-FISTA (topped with a least-squares update with fixed
support) as a solver for the MSC sub-problem. Note however
than Block-FISTA required to select many regularization
parameters, but the proposed heuristic using a fixed percentage
of λi,max worked well in the above experiments.

5. DICTIONARY-BASED LOW RANK
APPROXIMATIONS

5.1. A Generic AO Algorithm for DLRA
Now that a reasonably good heuristic for solving MSC has been
found, let us introduce an AO method for DLRA based on
Block-FISTA. The proposed algorithm is coined AO-DLRA and
is summarized in Algorithm 3. It boils down to solving for X
with Block-FISTA (Algorithm 2) and automatically computed
regularization parameters, and then solving for the other blocks
using any classical alternating method specific to the LRA at
hand. Because solving exactly the MSC problem is difficult, even
using Block-FISTA with well tuned regularization parameters, it
is not guarantied that the X update will decrease the global cost.
In fact in practice the cost may go up, and storing the best update
along the iterations is good practice.

5.1.1. Selecting Regularization Parameters
It had already been noted in section 3.5 that choosing themultiple
regularization parameters λi of Block-FISTA can be challenging.
In the context of Alternating Optimization, this is even more
true. Indeed, the (structured) matrix B is updated at each
outer iteration, therefore there is a scaling ambiguity between
X and B that makes any arbitrary choice of regularization
level λi meaningless. Moreover the values λi,max change at each
outer iteration. Consequently, obtaining a sparsity regularization
percentage αi in each column of X at each iteration is challenging
without some ad-hoc tuning in each outer iteration. To that
end, the regularization percentages α = [α1, . . . ,αr] are tuned
inside each inner loop until the columnwise number of non-zeros
reaches a target range [k, k+ τ] where τ ≥ 0 is user-defined. This

Algorithm 3 An AO algorithm for DLRA (AO-DLRA)

Input: Initial guesses X(0),B(0), data Y , dictionary D, sparsity
level k ≤ n, initial regularization α ∈ [0, 1]r , iteration number
lmax, sparsity tolerance τ .
Output: Best estimated factors X(l) and B(l)

Precompute DTD, DTY and σD = σ (DTD) if memory allows.
for l = 1 . . . lmax do

B update:

Compute B(l) ∈ �B that decreases the cost in Problem (2)
with respect to B.
X update:

Stepsize evaluation: η(l) = 1

σDσ (B(l)
T
B(l))

.

Compute efficiently data-factor product(DTY)B(l) and inner

products B(l)
T
B(l).

(∗) Update X(l) using Block-FISTA (Algorithm 2) with
regularization parameters α, stepsize η(l) and initial guess
X(l−1)

while ∃i ≤ r, ‖X
(l)
i ‖0 /∈ [k, k+ τ] do

for i = 1 . . . r do
if ‖X

(l)
i ‖0 ≤ k then

Decrease regularization α : = α/1.3

else if ‖X
(l)
i ‖0 ≥ k+ τ then

Increase regularization α : = min(1.01α, 1)
end if

end for

Go to (∗) with X(l−1)
: = X(l)

end while

Unbiaised estimation: update X(l) with fixed support SX(l) as
in section 3.1.3.
StoreX(l) and B(l) if residuals ‖Y−DX(l)B(l)‖2F have improved
with respect to previous best.

end for

range is deliberately shifted to the right so that the each column
does not have size strictly less than k non-zeros. Indeed, in that
situation, a few atoms would have to be chosen arbitrarily during
the unbiased estimation. More precisely, when a column has too

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 February 2022 | Volume 8 | Article 80165033

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

many zeros, αi is divided by 1.3, while it is multiplied by 1.01
if it has few non-zeros. Note that an interesting research avenue
would be to use an adaption of homotopy methods [74] for Block
LASSO instead of FISTA, which would remove the need for this
heuristic tuning.

5.1.2. A Provably Convergent Algorithm: Inertial

Proximal Alternating Linear Minimization (iPALM)
The AO-DLRA algorithm proposed above is a heuristic with
several arbitrary choices and no convergence guaranties. If
designing an efficient AO algorithmwith convergence guarantees
proved difficult, designing a convergent algorithm is in fact
straightforward using standard block-coordinate non-convex
methods. I focus in the following on the iPALM algorithm, which
alternates between a proximal gradient step on X similar the
one discussed in section 3.2.2 and a proximal gradient step on
B. iPALM is guarantied to converge to a stationary point of
the DLRA cost, despite the irregularity of the semi-algebraic
ℓ0,0 map. A pseudo-code for iPALM to initialize Algorithm 3 is
provided in the Supplementary Material.

5.1.3. Initialization Strategies
Because DLRA is a highly non-convex problem, one can only
hope to reach some stationary point of the cost in Problem (2).
Furthermore, the sparsity constraint on the columns of X implies
that Xi must belong to a finite union of subspaces, making the
problem combinatorial by nature. Using a local heuristic such
as AO-DLRA or iPALM, it is expected to encounter many local
minima—a fact also confirmed in practical experiments reported
in section 5.2 and in previous works [13]. Therefore, providing
an initial guess for X and B close to a good local minimum is
important.

There are at least two reasonable strategies to initialize the
DCPD model. First, for any low-rank approximation model
which is mildly identifiable (such as NMF, CPD), the suggested
method is to first compute the low-rank approximation with
standard algorithms to estimate A(0) and B(0), and then perform
sparse coding on the columns of A(0) to estimate X(0). The
identifiability properties of these models should ensure that A(0)

is well approximated by DX with sparse X. Second, several
random initialization can be carried out, only to keep the best
result. A third option for AO-DLRA would be to use a few
iterations of the iPALM algorithm itself initialized randomly,
since iPALM iterations are relatively cheap. However, it is shown
in the experiments below that this method does not yield
good results.

5.2. Experiments for DLRA
In the next section, two DLRA models are showcased on
synthetic and real-life data. First, the Dictionary-based Matrix
Factorization (DMF, see below) model is explored for the task
of matrix completion in remote sensing. It is shown that
DMF allows to complete entirely missing rows, something that
low-rank completion cannot do. Second, nonnegative DCPD
(nnDCPD) is used for denoising smooth images in the context
of chemometrics, and better denoising performance are obtained
with nnDCPD than with plain nonnegative CPD (nnCPD) or

when post-processing the results of nnCPD. Nevertheless, the
goal of these experiments is not to establish a new state-of-the-
art in these particular, well-studied applications, but rather to
demonstrate the versatile problems that may be cast as DLRA
and the efficiency of DLRA when compared to other low-rank
strategies. The performance of AO-DLRA and iPALM in terms
of support recovery and relative reconstruction error for DMF
and DCPD is then further assessed on synthetic data.

5.2.1. Dictionary-Based Matrix Factorization With

Application to Matrix Completion
Let us study the following Dictionary-based Matrix Factorization
model:

arg,min
X∈Rd×r , ∀i≤r, ‖Xi‖0≤k, B∈Rm×r

‖Y − DXBT‖2F . (28)

Low-rank factorizations have been extensively used in machine
learning for matrix completion [75], since the low-rank
hypothesis serves as regularization for this otherwise ill-posed
problem. A use case for DMF is the completion of a low-
rank matrix which has missing rows. Using a simple low-rank
factorization approach would fail since a missing row removes all
information about the column-space on that row. Formally, if a
data matrix Y ≈ AB has missing rows indexed by I, then the rows
of matrix A in I cannot be estimated directly from Y . Dictionary-
based low-rank matrix factorization circumvents this problem by
expressing each column of A as a sparse combination of atoms in
a dictionary D, such that Y ≈ DXBT with X columnwise sparse.
While fitting matrices X and B can be done on the known entries,
the reconstruction DXBT will provide an estimation of the whole
data matrix Y , including the missing rows. Formally, first solve

arg,min
X∈R(n−|I|)×r , ∀i≤r, ‖Xi‖0≤k, B∈Rm×r

‖Y:,I − D:,IXB
T‖2F (29)

using Algorithm 3 and then build an estimation for the
missing values in Y as Ŷ:,I = D:,IXB

T . Initialization is
carried out using random factors sampled element-wise from a
normal distribution.

In remotely acquired hyperspectral images, missing rows in
the data matrix are common as they correspond to corrupted
pixels. Moreover, it is well-known that many hyperspectral
images are approximately low-rank. Therefore, in this toy
experiment, a small portion of the Urban hyperspectral image is
used to showcase the proposed inpainting strategy. Urban is often
considered to be between rank 4, 5, or 6 [76]. I will use r = 4
hereafter. Urban is a collection of 307 × 307 images collected on
162 clean bands. For the sake of simplicity, only a 20×20 patch is
considered, with 50 randomly-chosen pixels removed from this
patch in all bands, and therefore after pixel vectorization the
data matrix Y ∈ R

400×162 has 50 missing rows. Since columns
of factor A in this factorization should stand for patches of
abundance maps, they are reasonably sparse in a 2D-Discrete
Cosine Transform dictionary D, here using d = 400 atoms. Note
that similar strategies for HSI denoising have been studied in
the literature albeit without columnwise sparsity imposed on X,
see [77].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 February 2022 | Volume 8 | Article 80165034

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

FIGURE 3 | Performance of DMF (blue) vs. Columnwise OMP (red, single valued box) for inpainting a patch of the Urban HSI with missing pixels at various sparsity

levels. Twenty random initializations are used for DMF.

We measure the performance of two strategies: DMF
computed on known pixels solving Problem (29), and OMP for
each band individually. Both approaches use the same dictionary
D. To evaluate performance, the test estimation error on missing
pixels ‖YI − ŶI‖F/‖YI‖F is computed alongside with the average

Spectral Angular Mapper (SAM) 1
|I|

∑
i∈I arccos(

YT
i Ŷi

‖Yi‖2‖Ŷi‖2
) on

all missing pixels. The sparsity level k is defined on the grid
[10, 30, 50, 70, 100, 120, 150∗, 200∗, 250∗], where k∗ is not used
for the OMP inpainting because of memory issues. Results are
averaged on N = 20 different initializations. For AO-DLRA, the
initial regularization α is set to 5× 10−3, and τ = 20.

Figure 3 shows the reconstruction error and SAM obtained
after each initialization for various sparsity levels. First, for both
metrics, there exist a clear advantage of the DMF approach
when compared to sparse coding band per band. In particular,
the band-wise OMP reconstruction does not yield good spectral
reconstruction. Second, DMF apparently works similarly to
sparse coding approaches for inpainting: if the sparsity level is
too low the reconstruction is not precise, but if the sparsity level is
too large the reconstruction is biased. Therefore, DMF effectively
allows to perform inpainting with sparse coding on the factors of
a low-rank matrix factorization.

5.2.2. Dictionary-Based Smooth Canonical Polyadic

Decomposition With Application to Data Denoising
The second study examines the DCPD discussed around
Equation (4) to perform denoising using smoothness. In this
context, the data tensor Y is noisy, meaning formally that

Ỹ = Y + ǫ, and Y = A(B⊙ C)T (30)

where ǫ has a large power compared to A(B ⊙ C)T (e.g. Signal
to Noise Ratio at -8.7dB in the following). Furthermore, let us
suppose that A has smooth columns. The dictionary constraint
can enforce smoothness on A by choosing D as a large collection
of smooth atoms, in this case B-splines8. Because the first mode
is constrained such that A = DX, each column of A is a
sparse combination of smooth functions and will therefore itself

8The exact implementation of D is detailed in the code.

be smooth. The sparsity constraint k prevents the use of too
many splines and ensures that A is indeed smooth. Hereafter, the
sparsity value is fixed to k = 6.

There has been significant previous works on smooth CPD,
perhaps most related to the proposed approach is the work of
[8]. Their method also consists in choosing a dictionary D of B-
splines. However, this dictionary has very few atoms (the actual
number is determined by cross-validation), and picking the knots
for the splines requires either time-consuming hand crafting, or
some cross validation set. The advantage of their approach is that
no sparsity constraint is imposed since there are already so few
atoms in D, and the problem becomes equivalent to CPD on the
smoothed data.

The rationale however is that heavily crafting the splines is
unnecessary. Using DCPD allows an automatic picking of good
(if not best) B-splines. Furthermore, each component in the CPD
may use different splines while the method of [8] uses the same
splines for all the components. Hand-crafting is still required to
build the dictionary, but one does not have to fear introducing an
inadequate spline.

An advantage of B-splines is that they are nonnegative,
therefore one can compute nonnegative DCPD by imposing
nonnegativity on the sparse coefficients X as explained in
section 3.4. Imposing nonnegativity in the method of [8] is not
as straightforward albeit doable [35].

For this study the toy fluorescence spectroscopy dataset
“amino-acids” available online9 is used. Its rank is known to
be r = 3, and dimensions are 201 × 61 × 5. Fluorescence
spectroscopy tensors are nonnegative, low-rank and feature
smooth factors. In fact factors are smooth on two modes
related to excitation and emission spectra, therefore a double-
constrained DCPD is also of interest. It boils down to solving

minimize
‖X

(A)
i ‖0≤k(A), ‖X

(B)
i ‖0≤k(B) , C∈Rm2×r

‖Ỹ−D(A)X(A)(D(B)X(B)⊙C)T‖2F .

(31)
where D(A,B) and k(A,B) are the respective dictionaries of sizes
201 × 180 and 61 × 81 and sparsity targets for modes one and

9http://www.models.life.ku.dk/Amino_Acid_fluo.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 February 2022 | Volume 8 | Article 80165035

http://www.models.life.ku.dk/Amino_Acid_fluo
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

two. The third mode factor contains relative concentrations [78].
Additional Gaussian noise is added to the data so that the
effective SNR used in the experiments is −8.7dB. Because
CPD is identifiable, in particular for the amino-acids dataset,
nnCPD of the noisy data is used for initialization, computed
using Hierarchical Alternating Least Squares [45]. We compare
sparse coding one or two modes of the output of HALS with
AO-DCPD (i.e., AO-DLRA used to compute DCPD) with
smoothness on one mode, two modes, and on two modes with
nonnegativity (AO-nnDCPD). We set α = 10−3 and τ = 5, and
k(A) = k(B) = 6.

Figure 4 shows the reconstructed factors and the relative error
‖Ŷ−Y‖F/‖Y‖F with respect to the true data, and Figure 5 shows
one slice (here the fourth one) of the reconstructed tensor. It
can be observed both graphically and numerically that DCPD
techniques are overall superior to post-processing the output of
HALS. In particular, the factors recovered using nnDCPD with
dictionary constraints on two modes are very close to the true
factors (obtained from the nnCPD of the clean data) using only
k = 6 splines at most.

5.2.3. Performance of AO-DLRA for DMF and DCPD

on Synthetic Data
To assess the performance of AO-DLRA in computing DMF
and DCPD, the support recovery and reconstruction error
are monitored on synthetic data. For both model, a single
initialization is performed for N = 100 problem instances with
the same hyperparameters. Matrices D,X,B,C involved in both
problems and the noise tensors are generated as in section 3.5.
The rank is r = 6 for a sparsity level of k = 8 and the
conditioning of B is set to 2 × 102. In the DMF experiment, the
sizes are n = m = 50, d = 60 and the SNR is 100dB. For DPCD,
we set n = 20,m1 = 21,m2 = 22, d = 30 and the SNR is 30 dB.
We set α = 10−2, τ = 20 for AO-DMF and α = 10−4, τ = 20
for AO-DCPD.

A few strategies are compared: AO-DLRA initialized
randomly, iPALM initialized randomly, and AO-DLRA
initialized with iPALM. The same random initialization is used
for all methods in each problem instance. For DCPD, we also
consider AO-DLRA and iPALM initialized with a CPD solver
(here Alternating Least Squares), and sparse coding the output

FIGURE 4 | Factors estimated from nonnegative CPD and dictionary-based (non-negative) CPD with smoothness imposed by B-splines on either one (emission, top

row) or two (emission, excitation in middle row) modes. The (bottom) row shows the third mode factor that relates to relative concentration of the amino-acids in the

mixture. The right-most plot shows AO-DLRA when imposing smoothness on two modes and non-negativity on all modes.

FIGURE 5 | The fourth slice (index 3 if counting from 0) of the reconstructed tensors, see Figure 4 for details on each method. Row index relates to the emission

wavelength while the column index relates to the excitation wavelength. The bottom values indicate the relative reconstruction error with respect to the clean tensor.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 February 2022 | Volume 8 | Article 80165036

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

of the ALS. AO-DLRA always stops after at most 100 iterations,
while iPALM runs for at most 1,000 iterations or when relative
error decrease is below 10−8. The safeguard for stepsize in
iPALM is set to µ = 0.5 for DMF and µ = 1 for DCPD.

Figure 6 shows the obtained results. It can be observed that
both in DMF and DCPD, iPALM initialization is not significantly
better than random initialization, and iPALM in fact provides
quite poor results on its own. For DCPD, support recovery
and reconstruction error is always better with AO-DLRA than
when sparse coding the output of the ALS, even with random
initialization. Overall, these experiments show that while the
DLRA problem is challenging (the optimal support is almost
always never found), reasonably good results are obtained using
the proposed AO-DLRA algorithm. Furthermore, the support
recovery scores of DMF using AO-DLRA are much higher than
what could be obtained by chance, randomly picking elements in
the support. This observation hints toward the identifiability of
DMF. Remember indeed that without the dictionary constraint,
matrix factorization is never unique when r > 1, thus
any posterior support identification for a matrix A given a
factorization Y = AB should fail.

6. CONCLUSIONS AND OPEN QUESTIONS

In this manuscript, a Dictionary-based Low-Rank
Approximation framework has been proposed. It allows to
constrain any factor in a LRA to live in the union of k-
dimensional subspaces generated by subsets of columns of a
given dictionary. DLRA is shown to be useful for various signal
processing tasks such as image completion or image denoising.
A contribution of this work is an Alternating Optimization
algorithm (AO-DLRA) to compute candidate solutions to
DLRA. Additionally, the subproblem of estimating the sparse
codes of a factor in a LRA, coined Mixed Sparse Coding, is
extensively discussed. A heuristic convex relaxation adapted
from LASSO is shown to perform very well for solving MSC
when compared to other modified sparse coding strategies,
and along the way, several theoretical results regarding MSC
are provided.

There are several research directions that stem from this
work. First, the identifiability properties of DLRA have not
been addressed here. It was shown in previous works [13]
that dictionary-based matrix factorization is identifiable when

FIGURE 6 | Relative reconstruction error (left) and support recovery (right, in %) for DMF algorithms (top) and DCPD algorithms (bottom). One shared initialization

is used for the randomly initialized methods, and 100 instances of each problem are tested. AO-DLRA, iPALM init is when the result of iPALM, random init is used as

an initialization for AO-DLRA.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 February 2022 | Volume 8 | Article 80165037

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

sparsity is exactly one, but the general case is harder to analyse.
The identifiability analysis is furthermoremodel dependent while
this work aims at tackling the computation of any DLRA. Second,
while the proposed AO-DLRA algorithm proved efficient in
practice, its convergence properties are lacking. It is reasonably
easy to design an AO algorithm with guaranties for DLRA, but
I could not obtain an algorithm with convergence guarantees
which performance matched the proposed AO-DLRA. Finally,
the proposed DLRA model could be extended to a supervised
setting, where D is trained in a similar fashion to Dictionary
Learning [15]. This would mean computing a DLRA for several
tensors with the same dictionary, a problem closely related to
coupled matrix and tensor factorization with linearly coupled
factors [79].

DATA AVAILABILITY STATEMENT

The scripts used to generate the synthetic dataset for this study
can be found alongside the code in the online repositories
https://github.com/cohenjer/mscode and https://github.
com/cohenjer/dlra. Further inquiries can be directed to the
corresponding author/s.

AUTHOR CONTRIBUTIONS

JC is the sole contributor to this work. He studied the
theory around Mixed Sparse Coding and Dictionary-based low-
rank approximations, implemented the methods, conducted the
experiments, and wrote the manuscript.

FUNDING

This work was funded by ANR JCJC LoRAiA ANR-20-CE23-
0010.

ACKNOWLEDGMENTS

The author thanks Rémi Gribonval for commenting an early
version of this work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2022.801650/full#supplementary-material

REFERENCES

1. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.

(2009) 51:455–500. doi: 10.1137/07070111X

2. Sidiropoulos ND, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos

C. Tensor decomposition for signal processing and machine learning. IEEE

Trans Signal Process. (2017) 65:3551–82. doi: 10.1109/TSP.2017.2690524

3. Gillis N.NonnegativeMatrix Factorization. Philadelphia: Society for Industrial

and Applied Mathematics (2020). doi: 10.1137/1.9781611976410

4. Kruskal JB. Three-way arrays: rank and uniqueness of trilinear

decompositions, with application to arithmetic complexity and statistics.

Linear Algeb Appl. (1977) 18:95–138. doi: 10.1016/0024-3795(77)90069-6

5. Hoyer PO. Non-negative sparse coding. In: IEEE Workshop on Neural

Networks for Signal Processing. Martigny (2002). p. 557–65.

6. Mørup M, Hansen LK, Arnfred SM. Algorithms for sparse nonnegative

Tucker decompositions. Neural Comput. (2008) 20:2112–31.

doi: 10.1162/neco.2008.11-06-407

7. Hennequin R, Badeau R, David B. Time-dependent parametric and harmonic

templates in non-negative matrix factorization. In: Proceedings of the 13th

International Conference on Digital Audio Effects (DAFx). Graz (2010).

8. Timmerman ME, Kiers HA. Three-way component analysis with

smoothness constraints. Comput Stat Data Anal. (2002) 40:447–70.

doi: 10.1016/S0167-9473(02)00059-2

9. Fu X, Huang K, Sidiropoulos ND. On identifiability of nonnegative

matrix factorization. IEEE Signal Process Lett. (2018) 25:328–32.

doi: 10.1109/LSP.2018.2789405

10. Gillis N, Luce R. Robust near-separable nonnegative matrix factorization

using linear optimization. J Mach Learn Res. (2014) 15:1249–80.

11. Silva VD, Lim LH. Tensor rank and the ill-posedness of the best low-rank

approximation problem. SIAM J Matrix Anal Appl. (2008) 30:1084–127.

doi: 10.1137/06066518X

12. Mohlenkamp MJ. The dynamics of swamps in the canonical tensor

approximation problem. SIAM J Appl Dyn Syst. (2019) 18:1293–333.

doi: 10.1137/18M1181389

13. Cohen JE, Gillis N. Dictionary-based tensor canonical polyadic

decomposition. IEEE Trans Signal Process. (2018) 66:1876–89.

doi: 10.1109/TSP.2017.2777393

14. Kjersti E, Sven OA, John HH. Method of optimal directions for frame design.

IEEE Int Conf Acoust Speech Signal Process Proc. (1999) 5:2443–6.

15. Mairal J, Bach F, Ponce J, Sapiro G. Online learning for matrix factorization

and sparse coding. J Mach Learn Res. (2010) 11:19–60.

16. Huang K, Sidiropoulos ND, Liavas AP. A flexible and efficient algorithmic

framework for constrained matrix and tensor factorization. IEEE Trans Signal

Process. (2016) 64:5052–65. doi: 10.1109/TSP.2016.2576427

17. Fu X, Vervliet N, De Lathauwer L, Huang K, Gillis N. Computing

large-scale matrix and tensor decomposition with structured factors: a

unified nonconvex optimization perspective. IEEE Signal Process Mag. (2020)

37:78–94. doi: 10.1109/MSP.2020.3003544

18. Aharon M, Elad M, Bruckstein AM. K-SVD and its non-negative variant for

dictionary design. In: Wavelets XI. Vol. 5914. San Diego, CA: International

Society for Optics and Photonics (2005). p. 591411. doi: 10.1117/12.6

13878

19. Xu Y. Alternating proximal gradient method for sparse nonnegative

Tucker decomposition. Math Programm Comput. (2015) 7:39–70.

doi: 10.1007/s12532-014-0074-y

20. Kolda TG, Hong D. Stochastic gradients for large-scale tensor decomposition.

SIAM J Math Data Sci. (2020) 2:1066–95. doi: 10.1137/19M1266265

21. Marmin A, Goulart JHM, Févotte C. Joint majorization-minimization for

nonnegative matrix factorization with the β-divergence. arXiv [preprint].

arXiv:210615214 (2021).

22. Brewer J. Kronecker products and matrix calculus in system theory. IEEE

Trans Circuits Syst. (1978) 25:772–81. doi: 10.1109/TCS.1978.1084534

23. Pearson K. On lines and planes of closest fit to systems of points

in space. Lond Edinburgh Dublin Philos Mag J Sci. (1901) 2:559–72.

doi: 10.1080/14786440109462720

24. Jolliffe I. Principal Component Analysis. Wiley Online Library (2002).

25. Comon P. Independent component analysis, a new concept? Signal Process.

(1994) 36:287–314. doi: 10.1016/0165-1684(94)90029-9

26. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix

factorization. Nature. (1999) 401:788–91. doi: 10.1038/44565

27. Gribonval R, Lesage S. A survey of sparse component analysis for blind

source separation: principles, perspectives, and new challenges. In: ESANN’06

Proceedings-14th European Symposium on Artificial Neural Networks. Bruges

(2006). p. 323–30.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 17 February 2022 | Volume 8 | Article 80165038

https://github.com/cohenjer/mscode
https://github.com/cohenjer/dlra
https://github.com/cohenjer/dlra
https://www.frontiersin.org/articles/10.3389/fams.2022.801650/full#supplementary-material
https://doi.org/10.1137/07070111X
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1137/1.9781611976410
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1162/neco.2008.11-06-407
https://doi.org/10.1016/S0167-9473(02)00059-2
https://doi.org/10.1109/LSP.2018.2789405
https://doi.org/10.1137/06066518X
https://doi.org/10.1137/18M1181389
https://doi.org/10.1109/TSP.2017.2777393
https://doi.org/10.1109/TSP.2016.2576427
https://doi.org/10.1109/MSP.2020.3003544
https://doi.org/10.1117/12.613878
https://doi.org/10.1007/s12532-014-0074-y
https://doi.org/10.1137/19M1266265
https://doi.org/10.1109/TCS.1978.1084534
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1016/0165-1684(94)90029-9
https://doi.org/10.1038/44565
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

28. Donoho DL, Stodden V. When does non-negative matrix factorization give

a correct decomposition into parts? In: Advances in Neural Information

Processing 16. Vancouver (2003).

29. Cohen JE, Gillis N. Identifiability of complete dictionary learning. SIAM J

Math Data Sci. (2019) 1:518–36. doi: 10.1137/18M1233339

30. Gillis N, Glineur F. Accelerated multiplicative updates and hierarchical ALS

algorithms for nonnegative matrix factorization. Neural Comput. (2012)

24:1085–105. doi: 10.1162/NECO_a_00256

31. Natarajan B. Sparse approximate solutions to linear systems. SIAM J Comput.

(1995) 24:227–34. doi: 10.1137/S0097539792240406

32. Vavasis SA. On the complexity of nonnegative matrix factorization. SIAM J

Optim. (2010) 20:1364–77. doi: 10.1137/070709967

33. Bro R. PARAFAC, tutorial and applications. Chemom Intel Lab Syst. (1997)

38:149–71. doi: 10.1016/S0169-7439(97)00032-4

34. Becker H, Albera L, Comon P, Gribonval R, Wendling F, Merlet I. Brain

source imaging: from sparse to tensor models. IEEE Signal Proc Mag. (2015)

32:100–12. doi: 10.1109/MSP.2015.2413711

35. Cohen JE, Cabral-Farias R, Comon P. Fast decomposition of large

nonnegative tensors. IEEE Signal Process Lett. (2015) 22:862–6.

doi: 10.1109/LSP.2014.2374838

36. Kossaifi J, Lipton ZC, Kolbeinsson A, Khanna A, Furlanello T, Anandkumar

A. Tensor regression networks. J Mach Learn Res. (2020) 21:1–21.

37. Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. J

Math Phys. (1927) 6:164–89. doi: 10.1002/sapm192761164

38. Harshman RA. PARAFAC2: mathematical and technical notes. UCLA Work

Pap Phonet. (1972) 22:122215.

39. Sidiropoulos ND, Bro R. On the uniqueness of multilinear

decomposition of N-way arrays. J Chemometr. (2000) 14:229–39.

doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N

40. Domanov I, De Lathauwer L. On the uniqueness of the canonical polyadic

decomposition of third-order tensors - part i: basic results and uniqueness

of one factor matrix. SIAM J Matrix Anal Appl. (2013) 34:855–75.

doi: 10.1137/120877234

41. Lim LH, Comon P. Nonnegative approximations of nonnegative tensors. J

Chemometr. (2009) 23:432–41. doi: 10.1002/cem.1244

42. Roald M, Schenker C, Cohen J, Acar E. PARAFAC2 AO-

ADMM: constraints in all modes. In: EUSIPCO. Dublin (2021).

doi: 10.23919/EUSIPCO54536.2021.9615927

43. Tucker LR. Some mathematical notes on three-mode factor analysis.

Psychometrika. (1966) 31:279–311. doi: 10.1007/BF02289464

44. Oseledets IV. Tensor-train decomposition. SIAM J Sci Comput. (2011)

33:2295–317. doi: 10.1137/090752286

45. Phan AH, Cichocki A. Extended HALS algorithm for nonnegative

Tucker decomposition and its applications for multiway analysis and

classification.Neurocomputing. (2011) 74:1956–69. doi: 10.1016/j.neucom.201

0.06.031

46. Marmoret A, Cohen JE, Bertin N, Bimbot F. Uncovering audio patterns in

music with nonnegative tucker decomposition for structural segmentation.

In: ISMIR 2020-21st International Society for Music Information Retrieval.

Montreal (2020).

47. Foucart S, Rauhut H. In: Birkhausen, editor. A Mathematical Introduction to

Compressive Sensing. Applied and Numeric Harmonic Analysis. Birkhauser;

Springer (2013). doi: 10.1007/978-0-8176-4948-7

48. Mallat SG, Zhang Z.Matching pursuits with time-frequency dictionaries. IEEE

Trans Signal Process. (1993) 41:3397–415. doi: 10.1109/78.258082

49. Pati YC, Rezaiifar R, Krishnaprasad PS. Orthogonal matching pursuit:

recursive function approximation with applications to wavelet decomposition.

In: 1993 Conference Record of The 27th Asilomar Conference on Signals,

Systems and Computers. Pacific Grove, CA (1993). p. 40–4.

50. Tropp JA. Greed is good: algorithmic results for sparse approximation. IEEE

Trans Inform Theory. (2004) 50:2231–42. doi: 10.1109/TIT.2004.834793

51. Blumensath T, Davies ME. Iterative thresholding for sparse approximations. J

Four Anal Appl. (2008) 14:629–54. doi: 10.1007/s00041-008-9035-z

52. Parikh N, Boyd SP. Proximal algorithms. Found Trends Optim. (2014)

1:127–239. doi: 10.1561/2400000003

53. Tropp JA. Just relax: Convex programming methods for identifying

sparse signals in noise. IEEE Trans Inform Theory. (2006) 52:1030–51.

doi: 10.1109/TIT.2005.864420

54. Nesterov Y. A method of solving a convex programming problem with

convergence rate O (1/k2). In: Soviet Mathematics Doklady. Vol. 27 (1983).

p. 372–6.

55. Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm

for linear inverse problems. SIAM J Imaging Sci. (2009) 2:183–202.

doi: 10.1137/080716542

56. Cotter SF, Rao BD, Engan K, Kreutz-Delgado K. Sparse solutions to linear

inverse problems with multiple measurement vectors. IEEE Trans Signal

Process. (2005) 53:2477–88. doi: 10.1109/TSP.2005.849172

57. Elhamifar E, Sapiro G, Vidal R. See all by looking at a few: sparse modeling

for finding representative objects. In: 2012 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). Providence (2012). p. 1600–7.

doi: 10.1109/CVPR.2012.6247852

58. Iordache MD, Bioucas-Dias JM, Plaza A. Collaborative sparse regression for

hyperspectral unmixing. IEEE Trans Geosci Remote Sensing. (2014) 52:341–54.

doi: 10.1109/TGRS.2013.2240001

59. Cohen JE. About notations in multiway array processing. arXiv [preprint].

arXiv:151101306. (2015).

60. Traonmilin Y, Gribonval R. Stable recovery of low-dimensional cones in

Hilbert spaces: one RIP to rule them all. Appl Comput Harm Anal. (2018)

45:170–205. doi: 10.1016/j.acha.2016.08.004

61. Tsiligkaridis T, Hero AO. Covariance estimation in high dimensions via

Kronecker product expansions. IEEE Trans Signal Process. (2013) 61:5347–60.

doi: 10.1109/TSP.2013.2279355

62. Golub GH, Loan CFV. Matrix Computations. Baltimore: The John Hopkins

University Press (1989).

63. Donoho DL, Elad M. Optimally sparse representation in general

(nonorthogonal) dictionaries via ℓ1 minimization. Proc Natl Acad Sci

USA. (2003) 100:2197–202. doi: 10.1073/pnas.0437847100

64. Bourguignon S, Ninin J, Carfantan H, Mongeau M. Exact sparse

approximation problems via mixed-integer programming: formulations and

computational performance. IEEE Trans Signal Process. (2015) 64:1405–19.

doi: 10.1109/TSP.2015.2496367

65. Nadisic N, Vandaele A, Gillis N, Cohen JE. Exact sparse

nonnegative least squares. In: ICASSP. Barcelona (2020). p. 5395–9.

doi: 10.1109/ICASSP40776.2020.9053295

66. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser

B. (1996) 58:267–88. doi: 10.1111/j.2517-6161.1996.tb02080.x

67. Attouch H, Bolte J, Svaiter BF. Convergence of descent methods for

semi-algebraic and tame problems: proximal algorithms, forward-backward

splitting, and regularized Gauss-Seidel methods. Math Programm. (2013)

137:91–129. doi: 10.1007/s10107-011-0484-9

68. Blumensath T, DaviesME. Iterative hard thresholding for compressed sensing.

Appl Comput Harm Anal. (2009) 27:265–74. doi: 10.1016/j.acha.2009.04.002

69. Rubinstein R, Zibulevsky M, Elad M. Efficient implementation of the K-

SVD algorithm using batch orthogonal matching pursuit. CS Technion. (2008)

40:1–15.

70. Bogdan M, van den Berg E, Sabatti C, Su W, Candès EJ. SLOPE-Adaptive

variable selection via convex optimization. Ann Appl Stat. (2015) 9:1103–40.

doi: 10.1214/15-AOAS842

71. Quattoni A, Carreras X, Collins M, Darrell T. An efficient projection for ℓ1,∞

regularization. In: Proceedings of the 26th Annual International Conference

on Machine Learning. Montreal (2009). p. 857–64. doi: 10.1145/1553374.15

53484

72. Bejar B, Dokmanic I, Vidal R. The fastest ℓ1,∞ prox in the west.

IEEE Trans Pattern Anal Mach Intell. (2021). doi: 10.1109/TPAMI.2021.3

059301

73. Cohen JE. Computing the proximal operator of the ℓ1, 1 inducedmatrix norm.

arXiv [preprint]. arXiv:200506804. (2020).

74. Osborne MR, Presnell B, Turlach BA. A new approach to variable

selection in least squares problems. IMA J Numer Anal. (2000) 20:389–403.

doi: 10.1093/imanum/20.3.389

75. Candés EJ, Recht B. Exact matrix completion via convex optimization. Found

Comput Math. (2009) 9:717–72. doi: 10.1007/s10208-009-9045-5

76. Zhu F. Hyperspectral unmixing: ground truth labeling, datasets, benchmark

performances and survey. arXiv [preprint]. arXiv:170805125 (2017).

77. Zhuang L, Bioucas-Dias JM. Fast hyperspectral image denoising and

inpainting based on low-rank and sparse representations. IEEE J

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 18 February 2022 | Volume 8 | Article 80165039

https://doi.org/10.1137/18M1233339
https://doi.org/10.1162/NECO_a_00256
https://doi.org/10.1137/S0097539792240406
https://doi.org/10.1137/070709967
https://doi.org/10.1016/S0169-7439(97)00032-4
https://doi.org/10.1109/MSP.2015.2413711
https://doi.org/10.1109/LSP.2014.2374838
https://doi.org/10.1002/sapm192761164
https://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
https://doi.org/10.1137/120877234
https://doi.org/10.1002/cem.1244
https://doi.org/10.23919/EUSIPCO54536.2021.9615927
https://doi.org/10.1007/BF02289464
https://doi.org/10.1137/090752286
https://doi.org/10.1016/j.neucom.2010.06.031
https://doi.org/10.1007/978-0-8176-4948-7
https://doi.org/10.1109/78.258082
https://doi.org/10.1109/TIT.2004.834793
https://doi.org/10.1007/s00041-008-9035-z
https://doi.org/10.1561/2400000003
https://doi.org/10.1109/TIT.2005.864420
https://doi.org/10.1137/080716542
https://doi.org/10.1109/TSP.2005.849172
https://doi.org/10.1109/CVPR.2012.6247852
https://doi.org/10.1109/TGRS.2013.2240001
https://doi.org/10.1016/j.acha.2016.08.004
https://doi.org/10.1109/TSP.2013.2279355
https://doi.org/10.1073/pnas.0437847100
https://doi.org/10.1109/TSP.2015.2496367
https://doi.org/10.1109/ICASSP40776.2020.9053295
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1007/s10107-011-0484-9
https://doi.org/10.1016/j.acha.2009.04.002
https://doi.org/10.1214/15-AOAS842
https://doi.org/10.1145/1553374.1553484
https://doi.org/10.1109/TPAMI.2021.3059301
https://doi.org/10.1093/imanum/20.3.389
https://doi.org/10.1007/s10208-009-9045-5
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cohen Dictionary-Based Low Rank Approximations

Select Top Appl Earth Observ Remote Sensing. (2018) 11:730–42.

doi: 10.1109/JSTARS.2018.2796570

78. Bro R. Multi-way analysis in the food industry: models, algorithms, and

applications (Ph.D.). University of Amsterdam, Amsterdam, Netherlands

(1998).

79. Schenker C, Cohen JE, Acar E. A Flexible optimization framework for

regularized matrix-tensor factorizations with linear couplings. IEEE J Select

Top Signal Process. (2020) 15:506–21. doi: 10.1109/JSTSP.2020.3045848

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Cohen. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 19 February 2022 | Volume 8 | Article 80165040

https://doi.org/10.1109/JSTARS.2018.2796570
https://doi.org/10.1109/JSTSP.2020.3045848
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

ORIGINAL RESEARCH
published: 17 March 2022

doi: 10.3389/fams.2022.832883

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 March 2022 | Volume 8 | Article 832883

Edited by:

Jiajia Li,

College of William & Mary,

United States

Reviewed by:

Mark Iwen,

Michigan State University,

United States

Martin Stoll,

Chemnitz University of Technology,

Germany

*Correspondence:

Stijn Hendrikx

stijn.hendrikx@kuleuven.be

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 10 December 2021

Accepted: 14 February 2022

Published: 17 March 2022

Citation:

Hendrikx S and De Lathauwer L

(2022) Block Row

Kronecker-Structured Linear Systems

With a Low-Rank Tensor Solution.

Front. Appl. Math. Stat. 8:832883.

doi: 10.3389/fams.2022.832883

Block Row Kronecker-Structured
Linear Systems With a Low-Rank
Tensor Solution
Stijn Hendrikx 1,2* and Lieven De Lathauwer 1,2

1Dynamical Systems, Signal Processing and Data Analytics (STADIUS), Department of Electrical Engineering (ESAT), KU

Leuven, Leuven, Belgium, 2Group Science, Engineering and Technology, KU Leuven Kulak, Kortrijk, Belgium

Several problems in compressed sensing and randomized tensor decomposition can

be formulated as a structured linear system with a constrained tensor as the solution.

In particular, we consider block row Kronecker-structured linear systems with a low

multilinear rank multilinear singular value decomposition, a low-rank canonical polyadic

decomposition or a low tensor train rank tensor train constrained solution. In this

paper, we provide algorithms that serve as tools for finding such solutions for a large,

higher-order data tensor, given Kronecker-structured linear combinations of its entries.

Consistent with the literature on compressed sensing, the number of linear combinations

of entries needed to find a constrained solution is far smaller than the corresponding

total number of entries in the original tensor. We derive conditions under which a

multilinear singular value decomposition, canonical polyadic decomposition or tensor

train solution can be retrieved from this type of structured linear systems and also derive

the corresponding generic conditions. Finally, we validate our algorithms by comparing

them to related randomized tensor decomposition algorithms and by reconstructing a

hyperspectral image from compressed measurements.

Keywords: tensor, decomposition, compressed sensing (CS), randomized, Kronecker, linear system

1. INTRODUCTION

In a wide array of applications within signal processing, machine learning, and data analysis,
sampling all entries of a dataset is infeasible. Datasets can be infeasibly large either because
their dimensions are huge, like a matrix with millions of rows and columns, or because they are
higher-order. In several cases, a relatively limited set of indirectly sampled datapoints, i.e., linear
combinations A x = b of the datapoints x, suffices for recovering an accurate approximation of
the full dataset, making the problem tractable again. For example in compressed sensing [1, 2]
and randomized tensor decomposition algorithms [3], random measurement matrices are used to
compress the data x. Directly sampling a subset of the datapoints can also be written in the format
A x = b, in which the measurement matrix a now consists of a subset of the rows of the identity
matrix. Hence, problems such as incomplete tensor decomposition [4], non-uniform sampling [5]
and cross-approximation [6] can also be formulated in this manner.

Retrieving the original data from such a linear system is generally only possible if it is
overdetermined. This would mean that the number of indirectly sampled datapoints equals at least
the total number of dataset entries, which is the opposite of what is needed in the compressed
sensing (CS) setting. This requirement becomes especially restrictive for higher-order datasets.

41

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.832883
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.832883&domain=pdf&date_stamp=2022-03-17
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:stijn.hendrikx@kuleuven.be
https://doi.org/10.3389/fams.2022.832883
https://www.frontiersin.org/articles/10.3389/fams.2022.832883/full

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

“Higher-order” means that the dataset consists of more than
two dimensions or modes, in which case the number of
entries increases exponentially with the number of modes.
This phenomenon is commonly known as the curse of
dimensionality (CoD).

Real data often allows compact representations thanks to
some intrinsic structure, such as the data being generated by
an underlying lower-dimensional process [1, 7]. In this case,
x can be well approximated by a sparsifying basis 8 and a
sparse coefficient vector θ , namely x ≈ 8θ . The literature on
compressed sensing (CS) shows that for a measurement matrix
and sparsifying basis pair with low coherence, the linear system
can be solved in the underdetermined case [1, 2]. This means that
x can be recovered using far fewer compressed measurementsAx
than the total number of entries in x, breaking the CoD in the
case of a higher-order dataset. An appropriate sparsifying basis is
known a priori for some types of data, for example a wavelet basis
for images, or can be obtained through dictionary learning [8]. If
the sparsifying basis is known, then the measurement matrix can
be chosen such that the coherence between the sparsifying basis
and the measurement matrix is low. If no sparsifying basis for
x is known a priori, one often chooses a random measurement
matrix, as they are largely incoherent with any fixed basis [1].

In this paper, we exploit intrinsic structure that is common
in real data by compactly approximating x using tensor
decompositions, which in turn allows us to solve A x = b in the
underdetermined case. This means that we will solve

Avec (X) = b with X of low rank and vec (X) = x. (1)

Concretely, we will consider X constrained to a multilinear
singular value decomposition (MLSVD), a canonical polyadic
decomposition (CPD) or a tensor train (TT) of low rank1. Note
that at this point we have addressed the dimensionality issue
only partially: on one hand, x is compactly modeled by a tensor
decomposition; however, on the other hand, the number of
columns of A remains equal to the total number of entries in x

and thus still suffers from the CoD. Therefore, we will employ
a block row Kronecker-structured (BRKS) measurement matrix
A. Efficient algebraic algorithms for solving this linear system
will be obtained by combining this Kronecker structure with
the low-rank constraints on x such that A and x do not need
to be fully constructed. A standard approach for computing the
CPD of a tensor is to first orthogonally compress this tensor, for
example using the MLSVD, and then compute the CPD of the
compressed tensor [9]. In this paper, we generalize this approach
to the CS-setting.

Unstructured measurement matrices compress all modes
of X simultaneously. On the contrary, Kronecker-structured
measurement matrices produce compressed versions of X by
compressing each mode individually, making them useful for
higher-order datasets. Therefore, these Kronecker-structured
measurement matrices are used in the CS-setting [10–12]. In
Sidiropoulos and Kyrillidis [10] the CPD of a tensor is computed

1In this context, rank pertains to the definition of rank that corresponds to the

respective tensor decomposition.

by first decomposing multiple compressed versions of X and
then retrieving the factor matrices of the full tensor under
the assumption that their columns are sparse. There is some
similarity between the Kronecker compressive sampling (KCS)
approach [11] and ours, because it uses a Kronecker-structured
measurement matrix and assumes that x is sparse in a Kronecker-
structured basis. However, in KCS this basis is assumed to be
known a priori, while in our approach it is estimated as well.
In Kressner and Tobler [13], a low-rank approximation to the
solution of a parametrized set of linear systems, which can be
rewritten as a large linear system in which the coefficient matrix
consists of a sum of Kronecker products, is computed. This
approach is suited toward applications such as solving partial
differential equations rather than CS, as the requirement that
the smaller individual systems should be overdetermined makes
it infeasible for the latter purpose. Additionally, this approach
utilizes the hierarchical Tucker decomposition to constrain the
solution, as opposed to the MLSVD, CPD and TT constraints in
this paper.

Algorithms similar to the ones in this paper appear in the
literature on randomized tensor decomposition (RTD) [3, 14–
16]. The main difference is that the full tensor is available in
such a randomized algorithm, while our algorithms can also be
applied when only compressed measurements are available. In
a randomized algorithm, the tensor is compressed in multiple
modes to speed up further computations. In Zhou et al. [16]
the factor matrices of an MLSVD are computed by randomly
compressing the tensor. However, this compression is carried
out simultaneously in multiple modes in a manner that is not
Kronecker-structured. Also, the full tensor is needed to retrieve
the core S, as opposed to only compressed measurements like in
our approach. A similar randomized approach for computing the
MLSVD is introduced in Che et al. [15], with the difference that
the compression is carried out independently in different modes.
An overview of RTD algorithms for computing an MLSVD is
given in Ahmadi-Asl et al. [3, Section 5]. In Sidiropoulos et al.
[12], a CPD is computed by decomposing multiple randomly
compressed versions of the tensor in parallel and then combining
the results. The algorithm in Yang et al. [17] improves upon
this by replacing the dense random matrices with sketching
matrices in the compression step to reduce the computational
complexity. In Battaglino et al. [14], sketching matrices are used
to speed up the least squares subproblems in the alternating
least squares approach for computing the CPD. Multiplication
with a sketching matrix is a Johnson-Lindenstrauss Transform
(JLT), which transforms points in a high dimensional subspace
to a lower dimensional subspace while preserving the distance
between points up to a certain bound. In Jin et al. [18], it is
proven that applying a JLT along each mode of a tensor is
also a JLT. On the other hand, in cross approximation, CUR
decompositions and pseudo-skeleton decompositions, a tensor
is decomposed using a subset of directly sampled vectors along
each mode [6, 19–21]. These subsets are determined on the basis
of heuristics, for which algebraic results on the obtained quality
of the approximation are available [22].

In the next part of this section, we introduce notations and
definitions for further use in this paper. In Section 2, we propose

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 March 2022 | Volume 8 | Article 83288342

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

an algorithm for computing an MLSVD from a BRKS linear
system and derive conditions under which a solution can be
found. In Section 3, we generalize the standard approach for
computing a CPD, in which the tensor is first compressed
using its MLSVD, to computing a CPD from a BRKS linear
system. We also derive conditions under which the CPD can
be retrieved. In Section 4, we compute a TT from a BRKS
linear system and derive conditions under which the TT can
be retrieved. Finally, in Section 5, we validate our algorithms
by computing tensor decompositions in a randomized approach
using synthetic data and by applying them to a hyperspectral
imaging application.

1.1. Notations and Definitions
A scalar, vector, matrix and tensor are, respectively, denoted by
x, x,X andX. The dimensions of a tensorX ∈ R

I1×···×IN of order
N are denoted by In for n = 1, . . . ,N. The rank of a matrix X is
denoted by r (X). The identity matrix is denoted by II ∈ R

I×I .
A set and its complementary set are, respectively, denoted by
I and I

c. A matricization of a tensor is obtained by reshaping
the tensor into a matrix and is denoted by X[I;Ic], with I ⊂

{1, . . . ,N}. The sets I and I
c, respectively, indicate which modes

of the tensor are in the rows and columns of the matricization.
See Kolda [23] for a more detailed, elementwise definition of a
matricization. We use a shorthand notation for the matricization
that contains a single mode in its rows, also known as the mode-n
unfolding, namely

X[n] := X[n;1,...,n−1,n+1,...,N].

The mode-n, outer, Kronecker and Khatri–Rao product are
denoted by ·n, ⊗,⊗ and ⊙. The mixed product property of the
Kronecker product is (A⊗B) (C⊗D) = (AC)⊗ (BD), with
A ∈ R

I×J , B ∈ R
L×M , C ∈ R

J×K and D ∈ R
M×N .

Similarly, the mixed product property of the Khatri–Rao product
is (A⊗B) (C⊙D) = (AC)⊙ (BD). The rank of the Kronecker
product of matrices equals the product of the ranks of those
matrices, i.e., r (A⊗B) = r (A) r (B). A shorthand notation for
a sequence of products is:

N
⊗
n=1

U(n)
:= U(1)⊗ · · ·⊗U(N),

N
⊙
n=1

U(n)
:= U(1)⊙ · · ·⊙U(N).

The multilinear singular value decomposition (MLSVD)
decomposes a tensor as

X = S ·1 U
(1) · · · ·N U(N) =:

r
S;U(1), . . . ,U(N)

z
,

with column-wise orthonormal factor matrices U(n) ∈ R
In×Rn

for n = 1, . . . ,N and an all-orthogonal core tensor S ∈

R
R1×···×RN [24]. The tuple (R1, . . . ,RN) is the multilinear rank

of X, in which Rn = r
(
X[n]

)
for n = 1, . . . ,N. In vectorized

form, this decomposition equals

vec (X) =

(
N
⊗
n=1

U(n)

)
vec (S) . (2)

The canonical polyadic decomposition (CPD) decomposes a
tensor as a minimal sum of rank-1 tensors

X =

R∑

r=1

u(1)r
⊗ · · · ⊗ u(N)

r =:
r
U(1), . . . ,U(N)

z
,

with factor matricesU(n) ∈ R
In×R for n = 1, . . . ,N. The number

of rank-1 tensors R equals the rank of X. In vectorized form, the
CPD equals

vec (X) =

(
N
⊙
n=1

U(n)

)
1R

with 1R a vector of length R containing all ones. The tensor train
(TT) factorizes each entry ofX as a sequence of matrix products

xi1···iN = G
(1)
: i1 :

· · ·G
(N)
: iN :,

with G
(n)
: in :

∈ R
Rn−1×Rn for n = 1, . . . ,N and R0 = RN = 1

[25]. An index that has not been fixed is indicated by :, meaning

thatG
(n)
: i : is the ith mode-2 slice of a third-order tensor. The cores

of the TT are obtained by stacking G
(n)
: in :

for n = 2, . . . ,N − 1

and for n = 1,N into third-order tensors and matrices G(n) ∈

R
Rn−1×In×Rn , respectively. The tuple (R0, . . . ,RN) is the TT-rank

ofX. We use

X = LG(1), . . . ,G(N)M

as a shorthand notation for the TT.

2. COMPUTING AN MLSVD FROM A BRKS
LINEAR SYSTEM

Using a BRKS linear system avoids the need for constructing and
storing the full measurement matrix A and results in efficient
algorithms for retrieving a low-rank constrained x. With this
structure, Equation (1) becomes

⊗N
n=1 A

(1,n)

⊗N
n=1 A

(2,n)

...

⊗N
n=1 A

(M,n)

 vec (X) =

b(1)

b(2)

...

b(M)

 , (3)

with generating matrices A(m,n) ∈ R
Pmn×In and compressed

measurements b(m) ∈ R

∏N
n=1 Pmn for m = 1, . . . ,M and n =

1, . . . ,N. This type of linear system appears, for instance, in
RTD and hyperspectral imaging, as illustrated in Section 5. Each
block row of this linear system corresponds to a linear subsystem
that produces a compressed version of X. This can be seen by
tensorizing themth block row as

B(m) = X ·1 A
(m,1) · · · ·N A(m,N), (4)

in which B(m) is b(m) reshaped into a tensor of dimensions
Pm1 × · · · × PmN . Each mode of B(m) has been compressed by
mode-nmultiplication with A(m,n) for n = 1, . . . ,N.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 March 2022 | Volume 8 | Article 83288343

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

If X is approximately of low multilinear rank (R1, . . . ,RN),
reflecting some inherent structure, then the vectorized MLSVD
in Equation (2) can be substituted into Equation (3):

A

(
N
⊗
n=1

U(n)

)
vec (S) = b. (5)

Note that the factor matrices would be in the reverse order
when vectorizing conventionally, meaning ⊗1

n=N U(n). However,
by vectorizing like in Equation (5), the index n of the generating
matrices A(m,n) for m = 1, . . . ,M and n = 1, . . . ,N corresponds
nicely to the mode it operates on.

In order to solve the linear system in Equation (5) in
the underdetermined case, it will not be directly solved for(
⊗N

n=1 U
(n)
)
vec (S). Instead, the factor matrices U(n) for n =

1, . . . ,N will be retrieved individually using the linear subsystems

(
N
⊗
n=1

A(m,n)

)(
N
⊗
n=1

U(n)

)
vec (S) = b(m) form = 1, . . . ,M

(6)
in Equation (5). If the BRKS linear system consists of N
linear subsystems, then all factor matrices can be computed.
Therefore, we assume from this point on that M = N. The
case where M < N is of use when not all factor matrices need
to be retrieved. Next, the core tensor will be retrieved using
the computed factor matrices. The linear system in Equation
(6) is similar to the problem that is solved in KCS, namely
⊗N

n=1 A
(m,n),⊗N

n=1 U
(n) and vec (S), respectively, correspond to

the Kronecker-structured measurement matrix, the Kronecker-
structured sparsifying basis and the sparse coefficients. In CS,
choosing a good basis that sparsifies the data [8] and determining
the sparse coefficients of the data in this basis [1, 2] are separate
problems. In this paper, both problems are solved simultaneously
using one BRKS linear system. Furthermore, unlike in the CS-
setting, the coefficients vec (S) are not necessarily sparse. In the
remainder of this section, we discuss the methods for retrieving
the factor matrices and the core tensor.

2.1. Computing the Factor Matrices
Themth linear subsystem in Equation (6) can be simplified to

(
N
⊗
n=1

(
A(m,n)U(n)

))
vec (S) = b(m) form = 1, . . . ,N (7)

using the mixed product property of the Kronecker product.
This corresponds to a vectorized MLSVD with factor matrices
A(m,n)U(n) for n = 1, . . . ,N and core S. Rearranging Equation
(7) as the mode-mmatrix unfolding of this MLSVD

A(m,m)U(m)S(m) = B
(m)
[m] with (8)

S(m) =

∏

n6=m

S ·n

(
A(m,n)U(n)

)

[m]

form = 1, . . . ,N

= S[m]

(
⊗

n6=m

(
A(m,n)U(n)

))T

,

shows that solving the linear system

A(m,m)F(m) = B
(m)
[m] with F(m) = U(m)S(m) form = 1, . . . ,N

(9)
for the unknown matrix F(m) yields linear combinations of the
columns of U(m). Therefore, the dominant column space of
F(m) is the same as the subspace spanned by the columns of
U(m) if S(m) is of full column rank. This means that we can
find the column space of the mth factor matrix by computing
an orthonormal basis that spans the dominant column space
of F(m). In applications that allow the generating matrices to
be chosen, setting A(m,m) = IIm for m = 1, . . . ,N avoids
the need for solving this linear system altogether. In this case,
B(m) in Equation (4) equals X multiplied in every mode except
the mth with a generating matrix. This situation is similar to
RTD methods for computing an MLSVD, where the tensor is
compressed in all modes except themth in order to retrieve U(m)

[15, 16]. Generically, the dimensions Pmn, for m, n = 1, . . . ,N
and n 6= m, of the generating matrices can be chosen much
smaller than the rank Rn of the mode-n unfolding of X, as we
will further explain in Section 2.4. As a first indication, note that
for the factorization in the right-hand side of Equation (9), we
expect

∏
n6=m Pmn = Rm to be sufficient, allowing Pmn ≪ Rm for

m, n = 1, . . . ,N and n 6= m.

2.2. Computing the Core Tensor
In some applications, not only the factor matrices U(n) for n =

1, . . . ,N but also the core S are needed. At first sight, it looks
like a data efficient way to compute the core is reusing the linear
combinations with which the column space of the factor matrices
has been computed. The core tensor that corresponds to the
retrieved column spaces of the factor matrices is then obtained
by solving the linear system in Equation (5) for vec (S), with the
column space ofU(n) already available for n = 1, . . . ,N, which is

⊗N
n=1

(
A(1,n)U(n)

)

⊗N
n=1

(
A(2,n)U(n)

)

...

⊗N
n=1

(
A(N,n)U(n)

)

vec (S) = b. (10)

The core can be retrieved if the coefficient matrix of this
system is of full column rank. However, the requirement that
this coefficient matrix must be of full column rank imposes
much more severe constraints on the dimensions Pmn than the
constraints for computing the factor matrices in Section 2.4.
Under these harder constraints, the right hand sides b(n) would
have to contain far more compressedmeasurements than actually
needed to retrieve the nth factor matrix U(n) for n = 1, . . . ,N.
The reason is that in the coefficient matrix in Equation (10) there
are many linear dependencies between the rows, because the
same factor matrices U(n) appear in each block row. Therefore,
it is not practical to compute the core by solving the system in
Equation (10) for vec (S).

Instead, the core can be computed by solving a separate linear
system, independent from the N block rows of the BRKS system

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 March 2022 | Volume 8 | Article 83288344

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

used for computing the factor matrices, for vec (S), namely

(
N
⊗
n=1

(
C(n)U(n)

))
vec (S) = d (11)

with extra generating matrices C(n) ∈ R
Qn×In for n = 1, . . . ,N

and compressed measurements d ∈ R

∏N
n=1 Qn . This approach

allows us to choose the dimensions Qn for n = 1, . . . ,N such
that the core can be retrieved, without the need to increase
the dimensions Pmn for m, n = 1, . . . ,N. Additionally, this
additional system can be solved efficiently by subsequently
solving smaller linear systems

(
C(n)U(n)

)
S̃
(n)
new = S̃

(n)
for n = 1, . . . ,N (12)

for S̃
(n)
new. Here, S̃

(1)
= D[1], in which D[1] is the mode-1 matrix

unfolding of the tensorization D ∈ R
Q1×···×QN of d, and S̃

(n)
=

reshape
(
S̃
(n−1)
new , [Qn,

∏n−1
i=1 Ri

∏N
i=n+1 Qi]

)
for n = 2, . . . ,N.

After solving all N systems, S̃
(N)
new is the mode-N matrix unfolding

of S. These linear systems, with coefficient matrices of size Qn ×

Rn for n = 1, . . . ,N, are much smaller than the linear system in
Equation (10), consisting of all compressed measurements used
to estimate the factor matrices, with a coefficient matrix of size∑N

m=1

(∏N
n=1 Pmn

)
×
∏N

n=1 Rn. This coefficient matrix is so large

because of the Kronecker products. In Section 2.4, we show that
generically the core can be retrieved if the dimensions Qn are
greater than or equal to Rn for n = 1, . . . ,N. Therefore, solving
the subsequent systems in Equation (12) is a computationally
much cheaper approach for computingS than solving the system
in Equation (10) is. This additional linear system can be added
to the BRKS linear system in Equation (3) by renaming C(n)

for n = 1, . . . ,N and d to A(N+1,n) and b(N+1), respectively.
The complete BRKS linear system now consists of N + 1 block
rows with generating matrices A(m,n) ∈ R

Pmn×In and compressed

measurements b(m) ∈ R

∏N
n=1 Pmn for m = 1, . . . ,N + 1 and for

n = 1, . . . ,N.
If we estimate the core tensor using a separate linear system,

we do not use all available compressed measurements, since we
disregard the first N block rows of the BRKS linear system. This
can be resolved by solving the full BRKS linear system for vec (S)

with a numerical algorithm such as conjugate gradients, using the
matrix-vector product

⊗N
n=1

(
A(1,n)U(n)

)

...

⊗N
n=1

(
A(N+1,n)U(n)

)

 vec (S) ,

which can be computed efficiently by exploiting the block
rowwise Kronecker structure. Alternatively, all block rows of
the system can also be used if the full BRKS system is solved
for a sparse core S, which we will illustrate in an experiment
in Section 5.

Algorithm 1: MLSVD from a BRKS linear system
(lsmlsvd_brks).

Input: (CS-setting) A(m,n), b(m) for
m = 1, . . . ,N + 1; n = 1, . . . ,N

Input: (RTD-setting) A(m,n) for
m = 1, . . . ,N + 1; n = 1, . . . ,N andX

Output: S, U(m) for m = 1, . . . ,N
begin

if RTD-setting then

Compute b(m) for m = 1, . . . ,N using Equation (3)
/* Estimate factor matrices */
form = 1 to N do

Solve A(m,m)F(m) = B
(m)
[m] for F

(m)

Find U(m) by computing an orthonormal basis that
spans the dominant column space of F(m)

/* Estimate core tensor */

S̃ = reshape
(
b(N+1), [PN+1,1,

∏N
i=2 PN+1,i]

)

for n = 1 to N do

Solve
(
A(N+1,n)U(n)

)
S̃new = S̃ for S̃new

S̃ = reshape
(
S̃new, [PN+1,n,

∏n−1
i=1 Ri

∏N
i=n+1 PN+1,i]

)

2.3. Algorithm
By combining the steps in Sections 2.1 and 2.2, we obtain
Algorithm 1 for computing theMLSVD ofX from a BRKS linear
system. In the outlined version of the algorithm, the additional
linear system in Equation (11) is used to estimate the core tensor.
The computation of each factor matrix depends only on one
compressed tensorB(m) for m = 1, . . . ,N, allowing the different
factor matrices to be computed in parallel. In the RTD-setting,
the full tensor is available and is then randomly compressed
in order to efficiently compute a tensor decomposition. On the
other hand, compressed measurements can be obtained directly
in the data acquisition stage in the CS-setting. To accommodate
for both settings, Algorithm 1 accepts either the generating
matrices and the compressed measurements or the generating
matrices and the full tensor as inputs.

2.4. Conditions for MLSVD Retrieval
In this section, we derive the conditions in Theorem 1, under
which the retrieval of the MLSVD of X from a BRKS system is
guaranteed. Since the factor matrices and the core are intrinsic
to the data X, the conditions in this section are to be seen as
constraints on the generating matrices.

Theorem 1. Consider a tensor X ∈ R
I1×···×IN of multilinear

rank (R1, . . . ,RN), admitting an MLSVD
r
S;U(1), . . . ,U(N)

z

with factor matrices U(n) ∈ R
In×Rn for n = 1, . . . ,N and core

tensor S ∈ R
R1×···×RN . Given linear combinations b of vec (X)

obtained from a BRKS linear system with generating matrices
A(m,n) ∈ R

Pmn×In for m = 1, . . . ,N + 1 and n = 1, . . . ,N,
the factor matrices U(n) for n = 1, . . . ,N can be retrieved if and

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 March 2022 | Volume 8 | Article 83288345

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

only if

1) r
(
A(m,m)

)
= Im form = 1, . . . ,N;

2)

N∏

n6=m

r
(
A(m,n)U(n)

)
≥ Rm form = 1, . . . ,N.

The core S can be retrieved if and only if

3)

N∏

n=1

r
(
A(N+1,n)U(n)

)
=

N∏

n=1

Rn.

Proof: Condition 1): The linear system in Equation (9) can be
uniquely solved for F(m) if and only if A(m,m) is of full column
rank Im for m = 1, . . . ,N.
Condition 2): An orthonormal basis of dimension Rm for the
column space of F(m) can be retrieved if and only if

r
(
U(m)S(m)

)
= r

(
U(m)S[m]

(
⊗

n6=m

(
A(m,n)U(n)

)))

= Rm form = 1, . . . ,N

holds. Since r
(
U(m)

)
= r

(
S[m]

)
= Rm, which follows from the

definition of the MLSVD, this condition reduces to

r

(
⊗

n6=m

(
A(m,n)U(n)

))
=

N∏

n6=m

r
(
A(m,n)U(n)

)

≥ Rm form = 1, . . . ,N.

Condition 3): The linear system in Equation (11) can be
uniquely solved for vec (S) if and only if the coefficient matrix

⊗N
n=1

(
A(N+1,n)U(n)

)
is of full column rank:

r

(
N
⊗
n=1

A(N+1,n)U(n)

)
=

N∏

n=1

r
(
A(N+1,n)U(n)

)
=

N∏

n=1

Rn.

The conditions in Theorem 1 are satisfied in the generic case, in
which the generating matrices are sampled from a continuous
probability distribution and thus are of full rank with probability
1, if and only if the conditions in Theorem 2 hold. The conditions
in the latter theorem allow us to determine the dimensions Pmn

for m = 1, . . . ,N+1 and n = 1, . . . ,N of the generatingmatrices
such that generically the MLSVD ofX can be retrieved.

Theorem 2. With generic generating matrices A(m,n) for m =

1, . . . ,N + 1 and n = 1, . . . ,N, the conditions in Theorem 1 hold
if and only if

1) Pmm ≥ Im form = 1, . . . ,N;

2)
∏

n6=m

min (Pmn,Rn) ≥ Rm form = 1, . . . ,N;

3) PN+1,n ≥ Rn for n = 1, . . . ,N.

Proof: The proof of these conditions follows from the conditions
in Theorem 1 and the properties of generic matrices.
Condition 1): Since a generic matrix is of full rank,

r
(
A(m,m)

)
= min(Pmm, Im) for m = 1, . . . ,N.

Condition 2): The matrix product A(m,n)U(n) is of full rank
min (Pmn,Rn) with probability 1 for a generic matrix A(m,n) and
U(n) of full column rank (the latter following from the definition
of an MLSVD) with Pmn,Rn ≤ In for m = 1, . . . ,N + 1 and
n = 1, . . . ,N [10, Lemma 1].
Condition 3): Similar to the proof of condition 2),

generically r
(
A(N+1,n)U(n)

)
= min

(
PN+1,n,Rn

)
for

n = 1, . . . ,N according to Sidiropoulos and Kyrillidis [10,
Lemma 1]. Condition 3) in Theorem 1 then reduces to∏N

n=1min(PN+1,n,Rn) ≥
∏N

n=1 Rn, which holds if and only if
condition 3) in this theorem is satisfied.

In practice, the dimensions Pmn can easily be chosen such
that the second generic condition is satisfied with Pmn < Rn
for m, n = 1, . . . ,N and n 6= m. The second condition then
reduces to

∏N
n6=m Pmn ≥ Rm for m = 1, . . . ,N. Assuming that

Pmn for m = 1, . . . ,N and n 6= m are approximately equally
large, we obtain the condition Pmn ≥ N−1

√
Rm, meaning that the

generating matrices A(m,n) ∈ R
Pmn×In for m, n = 1, . . . ,N and

n 6= m can be chosen as fat matrices. Therefore, the mth block
row of Equation (3) compresses all modes of X except the mth,
as illustrated in Figure 1, similar to an RTD algorithm for the

MLSVD. Additionally, this implies that B
(m)
[m] ∈ R

Pmm×
∏

n6=m Pmn

holds at least Rm columns, which is indeed the minimum
required number for estimating the Rm-dimensional mode-m
subspace of X. Algorithm 1 uses an oversampling factor q ≥ 1
such that this matrix holds more than the minimum required
number of columns, namely

∏
n6=m Pmn = qRm columns for

m = 1, . . . ,N. These additional compressed measurements allow
a better estimation of the factor matrices if the data is noisy.

2.5. Noisy Data
In applications, noise can be present on the compressed
measurements and/or on the entries of the tensor. In the former

,

,

FIGURE 1 | Similar to the RTD algorithm in Che et al. [15], we recover the first

MLSVD factor matrix from B
(1), which is a version of X that is compressed in

every mode except the first.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 March 2022 | Volume 8 | Article 83288346

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

case, the linear system becomes Avec (X) = b + n, in which
the noise vector n is partitioned into subvectors n(m) for m =

1, . . . ,N, consistent with the partitioning of b in Equation (3).
The linear system in Equation (8), with a noise term n, becomes

A(m,m)F(m) = B
(m)
[m] + N

(m)
[m] form = 1, . . . ,N,

in which N(m) ∈ R
Pm1×···×PmN is the tensor representation of

n(m) and N
(m)
[m] its mode-m matrix unfolding. The rank of the

matrix, obtained by solving this subsystem for F(m), generically

equals min
(
Im,
∏N

n6=m Pmn

)
due to the presence of the noise and

thus exceeds Rm if q > 1 for m = 1, . . . ,N. If the signal-to-noise

ratio ||b||2
||n||2 is sufficiently high, then the dominant column space of

F(m) is nevertheless expected to be a good approximation for the
column space of U(m). A basis for this dominant column space
can be computed with the singular value decomposition (SVD)
and the approximation is optimal in least squares sense if n(m) is
white Gaussian noise.

In the case of noisy tensor entries, the linear system becomes
Avec (X+N) = b, with N ∈ R

I1×···×IN . In contrast with the
former case, the coefficient matrix now also operates on the noise.
Equation (8) then becomes

A(m,m)
(
F(m) + N(m)

)
= B

(m)
[m] with

N(m) =

∏

n6=m

(
N ·i A

(m,n)
)

[m]

form = 1, . . . ,N.

Because of the noise, the rank of F(m) + N(m) generically exceeds
Rm for m = 1, . . . ,N. The least squares optimal approximation
of the column space ofU(m) can again be retrieved using the SVD

if
(
⊗N

n=1 A
(m,n)

)
vec (N) is white Gaussian noise. As derived

in Sidiropoulos et al. [12], this holds true if vec (N) is white

Gaussian noise and A(m,n)A(m,n)T = IPmn for m, n = 1, . . . ,N.
The latter condition is approximately satisfied for large tensor
dimensions if the generating matrices are sampled from a zero-
mean uncorrelated distribution.

3. COMPUTING AN ORTHOGONALLY
COMPRESSED CPD FROM A BRKS
LINEAR SYSTEM

Since the core of the MLSVD of an Nth order tensor is also an
Nth order tensor, the MLSVD suffers from the CoD. On the
contrary, the number of parameters of the CPD scales linearly
with the order of the tensor. Additionally, the CPD is unique
under mild conditions. For applications that are more suited to
these properties, such as blind signal separation, we introduce an
algorithm for computing a CPD from a BRKS linear system in
this section. An efficient, three-step approach for computing the
CPD of a tensor is: 1) compressing the tensor, 2) decomposing
the compressed tensor and 3) expanding the factor matrices to
the original dimensions. In Bro and Andersson [9], the tensor is

orthogonally compressed using the factor matrices of its MLSVD,
i.e., the orthogonally compressed tensor corresponds to the core
tensor of the MLSVD. In this section, we generalize this popular
approach to computing a CPD from the BRKS linear system
in Equation (3). Following this approach, we can find the CPD
of a large tensor of order N by computing the CPDs of N
small tensors.

3.1. Computing the Factor Matrices
IfX is approximately of rank R, it admits a CPD

X =
r
W(1), . . . ,W(N)

z
(13)

with W(n) ∈ R
In×R for n = 1, . . . ,N. Since the dimension of

the subspace spanned by the mode-n vectors of X is at most of
dimension R for n = 1, . . . ,N, as X is of rank R, X also admits
an MLSVD

X =
r
S;U(1), . . . ,U(N)

z
(14)

with U(n) ∈ R
In×R for n = 1, . . . ,N and S ∈ R

R×···×R. Note
that the rank Rn of the mode-n vectors of X can be smaller
than R for any n = 1, . . . ,N, namely when W(n) is not of full
column rank. In this case, an orthogonal compressionmatrixU(n)

of dimensions In × Rn can still be used. Equation (13) and (14)
together imply that the core tensor S admits the following CPD:

S =
r
U(1)TW(1), . . . ,U(N)TW(N)

z
=

r
V(1), . . . ,V (N)

z
. (15)

Alternatively, the CPD ofX can be written as

X =
r
U(1)V(1), . . . ,U(N)V(N)

z

by substituting Equation (15) into Equation (14). This CPD can
be substituted for S in the BRKS system in Equation (3). Using
the mixed product property of the Khatri–Rao product, the mth
block row of the BRKS system becomes

(
N
⊙
n=1

(
A(m,n)U(n)V(n)

))
1R = b(m) form = 1, . . . ,N.

Tensorizing this equation yields a polyadic decomposition (PD)
expression for each block row of the BRKS system:

r
A(m,1)U(1)V(1), . . . ,A(m,N)U(N)V(N)

z
= B(m) form = 1, . . . ,N.

(Note that, since the number of rank-1 terms in this PD is
not necessarily minimal, it is a priori not necessarily canonical.
However, we will assume further on that the m-th factor matrix

in the PD of B̃
(m)

is unique for m = 1, . . . ,N. As that implies
that a decomposition in fewer terms is impossible, the PDs are
CPDs by our assumption). After solving Equation (9) for F(m)

and estimating U(m) for m = 1, . . . ,N as described in Section
2.1, the tensorization F(m) ∈ R

Pm1×···×Im×···×PmN of F(m) is
orthogonally compressed

B̃
(m)

= F(m)
·m U(m)T

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 March 2022 | Volume 8 | Article 83288347

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

=
r
A(m,1)U(1)V(1), . . . ,V(m), . . . ,A(m,N)U(N)V(N)

z

form = 1, . . . ,N. (16)

The CPD of the compressed tensor B̃
(m)

shares the factor matrix
V(m) with the CPD of the core tensor S. The factor matrices V(n)

for n = 1, . . . ,N of the CPD of the core can thus be found by
computing the CPD of each compressed tensor if the mth factor

matrix of the CPD of B̃
(m)

is unique for m = 1, . . . ,N. If the
CPD of the full tensorX is also unique, its factor matrices can be
retrieved by expanding the factor matrices W(n) = U(n)V(n) for
n = 1, . . . ,N. Since a CPD can only be unique up to the factor
scaling and permutation indeterminacies and each factor matrix
V(n) for n = 1, . . . ,N is retrieved from a different compressed
tensor, the indeterminacies must be addressed. To this end, the

fact that the N tensors B̃
(m)

all have the same CPD, up to the
(known) compression matrices A(m,n) for m, n = 1, . . . ,N, can
be exploited.

3.2. Algorithm
The steps in Section 3.1 mimic the popular approach in Bro and
Andersson [9] for computing the CPD of a fully given tensor,
which is: 1) compute the MLSVD of X, 2) compute the CPD of
the core S and 3) expand the factor matrices W(n) = U(n)V(n)

for n = 1, . . . ,N. The corresponding steps in the approach
in this paper are: 1) compute the MLSVD factor matrices U(n)

for n = 1, . . . ,N and orthogonally compress the tensors F(m)

for m = 1, . . . ,N, 2) compute the CPD of the compressed
tensors and 3) expand the factor matrices W(n) = U(n)V(n)

for n = 1, . . . ,N. Instead of computing the CPD of a core
tensor of dimensions R × · · · × R, this approach computes the
CPD of the N tensors in Equation (16) which are of dimensions
Pm1 × · · · × Pm,m−1 × R × Pm,m+1 × · · · × Pm,N for m =

1, . . . ,N. As will be shown in Section 3.3, these tensors can be
far smaller than the core tensor. Algorithm 2 outlines all steps
needed to compute a CPD with orthogonal compression from a
BRKS linear system. All steps of this algorithm can be computed
in parallel. LikeAlgorithm 1,Algorithm 2 accomodates both the
RTD- and CS-setting.

Instead of computing the CPDs of the tensors B̃
(m)

for m =

1, . . . ,N separately, they can also be computed simultaneously
as a set of coupled CPDs. These CPDs are coupled since their
factor matrices all depend linearly, with coefficients A(m,n)U(n),
on the same factors V(n) for m, n = 1, . . . ,N with n 6= m. This
set of coupled CPDs can be computed in Tensorlab [26] through
structured data fusion [27].

3.3. Conditions for CPD Retrieval
In this section, we derive conditions for the identifiability of the
CPD ofX from a BRKS system. The CPD can be identified if the
conditions in Theorem 3 hold. In Domanov and De Lathauwer
[28], conditions are provided to guarantee that one factor matrix
of the CPD is unique.

Theorem 3. Consider a tensor X ∈ R
I1×···×IN of rank R,

admitting a CPD
r
W(1), . . . ,W(N)

z
with factor matrices W(n) ∈

Algorithm 2: Orthogonally compressed CPD from a BRKS
linear system (lscpd_brks).

Input: (CS-setting) A(m,n), b(m) form, n = 1, . . . ,N
Input: (RTD-setting) A(m,n) form, n = 1, . . . ,N andX

Output:W(m) for m = 1, . . . ,N
begin

if RTD-setting then

Compute b(m) for m = 1, . . . ,N using Equation (3)
form = 1 to N do

Solve A(m,m)F(m) = B
(m)
[m] for F

(m)

Find U(m) by computing an orthonormal basis that
spans the dominant column space of F(m)

Orthogonally compress B̃
(m)

= F(m)
·m U(m)T

Compute the CPD of B̃
(m)

and set V(m) equal to the
mth factor matrix
Scale and permute V(m) = D(m)−1

P(m)TV(m) to fix
CPD indeterminacies
ExpandW(m) = U(m)V(m)

R
In×R for n = 1, . . . ,N. Given linear combinations b of vec (X),

obtained from a BRKS linear system with generating matrices
A(m,n) ∈ R

Pmn×In for m, n = 1, . . . ,N, the factor matrices W(n)

for n = 1, . . . ,N can be retrieved if

1) r
(
A(m,m)

)
= Im form = 1, . . . ,N;

2)

N∏

n6=m

r
(
A(m,n)U(n)

)
≥ R form = 1, . . . ,N;

3) Themth factor matrix of B̃
(m)

is unique for m = 1, . . . ,N;

4) The CPD ofX is unique.

Proof: Conditions 1) and 2): For the compression matrices U(n)

for n = 1, . . . ,N, the factor matrices of the MLSVD of X must
be retrievable. These conditions are the same as the first two
conditions in Theorem 1.
Condition 3): The CPD of the compressed tensor B̃

(m)
for m =

1, . . . ,N in Equation (16) shares the mth factor matrix with the
core of the MLSVD of X if the mth factor matrix is unique for
m = 1, . . . ,N.
Condition 4): While condition 3) ensures that the factor matrices
W(n) for n = 1, . . . ,N are unique, condition 4) is needed to
ensure that there is only one set of rank-1 tensors, consisting of
the columns of W(n) for n = 1, . . . ,N, that forms a CPD of X,
i.e., to exclude different ways of pairing.

In the generic case, in which the generating matrices and
the factor matrices of the CPD are sampled from a continuous
probability distribution, the CPD of X can be identified if the
conditions in Theorem 4 hold. Here we used a generic condition

to prove the uniqueness of the full CPD of B̃
(m)

for m =

1, . . . ,N, which a fortiori guarantees the uniqueness of its mth

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 March 2022 | Volume 8 | Article 83288348

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

factor matrix. The conditions in Theorem 4 can be used to
determine the dimensions of the generating matrices that are
generically required for the identifiability of the CPD ofX.

Theorem 4. With generic generating matrices A(m,n) for m, n =

1, . . . ,N, the conditions in Theorem 3 hold if

1) Pmm ≥ Im form = 1, . . . ,N;

2)

N∏

n6=m

min (Pmn,R) ≥ R form = 1, . . . ,N;

3) Im ≥ R form = 1, . . . ,N;

4)
{
∃N ⊂ {[1, . . . ,N] \m} :min (J2, J3) ≥ 3

and (J2 − 1)(J3 − 1) ≥ R
}

form = 1, . . . ,N

with J2 =
∏

n∈N

Pmn and J3 =
∏

n∈N
c

Pmn

Proof: Conditions 1) and 2): These conditions are the same as the
first two conditions in Theorem 2.
Condition 3) and 4): The mth factor matrix of B̃

(m)
is unique

for m = 1, . . . ,N if the CPD of these tensors is unique. The

Nth order tensor B̃
(m)

can be reshaped to a third-order tensor
Y ∈ R

J1×J2×J3 , with J1 = Im, J2 =
∏

n∈N Pmn, J3 =
∏

n∈N
c Pmn

and N ⊂ {[1, . . . ,N] \m}, of which the first mode corresponds

to the uncompressed mth mode of B̃
(m)

. The second and third
mode, respectively, correspond to a subset N of the remaining
N − 1 modes and its complementary subsetNc. The rank R CPD

of B̃
(m)

is unique if there exists a subset N such that the rank R
CPD of the reshaped third-order tensorY is unique. Generically,
a third-order tensor Y ∈ R

J1×J2×J3 of rank R is unique if J1 ≥ R,
min (J2, J3) ≥ 3 and (J2 − 1)(J3 − 1) ≥ R [29]. Condition 3)
guarantees that the former condition is satisfied and condition

4) guarantees that the latter two conditions are satisfied for B̃
(m)

for m = 1, . . . ,N. Additionally, condition 3) guarantees generic
uniqueness of the CPD ofX since for each reshaped, third-order
version ofX, all dimensions exceed R [30, Theorem 3].

As explained in Section 2.4, the second condition in Theorem
4 implies that Pmn ≥

N−1
√
R if the values Pmn are approximately

equally large for m, n = 1, . . . ,N and n 6= m. Similarly, the
fourth condition in Theorem 4 implies that

Pmn ≥
N−1

√(
1+

√
R
)2

form, n = 1, . . . ,N and n 6= m.

(Note that this bound is derived for tensors of uneven order N.
The bound for tensors of even order is similar, but does not have a
simple expression). The latter constraint poses only slightly more
restrictive bounds than the former, meaning that the dimensions
Pmn for m, n = 1, . . . ,N and n 6= m can still be chosen such
that they are much smaller than R. In real applications, tensor
dimensions often exceed the tensor rank, satisfying the third
condition in Theorem 4.

Remark: Note that the rank of a tensor can exceed some of
its dimensions, in which case Theorem 4 cannot be satisfied.
This can be resolved by using a different uniqueness condition to

guarantee the uniqueness of the CPDs of B̃
(m)

for m = 1, . . . ,N,
such as the generic version of Kruskal’s condition [31]. However,
using this condition also results in stricter bounds on Pmn for
m, n = 1, . . . ,N and n 6= m.

4. COMPUTING A TT FROM A BRKS
LINEAR SYSTEM

Since the TT also does not suffer from the CoD, we derive an
algorithm for computing a TT from a BRKS linear system in
this section. The TT-SVD algorithm in Oseledets [25] computes
the cores using sequential SVDs. Unlike in TT-SVD, for a BRKS
linear system the SVDs can be computed in parallel by processing
the compressed tensors B(m) for m = 1, . . . ,N ofX separately.

4.1. Computing the TT Cores
If X is approximately of TT-rank (R0, . . . ,RN), it admits a TT
LG(1), . . . ,G(N)M with cores G(n) ∈ R

Rn−1×In×Rn for n = 1, . . . ,N.
Substituting this TT for X into the BRKS linear system in
Equation (3) leads to

Avec
(
LG(1), . . . ,G(N)M

)
= b.

It follows that the tensorized mth block row of this BRKS
system corresponds to the TT ofX transformed through mode-n
multiplication with the generating matrices A(m,n):

B(m) = LH(m,1), . . . ,H(m,N)M

with H(m,n) = G(n)
·2 A

(m,n) for n = 1, . . . ,N. Rearranging this
transformed TT into its mode-m unfolding leads to

A(m,m)
(
LH(m,1), . . . ,H(m,m−1),G(m),H(m,m+1), . . . ,H(m,N)M

)
[m]

= B
(m)
[m].

This unfolding corresponds to a linear system

A(m,m)B̃
(m)
[m] = B

(m)
[m] (17)

that can be solved for B̃
(m)
[m]. The tensor B̃

(m)
is a transformed TT

of X that shares the mth core G(m) with the TT of the full tensor
X. Following the definition of a TT, this core can be retrieved
from the column space of the following matrix unfolding

B̃
(m)
[1,...,m;m+1,...,N] =

(
LH(m,1), . . . ,H(m,m−1),G(m)M

)T
[m+1]

(
LH(m,m+1), . . . ,H(m,N)M

)
[1]

. (18)

(W.r.t. the matricization, note that while
LH(m,1), . . . ,H(m,m−1),G(m)M consists of m cores, it is a
tensor of order m + 1 since Rm is not necessarily equal to one).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 March 2022 | Volume 8 | Article 83288349

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

First, we retrieve G(1) by computing an orthonormal basis of
dimension R1 for the dominant column space of the matrix
unfolding in Equation (18) for m = 1. For m = 2, . . . ,N, the
column space of this unfolding also involves the preceding cores
H(m,1), . . . ,H(m,m−1). If the cores are computed in order, then
these preceding cores are known and can be compensated for by
subsequently solving smaller linear systems

H
(m,n)
[1,2;3]B

(n)
new = B(n) for n = 1, . . . ,m− 1, (19)

for B
(n)
new, with B(1) = B̃

(m)
[1] and B(n) =

reshape
(
B
(n−1)
new , [Rn−1Pmn, Im

∏N
k=n+1 Pmk]

)
for n = 2, . . . ,m−

1. After solving these systems, G(m) is retrieved by computing
an orthonormal basis of dimension Rm for the dominant

column space of reshape
(
B
(n)
new, [Rm−1Im,

∏N
k=m+1 Pmk]

)
for

m = 1, . . . ,N.
Alternatively, we can immediately compute an orthonormal

basis of dimension Rm for the dominant column space of the
matrix unfolding in Equation (18) for m = 1, . . . ,N, without
compensating for preceding cores first. Computing these bases
is more expensive, since they are obtained from a larger matrix
than in the case where the preceding cores have already been
compensated for. On the other hand, the orthonormal bases
can be computed in parallel, as there is no dependency on any
preceding core. If after the orthonormal bases have been found,
also the cores of the TT are desired, compensation of preceding
cores can be done in a similar manner as described above, namely
by subsequently solving linear systems. These linear systems have
the same coefficient matrix as the linear systems in Equation (19).

4.2. Algorithm
Algorithm 3 outlines all steps needed to compute a TT
from a BRKS linear system for the approach in which the
orthonormal bases are computed first and the preceding cores
are compensated for second. Note that only N − 1 SVDs need
to be computed, just like in the standard TT-SVD algorithm,
in which the final SVD reveals both cores N − 1 and N. Like
Algorithm 1 and 2, Algorithm 3 also accommodates both the
RTD- and CS-setting.

Remark: When computing the mth core in Algorithm 3, the

m− 1 preceding compressed coresH(m,1), . . . ,H(m,m−1) in B̃
(m)

are compensated for from left to right, i.e., for m = 1, . . . , n− 1.

If B̃
(m)

is unfolded in reverse, i.e.,

B̃
(m)
[N,...,m;m−1,...,1] =

(
LH(m,N), . . . ,H(m,m+1),G(m)M

)T
[N−m+2]

(
LH(m,m−1), . . . ,H(m,1)M

)
[1]

, (20)

then the column space of the unfolding contains, besides G(m),
the N − m next compressed cores H(m,N), . . . ,H(m,m+1). This
way, it is possible to compute the mth core by compensating
for these next compressed cores from right to left, i.e.,
H(m,N), . . . ,H(m,m+1). The efficiency of Algorithm 3 can be
improved by computing the first half of the cores using the
unfolding in Equation (18) and compensating for the preceding

Algorithm 3: TT from a BRKS linear system (lstt_brks).

Input: (CS-setting) A(m,n), b(m) form, n = 1, . . . ,N
Input: (RTD-setting) A(m,n) form, n = 1, . . . ,N andX

Output: G(m) for m = 1, . . . ,N
begin

if RTD-setting then

Compute b(m) for m = 1, . . . ,N using Equation (3)
form = 1 to N do

Solve A(m,m)B̃
(m)
[m] = B

(m)
[m] for B̃

(m)
[m]

Estimate G̃
(m)

as an orthonormal basis for the
dominant column space of B̃

(m)
[1,...,m;m+1,...,N]

for n = 1 tom− 1 do

Reshape G̃
(m)

to dimensions
Rn−1Pmn × Pm,n+1 · · · Pm,m−1ImRm

Solve the systemH
(m,n)
[1,2;3]Gnew = G̃

(m)
for Gnew

Set G̃
(m)

= Gnew

G(m) = reshape
(
G̃
(m)

, [Rm−1, Im,Rm]
)

cores from left to right, and the second half of the cores using
the unfolding in Equation (20) and compensating for the next
cores from right to left. This halves the number of cores that
need to be compensated for compared to Algorithm 3, in which
cores are only compensated for from left to right to simplify
the pseudocode.

4.3. Conditions for TT Retrieval
In this section, we derive the conditions in Theorem 5, under
which retrieval of the TT ofX from a BRKS system is guaranteed.
The compensation for preceding cores occurs in both approaches
for computing the TT in Section 4.1. Therefore, the linear
systems that are solved to compensate for them must have
a unique solution. Since these linear systems have the same
coefficient matrices in both approaches, the condition under
which they have a unique solution is the same, regardless of the
chosen approach.

Theorem 5. Consider a tensor X ∈ R
I1×···×IN of TT-rank

(R0, . . . ,RN), admitting a TT LG(1), . . . ,G(N)M with cores G(n) ∈

R
Rn−1×In×Rn for n = 1, . . . ,N. Given linear combinations b

of vec (X), obtained from a BRKS linear system with generating
matrices A(m,n) ∈ R

Pmn×In for m, n = 1, . . . ,N, the cores G(n) for
n = 1, . . . ,N can be retrieved if and only if

1) r
(
A(m,m)

)
= Im form = 1, . . . ,N;

2) r
(
B̃
(m)
[1,...,m;m+1,...,N]

)
= Rm form = 1, . . . ,N;

3) r
(
H

(m,n)
[1,2;3]

)
= Rn form = 1, . . . ,N and n = 1, . . . ,m− 1.

Proof: Condition 1): The linear system in Equation (17) can be

uniquely solved for B̃
(m)
[m] if and only if A(m,m) is of full column

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 March 2022 | Volume 8 | Article 83288350

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

rank Im for m = 1, . . . ,N.
Condition 2): An orthonormal basis of dimension Rm for the

column space of the matricization B̃
(m)
[1,...,m;m+1,...,N] in Equation

(18) can be retrieved if and only if the rank of this matricization
equals Rm.

Condition 3): The linear systems that are solved to
compensate for compressed cores have a unique solution if and
only if

r
(
H

(m,n)
[1,2;3]

)
= Rn form = 1, . . . ,N and n = 1, . . . ,m− 1

holds.

In the generic case, in which the generating matrices are
sampled from a continuous probability distribution, the TT
of X can be retrieved if the conditions in Theorem 6 hold.
These conditions can be used to determine the dimensions of
the generating matrices such that the TT of X can generically
be retrieved.

Theorem 6. With generic generating matrices A(m,n) for m, n =

1, . . . ,N, the conditions in Theorem 1 hold if and only if

1) Pmm ≥ Im form = 1, . . . ,N;

2) Pmn ≥
Rm

Rn−1Im
∏m−1

k=n+1 Pmk

form = 1, . . . ,N and n = 1, . . . , n− 1;

3) Pmn ≥
Rm

Rn
∏n−1

k=m+1 Pmk

form = 1, . . . ,N and n = m+ 1, . . . ,N;

4) Pmn ≥
Rn

Rn−1
form = 1, . . . ,N and n = 1, . . . ,m− 1.

Proof: Condition 1): This condition is the same as condition 1)
in Theorem 2.
Condition 2): The matricization B̃

(m)
[1,...,m;m+1,...,N] in Equation

(18) equals

B̃
(m)
[1,...,m;m+1,...,N] =

(
G
(m)
[3]

(
H
(m,m−1)
[3]

(
· · ·H

(m,2)
[3]

(
H
(m,1)
[3] ⊗ IPm2

)
· · · ⊗ IPm,m−1

)
⊗ IIm

))T

(
H
(m,m+1)
[1]

(
IPm,m+1 ⊗ · · ·H

(m,N−1)
[1]

(
IPm,N−1 ⊗H

(m,N)
[1]

)))
=: DTE.

(21)

Generically, the rank of B̃
(m)
[1,...,m;m+1,...,N] equals Rm if and only

if the rank of both D and E equals Rm. Condition 2) relates

to D and condition 3) to E. Since G
(m)
[3] is of full rank, which

follows from the definition of a TT, and H
(m,n)
[3] for n 6= m is

generically of full rank, each matrix product in Equation (21)
is also of full rank [10, Lemma 1]. Therefore, the rank of D
generically equals

min

(
r
(
G
(m)
[3]

)
, min

(
r
(
H

(m,m−1)
[3]

)
, . . . ,

min
(
r
(
H

(m,2)
[3]

)
, r
(
H

(m,1)
[3]

)
Pm2

)
Pm3 · · · Pm,m−1

)
Im

)
.

Both arguments of the leftmost min(·) must at least equal Rm
such that r (D) ≥ Rm holds. Following the definition of a

TT, this always holds true for the first argument r
(
G
(m)
[3]

)
. The

second argument is min(·)Im, so both arguments of this second

min(·) must at least equal Rm
Im

. Generically r
(
H

(m,m−1)
[3]

)
=

min(Pm,m−1Rm−2,Rm−1), leading to the conditions Pm,m−1 ≥
Rm

Rm−2Im
and Rm−1Im ≥ Rm. The latter condition is satisfied by the

definition of a TT. Repeating the same steps for each subsequent
min(·) leads to the conditions

Pmn ≥
Rm

Rn−1Im
∏m−1

k=n+1 Pmk

form = 1, . . . ,N and n = 1, . . . ,m− 1.

Condition 3): In a similar fashion, it can be proven that r (E) ≥

Rm holds if and only if

Pmn ≥
Rm

Rn
∏n−1

k=m+1 Pmk

form = 1, . . . ,N and n = m+1, . . . ,N.

Condition 4): Since a generic matrix is of full rank, r
(
H

(m,n)
[1,2;3]

)
=

min (Rn−1Pmn,Rn) for m, n = 1, . . . ,N.

5. EXPERIMENTS

In this section, we validate our algorithms using synthetic and
real data. The algorithms are implemented in MATLAB and
are available at https://www.tensorlabplus.net. In the practical
implementation of the algorithms, column spaces are estimated
using the SVD and linear systems are solved using the MATLAB
backslash operator. All experiments are performed on a laptop
with an AMD Ryzen 7 PRO 3700U processor and 32GB RAM.
The algorithms are run sequentially even though each algorithm
can (partly) be executed in parallel.

Since it is possible to choose the generating matrices in the
experiments in this section, we set Amm = IIm for m =

1, . . . ,N. This means that the first step in each algorithm, namely
solving a linear system with Amm as the coefficient matrix, can
be skipped. First, we use synthetic data to compare the accuracy
and computation time of these algorithms to related algorithms.
All synthetic problems are constructed by sampling the entries
of the factor matrices and/or core(s) of a tensor decomposition
from the standard normal distribution. Additive Gaussian noise
N is added to these randomly generated tensors X and the noise
level is quantified using the signal-to-noise ratio (SNR):

SNR = 10 log10

(
||X||2F

||N||2F

)
.

5.1. Randomized MLSVD
In the first experiment, a random third-order tensorX ∈ R

I×I×I

of low multilinear rank (R,R,R), with I = 200 and R = 10,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 March 2022 | Volume 8 | Article 83288351

https://www.tensorlabplus.net
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

is generated with varying levels of noise. The factor matrices of
the MLSVD of X are then retrieved from a BRKS linear system
using Algorithm 1. The entries of the generating matrices are
sampled from the standard normal distribution. This means that
we are using Algorithm 1 in the RTD-setting in this experiment.
The dimensions of the generating matrices are determined using
the oversampling factor q = 5 and the multilinear rank of
X. For this value of q, the sampling ratio equals 0.005. This
ratio is defined as the number of compressed measurements
in b divided by the number of entries in X. We compare
the accuracy of our algorithm with related RTD algorithms
and a cross-approximation algorithm for low multilinear rank
approximation. These algorithms are:

• rand_tucker Algorithm 2 in [16]: The factor matrices U(n)

for n = 1, . . . ,N are retrieved as follows: 1) the mode-n
matrix unfolding of X is compressed through multiplication
with a random Gaussian matrix and 2) an orthonormal basis
for this compressed matrix unfolding is computed using the
QR decomposition. After computing each factor matrix, X is
orthogonally compressed using this factor matrix like in the
sequentially truncated higher-order SVD algorithm [32]. The
oversampling factor is set to p = 5, which means that this
algorithm actually estimates an MLSVD of multilinear rank
(R+ p,R+ p,R+ p).

• rand_tucker_kron algorithm 4.2 in [15]: Similar to
rand_tucker, but the algorithm uses a Kronecker-
structuredmatrix for compression and the SVD for computing
an orthonormal basis. The oversampling factor for this
algorithm is chosen such that it is the same as our
oversampling factor q in Section 2.4.

• mlsvd_rsi [33]: Computes an MLSVD using sequential
truncation [32] and uses randomized compression and
subspace iteration for estimating the SVD [34]. In the
randomized compression step, the mode-n unfolding X[n]

is compressed through matrix multiplication with a random
matrix of dimensions

∏
i6=n Ii × Rn + p, with an oversampling

factor p = 5. Next, the nth factor matrix is estimated by
computing an SVD of this randomly compressed matrix and
further refined using two subspace iteration steps with the full
mode-n unfolding X[n].

• lmlra_aca [21]: Cross approximation approach for low
multilinear rank approximation.

The last two algorithms are available in Tensorlab [26]. As the
full tensor X is usually available in the RTD-setting, the core is
computed as

S = X ·1 U
(1)T · · · ·N U(N)T.

Figure 2 compares the accuracy, quantified as a relative error

Erel =
||X− Ŝ ·1 Û

(1)
· · · ·N Û

(N)
||F

||X||F

with Ŝ and Û
(n)

for n = 1, . . . ,N the estimated core and factor
matrices, of these algorithms. The error shown in Figure 2 is the
average relative error over 10 trials. Algorithm lsmlsvd_brks

is more accurate than rand_tucker and lmlra_aca.
Algorithm mlsvd_rsi is far more accurate than all other
algorithms because it uses subspace iteration with the full mode-
n matrix unfolding of X for computing the nth factor matrix.
For this reason it also has the longest computation time of all
algorithms. Algorithm rand_tucker_kron is more accurate
than lsmlsvd_brks due to the sequential truncation step in
rand_tucker_kron after each factor matrix is computed. If
this step is omitted, which corresponds to Che et al. algorithm 4.1
in [15], it achieves the same accuracy as lsmlsvd_brks. This
sequential truncation step is not possible in lsmlsvd_brks
since this algorithm only uses the compressed measurements
b instead of the full tensor X. Note that increasing the
oversampling factors of the algorithms results in higher accuracy
in exchange for a longer computation time and requiring more
compressed datapoints.

5.2. Randomized CPD
In this experiment, we generate a CPD with random factor
matrices of a third-order tensor X ∈ R

I×I×I , with I =

100, of rank R = 10. Varying levels of noise are added
to this tensor. Algorithm 2 is used in the RTD-setting to
estimate the factor matrices of the CPD of X. To compute
the CPDs of the compressed tensors, we use the cpd
function in Tensorlab [26]. This function initializes the factor
matrices with a generalized eigenvalue decomposition if possible
and further improves them using (second-order) optimization
algorithms. The accuracy of the factor matrices estimated by
this algorithm are compared to results obtained with related
RTD algorithms:

• cpd_rbs [35]: In each iteration, a random subtensor
of X is sampled and the corresponding rows of
the factor matrices are updated. These updates are
computed using a Gauss–Newton algorithm. In this

FIGURE 2 | Algorithm mlsvd_rsi is by far the most accurate because it

used the full-sized matrix unfolding in the subspace iteration step. Algorithm

lsmlsvd_brks is more accurate than lmlra_aca and rand_tucker and

less accurate than rand_tucker_kron. If the sequential truncation step in

rand_tucker_kron is omitted, it achieves the same accuracy as

lsmlsvd_brks.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 March 2022 | Volume 8 | Article 83288352

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

experiment, the algorithm starts with random initial
factor matrices.

• cp_arls [14]: Alternating least squares with random
sketching for solving the least squares subproblems.

The accuracy of the estimated factor matrices is quantified as a
relative error

ECPD = max
n

||Û
(n)

− U(n)||F

||U(n)||F
,

in which the scaling and permutation ambiguities between the

true U(n) and estimated Û
(n)

factor matrix have been resolved
for n = 1, . . . ,N. Figure 3 shows the average relative error
on the left and the average computation time for tensors
with increasing dimensions on the right. Both averages are
computed over 10 trials. For lscpd_brks, sampling the
randomly compressed tensors, i.e., evaluating Equation (3), is
included in the computation time. The oversampling factor q of
lscpd_brks is set to 5, 10 or 50. For a larger value of q, U(n)

better captures the mode-n subspace ofX and less information is
lost during the orthogonal compression step. Figure 3 illustrates
that the algorithm is much more accurate for q = 50, while the
increase in computation time compared to q = 5 is negligible. If
q is set such that the size of the compressed tensors in Equation
(4) is of the same order as the full tensorX, then the computation
time will of course increase significantly. For q = 50, the number
of compressed datapoints in b equals just 15% of the total number
of datapoints in X. This sampling ratio can be even lower for
tensors with order greater than three. Algorithm cp_arls is
slightly more accurate than lscpd_brks with q = 50 while
being much slower in terms of computation time. Algorithm
cpd_rbs is even more accurate and is situated in between
lscpd_brks and cp_arls for smaller values of I. The
computation time of lscpd_brksis dominated by sampling
the randomly compressed tensors, since computing the CPD of
these small tensors is very fast. Therefore, the computation time
of cpd_rbs scales better for higher values of I since sampling
random subtensors ofX is less time consuming than the random

compression of X in lsmlsvd_brks, which requires multiple
large matrix products. In contrast to lscpd_brks, which uses
a fixed amount of compressed datapoints determined by the
size of the problem and the oversampling factor, cpd_rbs and
cp_arls continue randomly sampling from X every iteration
until a stopping criterion is met.

5.3. Randomized TT
In this experiment, we generate a TT with random core
tensors of a third-order tensor X ∈ R

I×I×I , with I =

500, of TT-rank (1, 10, 10, 1). We add varying levels of noise
to this tensor and estimate the cores using Algorithm 3 in
the RTD-setting. For this experiment, we use the version
of this algorithm that first computes orthonormal bases and
then compensates for preceding cores. Additionally, preceding
cores are compensated for from left to right for the first
half of the cores and from right to left for the second
half, as explained in Section 4.2. The dimensions of the
generating matrices are chosen such that the sampling ratio
equals 0.005.

The results of lstt_brks are compared with
the results of a related RTD algorithm and a TT
cross-approximation approach:

• rand_tt Algorithm 5.1 in [36]: This algorithm is a
randomized version of the standard TT-SVD algorithm. The
TT-SVD algorithm consists of three steps that are performed
for the first N − 1 cores: 1) tensor X is matricized, 2) a core
is estimated by computing a basis for the column space of this
matricization using the SVD and 3) tensor X is compressed
using this basis. Inrand_tt, thematricization in the first step
is compressed bymultiplying it with a randommatrix from the
right in order to speed up the computation of the SVD in the
next step.

• cross_tt [37]: This algorithm reduces the size of the
matricizations of X using a maximal volume cross-
approximation approach. The matricizations used in this
algorithm allow the TT-ranks to be determined adaptively.

FIGURE 3 | Increasing the oversampling factor q of lscpd_brks, for which the value is shown in the figure, greatly improves its accuracy while having a negligible

effect on the computation time. Algorithm lscpd_brks is faster than cp_arls and cp_rbs, for a range of tensor dimensions that are relevant for applications, with

a limited loss of accuracy.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 March 2022 | Volume 8 | Article 83288353

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

The accuracy of the results of these algorithms are quantified as a
relative error

Erel =
||X− LĜ(1)

, . . . , Ĝ
(N)M||F

||X||F
,

in which Ĝ
(n)

for n = 1, . . . ,N are the estimated cores.
Figure 4 shows the relative error, averaged over 50 trials, and
the computation time, averaged over 10 trials, for all algorithms.
Tensors of increasing size are used to estimate the computation
time. The relative errors achieved by the algorithms with these
tensors are in proportion with the errors shown in Figure 4. The
relative error is approximately the same for both rand_tt and
lstt_brks. The former is faster thanks to the compression step
that is performed after computing each core, which causes the
tensor to get progressively smaller as the algorithm progresses.
However, this algorithm requires the full tensor to be available,
whereas the latter works with a limited amount of Kronecker-
structured linear combinations of the entries of X. Therefore,
lstt_brks enables us to achieve accuracy comparable to
rand_tt in CS applications. If a method for obtaining any entry
ofX is available, then cross_tt can be used to recover a more
accurate approximation of the tensor, in exchange for a longer
computation time. However, this algorithm is not applicable in
the CS-setting either.

5.4. Compressed Sensing Hyperspectral
Imaging
In the RTD-setting, the tensor is fully acquired first and then
randomly compressed. In the CS-setting, the data can in some
applications be compressed during the data acquisition step. For
example in hyperspectral imaging, compressed measurements
can be obtained using the single-pixel camera [38] or the
coded aperture snapshot spectral imager (CASSI) [39]. A
hyperspectral image is a third-order tensor X ∈ R

I1×I2×I3 ,
consisting of images of I1 by I2 pixels taken at I3 different
wavelengths. The single-pixel camera randomly compresses the
spatial dimensions of a hyperspectral image. In CASSI, a mask

is applied to each I1 by I2 image for different wavelengths
and these masked images are then aggregated into a single
one, i.e., a snapshot. In general, compressed measurements
are often obtained in (hyperspectral) imaging by compressing
along each dimension separately, meaning that the measurement
matrix is Kronecker-structured [11, 40]. With a small number of
compressed measurements, a large hyperspectral image can often
be accurately reconstructed. Whereas, the random compression
step dominated the computation time of our algorithms in the
previous experiments, it is missing altogether in this experiment
since it is inherent to the application. Therefore, our algorithms
enable fast reconstruction of hyperspectral images.

We use lsmlsvd_brks to reconstruct a hyperspectral
image using compressed measurements sampled at different
sampling ratios. Similar to KCS, this approach expresses X in
a Kronecker-structured basis, namely the Kronecker product of
U(n) for n = 1, 2, 3, in which the core tensor S contains the
coefficients. In KCS, the bases are chosen a priori such that
these coefficients are sparse, which is not necessarily true for
the core of an MLSVD. Also, in lsmlsvd_brks, the bases do
not have to be chosen a priori as this algorithm also estimates
them using compressed measurements. Additionally, in KCS the
measurement matrix is Kronecker-structured, whereas it consists
of multiple Kronecker-structured block rows in our approach.

Instead of using just the final, (N + 1)th block row of the
BRKS system to estimate the core, it makes more sense to use
all available compressed measurements to improve the quality
of the estimation, since the number of measurements is limited.
Therefore, we solve the full BRKS system, with all N + 1 block
rows, for a sparse vec (S) by optimizing:

min
vec(S)

||vec (S) ||1 subject to ||Avec (S) − b||2 ≤ σ .

This is a basis pursuit denoising problem, which can be solved
using the SPGL1 solver [41, 42]. The reason for imposing sparsity
is as follows. If we were to estimate a dense core tensor using
lsmlsvd_brks in this experiment, the number of compressed
measurements b(N+1) certainly cannot be less than the number of

FIGURE 4 | Algorithm lstt_brks enables us to achieve accuracy similar to that of rand_tt in CS applications. If a method for obtaining any entry of X is available,

then cross_tt can be used to recover a more accurate approximation of the tensor, in exchange for a longer computation time.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 March 2022 | Volume 8 | Article 83288354

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

entries in the core if we want to be able to retrieve it. However, it
turns out that the mode-n vectors of the hyperspectral imaging
data X cannot be well approximated as linear combinations
of a small number of multilinear singular vectors, indicating
that the multilinear rank is not small. Estimating a dense core
tensor would then require a large number of measurements.
On the other hand, it also turns out that in this data only a
relatively small number of the entries in a relatively large core is
important. We exploit this by computing a sparse approximation
of the core, which results in reconstructions of better quality
than with the dense core approach, while requiring far less
compressed measurements.

The reconstruction results of our algorithm are compared
with two other approaches for reconstructing a hyperspectral
image from compressed measurements:

• GAP_TV [43]: A generalized alternating projection
algorithm that solves the total variation minimization
problem. Minimizing total variation leads to accurate
image reconstruction because images are generally locally
self-similar.

• KCS [11]: We used a two-dimensional Daubechies wavelet
basis to sparsify the spatial dimensions and the Fourier
basis for the spectral dimension. The sparse coefficients are
computed using the SPGL1 solver.

The quality of the reconstructed images is quantified using the
peak signal-to-noise ratio (PSNR)

PSNR = log10

 max (X)√

1
I1I2I3

||X− X̂||F

 ,

in which X̂ is the reconstructed hyperspectral image. In this
experiment, we used the corrected Indian Pines dataset, in which
some very noisy wavelengths have been left out [44]. This results
in a hyperspectral image of dimensions 145 × 145 × 200. For
lsmlsvd_brks, we compute an MLSVD of multilinear rank
(70, 70, 30) with a sparse core. This multilinear rank was obtained
by trying a wide range of multilinear ranks and assessing the
quality of their corresponding reconstructions.

TABLE 1 | This table shows the reconstruction quality, quantified in PSNR (dB), of

a hyperspectral image for a range of sampling ratios, obtained with different

algorithms. Algorithm lsmlsvd_brks performs approximately equally well as

GAP_TV, which is an algorithm specifically suited for image reconstruction. The

lower reconstruction quality for KCS indicates that the bases estimated by

lsmlsvd_brks suit the data better than the a priori determined bases used in

KCS.

Algorithm Sampling ratio

0.02 0.05 0.1

lsmlsvd_brks 25.58 28.67 28.25

GAP_TV 25.68 28.18 30.28

KCS 10.94 16.40 22.83

Table 1 shows the quality of the reconstructed images for a
range of sampling ratios. Whereas, GAP_TV is specifically
designed for imaging applications, lsmlsvd_brks
can be applied to a wide range of problems. Regardless,
lsmlsvd_brks performs approximately equally well in terms
of reconstruction quality. The reconstruction quality achieved
by lsmlsvd_brks is higher than for KCS, indicating that the
bases estimated by the former suit the data better than the a
priori determined bases used in the latter.

6. CONCLUSION AND FURTHER WORK

In this work, we have considered a general framework of BRKS
linear systems with a compact solution, which suits a wide variety
of problems.We developed efficient algorithms for computing an
MLSVD, CPD or TT constrained solution from a BRKS system,
allowing the user to choose the decomposition that best matches
their specific application. The efficiency of these algorithms is
enabled on one hand by the BRKS linear system, since such a
system produces multiple compressed versions of the tensor and
thus splits the problem into a number of smaller ones, and on
the other hand by the low (multilinear-/TT-)rank constrained
solution. With these algorithms, real data can be accurately
reconstructed using far fewer compressed measurements than
the total number of entries in the dataset. We have derived
conditions under which an MLSVD, CPD or TT can be retrieved
from a BRKS system. The corresponding generic versions of these
conditions allow us to choose the dimensions of the generating
matrices such that a solution can generically be found. Through
numerical experiments, we have shown that these algorithms can
be used for computing tensor decompositions in a randomized
approach. In the case of the CPD, our algorithm needs less
computation time than the alternative algorithms. Additionally,
we have illustrated the good performance of the algorithms
for reconstructing compressed hyperspectral images, despite not
being specifically developed for this application. In further work,
we will look into parallel implementations for the algorithms in
this paper.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: https://rslab.ut.ac.ir/data.

AUTHOR CONTRIBUTIONS

SH derived the algorithms and theory and implemented the
algorithms in Matlab. LDL conceived the main idea and
supervised the research. Both authors contributed to the article
and approved the submitted version.

FUNDING

This research received funding from the Flemish Government
(AI Research Program). LDL and SH are affiliated to Leuven.AI -

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 March 2022 | Volume 8 | Article 83288355

https://rslab.ut.ac.ir/data
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

KU Leuven institute for AI, B-3000, Leuven, Belgium. This work
was supported by the Fonds de la Recherche Scientifique–FNRS
and the Fonds Wetenschappelijk Onderzoek- Vlaanderen under
EOS Project no G0F6718N (SeLMA). KU Leuven Internal Funds:
C16/15/059, IDN/19/014.

ACKNOWLEDGMENTS

The authors would like to thank N. Vervliet and M. Ayvaz for
proofreading the manuscript and E. Evert for his help with the
mathematical proofs.

REFERENCES

1. Candès EJ, WakinMB. An introduction to compressive sampling. IEEE Signal

Process Mag. (2008). 25:21–30. doi: 10.1109/MSP.2007.914731

2. Donoho DL. Compressed sensing. IEEE Trans Inf Theory. (2006)

52:1289–306. doi: 10.1109/TIT.2006.871582

3. Ahmadi-Asl S, Abukhovich S, Asante-Mensah MG, Cichocki A, Phan

AH, Tanaka T, et al. Randomized algorithms for computation of tucker

decomposition and higher order SVD (HOSVD). IEEE Access. (2021)

9:28684–706. doi: 10.1109/ACCESS.2021.3058103

4. Acar E, Dunlavy DM, Kolda TG, Morup M. Scalable tensor factorizations

for incomplete data. Chemometr Intell Lab. (2011) 3106:41–56.

doi: 10.1016/j.chemolab.2010.08.004

5. Aldroubi A, Gröchenig K. Nonuniform sampling and reconstruction

in shift-invariant spaces. SIAM Rev. (2001) 43:585–620.

doi: 10.1137/S0036144501386986

6. Oseledets I, Tyrtyshnikov E. TT-cross approximation for multidimensional

arrays. Linear Algebra Appl. (2010) 432:70–88. doi: 10.1016/j.laa.2009.07.024

7. Udell M, Townsend A. Why are big data matrices approximately low rank?

SIAM J Math Data Sci. (2019) 1:144–60. doi: 10.1137/18M1183480

8. Rubinstein R, Bruckstein AM, Elad M. Dictionaries for sparse representation

modeling. Proc IEEE. (2010) 98:1045–57. doi: 10.1109/JPROC.2010.2040551

9. Bro R, Andersson C. Improving the speed of multiway algorithms:

part II: compression. Chemometr Intell Lab Syst. (1998) 42:105–13.

doi: 10.1016/S0169-7439(98)00011-2

10. Sidiropoulos ND, Kyrillidis A. Multi-way compressed sensing for

sparse low-rank tensors. IEEE Signal Process. Lett. (2012) 19:757–60.

doi: 10.1109/LSP.2012.2210872

11. Duarte MF, Baraniuk RG. Kronecker compressive sensing. IEEE Trans Image

Process. (2012) 21:494–504. doi: 10.1109/TIP.2011.2165289

12. Sidiropoulos N, Papalexakis EE, Faloutsos C. Parallel randomly compressed

cubes: a scalable distributed architecture for big tensor decomposition.

IEEE Signal Process Mag. (2014) 31:57–70. doi: 10.1109/MSP.2014.23

29196

13. Kressner D, Tobler C. Low-rank tensor krylov subspace methods for

parametrized linear systems. SIAM J Matrix Anal Appl. (2011). 32:1288–316.

doi: 10.1137/100799010

14. Battaglino C, Ballard G, Kolda TG. A practical randomized CP

tensor decomposition. SIAM J Matrix Anal Appl. (2018) 39:876–901.

doi: 10.1137/17M1112303

15. Che M, Wei Y, Yan H. Randomized algorithms for the low multilinear

rank approximations of tensors. J Computat Appl Math. (2021) 390:113380.

doi: 10.1016/j.cam.2020.113380

16. Zhou G, Cichocki A, Xie S. Decomposition of big tensors with lowmultilinear

rank. (2014) CoRR. abs/1412.1885.

17. Yang B, ZamzamA, Sidiropoulos ND. ParaSketch: parallel tensor factorization

via sketching. In: Proceedings of the 2018 SIAM International Conference on

Data Mining (SDM). (2018). p. 396–404.

18. Jin R, Kolda TG, Ward R. Faster johnson–lindenstrauss transforms

via kronecker products. Inf Inference. (2020) 10:1533–62.

doi: 10.1093/imaiai/iaaa028

19. Mahoney MW, Maggioni M, Drineas P. Tensor-CUR decompositions

for tensor-based data. SIAM J Matrix Anal Appl. (2008). 30:957–87.

doi: 10.1137/060665336

20. Oseledets I, Savostianov DV, Tyrtyshnikov E. Tucker dimensionality

reduction of three-dimensional arrays in linear time. SIAM J Matrix Anal

Appl. (2008) 30:939–56. doi: 10.1137/060655894

21. Caiafa CF, Cichocki A. Generalizing the column-row matrix decomposition

to multi-way arrays. Linear Algebra Appl. (2010) 433:557–73.

doi: 10.1016/j.laa.2010.03.020

22. Goreinov SA, Tyrtyshnikov EE, Zamarashkin NL. A theory of

pseudoskeleton approximations. Linear Algebra Appl. (1997) 261:1–21.

doi: 10.1016/S0024-3795(96)00301-1

23. Kolda TG. Multilinear Operators for Higher-Order Decompositions.

Albuquerque, NM; Livermore, CA: Sandia National Laboratories (2006).

24. De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular

value decomposition. SIAM J Matrix Anal Appl. (2000) 21:1253–78.

doi: 10.1137/S0895479896305696

25. Oseledets I. Tensor-train decomposition. SIAM J Sci Comput. (2011)

33:2295–317. doi: 10.1137/090752286

26. Vervliet N, Debals O, Sorber L, Van Barel M, De Lathauwer L. Tensorlab 3.0.

(2016). Available online at: https://www.tensorlab.net.

27. Sorber L, Van Barel M, De Lathauwer L. Structured data fusion. IEEE J Select

Top Signal Process. (2015) 9:586–600. doi: 10.1109/JSTSP.2015.2400415

28. Domanov I, De Lathauwer L. On the uniqueness of the canonical polyadic

decomposition of third-order tensors- Part I: Basic results and uniqueness

of one factor matrix. SIAM J Matrix Anal Appl. (2013) 34:855–75.

doi: 10.1137/120877234

29. Chiantini L, Ottaviani G. On generic identifiability of 3-tensors of small rank.

SIAM J Matrix Anal Appl. (2012) 33:1018–37. doi: 10.1137/110829180

30. Sidiropoulos N, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos

C. Tensor decomposition for signal processing and machine learning. IEEE

Trans Signal Process. (2017) 65:3551–82. doi: 10.1109/TSP.2017.2690524

31. Kruskal JB. Three-way arrays: rank and uniqueness of trilinear

decompositions, with application to arithmetic complexity and statistics.

Linear Algebra Appl. (1977) 18:95–138. doi: 10.1016/0024-3795(77)90069-6

32. Vannieuwenhoven N, Vandebril R, Meerbergen K. A new truncation strategy

for the higher-order singular value decomposition. SIAM J Sci Comput. (2012)

34:A1027–52. doi: 10.1137/110836067

33. Vervliet N, Debals O, De Lathauwer L. Tensorlab 3.0 – Numerical

optimization strategies for large-scale constrained and coupled matrix/tensor

factorization. In: Proceedings of the 50th Asilomar Conference on Signals,

Systems and Computers. Pacific Grove, CA (2016). p. 1733–8.

34. Halko N, Martinsson PG, Tropp JA. Finding structure with randomness:

probabilistic algorithms for constructing approximate matrix

decompositions. SIAM Rev. (2011) 53:217–88. doi: 10.1137/090771806

35. Vervliet N, De Lathauwer L. A randomized block sampling approach to

canonical polyadic decomposition of large-scale tensors. IEEE J Select Top

Signal Process. (2016) 10:284–95. doi: 10.1109/JSTSP.2015.2503260

36. Che M, Wei Y. Randomized algorithms for the approximations of Tucker

and the tensor train decompositions. Adv Comput Math. (2019) 45:395–428.

doi: 10.1007/s10444-018-9622-8

37. Savostyanov D, Oseledets I. Fast adaptive interpolation of multi-dimensional

arrays in tensor train format. In: The 2011 International Workshop on

Multidimensional (nD) Systems. (2011). p. 1–8.

38. Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, et al. Single-

pixel imaging via compressive sampling. IEEE Signal Process Mag. (2008)

25:83–91. doi: 10.1109/MSP.2007.914730

39. Wagadarikar AA, Pitsianis NP, Sun X, Brady DJ. Video rate spectral imaging

using a coded aperture snapshot spectral imager. Optics Express. (2009)

17:6368–6388. doi: 10.1364/OE.17.006368

40. Rivenson Y, Stern A. Compressed imaging with a separable sensing

operator. IEEE Signal Process Lett. (2009) 16:449–52. doi: 10.1109/LSP.2009.20

17817

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 March 2022 | Volume 8 | Article 83288356

https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/ACCESS.2021.3058103
https://doi.org/10.1016/j.chemolab.2010.08.004
https://doi.org/10.1137/S0036144501386986
https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1137/18M1183480
https://doi.org/10.1109/JPROC.2010.2040551
https://doi.org/10.1016/S0169-7439(98)00011-2
https://doi.org/10.1109/LSP.2012.2210872
https://doi.org/10.1109/TIP.2011.2165289
https://doi.org/10.1109/MSP.2014.2329196
https://doi.org/10.1137/100799010
https://doi.org/10.1137/17M1112303
https://doi.org/10.1016/j.cam.2020.113380
https://doi.org/10.1093/imaiai/iaaa028
https://doi.org/10.1137/060665336
https://doi.org/10.1137/060655894
https://doi.org/10.1016/j.laa.2010.03.020
https://doi.org/10.1016/S0024-3795(96)00301-1
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/090752286
https://www.tensorlab.net
https://doi.org/10.1109/JSTSP.2015.2400415
https://doi.org/10.1137/120877234
https://doi.org/10.1137/110829180
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1137/110836067
https://doi.org/10.1137/090771806
https://doi.org/10.1109/JSTSP.2015.2503260
https://doi.org/10.1007/s10444-018-9622-8
https://doi.org/10.1109/MSP.2007.914730
https://doi.org/10.1364/OE.17.006368
https://doi.org/10.1109/LSP.2009.2017817
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

41. den berg EV, Friedlander MP. Probing the Pareto frontier for basis pursuit

solutions. SIAM J Sci Comput. (2008) 31:890–912. doi: 10.1137/080714488

42. den berg EV, Friedlander MP. SPGL1: A Solver for Large-Scale Sparse

Reconstruction. (2019). Available online at: https://friedlander.io/spgl1.

43. Yuan X. Generalized alternating projection based total variationminimization

for compressive sensing. In: 2016 IEEE International Conference on Image

Processing (ICIP). (2016). p. 2539–43.

44. Baumgardner MF, Biehl LL, Landgrebe DA. 220 Band AVIRIS Hyperspectral

Image Data Set: June 12, 1992. Indian Pine Test Site (2015).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Hendrikx and De Lathauwer. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 17 March 2022 | Volume 8 | Article 83288357

https://doi.org/10.1137/080714488
https://friedlander.io/spgl1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

ORIGINAL RESEARCH
published: 30 March 2022

doi: 10.3389/fams.2022.836433

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 March 2022 | Volume 8 | Article 836433

Edited by:

André Uschmajew,

Max Planck Institute for Mathematics

in the Sciences, Germany

Reviewed by:

Edgar Solomonik,

University of Illinois at

Urbana-Champaign, United States

Guillaume Rabusseau,

Université de Montréal, Canada

*Correspondence:

Muzaffer Ayvaz

muzaffer.ayvaz@kuleuven.be

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 15 December 2021

Accepted: 28 February 2022

Published: 30 March 2022

Citation:

Ayvaz M and De Lathauwer L (2022)

CPD-Structured Multivariate

Polynomial Optimization.

Front. Appl. Math. Stat. 8:836433.

doi: 10.3389/fams.2022.836433

CPD-Structured Multivariate
Polynomial Optimization
Muzaffer Ayvaz 1,2* and Lieven De Lathauwer 1,2

1Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium, 2Group Science, Engineering and Technology,

KU Leuven Kulak, Kortrijk, Belgium

We introduce the Tensor-Based Multivariate Optimization (TeMPO) framework for use in

nonlinear optimization problems commonly encountered in signal processing, machine

learning, and artificial intelligence. Within our framework, we model nonlinear relations

by a multivariate polynomial that can be represented by low-rank symmetric tensors

(multi-indexed arrays), making a compromise between model generality and efficiency

of computation. Put the other way around, our approach both breaks the curse of

dimensionality in the system parameters and captures the nonlinear relations with a good

accuracy. Moreover, by taking advantage of the symmetric CPD format, we develop an

efficient second-order Gauss–Newton algorithm for multivariate polynomial optimization.

The presented algorithm has a quadratic per-iteration complexity in the number of

optimization variables in the worst case scenario, and a linear per-iteration complexity in

practice. We demonstrate the efficiency of our algorithm with some illustrative examples,

apply it to the blind deconvolution of constant modulus signals, and the classification

problem in supervised learning. We show that TeMPO achieves similar or better accuracy

than multilayer perceptrons (MLPs), tensor networks with tensor trains (TT) and projected

entangled pair states (PEPS) architectures for the classification of the MNIST and Fashion

MNIST datasets while at the same time optimizing for fewer parameters and using less

memory. Last but not least, our framework can be interpreted as an advancement of

higher-order factorization machines: we introduce an efficient second-order algorithm

for higher-order factorization machines.

Keywords: multivariate polynomial, numerical optimization, tensor decomposition, Gauss-Newton algorithm,

factorization machines, higher order factorization machines, tensor network, image classification

1. INTRODUCTION

Many problems in data science, signal processing, machine learning and artificial intelligence (AI)
can be thought of determining the nonlinear relationship between input and output data. Several
strategies have been developed to efficiently model these nonlinear interactions. However, due to
the higher-order nature of input and output data, developing scalable algorithms to model these
nonlinear interactions is a challenging research direction. Another major issue is the large number
of system parameters needed to model the physical phenomena under consideration. For example,
large numbers of layers and neurons are needed in deep neural networks (DNNs). Multivariate
polynomials are also utilized to model nonlinear continuous functions. However, this approach
suffers from an exponential increase in the number of coefficients with the degree of the polynomial.
This is known as the curse of dimensionality and is a major drawback that inhibits the development
of efficient algorithms.

58

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.836433
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.836433&domain=pdf&date_stamp=2022-03-30
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:muzaffer.ayvaz@kuleuven.be
https://doi.org/10.3389/fams.2022.836433
https://www.frontiersin.org/articles/10.3389/fams.2022.836433/full

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

Tensor decompositions such as canonical polyadic
decomposition (CPD) and tensor trains (TT) are promising
tools for breaking the curse of dimensionality. Tensors are multi-
indexed arrays. They preserve the higher-order structure which
is inherent in data, are able to model nonlinear interactions,
and can be decomposed uniquely under mild conditions
[1–3]. Efficient numerical optimization algorithms have been
developed for tensor decompositions. In the context of CPD, the
Gauss–Newton algorithm using both line search and trust-region
frameworks have been effectively implemented by exploiting the
CPD structure [4–6]. A low complexity damped Gauss-Newton
algorithm has also been proposed [7]. Moreover, a randomized
block sampling approach has been proposed which achieves
linear time complexity for the CPD of large tensors by utilizing
the Gauss–Newton algorithm [8]. Many data science problems
such as latent factor analysis have been solved by reformulating
them as tensor decomposition problems [9–12]. An inexact
Gauss–Newton algorithm has been proposed for scaling the
CPD of large tensors with non-least-squares cost functions
[13]. Moreover, generalized Gauss–Newton algorithm with its
efficient parallel implementation has been proposed for tensor
completion with generalized loss functions [14]. Our aim in this
work is to extend the efficient numerical approaches to a broader
class of problems that includes not only tensor decompositions
but also the optimization of multilinear/polynomial cost
functions. Examples include, but are not limited to matrix and
tensor eigenvalue problems, nonlinear dimensionality reduction,
nonlinear blind source separation, multivariate polynomial
regression, and classification problems.

In this study, we develop a framework called Tensor-Based
Multivariate Polynomial Optimization (TeMPO) to deal with
nonlinear optimization problems commonly encountered in
signal processing, machine learning and artificial intelligence. A
preliminary version, where only rank-1 CPD is considered with
application in blind identification, appeared as the conference
paper [15]. In the TeMPO framework, these nonlinear functions
are approximated or modeled bymultivariate polynomials. Then,
low-rank tensors are used to represent the polynomial under
consideration. This approach reduces the number of parameters
that define the system, and hence enables us to develop efficient
numerical optimization algorithms. To further elaborate on the
proposed methodology, let us consider the optimization problem

min
p

l(p(z), θ), (1)

where l :R × R
M → R

+ denotes a loss function such as
the mean squared error, p :RI → R denotes an unknown
multivariate polynomial, z ∈ R

I denotes input data, and θ ∈ R
M

denotes output data. We compactly represent the polynomial
p(z) through low-rank tensors. One possible way to do this is
to write the polynomial as a sum of homogeneous polynomials
as follows:

p(z) : =

d∑

j=0

Tjz
j, (2)

where Tj denotes a low-rank tensor of order j, and Tjz
j denotes

the mode-n product (see Section 2.1) of a tensor Tj and the vector
z for all modes. As by convention, T0 is assumed to be scalar
and z0 is assumed to be scalar 1. From now on, we call (2) a
type I model. We can represent a multivariate polynomial with
a single tensor by utilizing a process called homogenization, and
augmenting the independent variable z by a constant 1 as

p(̃z) : =Wz̃d, (3)

whereW is a tensor of order d, and z̃ = [1; z]. Hereafter, we call
(3) a type II model.

An n-variate polynomial of degree d has O
(
nd

)
coefficients.

This exponential dependence on d is the so-called curse of
dimensionality. In the TeMPO framework, we break the curse of
dimensionality by assuming low-rank structure in the coefficient
tensors. For example, when rank- R symmetric CPD structure is
used, the number of parameters needed to represent the n-variate
polynomial of degree d is ndR which is linear in the number
of variables. Several low-rank structures for tensors have been
introduced in the literature [1, 2, 16], e.g., canonical polyadic
decomposition (CPD), Tucker decomposition, hierarchical
Tucker decomposition (HT) [17], tensor train decomposition
(TT) [18]. All of these structures can be incorporated into
the TEMPO framework; however, in this paper we restrict
ourselves to symmetric CPDs. Note that different types of low-
rank structure allow us to represent different sub-classes of
polynomials. Of course, different representations differ in storage
space, and computational complexity. Amore detailed exposition
will be given in Section 3.2. Note also that the type I model allows
us to constrain each term separately while the type II model does
not. Therefore, the type I model is a more general representation
of multivariate polynomials which may provide better results
depending on the applications.

Besides breaking the curse of dimensionality, exploiting low-
rank representations of tensors enables us to derive efficient
expressions for objective function and gradient evaluations.
These then lead us to develop scalable algorithms. We apply our
framework for image classification by adapting the second-order
Gauss–Newton algorithm and exploiting the symmetric CPD
structure in two different tensor representations of multivariate
polynomials. We show that the TeMPO framework with
symmetric CPD structure achieves similar or better accuracy
than various methods such as MLPs, and tensor networks with
different structures for the classical MNIST and Fashion MNIST
datasets while using fewer parameters and therefore less memory.

Related Work
Several tensor-basedmethods have been reported in the literature
for regression and classification, two problems that are in the
class of problems (1). In most of these approaches, a linear model

y = 〈W,X〉 + b, (4)

is used where W denotes a weight tensor and X represents
nonlinear features of the input data. This model corresponds to
the type II model when a symmetric CPD structure is imposed

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 March 2022 | Volume 8 | Article 83643359

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

on the weight tensor W and X is composed of polynomial
features of input data. Clearly, imposing different structures
to the weight tensor W and using different nonlinear features
in the tensor X leads to a different representation of the
nonlinear interaction between input data and output data. For
example, exponential machines utilize the tensor train format
in the weight tensor with a norm regularization term in the
optimization [19]. In this approach, the Riemannian gradient
descent algorithm is used for solving the optimization problem.
In a similar approach, tensor trains is used with the feature map

φ(xj) =
[
cos

(πxj

2

)
, sin

(πxj

2

)]
, by using the density matrix

renormalization group (DMRG) algorithm and the first-order
ADAM algorithm for the optimization of different cost functions
[20, 21]. The same feature map is also used for the linear model
(4) by imposing projected entangled pair states (PEPS) structure
on the weight tensor W [22]. The CPD format in model (4)
has also been studied in the realm of tensor regression with
the Frobenius norm and group sparsity norm regularization
terms while using a coordinate-descent approach [23]. A similar
model is also considered by utilizing the symmetric CPD format
and the second-order Gauss–Newton algorithm with algebraic
initialization for multivariate polynomial regression [24]. Several
approaches have been proposed that utilize CPD or Tucker
formats in tensor regression that use different regularization
strategies to prevent the overfitting [25, 26]. Also, the hierarchical
Tucker (HT) format has been used in the tensor regression
context for the generalized linear model (GLM) y = α

Tx +

〈W,X〉. This approach was successfully applied to brain imaging
data sets and uses a block relaxation algorithm, which solves a
sequence of lower dimensional optimization problems [27].

Similarly, several models related to the type I model are
considered in various settings. For example, Kar and Karnick use
random polynomial features and parameterize the coefficients of
the polynomial under consideration [28]. The parameterization
used in this approach has been shown to be equivalent to
imposing the CPD format to the weight tensor W [29]. Another
approach is factorization machines which use a multivariate
polynomial kernel in the realm of support vector machines
(SVM) [30]. For second-order factorization machines a first-
order stochastic gradient descent algorithm has been proposed.
This approach has a linear time complexity. Higher-order
factorization machines use the ANOVA kernel to achieve a
linear time complexity and have been successfully applied
to link prediction models using stochastic gradient descent
[31]. The ANOVA kernel does not use symmetric tensors in
the representation and instead only considers combinations
of distinct features [31]. Also, factorization machines in the
symmetric CPD format have been considered using first-order
and BFGS type algorithms [32]. Tensor machines generalize both
the Kar-Karnick random features approach and factorization
machines. It has been shown that these approaches correspond
to specific types of tensor machines in the CPD format. Further,
it has been shown that empirical risk minimization is an efficient
method for finding locally optimal tensor machines if the
optimization algorithm avoids saddle points [29].

As can be seen from the literature summary above, one of the
differences between our approach and the above methods is the

model used. The type I model (2) has not been examined with the
symmetric CPD structure in the weight tensors, to the best of our
knowledge. Another difference of our approach from the above
methods is the algorithm used. While first-order algorithms
are used in most of these approaches, we utilize the second-
order batchGauss–Newton (GN) algorithm. Although first-order
methods have the advantage of lower per-iteration complexity,
second-order GN algorithms generally require fewer iterations to
converge and fewer hyperparameters to be optimized. Moreover,
the GN algorithm using trust-region is more robust in the sense
that it converges to a (local) minimum for any starting point
under mild conditions and it is less prone to swamps (many
iterations with little to no improvement) [5, 6, 33].

We summarize our contributions as follows:

• We develop a TeMPO framework that is able to solve
many nonlinear problems with ubiquitous applications in
signal processing, machine learning and artificial intelligence.
Moreover, we develop an efficient second-order Gauss–
Newton algorithm for optimizing multivariate polynomials in
the CPD format.
• We determine the conditions where the tensorized linear

model (4) with polynomial features and the multivariate
polynomial model (2) coincide when the symmetric CPD
format is used in their representations.
• We show that TeMPO achieves similar or better accuracy

than various methods such as multilayer perceptrons (MLPs),
tensor networks with different architectures including tensor
trains (TT), tree tensor networks, and projected entangled
pair states (PEPS). We also show that TeMPO requires the
optimization for fewer parameters and less memory than these
methods for the classification of the MNIST and Fashion
MNIST datasets.
• Last but not least, our framework can be interpreted as

an advancement of higher-order factorization machines; we
introduce an efficient second-order Gauss–Newton algorithm
for higher-order factorization machines.

The remaining part of this article is organized as follows. In
Section 2, we describe notation and background information
concerning tensors. In Section 3, we describe the TeMPO
framework in a more detailed manner. Section 3 also covers
the details of representation of polynomials by symmetric
CPD structured tensors. In Section 3, we also show how
to exploit the symmetric CPD structure to obtain efficient
expressions for the gradient and Jacobian-vector products which
are necessary for the Gauss–Newton algorithm. The formulation
of the image classification problem in the context of TeMPO,
numerical experiments and related discussions will be covered
in Section 4. We conclude our paper with future remarks in the
last section.

2. PRELIMINARIES

2.1. Notation
A tensor is a higher-order generalization of a vector (first-order)
and a matrix (second-order). Following established conventions,
we denote scalars, vectors, matrices, and tensors by a, a,A, andA,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 March 2022 | Volume 8 | Article 83643360

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

respectively. The transpose of amatrixA is denoted asAT. The ith
column vector of a matrixA is denoted as ai, i.e.,A = (a1, a2 . . .).
The entry with row index i and column index j in a matrix
A, i.e., (A)ij, is denoted by aij. Similarly, (A)i1i2...iN is denoted
by ai1i2...iN . Diag(a) denotes the diagonal matrix whose entries
are composed from the vector a. On the other hand, diag(A)
denotes a vector composed from the diagonal elements of A.
The vectorization operator vec(A) for A ∈ K

I×J stacks all the
columns ofA into a column vector a ∈ K

IJ . The reverse operation
unvec(a) reshapes a vector a into a matrixA ∈ K

I×J . The identity
matrix of size (K×K) is denoted by IK . A vector of length K with
all entries equal to 1 is denoted by1K . The l2 norm of a vector a is
denoted by ‖a‖2. The row-wise and column-wise concatenation
of two vectors a and b is denoted by [a, b] and [a; b], respectively.
The outer product, Kronecker product, Khatri–Rao product, and
Hadamard product are denoted by ⊗, ⊗, ⊙, and ∗, respectively.
The nth power of a vector x with respect to Kronecker product is
defined as x⊗ n = x⊗ x⊗(n−1), with x⊗ 0 = 1. Similarly, x⊙ n and
x∗ n denotes the nth power of vector x with respect to Khatri–
Rao product and Hadamard product, respectively. The mode-n
product of a tensor A ∈ K

I1×I2×...×IN (with K meaning either
R or C) and a vector x ∈ K

In , denoted by A ·n xT, is defined

element-wise as
(
A ·n x

T
)
i1i2···in−1in+1···iN

=
∑IN

in=1
ai1i2···in···iNxin .

The mode-n product of a tensorA ∈ K
I×I×...×I of order k and a

vector x ∈ K
I for all modes is defined as

Axk
def
= A ·1 x

T
·2 x

T . . . ·k x
T.

A mode-n vector or mode-n fiber of a tensor A ∈ K
I1×I2×...×IN

is a vector obtained by fixing every index except the nth. The
mode-n matricization of A is a matrix A[n;N,N−1,...,n+1,n−1,...,1]

collecting all the mode-n vectors as its columns. For example,
an entry ai1i2i3 of a tensor A ∈ K

I×J×K is mapped to the (i2, q)
entry of the matrix A[2;3,1] with q = i1 + (i3 − 1)I. The binomial
coefficient is denoted by Ck

n =
n!

(n−k)!k!
. Some useful definitions

are listed below.

Definition 1 (Symmetric Tensor). A tensor A ∈ K
I×I×...×I of

order k is called symmetric if its entries are invariant under the
permutation of its indices.

As a consequence of this definition, the matrix representations of
symmetric tensors in different modes are all equal.

Definition 2 (Rank of a Tensor). A rank-1 tensor of order N is
the outer product of N nonzero vectors. The rank of a tensor is
equal to the minimal number of rank-1 terms that yield the tensor
as their sum.

Definition 3 (Kronecker Product). Given two matrices A ∈

K
I×J and B ∈ K

K×L, their Kronecker product is

A⊗B =

a1,1B · · · a1,JB
...

. . .
...

aI,1B · · · aI,JB

 ∈ K

IK×JL.

Definition 4 (Khatri–Rao Product). Given two matrices A ∈

K
I×K and B ∈ K

J×K with the same number of columns,

their Khatri–Rao product, also known as columnwise Kronecker
product, is

A⊙B = [a1⊗ b1, a2⊗ b2, . . . , aK ⊗ bK] ∈ K
IJ×K ,

where ai and bi denote the ith column of the matrices A and B,
respectively.

Definition 5 (Hadamard Product). Given two matrices A ∈

K
I×J and B ∈ K

I×J with the same size, their Hadamard product is
the elementwise product, i.e.,

A∗B =

a1,1b1,1 · · · a1,Jb1,J

...
. . .

...
aI,1bI,1 · · · aI,JbI,J

 ∈ K

I×J .

The following properties will be useful for our derivations.

Property 1. Let A ∈ K
I×J ,X ∈ K

J×K ,B ∈ K
K×L. Then

vec(AXB) =
(
B

T⊗A
)
vec(X) ∈ K

IL.

Moreover, if X ∈ K
J×J is a diagonal matrix and B ∈ K

J×L, then

vec(AXB) =
(
B

T⊙A
)
diag(X) ∈ K

IL.

Property 2. Let A ∈ K
I×J ,B ∈ K

K×J ,C ∈ K
I×L, and D ∈

K
K×L. Then

(A⊙B)T (C⊙D) =
(
A

T
C
)
∗

(
B

T
D

)
∈ K

J×L.

Property 3. For matrices A ∈ R
I×J and B ∈ R

J×K , and for the
function f (A,B) = AB, the following equations hold:

∂vec(f (A,B))

∂vec(A)
= B

T⊗ II ,
∂vec(f (A,B))

∂vec(B)
= IK ⊗A.

2.2. Canonical Polyadic Decomposition
Here, we will briefly describe the canonical polyadic
decomposition. A more detailed description of CPD can be
found in [1] and references therein. The CPD writes a tensor
T ∈ K

I1×I2×...×IN as a sum of R rank-1 tensors and is denoted byr
U(1), . . . ,U(N)

z
, with its factor matrices U(n) ∈ K

In×R, where R

equals the rank of the tensor. This is a shortcut notation for

T =

R∑

r=1

u(1)r
⊗ u(2)r

⊗ . . . ⊗ u(N)
r ,

where u
(n)
r denotes the rth column of the factor matrix U(n).

CPD is essentially unique under mild conditions [34–37], and
has found many applications in signal processing and machine
learning [1].

For symmetric tensors, all the factor matrices are equal, i.e.,

T =
q
U,U . . . ,U; cT

y
=

R∑

r=1

cr(ur ⊗ ur ⊗ . . . ⊗ ur) ∈ K
I×I×...×I ,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 March 2022 | Volume 8 | Article 83643361

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 1 | Polyadic decomposition of a third order symmetric tensor T. It is called canonical (CPD) if R is equal to the rank of T, i.e., R is minimal. It allows compact

representation of polynomials.

where U ∈ K
I×R, and c ∈ K

R is a vector of weights which allows
us to give minus signs to the factors for even-degree symmetric
tensors, see Figure 1. The matrix unfolding of a symmetric CPD
is given by

T = UDiag(c)(U⊙U⊙ · · ·⊙U)T.

3. TENSOR-BASED MULTIVARIATE
POLYNOMIAL OPTIMIZATION

The primary aim of the TeMPO framework is to develop efficient
algorithms for modeling nonlinear phenomena commonly
encountered in the areas of signal processing, machine learning,
and artificial intelligence [15]. To achieve this, we assume
structure in the nonlinear function f :RI → R

N that maps the
input data to output data. In our framework, we first assume
smoothness in f and approximate it as multivariate polynomial
p :RI → R

N . Then, we approximate p with low-rank tensors.
This allows us to achieve efficiency both in storing the coefficients
of the approximation and in performing computations with
those coefficients. Although any continuous function on a
compact domain can be approximated by polynomials arbitrarily
well according to the Stone–Weierstrass theorem, polynomial
approximations used in practice can pose several numerical
issues such as the Runge phenomenon. Several strategies have
been proposed to overcome these numerical issues, such as using
different polynomial bases and Tikhonov regularization [38, 39].
In this work, we will focus more on computational issues of
the TeMPO framework; however, it is possible to incorporate
these strategies with TeMPO using slight modifications. In the
remaining part of this section, we describe the scope of TeMPO.
Then we will describe two types of tensor representations of
multivariate polynomials where the symmetric CPD structure
is imposed on the coefficient tensors. Next we will briefly
describe the Gauss–Newton algorithm using the dogleg trust-
region method and show how to exploit the symmetric CPD
structure in the computation of Jacobian and Jacobian-vector
products that are necessary for the Gauss–Newton algorithm.

3.1. Scope of the TeMPO Framework
The TeMPO framework concerns optimization problems with
continuous cost functions on compact domains, namely

multilinear/polynomial cost functions with or without additional
constraints, which is a more general setting than tensor
decomposition or retrieval of a tensor factorization. To better
describe the scope, let us consider the following class of
objective functions:

l(θ , p(z)), (5)

where l :R × R
M → R

+ denotes the performance measure of
the model to be optimized, p :RI → R denotes a multivariate
polynomial represented by low-rank tensors, z ∈ R

I denotes
input data, and θ ∈ R

M denotes output data. A broad range
of objective functions are in the class of (5). For example, the
objective function for the estimation of the CPD of a third-order
tensor T can be written as

1

2

∥∥θ − p(A,B,C)
∥∥2
2
, where p(A,B,C) = vec (JA,B,CK) .

Other tensor decomposition problems, such as block term
decomposition (BTD), also fit into TeMPO. The symmetric
best rank-1 approximation problem [40], which can also be
formulated as

max
z∈R

I
Tzd, subject to ‖z‖ = 1, (6)

is another example problem that fits into the framework. Note
that (6) is expressed as the maximization of an objective function,
rather than as the decomposition of a tensor; indeed TeMPO
allows one to address more general problems. For the symmetric
best rank-1 approximation problem, several approaches such
as higher-order power method [40], generalized Rayleigh–
Newton iteration and the alternating least squares methods
[41], SVD-based algorithms [42], semi-definite relaxations [43]
have been proposed. Problems from unsupervised learning
such as nonlinear dimensionality reduction, manifold learning,
nonlinear blind source separation, and nonlinear independent
component analysis also fit into TeMPO. Similarly, problems
from supervised learning fit into TeMPO as well. In this work, we
will focus on the regression and classification problem and derive
expressions for Jacobian and Jacobian-vector products, which
are necessary for the Gauss–Newton algorithm. However, the
derivations here can be extended to the other problems without
much effort.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 March 2022 | Volume 8 | Article 83643362

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

Given data points (yk, zk), the regression problem can be
formulated within the TeMPO framework for the type I model as

min
T0 ,...,Td

p(T0, . . . ,Td,Z)

= min
T0 ,...,Td

1

2

K∑

k=1

yk − T0 −

d∑

j=1

Tjz
j

k

2

,

subject to rank(Tj) = Rj (7)

where Rj ∈ N
+ is a small integer, Tj ∈ R

I×I×...×I denotes the
low-rank structured coefficient tensor of order j to be optimized,
T0 ∈ R denotes a scalar, Z ∈ R

I×K denotes the data matrix, zk
denotes the kth column of Z and K is the number of available
data points. For the type II model, the regression problem takes
the form

min
T

p(T, Z̃) = min
T

1

2

K∑

k=1

(
yk − T z̃di

)2
,

subject to rank(T) = R (8)

where T denotes the low-rank structured coefficient tensor of
order d to be optimized, Z̃ ∈ R

(I+1)×K denotes the augmented
input data matrix, and z̃k denotes the kth column of Z̃, i.e.,
z̃k = [1; zk].

3.2. Tensor Representation of Polynomials
In this subsection, we examine the type I and type II model in
detail. A (symmetric) tensor T of order d and dimension n can
be associated with a homogeneous n-variate polynomial p(z) of
degree d [44], as shown in Equation (3).

Type I: Since any polynomial can be written as a sum of
homogeneous polynomials of increasing degrees, any polynomial
of degree d can be written by using tensors of order up to d, as
shown in Equation (2). Note that in the tensor representation of
polynomials, any tensor can be assumed to be symmetric without
loss of generality. Indeed, any homogeneous polynomial p(z) of
degree d ∈ N can be represented by a multilinear form Tzd,
where T ∈ K

I×I×...×I is a symmetric tensor of order d and z ∈

K
I .
To see this, suppose a homogeneous polynomial p(z) is

represented as

p(z) = T̃zd =

I∑

i1 ,i2,id=1

t̃i1i2...idzi1zi2 . . . zid ,

where T̃ ∈ K
I×I×...×I is a tensor of order d. Since the terms

zi1zi2 . . . zid are invariant under the permutation of indices, we
may write

p(x) =

I∑

i1 ,i2,id=1

ti1i2...idzi1zi2 . . . zid ,

where ti1i2...id =
1

d!

∑

(i1 ,i2 ,...,id)∈5(i1i2...id)

t̃i1i2...id ,

FIGURE 2 | By applying the homogenization process, symmetric tensors can

represent the coefficients of non-homogeneous polynomials. For example, by

stacking the coefficients t, t, T, and T of the third degree polynomial into a

tensor as shown above, we can represent it with a symmetric third-order

tensor. Image reproduced from Debals [46].

here 5(i1i2 . . . id) denotes the collection of all permutation of
indices (i1, i2, . . . , id). Since the entries of T are invariant under
the permutation of indices, we can conclude that T is symmetric.

The above discussion reveals the fact that there are infinitely
many representations of a given polynomial. Indeed two
representations with tensors T and W are equal so long as the
summation of the corresponding entries over the permutation of
indices remains the same, i.e.,

∑

(i1 ,i2 ,...,id)∈5(i1i2...id)

ti1i2...id =
∑

(i1 ,i2 ,...,id)∈5(i1i2...id)

wi1i2...id

In the ANOVA kernel used in higher-order factorization
machines, all t5(i1i2...id) are set to zero except t(i1<i2<...<id) [31],
which leads to a sparse representation. In this paper, we use
symmetric tensors for two reasons. The first reason is that
the CPD of a symmetric tensor can be expressed by a single
factor matrix. Therefore, the symmetric CPD representation of
multivariate polynomial requires fewer number of parameters in
comparison with a non-symmetric representation. The second
reason is that there is a rich history of the representation of
polynomials with symmetric tensors in the field of algebraic
geometry under the name of the Waring problem [45].

Type II: Augmenting the independent variable vector z,
by a constant 11, i.e., z̃ = [1; zT] leads to a different
representation of non-homogeneous polynomials that uses a
single dth order symmetric tensor for the inhomogeneous
multivariate polynomial of degree d, as shown in Equation (3).
This process is called homogenization [46] and is graphically
illustrated in Figure 2. If we just use full tensors, the type I and II

1Since the weight vector c is used in the parametrization of tensors, different

choices of constant in z̃ lead to mathematically equivalent cost functions in the

optimization problems. On the other hand, the choice of the constant may imply

numerical differences—in situations of this type, one should generally choose a

constant that “makes sense for the application.”

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 March 2022 | Volume 8 | Article 83643363

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

models are interchangeable. However, it is important to note that
when low-rank structure is imposed on the coefficient tensors, both
representations yield different classes of low-rank multivariate
polynomial. Hence, these approaches may lead to different
results depending on the application. The former approach
requires more parameters since it uses more factor matrices.
The difference in the number of parameters should be taken
into account to prevent underfitting and overfitting. A more
detailed description for storage complexity is given in Section
3.5. Moreover, the type I model allows us to constrain each
term in the representation separately. In modeling multivariate
polynomials, one might not wish the terms of different order to
have some shared structure, in which case one should choose
the type I model to work with. Similarly, the type II model
should be chosen, if some shared structure is desired in the
terms of different order. To further elaborate on the effects of
homogenization on the rank of a tensor, let us consider the
following proposition.

Proposition 1. Let p(z) :RI → R be a multivariate polynomial
of order d defined as in equation (2) by a scalar T0 and symmetric
tensors Tj ∈ R

I×I×...×I for j = 1, 2, . . . , d. Moreover, let W ∈

R
(I+1)×...×(I+1) be the corresponding tensor obtained from the

homogenization process. The tensorsW and Tj have the same rank
R if and only if the tensors Tj admit unique CPDs with shared
factor matrices and a weight vector c, i.e.,

Tj =
r
U, . . . ,U;C

j

d
(cT)⊙(d−j)

z
, and T0 =

R∑

r=1

(
(cT)⊙ d

)
r
.

Proof 1. Let the CPD of the tensor W be defined as JV, . . . ,VK,
where, for convenience but without loss of generality, the weights of
the rank-1 terms are assumed to be 1. Since W is obtained by the
homogenization process, partitioning V as [vT;Q] and using the
definition of CPD, we obtain

Tj =
r
Q, . . . ,Q;C

j

d
(vT)⊙(d−j)

z
, and T0 =

R∑

r=1

(
(vT)⊙ d

)
r
.

(9)
Since the CPDs of the tensors Tj are unique, the equality (9) holds
if and only if the equalities Q = U and v = c also hold.

Remark 1. In the above proof, we assumed that the vector v does
not contain any zero elements. Note that if the vector v does contain
zero elements, it cancels the corresponding rank-1 terms. Therefore,
in that case rank(W) > rank(Tj), for j = 1, . . . , d − 1. Moreover,
the uniqueness of the CPDs of Tj implies that rank(W) ≥
rank(Tj). Since the equality rank(W) = rank(Tj) holds only when
the tensors Tj have shared factor matrices as described above, we
can conclude that in all other cases rank(W) > rank(Tj).

Proposition 1 together with Remark 1 reveals the fact that if W
admits a rank-R CPD, there exists tensors Tj that admit rank-
Rj CPDs with shared factors and Rj ≤ R. Hence, the expressive
power of the type II model is weaker than the type I model, i.e.,
the type II model requires higher rank values than the type I

model to be able to model functions of the same complexity. In
other words, the set of polynomials represented by the type II
model is a strict subset of the set of polynomials represented by
the type I model for the same rank values.

Although we focus in this study on the type I and type II
models in the symmetric CPD format, the TeMPO framework
is not limited to these. TeMPO collects low-rank tensor
representations of multivariate polynomials under a roof by
utilizing various other tensor decompositions such as TT, HT,
and non-symmetric and partially symmetric CPD formats2.
In this way, TeMPO breaks the curse of dimensionality and
makes it possible to develop second-order efficient algorithms
for the optimization of a more general class of multivariate
polynomials. Moreover, use of structured tensors and multilinear
algebra makes it easy to incorporate other polynomial bases and,
more generally, other nonlinear feature maps rather than the
standard polynomial bases to the TeMPO framework. From this
point of view, TeMPO can be interpreted as a generalization of
higher-order factorization machines that use particular types of
multivariate polynomials with the standard polynomial bases and
utilize first-order and BFGS type algorithms [30–32, 47].

3.3. Gauss–Newton Algorithm
Most standard first-order and second-order numerical
optimization algorithms can be used for solving problem
(8). Since the objective function under consideration is
a least-squares function, we will utilize the second-order
batch Gauss–Newton (GN) algorithm using a trust-region to
take advantage of its attractive properties such as quadratic
convergence near a local optimum point, resistant to swamps,
suitable to incorporate constraints easily and eligible to exploit
multilinear structure. In the case the objective function is not
least squares, the inexact GN algorithm can also be utilized.
Below, we briefly describe the GN algorithm using a trust-region,
and then derive the expressions for Jacobian and Jacobian-vector
products for tensors in the symmetric CPD format. In nonlinear
least-squares problems, the objective function is the squared
error between a data vector y and a nonlinear modelm(z) [6, 33]:

f (z) =
1

2

∥∥m(z)− y
∥∥2
2
=

1

2
rTr, (10)

where z ∈ R
I . The algorithm updates the initial guess iteratively

by taking a step length αk in the direction pk at the iteration k, i.e.,

zk = zk−1 + αkpk,

until some stopping criteria are satisfied. Line search and trust-
region are the two main approaches used to determine αk and
pk. Here, we focus on the dogleg trust-region approach. In this
approach, one sets αk = 1. Then, given a trust-region of radius
δk, the GN step p

gn

k
and the steepest descent step psd

k
for the

current iteration, the step direction pk is determined by the
following procedure:

2Note that the non-symmetric and partially symmetric CPD formats are fairly

straightforward variants of the symmetric CPD format, and derivations presented

in Section 3.4 can be generalized to these formats with slight modifications.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 March 2022 | Volume 8 | Article 83643364

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

Algorithm1:GNalgorithm using dogleg trust-region for the
type II model.

Input : Z – Input data matrix
y – Vector of values (labels in the classification

case) for each data point in Z

U, c – Initial factor matrix and weight vector
T0 – Initial scalar

Output: U, c – Optimized factor matrix and weight vector
T0 – Optimized scalar

while not converged do
rk← Compute residual vector using equations (21) and
(22)
gk← Compute gradient using equation (27)
pk← Solve linear systems of equations (12) using CG
method
U, c, T0← Update via dogleg trust-region explained in
Subsection 3.3

end

• If
∥∥pgn

k

∥∥
2
≤ δk, then pk = p

gn

k
.

• If
∥∥pgn

k

∥∥
2

> δk and
∥∥∥psdk

∥∥∥
2

> δk, then pk = δkp
sd
k

/

∥∥∥psdk
∥∥∥
2
.

• If
∥∥pgn

k

∥∥
2

> δk and
∥∥∥psdk

∥∥∥
2
≤ δk, then pk = τkp

sd
k
+ βk(p

gn

k
−

τkp
sd
k
), where τk = −

∥∥∥psdk
∥∥∥
2

2

/∥∥∥Jkpsdk
∥∥∥
2

2
, and βk is selected such

that
∥∥pk

∥∥
2
= δk.

The steepest descent step psd
k

is given by −JT
k
rk. To compute

the GN step, a second order Taylor series approximation for the
objective function is used. The optimal direction for the GN step
p
gn

k
can be obtained by solving the optimization problem,

p
gn

k
= argmin

p
f̃ (p), with f̃ (p) = f (zk)+ pTgk +

1

2
pTHkp,

(11)
where gk denotes the gradient and Hk denotes the Hessian at the

current iteration. Setting ∂̃f (p)/∂p to zero, the solution of (11)
can be obtained by solving the linear system of equations

Hkp
gn

k
= −gk, with gk = JTkrk, (12)

where Jk denotes the Jacobian of f (zk) at iteration k, and
rk = m(zk) − y. However, in real-life applications, explicit
computation of the Hessian is often expensive. To overcome this,
GN approximates the Hessian by the Grammian matrix as

Hk ≈ JTkJk.

In this study, we used the conjugate gradient (CG) algorithm
for solving (12) together with the dogleg trust-region approach
which is implemented in Tensorlab [11]. The overall algorithm is
summarized in Algorithm 1.

3.4. Exploiting the Symmetric CPD Format
As described above, the GN algorithm minimizes a cost function
in the form of Equation (10). The gradient of this objective

function can be written as JTr, and the Hessian is approximated
by JTJ, where J is the Jacobian matrix composed of partial
derivatives of the residual vector r. Hence, it is sufficient to derive
expressions for the Jacobian and Jacobian-vector products. We
begin with the first-order derivatives of the multilinear form
Tzd, where T is in the symmetric CPD format, with respect
to its factors and then proceed to the derivation of Jacobian
and Jacobian-vector products for problems (7) and (8). The
derivations made here can be used in other TeMPO problems
with slight modifications.

3.4.1. Derivatives of the Multilinear Form in the

Symmetric CPD Format
By using the matrix unfolding of the tensor in the symmetric
CPD format and Property 2 of Khatri–Rao product, the
multilinear form Tzd can be written as

Tzd = cT
(
UTz

)∗ d
, (13)

which will be useful for our derivations below.

Lemma 1. Let T ∈ K
I×I×...×I be a symmetric tensor of order d

and its CPD given as T = JU, . . . ,U; cTK. Then the derivative of
the multilinear form Tzd with respect to vec(U) can be obtained as

∂Tzd

∂vec(U)
=

(
(c∗w)⊗ z

)T
,

where w = d
(
U

T
z
)∗(d−1)

.

Proof 2. The proof immediately follows from Equation (13) and
successive application of Property 3.

Lemma 2. Let T ∈ K
I×I×...×I be symmetric tensor of order d and

its CPD is given as T = JU, . . . ,U; cTK. Then the derivative of
multilinear form Tzd with respect to vector c can be obtained as

∂Tzd

∂c
=

(
z
T
U

)∗ d
.

Proof 3. The proof immediately follows from Property 3 and
Equation (13).

3.4.2. Exploiting Structure in the Type I Model
Objective Function: The construction of the residual vector r

and the computation of its l2 norm is sufficient for computing
the objective function in (7). By utilizing Property 2 and Equation
(13), the residual vector can be expressed as r = y−µ, where each
entry of the vector µ ∈ R

K is defined as

µk = T0 +

d∑

j=1

cTj w
∗ j
j,k
,

in which wj,k = UT
j zk with Uj ∈ R

I×R, and w
∗ j
j,k

denotes the

jth elementwise power of the vector wj,k. By defining Wj =

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 March 2022 | Volume 8 | Article 83643365

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

[
wj,1,wj,2, . . . ,wj,K

]
, we can write the residual vector r in a

compact form as

r = y− T0 · 1K −

d∑

j=1

(
cTj

(
W
∗ j
j

))T

, (14)

Using the above Equation (14), the objective function can be
computed as the l2 norm of the residual vector r.

Jacobian: The Jacobian matrix for problem (7), with the
tensors Tj in their symmetric CPD format, can be written in a
compact form as

J = [J1; . . . ; JK] , where

Jk =

[
1,

∂rk

∂vec(U1)
, . . . ,

∂rk

∂vec(Ud)
,
∂rk

∂c1
, . . . ,

∂rk

∂cd

]
. (15)

Note that we used the fact ∂rk/∂T0 = 1 in the above equation. By
utilizing Lemma 1 and Lemma 2, the derivative of each term of
the residual vector with respect to Uj and cj can be expressed as

∂rk

∂vec(Uj)
= −j

[(
cj∗w

∗(j−1)
j,k

)
⊗ zk

]T

, and
∂rk

∂cj
=

(
w
∗ j
j,k

)T

.

(16)

By defining W̃j = −j
(
W
∗(j−1)
j

)
for j = 1, . . . , d, and Z =

[z1, z2, . . . , zK], the Jacobian matrix J in (15) can be obtained in
the following compact block form:

J =
[
1K , ((C1W̃1)⊙Z)

T
, . . . , ((CdW̃d)⊙Z)

T
,V

]
, (17)

where V is a K × d block matrix in which each block is defined

as Vk,j =

(
w
∗ j
j,k

)T

, Cj = Diag(cj), and d is the degree of

the polynomial under consideration. Since we only need the
Jacobian-vector products for the GN algorithm, the explicit
construction of the Jacobianmatrix is not required. The Jacobian-
vector products can be obtained in a more memory-efficient way
as described below.

Jacobian-Vector Product: The product of Jacobian J by a
vector x can be obtained using block matrix operations. The
product of each block term by a vector vec(Xj) = xj can be
obtained by utilizing properties 1 and 2 as

((CjW̃j)⊙Z)
T
xj =

[(
XT
j Z

)
∗(CjW̃j)

]T

1R. (18)

Note that the multiplication of a matrix by 1R from the right
is equivalent to summing the columns of the matrix under
consideration. Therefore, neither themultiplication by 1R nor the

transposition of the matrix
(
XT
j Z

)
∗(CjW̃j) in Equation (18) is

necessary to obtain the Jacobian-vector product. Note also that,
since the matrices Cj are diagonal, the product CjW̃j can be
obtained in amemory efficient way bymultiplying the rows of W̃j

by the corresponding diagonal elements of Cj without explicitly
forming the matrices Cj. Overall, the product of the Jacobian J

and the vector x can be obtained by partitioning the vector x, i.e.,

x = [x1; x1; x2; . . . ; xd; xv], and by using the Equations (17) and
(18) as

Jx = x1 · 1K +

d∑

j=1

[(
XT
j Z

)
∗(CjW̃j)

]T

1R + Vxv,

where Xj = unvec(xj).
Jacobian Transpose -Vector Product and Gradient: In a

similar way, block-wise multiplication of the Jacobian transpose
JT by a vector can be obtained from the expression

((CjW̃j)⊙Z)x = vec
(
ZDiag(x)(CjW̃j)

T
)
. (19)

Note that right multiplication by a diagonal matrix can be
done efficiently by only multiplying the columns of the matrix
with the corresponding diagonal elements without explicitly
forming the diagonal matrix. Overall, by defining ξ j =

vec
(
ZDiag(x)(CjW̃j)

T
)
, we can obtain the product of the

Jacobian transpose JT and a vector x in the following form:

JTx =

[
K∑

k=1

xk; ξ 1; ξ 2; . . . ; ξd;V
Tx

]
. (20)

The gradient can be obtained by the product of the Jacobian
transpose JT and the residual vector r. Defining ηj =

vec
(
ZDiag(r)(CjW̃j)

T
)
and utilizing the Equations (19) and (20),

we can obtain the gradient as

g =

[
K∑

k=1

rk; η1; η2; . . . ; ηd;V
Tr

]
.

3.4.3. Exploiting Structure in the Type II Model
Objective Function: The computation of the objective function
for the type II model is similar to that of the type I model.
Utilizing Property 2 and Equation (13), the residual vector for
problem (8) can be obtained as r = y− µ with

µ =

[
cTw∗ d1 ; c

Tw∗ d2 ; . . . ; cTw∗ dK

]
, (21)

where wk = UTz̃k. By defining W = [w1,w2, . . . ,wK], we can
write the residual vector r in a compact form as

r = y−
(
cT

(
W∗ d

))T

, (22)

Using the above Equation (22), the objective function can be
computed as the l2 norm of the residual vector r.

Jacobian: The Jacobian matrix of the cost function in (8) can
be defined in a compact form as

J = [J1; J2; . . . ; JK] , where Jk =

[
∂rk

∂vec(U)
,
∂rk

∂c

]
. (23)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 March 2022 | Volume 8 | Article 83643366

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

Utilizing Lemma 1 and Lemma 2 and using the equations in (16),
the parts of Jk in Equation (23) can be written as

∂rk

∂vec(U)
= −d

[(
c∗w∗(d−1)

k

)
⊗ z̃k

]T

,
∂rk

∂c
=

(
w∗ dk

)T

.

By defining W̃ = −d
(
W∗(d−1)

)
, V =

[
∂r1

∂c
;
∂r2

∂c
; . . . ;

∂rK

∂c

]
,

and Z = [̃z1, z̃2, . . . , z̃K], the Jacobian matrix can be obtained in
the following compact form:

J =
[(
(CW̃)⊙Z

)T
,V

]
. (24)

As mentioned earlier, explicit construction of the Jacobian
matrix J is not required. We only require the Jacobian-vector
and Jacobian transpose-vector products and derive efficient
expressions for these products below.

Jacobian-Vector Product: The product of the Jacobianmatrix
J and a vector x can be obtained in a similar way as for the type I
model, by partitioning the vector x, i.e., x = [xu; xc] and utilizing
properties 1 and 2 and Equation (24), as

Jx =
[(
XT
uZ

)
∗(CW̃)

]T
1R + Vxc, (25)

where Xu = unvec(xu). As mentioned earlier for Equation (18),
explicit construction of the diagonal matrix C is not required.
The product CW̃ can be obtained in a memory efficient way
by multiplying the rows of W̃ by the corresponding diagonal
elements of C.

Jacobian Transpose -Vector Product and Gradient: In
similar way, utilizing properties 1 and 2 and Equation (24), the
product of Jacobian transpose JT and a vector x can be written as

JTx =
[
vec

(
ZDiag(x)(CW̃)

T
)
;VTx

]
. (26)

Since the gradient is the product of the Jacobian transpose JT and
the residual vector r, it directly follows from the above Equation
(26) as

g =
[
vec

(
ZDiag(r)(CW̃)

T
)
;VTr

]
. (27)

3.5. Complexity Analysis
We now analyze the storage and computational complexity of
TeMPO where we are optimizing over symmetric rank-R CPD
structured tensors T ∈ K

I×I×...×I of order d. The analysis is
presented here for the type II model. However, since the number
of optimization parameters of the type I and type II models
(see Equations 2, 3) for an I-variate polynomial of degree d are
proportional to each other, the analysis also applies to the type I
model. Indeed, the computational complexity of the type I model
is d times the computational complexity of the type II model. We
also compare with the storage and computational complexity of
TT and PEPS tensor networks.

Representing a multivariate polynomial with I independent
variables and of degree d in dense format requires storing Cd

(I+d)

elements. Using Stirling’s approximation, it can be shown that the

storage complexity for a multivariate polynomial represented in

dense format isO
(
Id

)
for d≪ I. In the symmetric CPD format,

we need to store only the factor matrix U ∈ R
I×R and the

vector of weights c ∈ R
R, where R is the rank of the symmetric

CPD. Therefore, the storage complexity for the type II model
using the symmetric CPD format is O (IR). This shows that the
symmetric CPD format breaks the curse of dimensionality, since
the storage complexity in this format is linear in terms of rank R
and dimension I.

As is clear from Equation (22), the construction of the
matrixW and its dth Hadamard (elementwise) power dominates
the computational complexity of the objective function. The
construction of a single column of the matrix W requires
the multiplication of UT ∈ R

R×I and z̃k ∈ R
I . Thus,

the computational complexity of constructing the matrix W is
O (IKR). The dth Hadamard power of the matrix W can be

computed recursively by using the relationW∗(2m) =
(
W∗m

)∗ 2
.

Thus, the computational complexity of the dth Hadamard power
of the matrix W ∈ R

R×K is O
(
log(d)RK

)
. Therefore, the total

computational complexity for computing the objective function
for a batch of size K is O

(
(I + log(d))KR

)
. Since log(d)≪ I, the

computational complexity for the objective function in Equation
(8) isO (IKR).

The gradient of the objective function in Equation (8)
can be obtained by multiplying the Jacobian transpose JT

by the residual vector r. As shown in Equation (27), this
operation requires multiplication of a matrix Z ∈ R

I×K

by a diagonal matrix Diag(r), and the multiplication of the

matrices ZDiag(r) and (CW̃)
T
with sizes (I × K) and (K ×

R), respectively. Note that the entries of the product CW̃

were already obtained in the computation of the objective
function. Further, the computational complexity for the product
ZDiag(r) isO (IK). Consequently, the computational complexity

for the multiplication of ZDiag(r) and (CW̃)
T
is O (IKR). In

addition, the computation of VTr in Equation (27) requires
O (KR) operations. However KR ≪ IKR. Therefore, the total
computational complexity for computing the gradient isO (IKR)

for R≫ 1.
In addition, TeMPO uses the GN algorithm for the

optimization. However, this is not a requirement and first-
order methods can also be utilized within TeMPO as well. GN
requires solving the linear system of equations in (12). Tensorlab’s
implementation of GN uses the conjugate-gradient (CG) method
which requires only the Grammian-vector product for solving
(12). This operation requires multiplication of the Jacobian and
its transpose by a vector. The computational complexity of
multiplying the transpose of Jacobian by a vector is O (IKR) as
described above. The computationally most expensive operations
in themultiplication of Jacobian by a vector are themultiplication
of matrices XT

u and Z with sizes (R × I) and (I × K), and
the Hadamard product of two matrices of size (R × K) as
shown in Equation (25). Hence, the computational complexity
of computing Jx is O (IKR). Note that the entries of the product
CW̃ were already obtained in the computation of the objective
function. Therefore, the total computational complexity for a
single CG iteration is O (2IKR). Note that a large number of

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 March 2022 | Volume 8 | Article 83643367

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

TABLE 1 | The comparison of the computational complexity of TEMPO with TT and PEPS tensor networks for a batch size of K.

Calls TEMPO PEPS TT-N

(per iter) (Type I model)

Storage O (dIR) O
(
nIR2

TT

)

Objective func. 1 O
(
(dIKR

)
O

(
KR3

BTR
6
PS

)
O

(
nIR2

TT + R3
TT log(I)

)

Gradient 1 O (dIKR) O
(
αKR3

BTR
6
PS

)
O

(
α

(
nIKR2

TT + KR3
TT log(I)

))

Gramian-vector itCG O (2dIKR) − −

CG iterations in the solution of linear equations for the GN
algorithm might increase the computation time compared to
first-order algorithms. In fact, the number of CG iterations scales
with the number of optimization variables (IR), if the exact
solution is desired in the solution of the normal equations.
This may lead to an quadratic complexity of O

(
2(IR)2K

)
.

However, we observed in our experiments that a small number
of CG iterations were sufficient to obtain accurate results. For
example, we set the maximum number CG iterations to 10 for
the classification of the MNIST and Fashion MNIST datasets,
where the number of unknowns is 784 × R with R ranging
from 10 to 150.

The storage complexity of a tensor network with TT
architecture is bounded by O

(
nIR2TT

)
for a tensor of order I

with dimensions (n × n × . . . × n), where RTT denotes the TT-
rank [48]. n is equal to 2 and I is the size of a single image
in the image classification applications presented in [20, 21].
Note that the storage complexity of TT increases with powers
of the TT-rank RTT . The total computational complexity of
TT for computing the objective function has been reported as
O

(
nIR2TT + R3TT log(I)

)
, when the contraction order defined in

[21] is used. When the sweeping algorithm described in [20]
is used, the computational complexity of the objective function
for TT is O

(
n3R3TTI

)
for a single data point of size I. Similar

to the storage complexity, the computational complexity of the
objective function for TT increases with powers of the TT-rank
of the tensor under consideration. On the other hand, automatic
differentiation (AD) is one of methods used to compute the
gradient of TT. The computational complexity of automatic
differentiation is linear in the complexity of the evaluation of the
objective function [49]. Therefore, the computational complexity
of the gradient for TT tensor network presented in [21] is
O

(
α

(
nIKR2TT + KR3TT log(I)

))
, for a batch size of K with α > 1.

The total computational complexity of TT tensor network for
a batch size of K has been reported as O

(
mR2TT(RTT + K)

)
for

a single iteration of the stochastic Riemannian gradient descent
algorithm [19]. As it is clear from the above discussion, both the
storage and the computational complexity of TT increases with a
power of the TT-rank regardless of the algorithm used, while for
TeMPO it increases linearly with the symmetric CPD rank in the
symmetric CPD case.

The computational complexity of a single forward pass of
PEPS for a batch size of K is O

(
KR3BTR

6
PS

)
, when the boundary

matrix product state method is used. Here RBT is the bond
dimension (rank) of the boundary matrix product state of PEPS
and RPS is the bond dimension of PEPS. In addition, the

backward pass for PEPS requiresO
(
αKR3BTR

6
PS

)
operations (with

α > 1), when automatic differentiation is used [22].
The above analysis shows that TeMPO is computationally less

expensive than TT and PEPS, even though it uses a second-
order algorithm. All these results are summarized in Table 1.
The fundamental reason for this is the linear storage complexity
of the symmetric CPD format. Both TT and PEPS involve
third and higher-order tensors, which makes their computational
complexity increase with powers of the bond dimension. On the
other hand, the CPD format is known to be numerically less
stable than the TT format, which relies on orthogonal matrices.

4. NUMERICAL EXPERIMENTS

We conducted an experiment on the regression problem using
synthetic data to illustrate the TeMPO framework and compared
TeMPO with different implementations of SVMs in Section 4.1.
Next, we applied our framework to the blind deconvolution
of constant modulus (CM) signals and compared with the
analytical CM algorithm (ACMA) [50], the optimal step-size CM
algorithm (OSCMA) [51], and the LS-CPD framework [52] in
Section 4.2. In Section 4.3, we further illustrate TeMPO with the
image classification problem. We performed experiments on the
MNIST and FashionMNIST datasets and compared the accuracy
and number of optimization parameters with MLPs, and TT
and PEPS tensor networks. We performed experiments on a
computer with an Intel Core i7-8850H CPU at 2.60 GHz with 6
cores and 32 GB of RAM using MATLAB R2021b and Tensorlab
3.0 [11].

In our blind deconvolution experiments, we used the complex
GN algorithm with the conjugate gradient Steihaug method. We
used the second-order batch Gauss–Newton algorithm for the
regression and classification, following the same intuition as in
[53]. In each epoch of the algorithm, we randomly shuffle the data
points in the training set and process all data points by dividing
them into batches. In the regression and binary classification
case, we optimize a single cost function. In the multi-label
classification case, for each batch, we randomly select a cost
function fl defined for each label to optimize. Thus our algorithm
does not guarantee that each fl will be trained by all training
images in each epoch in the multi-label classification case. To
guarantee this, the algorithm can be modified such that for each
batch all cost functions fl are optimized at the cost of increasing
CPU time by a factor of the number of classes L. However, in
that case the algorithmmight need fewer epochs to converge. The
overall algorithm is summarized in Algorithm 2. Algorithm 2

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 March 2022 | Volume 8 | Article 83643368

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

Algorithm 2: Batched GN algorithm using dogleg trust-
region for regression and classification for the type II model.

Input : Z – Input data matrix
y – Vector of values (labels in the

classification case) for each data
point in Z

U1, . . . ,UL – Initial factor matrices for each label
(single in the regression case)

c1, . . . , cL – Initial weight vectors for each label
(single in the regression case)

T0,l – Initial scalar for each label (single in
the regression case)

epoch – Number of epochs
batchsize – Batch size

Output: U1, . . . ,UL – Optimized factor matrices for each
label (single in the regression case)

c1, . . . , cL – Optimized weight vectors for each
label (single in the regression case)

for each epoch do
Shuffle input data
for each batch do

l← 1
ifmulti-label classification then

l←
Randomly select label l to optimize fl , 0 < l ≤ L

end

Ul, cl,T0,l← Optimize fl using Algorithm 1

end

end

is given for the type II model for the ease of explanation. Slight
modifications are sufficient to obtain an algorithm for the type
I model.

We define the relative error as the relative difference in
l2 norm ||f − f̂||2/ ‖f‖2 with f̂ an estimate for a vector f,
and the signal-to-noise ratio (SNR) as 20 log10

(
‖f‖2/‖η‖2

)
,

where η = f̂− f.

4.1. Regression
In this experiment, we considered a low-rank smooth function
f (x) :RN → R, namely

f (x) =

Rf∑

r=1

αre
(aTr x), (28)

where x ∈ [−1, 1]N , Rf is the rank of the function f (x),
and the coefficients αr are scalars randomly chosen from the
standard normal distribution. We generated 5, 000 test samples
and 1, 000 training samples for N = 50 and Rf = 8. Each

vector ar ∈ R
N was a unit norm vector drawn from the

standard normal distribution. Each of the samples of xwas drawn
from the uniform distribution. We initialized each factor matrix
with a matrix whose elements were randomly drawn from the
standard normal distribution, and scaled it to unit norm. We

initialized each weight vector in the same way as the factor
matrices. We approximated f (x) by the type I and type II model
of degree 5 whose coefficient tensors were represented in the
rank-R symmetric CPD format. We set the batch size to 500
and the maximum number GN iterations to 5 for each batch.
In Figure 3, we show the median relative test and training errors
for R = {2, 4, 8, 16} as a function of the number of epochs for
100 trials. Each epoch corresponds to optimization over the full
training set. It is clear from Figure 3 that TeMPO produces more
accurate results and generalizes better when using higher rank
values, for both the type I and type II model. Good performance
is also observed for R = 16 > Rf = 8, meaning that TeMPO is
robust to over-estimation of the number of parameters. For low
rank values, i.e., R < Rf , the type I model produces better results
than the type II model because it involves more parameters that
can be tuned, cf. the discussion of Proposition 1.

In the second stage of the experiment, we trained the type I
and type II model for a multivariate polynomial of degree 5 with
noisy measurements. We added Gaussian noise to the function
values for a given SNR, i.e.,

f̃ (x) =

R∑

r=1

αre
(aTr x) + η, (29)

where η denotes the noise. We run our algorithm with the same
settings as in the noiseless case for an SNR ranging from 10 dB to
50 dB. In Figure 4, we show the median errors for 100 trials as a
function of SNR. We have similar observations as in the noiseless
case. Apart from these observations; although the accuracy of our
algorithm decreases for SNR ≤ 20 (dB), it still maintains good
accuracy for SNR > 20 (dB), as shown in Figure 4. Moreover, as
can be observed from the Figure 4 (left), the type I model overfits
for R = {8, 16} and SNR ≤ 20 (dB) in agreement with the result
of Proposition 1.

In our next experiment, we trained the type I and type IImodel
with larger-size samples, i.e., N = 250 and R = {8, 16, 32, 64}, to
assess how the CPU time depends on the rank. In Figure 5, we
show the median CPU time per epoch as a function of the rank.
It is evident from the figure that the computational complexity
of the type I model is d times the computational complexity of
the type II model (cf. Section 3.5). Moreover, Figure 5 confirms
that the computational complexity of our algorithm is linear in
the rank (cf. Section 3.5).

In our next experiment, we examined the generalization
abilities of the Gauss–Newton and ADAM [54] algorithms in
our framework. We trained the type I model for a multivariate
polynomial of degree 5 with both of these algorithms for different
number of training samples to fit the rank-8 function given as
in Equation (29). We set R = 8, N = 50, and SNR = 20(dB).
For the ADAM algorithm, we set the step size, the exponential
decay rate for the first momentum (β1), and the exponential
decay rate for the second momentum (β2) to 0.01, 0.9, and 0.99,
respectively. In Figure 6, we show the median training and test
accuracies of these algorithms for the number of training samples
ranging from 500 to 5, 000 as a function of the number of epochs
for 100 trials. It is evident from Figure 6 that the presented
Gauss–Newton algorithm produces more accurate results than

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 March 2022 | Volume 8 | Article 83643369

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 3 | (Left) The median test (dashed lines) and training (solid lines) errors of the type I model for 100 trials on the synthetic data for a rank-8 function given as in

Equation (28). The number of samples for the training dataset is set to 5, 000 and for the test dataset it is set to 1, 000. The batch size is set to 500 and the maximum

number of GN iterations is set to 5. (Right) The median test (dashed lines) and training (solid lines) errors of the type II model with the same algorithm settings. TeMPO

produces more accurate results and generalizes better for higher rank values for both the type I and type II model. The performance is robust to overparameterization

(R > Rf). The type I model produces better results for low rank values, i.e., R < Rf .

FIGURE 4 | (Left) The median test (dashed lines) and training (solid lines) errors of the type I model for 100 trials on the synthetic noisy data for a rank-8 function

given as in Equation (29). The number of samples for the training dataset is set to 5, 000 and for test dataset is set to 1, 000. The batch size is set to 500 and the

maximum number of GN iterations is set to 5. (Right) The median test (dashed lines) and training (solid lines) errors of the type II model with the same algorithm

settings. TeMPO produces more accurate results and generalizes better for higher rank values for both the type I and type II model in the presence of noise as well.

Again, the type I model produces better results for low rank values, i.e., R < Rf , because it involves more parameters than the type II model.

the ADAM algorithm and also requires fewer number of epochs
to converge in these experimental settings.

We also compared TeMPO with SVMs using a polynomial
kernel. We run the same experiment for a number of training
samples ranging from 500 to 5, 000. We set the rank to 8, i.e.,
R = Rf for TeMPO. We used the built-in Matlab routine
fitrsvm and LS-SVMlab toolbox [55, 56]. We set the degree
of polynomial kernel to 5, i.e., equal to the degree of the type I
and type II model for fitrsvm. LS-SVMlab automatically tunes
the degree to 3 to find the best fit. In Figure 7 (left), we show the
median test and training errors for SVM, the type I and type II

model. It is clear from Figure 7 (left) that the type I and type II
model generalize better than fitrsvm. A possible reason is the
dense parameterization of SVMs, while TeMPO uses low-rank
parameterization. Moreover, as shown in Figure 7 (right), our
algorithm is faster than SVMs for numbers of training samples
above 1, 000. This is due to the higher memory requirement of
SVMs. Typically, kernel based methods such as LS-SVM have
a storage and computational complexity of O

(
N2

)
[55], with

N the number of training samples. In contrast, Figure 7 (right)
confirms that the computational complexity of TeMPO is linear
in the number of training samples (cf. Section 3.5).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 March 2022 | Volume 8 | Article 83643370

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 5 | The median CPU time (seconds) per epoch for the type I and type II model as a function of the rank for a rank-8 function given as in Equation (28) for 100

trials. The number of samples for the training dataset is set to 5, 000 and for the test dataset it is set to 1, 000. The batch size is set to 500 and the maximum number

of GN iterations is set to 5. The figure confirms that the computational complexity of the type I model is d times the computational complexity of the type II model (cf.

Section 3.5). Moreover, the computational complexity of the algorithm is linear in the rank (cf. Section 3.5). The figure is in a logarithmic scale on the horizontal axis.

4.2. Blind Deconvolution of Constant
Modulus Signals
Blind deconvolution can be formulated as a multivariate
polynomial optimization (MPO) problem and hence it fits into
the TeMPO framework [15]. In this illustrative example, we limit
ourselves to an autoregressive single-input single-output (SISO)
system [57], given by

L∑

l=0

wl · y[k− l] = s[k]+ n[k], for k = 1, . . . ,K, (30)

where y[k], s[k], and n[k] are the measured output signal, the
input signal and the noise at the kth measurement, respectively,
and wl denotes the lth filter coefficient. Ignoring the noise for the
ease of derivation, (30) can be written as:

YTw = s, (31)

where Y ∈ C
L×K is a Toeplitz matrix and its rows are the

subsequent observations under the assumption that we have K +
L− 1 samples y[−L+ 1], . . . , y[K]. The vector w ∈ K

L contains
the filter coefficients and the kth entry of the source vector s ∈
C
K is the input signal at the kth time instance, i.e., sk = s[k].

In blind deconvolution, one attempts to find the original input
signal s and the filter coefficients w by only observing the output
signal Y. Thus, constraints on signals and/or channel have to be
imposed to obtain interpretable results. The constant modulus
(CM) criterion is a widely used input constraint [58]. The CM
property, which holds for phase- or frequency-modulated signals
[50, 59] can be written as:

|sk|
2 = c, for k = 1, 2, . . . ,K. (32)

Here, c is a constant scalar. By substituting sk defined in (31) into
(32), we obtain

(
Y⊙Y

)T
(w⊗w) = c · 1K . (33)

Following the same intuition as in [60], by multiplying (33) from
the left with a Householder reflector Q [61], generated for c · 1K ,
and removing the first equation3, we obtain

M(w⊗w) = 0. (34)

Here, M = Q̃
(
Y⊙Y

)T
, and Q̃ is obtained by removing the first

row of the Householder reflector Q. In applications, M(w⊗w)
will not vanish exactly due to the presence of noise. Hence, we
look for the solution which minimizes its l2 norm as

min
w,w

f (w,w) = min
w,w

1

2

∥∥M(w⊗w)
∥∥2
2
, subject to ‖w‖ = 1.

(35)
The objective function in (35) is a homogeneous multivariate
polynomial of degree 4 in which the coefficient tensorW is given
as a rank-1 Hermitian symmetric CPD, i.e.,

W = w ⊗ w ⊗ w ⊗ w : = Jw,w,w,wK . (36)

Exploiting the rank-1 Hermitian symmetric CPD structure in
(36) and the structure of M, which is a special case of Lemma
1 and Lemma 2, efficient expressions for the computation

3The first equation is only a normalization constraint.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 March 2022 | Volume 8 | Article 83643371

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 6 | Comparison of the median test (dashed lines) and training (solid lines) errors of the Gauss–Newton and the ADAM algorithms as a function of the number

of epochs for 100 trials. The type I model for a rank-8 function given as in Equation (29) in the presence of SNR 20 dB Gaussian noise is used to generate the training

and the test sets. The batch size is set to 10% of the training set size. For the Gauss–Newton algorithm, the maximum number of GN iterations and CG iterations is

set to 1 and 5, respectively. For the ADAM algorithm, the step size, β1 and β2 are set to 0.01, 0.9, and 0.99, respectively. The number of training samples is set to 500

(top-left), 1, 000 (top-right), 2, 000 (bottom-left), and 5, 000 (bottom-right). The presented Gauss–Newton algorithm produces more accurate results than the

ADAM algorithm and also requires fewer number of epochs to converge in these experimental settings.

of Jacobian-vector products for the problem (35) have been
presented in [15].

A number of algorithms have been developed to solve (33)
and (34). The analytical CM algorithm (ACMA) [50] writes (34)
as a generalized matrix eigenvalue problem in the absence of
noise, and under the assumption that the null space of M is one
dimensional, which makes ACMAmore restrictive than TeMPO.
In the presence of noise, ACMA writes (34) as the simultaneous
diagonalization of a number of matrices and solves it by extended
QZ iteration. Gradient descent and stochastic gradient descent
algorithms have also been proposed for the minimization of the
expected value of {(|yTnw| − c)2}. The optimal step-size CMA
(OSCMA) [51] algorithm uses a gradient descent algorithm,
which computes the step size algebraically. The problem in
(35) can also be interpreted as a linear system with a rank-1
constrained solution, which fits the LS-CPD framework in [52].
LS-CPD solves (33) by relaxing the complex conjugate w to
a possibly different vector v ∈ C

L and utilizing the second-
order GN algorithm using dogleg trust-region method. We solve
(35) by utilizing the complex GN algorithm using the conjugate
gradient Steihaug method implemented in TensorLab 3.0 [11].
We compare with these algorithms in terms of computation time
and accuracy.

We consider an autoregressive model of degree L = 10
with coefficients uniformly distributed on [0, 1], sample length
K = 600, and c = 1. We add scaled Gaussian noise to
the measurements to obtain a particular SNR. We run 50
experiments starting from the algebraic solution presented in
[52] for LS-CPD, OSCMA, and TeMPO. In Figure 8 (left), we
show the median relative error on w as a function of SNR. It is
clear from Figure 8 (left) that TeMPO achieves similar accuracy
as LS-CPD and OS-CMA, which are more accurate than ACMA.
In Figure 8 (right), we show the median CPU time in seconds as
a function of SNR. Clearly, TeMPO is faster than ACMA, OS-
CMA, and LS-CPD for SNR ≥ 10(dB) by exploiting the structure
of the data.

4.3. Image Classification
Multi-class image classification amounts to the determination
of a possibly nonlinear function f that maps input images Zk

to integer scalar labels yk, which are known for a training set.
In this study, we represent f by a multivariate polynomial p.
Following the one-versus-all strategy, we define a cost function
fl for each label that maps the input image Zk to a scalar
value as

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 March 2022 | Volume 8 | Article 83643372

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 7 | (Left) The median test (dashed lines) and training (solid lines) errors of SVMs with polynomial kernel, the type I and type II model for a rank-8 function

given as in Equation (29) in the presence of SNR 20 dB Gaussian noise as a function of the number of training samples for 100 trials. The batch size is equal to 10% of

the training set size. The maximum number of GN iterations is set to 5 for the type I and type II model. Specifically, for the SVMs, the built-in Matlab routine fitrsvm

and LS-SVMlab toolbox were used to obtain the results. The relative errors of LS-SVMLab for the sample sizes 500, 1, 000, and 2, 000 are 1.6e− 6, 2.2e− 6 and

3.3e− 6, respectively. The presented algorithm generalizes better than fitrsvm in these experimental settings. (Right) The median CPU times (seconds) with the

same setting. The computational complexity of our algorithm is linear in the problem size as expected, and it is faster than SVMs for numbers of training samples

above 1, 000. The figures are in a logarithmic scale on both the horizontal and vertical axes.

FIGURE 8 | (Left) The median relative errors (dB) of LS-CPD, OS-ACMA, ACMA, and TeMPO with respect to SNR (dB) for an autoregressive model of degree L = 10

with uniformly distributed coefficients between zero and one, sample length K = 600 for 50 trials. TeMPO obtains similar accuracy to LS-CPD, OS-CMA, while

obtaining more accurate results than ACMA. (Right) The median CPU times (seconds) with the same settings. TeMPO is faster than other algorithms for SNR > 10

(dB).

fl(pl, z1, . . . , zK) =
1

2

K∑

k=1

(
yk − pl(zk)

)2
,

where zk = vec(Zk) and where yk = 1 if zk is labeled as l
and yk = 0 otherwise. The polynomial pl can be chosen within
the type I or the type II model class. For the type I model, the

optimization problem can be written as

min
pl

fl(pl, z1, . . . , zK), subject to pl(zk) = Tl,0 +

d∑

j=1

Tl,jz
j

k
,

and Tl,j =
r
Ul,j, . . . ,Ul,j; c

T

l,j

z
, (37)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 March 2022 | Volume 8 | Article 83643373

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 9 | Test (solid lines) and training (dashed lines) accuracies of the type I model for the MNIST dataset with respect to the number of epochs. The full training

set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 100 and the maximum number of GN iterations is set to 1. TeMPO achieves high

accuracy even for low rank values, i.e., R = {10, 20}. Both the test and training accuracy increase mildly as the rank increases.

where d is the degree of the polynomial under consideration.
Note that we substitute the symmetric CPD structure given as a
constraint into the objective function, and hence obtain and solve
an unconstrained optimization problem. For the type II model,
the optimization problem can be written as

min
pl

fl(pl, z1, . . . , zK), subject to pl(zk) = Tlz
d
k ,

and Tl =
q
Ul, . . . ,Ul; c

T

l

y
.

After the optimization of fl for each label l, the classification is
done by computing each pl(s) for the data point s to be classified
and selecting the value of l for which |pl(s)| is largest.

4.3.1. Experiments
We performed several experiments by varying the parameters
rank and maximum number of GN iterations to illustrate the
TeMPO framework for the classification of the MNIST and
Fashion MNIST datasets. We kept the maximum number of CG
iterations equal to 10, the degree of the multivariate polynomial
to 3, the tolerance for the objective function and optimization
variables equal to 1e − 10, the inner solver tolerance equal to
1e − 10, and the trust-region radius equal to 0.1, throughout
the experiments.

We initialized each factor matrix with a matrix whose
elements were randomly drawn from the standard normal
distribution, and scaled it to unit norm. Similarly, we initialized
each weight vector cl with a vector whose elements were
randomly drawn from the standard normal distribution and
scaled it to unit norm.

Datasets
Modified National Institute of Standards and Technology
(MNIST) handwritten digit database [62] and the Fashion
MNIST database [63] are used for this study. Both datasets
contain gray scale images of size (28 × 28). The training sets
of both datasets are composed of 60, 000 images and test sets
are composed of 10, 000 images. The images have been size-
normalized and centered in a fixed-size image. We rescale images
such that every pixel value is in the interval [0, 1] and the
mean of each image is zero. Then, we vectorize, i.e., stack each
column vertically in a vector, each image to a vector of size
784. For the type II model, we augment the resulting vector by
the scalar 1. Similar pre-processing steps are necessary for also
tensor networks. Additionally, they may require the encoding
input data which increases the storage and the computational
resource requirement.

Results and Comparisons

Results of the Type I Model
We first trained the type I model on the total MNIST training
set for various rank values ranging from 10 to 150 to illustrate
the effect of rank on the accuracy. We set the batch size to 100
and the maximum number of GN iterations to 1. We show the
training history in Figure 9. It is evident from Figure 9 that
TeMPO achieves high accuracy even for low rank values, i.e.,
R = {10, 20}. Increasing the rank mildly improves both the test
and training accuracy, with the improvement getting smaller as
the rank increases.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 17 March 2022 | Volume 8 | Article 83643374

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 10 | Test (solid lines) and training (dashed lines) accuracies of the type I model for the Fashion MNIST dataset with respect to the number of epochs. The full

training set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 100 and the maximum number of GN iterations is set to 1. Similar to the

MNIST dataset, TeMPO achieves good accuracy even for low rank values and both the test and training accuracy mildly increase as the rank increases.

We repeated the same experiments for the Fashion MNIST
dataset, which is harder to classify. We show the training history
in Figure 10. The observations made for the MNIST dataset
also apply to the Fashion MNIST dataset. However, the test and
training accuracy are lower for the Fashion MNIST dataset in
agreement with previous works. Also, our algorithm requires
more epochs to converge for the Fashion MNIST dataset.

In our next experiment, we set the maximum number of
GN iterations to 5. We observed that our algorithm needs
fewer epochs to converge and produces more accurate results
with this setting. The comparison for the MNIST and Fashion
MNIST dataset is shown in Figures 11, 12, respectively. The
improvement in the test accuracy for the Fashion MNIST dataset
is around 1% and more pronounced than the improvement
in the test accuracy for the MNIST dataset. TeMPO achieves
around 98.30% test accuracy for the MNIST dataset and
around 90% test accuracy for the Fashion MNIST dataset
with R = 150.

Results of the Type II Model
We repeated the same experiments for the type II model. We
used the same settings as in the type I model. However, we set
the batch size to 200 to obtain an accuracy similar to that of
the type I model. We show the training history in Figure 13.
Similar to previous experiments, our algorithm performs well
even for low rank values, and produces more accurate results for
higher rank values. TeMPO achieves around 98% test accuracy
and 100% training accuracy after 200 epochs with R = 150 for
the MNIST dataset.

In Figure 14, we show the training history for the Fashion
MNIST dataset. Similar to the type I model, the test
and training accuracy is lower than the MNIST dataset.
The algorithm converges around 100 epochs and achieves
around 89.30% test accuracy with R = 150. Moreover,
our algorithm achieves around 99% training accuracy after
400 epochs.

We repeated the same experiments with the maximum
number of GN iterations set to 5. The comparisons for the
MNIST and Fashion MNIST datasets are shown in Figure 15.
Contrary to our observation for the type I model, the
test accuracy now decreases for both datasets. A possible
reason is that when the residuals are big, doing more GN
iterations may not lead a better direction for minimizing (37).
A similar observation has been made in [53], for training
DNNs. It is experimentally shown that higher number of
CG iterations might not produce more accurate results if the
Hessian obtained by mini-batch is not reliable due to non-
representative batches and/or big residuals. On the other hand,
if the residuals are small, higher number of CG iterations
can produce more accurate results thanks to the curvature
information [53].

Comparisons
We now compare TeMPO with different models, namely: TT
tensor networks [21], TT structured tree tensor networks (TTN)
[64], multi-layer perceptron (MLP) with 784−1000−10 neurons,
MLPwith a convolution layer (CNN-MLP), PEPS, and PEPSwith

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 18 March 2022 | Volume 8 | Article 83643375

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 11 | Comparison of test accuracies of the type I model on the MNIST dataset for different maximum number of GN iterations as a function of the number of

epochs. The full training set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 100 and the maximum number of GN iterations is set to 1

(dashed lines) and to 5 (solid lines).

FIGURE 12 | Comparison of test accuracies of the type I model on the Fashion MNIST dataset for different maximum number of GN iterations as a function of the

number of epochs. The full training set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 100 and the maximum number of GN

iterations is set to 1 (dashed lines) and to 5 (solid lines).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 19 March 2022 | Volume 8 | Article 83643376

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 13 | Test (solid lines) and training (dashed lines) accuracies of the type II model for the MNIST dataset with respect to the number of epochs. The full training

set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 200 and the maximum number of GN iterations is set to 1. Both the test and

training accuracy increase as the rank increases. The improvement in the accuracy gets smaller as the rank increases. The algorithm achieves around 100% training

accuracy after 200 epochs.

FIGURE 14 | Test (solid lines) and training (dashed lines) accuracies of the type I model for the MNIST dataset with respect to the number of epochs. The full training

set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 200 and the maximum number of GN iterations is set to 1. Both the test and

training accuracy increase as the rank increases. Also the improvement in the accuracy gets smaller as the rank increases. The algorithm achieves around 99%

training accuracy after 400 epochs.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 20 March 2022 | Volume 8 | Article 83643377

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 15 | Comparison of test accuracies of the type II model on the MNIST (top) and Fashion MNIST (bottom) datasets for different maximum number of GN

iterations as a function of the number of epochs. The full training set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 200 and the

maximum number of GN iterations is set to 1 (dashed lines) and to 5 (solid lines).

a convolution layer (CNN-PEPS) [22]. We compare in terms of
the test accuracy for the Fashion MNIST dataset. We summarize
the test accuracy of different models in Table 2. TeMPO achieves
better accuracy than TT, PEPS and MLP, while optimizing for
fewer parameters and using less memory (cf. Table 1). The
accuracy of TeMPO is lower than CNN-MLP and CNN-PEPS
as expected, since it does not use a convolution layer. Note
that the accuracy of TeMPO can further be improved by tuning
the parameters such as the rank, the number of CG iterations,
the trust-region radius, the batch size and the degree of the
multivariate polynomial.

5. CONCLUSION AND FUTURE WORK

We presented the TeMPO framework for use in nonlinear

optimization problems arising in signal processing, machine

learning, and artificial intelligence. We modeled the
nonlinearities in these problems by multivariate polynomials

represented by low rank tensors. In particular, we investigated
the symmetric CPD format in this study. By taking the advantage
of low rank symmetric CPD structure, we developed an efficient
second-order batch Gauss–Newton algorithm.We demonstrated
the efficiency of TeMPO with some illustrative examples, and

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 21 March 2022 | Volume 8 | Article 83643378

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

TABLE 2 | The test accuracy of different models for the Fashion MNIST dataset.

Model Test accuracy (%)

TT 88.0

MLP 88.3

PEPS 88.3

TTN 89.0

TeMPO (Type II) 89.3

TeMPO (Type I) 89.9

CNN–MLP 91.0

CNN–PEPS 91.2

The bold values indicate the results from the proposed methods.

with the blind deconvolution of constant modulus signals. We
showed that TeMPO achieves similar or better classification rates
than MLPs, TT and PEPS tensor networks on the MNIST and
Fashion MNIST datasets while optimizing for fewer parameters
and using less memory space.

The non-symmetric and partially symmetric CPD formats
are fairly straightforward variants of the symmetric CPD format
in which the factor matrices can be mutually different. Efficient
algorithms can be developed for multivariate polynomials
in these formats by utilizing the derivations presented in
this study. We are investigating other tensor formats such
as HT and TT in our framework as well. HT and TT
require more parameters than the CPD format. However,
they break the curse of dimensionality in a numerically
stable way. We are also exploring other polynomial bases,
and more generally other nonlinear feature maps to
further improve the accuracy and numerical stability of our
framework.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found at: http://yann.lecun.com/exdb/mnist/; https://
github.com/zalandoresearch/fashion-mnist.

AUTHOR CONTRIBUTIONS

MA developed the theory and Matlab implementation. He is the
main contributor to the numerical experiments and also wrote
the first draft of the manuscript. LD conceived the idea and
supervised the project. Both authors contributed to manuscript
revision, read, and approved the submitted version.

FUNDING

Research supported by: (1) Flemish Government: This research
received funding from the Flemish Government (AI Research
Program). LD and MA are affiliated to Leuven. AI-KU Leuven
institute for AI, B-3000, Leuven, Belgium. This work was
supported by the Fonds de la Recherche Scientifique – FNRS
and the FondsWetenschappelijk Onderzoek – Vlaanderen under
EOS Project no G0F6718N (SeLMA). (2) KU Leuven Internal
Funds: C16/15/059, IDN/19/014.

ACKNOWLEDGMENTS

The authors would like to thank E. Evert, N. Govindarajan,
and S. Hendrikx for proofreading the manuscript and N.
Vervliet for valuable discussions. The authors also thank the
two referees whose comments/suggestions helped improve and
clarify this manuscript.

REFERENCES

1. Sidiropoulos N, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos

C. Tensor decomposition for signal processing and machine learning. IEEE

Trans Signal Process. (2017) 65:3551–82. doi: 10.1109/TSP.2017.2690524

2. Cichocki A, Mandic DP, De Lathauwer L, Zhou G, Zhao Q, Caiafa CF, et al.

Tensor decompositions for signal processing applications: from two-way to

multiway component analysis. IEEE Signal Process Mag. (2015) 32:145–63.

doi: 10.1109/MSP.2013.2297439

3. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.

(2009) 51:455–500. doi: 10.1137/07070111X

4. Sorber L, Van Barel M, De Lathauwer L. Optimization-based algorithms for

tensor decompositions: Canonical polyadic decomposition, decomposition

in rank-(Lr , Lr , 1) terms, and a new generalization. SIAM J Optim. (2013)

23:695–720. doi: 10.1137/120868323

5. Sorber L, Van Barel M, De Lathauwer L. Unconstrained optimization of

real functions in complex variables. SIAM J Optim. (2012) 22:879–98.

doi: 10.1137/110832124

6. Vervliet N, De Lathauwer L. Numerical optimization based algorithms for

data fusion. In: Cocchi M, editor. Data Fusion Methodology and Applications.

Vol. 31. Amsterdam; Oxford; Cambridge: Elsevier (2019). p. 81–128.

doi: 10.1016/B978-0-444-63984-4.00004-1

7. Phan AH, Tichavský P, Cichocki A. Low Complexity Damped Gauss-

Newton Algorithms for CANDECOMP/PARAFAC. arXiv:1205.2584. (2013)

34:126–47. doi: 10.1137/100808034

8. Vervliet N, De Lathauwer L. A randomized block sampling approach to

canonical polyadic decomposition of large-scale tensors. IEEE J Selec Top Sign

Process. (2016) 10:284–95. doi: 10.1109/JSTSP.2015.2503260

9. Comon P, Jutten C. Handbook of Blind Source Separation: Independent

Component Analysis and Applications. Oxford; Burlington: Academic Press;

Elsevier (2009).

10. Vervliet N, Debals O, Sorber L, De Lathauwer L. Breaking the curse of

dimensionality using decompositions of incomplete tensors: tensor-based

scientific computing in big data analysis. IEEE Signal Process Mag. (2014)

31:71–9. doi: 10.1109/MSP.2014.2329429

11. Vervliet N, Debals O, Sorber L, Van Barel M, De Lathauwer L. Tensorlab

3.0. (2016). Available online at https://www.tensorlab.net (accessed December,

2021).

12. Vervliet N. Compressed Sensing Approaches to Large-Scale Tensor

Decompositions. Leuven: KU Leuven (2018).

13. Vandecappelle M, Vervliet N, Lathauwer LD. Inexact generalized gauss-

newton for scaling the canonical polyadic decomposition with non-least-

squares cost functions. IEEE J Selec Top Sign Process. (2021) 15:491–505.

doi: 10.1109/JSTSP.2020.3045911

14. Singh N, Zhang Z, Wu X, Zhang N, Zhang S, Solomonik E.

Distributed-memory tensor completion for generalized loss functions

in python using new sparse tensor kernels. arXiv:191002371. (2021).

doi: 10.48550/arXiv.1910.02371

15. Ayvaz M, De Lathauwer L. Tensor-based multivariate polynomial

optimization with application in blind identification. In: (2021)

29th Europian Signal Processing Conference, (EUSIPCO). Dublin

(2021). p. 1080–4. doi: 10.23919/EUSIPCO54536.2021.961

6070

16. Grasedyck L, Kressner D, Tobler C. A literature survey of low-rank

tensor approximation techniques. GAMM-Mitteil. (2013) 36:53–78.

doi: 10.1002/gamm.201310004

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 22 March 2022 | Volume 8 | Article 83643379

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/120868323
https://doi.org/10.1137/110832124
https://doi.org/10.1016/B978-0-444-63984-4.00004-1
https://doi.org/10.1137/100808034
https://doi.org/10.1109/JSTSP.2015.2503260
https://doi.org/10.1109/MSP.2014.2329429
https://www.tensorlab.net
https://doi.org/10.1109/JSTSP.2020.3045911
https://doi.org/10.48550/arXiv.1910.02371
https://doi.org/10.23919/EUSIPCO54536.2021.9616070
https://doi.org/10.1002/gamm.201310004
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

17. Grasedyck L. Hierarchical singular value decomposition of tensors. SIAM J

Matrix Anal Appl. (2010) 31:2029–54. doi: 10.1137/090764189

18. Oseledets IV, Tyrtyshnikov EE. Breaking the curse of dimensionality, or how

to use SVD in many dimensions. SIAM J Sci Comput. (2009) 31:3744–59.

doi: 10.1137/090748330

19. Novikov A, Trofimov M, Oseledets IV. Exponential machines. In: 5th

International Conference on Learning Representations, ICLR 2017. Toulon

(2017). Available online at: https://openreview.net/forum?id=rkm1sE4tg

20. Stoudenmire EM, Schwab DJ. Supervised learning with tensor networks. In:

Lee D, Sugiyama M, Luxburg U, Guyon I, Garnett R, editors. Advances in

Neural Information Processing Systems. Vol. 29. Barcelona: Curran Associates,

Inc. (2016). Available online at: https://proceedings.neurips.cc/paper/2016/

file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf

21. Efthymiou S, Hidary J, Leichenauer S. TensorNetwork for machine learning.

arXiv: 190606329. (2019). doi: 10.48550/arXiv.1906.06329

22. Cheng S, Wang L, Zhang P. Supervised learning with projected entangled pair

states. Phys Rev B. (2021) 103:125117. doi: 10.1103/PhysRevB.103.125117

23. Guo W, Kotsia I, Patras I. Tensor learning for regression. IEEE Trans Image

Process. (2012) 21:816–27. doi: 10.1109/TIP.2011.2165291

24. Hendrikx S, Boussé M, Vervliet N, De Lathauwer L. Algebraic and

optimization based algorithms for multivariate regression using

symmetric tensor decomposition. In: Proceedings of the (2019)

IEEE International Workshop on Computational Advances in Multi-

Sensor Adaptive Processing (CAMSAP). Guadeloupe (2019). p. 475–9.

doi: 10.1109/CAMSAP45676.2019.9022662

25. Rabusseau G, Kadri H. Low-rank regression with tensor responses. In: Lee

D, Sugiyama M, Luxburg U, Guyon I, Garnett R, editors. Advances in Neural

Information Processing Systems. Vol. 29. Barcelona: Curran Associates, Inc.

(2016). Available online at: https://proceedings.neurips.cc/paper/2016/file/

3806734b256c27e41ec2c6bffa26d9e7-Paper.pdf

26. Yu R, Liu Y. Learning from multiway data: simple and efficient tensor

regression. In: Balcan MF, Weinberger KQ, editors. Proceedings of the 33rd

International Conference on Machine Learning, Vol. 48 of Proceedings of

Machine Learning Research. New York, NY (2016). p. 373–81. Available online

at: https://proceedings.mlr.press/v48/yu16.html

27. Hou M, Chaib-Draa B. Hierarchical Tucker tensor regression: application to

brain imaging data analysis. In: Proceedings of the (2015) IEEE International

Conference on Image Processing (ICIP 2015). Québec, QC (2015). p. 1344–8.

doi: 10.1109/ICIP.2015.7351019

28. Kar P, Karnick H. Random feature maps for dot product kernels. In: Lawrence

ND, Girolami M, editors. Proceedings of the Fifteenth International Conference

on Artificial Intelligence and Statistics, Vol. 22 of Proceedings of Machine

Learning Research. La Palma (2012). p. 583–91. Available online at: https://

proceedings.mlr.press/v22/kar12.html

29. Yang J, Gittens A. Tensor machines for learning target-specific polynomial

features. arxiv: 150401697. (2015). doi: 10.48550/arXiv.1504.01697

30. Rendle S. Factorization machines. In: (2010) IEEE International Conference on

Data Mining. Sydney (2010). p. 995–1000. doi: 10.1109/ICDM.2010.127

31. Blondel M, Fujino A, Ueda N, Ishihata M. Higher-order factorization

machines. In: Proceedings of the 30th International Conference on Neural

Information Processing Systems, NIPS’16. Red Hook, NY: Curran Associates

Inc. (2016). p. 3359–67.

32. Blondel M, Ishihata M, Fujino A, Ueda N. Polynomial networks and

factorization machines: new insights and efficient training algorithms. In:

Proceedings of the 33rd International Conference on International Conference

on Machine Learning. Vol. 48. New York, NY (2016). p. 850–8.

33. Nocedal J, Wright S.Numerical Optimization. New York, NY: Springer (2006).

34. Kruskal JB. Three-way arrays: rank and uniqueness of trilinear

decompositions, with application to arithmetic complexity and statistics.

Linear Algeb Appl. (1977) 18:95–138. doi: 10.1016/0024-3795(77)90069-6

35. Sidiropoulos ND, Bro R. On the uniqueness of multilinear

decomposition of N-way arrays. J Chemometr. (2000) 14:229–39.

doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N

36. Domanov I, De Lathauwer L. On the uniqueness of the canonical

polyadic decomposition of third-order tensors – Part ii: uniqueness of

the overall decomposition. SIAM J Matrix Anal Appl. (2013) 34:876–903.

doi: 10.1137/120877258

37. Domanov I, De Lathauwer L. Canonical polyadic decomposition of third-

order tensors: relaxed uniqueness conditions and algebraic algorithm.

arXiv:1501.07251. (2017) 513:342–75. doi: 10.1016/j.laa.2016.10.019

38. Boyd JP, Ong JR. Exponentially-convergent strategies for defeating the Runge

phenomenon for the approximation of non-periodic functions, part I: single-

interval schemes. Commun Comput Phys. (2009) 5:484–97.

39. Trefethen LN. Approximation Theory and Approximation Practice, Extended

Edition. Philadelphia, PA: SIAM (2019). doi: 10.1137/1.9781611975949

40. De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-

(R1,R2, · · · ,RN) approximation of higher-order tensors. SIAM J Matrix Anal

Appl. (2000) 21:1324–42. doi: 10.1137/S0895479898346995

41. Zhang T, Golub G. Rank-one approximation to high order tensors. SIAM J

Matrix Anal Appl. (2001) 23:534–50. doi: 10.1137/S0895479899352045

42. Guan Y, Chu MT, Chu D. SVD-based algorithms for the best rank-1

approximation of a symmetric tensor. SIAM J Matrix Anal Appl. (2018)

39:1095–115. doi: 10.1137/17M1136699

43. Nie J,Wang L. Semidefinite relaxations for best rank-1 tensor approximations.

SIAM J Matrix Anal Appl. (2013) 35:1155–79. doi: 10.1137/130935112

44. Brachat J, Comon P, Mourrain B, Tsigaridas E. Symmetric

tensor decomposition. Linear Algeb Appl. (2010) 433:1851–72.

doi: 10.1016/j.laa.2010.06.046

45. Alexander J, Hirschowitz A. Polynomial interpolation in several variables.Adv

Comput Math. (1995) 4:201–22.

46. Debals O. Tensorization and Applications in Blind Source Separation. Leuven:

KU Leuven (2017).

47. Blondel M, Niculae V, Otsuka T, Ueda N. Multi-output Polynomial Networks

and Factorization Machines. In: Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Systems

2017. Long Beach, CA (2017). p. 3349–59.

48. Khoromskij BN. Tensor Numerical Methods in Scientific Computing. Berlin;

Boston: De Gruyter (2018). doi: 10.1515/9783110365917

49. Margossian CC. A review of automatic differentiation and its efficient

implementation. WIREs Data Mining Knowl Discov. (2019) 9:e1305.

doi: 10.1002/widm.1305

50. van der Veen AJ, Paulraj A. An analytical constant modulus algorithm. IEEE

Trans Signal Process. (1996) 44:1136–55. doi: 10.1109/78.502327

51. Zarzoso V, Comon P. Optimal step-size constant modulus algorithm. IEEE

Trans Commun. (2008) 56:10–3. doi: 10.1109/TCOMM.2008.050484

52. Boussé M, Vervliet N, Domanov I, Debals O, De Lathauwer L. Linear

systems with a canonical polyadic decomposition constrained solution:

algorithms and applications. Numer Linear Algeb Appl. (2018) 25:e2190.

doi: 10.1002/nla.2190

53. Gargiani M, Zanelli A, Diehl M, Hutter F. On the promise of the stochastic

generalized Gauss-Newton method for training DNNs. arXiv: 200602409.

(2020). doi: 10.48550/arXiv.2006.02409

54. Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Bengio Y,

LeCun Y, editors. International Conference on Learning Representations, ICLR

2015. 3rd Edn. San Diego, CA (2015). Available online at: http://arxiv.org/abs/

1412.6980

55. De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, Pelckmans

K, et al. LS-SVMlab Toolbox User’s Guide Version 1.8. Leuven: ESAT-STADIUS

(2010). p. 10–46.

56. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J.

Least Squares Support Vector Machines. Singapore: World Scientific (2002).

doi: 10.1142/5089

57. Ljung L. System Identification: Theory for the User. 2nd ed. Upper Saddle River,

NJ: Prentice Hall (1999). doi: 10.1002/047134608X.W1046

58. Johnson R, Schniter P, Endres TJ, Behm JD, Brown DR, Casas RA. Blind

equalization using the constant modulus criterion: a review. Proc IEEE. (1998)

86:1927–50. doi: 10.1109/5.720246

59. van der Veen AJ. Algebraic methods for deterministic blind beamforming.

Proc IEEE. (1998) 86:1987–2008. doi: 10.1109/5.720249

60. De Lathauwer L. Algebraic techniques for the blind deconvolution of

Constant Modulus signals. In: Proceedings of the 12th European Signal

Processing Conference (EUSIPCO 2004). Vienna (2004). p. 225–8.

61. Householder AS. Unitary triangularization of a nonsymmetric matrix. J ACM.

(1958) 5:339–42. doi: 10.1145/320941.320947

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 23 March 2022 | Volume 8 | Article 83643380

https://doi.org/10.1137/090764189
https://doi.org/10.1137/090748330
https://openreview.net/forum?id=rkm1sE4tg
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://doi.org/10.48550/arXiv.1906.06329
https://doi.org/10.1103/PhysRevB.103.125117
https://doi.org/10.1109/TIP.2011.2165291
https://doi.org/10.1109/CAMSAP45676.2019.9022662
https://proceedings.neurips.cc/paper/2016/file/3806734b256c27e41ec2c6bffa26d9e7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/3806734b256c27e41ec2c6bffa26d9e7-Paper.pdf
https://proceedings.mlr.press/v48/yu16.html
https://doi.org/10.1109/ICIP.2015.7351019
https://proceedings.mlr.press/v22/kar12.html
https://proceedings.mlr.press/v22/kar12.html
https://doi.org/10.48550/arXiv.1504.01697
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
https://doi.org/10.1137/120877258
https://doi.org/10.1016/j.laa.2016.10.019
https://doi.org/10.1137/1.9781611975949
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1137/S0895479899352045
https://doi.org/10.1137/17M1136699
https://doi.org/10.1137/130935112
https://doi.org/10.1016/j.laa.2010.06.046
https://doi.org/10.1515/9783110365917
https://doi.org/10.1002/widm.1305
https://doi.org/10.1109/78.502327
https://doi.org/10.1109/TCOMM.2008.050484
https://doi.org/10.1002/nla.2190
https://doi.org/10.48550/arXiv.2006.02409
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1142/5089
https://doi.org/10.1002/047134608X.W1046
https://doi.org/10.1109/5.720246
https://doi.org/10.1109/5.720249
https://doi.org/10.1145/320941.320947
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

62. Deng L. The MNIST database of handwritten digit images for

machine learning research. IEEE Sign Process Mag. (2012) 29:141–2.

doi: 10.1109/MSP.2012.2211477

63. Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: a novel image dataset

for benchmarking machine learning algorithms arXiv:1708.07747. (2017).

doi: 10.48550/arXiv.1708.07747

64. Stoudenmire EM. Learning relevant features of data with multi-scale tensor

networks.Quant Sci Technol. (2018) 3:034003. doi: 10.1088/2058-9565/aaba1a

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict ofinterest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ayvaz andDe Lathauwer. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 24 March 2022 | Volume 8 | Article 83643381

https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.1088/2058-9565/aaba1a
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

ORIGINAL RESEARCH
published: 07 April 2022

doi: 10.3389/fams.2022.806537

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 April 2022 | Volume 8 | Article 806537

Edited by:

Paolo Bientinesi,

Umeå University, Sweden

Reviewed by:

Richard Veras,

University of Oklahoma, United States

Jiajia Li,

College of William & Mary,

United States

*Correspondence:

Cem Savas Bassoy

cem.bassoy@iosb.fraunhofer.de

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 31 October 2021

Accepted: 26 January 2022

Published: 07 April 2022

Citation:

Bassoy CS (2022) Iterator-Based

Design of Generic C++ Algorithms for

Basic Tensor Operations.

Front. Appl. Math. Stat. 8:806537.

doi: 10.3389/fams.2022.806537

Iterator-Based Design of Generic
C++ Algorithms for Basic Tensor
Operations
Cem Savas Bassoy*

Fraunhofer IOSB, Ettlingen, Germany

Numerical tensor calculus has recently gained increasing attention in many scientific

fields including quantum computing and machine learning which contain basic tensor

operations such as the pointwise tensor addition and multiplication of tensors. We

present a C++ design of multi-dimensional iterators and iterator-based C++ functions for

basic tensor operations usingmode-specific iterators only, simplifying the implementation

of algorithms with recursion and multiple loops. The proposed C++ functions are

designed for dense tensor and subtensor types with any linear storage format, mode and

dimensions. We demonstrate our findings with Boost’s latest uBlas tensor extension and

discuss how other C++ frameworks can utilize our proposal without modifying their code

base. Our runtime measurements show that C++ functions with iterators can compute

tensor operations at least as fast as their pointer-based counterpart.

Keywords: tensor n-rank, N-way array, multi-dimensional array, tensor computations, multi-dimensional iterator,

software design and development

1. INTRODUCTION

Numerical tensor calculus can be found in many application fields, such as signal processing [1],
computer graphics [2, 3], and data mining [4, 5] in which tensors are attained by, e.g., discretizing
multi-variate functions [6] or by sampling multi-modal data [7]. Tensors are interpreted as
generalized matrices with more than two dimensions and are, therefore, also referred to as
hypermatrices [8]. Similar to matrix computations, most numerical tensor methods are composed
of basic tensor operations such as the tensor-tensor, tensor-matrix, tensor-vector multiplication,
the inner and outer product of two tensors, the Kronecker, Hadamard and Khatri-Rao product [9–
11]. Examples of such methods containing basic tensor operations are the higher-order orthogonal
iteration, the higher-order singular value decomposition [12], the higher-order power method and
variations thereof.

High-level libraries in Python or Matlab, such as NumPy, TensorLy, or TensorLab1 offer a
variety of tensor types and corresponding operations for numerical tensor computations. However,
in case of tensor multiplication operations tensors are dynamically unfolded in order to make use of
optimized matrix operations, consuming at least twice the memory than their in-place alternatives
[13]. Depending on the program, Python or Matlab can also introduce runtime overhead due to
just-in-time compilation or interpretation and automatic resource management.

To offer fast execution times with minimal memory consumption, many tensor libraries are
implemented in C++ which provides a simple, direct mapping to hardware and zero-overhead

1https://numpy.org, http://tensorly.org, https://www.tensorlab.net.

82

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.806537
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.806537&domain=pdf&date_stamp=2022-04-07
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cem.bassoy@iosb.fraunhofer.de
https://doi.org/10.3389/fams.2022.806537
https://www.frontiersin.org/articles/10.3389/fams.2022.806537/full
https://numpy.org
http://tensorly.org
https://www.tensorlab.net

Bassoy Design of Generic C++ Tensor Algorithms

abstraction mechanism [14, 15]. Their programming interface is
close to the mathematical notation supporting elementwise and
complex multiplication tensor operations [16–21]. All libraries
offer a family of tensor classes that are parameterized by at least
the element type. The library presented in [21] also parameterize
the tensor template by the tensor order and dimensions. Tensor
elements are linearly arranged in memory either according to
the first-order or the last-order storage format. Most libraries
use expression templates to aggregate and delay the execution
of mathematical expressions for a data-parallel and even out-
of-order execution [17, 19]. Some libraries can express the
general form of the tensor-tensor multiplication with Einstein’s
summation convention using strings or user-defined objects.
For instance, expressions like C["ijk"]=A["ilj"]*B["kl"] or
C(i,j,k)=A(i,l,k)*B(k,l) specify a 2-mode multiplication
of a 3-dimensional with a matrix. The interface can be very
convenient utilized if the application or numerical method
uses a fixed tensor order or contraction mode. However, many
numerical methods such as the higher-order orthogonal iteration
consist of variable tensor multiplications preventing the use of
aforementioned expressions. In such cases, flexible interfaces
and functions similar to the one presented in [22] are required
allowing, e.g., the contractionmode to depend on other variables.
A comprehensive and recent overview of the tensor software
landscape is provided in [23] including all of the previously
mentioned C++ libraries.

Most of the above mentioned libraries implement tensor
operations using pointers, single and multi-indices. Accessing
tensor elements with multi-indices, however, can slow down the
execution of a recursively defined tensor function by a factor that
is equal to the recursion depth and tensor order [24]. Using single
indices or raw pointers on the other hand requires a combination
of induction variables with mode-specific strides. This can be
inconvenient and error-prone, especially when library users want
to modify or extend C++ functions. The authors in [25] suggest
to parameterize C++ functions in terms of tensor types and
their proxies with which mode-specific iterators can be generated
using the member functions begin and end. Index operations
are hidden from the user by offering a simple iterator increment
operation that is able to adjust its internal data pointer according
to a predefined stride. However, their begin and end functions
do not allow to specify a mode. The authors in [26] propose
to use member functions begin and end of a tensor type
that can generate mode-specific iterators. The mode is a non-
type template parameter of the iterator requiring the recursion
index and the contraction modes to be compile-time parameters.
Similar to the aforementioned approaches, tensor functions are
defined in terms of tensor types which makes the specification of
iterator requirements difficult.

In this article, we present iterator-based C++ algorithms for
basic tensor operations that have been discussed in [22] as part
of a Matlab toolbox. Our software implementation follows the
design pattern that has been used in the Standard Template
Library (STL) and separates tensor functions from tensor types
with the help of iterators only [27]. The separation helps to
define iterator and function templates that are not bound to
particular tensor and iterator types, respectively.We present C++

functions such as for_each and transform that perform unary
and binary operations on tensor and subtensor elements. Our
discussion also includes more complex multiplication operations
such as tensor-vector (ttv), tensor-matrix (ttm), and the tensor-
tensor multiplication (ttt). While we demonstrate their usability
with Boost’s uBlas tensor extension, the proposed C++ templates
can be instantiated by tensor types that provide pointers to a
contiguous memory region.

To our best knowledge, we are the first to propose a set of basic
tensor functions that can process tensor types without relying
on a specific linear data layout, eliminating the need to provide
multiple algorithms for similar types. While a discussion of
optimization techniques for data locality or parallel execution of
tensor operations are beyond the scope of this article, we provide
algorithmic changes to all proposed tensor functions to increase
spatial locality. Moreover, we demonstrate that the introduced
iterator abstraction does not penalize the performance of
iterator-based C++ functions. On the contrary, our performance
measurements with approximately 1,800 differently shaped
tensors show that iterator- based functions compute elementwise
tensor operations and the tensor-vector product at least as fast as
pointer-based functions.

The remainder of the paper is organized as follows: Section
2 introduces mathematical notations used in this work and
provides an overview of data organization for dense tensor
and subtensor types. Section 3 describes Boost’s uBlas tensor
extension and class templates for tensors and subtensors.
Section 4 introduces multi-dimensional iterators for a family
of tensor types supporting any linear storage format. Section 5
discusses the design and implementation of tensor operations
using multi-dimensional iterators. Section 6 presents runtime
measurements of iterator- and pointer-based implementations
of two elementwise tensor operations. Lastly, section 7 presents
some conclusions of our work.

2. PRELIMINARIES

2.1. Mathematical Notation
A tensor is defined as an element of the tensor space that is given
by the tensor product of vector spaces typically over the real or
complex numbers [28]. For given finite basis of the vector spaces,
tensors can be represented by multi-dimensional arrays [8]. We
do not distinguish between tensors and multi-dimensional arrays
and allow their elements to be bool or integer types. The number
of dimensions is called the tensor order and is denoted by the
letter p. Tensors are denoted by bold capital letters with an
underscore, e.g., A with A = (ai)i∈I where i is a multi-index
i = (i1, i2, . . . , ip) with ir ∈ Ir for all 1 ≤ r ≤ p. The r-th
index set Ir is defined as Ir : = {1, 2, . . . , nr} for all 1 ≤ r ≤ p
with nr ∈ N. n = (n1, . . . , np) is called a dimension tuple
of a p-dimensional tensor. The Cartesian product of all index
sets of a p-order tensor A is called the multi-index set I with
I = I1 × I2 × · · · × Ip. Elements of a p-dimensional tensor A
are given by A(i1, i2, . . . , ip) = ai1i2...ip or A(i) = ai with i ∈ I.
Matrices have two dimensions and will be represented without
an underscore B. Vectors are given by small bold letters such as
b where one of the first two dimensions are equal to or greater

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 April 2022 | Volume 8 | Article 80653783

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

than one. A tensor is a scalar if all dimensions are equal to one
and denoted by small, non-bold letters.

A subtensorA′ of a tensorA is a reference to a specified region
or domain of A and has the same order p and data layout π as
the referenced tensor. It can be regarded as a lightweight handle
with a dimension tuple n′ where the subtensor dimensions satisfy
n′r ≤ nr for 1 ≤ r ≤ p. The r-th index set I′r of a subtensor and its
multi-index set I′ are analogously defined to Ir with I′r ⊆ Ir and
I, respectively. Each dimension n′r and the corresponding index
subset I′r are determined by fr , tr , and lr where fr ∈ Ir and lr ∈ Ir
are the lower and upper bound of the index range with 1 ≤ fr ≤
lr ≤ nr . The integer tr defines the step size for the r-th dimension
satisfying tr ∈ N for 1 ≤ r ≤ p. The shape tuple n′ = (n′1, . . . , n

′
p)

of a subtensor is given by n′r =
⌊
(lr − fr)/tr

⌋
+ 1. Elements of a

p-dimensional subtensor A′ are given by A′(i′) = a′
i′
with i′ ∈ I′.

Assuming a simple linear (flat) memory model, dense tensors
shall be stored contiguously in memory. The (absolute) memory
locations of tensor elements are given by k = k0 + j · δ with k0 ∈
N0 being the memory location of the first tensor element and
δ being the number of bytes required to store tensor elements.
We call J : = {0, 1, . . . ,

∏p
r=1 nr − 1} the single index set of A

where each j ∈ J is the relative position of the j-th tensor element
denoted by A[j]. A subtensor A′ of a tensor A has its own single
index set J′ with

∏p
r=1 n

′
r elements. We write A′[j′] to denote the

j′-th subtensor element.

2.2. Data Organization and Layout
The tensor layout or storage format of a dense tensor defines the
ordering of its elements within a linearly addressable memory
and, therefore, the transformation between multi-indices and
single indices. A p-order tensor A with a dimension tuple
n, has (

∏
r nr)! possible orderings where only a subset of

those are considered in practice. In case of two dimensions,
most programming languages arrange matrix elements either
according to the row- or column-major storage format. More
sophisticated non-linear layout or indexing functions have been
investigated for instance in [29, 30] with the purpose to increase
the data locality of dense matrix operations.

The most prominent element layouts are first- and last-order
storage formats. The former format is defined in the Fortran, the
latter in the C and C++ language specification, respectively. Any
linear layout can be expressed in terms of a permutation tuple
π . The q-th element πq corresponds to an index subscript r of a
multi-index ir with the precedence q where ir ∈ Ir and 1 ≤ q, r ≤
p. In case of the first-order format, the layout tuple is defined
as πF : = (1, 2, . . . , p) where the precedence of the dimension
ascends with increasing index subscript. The layout tuple of the
last-order storage format is given by πL : = (p, p− 1, . . . , 1).

Given a layout tuple π and the shape tuple n, elements of a
stride tuple w are given by wπr = 1 for r = 1 and wπr =∏r−1

q=1 nπq otherwise, with 1 ≤ wπq ≤ wπr for 1 ≤ q < r ≤ p, see

also Equation (2) in [24]. The q-th stride wq is a positive integer
and defines the number of elements between two elements with
an identical multi-index except that their q-th index differs by
one. Fortran stores tensor elements according to the first-order

storage format with wF = (1, n1, n1 · n2, . . . ,
∏p−1

r=1 nr). In case

of the last-order storage format πL = (p, p− 1, . . . , 1), the stride
tuple is given by wL = (

∏p
r=2 nr ,

∏p
r=3 nr , . . . , np, 1) which is

used by the C and C++ language for the data layout of the built-in
multi-dimensional arrays.

3. BOOST.UBLAS TENSOR EXTENSION

Initially equipped with basic matrix and vector operations,
Boost’s uBlas has been recently extended with tensor templates
and corresponding tensor operations to support multi-linear
algebra applications2. Tensor order, dimensions and contraction
modes (if applicable) of the tensor and subtensor types are
runtime variable. Common arithmetic operators are overloaded
and evaluated using expression templates. In the following, we
will only use the namespace std to denote the standard library
namespace and skip boost::numeric::ublas. Boost’s uBlas
tensor extension offers a variety of basic dense tensor operations
offering at least four important tensor functionality categories
that have been discussed in [23].

3.1. Tensor and Subtensor Templates
The tensor template class represents a family of
tensor types and adapts a contiguous container such as
std::vector. It is designed to organize multi-dimensional
data and to provide access with multi-indices and
single indices.

template <class T,
class F = first_order,
class C = std::vector<value_type>>

class tensor;

The element type T of tensor needs to fullfill the requirements
specified by the container type C and needs to support all basic
arithmetic scalar operations such as addition, subtraction,
multiplication, and division. The container C type must
satisfy the requirements of a contiguous container. By
default, if no container class is specified, std::vector is
used. Public member types such as value_type, size_type,
difference_type, pointer, reference, and iterator are
derived from the container type which stores elements of
type value_type and takes care of the memory management.
The memory space for tensor is dynamically allocated by
std::vector::allocator_type. Public member functions are
provided in order to construct, copy and move tensors. Data
elements can be assigned to the tensor using the assignment
operator =. Elements can be accessed with a single index using
the access operator [] and multi-indices with the function
call operator (). The user can conveniently create subtensors
with the function call operator (). Size and capacity member
functions such as size(), empty(), clear(), and data() are
provided as well. The user has multiple options to instantiate
tensor types. The default constructor creates an empty tensor of
order zero with an empty shape tuple. The following expression
instantiats a three-dimensional tensor A with the extents 4, 2,
and 3 with elements of type double.

2See GSoC18 link for the project description, Github link for the initial

implementation and Github link for the most current development.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 April 2022 | Volume 8 | Article 80653784

https://summerofcode.withgoogle.com/archive/2018/projects/6064119220273152/
https://github.com/BoostGSoC18/tensor
https://github.com/boostorg/ublas
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

auto A = tensor<float>{4,2,3};

The user can also specify dimensions for each mode using the
extents class from which the tensor order and size of the data
vector is derived. The layout tuple is initialized according to the
first-order storage format if not specified otherwise. Once the
layout and dimensions are initialized, the constructor computes
strides according to the computation in subsection 2.2 and
Equation (2) in [24]. The following code snippet shows a possible
instantiation of a three-dimensional tensor with a last-order
storage format.

auto A = tensor<double,last_order>(extents{4,2,3});

The copy assignment operators () of the tensor class template
are responsible for copy data and protecting against self-
assignment. The user can expect the source and destination
tensor class instances to be equal and independent after the
copy operation. Two tensors are equal if they have the same
shape tuple, tensor order and elements with the same multi-
index independent of their layout tuple. Besides the type of the
data elements, the user can change the content and the size
of all member variables at runtime. The subtensor template
class is a proxy of tensor for conveniently reference a subset of
tensor elements.

template <class T>
class subtensor;

The tensor template specializes subtensor with tensor<

value_type,container> such that tensor::subtensor_t

equals subtensor<tensor<value_type,container». In
general, T needs to provide an overloaded access operator and
function call operator for accessing contiguously stored tensor
elements. The subtensor template contains a reference of the
viewed tensor instance, i.e., subtensor::tensor_t, a pointer to
the first element of type value_type*, extent ranges of a single
dimension using the class span, extents of type size_type,
strides of type size_type and also provides the same public
member types and methods as tensor allowing both types to be
used in free functions interchangeably. A subtensor instance
neither owns nor tracks the referenced tensor object. It might
become invalid whenever the corresponding tensor instance
does not exist any more.

The constructor of subtensor takes a reference of
subtensor::tensor_t and might take range types such
as span and std::integral types as additional arguments
that specify the multi-index space of a subtensor instance.
The r-th span instance defines an index set I′r that is a
subset of the index set Ir of a selected tensor instance. A
subtensor instance without any span objects references all
elements of a subtensor::tensor_t object. The tensor

template provides an overloaded function call operator with a
template parameter pack which simplifies the construction of a
subtensor subject. For instance, if A is of type tensor<float>
with a dimension tuple (3, 4, 2), then S of the following
expression is of type subtensor<tensor<float>> and has the
dimensions 2, 2, 1.

auto S = A (span(1,2), span(2,3), 1);

The pointer to the first subtensor element is computed by adding
an offset j∗ to the pointer of the first tensor element. The offset
j∗ is computed by combining p lower bounds f of the span

instances using the index function λ in Equation (1) in [24]
such that j∗ = λw(f) with f = (f1, . . . , fp) where w is the
stride tuple of a tensor and fr is the lower bound of the r-th
span instance.

3.2. Multi-Index Access
The tensor template provides multiple overloaded function
call operators for conveniently accessing elements with multi-
indices and scalar memory indices. The function call operator is
a variadic template that computes the inner product of the stride
and multi-index tuple in order to transform multi-indices onto
single indices. Hence, the user can define the following statement
which converts a three-dimensional tensor A into an identity
tensor with ones in the superdiagonals.

for(auto i = 1u; i <= n; ++i)
A(i,i,i) = 1.0;

Note that the statement is valid independent of A’s layout tuple.
The template tensor additionally allows to dynamically specify
multi-indices using std::vector. In that case the argument of
the function call is given by std::vector<std::size_t>(p,i)
where p is the tensor order. Using multi-indices abstracts from
the underlying data layout and enables the user to write layout
invariant programs as all elements have a unique multi-index
independent of the data layout. Note that accessing elements of
a p-dimensional tensor A with multi-indices involves a multi-
index to memory index transformation that is given by λw(i) =∑p

r=1 wr(ir − 1) where p is the tensor order with p > 1 and
w is the stride tuple of A, see also Equation (1) in [24]. For
fixed stride tuples wF and wL, the index functions λwF and λwL

coincide with definitions provided in [25, 29]. Tensor elements
can also be accessed with a single index using the overloaded
access operator of tensor. This is convenient whenever the
complete memory index set needs to be accessed independent
of the tensor layout or order of data access is not relevant for
the implementation of the tensor operation. For instance, A with
any dimensions and storage format can be initialized by the
following statement.

for(auto j = 0u; j < A.size(); ++j)
A[j] = 0;

In contrast to an access with multi-indices, accessing
tensor elements with single indices does not involve index
transformations. However, most of the more complex tensor
operations such as the tensor transposition require some type of
multi-index access.

Subtensor elements can be similarly accessed using multi-
indices with the subtensor’s overloaded function call operator.
Given the previously defined subtensor instance S with the
dimensions (2,2,1), all diagonal elements can be set to 1 using
a single for-loop where m is equal to 2.

for(auto i = 1; i <= m; ++i)
S(i,i,1) = 1;

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 April 2022 | Volume 8 | Article 80653785

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

Similar to the tensor case, the relative memory location needs to
be computed as well, using index function λ transforming every
index i′ ∈ I′r into an index of the set Ir with j = j∗+λw′′ (i′) where
j∗ is the relative memory location of the first subtensor element.
Elements of the stride tuple w′′ is given by w′′

r = w′
rtr for 1 ≤ r ≤

p in which w′ is computed with n′. The subtensor template also
provides an overloaded access operator with a single index. The
following statement sets all subtensor elements to zero.

for(auto j = 0u; j < S.size(); ++j)
S[j] = 0;

In contrast to the tensor case, accessing a relative memory
location of subtensor’s element with a single index involves its
transformation using the index function λ and its inverse λ−1.
Given a valid single index j′ ∈ J′ and the relativememory location
of the first subtensor element j∗, the relative memory location j ∈
J of a subtensor element at index j′ is given by j = j∗ + λ′w′′ ,w′ (j

′)

with λ′w′′ ,w′ being a composition of the index functions λw′′ and

λ−1
w′ . The latter is the inverse index function is given by λ

−1
w (j) = i

where ir = ⌊xr/wr⌋ + 1 with xπr = xπr+1 −wπr+1 · (iπr+1 − 1) for
r < p and iπp = ⌊j/wπp⌋ + 1, see also [24].

4. MULTI-DIMENSIONAL ITERATOR

C++ iterators are class templates that can traverse and access
C++ container elements. They help to decouple the dependency
between C++ container and C++ algorithms by parameterizing
the latter in terms of iterators only. The following class template
multi_iterator simplifies the iteration over a multi-index set
of a tensor or subtensor independent of their storage formats and
helps to decouple tensor types from tensor functions.

template<class iterator>
class multi_iterator;

The template parameter iterator should be a valid template
parameter for std::iterator_traits with which iterator
attributes can be queried. The tensor and subtensor templates
can specialize multi_iterator with their corresponding
pointer or iterator type. The constructor of multi_iterator
initializes three private member variables, the current pointer of
type std::iterator_traits<iterator>::pointer, a pointer
to the strides of type const std::size_t* and a stride of type
std::size_t. The following statement specializes the multi-
dimensional iterator template and instantiates it.

auto it = multi_iterator<pointer>(k,w,1);

The argument k is a pointer to the first tensor element and w

a pointer to the first stride tuple element. The last argument 1
selects the second stride from w. The copy-assignment operator of
iterator copies the current position k, the pointer to the stride
tuple w, and the stride wc. We consider two dimension-based
iterators i1 and i2 equal if the current positions i1.k, i2.k and
the strides i1.wc, i2.wc of the iterators are equal. Therefore, the
statement (i1=i2) == i2 is considered true as both iterators
have equal position and stride after the assignment (i1=i2).

The following example illustrates the difference of two ranges
that are created by the random access iterator type iterator

of std::vector and the multi_iterator<pointer> type. Let
A be a three-dimensional dense tensor with elements of type
float contiguously stored according to the first-order storage
format. Let also k be a pointer to the first element of A initialized
with A.data(). Given 4, 3, 2 be A’s extents and w the stride
tuple with (1,4,12), respectively, the two statements instantiate
iterator pairs.

iterator first(k), last(k+w[2]);
multi_iterator<pointer> mfirst(k,w,1), mlast(k+w[2],w,1);

The first half-open range [first,last) covers all tensor
elements with memory indices from 0 and to 12. The second
range only covers elements with the multi-indices (1, i, 1) for
1 ≤ i ≤ 2 which corresponds to a mode-2 tensor fiber, i.e., the
first row of the frontal tensor slice. Applying the index function λ,
the relative memory positions of A’s elements are at position 0, 4
and 8. The iteration over the second mode of A can be performed
with both iterator pairs.

for(; first != last; first+=w[1]) { *first = 5.0; }
for(; mfirst != mlast; mfirst+=1) { *mfirst = 5.0; }

The statements initialize the first row of A. The first statement
uses the C++ standard random-access iterator first which
is explicitly incremented with the second stride w[1]. The
same operation can be accomplished with the multi-dimensional
iterator mfirst which is initialized and internally incremented
with the second stride w[1]. Our implementation of multi-
dimensional iterators can also be used with C++ algorithms of the
standard library. For instance, std::fill can be used together
with mfirst and mlast to initialize the first row of A.

std::fill(mfirst, mlast, 5.0);

The user can introduce member functions begin and end

of tensor and subtensor or implement free functions, both
simplifying the instantiation of multi-dimensional iterators.
The user needs to specify a one-based mode that is greater
than zero and equal to or smaller than the tensor order.
Both functions could also allow to specify a multi-index
with std::vector<std::size_t> and define the displacement
within the multi-index space except for the dimension dim. In
the following, begin and end shall be member functions of the
tensor and subtensor types. The aforementioned initialization
of A’s first row can be performed in one line which first
generates mode-specific iterates using begin and end for the
first mode.

std::fill(A.begin(1),A.end(1),5.0);

Note that the user can perform the initialization independent of
A’s storage format. Moreover, fibers with different modes using
C++ algorithms of the standard library can be combined. The
following statement for instance computes the inner product of a
mode-3 and mode-2 fiber.

std::inner_product(A.begin(3),A.end(3),
B.begin(2),0.0);

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 April 2022 | Volume 8 | Article 80653786

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

Listing 1 | Nested-loop with multi-dimensional iterators for tensor types

of order 3 with any linear storage format.

for(auto it3=A.begin(3); it3!=A.end(3); ++it3)
for(auto it2=it3.begin(2); it2!=it3.end(2); ++it2)
for(auto it1=it2.begin(1); it1!=it2.end(1); ++it1)

*it1 = v;

Again, A and B can be of different types (such as tensor
or subtensor) with different storage formats. The user can
invoke begin and end function with no mode or mode 0 with
which the single-index space of a tensor or subtensor can be
iterated through.

std::fill(A.begin(),A.end(), 0.0);

Note that range-based for-loops can also be used instead of
std::fill. Similar to the tensor type, the multi_iterator

template provides twomethods begin and endwith whichmulti-
dimensional iterators can be instantiated. The new instantiated
iterators have the same pointer position and stride tuple reference
but a new stride depending on the argument which specifies the
mode. For instance, a multi-dimensional iterator it can be used
to define a multi-dimensional iterator pair that is able to iterate
along the third mode.

auto first = it.begin(3), auto last = it.end(3);

Listing 1 illustrates the initialization of a three-dimensional
tensor or subtensor Awithmulti-dimensional iterators. The code
example consists of three nested for-loops. Within each loop a
multi-dimensional iterator it{r} is initialized using the begin
and end member function of either the tensor A or a multi-
dimensional iterator of the previous loop. The iterator number
corresponds with the position within the stride tuple so that
it{r} will be internally incremented with the w[r-1] stride in
case of tensors and with w[r-1]*s[r-1] in case of subtensors
where s[r-1] is the step size. The inner loop assigns value v

to the column elements of the (it3,it2)-th frontal slice. The
innermost loop can be replaced with the following statement.

std::fill(it1.begin(1), it1.end(1), v);

In contrast to the iterator design in [25, 26], our iterator instances
are able to clone themselves for different modes. Tensor A in the
outer-most loop is replaceable by a multi-dimensional iterator
it3 that is generated in a previous statement with the expression
A.begin(3). In the next section we present tensor functions
that iterate over the multi-index space of multi-dimensional
tensors and subtensors with arbitrary storage format using multi-
dimensional iterators only.

5. TENSOR FUNCTIONS

The following tensor functions implement basic tensor
operations and iterate over the multi-index space of tensor types
using multi-dimensional iterators combining multiple tensor
elements. The user is not forced to use the aforementioned multi-
dimensional iterator class templates. Yet the multi-dimensional

iterator should be able to iterate over a specific mode and must
provide begin and end member functions that can generate
multi-dimensional iterators with the same capabilities. Most of
the following tensor functions require input iterator attributes of
the standard library.

Similar to the basic linear algebra subroutines (BLAS),
we distinguish between first-level and higher-level tensor
algorithms. The former generalize function templates of the C++
standard library for tensor types and have identical function
names with almost the same function signature. They combine
elements of one or more tensor or subtensor instances with
the same multi-index and are often referred to as pointwise or
elementwise tensor operations. Higher-level tensor operations
have a more complex control-flow and tensor elements with
different multi-indices such as the tensor-tensor multiplication.

All of the following C++ tensor functions implement tensor
operations with multiple loops and contain two optimizations
that have been suggested in [24] optimizing index computation
(minimum-index) and inlining recursive function by compile-
time optimization (inline). Comparing the tree-recursive and
equivalent iteration-based implementations that have presented
in [24], we favor the tree-recursion which has fewer lines of C++
code, is easier to understand and is only about 8% slower if the
leading dimension of the tensors or subtensors is greater than or
equal to 256.

5.1. First-Level Tensor Operations
The following proposed first-level tensor C++ function templates
are akin to the ones provided by the algorithms library of the
C++ standard library and combine elements with the samemulti-
index. With similar functions signatures, tensor functions pose
different iterator requirements and has in most cases tensor order
as an additional parameter. Almost all C++ tensor functions
contain a function object (predicate) that is applied to every input
element. The user can utilize existing function objects of the C++
standard library, define its own class or use lambda-expressions
which is why first-level C++ tensor functions can be regarded as
higher-order functions for tensors.

It should be noted that dense and contiguously stored tensors,
C++ functions from the standard library such std::transform

or std::inner_product can be used. However, the usage of
loops utilizing a single-index or alike in case of subtensors slows
down the performance by a factor which is proportional to
the subtensor order [24]. If the leading dimension nπ1 of a
tensor is large enough and greater than 512, the experiments
in [24] show that the control- and data-flow overhead of a
multi-loop approach only slows down the computation by at
most 12%. In extreme cases where the leading dimension is
smaller than 64, we observed a slow down of about 50%.
This observation favors the usage of one implementation with
nested recursion and multiple loops for dense tensors and their
subtensors if the leading dimensions are in most cases greater
than 256.

The implementation of basic tensor functions can be derived
from the previous example in listing 1. In contrast to the
C++ algorithms, first-level tensor function templates iterate

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 April 2022 | Volume 8 | Article 80653787

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

Listing 2 | Implementation of for_each with multi-dimensional iterators.

template <class InputIt, class UnaryFn>
void for_each(unsigned r,

InputIt first, InputIt last, UnaryFn fn)
{

const auto s=r-1;

if(r > 1)
for(; first != last; ++first)
for_each(s, first.begin(s), first.end(s), fn);

else /* base case: r = 1 */
std::for_each(first,last,fn);

}

over multiple ranges using multi-dimensional iterators. The
function for_each in listing 2 applies the function object fn
of type UnaryFn to every tensor element that is accessed by
multi-dimensional iterator pairs first and last. Given a tensor
or subtensor A of order pwith p>0, for_each in listing 2 needs to
be performed with an iterator pair A.begin(p) and A.end(p).
The parameter r corresponds to the inverse recursion depth
which is initialized with the tensor order p and decremented
until the base case of the recursion is reached where r is equal
to 1. for_each calls itself std::distance(first,last) times
in line 6 with a new range defined by first.begin(r-1) and
first.end(r-1) where first is an iterator instance of the
previous function call. When the base case with r=1 is reached,
std::for_each is called in line 7 with the range specified by
first.begin(1) , first.end(1). If for_each is called with an
r smaller than p, for_each skips p-rmodes and only applies fn
on the first r modes. If r is greater than p, any memory access
is likely to cause a segmentation fault. If the user calls for_each
with r=0, std::for_each is directly called and iterated along the
single index space of the tensor or subtensor.

Note that for_each calls itself n2 · · · np times if the tensor or
subtensor is of order p > 1 and has the dimensions n1, n2, . . . , np.
Given a tensor or subtensor A of order p with any linear
storage format and a unary function object fn, the arguments
of for_each should be p, A.begin(p), A.end(p), and fn. For
instance, adding a scalar v to all elements of A can be performed
if fn is defined as std::bind(std::plus<>{},_1,v) or using a
lambda function with the same computation.

//A:=A+v;
for_each(p, A.begin(p), A.end(p), [v](auto &a){a+=v;});

The user can implement elementwise subtraction,
multiplication, division operations by defining a binary
function object from the standard library such as
std::bind(std::multiplies<>{},_1,v). It is also
possible to define bitwise tensor operations, e.g.,
std::bind(std::bit_or<>{},_1,v) if v satisfies the template
parameter requirements of the binary operation. The user can
conveniently create complex elementwise tensor operations that
contain a sequence of scalar operations for each element. For
instance, raising all tensor or subtensor elements to the power of

Listing 3 | Implementation of transform with multi-dimensional iterators.

template <unsigned r,
class InputIt, class OutputIt, class UnaryOp>

void transform(InputIt fin, InputIt lin,
OutputIt fout, UnaryUp op)

{
constexpr auto s=r-1;

if constexpr (r > 1)
for(; fin!=lin; ++fin, ++fout)
transform<s>(fin.begin (s), fin.end(s),

fout.begin(s), op);

else /* base case: r = 1 */
std::transform (fin, lin, fout, op);

}

2, dividing the result by v and adding the value w is given by the
following expression.

//A:=A.^2/v+w;
for_each(p, A.begin(p), A.end(p),

[v,w](auto &a){a*=a/v+w;});

In contrast to calling simple overloaded operators of tensor or
subtensor types, this statement does not create temporary tensor
objects and is as efficient as expression templates.

Function transform, presented in listing 3, has a signature
which is similar to the one of std::transform. It operates
on two multi-dimensional ranges which are defined by the
iterators fin, lin of type InputIt and fout of type
OuputIt defining the input and output ranges, respectively.
Akin to the for_each implementation, the one-dimensional
ranges are given by iterators that are instantiated either by
the previous recursive call or when transform is initially
called. For demonstration purposes, the inverse recursion
depth and its initial value is specified using a non-type
template parameter r. The if condition is modified with
the constexpr specifier so that r>1 is evaluated at compile
time. A C++ compiler can decide to inline the recursive calls
which leads faster runtimes in case of small dimensions [24].
Once the base case with r=1 is reached std::transform

performs the unary operation op on elements of tensor
fibers that are given by the ranges [fin,lin) and [fout,
fout+std::distance(fin,lin)).

Given p+1-dimensional tensors or subtensors A and C with
the shape tuple n and any linear storage format. Let also op be
a unary operation of type UnaryOp. The multiplication of a scalar
v with the elements of A is accomplished by calling transform

as follows.

// C:= A+v;
transform<p>(A.begin(p), A.end(p), C.begin(p),

[v](auto a){ return a*v;});

Given p+1-dimensional tensors or subtensors A, B, and C with
the shape tuple n and any linear storage format. Let also op be
a binary operation of type BinaryOp that can process elements of
A and B. Elementwise addition of A and B can be performed by
calling transform as follows.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 April 2022 | Volume 8 | Article 80653788

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

// C:= A+B;
transform<p>(A.begin(p), A.end(p),

B.begin(p), C.begin(p), std::plus<>{});

Users can implement their own multi-dimensional iterators
supporting the input iterator type traits with the begin and
end method for initializing iterators. The copy and transform

functions have the same signature except the unary operator
which can be left out in case of copy. Moreover, copy can
be regarded as a specialization of transform where the unary
function op returns a single element that is provided by the
input iterator. With r specifying the inverse recursion depth, our
implementation of copy is given by the following function call.

transform<r>(fin, lin, fout, [](auto a){return a;}));

Transposing a tensor can be accomplished using the copy

function with minor modifications. Let tau of type, e.g.,
std::array<unsigned,p> be an additional standard container
for the index permutation as a function parameter and let the
function name copy be changed to transpose. An out-of-place
tensor-transposition is performed with

// C := A^{tau};
transpose<p>(A.begin(tau[p-1]), A.end(tau[p-1]),

C.begin(p), tau);

The recursive function call in transpose needs to be changed
accordingly, replacing the argument p with r-1. Note this simple
implementation of the tensor transposition does not conserve
data locality only for both tensors unless the permutation
tuple is trivial. A high-performance version of the transposition
operation is given in [31].

An implementation of the inner product of two tensors or
subtensors with any linear storage format is given in listing 4.
The function signature and body corresponds to a modified
transform function. The std::inner_product computes the
inner product of tensor or subtensor fibers multiple times using
results init of previous function calls. Computing the inner
product of two tensors or subtensors A and B is given by the
following function call.

// c := <A,B>;
auto inner = inner_product<p>(A.begin(p), A.end(p),

B.begin(p), Value{});

The initial value is given by the default constructor of Value
which should be implicitly convertible to the elements type of
A and B. The frobenius norm of a tensor A can be implemented
using the inner_product as follows.

// c: = fnorm(A) = sqrt(inner(A,A));
auto c = std::sqrt(inner_product<p>(A.begin(p),A.end(p),

A.begin(p),Value{}));

The computation of the frobenius norm is given by first executing
the unary operation [](auto const& a){return a*a;} with
transform and accumulate all elements of the output tensor C
using the accumulate function.

5.2. Higher-Level Tensor Operations
Higher-level tensor operations perform one or more inner
products over specified dimensions and, therefore, exhibit a
higher arithmetic intensity ratio compared to first-level tensor

Listing 4 | Implementation of inner_product with multi-dimensional iterators.

template <unsigned r, class InputIt,
class OutputIt, class Value>

Value inner_product(InputIt fin, InputIt lin,
OutputIt fout, Value init)

{
constexpr auto s=r-1;

if constexpr (r > 1)
for(; fin!=lin; ++fin, ++fout)
init = inner_product<s>(fin.begin(s),fin.end(s),

fout.begin(s),init);

else /* base case: r = 1 */
init = std::inner_product(fin, lin, fout, init);

return init;
}

operations. Prominent examples are the general tensor-times-
tensor multiplication with variations.

5.2.1. Tensor-Vector Multiplication

One such variation is the q-mode tensor-vector multiplication
where q equals the contraction dimension. Let A be a tensor or
subtensor of order p > 1 with dimensions n and any linear
storage format. Let b be a vector with dimension nq with 1 ≤ q ≤

p. Let C be a tensor or subtensor of order p− 1 with dimensions
n′ = (n1, . . . , nq−1, nq+1, . . . , np). The q-mode tensor-vector

multiplication computes 1/nq
∏p

r=1 nr inner products, i.e., fiber-
vector multiplications, according to

C(i1, . . . , iq−1, iq+1, . . . , ip) =

nq∑

iq=1

A(i1, . . . , iq, . . . , ip)·b(iq) (1)

with 1 ≤ ir ≤ nr . If p = 2, the tensor-vector multiplication
computes a vector-matrix product of the form c = bT · A for
q = 1 and a matrix-vector product of the form c = A · b for
q = 2. Vector b is multiplied with the frontal slices of A if p is
greater than 2 and q = 1 or q = 2.

Function ttv in listing 5 implements the general tensor-times-
vector multiplication where the contracting dimension q is a
one-based compile time parameter computing all contractions
for 1 < q ≤ p. The second template parameter ra corresponds
to the inverse recursion depth and ranges from 1 ≤ r ≤ p. The
third template parameter rc depends on q so that rc = ra − 1 for
q < ra ≤ p and rc = ra for 1 ≤ ra ≤ q. The algorithm used in ttv
is based on the algorithm 1 that has been proposed in [32]. The
implementation can be regarded as an extension of the previously
discussed functions with similar signature and body. The first if-
statement is introduced to skip and place the iteration along the
q-th dimension inside the base case. Therefore, iterators for the
next recursion are generated for A based on the current position
of fa. The second if-statement contains the recursive call that
can be found in all previous listings. The else-statement contains
the base case of the recursion which is executed if ra=1. The base
case multiplies vector b with a selected slice of A and stores the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 April 2022 | Volume 8 | Article 80653789

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

results in the corresponding fiber of C. Given a tensor A of order
p, a vector b and a tensor C of order p-1, all with the same element
type and storage format, then

// C = A *q b
ttv<q,p,p-1>(A.begin(p), b.begin(),C.begin(p-1));

computes the q-mode tensor-times-vector product for 1 < q ≤

p. Note that spatial data locality for A is maximized when stride
wa
q satisfies w

a
q ≤ wa

ra
for all ra 6= q which is the case for a storage

format with a layout tuple (q,π2, . . . ,πp). For that purpose, C
stride wc

1 needs to satisfy wc
1 ≤ wc

rc
for all rc 6= q. Assuming that

only one storage format, the spatial data locality can be increased
for any linear storage format by modifying the recursion order
according to the storage format and reordering the loops in the
base case as suggested in [32]. This is accomplished by using the
layout vectors π of A and C that contain indices with wπr ≤

wπr+1 for all 1 ≤ r < p. Replacing indices ra and rc with
pia[ra-2] and pic[rc-2] allows to generate iterators with
strides that are decreasing with the recursion depth. The base case
needs to be changed as well with the following code snippet that
computes a slice-vector product accessing A and C for any linear
storage format.

auto ta = pia[0];
auto tc = pic[0];

for(auto faq=fa.begin(q); faq!=fa.end(q); ++faq,++fb){
auto op = [b=*fb](auto const& a, auto const& c)

{return c+a*b;});

std::transform(faq.begin(ta), faq.end(ta),
fc. begin(tc), fc. begin(tc), op);

}

Instead using std::inner_product, the base case scales A’s
fibers with b and writes the result in C’s corresponding fibers. If A
and B are contiguously stored, memory access can be performed
in a coalesced manner. The algorithm can be further optimized
for temporal data locality and parallel execution. Interested
readers are referred to [32].

5.2.2. Tensor-Matrix Multiplication

A generalization of the q-mode tensor-vector multiplication and
a specialization of the tensor-tensor multiplication is the q-mode
tensor-matrix multiplication. Let A be a tensor or subtensor
of order p > 1 with dimensions n and any linear storage
format. Let B be a matrix with dimensions (nq, n

′
q) with 1 ≤

q ≤ p. Let C be a tensor or subtensor of order p with
dimensions n′ = (n1, . . . ,m, . . . , np). The q-mode tensor-matrix

multiplication computes (m/nq)
∏p

r=1 nr inner products, i.e.,
fiber-vector multiplications, according to

C(i1, . . . , j, . . . , ip) =

nq∑

iq=1

A(i1, . . . , iq, . . . , ip) · B(j, iq) (2)

with 1 ≤ ir ≤ nr and 1 ≤ j ≤ m. If p = 2, a matrix-
matrix product C = B · A for q = 1 and C = A ·

BT for q = 2, respectively. Matrix B is multiplied with the
frontal slices of A accordingly if p greater than 2 and q = 1
or q = 2.

Listing 5 | Implementation of the q-mode tensor-vector product with iterators for

q>1.

template<unsigned q, unsigned ra, unsigned rc,
class InputIt1,class InputIt2,class OutputIt>

void ttv(InputIt1 fa, InputIt1 la, InputIt2 fb,
OutputIt fc)

{
constexpr auto sa = ra-1;
constexpr auto sc = rc-1;

if constexpr (ra == q)
ttv<q,sa,rc>(fa.begin(sa), fa.end(sa), fb, fc);

else if constexpr (ra > 1)
for(; fa != la; ++fa, ++fc)
ttv<q,sa,sc>(fa.begin(sa),fa.end(sa),

fb,fc.begin(sc));

else /* base case: ra = 1 and rc = 1 */
for(; fa != la; ++fa, ++fc)

*fc = std::inner_product(fa.begin(q),fa.end(q),
fb ,*fc);

}

The implementation of the q-mode tensor-matrix
multiplication is almost identical to ttv except for the base
case, minor modifications for the recursion cases and the
function signature.

template<unsigned q, unsigned r,
class InputIt1,class InputIt2,class OutputIt>

void ttm(InputIt1 fa, InputIt1 la, InputIt2 fb,
OutputIt fc)

The contracting dimension q is a one-based compile time
parameter of ttm which performs a valid computation for
1 < q ≤ p. As both tensors or subtensors have the
same order, ttm requires only one template parameter r which
equates to ra in ttv. The implementation of ttm’s base-case
computes a matrix-slice product of the form C = A · BT by
multiplying a two-dimensional slice of A with a transposed B

and storing the results in corresponding fibers of C. The base
case is presented in the following code section and executed
when r=1.

for(auto fb1=fb; fa!=la; ++fa, ++fc,fb0 = fb)
for(auto fcq=fc.begin(q);fcq!=fc.end(q);++fcq,++fb1)

*fcq = std::inner_product(fa.begin(q),fa.end(q),
fb1.begin(2),*fcq);

When r=1, iterators fa, la, and fc have been instantiated by
previously generated iterators with their begin and endmethods
for r=1. We postulate that fb is initialized with begin for the
first dimension with r=1. The first for-loop iterates over the
first mode of A and C using fa and fc. The second for-loop
iterates over mode q of Cwith the starting address of the previous
iterator and first mode of B and calling std::inner_product

with A’s fiber and one column of B. Given a tensor or
subtensor A of order p, a matrix B and a tensor or subtensor
C of order p, with similar element types and any linear data
layout, then

// C = A *q B;
ttm<q,p> (A.begin(p), B.begin(1), C.begin(p));

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 April 2022 | Volume 8 | Article 80653790

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

auto fb2 = fb.begin(2);
auto pi0 = pi[0];

for(auto fcq=fc.begin(q);fcq!=fc.end(q);++fcq,++fb){
auto fb1 = fb.begin(1);
for(auto faq=fa.begin(q);faq!=fa.end(q);++faq,++fb1){
auto op=[b=*fb1](auto const& a, auto const& c)

{return c+a*b;});
std::transform(faq.begin(pi0),faq.end(pi0),

fcq.begin(pi0),fcq.begin(pi0), op);
}

}

computes the q-mode tensor-times-matrix product. Note that
spatial data locality for A and C is high when their strides wq

satisfy wq ≤ wr for all r 6= q. Assuming that only one storage
format, the spatial data locality can be increased for any linear
storage format similar to ttv. This is done by utilizing the layout
vectors π of both tensors and by replacing the index r with
pi[r-2] that allows to generate iterators with decreasing strides
and recursion depth. The loop ordering inside the base case of
ttm is changed from (n1,nq,m) to (m,nq,nπ1). In that case A and C
are accessed in a coalesced manner for any linear storage format
if the tensors are contiguously stored in memory where one fiber
of C is accessed nq times. The algorithm can be further optimized
for temporal data locality and parallel execution.

5.2.3. Tensor-Tensor Multiplication

The tensor-tensor product is the general form of the tensor-
matrix and tensor-vector multiplication. Let A and B be tensors
or subtensors of order pa and pb with dimensions na and nb,
respectively. Given two permutation tuples ϕ and ψ of length pa
and pb and the number of contractions q with qa = pa − q and
qb = pb − q, the q-fold tensor-tensor multiplication computes
elements of tensor or subtensor C of order pc = qa + qb
with dimensions nc and using permutation tuples ϕ and ψ

according to

C(ic) =

m1∑

j1=1

· · ·

mq∑

jq=1

A(ia) · B(ib), (3)

where the shape tuples satisfy ncrc = nara for 1 ≤ rc ≤ qa with

ra = ϕr , n
c
rc
= nbrb for 1 ≤ r ≤ qb with rc = qb + r and rb = ψr ,

mr = nara = nbrb for 1 ≤ r ≤ q with ra = ϕr+qa and rb =

ψr+qb . The first q elements of ϕ and ψ specify the contraction
modes, while the remaining qa and qb elements specify the
free (non-contraction) modes. The k-mode tensor-matrix and
k-mode tensor-vector multiplication are specializations of the
q-fold tensor-tensor multiplication which corresponds to the k-
mode tensor-vector multiplication, if q = 1, pa > 1, pb = 1
and ϕ = (1, . . . , k − 1, k + 1, . . . , pa, k), ψ = (1). The k-mode
tensor-matrix multiplication is given if q = 1, pa > 1, pb = 2
and ϕ = (1, . . . , k− 1, k+ 1, . . . , pa, k), ψ = (1, 2).

Function ttt in listing 6 implements the tensor-times-tensor
multiplication as defined in Equation (3) for any number of
contractions q>1. The contraction is performed with tensors or

subtensors A and B of order pa and pb with any linear storage
format and without unfolding A or B. The free and contraction
modes reside within the permutation tuple phi and psi that
must be a container with random access capabilities. Function
ttt is defined with four non-type template parameter. The first
three ra, rb, and rc are the current modes of each corresponding
tensor or subtensor and should be initially instantiated with pa

and pb and pc, respectively. The last non-type parameter q of ttt
and equals to the number of contraction modes.

The control flow of ttt contains four main branches of which
three contain a for-loop with a recursive function call. The first
for-loop is exectued qb times and iterates over free index spaces
of B and Cwith s = ψrb for q < rb ≤ pb and qa < rc ≤ pc without
adjusting iterators of A. The second for-loop is executed qa times
and iterates over free index spaces of A and C where s = ϕra for
q < ra ≤ pa and 1 ≤ rc ≤ qa without adjusting iterators of
B. The third for-loop is executed q times and iterates over the
contraction index spaces of A and Bwhere s = ϕra and r = ψrb for
1 < ra,b ≤ q without adjusting iterators of C. If ra = 1 and rb = 1
the base case is reached and ttt performs an inner product with
iterators that have been previously instantiated.

The q-mode tensor-tensor multiplication can be interpreted
as a mix of the inner and outer tensor product with permutation
tuples. The latter is partly accomplished by the qa + qb-fold
execution with the first and second for-loop. However, input
tensor elements of A and B are not multiplied to complete the
outer product operation. Instead an inner product over q modes
is computed for the recursion levels r > qa + qb. The last
two branches could be replaced by the inner_product in listing
4 using the permutation tuples phi and psi. The minimum
recursion depth is 1 when q = 1 and qa,b = 0, while the
maximum recursion depth equals q + qa + qb with q > 0 and
qa,b > 0.

Given tensors or subtensors A of order 3, B of order 4 and
C of order 3 with similar element types, any linear data layout.
Let the dimension tuples of A and B be na = (4, 3, 2) and
nb = (5, 4, 6, 3), respectively. Let also q = 2 be the number of
contractions andϕ = (1, 2, 3) andψ = (2, 4, 1, 2) be the elements
of the permutation tuples phi and psi, respectively. Given the
dimensions (na3, n

b
1, n

b
2), i.e., (2,5,6), then

// C = A(_i,_j,_)*B(_,_i,_,_j)
ttt<pa,pb,pc,q>(phi,psi,

A.begin(pa),B.begin(pb),C.begin(pc));

performs a 2-mode tensor-tensor multiplication of A and B

according to phi, psi, and q. Spatial data locality for A and B is
high when for q > 0 their strides wa

ϕ1
and wb

ψ1
satisfy wa

ϕ1
≤ wa

r

for all r 6= ϕ1 and wb
ψ1

≤ wb
r for all r 6= ψ1, respectively.

Performance analysis and optimization techniques for the
general tensor-tensor multiplication are discussed in [33, 34].

6. RUNTIME ANALYSIS

This section presents runtime results of the transform

function (listing 3) and the function inner_product (listing
4). The runtime measurements also include pointer-based
implementations that have been presented in [24]. We

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 April 2022 | Volume 8 | Article 80653791

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

Listing 6 | Template Function ttt using multi-dimensional iterators implementing

Equation (3).

template<unsigned ra, unsigned rb,
unsigned rc, unsigned q,
class InputIt1, class InputIt2,
class OutputIt, class Permutation>

void ttt(Permutation const& phi,
Permutation const& psi,
InputIt1 fa, InputIt2 la,
InputIt2 fb, InputIt2 lb,
OutputIt fc)

{
constexpr auto sa = ra-1;
constexpr auto sb = rb-1,
constexpr auto sc = rc-1;

if constexpr (rb > q)
for(; fb!=lb; ++fb,++fc)

ttt<ra,sb,sc,q>(phi,psi,
fa,la,
fb.begin(sb),fb.end(sb),
fc.begin(sc));

else if constexpr (ra > q)
for(auto s=phi[sa]; fa!=la; ++fa,++fc)

ttt<sa,rb,sc,q>(phi,psi,
fa.begin(s),fa.end(s),
fb,lb,fc.begin(sc));

else if constexpr (ra > 1)
for(auto s=phi[sa], r=psi[sb]; fa!=la; ++fa,++fb)

ttt<sa,sb,rc,q>(phi,psi,
fa.begin(s),fa.end(s),
fb.begin(r),lb,
fc);

else // base case: ra=1 and rb=1

*fc = std::inner_product(fa,la,fb,*fc);
}

have also included runtime results of the ttv function
(listing 5) that has been discussed in [32] as a sequential
implementation for the tensor-times-vector multiplication.
All pointer and iterator-based functions have identical with
respect to their control-flow in which the recursion index is a
template parameter.

6.1. Setup
The following runtime measurements have been performed with
1792 differently shaped tensors ranging from 32 to 1024 MiB
for single- and 64 to 2048 MiB for double-precision floating-
point numbers. The order of the tensors ranges from 2 to 14
while dimensions range from 256 to 32768. Dimension tuples
are arranged within multiple two-dimensional arrays so that
runtime data could be visualized as three-dimensional surfaces
or contour plots in terms of the tensor order and tensor size.
The contour plots consist of 100 height levels that correspond
to averaged throughputs. We will refer to the contour plots
as throughput maps. Spatial data locality is always preserved
meaning that relative memory indices are generated according
to storage format. Tensor elements are stored according to the

first-order storage format. This setup is identical to the tensor
test set that has been presented in [24]. For the tensor-times-
vector multiplication, we have used a setup that is akin to the one
described in [32]. All tensors are asymmetrically shaped ranging
from 64 to 2048 MiB for single- and 128 to 4096 MiB for double-
precision floating-point numbers. The tensor order ranges from
2 to 10 and the contraction mode has been set to 1 in order to
preserve spatial data locality for all tensor objects.

The experiments have been carried out on a Core i9-7900X
Intel Xeon processor with 10 cores and 20 hardware threads
running at 3.3 GHz. It has a theoretical peak memory bandwidth
of 85.312 GB/s resulting from four 64-bit wide channels with a
data rate of 2666MT/s with a peak memory bandwidth of 21.328
GB/s. The sizes of the L3 cache and each L2 cache are 14MB and
1024KB. The source code has been compiled with GCC v9.3 using
the highest optimization level -Ofast and -march=native.The
benchmark results of each function are the average of 10 runs on
a single core.

6.2. Results
Figure 1 contains two throughput maps of a pointer- and

iterator-based transform function. Both implement an

elementwise tensor addition of the form C:=A+v; using unary

function object [v](auto a){return a+v;}. The throughput
of transform with pointers and iterators are most effected when

the tensor size smaller than 128. We assume that this is caused

by the caching mechanism which is still able to hold some data
inside the last level cache and to speed up the computation. This
effect diminishes when the tensor size is greater than 256 MiB.
The throughput also contains a slight variation for different
tensor order. For tensor sizes greater than 256 MiB, pointer-
based implementation of transform computes the tensor
addition with approximately 12.2 GB/s varying with at most 10%
from the mean value. The iterator-based implementation is more
consistent and only slows down to approximately 12.2 GB/s if
the tensor order is 4 and 5. The std::transform function of
the C++ standard library, the pointer-based and iterator-based
transform function reach a median throughput of 13.71, 12.01,
and 12.60 GB/s for 95% of test cases and a maximum throughput
of 15.57, 13.50, and 13.71 GB/s.

The runtime behavior of the inner_product

implementations is similar, see Figure 2. The
std::inner_product function of the C++ standard library,
the pointer-based and iterator-based inner_product function
reach a median throughput of 14.8, 12.03, and 12.47 GB/s for
95% of test cases. They exhibit maximum throughput of 15.36,
12.59, and 12.82 GB/s mostly when the tensor size is equal to
32 MiB. We have made similar runtime observations for other
elementwise tensor operations such as for_each where the
iterator-based implementation is in many cases 1 to 5% faster
than their corresponding pointer-based counterparts.

Similar results are obtained for iterator-based and pointer-
based implementations of the tensor-times-vector operations
where both C++ functions compute the tensor-vector-product
with 2.09 (single-precision) GFLOPS for about 95% test-cases.
This can be observed in Figure 3 which contains throughput

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 April 2022 | Volume 8 | Article 80653792

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

FIGURE 1 | Single core throughput in GB/s of the transform function with pointers (left) that has been discussed in [24] and iterators (right) that is presented in

listing 3. Iterator-based transform function reaches a median throughput of 12.60 GB/s and is about 2% to 5% faster than its pointer-based counterpart.

FIGURE 2 | Single core throughput in GB/s of the inner_product function with pointers (left) that has been discussed in [24] and with iterators (right) that is

presented in listing 4. Iterator-based inner_product function reaches a median throughput of 12.47 GB/s and is about 2 to 5% faster than its pointer-based

counterpart.

maps for the iterator-based and pointer-based implementation
of the tensor-times-vector operation. The iterator-based function
ttv in listing 5 reaches a peak throughput of 2.92 GFLOPS when
tensor size and order are around 64 MiB and 10, respectively.
The pointer-based counterpart exhibits a maximum throughput
of 2.74 GFLOPS with the same tensor dimensions and is about
6.5% slower than the iterator-based function. Those performance
peaks happen for larger tensor order when the first (contraction)
dimension of the input tensor is relatively small. This results in
a higher reuse of cache lines that belong to the input vector and
output tensor fiber.

7. CONCLUSIONS

We have presented generic C++ functions for basic tensor
operations that have been discussed in [22] as part of a
Matlab toolbox for numeric tensor computations. Following
design pattern of the Standard Template Library, all proposed
C++ functions are defined in terms of only multi-dimensional
iterators and avoid complex pointer arithmetic. The set of
the C++ functions includes elementwise tensor operations
and more complex tensor operations such as tensor-tensor
multiplication. All C++ functions perform the corresponding

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 April 2022 | Volume 8 | Article 80653793

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

FIGURE 3 | Single core throughput in GFLOPS of the ttv function with pointers (left) and with iterators (right) that is presented in listing 5. Iterator-based ttv
function computes the tensor-vector product with median throughput of 2.09 GFLOPS and performs as fast as the pointer-based implementation.

computation in-place and in a recursive fashion using two
optimizations that have been discussed in [24]. We have
introduced a multi-dimensional iterator that can be instantiated
by Boost’s uBlas tensor and subtensor types. Other C++
frameworks can utilize the proposed C++ functions for any
linear storage format by implementing the proposed or their
ownmulti-dimensional iterator fulfilling a minimal set of iterator
requirements. Our performance measurements show that the
iterator-based functions compute elementwise tensor operations
and the tensor-times-vector product at least as fast as their
corresponding pointer-based counterparts. Our iterator-based
design method is applicable to other tensor operations such
as the metricized-tensor times Khatri-Rao product (MTTKRP)
which is used to decompose tensors according to the PARAFAC
model [35, 36]. This implies that multi-dimensional iterators
can be used for efficiently implementing tensor operations.

In future, we intend to design C++ concepts for multi-
dimensional iterator or ranges. We also would like to integrate
optimization techniques that have been discussed in [32,
33] and to enable parallel execution of different type of
tensor operations.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

REFERENCES

1. Savas B, Eldén L. Handwritten digit classification using higher order

singular value decomposition. Pattern Recognit. (2007) 40:993–1003.

doi: 10.1016/j.patcog.2006.08.004

2. Vasilescu MAO, Terzopoulos D. Multilinear image analysis for facial

recognition. In: Proceedings of the 16th International Conference on Pattern

Recognition. Vol. 2 Quebec City, QC (2002). p. 511–514.

3. Suter SK, Makhynia M, Pajarola R. TAMRESH - tensor approximation

multiresolution hierarchy for interactive volume visualization. In: Proceedings

of the 15th Eurographics Conference on Visualization. EuroVis ’13. Chichester

(2013). p. 151–60.

4. Kolda TG, Sun J. Scalable tensor decompositions for multi-aspect data

mining. In: Proceedings of the 8th IEEE International Conference on Data

Mining. (Pisa) 2008. p. 363–72.

5. Rendle S, Balby Marinho L, Nanopoulos A, Schmidt-Thieme L. Learning

optimal ranking with tensor factorization for tag recommendation. In:

Proceedings of the International Conference on Knowledge Discovery and Data

Mining. Paris (2009). p. 727–36.

6. Khoromskij B. Tensors-structured numerical methods in scientific

computing: survey on recent advances. Chemometr. Intell.

Lab. Syst. (2012) 110:1–19. doi: 10.1016/J.CHEMOLAB.2011.

09.001

7. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.

(2009) 51, 455–500. doi: 10.1137/07070111X

8. Lim LH. Tensors and hypermatrices. In: Hogben L, editor.Handbook of Linear

Algebra, 2nd Edn. Chapman and Hall (2017).

9. Cichocki A, Zdunek R, H PA, Amari S. Nonnegative Matrix and Tensor

Factorizations, 1st Edn. John Wiley & Sons, (2009).

10. da Silva JD, Machado A. Multilinear algebra. In: L. Hogben, editor. Handbook

of Linear Algebra, 2nd Edn. Chapman and Hall, (2017).

11. Lee N, Cichocki A. Fundamental tensor operations for large-

scale data analysis using tensor network formats. Multidimensional

Syst Signal Process. (2018) 29:921–60. doi: 10.1007/s11045-017-

0481-0

12. Lathauwer LD, Moor BD, Vandewalle J. A multilinear singular

value decomposition. SIAM J Matrix Anal Appl. (2000) 21:1253–78.

doi: 10.1137/S0895479896305696

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 April 2022 | Volume 8 | Article 80653794

https://doi.org/10.1016/j.patcog.2006.08.004
https://doi.org/10.1016/J.CHEMOLAB.2011.09.001
https://doi.org/10.1137/07070111X
https://doi.org/10.1007/s11045-017-0481-0
https://doi.org/10.1137/S0895479896305696
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

13. Li J, Battaglino C, Perros I, Sun J, Vuduc R. An input-adaptive and in-

place approach to dense tensor-times-matrix multiply. In: Proceedings of

the International Conference for High Performance Computing, Networking,

Storage and Analysis. SC ’15. Austin, TX (2015). p. 1–12.

14. Stroustrup B. Foundations of C++. In: Programming Languages and Systems

- 21st European Symposium on Programming. Vol. 7211 of Lecture Notes in

Computer Science. Tallinn (2012). p. 1–25.

15. Stroustrup B. Software development for infrastructure. Computer. (2012)

45:47–58.

16. Veldhuizen TL. Arrays in Blitz++. In: Caromel D, Oldehoeft RR, Tholburn

M, editors. Lecture Notes in Computer Science. ISCOPE. Vol. 1505. Berlin:

Springer (1998). p. 223–30.

17. Reynders III, JV, Cummings JC. The POOMA framework. Comput Phys.

(1998) 12:453–59.

18. Landry W. Implementing a high performance tensor library. Sci Program.

(2003) 11:273–90.

19. Solomonik E, Matthews D, Hammond J, Demmel J. Cyclops tensor

framework: Reducing communication and eliminating load imbalance in

massively parallel contractions. In: Proceedings of the 2013 IEEE 27th

International Symposium on Parallel and Distributed Processing. IPDPS ’13.

Cambridge, MA (2013). p. 813–24.

20. Harrison AP, Joseph D. Numeric tensor framework: exploiting

and extending Einstein notation. J Comput Sci. (2016) 16:128–39.

doi: 10.1016/j.jocs.2016.05.004

21. Poya R, Gil AJ, Ortigosa R. A high performance data parallel tensor

contraction framework: Application to coupled electro-mechanics. Comput

Phys Commun. (2017) 216:35–52. doi: 10.1016/j.cpc.2017.02.016

22. Bader BW, Kolda TG. Algorithm 862: MATLAB tensor classes for

fast algorithm prototyping. ACM Trans Math Softw. (2006) 32:635–53.

doi: 10.1145/1186785.1186794

23. Psarras C, Karlsson L, Bientinesi P. The landscape of software for tensor

computations. CoRR. 2021;abs/2103.13756.

24. Bassoy C, Schatz V. Fast higher-order functions for tensor calculus with

tensors and subtensors. In: Shi Y, Fu H, Tian Y, Krzhizhanovskaya VV, Lees

MH, Dongarra J, et al., editors. Computational Science—ICCS 2018. Springer

International Publishing (2018). p. 639–52.

25. Garcia R, Lumsdaine A. MultiArray: a C++ library for generic programming

with arrays. Softw Pract Exp. (2005) 35:159–88. doi: 10.1002/spe.630

26. Aragón AM. A C++ 11 implementation of arbitrary-rank tensors for

high-performance computing. Comput Phys Commun. (2014) 185:1681–96.

doi: 10.1016/j.cpc.2014.01.005

27. Stepanov A. The standard template library. Byte. (1995) 20:177–8.

28. HackbuschW. Numerical tensor calculus. Acta Numerica. (2014) 23:651–742.

doi: 10.1017/S0962492914000087

29. Chatterjee S, Lebeck AR, Patnala PK, Thottethodi M. Recursive array layouts

and fast parallel matrix multiplication. In: Proceedings of the Eleventh Annual

ACM symposium on Parallel algorithms and architectures. SPAA ’99. New

York, NY (1999). p. 222–31.

30. Elmroth E, Gustavson F, Jonsson I, Kågström B. Recursive blocked

algorithms and hybrid data structures for dense matrix library

software. SIAM Rev. (2004) 46:3–45. doi: 10.1137/S003614450342

8693

31. Springer P, Su T, Bientinesi P. HPTT: a high-performance tensor transposition

C++ library. In: Proceedings of the 4th ACM SIGPLAN InternationalWorkshop

on Libraries, Languages, and Compilers for Array Programming. Barcelona

(2017). p. 56–62.

32. Bassoy C. Design of a high-performance tensor-vector multiplication

with BLAS. In: Rodrigues JMF, Cardoso PJS, Monteiro JM, Lam R,

Krzhizhanovskaya VV, Lees MH, et al., editors. Computational Science – ICCS

2019 Lecture Notes in Computer Science. Vol. 11536. Cham: Springer. (2019).

p. 32–45.

33. Springer P, Bientinesi P. Design of a high-performance GEMM-like

tensor-tensor multiplication. ACM Trans Math Softw. (2018) 44:1–29.

doi: 10.1145/3157733

34. Matthews DA. High-performance tensor contraction without

transposition. SIAM J Sci Comput. (2018) 40:C1–C24. doi: 10.1137/16M10

8968X

35. Ballard G, Knight N, Rouse K. Communication lower bounds for matricized

tensor times Khatri-Rao product. In: 2018 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). Vancouver, BC: IEEE (2018). p.

557–67.

36. Bader BW, Kolda TG. Efficient MATLAB computations with

sparse and factored tensors. SIAM J Sci Comput. (2008) 30:205–31.

doi: 10.1137/060676489

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Bassoy. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 April 2022 | Volume 8 | Article 80653795

https://doi.org/10.1016/j.jocs.2016.05.004
https://doi.org/10.1016/j.cpc.2017.02.016
https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1002/spe.630
https://doi.org/10.1016/j.cpc.2014.01.005
https://doi.org/10.1017/S0962492914000087
https://doi.org/10.1137/S0036144503428693
https://doi.org/10.1145/3157733
https://doi.org/10.1137/16M108968X
https://doi.org/10.1137/060676489
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

ORIGINAL RESEARCH
published: 12 April 2022

doi: 10.3389/fams.2022.830270

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 April 2022 | Volume 8 | Article 830270

Edited by:

Stefan Kunis,

Osnabrück University, Germany

Reviewed by:

Markus Wageringel,

Osnabrück University, Germany

Paul Breiding,

Max-Planck-Institute for Mathematics

in the Sciences, Germany

*Correspondence:

Paolo Bientinesi

pauldj@cs.umu.se

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 06 December 2021

Accepted: 22 February 2022

Published: 12 April 2022

Citation:

Psarras C, Karlsson L, Bro R and

Bientinesi P (2022) Accelerating

Jackknife Resampling for the

Canonical Polyadic Decomposition.

Front. Appl. Math. Stat. 8:830270.

doi: 10.3389/fams.2022.830270

Accelerating Jackknife Resampling
for the Canonical Polyadic
Decomposition
Christos Psarras 1, Lars Karlsson 2, Rasmus Bro 3 and Paolo Bientinesi 2*

1 International Research Training Group, Aachen Institute for Advanced Study in Computational Engineering Science (AICES),

Department of Computer Science, RWTH Aachen University, Aachen, Germany, 2High-Performance and Automatic

Computing Group, Department of Computing Science, Umeå University, Umeå, Sweden, 3Department of Food Science,

Institute for Fødevarevidenskab, University of Copenhagen, Copenhagen, Denmark

The Canonical Polyadic (CP) tensor decomposition is frequently used as a model

in applications in a variety of different fields. Using jackknife resampling to estimate

parameter uncertainties is often desirable but results in an increase of the already high

computational cost. Upon observation that the resampled tensors, though different, are

nearly identical, we show that it is possible to extend the recently proposed Concurrent

ALS (CALS) technique to a jackknife resampling scenario. This extension gives access

to the computational efficiency advantage of CALS for the price of a modest increase

(typically a few percent) in the number of floating point operations. Numerical experiments

on both synthetic and real-world datasets demonstrate that the new workflow based on

a CALS extension can be several times faster than a straightforward workflow where the

jackknife submodels are processed individually.

Keywords: jackknife, Tensors, decomposition, CP, ALS, Canonical Polyadic Decomposition, Alternating Least

Squares

1. INTRODUCTION

The CP model is used increasingly across a large diversity of fields. One of the fields in which
CP is commonly applied is chemistry [1, 2], where there is often a need for estimating not
only the parameters of the model, but also the associated uncertainty of those parameters [3].
In fact, in some areas it is a dogma that an estimate without an uncertainty is not a result.
A common approach for estimating uncertainties of the parameters of CP models is through
resampling, such as bootstrapping or jackknifing [4, 5]. The latter has added benefits, e.g., for
variable selection [6] and outlier detection [4]. Here we consider a new technique, JK-CALS, that
increases the performance of jackknife resampling applied to CP by more efficiently utilizing the
computer’s memory hierarchy.

The basic concept of jackknife is somewhat related to cross-validation. Let TTT ∈ R
I1×···×IN be

a tensor, and U1, . . ., UN the factor matrices of a CP model. Let us also make the assumption
(typical in many applications) that the first mode corresponds to independent samples, and
all the other modes correspond to variables. For the most basic type of jackknifing, namely

96

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.830270
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.830270&domain=pdf&date_stamp=2022-04-12
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pauldj@cs.umu.se
https://doi.org/10.3389/fams.2022.830270
https://www.frontiersin.org/articles/10.3389/fams.2022.830270/full

Psarras et al. Accelerating Jackknife for CPD

Leave-One-Out (LOO)1, one sample (out of I1) is left out at
a time (resulting in a tensor with only I1 − 1 samples) and a
model is fitted to the remaining data; we refer to that model as
a submodel. All samples are left out exactly once, resulting in I1
distinct submodels. Each submodel provides an estimate of the
parameters of the overall model. For example, each submodel
provides an estimate of the factor (or loading) matrix U2. From
these I1 estimates it is possible to calculate the variance (or bias)
of the overall loading matrix (the one obtained from all samples).
One complication comes from some indeterminacies with CP
that need to be taken into account. For example, when one (or
more) samples are removed from the initial tensor, the order of
components in the submodel may change; this phenomenon is
explained and a solution is proposed in Riu and Bro [4].

Recently, the authors proposed a technique, Concurrent
ALS (CALS) [7], that can fit multiple CP models to the same
underlying tensor more rapidly than regular ALS. CALS achieves
better performance not by altering the numerics but by utilizing
the computer’s memory hierarchy more efficiently than regular
ALS. However, the CALS technique cannot be directly applied to
jackknife resampling, since the I1 submodels are fitted to different
tensors. In this paper, we extend the idea that underpins CALS
to jackknife resampling. The new technique takes advantage
of the fact that the I1 resampled tensors are nearly identical.
At the price of a modest increase in arithmetic operations, the
technique allows for more efficient fitting of the CP submodels
and thus improved overall performance of a jackknife workflow.
In applications in which the number of components in the CP
model is relatively low, the technique can significantly reduce the
overall time to solution.

Contributions
• An efficient technique, JK-CALS, for performing jackknife

resampling of CP models. The technique is based on an
extension of CALS to nearly identical tensors. To the best of
our knowledge, this is the first attempt at accelerating jackknife
resampling of CP models.
• Numerical experiments demonstrate that JK-CALS can lead to

performance gains in a jackknife resampling workflow.
• Theoretical analysis shows that the technique generalizes from

leave-one-out to grouped jackknife with a modest (less than a
factor of two) increase in arithmetic.
• A C++ library with support for GPU acceleration and a Matlab

interface.

Organization
The rest of the paper is organized as follows. In Section 2, we
provide an overview of related research. In Section 3, we review
the standard CP-ALS and CALS algorithms, as well as jackknife
applied to CP. We describe the technique which enables us to
use CALS to compute jackknife more efficiently in Section 4.
In Section 5 we demonstrate the efficiency of our proposed

1Henceforth, when we mention jackknifing we imply LOO jackknifing, unless

otherwise stated.

technique, by applying it to perform jackknife resampling to CP
models that have been fitted to artificial and real tensors. Finally,
in Section 6, we conclude the paper and provide insights for
further research.

2. RELATED WORK

Two popular techniques for uncertainty estimation for CP
models are bootstrap and jackknife [4, 5, 8]. The main difference
is that jackknife resamples without replacement whereas
bootstrap resamples with replacement. Bootstrap frequently
involves more submodels than jackknife and is therefore more
expensive. The term jackknife typically refers to leave-one-
out jackknife, where only one observation is removed when
resampling. More than one observation can be removed at a
time, leading to the variations called delete-d jackknife [9] and
grouped jackknife [10, p. 7] (also known as Delete-A-Group
jackknife [11] or DAGJK). Of the two, grouped jackknife is most
often used for CP model uncertainty estimation, primarily due
to the significantly smaller number of samples generated. When
applied to CP, jackknife has certain benefits over bootstrap, e.g.,
for variable selection [6] and outlier detection [4].

Jackknife requires fitting multiple submodels. A
straightforward way of accelerating jackknife is to separately
accelerate the fitting of each submodel, e.g., using a faster
implementation. The simplest and most extensively used
numerical method for fitting CP models is the Alternating Least
Squares (CP-ALS) method. Alternative methods for fitting CP
models include eigendecomposition-based methods [12] and
gradient-based (all-at-once) optimization methods [13].

Several techniques have been proposed to accelerate CP-
ALS. Line search [14] and extrapolation [15] aim to reduce the
number of iterations until convergence. Randomization-based
techniques have also been proposed. These target very large
tensors, and either randomly sample the tensor [16] or the
Khatri-Rao product [17], to reduce their size and, by extension,
the overall amount of computation. Similarly, compression-
based techniques replace the target tensor with a compressed
version, thus also reducing the amount of computation during
fitting [18]. The CP model of the reduced tensor is inflated to
correspond to a model of the original tensor.

Several projects offer high-performance implementations of
CP-ALS, for example, Cyclops [19], PLANC [20], Partensor [21],
SPLATT [22], and Genten [23]. For a more comprehensive list of
software implementing some variant of CP-ALS, refer to Psarras
et al. [24].

Similar to the present work, there have been attempts at
accelerating jackknife although (to the best of our knowledge) not
in the context of CP. In Buzas [25], the high computational cost
of jackknife is tackled by using a numerical approximation that
requires fewer operations at the price of lower accuracy. In Belotti
and Peracchi [26], a general-purpose routine for fast jackknife
estimation is presented. Some estimators (often linear ones)
have leave-one-out formulas that allow for fast computation of
the estimator after leaving one sample out. Jackknife is thus
accelerated by computing the estimator on the full set and then

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 April 2022 | Volume 8 | Article 83027097

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Psarras et al. Accelerating Jackknife for CPD

systematically applying the leave-one-out formula. In Hinkle
and Stromberg [27], a similar technique is studied. Jackknife
computes an estimator on s distinct subsets of the s samples. Any
two of these subsets differ by only one sample, i.e., any one subset
can be obtained from any other by replacing one and only one
element. Some estimators have a fast updating formula, which
can rapidly transform an estimator for one subset to an estimator
for another subset. Jackknife is thus accelerated by computing
the estimator from scratch on the first subset and then repeatedly
updating the estimator using this fast updating formula.

3. CP-ALS, CALS AND JACKKNIFE

In this section, we first specify the notation to be used throughout
the paper, we then review the CP-ALS and CALS techniques, and
finally we describe jackknife resampling applied to CP.

3.1. Notation
For vectors and matrices, we use bold lowercase and uppercase
roman letters, respectively, e.g., v and U. For tensors, we follow
the notation in Kolda and Bader [28]; specifically, we use bold
calligraphic fonts, e.g., TTT . The order (number of indices or
modes) of a tensor is denoted by uppercase roman letters, e.g.,
N. For each mode n ∈ {1, 2, . . . ,N}, a tensor TTT can be unfolded
(matricized) into a matrix, denoted by T(n), where the columns
are the mode-n fibers of TTT , i.e., the vectors obtained by fixing
all indices except for mode n. Sets are denoted by calligraphic
fonts, e.g., S . Given two matrices A and B with the same number
of columns, the Khatri-Rao product, denoted by A ⊙ B, is the
column-wise Kronecker product of A and B. Finally, the unary
operator ⊕, when applied to a matrix, denotes the scalar which
is the sum of all matrix elements.

3.2. CP-ALS
The standard alternating least-squares method for CP is shown
in Algorithm 1 (CP-ALS). The input consists of a target tensor
TTT . The output consists of a CP model represented by a sequence
of factor matrices U1, . . ., UN . The algorithm repeatedly updates
the factor matrices one by one in sequence until either of the
following criteria are met: a) the fit of the model to the target
tensor falls below a certain tolerance threshold, or b) a maximum
number of iterations has been reached. To update a specific factor
matrix Un, the gradient of the least-squares objective function
with respect to that factor matrix is set to zero and the resulting
linear least-squares problem is solved directly from the normal
equations. This entails computing the Matricized Tensor Times
Khatri-Rao Product (MTTKRP) (line 4), which is the product
between the mode-n unfolding T(n) and the Khatri-Rao Product
(KRP) of all factor matrices except Un. The MTTKRP is followed
by the Hadamard product of the Gramians (Ui

TUi) of each factor
matrix in line 5. Factor matrixUn is updated by solving the linear
system in line 6. At the completion of an iteration, i.e., a full pass
over all N modes, the error between the model and the target
tensor is computed (line 8) using the efficient formula derived
in Phan et al. [29].

Algorithm 1: CP-ALS: Alternating least squares method
for CP decomposition.

Input: TTT ∈ R
I1×···×IN The target tensor

Output: U1, . . . ,UN The fitted factor

matrices

1 Initialize the factor matrices U1, . . . ,UN

2 repeat

3 for n = 1, 2, . . ., N do

4 Mn ← T(n)(⊙i6=nUi) MTTKRP

5 Hn ← ∗i6=n(Ui
TUi) Hadamard product of

Gramians

6 Un ← MnHn
† Hn

†: pseudoinverse of Hn

7 end

8 e← ||TTT ||2 − (⊕(HN ∗ (UN
TUN)))− 2(⊕(UN ∗MN))

Error calculation

9 until convergence detected or maximum number of
iterations reached

Assuming a small number of components (R), the most
expensive step is the MTTKRP (line 4). This step involves
2R

∏
i Ii FLOPs (ignoring, for the sake of simplicity, the lower

order of FLOPs required for the computation of the KRP). The
operation touches slightly more than

∏
i Ii memory locations,

resulting in an arithmetic intensity less than 2R FLOPs per
memory reference. Thus, unless R is sufficiently large, the speed
of the computation will be limited by the memory bandwidth
rather than the speed of the processor. The CP-ALS algorithm
is inherently memory-bound for small R, regardless of how it
is implemented.

The impact on performance of the memory-bound nature
of MTTKRP is demonstrated in Figure 1, which shows the
computational efficiency of a particular implementation of
MTTKRP as a function of the number of components (for a
tensor of size 50× 200× 200). Efficiency is defined as the ratio of
the performance achieved by MTTKRP (in FLOPs/sec), relative
to the Theoretical Peak Performance (TPP, see below) of the
machine, i.e.,

EFFICIENCY =
PERFORMANCE

TPP
=

#FLOPS/TIME

TPP
.

The TPP of a machine is defined as the maximum number of
(double precision) floating point operations the machine can
perform in 1 s. Table 1 shows the TPP for our particular machine
(see Section 5 for details). In Figure 1, we see that the efficiency of
MTTKRP tends to increase with the number of components, R,
until eventually reaching a plateau. On this machine, the plateau
is R ≥ 60 at ≈ 70% efficiency for one thread and R ≥ 300 at
≈ 35% efficiency for 24 threads. For R ≤ 20, which is common
in applications, the efficiency is well below the TPP.

3.3. Concurrent ALS (CALS)
When fitting multiple CP models to the same underlying tensor,
the Concurrent ALS (CALS) technique can improve the efficiency
if the number of components is not large enough for CP-ALS to

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 April 2022 | Volume 8 | Article 83027098

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Psarras et al. Accelerating Jackknife for CPD

FIGURE 1 | Efficiency of MTTKRP on a 50× 200× 200 tensor for an increasing number of components. Note that in the multi-threaded execution, the theoretical

peak performance increases while the total number of operations to be performed stays the same (as in the single-threaded case); this explains the drop in efficiency

per thread.

TABLE 1 | Theoretical peak performance (TPP) for a particular machine.

System TPP (GFlops/sec) Threads Frequency per core (Ghz)

CPU
112 1 3.5

1,536 24 2

Due to the decrease in the peak frequency per core when all 24 cores are used, the TPP

for 24 cores is less than 24× the TPP for 1 core.

reach its performance plateau [7]. A need to fitmultiplemodels to
the same tensor arises, for example, when trying different initial
guesses or when trying different numbers of components.

The gist of CALS can be summarized as follows (see Psarras et
al. [7] for details). Suppose K independent instances of CP-ALS
have to be executed on the same underlying tensor. Rather than
running them sequentially or in parallel, run them in lock-step
fashion as follows. Advance every CP-ALS process one iteration
before proceeding to the next iteration. One CALS iteration
entails K CP-ALS iterations (one iteration per model). Each CP-
ALS iteration in turn contains one MTTKRP operation, so one
CALS iteration also entails K MTTKRP operations. But these
MTTKRPs all involve the same tensor and can therefore be fused
into one bigger MTTKRP operation (see Equation 3 of Psarras et
al. [7]). The performance of the fused MTTKRP depends on the
sum total of components, i.e.,

∑K
i=1 Ri, where Ri is the number

of components in model i. Due to the performance profile of
MTTKRP (see Figure 1), the fused MTTKRP is expected to be
more efficient than each of the K smaller operations it replaces.

The following example illustrates the impact on efficiency of
MTTKRP fusion. Given a target tensor of size 50 × 200 × 200,
K = 50 models to fit, and Ri = 5 components in each model, the

efficiency for each of the K MTTKRPs in CP-ALS is about 15%
(3%) for 1 (24) threads (see Figure 1). The efficiency of the fused
MTTKRP in CALS will be as observed for R =

∑K
i=1 Ri = 250,

i.e., 60% (30%) for 1 (24) threads. Since the MTTKRP operation
dominates the cost, CALS is expected to be≈ 4× (≈ 10×) faster
than CP-ALS for 1 (24) threads.

3.4. Jackknife
Algorithm 2 shows a baseline (inefficient) application of leave-
one-out jackknife resampling to a CP model. For details, see Riu
and Bro [4]. The inputs are a target tensorTTT , an overall CPmodel
P fitted to all of TTT , and a sampled mode n̂ ∈ {1, 2, . . . ,N}. For
each sample p ∈ {1, 2, . . . , In̂}, the algorihm removes the slice
corresponding to the sample from tensor TTT (line 3) and model P
(line 4) and fits a reduced model P−p (lines 4–6) to the reduced

tensor T̂̂T̂T using regular CP-ALS. After fitting all submodels, the
standard deviation of every factor matrix except Un̂ is computed
from the In̂ submodels in Q (line 10). The only costly part of
Algorithm 2 is the repeated calls to CP-ALS in line 5.

4. ACCELERATING JACKKNIFE BY USING
CALS

The straightforward application of jackknife to CP inAlgorithm 2
involves In̂ independent calls to CP-ALS on nearly the same
tensor. Since the tensors are not exactly the same, CALS [7]
cannot be directly applied. In this section, we show how one can
rewrite Algorithm 2 in such a way that CALS can be applied.
There is an associated overhead due to extra computation, but we

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 April 2022 | Volume 8 | Article 83027099

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Psarras et al. Accelerating Jackknife for CPD

Algorithm 2: JK-ALS: An algorithm that performs
(LOO) jackknife resampling on a CP model.

Input: TTT ∈ R
I1×···×IN The target tensor

P = U1, . . . ,UN A CP model fitted

to TTT

n̂ The sampled mode

Output: S1, . . . , SN Uncertainty of each

element of each factor matrix of P

1 Q← ∅ Set containing fitted jackknife models

2 for p ∈ {1, 2, . . . , In̂} do For every index p in mode

n̂

3 TTT −p ← remove the slice with index p in mode n̂ from
tensor TTT

4 P−p← remove row p from factor matrix Un̂ of P

5 P̂−p← cp_als(TTT −p, P−p)

6 P̂−p← permutation and scale adjustment of P̂−p

7 Q← Q ∪ {P̂−p}

8 end

9 for n ∈ {1, 2, . . . ,N} \ {n̂} do For every mode n

except n̂

10 Sn ← standard deviation of factor matrix Un inQ

11 end

will show that the overhead is modest (less than a 100% increase
and typically only a few percent increase).

4.1. JK-CALS: Jackknife Extension of CALS
Let TTT be an N-mode tensor with a corresponding CP model

A1, . . . ,AN . Let T̂̂T̂T be identical to TTT except for one sample (with
index p) removed from the sampled mode n̂ ∈ {1, 2, . . . ,N}. Let
Â1, . . . , ÂN be the CP submodel corresponding to the resampled
tensor TTT .

When fitting a CP model to TTT using CP-ALS, the MTTKRP
for mode n is given by

Mn ← T(n)(AN ⊙ · · · ⊙ An+1 ⊙ An−1 ⊙ · · · ⊙ A1). (1)

Similarly, when fitting a model to T̂̂T̂T , the MTTKRP for mode n is
given by

M̂n ← T̂(n)(ÂN ⊙ · · · ⊙ Ân+1 ⊙ Ân−1 ⊙ · · · ⊙ Â1). (2)

Can M̂n be computed from T(n) instead of T̂(n)? As we will see,
the answer is yes. We separate two cases: n = n̂ and n 6= n̂.

Case I: n = n̂. The slice of TTT removed when resampling
corresponds to a row of the unfolding T(n) = T(n̂). To see
this, note that element TTT (i1, i2, . . . , iN) corresponds to element
T(n)(in, j) of its mode-n unfolding [28], where

j = 1+

N∑

k=1
k6=n

(ik − 1)

k−1∏

m=1
m6=n

Im. (3)

Algorithm 3: JK-CALS: Concurrent alternating least
squares method for jackknife estimation.

Input: TTT ∈ R
I1×···×IN The target tensor

P = U1, . . . ,UN A CP model fitted to TTT

n̂ The sampled mode

Output: U
(p)
1 , . . . ,U

(p)
N for p = 1, 2, . . . , In̂ The fitted

submodels

1 Initialize the submodels U
(p)
1 , . . . ,U

(p)
N for p = 1, 2, . . . , In̂

for n = 1, 2, . . ., N do Initialize one factor

2 multi-matrix for each mode

3 for p = 1, 2, . . ., In̂ do
4 if n = n̂ then

5 U
(|p)
n ← U

(p)
n with a row of zeros inserted at

index p
6 else

7 U
(|p)
n ← U

(p)
n

8 end

9 end

10 end

11 repeat Concurrently run In̂ instances of CP-ALS

12 for n = 1, 2, . . ., N do

13 Mn ← T(n)(⊙i6=nUi)
14 for p = 1, 2, . . ., In̂ do

15 H
(p)
n ← ∗i6=n(U

(|p)
i

T
U
(|p)
i)

16 U
(|p)
n ← M

(|p)
n H

(p)
n

†

17 if n = n̂ then

18 U
(|p)
n ← zero out row p of U

(|p)
n

19 end

20 end

21 end

22 for p = 1, 2, . . ., In̂ do

23 e← ||TTT −p||
2 − (⊕(H

(p)
N ∗ (U

(|p)
N

T
U
(|p)
N)))−

2(⊕(U
(|p)
N ∗M

(|p)
N)) Error calculation

24 end

25 until convergence detected for all instances or maximum
number of iterations reached

When we remove sample p, then T̂(n) will be identical to T(n)

except that row p from the latter is missing in the former.

In other words, T̂(n) = EpT(n), where Ep is the matrix that

removes row p. We can therefore compute M̂n by replacing

T̂(n) with T(n) in Equation (2) and then discarding row p from
the result:

M̂n ← Ep(T(n)(ÂN ⊙ · · · ⊙ Ân+1 ⊙ Ân−1 ⊙ · · · ⊙ Â1)).

Case II: n 6= n̂. The slice of TTT removed when resampling
corresponds to a set of columns in the unfolding T(n). One could

in principle remove these columns to obtain T̂(n). But instead of
explicitly removing sample p from TTT , we can simply zero out
the corresponding slice of TTT . To give the CP model matching

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 April 2022 | Volume 8 | Article 830270100

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Psarras et al. Accelerating Jackknife for CPD

dimensions, we need only insert a row of zeros at index p in factor
matrix n̂. Crucially, the zeroing out of slice p is superfluous. In the
MTTKRP, the elements that should have been zeroed out will be
multiplied with zeros in the Khatri-Rao product generated by the
row of zeros insert in factor matrix n̂. Thus, to compute M̂n in
Equation (2) we (a) replace T̂(n) with T(n) and (b) insert a row of

zeros at index p in factor matrix Ân̂.
In summary, we have shown that it is possible to compute M̂n

in Equation (2) without referencing the reduced tensor. There is
an overhead associate with extra arithmetic. For the case n = n̂,
we compute numbers that are later discarded. For the case n 6= n̂,
we do some arithmetic with zeros.

4.1.1. The JK-CALS Algorithm

Based on the observations above, the CALS algorithm [7] can
be modified to facilitate the concurrent fitting of all jackknife
submodels. Algorithm 3 incorporates the necessary changes
(colored red). The inputs are a target tensor TTT , and the sampled
mode n̂. The algorithm starts by initializing In̂ submodels Pp
for p = 1, 2, . . . , In̂ in line 1; each submodel Pp is created by
removing row p from factor matrix Un̂ of model P. As described
in Psarras et al. [7], CALS creates a multi-matrix n for each
mode n by horizontally concatenating the factor matrices of
each submodel Pp in lines 2–10; the superscript |p denotes the

position in n where the factor matrix U
(p)
n is copied. In the case

of JK-CALS, instead of just copying each factor matrix into its
corresponding multi-matrix, the algorithm first checks whether
zero padding is required (lines 5–7). The loop in line 11 performs
ALS for all submodels concurrently. Specifically, in line 13 the
MTTKRP (n) is computed for all models at the same time by
using the multi-matrices i. Then, lines 15 and 16 are the same as
lines 5 and 6 of Algorithm 1; each submodel is treated separately
by reading its corresponding values within n and n (indicated by
the superscript |p). In JK-CALS, when n = n̂, the padded row

is reset to 0 after U
(|p)
n is updated (line 18). Finally, after a full

ALS cycle has completed, the error of each model is calculated
in line 23. In JK-CALS, the error formula is adjusted for each
submodel by considering the L2 norm of its corresponding
subtensor TTT −p.

We remark that JK-CALS can be straightforwardly extended
to grouped jackknife [10, p. 7], in which the samples are split into
groups of d elements (In̂/d groups) and jackknife submodels are
created by removing an entire group at a time. Instead of padding
and periodically zeroing out one row, we pad and periodically
zero out d rows.

4.2. Performance Considerations
While Algorithm 3 benefits from improved MTTKRP efficiency,
the padding results in extra arithmetic operations. Let d denote
the number of removed samples (d = 1 corresponds to
leave-one-out). For the sake of simplicity, assume that the
integer d divides In̂. In grouped jackknife there are In̂/d
submodels, each with R components. The only costly part is
the MTTKRP.

The MTTKRPs in JK-ALS (for all submodels combined)
requires

(
In̂
d

)

2R(In̂ − d)

N∏

i=1
i6=n̂

Ii

FLOPs. Meanwhile, the fused MTTKRP in JK-CALS requires

2

(
In̂
d
R

) N∏

i=1

Ii

FLOPs. The ratio of the latter to the former comes down to

In̂
In̂ − d

≤ 2,

since d ≤ In̂/2 in grouped jackknife. Thus, in the worst case,
JK-CALS requires less than twice the FLOPs of JK-ALS. More
typically, the overhead is negligible.

5. EXPERIMENTS

We investigate the performance benefits of the JK-CALS
algorithm to perform jackknife resampling on a CP model
through two sets of experiments. In the first set of experiments,
we focus on the scalability of the algorithm, with respect to both
problem size and number of processor cores. For this purpose, we
use synthetic datasets of increasing volume, mimicking the shape
of real datasets. In the second set of experiments, we illustrate
JK-CALS’s practical impact by using it to perform jackknife
resampling on two tensors arising in actual applications.

All experiments were conducted using a Linux-based system
with an Intel R© Xeon R© Platinum 8160 Processor (Turbo Boost
enabled, Hyper-Threading disabled), which contains 24 physical
cores split in 2 NUMA regions of 12 cores each. The system
also contains an Nvidia Tesla V100 GPU2. The experiments
were conducted with double precision arithmetic and we report
results for 1 thread, 24 threads (two NUMA regions), and the
GPU (with 24 CPU threads). The source code (available online3)
was compiled using GCC4 and linked to the Intel R©Math Kernel
Library5.

5.1. Scalability Analysis
In this first experiment, we use three synthetic tensors of size
50 × m × m with m ∈ {100, 200, 400}, referred to as “small”,
“medium” and “large” tensors, respectively. The samples are in
the first mode. The other modes contain variables. The number
of samples is kept low, since leave-one-out jackknife is usually
performed on a small number of samples (usually < 100), while
there can be arbitrarily many variables.

2Driver version: 470.57.02, CUDA Version: 11.2.
3https://github.com/HPAC/CP-CALS/tree/jackknife
4GCC version 9.
5MKL version 19.0.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 April 2022 | Volume 8 | Article 830270101

https://github.com/HPAC/CP-CALS/tree/jackknife
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Psarras et al. Accelerating Jackknife for CPD

FIGURE 2 | Execution time for single-threaded jackknife resampling applied to three different tensors (small, medium, and large in the top, middle, and bottom panels,

respectively), and different number of components (from left to right: R ∈ {3, 5, 7, 9}, and “All,” which represents doing jackknife to all four models simultaneously).

For each tensor, we perform jackknife on four models
with varying number of components (R ∈ {3, 5, 7, 9}). This
range of component counts is typical in applications. In
practice, it is often the case that multiple models are fitted
to the target tensor, and many of those models are then
further analyzed using jackknife. For this reason, we perform
jackknife on each model individually, as well as to all models
simultaneously (denoted by “All” in the figures), to better
simulate multiple real-world application scenarios. In this
experiment, the termination criteria based on maximum number
of iterations and tolerance are ignored; instead, all models are
forced to go through exactly 100 iterations, typically a small
number of iterations for small values of tolerance (i.e., most
models require more than 100 iterations). The reason for this

choice is that we aim to isolate the performance difference
of the methods tested; therefore, we maintain a consistent
amount of workload throughout the experiment. (Tolerance and
maximum number of iterations are instead used later on in the
application experiments.)

For comparison, we perform jackknife using three methods:
JK-ALS, JK-OALS and JK-CALS. JK-OALS uses OpenMP to
take advantage of the inherent parallelism when fitting multiple
submodels by parallelizing the loop in line 2 of Algorithm 2. Each
thread maintains its own subsample TTT −p and P−p of tensor TTT
and model P, respectively. This method is only used for multi-
threaded and GPU experiments, and we are only going to focus
on its performance, ignoring the memory overhead associated
with it.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 April 2022 | Volume 8 | Article 830270102

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Psarras et al. Accelerating Jackknife for CPD

FIGURE 3 | Execution time for multi-threaded (24 threads) jackknife resampling applied to three different tensors (small, medium, and large in the top, middle, and

bottom panels, respectively), and different number of components (from left to right: R ∈ {3, 5, 7, 9}, and “All”, which represents doing jackknife to all four models

simultaneously).

Figure 2 shows results for single threaded execution; in this
case, JK-OALS is absent. JK-CALS consistently outperforms JK-
ALS for all tensor sizes and workloads. Specifically, for any
fixed amount of workload—i.e., a model of a specific number of
components—JK-CALS exhibits increasing speedups compared
to JK-ALS, as the tensor size increases. For example, for a model
with 5 components, JK-CALS is 2.9, 3, 5.2 times faster than JK-
ALS, for the small, medium and large tensor sizes, respectively.

Figure 3 shows results for multi-threaded execution, using
24 threads. In this case, JK-CALS outperforms the other
two implementations (JK-ALS and JK-OALS) for the medium
and large tensors, for all workloads (number of components),

exhibiting speedups up to 35× and 8× compared to JK-ALS and
JK-OALS, respectively. For the small tensor (50×100×100) and
small workloads (R ≤ 7), JK-CALS is outperformed by JK-OALS;
for R = 3, it is also outperformed by JK-ALS. Investigating this
further, for the small tensor and R = 3 and 5, the parallel speedup
(the ratio between single threaded and multi-threaded execution
time) of JK-CALS is 0.3× and 0.7× for 24 threads. However,
for 12 threads, the corresponding timings are 0.28 and 0.27 s,
resulting in speedups of 2.7× and 3.7×, respectively. This points
to twomain reasons for the observed performance of JK-CALS in
these cases: a) the amount of available computational resources
(24 threads) is disproportionately high compared to the volume

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 April 2022 | Volume 8 | Article 830270103

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Psarras et al. Accelerating Jackknife for CPD

FIGURE 4 | Execution time for GPU + multi-threaded (GPU + 24 threads) jackknife resampling applied to three different tensors (small, medium, and large in the top,

middle, and bottom panels, respectively), and different number of components (from left to right: R ∈ {3, 5, 7, 9}, and “All”, which represents doing jackknife to all four

models simultaneously).

of computation to be performed and b) because of the small
amount of overall computation, the small overhead associated
with the CALS methodology becomes more significant.

That being said, even for the small tensor, as the amount
of workload increases—already for a single model with 9
components—JK-CALS again becomes the fastest method.
Finally, similarly to the single threaded case, as the size of the
tensor increases, so do the speedups achieved by JK-CALS over
the other two methods.

Figure 4 shows results when the GPU is used to perform
MTTKRP for all three methods; in this case, all 24 threads are
used on the CPU. For the small tensor and small workloads
(R ≤ 5), there is not enough computation to warrant the shipping
of data to and from the GPU, resulting in higher execution

times compared to multi-threaded execution; for all other cases,
all methods have reduced execution time when using the GPU
compared to the execution on 24 threads. Furthermore, in
those cases, JK-CALS is consistently faster than its counterparts,
exhibiting the largest speedups when the workload is at its highest
(“All”), with values of 10×, 7×, 7× compared to JK-OALS, and
12×, 10×, 9× compared to JK-ALS, for the small, medium and
large tensors, respectively.

5.2. Real-World Applications
In this second experiment, we selected two tensors of size 89 ×
97×549 and 44×2700×200 from the field of Chemometrics [30,
31]. In this field it is common to fit multiple, randomly initialized
models in a range of low components (e.g., R ∈ {1, 2, . . . , 20},

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 April 2022 | Volume 8 | Article 830270104

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Psarras et al. Accelerating Jackknife for CPD

FIGURE 5 | Execution time for jackknife resampling applied to two applications tensors. For tensor 89× 97× 549, whose expected rank is 5, three models with

R ∈ {4, 5, 6} were fitted and then jackknife was applied to them (i.e., the “All” group from the previous section). Similarly, for tensor 44× 2, 700× 200, whose expected

rank is 20, three models with R ∈ {19, 20, 21} were fitted and then jackknifed. In both cases, tolerance and maximum number of iterations were set to 10−6 and

1, 000, respectively.

10–20 models for each R, and then analyze (e.g., using jackknife)
thosemodels that might be of particular interest (often those with
components close to the expected rank of the target tensor); in the
tensors we consider, the expected rank is 5 and 20, respectively.
To mimic the typical workflow of practitioners, we fitted three
models to each tensor, of components R ∈ {4, 5, 6} and R ∈
{19, 20, 21}, respectively, and used the three methods (JK-ALS,
JK-OALS and JK-CALS) to apply jackknife resampling to the
fitted models6. The values for tolerance and maximum number
of iterations were set according to typical values for the particular
field, namely 10−6 and 1, 000, respectively.

In Figure 5 we report the execution time for 1 thread, 24
threads, and GPU + 24 threads. For both datasets and for all
configurations, JK-CALS is faster than the other two methods.
Specifically, when compared to JK-ALS over the two tensors,
JK-CALS achieves speedups of 5.4× and 2× for single threaded
execution, 10× and 2.8× for 24-threaded execution. Similarly,
when compared to JK-OALS, JK-CALS achieves speedups of
2.7× and 4.8× for 24-threaded execution. Finally, JK-CALS takes
advantage of the GPU the most, exhibiting speedups of 17.5×
and 3.7× over JK-ALS, and 9× and 2× over JK-OALS, for
GPU execution.

6The same models were given as input to the three methods, and thus require the

same number of iterations to converge.

6. CONCLUSION

Jackknife resampling of CP models is useful for estimating
uncertainties, but the computation requires fitting multiple
submodels and is therefore computationally expensive. We
presented a new technique for implementing jackknife that
better utilizes the computer’s memory hierarchy. The technique
is based on a novel extension of the Concurrent ALS (CALS)
algorithm for fitting multiple CP models to the same underlying
tensor, first introduced in Psarras et al. [7]. The new technique
has a modest arithmetic overhead that is bounded above by
factor of two in the worst case. Numerical experiments on both
synthetic and real-world datasets using a multicore processor
paired with a GPU demonstrated that the proposed algorithm
can be several times faster than a straightforward implementation
of jackknife resampling based on multiple calls to a regular
CP-ALS implementation.

Future work includes extending the software to support
grouped jackknife.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study.
This data can be found here: https://github.com/HPAC/CP-
CALS/tree/jackknife.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 April 2022 | Volume 8 | Article 830270105

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Psarras et al. Accelerating Jackknife for CPD

AUTHOR CONTRIBUTIONS

CP drafted the main manuscript text, developed the source code,
performed the experiments, and prepared all figures. LK and
PB revised the main manuscript text. CP, LK, and PB discussed
and formulated the jackknife extension of CALS. CP, LK, RB,
and PB discussed and formulated the experiments. LK, RB, and
CP discussed the related work section. PB oversaw the entire

process. All authors reviewed and approved the final version of
the manuscript.

FUNDING

This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)–333849990/GRK2379
(IRTGModern Inverse Problems).

REFERENCES

1. Murphy KR, Stedmon CA, Graeber D, Bro R. Fluorescence spectroscopy

and multi-way techniques. PARAFAC. Anal Methods. (2013) 5:6557–66.

doi: 10.1039/c3ay41160e

2. Wiberg K, Jacobsson SP. Parallel factor analysis of HPLC-DAD data for binary

mixtures of lidocaine and prilocaine with different levels of chromatographic

separation. Anal Chim Acta. (2004) 514:203–9. doi: 10.1016/j.aca.2004.03.062

3. Farrance I, Frenkel R. Uncertainty of measurement: a review of the rules

for calculating uncertainty components through functional relationships. Clin

Biochem Rev. (2012) 33:49–75.

4. Riu J, Bro R. Jack-knife technique for outlier detection and estimation

of standard errors in PARAFAC models. Chemom Intell Lab Syst. (2003)

65:35–49. doi: 10.1016/S0169-7439(02)00090-4

5. Kiers HAL. Bootstrap confidence intervals for three-way methods. J Chemom.

(2004) 18:22–36. doi: 10.1002/cem.841

6. Martens H, Martens M. Modified Jack-knife estimation of parameter

uncertainty in bilinear modelling by partial least squares regression (PLSR).

Food Qual Prefer. (2000) 11:5–16. doi: 10.1016/S0950-3293(99)00039-7

7. Psarras C, Karlsson L, Bientinesi P. Concurrent alternating least squares

for multiple simultaneous canonical polyadic decompositions. arXiv preprint

arXiv:2010.04678. (2020).

8. Westad F, Marini F. Validation of chemometric models – a tutorial.Anal Chim

Acta. (2015) 893:14–24. doi: 10.1016/j.aca.2015.06.056

9. Peddada SD. 21 Jackknife variance estimation and bias

reduction. In: Computational Statistics. Vol. 9 of Handbook

of Statistics. Elsevier (1993). p. 723-44. Available online at:

https://www.sciencedirect.com/science/article/pii/S0169716105801452.

10. Efron B. The jackknife, the bootstrap and other resampling plans. In: Society

for Industrial and Applied Mathematics. (1982). Available online at: https://

epubs.siam.org/doi/book/10.1137/1.9781611970319

11. Kott PS. The delete-a-group jackknife. J Off Stat. (2001) 17:521. Available

online at: https://www.scb.se/dokumentation/statistiska-metoder/JOS-

archive/

12. Sanchez E, Kowalski BR. Generalized rank annihilation factor analysis. Anal

Chem. (1986) 58:496–9. doi: 10.1021/ac00293a054

13. Acar E, Dunlavy DM, Kolda TG. A scalable optimization approach

for fitting canonical tensor decompositions. J Chemom. (2011) 25:67–86.

doi: 10.1002/cem.1335

14. Rajih M, Comon P, Harshman RA. Enhanced line search: a novel method

to accelerate PARAFAC. SIAM J Matrix Anal Appl. (2008) 30:1128–47.

doi: 10.1137/06065577

15. Shun Ang AM, Cohen JE, Khanh Hien LT, Gillis N. Extrapolated alternating

algorithms for approximate canonical polyadic decomposition. In: ICASSP

2020-2020 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). Barcelona: IEEE (2020). p. 3147–51.

16. Vervliet N, De Lathauwer L. A randomized block sampling approach to

canonical polyadic decomposition of large-scale tensors. IEEE J Sel Top Signal

Process. (2016) 10:284–95. doi: 10.1109/JSTSP.2015.2503260

17. Battaglino C, Ballard G, Kolda TG. A practical randomized CP

tensor decomposition. SIAM J Matrix Anal Appl. (2018) 39:876–901.

doi: 10.1137/17M1112303

18. Bro R, Andersson CA. Improving the speed of multiway algorithms:

part II: compression. Chemom Intell Lab Syst. (1998) 42:105–13.

doi: 10.1016/S0169-7439(98)00011-2

19. Solomonik E, Matthews D, Hammond J, Demmel J. Cyclops tensor

framework: reducing communication and eliminating load imbalance in

massively parallel contractions. In: 2013 IEEE 27th International Symposium

on Parallel and Distributed Processing. Cambridge, MA: IEEE (2013). p.

813–24.

20. Kannan R, Ballard G, Park H. A high-performance parallel algorithm

for nonnegative matrix factorization. SIGPLAN Not. (2016) 51:1–11.

doi: 10.1145/3016078.2851152

21. Lourakis G, Liavas AP. Nesterov-based alternating optimization for

nonnegative tensor completion: algorithm and parallel implementation. In:

2018 IEEE 19th International Workshop on Signal Processing Advances in

Wireless Communications (SPAWC). Kalamata: IEEE (2018). p. 1–5.

22. Smith S, Ravindran N, Sidiropoulos ND, Karypis G. SPLATT: efficient and

parallel sparse tensor-matrix multiplication. In: 2015 IEEE International

Parallel and Distributed Processing Symposium. Hyderabad: IEEE (2015). p.

61–70.

23. Phipps ET, Kolda TG. Software for sparse tensor decomposition on

emerging computing architectures. SIAM J Sci Comput. (2019) 41:C269–90.

doi: 10.1137/18M1210691

24. Psarras C, Karlsson L, Li J, Bientinesi P. The landscape of software for tensor

computations. arXiv preprint arXiv:2103.13756. (2021).

25. Buzas JS. Fast estimators of the jackknife. Am Stat. (1997) 51:235–40.

doi: 10.1080/00031305.1997.10473969

26. Belotti F, Peracchi F. Fast leave-one-out methods for inference,

model selection, and diagnostic checking. Stata J. (2020) 20:785–804.

doi: 10.1177/1536867X20976312

27. Hinkle JE, Stromberg AJ. Efficient computation of statistical procedures based

on all subsets of a specified size. Commun Stat Theory Methods. (1996)

25:489–500. doi: 10.1080/03610929608831709

28. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.

(2009) 51:455–500. doi: 10.1137/07070111X

29. Phan AH, Tichavský P, Cichocki A. Fast alternating LS algorithms

for high order CANDECOMP/PARAFAC tensor factorizations. IEEE

Trans Signal Process. (2013) 61:4834–4846. doi: 10.1109/TSP.2013.22

69903

30. Acar E, Bro R, Schmidt B. New exploratory clustering tool. J Chemom. (2008)

22:91–100. doi: 10.1002/cem.1106

31. Skov T, Ballabio D, Bro R. Multiblock variance partitioning: a new approach

for comparing variation in multiple data blocks. Anal Chim Acta. (2008)

615:18–29. doi: 10.1016/j.aca.2008.03.045

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Psarras, Karlsson, Bro and Bientinesi. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 April 2022 | Volume 8 | Article 830270106

https://doi.org/10.1039/c3ay41160e
https://doi.org/10.1016/j.aca.2004.03.062
https://doi.org/10.1016/S0169-7439(02)00090-4
https://doi.org/10.1002/cem.841
https://doi.org/10.1016/S0950-3293(99)00039-7
https://doi.org/10.1016/j.aca.2015.06.056
https://epubs.siam.org/doi/book/10.1137/1.9781611970319
https://epubs.siam.org/doi/book/10.1137/1.9781611970319
https://www.scb.se/dokumentation/statistiska-metoder/JOS-archive/
https://www.scb.se/dokumentation/statistiska-metoder/JOS-archive/
https://doi.org/10.1021/ac00293a054
https://doi.org/10.1002/cem.1335
https://doi.org/10.1137/06065577
https://doi.org/10.1109/JSTSP.2015.2503260
https://doi.org/10.1137/17M1112303
https://doi.org/10.1016/S0169-7439(98)00011-2
https://doi.org/10.1145/3016078.2851152
https://doi.org/10.1137/18M1210691
https://doi.org/10.1080/00031305.1997.10473969
https://doi.org/10.1177/1536867X20976312
https://doi.org/10.1080/03610929608831709
https://doi.org/10.1137/07070111X
https://doi.org/10.1109/TSP.2013.2269903
https://doi.org/10.1002/cem.1106
https://doi.org/10.1016/j.aca.2008.03.045
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

ORIGINAL RESEARCH
published: 18 April 2022

doi: 10.3389/fams.2022.826269

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 April 2022 | Volume 8 | Article 826269

Edited by:

Edoardo Angelo Di Napoli,

Helmholtz Association of German

Research Centres (HZ), Germany

Reviewed by:

Markus Götz,

Karlsruhe Institute of Technology (KIT),

Germany

Jenia Jitsev,

Helmholtz Association of German

Research Centres (HZ), Germany

*Correspondence:

Evangelos Georganas

evangelos.georganas@intel.com

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 30 November 2021

Accepted: 21 March 2022

Published: 18 April 2022

Citation:

Georganas E, Kalamkar D, Avancha S,

Adelman M, Aggarwal D, Anderson C,

Breuer A, Bruestle J, Chaudhary N,

Kundu A, Kutnick D, Laub F, Md V,

Misra S, Mohanty R, Pabst H,

Retford B, Ziv B and Heinecke A

(2022) Tensor Processing Primitives: A

Programming Abstraction for

Efficiency and Portability in Deep

Learning and HPC Workloads.

Front. Appl. Math. Stat. 8:826269.

doi: 10.3389/fams.2022.826269

Tensor Processing Primitives: A
Programming Abstraction for
Efficiency and Portability in Deep
Learning and HPC Workloads

Evangelos Georganas 1*, Dhiraj Kalamkar 1, Sasikanth Avancha 1, Menachem Adelman 1,

Deepti Aggarwal 1, Cristina Anderson 1, Alexander Breuer 2, Jeremy Bruestle 1,

Narendra Chaudhary 1, Abhisek Kundu 1, Denise Kutnick 1, Frank Laub 1, Vasimuddin Md 1,

Sanchit Misra 1, Ramanarayan Mohanty 1, Hans Pabst 1, Brian Retford 1, Barukh Ziv 1 and

Alexander Heinecke 1

1 Intel Corporation, Santa Clara, CA, United States, 2 Faculty of Mathematics and Computer Science,

Friedrich-Schiller-Universität Jena, Jena, Germany

During the past decade, novel Deep Learning (DL) algorithms, workloads and hardware

have been developed to tackle a wide range of problems. Despite the advances in

workload and hardware ecosystems, the programming methodology of DL systems

is stagnant. DL workloads leverage either highly-optimized, yet platform-specific and

inflexible kernels from DL libraries, or in the case of novel operators, reference

implementations are built via DL framework primitives with underwhelming performance.

This work introduces the Tensor Processing Primitives (TPP), a programming abstraction

striving for efficient, portable implementation of DL workloads with high-productivity.

TPPs define a compact, yet versatile set of 2D-tensor operators [or a virtual Tensor

Instruction Set Architecture (ISA)], which subsequently can be utilized as building-blocks

to construct complex operators on high-dimensional tensors. The TPP specification

is platform-agnostic, thus, code expressed via TPPs is portable, whereas the TPP

implementation is highly-optimized and platform-specific. We demonstrate the efficacy

and viability of our approach using standalone kernels and end-to-end DL & High

Performance Computing (HPC) workloads expressed entirely via TPPs that outperform

state-of-the-art implementations on multiple platforms.

Keywords: deep learning, performance portability, programming abstraction, tensor processing, high productivity,

high performance computing

1. INTRODUCTION

Since the advent of Deep Learning (DL) as one of the most promising machine learning paradigms
almost 10 years ago, deep neural networks have advanced the fields of computer vision, natural
language processing, recommender systems, and gradually pervade an increasing number of
scientific domains [1–10]. Due to the diverse nature of the problems under consideration, these
DL workloads exhibit a wide range of computational characteristics and demands. Furthermore,
due to the immense computational cost of such workloads, industry and academia have developed
specialized hardware features on commodity processors, and even specialized accelerators in order
to harness these computational needs [11].

107

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.826269
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.826269&domain=pdf&date_stamp=2022-04-18
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:evangelos.georganas@intel.com
https://doi.org/10.3389/fams.2022.826269
https://www.frontiersin.org/articles/10.3389/fams.2022.826269/full

Georganas et al. Tensor Processing Primitives

In contrary to the fast-evolving ecosystems of DL workloads
and DL-oriented hardware/accelerators, the programming
paradigm of DL systems has reached a plateau [12]. More
specifically, the development of novel DL workloads involves
two types of components: (i) Well-established operators
within DL libraries (e.g., 2D convolutions, inner-product,
batch-norm layers in oneDNN [13] and cuDNN [14]), and (ii)
Unprecedented, custom primitives which typically instantiate
new algorithmic concepts/computational motifs. Unfortunately
both of these components come with their shortcomings.

On one hand, the operators within DL libraries are heavily
optimized and tuned (usually by vendors) in a platform-specific
fashion, leading to monolithic, non-portable, and inflexible
kernels. Additionally, such opaque and high-level operators
prohibit modular design choices since the user/frameworks have
to adhere to particular interfaces that may not be adapted
to fit the operation under consideration. On the other hand,
the custom/unprecedented primitives are typically implemented
by the user via the available generic/reference primitives of a
Machine Learning (ML) framework which are not optimized
and as such yield underwhelming performance. It is up to
the user to create optimized implementations for the custom
primitives, leading again to code which is non-portable and
potentially requires hardware expertise in order to achieve peak
performance. Unfortunately, most of the times such expertise
is not available to the data/ML scientist who is developing the
custom DL primitive. Therefore, the deployment (or even the
evaluation) of a new operator typically requires yet another
stage in the development cycle where low-level optimization
experts are working on the re-write/fine-tuning of the operator.
Later on, in case an operator proves to be important for the
community, systems researchers and vendors standardize it, and
potentially create yet another monolithic kernel within a DL
library for further re-use within DL frameworks. This entire
development cycle potentially takes a considerable amount of
time (up to years in some cases) and inadvertently impedes the
efficient exploration of innovative machine learning ideas [12].
An alternative approach to optimize both types of operators
is to leverage contemporary Tensor Compilers (TC) (e.g., [15–
18]), however, the state-of-the-art tools are only suitable
for compiling small code-blocks whereas large-scale operators
require prohibitive compilation times, and often the resulting
code performs far from the achievable peak [12].

We identify that the common source of the problems
mentioned in the previous paragraph is the extreme levels of
abstraction offered by the DL libraries and the Tensor Compilers.
The DL libraries offer coarse-grain, monolithic and inflexible
operators whereas the Tensor Compilers usually go to the
other extreme, allowing the user to express arbitrary low-level
operators without any minimal restrictions that would readily
enable efficient lifting and code-generation in their back-ends
(e.g., they offer no minimal/compact set of allowed operations on
tensors). To exacerbate the challenge of optimal code generation,
Tensor Compilers usually undertake the cumbersome tasks
of efficient parallelization, loop re-ordering, automatic tiling
and layout transformations, which, to date, remain unsolved
in the general setup. Also, there is not a well-established

way to share state-of-the-art optimizations among the plethora
of Tensor Compilers and as a result each one has its own
advantages and disadvantages, which translates eventually to sub-
optimal performance on real-world scenarios [19]. We note,
here, the recent, promising effort of Multi-Level Intermediate
Representation (MLIR) [20] toward unifying the optimization
efforts in the Tensor Compiler Intermediate Representation
(IR) infrastructure.

In this work, we introduce the Tensor Processing Primitives
(TPP), a programming abstraction striving for efficient and
portable implementation of Tensor operations, with a special
focus on DL workloads. TPPs define a set of relatively low-level
primitive operators on 2D Tensors, which, in turn, can be used
as basic building blocks to construct more complex operators
on high-dimensional tensors. TPPs comprise a minimal and
compact, yet expressive set of precision-aware, 2D tensor
level operators to which high-level DL operators can be
reduced. TPPs’s specification is agnostic to targeted platform,
DL framework, and compiler back-end. As such the code which
is expressed in terms of TPPs is portable. Since the level of
abstraction that TPPs adopt is at the sub-tensor granularity, TPPs
can be directly employed by DL workload developers within the
frameworks, or could be alternatively used to back up an IR
within a Tensor Compiler stack, i.e., TPPs could form the basis
of an MLIR dialect.

While the TPP specification is agnostic of the targeted
framework/platform/compiler stack, its implementation is
platform specific, and is optimized for the target architectures.
This subtle detail offers a clear separation of concerns: the
user-entity of TPPs, either a developer or a compiler framework,
can focus on expressing the desired algorithm and its execution
schedule (e.g., parallelization, loop orders) using the TPP
tensor abstraction, whereas the efficient, platform-specific code
generation pertaining to the TPP operations belongs to the TPP
back-end. To this extent, TPPs could be also viewed as a “virtual
Tensor ISA” that abstracts the actual physical ISA of the target
(e.g., SSE, AVX2, AVX512, AMX for x86, AArch64 and ARMv8
SVE, xPU).

Figure 1 shows various use-cases of TPPs within multiple
software stacks. TPPs can be viewed as a layer abstraction of
the actual physical target ISA, and the user-entities can rely
on the TPP layer for the code generation pertaining to the
tensor operations. Also, Figure 1 illustrates the various user-
entities that might leverage TPPs. First, the vendor-optimized
DL libraries (e.g., oneDNN or oneDNN Graph) can use TPPs
for optimized code generation in their back-end. Second, the
user/developer of the DL operators can directly leverage TPPs
within a DL framework extension to express the underlying
tensor computations (e.g., the user may develop a framework
extension for a novel DL operator by employing the TPPs as
building blocks). Third, Tensor Compilers can leverage TPPs
(e.g., as part of an MLIR dialect) to generate high-quality code
for the corresponding tensor operators. As such, the TPP layer
abstraction offers a clear separation of concerns where the
Tensor Compiler may focus on higher-level optimizations (loop
tiling and re-ordering, parallelization, etc.) whereas the platform-
specific code generation of the tensor operations is undertaken

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 April 2022 | Volume 8 | Article 826269108

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 1 | Use-cases of TPPs in various software stacks.

by the TPP layer. Such a synergistic Tensor Compiler - TPP
paradigm is illustrated in section 7. Last but not least, TPPs could
be leveraged by more general Tensor Libraries (e.g., ATen, Eigen)
where tensor computations constitute the primary focus and they
can be naturally mapped to TPPs.

In our Proof-Of-Concept (POC) implementation of TPPs
we leverage Just-In-Time (JIT) technology to emit performant
and platform-specific code during runtime. Furthermore, in our
POC we define a mini embedded Domain Specific Language
(mini-eDSL) where the TPPs can be combined via matrix
equations in order to build high-level operators without
sacrificing performance.

We demonstrate the efficacy of our approach on multiple
platforms using standalone kernels written entirely with
TPPs and compare the performance to vectorized-by-expert
code and compiler generated code. Finally, we showcase
the expressiveness and viability of our methodology by
implementing contemporary end-to-end DL workloads using
solely the TPP abstractions and show how we can outperform
the state-of-the-art implementations on multiple platforms. The
main contributions of this work are:

• A TPP specification/foundation for primitive tensor
operations.
• A Proof-Of-Concept implementation of the TPP specification

along with a mini-eDSL (called TPP Matrix Equations),
enabling efficient fusion of TPPs that lead to portable,
high-level tensor operations. We describe in detail various
standalone TPP implementations, and also we provide a
detailed analysis of our TPP Matrix Equation mini-eDSL
framework.
• A demonstration of how contemporary and novel DL

algorithmic motifs/workloads can be expressed in their
entirety via TPPs.
• An experimental evaluation of the TPP-based DL workloads

from all relevant fields (image processing, recommendation
systems, natural language processing, graph processing, and
applications in science) on multiple platforms (different

instruction set architectures (ISAs) x86_64 and aarch64, and
micro-architectures for each ISA), including distributed-
memory scaling. We show performance that matches/exceeds
the state-of-the-art implementations, while maintaining
flexibility, portability, and obviating the need for low-level
platform-specific optimizations.
• We show how TPPs can be leveraged as a virtual Tensor

ISA within a Tensor compiler software stack, yielding high-
performance DL primitives.
• We illustrate examples of how TPPs are used outside of

Deep Learning, in High Performance Computing (HPC)
applications in order to accelerate tensor computations.

Section 2 details the specification of the TPPs. Then, section 3
illustrates a POC implementation of the TPP specification.
Section 4 presents an infrastructure that enables efficient
TPP fusion. In section 5, we exhibit how contemporary
DL motifs/algorithmic paradigms can be expressed via TPPs.
Section 6 presents an experimental evaluation of TPP-based DL
kernels and workloads on multiple platforms. Section 7 outlines
our POC implementation of a TPP backend within a tensor
compiler (PlaidML), and also presents some results highlighting
the viability of the TPP abstraction as a virtual Tensor ISA within
tensor compiler stacks. Section 8 presents exemplary usage of
TPPs within HPC applications in order to efficiently implement
tensor computations. Sections 9 and 10 summarize the related
work and conclude this article.

2. THE TPP SPECIFICATION

2.1. TPP Design Principles
The TPP specification is driven by a few design principles:

1) Each TPP corresponds to a mathematical operator that
takes a number of input(s) and produces an output. We opt to
specify TPPs that correspond to basic, well-defined mathematical
tensor operations. In this way, we keep the set of TPPs minimal
albeit expressive; basic TPPs can be combined to formulate more
complex operators.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 April 2022 | Volume 8 | Article 826269109

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

2) The inputs/outputs of the TPPs are abstract 2D tensors
that can be fully specified by their shape/size, leading dimensions,
and precision. Additionally, the 2D tensors hold the following
complementary runtime information: (i) a primary field which
corresponds to the memory address where the 2D (sub)tensor
data resides, (ii) a secondary field holding optional data for the
tensor (e.g., amask for the tensor), and (iii) a tertiary field holding
optional, auxiliary information of the tensor (e.g., scaling factors
for a quantized tensor).

3) TPPs are specified as “memory-to-memory” operations, or
equivalently the input/output tensors are residing in memory
locations specified by the user. This design decision is critical in
order to abstract the TPPs from all physical ISAs, and enables true
platform-agnostic specification. For example, if the TPPs were
accepting vector registers as inputs/outputs, then the number of
physical registers, the vector length and dimensionality would
be exposed in the Application Programming Interface (API) of
TPPs, making the specification platform-specific.

4) TPPs have declarative semantics. As such, the TPP
specification does not preclude potential parallelism [e.g.,
Single Instruction Multiple Data (SIMD), Single Instruction
Multiple Threads (SIMT)] in the back-end implementation
which is target-specific.

5) TPPs are composable in a producer-consumer fashion. Since
the output of a TPP is a well-defined tensor O, it can be fed as
input to a subsequent TPP. In such a scenario, this “intermediate”
tensor O is not necessarily exposed to the user, unless the user
explicitly requires it (e.g., by combining the TPPs in a manual
fashion via an explicit temporary O buffer/tensor which lives
in the user space/application). This flexibility allows the TPP
implementation (which is platform-specific) to combine TPPs
in the most efficient way for the target architecture (e.g., the O
tensor can live at the physical register file in the composite TPP
in order to avoid redundant memory movement).

6) The TPP input/output tensors as well as the computation
itself are precision aware. This feature makes mixed precision
computations (that are prominent in DL workloads) easy to
express from the user point of view, and provides information
to the TPP back-end that may enable efficient implementation.

2.2. TPP Arguments
As mentioned in the previous subsection, the input to TPPs
are 2D tensors. Each 2D tensor can be specified by the number
of rows M, columns N, its leading dimension ld and its
datatype dtype. Additionally, during runtime each tensor gets
fully characterized by specifying its location/address as primary
info, optional companion tensor info as secondary (e.g., sparsity
bitmask), and optionally tertiary info (e.g., in case the tensor
shape is dynamically determined at runtime, this info may
contain variables specifying M/N). Each TPP also specifies the
shape/precision of the produced/output 2D tensor.

Each TPP also supports input tensors with broadcast
semantics. More specifically, TPPs accept optional flags dictating
that the input 2D tensor should be formed by broadcasting
a column/row/scalar N/M/M × N times, respectively. Finally,
the TPPs accept optional flags which further specify the
TPP operation. For example, in case a TPP is computing a

transcendental function, the flags may be specifying various
approximation algorithms used for the computation. In the next
subsection, we present the TPPs in three groups: unary, binary,
and ternary TPPs given the number of input tensors they accept.

2.3. The TPP Collection
First, we highlight the ternary Batch-Reduce GEneral Matrix
to Matrix Multiplication (BRGEMM) TPP which is the main
building block for general tensor contractions in DL kernels [21].
BRGEMMmaterializes the operation C = β ·C+

∑n−1
i=0 Ai× Bi.

In essence, this kernel multiplies the specified blocks AM×K
i and

BK×Ni and reduces the partial results to a block CM×N . It is
noteworthy that tensors A and B can alias and also the blocks Ai

and Bi can reside in any position in the input (potentially high-
dimensional) tensors A and B. Previous work [21] has shown
that this single building block is sufficient to express efficiently
tensor contractions in the most prevalent DL computational
motifs, namely: Convolution Neural Networks (CNN), Fully-
Connected networks (FC), Multi-Layer Perceptrons (MLP),
Recurrent Neural Networks (RNN)/Long Short-Term Memory
(LSTM) Networks. In Section 5 we exhibit how BRGEMM can
be further used to build efficient Attention Cells that comprise
the cornerstone of modern Natural Language Processing (NLP)
workloads. BRGEMM can be specialized to one of the following
three variants that may enable more efficient implementations
on various platforms: (i) address-based BRGEMM, where the
addresses of the blocks Ai and Bi are explicitly provided by
the user, (ii) offset-based BRGEMM, where the addresses of Ai

and Bi can be computed as address_Ai = address_A + offsetAi

and address_Bi = address_B + offsetBi , and (iii) stride-based
BRGEMM, where the addresses of Ai and Bi are: address_Ai =

address_Ai−1 + stride_A and address_Bi = address_Bi−1 +
stride_B. In section 3.2, we present the implementation of the
BRGEMM TPP in more depth for various ISAs and platforms.

Table 1 presents the unary TPPs that accept one 2D tensor as
input. Since most of these TPPs map directly to the equivalent
math function, we further elaborate only on the ones which are
more complex. The Identity TPP essentially copies the input to
the output. Since the input and output are fully specified in terms
of their precision, this TPP can be also used to perform datatype
conversions between tensors.

The Quantize & Dequantize TPPs are used to
quantize/dequantize the input tensor whereas the exact
algorithm employed is specified by a TPP flag.

The Transform TPP uses a flag to determine the exact
transformation applied on the input 2D tensor. The Transpose
transformation is the usual mathematical matrix transpose.
The rest two types of transformation, namely Vector Neural
Network Instructions (VNNI) formatting, and VNNI to VNNI-
transpose are DL specific. More specifically, modern hardware
(e.g., Intel’s Cooper Lake) requires tensors to be in specific
format called VNNI in order to employ hardware acceleration
for specific operations, e.g., dot-products (see section 3.2.2
for more details). This format represents a logical 2D tensor
[D1][D0] as a 3D tensor [D1/α][D0][α] where essentially the
dimension D1 is blocked in chunks of size α, which in
turn are set as the inner-most tensor dimension. The VNNI

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 April 2022 | Volume 8 | Article 826269110

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

TABLE 1 | Unary TPPs.

Unary TPP Description/Comments

Identity Copies input to output. Given input/output datatype, it

performs datatype conversions

Zero Fills output with zeros

Square Squares input and stores to output

Increment /

decrement

Increments / Decrements input by 1 and stores to output

Square root Computes the square root of input and stores to output

Reciprocal Computes the reciprocal of input and stores to output

Rcp. Sqrt. Computes the rcp. sqrt. of input and stores to output

Exp Computes the exponential value of the input tensor entries

and stores them to output

PRNG Generates an output tensor with pseudo-random entries

(De)Quantize Quantizes / Dequantizes the input

Reduce Reduces the rows/columns of the input and stores to output.

The reduction function can be SUM/MUL/MIN/MAX;

(optionally) reduces the squared input

Transform Transforms input and stores to output. Transformations are:

Transpose, VNNI formatting, and VNNI to VNNI-transpose

Unpack Takes each entry xi,j of the input tensor, splits it in two parts

xloi,j and xhii,j with same bit-width, and stores them in two

tensors X lo, Xhi

Replicate

columns

Takes an input column/vector, replicates it a variable number

of times and forms the output

Gather / Scatter Gathers/Scatters rows/columns from input and forms the

tensor

2D Gather / 2D

Scatter

Gathers/scatters elements from input using 2D offsets

2D-strided

loads/stores

Loads/stores elements from/to a tensor using primary and

secondary strides

Tanh &Tanh_inv Computes the hyperbolic tangent function (or its inv used for

back-propagation) on input

RELU &

RELU_inv

Apply a Rectified Linear Unit function (or its inv used for

back-propagation) on input

Sigmoid &

Sigmoid_inv

Computes the logistic sigmoid (or its inv used for

back-propagation) on input

GELU &

GELU_inv

Apply a Gaussian Error Linear Unit function (or its inv used for

back-propagation) on input

Dropout &

Dropout_inv

Drops out values from the input tensor with probability p. For

the inv/back-propagation pass, the same dropped units are

zeroed out

formatting TPP performs this exact transformation: [D1][D0]→
[D1/α][D0][α] and the VNNI to VNNI-transpose transposes
a tensor which is already laid out in VNNI format, i.e.,
performs [D1/α1][D0][α1]→ [D0/α0][D1][α0]. In section 3.3.1,
we outline how the Transform TPPs are implemented via
Shuffle Networks.

The last four entries of Table 1 correspond to DL-specific
operations. They correspond to activation functions typically
encountered in DL workloads. All these activation functions have
a counterpart which is required during the back-propagation pass
of training DL networks. These DL specific TPPs could be built
on top of other TPPs, however, since they are prevalent in DL
workloads we opt to define them as self-contained TPPs for ease
of usage. In section 3.3.2, we describe the TPP implementation

TABLE 2 | Binary TPPs.

Binary TPP Description/Comments

Add Add two inputs

Sub Subtracts two inputs

Mul Multiples (elementwise) two inputs

Div Divides two inputs

Max/Min Finds element-wise max/min of two inputs

MatMul Performs matrix multiplication of two input

Pack Concatenates pairs of entries xloi,j and xhii,j from the inputs X lo,

Xhi into xi,j and stores it to the output X

Compare Compares element-wise two inputs and stores a bitmask of

the comparison

TABLE 3 | Ternary TPPs.

Ternary TPP Description/Comments

GEMM Performs on 2D inputs A, B, C, scalar β: C = βC+ A× B

Batch-Reduce

GEMM

Performs on 2D inputs Ai , Bi (with i = 0, 1,…, n− 1), C, scalar

β: C = βC+
∑i=n−1

i=0 Ai × Bi

(N)MulAdd Performs on 2D inputs A, B, C: C = C+ A⊙ B (or

C = C− A⊙ B); ⊙ denotes element-wise multiplication

Blend Blends 2D input tensors A, B according to bitmask C

of non-linear approximations for several activation functions on
various ISAs.

Tables 2, 3 present the binary/ternary TPPs that accept
two/three 2D tensor as inputs, respectively.

3. TPP IMPLEMENTATION

In this section, we briefly describe our Proof-Of-Concept (POC)
implementation of the TPP specification. Our implementation
targets multiple CPU architectures from various vendors that
support different ISAs, but could be readily extended to
support even GPU ISAs. We build upon and extend the
open source LIBXSMM [22] library which leverages JIT
techniques. Such JIT techniques have been successfully used
for optimal code generation on CPUs by taking advantage of
the known (at runtime) tensor shapes/dimensions in HPC and
DL applications [21–23]. Nevertheless, the TPP specification
is platform-agnostic and does not preclude any TPP back-
end implementation. In our POC implementation, the usage
of TPPs is governed by two APIs: (i) A dispatch API with
which the user can request the code generation of a specific
TPP, and such a dispatch call JITs a function implementing
the requested operation, (ii) an API to call the JITed TPP
kernel. First, in section 3.1, we provide a generic blueprint of
our TPP implementation. Then, in section 3.2, we describe in
more detail the BRGEMMTPP implementation which comprises
the main tensor contraction tool in the TPP abstractions.
Section 3.3.1 details the implementation of the unary transform
TPPs via shuffle networks since their efficient implementation
diverts from the generic TPP blueprint. Finally, section 3.3.2

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 April 2022 | Volume 8 | Article 826269111

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

Algorithm 1 | The generic unary/binary/ternary TPP algorithm.

Inputs: XM×N , (YM×N , ZM×N if binary/ternary)
Output:OM×N

1: for in = 0 . . .N − 1 with step nb do

2: for im = 0 . . .M − 1 with step mb do

3: ⊲ Generic loads, may have broadcast/gather semantics,
4: ⊲ and may perform datatype conversions
5: Xb← load_genericmb × nb X-subblockim ,in
6: if (unary TPP) then
7: Xb← Unary_op(Xb)

8: if (binary TPP) then
9: Yb← load_genericmb × nb Y-subblockim ,in
10: Xb← Binary_op(Xb,Yb)

11: if (ternary TPP) then
12: Yb← load_genericmb × nb Y-subblockim ,in
13: Zb← load_genericmb × nb Z-subblockim ,in
14: Xb← Ternary_op(Xb,Yb,Zb)

15: ⊲ Generic store, may have scatter semantics, and may
16: ⊲ perform datatype conversion

17: O-subblockim ,in
←−−−−−−−−
store_generic Xb

outlines the approximation techniques we leverage in our
TPP implementation of non-linear activation functions; such
approximations are essential in achieving high-performance,
while at the same time their accuracy is sufficient for the purposes
of training DL workloads.

3.1. Generic TPP Implementation Blueprint
Algorithm 1 exhibits at a high-level the pseudocode that is
used to implement the Unary/Binary/Ternary TPPs in a unified
fashion. The inputs of the TPPs are tensors X, Y (in case of
binary/ternary TPPs) and Z (in case of ternary TPP), and an
output tensor O. For the purposes of this simplified presentation
we assume all tensors are of size M × N, however, depending
on the operation these might have different sizes. For example,
if the unary OP is a reduction-by-columns and the input
is M × N, then the output is an M × 1 vector. First, we
show that the M/N loops are blocked with factors mb/nb
such that the working sets of each microkernels fits on the
available register file. The latter is architecture specific, e.g.,
AVX2-enabled ISAs expose 16 256-bit vector registers, AVX512-
enabled ISAs expose 32 512-bit vector registers, and Aarch64
features 32 128-bit (NEON)/512-bit (SVE) vector registers.
The “load_generic” function used in Algorithm 1 denotes the
loading of a sub-tensor to a register block; this load may imply
row/column/scalar broadcast semantics if the user specified the
TPP in that way, or even may have strided-load/gather semantics
if the TPP involves a strided-load/gather operation. Also, for
simplicity we do not show here the handling of “secondary”
fields of the tensors that may be required (e.g., indices array
for the gather operation, bitmasks arrays). Additionally, the
generic load also handles datatype conversion, for instance
provided the input is in bfloat16 (BF16) [24] whereas the
compute is going to happen in FP32 precision. Once all

Algorithm 2 | The batch-reduce GEMM TPP.

Inputs: AM×K
i ,BK×Ni for i = 0, . . . , n-1, CM×N , β ∈ IR

Output: C = β · C +
∑n−1

i=0 Ai × Bi
1: for in = 0 . . .N − 1 with step nb do

2: for im = 0 . . .M − 1 with step mb do

3: acc_regs← load_genericmb × nb C-subblockim ,in
4: for i = 0 . . . n− 1 with step 1 do

5: for ik = 0 . . .K − 1 with step kb do

6: ⊲ Outer product GEMMmicrokernel
7: acc_regs+= Ai sub-panelim ,ik × Bi sub-panelik ,in

8: C-subblockim ,in
←−−−−−−−−
store_generic acc_regs

the required sub-tensors are loaded, then the corresponding
Unary/Binary/Ternary operator is applied. This operator may be
directly mapped to an available instruction (e.g., a vector add
in case of binary addition), or to a sequence of instructions for
more complicated operators (e.g., reductions, random number
generation via xorshift algorithm [25], approximation algorithms
for transcendental functions [26]). Last but not least, the optimal
sequence generation depends on the available instructions and
this is handled by the TPP back-end/JITer. For example, some
ISAs may have masking/predicate support (e.g., AVX512 & SVE)
that enable efficient handling of loop remainders, the selected
unrolling degree heavily depends on the instructions in use, their
latency and the number of available architectural registers. Once
the result is computed, the resulting register block is stored back
to the corresponding output sub-tensor position. Similarly to the
generic load, the “generic” store may induce strided accesses or
may be even a scatter operation. Additionally, the generic store
also handles potential datatype conversions.

3.2. The BRGEMM TPP Implementation
3.2.1. The BRGEMM Kernel Structure
We present in more detail the BRGEMM TPP because it
comprises the tensor contraction tool in the TPP abstraction,
and is ubiquitous in the DL kernels and workloads described
in section 5. Algorithm 2 exhibits the high-level algorithm
implementing: C = β · C +

∑n−1
i=0 Ai × Bi. Lines 1-2 block the

computation of the result C in mb × nb tensor sub-blocks. Once
such a subblock is loaded into the accumulation registers (line
3), we loop over all pairs Ai, Bi (line 4) and we accumulate into
the loaded registers the products of the corresponding mb × K
subblocks of Ai with the relevant K × nb subblocks of Bi (lines
5–7). In order to calculate a partial product of an mb × kb
sub-panel of Ai with a kb × nb sub-panel of Bi, we follow
an outer product formulation. The loading of Ai and Bi sub-
panels, and the outer-product formulation is heavily dependent
on the target platform. We provide BRGEMM implementations
for multiple x86 ISAs: SSE, AVX, AVX2, AVX512, including the
recently introduced Intel AMX (Advanced Matrix Extensions)
ISA [27]. Additionally, we have implemented the BRGEMM
TPP for AArch64 and ARMv8 SVE ISAs. Depending on the
targeted platform, the “register” can be either a typical vector
register with varying width (e.g., 128–512 bit vector length), or

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 April 2022 | Volume 8 | Article 826269112

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 2 | Outer product GEMM microkernels, Left: On a platform with 32 vector registers, Middle: On a platform with 16 vector registers, Right: On a platform

with 8 2D registers (tiles).

in the case of AMX-enabled target the “register” is a 2D tile-
register. Similarly, the outer-product formulation may employ
the available Fused-Multiply-Add (FMA) instructions, or even
2D tile-multiplication instructions. In all these cases, the TPP
implementation emits the appropriate load/store/prefetch/FMA
instructions, and takes into account the available architectural
registers/unrolling factors/instruction mix in order to achieve
close to peak performance. Last but not least, the BRGEMM
supports multiple datatypes (FP64, FP32, BF16, INT8), and
whenever possible employs hardware acceleration, e.g., via
specialized FMA instructions for INT8/BF16 datatypes. In
order to highlight the differences of the outer product GEMM
microkernels that are heavily dependent on the target platform,
we show in Figure 2 three different implementations.

Figure 2-Left shows an exemplary outer product microkernel
on a platform with 32 available vector registers, for example an
x86 with AVX512 or on ARM AArch64/SVE. In this case vector
register v7-v30 constitute the accumulators, vector registers v1-
v6 hold a broadcasted subrow of B, and vector register v0 is
used to load a partial subcolumn of A. First, we load on v1-
v6 a subrow of B via broadcasts, then we load on v0 the first
chunk of the A subcolumn and with six fused multiply-add
(FMA) instructions (v0 with v1-v6) we multiply-and-add the
corresponding partial results on the accumulators v7-v12 (first
logical row of accumulators). Then, we load on v0 the second
chunk of the A subcolumn, and subsequently with yet another
six FMA instructions (v0 with v1-v6) we multiply-and-add the
computed partial results on the accumulators v13-v18 (second
logical row of accumulators), etc. The registers v1-v6 are reused
four times throughout the outer product computation, and v0
is reused six times for each loaded A chunk. In other words,
the corresponding A subcolumn and B subrow are loaded from
memory/cache into the vector registers exactly once and we get
to reuse them from the register file. Also, in such a formulation,
we expose 24 independent accumulation chains which is critical
in order to hide the latency of the FMA instruction. Last but not
least, the platform (i.e., vector register width) and the datatype
of the microkernel determine the exact values of the blocking
parameters mb, nb, and kb. For example for single precision
datatype FP32 and an x86 AVX512 platform, each vector register
can hold 16 FP32 values (the vector registers are 512-bit wide).

Therefore, this microkernel operates with blocking values mb =

64, nb = 6, and kb = 1 and it calculates a small matrix
multiplication C64×6 += A64×1 × B1×6.

Figure 2-Middle shows an exemplary outer product
microkernel on a platform with 16 vector registers, for example
an x86 with up to AVX2 ISA. The microkernel is similar with the
previous case; since we have only 16 vector registers available,
we dedicate 12 of those as C accumulators, 3 vector register are
utilized for holding a partial B subrow, and 1 vector register
is used to load a chunk of an A subcolumn. In this case 12
independent accumulation chains are also sufficient to hide
the FMA latency. Analogously to the previous case, for single
precision datatype FP32 and an x86 AVX2 platform, each vector
register can hold now 8 FP32 values (the vector registers are now
256-bit wide). Thus, this microkernel operates with blocking
values mb = 32, nb = 3, and kb = 1 and it calculates a small
matrix multiplication C32×3 += A32×1 × B1×3.

Figure 2-Right shows a small GEMM microkernel on a
platform with 8 2D registers (tiles), for example what is
available in the recently introduced Intel AMX (AdvancedMatrix
Extensions) ISA. In this case each 2D tile register has size (up
to) 1KB, logically holds (up to) 16 rows of a submatrix, and can
be loaded with a proper tile-load instruction. In this particular
example, tiles 0-3 comprise the C accumulators, tiles 4-5 are
used to hold a subpanel of A and tiles 6-7 are used to hold a
subpanel of B. Once we load the subpanels of A and B onto
the respective tiles, we can perform 4 tile multiply-and-add
instructions: tile0 += tile4 × tile6, tile1 += tile4 × tile7,
tile2 += tile5 × tile6 and tile3 += tile5 × tile7, and we
update the C accumulators. In such a microkernel, each A/B
tile is reused 2 times. Given each tile may have size up to 1KB
and may hold up to 16 rows of a submatrix, by considering
BF16 datatype for A/B matrices and FP32 accumulator tiles,
such a microkernel operates with blocking values mb = 32,
nb = 32, kb = 32, and can compute (up to) a small matrix
multiplication C32×32 += A32×32 × B32×32. Each A/B tile
represents a logical 16× 32 BF16 A/B submatrix, and each C tile
represents a 16 × 16 FP32 accumulator. The AMX instructions
will be available within the upcoming Intel Xeon processors
code-named Sapphire Rapids, and the corresponding BF16-
input/FP32-output tile multiplication instructions can deliver

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 April 2022 | Volume 8 | Article 826269113

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 3 | Mixed-precision dot-product instructions, Left: 16 bit integer and bfloat16 on Intel AVX512, Middle: 8bit integer using Intel AVX512, Right: 8 bit integer

using ARM ASIMD.

up to 16× more FLOPs/cycle compared to FP32 AVX512 FMA
instructions on current Xeon platforms.

These considerably different GEMM microkernel variants
highlight yet another aspect of the TPPs: The TPPs specify
what needs to be done rather than how it is done/implemented.
In this case, the user may just specify/employ a BRGEMM
TPP in order to perform a tensor contraction, whereas the
TPP backend/implementation is responsible for generating
the optimal code for each platform at hand. In this
methodology, all the architectural nuances are hidden
completely by the user, and the same exact user code
written in terms of TPPs may be reused across platforms with
different characteristic/ISAs without sacrificing performance
or portability.

3.2.2. Mixed Precision BRGEMM and Its Emulation
While the previous section presents the general structure of
mapping matrix multiplication to various physical ISAs, this
paragraph is used to demonstrate how the idea of a virtual
ISA allows to implement operations efficiently which are not
natively supported by a specific physical ISA. The example we are
choosing here is our GEMM kernel and its support for bfloat16
and int8 on architectures which do not support these novel
ISA SIMD-extension.

Before going into the details of the emulation, we first need
to introduce special memory layouts which are used by x86 and
aarch64 mixed-precision dot-product instructions as shown in
Figure 3. As we can see in all cases (x86/aarch64 and bf16/int8),
the overall concept is identical: Although doing mixed-precision
and mixed-datatype-length computations, these instructions are
functioning from a matrix multiplication point-of-view similar
to 32 bit instructions. This is achieved by having an implicit 2-
wide (BF16/int16) and 4-wide (int8) dot-product of Ai and Bi
values leading to a horizontal summation per single 32 bit Ci, e.g.,
C0 = A0 · B0 + A1 · B1 + A2 · B2 + A3 · B3 + C0 as shown for
the int8 variant. If we apply blockings with these instructions as
discussed in Figure 2-Left, Middle, then we realize that matrix
B is still read via 32-bit broadcast (containing 2 16-bit or 4
8-bit values along the inner-product or common dimension).
However, matrix A is in need of reformatting. This is due to the

fact that the GEMM kernel in Figure 2-Left, Middle requires full
SIMD-width contiguous loads for optimal performance (which
is along M and not K). Therefore, we need to reformat A into
[Ko][M][K i] with Ko · Ki = K and Ki = 2 for 16-bit and
Ko = 4 for 8-bit inputs. We refer to such a format as VNNI-
format throughout this article. After such reformatting of A, we
can perform full SIMD loads on A; combined with the 32-bit
broadcast loads on B we have a 32-bit GEMM kernel which
has a shorter K dimension, 2× for 16-bit datatypes and 4× for
8-bit datatypes.

In case these novel instructions are not available, especially for
bfloat16 as this is a relatively new format, one might think, that
an efficient mapping to a classic FP32 SIMD ISA is not possible.
This is correct as long as the machine does not offer int16
support. However, with int16 support and SIMDmasking we can
implement the aforementioned non-trivial mixed-precision dot-
product efficiently and even bit-accurately as shown in Figure 4.
This is done by processing Ki in two rounds in the case of
bfloat16 datatype. As shown in Figure 4, we first process the odd
(or upper) bfloat16 number. This is done by exploiting the fact
that a bfoat16 number perfectly aliases with an FP32 number
in its 16 MSBs. Therefore, on AVX512 we can just execute a
full SIMD load as a 16-bit-typed load with masking. As a mask
we chose 0xaaaaaaaa and as masking-mode we use zero
masking. With this trick we automatically turn on-load the upper
bfloat16 numbers in A into 16 valid FP32 numbers, and for B we
broadcast and then perform an overriding register move. A little
bit more work is needed for the lower/even bfloat16 number: In
this case, we perform an unmasked load and then we use a 32-
bit integer shift by 16 to create valid FP32 numbers. A simple
inspection of the instruction sequence in Figure 4 shows that
we are mainly executing fused-multiply-add instructions with
little overhead compared to a classic FP32 GEMM as illustrated
in Figure 2-Left, Middle. Therefore, we can execute a bfloat16
GEMMwith a reformatted matrix A with close to FP32-peak and
still benefit from the smaller memory footprint (and, therefore,
a small performance gain, as we will show later in section 6).
Replacement sequences for int16 and int8 matrix inputs can
be carried out in a similar way and their detailed discussion is
skipped here.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 April 2022 | Volume 8 | Article 826269114

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 4 | Emulation of a bit accurate GEMM kernel using AVX512F instructions matching a GEMM kernel as depicted in Figure 2 using vdpbf16ps AVX512

instructions. The glossary contains detailed descriptions of the used intrinsic functions.

In addition to the presented emulation of mixed-precision
GEMM kernels using SIMD instructions, we have also added
support for emulation of Intel AMX instructions bit-accurately
on AVX512. This addition enables running numerical accuracy
experiments, such as convergence studies, before the release of
a chip that supports Intel AMX instructions. A similar path is
possible for ARM’s SME instruction set and subject to future
work. These emulation capabilities further highlight the aspect
of TPP as a virtual tensor ISA.

3.3. Examples of Non-trivial Non-GEMM
TPPs
The previous sections covered most of the TPP implementations:
straightforward element-wise unary/binary/ternary operations
and various forms of mixed precision GEMMs including their
emulation on older hardware. However, there are cases in which
we are not operating on the data in an element-wise fashion,
e.g., transpose, or the Unary_op, Binary_op, or Ternary_op is
not an elementary operation. The goal of this section is to
shed some light on these cases by presenting the transpose
TPP in detail, and sketching fast non-linear approximations on
SIMD machines that match the accuracy requirements of deep
learning applications.

3.3.1. Transform-Transpose TPP via Shuffle Networks
When working with matrices, the transpose kernel is ubiquitous.
It is needed to access thematrix’s elements in various contractions

along the mathematically correct dimension. However, a
transpose operation is scalar at first sight. In this subsection
we exhibit how transpose can be implemented using shuffle
networks in a fully vectorized fashion, e.g., Figure 5 demonstrates
how a 16×16 matrix with 256 32-bit elements can be transposed
in 64 cycles using AVX512 instructions.

The shuffle-network presented in Figure 5 is a blueprint for
all datatype-lengths and ISAs: in log2 SIMD-Length stages we
can transpose a matrix held in a set of SIMD registers. In this
particular example, we need log2 16 = 4 stages and in each stage
we increase the shuffling/interleaving width of logical elements,
and also increase the distance at which we access the 32 registers
grouped into two sets of 16 registers each. More specifically,
we start with registers i0 to i15 and interleave elements at the
same position in a pair of registers close to each other. This
constructs now pairs of 32 bit values in o0 and o1 which are
already containing the transpose’s result for 2 out of 16 elements
and we repeat this for all other 7 input register pairs. The
analogous transformation is now repeated in the second stage
with 64-bit values and accessing o0 and o2 as input pair pattern.
This constructs a new set output registers i0 and i1 which are
holding the transpose’s result at 128-bit granularity. After that,
stage 3 is shuffling at 128-bit granularity on register pairs which
have a distance of “4" and creates output registers that hold 256-
bit of transposed data. Finally, in stage 4, these 256-bit transposed
input registers are shuffled once again creating the final set of 16
register holding the transposed 16 × 16 matrix. For non-square

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 April 2022 | Volume 8 | Article 826269115

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 5 | Sketch of a shuffle network for a 32-bit transpose of a 16×16 matrix using Intel AVX512 instructions. Via four stages (each one having 16 independent

shuffles that double in width per stage), the 16×16 matrix (256 elements) can be transposed with only 64 instructions and fully leverages the 32 architectural registers.

FIGURE 6 | Comparison of X86 and ARM code for a simple 4×4 single precision transpose using unpack instructions. The glossary contains detailed descriptions of

the used intrinsic functions.

matrices we (a) just use masked loads or set registers to zero,
(b) transpose the zeros as well, and then (c) do not store all
registers or employ masked stores. This basic kernel is used as a
basic building block to create large transpose operators by simply
adding outer loops.

This algorithm can be implemented by any SIMD ISA which
offers support for picking arbitrary values from a pair of SIMD
registers to construct a result register containing values from the
two sources, i.e., a general shuffler. However, “structured” shuffle
instructions are adequate as shown in Figure 6. Both x86 and
aarch64 offer instructions exactly implementing the needs for 32-
bit and 64-bit interleaves as needed in the first two stages covered
in the previous description. In the case of 128-bit-wide SIMD

registers this is enough to carry out the entire transpose of 4 ×
4 matrices as shown in Figure 6.

Finally, we want to note that broadcast loads, as supported
by various ISAs, can be used to implement the first stage of
the shuffle network. This has the advantage that one stage of
the shuffle network can be executed faster and in parallel to the
shuffler. The shuffle operations needed in all of these networks
are relatively expensive in hardware, therefore modern CPUs
often only provide one execution unit for such operations (such
“shuffle-viruses” like transposes are pretty rare in general code).
However, broadcasts on the load path are cheap and can run in
parallel to the shuffle unit, hence the overall performance of the
transpose operation improves. This microkernel variation leads

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 April 2022 | Volume 8 | Article 826269116

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 7 | Rational Padé 7/8 tanh approximation pseudocode with equivalent intrinsics on x86 and Arm/AArch64. We highlight here how the FMADD instruction on

x86 ISAs has an equivalent instruction sequence on AArch64.

to relatively complex code, and as such we skip its presentation.
However our TPP implementation back-end employs all these
microkernel variations.

3.3.2. Approximations for Non-linear TPP Activation

Functions
Activation functions are used to represent non-linear behavior
of neural networks. Popular known activation functions are
sigmoid, tanh and Gaussian Error Linear Unit (GELU). These
activation functions can be approximated to increase the
efficiency of deep learning networks without effecting its non-
linear characteristics. In this section, we will discuss different
approximation techniques based on Padé rational polynomials,
piecewise minimax polynomials and Taylor expansions, along
with their TPP implementation on different ISAs. For simplicity
we present the relevant algorithms in terms of x86 and
arm intrinsics (see glossary for the semantics of these
intrinsics), however the actual TPP implementation relies on JIT
code generation.

3.3.2.1. Rational Padé Polynomials
The Padé approximation of a function f is the ratio of two
polynomials with degrees p and q:

Padé[p/q]f (x) =

∑p
i=0 aix

i

∑q
i=0 bix

i

The coefficients ai and bi can be calculated by considering the
first p + q derivatives of f at zero and solving the corresponding
system of equations:

f (0) = Padé[p/q]f (0)

f ′(0) = Padé′[p/q]f (0)

...

f (p+q)(0) = Padé
(p+q)

[p/q]f
(0)

As an example we consider the approximation of the tanh
function which has two asymptotes, hence approximating it
with a Taylor expansion of lower degree polynomials may not
yield good results. The implementation of the Padé[7/8](x) tanh
approximation is shown in Figure 7. FMA operations are used
to compute the numerators and denominators via Horner’s rule.
The reciprocal of the denominator is multiplied by the numerator
to get the final result. The accuracy of reciprocal instruction is
different among different CPU’s. This difference in accuracy does

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 April 2022 | Volume 8 | Article 826269117

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 8 | Tanh minimax approximation pseudocode with equivalent intrinsics on x86 and Arm/AArch64. We highlight here how the _mm512_range_ps instruction

on x86 ISAs has an equivalent instruction sequence on AArch64. Also the permutes on x86 have equivalent Table lookup instructions on AArch64.

not affect the non-linear region of the tanh function, keeping
the TPP behavior same across different CPU’s. The sigmoid
activation function can be approximated via tanh by leveraging
the following identity:

sigmoid(x) = (tanh(x/2)+ 1)/2

3.3.2.2. Piecewise Minimax Polynomial Approximations
In this section, we discuss the minimax polynomials
approach [28] with the truncated Chebyshev series [29] for
approximations of activation functions. In this approach, the
input range of a function f (x) is divided into intervals and for
each interval [a, b] we find a polynomial p of degree max n
to minimize:

max
a≤x≤b

|f (x)− p(x)|

We approximate tanh and GELU activation functions using this
approach in our TPP implementation. The input range is divided
into 16 intervals and for each interval we investigate a polynomial
p of 3rd degree (i.e., we find appropriate p’s coefficients c0,
c1, c2 based on the minimized absolute maximum difference
of f and p). Figure 8 shows the x86 and arm implementation
of evaluating such minimax polynomials. The register index
(idx) is calculated using the exponent and Most Significant Bit
(MSB) of the respective input values, and represents the 16
intervals where the input values are located. The range intrinsic
_mm512_range_ps(A,B) is used to generate the register index
(idx) on AVX512 platforms (Figure 8-Left, line 2). In ARM,

the range functionality is emulated with equivalent and, shlq,
min and max instructions as shown in Figure 8-Right, lines 2–
4. To evaluate the 3rd degree polynomial we need to locate 3
coefficients (c0,c1,c2) based on the values at the register index
(idx), which holds 16 entries. We use 3 look up operations to find
the three coefficients, each involving 16 FP32 entries. The 512-
bit register length in AVX512 is sufficient to hold 16 coefficients
required for each look up, resulting in using 3 registers for 3 look
up operations (see Figure 8-Left, lines 4–6). Each ARM 128-bit
wide vector register can only hold 4 FP32 entries, subsequently
we are using 12 vector registers to hold the 16 entries for all
3 coefficients of the polynomial. The in-register look-up table
is performed using _mm512_permutexvar_ps(A,B) instructions
in x86 AVX512 as shown in Figure 9. In ARM we have byte
addressable table look up instructions which are analogous to
32-bit addressable permutes instructions in x86. Hence, we need
to convert the 32-bit addressable (0–16) register indexes to byte
addressable (0-64 bytes) indexes. In order to do that, we use a
constant register A with a table look up instruction to duplicate
the register index (idx) to each byte in the 32-bit entry. A constant
offset (0,1,2,3) is added to the duplicated byte index to get the
byte addressable index for each FP32 entry in 16 FP32 entries
(Figure 8-Right, lines 7–9). The table look up instruction in
ARM provides the 64 byte look up capability, which is sufficient
enough to search into 4 registers holding the 16 entries of each
coefficient; we are using the generated byte indexes as shown in
Figure 10. Finally, 4 FMA operations are used to evaluate the
polynomial using Horner’s rule. The FMA instruction in x86
provides the user the flexibility to decide among the sources to

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 April 2022 | Volume 8 | Article 826269118

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 9 | 32Bit addressable Table look up setup on x86 AVX512 platforms.

FIGURE 10 | Byte addressable table look up setup in ARM/AArch64. We highlight the conversion of 32bit indexes to byte indexes and the use of byte indexes to get

the coefficients in 16 FP32 intervals.

destroy and the ones to preserve. ARM requires mov instructions
to save intermediate results in order to avoid the data overwriting
during FMA operations.

3.3.2.3. Approximation With Taylor Series
As an example of approximation with Taylor series we illustrate
here the exp() activation function. The ex is approximated
using the identity ex = 2x log2 e = 2n+y = 2n · 2y with
n = round(x log2 e) and y = x log2 e − n. We need to
calculate 2n with n being an integer and the term 2y with |y| ∈
[0, 1). A Taylor polynomial of third degree is used to calculate
the term 2y with 3 FMA instructions (see Figure 11-Left,
lines 4–6). Once 2y is calculated, we leverage the instruction
_mm512_scalef_ps(A,B) which returns a vector register
holding ai · 2

floor(bi) for each ai ∈ A and bi ∈ B. This
scale instruction concludes the exp() approximation on x86
with AVX512. On ARM we calculate 2n and 2y with equivalent
replacement instructions as shown in Figure 11.

4. TPP MATRIX EQUATIONS

One of the main design principles of TPPs (as described in
section 2.1) is that they can be composed in a producer-consumer
fashion to form complex operations. For example consider
the scenario where a user wants to implement the composite

operation C = Tanh(A + B). One way to express this via TPPs
would be to allocate an intermediate tensor tmp with same shape
asA and B, and perform first tmp = Add(A,B) via the binary Add
TPP. Then the user can compute the final result by leveraging the
Tanh Unary TPP: C = Tanh(tmp). Even though this approach
is functionally correct, it requires the explicit management of
intermediate tensors/buffers by the user and also may result in
low performance since there are redundant loads/stores to the
tmp tensor.

In order to increase the productivity, efficiency and
expressiveness pertaining to composite operators, we
implemented an embedded Domain Specific Language (eDSL) in
LIBXSMM [22]. Our Proof-Of-Concept implementations allows
the user to express the desired composite operator as a Matrix
Equation. More specifically, the user can express the composite
operator as an equation tree, where the head and internal nodes
are the available TPPs, whereas the leaves of the tree are the input
2D tensors of the composite operation. In the next subsections,
we describe in detail the methodology we employ for JITing
matrix equations of TPPs.

4.1. Definitions and Notations for TPP
Matrix Equations
A TPP matrix equation is represented as a tree with
unary/binary/ternary TPP operations as internal nodes and

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 April 2022 | Volume 8 | Article 826269119

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 11 | Pseudocode for ex approximation with Taylor series on AVX512 x86 and ARM.

FIGURE 12 | Left: TPP Equation tree for Out = Tanh(T0)+ (T1 × T2)/(T3 − T4). Right: Assigned register scores v on the equation TPP nodes after running

Algorithm 3.

the equation’s input tensors are the leaves of the tree. The inputs
of a TPP tree node are essentially its children in the equation
tree. The output of an internal TPP node can be represented
as a temporary intermediate tensor which in turn can be fed as
input to the parent TPP node in the tree. Depending on the TPP
node type (unary/binary/ternary), each internal node requires a
number of inputs (one/two/three) to be computed/ready before
performing the corresponding TPP operation. Let’s consider for
example the TPP equation tree in Figure 12-Left that is used to
express the following operator:

Out = Tanh(T0)+ (T1 × T2)/(T3 − T4) (1)

Wewill illustrate with this example how our eDSL for TPPMatrix
Equations works.

4.2. Optimized Execution Plan for TPP
Matrix Equations
The equation tree in Figure 12-Left can be naively evaluated
by assigning to each intermediate node a temporary tensor to
hold the corresponding TPP output, and performing, e.g., (1) the
Tanh operation, (2) the Matrix Multiplication, (3) the Subtract
operation, (4) the Div operation, and finally (5) the Add TPP.
In such an evaluation schedule, we would need 4 intermediate
tensors to hold the corresponding intermediate results. In
this subsection, we illustrate how we can construct optimized
execution plans for TPP Matrix Equations that minimize the
number of intermediate tensors.

For each TPP node r we can assign a register score value
vr that essentially dictates how many temporary/intermediate
tensors are required to calculate the subtree in the equation where

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 April 2022 | Volume 8 | Article 826269120

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

Algorithm 3 | Assign_Register_Score(r).

Input: TPP equation tree with root node r
Output: TPP equation tree with assigned register score values on

its nodes
1: if is_Leaf(r) then
2: vr← 0

3: if r is unary TPP then

4: Assign_Register_Score(Left_Child(r))
5: ⊲ If child is leaf, then we assign current register score of 1,

else we assign the child’s register score
6: if is_Leaf(Left_Child(r)) then
7: vr← 1
8: else

9: vr← Register_Score(Left_Child(r))

10: if r is binary TPP then

11: Assign_Register_Score(Left_Child(r))
12: Assign_Register_Score(Right_Child(r))
13: ⊲ If the register scores of children are equal, then we get the

children’s register score increased by one, otherwise we get the
max value of the children’s register score

14: if Register_Score(Left_Child(r)) equals

Register_Score(Right_Child(r)) then
15: vr← Register_Score(Left_Child(r)) + 1
16: else

17: vL← Register_Score(Left_Child(r))
18: vR← Register_Score(Right_Child(r))
19: vr←MAX(vL, vR)

20: if r is ternary TPP then

21: Assign_Register_Score(Left_Child(r))
22: Assign_Register_Score(Middle_Child(r))
23: Assign_Register_Score(Right_Child(r))
24: ⊲ If all children are leaves, then we assign current register

score of 1. Otherwise, in a pairwise fashion we consider the
register scores of the children in order of increasing value.

25: if is_Leaf(Left_Child(r)) AND is_Leaf(Middle_Child(r))
AND is_Leaf(Right_Child(r)) then

26: vr← 1
27: else

28: vL← Register_Score(Left_Child(r))
29: vM← Register_Score(Middle_Child(r))
30: vR← Register_Score(Right_Child(r))
31: v0, v1, v2← Sort_Increasing_Order(vL, vM , vR)
32: if v2 equals v1 then
33: vtmp← v2 + 1
34: else

35: vtmp← v2

36: if vtmp greater than v0 + 1 then
37: vr← vtmp

38: else

39: vr← vtmp + 1

node r is root. We extend the methodology of Flajolet et al. [30]
and we generate the register score values using the recursive
Algorithm 3. This algorithm calculates recursively the register

Algorithm 4 | Create_Execution_Plan(r).

Input: TPP equation tree with root node r and assigned register
score values on its nodes

Output: TPP equation tree with assigned traversal timestamps t
and temporary tensor ids tmp

1: if is_Leaf(r) then
2: return

3: if r is unary TPP then

4: Create_Execution_Plan(Left_Child(r))
5: tr← global_timesteamp++
6: ⊲ If child is leaf, reserve a new tmp, else re-use tmp from

child
7: if is_Leaf(Left_Child(r)) then
8: tmpr← Reserve_Tmp()
9: else

10: tmpr← tmp_Left_Child(r)

11: if r is binary TPP then

12: ⊲ Recursively visit children in order of decreasing register
score

13: Create_Execution_Plan(Child_Max_Register_Score(r))
14: Create_Execution_Plan(Child_Min_Register_Score(r))
15: tr← global_timesteamp++
16: ⊲ If all children are leaves, reserve a new tmp, else re-use

the tmp from a non-leaf child and recycle the tmp of the other
non-leaf child

17: if is_Leaf(Left_Child(r) AND is_Leaf(Right_Child(r)))
then

18: tmpr← Reserve_Tmp()
19: else

20: if not_Leaf(Left_Child(r) then

21: tmpr← tmp_Left_Child(r)
22: Recycle_Tmp(tmp_Right_Child(r))
23: else

24: tmpr← tmp_Right_Child(r)
25: Recycle_Tmp(tmp_Left_Child(r))

26: if r is ternary TPP then

27: ⊲ Recursively visit children in order of decreasing register
score

28: Create_Execution_Plan(Child_Max_Register_Score(r))
29: Create_Execution_Plan(Child_Mid_Register_Score(r))
30: Create_Execution_Plan(Child_Min_Register_Score(r))
31: tr← global_timesteamp++
32: ⊲ If all children are leaves, reserve a new tmp, else re-use

the tmp from a non-leaf child and recycle the tmps of the other
non-leaf children

33: if is_Leaf(Left_Child(r)) AND is_Leaf(Middle_Child(r))
AND is_Leaf(Right_Child(r)) then

34: tmpr← Reserve_Tmp()
35: else

36: if not_Leaf(Left_Child(r) then

37: tmpr← tmp_Left_Child(r)
38: Recycle_Tmp(tmp_Middle_Child(r)),

Recycle_Tmp(tmp_Right_Child(r))
39: else

40: if not_Leaf(Right_Child(r) then

41: tmpr← tmp_Right_Child(r)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 April 2022 | Volume 8 | Article 826269121

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

42: Recycle_Tmp(tmp_Middle_Child(r)),
Recycle_Tmp(tmp_Left_Child(r))

43: else

44: tmpr← tmp_Middle_Child(r)
45: Recycle_Tmp(tmp_Left_Child(r)),

Recycle_Tmp(tmp_Right_Child(r))

scores of the children for a given node r, and in this way we know
how many temporary tensors are required for the evaluation for
each child. Now, if all of its children have the same register score,
the node r get an increased register score value, otherwise the
node gets as register score the maximum of its children’s register
score values. Intuitively this means that we can first evaluate
a child c and its subtree with whatever intermediate tensor
requirements it has, e.g., vc temporary tensors, and eventually we
need only one temporary tensor to hold c’s output. We can do
the same afterwards for all other siblings of c, however, we can
reuse/recycle the rest vc−1 temporary tensors that were required
by c since c and its subtree have been already computed.

This algorithm optimizes the number of temporary
tensors/storage that are required for the equation evaluation,
and it reuses the temporary storage as much as possible. For
instance, for the equation in Figure 12-Left, after executing
Algorithm 3 on the TPP equation tree, we see that the root’s
register score value is 2 (see Figure 12-Right), meaning that
only 2 intermediate tensors are required to evaluate the
entire TPP tree rather than naively assigning one temporary
tensor to each internal TPP node which would result in 4
intermediate tensors.

Now that we have assigned the register scores for each node
we can devise an execution plan for the TPP equation tree
that minimizes the number of required intermediate tensors.
Algorithm 4 recursively creates such an optimal execution plan
and essentially it calculates: (1) the order/traversal timestamps
t with which the TPP equation nodes have to be evaluated,
and also (2) assigns to each intermediate node r a temporary
tensor id tmpr that holds the intermediate resulting tensor of
that TPP node. Figure 13-Right shows the optimized execution
plan by applying Algorithm 4 on our example equation. This
algorithm recursively visits/evaluates the children of a node r
in order of decreasing register score value. This means that the
child/subtree with the maximum register score value is evaluated
first, one of the temporary tensors is dedicated to hold that
child’s intermediate output, whereas the remaining temporary
tensors can be reused for the evaluation of the siblings/subtrees,
which per definition/order of traversal, require less or equal
number of intermediate tensors. Such a strategy guarantees that
the temporary tensors are optimally reused/recycled, and as a
result we can leverage the minimum required temporary tensors
for the evaluation of the entire equation TPP tree. For simplicity
in our description, we assumed that all intermediate temporary
tensors have the same size, however, our implementation
considers the actual sizes of the intermediate output tensors
and takes the maximum one as representative size for all
temporary tensors.

4.3. Implementation of Optimized
Execution Plan for TPP Matrix Equations
By employing Algorithm 4, we can devise an optimal execution
plan for the TPP Matrix equation, and, here, we describe
the implementation of such a plan. We consider three
implementation strategies:

• Strategy 1: Using stack-allocated buffers as intermediate
temporary tensors.
• Strategy 2: Using vector-register blocks as intermediate

temporary tensors.
• Strategy 3: Hybrid implementation where some intermediate

temporary tensors are stack-allocated buffers and some are
vector-register blocks.

So far in our description, we have used the abstract notation
“temporary tensor” without specifying how such a temporary
tensor is instantiated in the implementation. The exact
instantiation of a temporary/intermediate tensor is the
differentiation factor among the 3 implementation strategies for
the TPP matrix equations.

Strategy 1 considers each intermediate tensor as a physical
buffer, and our TPP equation implementation allocates on the
stack some space/buffer for each temporary tensor. Then, by
following the timestamp order of the optimal execution plan (e.g.,
see Figure 13-Right), we emit/JIT the corresponding TPP code
(e.g., see Algorithms 1 and 2) where the input tensors might be
either the equation’s input buffers provided by the user, or one
of the stack allocated buffers representing an intermediate result.
The fact that we have minimized the number of intermediate
temporary buffers/tensors is critical for performance since these
stack-allocated buffers may remain in some level of cache. Such a
strategy is generic and can be leveraged to implement arbitrary
equations. However, Strategy 1 may suffer from store-to-load
forwarding inefficiencies on modern processors. Additionally,
some of the intermediate tensors may spill from cache (e.g.,
when the intermediate outputs exceed the corresponding cache
capacity) which would make the communication of temporary
tensors among TPP nodes via loads/stores from/to stack allocated
buffers quite expensive.

Strategy 2 considers each intermediate tensor as an rm ×
rn vector-register block. For example, on an AVX512 platform
with 32 512-bit wide registers we have available 2 KBytes of
register file that may be used for intermediate tensors. Each
one of such 512-bit wide vector registers can hold 16 single-
precision values and by stacking, e.g., 4 of these we can form a
logical 16×4 intermediate tensor and in total we have available
32/4 = 8 of such intermediate tensors that could be used
by the equation. In Strategy 2, we block the computation of
the equation’s output in blocks with size rm × rn, and we can
calculate the corresponding rm × rn output by following the
timestamp order of the optimal execution plan. We emit/JIT
the corresponding TPP code for sub-tensors with size rm × rn
where each intermediate output tensor is the assigned temporary
vector-register block. Essentially this strategy performs vertical
register fusion within the equation TPP nodes and incurs no
communication via loads/stores from/to stack allocated buffers.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 April 2022 | Volume 8 | Article 826269122

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 13 | Left: TPP equation tree with assigned register scores v on the nodes. Right: TPP equation tree with assigned traversal timestamps t and temporary

tensor ids tmp after executing Algorithm 4.

However, such a methodology is limited by the number of
available vector registers on each platform.

Strategy 3 combines the strengths of Strategies 1 and 2
by considering some intermediate tensors as stack-allocated
buffers and some intermediate tensors as vector-register blocks.
As such, in Strategy 3 the TPP operations/subtrees which
exhibit both high register pressure and reuse (e.g., transposes,
GEMM/BRGEMM, transcendental approximations), propagate
the intermediate results toward the rest of the TPPs in the
tree via stack-allocated temporal tensors. On the other hand,
TPP subtrees without large register pressure are implemented
using Strategy 2 that employs vertical register fusion and avoids
loads/stores from/to stack-allocated buffers.

In addition to the aforementioned 3 strategies, in the TPP
equation back-end we identify idioms/motifs of combined TPPs
(e.g., a gather TPP followed by a reduce TPP) and we JIT an
instruction sequence which is optimal for the composite access
pattern. In section 5.1.5, we show an example of such a combined
TPP motif that is optimized by the TPP backend.

Even though we developed a rudimentary method/POC of
combining the TPPs via Matrix Equation Trees, we have found
that it is sufficient to express all the complex operators we
encountered in a wide-range of workloads discussed further
in section 5. Nevertheless, we envision that when/if TPPs are
widely adopted within Tensor Compiler frameworks (e.g., as an
MLIR dialect) then more complicated Graphs (instead of simple
trees) and more sophisticated analyses/optimization passes can
be leveraged during the composition of TPPs. The key-ingredient
that makes the composition of TPPs amenable to optimization
opportunities is the TPP specification itself: TPPs comprise
a small, well-defined compact set of tensor operators with
declarative semantics as shown in section 2.

We would like also to highlight one use-case of Matrix
Equations that can be beneficial for specialized DL accelerators.
The BRGEMM TPP described in section 3.2 corresponds to
an output-stationary flow that is suitable for CPUs and GPUs.

Given an accelerator that favors, e.g., A-stationary GEMM
formulations, one could express the following Matrix Equation:
internal nodes Gi would be GEMM ternary TPPs, for each
GEMM node Gi we would have the same input leaf A and a
varying input Bi, and the output of each node would be a resultCi.
Essentially this formulation dictates anA-stationary flow, and the
back-end could optimize accordingly for the specific accelerator.

5. TPP-BASED KERNELS AND
WORKLOADS

This section covers how DL kernels and workloads (image
processing, recommendation systems, natural language
processing, graph processing, and applications in science)
can leverage TPPs to achieve high performance. Although this
article’s work is targeting CPUs, we cover the entire training
pipeline and not only inference. The main purpose of this is to
demonstrate the versatility of TPPs which is valuable in the more
complicated backward pass kernels, and to handle training’s
implications to the forward pass.

5.1. TPP-Based Kernels
5.1.1. Softmax Kernel
Figure 14 illustrates two Matrix Equation trees that are used to
express the softmax operator [31]:

Y = softmax(X) with yij =
e

(
xij−maxxij∈X xij

)

∑
xij∈X

e

(
xij−maxxij∈X xij

) (2)

Equation 2 shows the formula for the softmax operator [31],
which is often used as the last activation function of a neural
network, aiming to normalize its output to a probability
distribution. We can represent this operator via two TPP
equation trees illustrated in Figure 14. The left tree computes the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 17 April 2022 | Volume 8 | Article 826269123

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 14 | Softmax operator by combining TPPs.

nominator of Equation 2: first the maximum value of the input
tensorX is found (via the max-reduce TPP), then we subtract this
max value from each entry of X (note the broadcast semantics in
the second argument of the subtraction TPP), and a new tensor
X′ is computed by calculating the element-wise exponent on the
earlier subtraction’s outcome. Finally, in the right TPP tree each
entry of the tensor X′ is normalized by the sum of all values in X′

to obtain the softmax output, a tensor Y . This example illustrates
the expressiveness of the TPP abstractions, since the components
of the mathematical formula map to TPPs in a straightforward
way. At the same time, this example highlights the separation
of concerns: the user does not need to worry about the efficient
implementation of this equation on each different platform, since
the TPP back-end is responsible for optimized code generation
which is target-specific (contrary to the TPP expression itself
which is platform-agnostic).

5.1.2. Normalization Kernels
Batch normalization (batchnorm) is a technique [32] that
normalizes neuron layer input tensors to improve the overall
training process. Batchnorm removes the need for careful
parameter initialization and reduces the required training
steps [32] in the neural networks. The batchnorm computations
can be divided in two stages: (i) First the mean and variance
of the input tensor are computed across the “batch” dimension:
µj =

∑n−1
i=0 xij, σ

2
j =

1
n

∑n−1
i=0 (xij − µi)

2 where i is the “batch”

dimension and j is the “feature” dimension, (ii) then the tensor
entries xij are normalized based on µ and σ : x′ij = (xij −

µj)/(
√

σ 2
j + ǫ).

Depending upon the workload, different TPPs and TPP
equations can be employed to implement the batchnorm.
Here, we take an example of batchnorm on a ResNet50 [33]
convolution layer tensor X. The input tensor X has a four-
dimensional shape of {N, C, H,W} with dimensions of batch (N),
feature (C), height (H), and width (W). We first use sum-reduce
TPPs onH andW dimensions to compute the sum (m[N,C]) and
the sum of squared elements (v[N,C]) matrices. Subsequently,
we use binary add TPPs across the batch dimension of m[N,C]
and v[N,C] matrices for eventual computation of mean (µ[C])
and variance (σ 2[C]) vectors. In the next step, we use a scaling
equation to normalize each element of the input tensor. The
scaling equation Y = (m′ ∗ X + v′) ∗ G + B converts the
input tensor X into a normalized tensor Y . Here, G[C] and
B[C] are scaling vector inputs to batchnorm, and m′[C] and

FIGURE 15 | Layernorm via TPPs.

v′[C] are intermediate vectors that are computed from mean and
variance vectors. We implement the scaling equation by a single
TPP equation containing two FMADD ternary TPPs. The second
equation tree of Figure 15 shows an analogous scaling equation
implementation. However, for this particular implementation, we
broadcastm′, v′,G,B vectors intoH,W, andN dimensions inside
the TPP equation tree. An efficient implementation of batchnorm
uses blocking on the C, H, and W dimensions along with multi-
threading on theN and feature block dimension.We do not show
the details of this implementation for sake of simplicity.

Layer normalization (layernorm) [34] is a technique that
normalizes the neurons within a layer, and was motivated by
the limitations of Batch Normalization [32] in Recurrent Neural
Networks. The layernorm computations can be divided in two
stages: (i) First the mean and variance of the input tensor are
computed across the “feature” dimension: µi =

∑m−1
j=0 xij, σ

2
i =

1
m

∑m−1
j=0 (xij − µi)

2 where i is the batch dimension and j is the

“feature” dimension, (ii) then the tensor entries xij are normalized

based on µ and σ : x′ij = (xij − µi)/(
√

σ 2
i + ǫ). Depending on

the workload (e.g., attention cell in BERT), the scaled tensor
may be further scaled with two other tensors γ and β . Figure 15
illustrates two TPP equation trees that implement this composite
layernorm operator. The left equation is using the sum-reduce
TPP to compute the sum and sum of squared elements of the
input tensor, namely m and v. These two scalars are combined
(not shown in the equation for simplicity), and are fed as inputs
to the right TPP tree, where the FMADD ternary TPP is used
to scale the input tensor X. Finally, a cascading FMADD ternary
TPP computes the final result via the scaling tensors G and B.
We illustrate this layernorm via means of TPPs since all DL

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 18 April 2022 | Volume 8 | Article 826269124

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

norming layers essentially exhibit similar computational motif,
and this specific norm is used in the BERT workload described in
section 5.2.3.

Group normalization (groupnorm) [35] is a technique that
normalizes the neurons within a group of features. Groupnorm
was proposed as an alternative to batchnorm [32] to reduce
normalization error for smaller batch sizes. In groupnorm,
features are divided into groups, and mean and variance are
computed within each group for normalization. Groupnorm is
also a generalization of the layer normalization [34] and instance
normalization [36] approach. Layernorm is groupnorm with
a single group, and instance norm is groupnorm with group
size equal to one. Groupnorm can be implemented with the
same set of TPPs and TPP equations that were used in the
batchnorm kernel. We again take the example of ResNet50 [33]
convolution layer tensor X and apply groupnorm on it with g
number of groups. We can ignore the batch dimension (N) for
this discussion as groupnorm works independently upon each
batch. Therefore, the input tensor X now has a three-dimensional
shape of {C, H, W} with dimensions of feature (C), height (H),
and width (W). We first use sum-reduce TPPs on H and W
dimensions to compute the sum (m[C]) and the sum of squared
elements (v[C]) vectors. Subsequently, we add m[C] and v[C]
values within a feature group for eventual computation of group
mean (µ[g]) and group variance (σ 2[g]) vectors. Similar to
batchnorm, we use a scaling equation to normalize each element
of the input tensor. The scaling equation Y = (m′ ∗ X + v′) ∗
G + B converts input tensor X into a normalized tensor Y .
Here, G[C] and B[C] are scaling vector inputs to groupnorm,
and m′[C] and v′[C] are intermediate vectors that are computed
from group mean and group variance vectors. The second
equation tree of Figure 15 shows an analogous scaling equation
implementation. However, for this particular implementation, we
broadcastm′, v′,G,B vectors intoH andW dimensions inside the
TPP equation tree. We can also apply the same scaling equation
to a single group or set of groups with few parameter changes.
An efficient implementation of groupnorm uses blocking on the
C, H, and W dimensions. We do not show the details of this
implementation for sake of simplicity.

5.1.3. BF16 Split-Stochastic Gradient Descent Kernel
Unlike the previous kernels which are well-established in DL
workloads, and as such potentially optimized in DL libraries,
we present here an example of a novel operator, which per
definition is not existent in DL libraries. BF16 split-SGD was
recently introduced in the context of DLRM training with BF16
datatype [37]. The Split-SGD-BF16 solver aims at efficiently
exploiting the aliasing of BF16 and FP32 (i.e., the 16 Most
Significant Bits (MSB) on both are identical) in order to save
bandwidth during the SGD-solver in training. The employed
trick is that the weights are not stored as FP32 values in a single
tensor. Instead, the FP32 tensors are split into their high and low
16 bit-wide parts: the 16 MSBs of the FP32 values, and the 16
LSBs of the same values are stored as two separate tensors Xhi and
Xlo, respectively. The 16 MSBs represent a valid BF16 number
and constitute the model/weight tensors during training. These
BF16 weights are used exclusively in the forward and backward

FIGURE 16 | BF16 Split-SGD operator by combining TPPs.

passes, whereas the lower 16 bits are only required in optimizer.
More specifically, the Xhi and Xlo tensors are packed together to
form an FP32 tensor, resulting in a fully FP32-accurate optimizer.
Figure 16 illustrates the BF16 Split-SGD operator written entirely
via TPPs. First the Xhi and Xlo are packed, and the formed FP32
tensor is used in a cascading FMADD TPP that performs the
SGD scaling with the corresponding Gradient Weight tensor and
learning rate. Finally, the resulting FP32 tensor is unpacked to the
Xhi and Xlo tensors for further use in the training process.

5.1.4. Convolutional Neural Network Kernel
Convolutional Neural Networks (CNN) consist of layers
with multiple neurons connected by weights, and they have
been applied with success in image recognition, semantic
segmentation, autonomous driving, medical imaging and in an
increasing number of scientific applications. Previous work [21,
23] has shown that CNNs, despite their seemingly complicated
loop structure due to the involved high-dimensional tensors, can
be mapped efficiently onto small 2D GEMMs and BRGEMMs. In
this work, we adopt the same strategy to implement CNNs via the
BRGEMM TPP. Unlike the previous work which presents only
the address-based BRGEMM formulation, here, we leverage the
CNN kernels with stride-based BRGEMM for 1×1 convolutions
and offset-based BRGEMM for 3×3 convolutions to get even
more performant implementations (see section 2.3 for a brief
description of the BRGEMM variants).

5.1.5. Sparse Embedding Kernel
The sparse embedding kernel is comprised of multi-hot encoded
lookups into an embedding table WM×E with M being the
number of rows and E the length of each row, whereas the multi-
hot weight-vector is denoted as αT = [0, . . . , ap1 , . . . , apk , . . . , 0]
with entries ap = 1 for p ∈ {p1, . . . , pk} and 0 elsewhere (p being
the index for the corresponding lookup items). Mathematically,
the embedding lookup output vector oT can be obtained via
oT = aT ×W. This operation (assuming row-major storage for
W) is equivalent to gathering the rows of W based on the non-
zero indices ap, and then adding them up to get the output vector

oT . Figure 17 illustrates the TPP tree that is used to express the
Sparse Embedding lookup kernel.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 19 April 2022 | Volume 8 | Article 826269125

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 17 | Sparse Embedding Lookups via TPPs.

Algorithm 5 | Sparse Gather-Reduce operation.

Inputs: αT = [0, . . . , ap1 , . . . , apk , . . . , 0] with entries ap = 1 for
p ∈ {p1, . . . , pk} and 0 elsewhere,WM×E

Output: oT = aT ×W
1: for j = 0 . . . E with step vlen · U do

2: ⊲ Initializing accumulator registers to 0
3: for u = 0 . . .U − 1 do
4: vec_outu ← 0

5: ⊲ Iterating over non-zero entries/indices in αT

6: for i in 1, 2, . . . , k do
7: idx = pi
8: next_idx = pi+1
9: ⊲ Unroll innermost kernel U times: load indexed vector,

prefetch next indexed vector, accumulate loaded vector to
accumulator register

10: for u = 0 . . .U − 1 do
11: vec_W ← load_vector(W[idx][j + u · vlen : j + (u +

1) · vlen])
12: prefetch(W[next_idx][j+ u · vlen : j+ (u+ 1) · vlen])
13: vec_outu += vec_W

14: ⊲ Store accumulator registers to oT

15: for u = 0 . . .U − 1 do
16: oT[j+ u · vlen : j+ (u+ 1) · vlen]← vec_outu

We note that the TPP backend optimizes this sequence of
TPPs, and performs register fusion across the gather and the
reduce TPP components. More specifically, given a non-zero
index ap, the corresponding row of W is loaded in vector
registers, and is added to a set of running accumulators/vector
registers that hold the output oT . Algorithm 5 illustrates the
optimized JITed implementation in our TPP backend. The E
dimension is vectorized in an SIMD-fashion with vector length
vlen. Note that in line 13 we expose multiple independent
accumulation chains in order to hide the latency of the vector-
add SIMD instructions. Since we JIT this sub-procedure, we
know the exact value of E at runtime. As such, we can pick
appropriate unrolling factor U as well as the remainder handling
can be performed optimally viamasking in case E is not perfectly
divisible by the vector length vlen. Last but not least, the JITed
aggregation procedure employs prefetching of the subsequent
indexed vectors inW (line 12) in order to hide the latency of these
irregular accesses.

5.1.6. Multi-Layer Perceptron Kernel
Multilayer perceptrons (MLP) form a class of feed-forward
artificial neural networks. An MLP consists of (at least three)
fully connected layers of neurons. Each neuron in the topology

Algorithm 6 | Fully-Connected Layer with Unary Activation
Function.

Inputs: AMb×Kb×bk×bm , BNb×Kb×bn×bk

Output: CNb×Mb×bn×bm

1: Based on thread_id calculate Mb_start, Mb_end, Nb_start
and Nb_end to assign output work items

2: for ibn = Nb_start . . .Nb_end do
3: for ibm = Mb_start . . .Mb_end do
4: Out = &C[ibn][ibm][0][0]
5: ⊲ Stride-based BRGEMM, stride_A=bk ·bm, stride_B=bn ·

bk
6: BRGEMM(&A[ibm][0][0][0], &B[ibn][0][0][0],Out,Kb)
7: C[ibn][ibm][0][0]← UNARY(C[ibn][ibm][0][0])

may be using a non-linear activation function. In this section,
we present the implementation of the Fully Connected layers
since they constitute the cornerstone of MLP. Even though, we
illustrate the forward pass of Fully Connected layers, we also
implement via TPPs the kernels of the back-propagation training
in an analogous fashion. Algorithm 6 shows the fully connected
layer implementation which ismapped to TPPs. First we note that
the input tensors are conceptually 2D matrices AM×K and BK×N

that need to be multiplied. We follow the approach of previous
work [21] and we block the dimensions M, K, and N by factors
bm, bk, and bn, respectively. Such a blocked layout is exposing
better locality and avoids large, strided sub-tensor accesses which
are known to cause Translation Lookaside Buffer (TLB) misses
and cache conflict misses in case the leading dimensions are
large powers of 2 [21]. We leverage the BRGEMM TPP in order
to perform the tensor contraction with A and B across their
dimensions Kb and bk (which constitute the K/inner-product
dimension of the original 2D matrices). We employ the stride-
based BRGEMM because the sub-blocks “Ai” and “Bi” that
have to be multiplied and reduced are apart by constant strides
stride_A = bk · bm and stride_B = bn · bk respectively. Finally, we
apply (optionally) a unary TPP corresponding to the requested
activation function (e.g., RELU) onto the just-computed output
block of C.

5.2. TPP-Based Workloads
5.2.1. 1D Dilated Convolutions and Computational

Biology
In this subsection, we show the implementation of a special
type of convolution via TPPs in their entirety, namely one-
dimensional (1D) dilated convolution layer of a 1D CNN named
ATACworks [38]. ATACworks is used for de-noising and peak
calling from ATAC-Seq genomic sequencing data [38]. The 1D
dilated convolution layer in ATACworks takes more than 90% of
the training time, and it has input tensor widthW, output tensor
width Q, C input channels, K output channels, filter size of S,
and dilation d. We employ the transpose TPPs, copy TPPs, and
BRGEMM TPPs to optimize the forward pass and the backward
pass of the PyTorch-based 1D convolution layer. Algorithm 7

shows an example of the forward pass procedure with an input
tensor I, a weight tensorW, and an output tensor O.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 20 April 2022 | Volume 8 | Article 826269126

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

Algorithm 7 | 1D Dilated convolution forward pass using TPPs.

Inputs: IC×W ,WK×C×S, d ∈ R

Output: OK×Q

1: WT ← TRANSPOSE(W)
2: for pos = 0 . . .Q− 1 with step bq do

3: ⊲ Address-based BRGEMM, prepare arguments Aptrs, Bptrs
4: for s = 0 . . . S− 1 with step 1 do

5: Aptrs[s] = &WT[s, 0, 0]
6: Bptrs[s] = &I[0, (pos+ s · d)]

7: BRGEMM(Aptrs,Bptrs, &O[0, pos], S)

5.2.2. Deep Learning Recommendation Model
Facebook recently proposed a deep learning recommendation
model (DLRM) [39]. Its purpose is to assist the systematic
hardware–software co-design for deep learning systems. DLRM
is comprised of the following major components: (a) a sparse
embedding (see section 5.1.5) involving tables (databases) of
varying sizes, (b) a small dense Multi-Layer Perceptron (see
section 5.1.6), and (c) a larger and deeperMLPwhich is fed by the
interaction among (a) and (b). All three parts can be configured
(number of features, mini-batch sizes, and table sizes) to stress
different aspects of the system. We also note that in the case
of training with BF16 datatype, we leverage the BF16 split-SGD
optimizer (see section 5.1.3). For more details on the workload
and CPU-oriented optimizations we refer to prior work [37].

5.2.3. Natural Language Processing - Bidirectional

Encoder Representations From Transformers
The BERT model is a bidirectional transformer pre-trained
via a combination of masked language modeling objective,
and next-sentence prediction [40]. The heart of the BERT
model is comprised by sequence of BERT layers which are
built using smaller building blocks. For ease of use and
implementation, we followed modular building blocks from
Hugging Face transformers library [41] and implemented
four fused layers using TPP building blocks, namely Bert-
Embeddings, Bert-SelfAttention, Bert-Output/Bert-SelfOutput,
and Bert-Intermediate layers.

The SelfAttention layer, in turn, can be formulated as a
bunch of Matrix / batch Matrix-Multiplications mixed with
element-wise scale, add, dropout and softmax operators. We
formulate these Matrix-Multiplications as tensor contractions on
blocked-tensors via the stride-based BRGEMM TPP (similarly
to Algorithm 6). We opt to use blocked tensor layouts for the
same reasons briefly described in section 5.1.6. Furthermore,
by working on one small sub-tensor at a time we naturally
follow a “dataflow” computation, which has been shown to
maximize the out-of-cache-reuse of tensors among cascading
operators [26, 42]. The softmax operator is also formulated
entirely by TPPs as described in section 5.1.1. We note that
the sequence of Matrix-Multiplications in the attention layer
requires sub-tensors to be transposed (and VNNI transformed
in case of BF16 implementation), and for this task we leverage
the transpose/transform TPPs. Bert-Output and Bert-SelfOutput

FIGURE 18 | Binary-Reduce aggregation kernel via TPPs.

layers perform GEMM over blocked layout, and fuse bias
addition, dropout, residual addition, and layernorm using TPPs.
The Bert-Embeddings layer also performs layernorm and dropout
after embedding lookups that are also implemented using
TPPs. Finally, Bert-Intermediate layer performs blocked GEMM
followed by bias addition and GELU activation function which
we implement using the GELU TPP.

5.2.4. Emerging AI—Graph Neural Networks
Graph Neural Networks (GNN) [43] form an emerging class of
Neural Networks for learning the structure of large, population-
scale graphs. Depending on the specific algorithm and task that
a GNN is designed for (e.g., node classification, link prediction),
feature-vector aggregation precedes or succeeds a shallow neural
network. Such a shallow neural network typically materializes
one or more linear transformations, followed by a classification
or regression mechanism [44], and the relevant TPP-based
implementation is essentially the one we present in Algorithm 6.

We focus here on the TPP-based implementation of the
feature-vector aggregation. This aggregation motif can be seen
as a sequence of linear algebraic expressions involving node/edge
features, along with the relevant operators. Prior work [44] has
focused on the following two algebraic sequences: Copy-Reduce
and Binary-Reduce. We elaborate here on the latter sequence
Binary-Reduce (as the first is even simpler). The feature-vectors
(either pertaining to vertices or edges) are represented via dense
2D matrices/tables. At the same time, the adjacency information
in the graphs can be eventually found via arrays of indices.
Therefore, by providing a set of indices and the appropriate
Tables of feature-vectors (assuming column-major storage), one
can extract selectively the desired feature-vectors via Gather-
columns operations. Then, the extracted feature-vectors are
fed into a binary operator, and the outcome of the binary
operations are finally reduced (the reduce operation could be
sum/max/min etc).

Figure 18 illustrates a TPP tree that is used to express the
Binary-Reduce aggregation kernel. The TPP back-end optimizes
this sequence of TPPs and performs horizontal register fusion
across them. More precisely, two feature-vectors namely v0 and
v1 are extracted at a time from Table 0 and Table 1 respectively
by using the relevant indices arrays, and they are combined
via the proper binary op to get an intermediate vector vi.
Subsequently, vi is reduced with a running reduce-vector vo

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 21 April 2022 | Volume 8 | Article 826269127

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 19 | TPP kernels on CLX.

that holds the output of this composite operator. Once the
running reduction has been completed (i.e., all indexed columns
from Table 0 and Table 1 have been accessed, processed and
reduced), the output vector vo is stored in the corresponding
output subtensor.

6. EXPERIMENTAL RESULTS OF DL
KERNELS AND WORKLOADS

We use a variety of platforms that span different ISAs, different
vendors and micro-architectures. More specifically, our tested
platforms include: (i) a 22-core Intel Xeon E5-2699 v4 (BDX)
supporting up to AVX2 ISA, (ii) a 28-core Intel Xeon 8280 (CLX)
supporting up to AVX512 ISA, (iii) a recently announced 40-core
Intel Xeon 8380 (ICX) supporting also up to AVX512 ISA, (iv) a
28-core Intel Xeon 8380H (CPX) supporting up to AVX512 ISA,
which also offers BF16 FMA acceleration, (v) a 64-core AMD
EPYC 7742 (ROME) with AVX2 ISA, (vi) an AWS Graviton2
instance with 64 cores at fixed 2.5 GHz and AArch64 ISA, (vii)

a 48-core Fujitsu A64FX at fixed 1.8 GHz with ARMv8 SVE
ISA, and (viii) a 4-core client Intel i7-6700 CPU (i7) supporting
up to AVX2 ISA. All Intel and AMD chips are operating in
Turbo mode. For the cluster experiments, we used a 32 node
CLX installation with a dual-rail Intel Omnipath 100 pruned 2:1
fat-tree topology.

6.1. Performance of Standalone DL Kernels
We start the performance evaluation with standalone TPP
kernels presented in section 5.1. First, we want to highlight the
productivity/efficiency provided by TPPs: the high-level code
expressed via TPPs/trees of TPPs can match or outperform
code by compilers, and hand-vectorized (thus non-portable
code) written by performance experts. Second, we want to
show the portability aspect of TPPs, since exactly the same
high-level code yields high-performance across different ISAs
and micro-architectures.

Figure 19-Top shows the performance of the Softmax
operator of blocked 3D tensors with size S1 × S2 × S3, on the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 22 April 2022 | Volume 8 | Article 826269128

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 20 | TPP kernels on ROME.

CLX platform (i.e., targeting AVX512 ISA). Here, we perform
S2 softmax operations over blocked S1 × S3 dimensions. The
sizes are chosen such that some of the dimensions do not
match perfectly with the vector length. The baseline is the icc
generated code with -O3 optimization level and high-zmm
usage flags. The second variant is also icc-generated code,
but we propagate the tensor sizes/loop bounds via compile-
time constants in order to assist the auto-vectorization/optimize
remainder handling via masking. The third code variant is the
AVX512 hand-vectorized by an expert, where the exp function
uses fast Taylor approximation. Last, we evaluated the TPP-
based softmax implementation. As we can see, by propagating
the tensor sizes we achieve (geo-mean) speedup of 1.3× over the
baseline. The hand-vectorized code is faster by 2.6× whereas the
TPP-based variant shows similar speedups by being 2.2× faster.
The main shortcoming of the hand-vectorized code is that it is
platform-dependent and as such non-portable. More specifically,
we didn’t have to our avail AVX2 hand-optimized code in order
to experiment with it on ROME. On the contrary, Figure 20-Top
shows the softmax performance on AVX2 enabled platform for
the compiler-generated code and the TPP based code. The TPP-
based softmax exhibits geo-mean speedup of 2.45× over the
baseline on ROME.

Figure 19-Middle shows the performance of the layernorm
operator on the CLX platform. Since the layernorm code
is more straightforward (i.e., no expensive exp function is
involved), we see that icc with compile-constant bounds
outperforms by 1.9× the baseline. We inspected the compiler-
generated code and identified that the reduction-loops
were recognized and were heavily optimized with multiple
accumulation chains etc. Similarly, the hand-vectorized

code and the TPP based code outperform the baseline by
1.3× and 1.5×. We also experimented with gcc and the
fast-math flag, and it just matched baseline performance.
We want to emphasize that propagating the tensor sizes
as compile-time constants throughout the operators is
not practical for real use-cases within DL frameworks.
Figure 20-Bottom shows similar performance speedups on
ROME, where the TPP-based code is 1.6× faster than the
auto-vectorized baseline.

Figure 19-Bottom shows the performance of the BF16 split-
SGD operator on CLX. This use-case represents a novel, mixed-
precision operator where the compiler (icc with compile-time
constant tensor sizes) struggles to yield good performance; the
TPP-based code has geometric mean (geomean) speedup of 38×
over the compiler generated code.

Figure 21 illustrates the TPP-based implementation of various
ResNet50 [33] Convolution layers across all available platforms.
The minibatch size used on each platform equals to the number
of the corresponding cores. It is noteworthy that the TPP-user
code is identical for all targets, hence, truly portable; it is merely
that the TPP backend optimizes the code generation (BRGEMM
in this case) in a platform/ISA-aware fashion. The geomean
efficiencies of these convolutions are: 69% for BDX, 72% for
CLX, 72% for CPX, 77% for CPX with BF16 datatype, 70% for
ICX, 78% for ROME, 81% for Graviton2 and 52% for A64FX.
Previous work [21] also showed on an x86 TPP-predecessor
that BRGEMM-based convolutions matched or outperformed
Intel’s oneDNN library [13]. Fujitsu recently contributed an
A64FX back-end to oneDNN [45] and our TPP implementation
outperforms this by 22% on the geomean. We observe that our
TPP convolutions not only run on all of these different platforms

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 23 April 2022 | Volume 8 | Article 826269129

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 21 | Convolutions via BRGEMM TPP.

FIGURE 22 | 1D dilated convolutions.

without a single line of code change, but they run at very similar
hardware utilization.

6.2. Performance of End-To-End DL
Workloads
6.2.1. 1D Dilated Convolutions and Their Application

to Computational Biology
Here, we evaluate the oneDNN [13] and TPP-based 1D dilated
convolution layer of ATACworks [38] which takes more than
90% of the training time, and it has input tensor width (W) of
60,400, output tensor width (Q) of 60,000, 15 input channels
(C), 15 filters (K), filter size (S) of 51, and dilation (d) of 8.
Figure 22-Top shows the computational efficiency results of the
1D convolution layer. oneDNN is not reaching peak performance
for these specialized convolutions, exhibiting 19.9% efficiency for
the forward pass and only 4.1% for the backward pass on CLX.
Our TPP-based implementation shows 74.3 and 55.7% efficiency
for the corresponding training passes. We also highlight the

performance portability of our TPP-based approach across all
tested platforms. Finally, we show training time per epoch results
for ATACworks in Figure 22-Bottom. The TPP-based kernels
provide training time speedup of 6.91× on CLXwhen comparing
to the oneDNN based implementation. We also show that by
leveraging the BF16 FMA acceleration of the CPX platform
we can further obtain 1.62× speedup compared to the FP32
implementation on the same platform. In total BF16 yields 12.6×
speedup over the oneDNN baseline.

6.2.2. Deep Learning Recommendation—DLRM
Figure 23-Top shows the FP32 DLRM performance on CLX
using two different configurations, namely small DLRM (blue
bars) and MLPerf DLRM (orange basrs). We refer to previous
work for the detailed specification of these configurations [37].
We evaluated 4 different implementations of DLRM: (i) the
PyTorch reference implementation, (ii) PyTorch reference +
custom Embedding extension auto-vectorized by the compiler,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 24 April 2022 | Volume 8 | Article 826269130

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 23 | DLRM performance on a small config (blue bars) and on the MLPerf config (orange bars).

(iii) DLRM expressed entirely via TPPs, and (iv) hand-vectorized
Embedding extension + BRGEMM-TPP based MLPs [37].
We conclude that the TPP-based implementation matches the
performance of the State-Of-The-Art implementation which is
hand-vectorized specifically for AVX512 targets; both of these
optimized versions substantially outperform the PyTorch CPU
reference implementation by up to 48×. Compared to the version
with the custom, auto-vectorized variant the TPP-version is up to
4.4% faster.

Figure 23-Bottom shows the DLRMperformance of our TPP-
based implementation across multiple platforms and compute
precisions. We want to highlight two aspects: First, we are able to
run the same TPP-code without any change across all platforms,
something that is not doable with the hand-vectorized SOTA
variant (iv) (since it is not able to run on the AVX2-only BDX and
ROME platforms, or on the Graviton2 platform with AArch64
ISA). Second, the TPP-based BF16 shows speedup up to 28%
over the variant with auto-vectorized Embedding extension. The
culprit here is the mixed precision operations like split-SGD
where the compiler struggles to yield efficient code as shown in
section 6.1.

Figure 24 illustrates the performance breakdown of the small
config on multiple platforms. The blue portions of the bars
correspond to the time spent on the Embedding component,
the orange parts reflect the MLP portion, and finally the yellow
portions correspond to the remaining components of the DLRM
workload. We observe that depending on the platform, the time

spent on Embedding varies from 29 to 37% of the total execution
time, the time spent onMLP is in the range of 33–56% of the total
time, and the rest components account for 15–23% of the time.
We can also observe the correlation of the MLP performance
with the compute capabilities of each platform. For example,
on CPX which has native BF16 FMA support, the BF16 MLPs
are sped up by ∼2× compared to the FP32 MLPs on the same
platform. In regard to the time spent on the Embedding kernel
which tends to be bandwidth bound, we observe correlation with
the corresponding bandwidth capabilities of the machines.

6.2.3. Natural Language Processing—BERT Large
Figure 25-Top shows end-to-end performance (in
examples/second) on CLX for the BERT large SQuAD
fine-tuning task in FP32, using a max sequence length of
384 and minibatch of 24. We observe that the TPP-based
implementation (blue bar) matches the performance of the
AVX512-hand-vectorized code/orange bar. At the same time,
our implementation is 1.69× faster than the Reference Hugging
Faces CPU reference code [46] (green bar).

Figure 25-Bottom shows the performance of the reference
Hugging Faces code (green bars) versus the TPP-based code (blue
bars) across multiple platforms (x86 and AArch64/Graviton2)
and compute precisions (FP32 for all platforms, and BF16
for the CPX platform). The TPP-based BERT shows speedups
ranging from 1.5× to 8.5× over the Hugging Faces code. This
result highlights the performance portability through the TPP

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 25 April 2022 | Volume 8 | Article 826269131

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 24 | DLRM performance breakdown of small config on multiple platforms.

FIGURE 25 | BERT large performance.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 26 April 2022 | Volume 8 | Article 826269132

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 26 | BERT large performance breakdown on multiple platforms.

abstractions. In regard to various compute precisions, we note
that with minimal changes inside the fused operators to handle
the VNNI tensor layout (required for BF16 GEMM/BRGEMM),
and a couple of lines changes in the application code to enable
BF16 training, we were able to realize 2× speed up using BF16
training on CPX (compared to FP32 training on CPX) with 28
cores, surpassing 40-core FP32-ICX performance by 37%.

In order shed light on where the benefits are coming from, we
present in Figure 26 the performance breakdown of the Hugging
Faces reference code and the TPP-based implementation. In
particular we focus on four components:

1. GEMM which corresponds to the tensor contractions
implemented via either the BRGEMM-TPP in the
TPP implementation, or it leverages optimized GEMM
routines within BLAS libraries in the Hugging Faces
implementation (MKL for x86 platforms and OpenBLAS for
AArch64/Graviton2).

2. Dropout corresponding to the dropout layer in BERT, where
the TPP-based implementation employs fast random number
generation via xorshift algorithm.

3. GeLU corresponding to the Gaussian Error Linear
Unit activation function in BERT, where the TPP-based
implementation leverages fast approximations as discussed in
section 3.3.2.

4. Others capturing the remaining operators: Transpose, Layer-
norm, softmax, bias addition, vnni-reformatting (in case
of BF16 training), copy, add, scale, zero-kernel, reduce,
optimizer. Note that all these operators map to either
unary/binary/ternary TPPs (see section 2) or the can be
expressed viaMatrix Equation TPPs (see section 5).

First, we note that for the Intel x86 platforms (left part of the
breakdown plot) the tensor contractions show speedups over
the highly-optimized MKL GEMM implementation in Hugging
Faces in the range of 2–6%. On the right side of the breakdown
plot we observe that the BRGEMM-TPP benefits are even
larger on the non-Intel platforms. More specifically, on AMD
Rome (AVX2 x86 platform) the tensor contractions are sped

up by 1.9× via the BRGEMM-TPP, and on Graviton2 (Arm
AArch64 platform) the tensors contractions are 5.7× faster via
the BRGEMM-TPP compared to the implementation relying on
OpenBLAS GEMM calls. To further highlight the performance
portability of the tensor contractions via the BRGEMM-TPP
across multiple platforms and precisions, Figure 27 shows the
achieved GEMM performance (Left axis) on each platform for
the entire training process (blue bars), whereas the orange line
(Right axis) dictates the % of machine peak. The conclusion
here is that the BRGEMM-TPP delivers high-efficiency for the
corresponding tensor contractions in the range of 66–84% for all
tested ISAs and micro-architectures.

The second conclusion we can draw from the performance
breakdown in Figure 26 is that our fused/dataflow TPP
implementation outlined in section 5.2.3 makes the dropout and
GeLU times shrink substantially, offering speedups in the range
of 10–360×. The BERT implementation via the dropout/GeLU
TPPs in tandem to the BRGEMM TPPs take advantage of
temporal locality, and virtually make the corresponding times
disappear from the overall execution time. Last but not
least, the remaining components are sped-up in the TPP-
based implementation by 2.5-14× depending on the platform.
As a result of these optimizations, the TPP-based BERT
implementation spends the majority of the time (75.5–88.8%)
in tensor contractions which are executed at high-efficiency as
Figure 27 shows.

6.2.4. Emerging AI—Graph Neural Networks
Figure 28-Top shows end-to-end performance (in
seconds/epoch, so lower is better) on CLX for the full-batch
training of the GraphSAGE workload on OGB-Products with
FP32 and BF16 precision. For the CLX BF16 experiments, since
CLX doesn’t have native support for BF16 FMAs, we use bit-wise
accurate emulated-BF16 BRGEMM TPPs (see section 3.2.2),
and we still expect savings due to the bandwidth reduction
in the non-GEMM parts, e.g., graph traversal and edge/node
aggregation. We observe that the TPP-based implementation
outperforms the DGL with Xbyak JIT backend baseline

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 27 April 2022 | Volume 8 | Article 826269133

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 27 | BERT GEMM/tensor contraction efficiencies via the BRGEMM-TPP on multiple platforms.

FIGURE 28 | GNN performance of GaphSAGE Full-batch training for OGB-Products.

version by 2.65×. The TPP-BF16 version yields another 1.66×
speedup over the TPP-FP32 variant mainly due to reduced
bandwidth requirements.

Figure 28-Bottom shows the performance of the TPP-
based code across multiple platforms (x86 and Arm AArch64)
and compute precisions (FP32 and BF16). The relative
differences in the performance can be justified by the different
compute/bandwidth specs of the benchmarked platforms. We

highlight that with minimal changes in the MLP portion to
handle VNNI layout required for BF16 BRGEMM, and a couple
of lines changes in the application code to enable BF16 training,
we were able to realize 1.94× speed up using BF16 training
on CPX with 28 cores compared to the FP32 training on the
same platform.

In order to further analyze the behavior of the various
implementations on multiple platforms, we present on Figure 29

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 28 April 2022 | Volume 8 | Article 826269134

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 29 | GNN performance breakdown of GaphSAGE Full-batch training for OGB-Products.

the relevant performance breakdown. The very left bar shows
the performance breakdown of the FP32 optimized DGL
implementation that leverages JITed kernels through Xbyak on
the CLX platform. The blue part corresponds to the Aggregation
kernel described in section 5.2.4 whereas the orange portion
represents the time required by the remaining kernels, namely
Multilayer-Peceptrons with Activation functions. In the DGL
implementation the activation functions are not fused within the
MLP’s tensor contractions. We observe that in this optimized
DGL implementation, 82.3% is spent on the Aggregation kernel
and only 17.7% is spent on the MLPs. On the second from
the left bar (annotated as CLX-FP32) we show the performance
of the FP32 TPP-based implementation on the same CLX
platform. We conclude that the TPP-based Aggregation kernel
exhibits a speedup of 3.29× compared to the DGL-Xbyak
implementation, and the TPP-based MLP kernels (BRGEMM-
TPP tensor contractions with fused TPP activation functions)
exhibit a speedup of 1.4× compared to the respective DGL-
Xbyak implementation. The FP32 TPP-based implementation
spends 66.4% on the aggregation kernel and 33.6% on the fused
MLP kernels.

The last 8 bars on Figure 29 illustrate the performance
breakdown of the TPP-based implementation on various
platforms (CLX/BDX/ROME/ICX/GRAVITON2/CPX) and
various precisions (FP32 and CPX-BF16). We want to emphasize
that all these performance numbers are obtained by employing a
the same exact TPP-based code (which is platform-agnostic); the
only modification is pertaining to the BF16 TPP code where we
changed the tensor layouts in the MLP portion in order to deal
with the required VNNI format. When comparing the CPX-F32
and the CPX-BF16 performance breakdowns we observe a 2×
speedup on the Aggregation kernel. This kernel is typically
bandwidth bound due to its irregular/indexed accesses, and the
BF16 TPP code moves half of the data compared to the FP32

TPP code since all the tensors are halved in size (BF16 vs FP32
datatype). The MLP portion of the TPP-based implementation
is sped up by 1.73× by using the BF16 BRGEMM-TPP. The
CPX platform supports the BF16 FMA instruction which
has effectively 2× the compute throughput compared to the
FP32 FMA on the same platform. The BF16 BRGEMM-TPP
internally leverages this BF16 FMA instruction within the
GEMM microkernel on CPX (see section 3.2) to speed up the
tensor contraction. Finally, we highlight here the speedup of
the Aggregation kernel when, e.g., comparing the CPX and the
ICX FP32 TPP-based performance numbers. The ICX platform
has STREAM bandwidth of 175 GB/s whereas CPX has 97.7
GB/s, and this trend is reflected also in the performance of the
Aggregation kernel (1.54× faster on ICX than CPX).

6.3. Distributed-Memory Scaling of DL
Workloads
Even though we focused on the evaluation of the TPP-
based workloads on a single node, our approach is seamlessly
incorporated into the DL frameworks, hence we can scale to
multiple nodes in a cluster to accelerate the training process
employing the oneCCL library [47]. Figure 30 shows the
distributed-memory scaling of the TPP-based workloads. DLRM
and BERT show almost perfect weak-scaling from 1 to 64 sockets
of CLX (32 nodes) with speedups 51.7 and 57.9×, Respectively.
Regarding the scaling of the GNN workload, the efficiency
is directly affected by the quality of the partitions produced
by the graph partitioning tools. Using 64 sockets we achieve
10× speedup compared to single socket, and further scaling
improvements constitute future work. We can conclude that
TPPs for single node optimizations combined with small-size
cluster level execution can accelerate deep learning training on
CPUs by up to two orders of magnitude.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 29 April 2022 | Volume 8 | Article 826269135

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 30 | Distributed-memory scaling of workloads.

FIGURE 31 | Example lowering paths within the PlaidML Tensor compiler in order to achieve full network optimization from popular frameworks. The green boxes

represent the DL frameworks, the blue boxes correspond to MLIR dialects, the brown box shows the TPP-MLIR dialect within the stack, and the purple box

represents the targeted platforms.

7. TPP WITHIN MLIR AND A TENSOR
COMPILER

In order to illustrate the viability of TPPs as a virtual Tensor
ISA within MLIR and Tensor Compilers, we implemented a
rudimentary MLIR dialect corresponding to the TPPs. We also
implemented lowering passes within the PlaidML [15] Tensor
Compiler that transform intermediate MLIR representations to
the TPP-MLIR dialect. The TPP-MLIR dialect is subsequently
lowered to the corresponding LIBXSMM TPP calls, therefore
such a flow is not relying on LLVM for the code generation of
the corresponding tensor operations.

The current lowering path through MLIR supports a variety
of front-end interfaces with LinAlg or Tile as the lowest level
common entry points, i.e., the lowest level of abstraction that
inbound programs can be specified in such that they will be
subject to the full range of optimizations necessary to achieve
full performance. Figure 31 details the lowering paths currently
implemented in PlaidML and where key transforms map tensor
operations into the TPP dialect. The key transformation is located

in the stencil pass of the PXA dialect (Parallel eXtensions for
Affine—a staging ground for PlaidML/TPP work that will be
proposed upstream to the affine dialect). Operations that cannot
be matched to TPP primitives are lowered through standard
affine optimization pipelines.

We experimented with the use-case of FP32 inference on a
client CPU (Intel i7-6700) on three different workloads: ResNet-
152 [33], ResNext-50 [48], and I3D-Kinetics-400 [49]. Figure 32
shows the results of three implementations: (i) The green bars
show the performance of the code generated by PlaidML with
MLIR for intermediate representations, and LLVM for the code
generation, (ii) The orange bars show the performance of
the code generated by PlaidML with MLIR for intermediate
representations, and the TPP-MLIR dialect as virtual Tensor
ISA for the code generation of the corresponding tensor
contractions, and (iii) TensorFlow FP32 inference backed-up
by the vendor-optimized oneDNN library. We observe that the
Tensor Compiler variant which relies on the TPP-MLIR dialect
for the tensor contractions outperforms the variant which relies
exclusively on LLVM (for loop-tiling and vectorization) up to

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 30 April 2022 | Volume 8 | Article 826269136

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

FIGURE 32 | FP32 inference with PlaidML on various workloads: ResNet-152, ResNext-50, and I3D-Kinetics-400.

35.6×. At the same time, PlaidML assisted by the TPP-MLIR
dialect matches/outperforms the performance of TensorFlow
which uses internally oneDNN, a highly-tuned vendor library for
this CPU target. These preliminary results highlight the viability
of the synergistic Tensor Compiler—TPP paradigm as discussed
in section 1.

8. TPP AND HPC APPLICATIONS

So far, in this article, the focus was on how the TPP abstraction
can be leveraged within the Deep Learning Domain. Tensor
computations are ubiquitous, and in particular they constitute
the cornerstone of many HPC applications. As such, the TPP
abstraction can be readily employed by HPC applications to
accelerate tensor computations without sacrificing portability. In
the rest of this section, we examine how TPPs are used within two
HPC applications, namely CP2K and EDGE.

8.1. CP2K
The tensor based formulation originated and became common
in physics, and it is well adopted in the field of engineering
or applied sciences, and in electronic structure (ES) theory
in particular. CP2K is an open source ES- and MD-package
(molecular dynamics) for atomistic simulations of solid-state,
liquid, molecular, and biological systems [50]. CP2K is striving
for good performance on HPC and massively parallel systems.
Even though the use of novel algorithms in CP2K is the norm
for scientific reasons, implementations have not widely tapped
tensors in an explicit fashion. In contrast, Machine Learning
emerged with similar, yet not coherent APIs and frameworks
around the notions of tensors, layers, and image processing.

While ES calculations can be formulated with tensors of
ranks two to four, CP2K (and similar packages) largely remain
with matrix based formulation. Various libraries for tensor
contractions gained some attraction for scientific applications but
the level of generality is key, e.g., as sparse representations are
desired. CP2K explored an API for sparse tensor contractions

and published a proof of concept implementation built into
the DBCSR library [51]. Efforts targeting accelerators in
CP2K, namely GPUs, are not fully booked hence hardware
specifically for Deep Learning (with focus on low and mixed
precision arithmetic) is not yet a motivation of tensors as an
implementation vehicle (and source of acceleration). Therefore,
a collection of primitives, such as TPP is well-suited for an
emerging discussion of a more general API.

CP2K 3.0 introduced LIBXSMM for Small Matrix
Multiplications (SMMs). CP2K and DBCSR (previously part of
CP2K’s code base) since then additionally introduced element-
wise operations (copy and transpose) with “elements” being
small matrices based on LIBXSMM. Reformulating existing
code to build on (batched) GEMM TPP and element-wise TPP
operations is an established pattern for increased performance
in CP2K.

To practically improve performance in CP2K one has
to consider:

• Fusing kernels and increasing arithmetic intensity
independent of the target being a CPU or an accelerator
(performance bound by memory bandwidth).
• Specializing code at runtime based on workload/input of the

application, e.g., generating code Just-In-Time (JIT) a.k.a.
meta-programming.

These objectives can be delivered by TPPs as a domain-specific
language (DSL), enabling the scientist to write more abstract
code, e.g., by the means of meta-programming, and by relying
on a specification which delivers versatile primitives deferring
low-level optimizations to the TPP backend.

For CP2K’s performance evaluation, we refer to BDX, CLX,
ICX, and ROME as introduced earlier (section 6). To show the
portability of our approach, we augmented our results by using
the Oracle Cloud Infrastructure, namely the result for Altra
processor (BM.Standard.A1.160 OCI shape). Table 4 shows the
performance benefit of LIBXSMM’s GEMM-TPP in CP2K when
compared to Intel’s MKL GEMM routines.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 31 April 2022 | Volume 8 | Article 826269137

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

TABLE 4 | CP2K performance (Cases/Day) of three workloads fitting into single

systems with two processors.

System Workloada BLAS-GEMMb TPP-GEMMc TPP-Speedup

BDX H2O-256 91 101 11%

H2O-512 23 27 17%

CLX H2O-256 154 162 5%

H2O-512 39 41 5%

H2O-DFT-LS4 45 47 4%

ICX H2O-256 235 249 6%

H2O-512 60 65 8%

H2O-DFT-LS4 67 70 4%

ROME H2O-256 225 244 8%

H2O-512 55 57 4%

H2O-DFT-LS4 65 65 0%

Altra H2O-256 228 236 4%

H2O-512 60 62 3%

H2O-DFT-LS4 60 66 10%

Single-socket performance is reported here for consistency within this article. Intel MKL

or OpenBLAS are always used for general BLAS operations including large GEMMs.

Either (BLAS-)GEMMor TPP-GEMMwas used for batchedmultiplication of small matrices

(SMMs). Workloads utilizing CP2K’s DBCSR library for distributed block-sparse matrix

multiply benefit from (runtime-)specialized GEMM-TPP kernels where the set of matrix

shapes is not known at compile-time of the application or depends on the workload

in general.
aH2O-256 (CP2K bench.), H2O-512 (UEABS CaseA) and H2O-DFT-LSNREP=4 (UEABS

CaseC) from PRACE UEABS 2.1.
b Intel MKL (x86-64) or OpenBLAS (otherwise).
cLIBXSMM.

The bold values indicate the best-performing implementation for each system and

workload.

8.2. EDGE
The Extreme-Scale Discontinuous Galerkin Environment
(EDGE) uses the Arbitrary high-order DERivatives (ADER)
Discontinuous Galerkin (DG) finite element method to simulate
seismic wave propagation [52]. The software uses unstructured
tetrahedral meshes which are typically adapted to the used
seismic velocity models. Additionally, modelers may introduce
mountain topography. A sophisticated local time stepping
scheme allows the solver to operate efficiently in very large and
complex settings. The software is able to fuse multiple ensemble
simulations into one execution of the software. EDGE uses an
orthogonal polynomial expansion basis to discretize each of the
considered variables in a tetrahedron of the mesh. In a typical
setting, we use three relaxation mechanisms for the viscoelastic
part, resulting in a total of 27 seismic variables. Additionally using
a fifth order method gives us 35 basis functions, resulting in a
total of 27 · 35 = 945 degrees of freedom per tetrahedral element.
The solver advances the degrees of freedom in time by repeatedly
computing a triplet of quadrature-free integrators. While the
actual integrators are part of EDGE, their implementation relies
heavily on TPPs. The GEMM-TPP with small and uncommon
matrix sizes is the most crucial operation required by EDGE.
For example, the surface integrator requires the multiplication
of a 9 × 35 matrix with a 35 × 15 matrix. The solver’s extension

TABLE 5 | Sustained 32-bit floating point performance on the studied systems.

System GTS LTS

Single Fuseda Single Fuseda

Cascade lake 1.08 0.78 1.02 0.74

Ice lake 1.29 1.01 1.23 0.96

Rome 1.20 1.08 1.12 1.01

Milan 1.39 1.16 1.29 1.07

Altra 1.27 0.73 1.51 0.76

The performance is given in TFLOPS. Results are presented for Global Time Stepping

(GTS) and Local Time Stepping (LTS) when using single and fused forward simulations.
aEDGE’s fused simulations use sparse matrix kernels.

The bold values indicate the best performing system for each experimental setup.

with additional, performance-portable TPPs in all parts of the
integrators is work-in-progress. Especially, EDGE’s support for
viscoelastic attenuation or local time stepping requires “simpler”
kernels, e.g., the unary TPPs Identity and Zero, or the binary
TPPs Mul, Sub and Add.

We evaluate EDGE’s performance-portability through the
use of TPPs by studying the performance of a full setup of
the Layer Over Halfspace 3 (LOH3) benchmark with 743,066
tetrahedral elements. The same setting was also used in Breuer
and Heinecke [53] to study the performance of the solver on a
single processor of the Frontera supercomputer located at the
Texas Advanced Computing Center (position ten in the 06/21
TOP500-list). Following this study, a sophisticated simulation
of the 2014 Mw 5.1 La Habra earthquake using a mesh with
237,861,634 tetrahedral elements and EDGE’s advanced features
yielded a performance of 2.20 FP32-PFLOPS on 1,536 nodes.

For the EDGE application, we study the software’s raw floating
point performance and time-to-solution by extending our LOH3-
Frontera-only study [53] with diverse processors:

• Cascade Lake (similar to CLX as introduced in section 6):
2.7 GHz 28-core Intel Xeon Platinum 8,280 processor of the
Frontera system at the Texas Advanced Computing Center.
We only used a single 28-core processor of Frontera’s dual-
socketed compute nodes in our tests.
• Ice Lake: 2.3 GHz 40-core Intel Xeon Platinum 8,380 processor

on Intel’s on-premises cluster. We only used a single 40-core
processor of the dual-socket compute nodes in our tests.
• Rome (similar to ROME as introduced in section 6): 2.25 GHz

AMD EPYC 7,742 (BM.Standard.E3.128 OCI shape). We only
used a single 64-core processor of the bare metal instance in
our tests.
• Milan: 2.55 GHz AMD EPYC 7J13 (BM.Standard.E4.128 OCI

shape). We only used single 64-core processor of the bare
metal instance in our tests.
• Altra: 3.0 GHz Ampere Altra Q80-30 processor

(BM.Standard.A1.160 OCI shape). We only used a single
80-Armv8.2-core processor of the bare metal instance in
our tests.

Table 5 shows the sustained floating point performance of
the conducted runs. All numbers are given in FP32-TFLOPS.
Columns two and three present the performance of Global Time

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 32 April 2022 | Volume 8 | Article 826269138

https://prace-ri.eu/training-support/technical-documentation/benchmark-suites/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

TABLE 6 | Time-to-solution speedups of the studied systems when using different

configurations of the solver EDGE.

System GTS LTS

Single Fused Single Fused

Cascade lake 1.00 1.80 2.50 4.52

Ice lake 1.19 2.33 3.02 5.87

Rome 1.11 2.48 2.76 6.17

Milan 1.28 2.67 3.18 6.55

Altra 1.18 1.69 3.71 4.64

The performance of the Cascade Lake system, running EDGE with Global Time Stepping

(GTS) and a single forward simulation, is used as baseline. In contrast to Table 5, the

speedups include the higher algorithmic efficiencies of EDGE’s support for Local Time

Stepping (LTS) and fused forward simulations.

The bold values indicate the best performing system for each experimental setup.

Stepping (GTS), whereas columns four and five show that of
Local Time Stepping (LTS). In general, the LTS configurations
have a slightly lower peak utilization when compared to their
GTS counterparts. Note, however, that Table 5 only shows raw
floating point performance and does not account for time-to-
solution speedups through LTS (theoretically up to 2.67× in
this case). The performance of GTS and LTS is further split
into running a single forward simulation and fusing multiple
simulations. In fused mode, the solver parallelizes over the right-
hand-side by concurrently simulating seismic wave propagation
for a collection of seismic sources. One of the fused mode’s
unique advantages is the opportunity for perfect vectorization of
all small matrix multiplications, even when considering sparsity
[52]. In this work, we matched the microarchitectures’ SIMD-
length by fusing 16 simulations on Cascade Lake and Ice Lake,
eight simulations on Rome and Milan, and four simulations
on Altra. Once again, note that Table 5 does not include the
respective sparsity-driven 2.49× increase of the floating point
operations’ value when running fused simulations. Comparing
the performance of the different systems, we observe very
high overall performance with architectural efficiency gains
originating from decreasing SIMD-lengths. This is especially
noticeable when running single forward simulations. In this
case, the vectorized dimension of the small dense matrix kernels
coincides with the number of basis functions, i.e., M = 35,
which is challenging when optimizing for AVX512 (Cascade
Lake and Ice Lake) and AVX2 (Rome and Milan). The short
128-bit ASIMD vector instruction (Altra) reach a very high
peak utilization of 33.2% for GTS and 39.2% in LTS. For the
fused simulations, the differences in relative peak utilization
narrow further.

Table 6 describes the obtained performance numbers in terms
of time-to-solution. Here, we use the runtime of the studied
LOH3 setting on Cascade Lake for GTS and a single forward
simulation as baseline. All other settings are given relative to this.
Further, for the fused settings, we consider the per-simulation
time. We observe that EDGE’s overall performance is driven by
the high floating point performance through the use of TPPs and
the solver’s advanced algorithmic features. Here, Altra performs
best for single forward simulations using LTS, accelerating the

baseline by 3.71×. Milan has the best time-to-solution in all
other settings and is able to outperform the baseline by 6.55×
when using LTS and fusing simulations. This performance lead
originates from Milan’s high theoretical peak combined with a
high peak utilization (see Table 5).

9. RELATED WORK

The related work in terms of the development methodology
of DL workloads has been referenced in the introduction,
so here we mention community efforts that share the same
design philosophy with TPPs. Tensor Operator Set Architecture
(TOSA) is a recent work, concurrently developed with TPPs, that
provides a set of whole-tensor operations commonly employed
in DL [54]. TOSA allows users to express directly operators on
up to 4D/5D tensors which are not naturally mapped even on
contemporary 2D systolic hardware. We believe that staying at
the 2D primitive level is expressive and sufficient, as we can
build higher-order ops with loops around 2D operators, e.g.,
see Algorithm 6. Despite the similarities of TPP and TOSA
specifications, the TOSA back-end is reference C code and
is not showcased in full DL-workloads. CUTLASS [55] and
Triton [56] strive for high-performance on GPUs, while also
offer flexible composition that can be easily applied to solve new
problems related in DL and linear algebra, and sharemany design
principles with TPPs.

XLA [57] is a domain-specific compiler for linear algebra
and DL that targets TensorFlow models with potentially no
source code changes. JAX [58] provides automatic differentiation
of Python and NumPy functions, and the compilation of the
desired operators happens in a user-transparent way with JIT
calls, yielding optimized XLA kernels. XLA and JAX share
the same philosophy with TPPs: the user is focusing on the
DL kernel/workload development using high-level, platform-
agnostic, declarative-style programming, whereas the tensor-
aware back-end infrastructure undertakes the efficient and
portable code generation. Julia [59] is a high-level, dynamic
programming language, designed to give users the speed of
C/C++ while remaining easy to use. Since its incarnation,
Julia has evolved with a strong Deep Learning/Machine
Learning ecosystem, providing optimized libraries for such
workloads. We envision that TPPs and tensor compilation
frameworks (like JAX and Julia) will coexist in a synergistic
fashion. For example, a program written in JAX could be
lowered via an MLIR pass to the Linalg dialect, and from
there the compilation stack could follow the path illustrated
in Figure 31 (JAX→Linalg→Affine/PXA→TPP) in order to
leverage TPPs for efficient code generation. To this extend,
Tensor Processing Primitives serve as a virtual tensor ISA
within tensor compilation frameworks rather than trying to
replace them.

Tensor Compilers (TC) [15–18] attempt to optimize DL
operators in a platform-agnostics way, however their applicability
is restricted to relatively small code-blocks whereas full workload
integration is cumbersome. Also, TC undertake the tasks of
efficient parallelization, loop re-ordering, automatic tiling and

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 33 April 2022 | Volume 8 | Article 826269139

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

layout transformations, nevertheless the obtained performance
is typically underwhelming [12]. We envision that TPPs can
be used as a tool by TC in order to attain efficient platform-
specific code generation, therefore, TC could focus on optimizing
the higher level aspects of the tensor programs (e.g., layout
transformations). Along these lines, TPPs fit in the MLIR [20]
ecosystem/stack as a lowering dialect (see section 7), and in
this way the TPP back-end could be leveraged by multiple
TC frameworks.

Tensor computations are also ubiquitous in HPC (e.g.,
physics, quantum chemistry, numerical simulations) and
consequently a plethora of tensor computation frameworks
have emerged to facilitate the development of such applications
[60–64]. Typically these frameworks are comprised of a
front-end that enables the expression of the underlying
tensor computations (and can be domain-specific), and a
back-end that optimizes the expressed computations using
both high-level and low-level techniques. Since TPPs are
agnostic of the user-entity, we envision that such tensor
computation frameworks can leverage TPPs as a virtual tensor
ISA instead of relying on generic compilers or low-level
customized generators for efficient code generation across
multiple platforms.

10. CONCLUSIONS AND FUTURE WORK

In this work, we presented the Tensor Processing Primitives
(TPP), a compact, yet versatile set of 2D-tensor operators,
which subsequently can be utilized as building-blocks
to construct efficient, portable complex DL operators on
high-dimensional tensors. We also show how TPPs can
be used within HPC applications in order to accelerate
tensor computations. We demonstrate the efficacy of our
approach using standalone kernels and end-to-end training
DL-workloads (CNNs, dilated convolutions, DLRM, BERT,
GNNs) expressed entirely via TPPs that outperform state-
of-the-art implementations on multiple platforms. As future
work, we plan to create a full-fledged TPP-based MLIR dialect
such that Tensor Compilers can leverage the strengths of
TPPs. Also, we plan to further enrich the TPP back-end
implementation by supporting more ISAs, including GPUs and
POWER architectures.

11. OPTIMIZATION NOTICE

Software and workloads used in performance tests may have
been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components,
software, operations, and functions. Any change to any of
those factors may cause the results to vary. You should consult
other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the
performance of that product when combined with other
products. For more information go to http://www.intel.com/
performance.

Intel, Xeon, and Intel Xeon Phi are trademarks of Intel
Corporation in the U.S. and/or other.

AUTHOR’S NOTE

This is an extended version of a technical paper presented at SC21
[65].

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: https://github.com/hfp/libxsmm/tree/sc21.

AUTHOR CONTRIBUTIONS

EG, AH, DKa, and SA worked on the design of the TPP
framework. EG, AH, DKa, SA, MA, DA, CA, AB, AK, and BZ
worked on the implementation of the TPP backend. EG, DKa,
SA, NC, VM, SM, RM, and AH worked on the Deep Learning
applications. AB and HP worked on the HPC applications. JB,
DKu, FL, and BR worked on the Tensor Compiler integration.
All authors read and approved the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2022.826269/full#supplementary-material

REFERENCES

1. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep

convolutional neural networks. In: Pereira F, Burges CJC, Burges L,

Weinberger KQ, editors. Advances in Neural Information Processing Systems.

Curran Associates, Inc (2012). Available online at: https://proceedings.

neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

2. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper

with convolutions. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. Boston, MA (2015). p. 1–9.

3. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:14091556. (2014).

4. Yu D, Seltzer ML, Li J, Huang JT, Seide F. Feature learning in deep neural

networks-studies on speech recognition tasks. arXiv preprint arXiv:13013605.

(2013).

5. Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, et al.

Google’s neural machine translation system: bridging the gap between

human and machine translation. arXiv preprint arXiv:160908144.

(2016).

6. Cheng HT, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, et al. Wide &

deep learning for recommender systems. In: Proceedings of the 1st Workshop

on Deep Learning for Recommender Systems. New York, NY: ACM (2016). p.

7–10.

7. Wolf T, Chaumond J, Debut L, Sanh V, Delangue C, Moi A,

et al. Transformers: state-of-the-art natural language processing.

In: Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing: System Demonstrations. (2020). p.

38–45.

8. Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol. Inf.

(2016) 35:3–14. doi: 10.1002/minf.201501008

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 34 April 2022 | Volume 8 | Article 826269140

http://www.intel.com/performance
http://www.intel.com/performance
https://github.com/hfp/libxsmm/tree/sc21
https://www.frontiersin.org/articles/10.3389/fams.2022.826269/full#supplementary-material
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1002/minf.201501008
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

9. Goh GB, Hodas NO, Vishnu A. Deep learning for computational chemistry. J

Comput Chem. (2017) 38:1291–307. doi: 10.1002/jcc.24764

10. Raghu M, Schmidt E. A survey of deep learning for scientific discovery. arXiv

preprint arXiv:200311755. (2020).

11. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, et al. A

state-of-the-art survey on deep learning theory and architectures. Electronics.

(2019) 8:292. doi: 10.3390/electronics8030292

12. Barham P, Isard M. Machine learning systems are stuck in a rut. In:

Proceedings of the Workshop on Hot Topics in Operating Systems. New York,

NY: (2019). p. 177–83.

13. oneDNN. Intel oneDNN GitHub. Available online at: https://github.com/

oneapi-src/oneDNN (accessed online at March 30, 2021).

14. Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, et al.

cudnn: efficient primitives for deep learning. arXiv preprint arXiv:14100759.

(2014).

15. Zerrell T, Bruestle J. Stripe: tensor compilation via the nested polyhedral

model. arXiv preprint arXiv:190306498. (2019).

16. Chen T, Moreau T, Jiang Z, Zheng L, Yan E, Shen H, et al. {TVM}: an

Automated End-to-End Optimizing Compiler for Deep Learning. In: 13th

{USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 18). Berkeley, CA (2018). p. 578–94.

17. Vasilache N, Zinenko O, Theodoridis T, Goyal P, DeVito Z, Moses WS, et al.

Tensor comprehensions: framework-agnostic high-performance machine

learning abstractions. arXiv preprint arXiv:180204730. (2018).

18. Zheng L, Jia C, Sun M, Wu Z, Yu CH, Haj-Ali A, et al. Ansor: generating

high-performance tensor programs for deep learning. In: 14th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 20).

Berkeley, CA (2020). p. 863–79.

19. Li M, Liu Y, Liu X, Sun Q, You X, Yang H, et al. The deep learning compiler:

a comprehensive survey. IEEE Trans Parallel Distrib Syst. (2020) 32:708–27.

doi: 10.1109/TPDS.2020.3030548

20. MLIR. Multi-Level Intermediate Representation GitHub. Available online at:

https://github.com/tensorflow/mlir (accessed online at March 30, 2021).

21. Georganas E, Banerjee K, Kalamkar D, Avancha S, Venkat A, Anderson M,

et al. Harnessing deep learning via a single building block. In: 2020 IEEE

International Parallel and Distributed Processing Symposium (IPDPS). New

Orleans, LA: IEEE (2020). p. 222–33.

22. Heinecke A, Henry G, Hutchinson M, Pabst H. LIBXSMM: accelerating

small matrix multiplications by runtime code generation. In: Proceedings of

the International Conference for High Performance Computing, Networking,

Storage and Analysis. SC ’16. Piscataway, NJ: IEEE Press (2016). p.

84:1–84:11.

23. Georganas E, Avancha S, Banerjee K, Kalamkar D, Henry G, Pabst H,

et al. Anatomy of high-performance deep learning convolutions on simd

architectures. In: SC18: International Conference for High Performance

Computing, Networking, Storage and Analysis. Dallas, TX: IEEE (2018). p.

830–41.

24. Bfloat16. Using bfloat16 With TensorFlow Models. Available online at: https://

cloud.google.com/tpu/docs/bfloat16 (accessed online at April 3, 2019).

25. Marsaglia G, et al. Xorshift rngs. J Stat Softw. (2003) 8:1–6.

doi: 10.18637/jss.v008.i14

26. Banerjee K, Georganas E, Kalamkar DD, Ziv B, Segal E, Anderson C, et al.

Optimizing deep learning rnn topologies on intel architecture. Supercomput

Front Innov. (2019) 6:64–85. doi: 10.14529/jsfi190304

27. Intel-ISA. Intel Architecture Instruction Set Extensions and Future Features

Programming Reference. Available online at: https://software.intel.com/

content/dam/develop/public/us/en/documents/architecture-instruction-set-

extensions-programming-reference.pdf (accessed online at March 30, 2021)

28. *city Powell MJD.Approximation Theory andMethods.Cambridge University

Press. (1981).

29. Chebyshev-Polynomials. Chebyshev Polynomials. Available online at: https://

en.wikipedia.org/wiki/Chebyshev_polynomials (accessed online at September

26, 2021)

30. Flajolet P, Raoult JC, Vuillemin J. The number of registers required for

evaluating arithmetic expressions. Theor Comput Sci. (1979) 9:99–125.

31. Gibbs JW. Elementary Principles in Statistical Mechanics: Developed with

Especial Reference to the Rational Foundation of Thermodynamics. Cambridge:

Cambridge University Press (2010). doi: 10.1017/CBO9780511686948

32. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training

by reducing internal covariate shift. In: International Conference on Machine

Learning. Lille: PMLR. (2015). p. 448–56.

33. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. (2016). p. 770–78.

34. Ba JL, Kiros JR, Hinton GE. Layer normalization. arXiv preprint

arXiv:160706450. (2016).

35. Wu Y, He K. Group normalization. In: Proceedings of the European Conference

on Computer Vision (ECCV).Munich (2018). p. 3–19.

36. Ulyanov D, Vedaldi A, Lempitsky V. Instance normalization: The missing

ingredient for fast stylization. arXiv preprint arXiv:160708022. (2016).

37. Kalamkar D, Georganas E, Srinivasan S, Chen J, Shiryaev M, Heinecke A.

Optimizing deep learning recommender systems training on CPU cluster

architectures. In: SC20: International Conference for High Performance

Computing, Networking, Storage and Analysis. Atlanta, GA: IEEE (2020). p.

1–15.

38. Lal A, Chiang ZD, Yakovenko N, Duarte FM, Israeli J, Buenrostro JD.

AtacWorks: a deep convolutional neural network toolkit for epigenomics.

bioRxiv. (2019).

39. NaumovM,Mudigere D, Shi HJM, Huang J, SundaramanN, Park J, et al. Deep

learning recommendation model for personalization and recommendation

systems. arXiv preprint arXiv:190600091. (2019).

40. Devlin J, Chang MW, Lee K, Toutanova K. Bert: pre-training of deep

bidirectional transformers for language understanding. arXiv preprint

arXiv:181004805. (2018).

41. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al.

Transformers: state-of-the-art natural language processing. In: Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing:

System Demonstrations. Association for Computational Linguistics (2020). p.

38–45.

42. Zhang M, Rajbhandari S, Wang W, He Y. Deepcpu: serving rnn-

based deep learning models 10x faster. In: 2018 {USENIX} Annual

Technical Conference ({USENIX}{ATC} 18). Boston, MA (2018). p.

951–65.

43. Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large

graphs. arXiv preprint arXiv:170602216. (2017).

44. Avancha S, Md V, Misra S, Mohanty R. Deep Graph Library Optimizations for

Intel (R) x86 Architecture. arXiv preprint arXiv:200706354. (2020).

45. oneDNN Fugaku. A Deep Dive Into a Deep Learning Library for the A64FX

Fugaku CPU - The Development Story in the Developer’s Own Words Fujitsu.

Available online at: https://blog.fltech.dev/entry/2020/11/19/fugaku-onednn-

deep-dive-en (accessed online at April 9, 2021).

46. Hugging-Faces. Hugging Faces GitHub. Available online at: https://github.

com/huggingface/transformers (accessed online at April 9, 2021).

47. oneCCL. Intel oneCCL GitHub. Available online at: https://github.com/

oneapi-src/oneCCL (accessed online at March 30, 2021).

48. Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations

for deep neural networks. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition.Honolulu, HI (2017). p. 1492–500.

49. Carreira J, Zisserman A. Quo vadis, action recognition? a new model and the

kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition.Honolulu, HI (2017). p. 6299–308.

50. Kühne TD, IannuzziM, Del BenM, Rybkin VV, Seewald P, Stein F, et al. CP2K:

an electronic structure andmolecular dynamics software package - Quickstep:

efficient and accurate electronic structure calculations. J Chem Phys. (2020)

152:194103. doi: 10.1063/5.0007045

51. Sivkov I, Seewald P, Lazzaro A, Hutter J. DBCSR: a blocked sparse tensor

algebra library. CoRR. (2019) abs/1910.13555.

52. Breuer A, Heinecke A, Cui Y. EDGE: extreme scale fused seismic simulations

with the discontinuous galerkin method. In: Kunkel JM, Yokota R, Balaji P,

Keyes D, editors.High Performance Computing. Cham: Springer International

Publishing. (2017). p. 41–60.

53. Breuer A, Heinecke A.Next-Generation Local Time Stepping for the ADER-DG

Finite Element Method. arXiv[Preprint]. (2022). arXiv: 2202.10313. Available

online at: https://arxiv.org/abs/2202.10313

54. TOSA. TOSA. Available online at: https://developer.mlplatform.org/w/tosa/

(accessed online at March 30, 2021).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 35 April 2022 | Volume 8 | Article 826269141

https://doi.org/10.1002/jcc.24764
https://doi.org/10.3390/electronics8030292
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
https://doi.org/10.1109/TPDS.2020.3030548
https://github.com/tensorflow/mlir
https://cloud.google.com/tpu/docs/bfloat16
https://cloud.google.com/tpu/docs/bfloat16
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.14529/jsfi190304
https://software.intel.com/content/dam/develop/public/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://en.wikipedia.org/wiki/Chebyshev_polynomials
https://en.wikipedia.org/wiki/Chebyshev_polynomials
https://doi.org/10.1017/CBO9780511686948
https://blog.fltech.dev/entry/2020/11/19/fugaku-onednn-deep-dive-en
https://blog.fltech.dev/entry/2020/11/19/fugaku-onednn-deep-dive-en
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/oneapi-src/oneCCL
https://github.com/oneapi-src/oneCCL
https://doi.org/10.1063/5.0007045
https://arxiv.org/abs/2202.10313
https://developer.mlplatform.org/w/tosa/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

55. CUTLASS. NVIDIA CUTLASS GitHub. Available online at: https://github.

com/NVIDIA/cutlass (accessed online at March 30, 2021).

56. Tillet P, Kung H, Cox D. Triton: an intermediate language and compiler for

tiled neural network computations. In: Proceedings of the 3rd ACM SIGPLAN

International Workshop on Machine Learning and Programming Languages.

New York, NY (2019). p. 10–9.

57. XLA. XLA: Optimizing Compiler for Machine Learning. Available online at:

https://www.tensorflow.org/xla (accessed online at March 30, 2021).

58. JAX. JAX: Autograd and XLA. Available online at: https://github.com/google/

jax (accessed online at March 30, 2021).

59. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to

numerical computing. SIAM Rev. (2017) 59, 65–98. doi. 10.1137/141000671

60. Solomonik E, Matthews D, Hammond JR, Stanton JF, Demmel J. A massively

parallel tensor contraction framework for coupled-cluster computations. J

Parallel Distrib Comput. (2014) 74:3176–90. doi: 10.1016/j.jpdc.2014.06.002

61. Solomonik E, Hoefler T. Sparse tensor algebra as a parallel programming

model. arXiv preprint arXiv:151200066. (2015).

62. Springer P, Bientinesi P, Wellein G. High-performance tensor operations:

tensor transpositions, spin summations, and tensor contractions. Fachgruppe

Informatik. (2019). Available online at: http://publications.rwth-aachen.de/

record/755345/files/755345.pdf

63. Hirata S. Tensor contraction engine: abstraction and automated parallel

implementation of configuration-interaction, coupled-cluster, and

many-body perturbation theories. J Phys Chem A. (2003) 107:9887–97.

doi: 10.1021/jp034596z

64. Epifanovsky E, Wormit M, Kuś T, Landau A, Zuev D, Khistyaev K, et al.

New Implementation of High-Level Correlated Methods Using a General Block

Tensor Library for High-Performance Electronic Structure Calculations. Wiley

Online Library. (2013). Available online at: https://onlinelibrary.wiley.com/

doi/10.1002/jcc.23377

65. Georganas E, Kalamkar D, Avancha S, Adelman M, Anderson C, Breuer

A, et al. Tensor processing primitives: a programming abstraction for

efficiency and portability in deep learning workloads. In: Proceedings of

the International Conference for High Performance Computing, Networking,

Storage and Analysis. New York, NY (2021). p. 1–14.

Conflict of Interest: EG, DKa, SA, MA, DA, CA, JB, NC, AK, DKu, FL, VM, SM,

RM, HP, BR, BZ, and AH were employed by Intel Corporation.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Georganas, Kalamkar, Avancha, Adelman, Aggarwal, Anderson,

Breuer, Bruestle, Chaudhary, Kundu, Kutnick, Laub, Md, Misra, Mohanty, Pabst,

Retford, Ziv and Heinecke. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 36 April 2022 | Volume 8 | Article 826269142

https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://www.tensorflow.org/xla
https://github.com/google/jax
https://github.com/google/jax
https://doi.org/10.1016/j.jpdc.2014.06.002
http://publications.rwth-aachen.de/record/755345/files/755345.pdf
http://publications.rwth-aachen.de/record/755345/files/755345.pdf
https://doi.org/10.1021/jp034596z
https://onlinelibrary.wiley.com/doi/10.1002/jcc.23377
https://onlinelibrary.wiley.com/doi/10.1002/jcc.23377
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Georganas et al. Tensor Processing Primitives

GLOSSARY

Intel Pseudo Intrinsics
1. _mm128 Represents a vector of width 128 bits.
2. _mm128_loadu_ps(addr) Loads 16byte of 32 bit elements.
3. _mm128_storeu_ps(addr) Stores 16byte of 32 bit elements.
4. _mm128_unpacklo_ps(A, B) Unpacks and interleaves 32 bit

elements from the low half of A and B.
5. _mm128_unpackhi_ps(A, B) Unpacks and interleaves 32 bit

elements from the high half of A and B.
6. _mm128_unpacklo_pd(A. B) Unpacks and interleaves

64 bit elements from the low half of A and B.
7. _mm128_unpackhi_pd(A, B) Unpacks and interleaves

64 bit elements from the high half of A and B.
8. _mm512 Represents a vector of width 512 bits.
9. _mm512_permutexvar_ps(A,B) Shuffle single precision

floating point elements in 512 wide vector length using
indexes specified in B.

10. _mm512_roundscale_ps(A,B) Round single precision
floating point elements to the rounding mode specified by
argument B.

11. _mm512_sub_ps(A,B) Subtract single precision floating
point elements in A from B.

12. _mm512_scalef_ps(A,B) Scales single precision floating
point elements in A using values specified in B.

13. _mm512_range_ps(A,B, int imm8) Calculates the min,
max or absolute max for each single precision- floating
point elements in A and B. Lower 2 bits of imm8[1:0]
specifies the operation(min/max/absolute max) to
be performed.

14. _mm512_xor_ps(A,B) Performs XOR operation between
each single precision floating point elements in A and B
vector.

15. _mm512_and_ps(A,B) Performs AND operation between
each single precision floating point elements in A and B
vector.

16. _mm512_rcp14_ps(A,B) Calculates approximate reciprocal
of each single precision floating point element in range less
then 2-̂14.

17. _mm512_cmp_ps_mask(A,B,int C) Compare the single
precision elements in A and B specified by the comparison
mode in C.

18. _mm512_mask_blend_ps(mask A,B,C) Copies single
precision floating point element from vector A in vector C if
the corresponding mask bit is set.

19. _mm512_fmadd_ps(mask A,B,C) Fused-Multiply-Add:
Multiplies elements from vector A and B and adds them to
elements of vector C.

20. _mm512_maskz_loadu_epi16(mask, addr) Loads 64byte of
16bit elements under zero masking from address addr.

21. _mm512_set1_epi32(value) sets a 32 bit value into all 16
entries of the vector, e.g. broadcast.

22. _mm512_maskz_mov_epi16(mask, A) Moves 16 bit-type
register A under zero-masking to a different register.

23. _mm512_slli_epi32(A, imm) Shifts all entries in the vector
registers (typed as 32 bit elements) by value imm to the left
by shifting 0 in.

Arm Pseudo Intrinsics
1. vld1q_f32(addr) Loads 16byte of 32 bit elements.
2. vst1q_f32(addr) Loads 16byte of 32 bit elements.
3. vtrn1q_f32(A, B) Unpacks and interleaves 32 bit elements

from the low half of A and B.
4. vtrn2q_f32(A, B) Unpacks and interleaves 32 bit elements

from the high half of A and B.
5. vtrn1q_f64(A. B) Unpacks and interleaves 64 bit elements

from the low half of A and B.
6. vtrn2q_f64(A, B) Unpacks and interleaves 64 bit elements

from the high half of A and B.
7. vmax_q(A,B) Calculates the maximum between each single

precision floating point elements in A and B vector.
8. vmin_q(A,B) Calculates the minimum between each single

precision floating point elements in A and B vector.
9. vmul_q(A,B) Multiply single precision elements in A and B

vector.
10. vsub_q(A,B) Subtract corresponding single precision

elements in B from A.
11. vadd_q(A,B) Add single precision elements in B and A.
12. vshlq_u32(A,B) Shift left each single precision elements in

A by the value specified in B.
13. vrndmq_f32(A) Round single precision floating point

elements in A using minus infinity rounding mode.
14. vcvtmq_s32_f32(A) Converts single precision floating point

elements in A to signed integers using minus infinity
rounding mode.

15. float32x4_t Represents 4 single precision floating point
elements in vector width of 128.

16. vand_q(A,B) Performs bit-wise AND operation between A
and B vector.

17. vfmaq_f32(A,B,C) Multiply single precision elements in A
and B.Add the intermediate result to C.

18. vld1q_f32(A) Load a single precision element from scalar to
all single precision element in a vector.

19. vtbl1_u8(A,B) Performs a byte look up operation in vector
A using byte addressable indexes specified in vector B.

20. vtbl4_u8(A,B) Performs a 64 byte look up operation in
vector A, A+1, A+2, A+3 using byte addressable indexes
specified in vector B.

21. vbcaxq_s32(A,B) Performs XOR operation between each
single precision floating point elements in A and B vector.

22. vcgt_q(A,B) Compare corresponding single precision
elements in A and B. If B is greater then A the corresponding
bits are set in the destination vector.

23. vrecpe_f32(A) Calculates approximate reciprocal of each
single precision floating point element in vector A.

24. vbit_insert(A,B) Copies single precision floating point
element from vector A in destination vector if the
corresponding bits are set in vector B.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 37 April 2022 | Volume 8 | Article 826269143

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

ORIGINAL RESEARCH
published: 19 April 2022

doi: 10.3389/fams.2022.826988

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 April 2022 | Volume 8 | Article 826988

Edited by:

Edoardo Angelo Di Napoli,

Helmholtz Association of German

Research Centres (HZ), Germany

Reviewed by:

Maxim Rakhuba,

National Research University Higher

School of Economics, Russia

Katharina Kormann,

Uppsala University, Sweden

Akwum Onwunta,

Lehigh University, United States

*Correspondence:

Venera Khoromskaia

vekh@mis.mpg.de

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 01 December 2021

Accepted: 03 March 2022

Published: 19 April 2022

Citation:

Khoromskaia V and Khoromskij BN

(2022) Ubiquitous Nature of the

Reduced Higher Order SVD in

Tensor-Based Scientific Computing.

Front. Appl. Math. Stat. 8:826988.

doi: 10.3389/fams.2022.826988

Ubiquitous Nature of the Reduced
Higher Order SVD in Tensor-Based
Scientific Computing
Venera Khoromskaia* and Boris N. Khoromskij

Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany

Tensor numerical methods, based on the rank-structured tensor representation of

d-variate functions and operators discretized on large n⊗d grids, are designed to provide

O(dn) complexity of numerical calculations contrary to O(nd) scaling by conventional

grid-based methods. However, multiple tensor operations may lead to enormous

increase in the tensor ranks (curse of ranks) of the target data, making calculation

intractable. Therefore, one of the most important steps in tensor calculations is the

robust and efficient rank reduction procedure which should be performed many times

in the course of various tensor transforms in multi-dimensional operator and function

calculus. The rank reduction scheme based on the Reduced Higher Order SVD

(RHOSVD) introduced by the authors, played a significant role in the development of

tensor numerical methods. Here, we briefly survey the essentials of RHOSVD method

and then focus on some new theoretical and computational aspects of the RHOSVD

and demonstrate that this rank reduction technique constitutes the basic ingredient

in tensor computations for real-life problems. In particular, the stability analysis of

RHOSVD is presented. We introduce the multi-linear algebra of tensors represented in

the range-separated (RS) tensor format. This allows to apply the RHOSVD rank-reduction

techniques to non-regular functional data with many singularities, for example, to the

rank-structured computation of the collective multi-particle interaction potentials in bio-

molecular modeling, as well as to complicated composite radial functions. The new

theoretical and numerical results on application of the RHOSVD in scattered data

modeling are presented. We underline that RHOSVD proved to be the efficient rank

reduction technique in numerous applications ranging from numerical treatment of

multi-particle systems in material sciences up to a numerical solution of PDE constrained

control problems in R
d.

Keywords: low-rank tensor product approximation, multi-variate functions, tensor calculus, rank reduction, tucker

format, canonical tensors, interaction potentials, scattered data modeling

1. INTRODUCTION

The mathematical models in large-scale scientific computing are often described by steady state
or dynamical PDEs. The underlying physical, chemical or biological systems usually live in 3D
physical space R3 and may depend on many structural parameters. The solution of arising discrete
systems of equations and optimization of the model parameters lead to the challenging numerical

144

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.826988
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.826988&domain=pdf&date_stamp=2022-04-19
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vekh@mis.mpg.de
https://doi.org/10.3389/fams.2022.826988
https://www.frontiersin.org/articles/10.3389/fams.2022.826988/full

Khoromskaia and Khoromskij Reduced Higher Order SVD

problems. Indeed, the accurate grid-based approximation of
operators and functions involved requires large spatial grids in
R
d, resulting in considerable storage space and implementation

of various algebraic operations on huge vectors and matrices. For
further discussion we shall assume that all functional entities are
discretized on n⊗d spatial grids where the univariate grid size n
may vary in the range of several thousands. The linear algebra on
N-vectors and N × N matrices with N = nd quickly becomes
non-tractable as n and d increase.

Tensor numerical methods [1, 2] provide means to overcome
the problem of the exponential increase of numerical complexity
in the dimension of the problem d, due to their intrinsic feature
of reducing the computational costs of multi-linear algebra on
rank-structured data to merely linear scaling in both the grid-
size n and dimension d. They appeared as bridging of the
algebraic tensor decompositions initiated in chemometrics [3–
10] and of the nonlinear approximation theory on separable
low-rank representation of multi-variate functions and operators
[11–13]. The canonical [14, 15], Tucker [16], tensor train
(TT) [17, 18], and hierarchical Tucker (HT) [19] formats are
the most commonly used rank-structured parametrizations in
applications of modern tensor numerical methods. Further data-
compression to the logarithmic scale can be achieved by using
the quantized-TT (QTT) [20, 21] tensor approximation. At
present there is an active research toward further progress
of tensor numerical methods in scientific computing [1, 2,
22–26]. In particular, there are considerable achievements of
tensor-based approaches in computational chemistry [27–31], in
bio-molecular modeling [32–35], in optimal control problems
(including the case of fractional control) [36–39], and in many
other fields [6, 40–44].

Here, we notice that tensor numerical methods proved
to be efficient when all input data and all intermediate
quantities within the chosen computational scheme are
presented in a certain low-rank tensor format with controllable
rank parameters, i.e., on low-rank tensor manifolds. In
turn, tensor decomposition of the full format data arrays
is considered as an N-P hard problem. For example, the
truncated HOSVD [7] of an n⊗d-tensor in the Tucker
format amounts to O(nd+1) arithmetic operations while
the respective cost of the TT and HT higher-order SVD

[18, 45] is estimated by O(n
3
2 d), indicating that rank

decomposition of full format tensors still suffers from the
“curse of dimensionality” and practically could not be applied in
large scale computations.

On the other hand, often, the initial data for complicated
numerical algorithms may be chosen in the canonical/Tucker
tensor formats, say as a result of discretization of a short
sum of Gaussians or multi-variate polynomials, or as a result
of the analytical approximation by using Laplace transform
representation and sinc-quadratures [1]. However, the ranks of
tensors are multiplied in the course of various tensor operations,
leading to dramatic increase in the rank parameter (“curse of
ranks”) of a resulting tensor, thus making tensor-structured
calculation intractable. Therefore, fast and stable rank reduction
schemes are the main prerequisite for the success of rank-
structured tensor techniques.

Invention of the Reduced Higher Order SVD (RHOSVD)
in [46] and the corresponding rank reduction procedure based
on the canonical-to-Tucker transform and subsequent canonical
approximation of the small Tucker core (Tucker-to-canonical
transform) was a decisive step in development of the tensor
numerical methods in scientific computing. In contrast to
the conventional HOSVD, the RHOSVD does not need a
construction of the full size tensor for finding the orthogonal
subspaces of the Tucker tensor representation. Instead, RHOSVD
applies to numerical data in the canonical tensor format (with
possibly large initial rank R) and exhibits the O(dnRmin{n,R})
complexity, uniformly in the dimensionality of the problem, d,
and it was an essential step ahead in evolution of the tensor-
structured numerical techniques.

In particular, this rank reduction scheme was applied to
calculation of 3D and 6D convolution integrals in tensor-based
solution of the Hartree-Fock equation [27, 46]. Combined with
the Tucker-to-canonical transform, this algorithm provides a
stable procedure for the rank reduction of possibly huge ranks
in tensor-structured calculations of the Hartree potential. The
RHOSVD based rank reduction scheme for the canonical tensors
is specifically useful for 3D problems, which are most often
in real-life applications. However, the RHOSVD-type procedure
can be also efficiently applied in the construction of the TT tensor
format from the canonical tensor input, which often appears in
tensor calculations1.

The RHOSVD is the basic tool for the construction of the
range-separated (RS) tensor format introduced in [32] for the
low-rank tensor representation of the bio-molecular long-range
electrostatic potentials. Recent example on the RS representation
of the multi-centered Dirac delta function [34] paves the way
for efficient solution decomposition scheme introduced for the
Poisson-Boltzmann equation [33, 35].

In some applications the data could be presented as a sum of
highly localized and rank-structured components so that their
further numerical treatment again requires the rank reduction
procedure (see Section 4.5 concerning the long-range potential
calculation for many-particle system). Here, we present the
constructive description of multi-linear operations on tensors in
RS format which allow to compute the short- and long-range
parts of resulting combined tensors. In particular, this applies to
commonly used addition of tensors, Hadamard and contracted
products as well as to composite functions of RS tensors. We
then introduce tensor-based modeling of the scattered data by
a sum of Slater kernels and show the existence of the low-
rank representation for such data in the RS tensor format. The
numerical examples demonstrate the practical efficiency of such
kind of tensor interpolation. This approach may be efficiently
used in many applications in data science and in stochastic
data modeling.

Rank reduction procedure by using the RHOSVD is a
mandatory part in solving the three-dimensional elliptic and
pseudo-differential equations in the rank-structured tensor
format. In the course of preconditioned iterations, the tensor

1Otherwise one can not avoid the “curse of dimensionality”, see the cost of the

HT/TT SVD above.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 April 2022 | Volume 8 | Article 826988145

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

ranks of the governing operator, the precoditioner and of
the current iterand are multiplied at each iterative step, and,
therefore, a fast and robust rank reduction techniques is the
prerequisite for such methodology applied in the framework
of iterative elliptic problem solvers. In particular, this approach
was applied to the PDE constrained (including the case of
fractional operators) optimal control problems [36, 39]. As result,
the computational complexity can be reduced to almost linear
scale, O(nR), contrary to conventional O(n3) complexity, as
demonstrated by numerics in [36, 39].

Tensor-based algorithms and methods are now being widely
used and developed further in the communities of scientific
computing and data science. Tensor techniques evolve in
traditional tensor decompositions in data processing [5, 42, 47],
and they are actively promoted for tensor-based solution of the
multi-dimensional problems in numerical analysis and quantum
chemistry [1, 24, 29, 38, 39, 48, 49]. Notice that in the case of
higher dimensions the rank reduction in the canonical format
can be performed directly (i.e., without intermediate use of the
Tucker approximation) by using the cascading ALS iteration
in the CP format (see [50] concerning the tensor-structured
solution of the stochastic/parametric PDEs).

The rest of this article is organized as follows. In Section 2,
we sketch some results on the construction of the RHOSVD
and present some old and new results on the stability of error
bounds. In Section 2.2, we recollect the mixed canonical-Tucker
tensor format and the Tucker-to-canonical transform. Section 3
recalls the results from Khoromskaia [27] on calculation of the
multi-dimensional convolution integrals with the Newton kernel
arising in computational quantum chemistry. Section 4 addresses
the application of RHOSVD to RS parametrized tensors. In
Section 4.2, we discuss the application of RHOSVD in multi-
linear operations of data in the RS tensor format. The scattered
data modeling is considered in section 4.5 from both theoretical
and computational aspects. Application of RHOSVD for tensor-
based representation of Greens kernels is discussed in Section
5. Section 6 gives a short sketch of RHOSVD in application to
tensor-structured elliptic problem solvers.

2. REDUCED HOSVD AND CP-TO-TUCKER
TRANSFORM

2.1. Reduced HOSVD: Error Bounds
In computational schemes including bilinear tensor-tensor or
matrix-tensor operations the increase of tensor ranks leads to
the critical loss of efficiency. Moreover, in many applications,
for example in electronic structure calculations, the canonical
tensors with large rank parameters arise as the result of
polynomial type or convolution transforms of some function
related tensors (say, electron density, the Hartree potential, etc.)
In what follows, we present the new look on the direct method of
rank reduction for the canonical tensors with large initial rank,
the reduced HOSVD, first introduced and analyzed in [46].

In what follows, we consider the vector space of d-fold real-
valued data arrays Rn1×···×nd endorsed by the Euclidean scalar
product 〈·, ·〉 with the related norm ‖u‖ = 〈u, u〉1/2. We denote

by T r,n the class of tensorsA ∈ R
n⊗d parametrized in the rank-r,

r = (r1, . . . , rd) orthogonal Tucker format,

A = β ×1 V
(1) ×2 · · · ×d V

(d) ∈ T r,n,

with the orthogonal side-matrices V(ℓ) = [v
(ℓ)
1 . . . v

(ℓ)
rℓ] ∈ R

n×rℓ

and with the core coefficient tensor β ∈ R
r1×...×rd . Here and

thereafter ×ℓ denotes the contracted tensor-matrix product in
the dimension ℓ, andRn⊗d denotes the Euclidean vector space of
n1 × · · · × nd-tensors with equal mode size nℓ = n, ℓ = 1, . . . , d.

Likewise, CR,n denotes the class of rank-R canonical tensors.
For given A ∈ CR,n in the rank-R canonical format,

A =
∑R

ν=1
ξνu

(1)
ν ⊗ . . .⊗ u(d)ν , ξν ∈ R, (1)

with normalized canonical vectors, i.e., ‖u
(ℓ)
ν ‖ = 1 for ℓ =

1, . . . , d, ν = 1, . . . ,R.
The standard algorithm for the Tucker tensor decomposition

[7] is based on HOSVD applied to full tensors of size nd which
exhibitsO(nd+1) computational complexity. The question is how
to simplify the HOSVD Tucker approximation in the case of
canonical input tensor in the form Equation (1) without use of
the full format representation of A, and in the situation when the
CP rank parameter R and the mode sizes n of the input can be
sufficiently large.

First, let us use the equivalent (nonorthogonal) rank-r =

(R, . . . ,R) Tucker representation of the tensor Equation (1),

A = ξ ×1 U
(1) ×2 U

(2) · · · ×d U
(d), ξ = diag{ξ1, . . . , ξR}, (2)

via contraction of the diagonal tensor ξ = diag{ξ1, . . . , ξR} ∈

R
R⊗d with ℓ-mode side matrices U(ℓ) = [u

(ℓ)
1 , . . . , u

(ℓ)
R] ∈ R

n×R

(see Figure 1). By definition the tensor diag{ξ1, . . . , ξR} ∈ R
R⊗d

is called diagonal if it has all zero entries except the diagonal
elements given by ξ (iℓ, . . . , iℓ) = ξiℓ , ℓ = 1, . . . ,R. Then the
problem of canonical to Tucker approximation can be solved by
the method of reduced HOSVD (RHOSVD) introduced in [46].
The basic idea of the reduced HOSVD is that for large (function
related) tensors given in the canonical format their HOSVD does
not require the construction of a tensor in the full format and
SVD based computation of its matrix unfolding. Instead, it is
sufficient to compute the SVD of the directional matrices U(ℓ)

in Equation (2) composed by only the vectors of the canonical
tensor in every dimension separately, as shown in Figure 1. This
will provide the initial guess for the Tucker orthogonal basis in
the given dimension. For the practical applicability, the results of
the approximation theory on the low-rank approximation to the
multi-variate functions, exhibiting exponential error decay in the
Tucker rank, are of the principal significance [51].

In the following, we suppose that n ≤ R and denote the SVD
of the side-matrix U(ℓ) by

U(ℓ) = Z(ℓ)DℓV
(ℓ)T =

n∑

k=1

σℓ,kz
(ℓ)
k

v
(ℓ)
k

T
, z

(ℓ)
k

∈ R
n, v

(ℓ)
k

∈ R
R,

(3)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 April 2022 | Volume 8 | Article 826988146

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

FIGURE 1 | Illustration to the contracted product representation Equation (2) of the rank-R canonical tensor. The first factor corresponds to the diagonal coefficient

tensor ξ .

with the orthogonal matrices Z(ℓ) = [z
(ℓ)
1 , . . . , z

(ℓ)
n] ∈ R

n×n,

and V(ℓ) = [v
(ℓ)
1 , . . . , v

(ℓ)
n] ∈ R

R×n, ℓ = 1, . . . , d. We use

the following notations for the vector entries, v
(ℓ)
k
(ν) = v

(ℓ)
k,ν

(ν = 1, . . . ,R).
To fix the idea, we introduce the vector of rank parameters,

r = (r1, . . . , rd), and let

U(ℓ) ≈ W(ℓ)
: = Z

(ℓ)
0 Dℓ,0V

(ℓ)
0

T
, (4)

be the rank-rℓ truncated SVD of the side-matrix U(ℓ) (ℓ =

1, . . . , d). Here, the matrix Dℓ,0 = diag{σℓ,1, σℓ,2, . . . , σℓ,rℓ} is the
submatrix of Dℓ in Equation (3) and

Z
(ℓ)
0 = [z

(ℓ)
1 , . . . , z(ℓ)rℓ

] ∈ R
n×rℓ , V0

(ℓ) ∈ R
R×rℓ ,

represent the respective dominating (n × rℓ)-submatrices of the
left and right factors in the complete SVD decomposition in
Equation (3).

Definition 2.1. (Reduced HOSVD, [46]). Given the canonical
tensor A ∈ CR,n, the truncation rank parameter r, (rℓ ≤ R),
and rank-rℓ truncated SVD of U(ℓ), see Equation (4), then the
RHOSVD approximation of A is defined by the rank-r orthogonal
Tucker tensor

A0
(r)

: = ξ ×1 W
(1) ×2 · · · ×d W

(d) = ξ ×1

[
Z
(1)
0 D1,0V

(1)
0

T
]

×2 · · · ×d

[
Z
(d)
0 Dd,0V

(d)
0

T
]

=

(
ξ ×1 [D1,0V

(1)
0

T
]×2 · · · ×d [Dd,0V

(d)
0

T
]

)
×1 Z

(1)
0

×2 · · · ×d Z
(d)
0 ∈ T r, (5)

obtained by the projection of canonical side matrices U(ℓ) onto the

left orthogonal singular matrices Z
(ℓ)
0 , defined in Equation (4).

Notice that the general error bound for the RHOSVD
approximation will be presented by Theorem 2.3, see also the
discussion afterwards. Corollary 2.4 provides the conditions
which guarantee the stability of RHOSVD.

The sub-optimal Tucker approximand Equation (5) is simple
to compute and it provides accurate approximation to the initial
canonical tensor even with rather small Tucker rank. Moreover,

FIGURE 2 | A first step in canonical-to-Tucker decomposition.

this provides the good initial guess to calculate the best rank-
r Tucker approximation by using the ALS iteration. In our
numerical practice, usually, only one or two ALS iterations
are required for convergence. For example, in case d = 3,
algorithmically, the one step of the canonical-to-Tucker ALS
algorithm reduces to the following operations. Substituting

the orthogonal matrices Z
(1)
0 and Z

(3)
0 from Equation (5) into

Equation (2), we perform the initial step of the first ALS iteration

A 7→ A(1) = Z
(1)
0 ×1 A2 ×3 Z

(3)
0 , (6)

where A2 is given by the contraction

A2 = ξ ×1 D1,0V
(1)
0

T
×2 U

(2) ×3 D3,0V
(3)
0

T
∈ R

r1×n2×r3 ,

as illustrated in Figure 2. Then we optimize the orthogonal
subspace in the second variable by calculating the best rank-r2
approximation to the r1r3×n2 matrix unfolding of the tensorA2.
The similar contracted product representation can be used when
d > 3, as well as for the construction of the TT representation for
the canonical input.

Here, we notice that the core tensor in the RHOSVD
decomposition can be represented in the CP data-sparse format.

Proposition 2.2. The core tensor

β0 = ξ ×1 [D1,0V
(1)
0

T
]×2 · · · ×d [Dd,0V

(d)
0

T
] ∈ R

r1×···×rd ,

in the orthogonal Tucker representation Equation (5), A0
(r)

=

β0 ×1 Z
(1)
0 ×2 · · · ×d Z

(d)
0 ∈ T r,n, can be recognized as

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 April 2022 | Volume 8 | Article 826988147

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

the rank-R canonical tensor of size r1 × · · · × rd with the

storage request R(
d∑
ℓ=1

rℓ), which can be calculated entry-wise in

O(Rr1 · · · rd) operations.

Indeed, introducing the matrices U
(ℓ)
0

T
= Dℓ,0V

(ℓ)
0

T
∈ R

rℓ×R,
for ℓ = 1, . . . d, we conclude that the canonical core tensor

β0 is determined by the ℓ-mode side matrices U
(ℓ)
0

T
. In the

other words, the tensor A0
(r)

is represented in the mixed Tucker-

canonical format getting rid of the “curse of dimensionality” (see
also Section 2.2 below).

The accuracy of the RHOSVD approximation can be
controlled by the given ε-threshold in truncated SVD of side
matrices U(ℓ). The following theorem proves the absolute error
bound for the RHOSVD approximation.

Theorem 2.3. (RHOSVD error bound, [46]). For given A ∈ CR,n

in Equation (1), let σℓ,1 ≥ σℓ,2 . . . ≥ σℓ,min(n,R) be the singular

values of ℓ-mode side matrices U(ℓ) ∈ R
n×R (ℓ = 1, . . . , d)

with normalized skeleton vectors. Then the error of RHOSVD
approximation, A0

(r)
, is bounded by

‖A− A0
(r)‖ ≤ ‖ξ‖

d∑

ℓ=1

(

min(n,R)∑

k=rℓ+1

σ 2
ℓ,k)

1/2, ‖ξ‖ =

√√√√
R∑

ν=1

ξ 2ν . (7)

The complete proof can be found in Section 8 (see Appendix).
The accuracy of the RHOSVD can be controlled in terms of

the ε-criteria. To that end, given ε > 0, chose the Tucker ranks

such that
d∑
ℓ=1

(
min(n,R)∑
k=rℓ+1

σ 2
ℓ,k
)1/2 ≤ ε is satisfied, then Theorem 2.3

provided the error bound adapted to the ε-threshold.
The error estimate in Theorem 2.3 differs from the case of

complete HOSVD by the extra factor ‖ξ‖, which is the payoff for
the lack of orthogonality in the canonical input tensor. Hence,
Theorem 2.3 does not provide, in general, the stable control of
relative error since for the general canonical tensors there is no
uniform upper bound on the constant C in the estimate

‖ξ‖ ≤ C‖A‖. (8)

The problem is that Equation (8) applies to the general non-
orthogonal canonical decomposition.

The stable RHOSVD approximation can be proven in
the case of the so-called partially orthogonal or monotone
decompositions. With partially orthogonal decomposition we
mean that for each pair of indexes ν,µ in Equation (1) there

holds proddℓ=1〈u
(ℓ)
ν , u

(ℓ)
µ 〉 = 0. For monotone decompositions we

assume that all coefficients and skeleton vectors in Equation (1)
have non-negative values.

Corollary 2.4. (Stability of RHOSVD) Assume the conditions of
Theorem 2.3 are satisfied. (A) Suppose that at least one of the side
matrices U(ℓ), ℓ = 1, · · · , d, in Equation (2), is orthogonal or

the decomposition Equation (1) is partially orthogonal. Then the
RHOSVD error can be bounded by

‖A− A0
(r)‖ ≤ C‖A‖

d∑

ℓ=1

(

min(n,R)∑

k=rℓ+1

σ 2
ℓ,k)

1/2. (9)

(B) Let decomposition Equation (1) be monotone. Then (9) holds.

Proof: (A) The partial orthogonality assumption combined
with normalization constraints for the canonical skeleton
vectors imply

‖A‖2 = 〈
∑R

ν=1
ξνu

(1)
ν ⊗ . . .⊗ u(d)ν ,

∑R

ν=1
ξνu

(1)
ν ⊗ . . .⊗ u(d)ν 〉

=
∑R

ν=1
ξ 2ν

d∏

ℓ=1

〈u(ℓ)ν , u(ℓ)ν 〉

+
∑R

ν,µ=1,ν 6=µ
ξνξµ

d∏

ℓ=1

〈u(ℓ)ν , u(ℓ)µ 〉

=

R∑

ν=1

ξ 2ν = ‖ξ‖2.

The above relation also holds in the case of orthogonality of the
side matrix U(ℓ) for some fixed ℓ. Then the result follows by (7).

(B) In case of monotone decomposition we conclude that the
pairwise scalar product of all summands in Equation (1) is non-
negative, while the norm of each ν-term is equal to ξν . Then the
upper bound

〈u1, u1〉 + · · · + 〈uR, uR〉 ≤ 〈

R∑

ν=1

uν ,

R∑

ν=1

uν〉,

holds for vectors uν = ξνu
(1)
ν ⊗. . .⊗u

(d)
ν , ν = 1, · · · ,R, with non-

negative entries applied to the case of R summands, thus implying
‖ξ‖2 ≤ ‖A‖2. Now, the result follows.

Clearly, the orthogonality assumption may lead to slightly higher
separation rank, however, this constructive decomposition
stabilizes the RHOSVD approximation method applied to the
canonical format tensor (i.e., it allows the stable control of relative
error). The case of monotone canonical sums typically arises in
the sinc-based canonical approximation to radially symmetric
Green’s kernels by a sum of Gaussians. On the other hand, in
long term computational practice the numerical instability of
RHOSVD approximation was not observed in case of physically
relevant data.

2.2. Mixed Tucker Tensor Format and
Tucker-to-CP Transform
In the procedure for the canonical tensor rank reduction the goal
is to have a result in a canonical tensor format with a smaller
rank. By converting the core tensor to CP format, one can use
the mixed two-level Tucker data format [12, 27], or canonical
CP format. Figure 3 illustrates the computational scheme of the
two-level Tucker approximation.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 April 2022 | Volume 8 | Article 826988148

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

FIGURE 3 | Mixed Tucker-to-canonical decomposition.

We define by nℓ the single-hole product of dimension-modes,

nℓ = n1 · · · nℓ−1nℓ+1 · · · nd. (10)

The same definition applies to the quantity rℓ.
Next lemma describes the approximation of the Tucker tensor

by using canonical representation [12, 27].

Lemma 2.5. (Mixed Tucker-to-canonical approximation, [27]).
(A) Let the target tensor A have the form A = β ×1 V

(1) ×2

. . . ×d V(d) ∈ T r,n, with the orthogonal side-matrices V(ℓ) =

[v
(ℓ)
1 . . . v

(ℓ)
rℓ] ∈ R

n×rℓ and β ∈ R
r1×...×rd . Then, for a given

R ≤ min
1≤ℓ≤d

rℓ,

min
Z∈CR,n

‖A− Z‖ = min
µ∈CR,r

‖β − µ‖. (11)

(B) Assume that there exists the best rank-R approximation A(R) ∈

CR,n of A, then there is the best rank-R approximation β(R) ∈ CR,r

of β, such that

A(R) = β(R) ×1 V
(1) ×2 . . . ×d V

(d). (12)

The complete proof can be found in Section 8 (see Appendix).
Notice that condition R ≤ min

1≤ℓ≤d
rℓ simply means that the

canonical rank does not exceed the maximal CP rank of the
Tucker core tensor.

Combination of Theorem 2.3 and Lemma 2.5 paves the way to
the rank optimization of canonical tensors with the large mode-
size arising, for example, in the grid-based numerical methods for
multi-dimensional PDEs with non-regular (singular) solutions.
In such applications the univariate grid-size (i.e., the mode-size)
may be about n = 104 and even larger.

Notice that the Tucker (for moderate d) and canonical
formats allow to perform basic multi-linear algebra using one-
dimensional operations, thus reducing the exponential scaling in
d. Rank-truncated transforms between different formats can be
applied in multi-linear algebra on mixed tensor representations
as well, see Lemma 2.5. The particular application to tensor

convolution in many dimensions was discussed, for example, in
[1, 2].

We summarize that the direct methods of tensor
approximation can be classified by:

(1) Analytic Tucker approximation to some classes of function-
related dth order tensors (d ≥ 2), say, by multi-variate
polynomial interpolation [1].

(2) Sinc quadrature based approximation methods in the
canonical format applied to a class of analytic function
related tensors [11].

(3) Truncated HOSVD and RHOSVD, for quasi-optimal Tucker
approximation of the full-format, respectively, canonical
tensors [46].

Direct analytic approximation methods by sinc
quadrature/interpolation are of principal importance. Basic
examples are given by the tensor representation of Green’s
kernels, the elliptic operator inverse and analytic matrix-valued
functions. In all cases, the algebraic methods for rank reduction
by the ALS-type iterative Tucker/canonical approximation can
be applied.

Further improvement and enhancement of algebraic tensor
approximation methods can be based on the combination of
advanced nonlinear iteration, multigrid tensor methods, greedy
algorithms, hybrid tensor representations, and the use of new
problem adapted tensor formats.

2.3. Tucker-to-Canonical Transform
In the rank reduction scheme for the canonical rank-R tensors,
we use successively the canonical-to-Tucker (C2T) transform and
then the Tucker-to-canonical (T2C) tensor approximation.

First, we notice that the canonical rank of a tensorA ∈ Vn has
the upper bound (see [27, 46]),

R ≤ min
1≤ℓ≤d

nℓ, (13)

where nℓ is given by Equation (10). Rank bound (13) applied to
the Tucker core tensor of the size r × r × r, indicates that the
ultimate canonical rank of a large-size tensor inVn has the upper
bound r2. Notice that for function related tensors the Tucker rank
scales logarithmically in both approximation accuracy and the
discretization grid size (see the proof for some classes of function
in [51]).

The following remark shows that the maximal canonical rank
of the Tucker core of 3rd order tensor can be easily reduced to
the value less than r2 by the SVD-based procedure applied to
the matrix slices of the Tucker core tensor β . Though, being
not practically attractive for arbitrary high order tensors, the
simple algorithm described in Remark 2.6 below is proved to
be useful for the treatment of small size 3rd order Tucker core
tensors within the rank reduction algorithms described in the
previous sections.

Remark 2.6. Let d = 3 for the sake of clarity [27, 46]. There is a
simple procedure based on SVD to reduce the canonical rank of the
core tensor β, within the accuracy ε > 0. Denote by Bm ∈ R

r×r ,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 April 2022 | Volume 8 | Article 826988149

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

FIGURE 4 | Tucker-to-canonical decomposition for a small core tensor, see Remark 2.6.

m = 1, . . . , r the two-dimensional slices of β in each fixed mode
and represent

β =

r∑

m=1

Bm ⊗ zm, zm ∈ R
r , (14)

where zm(m) = 1, zm(j) = 0 for j = 1, . . . , r, j 6= m (there
are exactly d possible decompositions). Let pm be the minimal

integer, such that the singular values of Bm satisfy σ
(m)
k

≤ ε
r3/2

for

k = pm+1, . . . , r (if σ
(m)
r > ε

r3/2
, then set pm = r). Then, denoting

by

Bpm =

pm∑

km=1

σ
(m)
km

ukm ⊗ vkm ,

the corresponding rank-pm approximation to Bm (by truncation

of σ
(m)
pm+1, . . . , σ

(m)
r), we arrive at the rank-R canonical

approximation to β,

β(R) : =

r∑

m=1

Bpm ⊗ zm, zm ∈ R
r , (15)

providing the error estimate

‖β − β(R)‖ ≤

r∑

m=1

‖Bm − Bpm‖ =

r∑

m=1

√√√√
r∑

km=pm+1

(σ
(m)
km

)2

≤

r∑

m=1

√

r
ε2

r3
= ε

Representation (15) is a sum of rank-pm terms so that the total rank
is bounded by R ≤ p1+...+pr ≤ r2. The approach can be extended
to arbitrary d ≥ 3 with the bound R ≤ rd−1.

Figure 4 illustrates the canonical decomposition of the core
tensor by using the SVD of slices Bm of the core tensor β , yielding
matrices Um = {ukm}

pm
k=1

, Vm = {vkm}
pm
k=1

and a diagonal matrix
of small size pm × pm containing the truncated singular values. It
also shows the vector zm = [0, . . . , 0, 1, 0, . . . , 0], containing all
entries equal to 0 except 1 at themth position.

It is worse to note that the rank reduction for the rank-R
core tensor of small size r1 × · · · × rd, can be also performed

by using the cascading ALS algorithms in CP format applied to
the canonical input tensor, as it was applied in [50]. Moreover, a
number of numerical examples presented in the present paper
and in the included literature (applied to function generated
tensors) demonstrate the substantial reduction of the initial
canonical rank R.

3. CALCULATION OF 3D INTEGRALS WITH
THE NEWTON KERNEL

The first application of the RHOSVD was calculation of
the 3D grid-based Hartree potential operator in the Hartree-
Fock equation,

VH(x) : =

∫

R3

ρ(y)

‖x− y‖
dy, (16)

where the electron density,

ρ(x) = 2

Norb∑

a=1

(ϕa)
2, (17)

is represented in terms of molecular orbitals, presented in the

Gaussian-type basis (GTO), ϕa(x) =
Nb∑
k=1

ca,kgk(x). The Hartree

potential describes the repulsion energy of the electrons in a
molecule. The intermediate goal here is the calculation of the
so-called Coulomb matrix,

Jkm : =

∫

R3
gk(x)gm(x)VH(x)dx, k,m = 1, . . .Nb x ∈ R

3,

which represents the Hartree potential in the given GTO basis.
In fact, calculation of this 3D convolution operator with

the Newton kernel, requires high accuracy and it should be
repeated multiply in the course of the iterative solution of the
Hartree-Fock nonlinear eigenvalue problem. The presence of
nuclear cusps in the electron density makes additional challenge
to computation of the Hartree potential operator. Traditionally,
these calculations are based on involved analytical evaluation of
the corresponding integral in a separable Gaussian basis set by
using erf function. Tensor-structured calculation of the multi-
dimensional convolution integral operators with the Newton
kernel have been introduced in [27, 29, 46].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 April 2022 | Volume 8 | Article 826988150

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

The molecule is embedded in a computational box � =

[−b, b]3 ∈ R
3. The equidistant n× n× n tensor grid ω3,n = {xi},

i ∈ I : = {1, . . . , n}3, with the mesh-size h = 2b/(n + 1)
is used. In calculations of integral terms, the Gaussian basis
functions gk(x), x ∈ R

3, are approximated by sampling
their values at the centers of discretization intervals using
one-dimensional piecewise constant basis functions gk(x) ≈

gk(x) =
∏3
ℓ=1 g

(ℓ)
k
(xℓ), ℓ = 1, 2, 3, yielding their rank-1

tensor representation,

Gk = g
(1)
k

⊗ g
(2)
k

⊗ g
(3)
k

∈ R
n×n×n, k = 1, . . . ,Nb. (18)

Given the discrete tensor representation of basis functions
(18), the electron density is approximated using 1D Hadamard
products of rank-1 tensors as

ρ ≈ 2 = 2

Norb∑

a=1

Nb∑

k=1

Nb∑

m=1

ca,mca,k(g
(1)
k

⊙ g(1)m)⊗ · · · ⊗ (g
(3)
k

⊙ g(3)m)

∈ R
n×n×n. (19)

For convolution operator, the representation of the Newton
kernel 1

‖x−y‖ by a canonical rank-RN tensor [1] is used (see

Section 4.1 for details),

PR =

RN∑

q=1

p(1)q ⊗ p(2)q ⊗ p(3)q ∈ R
n×n×n. (20)

The initial rank of the electron density in the canonical tensor
format 2 in Equation (17) is large even for small molecules.
Rank reduction by using RHOSVD C2T plus T2C reduces the
rank 2 7→ 2′ by several orders of magnitude, from N2

b
/2

to Rρ ≪ N2
b
/2, from ∼ 104 to ∼ 102. Then the 3D tensor

representation of the Hartree potential is calculated by using the
3D tensor product convolution, which is a sum of tensor products
of 1D convolutions,

VH ≈ VH = 2′ ∗ PR =

Rρ∑

m=1

RN∑

q=1

cm

(
u(1)m ∗ p(1)q

)
⊗

(
u(2)m ∗ p(2)q

)

⊗

(
u(3)m ∗ p(3)q

)
.

The Coulomb matrix entries Jkm are obtained by 1D scalar
products of VH with the Galerkin basis consisting of rank-
1 tensors,

Jkms ≈ 〈Gk ⊙ Gm,VH〉, k,m = 1, . . .Nb.

The cost of 3D tensor product convolution is O(n log n) instead
of O(n3 log n) for the standard benchmark 3D convolution using
the 3D FFT. Table 1 shows CPU times (sec) for the Matlab
computation of VH for H2O molecule [46] on a SUN station
using 8 Opteron Dual-Core/2600 processors (times for 3D FFT
for n ≥ 1024 are obtained by extrapolation). C2T shows the time
for the canonical-to-Tucker rank reduction.

TABLE 1 | Times (sec) for the C2T transform and the 3D tensor product

convolution vs. 3D FFT convolution.

n3 10243 20483 40963 81923 163843

FFT3 ∼ 6000 – – – ∼ 2 years

C*C 8.8 20.0 61.0 157.5 299.2

C2T 6.9 10.9 20.0 37.9 86.0

The grid-based tensor calculation of the multi-dimensional
integrals in quantum chemistry provides the required high
accuracy by using large grids and the ranks are controlled by the
required ε in the rank truncation algorithms. The results of the
tensor-based calculations have been compared with the results of
the benchmark standard computations by theMOLPROpackage.
It was shown that the accuracy is of the order of 10−7 hartree in
the resulting ground state energy (see [2, 27]).

4. RHOSVD IN THE RANGE-SEPARATED
TENSOR FORMATS

The range-separated (RS) tensor formats have been introduced
in [32] as the constructive tool for low-rank tensor representation
(approximation) of function related data discretized on Cartesian
grids in R

d, which may have multiple singularities or cusps. Such
highly non-regular data typically arise in computational quantum
chemistry, in many-particle dynamics simulations and many-
particle electrostatics calculations, in protein modeling and in
data science. The key idea of the RS representation is the splitting
of the short- and long-range parts in the functional data and
further low-rank approximation of the rather regular long-range
part in the classical tensor formats.

In this concern RHOSVD method becomes an essential
ingredient of the rank reduction algorithms for the “long-range”
input tensor, which usually inherits the large initial rank.

4.1. Low-Rank Approximation of Radial
Functions
First, we recall the grid-based method for the low-rank canonical
representation of a spherically symmetric kernel functions
p(‖x‖), x ∈ R

d for d = 2, 3, . . ., by its projection onto the finite
set of basis functions defined on tensor grid. The approximation
theory by a sum of Gaussians for the class of analytic potentials
p(‖x‖) was presented in [1, 11, 51, 52]. The particular numerical
schemes for rank-structured representation of the Newton and
Slater kernels

p(‖x‖) =
1

4π‖x‖
, and p(‖x‖) = e−λ‖x‖, x ∈ R

3, (21)

discretized on a fine 3D Cartesian grid in the form of low-rank
canonical tensor was described in [11, 51].

In what follows, for the ease of exposition, we confine
ourselves to the case d = 3. In the computational domain � =

[−b, b]3, let us introduce the uniform n × n × n rectangular
Cartesian grid �n with mesh size h = 2b/n (n even). Let {ψi =

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 April 2022 | Volume 8 | Article 826988151

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

∏3
ℓ=1 ψ

(ℓ)
iℓ

(xℓ)} be a set of tensor-product piecewise constant
basis functions, labeled by the 3-tuple index i = (i1, i2, i3), iℓ ∈

Iℓ = {1, . . . , n}, ℓ = 1, 2, 3. The generating kernel p(‖x‖) is
discretized by its projection onto the basis set {ψi} in the form
of a third order tensor of size n× n× n, defined entry-wise as

P : = [pi] ∈ R
n×n×n, pi =

∫

R3
ψi(x)p(‖x‖) dx. (22)

The low-rank canonical decomposition of the 3rd order tensor P
is based on using exponentially fast convergent sinc-quadratures
for approximating the Laplace-Gauss transform to the analytic
function p(z), z ∈ C, specified by a certain weight p̂(t) > 0,

p(z) =

∫

R+

p̂(t)e−t2z2 dt ≈

M∑

k=−M

pke
−t2

k
z2 for |z| > 0, z ∈ R,

(23)

with the proper choice of the quadrature points tk and weights pk.
The sinc-quadrature based approximation to generating function
by using the short-term Gaussian sums in Equation (23) are
applicable to the class of analytic functions in certain strip |z| ≤ D
in the complex plane, such that on the real axis these functions
decay polynomially or exponentially. We refer to basic results
in [11, 52, 53], where the exponential convergence of the sinc-
approximation in the number of terms (i.e., the canonical rank)
was analyzed for certain classes of analytic integrands.

Now, for any fixed x = (x1, x2, x3) ∈ R
3, such that ‖x‖ > a >

0, we apply the sinc-quadrature approximation Equation (23) to
obtain the separable expansion

p(‖x‖) =

∫

R+

p̂(t)e−t2‖x‖2 dt ≈

M∑

k=−M

pke
−t2

k
‖x‖2

=

M∑

k=−M

pk

3∏

ℓ=1

e−t2
k
x2ℓ , (24)

providing an exponential convergence rate inM,

∣∣∣∣∣∣
p(‖x‖)−

M∑

k=−M

pke
−t2

k
‖x‖2

∣∣∣∣∣∣
≤

C

a
e−β

√
M , with some C,β > 0.

(25)
In the case of Newton kernel, we have p(z) = 1/z, p̂(t) = 2√

π
, so

that the Laplace-Gauss transform representation reads

1

z
=

2
√
π

∫

R+

e−z2t2dt, where z = ‖x‖, x ∈ R
3, (26)

which can be approximated by the sinc quadrature Equation (24)
with the particular choice of quadrature points tk, providing the
exponential convergence rate as in Equation (25) [11, 51].

In the case of Yukawa potential the Laplace Gauss
transform reads

e−κz

z
=

2
√
π

∫

R+

e−κ
2/t2e−z2t2dt, where z = ‖x‖, x ∈ R

3.

(27)

The analysis of the sinc quadrature approximation error for this
case can be found, in particular, in [1, 51], section 2.4.7.

Combining (22) and (24), and taking into account the
separability of the Gaussian basis functions, we arrive at the
low-rank approximation to each entry of the tensor P = [pi],

pi ≈

M∑

k=−M

pk

∫

R3
ψi(x)e

−t2
k
‖x‖2dx

=

M∑

k=−M

pk

3∏

ℓ=1

∫

R

ψ
(ℓ)
iℓ

(xℓ)e
−t2

k
x2ℓdxℓ.

Define the vector (recall that pk > 0)

p
(ℓ)
k

= p
1/3
k

[
b
(ℓ)
iℓ
(tk)

]nℓ
iℓ=1

∈ R
nℓ with

b
(ℓ)
iℓ
(tk) =

∫

R

ψ
(ℓ)
iℓ

(xℓ)e
−t2

k
x2ℓdxℓ, (28)

then the 3rd order tensor P can be approximated by the R-term
(R = 2M + 1) canonical representation

P ≈ PR =

M∑

k=−M

pk

3⊗

ℓ=1

b(ℓ)(tk)

=

M∑

k=−M

p
(1)
k

⊗ p
(2)
k

⊗ p
(3)
k

∈ R
n×n×n, p

(ℓ)
k

∈ R
n. (29)

Given a threshold ε > 0, in view of Equation (25), we can choose
M = O(log2 ε) such that in the max-norm

‖P− PR‖ ≤ ε‖P‖.

In the case of continuous radial function p(‖x‖), say the Slater
potential, we use the collocation type discretization at the grid
points including the origin, x = 0, so that the univariate mode
size becomes n → n1 = n + 1. In what follows, we use the same
notation PR in the case of collocation type tensors (for example,
the Slater potential) so that the particular meaning becomes clear
from the context.

4.2. The RS Tensor Format Revisited
The range separated (RS) tensor format was introduced in
[32] for efficient representation of the collective free-space
electrostatic potential of large biomolecules. This rank-structured
tensor representation of the collective electrostatic potential of
many-particle systems of general type allows to reduce essentially
computation of their interaction energy, and it provides
convenient form for performing other algebraic transforms.
The RS format proved to be useful for range-separated tensor
representation of the Dirac delta [34] in R

d and based on that,
for regularization of the Poisson-Boltzmann equation (PBE) by
decomposition of the solution into short- and long-range parts,
where the short-range part of the solution is evaluated by simple
tensor operations without solving the PDE. The smooth long-
range part is calculated by solving the PBE with the modified

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 April 2022 | Volume 8 | Article 826988152

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

right-hand side by using the RS decomposition of the Dirac delta,
so that now it does not contain singularities. We refer to papers
[33, 35] describing the approach in details.

First, we recall the definition of the range separated (RS)
tensor format, see [32], for representation of d-tensors A ∈

R
n1×···×nd . The RS format is served for the hybrid tensor

approximation of discretized functions with multiple cusps or
singularities. This allows the splitting of the target tensor onto
the highly localized components approximating the singularity
and the component with global support that allows the low-
rank tensor approximation. Such functions typically arise in
computational quantum chemistry, in many-particle modeling
and in the interpolation of multi-dimensional data measured at
certain set of spatial points in R

n×n×n.
In the following definition of RS-canonical tensor format,

we use the notion of localized canonical tensor U0, which is
characterized by the small support whose diameter has a size of
a few grid points. This tensor will be used as the reference one
for presentation of the short-range part in the RS tensor. To that
end we use the operation Replicaxν (U0) which replicates U0 into
some given grid point xν . In this construction, we assume that the
chosen grid points xν are well separated, i.e., the distance between
each pair of points is not less then some given threshold nδ > 0.

Definition 4.1. (RS-canonical tensors, [32]). Given the rank-Rs
reference localized CP tensor U0. The RS-canonical tensor format
defines the class of d-tensors A ∈ R

n1×···×nd , represented as a sum

of a rank-Rl CP tensor Ulong =
∑Rl

k=1
ξku

(1)
k

⊗ · · · ⊗ u
(d)
k
, and a

cumulated CP tensor Ushort =
∑N0
ν=1cνUν , such that

A = Ulong + Ushort =
∑Rl

k=1
ξku

(1)
k

⊗ · · · ⊗ u
(d)
k

+
∑N0

ν=1
cνUν ,

(30)
where Ushort is generated by the localized reference CP tensor U0,
i.e.,Uν = Replicaxν (U0), with rank(Uν) = rank(U0) ≤ Rs, where,
given the threshold nδ > 0, the effective support of Uν is bounded
by diam(suppUν) ≤ 2nδ in the index size.

Each RS-canonical tensor is, therefore, uniquely defined by the
following parametrization: rank-Rl canonical tensor Ulong , the
rank-Rs reference canonical tensor U0 with the small mode size
bounded by 2nδ , list J of the coordinates and weights of N0

particles in R
d. The storage size is linear in both the dimension

and the univariate grid size,

stor(A) ≤ dRln+ (d + 1)N0 + dRsnδ .

The main benefit of the RS-canonical tensor decomposition is
the almost uniform bound on the CP/Tucker rank of the long-

range partUlong =
∑Rl

k=1
ξku

(1)
k

⊗· · ·⊗u
(d)
k
, in the multi-particle

potential discretized on fine n× n× n spatial grid. It was proven
in [32] that the canonical rank R scales logarithmically in both
the number of particles N0 and the approximation precision, see
also Lemma 4.5.

Given the rank-R CP decomposition Equation (29) based
on the sinc-quadrature approximation Equation (24) of the
discretized radial function p(‖x‖), we define the two subsets of

indices, Kl : = {k : tk ≤ 1} and Ks : = {k : tk > 1}, and then
introduce the RS-representation of this tensor as follows,

PR = PRl + PRs , R = Rl + Rs, Rl = #Kl, Rs = #Ks, (31)

where

PRl : =
∑

k∈Kl

p
(1)
k

⊗ p
(2)
k

⊗ p
(3)
k
, PRs : =

∑

k∈Ks

p
(1)
k

⊗ p
(2)
k

⊗ p
(3)
k
.

This representation allows to reduce the calculation of the multi-
particle interaction energy of the many-particle system. Recall
that the electrostatic interaction energy of N charged particles is
represented in the form

EN = EN(x1, . . . , xN) =

N∑

i=1

N∑

j<i

zizj

‖xi − xj‖
, (32)

and it can be computed by direct summation in O(N2)
operations. The following statement is the modification of
Lemma 4.2 in [32] (see [54] for more details).

Lemma 4.2. [54] Let the effective support of the short-range
components in the reference potential PR for the Newton kernel
does not exceed the minimal distance between particles, σ >

0. Then the interaction energy EN of the N-particle system can
be calculated by using only the long range part in the tensor P

representing on the grid the total potential sum,

EN =
1

2

N∑

j=1

zj(Pl(xj)− zjPRl (0)) =
1

2
〈z, pl〉 −

PRl (0)

2

N∑

j=1

z2j ,

(33)
in O(RlN) operations, where Rl is the canonical rank of the
long-range component in P, Pl.

Here, z ∈ R
N is a vector composed of all charges of the

multi-particle systems, and pl ∈ R
N is the vector of samples

of the collective electrostatic long-range potential Pl in the
nodes corresponding to particle locations. Thus, the term 1

2 〈z, pl〉
denotes the “non–calibrated” interaction energy associated with
the long-range tensor component Pl, while PRl denotes the long-
range part in the tensor representing the single reference Newton
kernel, and PRl (0) is its value at the origin.

Lemma 4.2 indicates that the interaction energy does not
depend on the short-range part in the collective potential,
and this is the key point for the construction of energy
preserving regularized numerical schemes for solving the
basic equations in bio-molecular modeling by using low-rank
tensor decompositions.

4.3. Multi-Linear Operations in RS Tensor
Formats
In what follows, we address the important question on how
the basic multi-linear operations can be implemented in the
RS tensor format by using the RHOSVD rank compression.
The point is that various tensor operations arise in the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 April 2022 | Volume 8 | Article 826988153

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

course of commonly used numerical schemes and iterative
algorithms which usually include many sums and products of
functions as well as the actions of differential/integral operators,
always making the tensor structure of input data much more
complicated requiring the robust rank reduction schemes.

The other important aspect is related to the use of large
(fine resolution) discretization grids which is limited by the
restriction on the size of the full input tensors, O(nd) (curse
of dimensionality), representing the discrete functions and
operators to be approximated in low rank tensor format.
Remarkably, that tensor decomposition for special class of
functions, which allow the sinc-quadrature approximation, can
be performed on practically indefinitely large grids because
the storage and numerical costs of such numerical schemes
scale linearly in the univariate grid size, O(dn). Hence, having
constructed such low rank approximations for certain set of
“reproducing” radial functions, makes it possible to construct
the low rank RS representation at linear complexity, O(dn),
for the wide class of functions and operators by using the
rank truncated multi-linear operations. The examples of such
“reproducing” radial functions are commonly used in our
computational practice.

First, consider the Hadamard product of two tensors PR and
QR1 corresponding to the pointwise product of two generating
multi-variate functions centered at the same point. The RS
representation of the product tensor is based on the observation
that the long-range part of the Hadamard product of two tensors
in RS-format is basically determined by the product of their
long-range parts.

Lemma 4.3. Suppose that the RS representation Equation (31) of
tensors PR and QR1 is constructed based on the sinc-quadrature
CP approximation Equation (29). Then the long-range part of the
Hadamard product of these RS-tensors,

Z = (Ps + Pl)⊙ (Qs +Ql),

can be represented by the product of their long-range parts, Zl =

Pl ⊙ Ql, with the subsequent rank reduction. Moreover, we have
rank(Zl) ≤ RlQl.

Proof: We consider the case of collocation tensors and suppose
that each skeleton vector in CP tensors PR andQR1 is given by the
restriction of certain Gaussians to the set of grid points. Chose the
arbitrary short-range components in PR and some component in

QR1 , generated by Gaussians e
−tkx

2
ℓ and e−tmx

2
ℓ , respectively. Then

the effective support of the product of these two terms becomes
smaller than that for each of the factors in view of the identity

e−tkx
2
ℓe−tmx

2
ℓ = e−(tk+tm)x

2
ℓ considered for arbitrary tk, tm > 0.

This means that each term that includes the short-range multiple
remains to be in the short range. Then the long range part in Z

takes a form Zl = Pl ⊙Ql with the subsequent rank reduction.

The sums of several tensors in RS format can be easily split
into short- and long-range parts by grouping the respective
components in the summands. The other important operation
is the operator-function product in RS tensor format (see the

example in [34] related to the action of Laplacian with the
singular Newton kernel resulting in the RS decomposition of the
Dirac delta). This topic will be considered in detail elsewhere.

4.4. Representing the Slater Potential in RS
Tensor Format
In what follows, we consider the RS-canonical tensor format for
the rank-structured representation of the Slater function

G(x) = e−λ‖x‖, λ ∈ R+,

which has the principal significance in electronic structure
calculations (say, based on the Hartree-Fock equation) since
it represents the cusp behavior of electron density in the
local vicinity of nuclei. This function (or its approximation) is
considered as the best candidate to be used as the localized
basis function for atomic orbitals basis sets. Another direction
is related to the construction of the accurate low-rank global
interpolant for big scattered data to be considered in the next
section. In this way, we calculate the data adaptive basis set living
on the fine Cartesian grid in the region of target data. The main
challenge, however, is due to the presence of point singularities
which are hard to approximate in the problem independent
polynomial or trigonometric basis sets.

The construction of low-rank RS approximation to the
Slater function is based on the generalized Laplace transform
representation for the Slater function written in the form G(ρ) =
e−2

√
αρ , ρ(x) = x21 + ...+ x2

d
, reads

G(ρ) = e−2
√
αρ =

√
α

√
π

∫

R+

τ−3/2 exp(−α/τ − ρτ)dτ ,

which corresponds to the choice Ĝ(τ) =
√
α

√
π
τ−3/2e−α/τ in the

canonical form of the Laplace transform representation for G(ρ),

G(ρ) =

∫

R+

Ĝ(τ)e−ρτdτ . (34)

Denote by GR the rank-R canonical approximation to the
function G(ρ) discretized on the n× n× n Cartesian grid.

Lemma 4.4. ([51]) For given threshold ε > 0 let ρ ∈ [1,A]. Then
the (2M + 1)-term sinc-quadrature approximation of the integral
in (34) with

M = O(| log ε|(| log ε| + logA)),

ensures the max-error of the order of O(ε) for the corresponding
rank-(2M + 1) CP approximation GR to the tensor G.

Figure 5 illustrates the RS splitting for the tensor GR = GRl +

GRs representing the Slater potential G(x) = e−λ‖x‖, λ = 1,
discretized on the n × n × n grid with n = 1024. The rank
parameters are chosen by R = 24,Rl = 6 and Rs = 18. Notice
that for this radial function the long-range part (Figure 5, left)
includes much less canonical vectors comparing with the case of
Newton kernel. This anticipates the smaller total canonical rank

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 April 2022 | Volume 8 | Article 826988154

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

FIGURE 5 | Long-range (left) and short-range (right, a base 10 logarithmic scale) canonical vectors for the Slater function with the grid size n = 1024,

R = 24,Rl = 6, λ = 1.

for the long-range part in the large sum of Slater-like potentials
arising, for example, in the representation of molecular orbitals
and the electron density in electronic structure calculations. For
instance, the wave function for the Hydrogen atom is given by the
Slater function e−µ‖x‖. In the following section, we consider the
application of RS tensor format to interpolation of scattered data
in R

d.

4.5. Application of RHOSVD to Scattered
Data Modeling
In scattered data modeling the problem is in a low parametric
approximation of multi-variate functions f :Rd → R by
sampling at a finite set X = {x1, . . . , xN} ⊂ R

d of piecewise
distinct points. Here, the function f might be the surface of a solid
body, the solution of a PDE, many-body potential field, multi-
parametric characteristics of physical systems, or some other
multi-dimensional data, etc.

Traditional ways of recovering f from a sampling vector f|X =

(f (x1), . . . , f (xN)) is the constructing a functional interpolant
PN :R

d → R such that PN|X = f|X = : f ∈ R
N , i.e.,

PN(xj) = f (xj), ∀ 1 ≤ j ≤ N. (35)

Using radial basis (RB) functions one can find interpolants PN in
the form

PN(x) =

N∑

j=1

cjp(‖x− xj‖)+ Q(x),

Q is some smooth function, say, polynomial, (36)

where p = p(r) :[0,∞) → R is a fixed RB function, and r = ‖ · ‖

is the Euclidean norm onRd. In further discussion, we setQ(x) =
0. For example, the following RB functions are commonly used

p = rν , (1+r2)ν , (ν ∈ R), exp(−r2), exp(−λr), r2 log(r).

The other examples of RB functions are defined by Green’s
kernels or by the class of Matérn functions [23].

We discuss the following computational tasks (A) and (B).

(A) For a fixed coefficient vector c = (c1, . . . , cN)
T ∈ R

N ,
efficiently representing the interpolant PN(x) on the fine
tensor grid in R

d providing
(a) O(1)-fast point evaluation of PN in the computational
volume�,
(b) computation of various integral-differential operations
on that interpolant (say, gradients, scalar products,
convolution integrals, etc.)

(B) Finding the coefficient vector c that solves the interpolation
problem Equation (35) in the case of large number N.

Problem (A) exactly fits the RS tensor framework so that
the RS tensor approximation solves the problem with low
computational costs provided that the sum of long-range parts
of the interpolating functions can be easily approximated in the
low rank CP tensor format. We consider the case of interpolation
by Slater functions exp(−λr) in the more detail.

Problem (B): Suppose that we use some favorable
preconditioned iteration for solving coefficient vector
c = (c1, . . . , cN)

T ,

Ap,X c = f, with Ap,X = AT
p,X = [p(‖xi − xj‖)]1≤i,j≤N

∈ R
N×N , (37)

with the distance dependent symmetric system matrix Ap,X .

We assume X = �h be the n⊗d-set of grid-points located on
tensor grid, i.e., N = nd. Introduce the d-tuple multi-index
i 7→ i = (i1, . . . , id), and j 7→ j = (j1, . . . , jd) and reshape Ap,X

into the tensor form

Ap,X 7→ A = [a(i1, j1, . . . , id, jd)] ∈
⊗d

ℓ=1
R
n×n,

which can be decomposed by using the RS based splitting

A = ARs + ARl ,

generated by the RS representation of the weighted potential
sum in Equation (36). Here, ARs is a banded diagonal matrix

with dominating diagonal part, while ARl =
∑Rl

k=1
A
(1)
k

⊗

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 April 2022 | Volume 8 | Article 826988155

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

· · · ⊗ A
(d)
k

is the low Kronecker rank matrix. This implies
a bound on the storage, O(N + dRln), and ensures a fast
matrix-vector multiplication. Introducing the additional rank-
structured representation in c, the solution of Equation (37) can
be further simplified.

The above approach can be applied to the data sparse
representation for the class of large covariance matrices in the
spatial statistics, see for example [23, 55].

In application of tensormethods to datamodeling (see Section
4.5) we consider the interpolation of 3D scattered data by a large
sum of Slater functions

GN(x) =

N∑

j=1

cje
−λ‖x−xj‖, λ > 0. (38)

Given the coefficients cj, we address the question how to
efficiently represent the interpolant GN(x) on fine Cartesian grid
in R

3 by using the low-rank (i.e., low-parametric) CP tensor
format, such that each value on the grid can be calculated in
O(1) operations. The main problem is that the generating Slater
function e−λ‖x‖ has the cusp at the origin so that the considered
interpolant has very low regularity. As result, the tensor rank
of the function GN(x) in Equation (38) discretized on a large
n × n × n grid increases almost proportionally to the number
N of sampling points xj, which in general may be very large.
This increase in the canonical rank has been observed in a
number of numerical tests. Hence, the straightforward tensor
approximation of GN(x) does not work in this case.

Tables 2, 3 illustrate the stability of the canonical rank in the
numberN of sampling points in the case of random and function
related distribution of the waiting coefficients cj in the long-range
part of the Slater interpolant Equation (38).

The generating Slater radial function can be proven to have
the low-rank RS canonical tensor decomposition by using the
sinc-approximation method (see section 4.1).

To complete this section, we present the numerical example
demonstrating the application of RS tensor representation to
scattered data modeling in R

3. We denote by GR ∈ R
n⊗3 the

rank-R CP tensor approximation of the reference Slater potential
e−λ‖x‖ discretized on n × n × n grid �n, and introduce its RS
splitting GR = GRl + GRs , with Rl + Rs = R. Here, Rl ≈ R/2 is
the rank parameter of the long-range part in GR. Assume that
all measurement points xj in Equation (38) are located on the
discretization grid�n, then the tensor representation of the long-
range part of the total interpolant PN can be obtained as the
sum of the properly replicated reference potential Gl, via the
shift-and-windowing transformWj, j = 1, . . . ,N,

GN,l =

N∑

j=1

cjGl,j, Gl,j = WjGl, (39)

that includes aboutN Rl terms. For large number ofmeasurement
points, N, the rank reduction is ubiquitous.

It can be proven (by slight modification of arguments in
[32]) that both the CP and Tucker ranks of the N-term sum
in Equation (39) depend only logarithmically (but not linearly)
on N.

TABLE 2 | Reduced ranks for the case of random amplitudes.

L1 × L2 × L3 N Tucker ranks Rini Rcomp

4× 4× 4 64 13× 13× 13 192 56

6× 6× 6 216 15× 15× 15 649 95

8× 8× 8 512 19× 19× 19 1536 131

16× 16× 8 2048 32× 32× 19 6141 253

16× 16× 16 4096 32× 32× 32 12288 380

εTuck = 10-3, εT2C = 10-5, RL = 3, R = 5.

TABLE 3 | Reduced scanonical ranks for the case of functional amplitudes.

L1 × L2 × L3 N Tucker ranks Rini Rcomp

4× 4× 4 64 7× 7× 7 256 25

6× 6× 6 216 7× 7× 7 648 23

8× 8× 8 512 7× 7× 7 1536 30

16× 16× 8 2048 10× 9× 6 6144 47

16× 16× 16 4096 10× 9× 8 12288 55

RL = 3, RL = 5, εN = 10-5, εTuck = 10-3, εT2C = 10-5.

Proposition 4.5. (Uniform rank bounds for the long-range part
in the Slater interpolant). Let the long-range part GN,l in the total
Slater interpolant in Equation (39) be composed of those terms
in Equation (24) which satisfy the relation tk ≤ 1, where M =

O(log2 ε). Then the total ε-rank r0 of the Tucker approximation to
the canonical tensor sum GN,l is bounded by

|r0| : = rankTuck(GN,l) = C b log3/2(log(N/ε)), (40)

where the constant C does not depend on the number of particles
N, as well as on the size of the computational box, [−b, b]3.

Proof: (Sketch) The main argument of the proof is based
on the fact that the grid function GN,l has the band-limited
Fourier image, such that the frequency interval depends weakly
(logarithmically) on N. Then we represent all Gaussians in
the truncated Fourier basis and make the summation in the
fixed set of orthogonal trigonometric basis functions, which
defines the orthogonal Tucker representation with controllable
rank parameter.

The numerical illustrations below demonstrate the CP rank by
RHOSVD decomposition of the long-range part GN,l in the
multi-point tensor interpolant via Slater functions.

Now, we generate a tensor composed of a sum of Slater
functions, discretized by collocation over n⊗3 representation
grid with n = 384, and placed in the nodes of a sampling
L1 × L2 × L3 lattice with randomly chosen weights cj in the
interval cj ∈ [−5, 5] for every node. Every single Slater function
is generated as a canonical tensor by using sinc-quadratures
for the approximation of the related Laplace transform. Table 2
shows ranks of the long-range part of this tensor composed of
Slater potentials located in the nodes of the lattices of increasing
size. N indicates the number of nodes, while Rini and Rcomp

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 April 2022 | Volume 8 | Article 826988156

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

FIGURE 6 | Full-, long- and short-range components of the multi-Slater tensor. Slater kernels with λ = 0.5 and with random amplitudes in the range of [−5, 5] are

placed in the nodes of a 12× 12× 4 lattice using 3D grid of size n⊗3 with n = 384, R = 8,Rl = 3 and the number of nodes N = 576.

FIGURE 7 | Full-, long- and short-range components of the multi-Slater tensor. Slater kernels with λ = 0.5 and with amplitudes modulated by the function Equation

(41) using the nodes of a 12× 12× 4 lattice on 3D grid of size n⊗3 with n = 384, R = 8,Rl = 3 and the number of nodes N = 576.

are the initial and compressed canonical ranks of the resulting
long-range part tensor, respectively. Tucker ranks correspond
to the ranks in the canonical-to-Tucker decomposition step.
Threshold values for the Slater potential generator is εN =

10−5, while the tolerance thresholds for the rank reduction
procedure are given by εTuck = 10−3 and εT2C = 10−5.
We observe that the ranks of the long-range part of the
potential increase only slightly in the size of the 3D sampling
lattice, N.

Figure 6 demonstrates the full-, short-, and long-range
components of the multi-Slater tensor constructed by the
weighted sum of Slater functions with randomly chosen weights
cj in the interval cj ∈ [−5, 5]. The positions of the generating
nodes are located on the 12 × 12 × 4 3D lattice. The parameters
of the tensor interpolant are set up as follows: λ = 0.5,
the representation grid is of size n⊗3 with n = 384, R =

8,Rl = 3 and the number of samples N = 576 (Figures
zoom a part of the grid.). The initial CP rank of the sum
of N0 interpolating Slater potentials is about 4, 468. Middle
and right pictures show the long- and short-range parts of
the composite tensor, respectively. The initial rank of the
canonical tensor representing the long-range part is equal
to RL = 2304, which is reduced by the C2C procedure
via RHOSVD to Rcc = 71. The rank truncation threshold
is ε = 10−3.

Figure 7 and Table 3 demonstrate the decomposition of the
multi-Slater tensor with the amplitudes cj in the nodes (xj, yj, zj)

modulated by the function of the (x,y,z)-coordinates

F(x, y, z) = a1 cos(x+2y+4z) exp(−a2

√
x2 + 2y2 + 4z2), (41)

with a1 = 6 and a2 = 0.1, ,, i.e., cj = F(xj, yj, zj).
Next, we generate a tensor composed of a sum of discretized

Slater functions on a sampling lattice L1 × L2 × L3, living
on 3D representation grid of size n⊗3 with n = 232. The
amplitudes of the individual Slater functions are modulated by a
function of x, y, z-coordinates Equation (41) in every node of the
lattice. Table 3 shows rank of the long-range part of this multi-
Slater tensor with respect to the increasing size of the lattice.
N = L1 L2 L3 is the number of nodes, and Rini and Rcomp are
the initial and compressed canonical ranks, respectively. Tucker
ranks are shown at the canonical-to-Tucker decomposition step.
Threshold values for the Slater potential generation is εN = 10−5,
the thresholds for the canonical-to-canonical rank reduction
procedure are given by εTuck = 10−3 and εT2C = 10−5. Table 3
demonstrates the very moderate icrease of the reduced rank in
the long-range part of the Slater potential sum on the size of the
3D sampling lattice.

Figure 7 demonstrates the full-, long-, and short-range
components of the multi-Slater tensor. Slater kernels with λ =

0.5 and with the amplitudes modulated by the function Equation
(41) of the (x, y, z)-coordinates are places on the nodes of a
12 × 12 × 4 sampling lattice, living on 3D grid of size n⊗3 with

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 April 2022 | Volume 8 | Article 826988157

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

n = 384, R = 8,Rl = 3, and with the number of sampling
nodes N = 576.

5. REPRESENTING GREEN’S KERNELS IN
TENSOR FORMAT

In this section, we demonstrate how the RHOSVD can be
applied for the efficient tensor decomposition of various singular
radial functions composed by polynomial expansions of a few
reference potentials already precomputed in the low-rank tensor
format. Given the low-rank CP tensor A further considered as a
reference tensor, the low rank representation of the tensor-valued
polynomial function

P(A) = a0I+ a1A+ a2A
2 + · · · + anA

n,

where the multiplication of tensors is understood in the sense
of pointwise Hadamard product, can be calculated via n-times
application of the RHOSVD by using the Horner scheme in
the form

P(x) = a0 + x(a1 + x(a2 + x(a3 + . . . x(an−1 + anx) . . .))).

Similar scheme can be also applied in the case of
multivariate polynomials.

For examples considered, in this section, we make use of the
discretized Slater e−‖x‖ and Newton 1

‖x‖ , x ∈ R
d, kernels as the

reference tensors. The following statement was proven in [11, 51]
(see also Lemma 4.4).

Proposition 5.1. The discretized over n⊗d-grid radial functions
e−‖x‖ and 1

‖x‖ , x ∈ R
d, included in representation of various

Green kernels and fundamental solutions for elliptic operators
with constant coefficients, both allow the low-rank CP tensor
approximation. The corresponding rank-R representations can be
calculated in O(dRn) operations without precomputing and storage
of the target tensor in the full (entry-wise) format.

Tensor decomposition for discretized singular kernels such as
‖x‖, 1

‖x‖m , m ≥ 2, and e−κ‖x‖/‖x‖, can be now calculated

by applying the RHOSVD to polynomial combinations of the
reference potentials as in Proposition 5.1. The most important
benefit of the presented techniques is the opportunity to compute
the rank-R tensor approximations without pre-computing and
storage of the target tensor in the full format tensor.

In what follows, we present the particular examples of singular
kernels in R

d which can be treated by the above presented
techniques. Consider the fundamental solution of the advection-
diffusion operator Ld with constant coefficients in R

d

Ld = −1+ 2b̄ · ∇ + κ2, b̄ ∈ C
d, κ ∈ C.

If κ2 + |b̄|2 = 0, then for d ≥ 3 it holds

η0(x) =
1

(d − 2)ωd

e〈b̄,x〉

‖x‖d−2
,

where ωd is the surface area of the unit sphere in R
d, [56–

58]. Notice that the radial function 1
‖x‖d−2 for d ≥ 3 allows

the RS decomposition of the corresponding discrete tensor
representation based on the sinc quadrature approximation,
which implies the RS representation of the kernel function η0(x),

since the function e〈b̄,x〉 is already separable. From computational
point of view, both the CP and RS canonical decompositions
of discretized kernels 1

‖x‖d−2 can be computed by successive

application of RHOSVD approximation to the products of
canonical tensors for the discretized Newton potential 1

‖x‖ .

In the particular case b̄ = 0, we obtain the fundamental
solution of the operator L3 = −1 + κ2 for d = 3, also
known as the Yukawa (for κ ∈ R+) or Helmholtz (for κ ∈ C)
Green kernels

ηλ(x) =
1

4π
e−κ‖x‖/‖x‖, x ∈ R

3.

In the case of Yukawa kernel the tensor representations by
using Gaussian sums are considered in [1, 2], see also references
therein.

The Helmholtz equation with Im κ > 0 (corresponds
to the diffraction potentials) arises in problems of acoustics,
electro-magnetics and optics. We refer to [59] for the detailed
discussion of this class of fundamental solutions. Fast algorithms
for the oscillating Helmholtz kernel have been considered in
[1]. However, in this case the construction of the RS tensor
decomposition remains an open question.

In the case of 3D biharmonic operator L = 12 the
fundamental solution reads as

p(‖x‖) = −
1

8π
‖x‖, x ∈ R

3.

The hydrodynamic potentials correspond to the classical
Stokes operator

ν1u− grad p = f , div u = 0,

where u is the velocity field, p denotes the pressure, and ν is the
constant viscosity coefficient. The solution of the Stokes problem
in R

3 can be expressed by the hydrodynamic potentials

uk(x) =

∫

R3

3∑

ℓ=1

9kℓ(x−y)fℓ(y)dy, p(x) =

∫

R3

〈2(x−y), f)(y)〉dy

(42)
with the fundamental solution

9kℓ(x) =
1

8πν

(
δkℓ

‖x‖
+

xkxℓ

‖x‖3

)
, 2(x) =

x

4π‖x‖3
, x ∈ R

3.

(43)
The existence of the low-rank RS tensor representation for the
hydrodynamic potential is based on the same argument as in
Remark 5.1. In turn, in the case of biharmonic fundamental
solution we use the identity

‖x‖ =
‖x‖2

‖x‖
,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 April 2022 | Volume 8 | Article 826988158

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

FIGURE 8 | RHOSVD approximation of the discretized cubic potential 1
‖x‖3

and its long-range part.

where the nominator has the separation rank equals to d. The
latter representation can be also applied for calculation of the
respective tensor approximations.

Here, we demonstrate how the application of RHOSVD
allows to easily compute the low rank Tucker/CP approximation
of the discretized singular potential 1

‖x‖3
, x ∈ R

3, as well

as the respective RS-representation, having at hand the RS
representation of the tensor P ∈ R

n⊗3 discretizing the Newton
kernel. In this example, we use the discretization of 1

‖x‖3
in

the form

P(3) = P⊙ P⊙ P,

where by P(3) we denotes the collocation projection discretization
of 1

‖x‖3
. The low rank Tucker/CP tensor approximation to P(3)

can be computed by the direct application of the RHOSVD to the
above product type representation. The RS representation of P(3)

is calculated based on Lemma 4.3. Given the RS-representation
Equation (31) of the discretized Newton kernel, PR, we define the
low rank CP approximation to the discretized singular part in the
hydrodynamic potential P(3) by

P
(3)
R′ = PR ⊙ PR ⊙ PR.

In view of Lemma 4.3, the long range part of RS decomposition

of P
(3)
R′ , can be computed by RHOSVD approximation to the

following Hadamard product of tensors,

P
(3)
R′
l
= PRl ⊙ PRl ⊙ PRl .

Figure 8 visualizes the tensor P
(3)
R′ as well as its long range

part P
(3)
R′
l
.

The potentials are discretized on n×n×n Cartesian grid with
n = 257, the rank truncation threshold is chosen for ε = 10−5.
The CP rank of the Newton kernel is equal to R = 19, while
we set Rl = 10, thus resulting in the initial ranks 6859 and 103

for RHOSVD decomposition of P
(3)
R′ and P

(3)
R′
l
, respectively. The

RHOSVD decomposition reduces the large rank parameters to
R′ = 122 (the Tucker rank is r = 13) and R′

l
= 58 (the Tucker

rank is r = 8), correspondingly.

6. RHOSVD FOR RANK REDUCTION IN 3D
ELLIPTIC PROBLEM SOLVERS

Efficient rank reduction procedure based on the RHOSVD is a
prerequisite for the development of the tensor-structured solvers
for the three-dimensional elliptic problem, which reduce the
computational complexity to almost linear scale,O(nR), contrary
to usual O(n3) complexity.

Assume that all input data in the governing PDE are given
in the low-rank tensor form. The convenient tensor format for
these problems is a canonical tensor representation of both the
governing operator, and of the initial guess as well as of the right
hand side. The commonly used numerical techniques are based
on certain iterative schemes that include at each iterative step
multiple matrix-vector and vector-vector algebraic operations
each of them enlarges the tensor rank of the output in the additive
or multiplicative way. It turns out that in common practice
the most computationally intensive step in the rank-structured
algorithms is the adaptive rank truncation, which makes the rank
truncation procedure ubiquitous.

We notice that in PDE based mathematical models the
total numerical complexity of the particular computational
scheme, i.e., the overall cost of the rank truncation procedure is
determined by the multiple of the number of calls to the rank
truncation algorithm (merely the number of iterations) and the
cost of a single RHOSVD transform (mainly determined by the
rank parameter of the input tensor). In turn, both complexity
characteristics depend on the quality of the rank-structured
preconditioner so that optimization of the whole solution process
is can be achieved by the trade-off between Kronecker rank of the
preconditioner and the complexity of its implementation.

In the course of preconditioned iterations, the tensor ranks of
the governing operator, the preconditioner and the iterand are
multiplied, and, therefore, a robust rank reduction is mandatory
procedure for such techniques applied to iterative solution of
elliptic and pseudo-differential equations in the rank-structured
tensor format.

In particular, the RHOSVD was applied to the numerical
solution of PDE constrained (including the case of fractional
operators) optimal control problems [36, 39], where the
complexity of the order O(nR log n) was demonstrated.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 April 2022 | Volume 8 | Article 826988159

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

In the case of higher dimensions the rank reduction
in the canonical format can be performed directly (i.e.,
without intermediate use of the Tucker approximation)
by using the cascading ALS iteration in the CP format,
see [50] concerning the tensor-structured solution of the
stochastic/parametric PDEs.

7. CONCLUSIONS

We discuss theoretical and computational aspects of the
RHOSVD served for approximation of tensors in low-
rank Tucker/canonical formats, and show that this rank
reduction technique is the principal ingredient in tensor-based
computations for real-life problems in scientific computing
and data modeling. We recall rank reduction scheme for the
canonical input tensors based on RHOSVD and subsequent
Tucker-to-canonical transform. We present the detailed
error analysis of low rank RHOSVD approximation to the
canonical tensors (possibly with large input rank), and
provide the proof on the uniform bound for the relative
approximation error.

We recall that the first example on application of the
RHOSVD was the rank-structured computation of the 3D
convolution transform with the nonlocal Newton kernel in R

3,
which is the basic operation in the Hartree-Fock calculations.

The RHOSVD is the basic tools for utilizing the multilinear
algebra in RS tensor format, which employs the sinc-analytic
tensor approximation methods applied to the important class of
radial functions inRd. This enables efficient rank decompositions
of tensors generated by functions with multiple local cusps or
singularities by separating their short- and long-range parts. As
an example, we construct the RS tensor representation of the
discretized Slater function e−λ‖x‖, x ∈ R

d. We then describe the
RS tensor approximation to various Green’s kernels obtained by
combination of this function with other potentials, in particular,

with the Newton kernel providing the Yukawa potential. In this
way, we introduce the concept of reproducing radial functions
which pave the way for efficient RS tensor decomposition applied
to a wide range of function-related multidimensional data by
combining the multilinear algebra in RS tensor format with the
RHOSDV rank reduction techniques.

Our next example is related to application of RHOSVD to
low-rank tensor interpolation of scattered data. Our numerical
tests demonstrate the efficiency of this approach on the example
of multi-Slater interpolant in the case of many measurement
points. We apply the RHOSVD to the data generated via random
or function modulated amplitudes of samples and demonstrate
numerically that for both cases the rank of the long-range part
remains small and depends weakly on the number of samples.

Finally, we notice that the described RHOSVD algorithms
have proven their efficiency in a number of recent applications,
in particular, in rank reduction for the tensor-structured iterative
solvers for PDE constraint optimal control problems (including
fractional control), in construction of the range-separated tensor
representations for calculation of the electrostatic potentials of
many-particle systems (arising in protein modeling), and for
numerical analysis of large scattered data in R

d.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

BK: mathematical theory, basic concepts, and manuscript
preparation. VK: basic concepts, numerical simulations, and
manuscript preparation. All authors contributed to the article
and approved the submitted version.

REFERENCES

1. Khoromskij BN. Tensor Numerical Methods in Scientific Computing. Berlin:

De Gruyter Verlag (2018).

2. Khoromskaia V, and Khoromskij BN. Tensor Numerical Methods in Quantum

Chemistry. Berlin: De Gruyter Verlag (2018).

3. P. Comon. “Tensor decompositions,” in Mathematics in Signal Processing V

(2002) 1–24.

4. Comon P, Luciani X, and De Almeida ALF. Tensor decompositions,

alternating least squares and other tales. J Chemometr

J Chemometr Soc. (2009) 23:393–405. doi: 10.1002/CEM.

1236

5. Smilde A, Bro R, and Geladi P. Multi-Way Analysis With Applications in the

Chemical Sciences.Wiley (2004).

6. Cichocki A, Lee N, Oseledets I, Pan AH, Zhao Q, and Mandic DP. Tensor

networks for dimensionality reduction and large-scale optimization: part 1

low-rank tensor decompositions. Found TrendsMach Learn (2016) 9:249–429.

doi: 10.1561/2200000059

7. De Lathauwer L, De Moor B, and Vandewalle J. A multilinear singular

value decomposition. SIAM J. Matrix Anal. Appl. (2000) 21:1253–78.

doi: 10.1137/S0895479896305696

8. Ten Berge JMF, and Sidiropoulos ND. On uniqueness in

CANDECOMP/PARAFAC. Psychometrika (2002) 67:399–409.

9. Sidiropoulos ND, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos

C. Tensor decomposition for signal processing and machine learning.

IEEE Trans Signal Process. (2017) 65:3551–82. doi: 10.1109/TSP.2017.

2690524

10. Golub GH, and Van Loan F. Matrix Computations. Baltimore, MD: Johns

Hopkins University Press (1996).

11. Hackbusch W, and Khoromskij BN. Low-rank Kronecker product

approximation to multi-dimensional nonlocal operators. Part I. Separable

approximation of multi-variate functions. Computing. (2006) 76:177–202.

doi: 10.1007/s00607-005-0144-0

12. Khoromskij BN, and Khoromskaia V. Low rank tucker-type tensor

approximation to classical potentials. Central Eur J Math. (2007) 5:523–50.

doi: 10.2478/s11533-007-0018-0

13. Marcati C, Rakhuba M,and Schwab C. Tensor rank bounds for point

singularities in R
3. E-preprint arXiv:1912.07996, (2019).

14. Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. J

Math Phys. (1927) 6:164–89.

15. Harshman RA. “Foundations of the PARAFAC procedure: models and

conditions for an “explanatory” multimodal factor analysis,” In: UCLA

Working Papers Phonetics. vol. 16 (1970). 1–84.

16. Tucker LR. Some mathematical notes on three-mode factor analysis.

Psychometrika (1966) 31:279–311.

17. Oseledets IV, and Tyrtyshnikov EE, Breaking the curse of dimensionality, or

how to use svd in many dimensions. SIAM J Sci Comput. (2009) 31:3744–59.

doi: 10.1137/090748330

18. Oseledets IV. Tensor-train decomposition. SIAM J Sci Comput. (2011)

33:2295–317. doi: 10.1137/090752286

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 17 April 2022 | Volume 8 | Article 826988160

https://doi.org/10.1002/CEM.1236
https://doi.org/10.1561/2200000059
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1007/s00607-005-0144-0
https://doi.org/10.2478/s11533-007-0018-0
https://doi.org/10.1137/090748330
https://doi.org/10.1137/090752286
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

19. Hackbusch W, and Kühn S. A new scheme for the tensor representation. J.

Fourier Anal. Appl. (2009) 15:706–22. doi: 10.1007/s00041-009-9094-9

20. Khoromskij BN. O(d logN)-quantics approximation of N-d tensors in

high-dimensional numerical modeling. Construct Approx. (2011) 34:257–89.

doi: 10.1007/S00365-011-9131-1

21. Oseledets I. Constructive representation of functions in low-rank tensor

formats. Constr. Approx. (2013) 37:1–18. doi: 10.1007/s00365-012-9175-x

22. Kressner D, Steinlechner M, and Uschmajew A. Low-rank tensor methods

with subspace correction for symmetric eigenvalue problems. SIAM J Sci

Comput. (2014) 36:A2346–68. doi: 10.1137/130949919

23. Litvinenko A, Keyes D, Khoromskaia V, Khoromskij BN, and Matthies HG.

Tucker tensor analysis of Matern functions in spatial statistics. Comput. Meth.

Appl. Math. (2019) 19:101–22. doi: 10.1515/cmam-2018-0022

24. Rakhuba M, and Oseledets I. Fast multidimensional convolution in low-

rank tensor formats via cross approximation. SIAM J Sci Comput (2015)

37:A565–82. doi: 10.1137/140958529

25. Uschmajew A. Local convergence of the alternating least squares algorithm

for canonical tensor approximation. SIAM J Mat Anal Appl (2012) 33:639–52.

doi: 10.1137/110843587

26. Hackbusch W and Uschmajew A. Modified iterations for data-sparse

solution of linear systems. Vietnam J Math. (2021) 49:493–512.

doi: 10.1007/s10013-021-00504-9

27. V. Khoromskaia. Numerical Solution of the Hartree-Fock Equation by

Multilevel Tensor-structured methods. Berlin: TU Berlin (2010).

28. Khoromskaia V, and Khoromskij BN. Grid-based lattice summation of

electrostatic potentials by assembled rank-structured tensor approximation.

Comp. Phys. Commun. (2014) 185:3162–74. doi: 10.1016/j.cpc.2014.08.015

29. Khoromskij BN, Khoromskaia V, and Flad H-J. Numerical solution of the

hartree-fock equation in multilevel tensor-structured format. SIAM J. Sci.

Comput. (2011) 33:45–65. doi: 10.1137/090777372

30. Dolgov SV, Khoromskij BN, and Oseledets I. Fast solution of multi-

dimensional parabolic problems in the TT/QTT formats with initial

application to the Fokker-Planck equation. SIAM J. Sci. Comput. (2012)

34:A3016–38. doi: 10.1137/120864210

31. Kazeev, M. Khammash, M. Nip, and Ch. Schwab. Direct solution of the

chemical master equation using quantized tensor trains. PLoS Comput Biol.

(2014) 10:e1003359. doi: 10.1371/journal.pcbi.1003359

32. Benner P, Khoromskaia V, and Khoromskij BN. Range-separated tensor

format for many-particle modeling. SIAM J Sci Comput. (2018) 40:A1034-062.

doi: 10.1137/16M1098930

33. Benner P, Khoromskaia V, Khoromskij BN, Kweyu C, and Stein M.

Regularization of Poisson–Boltzmann type equations with singular source

terms using the range-separated tensor format. SIAM J Sci Comput. (2021)

43:A415-45. doi: 10.1137/19M1281435

34. Khoromskij BN. Range-separated tensor decomposition of the discretized

Dirac delta and elliptic operator inverse. J Comput Phys. (2020) 401:108998.

doi: 10.1016/j.jcp.2019.108998

35. Kweyu C, Khoromskaia V, Khoromskij B, Stein M, and Benner P. Solution

decomposition for the nonlinear Poisson-Boltzmann equation using the

range-separated tensor format. arXiv preprint arXiv:2109.14073. (2021).

36. Heidel G, Khoromskaia V, Khoromskij BN, and Schulz V. Tensor product

method for fast solution of optimal control problems with fractional

multidimensional Laplacian in constraints. J Comput Phys. (2021) 424:109865.

doi: 10.1016/j.jcp.2020.109865

37. Dolgov S, Kalise D, and Kunisch KK. Tensor decomposition methods for

high-dimensional Hamilton–Jacobi–Bellman equations. SIAM J. Sci. Comput.

(2021) 43:A1625–50. doi: 10.1137/19M1305136

38. Dolgov S, and Pearson JW. Preconditioners and tensor product solvers for

optimal control problems from chemotaxis. SIAM J. Sci. Comput. (2019)

41:B1228–53. doi: 10.1137/18M1198041

39. Schmitt B, Khoromskij BN, Khoromskaia V, and Schulz V. Tensor method for

optimal control problems constrained by fractional three-dimensional elliptic

operator with variable coefficients.Numer. Lin Algeb Appl. (2021) 1–24:e2404.

doi: 10.1002/nla.2404

40. Bachmayr M, Schneider R, and Uschmajew A. Tensor networks

and hierarchical tensors for the solution of high-dimensional partial

differential equations. Found Comput Math. (2016) 16:1423–72.

doi: 10.1007/s10208-016-9317-9

41. Boiveau T, Ehrlacher V, Ern A, andNouy A. Low-rank approximation of linear

parabolic equations by space-time tensor Galerkin methods. ESAIM Math

Model Numer Anal (2019) 53:635-58. doi: 10.1051/m2an/2018073

42. Espig M, Hackbusch W, Litvinenko A, Matthies HG, Zander E. Post-

processing of high-dimensional data. (2019) E-Preprint arXiv:1906.

05669.

43. Ch. Lubich, T. Rohwedder, R. Schneider and B. Vandereycken. Dynamical

approximation of hierarchical Tucker and tensor-train tensors. SIAM JMatrix

Anal. Appl. (2013) 34:470–94. doi: 10.1137/120885723

44. A. Litvinenko, Y. Marzouk, H. G. Matthies, M. Scavino, A. Spantini.

Computing f-divergences and distances of high-dimensional probability

density functions–low-rank tensor approximations. E-preprint

arXiv:2111.07164. (2021).

45. Grasedyck L. Hierarchical singular value decomposition of tensors. SIAM. J.

Matrix Anal. Appl. (2010) 31:2029. doi: 10.1137/090764189

46. Khoromskij BN, and Khoromskaia V. Multigrid tensor approximation

of function related arrays. SIAM J. Sci. Comput. (2009) 31:3002–26.

doi: 10.1137/080730408

47. Ehrlacher V, Grigori L, Lombardi D, and Song H. Adaptive hierarchical

subtensor partitioning for tensor compression. SIAM J. Sci. Comput. (2021)

43:A139–63. doi: 10.1137/19M128689X

48. Kressner D, and Uschmajew A. On low-rank approximability of solutions

to high-dimensional operator equations and eigenvalue problems. Lin Algeb

Appl. (2016) 493:556–72. doi: 10.1016/J.LAA.2015.12.016

49. Oseledets IV, Rakhuba MV, and Uschmajew A. Alternating least squares

as moving subspace correction. SIAM J Numer Anal. (2018) 56:3459–79.

doi: 10.1137/17M1148712

50. Khoromskij BN, and Schwab C. Tensor-structured Galerkin approximation

of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. (2011)

33:364–85. doi: 10.1137/100785715

51. Khoromskij BN. Structured rank-(r1, . . . , rd) decomposition of function-

related tensors in R
d . Comput. Meth. Appl. Math. (2006) 6:194–220.

doi: 10.2478/cmam-2006-0010

52. Stenger F.Numerical Methods Based on Sinc and Analytic Functions. Springer-

Verlag (1993).

53. Braess D. Nonlinear Approximation Theory. Berlin: Springer-Verlag (1986).

54. Khoromskaia V, and Khoromskij BN. Prospects of Tensor-Based Numerical

Modeling of the Collective Electrostatics in Many-Particle Systems.

Comput Math Math Phys. (2021) 61:864–86. doi: 10.1134/S0965542521

050110

55. Matérn B. Spatial Variation, Vol. 36 of Lecture Notes in Statistics. 2nd Edn.

Berlin: Springer-Verlag (1986).

56. Abramowitz M, and Stegun IA. Handbook of Mathematical Functions. New

York, NY: Dover Publ., (1968).

57. Sauter SA, and Schwab C. Boundary Element Methods. Springer (2011).

58. Hsiao GC, and Wendland WL. Boundary Integral Equations. Berlin: Springer

(2008).

59. Maz’ya V, and Schmidt G. Approximate approximations. Math Surv

Monograph (2007) 141:349.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Khoromskaia and Khoromskij. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 18 April 2022 | Volume 8 | Article 826988161

https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1007/S00365-011-9131-1
https://doi.org/10.1007/s00365-012-9175-x
https://doi.org/10.1137/130949919
https://doi.org/10.1515/cmam-2018-0022
https://doi.org/10.1137/140958529
https://doi.org/10.1137/110843587
https://doi.org/10.1007/s10013-021-00504-9
https://doi.org/10.1016/j.cpc.2014.08.015
https://doi.org/10.1137/090777372
https://doi.org/10.1137/120864210
https://doi.org/10.1371/journal.pcbi.1003359
https://doi.org/10.1137/16M1098930
https://doi.org/10.1137/19M1281435
https://doi.org/10.1016/j.jcp.2019.108998
https://doi.org/10.1016/j.jcp.2020.109865
https://doi.org/10.1137/19M1305136
https://doi.org/10.1137/18M1198041
https://doi.org/10.1002/nla.2404
https://doi.org/10.1007/s10208-016-9317-9
https://doi.org/10.1051/m2an/2018073
https://doi.org/10.1137/120885723
https://doi.org/10.1137/090764189
https://doi.org/10.1137/080730408
https://doi.org/10.1137/19M128689X
https://doi.org/10.1016/J.LAA.2015.12.016
https://doi.org/10.1137/17M1148712
https://doi.org/10.1137/100785715
https://doi.org/10.2478/cmam-2006-0010
https://doi.org/10.1134/S0965542521050110
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

8. APPENDIX: PROOFS OF THEOREM 2.3
AND LEMMA 2.5

Proof of Theorem 2.3.

Proof: Using the contracted product representations of A ∈ CR,n

and A0
(r)

∈ Tr, and introducing the ℓ-mode residual

1(ℓ) = U(ℓ) − Z
(ℓ)
0 Dℓ,0V

(ℓ)
0

T
,

{1(ℓ)}ν =

n∑

k=rℓ+1

σℓ,kz
(ℓ)
k
vℓk,ν , ν = 1, . . . ,R,

with notations V
(ℓ)
0 = [v

(ℓ)
1 , ..., v

(ℓ)
rℓ]

T , v
(ℓ)
k

= {vℓ
k,ν
}Rν=1 ∈ R

R,
we arrive at the following expansion for the approximation error
in the form

A− A0
(r) = ξ ×1 U

(1) ×2 · · · ×d U
(d)

−ξ ×1 W
(1) ×2 · · · ×d W

(d)
: =

d∑

ℓ=1

Bℓ,

where

Bℓ = ξ ×1 U
(1) · · · ×ℓ−1 U

(ℓ−1) ×ℓ 1
(ℓ)

×ℓ+1W
(ℓ+1) · · · ×d W

(d)

=

R∑

ν=1

ξν

[
u(ℓ)ν · · · ×ℓ−1 u

(ℓ−1)
ν ×ℓ {1

(ℓ)}ν

×ℓ+1

rℓ+1∑

k=1

σℓ+1,kz
(ℓ+1)
k

vℓ+1
k,ν

· · · ×d

rd∑

k=1

σd,kz
(d)
k
vdk,ν

]
.

This leads to the error bound (by the triangle inequality)

‖A− A0
(r)‖ ≤

d∑

ℓ=1

‖Bℓ‖,

providing the estimate (in view of ‖u
(ℓ)
ν ‖ = 1, ℓ = 1, . . . , d,

ν = 1, . . . ,R)

‖Bℓ‖ ≤

R∑

ν=1

|ξν |

n∑

k=rℓ+1

σ 2
ℓ,k(v

ℓ
k,ν)

2

1/2

×

(rℓ+1∑

k=1

σ 2
ℓ+1,k(v

ℓ+1
k,ν

)2

)1/2

· · ·

(
rd∑

k=1

σ 2
d,k(v

d
k,ν)

2

)1/2

.

Furthermore, since U(ℓ) has normalized columns, i.e.,

‖u
(ℓ)
ν ‖ = ‖

n∑
k=1

σℓ,kz
(ℓ)
k
vℓ
k,ν
‖ = 1, ℓ = 1, . . . , d, we obtain

n∑
k=1

σ 2
ℓ,k
(vℓ

k,ν
)2 = 1 for ℓ = 1, . . . , d ν = 1, . . . ,R. Now the error

estimate follows

‖A− A0
(r)‖ ≤

d∑

ℓ=1

R∑

ν=1

|ξν |

n∑

k=rℓ+1

σ 2
ℓ,k(v

ℓ
k,ν)

2

1/2

≤

d∑

ℓ=1

(
R∑

ν=1

ξ 2ν

)1/2

R∑

ν=1

n∑

k=rℓ+1

σ 2
ℓ,k(v

ℓ
k,ν)

2

1/2

=

d∑

ℓ=1

‖ξ‖

n∑

k=rℓ+1

σ 2
ℓ,k

R∑

ν=1

(vℓk,ν)
2

1/2

= ‖ξ‖

d∑

ℓ=1

n∑

k=rℓ+1

σ 2
ℓ,k

1/2

.

The case R < n can be analyzed along the same line.

Proof of Lemma 2.5.

Proof: (A) The canonical vectors y
(ℓ)
k

of any test element on the
left-hand side of (11),

Z =

R∑

k=1

λk y
(1)
k

⊗ . . .⊗ y
(d)
k

∈ CR,n, (A1)

can be chosen in span{v
(ℓ)
1 , . . . , v

(ℓ)
rℓ }, that means

y
(ℓ)
k

=

rℓ∑

m=1

µ
(ℓ)
k,m

v(ℓ)m , k = 1, . . . ,R, ℓ = 1, . . . , d. (A2)

Indeed, assuming

y
(ℓ)
k

=

rℓ∑

m=1

µ
(ℓ)
k,m

v(ℓ)m + e
(ℓ)
k

with e
(ℓ)
k
⊥span{v

(ℓ)
1 , . . . , v(ℓ)rℓ

},

we conclude that e
(ℓ)
k

does not effect the cost function in (11)

because of the orthogonality of V(ℓ). Hence, setting e
(ℓ)
k

= 0,
and plugging (A2) in (A1), we arrive at the desired Tucker
decomposition of Z, Z = βz ×1 V

(1) ×2 . . .×d V
(d), βz ∈ CR,r.

This implies

‖A− Z‖2 = ‖(βz − β)×1 V
(1) ×2 . . .×d V

(d)‖2

= ‖β − βz‖
2 ≥ min

µ∈CR,r

‖β − µ‖2.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 19 April 2022 | Volume 8 | Article 826988162

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Khoromskaia and Khoromskij Reduced Higher Order SVD

On the other hand, we have

min
Z∈CR,n

‖A− Z‖2 ≤ min
βz∈CR,r

‖(β − βz)×1 V
(1) ×2 . . .×d V

(d)‖2

= min
µ∈CR,r

‖β − µ‖2.

This proves (11).
(B) Likewise, for any minimizer A(R) ∈ CR,n in the right-hand

side in (11), one obtains

A(R) = β(R) ×1 V
(1) ×2 V

(2) . . .×d V
(d)

with the respective rank-R core tensor β(R) =
R∑

k=1

λku
(1)
k

⊗ . . .⊗

u
(d)
k

∈ CR,r. Here u
(ℓ)
k

= {µ
(ℓ)
k,mℓ

}
rℓ
mℓ=1 ∈ R

rℓ , are calculated by

plugging representation (A2) in (A1), and then by changing the
order of summation,

A(R) =

R∑

k=1

λky
(1)
k

⊗ . . .⊗ y
(d)
k

=

R∑

k=1

λk

r1∑

m1=1

µ
(1)
k,m1

v(1)m1

⊗ . . .⊗

rd∑

md=1

µ
(d)
k,md

v(d)md

=

r1∑

m1=1

. . .

rd∑

md=1

R∑

k=1

λk

d∏

ℓ=1

µ
(ℓ)
k,mℓ

 v(1)m1

⊗ . . .⊗ v(d)md
.

Now (12) implies that

‖A− AR‖ = ‖β − β(R)‖,

since the ℓ-mode multiplication with the orthogonal side
matrices V(ℓ) does not change the cost functional. Inspection
of the left-hand side in (11) indicates that the latter equation
ensures that β(R) is, in fact, the minimizer of the right-hand side
in (11).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 20 April 2022 | Volume 8 | Article 826988163

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

METHODS
published: 01 June 2022

doi: 10.3389/fams.2022.806549

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 June 2022 | Volume 8 | Article 806549

Edited by:

Edoardo Angelo Di Napoli,

Julich Research Center, Helmholtz

Association of German Research

Centres (HZ), Germany

Reviewed by:

Jutho Haegeman,

Ghent University, Belgium

Jiajia Li,

College of William & Mary,

United States

*Correspondence:

Glen Evenbly

glen.evenbly@gmail.com

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 31 October 2021

Accepted: 02 May 2022

Published: 01 June 2022

Citation:

Evenbly G (2022) A Practical Guide to

the Numerical Implementation of

Tensor Networks I: Contractions,

Decompositions, and Gauge

Freedom.

Front. Appl. Math. Stat. 8:806549.

doi: 10.3389/fams.2022.806549

A Practical Guide to the Numerical
Implementation of Tensor Networks
I: Contractions, Decompositions, and
Gauge Freedom
Glen Evenbly*

School of Physics, Georgia Institute of Technology, Atlanta, GA, United States

We present an overview of the key ideas and skills necessary to begin implementing

tensor network methods numerically, which is intended to facilitate the practical

application of tensor network methods for researchers that are already versed with their

theoretical foundations. These skills include an introduction to the contraction of tensor

networks, to optimal tensor decompositions, and to the manipulation of gauge degrees

of freedom in tensor networks. The topics presented are of key importance to many

common tensor network algorithms such as DMRG, TEBD, TRG, PEPS, and MERA.

Keywords: tensor network algorithm, MPS, tensor contraction, DMRG, quantum many body theory

1. INTRODUCTION

Tensor networks have been developed as a useful formalism for the theoretical understanding of
quantummany-body wavefunctions [1–10], especially in regards to entanglement [11–13], and are
also applied as powerful numeric tools and simulation algorithms. Although developed primarily
for the description of quantummany-body systems, they have since found use in a plethora of other
applications such as quantum chemistry [14–18], holography [19–24], machine learning [25–29]
and the simulation of quantum circuits [30–35].

There currently exist many useful references designed to introduce newcomers to the underlying
theory of tensor networks [1–10]. Similarly, for established tensor network methods, there often
exist instructional or review articles that address the particular method in great detail [36–40].
Nowadays, many research groups have also made available tensor network code libraries [41–48].
These libraries typically allow other researchers to make use of highly optimized tensor network
routines for practical purposes (such as for the numerical simulation of quantum many-body
systems).

Comparatively few are resources intended to help researchers that already possess a firm
theoretical grounding to begin writing their own numerical implementations of tensor network
codes. Yet such numerical skills are essential in many areas of tensor network research:
new algorithmic proposals typically require experimentation, testing and bench-marking using
numerics. Furthermore, even researchers solely interested in the application of tensor network
methods to a problem of interest may be required to program their own version of a method, as a
pre-built package may not contain the necessary features as to be suitable for the unique problem
under consideration. The purpose of our present work is to help fill this aforementioned gap: to
aid students and researchers, who are assumed to possess some prior theoretical understanding
of tensor networks, to learn the practical skills required to program their own tensor networks
codes and libraries. Indeed, our intent is to arm the interested reader with the key knowledge

164

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.806549
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.806549&domain=pdf&date_stamp=2022-06-01
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:glen.evenbly@gmail.com
https://doi.org/10.3389/fams.2022.806549
https://www.frontiersin.org/articles/10.3389/fams.2022.806549/full

Evenbly Numerical Implementation of Tensor Networks

FIGURE 1 | (A–C) Diagrammatic representations of a vector Ai (or order-1

tensor), a matrix Bij (or order-2 tensor) and an order-3 tensor Cijk . (D) A

contraction, or summation over an index, between two tensors is represented

by a line joining two tensors.

that would allow them to implement their own versions of
algorithms such as the density matrix renormalization group
(DMRG) [49–51], time-evolving block decimation (TEBD) [52,
53], projected entangled pair states (PEPS) [54–56], multi-
scale entanglement renormalization ansatz (MERA) [57], tensor
renormalization group (TRG) [58, 59], or tensor network
renormalization (TNR) [60]. Furthermore, this manuscript is
designed to compliment online tensor network tutorials [61],
which have a focus on code implementation, with more detailed
explanations on tensor network theory.

2. PRELIMINARIES

2.1. Prior Knowledge
As stated above, the goal of this manuscript is to help readers
that already possess some understanding of tensor network
theory to apply this knowledge toward numeric calculations.
Thus we assume that the reader has some basic knowledge
of tensor networks, specifically that they understand what a
tensor network is and have some familiarity with the standard
diagrammatic notation used to represent them. An overview
of these concepts is presented in Figure 1, otherwise more
comprehensive introductions to tensor network theory can be
found in [1–10].

Note that we shall not assume prior knowledge of quantum
many-body physics, which is the most common application
of tensor network algorithms. The skills and ideas that we
introduce in this manuscript are intended to be general for the
tensor network formalism, rather than for their use in a specific
application, thus can also carry over to other area in which
tensor networks have proven useful such as quantum chemistry
[14–18], holography [19–24], machine learning [25–29], and the
simulation of quantum circuits [30–35].

2.2. Software Libraries
Currently there exists a wide variety of tensor network code
libraries, which include [41–48]. Many of these libraries differ
greatly in not only their functioning but also their intended
applications, and may have their own specific strengths and
weaknesses (which we will not attempt to survey in the present
manuscript). Almost all of these libraries contain tools to assist
in the tasks described in this manuscript, such as contracting,
decomposing and re-gauging tensor networks. Additionally
many of these libraries also contain full featured versions of
complete tensor network algorithms, such as DMRG or TEBD.
For a serious numerical calculation involving tensor networks,
one where high performance is required, most researchers would
be well-advised to utilize an existing library.

However, even if ultimate intent is to use existing library, it
is still desirable that one should understand the fundamental
tensor network manipulations used in numerical calculations.
Indeed, this understanding is necessary to properly discern the
limitations of various tensor network tools, to ensure that they
are applied in an appropriate way, and to customize the existing
tools if necessary. Moreover, exploratory research into new
tensor network ansatz, algorithms and applications often requires
non-standard operations and tensor manipulations which may
not be present in any existing library, thus may require the
development of extensive new tensor code. In this setting it can
be advantageous to minimize or to forgo the usage of an existing
library (unless one was already intimately familiar with its inner
workings), given the inherent challenge of extending a library
beyond its intended function and the possibility of unintended
behavior that this entails.

In the remaining manuscript we aim to describe key tensor
network operations (namely contracting, decomposing and re-
gauging tensor networks) with sufficient detail that would allow
the interested reader to implement tasks numerically without the
need to rely on an existing code library.

2.3. Programming Language
Before attempting to implement tensor methods numerically one
must, of course, decide on which programming language to use.
High-level languages with a focus on scientific computation, such
as MATLAB, Julia, and Python (with Numpy) are well-suited
for implementing tensor network methods as they have native
support for multi-dimensional arrays (i.e., tensors), providing
simple and convenient syntax for common operations on these
arrays (indexing, slicing, scalar operations) as well as providing
a plethora of useful functions for manipulating these tensor
objects. Alternatively, some tensor network practitioners may
prefer to use lower-level languages such as Fortran or C++ when
implementing tensor network algorithms usually for the reason
of maximizing performance. However, in many tensor network
codes the bulk of the computation time is spent performing
large matrix-matrix multiplications, for which even interpreted
languages (like MATLAB) still have competitive performance
with compiled languages as they call the same underlying BLAS
routines. Nonetheless, there are some particular scenarios, such
as in dealing with tensor networks in the presence of global
symmetries [62–68], where a complied language may offer a

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 June 2022 | Volume 8 | Article 806549165

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

FIGURE 2 | (A) The internal indices (l,m, n) of the network {A,B,C} are

contracted to give tensor F. (B) The network is contracted via a sequence of

two pairwise tensor contractions, the first of which results in the intermediate

tensor D.

significant performance advantage. In this circumstance Julia,
which is a compiled language, or Python, in conjunction with
various frameworks which allow it to achieve some degree of
compilation, may be appealing options.

2.4. Terminology
Before proceeding, let us establish the terminology that we will
use when discussing tensor networks. We define the order of a
tensor as the number of indices it has, i.e., such that a vector is
order-1 and amatrix is order-2. The term rank (or decomposition
rank) of a tensor will refer to the number of non-zero singular
values with respect to a some bi-partition of the tensor indices.
Note that many researchers also use the term rank to describe the
number of tensor indices; here we use the alternative term order
specifically to avoid the confusion that arises from the double
usage of rank. The number of values a tensor index can take will
be referred to as the dimension of an index (or bond dimension),
which is most often denoted by χ but can also be denoted by
m, d, or D. In most cases, the use of d or D to denote a bond
dimension is less preferred, as this can be confused which the
spatial dimension of the problem under consideration (e.g., when
considering a model on a 1D or 2D lattice geometry).

3. TENSOR CONTRACTIONS

The foundation of all tensor networks routines is the contraction
of a network containing multiple tensors into a single tensor.
An example of the type problem that we consider is depicted
in Figure 2A, where we wish to contract the network of tensors

{A,B,C} to form an order-3 tensor F, which has components
defined

Fijk =
∑

l,m,n

AljmBilnCnmk. (1)

Note that a convention for tensor index ordering is required
for the figure to be unambiguously translated to an equation;
here we assumed that indices progress clock-wise on each
tensor starting from 6 o’clock. Perhaps the most obvious way
to evaluate Equation (1) numerically would be through a
direct summation over the indices (l,m, n), which could be
implemented using a set of nested “FOR” loops. While this
approach of summing over all internal indices of a network will
produce the correct answer, there are numerous reasons why this
is not the preferred approach for evaluating tensor networks. The
foremost reason is that it is not themost computationally efficient
approach (excluding, perhaps, certain contractions involving
sparse tensors, which we will not consider here). Let us analyse
the contraction cost for the example given in Equation (1),
assuming all tensor indices are χ-dimensional. A single element
of tensor F, which hasχ3 elements in total, is given through a sum
over indices (l,m, n), which requires O(χ3) operations. Thus the
total cost of evaluating tensor F through a direct summation over
all internal indices is O(χ6).

Now, let us instead consider the evaluation of tensor F broken
up into two steps, where we first compute an intermediate tensor
D as depicted in Figure 2B,

Dijmn =
∑

l

AljmBiln, (2)

before performing a second contraction to give the final tensor F,

Fijk =
∑

n,m

DijmnCnm. (3)

Through similar logic as before, one finds that the cost of
evaluating intermediate tensor D scales as O(χ5), whilst the
subsequent evaluation of F in Equation (3) is also O(χ5). Thus
breaking the network contraction down into a sequence of
smaller contractions each only involving a pair of tensors (which
we refer to as a pairwise tensor contraction) is as computationally
cheap or cheaper for any non-trivial bond dimension (χ > 1).
This is true in general: for any network of 3 or more (dense)
tensors it is always at least as efficient (and usually vastly more
efficient) to break network contraction into sequence of pairwise
contractions, as opposed to directly summing over all the internal
indices of the network.

Two natural questions arise at this point. (i) What is optimal
way to implement a single pairwise tensor contraction? (ii) Does
the chosen sequence of pairwise contractions affect the total
computational cost and, if so, how does one decide what sequence
to use? We begin by addressing the first question.

3.1. Pairwise Tensor Contractions
Let us consider the problem of evaluating a pairwise tensor
contraction, denoted (A × B), between tensors A and B that are

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 June 2022 | Volume 8 | Article 806549166

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

connected by one or more common indices. A straight-forward
method to evaluate such contractions, as in the examples of
Equations (2) and (3), is by using nested “FOR” loops to sum over
the shared indices. The computational cost of this evaluation, in
terms of the number of scalar multiplications required, can be
expressed concisely as

cost :(A× B) =

∣∣dim(A)
∣∣ ·

∣∣dim(B)
∣∣

∣∣dim(A ∩ B)
∣∣ , (4)

with
∣∣dim(A)

∣∣ as the total dimension of A (i.e., the product of its
index dimensions) and

∣∣dim(A ∩ B)
∣∣ as the total dimension of the

shared indices.
Alternatively, one can recast a pairwise contraction as a

matrix multiplication as follows: first reorder the free indices
and contracted indices on each of A and B such that they
appear sequentially (which can be achieved in MATLAB using
the “permute” function) and then group the free-indices and
the contracted indices each into a single index (which can be
achieved in MATLAB using the “reshape” function). After
these steps the contraction is evaluated using a single matrix-
matrix multiplication, although the final product may also
need to be reshaped back into a tensor. Recasting as a matrix
multiplication does not reduce the formal computational cost
from Equation (4). However, modern computers, leveraging
highly optimized BLAS routines, typically perform matrix
multiplications significantly more efficiently than the equivalent
“FOR” loop summations. Thus, especially in the limit of tensors
with large total dimension, recasting as a matrix multiplication
is most often the preferred approach to evaluate pairwise
tensor contractions, even though this requires some additional
computational overhead from the necessity of rearranging tensor
elements in memory when using “permute”. Note that the
“tensordot” function in the Numpy module for Python
conveniently evaluates a pairwise tensor contraction using this
matrix multiplication approach.

3.2. Contraction Sequence
It is straight-forward to establish that, when breaking a network
contraction into a sequence of binary contractions, the choice of
sequence can affect the total computational cost. As an example,
we consider the product of two matrices A, B with vector C,

Fi =
∑

j,k

AijBjkCk, (5)

where all indices are assumed to be dimension χ , see also
Figure 3. If we evaluate this expression by first performing the
matrix-matrix multiplication, i.e., as F = (A × B) × C, then the
leading order computational cost scales asO(χ3) by Equation (4).
Alternatively, if we evaluate the expression by first performing
the matrix-vector multiplication, i.e., as F = A × (B × C),
then the leading order computational cost scales as O(χ2). Thus
it is evident that the sequence of binary contractions needs
to be properly considered in order to minimize the overall
computational cost.

So how does one find the optimal contraction sequence for
some tensor network of interest? For the networks that arise
in common algorithms (such as DMRG, MERA, PEPS, TRG
and TNR) it is relatively easy, with some practice, to find the
optimal sequence through manual inspection or trial-and-error.
This follows as most networks one needs to evaluate contain
fewer than 10 tensors and the tensor index dimensions take a only
single or a few distinct values within a network, which limits the
number of viable contraction sequences that need be considered.
More generally, determination of optimal contraction sequences
is known to be an NP-hard problem [69], such that it is
very unlikely that an algorithm which scales polynomially with
the number of tensors in the network will ever be found
to exist. However, numerical methods based on exhaustive
searches and/or heuristics can typically find optimal sequences
for networks with fewer than 20 tensors in a reasonable amount
of time [69–72], and larger networks are seldom encountered in
practice.

Note thatmany tensor network optimization algorithms based
on an iterative sweep, where the same network diagrams are
contracted each iteration (although perhaps containing different
tensors and with different bond dimensions). The usual approach
in this setting is to determine the optimal sequences once, before
beginning the iterative sweeps, using the initial bond dimensions
and then cache the sequences for re-use in later iterations. The
contraction sequences are then only recomputed the if the bond
dimensions stray too far from the initial values.

3.3. Network Contraction Routines
Although certainly feasible, manually writing the code for
each tensor network contraction as a sequence of pairwise
contractions is not recommended. Not only is substantial
programming effort required, but this also results in code
which is error-prone and difficult to check. There is also a
more fundamental problem: contracting a network by manually
writing a sequence of binary contractions requires specifying a
particular contraction sequence at the time of coding. However,
in many cases the index dimensions within networks are variable,
and the optimal sequence can change depending on the relative
sizes of dimensions. For instance, one may have a network
which contains indices of dimensions χ1 and χ2, where the
optimal contraction sequence changes dependant of whether χ1

is larger or smaller than χ2. In order to have a program which
works efficiently in both regimes, one would have to write code
separately for both contraction sequences.

Given the considerations above, the use of an automated
contraction routine, such as the “ncon” (Network-CONtractor)
function [61, 73] or something similar from an existing tensor
network library [41–48], is highly recommended. Automated
contraction routines can evaluate any network contraction in
a single call by appropriately generating and evaluating a
sequence of binary contractions, hence greatly reducing both
the programming effort required and the risk of programming
errors occurring.Most contraction routines, such as “ncon”, also
remove the need to fix a contraction sequence at the time of
writing the code, as the sequence can be specified as an input
variable to the routine and thus can be changed without the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 June 2022 | Volume 8 | Article 806549167

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

FIGURE 3 | (A) A product of three tensors {A,B,C} is contracted to a tensor F, where all indices are assumed to be of dimension χ . (B,C) The total computational

cost of contracting the network depends on the sequence of pairwise contractions; the cost from following the sequence in (B) scales as (χ3 + χ2) as compared to

the cost from (C) which scales as (2χ2).

need to rewrite any code. This can also allow the contraction
sequence to be adjusted dynamically at run-time to ensure that
the sequence is optimal given the specific index dimensions
in use.

3.4. Summary: Contractions
In evaluating a network of multiple tensors, it is always more
efficient to break the contraction into a sequence of pairwise
tensor contractions, each of which should (usually) be recast
into a matrix-matrix multiplication in order to achieve optimal
computational performance. The total cost of evaluating a
network can depend on the particular sequence of pairwise
contractions chosen. While there is no known method for
determining an optimal contraction sequence that is efficiently
scalable in the size of the network, manual inference or brute-
force numeric searches are usually viable for the relatively small
networks encountered in common tensor network algorithms.
When coding a tensor network program it is useful to utilize
an automated network contraction routine which can evaluate
a tensor network in a single call by properly chaining together
a sequence of pairwise contractions. This not only reduces the
programming effort required, but also grants a program more
flexibility in allowing a contraction sequence to be easily changed.

4. MATRIX FACTORIZATIONS

Another key operation common in tensor network algorithms,
complimentary to the tensor contractions considered previously,
are factorizations. In this section, we will discuss some of the
various means by which a higher-order tensor can be split into
a product of fewer-order tensors. In particular, the means that
we consider involve applying standard matrix decompositions
[74, 75], to tensor unfoldings, such that this section may serve
as a review of the linear algebra necessary before consideration

of more sophisticated network decompositions. Specifically we
recount the spectral decomposition, QR decomposition and
singular value decomposition and outline their usefulness in the
context of tensor networks, particular in achieving optimal low-
rank tensor approximations. Before discussing decompositions,
we define some special types of tensor.

4.1. Special Tensor Types
A d-by-dmatrixU is said to be unitary if it has orthonormal rows
and columns, which implies that it annihilates to the identity
when multiplied with its conjugate,

U†U = UU† = I, (6)

where I is the d-by-d identity matrix. We define a tensor (whose
order is greater than 2) as unitary with respect to a particular bi-
partition of indices if the tensor can be reshaped into a unitary
matrix according to this partition. Similarly an d1-by-d2 matrix
W, with d1 > d2 is said to be an isometry if

W†W = I, (7)

with I the d2-by-d2 identity matrix. Likewise we say that a tensor
(order greater than 2) is isometric with respect to a particular bi-
partition of indices if the tensor can be reshaped into a isometric
matrix. Notice that, rather than equalling identity, the reverse
order product does now evaluate to a projector P,

WW† = P, (8)

where projectors are defined as Hermitianmatrices that square to
themselves,

P = P†, P2 = P. (9)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 June 2022 | Volume 8 | Article 806549168

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

FIGURE 4 | Depiction of some common matrix decompositions. All indices

are assumed to be of dimension d unless otherwise indicated. (Ai) The

spectral decomposition is applied to the order-4 Hermitian tensor H across the

partition indicated by the dashed line, yielding a diagonal matrix of eigenvalues

D and a unitary U. (Aii) The unitary tensor U annihilates to identity with its

conjugate, as per Equation (6). (Bi) The QR decomposition is applied to the

order-3 tensor A across the partition indicated, yielding an isometry Q and an

upper triangular matrix R. (Bii) The isometry Q annihilates to identity with its

conjugate as per Equation (7), while the R matrix is upper triangular. (Ci) The

singular value decomposition (SVD) is applied to the order-3 tensor A across

the partition indicated, yielding an isometry U, a diagonal matrix of singular

values S, and a unitary V. (Cii) Depiction of the constraints satisfied by the

isometry U and unitary V.

4.2. Useful Matrix Decompositions
A commonly used matrix decomposition is the spectral
decomposition (or eigen-decomposition). In the context of
tensor network codes it is most often used for Hermitian, positive
semi-definite matrices, such as for the density matrices used to
describe quantum states. If H is a d × d Hermitian matrix,
or tensor that can be reshaped into such, then the spectral
decomposition yields

H = UDU†, (10)

where U is d × d unitary matrix and D is diagonal matrix
of eigenvalues, see also Figure 4A. The numerical cost of
performing the decomposition scales as O(d3). In the context of
tensor network algorithms the spectral decomposition is often
applied to approximate a Hermitian tensor with one of smaller
rank, as will be discussed in Section 4.4.

Another useful decomposition is the QR decomposition. If A
be an arbitrary d1× d2 matrix with d1 > d2, or tensor that can be

reshaped into such, then the QR decomposition gives

A = QR, (11)

see also Figure 4B. HereQ is d1×d2 isometry, such thatQ†Q = I,
where I is the d2 × d2 identity matrix, and R is d2 × d2 upper
triangular matrix. Note that we are considering the so-called
economical decomposition (which is most often used in tensor
network algorithms); otherwise the full decomposition givesQ as
a d1 × d1 unitary and R is dimension d1 × d2. The numerical
cost of the economical QR decomposition scales as the larger
dimension times the square of the smaller dimension O(d1d2

2),
as opposed to cost O(d1

2d2) for the full decomposition. The QR
decomposition is one of the most computationally efficient ways
to obtain an orthonormal basis for the column space of a matrix,
thus a common application is in orthogonalizing tensors within
a network (i.e., transforming them into isometries), which will be
discussed further in Section 5.3.1.

The final decomposition that we consider is the singular value
decomposition (SVD), which is also widely used in many areas of
mathematics, statistics, physics and engineering. The SVD allows
an arbitrary d1×d2 matrixA, where we assume for simplicity that
d1 ≥ d2, to be decomposed as

A = USV† (12)

where U is d1 × d2 isometry (or unitary if d1 = d2), S is diagonal
d2 × d2 matrix of positive elements (called singular values),
and V is d2 × d2 unitary matrix, see also Figure 4C. Similar
to the economical QR decomposition, we have also considered
the economical form of the SVD; the full SVD would otherwise
produce U as a d1 × d1 unitary and S as a rectangular d1 × d2
matrix padded with zeros. The numerical cost of the economical
SVD scales as O(d1d2

2), identical to that of the economical
QR decomposition. The rank of a tensor (across a specified bi-
partition) is defined as the number of non-zero singular values
that appear in the SVD. A common application of the SVD is in
finding an approximation to a tensor by another of smaller rank,
which will be discussed further in Section 4.4.

Notice that for any matrix A the spectral decompositions
of AA† and A†A are related to the SVD of A; more precisely,
the eigenvectors of AA† and A†A are equivalent to the singular
vectors in U and V respectively of the SVD in Equation (12).
Furthermore the (non-zero) eigenvalues in AA† or A†A are the
squares of the singular values in S. It can also be seen that,
for a Hermitian positive semi-definite matrix H, the spectral
decomposition is equivalent to an SVD.

4.3. Tensor Norms
The primary use for matrix decompositions, such as the SVD, in
the context of tensor networks is in accurately approximating a
higher-order tensor as a product lower-order tensors. However,
before discussing tensor approximations, it is necessary to define
the tensor norm in use. A tensor norm that is particularly
convenient is the Frobenius norm (or Hilbert-Schmidt norm).
Given a tensor Aijk... the Frobenius norm for A, denoted as ‖A‖,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 June 2022 | Volume 8 | Article 806549169

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

FIGURE 5 | For any tensor A the tensor trace Ttr of A with its conjugate A†

(drawn with opposite vertical orientation) is obtained by contracting over all

matching indices. The Frobenius norm can be defined as the root of this

tensor trace, see Equation (14).

is defined as the square-root of the sum of the magnitude of each
element squared,

‖A‖ =

√∑

ijk...

∣∣Aijk...

∣∣2. (13)

This can be equivalently expressed as the tensor trace of A
multiplied by its conjugate,

‖A‖ =

√
Ttr

(
A†,A

)
, (14)

where the tensor trace, Ttr(A†,A), represents the contraction
of tensor A with its conjugate over all matching indices, see
Figure 5. It also follows that Frobenius norm is related to the
singular values sk of A across any chosen bi-partition,

‖A‖ =

√∑

k

(sk)
2. (15)

Notice that Equation (14) implies that the difference ε =

‖A− B‖ between two tensors A and B of equal dimension can
equivalently be expressed as

‖A− B‖2 = Ttr(A†,A)− 2
∣∣∣Ttr(A†,B)

∣∣∣ + Ttr(B†,B). (16)

4.4. Optimal Low-Rank Approximations
Given some matrix A, or higher-order tensor that viewed as a
matrix across a chosen bi-partition of its indices, we now focus
on the problem of finding the tensor B that best approximates A
according to the Frobenius norm (i.e., that which minimizes the
difference in Equation 16), assuming B has a fixed rank r. Let us
assume, without loss of generality, that tensor A is equivalent to
a d1 × d2 matrix (with d1 ≥ d2) under a specified bi-partition of
its indices, and that A has singular value decomposition,

Aij =

d2∑

k=1

UikskV
∗
kj, (17)

where the singular values are assumed to be in descending order,
sk ≥ sk+1. Then the optimal rank r tensor B that approximates
A is known from the Eckart–Young–Mirsky theorem [76], which

FIGURE 6 | (A) The singular value decomposition is taken on tensor A across

a bi-partition between its top two and bottom three indices, and is assumed to

produce d non-zero singular values. (B) Tensor B is now defined by truncating

the matrix of singular values S → S̃ to retain only r < d of the largest singular

values, while similarly truncating the matrices of singular vectors, U → Ũ and

V → Ṽ, to retain only the corresponding singular vectors. By the

Eckart–Young–Mirsky theorem [76] it is known that B is the optimal rank-r

approximation to A (across the chosen bi-partition of tensor indices).

states that B is given by truncating to retain only the r largest
singular values and their corresponding singular vectors,

Bij =

r∑

k=1

UikskV
∗
kj. (18)

see also Figure 6. It follows that the error of approximation ε =

‖A− B‖, as measured in the Frobenius norm, is related to the
discarded singular values as

ε =

√∑

k>r

(sk)
2. (19)

If the spectrum of singular values is sharply decaying then the
error is well-approximated by the largest of the discarded singular
values, ε ≈ s(r+1).

Notice that, in the case that the tensor A under consideration
is Hermitian and positive definite across the chosen bi-
partition, that the spectral decomposition could instead be used
in Equation (17). The low-rank approximation obtained by
truncating the smallest eigenvalues would still be guaranteed
optimal, as the spectral decomposition is equivalent to the SVD
in this case.

4.5. Summary: Decompositions
In this section we have described how special types of matrices,
such as unitary matrices and projections, can be generalized to
the case of tensors (which can always be viewed as a matrix
across a chosen bi-partition of their indices). Similarly we have
shown how several concepts from matrices, such as the trace
and the norm, are also generalized to tensors. Finally, we have
described how the optimal low-rank approximation to a tensor
can be obtained via the SVD.

5. GAUGE FREEDOM

All tensor networks possess gauge degrees of freedom;
exploiting the gauge freedom allows one to change the
tensors within a network whilst leaving the final product of
the network unchanged. In this section, we describe methods

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 June 2022 | Volume 8 | Article 806549170

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

FIGURE 7 | (A) An example of a tree tensor network (TTN), here composed of

7 tensors. (B) The three (non-trivial) branches of the tree with respect to

choosing A as the root tensor.

for manipulating the gauge degrees of freedom and discuss the
utility of fixing the gauge in a specific manner.

5.1. Tree Tensor Networks
In this manuscript we shall restrict our considerations of gauge
manipulations to focus only on tensors networks that do not
possess closed loops (i.e., networks that correspond to acyclic
graphs), which are commonly referred to as tree tensor networks
(TTN) [77, 78]. Figure 7A presents an example of a tree tensor
network. If we select a single tensor to act as the center (or
root node) then we can understand the tree tensor network as
being composed of a set of distinct branches extending from this
chosen tensor. For instance, Figure 7B depicts the three branches
(excluding the single trivial branch) extending from the 4th-order
tensor A. It is important to note that connections between the
different branches are not possible in networks without closed
loops; this restriction is required for the re-gauging methods
considered in this manuscript. However these methods can
(mostly) be generalized to the case of networks containing closed
loops by using a more sophisticated formalism as shown in [79].

5.2. Gauge Transformations
Consider a tensor network of multiple tensors that, under
contraction of all internal indices, evaluates to some product
tensorH. We now pose the following question: is there a different
choice of tensors with the same network geometry that also
evaluates to H? Clearly the answer to this question is yes! As
shown below in Figure 8A, on any of the internal indices of the
network one can introduce a resolution of the identity (i.e., a
pair of matrices X and X−1) which, by construction, does not
change the final product that the network evaluates to. However,
absorbing one of these matrices into each adjoining tensor
changes the individual tensors, see Figure 8B, while leaving the
product of the network unchanged. It follows that there are
infinitely many choices of tensors such that the network product
evaluates to some fixed output tensor, since the gauge change
matrix X can be any invertible matrix. This ability to introduce
an arbitrary resolution of the identity on an internal index, while
leaving the product of the network unchanged, is referred to as
the gauge freedom of the network.

While in some respects the gauge freedom could be considered
bothersome, as it implies tensor decompositions are never
unique, it can also be exploited to simplify many types of

FIGURE 8 | (A) Given a network of three tensors {A,B,C}, one can introduce

gauge change matrices X and Y (together with their inverses) on the internal

indices of the network while leaving the final product D of the network

unchanged. (B) Definitions of the new tensors {Ã, B̃, C̃} after the change of

gauge.

operations on tensor networks. Indeed, most tensor network
algorithms require fixing the gauge in a prescribed manner
in order to function correctly. In the following sections we
discuss ways to fix the gauge degree of freedom as to create an
orthogonality center and the benefits of doing so.

5.3. Orthogonality Centers
A given tensor A within a network is said to be an orthogonality
center if every branch connected to tensor A annihilates to the
identity when contracted with its conjugate as shown in Figure 9.
Equivalently, each branch must (collectively) form an isometry
across the bi-partition between its open indices and the index
connected to tensor A. By properly manipulating the gauge
degrees of freedom, it is possible to turn any tensor with a tree
tensor network into an orthogonality center [80].We now discuss
two different methods for achieving this: a “pulling through”
approach, which was a key ingredient in the original formulation
of DMRG [49–51], and a “direct orthogonalization” approach,
which was an important part of the TEBD algorithm [52, 53].

5.3.1. Creating an Orthogonality Center via “Pulling

Through”

Here we describe a method for setting a tensor A within a
network as an orthogonality center through iterative use of the
QR decomposition. The idea behind his method is very simple:
if each individual tensor within a branch is transformed into a
(properly oriented) isometry, then the entire branch collectively
becomes an isometry and thus the tensor at center of the branches
becomes an orthogonality center. Let us begin by orienting each
index of the network by drawing an arrow pointing toward the
desired center A. Then, starting at the tip of each branch, we
should perform a QR decomposition on each tensor based on a
bi-partition between its incoming and outgoing indices. The R
part of the decomposition should then be absorbed into the next
tensor in the branch (i.e., closer to the root tensor A), and the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 June 2022 | Volume 8 | Article 806549171

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

FIGURE 9 | (A) An example of a tree tensor network. (B) A depiction of the constraints required for the tensor A to be an orthogonality center: each of the branches

must annihilate to the identity when contracted with its conjugate.

FIGURE 10 | A depiction of how the tensor A can be made into an orthogonality center of the network from Figure 7 via the “pulling-though” approach. (A,B) Tensors

D and E, which reside at the tips of a branch, are decomposed via the QR decomposition. (C) The R components of the previous QR decompositions are absorbed

into the B tensor higher on the branch, which is then itself decomposed via the QR decomposition. (D) Following this procedure, all tensors in the network are

orthogonalized (with respect to their incoming vs. outgoing indices) such that A′ becomes an orthogonality center of the network.

process repeated as depicted in Figures 10A–C. At the final step
an R part of the QR decomposition from each branch is absorbed
into the central tensor A and the process is complete, see also
Figure 10D.

Note that the SVD could be used as an alternative to the
QR decomposition: instead of absorbing the R part of the QR
decomposition into the next tensor in the branch one could
absorb the product of the S and V part of the SVD from Equation
(12). However, in practice, the QR decomposition is most often
preferable as it computationally cheaper than the SVD.

5.3.2. Creating an Orthogonality Center via “Direct

Orthogonalization”

Here we describe a method for setting a tensor A within a
network as an orthogonality center based on use of a single
decomposition for each branch, as depicted in Figure 11. (i)
We begin by computing the positive-definite matrix ρ for each

branch (with respect to the center tensor A) by contracting the
branch with its Hermitian conjugates. (ii) The principle square
root X of each of the matrices ρ is then computed, i.e., such
that ρ = XX†, which can be computed using the spectral
decomposition if necessary. (iii) Finally, a change of gauge is
made on each of the indices of tensor A using the appropriate
X matrix and its corresponding inverse X−1, with the X part
absorbed in tensor A and the X−1 absorbed in the leading
tensor of the branch such that the branch matrix transforms as
ρ → ρ̃ = X−1ρ(X−1)†. It follows that the tensor A is now an
orthogonality center as each branch matrix ρ̃ of the transformed
network evaluates as the identity,

ρ̃ = X−1ρ(X−1)† = X−1XX†(X−1)† = I. (20)

Note that, for simplicity, we have assumed that the branch
matrices ρ do not have zero eigenvalues, such that their inverses

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 June 2022 | Volume 8 | Article 806549172

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

exist. Otherwise, if zero eigenvalues are present, the current
method is not valid unless the index dimensions are first reduced
by truncating any zero eigenvalues.

5.3.3. Comparison of Methods for Creating

Orthogonality Centers

Each of the two methods discussed to create an orthogonality
center have their own advantages and disadvantages, such that
the preferred method may depend on the specific application
under consideration. In practice, the “direct orthogonalization”
is typically computationally cheaper and easier to execute,
since this method only requires changing the gauge on the
indices connected to the center tensor. In contrast the “pulling
through” method involves changing the gauge on all indices
of the network. Additionally, the “direct orthogonalization”

approach can easily be employed in networks of infinite extent,
such as infinite MPS [52, 53], if the matrix ρ associated to
a branch of infinite extent can be computed using by solving
for a dominant eigenvector. While “pulling through” can also
potentially be employed for networks of infinite extent, i.e.,
through successive decompositions until sufficient convergence
is achieved, this is likely to be more computationally expensive.
However the “pulling through” approach can be advantageous
if the branch matrices ρ are ill-conditioned as the errors due
to floating-point arithmetic are lesser. This follows since the
“direct orthogonalization” requires one to square the tensors
in each branch. The “pulling-through” approach also results in
transforming every tensor in the network (with the exception of
the center tensor) into an isometry, which may be desirable in
certain applications.

FIGURE 11 | A depiction of how the tensor A from the network of Figure 7 can be made into an orthogonality center via the “direct orthogonalization” approach.

(A) A change of gauge is made on every (non-trivial) branch connected to A, such that A becomes an orthogonality center. (B–D) The gauge change matrices

{X1,X2,X3} are obtained by contracting each branch with its Hermitian conjugate and then taking the principle root.

FIGURE 12 | (A) A network of 7 tensors {A,B,C,D,E, F,G} contracts to give a tensor H. (B) After replacing a single tensor A → A′ the network contracts to a

different tensor H′. (C) The tensor A′ is decomposed into a pair of tensors AL and AR, leaving the final tensor H′ unchanged.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 June 2022 | Volume 8 | Article 806549173

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

FIGURE 13 | (A) In the network from Figure 12A, if the tensor A is an orthogonality center then it follows that the norm of the network ‖H‖ is equal to the norm of the

center tensor ‖A‖. (B) Similarly it follows that, in changing only the center tensor A → A′, the global overlap between the networks H and H′ is equal to the local

overlap between the center tensors A and A′.

5.4. Decompositions of Tensors Within
Networks
In Section 4, it was described how the SVD could be applied to
find the optimal low-rank approximation to a tensor in terms
of minimizing the Frobenius norm between the original tensor
and the approximation. In the present section we extend this
concept further and detail how, by first creating an orthogonality
center, a tensor within a network can be optimally decomposed
as to minimize the global error coming from consideration of the
entire network.

Let us consider a tree tensor network of tensors
{A,B,C,D,E, F,G} that evaluates to a tensor H, as depicted
in Figure 12A. We now replace a single tensor A from this
network by a new tensor A′ such that the network now evaluates
to a tensor H′ as depicted in Figure 12B. Our goal is to address
the following question: how can we find the optimal low-rank
approximation A′ to tensor A such that the error from the full
network, ‖H − H′‖, is minimized? Notice that if we follow the
method from Section 4 and simple truncate the smallest singular
values of A, see Figure 12C, then this will only ensure that the

local error, ‖A − A′‖, is minimized. The key to resolving this
issue is through creation of an orthogonality center, which can
reduce the global norm of a network to the norm of a single
tensor. Specifically if tensor A is an orthogonality center of a
network that evaluates to a final tensor H then it follow from
the definition of an orthogonality center that ‖H‖ = ‖A‖, as
depicted in Figure 13A. Thus it also can be seen that under
replacement of the center tensor A with a new tensor A′, such
that the network now evaluates to a new tensor H′, that the
difference between the tensors ‖A − A′‖ is precisely equal to
the global difference between the networks ‖H − H′‖. This
follows as the overlap of H and H′ equals the overlap of A and

A′, as depicted in Figure 13B. In other words, by appropriately
manipulating the gauge degrees of freedom in a network, the

global difference resulting from changing a single tensor in a
network can become equivalent to the local difference between
the single tensors. The solution to the problem of finding the
optimal low-rank approximation A′ to a tensor A within a
network thus becomes clear; we should first adjust the gauge
such that A becomes an orthogonality center, after which we can

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 June 2022 | Volume 8 | Article 806549174

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

follow the method from Section 4 and create the optimal global
approximation (i.e., that which minimizes the global error) by
truncating the smallest singular values of A. The importance of
this result in the context tensor network algorithms cannot be
overstated; this understanding for how to optimally truncate
a single tensor within a tensor network, see also [81], is a key
aspect of the DMRG algorithm [49–51], the TEBD algorithm
[52, 53] and many other tensor network algorithms.

5.5. Summary: Gauge Freedom
In the preceding section, we discussed manipulations of the
gauge degrees of freedom in a tensor network and described two
methods that can be used to create an orthogonality center. The
proper use of an orthogonality center was then demonstrated
to allow one to decompose a tensor within a network in
such a way as to minimize the global error. Note that while
the results in this section were described only for tree tensor
networks (i.e., networks based on acyclic graphs), they can be
generalized to arbitrary networks by using more sophisticated
methodology [79].

6. CONCLUSIONS

Network contractions and decompositions are the twin pillars
of all tensor network algorithms. In this manuscript we
have recounted the key theoretical considerations required for
performing these operations efficiently and also discussed aspects
of their implementation in numeric codes. We expect that

a proper understanding of these results could facilitate an
individuals effort to implement many common tensor network
algorithms, such as DMRG, TEBD, TRG, PEPS and MERA, and
also further aid researchers in the design and development of new
tensor network algorithms.

However, there are still a wide variety of additional
general ideas and methods, not covered in this manuscript,
that are necessary for the implementation of more advanced
tensor network algorithms. These include (i) strategies for
performing variational optimization, (ii) methods for dealing
with decompositions in networks containing closed loops, (iii)
the use of approximations in tensor network contractions. We
shall address several of these topics in a follow-up work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

GE was solely responsible for the preparation of this manuscript.

FUNDING

This work was funded by Institutional Startup Funds.

REFERENCES

1. Cirac JI, Verstraete F. Renormalization and tensor product states in

spin chains and lattices. J Phys A Math Theor. (2009) 42:504004.

doi: 10.1088/1751-8113/42/50/504004

2. Evenbly G, Vidal G. Tensor network states and geometry. J Stat Phys. (2011)

145:891–918. doi: 10.1007/s10955-011-0237-4

3. Orus R. A practical introduction to tensor networks: matrix product

states and projected entangled pair states. Ann Phys. (2014) 349:117.

doi: 10.1016/j.aop.2014.06.013

4. Bridgeman JC, Chubb CT. Hand-waving and interpretive dance: an

introductory course on tensor networks. J Phys A Math Theor. (2017)

50:223001. doi: 10.1088/1751-8121/aa6dc3

5. Montangero S. Introduction to tensor network methods. In: Numerical

Simulations of Low-Dimensional Many-body Quantum Systems. Berlin:

Springer (2018). doi: 10.1007/978-3-030-01409-4

6. Orus R. Tensor networks for complex quantum systems. Nat Rev Phys. (2019)

1:538–50. doi: 10.1038/s42254-019-0086-7

7. Silvi P, Tschirsich F, Gerster M, Junemann J, Jaschke D, Rizzi M, et al. The

tensor networks anthology: simulation techniques for many-body quantum

lattice systems. SciPost Phys. (2019) 8. doi: 10.21468/SciPostPhysLectNotes.8

8. Ran S-J, Tirrito E, Peng C, Chen X, Tagliacozzo L, Su G, et al.

Tensor Network Contractions Methods and Applications to Quantum

Many-Body Systems. Springer (2020). doi: 10.1007/978-3-030-34

489-4

9. Cirac JI, Perez-Garcia D, Schuch N, Verstraete F. Matrix product states

and projected entangled pair states: concepts, symmetries, theorems.

Rev Mod Phys. (2021) 93:045003. doi: 10.1103/RevModPhys.93.04

5003

10. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.

(2009) 51:455–500. doi: 10.1137/07070111X

11. Vidal G, Latorre JI, Rico E, Kitaev A. Entanglement in

quantum critical phenomena. Phys Rev Lett. (2003) 90:227902.

doi: 10.1103/PhysRevLett.90.227902

12. Hastings MB. An area law for one-dimensional quantum systems. J Stat Mech.

(2007) 2007:P08024. doi: 10.1088/1742-5468/2007/08/P08024

13. Eisert J, Cramer M, Plenio M. Area laws for the entanglement entropy - a

review. Rev Mod Phys. (2010) 82:277–306. doi: 10.1103/RevModPhys.82.277

14. Chan GKL, Sharma S. The density matrix renormalization group

in quantum chemistry. Annu Rev Phys Chem. (2011) 62:465.

doi: 10.1146/annurev-physchem-032210-103338

15. Keller S, Dolfi M, Troyer M, Reiher M. An efficient matrix product operator

representation of the quantum chemical Hamiltonian. J Chem Phys. (2015)

143:244118. doi: 10.1063/1.4939000

16. Szalay S, Pfeffer M, Murg V, Barcza G, Verstraete F, Schneider R, et al.

Tensor product methods entanglement optimization for ab initio. quantum

chemistry. Int J Quant Chem. (2015) 115:1342. doi: 10.1002/qua.24898

17. Chan G K-L, Keselman A, Nakatani N, Li Z, White SR. Matrix product

operators, matrix product states, and ab initio. density matrix renormalization

group algorithms. J Chem Phys. (2016) 145:014102. doi: 10.1063/1.4955108

18. Zhai H, Chan GK-L. Low communication high performance ab initio. density

matrix renormalization group algorithms. J Chem Phys. (2021) 154:224116.

doi: 10.1063/5.0050902

19. Swingle B. Entanglement renormalization and holography. Phys Rev D. (2012)

86:065007. doi: 10.1103/PhysRevD.86.065007

20. Miyaji M, Numasawa T, Shiba N, Takayanagi T, Watanabe K. Continuous

multiscale entanglement renormalization ansatz as holographic

surface-state correspondence. Phys Rev Lett. (2015) 115:171602.

doi: 10.1103/PhysRevLett.115.171602

21. Pastawski F, Yoshida B, Harlow D, Preskill J. Holographic quantum error-

correcting codes: toy models for the bulk/boundary correspondence. J High

Energy Phys. (2015) 6:149. doi: 10.1007/JHEP06(2015)149

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 June 2022 | Volume 8 | Article 806549175

https://doi.org/10.1088/1751-8113/42/50/504004
https://doi.org/10.1007/s10955-011-0237-4
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1007/978-3-030-01409-4
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.21468/SciPostPhysLectNotes.8
https://doi.org/10.1007/978-3-030-34489-4
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1137/07070111X
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1146/annurev-physchem-032210-103338
https://doi.org/10.1063/1.4939000
https://doi.org/10.1002/qua.24898
https://doi.org/10.1063/1.4955108
https://doi.org/10.1063/5.0050902
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/PhysRevLett.115.171602
https://doi.org/10.1007/JHEP06(2015)149
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

22. Hayden P, Nezami S, Qi X-L, Thomas N, Walter M, Yang Z. Holographic

duality from random tensor networks. J High Energy Phys. (2016) 11:009.

doi: 10.1007/JHEP11(2016)009

23. Czech B, Lamprou L, McCandlish S, Sully J. Tensor networks from kinematic

space. J High Energy Phys. (2016) 07:100. doi: 10.1007/JHEP07(2016)100

24. Evenbly G. Hyperinvariant tensor networks and holography. Phys Rev Lett.

(2017) 119:141602. doi: 10.1103/PhysRevLett.119.141602

25. Stoudenmire EM, Schwab DJ. Supervised learning with tensor networks. Adv

Neural Inf Process Syst. (2016) 29:4799–807.

26. Martyn J, Vidal G, Roberts C, Leichenauer S. Entanglement and tensor

networks for supervised image classification. arXiv preprint arXiv:2007.06082.

(2020). doi: 10.48550/arXiv.2007.06082

27. Cheng S, Wang L, Zhang P. Supervised learning with projected entangled

pair states. Phys Rev B. (2021) 103:125117. doi: 10.1103/PhysRevB.103.

125117

28. Liu J, Li S, Zhang J, Zhang P. Tensor networks for unsupervised

machine learning. arXiv preprint arXiv:2106.12974. (2021).

doi: 10.48550/arXiv.2106.12974

29. Liu Y, Li W-J, Zhang X, Lewenstein M, Su G, Ran SJ. Entanglement-based

feature extraction by tensor network machine learning. Front Appl Math Stat.

(2021) 7:716044. doi: 10.3389/fams.2021.716044

30. Fried ES, Sawaya NPD, Cao Y, Kivlichan ID, Romero J, Aspuru-Guzik

A. qTorch: the quantum tensor contraction handler. PLoS ONE. (2018)

13:e0208510. doi: 10.1371/journal.pone.0208510

31. Villalonga B, Boixo S, Nelson B, Henze C, Rieffel E, Biswas R, et al.

A flexible high-performance simulator for verifying and benchmarking

quantum circuits implemented on real hardware. NPJ Quantum Inf. (2019)

5:86. doi: 10.1038/s41534-019-0196-1

32. Schutski R, Lykov D, Oseledets I. Adaptive algorithm for

quantum circuit simulation. Phys Rev A. (2020) 101:042335.

doi: 10.1103/PhysRevA.101.042335

33. Pan F, Zhang P. Simulation of quantum circuits using the big-

batch tensor network method. Phys Rev Lett. (2022) 128:030501.

doi: 10.1103/PhysRevLett.128.030501

34. Levental M. Tensor networks for simulating quantum circuits on

FPGAs. arXiv preprint arXiv preprint arXiv:2108.06831. (2021).

doi: 10.48550/arXiv.2108.06831

35. Vincent T, O’Riordan LJ, Andrenkov M, Brown J, Killoran N, Qi H, et al.

Jet: fast quantum circuit simulations with parallel task-based tensor-network

contraction. Quantum. (2022) 6:709. doi: 10.22331/q-2022-05-09-709

36. Evenbly G, Vidal G. Algorithms for entanglement renormalization. Phys Rev

B. (2009) 79:144108. doi: 10.1103/PhysRevB.79.144108

37. Zhao H-H, Xie Z-Y, Chen Q-N, Wei Z-C, Cai JW, Xiang T.

Renormalization of tensor-network states. Phys Rev B. (2010) 81:174411.

doi: 10.1103/PhysRevB.81.174411

38. Schollwoeck U. The density-matrix renormalization group in the age of

matrix product states.Ann Phys. (2011) 326:96. doi: 10.1016/j.aop.2010.09.012

39. Phien HN, Bengua JA, Tuan HD, Corboz P, Orus R. The iPEPS algorithm,

improved: fast full update and gauge fixing. Phys Rev B. (2015) 92, 035142.

doi: 10.1103/PhysRevB.92.035142

40. Evenbly G. Algorithms for tensor network renormalization. Phys Rev B. (2017)

95:045117. doi: 10.1103/PhysRevB.95.045117

41. Fishman M, White SR, Stoudenmire EM. The ITensor software

library for tensor network calculations. arXiv:2007.14822. (2020).

doi: 10.48550/arXiv.2007.14822

42. Kao Y-J, Hsieh Y-D, Chen P. Uni10: an open-source library for

tensor network algorithms. J Phys Conf Ser. (2015) 640:012040.

doi: 10.1088/1742-6596/640/1/012040

43. Haegeman J. TensorOperations. (2022). Available online at: https://github.

com/Jutho/TensorOperations.jl (accessed April 14, 2022).

44. Hauschild J, Pollmann F. Efficient numerical simulations with Tensor

Networks: Tensor Network Python (TeNPy). SciPost Phys. (2018).

doi: 10.21468/SciPostPhysLectNotes.5

45. Al-Assam S, Clark SR, Jaksch D. The tensor network theory library. J Stat

Mech. (2017) 2017:093102. doi: 10.1088/1742-5468/aa7df3

46. Olivares-Amaya R, HuW, Nakatani N, Sharma S, Yang J, Chan GK-L. The ab-

initio. density matrix renormalization group in practice. J Chem Phys. (2015)

142:034102. doi: 10.1063/1.4905329

47. Roberts C, Milsted A, Ganahl M, Zalcman A, Fontaine B, Zou Y, et al.

TensorNetwork: a library for physics and machine learning. arXiv preprint

arXiv:1905.01330. (2019). doi: 10.48550/arXiv.1905.01330

48. Oseledets V. TT Toolbox. (2014). Available online at: https://github.com/

oseledets/TT-Toolbox (accessed July 7, 2021).

49. White SR. Density matrix formulation for quantum renormalization groups.

Phys Rev Lett. (1992) 69:2863. doi: 10.1103/PhysRevLett.69.2863

50. White SR. Density-matrix algorithms for quantum renormalization groups.

Phys Rev B. (1993) 48:10345. doi: 10.1103/PhysRevB.48.10345

51. Schollwoeck U. The density-matrix renormalization group. Rev Mod Phys.

(2005) 77:259. doi: 10.1103/RevModPhys.77.259

52. Vidal G. Efficient classical simulation of slightly entangled

quantum computations. Phys Rev Lett. (2003) 91:147902.

doi: 10.1103/PhysRevLett.91.147902

53. Vidal G. Efficient simulation of one-dimensional quantum many-body

systems. Phys Rev Lett. (2004) 93:040502. doi: 10.1103/PhysRevLett.93.

040502

54. Verstraete F, Cirac JI. Renormalization algorithms for quantum-many-

body systems in two and higher dimensions. arXiv preprint arXiv:cond-

mat/0407066. doi: 10.48550/arXiv.cond-mat/0407066

55. Verstraete F, Cirac JI, Murg V. Matrix product states, projected entangled

pair states, and variational renormalization group methods for quantum

spin systems. Adv Phys. (2008) 57:143. doi: 10.1080/147899408019

12366

56. Jordan J, Orus R, Vidal G, Verstraete F, Cirac JI. Classical simulation

of infinite-size quantum lattice systems in two spatial dimensions.

Phys Rev Lett. (2008) 101:250602. doi: 10.1103/PhysRevLett.101.

250602

57. Vidal G. A class of quantum many-body states that can

be efficiently simulated. Phys Rev Lett. (2008) 101:110501.

doi: 10.1103/PhysRevLett.101.110501

58. Levin M, Nave CP. Tensor renormalization group approach to two-

dimensional classical lattice models. Phys Rev Lett. (2007) 99:120601.

doi: 10.1103/PhysRevLett.99.120601

59. Xie Z-Y, Chen J, Qin MP, Zhu JW, Yang LP, Xiang T. Coarse-graining

renormalization by higher-order singular value decomposition. Phys Rev B.

(2012) 86:045139. doi: 10.1103/PhysRevB.86.045139

60. Evenbly G, Vidal G. Tensor network renormalization. Phys Rev Lett. (2015)

115:180405. doi: 10.1103/PhysRevLett.115.180405

61. Evenbly G. Tensors.net Website. (2019). Available online at: https://www.

tensors.net (accessed May 10, 2022).

62. Singh S, Pfeifer RNC, Vidal G. Tensor network decompositions in

the presence of a global symmetry. Phys Rev A. (2010) 82:050301.

doi: 10.1103/PhysRevA.82.050301

63. Singh S, Pfeifer RNC, Vidal G. Tensor network states and algorithms in

the presence of a global U(1) symmetry. Phys Rev B. (2011) 83:115125.

doi: 10.1103/PhysRevB.83.115125

64. Weichselbaum A. Non-abelian symmetries in tensor networks: a

quantum symmetry space approach. Ann Phys. (2012) 327:2972–3047.

doi: 10.1016/j.aop.2012.07.009

65. Sharma S. A general non-Abelian density matrix renormalization group

algorithm with application to the C2 dimer. J Chem Phys. (2015) 142:024107.

doi: 10.1063/1.4905237

66. Keller S, Reiher M. Spin-adapted matrix product states and operators. J Chem

Phys. (2016) 144:134101. doi: 10.1063/1.4944921

67. Nataf P, Mila F. Density matrix renormalization group simulations of

SU(N) Heisenberg chains using standard Young tableaus: fundamental

representation and comparison with a finite-size Bethe ansatz. Phys Rev B.

(2018) 97:134420. doi: 10.1103/PhysRevB.97.134420

68. Schmoll P, Singh S, Rizzi M, Oras R. A programming guide for tensor

networks with global SU(2) symmetry. Ann Phys. (2020) 419:168232.

doi: 10.1016/j.aop.2020.168232

69. Pfeifer RNC, Haegeman J, Verstraete F. Faster identification of optimal

contraction sequences for tensor networks. Phys Rev E. (2014) 90:033315.

doi: 10.1103/PhysRevE.90.033315

70. Pfeifer RNC, Evenbly G. Improving the efficiency of variational

tensor network algorithms. Phys Rev B. (2014) 89, 245118.

doi: 10.1103/PhysRevB.89.245118

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 June 2022 | Volume 8 | Article 806549176

https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1007/JHEP07(2016)100
https://doi.org/10.1103/PhysRevLett.119.141602
https://doi.org/10.48550/arXiv.2007.06082
https://doi.org/10.1103/PhysRevB.103.125117
https://doi.org/10.48550/arXiv.2106.12974
https://doi.org/10.3389/fams.2021.716044
https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1103/PhysRevA.101.042335
https://doi.org/10.1103/PhysRevLett.128.030501
https://doi.org/10.48550/arXiv.2108.06831
https://doi.org/10.22331/q-2022-05-09-709
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1103/PhysRevB.81.174411
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevB.92.035142
https://doi.org/10.1103/PhysRevB.95.045117
https://doi.org/10.48550/arXiv.2007.14822
https://doi.org/10.1088/1742-6596/640/1/012040
https://github.com/Jutho/TensorOperations.jl
https://github.com/Jutho/TensorOperations.jl
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.1088/1742-5468/aa7df3
https://doi.org/10.1063/1.4905329
https://doi.org/10.48550/arXiv.1905.01330
https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/TT-Toolbox
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.48550/arXiv.cond-mat/0407066
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevLett.115.180405
https://www.tensors.net
https://www.tensors.net
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevB.83.115125
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1063/1.4905237
https://doi.org/10.1063/1.4944921
https://doi.org/10.1103/PhysRevB.97.134420
https://doi.org/10.1016/j.aop.2020.168232
https://doi.org/10.1103/PhysRevE.90.033315
https://doi.org/10.1103/PhysRevB.89.245118
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Evenbly Numerical Implementation of Tensor Networks

71. Dudek JM, Duenas-Osorio L, Vardi MY. Efficient contraction of large tensor

networks for weighted model counting through graph decompositions.

arXiv preprint arXiv:1908.04381v2. (2019). doi: 10.48550/arXiv.1908.

04381

72. Gray J, Kourtis S. Hyper-optimized tensor network contraction. Quantum.

(2021) 5:410. doi: 10.22331/q-2021-03-15-410

73. Pfeifer RNC, Evenbly G, Singh S, Vidal G. NCON: a tensor network

contractor for MATLAB. arXiv preprint arXiv:1402.0939. (2014).

doi: 10.48550/arXiv.1402.0939

74. Horn RA, Johnson CR. Matrix Analysis. Cambridge: Cambridge University

Press (1985). doi: 10.1017/CBO9780511810817

75. Horn RA, Johnson CR. Topics in Matrix Analysis. Cambridge: Cambridge

University Press (1991). doi: 10.1017/CBO9780511840371

76. Eckart C, Young G. The approximation of one matrix by another of lower

rank. Psychometrika. (1936) 1:211–8. doi: 10.1007/BF02288367

77. Shi Y, Duan L, Vidal G. Classical simulation of quantum many-body

systems with a tree tensor network. Phys Rev A. (2006) 74:022320.

doi: 10.1103/PhysRevA.74.022320

78. Tagliacozzo L, Evenbly G, Vidal G. Simulation of two-dimensional quantum

systems using a tree tensor network that exploits the entropic area law. Phys

Rev B. (2009) 80:235127. doi: 10.1103/PhysRevB.80.235127

79. Evenbly G, Gauge fixing, canonical forms and optimal truncations in

tensor networks with closed loops. Phys Rev B. (2018) 98:085155.

doi: 10.1103/PhysRevB.98.085155

80. Holtz S, Rohwedder T, Schneider R. The alternating linear scheme for

tensor optimization in the tensor train format. SIAM J Sci Comput. (2012)

34:A683–713. doi: 10.1137/100818893

81. Zhang Y, Solomonik E. On stability of tensor networks and canonical forms.

arXiv preprint arXiv:2001.01191. (2020). doi: 10.48550/arXiv.2001.01191

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Evenbly. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 June 2022 | Volume 8 | Article 806549177

https://doi.org/10.48550/arXiv.1908.04381
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.48550/arXiv.1402.0939
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1017/CBO9780511840371
https://doi.org/10.1007/BF02288367
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/PhysRevB.80.235127
https://doi.org/10.1103/PhysRevB.98.085155
https://doi.org/10.1137/100818893
https://doi.org/10.48550/arXiv.2001.01191
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

TECHNOLOGY AND CODE
published: 06 July 2022

doi: 10.3389/fams.2022.838601

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 July 2022 | Volume 8 | Article 838601

Edited by:

Paolo Bientinesi,

Umeå University, Sweden

Reviewed by:

Matthew Fishman,

Simons Foundation, United States

Devin Matthews,

Southern Methodist University,

United States

*Correspondence:

Dmitry I. Lyakh

quant4me@gmail.com

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 18 December 2021

Accepted: 15 June 2022

Published: 06 July 2022

Citation:

Lyakh DI, Nguyen T, Claudino D,

Dumitrescu E and McCaskey AJ

(2022) ExaTN: Scalable

GPU-Accelerated High-Performance

Processing of General Tensor

Networks at Exascale.

Front. Appl. Math. Stat. 8:838601.

doi: 10.3389/fams.2022.838601

ExaTN: Scalable GPU-Accelerated
High-Performance Processing of
General Tensor Networks at Exascale
Dmitry I. Lyakh 1*, Thien Nguyen 2, Daniel Claudino 2, Eugene Dumitrescu 3 and

Alexander J. McCaskey 4

1Oak Ridge National Laboratory, National Center for Computational Sciences, Oak Ridge, TN, United States, 2Computer

Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States, 3Computational Science

and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States, 4NVIDIA Corporation, Santa Clara,

CA, United States

We present ExaTN (Exascale Tensor Networks), a scalable GPU-accelerated C++ library

which can express and process tensor networks on shared- as well as distributed-

memory high-performance computing platforms, including those equipped with GPU

accelerators. Specifically, ExaTN provides the ability to build, transform, and numerically

evaluate tensor networks with arbitrary graph structures and complexity. It also provides

algorithmic primitives for the optimization of tensor factors inside a given tensor network

in order to find an extremum of a chosen tensor network functional, which is one of the

key numerical procedures in quantummany-body theory and quantum-inspired machine

learning. Numerical primitives exposed by ExaTN provide the foundation for composing

rather complex tensor network algorithms. We enumerate multiple application domains

which can benefit from the capabilities of our library, including condensed matter

physics, quantum chemistry, quantum circuit simulations, as well as quantum and

classical machine learning, for some of which we provide preliminary demonstrations

and performance benchmarks just to emphasize a broad utility of our library.

Keywords: tensor network, quantum many-body theory, quantum computing, quantum circuit, high performance

computing, GPU

1. INTRODUCTION

Tensor networks have recently grown into a powerful and versatile tool for capturing and
exploiting low-rank structure of rather diverse high-dimensional computational problems.
A properly constructed tensor network, that is, a specific contraction of low-order/low-
rank tensors forming a higher-order/higher-rank tensor, is capable of exposing the essential
correlations between the components of the tensorized Hilbert space in which the solution
to a given problem lives. The traditional application is quantum many-body theory where
the exact quantum many-body wave-function is a vector in a high-dimensional Hilbert
space constructed as a direct (tensor) product of elementary Hilbert spaces associated with
individual quantum degrees of freedom. Having its roots in condensed matter physics, the
structure of a tensor network is normally induced by the geometry of the problem (e.g.,
geometry of a spin lattice) and a suitably chosen renormalization procedure, reflecting the
structure of the many-body entanglement (correlation) between quantum degrees of freedom

178

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.838601
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.838601&domain=pdf&date_stamp=2022-07-06
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:quant4me@gmail.com
https://doi.org/10.3389/fams.2022.838601
https://www.frontiersin.org/articles/10.3389/fams.2022.838601/full

Lyakh et al. ExaTN

(e.g., spins, bosons, fermions). The well-known tensor network
architectures from condensed matter physics include the matrix-
product state (MPS) [1, 2] or tensor train (TT) [3], the
projected entangled pair state (PEPS) [4], the tree tensor network
(TTN) [5], and the multiscale entanglement renormalization
ansatz (MERA) [6]. Not surprisingly, similar tensor network
architectures have also been successfully utilized in quantum
chemistry for describing electron correlations in molecules [7],
[8], where individual molecular orbitals form quantum degrees
of freedom (similar to spin sites in quantum lattice problems).
Furthermore, tensor networks have found a prominent use in
quantum circuit simulations, where they can be used for both the
direct quantum circuit contraction [9–11] as well as approximate
representations of the multi-qubit wave-functions and density
matrices during their evolution [12–15], which reduces the
computational cost of the simulation. Tensor networks have also
found a prominent use in loading data into quantum circuits [16].

The ability of tensor networks to provide an efficient low-
rank representation of high-dimensional tensors has recently
spurred a number of applications in data analytics and machine
learning. For example, tensor networks can be used for the tensor
completion problem [17] or for the compression of the fully-
connected deep neural network layers [18]. It was also shown
that tensor networks can be employed in classification tasks
(e.g., image classification) instead of deep neural networks [19–
22]. Additionally, generative quantum machine learning can also
benefit from tensor network representations [23].

Such a broad class of successful applications has resulted in
a need for efficient software libraries [24] providing necessary
primitives for composing tensor network algorithms. Apart
from a plethora of basic tensor processing libraries, which
are not the focus here, a number of specialized software
packages have been developed recently, directly addressing the
tensor network algorithms (in these latter software packages
a tensor network is the first-class citizen). The ITensor
library has been widely adopted in the quantum physics
community [25], in particular because of its advanced support
of abelian symmetries in tensor spaces. ITensor provides a
rather rich set of features mostly targeting the density matrix
renormalization group (DMRG) based algorithms executed on a
single computer core/node (a recently introduced Julia version
of ITensor brought in the GPU support). A more recent
TensorTrace library focuses on more complex tensor network
architectures, like MERA, and provides a nice graphical interface
for building tensor networks [26] [the primary backend of
TensorTrace is NCON [27]]. Another library gaining some
popularity in condensed matter physics is TeNPy [28]. The
CTF library [29] has been used to implement a number of
advanced tensor network algorithms capable of running on
distributed HPC systems [30, 31], also providing support for
higher-order automated differentiation [31]. Perhaps the most
advanced Python library for tensor network construction and
processing is Quimb [32], which has been used in a number
of diverse applications. Importantly, Quimb also supports
distributed execution, either directly via MPI or via the DASK
framework [33]. It also supports GPU execution via JAX [34].
Another Python library for performing tensor decompositions is

TensorLy [35] which is mostly used in machine learning tasks. A
more recent tensor network library is TensorNetwork [36], which
is built on top of the TensorFlow framework aimed at quantum
machine learning tasks.

Our C++ library ExaTN [37] has been independently
developed in the recent years, with a main focus on high
performance computing on current and future leadership
computing platforms, in particular those equipped with
GPU accelerators. The ExaTN library is not biased to any
particular application domain and is rather general in the
type of tensor networks that can be constructed, manipulated,
and processed. It also provides several higher-level data
structures and algorithms that can be used for remapping
standard linear algebra problems to arbitrary tensor network
manifolds. In this paper, we report the core functionality of
ExaTN and show some initial demonstrations and performance
benchmarks. To our knowledge, ExaTN provides one of the
richest set of features for tensor network computations in C++,
combined with native asynchronous parallel processing
capabilities with support of distributed computing and
GPU acceleration.

2. EXATN LIBRARY

2.1. Tensor Network Structures
The C++ API of ExaTN consists of two main groups
of functions: declarative API and executive API. The
declarative API functions (provided by multiple headers in
src/numerics within the exatn::numerics namespace)
are used for constructing and transforming tensor-based data
structures, whereas the executive API functions (collected
in the src/exatn/exatn_numerics.hpp header)
are used for numerical processing (evaluation) of the
constructed tensor-based data structures. Such separation
of concerns enables a low-overhead manipulation with
complex tensor networks consisting of tensors of arbitrary
shape and size. The tensor storage allocation and the actual
numerical computation is only performed when explicitly
requested. Importantly, the specifics of the tensor storage
and processing is completely transparent to the user, keeping
the focus on the expression of the domain-specific numerical
tensor algorithms without unnecessary exposure to the
execution details.

The main basic object of the ExaTN library is
exatn::Tensor (defined in tensor.hpp), which is
an abstraction of the mathematical tensor. Loosely, we define a
tensor Tabc...

ijk...
as a multi-indexed vector living in a linear space

constructed as a direct product of basic (single-index) vector
spaces. From the numerical point of view, a tensor (e.g., Tabc

ijk
)

can simply be viewed as a multi-dimensional array of real or
complex numbers, T[a,b,c,i,j,k]. exatn::Tensor is
defined by the following attributes:

• Name: Alphanumeric with optional underscores;
• Shape: Total number of tensor dimensions and their extents;
• Signature (optional): Identifies the tensor as a specific slice of

a larger tensor, if needed;

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 July 2022 | Volume 8 | Article 838601179

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

Since an exatn::Tensor is subject to
asynchronous processing, it must always be created as
std::shared_ptr<exatn::Tensor> (a helper function
exatn::makeSharedTensor is provided for convenience),
for example:

#include ‘‘exatn.hpp’’
auto my_tensor = exatn::makeSharedTensor(‘‘MyTensor

’’,TensorShape{16,8,42});

In addition to the array-like tensor shape constructors, the
ExaTN library also defines explicitly the concept of a vector space
and subspace (spaces.hpp), enabling an optional definition of
tensor dimensions over specific (named) vector spaces/subspaces
which are expected to be defined and registered by the user
beforehand (custom tensor signature). Otherwise, the tensor
signature is simply specified by a tuple of base offsets defining
the location of a tensor slice inside a larger tensor (defaults to a
tuple of zeros). For example,

auto tensor_slice = makeSharedTensor("MyTensorSlice"
,TensorShape{12,8,20},TensorSignature{4,0,10});

defines a tensor slice [4:12,0:8,10:20] where each pair is
Start_Offset:Extent.

Necessitated by many applications, ExaTN also enables the
specification of the isometric groups of tensor dimensions. An
isometric group is formed by one or more tensor dimensions
such that a contraction over these dimensions with the complex-
conjugate tensor results in the identity tensor over the remaining
dimensions coming from both tensors, for example:

T†
ijmnTklmn = δij,kl (1)

where mn is an isometric group of indices (a summation over
mn is implied). The identity tensor is just the identity map
between the two groups of indices left after contraction over
the isometric group of indices. A tensor can have either a single
isometric group of dimensions or at most two such groups which
together comprise all tensor dimensions, in which case the tensor
is unitary, that is, in addition to Equation (1) we will also have:

T†
mnijTmnkl = δij,kl (2)

In order to register an isometric index group, one will need
to invoke the registerIsometry method specifying the
corresponding tuple of tensor dimensions (for example, first two
dimensions of MyTensor):

my_tensor->registerIsometry({0,1});

ExaTN is capable of automatically identifying tensor contractions
containing tensors with isometric index groups and subsequently
simplifying them without computation by using rules analogous
to (1) and (2). Apart from accounting for isometries, in a more
general case, the current processing backend does not yet provide
a special treatment for diagonal tensors of other kinds or other
types of tensor sparsity (future work).

Of all basic tensor operations, tensor contraction is the most
important operation in the tensor network calculus. A general
contraction of two tensors can be expressed as

Di1i2 ...iN = Lk1k2 ...kM ij1 ij2 ...ijL
Rk1k2 ...kM ijL+1 ijL+2 ...ijN

(3)

up to an arbitrary permutation of indices inside each tensor,
where a summation over all r.h.s-only indices is implied. The
opposite operation, i.e., tensor decomposition, which decomposes
a tensor into a contracted product of two tensors, is also
supported by ExaTN. A tensor network, that is, a specific
contraction of two or more tensors [2], is represented by the
exatn::TensorNetwork class (tensor_network.hpp).
Following the standard graphical notation illustrated in Figure 1,
a tensor is graphically represented as a vertex with a number
of directed or undirected edges, where each edge is uniquely
associated with a specific tensor dimension (index), also called
mode. A contraction over a pair of dimensions (modes) coming
from two different tensors is then represented by a shared edge
between two vertices associated with those tensors. In this case, a
tensor network is generally represented as a directed multi-graph
(note that Figure 1 shows only undirected edges). In some cases,
one may also need to consider tensor networks containing hyper-
contractions, that is, simultaneous contractions of three or more
dimensions (modes) coming from the same or multiple tensors
that are labeled by the same index (hyper-edge). In such a case,
the tensor network is generally represented as a directed multi-
hypergraph in which some (hyper)-edges may connect more than
two vertices. Currently, ExaTN does not support construction of
general tensor hypergrahs, although it does support execution of
pairwise pieces of tensor hyper-contractions, for example

Di1i2j1 = Li1k1j1Rj1i2k1 , (4)

where index j1 is not summed over as it is present in the
l.h.s. tensor as well (only the r.h.s.-only indices are implicitly
summed over in our notation). We should note that tensor
hypergraphs can always be converted to regular tensor graphs
(tensor networks) by inserting order-3 Kronecker tensors which
will convert all hyper-edges into regular edges connected to the
Kronecker tensors.

An exatn::TensorNetwork object is constructed from
one or more tensors called input tensors. Additionally, the
ExaTN library automatically appends the so-called output
tensor to each tensor network, which simply collects all
uncontracted tensor dimensions from the input tensors. The
total number of input tensors in a tensor network defines
its size. The order of the output tensor defines the order
of the tensor network. Additionally, one can also specify
whether a tensor network describes a manifold in the primary
(ket) or dual (bra) tensor space. ExaTN provides multiple
ways for building a tensor network (see the placeTensor,
appendTensor, and appendTensorGate methods in
“tensor_network.hpp” for details). The most general way
is to append tensors one-by-one by explicitly specifying their
connectivity, i.e., connections between dimensions of distinct
tensors via graph edges (placeTensor). In this way, one

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 July 2022 | Volume 8 | Article 838601180

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

FIGURE 1 | Graphical diagrams representing tensors and tensor operations.

can construct an arbitrarily complex tensor network but this
gradual constructionmechanism has to be fully completed before
a tensor network can be used. As an alternative, ExaTN also
allows gradual construction of tensor networks where each
intermediate tensor network is also a valid tensor network that
can be used immediately. This is achieved by appending new
input tensors by pairing their dimensions with those of the
current output tensor, thus indirectly linking the input tensors
to a desired network connectivity graph (appendTensor and
appendTensorGate). Finally, exatn::TensorNetwork
class also accepts user-defined custom builders (OOP builder
pattern), that is, concrete implementations of an abstract
OOP builder interface (exatn::NetworkBuilder) that are
specialized for the construction of a desired tensor network
topology (like MPS, TTN, PEPS, MERA, etc.) in one shot.

There are a number of transformation methods provided by
the exatn::TensorNetwork class. These include inserting
new tensors in the tensor network, deleting tensors from the
tensor network, merging two tensors in the tensor network,
splitting a tensor inside the tensor network into two tensors,
combining two tensor networks into a larger tensor network,
identifying and removing identities caused by the isometric
tensor pairs, etc. All these are manipulations on abstract tensors
that are not concerned with an immediate numerical evaluation
(and storage). However, numerical evaluation of the tensor

network, that is, evaluation of the output tensor of that tensor
network, or any other necessary numerical operation can be
performed at any stage via the executive API. Importantly,
numerical evaluation of a tensor network requires determination
of a cost-optimal tensor contraction path which prescribes the
order in which the input tensors of the tensor network are
contracted. The cost function is typically the total Flop count,
but it can be more elaborate (Flop count balanced with memory
requirements and/or arithmetic intensity). There is no efficient
algorithm capable of determining the true optimum for a general
case, but some efficient heuristics exist [38, 39]. For the sake
of generality, ExaTN provides an abstract interface for the
tensor contraction path finder that can bind to any concrete
user-provided implementation of a desired contraction path
optimization algorithm. The default optimization algorithm used
by ExaTN is a simplified variant of the recursive multi-level
graph partitioning algorithm from [38] implemented via the
graph partitioning library Metis [40] (without Bayesian hyper-
parameter optimization). Users who use NVIDIA CUDA can
also leverage the cuQuantum::cuTensorNet library 1 which is
fully integrated with ExaTN as an optional dependency. It
delivers the state-of-the-art quality as well as performance in
contraction path searches (in addition to highly-efficient tensor

1https://docs.nvidia.com/cuda/cuquantum/cutensornet/index.html

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 July 2022 | Volume 8 | Article 838601181

https://docs.nvidia.com/cuda/cuquantum/cutensornet/index.html
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

contraction execution). There is also an experimental binding to
CoTenGra [38] (in a separate branch of ExaTN).

Importantly, apart from constructing and processing
individual tensor networks, ExaTN also provides API for
constructing and processing linear combinations of tensor
networks, implemented by the exatn::TensorExpansion
class (tensor_expansion.hpp). Specifically, a tensor
network expansion is a linear combination of tensor networks
of the same order and output shape (an example is illustrated
in Figure 2A). A tensor network expansion can be constructed
by gradually appending individual tensor networks with their
respective complex coefficients. Numerical evaluation of a tensor
network expansion results in computing the output tensor of
each individual tensor network component, followed by the
accumulation of all computed output tensors which have the
same shape. ExaTN also provides API for constructing the
inner and outer products of two tensor network expansions.
By design, a given tensor network expansion either belongs
to the primary (ket) or to the dual (bra) tensor space where
it defines a tensor network manifold (a manifold of tensors
which can be represented by the given tensor network or
tensor network expansion exactly). In order to introduce
the operator algebra on such tensor network manifolds,
ExaTN provides the exatn::TensorOperator class
(tensor_operator.hpp). A tensor network operator is a
linear combination of tensor networks in which additionally
the dimensions of the output tensor in each tensor network are
individually assigned to either the ket or the bra tensor spaces (an
example is illustrated in Figure 2B). Thus, such a tensor network
operator defines an operator manifold, establishing a map
between the ket and bra tensor spaces populated by the tensor
network manifolds defined by the tensor network expansions.
Naturally, ExaTN provides API for applying arbitrary tensor
network operators to arbitrary tensor network expansions and
for defining matrix elements of tensor network operators with
respect to arbitrary ket and bra tensor network expansions, that
is, in Dirac notation:

MatrixElement(i, j) = 〈TensorExpansion(i)|TensorOperator|

TensorExpansion(j)〉, (5)

In this construction, a tensor network expansion replaces the
notion of a vector, and a tensor network operator replaces the
notion of a linear operator: A tensor network operator maps
tensor network expansions (tensor network manifolds) from
one tensor space to tensor network expansions (tensor network
manifolds) in another (or same) tensor space.

In many applications of tensor networks the computational
problem lies in the optimization of a suitably chosen tensor
network functional to find its extreme values. In ExaTN,
a tensor network functional is defined as a tensor network
expansion of order 0 (scalar), thus having no uncontracted
edges. By optimizing the individual tensor factors inside the
given tensor network functional, one can find its extrema
using gradient-based optimization techniques. This requires
computing the gradient of the tensor network functional
with respect to each optimized tensor. ExaTN provides API

FIGURE 2 | (A) An example of a tensor network expansion as a linear

combination of two tensor networks of the same order; (B) An example of a

tensor network operator as a linear combination of two tensor networks with

open legs establishing a map between the ket and bra spaces.

for computing the gradient of an arbitrary tensor network
functional with respect to any given tensor. Furthermore, ExaTN
implements numerical procedures that can efficiently project
a tensor network expansion living on one tensor network
manifold to a tensor network expansion living on another tensor
network manifold, as well as solve linear and eigen systems
defined on arbitrary tensor network manifolds. This higher-level
functionality, however, is not the focus of the current paper and
will be described elsewhere.

2.2. Tensor Network Processing
Processing of tensors, tensor networks and tensor expansions
is done via the executive API (exatn_numerics.hpp)
by the ExaTN parallel runtime (ExaTN-RT). The
ExaTN parallel runtime provides a fully asynchronous
execution of basic numerical tensor operations extending
the abstract exatn::TensorOperation class
(tensor_operation.hpp), in particular tensor creation,
tensor destruction, tensor initialization, tensor transformation,
tensor norm evaluation, tensor copy/slicing/insertion,
tensor addition, tensor contraction, tensor decomposition
(via the singular value decomposition of the tensor
matricization), and some tensor communication/reduction
operations. Additionally, new user-defined numerical
tensor operations can be implemented either via
extending the exatn::TensorTransformation
class (for unary tensor transformations) or via extending
the abstract exatn::TensorOperation class
(tensor_operation.hpp) for more general operations
(non-unary).

The executive API can be used for submitting individual basic
tensor operations as well as entire tensor networks and tensor
network expansions for their numerical evaluation. The latter

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 July 2022 | Volume 8 | Article 838601182

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

are first decomposed into basic tensor operations which are then
submitted to the ExaTN runtime for asynchronous processing.
The synchronization is done by either synchronizing on a desired
tensor (to make sure all update operations have completed on
that particular tensor) or synchronizing all outstanding tensor
operations previously submitted to the ExaTN runtime (barrier
semantics). Few examples:

include "exatn.hpp"

//Declare tensors:
auto tensor_A = exatn::makeSharedTensor("A",

TensorShape{12,8,20});
auto tensor_B = exatn::makeSharedTensor("B",

TensorShape{8,64,20});
auto tensor_C = exatn::makeSharedTensor("C",

TensorShape{64,12});

//Allocate tensor storage:
bool success = true;
success = exatn::createTensor(tensor_A,

TensorElementType::REAL64);
success = exatn::createTensor(tensor_B,

TensorElementType::REAL64);
success = exatn::createTensor(tensor_C,

TensorElementType::REAL64);

//Initialize tensors:
success = exatn::initTensorRnd("A");
success = exatn::initTensorRnd("B");
success = exatn::initTensorRnd("C",0.0);

//Perform tensor contraction (1.0 is a scalar
multiplier):

success = exatn::contractTensors("C(a,b)+=A(b,i,j) * B
(i,a,j)",1.0);

//Declare, allocate, and initialize a new tensor:
auto tensor_D = exatn::makeSharedTensor("D",

TensorShape{12,12});
success = exatn::createTensor(tensor_D,

TensorElementType::REAL64);
success = exatn::initTensorRnd("D",0.0);

//Evaluate a tensor network:
success = exatn::evaluateTensorNetwork("MyNetwork","

D(a,b)+=A(b,i,j) * B(i,k,j) * C(k,a)");

//Sync all submitted tensor operations to this point
(barrier):

success = exatn::sync();

In the above code snippet, all executive API calls are non-blocking
(except exatn::sync). All submitted tensor operations will
be complete after return from the exatn::sync call. When
submitted for processing, tensor operations are appended to
the dynamic directed acyclic graph (DAG) stored inside the
ExaTN runtime. The dynamic DAG is tracking data (tensor)
dependencies automatically, thus avoiding race conditions.
Inside the ExaTN runtime, the DAG is being constantly traversed
by the ExaTN graph executor which identifies dependency-
free tensor operations and submits them for execution by the
ExaTN node executor. The ExaTN graph executor implements
the OOP visitor pattern where the visitor (ExaTN node executor)
visits/executes DAG nodes (tensor operations) by implementing

overloads of the execute method for each supported tensor
operation. The default implementation of the polymorphic
ExaTN node executor interface is backed by the tensor processing
library TAL-SH [41]. However, other tensor processing backends
can also be easily plugged-in as long as they provide the
implementation of all required basic tensor operations. The
default TAL-SH tensor processing backend supports concurrent
execution of basic tensor operations on multicore CPU as well as
single/multiple NVIDIA or AMD GPU (AMD support is largely
experimental at the ExaTN level). TAL-SH provides an automatic
tensor storage and residence management within the combined
Host+GPU memory pool, supporting a fully asynchronous
execution on GPUs. In particular, a tensor contraction involving
large tensors can be executed on multiple GPUs using the entire
Host memory pool. The selection of the execution device is
performed by the TAL-SH library automatically during run
time, based on tensor sizes, flop count (and possibly arithmetic
intensity), and current data residence (data locality). The default
GPU tensor contraction algorithm is based on the matrix-
matrix multiplication (e.g., via cuBLAS) accompanied by an
optimized tensor transpose algorithm [42, 43]. Optionally, the
default tensor contraction implementation can be swapped with
the NVIDIA cuTENSOR backend2 integrated with the TAL-
SH library as an external dependency specifically for NVIDIA
GPU. Finally, we have recently integrated ExaTN with the
cuQuantum::cuTensorNet library1 that allows ExaTN to process
a whole tensor network in one shot, with superior performance
in both the contraction path search and actual numerical
computation on NVIDIA GPUs.

During the execution of tensor workloads, the storage and
execution details are completely hidden from the user (client).
The only data exchange between the client and the runtime
occurs when the client is initializing a tensor with some
data or retrieving tensor data back to the user space. The
tensor initialization accepts real or complex scalars or arrays
of single or double precision. The tensor retrieval requires
tensor synchronization and returns a C++ talsh::Tensor
object defined in the talshxx.hpp header of the TAL-SH
library [41]. A tensor can be retrieved either in whole or in part
(by a slice), but in both cases it is just a copy of the tensor (or its
slice). Tensors can also be stored on disk.

The ExaTN library also supports distributed execution
across many (potentially GPU-accelerated) compute nodes via
the MPI interface. Currently, there are multiple levels of
distributed parallelism. At the most coarse level, a tensor
network expansion submitted for numerical evaluation across
multiple MPI processes can distribute evaluation of its individual
components (tensor networks) among subgroups of those MPI
processes. Then, each tensor network can be evaluated by
multipleMPI processes within a subgroup in parallel. Specifically,
the intermediate tensors of the tensor network, that is, temporary
tensors which are neither inputs nor outputs of the tensor
network, can be decomposed into smaller slices which can be
computed independently (slices are obtained via segmentation
of tensor dimensions). The complete tensor network evaluation

2https://docs.nvidia.com/cuda/cutensor/index.html

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 July 2022 | Volume 8 | Article 838601183

https://docs.nvidia.com/cuda/cutensor/index.html
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

requires computation of all slices of intermediate tensors that
can be distributed among multiple/many MPI processes, with
a minimal communication at the end (MPI_Allreduce
reduction of the output tensor). The ExaTN library provides an
explicit API for creating and splitting groups of MPI processes
into subgroups, thus providing a multi-level composable
resource isolation mechanism. Additionally, another level of
parallelization is possible by utilizing a distributed tensor
processing backend for basic numerical tensor operations
executed by the ExaTN runtime, which will allow (distributed)
storage of larger tensors but will result in a dense communication
pattern within an executing group of MPI processes.

3. RESULTS AND DISCUSSION

3.1. Condensed Matter Physics Simulations
Quantum-mechanical condensed matter problems are typically
too complex to be addressed by brute-force numerical methods
because the dimension of the matrix representation of the
Hamiltonian grows exponentially with the number of spin
lattice sites. Aside from a small set of exactly solvable
models, which eliminate complexity by exploiting underlying
symmetries and constants of motion, approximate techniques
are needed to address this important class of problems. Mean-
field approximations and low-order perturbation theory are only
appropriate for problems containing relatively limited inter-
particle correlations. Quantum Monte-Carlo is a state-of-the-art
technique but is rendered inefficient in many settings by the
ubiquitous sign problem [44]. Tensor network factorizations,
with complexity varying with dimensionality of the problem and
the system correlation length, constitute an alternative formalism
to describe quantum states in condensed matter systems.
A numerical solution to Wilson’s renormalization group,
specifically for the Kondo impurity problem, was the original
motivation for the matrix-product state (MPS) tensor network
[45], although the explicit MPS structure was not realized until
later [1]. Following the famous density matrix renormalization
group algorithm [45], the numerical optimization consists of a
series of linear algebra operations, including tensor contractions
and singular value decompositions (SVD), which are swept across
the spatial extent of the MPS spin chain [46]. Building on
early MPS developments, a suite of more flexible and advanced
tensor networks have been developed to deal with situations
which are not naturally amenable to the MPS description. For
example, the extension of tensor networks to problems arising
in two spatial dimensions may be addressed by the projected
entangled-pair states (PEPS) [47, 48]. Further modifications of
the MPS formalism have resulted in the tree tensor network
(TTN) [47] and the multiscale entanglement renormalization
ansatz (MERA) [6, 49]. The latter tensor network ansatz can
efficiently represent critical long-range ordered states. Aside from
the variational MPS optimization, real and imaginary time-
evolving block decimation (TEBD) algorithms [50–53] are the
other two algorithms worth mentioning as they provide ways
to deal with dynamical correlations and provide alternative
means for determining quantum eigenstates and sample partition
functions [54], respectively.

FIGURE 3 | Graphical diagram depicting a fragment of the 3:1 MERA tensor

network.

The ExaTN library, combined with standard BLAS/LAPACK
libraries, provides all necessary utilities for implementing
the aforementioned numerical algorithms for arbitrary tensor
network ansaetze, regardless of particular details such as network
topology (as long as it is a graph-based topology). This also
includes numerical algorithms for dealing with formally infinite
(periodic) tensor networks [55]. Typically, all these algorithms
are based on tensor contraction and tensor decomposition
operations, where the latter is traditionally implemented via
tensor matricization and SVD. Figure 3 shows a typical example
of a tensor network fragment (expressed graphically as a many-
body diagram) for the 1D MERA 3:1 ansatz taken from Pfeifer
et al. [56]. Such tensor network fragments are common in
tensor network optimization procedures, representing gradients
of optimization functionals, density matrices, etc. To illustrate
the performance of the ExaTN library, we numerically evaluated
this representative tensor network fragment on 4, 8, 16, 32, 64,
and 128 nodes of the Summit supercomputer (each Summit
node consists of 2 IBM Power 9 CPU with 256 GB RAM
each and 6 NVIDIA V100 GPU with 16 GB RAM each). All
tensor dimensions in this tensor network fragment were set
to have the same extent of 64 (bond as well as lattice site
dimension of 64). Table 1 shows execution times and absolute
performance. We observe both excellent parallel efficiency and
high absolute efficiency when executed in a hybrid CPU+GPU
setting (NVIDIA V100 GPU has a theoretical single-precision
peak at∼15 TFlop/s).

3.2. Quantum Chemistry Simulations
Tensor network methods used in condensed matter physics
have also found many applications in quantum chemistry
[7, 8] by simply remapping molecular (or spin) orbitals to
spin sites while employing ab initio Hamiltonians instead of
model Hamiltonians. However, these ab initio Hamiltonians,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 July 2022 | Volume 8 | Article 838601184

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

TABLE 1 | Performance of numerical evaluation of the 3:1 MERA fragment on

Summit supercomputer.

Number of nodes Time, s Performance, TFlop/s/GPU

4 77.11 10.743

8 38.88 10.716

16 19.96 10.435

32 10.54 10.117

64 5.53 9.637

128 3.96 7.333

Each Summit node has 6 NVIDIA V100 16 GB GPUs. The peak (single-precision)

performance per GPU is around 15 TFlop/s.

although quite accurate, could be numerically costly, limiting
the scope of applicability of such tensor network methods.
Fortunately, chemical properties that are largely governed by
certain physical features can greatly benefit from reduced
(effective) Hamiltonians, where the Hamiltonian is designed
to specifically target the sought chemical property. For
example, certain organic polymers and protein aggregates
exhibit pronounced photochemical activity mediated by weakly-
interacting chromophores [57]. The ab initio treatments in
such cases are often intractable due to an enormous dimension
of the corresponding Hilbert space, and this is aggravated
by the requirement of inclusion of multiple low-lying excited
states. Fortuitously, these problems lend themselves naturally
to the so-called ab initio exciton model (AIEM) [58]. In this
model, each (weakly-interacting) subunit/monomer is initially
described by its own local ab initio Hamiltonian. The fact that
the constituent monomers are spatially separated provides the
justification for the approximations used by the model, namely
(1) cross-fragment fermionic antisymmetry is relaxed, which
means 2-body interactions can be reduced to dipole interactions
between monomers, (2) only nearest-neighbor interactions are
of numerical significance, and (3) the energy eigenspectrum can
be approximated by configuration interaction of tensor products
of ground and several subsequent excited monomer states.
Consequently, the AEIM Hamiltonian can simply be expressed
as a sum of monomer and dimer terms:

Ĥ =
∑

A

hAĤA +
∑

A,B

hABĤA ⊗ ĤB, (6)

where A and B are the subunit (monomer) labels and the
compound index AB sums over nearest-neighbor pairs of
subunits (dimers), with the scalars hA and hAB quantifying
the local and interaction energies, respectively. These
matrix elements are normally computed by a relatively
cheap self-consistent-field method, for example, the density
functional theory.

The workflow involved in the AIEM Hamiltonian can be
briefly summarized as follows: (1) local Hamiltonian is obtained
from monomer quantum chemistry simulations; (2) dipole
interactions between adjacent monomers using the outputs
from (1) are computed; (3) AEIM Hamiltonian is constructed

TABLE 2 | Convergence of the ground state correlation energy with respect to the

maximal bond dimension for the AIEM Hamiltonian describing a combined system

of 48 2-level chemical fragments.

Max bond dimension Correlation energy, Hartree

1 −1.967

2 −1.983

4 −1.992

8 −1.992

Total Hilbert space dimension is 248.

from computations in (2); (4) AIEM Hamiltonian in (3) is
diagonalized in the space of configurations of tensor products
of individual monomer states. In the simplest case, where only
the first excited state in each monomer is considered, the
eigenspace of Equation (6) is a 2N-dimensional Hilbert space,
with N being the number of monomers, which quickly becomes
intractable with a growing N. However, the weakly entangled
nature of many eigenstates of the AIEM Hamiltonian makes it
an ideal target for approximations based on tensor networks.
Alternatively, when a stronger entanglement is present, the AIEM
Hamiltonian is a prospect application for quantum computing
by exploring the isomorphism between the AIEM Hamiltonian
in k-fold monomer excitations with a spin lattice Hamiltonian
that is immediately expressible in the tensor product space of
k-dimensional qudits [59].

To demonstrate the utility of the ExaTN library in this case,
we implemented a brute-force version of the direct ground-state
search procedure based on a chosen (arbitrary) tensor network
ansatz. Specifically, given the AIEM Hamiltonian and a fully
specified tensor network ansatz, the ExaTN library was used to
minimize the Hamiltonian expectation value by optimizing the
constituting tensors (inside the chosen tensor network ansatz)
using the steepest descent algorithm. For demonstration, we
chose the AIEM model representing a chemical system with 48
2-level fragments (monomers) that can be mapped to 48 qubits,
with the total Hilbert space dimension of 248. We used the binary
planar tensor tree topology for the tensor network ansatz and
limited the maximal bond dimension in the tree to 1, 2, 4, and
8. Table 2 shows the convergence of the obtained ground state
correlation energy with respect to the maximal bond dimension.
As one can see, the mHartree accuracy for the ground electronic
state is already reached at the maximal bond dimension of 4,
showing low entanglement in this weakly-interacting system.
This electronic ground state search in a 248-dimensional Hilbert
space was executed on 16 nodes of Summit supercomputer,
with each iteration of the steepest descent algorithm taking
around 20 s. We should note that in this illustrative example
we did not enforce isometry on the tensors constituting the
tree tensor network used for representing the ground state of
the AIEM Hamiltonian. Further enforcing and exploiting tensor
isometry will significantly reduce the computational cost, making
it possible to treat much larger systems. We should also note
that the convergence of the steepest descent algorithm used here
was rather slow. Alternative algorithms, like conjugate gradient,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 July 2022 | Volume 8 | Article 838601185

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

FIGURE 4 | Quantum circuit simulation by direct contraction of the circuit

tensor network with ExaTN. Qubits are represented as order-1 tensors.

Tensors describing quantum gates are appended to the qubit register

according to the quantum circuit specification. Full contraction of the tensor

network produces the complete wave-function.

FIGURE 5 | ExaTN tensor network for bit-string amplitude computation. The

tensor network representing the input quantum circuit is constructed as

described in Figure 4. Triangular-shaped order-1 tensors are 0/1 tensors,

representing the projected state.

or density matrix renormalization group, or imaginary-time
evolution could potentially result in a faster convergence.

3.3. Simulations of Quantum Circuits
The ExaTN library has also been extensively employed as
a parallel processing backend in the HPC quantum circuit
simulator called TN-QVM [12, 60], one of the virtual quantum
processing unit (QPU) backends available in the hybrid

TABLE 3 | Average GPU performance in evaluation of a single amplitude of the

53-qubit Sycamore 2D random quantum circuit of depth 14.

Computing system Precision Average TFlop/s/GPU

DGX-A100, 8 A100 GPU TF32 34.73

DGX-A100, 8 A100 GPU FP32 15.06

Summit, 64 nodes, 384 V100 GPU FP32 7.99

Dual 64-core AMD Rome CPU FP32 2.98

quantum/classical programming framework XACC [61]. TN-
QVM implements a number of advanced quantum circuit
simulation methods, where each method creates, transforms, and
processes all necessary tensor network objects via the ExaTN
library. Below we briefly discuss the utility of ExaTN in the
implementation of these different simulation methods.

3.3.1. Direct Contraction of Quantum Circuits

In this mode of simulation [9], TN-QVM represents the initial
state of an n-qubit register as a rank-1 product of n order-1
tensors. Then it appends order-2 and order-4 tensors to this
qubit register to simulate single- and two-qubit gates, respectively
(Figure 4). Finally, for each qubit line one can either choose to
keep it open or project it to any 1-qubit state, thus specifying
an output wave-function slice to be computed in a chosen basis,
as shown in Figure 5. Effectively, TN-QVM constructs a tensor
network for

〈9f |Ucircuit|90〉, (7)

where 90 is the initial rank-1 state of the n-qubit register while
9f defines the output wave-function slice.

Once the obtained tensor network is submitted to ExaTN
for parallel processing, the library analyzes the tensor network
graph to heuristically determine the tensor contraction sequence
(contraction path) which is pseudo-optimal in terms of the Flop
count or time to solution (given some performance model). Any
intermediate tensors that require more memory than available
per MPI process are automatically split into smaller slices by
splitting selected tensor modes. The computation of these slices
is distributed across all MPI processes. Intermediate slicing in
principle enables simulation of output amplitudes of arbitrarily
large quantum circuits, that is, the memory constraints are
lifted by the increased execution time. The resulting overhead in
execution time is highly sensitive to the selection of tensor modes
to be sliced, but there exists a rather efficient simple heuristics
[62].

Table 3 illustrates performance of the TN-QVM/ExaTN
software in simulating a single bit-string amplitude of a 2D
random quantum circuit of depth 14 from Google’s quantum
supremacy experiments [63] on different classical HPC hardware
[the performance data is taken from [60]].

3.3.2. Computation of Operator Expectation Values

A ubiquitous use case in quantum circuit simulations is
calculation of the expectation values of measurement operators,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 July 2022 | Volume 8 | Article 838601186

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

FIGURE 6 | ExaTN tensor network for expectation value evaluation using the circuit conjugation technique. Hashed-filled tensors represent the complex conjugates of

the solid-filled counterparts.

which can be done with tensor networks very conveniently. TN-
QVM provides two different methods for this purpose. First is
based on appending the string of measurement operators to the
output legs of the quantum circuit tensor network, followed by
a closure with the conjugate tensor network, as illustrated in
Figure 6. Numerical evaluation of this combined tensor network
delivers the scalar expectation value. All necessary operations
for combining tensor networks and subsequent numerical
evaluation are provided by ExaTN API. Additionally, ExaTN can
intelligently collapse a unitary tensor and its conjugate upon their
direct contact in a tensor network, thus simplifying the tensor
network if the measurement operators are sparse.

The second method is based on wavefunction slicing, where
TN-QVM slices the output wave-function tensor as dictated by
the memory constraints, computes the expectation value for each
slice, and recombines them to form the final result, all done via
the ExaTN API. As compared to the circuit conjugation method,
this approach has an advantage in simulations of deeper quantum
circuits with non-local observables and a moderate number of
qubits. The partial expectation value calculation tasks can be
distributed in a massively parallel manner.

3.3.3. Approximate Evaluation of Quantum Circuits

In addition to exact simulation methods, TN-QVM also provides
the ability to evaluate the quantum circuit wave-function
approximately as a projection on a user-defined tensor network
manifold. Specifically, a user can choose a tensor network
ansatz with arbitrary topology and bond dimensions. Once
the ansatz is chosen, TN-QVM will cut the quantum circuit
into chunks of equal depth and evaluate the action of each
chunk on the chosen tensor network ansatz while remapping
the result back to the same tensor network form (in general,
one should allow tensor network bond dimensions to grow
along the quantum circuit). In this simulation method, the

FIGURE 7 | An example of reconstruction of one (more complex) tensor

network as another (simpler) tensor network by minimizing the Euclidean norm

of the difference.

key procedure is a projection of a given tensor network to a
tensor network manifold of a different form (different topology
and/or bond dimensions), as illustrated in Figure 7 where a
more complex tensor network is approximately reconstructed
by a simpler tensor network. ExaTN provides a simple API
to perform such a reconstruction procedure, implemented
by the exatn::TensorNetworkReconstructor class.
Importantly, the reconstruction procedure also returns the
reconstruction fidelity which can then be used for making
decisions on dynamically increasing the bond dimensions in the
reconstructing tensor network (adaptive tensor networks). The
execution of the tensor network reconstruction automatically
leverages multiple levels of parallelization provided by the ExaTN
parallel runtime as described above.

Another approximate quantum circuit simulation
method implemented in TN-QVM is based on a matrix
product state (MPS) representation of the multi-qubit
wave-function [60] which is evaluated via the classical
contract/decompose algorithm [12]. This algorithm adapts

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 July 2022 | Volume 8 | Article 838601187

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

the simulation accuracy to the available computational resources.
ExaTN provides a convenient MPS builder utility via the
exatn::numerics::NetworkBuilder interface as well
as API for tensor contraction and decomposition.

3.4. Machine Learning
The utility of tensor networks in classical machine learning
was realized relatively recently. Here we can distinguish two
categories of applications: (1) Building machine learning models
with tensor networks, and (2) using tensor networks in
conventional deep neural network models for compressing
the neural network layers. In the first approach, a tensor
network model can be trained to fulfill classification tasks
[19–22]. The input data, for example, an image, is typically
encoded as a direct-product state of many quantum degrees of
freedom, where each quantum degree of freedom corresponds
to a single pixel (in case of images). By optimizing the
tensors constituting the tensor network, one minimizes the
error of the classification. Image classification is particularly
amenable to the tensor network analysis because of the locally
correlated structure of typical images. In the second approach,
tensor networks, i.e., MPS, are used for compressing the
layers of a deep neural network, thus reducing the memory
requirements and introducing regularization in the training
phase [18, 64]. The ExaTN library provides necessary primitives
for both use cases, in particular construction and contraction
of an arbitrary tensor network as well as evaluation of the
gradient of a tensor network functional with respect to a
given tensor. Additionally, the first use case may also benefit
from the availability of the exatn::TensorExpansion
class suitable for representing a linear combination of tensor
networks projected on different instances from the training
data batch.

4. CONCLUSIONS

As demonstrated above, the ExaTN library provides state-of-
the-art capabilities for construction, transformation, and parallel
processing of tensor networks on laptops, workstations, andHPC
platforms, including GPU-accelerated ones, in multiple domains.
Furthermore, building upon regular tensor networks, ExaTN also
introduces higher-level objects, specifically linear combinations
of tensor networks or tensor network operators which serve as
more flexible analogs of tensors and tensor operators living on
differential manifolds instead of regular linear spaces. ExaTN
also provides a general tensor network reconstruction procedure
which can efficiently project any tensor network to another
tensor network of different topology/configuration. Importantly,
these mathematical primitives enable a systematic derivation of
approximate tensor network renormalization schemes as well
as reformulation of linear algebra solvers on low-rank tensor
network manifolds, which is currently an active field of research
in applied math. We are actively working on implementing
such solvers in the ExaTN library, leveraging all benefits of
multi-level parallelization and GPU acceleration provided by the

ExaTN parallel runtime. Another direction of our development
work is further adoption of vendor-provided highly-optimized
math libraries that will enhance the performance of ExaTN on
respective HPC platforms.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: https://github.com/ORNL-QCI/exatn.git.

AUTHOR CONTRIBUTIONS

DL was the technical lead for the research and development
efforts described in this paper, including conceptualization,
algorithm/software design and implementation, simulations, and
manuscript writing. TN was responsible for integrating the
ExaTN library into the TN-QVM simulator as well as performing
actual quantum computing simulations and describing them
in the text. DC was responsible for performing quantum
chemistry simulations and describing them in the text. ED
was responsible for condensed matter physics applications
and relevant text. AM coordinated the ExaTN development
efforts and contributed to software design and implementation.
All authors contributed to the article and approved the
submitted version.

FUNDING

We would like to acknowledge the Laboratory Directed Research
and Development (LDRD) funding provided by the Oak Ridge
National Laboratory (LDRD award 9463) for the core ExaTN
library development efforts. DL, DC, and AM would like to
acknowledge funding by the US Department of Energy Office
of Basic Energy Sciences Quantum Information Science award
ERKCG13/ERKCG23.

ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

LICENSES AND PERMISSIONS

This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy
will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan (http://
energy.gov/downloads/doe-public-access-plan).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 July 2022 | Volume 8 | Article 838601188

https://github.com/ORNL-QCI/exatn.git
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

REFERENCES

1. Schollwöck U. The density-matrix renormalization group in the age of matrix

product states. Ann Phys. (2011) 326:96–192. doi: 10.1016/j.aop.2010.09.012

2. Orús R. A practical introduction to tensor networks: Matrix product

states and projected entangled pair states. Ann Phys. (2014) 349:117–58.

doi: 10.1016/j.aop.2014.06.013

3. Oseledets IV. Tensor-train decomposition. SIAM J Sci Comput. (2011)

33:2295–317. doi: 10.1137/090752286

4. Verstraete F, Cirac JI. Valence-bond states for quantum computation. Phys Rev

A. (2004) 70:060302. doi: 10.1103/PhysRevA.70.060302

5. Shi YY, Duan LM, Vidal G. Classical simulation of quantum many-

body systems with a tree tensor network. Phys Rev A. (2006) 74:022320.

doi: 10.1103/PhysRevA.74.022320

6. Vidal G. Class of quantum many-body states that can be efficiently simulated.

Phys Rev Lett. (2008) 101:110501. doi: 10.1103/PhysRevLett.101.110501

7. Chan GKL, Keselman A, Nakatani N, Li Z, White SR. Matrix product

operators, matrix product states, and ab initio density matrix renormalization

group algorithms. J Chem Phys. (2016) 145:014102. doi: 10.1063/1.4955108

8. Nakatani N, Chan GKL. Efficient tree tensor network states (TTNS) for

quantum chemistry: generalization of the density matrix renormalization

group algorithm. J Chem Phys. (2013) 138:134113. doi: 10.1063/1.4798639

9. Markov IL, Shi Y. Simulating quantum computation by contracting tensor

networks. SIAM J Comput. (2008) 38:963–81. doi: 10.1137/050644756

10. Villalonga B, Boixo S, Nelson B, Henze C, Rieffel E, Biswas R, et al.

A flexible high-performance simulator for verifying and benchmarking

quantum circuits implemented on real hardware. NPJ Quant Inform. (2019)

5:1–16. doi: 10.1038/s41534-019-0196-1

11. Villalonga B, Lyakh D, Boixo S, Neven H, Humble TS, Biswas R, et al.

Establishing the quantum supremacy frontier with a 281 pflop/s simulation.

Quant Sci Technol. (2020) 5:034003. doi: 10.1088/2058-9565/ab7eeb

12. McCaskey A, Dumitrescu E, Chen M, Lyakh D, Humble T. Validating

quantum-classical programming models with tensor network simulations.

PLoS ONE. (2018) 13:e0206704. doi: 10.1371/journal.pone.0206704

13. Zhou Y, Stoudenmire EM, Waintal X. What limits the simulation of quantum

computers? Phys Rev X. (2020) 10:041038. doi: 10.1103/PhysRevX.10.041038

14. Pang Y, Hao T, Dugad A, Zhou Y, Solomonik E. Efficient 2D tensor network

simulation of quantum systems. In: SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis. (2020). p. 1–14.

doi: 10.1109/SC41405.2020.00018

15. Noh K, Jiang L, Fefferman B. Efficient classical simulation of noisy

random quantum circuits in one dimension. Quantum. (2020) 4:318.

doi: 10.22331/q-2020-09-11-318

16. Holmes A, Matsuura AY. Efficient quantum circuits for accurate state

preparation of smooth, differentiable functions. In: 2020 IEEE International

Conference on Quantum Computing and Engineering (QCE). (2020). p.

169–79. doi: 10.1109/QCE49297.2020.00030

17. Song Q, Ge H, Caverlee J, Hu X. Tensor completion algorithms in

big data analytics. ACM Trans Knowl Discov Data. (2019) 13:1–48.

doi: 10.1145/3278607

18. Gao ZF, Cheng S, He RQ, Xie ZY, Zhao HH, Lu ZY, et al. Compressing deep

neural networks by matrix product operators. Phys Rev Res. (2020) 2:023300.

doi: 10.1103/PhysRevResearch.2.023300

19. Stoudenmire E, Schwab DJ. Supervised learning with tensor networks. In:

Proceedings of the 30th International Conference on Neural Information

Processing Systems. Barcelona (2016). p. 4806–14.

20. Reyes J, Stoudenmire EM. A multi-scale tensor network architecture

for classification and regression. arXiv[Preprint].arXiv:2001.08286. (2020).

doi: 10.48550/arXiv.2001.08286

21. Evenbly G. Number-state preserving tensor networks as classifiers

for supervised learning. arXiv[Preprint].arXiv:190506352. (2019).

doi: 10.48550/arXiv.1905.06352

22. Martyn J, Vidal G, Roberts C, Leichenauer S. Entanglement

and tensor networks for supervised image classification.

arXiv[preprint].arXiv:200706082. (2020). doi: 10.48550/arXiv.2007.06082

23. Wall ML, Abernathy MR, Quiroz G. Generative machine learning with tensor

networks: benchmarks on near-term quantum computers. Phys Rev Res.

(2021) 3:023010. doi: 10.1103/PhysRevResearch.3.023010

24. Psarras C, Karlsson L, Bientinesi P. The landscape of software

for tensor computations. arXiv[Preprint].arXiv:210313756. (2021).

doi: 10.48550/arXiv.2103.13756

25. Fishman M, White SR, Stoudenmire EM. The ITensor software library

for tensor network calculations. arXiv[Preprint].arXiv:200714822. (2020).

doi: 10.48550/arXiv.2007.14822

26. Evenbly G. TensorTrace: an application to contract tensor networks.

arXiv:191102558. (2019). doi: 10.48550/arXiv.1911.02558

27. Pfeifer RNC, Evenbly G, Singh S, Vidal G. NCON: a tensor network

contractor for MATLAB. arXiv[Preprint].arXiv:14020939. (2015).

doi: 10.48550/arXiv.1402.0939

28. Hauschild J, Pollmann F. Efficient numerical simulations with Tensor

Networks: tensor Network Python (TeNPy). SciPost Phys Lect Notes. (2018)

5. doi: 10.21468/SciPostPhysLectNotes.5. Available online at: https://scipost.

org/SciPostPhysLectNotes.5/pdf

29. Solomonik E, Matthews D, Hammond J, Demmel J. Cyclops tensor

framework: reducing communication and eliminating load imbalance

in massively parallel contractions. In: Proceedings of the 2013 IEEE

27th International Symposium on Parallel and Distributed Processing,

IPDPS ’13. Boston, MA: IEEE Computer Society (2013). p. 813–24.

doi: 10.1109/IPDPS.2013.112

30. Levy R, Solomonik E, Clark BK. Distributed-memory DMRG via sparse and

dense parallel tensor contractions. In: SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis. (2020). p. 1–14.

doi: 10.1109/SC41405.2020.00028

31. Ma L, Ye J, Solomonik E. AutoHOOT: Automatic high-order optimization

for tensors. In: Proceedings of the ACM International Conference on

Parallel Architectures and Compilation Techniques, PACT ’20. New

York, NY: Association for Computing Machinery (2020). p. 125–37.

doi: 10.1145/3410463.3414647

32. Gray J. quimb: a python library for quantum information and many-body

calculations. J Open Source Softw. (2018) 3:819. doi: 10.21105/joss.00819

33. Rocklin M. Dask: parallel computation with blocked algorithms and task

scheduling. In: Proceedings of the 14th Python in Science Conference. Vol. 130.

Austin, TX: Citeseer (2015). p. 136. doi: 10.25080/Majora-7b98e3ed-013

34. Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D,

et al. JAX: Composable Transformations of Python+NumPy Programs. (2018).

Available online at: https://github.com/google/jax

35. Kossaifi J, Panagakis Y, Anandkumar A, Pantic M. TensorLy: tensor learning

in python. J Mach Learn Res. (2019) 20:1-6. doi: 10.5555/3322706.33

22732

36. Roberts C, Milsted A, Ganahl M, Zalcman A, Fontaine B, Zou Y,

et al. TensorNetwork: a library for physics and machine learning.

arXiv[Preprint].arXiv:190501330. (2019). doi: 10.48550/arXiv.1905.

01330

37. Lyakh DI, McCaskey AJ, Nguyen T. ExaTN: Exascale Tensor Networks. (2018-

2022). Available online at: https://github.com/ORNL-QCI/exatn.git

38. Gray J, Kourtis S. Hyper-optimized tensor network contraction. Quantum.

(2021) 5:410. doi: 10.22331/q-2021-03-15-410

39. Kalachev G, Panteleev P, Yung MH. Recursive multi-tensor contraction

for XEB verification of quantum circuits. arXiv[Preprint].arXiv:210805665.

(2021). doi: 10.48550/arXiv.2108.05665

40. Karypis G, Kumar V. Multilevel algorithms for multi-constraint

graph partitioning. In: SC ’98: Proceedings of the 1998 ACM/IEEE

Conference on Supercomputing. Dallas, TX: ACM; IEEE (1998). p. 28.

doi: 10.1109/SC.1998.10018

41. Dmitry I Lyakh. TAL-SH: Tensor Algebra Library for Shared-Memory

Platforms. (2014–2022). Available online at: https://github.com/

DmitryLyakh/TAL_SH

42. Lyakh DI. An efficient tensor transpose algorithm for multicore CPU, Intel

Xeon Phi, and NVidia Tesla GPU. Comput Phys Commun. (2015) 189:84–91.

doi: 10.1016/j.cpc.2014.12.013

43. Hynninen AP, Lyakh DI. cutt: A high-performance tensor transpose

library for cuda compatible gpus. arXiv[Preprint].arXiv:170501598. (2017).

doi: 10.48550/arXiv.1705.01598

44. Troyer M, Wiese UJ. Computational complexity and fundamental limitations

to fermionic quantum Monte Carlo simulations. Phys Rev Lett. (2005)

94:170201. doi: 10.1103/PhysRevLett.94.170201

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 July 2022 | Volume 8 | Article 838601189

https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1137/090752286
https://doi.org/10.1103/PhysRevA.70.060302
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1063/1.4955108
https://doi.org/10.1063/1.4798639
https://doi.org/10.1137/050644756
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1371/journal.pone.0206704
https://doi.org/10.1103/PhysRevX.10.041038
https://doi.org/10.1109/SC41405.2020.00018
https://doi.org/10.22331/q-2020-09-11-318
https://doi.org/10.1109/QCE49297.2020.00030
https://doi.org/10.1145/3278607
https://doi.org/10.1103/PhysRevResearch.2.023300
https://doi.org/10.48550/arXiv.2001.08286
https://doi.org/10.48550/arXiv.1905.06352
https://doi.org/10.48550/arXiv.2007.06082
https://doi.org/10.1103/PhysRevResearch.3.023010
https://doi.org/10.48550/arXiv.2103.13756
https://doi.org/10.48550/arXiv.2007.14822
https://doi.org/10.48550/arXiv.1911.02558
https://doi.org/10.48550/arXiv.1402.0939
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://scipost.org/SciPostPhysLectNotes.5/pdf
https://scipost.org/SciPostPhysLectNotes.5/pdf
https://doi.org/10.1109/IPDPS.2013.112
https://doi.org/10.1109/SC41405.2020.00028
https://doi.org/10.1145/3410463.3414647
https://doi.org/10.21105/joss.00819
https://doi.org/10.25080/Majora-7b98e3ed-013
https://github.com/google/jax
https://doi.org/10.5555/3322706.3322732
https://doi.org/10.48550/arXiv.1905.01330
https://github.com/ORNL-QCI/exatn.git
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.48550/arXiv.2108.05665
https://doi.org/10.1109/SC.1998.10018
https://github.com/DmitryLyakh/TAL_SH
https://github.com/DmitryLyakh/TAL_SH
https://doi.org/10.1016/j.cpc.2014.12.013
https://doi.org/10.48550/arXiv.1705.01598
https://doi.org/10.1103/PhysRevLett.94.170201
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

45. White SR. Density matrix formulation for quantum renormalization groups.

Phys Rev Lett. (1992) 69:2863–6. doi: 10.1103/PhysRevLett.69.2863

46. Schollwöck U. The density-matrix renormalization group. Rev Modern Phys.

(2005) 77:259–315. doi: 10.1103/RevModPhys.77.259

47. Cirac JI, Verstraete F. Renormalization and tensor product

states in spin chains and lattices. J Phys A. (2009) 42:504004.

doi: 10.1088/1751-8113/42/50/504004

48. Orús R. Advances on tensor network theory: symmetries, fermions,

entanglement, and holography. Eur Phys J B. (2014) 87:280.

doi: 10.1140/epjb/e2014-50502-9

49. Vidal G. Entanglement renormalization. Phys Rev Lett. (2007) 99:220405.

doi: 10.1103/PhysRevLett.99.220405

50. Vidal G. Efficient classical simulation of slightly entangled

quantum computations. Phys Rev Lett. (2003) 91:147902.

doi: 10.1103/PhysRevLett.91.147902

51. White SR, Feiguin AE. Real-time evolution using the density

matrix renormalization group. Phys Rev Lett. (2004) 93:076401.

doi: 10.1103/PhysRevLett.93.076401

52. Daley AJ, Kollath C, Schollwöck U, Vidal G. Time-dependent density-matrix

renormalization-group using adaptive effective Hilbert spaces. J Stat Mech.

(2004) 2004:P04005. doi: 10.1088/1742-5468/2004/04/P04005

53. Vidal G. Classical simulation of infinite-size quantum lattice

systems in one spatial dimension. Phys Rev Lett. (2007) 98:070201.

doi: 10.1103/PhysRevLett.98.070201

54. Evenbly G, Vidal G. Tensor network renormalization. Phys Rev Lett. (2015)

115:180405. doi: 10.1103/PhysRevLett.115.180405

55. Nishino T, Okunishi K. Corner transfer matrix renormalization group

method. J Phys Soc Jpn. (1996) 65:891–4. doi: 10.1143/JPSJ.65.891

56. Pfeifer RNC, Haegeman J, Verstraete F. Faster identification of optimal

contraction sequences for tensor networks. Phys Rev E. (2014) 90:033315.

doi: 10.1103/PhysRevE.90.033315

57. Li X, Parrish RM, Liu F, Kokkila Schumacher SIL, Martínez TJ. An ab

initio exciton model including charge-transfer excited states. J Chem Theory

Comput. (2017) 13:3493–504. doi: 10.1021/acs.jctc.7b00171

58. Sisto A, Glowacki DR, Martinez TJ. Ab initio. nonadiabatic dynamics

of multichromophore complexes: a scalable graphical-processing-unit-

accelerated exciton framework. Acc Chem Res. (2014) 47:2857–66.

doi: 10.1021/ar500229p

59. Parrish RM, Hohenstein EG, McMahon PL, Martínez TJ. Quantum

computation of electronic transitions using a variational quantum

eigensolver. Phys Rev Lett. (2019) 122:230401. doi: 10.1103/PhysRevLett.122.

230401

60. Nguyan T, Lyakh D, Dumitrescu E, Clark D, Larkin J, McCaskey A. Tensor

network quantum virtual machine for simulating quantum circuits at exascale.

arXiv [Preprint]. (2021). arXiv: 2104.10523. doi: 10.48550/ARXIV.2104.10523

61. McCaskey AJ, Lyakh DI, Dumitrescu EF, Powers SS, Humble TS.

XACC: a system-level software infrastructure for heterogeneous

quantum–classical computing. Quant Sci Technol. (2020) 5:024002.

doi: 10.1088/2058-9565/ab6bf6

62. Schutski R, Khakhulin T, Oseledets I, Kolmakov D. Simple heuristics

for efficient parallel tensor contraction and quantum circuit

simulation. Phys Rev A. (2020) 102:062614. doi: 10.1103/PhysRevA.102.

062614

63. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, et al. Quantum

supremacy using a programmable superconducting processor. Nature. (2019)

574:505–10. doi: 10.1038/s41586-019-1666-5

64. Hrinchuk O, Khrulkov V, Mirvakhabova L, Orlova E,

Oseledets I. Tensorized embedding layers for efficient

model compression. arXiv[Preprint].arXiv:190110787. (2020).

doi: 10.18653/v1/2020.findings-emnlp.436

Conflict of Interest: AM is currently employed by NVIDIA Corporation.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Lyakh, Nguyen, Claudino, Dumitrescu and McCaskey. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 July 2022 | Volume 8 | Article 838601190

https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1088/1751-8113/42/50/504004
https://doi.org/10.1140/epjb/e2014-50502-9
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1143/JPSJ.65.891
https://doi.org/10.1103/PhysRevE.90.033315
https://doi.org/10.1021/acs.jctc.7b00171
https://doi.org/10.1021/ar500229p
https://doi.org/10.1103/PhysRevLett.122.230401
https://doi.org/10.48550/ARXIV.2104.10523
https://doi.org/10.1088/2058-9565/ab6bf6
https://doi.org/10.1103/PhysRevA.102.062614
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.18653/v1/2020.findings-emnlp.436
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

www.frontiersin.org

	Cover
	Frontiers eBook Copyright Statement
	High-Performance Tensor Computations in Scientific Computing and Data Science
	Table of Contents
	Editorial: High-Performance Tensor Computations in Scientific Computing and Data Science
	Introduction
	Decompositions
	Low-rank approximations
	HPC operations
	Tensor Networks
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	A Block-Sparse Tensor Train Format for Sample-Efficient High-Dimensional Polynomial Regression
	1 Introduction
	2 Notation
	2.1 Tensors and Indices
	2.2 Graphical Notation and Tensor Networks
	2.3 The Tensor Train Format
	2.4 Sets of Polynomials
	2.5 Parametrizing Homogeneous Polynomials by Symmetric Tensors
	2.6 Least Squares

	3 Theoretical Foundation
	3.1 Sample Complexity for Polynomials
	3.2 Block Sparse Tensor Trains

	4 Method Description
	5 Numerical Results
	5.1 Riccati Equation
	5.2 Gaussian Density
	5.3 Quantities of Interest

	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Dictionary-Based Low-Rank Approximations and the Mixed Sparse Coding Problem
	1. Introduction
	1.1. Motivations
	1.2. Contributions
	1.3. Structure
	1.4. Notations

	2. Background
	2.1. Matrix and Tensor Decompositions
	2.2. Sparse Coding
	2.3. Models Closely Related to DLRA

	3. Mixed Sparse Coding Heuristics
	3.1. Properties of Mixed Sparse Coding
	3.1.1. Equivalent Formulations and Relation to Sparse Coding
	3.1.2. Generic Uniqueness of Solutions to MSC
	3.1.3. Solving MSC Exactly When the Support Is Known
	3.1.4. MSC With Orthogonal Dictionary Is Easy for Rank One LRA

	3.2. Non-convex Heuristics to Solve Mixed Sparse Coding
	3.2.1. A Provable Reduction to Columnwise Sparse Coding for Small Noise Regimes
	3.2.2. A First Order Strategy: Iterative Hard Thresholding
	3.2.3. Hierarchical OMP

	3.3. Convex Heuristics to Solve MSC
	3.3.1. A Columnwise Convex Relaxation: The Block LASSO Heuristic
	3.3.2. Mixed 1 Norm for Tightest Convex Relaxation

	3.4. Nonnegative MSC
	3.5. Comparison of the Proposed Heuristics
	3.5.1. Synthetic Experiments
	3.5.2. Test 1: Support Recovery vs. Noise Level
	3.5.3. Test 2: Support Recovery vs. Dimensions (k,d)
	3.5.4. Test 3: Runtime vs. Dimensions (n,m) and (k,d)

	4. Discussion
	5. Dictionary-Based Low Rank Approximations
	5.1. A Generic AO Algorithm for DLRA
	5.1.1. Selecting Regularization Parameters
	5.1.2. A Provably Convergent Algorithm: Inertial Proximal Alternating Linear Minimization (iPALM)
	5.1.3. Initialization Strategies

	5.2. Experiments for DLRA
	5.2.1. Dictionary-Based Matrix Factorization With Application to Matrix Completion
	5.2.2. Dictionary-Based Smooth Canonical Polyadic Decomposition With Application to Data Denoising
	5.2.3. Performance of AO-DLRA for DMF and DCPD on Synthetic Data

	6. Conclusions and Open Questions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Block Row Kronecker-Structured Linear Systems With a Low-Rank Tensor Solution
	1. Introduction
	1.1. Notations and Definitions

	2. Computing an MLSVD from a BRKS linear system
	2.1. Computing the Factor Matrices
	2.2. Computing the Core Tensor
	2.3. Algorithm
	2.4. Conditions for MLSVD Retrieval
	2.5. Noisy Data

	3. Computing an orthogonally compressed CPD from a BRKS linear system
	3.1. Computing the Factor Matrices
	3.2. Algorithm
	3.3. Conditions for CPD Retrieval

	4. Computing a TT from a BRKS linear system
	4.1. Computing the TT Cores
	4.2. Algorithm
	4.3. Conditions for TT Retrieval

	5. Experiments
	5.1. Randomized MLSVD
	5.2. Randomized CPD
	5.3. Randomized TT
	5.4. Compressed Sensing Hyperspectral Imaging

	6. Conclusion and further work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	CPD-Structured Multivariate Polynomial Optimization
	1. Introduction
	Related Work

	2. Preliminaries
	2.1. Notation
	2.2. Canonical Polyadic Decomposition

	3. Tensor-Based Multivariate Polynomial Optimization
	3.1. Scope of the TeMPO Framework
	3.2. Tensor Representation of Polynomials
	3.3. Gauss–Newton Algorithm
	3.4. Exploiting the Symmetric CPD Format
	3.4.1. Derivatives of the Multilinear Form in the Symmetric CPD Format
	3.4.2. Exploiting Structure in the Type I Model
	3.4.3. Exploiting Structure in the Type II Model

	3.5. Complexity Analysis

	4. Numerical Experiments
	4.1. Regression
	4.2. Blind Deconvolution of Constant Modulus Signals
	4.3. Image Classification
	4.3.1. Experiments
	Datasets
	Results and Comparisons
	Results of the Type I Model
	Results of the Type II Model
	Comparisons

	5. Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Iterator-Based Design of Generic C++ Algorithms for Basic Tensor Operations
	1. Introduction
	2. Preliminaries
	2.1. Mathematical Notation
	2.2. Data Organization and Layout

	3. Boost.uBlas Tensor Extension
	3.1. Tensor and Subtensor Templates
	3.2. Multi-Index Access

	4. Multi-Dimensional Iterator
	5. Tensor Functions
	5.1. First-Level Tensor Operations
	5.2. Higher-Level Tensor Operations
	5.2.1. Tensor-Vector Multiplication
	5.2.2. Tensor-Matrix Multiplication
	5.2.3. Tensor-Tensor Multiplication

	6. Runtime Analysis
	6.1. Setup
	6.2. Results

	7. Conclusions
	Data Availability Statement
	Author Contributions
	References

	Accelerating Jackknife Resampling for the Canonical Polyadic Decomposition
	1. Introduction
	Contributions
	Organization

	2. Related Work
	3. CP-ALS, CALS and jackknife
	3.1. Notation
	3.2. CP-ALS
	3.3. Concurrent ALS (CALS)
	3.4. Jackknife

	4. Accelerating jackknife by using CALS
	4.1. JK-CALS: Jackknife Extension of CALS
	4.1.1. The JK-CALS Algorithm

	4.2. Performance Considerations

	5. Experiments
	5.1. Scalability Analysis
	5.2. Real-World Applications

	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning and HPC Workloads
	1. Introduction
	2. The TPP Specification
	2.1. TPP Design Principles
	2.2. TPP Arguments
	2.3. The TPP Collection

	3. TPP Implementation
	3.1. Generic TPP Implementation Blueprint
	3.2. The BRGEMM TPP Implementation
	3.2.1. The BRGEMM Kernel Structure
	3.2.2. Mixed Precision BRGEMM and Its Emulation

	3.3. Examples of Non-trivial Non-GEMM TPPs
	3.3.1. Transform-Transpose TPP via Shuffle Networks
	3.3.2. Approximations for Non-linear TPP Activation Functions
	3.3.2.1. Rational Padé Polynomials
	3.3.2.2. Piecewise Minimax Polynomial Approximations
	3.3.2.3. Approximation With Taylor Series

	4. TPP Matrix Equations
	4.1. Definitions and Notations for TPP Matrix Equations
	4.2. Optimized Execution Plan for TPP Matrix Equations
	4.3. Implementation of Optimized Execution Plan for TPP Matrix Equations

	5. TPP-Based Kernels and Workloads
	5.1. TPP-Based Kernels
	5.1.1. Softmax Kernel
	5.1.2. Normalization Kernels
	5.1.3. BF16 Split-Stochastic Gradient Descent Kernel
	5.1.4. Convolutional Neural Network Kernel
	5.1.5. Sparse Embedding Kernel
	5.1.6. Multi-Layer Perceptron Kernel

	5.2. TPP-Based Workloads
	5.2.1. 1D Dilated Convolutions and Computational Biology
	5.2.2. Deep Learning Recommendation Model
	5.2.3. Natural Language Processing - Bidirectional Encoder Representations From Transformers
	5.2.4. Emerging AI—Graph Neural Networks

	6. Experimental Results of DL Kernels and Workloads
	6.1. Performance of Standalone DL Kernels
	6.2. Performance of End-To-End DL Workloads
	6.2.1. 1D Dilated Convolutions and Their Application to Computational Biology
	6.2.2. Deep Learning Recommendation—DLRM
	6.2.3. Natural Language Processing—BERT Large
	6.2.4. Emerging AI—Graph Neural Networks

	6.3. Distributed-Memory Scaling of DL Workloads

	7. TPP Within MLIR and a Tensor Compiler
	8. TPP and HPC Applications
	8.1. CP2K
	8.2. EDGE

	9. Related Work
	10. Conclusions and Future Work
	11. Optimization Notice
	Author's Note
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References
	Glossary
	Intel Pseudo Intrinsics
	Arm Pseudo Intrinsics

	Ubiquitous Nature of the Reduced Higher Order SVD in Tensor-Based Scientific Computing
	1. Introduction
	2. Reduced HOSVD and CP-to-Tucker Transform
	2.1. Reduced HOSVD: Error Bounds
	2.2. Mixed Tucker Tensor Format and Tucker-to-CP Transform
	2.3. Tucker-to-Canonical Transform

	3. Calculation of 3D Integrals With the Newton Kernel
	4. RHOSVD in the Range-Separated Tensor Formats
	4.1. Low-Rank Approximation of Radial Functions
	4.2. The RS Tensor Format Revisited
	4.3. Multi-Linear Operations in RS Tensor Formats
	4.4. Representing the Slater Potential in RS Tensor Format
	4.5. Application of RHOSVD to Scattered Data Modeling

	5. Representing Green's Kernels in Tensor Format
	6. RHOSVD for Rank Reduction in 3D Elliptic Problem Solvers
	7. Conclusions
	Data Availability Statement
	Author Contributions
	References
	8. Appendix: Proofs of Theorem 2.3 and Lemma 2.5

	A Practical Guide to the Numerical Implementation of Tensor Networks I: Contractions, Decompositions, and Gauge Freedom
	1. Introduction
	2. Preliminaries
	2.1. Prior Knowledge
	2.2. Software Libraries
	2.3. Programming Language
	2.4. Terminology

	3. Tensor Contractions
	3.1. Pairwise Tensor Contractions
	3.2. Contraction Sequence
	3.3. Network Contraction Routines
	3.4. Summary: Contractions

	4. Matrix Factorizations
	4.1. Special Tensor Types
	4.2. Useful Matrix Decompositions
	4.3. Tensor Norms
	4.4. Optimal Low-Rank Approximations
	4.5. Summary: Decompositions

	5. Gauge Freedom
	5.1. Tree Tensor Networks
	5.2. Gauge Transformations
	5.3. Orthogonality Centers
	5.3.1. Creating an Orthogonality Center via ``Pulling Through''
	5.3.2. Creating an Orthogonality Center via ``Direct Orthogonalization''
	5.3.3. Comparison of Methods for Creating Orthogonality Centers

	5.4. Decompositions of Tensors Within Networks
	5.5. Summary: Gauge Freedom

	6. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	ExaTN: Scalable GPU-Accelerated High-Performance Processing of General Tensor Networks at Exascale
	1. Introduction
	2. ExaTN Library
	2.1. Tensor Network Structures
	2.2. Tensor Network Processing

	3. Results and Discussion
	3.1. Condensed Matter Physics Simulations
	3.2. Quantum Chemistry Simulations
	3.3. Simulations of Quantum Circuits
	3.3.1. Direct Contraction of Quantum Circuits
	3.3.2. Computation of Operator Expectation Values
	3.3.3. Approximate Evaluation of Quantum Circuits

	3.4. Machine Learning

	4. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Licenses and Permissions
	References

	Back cover

