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Editorial on the Research Topic

Multi-Scale Computational Cardiology

Computational cardiology plays an increasingly important role in elucidating the physiological and
pathological mechanism(s) of normal and abnormal cardiac functions, guiding the development of
new diagnostic technologies and treatment strategies, and predicting treatment outcomes. Recently,
we called for paper submissions on the Research Topic of Multi-Scale Computational Cardiology.
Twelve manuscripts were finally accepted for publications, where important scientific progress has
been reported, covering computational fluid dynamics of circulation system (four papers), multi-
scale cardiac electrophysiology modeling and simulation (three papers), and AI-related ECG signal
processing (five papers). There are briefly summarized below.

Coronary artery disease (CAD) is the leading cause of death globally, but there is a lack of studies
on the three-dimensional (3D) geometric characteristics of coronary plaque. Liu, Wingert et al.
investigated whether coronary plaques of different sizes were consistent in geometric properties.
Nineteen cases with symptomatic stenosis caused by atherosclerotic plaques in the left coronary
artery were included in their study. 3D coronary atherosclerotic plaques and calcifications were
identified, reconstructed, and manually revised based on computed tomography angiography
images. Multidimensional geometric parameters were measured on the 3D models of plaques
and calcifications. Linear and non-linear (power function) fittings were used to investigate the
relationship betweenmultidimensional geometric parameters. Their results disclosed the geometric
consistency among coronary atherosclerotic plaques of different sizes.

Newtonian fluid model has been commonly applied in simulating cerebral blood flow in
intracranial atherosclerotic stenosis (ICAS) cases using computational fluid dynamics (CFD)
modeling, while blood is a shear-thinning non-Newtonian fluid. Liu, Lan et al. investigated the
difference of cerebral hemodynamic metrics in CFD models with both Newtonian and non-
Newtonian fluid assumptions, in patients with ICAS. The results suggested that Newtonian fluid
model could be applicable for pressure ratio calculation, but caution needs to be taken when
using the Newtonian assumption in simulating wall shear stress especially in severe ICAS cases
considering the observable differences of wall shear stress between Newtonian and non-Newtonian
estimations in areas with low shear rates distal to a stenosis.

It has been reported that 250,000 heart valve surgeries are performed worldwide each year.
Among these, aortic valve (AV) diseases have become the second-leading cause of cardiovascular
diseases due to their high morbidity and mortality. Numerical simulations of the AV dynamics
can be applied to assess the hemodynamic performance, predict the effectiveness and persistence
of surgical treatments, thereby guide AV disease management. Cai et al. presented a simulation
study of different constitutive laws and fiber architectures for the AV on fluid-structure interaction.
The results suggested that the strain energy function with exponential terms for both the fiber and
cross-fiber directions could be more suitable for describing the AV leaflet mechanical behaviors.
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Blood perfusion is an important index for the function of
the cardiovascular system. It can be indicated by the blood
flow distribution in the vascular tree. Li et al. proposed a novel
fractal method for characterizing the distribution of blood flow
in multi-scale vascular tree. Their validation on real arterial trees
verified the ability of the produced parameters (fractal dimension
and multifractal spectrum) in distinguishing the blood flow
distribution under different physiological states. The results
suggested that both the vascular structure and the blood flow
distribution affect the fractal parameters for blood flow.

In recent years, ventricular tachycardia ablation strategy based
on personalized virtual-heart technology has been researched and
gradually applied to clinical practice. Due to the high demanding
of computational resource of modeling, the arrhythmias induced
in the models are usually simulated only for a few seconds. In
clinic, however, it is common that arrhythmias last for more than
several minutes and the morphologies of reentries are not always
stable. So scientific evidence is required to demonstrate how long
the simulation of arrythmias is efficient to match the arrhythmias
detected in real patients. Tong et al.’s investigation suggested that
10 s simulation was sufficient to make arrhythmias simulation
results stable.

Recent experimental evidence has indicated that
mitochondrial depolarization promotes arrhythmogenic delays
afterdepolarizations (DADs) in cardiac myocytes. However, the
non-linear interactions among the Ca2+ signaling pathways,
ROS, and oxidized Ca2+ /calmodulin-dependent protein kinase
II (CaMKII) pathways make it difficult to reveal the mechanisms.
Based on a recently developed spatiotemporal ventricular
myocyte computer model, Pandey et al. concluded that the
direct redox effect of ROS on ryanodine receptors (RyRs) plays a
critical role in promoting Ca2+ waves and DADs under the acute
effect of mitochondrial depolarization.

Computational modeling of the failing heart provides insights
into mechanisms of arrhythmogenesis, risk stratification of
patients, and clinical treatment. Sankarankutty et al. provided
a microscopy-based foundation for modeling conduction in HF
tissues. Their result suggested that conduction differs in the two
etiologies due to the characteristics of fibrosis, highlighting the
importance of the etiology-specific modeling of HF tissues and
integration of medical history into electrophysiology models for
personalized risk stratification and treatment planning.

Pace mapping is commonly used to locate the origin
of ventricular arrhythmias, especially premature ventricular
contraction (PVC). He et al. proposed a novel model based on
spatial and morphological domains to predict the origin of PVC.
The results showed that the proposed model was slightly superior
to other models by achieving the most hits, the smallest estimated
errors, and the biggest reduced distances for the PVC origin
site estimation.

Remote ECG diagnosis has been gradually used in the clinical
ECG workflow, especially for patients with pacemaker. An
automatic detection pacing ECG method can help cardiologists
reduce the workload and the rates of misdiagnosis. Ge et al.
proposed a novel autoencoder framework of detecting pacing
ECG. The results showed that the proposed method could

achieve a significant performance with high accuracy, sensitivity,
and F1-score through a series of experiments.

Recently, various deep learning techniques have been utilized
to classify arrhythmias, including the use of one-dimensional
convolutional neural network (CNN) model to handle the ECG
signals in the time domain. Zhang et al. developed a new
solution for cardiac arrhythmia classification in two dimensions
by introducing the recurrence plot combined with an Inception-
residual convolutional neural network-v2 (Inception-ResNet-
v2). The results with only two leads of the 12-lead ECG original
data showed that their proposed method achieved the highest
average F1-score of 0.844, which outperformed other works.
Jiang et al. proposed a hybrid attention-based deep learning
network (HADLN) method for arrhythmia classification. The
HADLN makes full use of the advantages of residual network
and bidirectional long-short-termmemory architecture to obtain
fusion features containing local and global information and
improve the interpretability of the model through the attention
mechanism. Their experimental results showed that the HADLN
method can achieve precision of 0.866, recall of 0.859, accuracy
of 0.867, and F1-score of 0.880 on 10-fold cross-validation.

The clinical manifestations of myocardial ischemia (MI) are
mainly the changes of ST-T segment of ECG. Nearly one third
of patients with coronary heart disease, however, has no obvious
ECG changes. Li et al. proposed a new method of detecting MI
based on the T-wave area curve (TWAC). The preliminary test
results showed that the sensitivity, specificity, and accuracy of
the proposed method for detecting MI were 84.3, 83.6, and 84%,
respectively, suggesting that the TWAC based approach may be
an effective method for detecting MI, especially for the patients
with no obvious ECG changes.

In summary, the 12 research papers in the Research Topic
summarized the challenges and some of the most recent
development and ideas inMulti-Scale Computational Cardiology
and computational analysis of multimodal cardiovascular data,
which will be useful for researchers working in the related fields.
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Pace mapping is commonly used to locate the origin of ventricular arrhythmias,
especially premature ventricular contraction (PVC). However, this technique relies on
clinicians’ ability to rapidly interpret ECG data. To avoid time-consuming interpretation
of ECG morphology, some automated algorithms or computational models have been
explored to guide the ablation. Inspired by these studies, we propose a novel model
based on spatial and morphological domains. The purpose of this study is to assess
this model and compare it with three existing models. The data are available from the
Experimental Data and Geometric Analysis Repository database in which three in vivo
PVC patients are included. To measure the hit rate (A hit occurs when the predicted
site is within 15 mm of the target) of different algorithms, 47 target sites are tested.
Moreover, to evaluate the efficiency of different models in narrowing down the target
range, 54 targets are verified. As a result, the proposed algorithm achieves the most
hits (37/47) and fewest misses (9/47), and it narrows down the target range most, from
27.62 ± 3.47 mm to 10.72 ± 9.58 mm among 54 target sites. It is expected to be
applied in the real-time prediction of the origin of ventricular activation to guide the
clinician toward the target site.

Keywords: pace mapping, ventricular arrhythmias, ablation, automated algorithm, origin of PVC

INTRODUCTION

Premature ventricular contraction (PVC) is one of the most common ventricular arrhythmias
encountered in clinical practice, occurring in 1–4% of the general population (Kostis et al., 1981).
Frequent and repetitive PVCs can increase the risk of arrhythmia-induced syncope, ventricular
dysfunction, and sudden death (Ahn, 2013). Hitherto, catheter ablation has become an important
therapy in the management of ventricular arrhythmias (Al-Khatib et al., 2018). In the last decade
(from 2000 to 2012), the annual ventricular tachycardia (VT) ablation volumes have quadrupled
(Hsia and Xiong, 2019). Also, multiple studies have shown that catheter ablation can be more
effective in reducing arrhythmia recurrence than anti-arrhythmic drugs (Sapp et al., 2016).

It is of therapeutical importance to localize the origin of abnormal ventricular activation before
catheter ablation. The localization can be done by several approaches. Activation mapping is the
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most direct technique which can be applied in patients with
frequent PVCs (Adams et al., 2012). Yet, it requires time-
consuming intracardiac mapping by moving the catheter to
different sites of the ventricles, and it can only be performed in a
small number of patients who can endure a sustained VT during
the whole mapping operation. Since the origin of PVC largely
determines the QRS morphology of 12-lead ECG (Josephson
et al., 1982), an alternative technique, known as pace mapping,
can be applied in more patients by physically stimulating multiple
ventricle sites until finding the site where pacing reproduces the
morphology of spontaneous PVC (Kobayashi, 2018). However,
this practice relies heavily on rapid and accurate manual
interpretation of ECG.

In order to automatically analyze the information of pacing
sites and progressively guide the clinician to the origin of
PVC, several methods have been developed. One method is
to train a universal model from a cohort of patients based
on machine learning methods (Sapp et al., 2017; Zhou et al.,
2019). However, due to anatomical and physiological variations
in patients, there is a limited accuracy when a universal model
is applied to a new patient. An alternative strategy is to build
patient-specific prediction models. To our knowledge, some
studies have used the image-based simulated ECG data to train
a customized prediction model for each patient (Potse et al.,
2000; Yang et al., 2018) and the domain adaptation method has
newly been applied to modify the prediction model with clinical
data to account for the potential errors in the simulation data
(Alawad and Wang, 2019).

In addition to the image-based simulation method, some
simpler but less computational models based on information of
multiple pacing sites have also been investigated. Lately, the QRS
integrals (QRS-Ints) of 12-lead ECG have been used to predict
the 3D coordinate of the PVC origin directly (Sapp et al., 2017;
Zhou et al., 2018). Besides, the relationship between distance and
change in 12-lead ECG morphology has also been inspected to
assist in the localization of PVC origin (Li et al., 2017, 2018; Odille
et al., 2019; Dharmaprani et al., 2020).

Inspired by previous studies, in this paper, a novel model
only based on the information of pacing sites is proposed
and compared with three existing models [QRS-Int Model
(Sapp et al., 2017), dis-E12 Model (Li et al., 2017), and dis-
corr Model (Dharmaprani et al., 2020)]. We evaluated these
models in three patients with PVC and found that the proposed
model was slightly superior to the other three models. This
method is very suitable for the location of PVC origins in non-
organic heart disease.

MATERIALS AND METHODS

Data
The data used throughout this study is obtained from the
Experimental Data and Geometric Analysis Repository (EDGAR)
database (Aras et al., 2015). The data were collected during
endocardial pacing from three PVC patients. The patients were
consented for an add-on experimental procedure involving
ventricular pacing, performed according to a protocol approved

by the ethical committee of Charles University Hospital, Prague,
Czechia (Erem et al., 2014). For each patient, there is a mean
of 25 ± 6 distinct sites of endocardial pacing with known
coordinates. For each pacing site, a mean of 28 ± 8 ECG beats
are available and a representative beat is calculated by averaging
these beats. The equation is as follows:

Vi =
1
N

N∑
n=1

V(n)
i (1)

where Vi and V(n)
i are the ith-lead ECG signals of representative

beat and beat n, respectively.

Models
QRS-Int Model
The QRS-Int values were proposed by Sapp et al. (2017) as
predictor variables to fit the geometric coordinate system of the
heart. A statistical estimate of the coordinates x̂, ŷ, and ẑ for
any pacing site can be obtained by fitting the multiple linear
regression equation with intercept. The equation is as follows:

 x̂
ŷ
ẑ

 =
 α̂0 α̂1 · · · α̂k

β̂0 β̂1 · · · β̂k
γ̂0 γ̂1 · · · γ̂k




1
I1
· · ·

Ik

 (2)

where α̂i, β̂i, and γ̂i are estimated regression coefficients, and Ii
represents the QRS-Int. To minimize the training set of required
pacing sites, three optimal predictors (the initial 120-ms QRS-
Int of leads III, V2, and V6) were found by exhaustive search
(Sapp et al., 2017). Then, the least-square method was used to
solve 4 equations (k = 3) to obtain the patient-specific QRS
integral model (QIM). We used at least 5 pacing points to
avoid matrix singularity. The best regression coefficients can be
calculated by least-square regression (Sapp et al., 2017). Once
the regression coefficients best fitted for the training-set data are
found, they can be used for prediction of the unknown site. Here,
the initial 120-ms QRS-Int values are extracted manually from the
representative beat of each pacing site.

dis-E12 Model
The E12 value proposed by Anthony et al. (Li et al., 2017) can be
used to quantify the difference of 12-lead ECG between 2 pacing
sites.

E12 =

12∑
i=1

√√√√ 1
N

N∑
j=1

(Vi,j − Vr
i,j)

2

dis =
√

(x− xr)2 + (y− yr)2 + (z − zr)2 (3)

dis = k1 · E12

d̂isi = k1 · E12(V ith − known,Vunknown)

where V and Vr represent 2 pacing beats being compared, which
are 150-ms waveforms centered on the maximum of the 12-lead
composite signal (Li et al., 2017), and Vi,j and Vr

i,j represent the
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voltages of one moment of the ECG. N is the length of the ECG
signal. i ranges from 1 to 12, representing the index of 12 leads. dis
represents the Euclidean distance between pacing sites. Similarly,
the patient-specific dis-E12 model (DEM) can be solved by
origin-constrained least-square linear regression. After that, the
E12 value between the unknown site and each known site is
calculated and then used to estimate the corresponding distance
d̂isi for i 1, 2, · · · , m. Finally, by minimizing the following cost
function J, a statistical estimate of coordinates x̂, ŷ, and ẑ for the
unknown site can be found.

J =
m∑
i=1

(

√
(̂x− xi)2 + (̂y− yi)2 + (̂z − zi)2 − d̂isi)2 (4)

dis-Corr Model
The correlation coefficient (Corr) proposed by Dharmaprani et al.
(2020) can be used to quantify the similarity of ECG morphology
between 2 pacing sites.

r(X,Y) =

∑n
i=1(Xi − X)(Yi − Y)√∑n

i=1(Xi − X)2
√∑n

i=1(Yi − Y)2

Corr =
1

12

12∑
i=1

r(Vi,Vr
i )

dis =
√

(x− xr)2
+ (y− yr)2

+ (z − zr)2 (5)

dis = k2 · (Corr − 1)

d̂isi = k2 · (1 − Corr(V ith−known,Vunknown))

where r (X,Y) represents the Pearson correlation coefficient
between time series X and Y. Moreover, the Corr value is the
average result of 12 leads. Similarly, the patient specific dis-
Corr model (DCM) can be solved by constrained least-square
linear regression, and the Corr value between the unknown site
and each known site can also be calculated and transformed
into the estimated distance d̂isi for i 1, 2, · · · , m. Finally,
by minimizing the cost function J presented in Eq. (4), a
statistical estimate of coordinates x̂, ŷ, and ẑ for the unknown
site can be found.

dp-dw Model
In this study, we observed a phenomenon that there are
some connections between waveform morphology and physical
position. Figures 1, 2 show two examples based on simulation
data and real data, respectively. The simulation data were
generated by an isotropic ventricular simulation model with
electric conduction rate of 0.7 m /s (Schulze et al., 2015). As
can be observed from Figure 1, points 1, 2, 3, 4, and 5 are
almost on the same line, while points 3, 6, and 7 are almost
on another line. Figure 1B shows the splicing signal of 12-lead
ECG in accordance with positions, and Figure 1C shows the
waveform difference between each pair of positions. It seems
that the waveform differences on the same line are more similar,
while those on different lines are less similar. For example,

s31, s32, s34, and s35 are similar with each other and so
are s36 and s37, but s31 and s37 are less similar. Then the
real data are extracted from the first patient. As can be seen
from Figure 2, points LVP11, LVP1, and LVP20 are almost on
the same line, while LVP18 and LVP4 are almost on another
line. Besides, the two lines are nearly parallel. Similarly, we
observed the similarity of waveform differences on the same
line. We also observed the similarity of waveform differences
between parallel lines.

The above phenomenon may be explained by the theory of
electrocardiographic dipoles. During ventricular depolarization,
electric dipoles can be formed between depolarized and non-
depolarized regions, and the integrated vector of all dipoles
can be recorded by 12 leads from different positions and
directions. The recorded voltage on each lead at one moment
is related to the distances between the recording electrode
and the electric dipoles, and it is also related to the cosine
angles formed by the orientation of the lead axis and the
directions of myocardial depolarization. When a ventricular
premature occurs, the depolarization wave spreads from the
earliest excitation point to all sides, and the directions of
electric dipoles are the same as the directions of myocardial
depolarization. When the earliest excitation point moves along a
certain direction, the electric dipoles will change most in the same
direction, which may lead to more obvious waveform changes
in leads parallel to the direction and less obvious waveform
changes in leads perpendicular to the direction. Therefore,
there might be a certain relationship between the waveform
changes of 12-lead ECG and the position changes of the earliest
excitation point.

Based on these observations, we proposed a novel prediction
model based on the assumption that there are some counterpart
connections between the spatial domain and the morphological

domain. As Figure 3 shows,
⇀
Pij and

⇀
Wij represent the vector of

position difference (dp) and the vector of waveform difference

(dw) between point i and point j, respectively. Here,
⇀
Wi

represents a one-dimensional vector formed by stitching 12 time-

series (each of 150-ms) of pacing site i together, and
⇀
Wij is

obtained by subtracting
⇀
Wi from

⇀
Wj. Supposing Eq. (6) holds in

the spatial domain, and then Eq. (7) holds in the morphological
domain, and vice versa.

⇀
P14 = θ0 ·

⇀
P12+θ1 ·

⇀
P13 (6)

⇀
W14 = θ0 ·

⇀
W12+θ1 ·

⇀
W13 (7)

Figure 4 illustrates the establishment and prediction process
of the dp-dw model (DDM). As shown in the figure, points 1, 2,
and 3 are the known sites whose 12-lead ECG signals and physical
locations are known by us, while point O is the unknown site
whose 12-lead ECG information is known by us, but its physical
location needs to be estimated by algorithm. Of course, the actual
physical location of point O is known, but we pretend not to know
that. Moreover, we use the waveform difference between point
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FIGURE 1 | Example of connections between wave morphology and physical positions on simulation data. (A) View of ventricles. Yellow points 1, 2, 3, 4, 5, 6, and 7
are simulated paced points. Points 1, 2, 3, 4, and 5 are almost on the same line, while point 5, 6, and 7 are almost on another line. (B) Splicing signal of 12-lead
ECG. The splicing signals are one-dimensional vectors formed by stitching 12 time-series (each of 150-ms) of corresponding points. (C) Waveform difference
between two points. The waveform differences are extracted by subtracting one waveform vector from another waveform vector.

FIGURE 2 | Example of connections between wave morphology and physical positions on real data. (A) View of ventricles. The points are paced points. (B) Splicing
signal of 12-lead ECG. The splicing signals are one-dimensional vectors formed by stitching 12 time-series (each of 150-ms) of corresponding points. (C) Waveform
difference between two points. The waveform differences are extracted by subtracting one waveform vector from another waveform vector.
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FIGURE 3 | Diagram of the counterpart connections between spatial domain
and morphological domain.

O and its adjacent points to estimate its location. The vectors of
dp and dw between each pair of known sites are calculated as

[4P]
[

⇀
P12,

⇀
P13

]
and [4W]

[
⇀
W12,

⇀
W13

]
, and the vector of

dw between the unknown site and each known site is calculated
as
[
4W∗

] [
⇀

W1O,
⇀

W2O,
⇀

W3O

]
. Analogously, the transfer matrix

[θ] mapping [4W] to
[
4̂W∗

]
can be found by least-square

regression [Eq. (8)]. Then, by applying the same transfer matrix
[θ] to the spatial domain, the estimated vector of dp between the
unknown site and each known site can be calculated as shown in
Eq. (9). Finally, a statistical estimate of coordinates x̂, ŷ, and ẑ for
the unknown site can be calculated as Eq. (10).

[4̂W∗] = [4W] × [θ]

[θ] = ([4W]T × [4W])−1
× [4W]T × [4W∗] (8)

[4̂P∗] = [4P] × [θ]

[4̂P∗] = [
⇀̂
P1O,

⇀̂
P

2O
,

⇀̂
P

3O
] (9)

 x̂
ŷ
ẑ

 = 1
3

3∑
i=1

(
Pi +

⇀̂
P
iO

)
(10)

Figure 5 shows an example of using DDM to predict the PVC
origin. In Figure 5A, the red point represents the unknown site,
the green points represent the known sites, and the yellow point
represents the predicted position. Figure 5B shows the waveform
differences (dws) between the known sites, and Figure 5D shows
the dws between the known sites and the unknown site. By using
least-square regression, the estimated dws between the known
sites and the unknown site can be transformed from the dws
between the known sites, as Figure 5C shows. Finally, by applying
the same transfer matrix [θ] in the spatial domain, the position
differences (dps) between the known sites and the unknown site
could be calculated. And by executing Eq.(10), the predicted
position was obtained.

Emulation of Clinical Protocols
Target Site Selection
Two target site selection schemes were adopted for different
purposes. First, in order to evaluate the hit rate (a hit occurs when
the predicted site is within 15 mm of the target), the target site is
defined as the site with at least 5 adjacent sites which are greater
than 15 mm and less than 35 mm away from it, and a total of 47
pacing sites meet the conditions. Secondly, in order to evaluate
the efficiency of different models in narrowing down the target
range, the target site is defined having at least 5 adjacent sites
within the range of 35 mm of it, and a total of 54 pacing sites
meet the requirement. Once a target site is selected, its adjacent
sites that meet the corresponding definition serve as potential
modeling sites. In this study, the modeling sites are those whose
physical locations and corresponding 12-lead ECG signals are
known, while the target sites are those whose 12-lead ECG signals
are known, but their physical locations need to be estimated
by the algorithm.

FIGURE 4 | Establishment and prediction process of DDM.
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FIGURE 5 | An example of using DDM to predict the PVC origin. (A) View of ventricles. The green points represent known sites, the red point represents the
unknown site, and the yellow site represents the predicted site. (B) Vector of waveform differences between known sites. For example, W12 is extracted by
subtracting the waveform of point 1 from the waveform of point 2. (C) Mapping process. By least-square regression, the estimated waveform differences between
the known sites and the unknown sites can be transformed from the waveform differences between the known sites. Then by applying the same transfer matrix in
the spatial domain, the position differences between the known sites and the unknown site can be calculated. (D) Vector of waveform difference between known
sites and unknown site. The ground-truth waveform differences are shown with solid lines, while the estimated waveform differences are shown with dotted lines.

FIGURE 6 | Flowchart of modeling and prediction.

Modeling and Prediction
Figure 6 shows the flowchart of the process of modeling and
prediction. It can be divided into the following six steps.

Step 1: Initialize modeling sites. The 3 or 5 farthest unused
potential modeling sites (3 for DEM, DCM, and DDM, and 5
for QIM) from the target site are selected as initial modeling

sites, and they will be removed from the list of unused potential
modeling sites. For example, supposing point 0 is selected as
the target site, and its adjacent points 1, 2, 3, 4, 5, and 6 match
the definition of potential modeling sites. Therefore, the initial
list of unused potential modeling sites is (Kostis et al., 1981;
Adams et al., 2012; Ahn, 2013; Sapp et al., 2016; Al-Khatib et al.,
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2018; Hsia and Xiong, 2019). We first pick out three farthest
modeling sites to predict the coordinates of point 0. Assuming
points 1, 2, and 3 are selected, then we will remove them from the
list of potential modeling sites that have never been used, so as
not to select the duplicate modeling sites next time. Hence, the
list will be updated to Adams et al. (2012), Sapp et al. (2016),
Hsia and Xiong (2019).

Step 2: Train the models mentioned above to predict
the target site.

Step 3: Termination judgment. If there are no unused potential
modeling sites left, terminate. If the predicted site hits the
target, terminate.

Step 4: Evaluate predicted site. If the predicted site is outside
35 mm of the target site, it is not credible, skip to step 6.

Step 5: Pick out a nearest site from the unused potential
modeling sites if it is within 15 mm of the predicted site, then
remove it from the list of unused potential modeling sites and
skip to step 2. Otherwise, there is no unused potential modeling
site that can replace the predicted site, turn to the next step.

Step 6: Pick out a site that is farthest from the geometric center
of current modeling sites to obtain as much spatial information as
possible, and remove it from the list of unused potential modeling
sites and skip to step 2.

RESULTS

Hits and Misses
A total of 47 target sites are used to evaluate the hit rate of
four models. As Figure 7A shows, the proposed DDM presents
with the most hits (37/47), the fewest misses (9/47), and one
early termination. Here an early termination means that the
reduction of estimated error is interrupted by lack of potential
modeling sites. Then, slightly inferior to DDM, DEM performs
with 35 hits, 11 misses, and one early termination. Finally,
inferior to DDM and DEM, QIM and DCM achieve with 31 hits,
14 misses, one early termination and 29 hits, 18 misses, and no
early termination, respectively. In addition, when the number of
modeling sites is 5, DDM has much more hits than other models.

Estimated Error
Figure 7B presents the trend of estimated errors of four models
with the increase of modeling sites. It must be noted that for
each target site, the estimated error remains unchanged after
minimization. As can be observed from the figure, with the
increase of modeling sites, the estimated errors of four models
tend to decrease, especially when the number of modeling
sites is less than 8 when most of the samples remained non-
minimization (see Figure 7A). In terms of decline velocity of
estimated error, DCM and DDM perform better than QIM and
DEM when number of modeling sites is less than 5. Also, in
terms of final estimated error, DEM and DDM perform better
than QIM and DCM.

Reduced Distance
The reduced distance is equal to the minimum distance between
the modeling sites and the target site minus the estimated

error, and a positive reduced distance indicates a reduction in
the unknown range of the target by modeling and prediction.
Figure 7C shows the reduced distances of four models with the
increase of modeling sites. For each number of modeling sites,
samples that have reached the minimum estimated error are not
counted. As the figure shows, for different numbers of modeling
sites, the mid-values of reduced distances of four models are
almost positive, indicating that four models tend to reduce the
unknown range of the target. When the number of modeling
sites is 5, QIM has the largest mid-value of reduced distances
and the corresponding hit rate also rises rapidly (see Figure 7A).
However, due to the cumulative reduction of distances in the
previous two rounds, DDM still has the highest hit rate.

Target Range
A total of 54 target sites are used to evaluate the efficiency of
different models in narrowing down the target range. Figure 8
shows two examples of the predicted sites of four models with
the increase of modeling sites. The initial target range (marked in
orange in Figure 8) is defined by the maximum radius of adjacent
sites, and the final target range is defined by the minimum
estimated error. As the figure shows, the first target site has
an initial radius of 32.92 mm; after modeling and prediction,
the radius is reduced to 8.51, 3.34, 9.86, and 5.19 mm with 4
models, respectively. Similarly, the radius of the second target
is reduced from 33.13 to 8.80, 9.34, 10.98, and 7.39 mm with 4
models, respectively.

Table 1 lists the statistical results of 54 target sites. Among
the four models, DDM narrows down the target range most,
from 27.62 ± 3.47 mm to 10.72 ± 6.22 mm, and DEM uses
the fewest modeling sites (5.98 ± 2.49) to minimize the target
range. In addition, t tests show that the estimation errors of
DCM and DDM have a significant difference (P = 0.046), and the
numbers of modeling sites of QIM and DEM, QIM and DDM
have a significant difference (P = 0.007, P = 0.045), indicating
that DCM has the worst estimated error and QIM used the
most modeling sites.

DISCUSSION

This work proposed a novel model for the localization of
PVC target sites based on the mapping between the spatial
domain and the morphological domain. In our study, the pacing
sites are not as adjacent as those generated by clinical pace
mapping, so we selected modeling sites from a larger range to
predict the target site step by step. For inexperienced doctors,
the results obtained by our method may provide a reference
location, so that they can simply determine the most likely
ablation site as soon as possible and shorten the mapping
procedure. We compared our model with three existing models
and found that the proposed model was slightly superior to
other models by achieving the most hits, the smallest estimated
errors, and the biggest reduced distances. Especially when the
number of modeling sites is small, the advantages of our
model are more obvious. By observation of Figure 7, it can
be found that the proposed DDM tends to have more hits,
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FIGURE 7 | Comparison of four models. (A) Accumulation curves of hits and misses for four models. A hit occurs when the predicted site is within 15 mm of the
target. (B) Estimated errors of four models with the increase of modeling sites. The estimated error is the distance between the predicted site and the target. (C)
Reduced distance of four models with the increase of modeling sites. The reduced distance is equal to the minimum distance between the modeling sites and the
target minus the estimated error.

smaller estimated errors, and bigger reduced distances than
the other methods when the number of modeling sites is
less than 6.

Then, as can be observed from Table 1, considering the
minimum estimated error, DDM, and DEM perform better than
QIM and DCM. Compared with DDM and DEM, QIM only uses

the information of three-lead ECG, which may account for its
less satisfying result. Though DCM also uses full information
of 12-lead ECG, according to reference (Li et al., 2017), in
contrast to Corr, E12 theoretically has no upper limit and,
therefore, can provide better quantification of the morphology
difference than Corr.
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FIGURE 8 | Two examples of predicted sites of four models with the increase of modeling sites. Orange dots mark the target, and yellow dots mark the predictions
in the annotated order.

In addition, there is a certain relationship between DDM and
DEM. In essence, DEM is to establish a scalar model through
the relationship of the module length between dp and dw, while
DDM directly uses the relationship between dp and dw to build

TABLE 1 | Comparison of four models in narrowing down the target range.

Models Radius of neighboring
sites (mm)

Estimated error
(mm)

Number of modeling
sites used

QIM Mean: 27.62 Mean: 12.41 Mean: 7.28*2, *3

Std: 3.47 Std: 8.05 Std: 2.43

Mid: 27.53 Mid: 10.05 Mid: 7

DEM Mean: 27.62 Mean: 11.08 Mean: 5.98*2

Std: 3.47 Std: 6.03 Std:2.49

Mid: 27.53 Mid: 9.71 Mid: 5.5

DCM Mean: 27.62 Mean:13.03*1 Mean: 6.80

Std: 3.47 Std: 5.67 Std: 2.47

Mid: 27.53 Mid: 12.21 Mid: 6

DDM Mean: 27.62 Mean: 10.72*1 Mean: 6.37*3

Std: 3.47 Std: 6.22 Std: 2.22

Mid: 27.53 Mid: 9.58 Mid: 6

*1, *2, and *3 represent statistically significant differences between groups.

a vector model. When the number of modeling sites is less
than 5, the prediction effect of DEM is worse than that of
DDM, which is likely due to the lack of direction information.
However, when the number of modeling sites increases, the

TABLE 2 | Summary comparison of four models.

Model Principles Properties Performance

QIM Using QRS-Ints as
predictors

Less computation,
using information of
3-lead ECG and
containing direction
information

Second least hits and
second least reduced
target range

DEM Based on the
relationship between
distance and
morphology difference

More computation,
using information of
12-lead ECG and lack
of direction information

Second most hits and
second most reduced
target range

DCM Least hits and least
reduced target range

DDM Based on the mapping
between spatial domain
and morphological
domain

Moderate computation,
using information of
12-lead ECG and
containing direction
information

Most hits and most
reduced target range
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lack of direction information is gradually compensated by more
and more complete distance network between points, and DEM
achieves a similar result to DDM.

Finally, in terms of computational complexity, QIM, and
DDM are simpler since the fitted models can be used for
prediction directly, while DEM and DCM are more complex
due to the additional search for optimal solution that can
minimize the cost function J. Table 2 lists a summary
comparison of four models.

However, there still exist some limitations in this study. First,
the way of picking out modeling sites is relatively random.
Theoretically, the next modeling site should be the predicted
result if it is reliable; otherwise, the next modeling site is selected
by the doctor. Limited by the actual distribution of pacing sites,
we take the second place and replace the predicted site with the
nearest one among the unused potential modeling sites, which
may cause the randomness in modeling site selection due to the
different prediction results of four models, for example, when
we design a fixed modeling site selection scheme, in which we
choose a furthest site from the remaining potential sites in each
round. Consequently, QIM, DEM, DCM, and DDM achieve
32, 35, 28, and 33 hits, respectively, indicating that the way of
modeling site selection has a certain impact on the research
results and the proposed DDM is more suitable for selecting
modeling sites by referring to the predicted positions. Because
collecting multiple-pace data in clinical practice will increase the
risk of patients during operation, this kind of data is difficult to
obtain. Therefore, we mainly used the data in the open database
collected from three volunteers provided by Charles University
in accordance with the strict experimental process. From the
perspective of the number of individual patients, our sample is
still relatively small, but the total number of test sites used in
this paper is relatively large. In the future research, we can also
consider the application of four methods to animal experimental
data or retrospective clinical data analysis.

CONCLUSION

To conclude, it is a desirable goal to develop an automated
algorithm for the localization of PVC origins. This work provided

a novel solution based on the mapping between spatial domain
and morphological domain. It performs better with fewer
modeling points and is expected to be used to predict the origin
of ventricular activation in real-time and guide clinicians to focus
on ablation targets.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethical Committee of Charles University
Hospital, Prague, Czechia. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

KH and JS: conceptualization, formal analysis, and methodology.
CY: resources, supervision, and project administration. KH,
YW, and GZ: software and visualization. KH: writing—original
draft preparation. CY and GZ: writing—review and editing.
KH and YW: revising and correcting. JS, KH, and CY: clinical
interpretation and discussion of findings and their relevance.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was partly supported by the National Natural
Science Foundation of China (61071004), Shanghai
Science and Technology Support Project (18441900900),
Shanghai Municipal Science and Technology Major Project
(2017SHZDZX01), and the Project of Shanghai Engineering
Research Center (19DZ2250800).

REFERENCES
Adams, J. C., Srivathsan, K., and Shen, W. K. (2012). Advances in management of

premature ventricular contractions. J. Interv. Card. Electrophysiol. 35, 137–149.
doi: 10.1007/s10840-012-9698-x

Ahn, M. S. (2013). Current concepts of premature ventricular contractions.
J. Lifestyle Med. 3, 26–33.

Alawad, M., and Wang, L. (2019). Learning domain shift in simulated and
clinical data: localizing the origin of ventricular activation from 12-lead
electrocardiograms. IEEE Trans.Med. Imaging 38, 1172–1184. doi: 10.1109/tmi.
2018.2880092

Al-Khatib, S. M., Stevenson, W. G., Ackerman, M. J., Bryant, W. J., Callans, D. J.,
Curtis, A. B., et al. (2018). 2017 AHA/ACC/HRS guideline for management of
patients with ventricular arrhythmias and the prevention of sudden cardiac
death: a report of the American College of Cardiology/American Heart
Association Task Force on clinical practice guidelines and the heart rhythm
society. Circulation 138, e272–e391. doi: 10.1161/cir.0000000000000549

Aras, K., Good, W., Tate, J., Burton, B., Brooks, D., Coll-Font, J., et al. (2015).
Experimental data and geometric analysis repository-EDGAR. J. Electrocardiol.
48, 975–981. doi: 10.1016/j.jelectrocard.2015.08.008

Dharmaprani, D., Lahiri, A., Ganesan, A. N., Kyriacou, N., and McGavigan, A. D.
(2020). Comparative spatial resolution of 12-lead electrocardiography and an
automated algorithm. Heart Rhythm 17, 324–331. doi: 10.1016/j.hrthm.2019.
08.029

Erem, B., Coll-Font, J., Orellana, R. M., Stovicek, P., and Brooks, D. (2014).
Using transmural regularization and dynamic modeling for noninvasive
cardiac potential imaging of endocardial pacing with imprecise thoracic
geometry. IEEE Trans. Med. Imaging 33, 726–738. doi: 10.1109/TMI.2013.22
95220

Hsia, H. H., and Xiong, N. (2019). Mapping and ablation of ventricular arrhythmias
in cardiomyopathies. Card. Electrophysiol. Clin. 11, 635–655. doi: 10.1016/j.
ccep.2019.08.005

Josephson, M. E., Waxman, H. L., Cain, M. E., Gardner, M. J., and Buxton, A. E.
(1982). Ventricular activation during ventricular endocardial pacing. II. Role of

Frontiers in Physiology | www.frontiersin.org 10 February 2021 | Volume 12 | Article 64135816

https://doi.org/10.1007/s10840-012-9698-x
https://doi.org/10.1109/tmi.2018.2880092
https://doi.org/10.1109/tmi.2018.2880092
https://doi.org/10.1161/cir.0000000000000549
https://doi.org/10.1016/j.jelectrocard.2015.08.008
https://doi.org/10.1016/j.hrthm.2019.08.029
https://doi.org/10.1016/j.hrthm.2019.08.029
https://doi.org/10.1109/TMI.2013.2295220
https://doi.org/10.1109/TMI.2013.2295220
https://doi.org/10.1016/j.ccep.2019.08.005
https://doi.org/10.1016/j.ccep.2019.08.005
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-641358 February 18, 2021 Time: 21:51 # 11

He et al. Model to Predict PVC Origin

pace-mapping to localize origin of ventricular tachycardia. Am. J. Cardiol. 50,
11–22. doi: 10.1016/0002-9149(82)90003-0

Kobayashi, Y. (2018). Idiopathic ventricular premature contraction and
ventricular tachycardia: distribution of the origin. diagnostic algorithm,
and catheter ablation. J. Nippon Med. Sch. 85, 87–94. doi: 10.1272/jnms.2018_
85-14

Kostis, J. B., McCrone, K., Moreyra, A. E., Gotzoyannis, S., Aglitz, N. M.,
Natarajan, N., et al. (1981). Premature ventricular complexes in the absence of
identifiable heart disease. Circulation 63, 1351–1356. doi: 10.1161/01.cir.63.6.
1351

Li, A., Davis, J. S., Grimster, A., Wierwille, J., Herold, K., Morgan, D., et al. (2018).
Proof of concept study of a novel pacemapping algorithm as a basis to guide
ablation of ventricular arrhythmias. Europace 20, 1647–1656. doi: 10.1093/
europace/euy024

Li, A., Davis, J. S., Wierwille, J., Herold, K., Morgan, D., Behr, E., et al. (2017).
Relationship between distance and change in surface ECG morphology during
pacemapping as a guide to ablation of ventricular arrhythmias: implications
for the spatial resolution of pacemapping. Circ. Arrhythm. Electrophysiol.
10:e004447. doi: 10.1161/circep.116.004447

Odille, F., Battaglia, A., Hoyland, P., Sellal, J. M., Voilliot, D., de Chillou, C., et al.
(2019). Catheter treatment of ventricular tachycardia: a reference-less pace-
mapping method to identify ablation targets. IEEE Trans. Biomed. Eng. 66,
3278–3287. doi: 10.1109/tbme.2019.2903631

Potse, M., Linnenbank, A. C., Peeters, H. A., SippensGroenewegen, A., and
Grimbergen, C. A. (2000). Continuous localization of cardiac activation sites
using a database of multichannel ECG recordings. IEEE Trans. Biomed. Eng. 47,
682–689. doi: 10.1109/10.841340

Sapp, J. L., Bar-Tal, M., Howes, A. J., Toma, J. E., El-Damaty, A., Warren, J. W.,
et al. (2017). Real-time localization of ventricular tachycardia origin from the
12-lead electrocardiogram. JACC Clin. Electrophysiol. 3, 687–699. doi: 10.1016/
j.jacep.2017.02.024

Sapp, J. L., Wells, G. A., Parkash, R., Stevenson, W. G., Blier, L., Sarrazin, J. F., et al.
(2016). Ventricular tachycardia ablation versus escalation of antiarrhythmic
drugs. N. Engl. J. Med. 375, 111–121. doi: 10.1056/NEJMoa1513614

Schulze, W. H., Potyagaylo, D., Schimpf, R., Papavassiliu, T., Tülümen, E., Rudic,
B., et al. (2015). “A simulation dataset for ECG imaging of paced beats with
models for transmural, endo-and epicardial and pericardial source imaging,”
in Proceedings of the 1st First Meeting of the Consortium for EGI Imaging, Bad
Herrenalp.

Yang, T., Yu, L., Jin, Q., Wu, L., and He, B. (2018). Localization of origins of
premature ventricular contraction by means of convolutional neural network
from 12-lead ECG. IEEE Trans. Biomed. Eng. 65, 1662–1671. doi: 10.1109/tbme.
2017.2756869

Zhou, S., AbdelWahab, A., Sapp, J. L., Warren, J. W., and Horáček, B. M.
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In recent years, coronary heart disease (CHD) has become one of the main diseases that
endanger human health, with a high mortality and disability rate. Myocardial ischemia
(MI) is the main symptom in the development of CHD. Continuous and severe myocardial
ischemia will lead to myocardial infarction. The clinical manifestations of MI are mainly
the changes of ST-T segment of ECG, that is, ST segment and T wave. Nearly one
third of patients with CHD, however, has no obvious ECG changes. In this paper, a
new method for detecting MI based on the T-wave area curve (TWAC) was proposed.
Through observation and analysis of clinical data, it was found that there exist significant
correlation between the morphology of TWAC and MI. The TWAC morphology of normal
subject is smooth and gentle, while the TWAC morphology of patients with coronary
stenosis is mostly jagged, and the curve becomes more severe with more severe
stenosis. The preliminary test results show that the sensitivity, specificity, and accuracy
of the proposed method for detecting MI are 84.3, 83.6, and 84%, respectively. This
study shows that the TWAC based approach may be an effective method for detecting
MI, especially for the CHD patients with no obvious ECG changes.

Keywords: myocardial ischemia, ECG, coronary heart disease, heart, electrophysiology

INTRODUCTION

Cardiovascular disease has long been the first cause of death. In China only, the current number
of patients with cardiovascular disease is 290 million, among them 11 million are patients with
coronary heart disease (CHD) (Ma et al., 2020). For patients with typical CHD, diagnosis can
be made based on resting electrocardiogram (ECG), exercise ECG, cardiac ultrasound, coronary
angiography, and cardiac magnetic resonance. The resting ECG is widely used in clinic due to its
non-invasive, economical and simple reasons. ST-T wave change is the most commonly used ECG
feature to judge myocardial ischemia (MI) (Lin and Guo, 2005). According to related research, the
positive rate of resting ECG diagnosis for CHD is 71%, and the rest of 29% patients have no ECG
changes and some patients with three lesions can be completely normal, indicating that patients
with normal ECG cannot rule out CHD (Pijls et al., 1995).
The clinical manifestations of MI are mainly the ST-T segment changes of the electrocardiogram,
that is, the ST segment and T wave. The diagnosis of MI by ECG mainly depends on the
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characteristics of the ST-T segment. However, there are many
factors affecting ST segment changes, such as axis shift, heart
rate, electrode effects, body position changes, etc., leading to
inaccurate detection of feature points, relying on ST segment
shift to detect MI has a large false detection rate and missed
detection rate. T wave represents the repolarization process of
the ventricles. During MI, myocardial repolarization is delayed,
resulting in changes in T wave morphology, such as biphasic
T wave, inverted T wave, or high-tip T wave. In view of this
characteristic of T wave, this paper proposes a method for
diagnosing myocardial ischemia based on the T-wave area curve.
By locating T-wave characteristic points, calculating T-wave area
and drawing a curve with cardiac cycles, based on clinical data,
the qualitative relationship between myocardial ischemia and
T-wave area curve was analyzed.

MATERIALS AND METHODS

T-Wave Onset and Offset Detection
T wave is an important part of ECG signal. Accurate localization
and morphological recognition of T wave are basic indicators for
diagnosis of MI, but the shape of T wave is variable. Hayden
et al. (2002) show that when ischemic cardiomyopathy occurs,
the T-wave shape will change accordingly, such as inverted, bi-
phase, high-point, etc., and the low-frequency components near
the end of the T-wave are more abundant than other bands, and
more susceptible to noise and baseline drift. Accurate finding
the location of the T-wave end point is with some difficulties.
Therefore, T-wave detection needs to take into account the
changes in T-wave morphology.

At present, T-wave ends can be detected by methods such as
area method (Zhang et al., 2006; Vázquez-Seisdedos et al., 2011),
wavelet transform (Martínez et al., 2004), pattern recognition
(Saini et al., 2013), and artificial neural network (Maglaveras et al.,
1998). Due to the noise of the T wave and the baseline drift, the
wavelet transform method may contain aliasing part. Therefore,
simply using the wavelet method has a higher false detection rate,
and some waveforms caused by noise or baseline drift are falsely

detected as T waves. The neural network method can adapt to
the change of T-wave shape when it is used for feature detection.
It has good robustness, but the algorithm is more complicated.
For the area-dependent methods, the algorithms can adapt to
abnormal changes in T-wave shape, and have strong waveform
adaptabilities. Among them, Zhang’s algorithm (Zhang et al.,
2006) is a good method for T-wave ends location. It was based
on an indicator signal with mathematically proved consistency.
It was robust to measurement noise, waveform shape changes
and baseline drift, and is suitable for various forms of T waves.
The computation burden of the algorithm was very low: its main
computation can be implemented as a simple FIR filter. When
evaluated with the PhysioNet QT database (Goldberger et al.,
2000) in terms of the mean and the standard deviation of the
T-wave end location errors, Zhang’s algorithm outperforms the
other algorithms evaluated with the same database (Zhang et al.,
2006). So, in this study, Zhang’s algorithm is basically used for
T-wave ends location.

One key issue of the area-dependent methods is to accurately
determine the search boundaries, but the search boundaries
are closely related to the RR interval. If the interval of the
searching window’s boundaries was set too small which means
that two boundary points are near the current R peak, the
maximum of sliding area could not be found or the detected
onset/offset of T wave are nearer to the R peak. This issue will
affect detection accuracy, which results in detection error and
vice versa. In order to more accurately model the relationships
between RR interval and the searching boundaries, in this study,
similar to Shang et al.’s work (Shang et al., 2019), we performed
a k-means clustering analysis between RR intervals and RTon
(RTon denotes the time interval between the R peak and T wave
onset) as well as the relationship between the RR intervals and
RToff (RToff the time interval between the R peak and T wave
offset), which is implemented by means of the k-means function.
The scatter plots with the optimal k-means clustering (k = 3)
are showed in Figure 1, and k is determined by combining
the results of clustering and the computational complexity of
parameters’ settings as well as the adaptiveness of the algorithm.
Then, the two relationships (between RR intervals and RTon, and

FIGURE 1 | Clustering results for T wave feature points: (A) clustering information of T wave onsets; (B) clustering information of T wave offsets.
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between RR intervals and RToff ) are obtained using the following
equations:

Case1 : RR < 0.67s, 0.05s < RTon < 0.25s
Case2 : 0.67s ≤ RR < 1.23s, 0.05s < RTon < 0.35s
Case3 : RR ≥ 1.23s, 0.05s < RTon < 0.45s
Case1 : RR < 0.71s, 0.2s < RToff < 0.45s
Case2 : 0.71s ≤ RR < 1.1s, 0.2s < RToff < 0.6s
Case3 : RR ≥ 1.1s, 0.2s < RToff < 0.45s

(1)

Thus, the three piecewise functions for determining the
search boundaries for T wave onset and offset detections
can be obtained.

Then, the grid search was used to determine the best
combination of parameters in Equations (2) and (3), which was
implemented by for loop. In a loop, we changed the value of
one parameter at a time, kept the other parameters unchanged,
and applied the algorithm in the QT database as well as using a
fivefold cross-validation. Then, we stored the sensitivity of one
loop and started another loop. Through all loops, we traversed all
of the combinations of parameters. After comparing the results,
the combinations of parameters with the highest sensitivity were
chosen. The best parameters’ combinations for T wave onsets are:
a = 0.4, b = 0.2, c = 0.4, d = 0.4, e = 0.3, f = 0.0, and for T wave
offsets are: a = 0.2, b = 0.1, c = 0.2, d = 0.0, e = 0.0, f = 0.1.

t1 =
(⌈

a ×
√

RRi
⌉
+ Ri + 0.02

)
s

t2 =
(⌈

b × (RRi)
⌉
+ Ri + 0.16

)
s if RRi < 0.67s

t1 =
(⌊

c ×
√

RRi
⌋
+ Ri + 0.04

)
s

t2 =
(⌊

d × (RRi)
⌋
+ Ri + 0.24

)
s if 0.67s ≤ RRi < 1.23s

t1 =
(⌈

e ×
√

RRi
⌉
+ Ri + 0.04

)
s

t2 =
(⌈

f × (RRi)
⌉
+ Ri + 0.4

)
s if RRi ≥ 1.23s

(2)



t1 =
(⌈

a ×
√

RRi
⌉
+ Ri + 0.18

)
s

t2 =
(⌈

b × (RRi)
⌉
+ Ri + 0.3

)
s if RRi < 0.71s

t1 =
(⌊

c ×
√

RRi
⌋
+ Ri + 0.18

)
s

t2 =
(⌊

d × (RRi)
⌋
+ Ri + 0.4

)
s if 0.71s ≤ RRi < 1.1s

t1 =
(⌈

e ×
√

RRi
⌉
+ Ri + 0.18

)
s

t2 =
(⌈

f × (RRi)
⌉
+ Ri + 0.48

)
s if RRi ≥ 1.1s

(3)

T-Wave Area Curve
When the T-wave onset and offset was detected, the T-wave area
can be calculated as follows.

Let the T wave onset be Ton and the T wave offset be Toff .
Within the fixed window t ∈ [Ton, Toff ], calculate the waveform
area At :

At =
∑Toff

t = Ton
(st − sk) (4)

where st is the amplitude of the t-th sample point, and sk is
the local average amplitude (by default, a smoothing window of
p = 0.016 s is used), which is defined as:

sk =
1

2p + 1

∑tp

j = t−p
Sj (5)

Calculate the continuous T wave area of each lead, and then
draw the connection line with the cardiac cycle number as the
abscissa and the T wave area as the ordinate. Based on the T wave
morphological variability during MI, it can be inferred that if the
line is approximately straight, the ischemia test is negative. If one
or more of the leads are serrated, it is positive, and if one or more
of the leads are serrated, it may be related to the position of the
blocked coronary artery is related.

From the T-wave area curves of 52 healthy samples in the
PTB database, it was found that the curves of 43 healthy
people were flat and the morphological differences were small.
The difference in T-wave area per heartbeat of patients
with MI, however, is obviously larger than that of healthy
people. The area curve is jagged and irregular. Observing the
corresponding T-wave area curve of the 15-s electrocardiogram
data of 148 patients with MI in the PTB database, it was
found that the curves of 115 MI patients were irregular
and chaotic, which was in sharp contrast with the curves of
healthy samples.

According to the characteristic that the degree of fluctuation
of the T-wave area curve of patients with MI is significantly
greater than that of healthy people, we used the TWAC (T-
wave area curve) to detect MI. Based on the TWAC form, the
gentle TWAC is defined as negative, corresponding to myocardial
blood supply was normal in the subject. And the irregular jagged
TWAC was defined as positive, corresponding to myocardial
ischemia in the subject.

Experimental Data
The sample number in this article is 364 in two groups: the first
group contains 148 patients with MI and 52 normal persons from
the PTB database (Goldberger et al., 2000); the second group
contains 122 patients with suspected MI from Zhejiang Second
Hospital and 42 health subjects. The detailed characteristics of
the selection patients are shown in Table 1.

The clinical data of Zhejiang Second Hospital was conducted
from May 2018 to December 2018. Philips TC20 ECG machine
was used to record resting ECG data with a sampling rate of
1,000 Hz and 16-bit resolution. We select stable 15 s ECG data
(15 s ECG data contains about 20 heart beats) to draw a 12-lead
T-wave area curve. This study was approved by Zhejiang Second
Hospital Review Board. After signing the informed consent, the
patient was placed in the supine position, and the resting ECG
was obtained after strictly following the 12-lead ECG collection
procedure. Each patient was subjected to coronary angiography
after ECG examination. A professional cardiology interventional
doctor performed a visual assessment of the degree of coronary
artery stenosis. In order to ensure the accuracy of the ECG
results of this study, a professional electrocardiologist interpreted
the ECG data, but he did not know the coronary angiography
examination results of the patients.

Selection criteria were patients with suspected MI who had no
MI characteristics on the ECG. The absence of MI characteristics
means that the ST segment of any lead with R wave as the
main wave is not depressed or depressed < 0.05 mv, T wave is
upright and ≥ 1/10R wave. Suspicious MI refers to the clinical
manifestations, myocardial enzymes and other tests and coronary
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TABLE 1 | Clinical characteristics of patients.

Characteristics Myocardial ischemia p-value

Yes (n = 236) No (n = 128)

Age 59 ± 10 55 ± 9 0.025*

Female 106/236 (45%) 49/128 (39%) 0.163

Chest pain 130/236 (55%) 51/128 (40%) 0.023$

Dyspnea 94/236 (40%) 55/128 (43%) 0.58

Heart rate (bpm) 71 ± 8 70 ± 7 0.239

Ejection fraction (%) 65 ± 6 66 ± 2 0.012*

Left ventricular end diastolic
diameter (mmHg) (mm)

47 ± 4 46 ± 2 < 0.01*

Systolic blood pressure (mmHg) 132 ± 27 122 ± 10 0.303

Diastolic blood
pressure (mmHg)

76 ± 9 74 ± 6 0.03*

Smoke 113/236 (48%) 55/128 (43%) 0.5

Hypertension 144/236 (61%) 68/128 (53%) 0.197

Diabetes mellitus 73/236 (31%) 33/128 (26%) 0.354

Dyslipidemia 170/236 (72%) 78/128 (61%) 0.032$

Family history of CAD 42/236 (18%) 18/128 (14%) 0.396

P-value are obtained using independent-samples t-test and Chi-square test.
*Significant differences between groups using independent-samples t-test.
$Significant differences between groups using Chi-square test. Diagnostic criteria
for hypertension: systolic blood pressure ≥140 mmHg in three resting days on
the same day; or diastolic blood pressure ≥90 mmHg; or those with a history of
hypertension who are taking antihypertensive drugs and are currently at normal
blood pressure. Diabetes diagnosis criteria: fasting blood glucose > 7.0 mmol/L or
2 h after meals > 11.1 mmol/L; or patients with a history of diabetes who are taking
drugs to treat the current normal blood sugar. Diagnostic criteria for hyperlipidemia:
total blood cholesterol > 6.00 mmol/L, or triglycerides ≥ 1.69 mmol/L during this
hospitalization; or those with a history of hyperlipidemia who are currently taking
hypolipidemic drugs and have normal blood lipids. Smoking history is based on
past history.

CTA and other examinations suggest that the patient may have
MI, which is evaluated by a professional cardiologist.

Exclusion criteria were non-sinus electrocardiograms
such as atrial fibrillation and atrial flutter; premature beats;
atrioventricular block or ventricular block; ventricular
pre-excitation patterns; abnormal Q waves or poor R-wave
increments in right chest leads; significant sinus Bradycardia
(heart rate < 50 beats/min); heart valve disease.

This article used the results of CAG or blood flow reserve
fraction (FFR) as the gold standard for MI diagnosis, and
defined coronary angiography result as a positive MI if one of
the three branches of the coronary artery (anterior descending
branch, circumflex branch, right coronary artery) has a stenosis
degree of ≥ 70% (Tonino et al., 2009); all without stenosis or
a degree of stenosis less than 70% are negative MI. Patients are
considered positive MI when FFR value≥ 0.8, and negative MI if
FFR value < 0.8.

RESULTS

As mentioned above, TWAC is a curve of the T-wave area of
a conventional 12-lead ECG as a function of the cardiac cycle.
By analyzing the TWAC morphology of a lot of clinical data,
it is found that the curve of normal people has less fluctuation,
and the curve of patients with MI is mostly jagged changes in

different cardiac cycles. Figure 2 shows an example of TWAC in
two normal people, and Figure 3 shows an example of TWAC in
two patients with MI. It shows that the T-wave area curve has a
significant correlation with ischemic heart disease. Therefore, in
this article, TWAC of one or more leads with jagged fluctuations
is identified as positive (with MI), and the fluctuations are small
and gentle in TWAC is considered as negative (no MI).

Experiment results are shown in Table 2. The sensitivity of
TWAC to the diagnosis of MI was 84.3% (199/236), the specificity
was 83.6% (107/128), and the accuracy was 84.0% (306/364).

DISCUSSION

Analysis of Misjudgment Data
The total number of patients in the false-negative group was 37,
of which 13 patients had a diseased vessel stenosis of 70%. The
method used in this study to interpret the degree of coronary
stenosis was physician visual assessment (PVA), which is based
on the personal experience of the surgeon. Judgment is relatively
subjective. Studies have pointed out that the severity of stenosis
of coronary lesions in PVA in China is significantly higher than
quantitative coronary angiography (QCA) and there is a large
difference between hospitals and doctors (Zhang et al., 2018).
Therefore, the presence of false-negative patients does not rule
out the possibility of overestimation of coronary artery disease
caused by PVA. Single-vessel disease is more common in false-
negative patients, while multiple-vessel disease is more common
in true-positive patients. The range of MI caused by single
vessel disease is relatively small, and negative results are easily
obtained. In addition, collateral circulation is another factor of
false negative results. The collateral circulation rate of patients in
the false negative group is higher than that in the true positive
group. Professional cardiologists have confirmed that there are
4 cases of coronary stenosis >70% in the false negative group.
Collateral circulation can improve the heart blood supply and
may make TWAC negative.

A total of 21 false-positive patients was included in this
study, 15 of whom had chest tightness and chest pain. Although
coronary angiography showed negative results, the possibility of
MI could not be completely ruled out. In the FAME study, 35%
of the lesions with a degree of coronary stenosis of 50–70% had
an FFR of < 0.8, and in Park’s study, 16% of the lesions with
a degree of coronary stenosis of < 50% had an FFR of < 0.8.
The data indicate that MI is still possible without significant
coronary stenosis (Tonino et al., 2009; Park et al., 2012; Ahmadi
et al., 2015). The clinical manifestations of all these false positive
patients were typical CHD and showed a higher incidence of
coronary atherosclerosis than the true negative group.

Analysis of the Relationship Between
TWAC Morphology and Coronary
Occlusion in Specific Leads
When the TWAC is positive, by observing the TWAC
morphology on each lead, we’ve found that in addition to
the V1 ,V3 ,V4 leads have obvious sharp points or inverted
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FIGURE 2 | ECG and TWAC Examples of two normal subjects: A005, male, 29 years old; A222, male, 23 years old. (A) ECG of A005; (B) TWAC of A005; (C) ECG
of A222; (D) TWAC of A222.

phenomena, the aVL lead and aVR lead curves also fluctuate
greatly, as shown in Figure 3D.

T wave can reflect the heterogeneity of ventricular
repolarization in patients and predict cardiovascular disease
to a certain extent. T wave is a potential wave formed by
repolarization of ventricular cells. Repolarization is an active
energy-consuming process. When MI occurs, the heart cannot
normally deliver blood and nutrients. Therefore, insufficient
supply of myocardial energy will cause myocardial contraction
and diastolic function is impaired, which may cause T wave
changes in patients with ischemic cardiomyopathy.

Studies have shown that the degree of T wave changes in
aVL leads reflects the degree of ventricular muscle excitement
recovery time, and reflects the heterogeneity of ventricular
muscle repolarization. Compared with ST-T changes, aVL lead

T-wave changes have a higher sensitivity for the diagnosis of
myocardial ischemia, which is significantly related to the number
of coronary artery disease vessels and the degree of myocardial
ischemic injury (Tepetam et al., 2016).

Studies have also shown that the inversion of T waves on leads
V3 and V4 may indicate a middle obstruction of the left anterior
descending coronary artery, which indicates that changes in T
waves on specific leads can predict not only extensive myocardial
ischemia, but also blockage at specific coronary arteries (De
Zwaan et al., 1982). From the azimuth point, leads V3 and
V4 correspond to the proximal anterior descending branch, and
the coronary direction of the middle part of the left anterior
descending branch is almost parallel to the aVL lead of the
ECG. It can be speculated that if the adjacent area of the left
anterior descending branch ischemia, the T wave of lead aVL
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FIGURE 3 | ECG and TWAC examples of two MI patients: T209, female, 66 years of age, with moderate coronary stenosis; T234, male, 73 years, with severe
coronary stenosis. (A) ECG of T209; (B) TWAC of T20; (C) ECG of T234; (D) TWAC of T234.

should also change. Therefore, the T wave change of lead aVL also
corresponds to the anterior descending branch of the left anterior
descending coronary artery.

As shown in Figure 3B, the aVR lead curve fluctuates in a
zigzag manner, and the coordinate points in some cardiac cycles
exceed the abscissa and become positive values. In a normal 12-
lead ECG, the T wave on the aVR lead is inverted. This patient’s
CAG showed 70% stenosis of the left circumflex branch. Studies
have shown that the morphological changes of the T wave in lead
aVR are of great significance in predicting cardiovascular death,
and its value is higher than other ECG leads, comparable to the
changes in the ST segment of the aVR lead (Tan et al., 2008). If
the amplitude of the inverted T wave becomes smaller, it means
that the risk of cardiovascular death is gradually increased. When

the inverted T wave becomes upright, the risk of cardiovascular
death is higher.

The aVR lead has been used only to judge the origin of the
heart rhythm, and its role has been seriously underestimated.
The aVR lead has a special position on the frontal six-axis
system, that is, the aVR lead axis is between the I and II lead
axes, the angle between the aVR lead axis and the ventricular
depolarization vector is the smallest, and the projection is the
largest, which is the most sensitive lead to the changes of the
ventricular depolarization vector.

Advantages and Limitations
Coronary atherosclerosis causes a series of electrophysiological
changes that affect ventricular repolarization
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TABLE 2 | Experimental results, where TN, TP, FN, and FP represent true negative, true positive, false negative, and false positive, respectively.

Experiment samples TWAC TP, TN, FP, FN SEN (%) SPE (%) ACC (%)

Positive Negative TN TP FN FP

PTB 148 MI 119 29 – 119 29 80.4 – 80.4

PTB 52 healthy 9 43 43 – – 9 – 82.7 82.7

ZJU 122 MI 89 33 25 80 8 9 89.9 75.8 86.1

ZJU 42 healthy 3 39 39 – – 3 – 92.9 92.9

Total 364 220 144 107 199 37 21 84.3 83.6 84.0

The sensitivity (SEN), specificity (SPE) and accuracy (ACC) are defined as follows:

Sensitivity :def
=

TP
TP + FN

(%)

Specificity :def
=

TN
TN + FP

(%)

Accuracy :def
=

TP + TN
TP + TN + FP + FN

(%)

(Downar et al., 1977; Janse and Wit, 1989). During cardiac
ischemia, the duration of action potential and conduction
velocity decrease, leading to a heterogeneous repolarization
process (Janse et al., 1985). Studies have shown that ischemia
increases the repolarization dispersion between normal
and ischemic fibers, and between the epicardium and the
endocardium (Coronel et al., 1988), which refers to the "every
other heartbeat" on the ECG. The repolarization pattern has
a continuous fluctuation (Arini et al., 2014). This fluctuation
refers to the change in the amplitude of the T wave or the
change in the ST segment between different cardiac cycles.
The amplitude of these bipolar alternations (dispersions) is
usually in the microvolt range and cannot be visually recognized.
Computer-based signal processing and analysis technology
can detect subtle ECG changes. The T wave amplitude and
shape on ECG alternately change from beat to beat, which is
called T wave electrical alternation (TWA) (Puletti et al., 1980).
TWA represents the alternation of cardiac repolarization, is an
indicator of ventricular tachycardia and ventricular fibrillation
in ischemic myocardium, and can be used as an indicator of risk
stratification of acute myocardial infarction. The disadvantage
of TWA is that it is susceptible to breathing, electrode and skin
interference, wire movement and body position changes, and
further research is needed. TWAC analyzes subtle ECG signal
changes and amplifies such subtle changes to detect abnormal
dynamics of cardiac repolarization, and is robust to acquisition
noise, baseline drift and T wave morphology.

TWAC is the T-wave area curve of 12 leads with the cardiac
cycle. Different leads of the electrocardiogram record electrical
signals at different positions of the heart. Therefore, the degree
of fluctuation of TWAC on different leads reflects the degree of
stenosis at specific blood vessels to a certain extent. This paper
analyzed the TWAC and coronary angiography results of some
patients, and found that the T wave changes on leads V3 ,V4 , aVL
corresponded to the obstruction of the left anterior descending
branch of the coronary artery, and the T wave changes on the
aVR lead predicted the stenosis at left trunk coronary arteries.

There are some limitations in this study. First, coronary
angiography shows that coronary artery stenosis is not
equivalent to MI (Tonino et al., 2009; Park et al., 2012;

Ahmadi et al., 2015). Clinically, it can be directly intervened
when the diameter of coronary artery is narrower than 90%;
if the diameter of coronary artery is not narrower than 90%,
it is recommended that only FFR ≤ 0.8, or the disease with
corresponding evidence of ischemia, then intervention can be
taken. For moderate coronary stenosis, even the experienced
cardiologist’s interventional physician’s visual assessment
of angiography cannot accurately evaluate its physiological
significance (Fischer et al., 2002). The number of patients with
mismatched TWAC and CAG results in this study was 58, of
which 33 (56.7%) patients had coronary stenosis with a coronary
stenosis of 40–70%. It cannot be ruled out that coronary
angiography could not determine the myocardial ischemia
relatively accurately. The accuracy rate of FFR value ≤ 0.80
for identifying myocardial ischemia caused by coronary artery
stenosis is as high as >90%. It has been confirmed by extensive
randomized controlled studies that FFR is the gold standard
for evaluating the physiological significance of coronary artery
stenosis. Changes in hemodynamic factors such as contractile
force. In future studies, FFR will be considered as the gold
standard for diagnosis of MI, which can further verify the
accuracy of TWAC. Secondly, the sample size is small, and more
clinical research is needed to further verify the TWAC method.

CONCLUSION

In this paper, a new method for detecting MI was proposed,
unlike the conventional ST-T segment based approaches, it was
based on the T-wave area curve (TWAC). Preliminary test results
show that the proposed method has good sensitivity, specificity,
and accuracy for MI detection, especially for the CHD patients
with no obvious ECG changes.
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The present study addresses the cardiac arrhythmia (CA) classification problem using
the deep learning (DL)-based method for electrocardiography (ECG) data analysis.
Recently, various DL techniques have been utilized to classify arrhythmias, with one
typical approach to developing a one-dimensional (1D) convolutional neural network
(CNN) model to handle the ECG signals in the time domain. Although the CA
classification in the time domain is very prevalent, current methods’ performances are
still not robust or satisfactory. This study aims to develop a solution for CA classification
in two dimensions by introducing the recurrence plot (RP) combined with an Inception-
ResNet-v2 network. The proposed method for nine types of CA classification was tested
on the 1st China Physiological Signal Challenge 2018 dataset. During implementation,
the optimal leads (lead II and lead aVR) were selected, and then 1D ECG segments
were transformed into 2D texture images by the RP approach. These RP-based images
as input signals were passed into the Inception-ResNet-v2 for CA classification. In
the CPSC, Georgia, and the PTB_XL ECG databases of the PhysioNet/Computing
in Cardiology Challenge 2020, the RP-based method achieved an average F1-score
of 0.8521, 0.8529, and 0.8862, respectively. The results suggested the excellent
generalization ability of the proposed method. To further assess the performance of the
proposed method, we compared the 2D RP-image-based solution with the published
1D ECG-based works on the same dataset. Also, it was compared with two traditional
ECG transform into 2D image methods, including the time waveform of the ECG
recordings and time-frequency images based on continuous wavelet transform (CWT).
The proposed method achieved the highest average F1-score of 0.844, with only two
leads of the 12-lead ECG original data, which outperformed other works. Therefore, the
promising results indicate that the 2D RP-based method has a high clinical potential for
CA classification using fewer lead ECG signals.
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INTRODUCTION

Cardiac arrhythmia (CA) is a common cardiovascular disease,
and it includes various arrhythmias, such as atrial fibrillation
(AF), atrioventricular block, premature atrial contraction (PAC),
premature ventricular contraction (PVC), and so on. As a life-
threatening risk, the CA affects more than 4.3 million people only
in America at a total direct annual healthcare cost of up to $US
67.4 billion, which is a heavy economic burden to society (Tang
et al., 2014). Many arrhythmias manifest as sequences of the
wave with unusual timing or morphology in electrocardiography
(ECG) (De Chazal et al., 2004), and analysis of the inherent
features of ECG is the most common technique for diagnosis and
classification of CA.

Recently, various machine learning methods have been
developed for ECG arrhythmia classification. Using the MIT-BIH
arrhythmia database, a mixture-of-experts classifier structure
was formed to improve the performance of ECG beat
classification, which was based on three popular artificial neural
networks. The self-organizing maps and the learning vector
quantization algorithms were used to train the classifier, and the
mixture-of-experts method was used to classify the ECG beat
(Hu et al., 1997).

Based on RR-interval features, heartbeat interval features and
ECG morphology features, a linear discriminants framework
was proposed to allow the classification and diagnosis of
CA into five groups: normal, ventricular ectopic beat (VEB),
supraventricular ectopic beat (SVEB), the fusion of normal and
VEBS, and unknown types (De Chazal et al., 2004). Using
RR interval features and a hierarchical heartbeat classification
system, another work detected the VEB based on random
projection and support vector machine (SVM) ensemble and
then analyzed the SVEB with a positive predictive value of
42.2% (Huang et al., 2014). For the CA prediction by traditional
machine learning approaches, a set of handcrafted features was
extracted from the ECG dataset and then followed by classifiers,
including SVM (Ye et al., 2012), artificial neural network (Ince
et al., 2009), linear discriminant framework (de Chazal and Reilly,
2006), etc. However, it requires more specific expertise in ECG,
thus generally challenging to further improve the performance in
complex CA classification.

Due to the improvement of computing power and the
availability of a large number of datasets, deep neural networks
have recently been used to perform automatic feature extraction
and end-to-end classification of CA. One-dimensional (1D)
deep convolutional neural networks (CNNs) have become the
mainstream means to address these tasks. A 34-layer 1D CNN
was applied to 1D ECG rhythm classification with a dataset
recorded with a single-lead wearable monitor, which achieved
an optimal performance exceeding cardiologists’ performance
(Rajpurkar et al., 2017). A 1D CNN was developed in another
work to classify 12 rhythm classes with 91,232 single-lead ECG
records. The results demonstrated that the end-to-end deep
learning (DL)-based method could achieve the same performance
as a cardiologist (Hannun et al., 2019). A method was proposed
to classify heart diseases using a 1D CNN based on a modified
ECG signal in MIT-BIH, St. Petersburg, and PTB dataset (Hasan

and Bhattacharjee, 2019). A 31-layer 1D residual CNN (ResNet)
was applied to achieve an optimal accuracy in the classification of
five different CA based on two-lead ECG signals (Li et al., 2020).
Moreover, recurrent neural networks (RNNs) have a memory
that captures information about data history and can model
data of arbitrary lengths that were widely used for modeling
sequential data. Xiong et al. (2018) proposed a neural network
named RhythmNet, which combines the strengths of both 1D
CNNs and RNNs to classify four different CAs based on the 2017
PhysioNet/Computing in the Cardiology Challenge dataset. They
evaluated the algorithm on 3,658 testing data and obtained an F1
accuracy of 0.82. Long-term and short-term memory (LSTM) is
one of the RNN and is widely used in time-series signal analysis,
such as classification of ECG signals and speech recognition,
and so on. An approach that combined 1D CNN and LSTM
was developed to automatically classify six types of ECG signals
from the MIT-BIH arrhythmia database (Chen et al., 2019).
Besides, three works based on the 1st China Physiological Signal
Challenge dataset, using 1D CNN, were combined with LSTM to
classify the CA. He et al. (2019) developed a model constitutive of
1D CNN and LSTM to learn local features and global features
from raw 12-lead ECG signals to realize the classification and
achieved the overall F1-score 0.799. Yao et al. (2019) proposed an
attention-based time-incremental CNN, using 1D CNN, LSTM,
and attention module to extract both spatial and temporal fusion
of information from the raw 12-lead ECG data, which reached an
overall classification F1-score of 0.812. Chen et al. (2020) applied
a neural network that combined 1D CNN, bidirectional RNN,
and attention modules to achieve a median overall F1-score of
0.797 for nine types of CA classification based on 12-lead ECG.

In parallel to the development of DL methods for CA
classification based on 1D ECG signals, alternative methods
have been proposed to transform the time-series signals into 2D
matrices that can be handled by those CNN networks dedicated
to processing 2D or multi-dimensional signals in the fields of
image processing and computer vision. An automatic algorithm
was proposed to detect AF, for which the 1D ECG signals
have been converted to 2D time-frequency representations and
then processed by the network of 2D CNN and Densenet. The
method led to an F1 of 0.82 (Parvaneh et al., 2018). In another
work, a signal quality index algorithm along with dense CNNs
was developed to distinguish AF based on the dataset of 2017
PhysioNet/CinC Challenge by time-frequency representations of
one-lead ECG recordings which achieved an overall F1-score of
0.82 (Rubin et al., 2018). Zhao et al. (2019) proposed a method
that combined the modified frequency slice wavelet transform
(MFSWT) and CNN to PVC recognition. Using this method, the
PVC and non-PVC ECG recordings were modeled to a set of
time-frequency images, which were then fed into the CNN as
the input signals to process the prediction. It achieved a high
accuracy of 97.89% for the PVC recognition. Besides, using 2D
grayscale images of each ECG recording as input signals, some
studies developed 2D CNN to CA classification based on the
MIT-BIH database (Jun et al., 2018; Izci et al., 2019).

As described above, various temporal, morphology, and
time-frequency features of ECG data have been considered to
study the CA classification. However, for specific complex CA
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classification, these methods may still offer non-robust and
unsatisfactory results, and new techniques are thus required
for providing better solutions for clinical use. In this work, a
2D DL-based CA classification method using the recurrence
plot (RP) technique (Eckmann et al., 1987) was developed. The
RP graphically shows hidden patterns and structural changes
in time signals or similarities in patterns across the time
series. It has been applied to various applications, including
Parkinson’s disease identification (Afonso et al., 2018), heart
rate variability evaluation (Marwan et al., 2002; Schlenker et al.,
2015), paroxysmal AF prediction (Mohebbi and Ghassemian,
2011), and AF and VF and PAC and PVC prediction (Mathunjwa
et al., 2021). Different from other time-series representations, RP
may provide a visual mechanism for pattern identification, being
suitable for combining with state-of-the-art DL approaches. In
this work, whether the RP-based DL framework is appropriate
for CA classification was studied.

The contributions of this work include the following: (i)
this is a prospective study of using RP for modeling ECG
signals with 2D texture images that are processed for DL-
based CA classification; (ii) the optimal leads (lead II and lead
aVR) were selected as an input signal to classify nine classes
of CA, implemented with the 1st China Physiological Signal
Challenge 2018 open database, and achieved performance with
the average F1-score 0.844; (iii) the Inception-ResNet-v2 network
was introduced to extract the characteristics of patterns and
structural changes from the 2D RP-based images.

The rest of the paper is organized as follows: the approach and
the network architecture are described in section “Methodology,”
the experiments are detailed in section “Experiment”, and the
conclusions are drawn in section “Conclusion.”

METHODOLOGY

In this work, the classification of the CA problem is modeled as
a 2D image classification task using RP-based texture images and
the Inception-ResNet-v2 architecture.

Recurrence Plot
The time series such as ECG signals have typical recurrent
behaviors, including periodicities and irregular cyclicities
(Debayle et al., 2017), which may be difficult to visualize in the
time domain. An RP was proposed to explore the m-dimensional
phase space trajectory and to visualize the recurrent behaviors of
the time series (Eckmann et al., 1987, 1995).

An RP can be formulated as:

Ri,j = θ(ε−
∣∣∣∣xi − xj

∣∣∣∣), i, j = 1, ....,N (1)

where N is the number of considered states (dots at the time
series) xi, ε is a threshold distance, |·| is a norm (e.g., Euclidean
norm), andθ (.) is the Heaviside function.

θ (.) is defined as:

θ (Z) =

{
0, if z < 0
1, otherwise

(2)

The original formulation Equation (1) is considered binary
caused by ε the threshold distance. In this paper, an un-
thresholded approach proposed by Faria et al. (2016) was adopted
to avoid information loss by binarization of the R-matrix, with the
Euclidean norm, to obtain an RGB image and to make use of the
color information in RP images.

The R-matrix can be defined as:

Ri,j =
∣∣∣∣xi − xj

∣∣∣∣ , i, j = 1, ....,N (3)

In the present study, the 1D ECG signals have been converted
to 2D RP images as the input signals and then fed into the 2D
network for classification.

Network Architecture
The Inception-ResNet-v2 (Szegedy et al., 2016) was used for
the CA classification task. The architecture of the network is
shown in Figure 1. It contains three parts: the stem is the
deep convolutional layers and used to pre-process the original
data before entering the Inception-ResNet blocks, including nine
layers of convolutional and two max-pooling layers. The second
part was detailed in Figure 2. Figure 2A showed the Inception-
ResNet-A with two 3 × 3 kernels in the inception module. The
Inception-ResNet-B is detailed in Figure 2C with the asymmetric
filter combination of one 1 × 7 filter and one 7 × 1 filter in
the inception module. The Inception-ResNet-C can be seen in
Figure 2E with a small and asymmetric filter combination of one
1 × 3 filter and one 3 × 1 filter; 1 × 1 convolutions were used
before the larger filters in these blocks. The network enhances
the diversity of the filter patterns by asymmetric convolution
splitting. The reduction of A and B in Figures 2B,D was made
to increase the dimension, which needs to compensate for the
dimensionality reduction caused by the Inception block. The last
part is the prediction layer, including pooling and softmax layers.

EXPERIMENT

ECG Database
The 1st China Physiological Signal Challenge 2018 dataset was
used in this study (Liu et al., 2018). The dataset contains
6,877 12-lead ECG recordings lasting from 6 to 60 s for free
download, which was labeled the most CA types according to
normal sinus rhythm and eight types of arrhythmia: AF, First-
degree atrioventricular block (I-AVB), Left bundle branch block
(LBBB), Right bundle branch block (RBBB), PAC, PVC, ST-
segment depression (STD), and ST-segment elevation (STE).
These recordings were collected from 11 Chinese hospitals and
sampled at 500 Hz. The dataset details are summarized in Table 1.

Data Splitting and Augmentation
The investigated ECG dataset has two problems. Firstly, the range
of each recording length varies from 6 to 60 s. It is not convenient
for training the model with non-identical lengths of the ECG
recordings. We down-sampled the raw ECG signals to 200 Hz,
and then the ECG recordings were segmented into a span of 5 s.
Secondly, as demonstrated in Table 1, the dataset is unbalanced,
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FIGURE 1 | The architecture of the Inception-ResNet-v2.

which brings challenges to the classification of arrhythmias. To
make it balanced, based on the number of RBBB, the other eight
types of data were augmented. For instance, if the duration of the
Normal, AF, and STD ECG recordings is over 10 s, the recording

were segmented into two 5 s long patches. In this way, 1,836 5 s
segments of Normal, 2,195 segments of AF, and 1,651 segments
of STD were obtained. For I-AVB, PAC, and PVC recordings,
if the duration of the data is over 15 s, it was then divided into
three segments of 5 s-long strips. In this way, there were 1,602 5 s
segments of I-AVB, 1,411 segments of PAC, and 1,642 segments
of PVC. For LBBB and STE recordings, the data were split into a
set of 5 s segments up to eight in turn, which was repeated three
times with different start points, the first time started from the
first data, the 201st data for the second time, and the 401st data
for the third time, respectively. Thus, 1,677 segments of LBBB and
1,896 of STE were obtained.

Mapping ECG Signals Into Texture Images
Each data was represented by a set of 5 s ECG strips and
further mapped into images through the RP operation. Then,
the RP-based images were normalized to the (0–1) range. The
CA classification problem was modeled as an image classification
task based on RP-based images and CNN. Using a 5 s ECG
signal (x) with 1,000 data points, the 2D phase space trajectory
is constructed from x by the time delay of one point. States in
the phase space are shown with bold dots: s1 (x1, x2), s2 (x2,
x3), . . .. . ., s999 (x999, x1000) (Debayle et al., 2017). The RP R is
a 999× 999 square matrix with Ri,j = dist (si, sj). In Figures 3–5,
taking each class signal in the Lead II for instance, the time
waveform of ECG recordings with nine types of the classes and
corresponding RP-based images were shown. In the RP, different
colors can be observed, which are associated with the distance
values between plots on the ECG signals. The lowest distance
values are coded with a blue color, and the highest distance
values are coded with a red color. Moreover, the RP contains
textures that are single dots, lines including diagonal, vertical,
and horizontal lines, and typology information, including those
characterized as homogeneous, periodic, drift, and disrupted.
Obviously, there are patterns and information in RP that are not
always very easy to see in the time series visually.

Classification
As the flow chart shown in Figure 6, using the RP method, a 2D
representation of an ECG time-series signal was obtained and
then the 999 × 999 RP-based texture images of 5 s ECG strips

FIGURE 2 | The architecture of the Inception-ResNet A,B,C and Reduction A,B.
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TABLE 1 | Data profile for the ECG dataset.

Type Recording Time length (s)

Mean SD Min Median Max

Normal 918 15.43 7.61 10.00 13.00 60.00

AF 1,098 15.01 8.39 9.00 11.00 60.00

I-AVB 704 14.32. 7.21 10.00 11.27 60.00

LBBB 207 14.92 8.09 9.00 12.00 60.00

RBBB 1,695 14.42 7.60 10.00 11.19 60.00

PAC 574 19.46 12.36 9.00 14.00 60.00

PVC 653 20.21 12.85 6.00 15.00 60.00

STD 826 15.13 6.82 8.00 12.78 60.00

STE 202 17.15 10.72 10.00 11.89 60.00

Total 6,877 15.79 9.04 6.00 12.00 60.00

were resized to 299× 299× 3 and fed into the Inceptive-ResNet-
v2 model as input signals. A transfer learning approach was
introduced on the generalizability of pre-trained models (Wang
et al., 2019). The entire model was trained using Adam optimizer

with default parameters, a learning rate of 0.001, and a batch
size of 128. Cross entropy loss was calculated for the batched
output and corresponding label, and the average gradient was
backpropagated to all the weight in the previously mentioned
layers. In the process, the training datasets were fed into the
network in batches to train models. Then, the model producing
the best performance on the validation dataset was selected for
further classification on the test dataset. Since the fivefold cross-
validation was applied, this process was repeated.

Computing Environment
The experiments were performed on Wiener nodes of the
University of Queensland computer cluster with 4∗ Nvidia Volta
V100 SXM2 connected GPU’s per node. Each node contains
5,120 CUDA cores, 640 Tensorflow hardware cores, 32 GB of
HBM2 class memory. This model was implemented using the
Tensorflow 3.6 and Karas DL framework.

Performance of Experiments
To assess whether the proposed method leads to benefits for the
CA task, precision, recall, and F1-score were used to evaluate

FIGURE 3 | The Normal ECG time waveform and its corresponding RP-based image.
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FIGURE 4 | The ECG time waveforms and their corresponding RP-based images of AF, I-AVB, LBBB and RBBB.

the performance of Inception-ResNet-v2 in typical classification
metrics for each class. They were defined as:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 =
2(Precision ∗ Recall)
Precision + Recall

(6)

Here, TP is the number of data that are correctly classified to
a specific class. FP is the number of data that are classified to a
specific class, but they belonged to other classes. FN is the number
of data that are misclassified to other classes, but they belonged to
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FIGURE 5 | The ECG time waveforms and their corresponding RP-based images of PAC, PVC, STD and STE.

a specific class. The average F1-score among classes is computed
to evaluate the final performance of the model.

To introduce the RP-based Inception ResNet-v2 method for
addressing the CA classification task, this section describes how
to find the optimal leads of ECG as the input signal. At first, the
full 12-lead RP-based ECG images were fed into the network and
obtained an overall average F1-score of 0.7066. In the second
step, we did the CA classification based on each single-lead RP-
based images as the input signal. The results indicated that lead

II was one of the best-performing single leads, followed by the
lead V4 and aVR, with the performance ranking first, second, and
third in the overall nine types of classification average F1-score
of 0.7337, 0.7319, and 0.7313. In the third step, using the above
three leads signals, we made different random combinations as
the input signals for CA classification. The optimal performance
(average F1-score of 0.844) was achieved on the combination
of Lead II and lead aVR. These two lead data were divided
into several 5 s ECG data segments and then converted into a
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FIGURE 6 | The workflow of the proposed approach for CA classification.

TABLE 2 | Classification performance of Inception-ResNet-v2
based on RP images.

CA Type Precision Recall F1-score

Normal 0.797 0.827 0.812

AF 0.852 0.898 0.875

I-AVB 0.916 0.930 0.923

LBBB 0.933 0.924 0.929

RBBB 0.777 0.776 0.776

PAC 0.774 0.733 0.753

PVC 0.865 0.731 0.793

STD 0.808 0.867 0.837

STE 0.899 0.901 0.900

Avg/total 0.847 0.847 0.844

2D RP-based image separately. All these images formed into an
image dataset as input signals to do the CA classification. To
maintain class prevalence between data splits, 20% data of each
class were randomly selected as the test set for assessing algorithm
performance independently, and 80% data of each type were
the training and validation sets. Then, a fivefold stratified split
was applied to the training and validation sets. Data four in five
were adopted to create a training set, and the other one split as
the validation set.

In this section, the results concerning the Inception-ResNet-
v2 with the RP-based images of Lead II and lead aVR as input
data are detailed in Table 2. The proposed method achieved
an overall F1-score of 0.844 from the fivefold cross-validation
experiments. The average precision is 0.847, and the average
recall is 0.847 for the nine classifications of the CA using only
two leads of the recordings. Besides, the highest prediction
accuracy F1-score in nine classes was obtained at LBBB (0.929)
followed by I-AVB (0.923), while prediction for PAC has the
lowest F1-score (0.753). In Figure 7, the confusion matrix
of the proposed method was drawn. It outlined the data of
predictions for each class. There is a relatively small error
between Normal rhythm and AF, I-AVB, and LBBB, which

implies that the Inception-ResNet-v2 was effective in predicting
AF, I-AVB, and LBBB based on the RP texture images, while
the method had difficulties in distinguishing PAC rhythms
from other rhythms.

Comparison With Reference Models
To explore the reliability and effectiveness of the proposed
method, we implemented seven state-of-the-art models,
including Xception (Chollet, 2017), Resnet 50 (He et al.,
2016), Resnext (Saining Xie et al., 2017), Densenet (Gao et al.,
2017), Inception-ResNet-v1, Inception-v3, and Inception-v4
(Szegedy et al., 2016) as reference. The data augmentation and
regularization strategies of training and testing sets are provided
separately to ensure that the results of different algorithms are
comparable. The same hyperparameters, including learning rate
and batch size, were used for the proposed and all reference
models. For comparison, the average F1-score of each class was
calculated for each architecture. The results of each model can be
found in Table 3.

The comparison highlights that for CA based on RP texture
images, the Inception-ResNet-v2 achieved an average F1-score of
0.844, which was higher than other classification frameworks. It
was shown that the Inception-ResNet-v2 outperformed Xception,
Resnet50, Resnext, Inception V3, and Inception V4 in the F1-
score of all classes and almost outperformed Densenet in all
classes except for one LBBB class where two models performed
comparably (F1-score 0.92). Moreover, the Inception-ResNet-
v1 achieved an average F1-score of 0.81, with the optimal
performance of the prediction on LBBB and STE class. In
identifying the LBBB class, almost all the models achieved
significantly higher F1-scores compared with other classes.
However, all the models had the lowest F1-score in the prediction
of the PAC class.

Comparison of RP-Based With Other Image-Based
Methods for CA Classification
In this work, for CA classification, we also compared the RP
method with two other traditional methods that transform the
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FIGURE 7 | The confusion matrix of the proposed method for CA classification.

TABLE 3 | Classification performance of different reference models.

Type F1-score

Xception Resnet 50 Densenet Resnext Inception-ResNet-v1 Inception-v3 Inception-v4 Inception-ResNet-v2

Normal 0.77 0.76 0.75 0.75 0.78 0.72 0.73 0.812

AF 0.85 0.85 0.85 0.88 0.86 0.86 0.85 0.875

I-AVB 0.88 0.88 0.87 0.88 0.89 0.87 0.87 0.923

LBBB 0.89 0.90 0.92 0.91 0.93 0.91 0.91 0.929

RBBB 0.70 0.72 0.70 0.72 0.72 0.71 0.71 0.776

PAC 0.67 0.65 0.64 0.68 0.64 0.60 0.58 0.753

PVC 0.72 0.72 0.71 0.74 0.76 0.68 0.65 0.793

STD 0.79 0.79 0.76 0.79 0.79 0.77 0.75 0.837

STE 0.85 0.83 0.86 0.85 0.90 0.87 0.86 0.900

Avg/total 0.80 0.79 0.79 0.80 0.81 0.78 0.77 0.844

ECG signal to 2D images, including the Wavelet time-frequency
images and the time waveform. In this section, the continuous
wavelet transform (CWT) method (He et al., 2018) was used
to transform the ECG time-domain signals, each of which has
a duration of 5 s (1,000 sample points given the sampling
rate of 200 Hz), into time-frequency domain signals with
six continuous wavelet functions including Complex Gaussian
wavelets (cgau8), Complex Morlet wavelet (cmor), Frequency
B-Spline wavelets (fbsp), Gaussian wavelets (gaus8), Mexican hat
wavelet (mexh), and Morlet wavelet, resulting in the 2D time-
frequency representation of the segmented ECG recordings. The
proposed Inception-ResNet-v2 was properly trained to process
the CA classification. For the time waveform, the segmented
5 s ECG recordings of each class were plotted, and then the
waveforms of the time series were used as input sets. These

two kinds of 2D images and the RP-based 2D images were
fed into the Inception-ResNet-v2 network to process the ECG
classification, respectively.

It is observed that the proposed RP method obtained the best
average F1-score (0.844) far over the performance of the time
waveform (0.70) and that of the Wavelet time-frequency input
signals (below 0.70), as shown in Table 4. In identifying the LBBB
class, the model achieved the highest F1-scores compared with
other classes in the time waveform database and the RP-based
images, while the cgau8 and fbsp achieved the highest F1-score
of 0.82 and 0.81 at the I-AVB class, respectively. Moreover, in
the prediction of the PAC class, these three databases all obtained
a poor F1-score. Additionally, the model based on the Wavelet
time-frequency images performed poorly than the other two
kinds of input signals.
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Comparison of the Proposed Method With Other
Published Works for CA Classification Based on the
1st China Physiological Signal Challenge 2018
Dataset
In this part, we compared the proposed 2D RP-based method
with 1D ECG-based works in literature based on the same
public dataset (1st China Physiological Signal Challenge 2018
dataset). Table 5 presents the F1-score on each type of CA and
the average F1-score of the nine classes based on the different
methods. It contains two parts, including the top three ranks
in the challenge and comparison of the proposed method with
methods reported. He et al. (2019) ranked first place and achieved
an average F1-score for nine classes of 0.799 based on the
publicly released dataset. Chen et al. (2020) ranked third place
and obtained an F1-score of 0.797. Yao et al. (2019) achieved
an average F1-score of 0.812. The results suggested that our
proposed RP-based method reached the average nine-class F1-
score of 0.844 (excellent performance), which outperformed
others. Besides, on the classification of I-AVB, LBBB, STD, and
STE, the proposed method achieved a better F1-score than
other works. Table 6 presents detailed information, including
the input signal, ECG leads, performance, and networks used
by the different approaches mentioned above. Table 6 suggested
the superiority of the proposed 2D RP approaches: the proposed
method introduced the RP-based 2D images as input signals,
while others all used the 1D ECG time series; in this study, we
used few leads (only two of the 12-lead original ECG data); the
proposed method achieved the highest average F1-score of 0.844,
although with more trainable parameters than other 1D models.

Testing the Generalization Ability of the Proposed
Method Using Some Other Databases
In this section, three datasets of the PhysioNet/Computing in
Cardiology Challenge 2020 (Perez Alday et al., 2021) were
adopted to evaluate the generalization of the proposed method,
as listed in Table 7.

CPSC (Liu et al., 2018). The data source is the public
training dataset from the China Physiological Signal
Challenge (De Chazal et al., 2004).

PTB_XL (Wagner et al., 2020). The source is the Physikalisch
Technische Bundesanstalt (PTB), Brunswick, Germany, a large,
publicly available ECG dataset.

Georgia. Georgia is a 12-lead ECG Challenge Database (Emory
University, Atlanta, GA, United States) representing a large
population from the Southeastern United States.

The sampling rate of the signal is 500 Hz. In this experiment,
the PTB_XL includes five classes (Normal, AF, I-AVB, LBBB, and
PAC), and the CPSC and Georgia contain six types (Normal, AF,
I-AVB, LBBB, RBBB, and PAC). The lead II and lead aVR of
each ECG data in these datasets were used as the input signal for
CA classification.

Each signal was resampled at 200 Hz and then segmented
into two 5 s long patches and mapped into RP-based 2D
images with a normalized range (0–1). These 2D images were
input signals of the network for classification. The results
suggested that the proposed method achieved an average F1-
score of 0.8521 on CPSC, 0.8529 on Georgia, and 0.8862 on

PTB_XL in Table 8. Moreover, the performance of the proposed
method on the PTB_XL is the best, and the high prediction F1-
scores were obtained at Normal (0.9417) and LBBB (0.9246);
in contrast, prediction for PAC has the lowest F-score (0.7832).
For Georgia, the proposed method can effectively classify the
AF, I-AVB, LBBB, and PAC. These results highlighted that the
proposed method had excellent CA classification performance
and generalization ability.

Discussion
This work intends to study whether the RP method is appropriate
for the DL-based CA classification. To represent features that
are not easy to be observed in the time domain, we transformed
the ECG signals into 2D RP-texture images for the CNN-based
CA classification. In the experiments, the results showed that
different CNN models effectively learned the information based
on the RP input images in the training process. Moreover, the
Inception-ResNet-v2 network achieved the optimal performance
with an average F1-score of 0.844, followed by the Inception-
ResNet-v1 network of 0.81. It is explained that the Inception-
ResNet module contains multiple filters of various sizes,
capturing the RP image spatial features in different scales.
Besides, larger filters may be more effective due to the increased
perceptive field being able to more effectively account for the
variations of the signal over time.

To analyze whether the RP-based method performs better
in the CA classification than other methods, we compared the
time-waveform and Wavelet time-frequency images with RP-
based images as input signals, respectively. The results showed
that the RP-based model achieved an optimal average F1-score
of 0.844, which is better than the time-waveform and Wavelet
time-frequency images. Moreover, we compared the 2D RP-
based method with the published 1D ECG-based works based
on the same publicly dataset (the 1st China Physiological Signal
Challenge 2018 dataset). The results indicated that the proposed
2D RP-based approach outperforms 1D signal-based models in
the CA classification even with only two of 12 leads. The RP
method could visualize certain aspects of the 2D phase space
trajectory, extracting inherent texture features between different
points of an ECG recording (Ouyang et al., 2008, 2014). It
highlights that the RP-based method has a high potential to
improve the CA classification accuracy with the CNN framework.

Three ECG datasets of the PhysioNet/Computing in
Cardiology Challenge 2020 were adopted to study the
generalization ability of the proposed method. The proposed
method achieved an average F1-score of 0.8529 on Georgia,
0.8521 on CPSC, and 0.8862 on PTB_XL. The results showed
that the 2D RP-based CA classification method has excellent
generalization ability.

The other contribution of our work is to find the optimal
ECG leads of the nine types of CA classification. Excellent
classification results were obtained with lead II and lead aVR.
We found that the network could successfully process the
CA classification without access to the full 12 leads data. It
is known that, among the 12 leads, lead II offers physician-
favored signal, and lead aVR may reflect atrial and ventricular
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TABLE 4 | Classification performance of different 2D images-based input data.

Type F1-score

Wavelet time-frequency images Time waveform RP-based images

Cgau8 Cmor Fbsp Gaus8 Mexh Morl

Normal 0.56 0.56 0.57 0.57 0.61 0.56 0.61 0.812

AF 0.76 0.77 0.75 0.81 0.75 0.77 0.80 0.875

I-AVB 0.82 0.80 0.81 0.77 0.80 0.78 0.81 0.923

LBBB 0.71 0.74 0.71 0.68 0.67 0.72 0.87 0.929

RBBB 0.56 0.53 0.57 0.54 0.54 0.53 0.60 0.776

PAC 0.49 0.39 0.43 0.40 0.43 0.44 0.52 0.753

PVC 0.58 0.56 0.56 0.55 0.56 0.52 0.58 0.793

STD 0.60 0.63 0.62 0.64 0.61 0.61 0.62 0.837

STE 0.53 0.41 0.51 0.44 0.47 0.56 0.81 0.900

Avg/total 0.63 0.61 0.62 0.62 0.62 0.61 0.70 0.844

TABLE 5 | The performance of the published 1D ECG-based works and the proposed method.

Rank Team Normal AF I-AVB LBBB RBBB PAC PVC STD STE Avg/total

The hidden test set of the 1st China Physiological Signal Challenge 2018 F1-score

1 He et al. 0.748 0.920 0.882 0.889 0.883 0.787 0.851 0.780 0.780 0.836

2 Cai et al. 0.765 0.927 0.887 0.886 0.880 0.812 0.800 0.784 0.753 0.833

3 Chen et al. 0.752 0.930 0.871 0.915 0.839 0.832 0.833 0.800 0.667 0.823

The publicly released dataset of the1st China Physiological Signal Challenge 2018 F1-score

Yao et al. 0.789 0.920 0.850 0.872 0.933 0.736 0.861 0.789 0.556 0.812

He et al. 0.755 0.846 0.870 0.869 0.780 0.751 0.829 0.790 0.704 0.799

Chen et al. 0.795 0.897 0.865 0.821 0.911 0.734 0.852 0.788 0.509 0.797

RP-based 0.812 0.875 0.923 0.929 0.776 0.753 0.793 0.837 0.900 0.844

TABLE 6 | Comparison of the published 1D ECG-based works with the proposed method.

Team Input signal ECG leads Network Parameters Avg/total F1-score

Yao et al. 1D ECG 12 leads ResNet+BiLSTM-GMP 4,984,640 0.812

He et al. 1D ECG 12 leads ATI-CNN No report 0.799

Chen et al. 1D ECG 12 leads CNN+BRNN+Attention 28,035 0.797

RP-based 2D RP images 2 leads (lead II and aVR) Inception-resnet-v2 46,964,673 0.844

TABLE 7 | Data profile for the CPSC, PTB_XL, and Georgia ECG dataset.

Database Sample frequency Mean duration Number of subjects

Normal AF I-AVB LBBB RBBB PAC

CPSC 500 Hz 16.2 s 918 1,221 722 236 1,857 616

PTB_XL 500 Hz 10.0 s 18,092 1,514 797 536 0 398

Georgia 500 Hz 10.0 s 1,752 570 769 231 542 639

TABLE 8 | Classification performance of different ECG datasets.

Database Avg/total F1-score Classification of subjects F1-score

Normal AF I-AVB LBBB RBBB PAC

CPSC 0.8521 0.7905 0.9269 0.8921 0.8825 0.8942 0.7266

PTB_XL 0.8862 0.9417 0.9167 0.8644 0.9246 0 0.7837

Georgia 0.8529 0.9237 0.8197 0.8706 0.8767 0.8629 0.7639
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information from the right upper side of the heart
(Gorgels et al., 2001). Chen et al. (2020) reported that aVR was
one of the best-performance single leads in the classical CA
classification experiments. In our study, it is also confirmed that
the RPs of these two-lead signals are useful for the machine-
learning-based CA classification. Besides, RP-based lead II and
lead aVR ECG recordings performed differently in various
classes. As shown in Table 2, the best prediction is for the LBBB
(F1-score 0.929), followed by I-AVB (F1-score 0.923), while the
prediction of the PAC was relatively poor. This may be due to
the fact that the PAC occurs when a focus in the atrium (not
the sinoatrial node) generates an action potential before the next
scheduled SA node action potential, which is complex and less
common. This makes it challenging to differentiate them from
PVC, normal, and other arrhythmias (Surawicz et al., 2009).
A similar finding has also been reported in early works (Yao
et al., 2019; Chen et al., 2020).

This work studied the classification of CA based on the 1st
China Physiological Signal Challenge 2018 ECG dataset. Further
studies will be required to investigate those involving technical
problems such as data imbalance, and the RP method will be
refined to improve the prediction of PAC.

CONCLUSION

In this paper, we proposed a DL-based method for automatic CA
classification. In this method, the RP-based 2D texture images are
processed as input data, which contain rich features unobservable
from the standard time-domain and time-frequency domain.
Based on RP-texture images, the Inception-ResNet-v2 network
was used to predict and classify various CAs. In our study, the
proposed method offers excellent performance with only two-
lead ECG data without accessing the full 12-lead ECG recordings.

It implies that this RP-based CA classification method may have
the potential to be used as a diagnostic tool in conditions/places
where access to a 12-lead ECG is difficult.
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Built on the hybrid immersed boundary/finite element (IB/FE) method, fluid–structure

interaction (FSI) simulations of aortic valve (AV) dynamics are performed with three

different constitutive laws and two different fiber architectures for the AV leaflets. An

idealized AV model is used and mounted in a straight tube, and a three-element

Windkessel model is further attached to the aorta. After obtaining ex vivo biaxial

tensile testing of porcine AV leaflets, we first determine the constitutive parameters of

the selected three constitutive laws by matching the analytical stretch–stress relations

derived from constitutive laws to the experimentally measured data. Both the average

error and relevant R-squared value reveal that the anisotropic non-linear constitutive law

with exponential terms for both the fiber and cross-fiber directions could be more suitable

for characterizing the mechanical behaviors of the AV leaflets. We then thoroughly

compare the simulation results from both structural mechanics and hemodynamics.

Compared to the other two constitutive laws, the anisotropic non-linear constitutive law

with exponential terms for both the fiber and cross-fiber directions shows the larger leaflet

displacements at the opened state, the largest forward jet flow, the smaller regurgitant

flow. We further analyze hemodynamic parameters of the six different cases, including

the regurgitant fraction, the mean transvalvular pressure gradient, the effective orifice

area, and the energy loss of the left ventricle. We find that the fiber architecture with

body-fitted orientation shows better dynamic behaviors in the leaflets, especially with the

constitutive law using exponential terms for both the fiber and cross-fiber directions. In

conclusion, both constitutive laws and fiber architectures can affect AV dynamics. Our

results further suggest that the strain energy function with exponential terms for both

the fiber and cross-fiber directions could be more suitable for describing the AV leaflet

mechanical behaviors. Future experimental studies are needed to identify competent

constitutive laws for the AV leaflets and their associated fiber orientations with controlled
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experiments. Although limitations exist in the present AV model, our results provide

important information for selecting appropriate constitutive laws and fiber architectures

when modeling AV dynamics.

Keywords: aortic valve, hybrid immersed boundary/finite element method, fluid-structure interaction, mechanical

properties, dynamic behaviors, hemodynamic performance, the constitutive law

1. INTRODUCTION

There are up to 250,000 heart valves repaired and replaced
each year worldwide (Yoganathan et al., 2004). Among these,
aortic valve (AV) diseases have become the second-leading cause
of cardiovascular diseases due to their high morbidity and
mortality (Go et al., 2013). Major AV diseases include aortic
stenosis, calcification, regurgitation, etc. (Franzone et al., 2016).
Current treatments mainly focus on surgical repair and valve
replacement. However, difficulties and risks exist in surgical
procedures. Numerical simulations of the AV dynamics can
assess the hemodynamic performance, predict the effectiveness,
and persistence of surgical treatments, thereby help AV disease
management (Mohammadi et al., 2016; Chen and Luo, 2018).

The AV locates at the root of the supporting aorta and
provides a path of oxygenated blood to be pumped from the
heart into the systemic circulation while preventing blood from
flowing back from the aorta into the left ventricle (LV). The AV
is composed of three relatively equal-sized semi-lunar leaflets,
whose attachment forms the valve annulus and three bulges
comprising the aortic sinuses. The dynamics of AV are driven by
the pressure gradient between the LV and the aorta (Mohammadi
et al., 2016). For example, in the systolic phase, the pressure of the
LV is higher than that of the aorta, resulting in the AV opening
and blood flowing from the LV into the aorta. In diastole, the AV
closes as the LV pressure decreases.

Early numerical studies of the AV mainly focused on
structural analysis using the finite element method (FEM).
Since the mid-1970s, researchers have begun to simulate the
AV based on simple geometries. In 1973, Gould et al. (1973)
constructed three different geometries for the closed AV leaflets
and concluded that changes in the leaflets geometry lead to
great changes in the stress field. After that, Chong et al. (1978)
studied the stress state of porcine AV leaflets using FEM. Since
the 1990s’, researchers have begun to use commercial software to
analyze AV behaviors and stress distributions (Black et al., 1991).
Kunzelman et al. developed the first three-dimensional FE model
of the mitral valve (MV) and analyzed the deformation and
stress patterns of the MV using LS-DYNA (Livermore Software
Technology Corporation, Livermore, CA), followed by a series of
studies, they have provided a deep understanding of normal and
abnormal MV anatomy and function (Kunzelman et al., 1993,
1997, 2007). Meanwhile, their numerical MV model was the first
to use patient-specific magnetic resonance imaging (MRI) data
rather than idealized geometry.

Because of the strong interaction between heart valves and
blood flow, fluid–structure interaction (FSI) methods were
introduced. Chew et al. (1999) developed a three-dimensional
(3D) model of a bioprosthetic porcine valve with non-linear

material properties, and the FSI simulation was implemented
through the Arbitrary Lagrangian-Eulerian (ALE) method.
De Hart et al. (2003a,b) developed a 3D model of the AV using
the fictitious domain (FD) method. Van Loon et al. (2004) used
a combined ALE and FD method to validate the FSI models in
simulating the healthy and stenotic AV. Besides, Weinberg et al.
(2010) established amultiscale FSI model of the AV to capture the
mechanical behaviors of the AV. Morganti et al. (2015) utilized
a patient-specific valve geometry model to simulate the closure
of the AV by isogeometric analysis. Mohammadi et al. (2016)
reviewed the numerical methods for studying the hemodynamics
of the AV, especially the FSI method.

Due to the large deformation of the valve leaflets, severe
distortion, and deterioration may exist in the fluid mesh, and
the ALE method can be challenging because of the frequent
mesh regeneration (Gao et al., 2017b). To overcome such
difficulty, the immersed boundary (IB) method was introduced
by Peskin to simulate heart valve dynamics (Peskin, 2002).
The IB method greatly simplifies the mesh regeneration and
facilitates the numerical simulation of large deformation in the
elastic structure. Griffith et al. (2009) applied the IB method
to simulate the fluid dynamics of heart valves, including a
natural AV and a chorded prosthetic MV. After that, Griffith
(2012) used a staggered-grid version of the IB method to
simulate the AV dynamics over multiple cardiac cycles. Ma
et al. (2013) utilized this IB method to perform the FSI
simulation for a human anatomical MV model obtained
from in vivo MRI data. The immersed finite element (IFE)
method was an extension of the IB method, where the FE
approximations were applied to the Eulerian and Lagrangian
equations. Built on the classical IB method, Griffith and Luo
(2017) discretized the immersed structure using the FE method
and the incompressible Navier–Stokes equation using the finite
difference method, which is the hybrid finite difference/finite
element immersed boundary (IB/FE) method. By using the IB/FE
method, Gao et al. (2014) simulated the dynamic behaviors
of a human MV reconstructed from in vivo MRI data, then
extended to a coupled MV–LV model (Gao et al., 2017a).
Feng et al. (2019) achieved the FSI simulation of a coupled
left atrium—MV model by the IB/FE framework. The same
IB/FE framework has also been applied to AV modeling.
For example, Flamini et al. (2016) studied the effects of the
aortic root on the AV dynamics, and their results showed
reasonable agreement with the physiological measurements.
Hasan et al. (2017) constructed a realistic, three-dimensional
anatomical IB/FE model of the aortic root and ascending
aorta. Recently, Lee et al. (2020a) performed FSI simulations
of the porcine AV and the bovine pericardial valve, with
the computational results being in excellent agreement with
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the experimental data. Lee et al. (2020b) further studied
the experimental and IB/FE model of bioprosthetic aortic
valves (BAVs).

It has been widely acknowledged that the material properties
of heart valves can play an important role in valvular function.
Heart valve tissue mainly consists of collagen and elastin,
which is usually considered to be a material of anisotropy,
hyperelasticity, non-linearity, and incompressibility (Weinberg
and Kaazempur-Mofrad, 2005). To characterize the mechanical
properties of the valve leaflets, the formulation of the constitutive
law of heart valve tissue should be determined according to its
underlying biological structure. Martin and Sun (2012) studied
the biomechanical properties of the AV leaflets of the human,
porcine, and ovine, and they found that the aged human AV
leaflets were stiffer than the porcine and ovine AV leaflets.
Pham et al. (2017) used the planar biaxial testing to characterize
the mechanical and structural properties of four different heart
valves, and found that great differences exist in thickness,
stiffness, and anisotropy. Wang et al. (2012, 2015) adopted
the anisotropic hyperelastic material model to describe the
mechanical properties of the AV tissues, including the leaflets, the
sinus, the ascending aorta, and themyocardium.Mao et al. (2016)
compared an anisotropic and an isotropic leaflet material model
in transcatheter AV simulations, and their results suggested
that the isotropic model showed a stiffer leaflet behavior
in the radial direction than the anisotropic model. Recent
reviews of material properties of valvular tissues can be found
in Sun et al. (2014).

Furthermore, the fiber architecture of the valve leaflets plays
an essential role in the mechanical function of the AV. Early
studies for the fiber orientation distribution of the human
heart relied on the projections and the least–square fitting
methods. For example, Toussaint et al. (2010) reconstructed
the complete 3D human cardiac fiber architecture using a
curvilinear interpolation of diffusion tensor images. At present,
two different approaches are mainly used for reconstructing the
fiber distribution in soft tissue. The first method is the rule-based
method by assuming that collagen fibers align circumferentially
based on a cylindrical coordinate system (Gao et al., 2014;
Hasan et al., 2017). Rule-based methods have been widely
used in soft tissue modeling, including arteries (Qi et al.,
2015) and heart (Wang et al., 2013; Gao et al., 2015; Guan
et al., 2020). The other approach is to map fiber distributions
from in/ex vivo experimental measurements. For example,
Aggarwal et al. (2013) used a spline-based method to obtain the
fiber structure by mapping them from histological analysis of
AV specimen.

There is a lack of comparative study of constitutive laws of
AV in FSI simulations. Our previous studies on MV suggested
that different constitutive laws can affect MV dynamics (Cai
et al., 2019). Thus, in this study, we analyze the effects
of three different constitutive laws and two different fiber
architectures on AV dynamics and hemodynamics. We first
construct an idealized AV model mounted in a straight tube
coupled with a three-element Windkessel model for systemic
circulation. To characterize the material properties of the leaflets,

we first measured the stiffness of porcine AV samples using
biaxial tensile testing, then three different constitutive laws
are considered from published studies. We then simulate the
AV dynamics using the IB/FE method and finally analyze
the leaflets dynamics and hemodynamic performance in six
different cases.

2. METHODS

2.1. The AV Model
2.1.1. The Computational Model

Figure 1 shows the AV model mounted in a straight tube. This
idealized AV model is constructed according to the porcine
pericardial valve with a leaflet thickness of 0.04 cm (Zhu et al.,
2017). The straight tube has a total length of 13 cm, with the
inner radius 1.3 cm, and the wall thickness 0.15 cm, which is
also similar to the AV model in Flamini et al. (2016). Besides,
based on a novel expanded-polytetrafluoroethylene (ePTFE)
stentless tri-leaflet valve, Zhu et al. (2017) experimentally
assessed the dynamic and hemodynamic performance of the
AV, which provides the reference values for validating this
AV model.

In the previous work, Griffith (2012) used a three-element
Windkessel model for providing dynamic pressure loading.
Here, we follow the same approach as shown in Figure 1. The
three-element Windkessel model consists of the characteristic
resistance Rc, the peripheral resistance Rp, and the arterial
compliance C. Let PLV denote the left ventricular pressure
(inlet pressure), and let PAo denote the aortic pressure (outlet
pressure) obtained from the three-element Windkessel model.
PWk is the pressure stored in the Windkessel model. Assuming
QAo is the flow rate through the outlet boundary, according
to the relationship between the pressure, the flow rate, and the
resistance, we have (Griffith, 2012).

C
dPWk

dt
+

PWk

Rp
= QAo, (1)

PAo = QAoRc + PWk. (2)

The details of numerical implementation of this Windkessel
model can be found in Griffith (2012). In the following
simulation, we set Rc = 0.033mmHgml−1 s, Rp =
0.79mmHgml−1 s, C = 1.75mlmmHg−1, and the initial
pressure PWk = 85mmHg and PAo = PWk, which correspond
to the human “Type A” beat in the work of Stergiopulos et al.
(1999).

2.1.2. The Fiber Architectures of AV Leaflets

Because of lacking experimental data on collagen orientations
in the leaflets, the rule-based method is used to construct
two different fiber architectures in AV leaflets, which are
further denoted as FD1 and FD2 as shown in Figure 2. Both
fiber architectures are circumferentially aligned in general and
constructed by solving a Poisson-type system of a scalar field
u (Wong and Kuhl, 2014; Guan et al., 2020). FD1 is body-fitted,
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FIGURE 1 | The geometric model of the aortic valve (AV).

and FD2 is simply the circumferential direction. In detail, the
Poisson system for FD1 is defined as

FD1 :



























∇2u = 0, in B,

u|n1 = 1,

u|n2 = 0,

∂u

∂n
|ŴN = 0,

(3)

in which B represents the leaflet, n1 and n2 are the two corner
points indicated in Figure 2A, and ŴN is the surface of the leaflet.
The collagen fiber direction is defined as f = ∇u/|∇u|.

To construct FD2, the Poisson system is defined as

FD2 :



























∇2u = 0, in B,

u|τ1 = 0,

u|τ2 = 1,

∂u

∂n
|ŴN = 0,

(4)

in which τ1 and τ2 are the two surfaces connecting the leaflet
to the aorta, and symmetric about the central line of the
leaflet as shown in Figure 2B, ŴN represents the remaining
surfaces of the leaflet. The corresponding fiber direction is also
given by ∇u/|∇u|.

From Figure 2, it can be seen that the fiber architecture FD1
has a body-fitted fiber orientation, which is similar to the fiber
structures in Aggarwal et al. (2013); Hasan et al. (2017). The fiber
architecture FD2 is simply the circumferential direction, which
has been used by Fan et al. (2013).

2.2. The IB/FE Method
The IB/FE method (Gao et al., 2014; Griffith and Luo, 2017)
is employed here to simulate the AV dynamics, which uses
the FE discretization for the immersed structure and the finite
difference discretization for the viscous incompressible fluid. Let
X = (X1,X2,X3) ∈ U denote Lagrangian material coordinates,
and let x = (x1, x2, x3) ∈ � represent physical coordinates, in
which U ⊂ R3 means the Lagrangian coordinate domain, and
� ⊂ R3 denotes the fixed physical domain of the FSI system. Let

FIGURE 2 | Two different fiber architectures of AV leaflets, (A) FD1, (B) FD2.

χ(X, t) ∈ � denote the physical position of structure point X at
time t, then χ(U, t) ⊂ � is the physical domain of the structure
at time t, whereas the physical domain occupied by the fluid at
time t is � − χ(U, t). The governing equations of the FSI system
are given as

ρ

(

∂u

∂t
(x, t) + u (x, t) · ∇u (x, t)

)

= −∇p (x, t) + µ∇2u (x, t)

+ fe (x, t) , (5)

∇ · u (x, t) = 0, (6)

∂χ

∂t
(X, t)=

∫

�

u (x, t) δ (x− χ (X, t)) dx, (7)
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fe (x, t) =
∫

U
∇ · Pe(X, t)δ(x− χ(X, t))dX

−
∫

∂U
P
e(X, t)N(X)δ(x− χ(X, t))dA(X), (8)

where u(x, t) is the Eulerian velocity field, p(x, t) is the Eulerian
pressure field, ρ = 1.0 g/ml is the mass density, µ = 4 cP is
the fluid dynamic viscosity, fe(x, t) is the Eulerian elastic force
density, and δ(x) = δ(x1)δ(x2)δ(x3) is the three-dimensional
Dirac delta function. Pe = ∂W

∂F
is the first Piola–Kirchhoff

stress tensor, in which F is the deformation gradient related to
structural deformation. N(X) is the outer normal vector of the
Lagrangian coordinate domain U, and dA(X) denotes the area
element in the reference configuration.

The total Cauchy stress tensor of the FSI system is

σ (x, t) = σ
f (x, t) +

{

σ
e (x, t) for x ∈ χ(U, t),

0 otherwise,
(9)

in which σ
f = −pI + µ

[

∇u+ (∇u)T
]

is the Cauchy stress
tensor of the viscous incompressible fluid, I is the identity
matrix, and σ

e is the elastic Cauchy stress tensor related to the
first Piola–Kirchhoff stress tensor P

e, that is σ
e = J−1

P
e
F
T

with J = det(F).

2.3. The Constitutive Laws
In this study, we consider the valvular tissue to be incompressible,
anisotropic, hyperelastic (Weinberg and Kaazempur-Mofrad,
2005), and use three different constitutive laws to characterize
the mechanical properties of the AV leaflets, which are denoted
as W1, W2, and W3. The constitutive law W1 was used to
characterize the mechanical properties of the AV tissue first by
Wang et al. (2012). The constitutive law W2 was first proposed
by Prot et al. (2010) for modeling the mechanical behaviors
of healthy MV tissue, and the constitutive law W3 was used
to model human MV leaflets first by Gao et al. (2014). The
corresponding strain-energy functions are

W1 = C10

(

eC01(I1−3) − 1
)

+
k1

2k2

[

ek2(I4−1)2 − 1
]

, (10)

W2 = µ (I1 − 3) + c0

[

ec1(I1−3)2+c2(I4−1)4 − 1
]

, (11)

W3 = C1 (I1 − 3) +
a

2b

[

eb(I4−1)2 − 1
]

, (12)

where C10,C01, k1, k2 are the material parameters of
Equation (10). Similarly, µ, c0, c1, c2 are the material parameters
of Equation (11), and C1, a, b are the non-negative parameters
in Equation (12). I1 = trace(C) is the first strain invariant
of the right Cauchy–Green deformation tensor C = F

T
F.

I4 = f0 · (Cf0) is the squared stretch along the fiber direction,
with f0 the fiber direction in the reference state and f = Ff0 the
fiber direction in the current state. The corresponding Cauchy
stress tensors are

σ
W1 =− pI+ 2C10C01e

C01(I1−3)
B+ 2k1(I4 − 1)ek2(I4−1)2 f⊗ f,

(13)

σ
W2 =− pI+

(

2µ + 4c0c1(I1 − 3)ec1(I1−3)2+c2(I4−1)4
)

B+
(

8c0c2(I4 − 1)3ec1(I1−3)2+c2(I4−1)4
)

f⊗ f,

(14)

σ
W3 = −pI+ 2C1B+ 2a(I4 − 1)eb(I4−1)2 f⊗ f, (15)

in which B = FF
T is the left Cauchy–Green deformation

tensor, and p is the Lagrangian multiplier to enforce the
incompressibility constraint.

2.4. Experiments and Calibration
In this section, we performed the tensile testing experiments
using postmortem porcine AV samples from a domestic butcher
house in Chongqing, China. The experimental protocols were
similar to our previous study of ex vivo biomechanical tests
on mitral valvular apparatus (Chen et al., 2020). In brief,
squared samples were isolated from adult porcine hearts from
the domestic butcher house (1-year old, ≥100 kg) and soaked in
phosphate buffer saline (PBS) solution for moisture. The leaflet
was cut into 8× 8 mm samples on the middle part from the
free edge and the edge of attachment to the aortic root (see
Figure 3. Four square markers (1× 1 mm) were glued to the
surface with superglue (cyanoacrylate adhesive) for optical strain
tracking as an illustration of the circumferential (X-axis) and the
radial (Y-axis) directions. All samples were kept at 37 ◦C PBS
bath and tested using a biaxial testing machine (BioTester) from
CellScale to mimic the physiological loading condition. Eight
preconditioning cycles were used to release the residual stress and
adjust the tissue in a zero load. AV samples were then stretched
to physiological stress estimated based on Laplace’s law for a
spherical surface assuming the mean radius of curvature of the
AV to be 2 cm and the transvalvular pressure to be 120mm Hg.
The 1:1 stress ratio in two directions was applied to measure
the anisotropic behaviors of the tissue. The displacements of
markers and corresponding tensile forces were then recorded
and calculated for stress and strain analysis. Details of the biaxial
testing protocols can be found in Chen et al. (2020).

The parameters of the constitutive laws of the AV leaflets
are obtained by minimizing the differences between the stretch–
stress relationship derived from selected constitutive laws
and corresponding experimental data. First, we obtained the
experimental stretch–stress data from the biaxial testing. Second,
the analytical stretch–stress relationships are obtained from
Equations (13)–(15). Then, we perform the least square fitting
following the same procedure in Cai et al. (2019) to determine
the optimal parameters, and the fmincon function in Matlab is
used to minimize the loss function, which is

f =
n

∑

i=1

[

(σW
11 − σ

exp
11 )2 + (σW

22 − σ
exp
22 )2

]

, (16)

where σ
exp
11 and σ

exp
22 are the experimental Cauchy stresses in the

fiber and cross-fiber directions, and the superscript “W” indicates
the stress is derived from a selected strain energy function.

In sum, we obtained nine sets of the biaxial stress tests from
three porcine leaflets. Here, we further report the constitutive
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FIGURE 3 | (A) The geometry of the aortic valve (AV) consists of three leaflets: right coronary leaflet (RCL), non-coronary leaflet (NCL), and left coronary leaflet (LCL).

(B) The vector illustration shows the circumferential direction (red arrow) and radial direction (yellow arrow), and two different colors of the markers trace are used to

mark the sample in two directions (X-axis) and (Y-axis).

parameters by taking the average of nine sets of parameters, in
which each set of parameters is obtained from one experimental
sample. In the least square fitting, the lowest bounds for the
iterative optimization parameters are set to be zero. The average
R-squared value for each constitutive law is obtained by taking
the average of nine sets of R-squared values, which is defined
as R-squared = 1 − SSE/SST, where SSE is the residual sum
of squares and SST is the total sum of squares. The closer the
R-squared value to 1, the better the goodness-of-the-fitting.

2.5. The Numerical Implementation and
Boundary Conditions
The whole AV model is immersed in an 8 × 8 × 14 cm fluid
domain, which is further discretized into a regular 80× 80× 128
Cartesian grid. The time step size of 5e-6 s is selected because
of the explicit time-stepping scheme. The detailed spatial and
temporal discretizations can be found in Griffith and Luo
(2017). The numerical implementation uses the IBAMR software
infrastructure(https://github.com/IBAMR/IBAMR), which is a
distributed-memory parallel implementation of the IB method
with support for Cartesian grid adaptive mesh refinement. In this
study, the Cartesian computational domain is discretized with 2
nested grid levels and a refinement ratio of 4 between the two
levels. Note no refinement is applied to the structural mesh.

A physiological LV pressure is used to drive blood flow
through the AV, as shown in Figure 4. Meanwhile, a three-
element Windkessel model is utilized to provide dynamic
pressure loading of the aortic side for the AV model (Griffith,
2012), in which the outlet pressure of the Windkessel model is
set as zero. The remaining boundaries of the FSI computational
domain are with zero pressure, which is schematically illustrated
in Figure 4. Furthermore, a large tethering force is applied at the
outer surface of the aorta to keep the straight tube in place.

2.6. The Hemodynamic Parameters
To assess the hemodynamic performance of the AV, we introduce
several hemodynamic parameters, including the regurgitant
fraction, the mean transvalvular pressure gradient, the effective
orifice area, and the energy loss of the LV. The regurgitant
fraction reflects the regurgitant degree during valve closure and
leakage. The regurgitant fraction (RF) is calculated by (Zhu et al.,
2019).

RF =
VR + VL

VF
× 100%, (17)

in which VF is the forward volume, VR is the regurgitant volume
during the valve closing, and VL is the leakage volume after the
AV closes.

The mean transvalvular pressure gradient (TPG) measures
the potential energy loss when the blood flows through the
AV. The smaller the TPG, the smaller the potential energy
loss (Yoganathan et al., 2004). The mean transvalvular pressure
gradient during the systolic phase is calculated as

TPG =

∫ tes
tbs

(Pnlv − Pnao)dt

tes − tbs
, (18)

in which Pnlv and Pnao are the pressures near the leaflets at the left
ventricular and the aortic sides as shown in Figure 1, and tbs and
tes are the beginning and end of systole as indicated in Figure 4.

To evaluate the impedance of the AV, the effective orifice area
(EOA) is introduced as follows (Zhu et al., 2019):

EOA =
Qrms

51.6
√

1P/ρ
, (19)
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FIGURE 4 | Boundary conditions for the aortic valve (AV) model.

Qrms =

√

∫ tes
tbs

Q(t)2dt

tes − tbs
, (20)

where Q(t) is the flow rate through the AV during the systolic
phase at the center of the AV orifice as shown in Figure 1, Qrms

is the root mean square volumetric flow rate, and 1P is the mean
systolic transvalvular pressure gradient.

The energy loss of the LV (Zhu et al., 2017) is

EL = 0.1333

∫ t2

t1

1p(t)Q(t)dt, (21)

where t1-t2 is the duration of one cardiac cycle, 1p = PAo − PLV
is the aorta-left ventricular pressure difference, PLV and PAo are
the pressures at the center of the inlet and the outlet as shown in
Figure 1, andQ(t) is the corresponding flow rate through the AV.

2.7. Summary of Simulated Cases
We simulate the AV dynamics with three different constitutive
laws (W1, W2, and W3) and two different fiber architectures
(FD1 and FD2), and all cases are denoted as W1FD1, W2FD1,
W3FD1, W1FD2, W2FD2, and W3FD2. Cases W1FD1, W2FD1,
and W3FD1 correspond to three different constitutive laws with
the fiber architecture FD1, whereas cases W1FD2, W2FD2, and
W3FD2 correspond to three different constitutive laws with the
fiber architecture FD2. We perform the FSI simulations over two
cardiac cycles to reach periodic convergence at the second period
and onward, and one period lasts 0.8 s. Results are reported from
the second period.

3. RESULTS

3.1. The Experimental Fitting
The inferred constitutive parameters of three different
constitutive laws (Equations 10–12) from the ex vivo porcine
experiments are listed in Table 1.

From Table 1, we observe that the constitutive law W1
has the best agreement when fitting to the stretch–stress data
from the porcine AV experiments, with the smallest error and

TABLE 1 | Fitted parameters for the three selected constitutive laws

[Equations (10)–(12)].

Parameters Average error (kPa) Average R-squared

C10 (kPa) C01 k1 (kPa) k2

W1 1.21 7.99 24.23 57.62 0.7± 0.63 0.99

µ (kPa) c0 (kPa) c1 c2

W2 1.18 55.04 8.08 54.00 0.75± 0.92 0.96

C1 (kPa) a (kPa) b

W3 19.59 12.94 77.79 1.72± 2.71 0.93

FIGURE 5 | Predictions from the fitted three constitutive laws

[Equations (10)–(12)] using one set of porcine experimental data.

highest R-squared score. While the constitutive law W3 is the
poorest because of its incapability of describing the non-linear
response along the cross-fiber direction. Figure 5 shows the fitted
curves from the three constitutive laws compared to the porcine
experimental data.
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FIGURE 6 | Dynamic deformation of the AV leaflets for the six cases at different time. The time points from left to right are 0.13 (A), 0.38 (B), and 0.54 s (C).

3.2. AV Opening and Closure
Figure 6 shows the leaflets deformation of the AV from six cases
within one cardiac cycle. At t = 0.13 s, the leaflet’s deformation
is similar for all six cases, especially the leaflet orifice area.
At t = 0.38 s, the AV leaflets start to close and the closure
inconsistency can be seen, especially in cases W2FD1, W1FD2,
and W2FD2. Compared with other cases, the AV leaflets in case
W2FD1 are the first to close, which may relate to the smallest
orifice area of 1.19 cm2 at t = 0.38 s. At t = 0.54 s, the AV
leaflets are at the fully closed state, with case W3FD1 of the

largest displacements in the belly regions and the free edges of
the leaflets.

Table 2 shows the average and maximum displacements of
the AV from different cases at fully opened (0.18 s), pre-close
(0.38 s), and fully closed (0.54 s) states during one cardiac cycle.
When the AV is at the fully opened and pre-close states, the
maximum displacements from case W3FD1 are slightly larger
than those from other cases, reaching around 1.05 cm. This may
be because case W3FD1 has the largest orifice area of 2.27 cm2 at
the fully opened state and the largest orifice area of 2.01 cm2 at
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TABLE 2 | Average and maximum displacements of AV with six different cases.

Average displacement (cm) Maximum displacement (cm)

Cases Fully opened Pre-close Fully closed Fully opened Pre-close Fully closed

W1FD1 0.039 0.031 0.017 0.994 0.997 0.305

W2FD1 0.036 0.022 0.017 0.939 0.982 0.269

W3FD1 0.039 0.036 0.021 0.999 1.046 0.429

W1FD2 0.038 0.024 0.016 0.990 0.991 0.291

W2FD2 0.035 0.022 0.015 0.975 0.937 0.284

W3FD2 0.038 0.028 0.017 0.960 0.946 0.312

TABLE 3 | The lasting time of different stages for the six cases (second).

W1FD1 W2FD1 W3FD1 W1FD2 W2FD2 W3FD2

Opening 0.09 0.1 0.09 0.1 0.09 0.095

Fully opened 0.15 0.125 0.15 0.14 0.145 0.15

Closing 0.16 0.175 0.2 0.165 0.165 0.16

the pre-close state. Both cases W1FD1 and W1FD2 have larger
maximum displacements compared with other cases when the
AV is at the fully opened and pre-close states. At the pre-close
state, the cases with FD1 have a larger maximum displacement
than the cases with FD2 in general, which could be due to the
larger orifice area of the cases with FD1. For example, the orifice
area of case W1FD1 (1.92 cm2) is slightly larger than that of case
W1FD2 (1.52 cm2). Compared with other constitutive laws, W2
has the smallest leaflets and displacements at the fully opened and
pre-close states, which may suggest poor leaflet mobility at both
opening and closing.

Table 3 shows the duration of different stages for the six cases.
Here, the opening time is the duration from pre-open to fully
opened states, the fully opened time is the duration from fully
opened to pre-close states, and the closing time represents the
duration from pre-close to fully closed states. The opening time
for the six cases is similar, which is around 0.1 s. The fully opened
state of six cases lasts about 0.14 s, with case W2FD1 having
the shortest duration of 0.125 s. During the closure phase, the
duration of the case W3FD1 reaches the longest (0.2 s), which
could indicate poor leaflet mobility during closing (Zhu et al.,
2019).

3.3. The Flow Pattern Comparison
In this section, we compare the flow patterns of the AV from six
cases. Figure 7 plots the fluid velocity field. When the AV starts
to open, the blood gradually flows from the LV to the aorta. As
the AV fully opens, there is a flow jet surging into the aorta. At
the fully opened state, there exists a stronger jet flow in cases
W1FD1 and W2FD1. At the just-closed state, there exists some
regurgitant flow to facilitate the closure action, and case W3FD1
has the largest regurgitant flow. Comparing two different fiber
architectures, the forward jet flow toward the aorta in cases with
FD1 seems to be stronger than that of the cases with FD2. Similar
results can be found for the regurgitant flow. On the other hand,

cases withW1 andW2 have larger forward jet flow than the cases
with W3, while W3 associates with the largest regurgitant flow.

Table 4 summarizes the peak blood velocity at the fully opened
and just-closed states. When the AV fully opens, the peak
velocities are from 2.0 to 3.0 m/s, consistent with the simulated
flow velocity in Lee’s study (Lee et al., 2020a). Compared with
other cases,W1FD1 andW2FD1 have a larger peak velocity at the
fully opened state. At the just-closed state, the peak regurgitation
velocity of case W3FD1 reaches the largest 6.7m/s. Except for
the cases with W3, the peak forward velocity in cases with
FD1 is slightly larger than that cases with FD2. Compared with
other constitutive laws, cases with W3 experience the largest
peak regurgitation velocity, which can be explained by the much
longer closure duration.

Figure 8 shows the flow rates through the AV for the six
different cases in one cardiac cycle. As the AV opens gradually,
the blood flow ejects into the aorta driven by the fast increased LV
pressure. Case W1FD1 experiences the largest peak flow rate of
574.05mL/s and the largest forward volume 94.85mL, which are
slightly higher than the experimental data (Zhu et al., 2019; Lee
et al., 2020a). Besides, the AVwith FD1 generates a larger forward
volume than that with FD2, for example, caseW1FD1 can achieve
94.85ml forward volume, higher than the value for W1FD2
(78.81mL). During the closure, there exists a small regurgitant
flow, with case W3FD1 generating the largest peak regurgitant
flow rate 300.99mL/s and the largest regurgitant volume 9.45mL.
Moreover, the regurgitant volume of the AV with FD1 is slightly
larger than that with FD2, for example, the regurgitant volume
of case W1FD1 (5.29mL) is larger than case W1FD2 (3.09mL).
W1 has a slightly larger regurgitant volume than W2 in general.
For example, the regurgitant volume of case W1FD1 (5.29mL)
is larger than case W2FD1 (3.07mL). After the closure, case
W3FD2 experiences the largest leakage volume 10.22mL, which
is beyond the reference value 2.81mL. In summary, the cases
with W1 have the largest peak forward flow rate and forward
volume with a smaller peak regurgitant flow rate and a smaller
regurgitant volume. While the cases with W3 have the largest
peak flow rate of regurgitant flow and the largest regurgitant
volume and the largest leakage volume. For the two different
fiber architectures, the cases with FD1 have higher values in the
peak forward flow rate and the forward volume than the cases
with FD2. Furthermore, the oscillated flow rate after the AV
closure is because of the FSI dynamics, which also appears in
the MV simulations (Gao et al., 2014; Cai et al., 2019) and the
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FIGURE 7 | The fluid velocity field of the AV with six different cases. The time points from left to right are 0.09, 0.18, and 0.41 s, corresponding to (A) pre-open state,

(B) fully opened state, and (C) just-closed state during the second cardiac cycle.

TABLE 4 | Peak velocity of transvalvular flow for the six cases.

Peak velocity of flow field (m/s)

Cases Fully opened Just-closed

W1FD1 2.47 2.47

W2FD1 2.57 2.00

W3FD1 2.17 6.74

W1FD2 2.14 2.20

W2FD2 2.26 3.52

W3FD2 2.21 3.65

AV simulations (Hasan et al., 2017; Lee et al., 2020a). In fact,
the first peak regurgitate flow is the closure flow, which has been
measured in the clinic (Hasan et al., 2017).

3.4. Strain and Stress Distributions
The fiber strain is defined as f0 · (E · f0), in which E = 1

2 (F
T
F −

I) is the Green strain tensor. The fiber stress is defined as
f · (σ · f), in which σ is the Cauchy stress tensor. The fiber

strain distributions for the six cases are shown in Figure 9. At
the fully opened state, a large sporadic strain concentrates on
the belly regions and the edges of the leaflets connected to
the aortic wall. When the AV is at the fully closed state, the
strain level of the entire leaflets reaches the largest, with case
W3FD1 of the smallest strain distributional regions. Comparing
two different fiber architectures, the AV with FD1 has a smaller
compressed region than that with FD2 at the fully opened state.
Besides, the AV with W1 shows a larger strain level of the belly
region at the fully closed state. We further select two different
regions of the AV leaflet, which are labeled as the belly region
and the top-center region, as shown in Figure 10. Here, the
belly region is defined as a circular region with the center at
(−0.44, −0.64, −0.77) and a radius of 0.15 cm, and the top-
center region with the center at (−0.19, −0.14, −1.76) and a
radius of 0.15 cm. The average strain values of two different
regions can be found in Table 5. When the leaflets are fully
opened, all cases have negative strain values in the belly and
top-center regions. When the leaflets are fully closed, the cases
with W1 have the largest strain value in the belly and the
top-center regions.
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The average stresses of the two selected regions are listed in
Table 6. At the open state, the average stresses of the two regions
are negative that is because of compression, in which the cases
with FD2 have the larger compressed stress level than FD1 in
the top-center region, while the cases with W2 have the largest
compressed stress level in the belly region. Moreover, at the
closed state, the cases with FD1 have a larger stress level in the

FIGURE 8 | Flow rate comparison for the six cases.

belly region than that in the top-center region; on the contrary,
the cases with FD2 experience a much larger stress level in the
top-center region than that in the belly region. The previously
published studies (Hasan et al., 2017; Lee et al., 2020a) have
revealed that the fiber stress mainly concentrates on the belly
region at the closed state, consistent with the stress distribution
in the cases with FD1. Besides, the stress level of our AV is within
a reasonable range compared with the reported stress levels in
previous studies, for example, 150 kPa in Hasan et al. (2017)
and the maximum stress level of the belly region 435 kPa in
Sulejmani et al. (2019). Therefore, the stress distribution of FD1

FIGURE 10 | Two labeled regions of the aortic valve (AV) leaflet.

FIGURE 9 | Fiber strain distribution of aortic valve (AV) leaflets for the six different cases. (A–D) The first two columns correspond to FD1 under the fully opened and

fully closed states, and the last two columns correspond to FD2 under the fully opened and fully closed states.
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TABLE 5 | Average fiber strain of aortic valve (AV) with six different cases.

Average fiber strain

Fully opened Fully closed

Cases Belly Top-center Belly Top-center

W1FD1 −0.03 −0.06 0.32 0.10

W2FD1 −0.06 −0.06 0.25 0.07

W3FD1 −0.05 −0.11 0.27 −0.04

W1FD2 −0.13 −0.08 0.31 0.14

W2FD2 −0.14 −0.07 0.28 0.13

W3FD2 −0.10 −0.13 0.30 −0.01

TABLE 6 | Average fiber stress at the belly and top-center.

Average fiber stress (kPa)

t = 0.32 s (open state) t = 0.47 s (closed state)

Cases Belly Top-center Belly Top-center

W1FD1 −36 −25 336 178

W2FD1 −41 −62 376 135

W3FD1 −22 −42 330 −4

W1FD2 −32 −48 309 480

W2FD2 −42 −92 295 555

W3FD2 −21 −43 262 54

seems to be consistent with the stress distribution of previous
studies (Aggarwal et al., 2013; Hasan et al., 2017).

3.5. Hemodynamic Parameter Comparison
Table 7 is the comparison of the hemodynamic parameters
within the six cases. Here, we further present measurements
from a tri-leaflet ePTFE valve (Zhu et al., 2019), from which this
computational AV model is derived.

The least RF can be found for the cases using the constitutive
law W2, while the cases with W3 have significantly higher RF,
but interestingly closer to the measured values (14.37) (Zhu et al.,
2019). The TPG values for all cases are much lower than the
reference value 9.89mm Hg, and the highest value is found in
W2FD1 (5.91mmHg) with the lowest inW3FD1. Except forW3,
the TPG values in cases with FD2 are lower than the values with
FD1. Compared with other constitutive laws, the two cases of
W2 have larger TPG in systole, suggesting a higher transvalvular
potential energy loss with W2. The simulated EOA values are
slightly higher than the reference value 2.86 cm2 fromZhu et al.
(2019), the largest EOA is found in case W3FD1, suggesting the
least resistance for blood flow. As for EL, the cases with FD1 have
similar energy loss as the reported reference value (129.03mJ),
while EL varies significantly for the cases with FD2 with the least
energy loss for W1FD2 and the most energy loss for W3FD2.

3.6. Model Comparison and Selection
To select an appropriate constitutive law for the AV dynamics,
we now propose a weighting scheme for the results from
the ex vivo fitting, to the flow patterns, to the valvular

strain/stress, and to the hemodynamic factor as shown in
Table 8. For each selected criterion, we set the best value
to be 1, and the worst value to be 0, respectively. Then
we project each simulated result into the interval [0, 1]. By
summing all values together for each case, we can rank the
six cases from the most appropriate one to the poorest one.
Specifically, the selected results and the corresponding criteria are
as follows

• Ex vivo fitting: The least error suggests the best fitting of a
constitutive law to experiments, we set the least error to be 1,
and the largest error to be 0.

• Opening orifice: The opening orifice relates to the obstruction
to blood flow, and the larger the opening orifice, the less
obstruction to the blood flow. Thus, we consider the largest
opening orifice area to be 1 and the smallest value to be 0.

• Duration of AV opening: As discussed in Zhu et al. (2019),
the shorter the duration of AV opening, the better the leaflet
mobility. In this aspect, we set the shortest duration of AV
opening (0.09 s) to be 1, and the longest duration (0.1 s)
to be 0.

• Duration of AV closing: Similar to the duration of AV opening,
the shorter the duration of AV closing, the better the leaflet
mobility. Thus, we set the shortest duration of AV closing
(0.16 s) to be 1, and the longest duration of AV closing (0.2 s)
to be 0.

• The forward flow: Generally, the large forward flow means
a large stroke volume (Murgo et al., 1980). Thus, we set
the largest forward volume to be 1, and the smallest value
to be 0.

• Regurgitation flow: A small regurgitation flow will suggest the
AV can close swiftly. To this end, we consider the smallest
value to be 1, and the largest value to be 0.

• Strain variation: We consider a homogeneous strain
distribution with small variation will be close to the
physiological homeostasis (Kassab, 2008), and a smaller strain
variation represents a higher degree of strain homogeneity.
In this study, the strain variation is defined as the fiber strain
difference between the belly and the top-center area at the
fully closed state. For example, the strain variation of case
W1FD1 can be calculated by 0.32 − 0.10 = 0.22. Then, we
set 1 for the smallest strain variation and 0 for the largest
strain variation.

• Stress variation: Similar to the strain variation, the stress
variation is defined as the fiber stress difference between the
belly and the top-center area at the closed state. Again, 1 for
the smallest stress variation and 0 for the largest variation.

• RF: Similar to the regurgitation volume, we set 1 for the least
value and 0 for the largest value.

• TPG: It relates to the flow potential energy losses when the
blood flows through the AV (Yoganathan et al., 2004), thus we
consider the smaller the TPG, the better performance of the
AV dynamics.

• EOA: It is considered to be similar to the opening orifice.
• EL: The energy loss of the LV is also an important factor for

assessing the AV performance (Zhu et al., 2019), in this aspect,
we set the smallest EL (82.95mJ) to be 1.
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TABLE 7 | The simulated hemodynamic parameters.

Parameter W1FD1 W2FD1 W3FD1 W1FD2 W2FD2 W3FD2 Reference AV (Zhu et al., 2019)

RF (%) 6.73 4.47 13.67 5.22 4.90 18.16 14.37

TPG (mm Hg) 4.69 5.91 2.28 3.19 4.32 3.66 9.89

EOA (cm2) 3.41 3.00 4.25 3.51 2.95 3.25 2.86

EL (mJ) 107.04 106.73 110.79 82.95 92.92 200.69 129.03

TABLE 8 | Comparison of simulated results with scaled values.

W1FD1 W2FD1 W3FD1 W1FD2 W2FD2 W3FD2

Ex-vivo fitting 1 0.95 0 1 0.95 0

Opening orifice 0.72 0 1 0.92 0.96 0.56

Duration of AV opening 1 0 1 0 1 0.5

Duration of AV closing 1 0.63 0 0.88 0.88 1

Forward flow 1 0.92 0.23 0.10 0 0.06

Regurgitation flow 0.56 0.86 0 0.86 1 0.74

Strain variation 0.56 0.81 0 0.88 1 0

Stress variation 1 0.53 0 0.93 0.42 0.72

RF 0.83 1 0.33 0.95 0.97 0

TPG 0.34 0 1 0.75 0.44 0.62

EOA 0.35 0.04 1 0.43 0 0.23

EL 0.8 0.8 0.76 1 0.92 0

Total 9.16 6.54 5.32 8.7 8.54 4.43

Table 8 summarizes the weighting scores for the above 12
selected factors, with the total score in the last row. The rank for
the six cases from the most appropriate one to the poorest one is

{W1FD1, W1FD2, W2FD2, W2FD1, W3FD1, W3FD2}.

Case W1FD1 seems to be the best choice for modeling AV
dynamics within the considered six cases, with non-linear
anisotropic responses in the fiber and cross-fiber direction and
a fully body-fitted fiber structure. The constitutive lawW3 seems
to perform poorest due to its linear response along the cross-fiber
direction. In summary, the constitutive law W1 could be a good
choice for modeling AV mechanical behaviors, and a fully body-
fitted collagen fiber architecture is marginally better than using a
simplified circumferentially aligned fiber architecture.

4. DISCUSSION

In this study, we have used the IB/FE method to perform the FSI
simulations of AV dynamics with three different constitutive laws
and two different fiber architectures. The constitutive parameters
of three different constitutive laws are first inferred from the
experimentally measured stretch–stress data, which were from
the ex vivo biaxial testing of three different porcine AV samples.
By comparing the average errors and the average R-squared
values, we observe that W1 is the most suitable constitutive
law to describe the mechanical behaviors of those ex vivo AV

leaflet samples. The simulation results also demonstrate that
the constitutive law W1 has the larger leaflets displacements
at the fully opened and pre-close states, the shorter duration
for opening and closing, the largest peak forward flow rate,
the largest forward volume, and the smaller regurgitant volume.
The combination of the anisotropic non-linear constitutive law
(W1) using exponential terms for both the fiber and cross-fiber
directions and the fiber architecture with body-fitted orientation
(FD1) has the shortest duration for AV opening and closing, the
largest forward flow, the smallest stress variation, the less RF,
and the smaller energy loss of the LV. Thus, our study seems
to suggest that the constitutive law W1FD1 could be the most
suitable model for simulating AV dynamics.

Figure 6 shows the dynamic deformation of the AV leaflets
from six different cases. During the AV opening, the leaflet
deformation is similar for the six cases, with a similar orifice
shape at t = 0.13 s. Besides, the duration of AV opening is around
0.1 s, which is in good agreement with the value from Zhu’s
study (Zhu et al., 2019). During the AV closure, the closure
inconsistency exists, which may relate to the AV model itself
since it was reconstructed from the porcine pericardial valve. A
similar phenomenon also appears in the bovine pericardial valve
reported by Lee et al. (2020a). The duration of AV closure from
the six cases is around 0.16 s, which is comparable to the value
(0.14 s) reported by Zhu et al. (2019).

Figure 7 shows the fluid velocity fields of the AV. At the
fully opened state, the peak velocity of the fluid field is within
2.0–3.0m/s, which is in good agreement with the cross-sectional
velocity fields reported in the previous studies (Flamini et al.,
2016; Lee et al., 2020a). The peak forward flow rate is in a range
from 480 to 580mL/s, lower than the value 591.5mL/s from
Flamini’s study (Flamini et al., 2016), but slightly higher than that
of Lee’s study (Lee et al., 2020a). The forward volume is within 75
to 95mL, again slightly lower than the reported value 96.2mL
in Flamini’s study (Flamini et al., 2016). At the just-closed state,
the peak regurgitant velocity of the fluid field is slightly larger
than the peak regurgitant velocity (less than 1.5m/s) in Flamini
et al. (2016); Lee et al. (2020a). The peak regurgitant flow rate
is in reasonable agreement with the peak regurgitant flow rate
(around 180mL/s) compared to the value reported by Flamini
et al. (2016).

Strain distributions of AV leaflets are shown in Figure 9.
At the fully opened state, the AV leaflets experience some
compression near the commissures, in which the AV with FD2
has more compressed regions than that with FD1. However,
the compressed regions of the AV leaflets are much larger
than those in Hasan’s study (Hasan et al., 2017). While the
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strain distributions under the fully closed state are similar to
those in Hasan’s study (Hasan et al., 2017), especially in case
W1FD1 and case W2FD1. For the stress distribution, the stresses
are sporadically distributed on the belly regions and the edges
connected with the aortic wall, different from Lee’s study (Lee
et al., 2020a). When the AV is at the fully closed state, the stresses
are distributed symmetrically from commissure to commissure
for both FD1 and FD2. At the fully closed state, the AV with
FD1 experiences higher fiber stresses in the belly region of the
leaflet, whereas the AV with FD2 (case W1FD2 and W2FD2)
experiences higher fiber stresses in the top-center of the leaflet,
which is caused by the large deformation of the top-center region.

Valvular morphology (three-leaflets or two-leaflets), size
(aortic root diameter, leaflet area), geometrical shape (curvatures,
thickness), and pathological state (calcification, etc.) can vary
significantly among subjects, and those variations will have a
significant impact on the AV dynamics and the corresponding
flow patterns (Xiong et al., 2010; Zhu et al., 2020). The current
study mainly focuses on the effects of different constitutive
laws and different fiber architectures on the AV dynamic
characteristics and the associated flow quantities, but not aims
to simulate personalized AV dynamics. Therefore, an idealized
healthy AVmodel is constructed based on the population-average
anatomical measurements. A further limitation is the idealized
aortic root. Studies (Flamini et al., 2016; Hasan et al., 2017)
have shown that a personalized aorta will affect the blood flow,
especially the flow jet across the AV, this would further affect
the AV dynamics, such as the closure. For example, Flamini
et al. (2016) have found that the aortic root can ensure a more
efficient AV closure when using an elastic aortic root. Built
on the same IB/FE framework, Hasan et al. (2017) studied the
AV dynamics within an anatomically realistic aortic root and
ascending aorta, and both were reconstructed from computed
tomography angiography data; they found that their AV model
can support a physiological diastolic pressure load without
regurgitation, and it is able to accurately capture the leaflet
biomechanics. Note that the present IB/FE approach can handle
personalized AV models by simply replacing the idealized AV
model, while it is challenging to reconstruct a personalized AV
model from in vivo imaging data (Hasan et al., 2017), especially
the collagen fiber structure.

In this study, a simplified 3-element Windkessel model is
used for providing physiologically accurate pressure boundary
conditions at the outlet. Although this 3-element Windkessel
model has limitations to predict spatially distributed flow
quantities, it is simple and accurate to predict the ventricular
after-load as discussed by Westerhof et al. (2008). There are
many blood flow models ranging from the zero-dimensional
models (lumped-parameter models) (Liu et al., 2020), the one-
dimensional models (Olufsen et al., 2000; Chen et al., 2016;
Duanmu et al., 2019), and the three-dimensional models (Lee
et al., 2016). Interested reader can refer to Shi et al. (2011); Morris
et al. (2016) for reviews on blood flow modeling. Because of its
simplicity, the lumped parameter models are still widely used
to simulate the arterial hemodynamics (Westerhof et al., 2008;
Fan et al., 2020). For example, Fan et al. (2020) constructed
a closed-loop lumped parameter model including the LV, the

systemic, and coronary circulations to describe the interactions
between the LV and the coronary perfusion. As mentioned
before, the lumped parameter model cannot assess the spatially
distributed phenomena and wave propagation, being unable to
capture the wave oscillations. To overcome those limitations,
one-dimensional (1-D) models have been developed by taking
into account geometrical measurements. For example, Chen et al.
(2016) reported a coupled LV-systemic arteries model to study
the effects of the arterial wall stiffness and vascular rarefaction on
ventricular function. Using a similar 1-D arterial model, Duanmu
et al. (2019) studied the coupling between the LV and the
coronary blood flow. In this study, we do not intend to simulate
patient-specific AV dynamics with detailed flow predictions in
the systemic circulation, thus a 3-element Windkessel model is
used. It is worth mentioning that this 3-element Windkessel
model can be easily replaced by either other complex lumped
parametermodels or patient-specific 1-D/3-D blood flowmodels.

The blood flow around healthy valves is usually assumed to
be laminar flow (Stijnen et al., 2004; Morbiducci et al., 2013; Wu
et al., 2016; Pirola et al., 2018; Luraghi et al., 2019), while in the
presence of diseased heart valves (obstructive and regurgitant
valvular lesions) or prosthetic heart valves, the transition to
turbulence exists (Stupak et al., 2017; Lee et al., 2020a). As
suggested in Wei et al. (2018), individualized evaluations of
turbulence may be needed. Turbulent models have been used
in the simulations of blood flow around prosthetic AVs (Stupak
et al., 2017), including direct numerical simulation (DNS), large
eddy simulation (LES), and Reynolds-averaged Navier–Stokes
(RANS). The turbulent model has not been employed in our AV
simulations and other studies (Hasan et al., 2017; Lee et al., 2020a)
using the same immersed boundary framework because explicit
turbulent models have not yet been completely implemented in
the present IB/FE approach. As discussed in Lee et al. (2020a),
the current approachmay be considered as an implicit large-eddy
simulation with high-resolution slope limiters based on the piece-
wise parabolic method. Because of the need for fine temporal
and spatial discretization, and tremendous computational cost
to capture small-scale turbulent flow features in the present
approach, therefore, local flow features are not reported in the
present study, but more on the average flow quantities, such as
flow rate, pressure, and so on. Further limitations include (1) the
biaxial tests were conducted in porcine AV samples, but not from
human AV leaflets; (2) personalized human AVmodel is not used
in this study; and (3) a typical LV pressure profile is used, but not
from a realistic human heart model Chen et al. (2016); Gao et al.
(2017a).

5. CONCLUSION

In this study, we construct an idealized AV model coupled
with a three-element Windkessel model. Three different
anisotropic hyperelastic material models and two different
symmetric fiber architectures are used for modeling the
AV leaflet mechanics. By using the IB/FE method, FSI
simulations of six different cases are performed in this study.
Our results are in reasonable agreement with the previous
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experimental and numerical studies of AV dynamics, especially
the hemodynamic performance. Finally, the comparison shows
that the combination of an anisotropic non-linear constitutive
law using exponential terms for both the fiber and cross-
fiber directions and the fiber architecture with body-fitted
orientation could be suitable for characterizing the AV dynamics
and its hemodynamic performance. Although there exist some
limitations, our results provide references for selecting a proper
material model and fiber architecture for FSI modeling of the
AV dynamics.
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In recent years, with the development of artificial intelligence, deep learning model has
achieved initial success in ECG data analysis, especially the detection of atrial fibrillation.
In order to solve the problems of ignoring the correlation between contexts and gradient
dispersion in traditional deep convolution neural network model, the hybrid attention-
based deep learning network (HADLN) method is proposed to implement arrhythmia
classification. The HADLN can make full use of the advantages of residual network
(ResNet) and bidirectional long–short-term memory (Bi-LSTM) architecture to obtain
fusion features containing local and global information and improve the interpretability
of the model through the attention mechanism. The method is trained and verified
by using the PhysioNet 2017 challenge dataset. Without loss of generality, the ECG
signal is classified into four categories, including atrial fibrillation, noise, other, and
normal signals. By combining the fusion features and the attention mechanism, the
learned model has a great improvement in classification performance and certain
interpretability. The experimental results show that the proposed HADLN method can
achieve precision of 0.866, recall of 0.859, accuracy of 0.867, and F1-score of 0.880
on 10-fold cross-validation.

Keywords: arrhythmia classification, deep learning, bidirectional LSTM, ResNet, attention mechanism

INTRODUCTION

Atrial fibrillation is one of the most common persistent arrhythmias. It is characterized by irregular
atrial activity, increasing incidence rate, and associated complications, such as stroke and systemic
thromboembolism, which pose a great threat to human health and life (Mathew et al., 2009).
In addition, due to the lack of comprehensive understanding of the pathological mechanism of
atrial fibrillation, the timely diagnosis of atrial fibrillation becomes a problem (Wyndham, 2000).
People often miss the optimal treatment time because the early stages of atrial fibrillation are
usually paroxysmal and asymptomatic (Mehall et al., 2007). Therefore, the development of a new
type of automatic atrial fibrillation detection system to provide accurate and reliable diagnostic
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information as early as possible is of great significance for
improving the quality of treatment and reducing the further
deterioration of the patient’s health.

Electrocardiography (ECG) is often used for routine
monitoring of physiological signals in clinical application.
The effective analysis of ECG signals is helpful to detect many
heart diseases such as atrial fibrillation (AF), myocardial
infarction (MI), and heart failure (HF) (Turakhia, 2018). In
an AF waveform, the P wave is replaced by many inconsistent
fibrillatory waves, and the RR interval is irregular, which is easily
mixed with other diseases (Wei et al., 2017). In the early stage, the
research work of ECG classification was generally implemented
by using manual feature extraction method. However, the
method of manual feature extraction was not only affected by
noises but also lost a lot of important information, which cause
the in accuracy and low efficiency of AF classification. Moreover,
its poor generalization ability cannot be used to deal with the
practical application. Some signal processing methods, such as
independent component analysis (Prasad et al., 2013), discrete
wavelet transform (Lee et al., 2013), and entropy (Liu et al.,
2018a), has been used to improve the performances of manual
feature extraction. Recently, feature extraction methods based
on machine learning, such as support vector machine (Liu et al.,
2018b) and random forest (Kennedy et al., 2016), are proposed
to classify the ECG signals.

Recently, deep neural networks (DNNs) achieved initial
success in ECG data processing (Parvaneh et al., 2019), which
can provide another opportunity to improve the accuracy and
scalability of automatic ECG classification obviously (Hong et al.,
2019). According to different network structure, DNNs can
integrate different level features and classifiers to form an end-to-
end multilayer model (Dang et al., 2019) without preprocessing
a large amount of data by manual rules, which can overcome
the limitation of traditional machine learning algorithm model
with independent input and output (Schmidhuber, 2015). In
addition, there have been some new attempts on DNNs, such
as residual blocks (He et al., 2016), deep convolutional neural
network (Wu et al., 2020), deep residual convolutional neural
network (Li et al., 2020), recurrent neural network (RNN) with
long–short-term memory (LSTM) (Faust et al., 2018), and deep
bidirectional LSTM (Bi-LSTM) network (Yildirim, 2018). In
order to effectively select feature information and enhance the
interpretability of the model, the attention mechanisms had
been valued in the classification of arrhythmia (Yao et al., 2020;
Zhang et al., 2020). In the PhysioNet/Computing in Cardiology
Challenge 2020, several classification models related to attention
mechanisms have been proposed to get promising classification
results. Duan et al. (2020) proposed a multiscale attention
deep neural network (MADNN) method to boost capability
of extracting the ECG features on different scales, combining
kernel- and branch-wise attention modules, which can achieve an
overall score of 0.446 on the hidden testing-set. Liu et al. (2020)
proposed a novel multilabel classifier of 12-lead ECG recordings
by using residual CNN and class-wise attention mechanism,
which can get resulting scores of 0.5501 ± 0.0223 according to
the challenge metric, demonstrating a promising method for the
classification of ECGs. He et al. (2020) used the mechanism of

attention to learn an attention distribution on the list of extracted
features, and then, the attention weightings were integrated into
a single feature vector and used for the final classification. The
overall score with five cross-validation of training set is 0.543
by using the Deep Heart model, demonstrating that it may have
potential practical applications. However, there still a long way to
improve classification accuracy in clinical application.

This paper proposed a hybrid attention-based deep learning
network (HADLN) method to automatically implement ECG
classification. The PhysioNet 2017 challenge data were used
to validate the performance of HADLN method. The main
contributions of this paper can be concluded as follows: (1)
the ResNet part uses the superposition of 16 residual blocks
to extract local features, and the bidirectional long-short-term
memory network was used to extract the global features in
parallel. Moreover, the global feature from Bi-LSTM and the local
feature from ResNet were the fused features, which can extract
multiple features of the original ECG data; (2) in this paper, a
modification of the standard attention mechanism was proposed
to strengthen local feature information from ResNet according to
the weight parameters calculated from fused features; and (3) the
features of these weighting parameters based on fused features
can proved a interpretability for ECG classification results.

BASIC THEORY

In this paper, three deep-learning approaches are utilized to
form the classification model. Residual network (ResNet) and Bi-
LSTM network are applied in the classification model. Besides,
attention mechanism is introduced to improve the performance
of classification.

Bi-LSTM
LSTM is a typical RNN proposed by Hochreiter and
Schmidhuber (1997). Due to the advantages of its gate
mechanism, it is easier to learn the long-term dependencies
between sequences (Tan et al., 2018). The bidirectional layer is
actually composed of two LSTM layers in opposite directions:
the forward LSTM layer and the backward LSTM layer. The
Bi-LSTM architecture is shown in Figure 1, which will be able
to fully consider the global features in the input data. Graves
and Schmidhuber showed that such bidirectional networks

FIGURE 1 | The architecture of bidirectional LSTM.
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can be significantly more effective than unidirectional LSTM
architectures (Graves and Schmidhuber, 2005).

ResNet
The deep CNN network with residual blocks can solve the
problem of the convergence difficulty of the deep network and
overcome the problem of network degradation caused by the
increase in network layers (Zagoruyko and Komodakis, 2016).
As shown in Figure 2, the learning process is to let multiple
nonlinear computing layers of continuous stack fit the residual
F(x) = H(x) − X between the input data and the output data.
Residual learning adds a shortcut on the basis of the traditional
linear network structure, which is integrating a shortcut with the
main path by the method of additive fusion.

Attention Mechanism
The core concept of attention mechanism is to simulate human
attention mechanism to improve the performance of deep
learning (Mnih et al., 2014). By using the probability distribution
of attention, we can control the weighting parameters of the
elements in the input sequence to generate the output sequence.
As shown in Figure 3, the essence of the attention function
can be described as a mapping from a query to a series of key-
value pairs. The common similarity functions are implemented
by multiplication in Equation 1, concatenation in Equation 2, and
perceptron in Equation 3.

f (Q, Ki) = QTWaKi (1)

f (Q, Ki) =Wa[Q : Ki] (2)

f (Q, Ki) = vT
a tanh (WaQ+ UaKi) (3)

where Wa, Ua, and va are all learnable parameters. Q means
Query, and Ki means keys.

FIGURE 2 | Principle of the residual module.

FIGURE 3 | Attention principle architecture.

MATERIALS AND METHODS

Dataset
To demonstrate the generalizability of the proposed HADLN
architecture, the open dataset of the PhysioNet 2017 challenge
was applied in the model (Clifford et al., 2017), which contained
four rhythm categories: normal (N), atrial fibrillation (A), other
(O), and noise (∼). The dataset consisted of 8,528 single lead
ECG data recordings, and each of them is sampled at 300 Hz
with a length of 9–61 s. The dataset was divided into a training
set (90%) and a testing set (10%) for training and evaluation in all
tasks. Data profile of PhysioNet Challenge 2017 dataset is shown
in Table 1.

Proposed HADLN Architecture
As shown in Figure 4, the HADLN architecture was proposed
to automatically detect atrial fibrillation based on the fusion
of attention mechanism and deep learning model, which
combines ResNet, Bi-LSTM, and attention mechanism module.
The ResNet part uses the superposition of 16 residual blocks
to extract local features, which can effectively solve the
problem of gradient dispersion while increasing the number
of network layers. At the same time, the bidirectional long–
short-term memory network was used to extract the global
features in parallel, and the number of units in the layer is
set to 128. The global feature from Bi-LSTM and the local
feature from ResNet are used to fuse the hybrid feature.
Then, the weighting parameter in attention mechanism is
calculated according to hybrid features by using Softmax.
Finally, the weighted features are proposed to implement
ECG classification.

The original ECG signal is input into several initial layers, and
the output feature map is subsequently processed by 16 residual
blocks sequentially including 33 convolution layers and 16

TABLE 1 | Data profile of PhysioNet challenge 2017 dataset.

Type # recording Time length (s)

Mean StDev Max Median Min

Normal 5,154 31.9 10.0 61.0 30 9.0

AF 771 31.6 12.5 60 30 10.0

Other rhythm 2,557 34.1 11.8 60.9 30 9.1

Noisy 46 27.1 9.0 60 30 10.2

Total 8,528 32.5 10.9 61.0 30 9.0
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FIGURE 4 | HADLN architecture.

maximum pool layers. There are two types of residual modules,
including two 1D convolutional layers, batch normalization layer,
ReLU activation layer, dropout layer, and a maxpooling layer.
As shown in Table 2, each convolutional layer has 32 × 2k

convolution kernels (where k starts out as 0 and is incremented
every fourth). The difference is that the 2nd to 16th residual
blocks have more batch normalization layers, ReLU activation
layer, and dropout layers than the first residual block. The residual
module combines the output of the quick connection and the
output of the second convolutional layer by summation. When
the feature map passes through the maxpooling layer with a pool

TABLE 2 | The length/number of convolution kernels and pool size of max-pooling
layers in each residual module.

ResNet module Kernel length Kernel number Pool size

1 16 32 1

2 16 32 2

3 16 32 1

4 16 32 2

5 16 64 1

6 16 64 2

7 16 64 1

8 16 64 2

9 16 128 1

10 16 128 2

11 16 128 1

12 16 128 2

13 16 256 1

14 16 256 2

15 16 256 1

16 16 256 2

size of 2, the length of that will be halved. When the pool size is
1, there is no effect on the feature map, so only eight layers play a
role in this part of ResNet. Therefore, the original input is finally
subsampled by a factor of 28, and after the local feature extraction
part, the output length is 1/256 of the input length.

For long sequences, Bi-LSTM can be used to process input
along the time sequence in a parameters-sharing manner and
utilizes their internal state to memorize the context. The original
signal is input to Bi-LSTM to extract global features, where the
number of LSTM units in each of the forward and backward
layers was set to 128. The global feature hi from Bi-LSTM and the
local feature vi from ResNet are used to fuse the hybrid feature ei,
as shown in Equation 4. The weighting parameter αi in attention
mechanism is calculated by using Equation 5, and the weighted
features SHADLN are proposed to implement ECG classification;
specific implementation is shown in Equation 6.

ei =WT
a ∗ tanh (WQ ∗ vi +Wk ∗ hi) (4)

αi = softmax(ei) =
exp (ei)∑T
i=1 exp (ei)

(5)

SHADLN =

T∑
i=1

αi ∗ vi (6)

where ei the is merged feature from hi and vi, with fully
connected layer parameters WQ, Wk, WT

a , and αi referring to
weight parameters from Softmax function, and SHADLN refers to
weighted features.

The classification part consists of batch normalization layer,
timeDistributed layer, and two activation layers. The ReLU layer
enables the classification part to accelerate the back propagation
of gradients. The timeDistributed layer is fully connected in
the time dimension. The second activation layer is a Softmax
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layer, which outputs the predicted probability distribution of four
classes, including atrial fibrillation, noise, other, and normal.

As a comparison, the ResNet model with attention
mechanism, termed as ResNet_A method, is proposed for
ECG classification. The output of ResNet vi is directly used
to calculate the weighting parameters αi

′

by Softmax function
in Equation 7, and then the weighting parameters are used to
calculate the weighted features in Equation 8.

α′i = softmax(vi) =
exp (vi)∑T
i=1 exp (vi)

(7)

SResNet_A =

T∑
i=1

α′i ∗ vi (8)

Model Training
Batch normalization is used to ensure the smooth convergence
of the network before each convolution layer. Meanwhile, using
the ReLU activation function can effectively improve the learning
efficiency of the network and significantly reduce the number of
iterations required for convergence in the deep learning network.
The initial learning rate of the Adam optimizer was set to 10−2

and the probability of dropout is set as 0.3. The cross-entropy
function was used to evaluate the difference between the output
and reference labels, as in Equation 9. The smaller the value
of cross-entropy is, the closer the distribution of actual output
and expected output is. According to the cross entropy, the stop
mechanism in the model training can be made. When the cross-
entropy value does not change in eight epochs, then the model
training will stop automatically.

loss (X, r) = − log
exp (P(X, r))∑N
i=0 exp (P(X, i))

(9)

where r refers to label, and P (X, i) is the probability the model
assigns the label i to the input X.

Moreover, the HADLN and several comparative experiments
were trained and tested in a server with Tesla v100-sxm2 GPU.
The deep learning model was programmed by using Python 3.6
and Keras 2.1.6 framework. Matplotlib tools are used for data
visualization, and numpy1.18.1 is used for a large number of
dimensional arrays and matrix operations. In addition, we used
scikit-learn 0.22.1 for data mining and data analysis tools.

RESULTS

Performance Metric
In order to evaluate the performance of the proposed model,
the precision, recall, and accuracy are listed as the following
equations, respectively. The counting rules for the numbers
of the variables are listed as shown in Table 3. In addition,
the performance metric F1-score proposed by 2017 Physionet
challenge was used to evaluate the performance of the proposed

TABLE 3 | Counting rules for the numbers of the variables.

Normal AF Other Noisy Total

Normal Nn Na No Np 6N

AF An Aa Ao Ap 6A

Other On Oa Oo Op 6O

Noisy Pn Pa Po Pp 6P

Total 6n 6a 6o 6p

HADLN network architecture, as shown in the Equation 17.

precision =
TP

TP + FP
(10)

recall =
TP

TP + FN
(11)

accuracy =
TP + TN

TP + TN + FP + FN
(12)

F1n =
2Nn

(6n+6N)
(13)

F1a =
2Aa

(6a+6A)
(14)

F1o =
2Oo

(6o+6O)
(15)

F1p =
2Pp

(6p+6P)
(16)

F1-score =
(F1n + F1a + F1o + F1p)

4
(17)

where TP means true positive, the number of AF signals classified
correctly; FP means false positive, the number of AF signals
classified wrongly; TN means true negative, the number of signals
without AF classified correctly; and FN means false negative, the
number of signals without AF classified wrongly.

Experimental Results
As shown in Figure 5, the performance of the training set is
slightly better than that of the validation set, and the model
converges to a stable value, indicating that the parameters are
not excessive when training the model. In the validation model,
the proposed method works well, which can achieve the stable
classification results with good accuracy.

In order to validate the performances of the proposed
HADLN method, several state-of-the-art methods, such as
ResNet (Hannun et al., 2019), CL3 (Warrick and Homsi, 2017),
QRS-LSTM (Maknickas, 2017), and Dense-net (Rubin et al.,
2017), are also provided as a comparison. In addition, self-
attention based ResNet method, ResNet_A, is also investigated
for arrhythmia classification. As shown in Table 4, the precision,
recall, F1-score, and accuracy of different DNNs architecture
are presented for classifying normal (N), atrial fibrillation (A),
other (O), and noise (∼). It can be found that the proposed
HADLN method can achieve the best classification performances
with the highest metric indexes among these methods. In
addition, in order to validate the robustness of the proposed
HADLN method, the classification performances (F1 score,
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FIGURE 5 | Training and validation of (A) loss function and (B) accuracy over the epochs.

precision, recall, accuracy) have been reported in the Table 5,
which indicates that the proposed HADLN method has stable
classification in different cross cases.

As shown in Figure 6, the confusion matrices were used to
illustrate the discordance between the predicted labels and the
real labels by using different DNNs models. The results show that
compared with the baseline model ResNet, the classification effect
of normal (N) and atrial fibrillation (A) in HADLN is significantly
improved by 5% and 6%. The classification effect of HADLN
in atrial fibrillation (A) is generally higher than that of other
contrast models.

TABLE 4 | Classification results of weight average.

F1-score Precision Recall Accuracy

CL3 0.856 0.856 0.850 0.867

QRS-LSTM 0.666 0.770 0.714 0.770

Dense-net 0.843 0.867 0.860 0.860

ResNet 0.837 0.865 0.853 0.857

ResNet_A 0.844 0.854 0.853 0.853

HADLN 0.880 0.866 0.859 0.867

TABLE 5 | The classification performances of the proposed HADLN method
using 10-fold cross.

No. F1-score Precision Recall Accuracy

1 0.857 0.862 0.857 0.865

2 0.850 0.865 0.856 0.860

3 0.880 0.873 0.872 0.872

4 0.887 0.890 0.879 0.890

5 0.905 0.884 0.885 0.891

6 0.887 0.877 0.876 0.888

7 0.879 0.840 0.827 0.836

8 0.911 0.839 0.833 0.837

9 0.900 0.870 0.859 0.861

10 0.848 0.858 0.850 0.867

Average 0.880 0.866 0.859 0.867

Standard deviation 0.021 0.016 0.018 0.019

DISCUSSION

Due to the limited size, each convolution operation can only
cover a small neighborhood around the sequence, so that it
cannot be easily captured the global features. Although after
multilayer convolution stacking, compared with the single-layer
CNN, more comprehensive features can be obtained. However,
it still cannot make full use of the context information, resulting
in a degradation in generalization ability. The advantage of the
Bi-LSTM architecture is that it can learn long-term dependencies
between sequences. Therefore, the Bi-LSTM network can be used
to select the global feature from the original ECG signal. As
shown in Table 4, the performance of HADLN is much higher
than that of the model using only LSTM to classify QRS data,
higher than the model of using only deep residual network.
The above experimental results prove that the proposed HADLN
method can adaptively discover hidden structures of different
ECG signals and automatically learn relevant information,
improving the accuracy of ECG data classification.

In this paper, attention mechanism is proposed to enhance
the important information in the local feature information
through different weightings and to weaken the interference
information that may affect the classification performance.
Therefore, the proposed HADLN method can improve the
generalization ability, so as to extract comprehensive information
and improve the classification accuracy obviously. The HADLN
model proposed in this paper can adaptively discover hidden
structures of different ECG signals and automatically learn
relevant information, thereby improving the accuracy of ECG
data classification. Through the attention mechanism, this deep
learning model has better interpretability.

As shown in the output mapping of the HADLN model
represented by the blue line in Figure 7 (the weight of HADLN’s
attention mechanism is similar to the output mapping), the
normal category ECG signal reaches peak in the PR interval, and
there is consistency between adjacent beats. The characteristic
components of the ECG signal of atrial fibrillation category are
concentrated on the abnormal P wave, and the RR interval is
irregular. The ECG signal features of other category and noise
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(a) CL3                       (b) QRS-LSTM

(c)Dense  (d) ResNet

(e) ResNet_A (f) HADLN

A B

C D

E F

FIGURE 6 | Confusion matrices by using different classification methods. (A) CL3 method, (B) QRS-LSTM method, (C) Dense method, (D) ResNet method,
(E) ResNet_A method, and (F) HADLN method. The percentage of all records in each category is displayed on a color gradient scale.
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FIGURE 7 | The output of feature mapping by using the different types for four kinds ECG signals: (A) normal, (B) atrial fibrillation, (C) noise, and (D) other. The
yellow line is the ECG signal, the green line is mapping of the ResNet model, the black line is the mapping of ResNet_A model, and the blue line is the mapping of
HADLN model.
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category peaks are concentrated in multiple locations, which is
far from the feature performance of normal category, and in the
noise category, there are many dense and small peaks. Due to
the normalization of the data, it is not very obvious in the visual
display. At the same time, since some of the bands in the other
category are approximately the same as the normal category, this
is why the other category in the confusion matrix in Figure 7 have
poor discriminating performance.

The black line in Figure 7 represents the output mapping
of ResNet_A model whose weight is obtained from the ResNet
output and weighted by itself. It can be found that the waveforms
of various ECG signals are more complicated and fuzzier than
the output mapping of ResNet, and the peaks are not prominent.
This is very unfavorable for the final classification of the model.
As shown in the experimental results of the above table, the
accuracy of the ResNet_A model is far lower than that of
ResNet and HADLN.

At the same time, by comparing the output mapping of
ResNet represented by the green line in Figure 7 and the output
mapping of attention mechanism of HADLN represented by
the blue line, it can be found that the model proposed in this
paper is finally achieved with different weights by adding the
attention mechanism module. Enhancing important information
in local feature information weakens the purpose of interference
information that may affect classification performance. At the
same time, through the attention mechanism, this deep learning
model has a better explanation. It can be seen from the
correct output mapping of the attention mechanism that the
features extracted by this model are consistent with clinical
judgments, indicating that HADLN has potential effectiveness in
the recognition of most atrial fibrillation.

In recent years, many researchers were studying the
problem of automatic ECG arrhythmia classification. He et al.
(2019) proposed a new method for automatic classification of
arrhythmias based on deep residual convolutional module and
bidirectional LSTM module. Chu et al. (2019) used multilead
CNN, LSTM network, and hand-crafted method to extract
features. Yildirim et al. (2019) used convolutional auto-encoder
LSTM to obtain 99.23%. Yao et al. (2020) combined CNN
and LSTM to detect arrhythmia using varying lengths of ECG
signals. Oh et al. (2018) combined CNN and LSTM to detect
arrhythmia using varying lengths of ECG signals. The proposed
HADLN method in this paper can classify ECGs signals with
good performance. Although the optimized model provides an
effective method for the automatic classification of ECG signals,
it has not been tested by actual clinical diagnosis and application
of actual patients. In addition, the model proposed in this paper
are limited to the four major categories of cardiovascular disease,

namely, atrial fibrillation (A), noise (∼), normal (N), and other
(O), which make the model’s generalization in other fields have
certain limitations.

CONCLUSION

This paper proposed an HADLN method to classify four rhythm
categories: normal (N), atrial fibrillation (A), other (O), and
noise (∼). The proposed HADLN method makes full use of the
advantages of ResNet and Bi-LSTM architecture to obtain fusion
features containing local and global information and improve the
interpretability of the model through the attention mechanism.
Compared with the most advanced classification methods, it
has great advantages. This method provides a promising way to
improve the accuracy and interpretability of clinical applications.
In future works, the proposed HADLN method will be used for
arrhythmia classification to assist in clinical diagnosis.
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Blood perfusion is an important index for the function of the cardiovascular system
and it can be indicated by the blood flow distribution in the vascular tree. As the
blood flow in a vascular tree varies in a large range of scales and fractal analysis
owns the ability to describe multi-scale properties, it is reasonable to apply fractal
analysis to depict the blood flow distribution. The objective of this study is to establish
fractal methods for analyzing the blood flow distribution which can be applied to real
vascular trees. For this purpose, the modified methods in fractal geometry were applied
and a special strategy was raised to make sure that these methods are applicable
to an arbitrary vascular tree. The validation of the proposed methods on real arterial
trees verified the ability of the produced parameters (fractal dimension and multifractal
spectrum) in distinguishing the blood flow distribution under different physiological
states. Furthermore, the physiological significance of the fractal parameters was
investigated in two situations. For the first situation, the vascular tree was set as a perfect
binary tree and the blood flow distribution was adjusted by the split ratio. As the split
ratio of the vascular tree decreases, the fractal dimension decreases and the multifractal
spectrum expands. The results indicate that both fractal parameters can quantify the
degree of blood flow heterogeneity. While for the second situation, artificial vascular trees
with different structures were constructed and the hemodynamics in these vascular trees
was simulated. The results suggest that both the vascular structure and the blood flow
distribution affect the fractal parameters for blood flow. The fractal dimension declares
the integrated information about the heterogeneity of vascular structure and blood flow
distribution. In contrast, the multifractal spectrum identifies the heterogeneity features in
blood flow distribution or vascular structure by its width and height. The results verified
that the proposed methods are capable of depicting the multi-scale features of the
blood flow distribution in the vascular tree and further are potential for investigating
vascular physiology.
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INTRODUCTION

The microcirculation is the end destination of the cardiovascular
system and the patency of microvascular perfusion is essential
for the maintenance of tissue metabolism (Ince, 2005; Guven
et al., 2020). Various cardiovascular diseases influence the blood
perfusion and thus impair the physiological function of organs
(Efimova et al., 2008; Kitagawa et al., 2009; Alosco et al., 2013,
2014). These findings imply that the blood perfusion may act
as an important index for the physiological states of living
bodies. The blood perfusion can be indicated by the blood
flow distribution in the vascular tree. The blood flow in a
vascular tree is distributed at different generations, varying in
a large range of scales, and the blood flow distribution at a
certain generation is directly affected by the superior generation.
In the meantime, there is a huge difference between the
magnitude of the blood flow at different generations. However,
the conventional statistical parameters for characterizing the
blood flow distribution, like the coefficient of variation (CV)
(Bassingthwaighte et al., 2001; Pries and Secomb, 2009), ignored
the connection of the blood flow among multiple scales. To
develop a unified description of the blood flow distribution
covering all scales remains a big challenge.

To depict the scale-independent characteristic of objects, the
fractal theory provides an efficient approach for multi-scale
analysis (Mandelbrot, 1982). Presently, a few studies have made
an effort on investigating the fractal characteristics of blood
flow distribution in the vascular tree directly or indirectly.
Van Beek et al. (1989) uncovered the fractality of the relative
dispersion of blood flow distribution. Zamir (2001) defined the
fractal dimension based on the relationship between the vessel
diameter and blood flow according to Murray’s law. Grasman
et al. (2003) described that the distribution of blood flow at
the same generation is multifractal. In all these studies, the
unified description for a vascular tree by the fractal parameter all
demands that the vascular tree should be a perfect binary tree,
in which all interior branch nodes have two daughter branches
and all terminals have the same depth or generation. However,
the structures of real vascular trees are diverse which limits the
physiological application of the methods above.

The fractal analysis has been widely used to investigate
the geometrical characteristics of the vasculatures (Cheng and
Huang, 2003; Stosic and Stosic, 2006; Lorthois and Cassot,
2010; Gould et al., 2011; Nadal et al., 2020). It inspires us
to introduce the established fractal methods for geometrical
architecture analysis into the hemodynamic study, and further
develop a universal fractal depiction for blood flow distribution.
The conservation law is common during the emergence of fractal
and multifractal (Hassan, 2019). In fractal geometry, this law
presents as the conservation of the number of signal pixels
in an image. On the other hand, the total volume of blood
flow in the vascular tree also obeys the conservation law. This
consistency makes it possible to apply the principle of the
fractal method for geometry to the analysis of blood flow by
appropriate modification.

In this study, the primary aim is to establish fractal methods
for analyzing the blood flow distribution which is potential

to be applied to real vascular trees. To achieve this goal, we
firstly modified the fractal methods in geometry to accommodate
the situation of blood flow and then applied the established
methods on experimental data to test the validity. Further,
to explore the physiological significance of the yielded fractal
parameters, the blood flow distribution in vascular trees with
fixed structure or with varying structures were examined in which
the hemodynamics was simulated based on a hemodynamic
model (Yang and Wang, 2013) and a rheological model
(Pries and Secomb, 2005).

MATERIALS AND METHODS

Establishment of Fractal Methods for
Blood Flow
The fractal dimension is the most important parameter to
quantify the fractality of objects. And measuring the information
dimension is an efficient way to estimate the fractal dimension
in geometry (Pitsianis et al., 1989; Liu et al., 2018). For the
calculation of information dimension, non-overlapping boxes are
adopted to cover the image of the object and the mass probability
of each box, which is defined as the ratio of the number of signal
pixels in the box to that of the whole image, is obtained. And the
information dimension DI (Pitsianis et al., 1989) is estimated as:

DI = lim
L→0

∑N(L)
i=1 −Pilog Pi

log (1/L)
(1)

where
∑N(L)

i=1 −Pilog Pi is the total entropy of mass according to
the information theory, Pi is the mass probability of the ith box
and N(L) is the number of boxes needed to cover the image with
size L.

The total mass, which is the number of signal pixels in the
whole image, obeys the law of conservation regardless of the box
size. And so does the blood flow. As shown in Figure 1, the
total volume of blood flow at the same generation also follows
the law of conservation no matter how many times the vascular
tree bifurcates. Thus, with appropriate modification, the fractal
methods in fractal geometry can be introduced to investigate the
fractality of blood flow. By replacing the mass probability Pi in
Eq. 1 with the flow probability pi and 1/L with the number of
vessel segments N(g) at generation g, the expression of the fractal
dimension for the blood flow DQ is derived as:

DQ = lim
N(g)→∞

∑
−pilog pi

log N
(
g
) (2)

Practically, DQ is estimated as the slope of the linear fitting curve
of the discrete data pair (log N

(
g
)

,
∑
−pilog pi) (Wang et al.,

2019). The precondition of the fractal analysis is scale invariance.
And the strong linearity over three orders of magnitude of the
fitting curve can be taken as the criteria of the existence of scale
invariance (Halley et al., 2004).

For the fractal analysis in geometry, the box-counting
dimension (So et al., 2017; Nayak et al., 2019), also known
as capacity dimension, is the most popular. This method also
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FIGURE 1 | The schematic of the conservation of flow at different
generations. Q is the blood flow and Q0 =

∑
Q1,i =

∑
Q2,j .

requires the image to be covered by non-overlapping boxes.
However, the box-counting dimension method only considers
the existence of signal pixels in the box but ignores the
number of pixels. When applied to blood flow analysis, it
produces fractal dimension about the vascular structure other
than the distribution of blood flow. In contrast, the information
dimension method takes the quantity of blood flow into account
and thus can reflect the blood flow distribution.

Very few objects possess perfect mono-fractality exhibiting
a single fractal dimension (Gould et al., 2011). In reality,
objects with the subsets having different scaling properties are
much more common and the estimation of multifractality is
more desirable. For the multifractal measure of blood flow,
the multifractal spectrum f (α)∼α of the blood flow is adopted
(Chhabra and Jensen, 1989) and modified as:

f
(
q
)
= lim

N(g)→∞

∑
µi
(
q
)

log
[
µi
(
q
)]

log N
(
g
) (3)

α
(
q
)
= lim

N(g)→∞

∑
µi
(
q
)

log pi

log N
(
g
) (4)

in which

µi
(
q
)
=

pq
i∑
pq

i
(5)

where q is the moment order. And the range of the spectrum
1α = αmax − αmin can be used to measure the degree of
multifractality (Halsey et al., 1986).

Generalization of the Established
Methods
The methods given in Section “Establishment of Fractal Methods
for Blood Flow” are based on the premise that the total blood
flow at the same generation in a vascular tree obeys the law of
conservation. This premise is valid for a perfect binary tree, as
shown in Figure 1, but not for real vascular trees as shown in
Figure 2A. If the branch which stops bifurcating before reaching
the maximal generation is regarded as a branch covering multiple
generations, the vascular tree in Figure 2A can be thought
of as the perfect binary tree as shown in Figure 2B. In this
case, the proposed methods can be applied and a strategy for
the calculation is raised: If a vessel segment stops bifurcating
at generation n (n is smaller than the maximal generation of
vascular tree), it will be involved in the calculation at all the
generations greater than n.

That is to say, for the vascular tree in Figure 2A, V2,1 will
be included in the calculation of total entropy at generation 3
and V1,2 will be included in the calculation at both generation 2
and generation 3. It should be noted that the number of vessel
segments N in Eq. 2 should be 2n at generation n but not the
number of vessel segments at this generation. The reason is
explained below.

FIGURE 2 | (A) An instance of a vascular tree with the maximal generation of 3. (B) A hypothetical perfect binary tree for the vascular tree in panel (A) and there is no
blood flow in the vessel segment surrounded by dotted lines. (C) The analogy of the blood flow distribution in panel (B) to a one-dimension graph.
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FIGURE 3 | The schematic of the hemodynamic parameters at a bifurcation.

The blood flow distribution in the vascular tree in Figure 2B
can be analogous to a one-dimension graph as shown in
Figure 2C. The gray segments indicate the range of the graph
and the black segments reflect the blood flow in vessel segments.
Each bisection corresponds to a bifurcation of the vascular tree
and divides this geometrical structure into smaller subsections.
When adopting Eq. 1 for the estimation of fractal dimension for
this one-dimension graph, L is corresponding to the length of
the smallest subsection. And each bisection of the graph halves
L no matter whether there is always a black segment in each
subsection. The number of subsections should be 2n after n
bisections. Similarly, the number of vessel segments N(g) in Eq. 2
should be 2n at generation n.

Vascular Tree Construction and
Hemodynamic Simulation
By now, the methods established in “Establishment of Fractal
Methods for Blood Flow” and “Generalization of the Established
Methods” can be used to characterize the blood flow distribution
in arbitrary vascular trees. For validation, the established fractal
methods were tested in a real arterial tree (Reglin et al., 2009,
2017; Wang et al., 2019) under normal and ischemic state.
Besides, the capability of the derived fractal parameters was
examined in two situations.

For the first situation, the vascular tree was fixed to be a perfect
binary tree and the blood flow distribution was adjusted by the
split ratio. For a bifurcation with a parent vessel segment and two
daughter branches, the split ratio r is defined as the ratio of the
smaller blood flow to the larger one in the two daughter branches,
ranging from 0 to 1. Assuming that r is constant throughout
the perfect binary tree, the fractal dimension for blood flow can
be obtained as shown in Eq. 6. The detailed derivation of the
equation is given in the Appendix.

DQ (r) =
(1+ r) log (1+ r)− rlog r

log 2 · (1+ r)
(6)

For the second situation, a series of vascular trees were
constructed. The structures of these vascular trees were diverse
while the blood flow distribution was estimated under the same
boundary condition.

The successive dichotomous division is the most common
branching pattern of the vascular tree, in which a parent vessel
segment is divided into two daughter branches (Zamir, 2001).

Based on this pattern, the construction of a vascular tree calls
for the determination of the vessel diameter and length. For a
bifurcation with the diameter of the parent vessel being d0 and
those of the two daughter branches being d1 and d2, a power-
law relationship between the diameters is given as shown in Eq. 7
according to Murray’s law.

dk
0 = dk

1 + dk
2

λ =
d2

d1

(7)

where d0 > d1 ≥ d2, k is bifurcation exponent and λ is asymmetry
ratio. It is reported that the k value varies from 2.33 to 3.0 (Gabrys
et al., 2005). And a value above 0.6 is most commonly observed
for λ (Schmidt et al., 2004; Cheung et al., 2011; Takahashi, 2014).
Based on the power-law relationship, the diameters of all vessel
segments in a vascular tree can be estimated with the given root
diameter and cut-off diameter. In this study, the root diameters
of all constructed vascular trees are set as 300 µm and all the
terminal diameters are 10 µm, the size of capillaries. An empirical
formula (Takahashi et al., 2009) is adopted to obtain the length l
(µm) from the diameter d (µm):

l = 7.4 ·
(

d
2

)1.15
(8)

With the estimated vessel diameters and lengths, a vascular tree
can be constructed, and serves for the hemodynamic simulation.
According to Hagen-Poiseuille’s law as shown in Eq. 9, the
blood flow Q (µm3/s) in a vessel segment is proportional to the
pressure drop 1P (Pa) between the inlet and outlet. And the
flow resistance R is determined by vessel diameter d (µm), vessel
length l (µm), and blood viscosity µ (Pa · s).

Q =
4P
R

R =
128µl
πd4

(9)

Fahraeus and Lindqvist (1931) reported a decline in apparent
blood viscosity with decreasing tube diameter, the so-called
Fahraeus-Lindqvist effect. Among the models to describe the
relationship between the blood viscosity µ (mPa · s) and the
diameter of the vessel segment d (µm), the model proposed
by Pries and Secomb (2005) matches well with the in vivo
experimental data. In this model, the in vitro viscosity is firstly
estimated as:

µvitro = 1+ (µ0.45 − 1) ·
(1−Hd)

C
− 1

(1− 0.45)C
− 1

(10)

in which Hd (%) is the hematocrit and:

µ0.45 = 220e−1.3d
+ 3.2− 2.44e−0.06d0.645

(11)

C =
(

0.8+ e−0.075d
)
·

(
1

1+ 10−11 · d12 − 1
)
+

1
1+ 10−11 · d12

(12)
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The estimation of the in vivo viscosity should take account
of the effect of the endothelial surface layer. This will involve
two parameters, the effective diameter deff = d − 2Weff and
the physical diameter dph = d − 2Wph. The effective thickness
of the layer Weff and physical thickness of the layer Wph are
estimated as:

Weff =Was +Wpeak (1+Hd · EHD) (13)

Wph =Was +Wpeak · Epeak (14)

Was =


0 d ≤ doff

d − doff

d + d50 − 2doff
·Wmax d ≥ doff

(15)

Was =


0 d ≤ doff

Eamp ·
d − doff

dcrit − doff
doff < d ≤ dcrit

Eamp · e−Ewidth·(d−dcrit) d > dcrit

(16)

Based on the experimental data, EHD = 1.18, Epeak = 0.6,
Eamp = 1.1, Ewidth = 0.03, Doff = 2.4 µm, Dcrit = 10.5 µm,
D50 = 100 µm, and Wmax = 2.6µm. By replacing the d in Eqs
11 and 12 with dph, we can get the in vitro viscosity µvitro. And
the in vivo viscosity µvivo can be obtained as below.

µvivo = µvitro ·

(
d

deff

)4

(17)

For the bifurcation as shown in Figure 3, the relationship between
the hemodynamic parameters can be given by Eq. 18 based on
Hagen-Poiseuille’s law and the conservation law of flow.

P0 − P1

R1
+

P2 − P1

R2
+

P3 − P1

R3
= 0 (18)

Without losing generality, in the hemodynamic simulation we
prescribed the inlet pressure as 1 mmHg and the outlet pressure
at all terminal branches as 0 mmHg (Yang and Wang, 2013).
With each bifurcation of the vascular tree assigned an equation
like Eq. 18, the blood pressure at each branch node can be
obtained by solving these equations. Further, the blood flow in
each vessel segment is estimated by Eq. 9 and finally the blood
flow distribution in a tree can be acquired.

Numerical Solution
In this study, all the calculations and simulations were
programmed by MATLAB R2019a (MathWorks Co., MA,
United States). Firstly, the node information for each
constructed vascular tree was obtained. Then, the blood
flow in each vessel segment of the constructed vascular tree
was captured by solving the equations set. Ultimately, the
fractal dimension and multifractal spectrum were calculated.
All the results about the fractal parameters were presented as
Mean± SD.

RESULTS

The Validation of the Proposed Methods
To test the validity of the proposed methods, the fractal, and
multifractal analysis were conducted on a real arterial tree
under normal and ischemic state. The blood flow distribution
in these two states is as shown in Figures 4A,B. The fractal
dimension for the normal and ischemic state are 0.53 and 0.40,
respectively. As for the multifractal spectrum for the blood flow,
the results are shown in Figures 4C,D. We can observe that the
multifractal spectrums for both states appear as curves indicating
the existence of multifractality. While the maximal values of the
multifractal spectrum for the two states are the same, the range
of the multifractal spectrum 1α for the ischemic state is wider
than that for the normal state which indicates a higher degree
of multifractality for the ischemic state. The results verified the
ability of the proposed methods in distinguishing different blood
flow distribution in a real vascular tree.

The Fractality of Blood Flow in the
Perfect Binary Vascular Tree
The blood flow distribution in the perfect binary vascular tree
was evaluated by both the fractal parameters and the CV, which is
defined as the standard deviation divided by the mean value. For
a perfect binary vascular tree with the identical split ratio for each
bifurcation, the fractal dimension for blood flow was obtained
based on Eq. 6. Figure 5A shows the trends of fractal dimension
and the coefficient of variation with the change of split ratio.
It is noticed that the fractal dimension increases monotonically
from 0 to 1 with the increment of the split ratio. In the case
r = 1, the distribution of blood flow has the highest value of
fractal dimension. And the CV decreases from 10.1 to 4.4 with
the increment of the split ratio.

As for the multifractal characteristic, the multifractal
spectrums of the blood flow are shown in Figure 5B. With
the decrement of the split ratio, the range of the multifractal
spectrum 1α expands while the maximal value remains
unchanged. It is worth noting that the multifractal spectrum
is presented as a point when r = 1, implying the absence of
multifractality.

We also examined the fractal dimension and the CV of the
blood flow in perfect binary vascular trees with different maximal
generations. As shown in Figure 6, the fractal dimension
holds steady with the change of maximal generation while the
CV varies greatly.

The Fractality of Blood Flow in
Constructed Vascular Trees
Vascular trees with diverse structures were constructed. To
reflect the heterogeneity in the real vascular tree, the bifurcation
exponent k, and asymmetry ratio λ of the bifurcations in
each constructed vascular tree were set following the normal
distribution. And ten vascular trees were constructed for each
pair of k and λ. The statistical characteristics of these vascular
trees are shown in Table 1. In these constructed vascular trees,
the hemodynamics was simulated and the results are shown
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FIGURE 4 | (A) The blood flow distribution in the arterial tree under normal state. (B) The blood flow distribution in the arterial tree under ischemic state. (C) The
multifractal spectrum of the blood flow distribution under normal state. (D) The multifractal spectrum of the blood flow distribution under ischemic state.

FIGURE 5 | The change of different parameters of the blood flow for different split ratios in a perfect binary vascular tree. (A) The fractal dimension and the coefficient
of variation. (B) The multifractal spectrum.

in Figure 7. We can see that there exists a strong linear
relationship between the logarithmic values of the diameter and
the blood flow rate.

The fractal dimensions for blood flow in the constructed
vascular trees are shown in Figure 8. For the vascular trees

with the mean k value of 2.7, the fractal dimension increases
monotonically from 0.74± 0.01 to 1.00± 0.00 with λ rising from
0.60 to 1. While for the vascular trees with the mean λ value of
0.8, the fractal dimension fluctuates between 0.91 and 0.95 with
the increment of k.
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FIGURE 6 | The change of different parameters of the blood flow in the perfect binary vascular trees with different maximal generations. (A) The fractal dimension.
(B) The coefficient of variation.

TABLE 1 | The characteristics of the constructed vascular trees.

k λ Vessel number Max generation k λ Vessel number Max generation

2.7 0.60 7471 ± 97 33.8 ± 1.7 2.3 0.80 2822 ± 334 15.3 ± 0.6

0.65 8261 ± 130 28.2 ± 1.2 2.4 3525 ± 281 15.8 ± 0.6

0.70 9012 ± 83 24.9 ± 0.8 2.5 5102 ± 469 16.7 ± 0.5

0.75 9777 ± 73 21.5 ± 0.7 2.6 6987 ± 887 17.4 ± 0.7

0.80 10692 ± 99 19.5 ± 0.7 2.7 10210 ± 1389 18.8 ± 0.9

0.85 11387 ± 112 17.8 ± 0.4 2.8 14672 ± 1038 20.2 ± 0.7

0.90 12189 ± 93 16.4 ± 0.5 2.9 19149 ± 2544 21.2 ± 0.4

0.95 12818 ± 110 15.3 ± 0.5 3.0 27222 ± 1774 22.2 ± 0.9

1.00 16234 ± 102 13.0 ± 0.0

The multifractal spectrums of the blood flow for these vascular
trees are presented in Figures 9A,C. It is observed that the
multifractality of blood flow exists in all vascular trees but the
multifractal spectrums fluctuate. With the increment of λ, the
range of the multifractal spectrum 1α narrows from 0.89 ± 0.04
to 0.04 ± 0.01 and the maximal value grows from 0.93 ± 0.01
to 1.00 ± 0.00. And with the increment of k, 1α expands from
0.32 ± 0.04 to 0.65 ± 0.03 and the maximal value grows from
0.95 ± 0.01 to 0.99 ± 0.00. The features of the multifractal
spectrums are shown in Figures 9B,D. Compared with the fractal
dimensions, the difference of multifractal spectrums among these
vascular trees is more striking.

DISCUSSION

Validity of the Hemodynamic Simulation
The hemodynamic simulation was conducted to investigate
the variation of fractal parameters with varying blood flow
distribution. To make sure that the obtained blood flow
distribution is reasonable, a quantitative comparison of the
hemodynamic simulation with the existing physiological studies
is necessary. For avoiding losing the generality, the boundary
condition in the present work was prescribed with an inlet

pressure of 1 mmHg and an outlet pressure of 0 mmHg. However,
the pressure drop between the inlet and outlet may vary in
different studies. Thus, for quantitative comparison, it is more
appropriate to examine the relative indices.

As shown in Figure 7, a strong linear relationship exists
between the logarithmic values of the diameter and the blood
flow rate. This is consistent with the assertion in Huo and Kassab
(2016) that there is a scaling law between the blood flow rate
and diameter. The slope of the fitting line indicates the relation
between the blood flow rate and vascular diameter thus can
be an indicator for quantitative comparison. Within a similar
diameter range, the slope with a value of 2.40 produced in
our work is comparable with the reported work of 1.97 (Wang
et al., 2009), 2.0 ± 0.2 (Pijewska et al., 2020), 2.33 (Huo and
Kassab, 2012), and 2.49 ± 0.09 (Haindl et al., 2016). Thus, it
can be concluded that the simulation results of our work are
reasonable.

Physiological Significance of the Fractal
Parameters
Two fractal parameters, i.e., fractal dimension and multifractal
spectrum, were obtained in this study to investigate the fractality
and multifractality of blood flow.
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FIGURE 7 | The log-log plot of the blood flow rate versus the vessel diameter
for all constructed vascular trees. The solid line is the best fit result of linear
regression.

By definition, the fractal dimension is determined by the
total entropy of blood flow. And the total entropy is calculated
by considering the existence as well as the quantity of blood
flow in the vessel segment. The existence and the quantity of
blood flow are corresponding to the vascular structure and the
blood flow distribution, respectively. Thus, the fractal dimension
characterizes the combination of the features of vascular structure
and blood flow distribution. When the vascular structure is fixed,
the lower entropy is obtained from the more heterogeneous
distribution according to the information theory. That is to
say, the fractal dimension reflects the degree of the blood flow
heterogeneity for a specific vascular tree and the lower fractal
dimension comes from the blood flow distribution with a higher
degree of heterogeneity. The results in Figure 5A that the lower
fractal dimension is corresponding to the lower split ratio also
support this conclusion.

For a fractal object, the multifractal spectrum describes
the scaling properties in different subsets. And when
multifractality presents, the subsets of this object will be
scaled by different multiples at the same q order moment during
the calculation of the multifractal spectrum. Therefore, the
degree of multifractality, which is measured by the width of
the multifractal spectrum, essentially describes the degree of
heterogeneity within the fractal object and it rises with the
increment of the blood flow heterogeneity. This judgment
is consistent with the results as shown in Figure 5B. The
multifractal spectrum f (α(q)) reaches its maximal value when
q = 0. In this case, the quantity of the blood flow volume no
longer has an effect on the value of f (α(0)). In other words, the
height of the multifractal spectrum reflects the heterogeneity or
asymmetry of the vascular structure. The higher the multifractal
spectrum the closer the vascular tree is to the perfect binary tree.
And this makes clear why the height of the multifractal spectrums
in Figures 4C,D or Figure 5B is the same. By means of the width
and height, the multifractal spectrum separates the information

about the vascular structure and blood flow distribution. In this
sense, the multifractal spectrum makes the evaluation of the
blood flow distribution in different vascular trees possible. As
shown in Figure 9D, the heterogeneity of the vascular structure
decreases with the increment of the bifurcation exponent while
the heterogeneity of the blood flow distribution increases. The
interaction of these two opposite trends may explain why the
fractal dimension changes slightly with the bifurcation exponent
as shown in Figure 8B.

Both the fractal dimension and the multifractal spectrum
reflect the blood flow heterogeneity. Physiologically speaking, the
change of blood flow heterogeneity is usually associated with
pathological conditions. For microcirculation, the increment of
blood flow heterogeneity can be an early indicator of diseases,
such as sepsis and shock (Ince, 2005; Dubin et al., 2018; Ince
et al., 2018) as well as peripheral vascular disease (Butcher et al.,
2013). And the increase of blood flow heterogeneity can be
depicted by the decrease of fractal dimension and the broadening
of the multifractal spectrum. The multifractal spectrum can
separate the information about the vascular structure and blood
flow distribution. Thus, the multifractal spectrum is also able
to distinguish the causes responsible for the change in blood
flow heterogeneity, either by hemodynamic problems or by
structural alteration due to the diseases such as large vessel
stenosis (Kharche et al., 2018).

There are also some other quantitative or semi-quantitative
methods for characterizing the blood flow heterogeneity
(Bassingthwaighte et al., 1989; Pries and Secomb, 2009; Ince
et al., 2018). In this study, the blood flow heterogeneity is also
evaluated by CV. The results in Figure 5A confirm the availability
of this statistical parameter. However, the CV treats different
vessel segments in a vascular tree as independent components
ignoring the connection of blood flow along the whole tree.
This would make this parameter less accurate in some cases as
discussed below. When the split ratio for each bifurcation in
the perfect binary vascular tree is 1, the blood flow is evenly
distributed for each generation in the vascular tree. The degree
of blood flow heterogeneity should remain unchanged no matter
what the maximal generation of the vascular tree is. And this
property holds for the other values of the split ratio. As shown
in Figure 6A, the fractal dimension stays the same with the
change of the maximal generation. However, the values of CV
for the vascular trees with different maximal generations are
quite different. Considering both the connection and difference
of blood flow in different vessel segments, the fractal parameters
can provide a more accurate description of the blood flow
heterogeneity for the tree-like vasculature.

Limitations
It should be pointed out the hemodynamic simulation in this
study was simplified. Nowadays, the RCL model has been
developed for hemodynamic simulation in which the resistance
(R), capacitance (C), and inductance (L) elements were used
to mimic the effects of vessel resistance, vessel compliance, and
blood inertia, respectively (Muller and Toro, 2014; Zhang et al.,
2014). And models from 0D to 3D were established (Arciero et al.,
2017; Liu et al., 2020). In the present hemodynamic model of
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FIGURE 8 | The fractal dimension for blood flow of the vascular trees with varying λ (A) and k (B).

FIGURE 9 | The multifractal spectrums for blood flow of the vascular trees with varying λ (A) and k (C). The range 1α and the maximal value fmax of the multifractal
spectrums with varying λ (B) and k (D).
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microcirculation, only the resistance element for a vessel segment
was considered. Although in the microcirculation the resistance
element plays a dominant role in hemodynamics (Katanov et al.,
2015; Nichols et al., 2015; Secomb, 2017) and the results show
that the model is sufficient for produce varying blood flow
distribution in a tree, a comprehensive model is worth being
introduced in the future study.

CONCLUSION

In this study, the fractal methods were introduced, with
appropriate modification, to characterize the multi-scale
properties of blood flow. The application of the methods to
the real physiological data verified its ability in distinguishing
the variety of blood flow distribution. The yielded parameters,
as the fractal dimension and the multifractal spectrum for
blood flow, can quantify the degree of blood flow heterogeneity.
With the increase of blood flow heterogeneity, the fractal
dimension decreases and the multifractal spectrum expands.
And the investigation on various constructed vascular trees
suggests that both the vascular structure and the blood flow
distribution influence the fractal parameters. With the aid of
the fractal dimension, it is possible to look into the change of
blood flow heterogeneity in a specific vascular tree. While the
multifractal spectrum can be utilized to assess the blood flow
heterogeneity for different vascular trees by considering the blood

flow distribution and the structure of vascular trees separately. It
can be concluded that the proposed methods provide efficient
tools to describe the multi-scale properties of the blood flow
distribution and has the potential to assist the study of multi-scale
vascular physiology.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

PL and QP: conceptualization and methodology. PL: algorithm
and writing (original draft). SJ and GN: writing (review and
editing). MY and JY: discussion of the results and their relevance.
GN and JY: supervision and project administration. All authors
approved the manuscript.

FUNDING

This study was supported by the National Natural Science
Foundation of China (Grant Numbers 81871454 and 31870938).

REFERENCES
Alosco, M. L., Gunstad, J., Jerskey, B. A., Xu, X., Clark, U. S., Hassenstab, J., et al.

(2013). The adverse effects of reduced cerebral perfusion on cognition and brain
structure in older adults with cardiovascular disease. Brain Behav. 3, 626–636.
doi: 10.1002/brb3.171

Alosco, M. L., Spitznagel, M. B., Cohen, R., Raz, N., Sweet, L. H., Josephson, R.,
et al. (2014). Reduced cerebral perfusion predicts greater depressive symptoms
and cognitive dysfunction at a 1-year follow-up in patients with heart failure.
Int. J. Geriatr. Psychiatry 29, 428–436. doi: 10.1002/gps.4023

Arciero, J. C., Causin, P., and Malgaroli, F. (2017). Mathematical methods for
modeling the microcirculation. AIMS Biophys. 4, 362–399. doi: 10.3934/biophy.
2017.3.362

Bassingthwaighte, J. B., Beard, D. A., and Li, Z. (2001). The mechanical and
metabolic basis of myocardial blood flow heterogeneity. Basic Res. Cardiol. 96,
582–594. doi: 10.1007/s003950170010

Bassingthwaighte, J. B., King, R. B., and Roger, S. A. (1989). Fractal nature of
regional myocardial blood flow heterogeneity. Circ. Res. 65, 578–590. doi: 10.
1161/01.res.65.3.578

Butcher, J. T., Goodwill, A. G., Stanley, S. C., and Frisbee, J. C. (2013).
Blunted temporal activity of microvascular perfusion heterogeneity in
metabolic syndrome: a new attractor for peripheral vascular disease? Am. J.
Physiol. Heart Circ. Physiol. 304, H547–H558. doi: 10.1152/ajpheart.00805.
2012

Cheng, S. C., and Huang, Y. M. (2003). A novel approach to diagnose diabetes
based on the fractal characteristics of retinal images. IEEE Trans. Inf. Technol.
Biomed. 7, 163–170. doi: 10.1109/titb.2003.813792

Cheung, C. Y., Tay, W. T., Mitchell, P., Wang, J. J., Hsu, W., Lee, M. L., et al.
(2011). Quantitative and qualitative retinal microvascular characteristics and
blood pressure. J. Hypertens. 29, 1380–1391. doi: 10.1097/HJH.0b013e32834
7266c

Chhabra, A., and Jensen, R. V. (1989). Direct determination of the f(alpha)
singularity spectrum. Phys. Rev. Lett. 62, 1327–1330. doi: 10.1103/PhysRevLett.
62.1327

Dubin, A., Henriquez, E., and Hernandez, G. (2018). Monitoring peripheral
perfusion and microcirculation. Curr. Opin. Crit. Care 24, 173–180. doi: 10.
1097/MCC.0000000000000495

Efimova, I. Y., Efimova, N. Y., Triss, S. V., and Lishmanov, Y. B. (2008). Brain
perfusion and cognitive function changes in hypertensive patients. Hypertens.
Res. 31, 673–678. doi: 10.1291/hypres.31.673

Fahraeus, R., and Lindqvist, T. (1931). The viscosity of the blood in narrow
capillary tubes. Am. J. Physiol. 96, 562–568.

Gabrys, E., Rybaczuk, M., and Kedzia, A. (2005). Fractal models of circulatory
system. Symmetrical and asymmetrical approach comparison. Chaos Solitons
Fractals 24, 707–715. doi: 10.1016/j.chaos.2004.09.087

Gould, D. J., Vadakkan, T. J., Poche, R. A., and Dickinson, M. E. (2011). Multifractal
and lacunarity analysis of microvascular morphology and remodeling.
Microcirculation 18, 136–151. doi: 10.1111/j.1549-8719.2010.00075.x

Grasman, J., Brascamp, J. W., Van Leeuwen, J. L., and Van Putten, B. (2003). The
multifractal structure of arterial trees. J. Theor. Biol. 220, 75–82. doi: 10.1006/
jtbi.2003.3151

Guven, G., Hilty, M. P., and Ince, C. (2020). Microcirculation: physiology,
pathophysiology, and clinical application. Blood Purif. 49, 143–150. doi: 10.
1159/000503775

Haindl, R., Trasischker, W., Wartak, A., Baumann, B., Pircher, M., and
Hitzenberger, C. (2016). Total retinal blood flow measurement by three beam
Doppler optical coherence tomography. Biomed. Opt. Express 7, 287–301. doi:
10.1364/BOE.7.000287

Halley, J. M., Hartley, S., Kallimanis, A. S., Kunin, W. E., Lennon, J. J., and Sgardelis,
S. P. (2004). Uses and abuses of fractal methodology in ecology. Ecol. Lett. 7,
254–271. doi: 10.1111/j.1461-0248.2004.00568.x

Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I. I., and Shraiman,
B. I. (1986). Fractal measures and their singularities: the characterization of
strange sets. Phys. Rev. A Gen. Phys. 33, 1141–1151. doi: 10.1103/physreva.33.
1141

Hassan, M. K. (2019). Is there always a conservation law behind the emergence
of fractal and multifractal? Eur. Phys. J. Spec. Top. 228, 209–232. doi: 10.1140/
epjst/e2019-800110-x

Frontiers in Physiology | www.frontiersin.org 10 July 2021 | Volume 12 | Article 71124775

https://doi.org/10.1002/brb3.171
https://doi.org/10.1002/gps.4023
https://doi.org/10.3934/biophy.2017.3.362
https://doi.org/10.3934/biophy.2017.3.362
https://doi.org/10.1007/s003950170010
https://doi.org/10.1161/01.res.65.3.578
https://doi.org/10.1161/01.res.65.3.578
https://doi.org/10.1152/ajpheart.00805.2012
https://doi.org/10.1152/ajpheart.00805.2012
https://doi.org/10.1109/titb.2003.813792
https://doi.org/10.1097/HJH.0b013e328347266c
https://doi.org/10.1097/HJH.0b013e328347266c
https://doi.org/10.1103/PhysRevLett.62.1327
https://doi.org/10.1103/PhysRevLett.62.1327
https://doi.org/10.1097/MCC.0000000000000495
https://doi.org/10.1097/MCC.0000000000000495
https://doi.org/10.1291/hypres.31.673
https://doi.org/10.1016/j.chaos.2004.09.087
https://doi.org/10.1111/j.1549-8719.2010.00075.x
https://doi.org/10.1006/jtbi.2003.3151
https://doi.org/10.1006/jtbi.2003.3151
https://doi.org/10.1159/000503775
https://doi.org/10.1159/000503775
https://doi.org/10.1364/BOE.7.000287
https://doi.org/10.1364/BOE.7.000287
https://doi.org/10.1111/j.1461-0248.2004.00568.x
https://doi.org/10.1103/physreva.33.1141
https://doi.org/10.1103/physreva.33.1141
https://doi.org/10.1140/epjst/e2019-800110-x
https://doi.org/10.1140/epjst/e2019-800110-x
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-711247 July 24, 2021 Time: 17:13 # 11

Li et al. Multi-Scale Fractality of Blood Flow

Huo, Y., and Kassab, G. S. (2012). Intraspecific scaling laws of vascular trees. J. R.
Soc. Interface 9, 190–200. doi: 10.1098/rsif.2011.0270

Huo, Y., and Kassab, G. S. (2016). Scaling laws of coronary circulation in health
and disease. J. Biomech. 49, 2531–2539. doi: 10.1016/j.jbiomech.2016.01.044

Ince, C. (2005). The microcirculation is the motor of sepsis. Crit. Care 9(Suppl. 4),
S13–S19. doi: 10.1186/cc3753

Ince, C., Boerma, E. C., Cecconi, M., De Backer, D., Shapiro, N. I., Duranteau,
J., et al. (2018). Second consensus on the assessment of sublingual
microcirculation in critically ill patients: results from a task force of the
European Society of Intensive Care Medicine. Intensive Care Med. 44, 281–299.
doi: 10.1007/s00134-018-5070-7

Katanov, D., Gompper, G., and Fedosov, D. A. (2015). Microvascular blood flow
resistance: role of red blood cell migration and dispersion. Microvasc. Res. 99,
57–66. doi: 10.1016/j.mvr.2015.02.006

Kharche, S. R., So, A., Salerno, F., Lee, T. Y., Ellis, C., Goldman, D., et al. (2018).
Computational assessment of blood flow heterogeneity in peritoneal dialysis
patients’ cardiac ventricles. Front. Physiol. 9:511. doi: 10.3389/fphys.2018.
00511

Kitagawa, K., Oku, N., Kimura, Y., Yagita, Y., Sakaguchi, M., Hatazawa, J., et al.
(2009). Relationship between cerebral blood flow and later cognitive decline
in hypertensive patients with cerebral small vessel disease. Hypertens. Res. 32,
816–820. doi: 10.1038/hr.2009.100

Liu, H., Wang, D., Leng, X., Zheng, D., Chen, F., Wong, L. K. S., et al. (2020).
State-of-the-art computational models of circle of willis with physiological
applications: a review. IEEE Access 8, 156261–156273. doi: 10.1109/access.2020.
3007737

Liu, J. S., Ding, W. L., Dai, J. S., Zhao, G., Sun, Y. X., and Yang, H. M. (2018).
Unreliable determination of fractal characteristics using the capacity dimension
and a new method for computing the information dimension. Chaos Solitons
Fractals 113, 16–24. doi: 10.1016/j.chaos.2018.05.008

Lorthois, S., and Cassot, F. (2010). Fractal analysis of vascular networks: insights
from morphogenesis. J. Theor. Biol. 262, 614–633. doi: 10.1016/j.jtbi.2009.
10.037

Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. New York, NY: W.H.
Freeman.

Muller, L. O., and Toro, E. F. (2014). A global multiscale mathematical model
for the human circulation with emphasis on the venous system. Int. J. Numer.
Method. Biomed. Eng. 30, 681–725. doi: 10.1002/cnm.2622

Nadal, J., Deverdun, J., de Champfleur, N. M., Carriere, I., Creuzot-Garcher, C.,
Delcourt, C., et al. (2020). Retinal vascular fractal dimension and cerebral blood
flow, a pilot study. Acta Ophthalmol. (Copenh.) 98, E63–E71. doi: 10.1111/aos.
14232

Nayak, S. R., Mishra, J., and Palai, G. (2019). Analysing roughness of surface
through fractal dimension: a review. Image Vis. Comput. 89, 21–34. doi: 10.
1016/j.imavis.2019.06.015

Nichols, W. W., Heffernan, K. S., and Chirinos, J. A. (2015). “Overview of the
normal structure and function of the macrocirculation and microcirculation,”
in Arterial Disorders: Definition, Clinical Manifestations, Mechanisms and
Therapeutic Approaches, eds A. Berbari and G. Mancia (Cham: Springer
International Publishing), 13–46.

Pijewska, E., Sylwestrzak, M., Gorczynska, I., Tamborski, S., Pawlak, M. A.,
and Szkulmowski, M. (2020). Blood flow rate estimation in optic disc
capillaries and vessels using doppler optical coherence tomography with 3D
fast phase unwrapping. Biomed. Opt. Express 11, 1336–1353. doi: 10.1364/boe.
382155

Pitsianis, N., Bleris, G. L., and Argyrakis, P. (1989). Information dimension in
fractal structures. Phys. Rev. B Condens. Matter 39, 7097–7100. doi: 10.1103/
physrevb.39.7097

Pries, A. R., and Secomb, T. W. (2005). Microvascular blood viscosity in vivo
and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 289,
H2657–H2664. doi: 10.1152/ajpheart.00297.2005

Pries, A. R., and Secomb, T. W. (2009). Origins of heterogeneity in tissue perfusion
and metabolism. Cardiovasc. Res. 81, 328–335. doi: 10.1093/cvr/cvn318

Reglin, B., Secomb, T. W., and Pries, A. R. (2009). Structural adaptation of
microvessel diameters in response to metabolic stimuli: where are the oxygen
sensors? Am. J. Physiol. Heart Circ. Physiol. 297, H2206–H2219. doi: 10.1152/
ajpheart.00348.2009

Reglin, B., Secomb, T. W., and Pries, A. R. (2017). Structural control of microvessel
diameters: origins of metabolic signals. Front. Physiol. 8:813. doi: 10.3389/fphys.
2017.00813

Schmidt, A., Zidowitz, S., Kriete, A., Denhard, T., Krass, S., and Peitgen, H. O.
(2004). A digital reference model of the human bronchial tree. Comput. Med.
Imaging Graph. 28, 203–211. doi: 10.1016/j.compmedimag.2004.01.001

Secomb, T. W. (2017). Blood flow in the microcirculation. Annu. Rev. Fluid Mech.
49, 443–461. doi: 10.1146/annurev-fluid-010816-060302

So, G. B., So, H. R., and Jin, G. G. (2017). Enhancement of the box-counting
algorithm for fractal dimension estimation. Pattern Recognit. Lett. 98, 53–58.
doi: 10.1016/j.patrec.2017.08.022

Stosic, T., and Stosic, B. D. (2006). Multifractal analysis of human retinal vessels.
IEEE Trans. Med. Imaging 25, 1101–1107. doi: 10.1109/tmi.2006.879316

Takahashi, T. (2014). Microcirculation in Fractal Branching Networks. Tokyo:
Springer.

Takahashi, T., Nagaoka, T., Yanagida, H., Saitoh, T., Kamiya, A., Hein, T., et al.
(2009). A mathematical model for the distribution of hemodynamic parameters
in the human retinal microvascular network. Biorheology 23, 77–86.

Van Beek, J. H., Roger, S. A., and Bassingthwaighte, J. B. (1989). Regional
myocardial flow heterogeneity explained with fractal networks. Am. J. Physiol.
257(5 Pt 2), H1670–H1680. doi: 10.1152/ajpheart.1989.257.5.H1670

Wang, R. F., Li, P. L., Pan, Q., Li, J. K. J., Kuebler, W. M., Pries, A. R., et al.
(2019). Investigation into the diversity in the fractal dimensions of arterioles
and venules in a microvascular network–a quantitative analysis. Microvasc. Res.
125:10. doi: 10.1016/j.mvr.2019.103882

Wang, Y., Lu, A., Gil-Flamer, J., Tan, O., Izatt, J. A., and Huang, D. (2009).
Measurement of total blood flow in the normal human retina using doppler
fourier-domain optical coherence tomography. Br. J. Ophthalmol. 93, 634–637.
doi: 10.1136/bjo.2008.150276

Yang, J., and Wang, Y. (2013). Design of vascular networks: a mathematical model
approach. Int. J. Numer. Method. Biomed. Eng. 29, 515–529. doi: 10.1002/cnm.
2534

Zamir, M. (2001). Fractal dimensions and multifractility in vascular branching.
J. Theor. Biol. 212, 183–190. doi: 10.1006/jtbi.2001.2367

Zhang, C., Wang, L., Li, X. Y., Li, S. Y., Pu, F., Fan, Y. B., et al. (2014). Modeling the
circle of Willis to assess the effect of anatomical variations on the development
of unilateral internal carotid artery stenosis. Biomed. Mater. Eng. 24, 491–499.
doi: 10.3233/bme-130835

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Li, Pan, Jiang, Yan, Yan and Ning. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 11 July 2021 | Volume 12 | Article 71124776

https://doi.org/10.1098/rsif.2011.0270
https://doi.org/10.1016/j.jbiomech.2016.01.044
https://doi.org/10.1186/cc3753
https://doi.org/10.1007/s00134-018-5070-7
https://doi.org/10.1016/j.mvr.2015.02.006
https://doi.org/10.3389/fphys.2018.00511
https://doi.org/10.3389/fphys.2018.00511
https://doi.org/10.1038/hr.2009.100
https://doi.org/10.1109/access.2020.3007737
https://doi.org/10.1109/access.2020.3007737
https://doi.org/10.1016/j.chaos.2018.05.008
https://doi.org/10.1016/j.jtbi.2009.10.037
https://doi.org/10.1016/j.jtbi.2009.10.037
https://doi.org/10.1002/cnm.2622
https://doi.org/10.1111/aos.14232
https://doi.org/10.1111/aos.14232
https://doi.org/10.1016/j.imavis.2019.06.015
https://doi.org/10.1016/j.imavis.2019.06.015
https://doi.org/10.1364/boe.382155
https://doi.org/10.1364/boe.382155
https://doi.org/10.1103/physrevb.39.7097
https://doi.org/10.1103/physrevb.39.7097
https://doi.org/10.1152/ajpheart.00297.2005
https://doi.org/10.1093/cvr/cvn318
https://doi.org/10.1152/ajpheart.00348.2009
https://doi.org/10.1152/ajpheart.00348.2009
https://doi.org/10.3389/fphys.2017.00813
https://doi.org/10.3389/fphys.2017.00813
https://doi.org/10.1016/j.compmedimag.2004.01.001
https://doi.org/10.1146/annurev-fluid-010816-060302
https://doi.org/10.1016/j.patrec.2017.08.022
https://doi.org/10.1109/tmi.2006.879316
https://doi.org/10.1152/ajpheart.1989.257.5.H1670
https://doi.org/10.1016/j.mvr.2019.103882
https://doi.org/10.1136/bjo.2008.150276
https://doi.org/10.1002/cnm.2534
https://doi.org/10.1002/cnm.2534
https://doi.org/10.1006/jtbi.2001.2367
https://doi.org/10.3233/bme-130835
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-711247 July 24, 2021 Time: 17:13 # 12

Li et al. Multi-Scale Fractality of Blood Flow

APPENDIX

For the perfect binary vascular tree where the split ratio of each bifurcation is identical, if we normalize the blood flow in the main

vessel at generation 0 as 1 and denote the split ratio by r, there will be Ck
n vessels with blood flow

(
r

1+r

)k( 1
1+r

)n−k
at generation n.

And the summed entropy of the blood flow at generation n is as below:

n∑
k=0

Ck
n

[
−

rk

(1+ r)k
1

(1+ r)n−k log

(
rk

(1+ r)k
1

(1+ r)n−k

)]

= −

n∑
k=0

Ck
n

[
rk

(1+ r)k
1

(1+ r)n−k log

(
rk

(1+ r)k

)]
−

n∑
k=0

Ck
n

[
rk

(1+ r)k
1

(1+ r)n−k log
(

1
(1+ r)n−k

)]

= −log
(

r
1+ r

)
·

n∑
k=0

Ck
n

[
k ·

rk

(1+ r)k
1

(1+ r)n−k

]
− log

(
1

1+ r

)
·

n∑
k=0

Ck
n

[
k ·

1
(1+ r)k

rn−k
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]

Assuming p= r
1+r

, there is
n∑

k=0

Ck
n · k ·

rk

(1+ r)k
1

(1+ r)n−k =

n∑
k=0

Ck
n · k · p

k(1− p
)n−k

which is the expression of the expectation of a binomial distribution B(n, p) and it equals to np. Thus,

−log
(

r
1+ r

)
·

n∑
k=0

Ck
n

[
k ·

rk
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·
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· n ·
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1+ r

− log
(

1
1+ r
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· n ·

1
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= −n
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rlog r − (1+ r) log (1+ r)
(1+ r)

)
And the fractal dimension of blood flow for the perfect binary vascular tree with split ratio r is obtained as:

DQ (r) =
−n

(
rlog r−(1+r)log(1+r)

(1+r)

)
log 2n =

(1+ r) log (1+ r)− rlog r
log 2 · (1+ r)
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Background: Newtonian fluid model has been commonly applied in simulating cerebral
blood flow in intracranial atherosclerotic stenosis (ICAS) cases using computational fluid
dynamics (CFD) modeling, while blood is a shear-thinning non-Newtonian fluid. We
aimed to investigate the differences of cerebral hemodynamic metrics quantified in CFD
models built with Newtonian and non-Newtonian fluid assumptions, in patients with
ICAS.

Methods: We built a virtual artery model with an eccentric 75% stenosis and performed
static CFD simulation. We also constructed CFD models in three patients with ICAS of
different severities in the luminal stenosis. We performed static simulations on these
models with Newtonian and two non-Newtonian (Casson and Carreau-Yasuda) fluid
models. We also performed transient simulations on another patient-specific model. We
measured translesional pressure ratio (PR) and wall shear stress (WSS) values in all
CFD models, to reflect the changes in pressure and WSS across a stenotic lesion. In
all the simulations, we compared the PR and WSS values in CFD models derived with
Newtonian, Casson, and Carreau-Yasuda fluid assumptions.

Results: In all the static and transient simulations, the Newtonian/non-Newtonian
difference on PR value was negligible. As to WSS, in static models (virtual and patient-
specific), the rheological difference was not obvious in areas with high WSS, but
observable in low WSS areas. In the transient model, the rheological difference of WSS
areas with low WSS was enhanced, especially during diastolic period.

Conclusion: Newtonian fluid model could be applicable for PR calculation, but caution
needs to be taken when using the Newtonian assumption in simulating WSS especially
in severe ICAS cases.

Keywords: non-Newtonian fluid, intracranial atherosclerotic stenosis, computational fluid dynamics,
translesional pressure ratio, wall shear stress
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INTRODUCTION

Intracranial atherosclerotic stenosis (ICAS) is a major cause for
ischemic stroke and transient ischemic attack (TIA) in Asian
populations (Wong, 2006). In recent years, computational fluid
dynamics (CFD) modeling based on conventional neurovascular
imaging has been applied to simulate in vivo cerebral blood flow
and quantify cerebral hemodynamic metrics in the presence of
ICAS, which cannot be achieved with conventional neurovascular
imaging alone (Liebeskind et al., 2016; Linfang Lan, 2017; Liu
et al., 2018; Chen et al., 2020).

Computational fluid dynamics modeling studies have
indicated that global and focal cerebral hemodynamics may play
an important role in governing the risk of stroke recurrence
in patients with symptomatic ICAS (Leng et al., 2014, 2019).
For instance, translesional pressure ratio (PR), calculated as the
ratio of the pressures distal and proximal to an ICAS lesion
obtained in a CFD model, has been put forward to reflect the
hemodynamic significance of ICAS (Liebeskind and Feldmann,
2013). On the other hand, the relative change of wall shear stress
(WSS) at the stenotic throat as compared to WSS at proximal
“normal” vessel segment, has also been proposed to reflect the
hemodynamic impact of an ICAS lesion on plaque growth and
rupture (Lan et al., 2020). Both indices have been associated
with the risk of stroke relapse in patients with symptomatic
ICAS: those with a lower PR (i.e., larger translesional pressure
gradient) and excessively elevated focal WSS at the ICAS lesion
had significantly higher risk of recurrent stroke despite optimal
medical treatment (Leng et al., 2019).

In most of the previous CFD studies on ICAS, blood was
simulated as a Newtonian fluid for simplicity (Leng et al., 2014,
2019; Nam et al., 2016; Liu et al., 2018; Chen et al., 2020), despite
the fact that blood is a non-Newtonian fluid with a shear-thinning
nature (Nader et al., 2019). With increasing flow velocity and
shear strain rate, blood flows more smoothly (Moon et al., 2014)
and its viscosity decreases toward a constant, which has been
commonly used as the viscosity of blood in a Newtonian model
(Jahangiri et al., 2017). However, in the low-velocity areas, the
true viscosity is much higher than this constant, when non-
Newtonian rheological models could simulate the blood viscosity
variations in different shear strain rates (Gijsen et al., 1999;
Jahangiri et al., 2017). Previous studies simulating blood flow in
intracranial aneurysms, in normal aorta, and in virtual arterial
stenosis models have indicated differences in the estimations
of pressure and WSS based on Newtonian and non-Newtonian
models (Hippelheuser et al., 2014; Rabby et al., 2014).

In this study, we therefore aimed to investigate the differences,
if any, of CFD simulation results in pressure (e.g., PR) and
WSS between Newtonian and non-Newtonian fluid models, in a
virtual arterial stenosis model and patient-specific ICAS models;
we performed static simulations on the virtual model, and both
static and transient simulations on patients-specific models.

MATERIALS AND METHODS

This was a substudy of the SOpHIA study (Stroke Risk and
Hemodynamics in Intracranial Atherosclerotic Disease), a cohort

study conducted at three teaching hospitals to investigate cerebral
hemodynamics in patients with symptomatic ICAS, using routine
CT angiography (CTA)-based CFD models (Leng et al., 2019).
The study was approved by local institutional review board
and all patients provided informed consent. We performed
static CFD simulations, separately with Newtonian and non-
Newtonian (Casson and Carreau-Yasuda) fluid models, in a
virtual arterial stenosis model and three patient-specific ICAS
models constructed based on clinically routine CTA images. We
also performed transient CFD simulations in another patient-
specific ICAS model, with Newtonian and non-Newtonian
fluid models. We compared hemodynamic metrics (pressure
and WSS) obtained by Newtonian and non-Newtonian fluid
models in each case.

Rheological Assumptions
The viscosity of blood in the Newtonian model was a constant:
η = 0.0035Pa · s (Bernabeu et al., 2013). The Casson and
Carreau-Yasuda models are two common non-Newtonian blood
models. As a function of shear strain rate γ̇, the blood viscosity η

in Casson model can be expressed as that in Eq. 1 (Morales et al.,
2013) and Carreau-Yasuda model in Eq. 2 (Bernabeu et al., 2013).
The difference in blood viscosity among the three assumptions
was more significant with lower shear strain rate (Figure 1A).

η (γ̇ ) =
(
√
ηc +

√
τc/γ̇

)2
(1)

where ηc = 0.0035Pa · s,τc = 0.004Pa.

η (γ̇ ) = η∞ + (η0 − η∞)
(
1+ (λγ̇ )a

)(n−1)/a (2)

where η0 = 0.16Pa · s, η∞ = 0.0035Pa · s, λ = 8.2s,
a = 0.64, and n = 0.2128.

Geometry Reconstruction
Virtual Arterial Stenosis Model
Intracranial arteries are tortuous and the geometry varies
between individuals. To investigate the differences in cerebral
blood flow solely due to Newtonian or non-Newtonian fluid
assumptions (without considering the effects of individualized
arterial geometry) in CFD simulations, we first performed static
simulations in a cylinder tube with 75% area stenosis (25%
area remained at the stenotic throat), eccentric from the axis
(Figure 1B). The radius was 1.5 mm, similar with middle cerebral
artery (MCA) in vivo. The model was built in Solidworks 2020
(SolidWorks Co., Concord, MA, United States).

Static MCA Stenosis Models
Four patients with stenosed MCA recruited in the SOpHIA
study (Leng et al., 2019) were analyzed in the current study. We
performed static cerebral blood flow simulation in three cases and
transient simulation in the remaining case.

In the SOpHIA study, cerebral CTA was performed in all
patients at baseline after an acute ischemic stroke or TIA, with
a 64-slice CT scanner (Lightspeed VCT, GE Healthcare) with
the following protocol: intravenous contrast (Omnipaque 300)
was injected via the antecubital vein at a rate of 3–3.5 mL/s
with a total volume of 70 mL, and images were obtained with
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FIGURE 1 | The rheological and geometrical models. (A) Different rheologic models. Viscosity values are derived in varied shear strain rates. The shear strain rate
axis is logarithmic. (B) Geometry of the virtual arterial stenosis model with an eccentric 75% stenosis in area (upper). (C) The transient MCA stenosis (about 55% in
diameter and 74% in area at the throat) model with internal carotid artery (ICA)-middle cerebral artery (MCA)-anterior cerebral artery (ACA) branches (lower).
Boundary conditions: pressure on ICA inlet, Windkessel models on ACA and MCA outlets. The arrows point to the positions of pressure measurement.

120 kVp, 550 mAs, 0.625 mm slice thickness and 0.4 s rotation
(Lan et al., 2020).

The 3-dimensional vessel geometry of distal internal carotid
artery (ICA) bifurcation with proximal MCA and anterior
cerebral artery (ACA) was reconstructed based on the CTA
source images, using MIMICS 18.0 (Materialise NV, Belgium).
The geometry was then smoothed with errors (self-intersections,
spikes, small holes, etc.) amended in Geomagic Studio 12.0 (3D
Systems, Rock Hill, SC, United States). A neurologist (Dr. Lan)
compared the reconstructed 3D geometry and the CTA images to
confirm the correctness of the reconstructed 3D vessel geometry.
These vessel geometries were patient-specific, which possessed
different tortuosity and degrees of luminal stenosis.

Transient MCA Stenosis Model
We simulated transient blood flow in another patient-specific
model with MCA stenosis (55% diameter stenosis and 74%

area stenosis; Figure 1C). The geometry of ICA-MCA-ACA
bifurcation was extracted from CTA source images similarly as
the patient-specific models for static simulation. To eliminate
spatial fluctuations of hemodynamic parameters adjacent to the
stenotic lesion, we elongated the inlet and outlets to cylinders
with identical cross-section areas in Solidworks software. The
smoothing was performed in Geomagic Studio software, as for
patient-specific static models.

Mesh Generation
The geometric models were input into the ANSYS software
package 2019 R1 (ANSYS, Inc., Canonsburg, PA, United States)
on a DELL Precision T7610 Workstation for meshing and CFD
simulation. Tetrahedral elements were used for meshing.

Currently, there is no standard on the maximal element size
(maximal length of the edges of a tetrahedral element in the
mesh) in meshing of the intracranial artery wall, which was
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set as 0.25 mm in some previous studies (Ren et al., 2016;
Vali et al., 2017; Lan et al., 2020). To preclude the possible
effects of maximal element size on the simulation results, we
conducted mesh independence study before determining the
maximal element size to be adopted in the current study. On the
three patient-specific models for static simulation, the pressure
and WSS calculated using the meshes with the maximal element
size of 0.5, 0.35, and 0.25 mm on intracranial artery wall were
compared with the values derived from the mesh with maximal
element size of 0.2 mm. The relative differences of area-averaged
pressure and WSS were, respectively less than 1 and 3% in the
simulations with maximal element sizes of 0.25 mm in each of
the three cases. We therefore set the maximum element size
as 0.25 mm globally and 0.1 mm at inlet and outlets as in the
SOpHIA study (Leng et al., 2019; Lan et al., 2020). In the idealized
virtual model, there were 372,567 nodes and 1,899,831 tetrahedral
elements in the mesh. The number of element was larger than
410,000 in the meshes of all the three patient-specific models
for static simulation. In the transient model, there were 608,462
nodes and 3,409,255 elements.

Boundary Conditions and Computational
Simulation
The meshes were input in ANSYS CFX software for CFD
simulation and post-processing. With the arterial diameter of
3 mm and flow velocity of 140 cm/s at the stenotic throat,
the Reynolds number is Re = ρVD

µ ≈ 1484, within the range
of laminar flow (Re < 2000). Therefore, the Navier–Stokes
equations were solved using finite volume method with the
following settings and assumptions: (1) The fluid domain
was simulated with incompressible, steady, and laminar flow
assumption; (2) The density of blood was 1060 kg/m3; (3) The
solid wall assumption was adopted on the artery wall; (4) The
convergence criteria was 1.0e-4. The boundary conditions were
set separately in different models.

On the virtual model, we simulated the average blood flow in
a cardiac cycle. The inlet pressure was set as 110 mmHg while the
mean velocity at the outlet was set as 35 cm/s (Liu et al., 2018).
For each state, we performed the simulations with Newtonian,
Casson and Carreau-Yasuda models.

In the patient-specific models for static simulation, the inlet
pressure was set as 110 mmHg. Based on modified in vivo
measurements, the mean velocities at MCA and ACA outlets were
set as 35 and 31 cm/s, respectively to estimate the mass flow rates,
which were in accordance with the Murray’s law (Moore et al.,
2006; Liu et al., 2018).

In the patient-specific model for transient simulation, we
imposed physiological pressure waveform (range: 72–129 mmHg,
Figure 1C) at the ICA inlet (Sarrami-Foroushani et al., 2015).
Due to the lack of in vivo measurements of flow velocity at
MCA/ACA outlets, we adopted 3-element Windkessel models, to
avoid possible errors caused by possibly inaccurate assumptions
in blood pressure or flow rate (Figure 1C). Parameters of the
Windkessel models were based on physiological measurements
that had been used in previous studies on cerebral arteries
(Alastruey et al., 2007). Three transient simulations were

conducted over three cardiac cycles (with a time step length
of 0.005 s) with Newtonian, Casson, and Carreau-Yasuda
rheological assumptions separately.

Measurement of Hemodynamic Metrics
Translesional PR was calculated as the ratio of post-stenotic
pressure and pre-stenotic pressure (Feng et al., 2020). In the
virtual model, to avoid any effect of unstable flow around the
stenosis, the locations of pressure measurement were 5 mm
from the inlet and the outlet. In the patient-specific models, the
measurement were performed at the arterial segments away from
the stenotic lesion where blood flow was possibly stable.

Wall shear stress is highly dependent on the local flow field.
Considering the effect of arterial geometry (tortuosity, change
of diameter, etc.) on the local flow field, WSS values were only
measured in patient-specific models.

We compared the translesional PR values and WSS measures
obtained with the Newtonian and non-Newtonian models, and
calculated the relative between-model difference in each metric:
(value from Newtonian model–value from non-Newtonian
model)/value from non-Newtonian model. For each metric of
interest, we also calculated the ratio of the area with high relative
difference between the models (using >10% and >20% as the
threshold for dichotomization) and the area of the entire model.
To investigate the cylic changes of WSS, we chose two points from
the areas of high and low WSS values, respectively, and observed
the waveform of WSS in a cardiac cycle.

RESULTS

Virtual Model of Arterial Stenosis: Static
Simulation
The PR values derived by Newtonian, Casson, and Carreau-
Yasuda assumptions, were 0.914, 0.913, and 0.914. Between
three rheological assumptions, the differences of PR value were
within 1%. The difference in PR caused by different rheological
assumptions was negligible in this virtual model.

Patient-Specific ICAS Models: Static
Simulation
In the three patient-specific models of ICAS cases, the relative
difference in pressure was less than 1% throughout the arterial
wall (Figure 2). The difference between Newtonian and non-
Newtonian rheological assumptions in pressure distribution
(therefore PR) was negligible.

In Figure 3, in some areas with low WSS, large differences
(>10%) between Newtonian and non-Newtonian assumptions
in WSS were observed in some low-WSS areas. However,
in all the three cases, the areas with the difference in WSS
between Newtonian and non-Newtonian assumptions larger
than 10 and 20%, were less than 7 and 1.5% of the whole
surface, respectively (Table 1). Therefore, the difference between
Newtonian and non-Newtonian rheological assumptions in WSS
distribution was limited in static simulations on patient-specific
models with ICAS.
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FIGURE 2 | The distribution of pressure in Newtonian model, and corresponding relative differences distribution in non-Newtonian models. The relative difference
delineates the degrees of deviation of Newtonian results from the non-Newtonian results.

FIGURE 3 | The distribution of WSS in Newtonian model, and corresponding relative difference distributions in non-Newtonian models.

Patient-Specific ICAS Model: Transient
Simulation
Pressure and PR Values
Figure 4A showed transient pressure curves during a cardiac
cycle at ICA inlet, MCA inlet (MCAin), MCA outlet (MCAout),
and ACA outlet. The pressure of MCAout was the lowest
due to the translesional pressure drop. There is no observable
difference between the pressure curves of Newtonian and non-
Newtonian assumptions.

In diastole, the maximum relative difference in pressure
on the artery wall between Newtonian and non-Newtonian
assumptions on the vessel wall were 0.26 and 0.14% for Casson

and Carreau-Yasuda assumptions, respectively. In systole, the
corresponding values were 0.20 and 0.09% for Casson and
Carreau-Yasuda assumptions.

Newtonian, Casson, and Carreau-Yasuda PR curves were
comparable in systole, with minor differences in late diastole
(Figure 4B). The difference between Newtonian and non-
Newtonian rheological assumptions in PR value was negligible in
the transient simulation on the patient-specific model with ICAS.

WSS Distribution
In all simulations the highest WSS areas existed at the throat
of MCA stenosis (Figure 5A). WSS distribution fluctuated
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TABLE 1 | The areas (in percentage) in each case with the relative difference
between Newtonian and non-Newtonian models larger than 10 and 20%.

Cases Stenosis
ratio in

area

Area (in percentage) with
WSS relative difference

>10%

Area (in percentage) with
WSS relative difference

>20%

Casson Carreau-
Yasuda

Casson Carreau-
Yasuda

Case 1 37.4% 6.88% 3.02% 1.12% 0.73%

Case 2 67.1% 5.77% 2.37% 0.78% 0.47%

Case 3 84.2% 5.47% 2.05% 0.67% 0.22%

obviously during a cardiac cycle (Figures 5B,C). Between
Newtonian and non-Newtonian assumptions, large differences
(higher than 20%) in WSS appeared in less than 6% area of
vessel wall in systole, but quadrupled in diastole (Figures 5B,D).
In diastole, compared with Newtonian results, the percentage
of vessel wall area with difference in WSS higher than 10
and 20% were 37.56 and 1.32% for Casson assumption,

while 8.29 and 0.69% for Carreau-Yasuda assumption. In
systole, the corresponding results were 5.40 and 1.09% for
Casson assumption, while 2.03 and 0.59% for Carreau-Yasuda
assumption. Higher differences in WSS appeared in the areas
with low WSS values.

The rheological influence on minimum WSS was observable
(Table 2). Between Newtonian and non-Newtonian models, the
difference in maximum WSS was within 8%, while the difference
in minimum WSS exceeded 40%. The difference between
Newtonian and non-Newtonian rheological assumptions was
obvious in low-WSS (lower than 0.1 Pa) areas (Figure 5D).

The fluctuations of the WSS in a cardiac cycle was
observed at two points from the areas with high and
low WSS (Figure 6A). There was no significant between-
model difference in the WSS waveforms for the high-WSS
point (Figure 6B). For the low-WSS point, the differences
between Newtonian and non-Newtonian models were more
significant in late diastole, with a relative difference larger
than 10%, where the WSS fluctuated between consecutive time
steps (Figure 6C).

FIGURE 4 | The transient pressure and PR distribution. (A) Transient pressure curves in the ICA-MCA-ACA branching model with Newtonian, and Casson, and
Carreau-Yasuda rheological models in a cardiac cycle. The simulations lasted for three cardiac cycles. The results are from the second cardiac cycle. The positions
of measurement are shown in Figure 1C. (B) The transient PR curves in Newtonian, Casson, and Carreau-Yasuda models during the second cardiac cycle. PR was
calculated as the area-averaged pressure at MCAout divided by the area-averaged pressure at MCAin (locations of MCAout and MCAin are shown in Figure 1C).
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FIGURE 5 | The distribution of WSS at end of diastole and systolic peak in Newtonian, Casson, and Carreau-Yasuda models. (A) WSS distribution in Newtonian
model. (B) The relative difference between non-Newtonian (Casson/Carreau-Yasuda) and Newtonian models. (C) The expansion (cylindrical projection) of stenosis
WSS distribution in Newtonian model. The scale is identical with panel (A). (D) The stenotic region was enlarged in the low panel to reveal the low-WSS areas (red
areas were those with WSS > 1 Pa).

TABLE 2 | Maximum and minimum WSS values in a MCA stenosis model with Newtonian and non-Newtonian assumptions in transient CFD simulation.

Systolic Diastolic

Newtonian Casson Carreau-Yasuda Newtonian Casson Carreau-Yasuda

Max WSS 6.368 6.836 (7.3%) 6.718 (5.4%) 1.31 1.335 (1.9%) 1.318 (0.6%)

Min WSS 1.263e-2 1.698e-2 (34.4%) 9.416e-3 (25.1%) 2.279e-2 6.7e-3 (70.6%) 3.29e-2 (44.3%)

In non-Newtonian results, the relative differences compared with Newtonian model were in brackets.

DISCUSSION

In this study, using virtual and patient-specific models, we
investigated the effects of Newtonian and non-Newtonian
(Casson and Carreau-Yasuda) fluid assumptions on
computational simulation results of cerebral hemodynamics in
the presence of ICAS. We found no significant difference in
pressure distribution or translesional PR obtained by the different
assumptions in virtual or static/transient patient-specific models.
The difference in WSS distribution was limited in static patient-
specific ICAS models, which, however, was considerable in
the low-WSS regions of the transient patient-specific models
especially during late diastole.

Despite the shear-thinning effect of blood, currently there is
no consensus on non-Newtonian fluid model for blood flow
simulation (Hippelheuser et al., 2014). There are many non-
Newtonian blood models such as Casson, Carreau-Yasuda, Cross,
Power-law, and Quemada models (Sochi, 2013). The Quemada
model is mainly used for the simulation of microcirculation in

arterioles and capillaries, while the Cross model could derive far
different results with other non-Newtonian models (Karimi et al.,
2014; Sriram et al., 2014). In contrast, the Casson and Carreau-
Yasuda models have been widely applied in the simulation of
arterial blood flow (Bernabeu et al., 2013; Morales et al., 2013),
which therefore were used in this study. We did not observe any
significant difference between Newtonian and non-Newtonian
assumptions in estimating translesional pressure drops or PR
values (representing the relative translesional pressure drop).
Our results were in accordance with theoretical analysis and
previous CFD studies. Theoretically, the translesional pressure
drop (1P) caused by the stenosis can be expressed as a quadratic
function of flow rate (Q): 1P = AQ2

+ BQ, where A and B
are parameters associated with the stenosis geometry and blood
viscosity. The quadratic item shows the effects of turbulence on
energy dissipation caused by stenosis (Young and Tsai, 1973).
At the stenotic throat where the velocity and shear strain rate
are high, the Newtonian and non-Newtonian assumptions have
similar viscosity values (Figure 1A). Thus, the effect of different
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FIGURE 6 | Wall shear stress (WSS) measurement. (A) The locations of two points chosen to represent the high-WSS and low-WSS areas. (B) Curves of transient
WSS during three cardiac cycles in Newtonian and non-Newtonian models, as measured at the representative high-WSS location. (C) Curves of transient WSS
during three cardiac cycles as measured at the representative low-WSS location, which diverged in late diastole in Newtonian and non-Newtonian models.

rheological assumptions on PR estimation is limited. Some
previous CFD studies on the blood flow of other arteries had also
concluded that Newtonian and non-Newtonian assumptions can
derive similar results in pressure distributions (Amornsamankul
et al., 2006; Mamun et al., 2016). However, the high tortuosity
and varying diameter of intracranial arteries may influence the
pressure drop. To our best knowledge, this study was among the
first to investigate the rheological effect of Newtonian and non-
Newtonian assumptions on pressure and PR estimations in the
presence of ICAS.

Wall shear stress is an important hemodynamic factor in the
development and progression of ICAS. Low and oscillatory WSS
is related with initiation and early development of atherosclerosis,
while high WSS upon an atherosclerotic plaque might increase
the risk of plaque instability (Peiffer et al., 2013). Previous
studies had conflicting results on the effects of Newtonian
and non-Newtonian assumptions on WSS distributions in
simulating arterial blood flow; some found similar between-
model results (Johnston et al., 2006; Bernabeu et al., 2013), while
others studies derived opposite conclusions (Karimi et al., 2014;
Sriram et al., 2014). Furthermore, the geometry of intracranial

arteries especially in ICAS cases would also have complex
influence on the distribution of WSS in different rheological
assumptions. Therefore, we investigated the effects of Newtonian
and non-Newtonian assumptions on WSS distributions in ICAS
cases in this study.

The Newtonian and non-Newtonian rheological assumption
had been compared in the CFD simulation of intracranial and
extracranial (e.g., carotid) arteries (Xiang et al., 2012; Gambaruto
et al., 2013; Morales et al., 2013; Frolov et al., 2016; Guerciotti
and Vergara, 2018; Valen-Sendstad et al., 2018; Saqr et al.,
2019). Morales et al. (2013) simulated the area-averaged WSS
on three patient-specific models with intracranial aneurysms
in a steady state based on a time-averaged inlet flow rate,
and found that the maximal difference in area-averaged WSS
between non-Newtonian (Casson) and Newtonian rheological
assumptions was 12%. Frolov et al. (2016) simulated the WSS
on intracranial aneurysm at the end of systole, where the WSS
varied from 3.52 mPa to 10.21 Pa for the Newtonian rheological
model, and 2.94 mPa to 9.14 Pa for the non-Newtonian
model. As a result, the relative difference in minimum WSS
(16.4%) was much higher than that in maximal WSS (10.5%).
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Xiang et al. (2012) reported that the Casson and Newtonian
rheological assumptions derived similar time-averaged WSS on
most areas of an intracranial aneurysm, but the difference
reached 55% on dome area where the WSS was low. In
carotid artery studies, Guerciotti and Vergara (2018) found that
the difference in area-averaged WSS between non-Newtonian
(Carreau-Yasuda) and Newtonian rheological assumptions was
within 10% during systole but increased to 18.4% during diastole.
These previous findings in general agreed with our findings.
In our results, the difference between Newtonian and non-
Newtonian assumptions in WSS was not significant in static
simulations. In the transient simulation, the WSS values derived
by the three rheological assumptions were also comparable
in high-WSS areas, whereas the differences were noteworthy
in low-WSS areas, especially during late diastole when WSS
was low (Figure 6). Moreover, the difference in WSS between
Carreau-Yasuda and Newtonian assumptions was smaller than
that between Casson and Newtonian assumptions, which was
in accordance with the rheological properties of the three
assumptions as shown in Figure 1A.

According to this and previous relevant studies, the
Newtonian assumption would be applicable for WSS estimation
in normal intracranial arteries as long as the Reynolds number
is within the range of laminar flow (Re < 2000), which appears
in most intracranial arteries with ICAS (Lee and Steinman,
2007; Samady et al., 2011). However, caution needs to be taken
when the Newtonian assumption is applied in some extreme
cases (Re > 2000, which may appear locally due to a stenosis),
particularly in estimating the WSS values in low-WSS regions.
This is in accordance with existing studies on CFD simulation
of arteries with stenosis or aneurysm when the abnormal
geometry altered focal hemodynamics, e.g., the formation of
vortices and recirculation zone, with significant rheological
effect on WSS distribution (Cho and Kensey, 1991; Hippelheuser
et al., 2014; Liu et al., 2017). Overall, the current study on
intracranial stenosis and previous studies on intracranial
aneurysms suggest that the choice of rheological assumption
impacts the results in simulating cerebral hemodynamics in
low-WSS areas (Gambaruto et al., 2013). To achieve reliable
WSS estimation in such scenarios, non-Newtonian assumptions
should be considered.

Another factor that may have impact on the simulation
results is the velocity conditions used. The Womersley velocity
profile has been widely applied in the CFD simulation of
blood flow in proximal major arteries. However, intracranial
arteries are highly curved, which significantly influences the
velocity profile. It was found that the variations of Womersley
number only slightly affects the normalized WSS (maximum
of 14%) in simulating hemodynamics in intracranial aneurysms
(Asgharzadeh and Borazjani, 2016). A recent study also found
that Womersley number has minimal effect on time-averaged
aneurysm circulation compared with Dean and Reynolds
numbers (Barbour et al., 2021). Furthermore, it was suggested
that the difference between the Poiseuille and Womersley
solutions is less significant in the arteries far from the heart such
as cerebral arteries, where parabolic velocity distribution is a
permissible approximation (Ugron and Paál, 2014). Therefore, in

the current study, we extended the inlet segment of the model to
have fully developed flow in the models, rather than adopt the
Womersley velocity profile in the simulation.

This study had limitations. Firstly, we adopted the solid
wall assumption while in vivo arterial walls are elastic; but
the compliance of intracranial arteries is less than that of
aorta and common carotid artery by 1–2 orders of magnitude
(Zhang et al., 2014), and we adopted the pressure waveform of
ICA in the transient simulations in which the compliance of
aorta and large arteries had been incorporated. Secondly, the
rheological properties of blood vary between individuals, but in
this study the boundary conditions and rheological properties
of blood and the parameters in the Casson and Carreau-
Yasuda assumptions were not patient-specific, due to the lack of
in vivo measurements. Additionally, in this pilot study we used
unstructured mesh, whilst enhancing the mesh in the near wall
zone with boundary layers could better capture the near wall
behavior of the flow and may provide more accurate estimation
of the WSS measures in future studies. Finally, only three cases
were analyzed in this pilot study. More cases are needed for
further validation of the findings and for correlation with the
clinical outcomes. In future studies, compliance of arterial walls,
mesh enhancement, patients-specific boundary conditions (e.g.,
velocity profile derived from dynamic clinical imaging) and
rheological properties, and a larger-scale validation, could be
considered to achieve more reliable estimations of the cerebral
hemodynamic parameters, and to reveal the differences between
Newtonian and non-Newtonian assumptions in cerebral blood
flow simulation results in ICAS cases.

CONCLUSION

The study indicated negligible difference in pressure distribution
in ICAS cases between CFD models with Newtonian and non-
Newtonian fluid assumptions. Regarding the WSS simulation
results, the difference between Newtonian and non-Newtonian
models was trivial in high-WSS area but considerable in low-WSS
area and in late diastole in a cardiac cycle. Therefore, in cerebral
blood flow simulation in ICAS patients, the Newtonian fluid
assumption could be applied in pressure estimation, and WSS
estimation in high- or normal-WSS regions, but caution needs
to be taken when using the Newtonian assumption in estimating
WSS in low-WSS regions in such cases.
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With an estimated 64.3 million cases worldwide, heart failure (HF) imposes an enormous
burden on healthcare systems. Sudden death from arrhythmia is the major cause
of mortality in HF patients. Computational modeling of the failing heart provides
insights into mechanisms of arrhythmogenesis, risk stratification of patients, and clinical
treatment. However, the lack of a clinically informed approach to model cardiac tissues
in HF hinders progress in developing patient-specific strategies. Here, we provide a
microscopy-based foundation for modeling conduction in HF tissues. We acquired 2D
images of left ventricular tissues from HF patients (n = 16) and donors (n = 5). The
composition and heterogeneity of fibrosis were quantified at a sub-micrometer resolution
over an area of 1 mm2. From the images, we constructed computational bidomain
models of tissue electrophysiology. We computed local upstroke velocities of the
membrane voltage and anisotropic conduction velocities (CV). The non-myocyte volume
fraction was higher in HF than donors (39.68 ± 14.23 vs. 22.09 ± 2.72%, p < 0.01),
and higher in ischemic (IC) than nonischemic (NIC) cardiomyopathy (47.2 ± 16.18 vs.
32.16 ± 6.55%, p < 0.05). The heterogeneity of fibrosis within each subject was highest
for IC (27.1 ± 6.03%) and lowest for donors (7.47 ± 1.37%) with NIC (15.69 ± 5.76%)
in between. K-means clustering of this heterogeneity discriminated IC and NIC with
an accuracy of 81.25%. The heterogeneity in CV increased from donor to NIC to IC
tissues. CV decreased with increasing fibrosis for longitudinal (R2 = 0.28, p < 0.05) and
transverse conduction (R2 = 0.46, p < 0.01). The tilt angle of the CV vectors increased
2.1◦ for longitudinal and 0.91◦ for transverse conduction per 1% increase in fibrosis. Our
study suggests that conduction fundamentally differs in the two etiologies due to the
characteristics of fibrosis. Our study highlights the importance of the etiology-specific
modeling of HF tissues and integration of medical history into electrophysiology models
for personalized risk stratification and treatment planning.
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INTRODUCTION

An estimated 64.3 million people are diagnosed with heart failure
(HF) worldwide, incurring an enormous burden on healthcare
systems and economies (Bragazzi et al., 2021). The prevalence of
HF continues to rise with an aging population in the developed
world, and HF incidence is rapidly climbing in developing
countries. A broad range of structural or functional cardiac
abnormalities is causing or associated with HF. Ischemic heart
disease is a major cause, accounting for 26.5% of the HF cases
(Bragazzi et al., 2021).

Heart failure and many other heart diseases can be
accompanied by fibrosis, which is caused by the increased
production of extracellular matrix (ECM) proteins due to the
proliferation and differentiation of fibroblasts. ECM deposition
as an acute response strengthens the tissue scaffold and replaces
cells in the myocardium post-injury. However, chronic fibrotic
remodeling adversely affects the ability of the myocardium to
propagate electrical signals and circulate blood efficiently.

Cardiac fibrosis is traditionally classified based on the
cause that triggered remodeling of the myocardium. Other
classifications characterize fibrosis in terms of its location and the
nature of remodeling. The condition that led to the remodeling
of the myocardium can drive fibrosis to be either reparative or
reactive (Silver et al., 1990). Reparative fibrosis, also known as
replacement fibrosis, occurs from ischemia and other causes of
myocardial injury. Here, the ECM replaces myocytes following
necrosis or apoptosis, thereby repairing the scaffold. On the
other hand, reactive fibrosis formed in response to various
stimuli including pressure overload intersperses with myofibers
and is called interstitial fibrosis (González et al., 2018). While
reparative fibrosis might result in stable scars, reactive fibrosis
can be progressive. Perivascular fibrosis, defined as the increased
accumulation of connective tissue around vessels, results from
reactive fibrosis and, many times, progresses to interstitial fibrosis
(Swynghedauw, 1999).

More recently, fibrosis was characterized by its spatial
distribution in the myocardium. A classification of fibrosis in
terms of architecture used histological assessment of human
cardiac tissue samples, including both ischemic (IC) and
nonischemic cardiomyopathies (NIC) (Kawara et al., 2001). Here,
fibrosis was categorized as patchy, diffuse, and stringy. Analysis
of fibrosis in transmural biopsies from NIC at sub-millimeter
scale led to further classification of the architecture as interstitial,
diffuse, patchy, and compact (Glashan et al., 2020). Patchy refers
to a tightly knit group of fibrotic strands that can be several
millimeters long. Diffuse fibrosis consists of less than 1 mm long
strands spread over a large area. These strands can form a mesh
interspersed with the myocardium or separated with a network
of myocardium in between. Stringy fibrosis is composed of thin,
long, and well-separated strands homogenously distributed in
the tissue. Finally, fibrosis is defined in this classification as
compact when the entire transmural section is fibrotic without
any viable myocardium.

Fibrosis is commonly quantified by the fractional space
occupied by the collagen-specific stain in histology or intensity
thresholding in late gadolinium-enhanced magnetic resonance

imaging (MRI). The degree of fibrosis estimated by different
methods has been clinically correlated with progression, type,
and outcome of heart diseases (González et al., 2018; Hinderer
and Schenke-Layland, 2019). The increased extracellular volume
fraction calculated from cardiac MRI was associated with an
increased risk of hospitalization due to HF and death among
varied stages of HF and a spectrum of left ventricular ejection
fractions (Schelbert et al., 2015). However, a high amount of
fibrosis evaluated histologically was associated with death and
adverse events only in HF patients with reduced ejection fraction
(Aoki et al., 2011). While initially fibrosis was only associated
with IC diseases with scars, varied architectures of fibrosis are
increasingly associated with NIC diseases (Jellis et al., 2010).
Compact fibrosis was found to be rare in NIC, with patchy being
the most common. A combination of 2 or 3 types was found
in 90% of NIC biopsies (Glashan et al., 2020). Though these
observations show the need to assess the heterogeneity of fibrosis
for risk stratification, our quantitative understanding of fibrosis
and its heterogeneity in human HF is sparse.

65% of HF patients do not survive past 5 years from their
initial diagnosis (Bleumink et al., 2021). They are twice as
likely to develop arrhythmias compared to the rest of the
population, and 50% of mortality is attributed to sudden death
primarily resulting from ventricular tachyarrhythmias (Tomaselli
and Zipes, 2004; Khurshid et al., 2018). It is well established
that fibrosis and structural remodeling in cardiac tissue lead
to abnormal conduction patterns (Spach and Boineau, 1997;
Nguyen et al., 2014). However, different types of fibrosis can affect
conduction differently. For instance, patchy fibrosis contributed
to conduction slowing more than stringy and diffuse fibrosis
(Kawara et al., 2001).

Computational models of electrical conduction in fibrotic
cardiac tissues are extensively used in predicting arrhythmia,
especially in determining its origin and features (Trayanova et al.,
2018). Personalized models of fibrotic substrates were developed
to identify the location for catheter ablation to prevent recurring
atrial fibrillations and ventricular tachycardia (Prakosa et al.,
2018; Boyle et al., 2019). Commonly, monodomain models of
heart tissue are applied, where the myocardium is described as
a single continuous domain. Since the extracellular space (ES)
is not explicitly described, fibrosis is treated as non-excitable
regions with either reduced or no conductivity. Interstitial
fibrosis was introduced in such models by decoupling the
transverse cellular connections to reflect the distribution of non-
conductive collagenous interstitium (Spach et al., 2007). Also,
the spatial distribution of fibrosis was modeled by spatially
varying the diffusion coefficient of the myocyte domain based
on Gaussian random fields (Clayton, 2018). Another model
of diffuse fibrosis was introduced as non-conductive collagen
randomly distributed in the myocyte layer or myocardial blobs
sprinkled in the collagen layer and a fibroblast model coupled
with the monodomain model (Chen et al., 2018). Interstitial
and patchy fibrosis were modeled based on histological images
by only including regions corresponding to myocardium in the
simulation of conduction (Campos et al., 2013). In this work,
a monodomain model was used and extracellular potentials
calculated assuming infinite uniform conductor.
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TABLE 1 | Baseline demographic and clinical characteristics of donor and heart failure (HF) population.

Donor (n = 5) HF (n = 16)

All HF IC (n = 8) NIC (n = 8)

Age (years) 51.2 ± 13.48 53.44 ± 10.28 58.50 ± 6.74$ 48.38 ± 11.07

Male, n (%) 2 (40) 13 (81.25) 7 (87.50) 6 (75)

Height (cm) 161.03 ± 8.90 176.67 ± 8.27 178.77 ± 5.95 174.56 ± 10.06

Weight (kg) 68.12 ± 13.23 93.55 ± 22.8 101.82 ± 19.53 85.28 ± 24

BMI (kg/m2) 26.01 ± 2.91 29.94 ± 7.11 31.98 ± 6.33 27.89 ± 7.67

LVEF (%) 71.40 ± 7.02 21.56 ± 11.25 24.38 ± 10.5 18.75 ± 11.96

NYHA class III, n (%) 5 (31.25) 3 (37.50) 2 (25)

NYHA class IV, n (%) 11 (68.75)* 5 (62.50) 6 (75)

Duration of HF (months) 62.81 ± 53.04 61.75 ± 53.69 63.88 ± 56.05

LVAD, n (%) 11 (68.75) 5 (62.50) 6 (75)

Direct transplant, n (%) 5 (31.25) 3 (37.50) 2 (25)

Values are shown in n (%) or mean ± SD when appropriate.
$p < 0.05 between IC and NIC.
*NYHA class for an IC patient was III or IV and is considered IV here.
BMI, body mass index; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association.

A computationally more demanding alternative to
monodomain modeling is bidomain modeling, which comprises
a description of the ES (Sepulveda et al., 1989). Here, the ES has
an electrical conductivity separate from the myocyte domain.
The primary constituent of the ES is conductive interstitial
fluid, and ECM proteins contribute only a marginal volume
fraction. It is commonly assumed that the interstitial fluid
determines the conductivity in the extracellular domain. An
expansion of interstitial space is also well documented in
different cardiomyopathies (Halliday and Prasad, 2019). In
addition to fibrosis and changes in interstitial space, the clefts
that separate myocyte sheets modulates the conductivity of ES.
The anisotropy of the ES conductivity is well-established and
less pronounced than the anisotropy of the myocyte domain
(Johnston and Johnston, 2020). Hence the bidomain model is
more appropriate to describe features of fibrotic remodeling
in cardiac tissues. Fibrosis was modeled as selected nodes in
the extracellular domain duplicated and decoupled from the
myocyte domain at locations based on collagen in MRI images
(Costa et al., 2014). This method was used to simulate interstitial
fibrosis (Balaban et al., 2018) and scars (Balaban et al., 2020). Still,
image-based microscopic detail of fibrosis is not yet captured in
computational models of ventricular tissue in human HF.

We hypothesized that heterogeneity in fibrosis varies in HF
patients and the heterogeneity will alter the conduction patterns
depending on the etiology of disease. To test this hypothesis, we
introduced an approach to quantify the microscopic distribution
of fibrosis and its variation within subjects to characterize
the heterogeneity of fibrosis. We investigated the relationship
between fibrotic remodeling and conduction abnormalities
using electrophysiological simulations on image-based meshes
of cardiac tissue. For this, we applied confocal microscopic
tile scanning of tissue sections from donors and HF patients.
Fibrosis was characterized in terms of composition as well as
its heterogeneity within each subject. Further, this quantification
was used to build electrophysiological models of cardiac tissue

to explore the microscopic disturbances in electrical conduction.
Finally, we analyzed the influence of different types of fibrosis and
the associated HF etiology on electrical conduction velocity (CV)
and its dispersion at the microscopic scale.

RESULTS

Microstructural Remodeling
Distinguishes Heart Failure From Donor
Tissues
We characterized the composition of left ventricular mid-
myocardial apical tissue from HF patients (n = 16) and
donors (n = 5) through immunohistochemistry and tile
scanning confocal microscopy. Baseline demographic and
clinical characteristics of the donor and HF population are
presented in Table 1. A tile scan of an HF tissue section
with an overlay of the fluorescent signals is illustrated in
Figure 1A. The individual signals in a region of 1 mm2 area
within this overlay are magnified in Figures 1B–E. The nuclei
are densely present with varying sizes, reflecting the diversity
of cells in cardiac tissue (Figure 1B). The ES labeled by
wheat germ agglutinin (WGA) comprises interstitial clefts and
larger patches with fibrotic remodeling (Figure 1C). The α-
smooth muscle actin (α-SMA) (Figure 1D) and vimentin signals
(Figure 1E) correspond to the presence of myofibroblasts (MF)
and fibroblasts (F), respectively. We calculated the fractional
space occupied by ES (Ve), fibroblasts (Vf ), and myofibroblasts
(Vmf ) by processing the signals. Ve in HF was higher than
that of donors (37.49 ± 13.98 vs. 20.1 ± 2.75%, p < 5e-
4; Figure 1F). The summed Vf and Vmf was higher in HF
compared to donors (2.5 ± 0.5 vs. 2.0 ± 0.23%, p < 0.05;
Figure 1G). Individually Vf and Vmf were not different in HF
and donors (Supplementary Figure 1). The total non-myocyte
volume fraction (Vnm), i.e., the sum of Ve, Vf , and Vmf , was
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FIGURE 1 | Characterization of human cardiac tissue fibrosis at a microscopic
scale. (A) Overlay of different fluorescent signals for analysis of fibrosis in an
heart failure (HF) tissue sample. The white box marks the 1 mm2 region of
interest in this sample. The signals are separated and magnified in panels
(B–E). (B) DAPI signal, (C) WGA signal, (D) α-SMA, and (E) vimentin. (F) Ve

based on processed WGA signal, and (G) Vf + Vmf processed from DAPI, α

-SMA, and vimentin signals (H) Fibrosis in HF. Scale bar in panel (B) applies to
panels (C–E). n = 14 for HF in panel (G). *p < 0.05; **p < 0.01.

higher in HF than donors (39.68 ± 14.23 vs. 22.09 ± 2.72%,
p < 5e-4). The fibrosis in HF, calculated as the difference
between Vnm in HF and the mean Vnm of donors, was
17.59± 14.23% (Figure 1H).

Heterogeneity of Fibrosis Differentiates
Heart Failure Etiologies
The large spread of fibrosis in HF motivated further investigation
of variability in intra-subject non-myocyte fractions (intra Vnm).
We calculated Vnm of each 50 × 50 µm2 sub-image within
the overall region of analysis in each subject and obtained their
probability distribution. Subregions within a donor sample were
similar to each other (Figures 2A–C). The two representative
sub-images indicate normal myocyte dimensions (Figures 2B,C).
Intra Vnm was 23.54 ± 7.54% with its distribution concentrated
near the mean (Figure 2D). A subject with NIC whose intra
Vnm of 40.25 ± 12.85% is close to the mean Vnm = 39.68% of all
HF revealed sub-images with enlarged ES (Figures 2E–G). The
interstitial space varied but was expanded and distinct from that
of the donor. Though the Vnm distribution spread wider than the
donor, its peak was near the mean (Figure 2H). Images from an
HF subject with IC etiology and an intra Vnm = 50.01 ± 34.61%
revealed patches of fibrosis covering the entire area in many
sub-images that were devoid of any myocytes (Figures 2I–L).
While some sub-images displayed the myocytes and ES similar to
the donor sample and some others reflected the average fibrosis
with thickened collagen deposits and hypertrophic myocytes,
many sub-images with 100% Vnm shifted the distribution. The
distribution covered almost the entire range, peaking between
20 and 40% and again, at 100%, all distinct from the mean Vnm
(Figure 2L).

Characteristics of Fibrosis Distinguished
Between Ischemic and Nonischemic
Etiologies
The clinical characterization of two distinct groups of HF
prompted us to investigate the relationship between the etiology
of the disease and the characteristics of fibrosis based on intra
Vnm. Splitting HF into IC (n = 8) and NIC (n = 8) revealed
that the large spread of Vnm of HF is primarily due to the IC
(Figure 3A). Vnm was higher for IC vs. NIC (47.2 ± 16.18 vs.
32.16± 6.55%, p < 0.05). However, it did not differ between NIC
and donor groups. We further analyzed the standard deviation
(SD) of intra Vnm (σintra,Vnm) between these groups (Figure 3B).
As expected, σintra,Vnm was higher in HF vs. donor (21.4± 8.2 vs.
7.47± 1.37%, p < 5e-6). Additionally, this measure was not only
different between IC and NIC (27.1 ± 6.03 vs. 15.69 ± 5.76%,
p < 0.05), but also between NIC and donor (15.69 ± 5.76 vs.
7.47 ± 1.37%, p < 0.05). Regression analysis revealed a strong
relationship between σintra,Vnm and Vnm (R2 = 0.74, p < 1e-6;
Figure 3C). Separately, IC samples corresponded to a 3% increase
in σintra,Vnm for every 10% increase in Vnm. Comparatively, the
increase in σintra,Vnm for the NIC samples was 5.4% for every 10%
increase in Vnm. The donors, in contrast, formed a cluster with
low Vnm and low σintra,Vnm. Overlap of IC and NIC samples was
present in a region for Vnm between 30 and 40% and σintra,Vnm
between 15 and 25%.

Since σintra,Vnm was markedly different between IC and NIC,
we used it as a feature to cluster HF using a k-means algorithm.
The centroids of clusters calculated from the k-means algorithm
was used to assign the true labels. 7 out of 8 IC and 6 out of 8
NIC were correctly classified (Figure 3D). A σintra,Vnm of 20.58%,
which is the mean of the centroids of the two clusters separated
IC and NIC (Figure 3C). Further, we explored the geometrical
features of the fibrotic patches extracted from the binary image
of Vnm for each subject that can distinguish between IC and
NIC. By analyzing the properties of connected components of
the images that have areas larger than 150 µm2, we assessed the
area of the largest component (Figure 3E) and the mean area
of all the components in an image (Figure 3F). By fitting the
individual components to ellipses, we also calculated the mean
length of the major axis (Figure 3G), minor axis (Figure 3H), and
mean eccentricity of the components (Figure 3I). The connected
components in each image were counted as well (Figure 3J).
The largest fibrotic patch area was higher in IC than NIC
(23.96e4± 24.46e4 vs. 4.39e4± 4.09e4 µm2, p < 0.05). The other
features were not different between both groups. Both, IC and
NIC images exhibited many distinct elongated fibrotic patches.

We compared the ability of σintra,Vnm to discriminate between
IC and NIC samples with that of Vnm and the area of the largest
fibrotic patch. The comparison was based on accuracy, sensitivity,
specificity, positive, and negative predictive value (Table 2).
The accuracy was highest (81.25%) when σintra,Vnm alone was
used as the clustering feature. While the specificity and positive
predictive value was 100% for the other two classifiers, the low
values for sensitivity and negative predictive values make them
less effective. Applying the algorithm on a combination of these
features did not yield higher accuracy than σintra,Vnm alone.
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FIGURE 2 | Quantification of heterogeneity of Vnm in a representative donor (A–D), mean fibrosis HF (E–H), and high fibrosis HF (I–L). (A) 1 mm2 region of
segmented non-myocyte space in white in a donor tissue section with two of the 400 sub-images of size 50 × 50 µm2 highlighted with red boxes. (B,C) Zoom-ins
of regions within red boxes in panel (A) revealed normal myocyte membranes and capillaries. (D) The probability distribution of Vnm in all the sub-images of panel (A)
was narrowly spread. The mean marked with “X” aligned with the distribution peak, and SD marked with the white line segment was small. (E) Region of interest in
HF tissue with fibrosis similar to the mean of all HF. (F,G) Magnified sub-images within red boxes in panel (E) indicated enlarged ES. (H) Though the probability
distribution was spread wider than panel (D), the mean Vnm was close to the peak. (I) Region of interest in a high fibrosis HF tissue. (J,K) Magnified sub-images
within red boxes in panel (I) were very different from each other. (J) Had enlarged interstitial ES while panel (K) was highly fibrotic and devoid of any myocytes.
(L) The distribution was more uniformly spread out than panel (H) with the peaks away from the mean. Scale bar in panel (A) applies to panels (E,I). Scale bar in
panel (B) applies to panels (C,F,G,J,K).

TABLE 2 | Comparison of the binary clustering of HF as ischemic (IC) and nonischemic (NIC) cardiomyopathy by k-means algorithm applied to different features
from image analysis.

Clustering features Accuracy (%) Sensitivity (%) Specificity (%) Positive predictive value Negative predictive value

σintra,Vnm 81.25 87.5 75 0.78 0.86

Vnm 75 50 100 1.00 0.67

Area of largest fibrotic patch 62.5 25 100 1.00 0.57

Patterns of Conduction Have
Pronounced Variation in Different Heart
Failure Etiologies
We evaluated the characteristics of action potential conduction
using a bidomain model based on 2D images of donor and
HF tissues. By applying a line stimulus based on voltage
clamping for 2 ms, the local activation and CV were assessed
over the domain. Example simulations in Figure 4 revealed
the relationship between the conduction and the underlying
microstructure. We overlaid the activation time contours on
representative segmented binary WGA images. We also overlaid
CV vectors on the WGA images at the locations where they
were calculated in the mesh. The longitudinal and transverse

conduction was evaluated separately by placing the stimulus
corresponding to the myocyte orientation in the images.

For the mesh generated from a donor tissue sample image, a
line stimulus at the left edge of the domain initiated longitudinal
conduction aligned with the orientation of the long axis of
myocytes (Figure 4A). The activation wavefronts through the
domain at different timepoints were primarily smooth and
parallel to the stimulus. The complete domain was activated
at ∼4.4 ms (Supplementary Movie 1). A line stimulus at the
top edge of the same mesh generated transverse conduction
(Figure 4B). The transverse wavefronts were again smooth and
parallel to the stimulus, and the activation was completed at
∼7.4 ms. The simulation of longitudinal conduction was also
performed by placing the stimulus at the right edge of the
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FIGURE 3 | Classification of HF by fibrosis characteristics relates to disease etiology. (A) Vnm of the donor has an interquartile range (IQR) of ∼5% compared to HF
with an IQR of ∼30%. HF split to IC (n = 8), and NIC (n = 8) revealed an IQR of ∼10% for NIC and ∼35% for IC. (B) σintra,Vnm has a median <10% for donors, >20%
for IC, and ∼15% for NIC. (C) Strong relationship between σintra,V nm vs. Vnm displayed by the linear regression represented by the black line segment. The red line
segment shows that σintra,V nm = 20.58% discriminated most IC from NIC. (D) Classification of HF by k-means algorithm applied to σintra,V nm was 81.25% accurate.
Connected component analysis of fibrotic objects in images showed that (E) area of the largest object was larger in IC than NIC. The (F) mean area and the mean
lengths of (G) major and (H) minor axes of the patches were not different for IC and NIC. IC and NIC were not differentiated by (I) the number of isolated fibrotic
objects with area > 150 µm2 or (J) the eccentricity of the patches. *p < 0.05; **p < 0.01. Outliers in HF are not indicated in panel (A).

domain. Similarly, transverse conduction was repeated by placing
the stimulus at the bottom edge.

We evaluated the CV vectors in the four simulations for
each mesh at four uniformly distributed points by calculating its
magnitude (|CV|) and tilt (6 CV) from the direction normal to
the line stimulus. An example is shown in Figure 4C. The four
CV vectors at each location correspond to the four directions of
conduction, i.e., two longitudinal CVs (CVLs) and two transverse
CVs (CVTs). The four CV vectors in the donor mesh were similar
to each other, except for a vector for the right to left longitudinal
conduction. The magnitudes of CVL (|CVL|) ranged between
0.26 and 0.54 m/s, and the tilt angles of CVL ( 6 CVL) varied
from −15◦ to 2◦. |CVT| were 0.16–0.18 m/s and 6 CVT ranged
from−0.2◦ to 2.9◦. The direction of vectors corresponding to the
conduction from left to right and right to left was mostly, but not
always, mirrored.

In simulations with an example mesh from NIC tissue,
the wavefronts of longitudinal conduction were distinct from
the donor because of their complex geometry (Figure 4D).
The wavefront lost its smoothness, especially in regions with

prominent fibrotic patches. The conduction was faster than the
donor, with the activation completed at 3.9 ms (Supplementary
Movie 2). The transverse conduction, in this case, completed
activation slightly faster than the donor sample at 7 ms
(Figure 4E). The wavefronts were mainly parallel to the stimulus.
In this HF sample with low fibrosis and restricted chiefly to
interstitial fibrosis, |CVL| from 0.23 to 0.68 m/s spanned a
more extensive range than that of the donor (Figure 4F).
6 CVL of −61.2◦ to 11◦ presented remarkably more tilt than
that of the donor, and the differences between conduction
in opposite directions were more pronounced. The bottom
right location surrounded by fibrotic patches illustrates this
variation in CVL (Figure 4G). |CVT| of 0.16–0.2 m/s and
6 CVT of −0.38◦ to 2.3◦ in this example of NIC was similar to
that of the donor.

In high fibrosis HF with IC etiology, the longitudinal
wavefronts were heavily distorted with conduction blocked
at the top right corner. The conduction was delayed, with
activation completed for the rest of the domain at 4.7 ms. The
wavefront for transverse conduction was heavily distorted in
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FIGURE 4 | Conduction and CV in bidomain model based on a representative donor, low fibrosis HF, and high fibrosis HF tissue. (A) Longitudinal conduction in an
example donor tissue shown by activation times as contour plot overlayed on the non-myocyte fraction from which the mesh was generated. (B) Transverse
conduction in the donor. (C) CV vectors at four positions in the mesh. At each position, two CV vectors correspond to longitudinal conduction from left to right and
right to left, and two CV vectors correspond to transverse conduction from top to bottom and bottom to top. (D–F) Conduction and CV vectors for low fibrosis HF.
(G–I) Longitudinal and transverse conduction and CV vectors for high fibrosis HF. The red line segment in each image shows the location of the applied stimulus. NC
indicates no conduction. Scale bar in panel (A) applies to all figures. Color bar in panel (A) applies to panels (D,G), (B) applies to panels (E,H), and (C) applies to
panels (F,I).

the beginning due to the block. The wavefront regained the
smoothness and became parallel to the stimulus as conduction
reached near the end of the mesh (Figure 4H). The activation
was completed for conductive regions of the domain at 8.5 ms,
slower than the donor and NIC samples (Supplementary Movie
3). |CVL| of 0.01–1.11 m/s in this example of IC displayed
even larger variations in longitudinal conduction than NIC
(Figure 4I). 6 CVL of -90.29◦ to 89.59◦ illustrated some CV
almost perpendicular to the original direction of conduction. The
difference in the direction of CV vectors between the opposing
conduction was particularly evident. The CVL at the top left
corresponding to conduction beginning at the left end was
very small and almost parallel to the stimulus. In contrast, the
local instantaneous CVL for the opposite conduction was larger
than 1 m/s but less deviated. Similarly, the two CVL vectors
of opposing direction of conduction at the top right differed
since they were at the edge of the conductive region. Though
both their directions are 90◦ from the expected conduction
direction, one had a magnitude ∼0.5 m/s, and the other was
close to 0 m/s. The two lower sets of CV vectors are comparable
to those observed in Figure 4F. |CVT| of 0.04–0.52 m/s and
6 CVT of −3.26◦ to 167.99◦ indicated magnitudes at the top
two locations much smaller than the bottom two locations as
well as the donor and NIC cases. The vector for conduction

from left to right near the block was large and opposite to the
conduction direction.

By analyzing activation times in all the samples, we found
that 9 out of the 16 HF models had at least one non-conductive
region. In two HF models, longitudinal conduction in either
direction was fully blocked and did not reach the opposite end. In
addition, transverse conduction in one direction of an HF mesh
was blocked before reaching the opposite end.

To evaluate boundary effects on our simulation and
calculation of CV, we expanded the computational domain
for a donor tissue sample (Supplementary Figure 4A). The
domain was extended by incorporating meshes with homogenous
volume fractions to the left and right of the donor mesh
(Supplementary Figure 4B). Similar as described above, we
performed simulations by applying the voltage clamp on the
left and right end of this domain to calculate longitudinal
conductivities at the same four locations as the original donor
mesh. However, because of the increased length of the domain,
the measurement of CV was more than 2 mm away from the
boundary. We obtained a mean error of 0.00125 m/s for |CVL|
and −1.5◦ for 6 CVL between the original and extended meshes.
The root mean square error was 2.04 and 2.79% for |CVL|
and 6 CVL, respectively. This example indicates that boundary
effects are marginal.
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Etiology-Dependent Heterogeneity of
Conduction Velocity Vectors
We calculated the four CV vectors at four locations from all the
HF and donor samples to evaluate the distribution of CV vectors
and their relationship with fibrosis. While the mean |CVL| of
donors, IC, and NIC were 0.4 m/s, the probability distribution of
CV vectors exhibited a large spread in HF vs. donors (Figure 5A).
|CVL| was more widely spread in IC compared to NIC (0.4± 0.49
vs. 0.4 ± 0.14 m/s) whereas it was more compact in donors than
NIC (0.4 ± 0.09 vs. 0.4 ± 0.14 m/s). Donors had a distinct peak
in the distribution that is close to its mean. SD in |CVL| was three
times larger in IC than NIC and less than NIC in donors. |CVL|
for conduction from left to right and right to left for donors was
similar, but less symmetric for NIC (Supplementary Figure 2A).

Tilt angles of CVL was most pronounced for IC, much
smaller for NIC, and negligible in donors (−16.85◦ ± 62.85◦ vs.
0.66◦ ± 32.03◦ vs. 0.03◦ ± 7.94◦) (Figure 5B). In IC, the direction
of the CV vector reversed with respect to the conduction in a few
cases. SD in 6 CVL of IC was nearly twice that of NIC, and that
in donors was a quarter of NIC. The symmetry of conduction in
the two opposite directions in donor was also reflected in low
6 CVL (Supplementary Figure 2B). This symmetry was lost in
IC and NIC. The heterogeneity in CVL is corroborated by the
spread of maximal upstroke velocities in longitudinal conduction
for the three groups (Supplementary Figure 3A). While maximal
upstroke velocity in donors clustered at ∼200 V/s, the maximal
upstroke velocity in IC and NIC was more widely spread. The
absence of activation was present only in IC.

|CVT| was marginally larger in IC than NIC (0.23 ± 0.42
vs. 0.18 ± 0.07 m/s) and the mean coincided with the peak of
their distribution for NIC and donors (Figure 5C). The mean
|CVT| for donors at 0.17 ± 0.01 m/s was similar to NIC. The
wide spread of |CVT| in IC and the distinct lump at 0 m/s,
indicating no conduction, was similar to that of |CVL|. The
SD of |CVT| was seven times larger for IC vs. NIC and six
times larger for NIC vs. donors. The symmetry between the two
directions of transverse conduction was similar to longitudinal
conduction in donors. The |CVT| symmetries were higher for IC
and NIC than |CVL| symmetries (Supplementary Figure 2C).
6 CVT was much smaller than 6 CVL for all groups, with the
tilt angles limited between −45◦ to +45◦ (Figure 5D). 6 CVT
was most prominent for IC, smallest for NIC, and negligible for
donors (−12.37◦ ± 53.76◦ vs. –0.09◦ ± 5.04◦ vs. 0.22◦ ± 3◦).
The spread was smallest in donors, largest in IC, and in the
middle for NIC. The SD of 6 CVT in IC was ten times larger
than in NIC. The asymmetry in 6 CVT was pronounced in IC
(Supplementary Figure 2D). The maximal upstroke velocity
in transverse conduction peaked at ∼250 V/s for both donor
and NIC groups, though NIC had a greater spread of values
similar to longitudinal conduction (Supplementary Figure 3B).
We performed f-tests between donors, IC and NIC groups for
|CVL|, |CVT|, 6 CVL, and 6 CVT and found that variances were
different in all comparisons (p < 0.01).

Results of linear regression analysis between variables of
CV and our fibrosis measures are summarized in Table 3.
Median |CVL| for each subject decreased with increasing Vnm

of the subjects (Figure 5E). Median absolute value of 6 CVL
(|6 CVL|) exhibited a strong positive linear relationship with
Vnm (Figure 5F). Median |CVT| decreased (Figure 5G) and
median absolute value of 6 CVT (| 6 CVT|) increased (Figure 5H)
as Vnm increased. | 6 CVL| increased by 2.1◦ and |6 CVT|
increased by 0.91◦ per 1% increase in fibrosis. While the median
|CVL| and |CVT| displayed negative relationships with σintra,Vnm
similar to that with Vnm (Figures 5I,K), median |6 CVL| and
|6 CVT| displayed weaker relationship with σintra,Vnm than Vnm
(Figures 5J,L).

σ|CVL| and σ|CVT| did not have any relationship with
σintra,Vnm (Supplementary Figures 3C,D). In contrast, σ| 6 CVL|
and σ| 6 CVT| displayed strong positive relationship with σintra,Vnm
(Supplementary Figures 3E,F). The anisotropy |CVL| / |CVT|
in all the cases and the three groups ranged between 1 and
3. The anisotropies were not affected by Vnm or σintra,Vnm
(Supplementary Figures 3G,H).

DISCUSSION

This study revealed fundamental differences in microscopic
electrical conduction in ventricular tissues in normal human
hearts and hearts from end-stage HF patients of different
etiologies. These differences in conduction were caused
by fibrotic remodeling that varied with HF etiology. The
heterogeneity of fibrosis in HF discriminated the etiology with
a high accuracy of 81.25%. We quantified fibrosis considering
the cellular constituents, i.e., fibroblasts and myofibroblasts, in
addition to the ES, and also analyzed intra-subject heterogeneity
of fibrosis at a microscopic scale. Commonly, this microscopic
heterogeneity is not assessed in fibrosis quantifications, but
it strongly affected outcomes of computational modeling of
conduction in HF tissues.

Heterogeneity of Fibrosis in Heart Failure
Current histological methods for quantifying myocardial
fibrosis rely exclusively on the collagen content, and clinical
imaging methods cannot provide information on fibrosis
at the microscopic scale. Most measures of fibrosis used to
parameterize conduction models do not account for fibroblasts
and myofibroblasts that are major cellular constituents of the
remodeling. Our past work on the analysis of fibrosis in healed
myocardial infarction in an animal model showed a significant
increase in fibroblasts and myofibroblasts in the scar border
zone (Greiner et al., 2018). While the Vf + Vmf was 9% proximal
to the scar, it dropped to ∼5% at a distance ∼1 mm from the
scar. Here, our analysis indicates that Vf + Vmf increased in
the end-stage HF vs. donors, but to a smaller extent than in the
infarction model. A potential explanation is that the tissue is
not undergoing active remodeling since most samples are from
chronic HF patients (Table 1).

The increase in σintra,Vnm was related to the increase in Vnm
across all samples. Separately the samples of NIC showed a
stronger effect of Vnm onσintra,Vnm, while the samples of IC
revealed smaller increases in σintra,Vnm with increase in Vnm.
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FIGURE 5 | Analysis of CV vectors in donors, IC, and NIC. (A) The probability distribution of |CVL| was widely spread in IC compared to NIC and donors. In donors,
|CVL| clustered at ∼0.4 m/s in. Three outliers for IC between 1 and 3 m/s are not shown. (B) 6 CVT is more widely spread in IC than NIC and is marginal in donors.
(C) |CVT| peaks just below 0.2 m/s for donors and NIC, with NIC having a greater spread and IC spread out similar to CVT. Three outliers in IC greater than 0.5 m/s
are excluded. (D) 6 CVT are much smaller than 6 CVL but exhibit a similar spread in the three groups. (E) Median |CVT| for each subject decreased with increasing
6 CVT. (F) The median |6 CVL| increased with Vnm. (G) The median |CVT| and (H) median |6 CVT| did not vary for Vnm < 40% and were similar to that of CVL. (I–L)
Similar relationships of CV with σintra,V nm as from Vnm in panels (E–H). Legend in panel (E) applies to panels (F–L).

TABLE 3 | Results of linear regression analysis between conduction velocities (CV) and fibrosis.

x variable y variable Model for linear regression Coefficient of determination (R2) Significance vs. constant model (p)

Vnon−myo Median |CVL| y = -0.01x + 0.58 0.28 0.03

Vnon−myo Median |6 CVL| y = 2.10x - 48.69 0.80 3.1e-6

Vnon−myo Median |CVT| y = -0.002x + 0.24 0.46 7.3e-4

Vnon−myo Median | 6 CVT| y = 0.91x - 24.27 0.68 4.8e-6

σintra−subject,Vnon−myo Median |CVL| y = -0.01x + 0.54 0.33 0.02

σintra−subject,Vnon−myo Median | 6 CVL| y = 2.75x – 25.84 0.65 1.7e-4

σintra−subject,Vnon−myo Median |CVT| y = -0.003x + 0.21 0.29 0.01

σintra−subject,Vnon−myo Median | 6 CVT| y = 1.15x - 12.69 0.44 9.6e-4

σintra−subject,Vnon−myo σ| 6 CVL| y = 1.40x – 4.49 0.78 6.6e-6

σintra−subject,Vnon−myo σ| 6 CVT| y = 1.79x - 18.77 0.59 4.3e-5

σintra−subject,Vnon−myo σ|CVL| y = 0.01x + 0.001 0.18 0.1

σintra−subject,Vnon−myo σ|CVT| y = 0.01x – 0.04 0.11 0.13

Vnon−myo |CVL| /|CVT| y = 0.01x + 1.89 0.07 0.35

σintra−subject,Vnon−myo |CVL| /|CVT| y = -0.01x + 2.41 0.06 0.41

Hence, the increase in heterogeneity not only corresponded
to the amount of fibrosis but also the HF etiology. A study
on fibrosis in tetralogy of Fallot showed that intra-subject
variability was similar to the inter-subject variability in single

2D histological thereby limiting the quantification of fibrosis in
a truly representative manner (Wuelfers et al., 2021). In our
results, the intra-subject variability was higher than inter subject
variability of all HF. The recovery of cardiac function in HF
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patients caused by mechanical unloading using left ventricular
assist devices (LVADs) has been previously associated with an
increase in fibrosis (Drakos et al., 2010). However, specific
changes in composition and distribution of fibrosis underlying
this change remain unknown. We suggest that quantifying the
heterogeneity of fibrosis will increase understanding of the role
of fibrosis in recovery for different HF etiologies.

Our study showed that heterogeneity of fibrosis is a valuable
measure to predict the etiology of HF patients. We also evaluated
many geometric features of fibrotic patches in the images of IC
and NIC samples for their ability to predict etiology. Comparing
these features revealed the compact grouping of NIC. The largest
and mean area, as well as the length of the major and minor axis of
the ellipse fitted to fibrotic patches were small in NIC. However,
in IC these geometric features were widely spread, resulting in the
inability to cluster all IC. This reflects not only the heterogeneity
in HF but also the heterogeneity of fibrosis patterns, particularly
in IC. Previously, a combination of different patterns of fibrosis
was observed in a majority of NIC samples (Glashan et al., 2020).
In contrast, our analysis of geometric features showed that IC has
an even more pronounced variety of fibrosis patterns.

Alteration of Propagation and
Conduction Velocities Due to Fibrosis
In this study, we applied a novel characterization of CV vectors
and their tilt from the expected direction of conduction. We
found that though mean values of |CV| did not change between
donor, IC, and NIC samples, their distribution differed. IC
displayed the largest SD, followed by NIC, and donors displayed
the smallest SD. The median |CV| decreased with increasing
fibrosis and its heterogeneity (Table 3). Various studies on human
hearts revealed the diversity of changes in the CV in different
heart diseases, including fibrosis (Table 4). For example, CV
decreased in both sub-endocardial and sub-epicardial LV in end-
stage HF patients with NIC (Glukhov et al., 2012). In contrast, CV
increased in DCM with fibrosis (Anderson et al., 1993). Though
the primary factor for decreased CV in NIC was found to be the
remodeling of connexin 43, the abnormal features in conduction,
including discontinuities and CV alternans, were attributed to the
interstitial fibrosis in HF vs. normal hearts.

Conduction velocities in the ischemic LV free wall was found
to decrease in all three directions vs. normal tissue (Taggart
et al., 2000–2004). Increased transmural CV was observed in
the ventricular septum in hypertrophic hearts, compared to
decreased transmural CV in HF vs. normal hearts (Toyoshima
et al., 1982). Conduction patterns and spatial heterogeneity
of activation were correlated with fibrosis in DCM patients
(Anderson et al., 1993). This study revealed three sub-groups
of DCM patients with group 1 similar to the donor, group 2
with moderately disturbed conduction, and group 3 with severely
distorted conduction patterns. The fibrosis in groups 1–3 were
4.6 ± 5.6, 9.5 ± 7.8, and 28.3 ± 21%. However, the specific
patterns of fibrosis were not characterized. The only published
data on associations between fibrosis patterns and CV suggested
that CVL did not change with different amounts of fibrosis in
NIC patients (Kawara et al., 2001). However, CVT decreased with

higher fibrosis. Notably, anisotropy in stringy fibrosis was lowest,
followed by patchy fibrosis and the highest anisotropy was for
diffuse fibrosis (1.35 vs. 2.04 vs. 2.42, respectively).

Prior simulations of fibrotic human cardiac tissues generally
showed a decrease in CV with increasing fibrosis. Several
approaches were introduced to model the effects of fibrosis.
Modeling diffuse fibrosis as non-excitable obstacles that
randomly replaced myocytes in the computational mesh and by
altering the myocyte model yielded a decrease in CV to 0.3 m/s
at 40% fibrosis and 0.1 m/s at 65% fibrosis vs. normal CV of
0.7 m/s (Ten Tusscher and Panfilov, 2007). This approach was
modified for stringy fibrosis by introducing unexcitable obstacles
as parallel segments of varying lengths (Nezlobinsky et al., 2020).
CVL was reduced more with shorter segments, while the CVT
was more reduced with longer segments. Simulation with a
myocyte model coupled with a fibroblast model and fibrosis
determined by the fraction of random sites defined as fibroblasts
showed decreasing CV with increasing fibrosis (Majumder
et al., 2012). With stronger coupling between fibroblasts and
myocytes, the decrease in CV occurred at lower fibrosis. In
several simulations of IC samples, we observed high local CV
in the vicinity of high local fibrosis levels. This local increase is
explained by a source-sink mismatch. Regions with high fibrosis
ahead in the direction of conduction reduce the intracellular sink
considerably while the source is large.

We showed that 6 CV is strongly affected by Vnm and
σintra,Vnm. 6 CV provides a local measure of the wavefront
curvature. With increasing fibrosis, |6 CV| increased and also
|CV| decreased. CV decreases in a convex wavefront due to a
larger sink, and at a concave wavefront CV increases due to a
smaller sink compared to the source (Fast and Kléber, 2021).
An increased curvature of the wavefront is reflected in more
spread in |CV|. We showed that 6 CV increased from donors
to NIC to IC corresponding to increasing SD in |CV|. Our
results also indicate that curvature of the wavefront increased
with increasing fibrosis, especially for longitudinal conduction.
Local distortions in the wavefront arose due to underlying fibrotic
patterns, which depended on the etiological origins of HF.
Similar zig–zag patterns of conduction are well documented as
precursors for reentry and slowed conduction fundamental to
arrhythmogenesis (Bakker et al., 1993).

Linear regression analysis revealed that median |CVT|
decreased (Figures 5G,K) and median | 6 CVT| increased
(Figures 5H,L) as Vnm and σintra,Vnm increased (Table 3).
However, visual inspection of the sample distribution showed
that this relationship was caused by deviations from an otherwise
constant distribution for Vnm > 40% and σintra,Vnm > 25%. The
changes in median |CVT| and median |6 CVT| were negligible
for Vnm < 40% and σintra,Vnm < 25%. The deviations were
for IC samples, which stresses the importance of etiology-
specific modeling.

We found that CV anisotropy was not affected by fibrosis.
Median anisotropy was around ∼2 for donors and HF. The
anisotropy is consistent with the observations in the normal
myocardium (Spach et al., 1981). Prior measurements of CVL
and CVT in various diseased LV in humans show anisotropy in
the range of 1.5–3.4 (Table 4). A similar variation is observed in
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TABLE 4 | Clinical and experimental measures of CV in human cardiac ventricles.

Normal Disease Disease type Tissue type References

L (cm/s) T (cm/s) N (cm/s) L (cm/s) T (cm/s) N (cm/s)

56.1 14.6 LV epi Doshi et al., 2015

51.3± 4.6 Hypertrophy Basal LV Dhillon et al., 2013

40 ± 2 28 ± 3 NIC end-stage HF LV epi Glukhov et al., 2012

49 ± 2 39 ± 3 NIC end-stage HF LV endo Glukhov et al., 2012

41–87 CM RV free wall Nanthakumar et al.,
2007

60, 85 Post VT ablation LV free wall Yue et al., 2005

58 ± 15 24 ± 4 Diffuse fibrosis
(20.7 ± 13.7%)

LV/RV epi Kawara et al., 2001

57 ± 13 28 ± 7 Patchy fibrosis
(21.8 ± 13.8%)

LV/RV epi Kawara et al., 2001

53 ± 19 39 ± 13 Stringy fibrosis
(11.8 ± 2.7%)

LV/RV epi Kawara et al., 2001

65 48 51 56 32 26 Ischemia LV free wall Taggart et al.,
2000–2004

66 ± 9 <20 DCM, congestive HF LV /RV Wu et al., 1998

70 20 DCM Papillary muscle Bakker et al., 1996

80 ± 8 23 ± 3 84 ± 9 23 ± 3 DCM (fibrosis
4.6 ± 5.6%)

LV epi Anderson et al., 1993

90 ± 9 DCM (fibrosis
9.5 ± 7.8%)

LV epi Anderson et al., 1993

79 7 Infarction Papillary muscle Bakker et al., 1993

19.86± 5.44 30.55± 7.58 Hypertrophy Septum Toyoshima et al.,
1982

45 Hypertrophy LV free wall Dam et al., 1972

46.4± 2.7 LV free wall Durrer et al., 1970

43.4, 44.9 Septum Durrer et al., 1970

L: Longitudinal, T: Transverse, N: Transmural, CM: Cardiomyopathy, DCM: Dilated Cardiomyopathy, LV: Left ventricle, RV: Right ventricle, epi: sub-epicardial, endo:
sub-endocardial.

very limited measurements available from normal human hearts.
Anisotropy was found to increase with increasing fibrosis at
different rates depending on the dimensions of fibrotic patterns in
the domain (Nezlobinsky et al., 2020). However, the combination
of different patterns and dimensions of fibrosis within each
patient introduces more complexity.

In our simulations, we observed that maximum upstroke
velocity was lower during fast longitudinal conduction and
higher during slow transverse conduction (Supplementary
Figures 3A,B). The higher upstroke velocity along the transverse
direction is due to less charge dissipation to sink. This
is consistent with the current understanding of anisotropic
conduction based on seminal experiments on normal canine
cardiac tissue (Spach et al., 1981). The smaller sink provides
a higher safety factor for transverse relative to longitudinal
conduction providing a path for conduction to proceed even
when longitudinal conduction is blocked (Valderrabano, 2007).

The pronounced etiology-dependent differences in |CV| and
6 CV indicate a need to adjust modeling parameters based
on the clinical background of patients. Our study suggests
that conduction fundamentally differs in two major etiologies
of HF due to the characteristics of fibrosis. We showed that
the etiology is reflected on the heterogeneity of fibrosis. We

propose that including heterogeneity in the modeling of tissue
of HF patients based on their clinical data is essential to
uncover abnormalities of microscopic conduction. Our study
stresses the clinical need to identify disease-specific fibrotic
patterns in HF patients and stratify them based on the risk of
arrhythmogenesis.

Limitations
This study has several limitations. The tissue samples from
patients undergoing LVAD implantation were procured close
to the apex and had mixed orientation of myocytes. We
minimized this effect by choosing a region of analysis from the
image where the myocyte orientation is uniform. The samples
were also distal from any scar and hence not confounded by
scar fibrosis. We imaged a single slice for characterizing the
fibrosis for each subject, which only coarsely represents the
overall fibrosis and its heterogeneity in left ventricles. Analysis
of larger areas would more comprehensively represent the
heterogeneity in tissue remodeling as suggested in Wuelfers et al.
(2021). The 2D imaging and modeling does not completely
represent the transmural heterogeneity and anisotropy of the
myocardium. Further sampling of ventricular tissue could
reveal if the analysis of a small sample from any region can
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distinguish the etiology and also if the apical tissue is a good
representative for the ventricular tissue. Due to limitations of
tissue procurement from HF patients, a more extensive sampling
was not feasible.

The bidomain electrophysiological simulations utilized the
concept of homogenized media of myocyte and ES that
coexistat every mesh element. However, a more microscopically
realistic modeling approach could consider volumes of ES and
myocytes as distinct spaces separated by a membrane (Roberts
et al., 2008). Our detailed microscopic images form a basis
for such modeling.

In this work, an explicit time-stepping scheme was utilized
for simulations requiring a time resolution of 1e-8s for such
a fine mesh grid. The computation time was ∼650 s for a
mesh with 400 elements simulated for a duration of 15 ms.
Using an implicit scheme might allow a coarser time resolution
and shorter run time with similar accuracy. Due to the
time required for simulations, we characterized conduction
for a single wave through the domain. Investigations on the
effect of basic cycle length on CV were not performed but
might provide insights into arrhythmogenesis in heterogeneous
domains. A second order polynomial model to interpret the
relationship between CV and fibrosis values gives an increased
R2. However, we do not have a good biophysical model
describing the relationships between fibrosis measures and
conduction. Hence, we applied a simple linear regression
model to make coarse statements about the relationships. We
lack functional measurements from this tissue to compare
the results from simulations. However, we discussed our
results in the context of published experimental data to
arrive at conclusions.

MATERIALS AND METHODS

Tissue Collection
The tissue collection and clinical characterization for this
study were approved by the Institutional Review Board of
the University of Utah Health, Intermountain Medical Center,
Salt Lake City VA Medical Center, which are members
of the Utah Transplantation Affiliated Hospitals Cardiac
Transplant Program. Transmural tissue biopsies from the left
ventricular apical region of HF with reduced ejection fraction
(n = 16) and non-failing donor hearts (n = 5) were fixed
immediately in 10% formalin. The biopsies were from the
apical core of patients undergoing LVAD implantation or from
matching locations in the failed heart during transplant and
the donor hearts. The donor hearts were not suitable for
transplantation due to non-cardiac reasons. The demographics
and clinical data for donors and HF patients are summarized in
Table 1.

Tissue Processing
The fixed tissue samples were rinsed in phosphate buffered
saline (PBS) within a day of fixation. The samples were then
embedded in 3% agarose gel and sectioned using a vibratome
Leica VT1200S (Leica Biosystems, Wetzlar, Germany) to obtain

slices of 100 µm thickness. The midmyocardial slices were
detached from agarose and washed in PBS before performing
immunohistochemistry. We applied primary antibodies A5228
and V6630 (Sigma-Aldrich, St. Louis, MO, United States) at
a concentration of 1:200 in a blocking solution with normal
goat serum to bind to the proteins α-SMA and vimentin,
respectively. Vimentin marked fibroblasts and endothelial cells
in blood vessels. Smooth muscle cells, including myofibroblasts,
were marked with α-SMA. Slices were incubated overnight
on a rocker at room temperature. After washing with PBS
three times, goat anti-mouse secondary antibodies A21137 and
A21240 (Thermo Fisher Scientific, Waltham, MA, United States),
conjugated to AF 555 and AF 647, respectively, were applied at
1:200 in the blocking solution to attach to the corresponding
primary antibodies. We incubated these slices for 6 h at
room temperature on the rocker together with 4′,6-diamidino-
2-phenylindole (DAPI, D3571, Thermo Fisher Scientific) at
3 µg/ml to label the nuclei. After another set of three
rinses of the slices in PBS, we applied WGA conjugated
to a green fluorescent dye (CF488A, Biotium Inc., Fremont,
CA, United States) at a concentration of 40 µg/mL in PBS
to the slices for at least 4 h to label the glycocalyx and
ECM proteins. Post incubation, the slices were washed with
PBS and mounted on coverslips of 0.16–0.19 mm thickness
with Fluoromount-G (#17984-25, Electron Microscopy Science,
Hatfield, PA, United States) using a compression-free mounting
method (Seidel et al., 2016). After curing for 24 h at a
relative humidity between 30 and 35%, the samples were
coated with a nail hardener before imaging. The humidity was
controlled by placing the samples in a chamber with a bath of
saturated NaI solution.

Imaging and Image Processing
We imaged the coverslips with human cardiac tissue slices
using a laser scanning confocal microscope Leica TCS SP8
(Leica Microsystems, Wetzlar, Germany) with a 40x oil
immersion objective at a resolution of 378 nm per pixel.
The imaging regions were chosen where the long-axis of
myocytes were parallel to the X-axis of the coordinate axis.
To cover areas of 1 mm2 and larger, several images of the
size 1,024 × 1,024 pixels were stitched together using the
merge tool in the post-processing software of the microscope
(Leica Application Suite X 3.5.5). For this merging, imaging
was performed with an overlap of 10% between adjacent
images. The depth of imaging within the 100 µm slice
was chosen to obtain uniform intensity throughout the area
covered. We analyzed the signals in a region of interest of
approximately 1 mm2 area chosen by avoiding edges of the
section as well as blood vessels within the image (Figure 1A).
The raw images of DAPI (Figure 1B), WGA (Figure 1C),
vimentin (Figure 1D), and α-SMA (Figure 1E) were initially
segmented using histogram-based thresholding as described
in Seidel et al. (2016). WGA labeled collagen as well as
extracellular membrane. To avoid the exclusion of regions
from ES due to variation in intensities of collagen labeling,
masks covering non-myocyte spaces were manually drawn
and added to the thresholded WGA signal to obtain the
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segmented ES using Fiji (Schindelin et al., 2012). The α-SMA
and vimentin signals were processed to avoid the labeling of
endothelial and smooth muscle cells through a one-pixel opening
followed by removing objects larger than 1,000 pixels from
the thresholded images. The nuclei within one pixel of α-
SMA or vimentin signal were incorporated as myofibroblasts or
fibroblasts, respectively.

Analysis of Fibrosis
We calculated Vnm as the fraction of the segmented non-
myocyte space within the selected area in the image of
each sample. We also calculated Vf and Vmf as the fraction
occupied by fibroblasts and myofibroblasts, respectively.
Ve was defined as the fraction of ES. The non-myocyte
space was defined as the sum of Ve, Vf , and Vmf .

Vnm = Ve + Vf + Vmf (1)

Fibrosis in each HF sample was defined as the increase of
the non-myocyte space from the average Vnm in donors.

Fibrosis = Vnm,HF −mean
(
Vnm,Donors

)
(2)

We determined the group-wise Vnm from the images for
donors and HF. The calculation of Vnm was repeated by
dividing the image into 50 µm × 50 µm sub-images to find
the intra-subject heterogeneity. The variability of intra-subject
fibrosis σintra,Vnm was calculated based on SD of Vnm of sub-
sampled regions within each subject. We performed linear
regression analyses of σintra,Vnm with respect to Vnm. We further
separated HF into IC and NIC samples to assess Vnm and
σintra,Vnm.

Classification of Heart Failure and
Association to Etiology
The HF samples were clustered based on different measures of
fibrosis. The clusters were evaluated in their ability to differentiate
their clinical etiology as IC and NIC. In addition to Vnm and
σintra,Vnm, features from images that capture the pattern and
arrangement of fibrotic patches were used for classification. We
processed the images to extract the connected components that
are larger than 150 µm2 from the binary images of non-myocyte
fractions. Among these objects, the object with the largest area
and the mean area of objects were calculated. We calculated the
eccentricity, major, and minor axes of an ellipse that has the
same second central moment as the object for all the objects
in each image. Eccentricity was defined as the ratio of the
major to the minor axis. We compared these image features
in IC vs. NIC, and features with significant differences were
noted. Next, we performed binary clustering of subjects using the
k-means algorithm with these image features, Vnm and σintra,Vnm
individually and in different combinations as the input. The
algorithm was repeated 50 times for each clustering, and the
clusters with the lowest sum of Euclidean distances of points to
the cluster centroid were chosen as the result. To evaluate the
clustering, the cluster with the lower centroid was assigned the
label of NIC and that with the higher centroid was assigned IC.

For clustering by σintra,Vnm only, the mean of the two centroids
was calculated as the value of σintra,Vnm that can discriminate
between IC and NIC. After assigning labels to the clusters, we
calculated the positive and negative predictive value, accuracy,
specificity, and sensitivity for the classification.

Modeling of Fibrotic Tissue and
Simulation
We utilized the bidomain model of cardiac tissue
electrophysiology to characterize the electrical conduction
in fibrotic tissue (Tung, 1978). In this model, the cardiac tissue
is described with a myocyte and an extracellular domain. These
two domains coexist at every point of space and are subject to
principles of current conservation. Any current flowing out of
one domain has to enter the second domain, and the net current
is zero. Two Poisson equations describe the relationship between
current and potential for each domain and the interaction
between the two domains:

∇ ·
(
σmyo∇φmyo

)
= −fs,myo + βmyoImyo,e (3)

∇ · (σe∇φe) = −fs,e − βmyoImyo,e (4)

where σmyo and σe are the electrical conductivity tensors (S/m)
of the myocyte and extracellular domain, respectively, and
φmyo and φe are the electrical potentials (V) of the myocyte
and extracellular domain, respectively. fs,myo, and fs,e are the
current source densities (A/m3) for the myocyte and extracellular
domain, respectively. Current flowing between the myocyte
and extracellular domain, Imyo,e (A) was calculated using the
electrophysiological model of a normal human ventricular
myocyte (Tusscher et al., 2004).

Imyo,e = Iion + Cm
∂Vm,myo

∂t
(5)

where Iion (A) is the total ion channel current flowing through
the membrane of a myocyte and Cm = 2e7nF is the membrane
capacitance per myocyte. Membrane voltage of myocytes Vm,myo
(V) was defined as the difference between φmyo and φe. Iion
defined by the biophysical model of human ventricular myocyte
includes fast Na+ current (INa), L-type Ca2+ current (ICaL),
transient outward current (Ito), rapid delayed rectifier current
(IKr), slow delayed rectifier current (IKs), inward rectifier K
current (IK1), Na+/Ca2+ exchanger current (INaCa), Na+/K+
pump current (INaK), plateau Ca2+ and K+ currents (IpK and
IpCa), and background Ca2+ and K+ currents (IbCa and IbK).
These individual membrane currents are defined based on the
specific channel conductances and transmembrane voltage.

Iion = INa + IK1 + Ito + IKr + IKs + ICaL + INaCa + INaK

+ IpCa + IpK + IbCa + IbNa (6)

The conductivity tensors for myocyte and extracellular
domains were defined by a linear relationship with their
respective volume fractions, Vmyo and Ve (dimensionless):

σmyo = Vmyoσ̄myo (7)
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σe = Veσ̄e (8)

where the tensors σmyo = 0.5 S/m and σe = 1 S/m described
longitudinal conductivity for the volume fraction of 100% for
the respective domains. The longitudinal to transverse anisotropy
of the conductivity with respect to the myocyte orientation
was 10 and 2 for intra- and extracellular domains, respectively.
We defined the relationship between the volume fractions of
bidomain domains as:

Vmyo = 1− Ve − Vf − Vmf (9)

where Ve, Vf , and Vmf are the volumes equivalent to
the fractional areas of ES, fibroblasts, and myofibroblasts,
respectively, calculated for each mesh element. Since the total
area occupied by fibroblasts and myofibroblasts combined was
within 5% and intercellular coupling through gap junctions
was neglected, they were not considered to form a separate
domain. Their fractional space in the images translated to a
non-conductive fraction in the mesh. Hence the conductivities
associated with Vf and Vmf are zero. The number of myocytes
per unit volume βmyo (1/m3) was defined as:

βmyo =
Vmyo

Vmyo,single
(10)

where Vmyo,single is the individual volume for a myocyte.
Vmyo,single = 41,073 µm3 was set to reflect the volume of a human
myocyte (Gerdes et al., 1992).

2D meshes for bidomain cardiac electrophysiological
simulation of fibrotic tissue were generated by selecting
rectangular regions from the segmented binary WGA labeling
of tissue images. The volume-based quantities in the domain
are defined for 2D by treating the third dimension as having a
unit length. The variation of fibrosis calculated for each image
was incorporated by varying Ve, Vf , and Vmf , at each element
of the mesh according to the underlying image intensities.
We downsampled each image such that the area covered by
each mesh element is 2,500 µm2 of the image. The simulations
were run for 15 ms with a time step resolution of 1e-8s. The
rectangular domains of around 1 mm2 with a regular grid and
an element edge length of 50 µm were activated using Dirichlet
boundary conditions that held the transmembrane voltage of
one edge of the domain at 1 mV for 2 ms after allowing the
system to equilibrate for 2 ms. The extracellular and intracellular
source currents were zero. The domain was subjected to no flux
Neumann boundary condition.

We applied an implementation of the bidomain model
(Seemann et al., 2010) that uses the Portable, Extensible Toolkit
for Scientific Computation (Balay et al., 1997) to solve the Poisson
equations. The Eqs 3, 4 are recast as an elliptic PDE (Eq. 11) and
a parabolic PDE (Eq. 12):

∇ ·
((

σmyo + σe
)
∇8e

)
= −∇ ·

(
σmyo∇Vm,myo

)
(11)

∇ ·
(
σmyo∇Vm,myo

)
+ ∇ ·

(
σmyo∇8e

)
= βmyo

(
Cm

dVm,myo

dt
+ Iion

)
(12)

This implementation utilizes an operator splitting method
with a forward Euler scheme for time-stepping. This modeling
framework was benchmarked against other frameworks through
monodomain simulations [acCELLerate indexed I in Niederer
et al. (2011)]. We performed the calculations at each time step
with the Generalized Minimal Residual method and additive
Schwarz preconditioner to solve the linear system of equations
limiting the relative and absolute tolerance to 1e-12.

The orientation of the myocytes combined with the placement
of stimulus was used to determine the direction of conduction as
longitudinal or transverse. All the images in which the long axes
of myocytes were visualized were simulated with the activation on
all four edges of the domain (n = 16). These images were rotated
to align the long axis of myocytes along the X-axis. The two
simulations with stimulus normal to the long axis were used to
evaluate the longitudinal conduction. The other two simulations
where the activation edge was parallel to the long axis were
analyzed as transverse conduction. Only transverse conduction
was evaluated when the image captured the axial cross-section of
myocytes (n = 5).

Evaluation of Conduction
The activation times at every element of the domains were
determined to identify cases with regions of conduction block.
The activation time was defined as the time of maximum upstroke
velocity of the membrane potential within the range of -60 and
0 mV. We recorded the maximum upstroke velocities at four sets
of three adjacent grid points spread uniformly over the mesh.
Each set of three grid points are placed so that two of them lie
along the X-axis and two of them lie along the Y-axis, with one
point common to both pairs. The activation times at these points
were also used to calculate the CV as described below applicable
for regular rectangular grids. The magnitude and direction of the
CV vectors, CVL and CVT, were measured for transverse and
longitudinal conduction, respectively, according to

|CV| =
l√

tx2 + ty2
(13)

and

6 CV =


+x : tan−1 ty

tx
−x : 180◦ − tan−1 ty

tx
+y : 90◦ − tan−1 ty

tx
−y : 90◦ + tan−1 ty

tx

(14)

where tx and ty are the activation time differences between the
two adjacent grid points along the X- and Y-axis, respectively.
The distance between two adjacent grid points, l, was 50 µm.
x and y correspond to longitudinal and transverse conduction.
+ corresponds to the left to right or top to bottom while
– corresponds to the conduction in opposite directions. The
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simulations in two opposing directions of longitudinal and
transverse conduction were separately analyzed to quantify the
effect of direction in the image-based mesh. They were pooled
together to analyze the conduction with respect to different
groups and the relationship between the conduction and fibrosis.
|6 CV| was calculated to measure the tilt of CV vectors.

To evaluate the effect of the boundary on CV, we performed
the simulation of a donor sample mesh embedded in a
homogenous mesh (Supplementary Figure 4). We calculated the
space constants of the domain, λl and λt for the longitudinal and
transverse directions, respectively, according to Roth (1997).

λl =

√
R
β

(σmyol σel)

(σmyol + σel)
(15)

λt =

√
R
β

(σmyot σet)

(σmyot + σet)
(16)

where R = 0.2 �m2 is the membrane resistance and β = 2e5 m−1

is the myocyte surface-to-volume ratio (Tusscher et al., 2004). In
our simulations, we have set the conductivities for 100% volume
fractions, σmyol = 0.1 S/m, σel = 1 S/m, σmyot = 0.01 S/m, and
σet = 0.5 S/m. Thus, λl = 0.30 mm and λt = 0.09 mm.

Each element of the homogenous mesh was composed
of volume fractions that are the mean value of the volume
fractions of elements in the donor mesh. The dimensions of
this domain were 5 mm in X direction and 1 mm in Y
direction, with the donor mesh (Supplementary Figure 4A)
forming the middle part of the new domain from 2 to 3 mm
(Supplementary Figure 4B). |CV| and 6 CV calculated from
longitudinal propagation with voltage clamping at the left end
or right end of the domain were compared with those from the
original donor mesh. The evaluation of CV at the same positions
as the original mesh was now >2 mm from the boundary which is
more than five times λl. We evaluated mean error and root mean
square error percent to determine the effect.

Statistical Analysis
All statistical analyses were performed in MATLAB 2020a or
later (Mathworks, Natick, MA, United States). Student’s t-test for
unequal variances was performed to compare the composition
of fibrosis in donors and HF, and p < 0.05 was considered
significant. The ratio of variance in HF to that in donor for
all the variables considered for t-test with unequal variances
was larger than 5. Violin plots were generated using external
code developed for MATLAB (Jonas, 2008). Inter-subject and
intra-subject heterogeneity in fibrosis between IC, NIC, and
donors were compared using one-way ANOVA, and p < 0.05
was considered significant. Boxes in the boxplots represented
interquartile range, and whiskers extend to median ± 2.7 SD.
Values beyond whiskers were considered outliers. All values for
fibrosis characterization and CV were reported as mean ± SD.
The variances between magnitude and tilt angles of CV were
compared between different groups using a two-sample f -test.
Regression analysis was performed using a linear model of the
form y = Ax + B. The model was compared to a constant
model and evaluated using the coefficient of determination (R2).
p < 0.05 was considered significant.
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Background: The three-dimensional (3D) geometry of coronary atherosclerotic plaques

is associated with plaque growth and the occurrence of coronary artery disease.

However, there is a lack of studies on the 3D geometric properties of coronary

plaques. We aim to investigate if coronary plaques of different sizes are consistent in

geometric properties.

Methods: Nineteen cases with symptomatic stenosis caused by atherosclerotic plaques

in the left coronary artery were included. Based on attenuation values on computed

tomography angiography images, coronary atherosclerotic plaques and calcifications

were identified, 3D reconstructed, and manually revised. Multidimensional geometric

parameters were measured on the 3D models of plaques and calcifications. Linear

and non-linear (i.e., power function) fittings were used to investigate the relationship

between multidimensional geometric parameters (length, surface area, volume, etc.).

Pearson correlation coefficient (r), R-squared, and p-values were used to evaluate

the significance of the relationship. The analysis was performed based on cases and

plaques, respectively. Significant linear relationship was defined as R-squared > 0.25

and p < 0.05.

Results: In total, 49 atherosclerotic plaques and 56 calcifications were extracted. In

the case-based analysis, significant linear relationships were found between number of

plaques and number of calcifications (r = 0.650, p = 0.003) as well as total volume

of plaques (r = 0.538, p = 0.018), between number of calcifications and total volume

of plaques (r = 0.703, p = 0.001) as well as total volume of calcification (r = 0.646,

p = 0.003), and between the total volumes of plaques and calcifications (r = 0.872,

p < 0.001). In plaque-based analysis, the power function showed higher R-squared

values than the linear function in fitting the relationships of multidimensional geometric
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parameters. Two presumptions of plaque geometry in different growth stages were

proposed with simplified geometric models developed. In the proposed models, the

exponents in the power functions of geometric parameters were in accordance with the

fitted values.

Conclusion: In patients with coronary artery disease, coronary plaques and

calcifications are positively related in number and volume. Different coronary plaques

are consistent in the relationship between geometry parameters in different dimensions.

Keywords: coronary artery disease, atherosclerotic plaques, computed tomography (CT), three-dimensional

reconstruction, plaque morphology

INTRODUCTION

Coronary artery disease is a cardiovascular disease that has been
the leading cause of death globally (Malakar et al., 2019). The
formation of atherosclerotic plaques in the coronary arteries
plays a key role in the development of coronary artery disease
(CAD). With the growth of an atherosclerotic plaque, the
stenosis in the affected coronary artery reduces the myocardial
blood flow and oxygen supply. Evidence has shown that the
geometry of a plaque, which determines the severity of arterial
stenosis, is related to the risks of clinical events, including
myocardial infarction in patients with CAD (Choi et al., 2015;
Lee et al., 2019a). Further investigation of coronary plaque
geometry is, therefore, recognised as an important pathway
toward understanding the pathophysiology and improving the
diagnosis and treatment of CAD (Ratiu et al., 2018).

Currently, computerised tomography (CT) scan is the most
commonly used medical imaging technique in the diagnosis of
CAD (Gaur et al., 2016). The coronary computed tomography
angiography (CCTA) images have a high spatial resolution
to reflect the geometry and morphology of coronary plaques
(Stefanini Giulio and Windecker, 2015). CCTA can achieve
a higher resolution than cardiac magnetic resonance imaging
(MRI) (Liu et al., 2021). The severity of luminal stenosis
evaluated by CCTA was in similar accuracy as that obtained from
intravascular ultrasound (IVUS) (Lee et al., 2019b). The coronary
angiography (CAG) is also widely used in the diagnosis of CAD.
Compared with MRI, IVUS, and CAG, CCTA is low-cost, non-
invasive, and safe to use on patients with implants (Wang et al.,
2018). CCTA can visualise different types of plaque composition.
Non-calcified, partially calcified, and calcified plaques could be
extracted separately based on their attenuation values (Daghem
et al., 2020). Therefore, CCTA has been widely applied in the
analysis of coronary plaque geometry (Rinehart et al., 2011; Ratiu
et al., 2019).

Using the three-dimensional reconstruction of plaque
geometry from CCTA images, many geometric parameters
can be accurately estimated, including the burden (i.e., the
severity of stenosis), size, diameter, and composition of coronary
artery plaques (Liu et al., 2021). The geometry of a plaque can
influence the hemodynamic parameters, such as wall shear
stress, which, in turn, influence the evolution of plaque geometry
(Yamamoto et al., 2017; Arzani, 2020; Pleouras et al., 2020a). For

example, the clinical observation and computational simulation
have disclosed that plaques grow faster in the downstream
areas than the upstream areas (Arzani, 2020). Considering
the haemodynamics-driven plaque growth, in this study, we
hypothesize that different coronary plaques may be consistent
in geometry.

The geometric consistency among different objects can be
investigated using the relationships between multidimensional
geometric parameters (i.e., parameters defined in different
geometric dimensions). For example, sphericity has been
proposed to evaluate the geometric consistency between different
objects. It was defined as the ratio of the surface area of a
sphere, which has the same volume as the given particle to the
surface area of that particle (Li et al., 2012). The surface-area–
volume ratio has been applied in investigating the taxonomic
groups of insects (Kühsel et al., 2017), as well as the relationship
between human brain size and cortex folding (Toro et al.,
2008). However, despite the fact the many geometric parameters
have been applied in the evaluation of coronary plaques (Liu
et al., 2021), as far as we know, the geometric consistency of
coronary plaques has not been comprehensively investigated
using multidimensional geometric parameters based on patient-
specific CCTA imaging data.

In order to comprehensively understand coronary plaque
geometry and its evolution, we aim to investigate the relationship
between different multidimensional geometric parameters of
coronary plaques reconstructed from CCTA images. Considering
the geometric and hemodynamic differences between left and
right coronary arteries, we focus on the plaques in left coronary
arteries in this pilot study.

METHODS

Patients and CCTA Imaging Protocol
In this retrospective study, the CCTA imaging data were collected
from 25 patients with CAD in the Second Affiliated Hospital of
Zhejiang University in China from 2015 to 2016 with approval
from the local ethics committee for sharing and analysing
retrospective anonymised patient data with informed consent
form waived. Details of the CCTA scan protocol are listed in
Table 1. Each scan was visually examined for visible coronary
stenosis, culprit lesions, and calcifications. The resultant datasets

Frontiers in Physiology | www.frontiersin.org 2 October 2021 | Volume 12 | Article 715265108

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Liu et al. Geometric Consistancy Among Coronary Plaques

TABLE 1 | CCTA data acquisition.

Parameter name Name/qty

Scanner type Somatom definition flash

Number of slices 128

Patient’s position Supine

Patient’s heart rate (beats per minute,

mean ± SD)

70.125 ± 14.047

Contrast type Ultravist 370

Any beta-blockers? No

Any nitro-glycerine? Yes- one subject, the rest- no

Time of the scan (minutes, mean ± SD) 2.805 ± 2.464

TABLE 2 | Characteristics of patients.

Patients, n 19

Female, n 6

Age (years, mean ± SD) 63.421 ± 9.532

Total number of plaques, n 49

Number of plaques per case (mean ± SD) 2.579 ± 1.387

Total number of calcifications, n 56

Number of calcifications per case (mean ± SD) 3.158 ± 1.803

Mean calcified plaque volume (per case, mm3,

mean ± SD)

24.137 ± 24.156

Mean whole plaque volume (per case,mm3,

mean mean ± SD)

151.084 ± 115.431

Mean plaque surface area (per case,mm2,

mean mean ± SD)

313.995 ± 186.056

of systolic and diastolic scans were compared regarding the
quality of images, with the better one selected for analysis.

In six patients, there was no observable plaque or significant
stenosis (>50% in diameter) in left coronary artery. In total,
19 patients (13 males, 6 females, mean ± SD of age: 63.4 ±
9.5 years) were finally included for analysis, as listed in Table 2.
The observer was blinded for the case diagnosis. The quantity,
location, and type of atherosclerotic plaques have been confirmed
by a radiologist and a cardiologist.

3D Reconstruction of Coronary Arteries
The 3D geometry of coronary arteries and plaques was
reconstructed from the CCTA images using the software
MIMICS 20.0 (Materialise N.V., Belgium). The reconstruction
method was semiautomatic, using the Coronary Segmentation
Tool of Mimics Medical Suite. Firstly, the position of the aorta
was marked. Then, with start and end points marked on the
CCTA image dataset, an arterial segment can be automatically
reconstructed with the result saved in an independent set (a
“mask” in MIMICS). For the left coronary artery tree, artery
segments were extracted from the left main coronary artery (LM)
to major branches, including the left anterior descending artery
(LAD) and left circumflex artery (LCX), and, finally, the distal
branches. The small branches (diameter < 1mm, or blurred
structure) were trimmed off. The left coronary artery tree was

derived by connecting artery segments using the union operation
of different sets.

Extraction of Coronary Atherosclerotic

Plaques: A Two-Step Approach
The 3D reconstruction of coronary plaques was based on a
semiautomatic two-step approach. It is difficult to distinguish
between fibrotic, fibro-fatty, and fatty atherosclerotic lesions.
Therefore, in this study, the plaque components were categorised
as calcified (calcification) and non-calcified. Firstly, based on the
position of plaque on the two-dimensional (2D) CCTA images,
the spatial ranges of plaque were set in three directions (sagittal,
coronal, and transverse). In the 3D space defined by the ranges,
the plaque was automatically extracted using thresholds of CT
attenuation value (in Hounsfield units, or HU). Due to the
difference in plaque composition, the CT attenuation value varies
among different scans. Therefore, the thresholds were set patient
specifically. Low attenuation values (0–150 HU) were used to
identify non-calcified plaques, whereas high attenuation values
(>150–1,334 HU) were used for calcified components. Firstly,
the calcifications were automatically extracted (Figure 1). The
demarcation between non-calcified plaque components, vessel
lumen, and other tissues was inaccurate due to the varying local
attenuation. Therefore, amask was developed by using a wideHU
range for all the non-calcified components, including the vessel
wall. By using union Boolean operation, an outer boundary was
derived that wraps the vessel lumen and the whole plaque (the
cyan part in Figure 2).

In the second step, the plaque geometry was further modified.
Considering the blooming artefact caused by calcification,
the surrounding non-calcified components have higher HU
values. The boundaries between non-calcified components
and calcification or artery lumen were checked and adjusted
manually. The areas opposite to the calcification were also
reviewed to add the non-calcified plaque components that were
not detected by the threshold used in the first step due to the effect
of surrounding tissues (the magenta part in Figure 2).

Measurement of Multidimensional

Geometric Parameters
The measurement of multidimensional geometric parameters in
different dimensions was performed using the Materialise 3-
Matic software (Materialise N.V., Belgium) on the whole plaques
and calcifications, respectively.

For each plaque and calcification, firstly, the volume and
the surface area were measured automatically. Secondly, the
length, surface distance, cross-sectional area, and diameter were
measured manually. The length of a plaque or calcification was
defined as the longest straight-line distance between its proximal
and distal ends. The surface distance was defined as the length of
the shortest path on the surface between the proximal and distal
ends. For the whole plaque, the cross-section area was measured
on the cross-section perpendicular to the local centerline of the
arterial segment with the maximal area (Figure 3). The cross-
section diameter was measured as the longest distance on the
cross-section area. Compared with the plaques, calcifications had
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FIGURE 1 | The extraction of arterial lumen and calcification. (A) The 3D view. The blue and orange points present the start and the end points of extracted artery

segments. The red lines and black points present the centerlines of artery segments and connecting points (left). The arterial segments were extracted in different

masks (in different colours) and connected (middle). The calcifications were extracted independently (right). (B) The 2D views of stenosed artery in three directions

(sagittal, coronal, and transverse).

much smaller size, rounder shape, andwere positioned in variable
directions in spatial distribution. Therefore, the cross-section
area and the diameter were not measured on calcifications.

Statistical Analysis
The statistical analysis was performed using SPSS 24.0 software
(IBM SPSS Inc., Chicago, IL, USA) based on each case, plaque,
and calcification, respectively.

In the case-based analysis, the sum of volumes of different
plaques or calcifications was calculated for each subject. The
relationships among the numbers and volumes of plaques
and calcifications were investigated using simple linear
regression with Pearson correlation coefficient (r), coefficient of
determination (R-squared), and p-value calculated. A significant
linear relationship was defined as r > 0.5 (R-squared > 0.25)
and p < 0.05. A strong linear relationship was defined as r > 0.8
(R-squared > 0.64) and p < 0.05.

We investigated the multidimensional geometric parameters
in the plaque- and calcification-based analyses. Each pair of
parameters was in different dimensions except for length and
surface distance which can reflect the smoothness of the plaque
surface. In the plaque-based analysis, simple linear regression
analysis was performed between different geometric parameters
(i.e., volume, surface area, length, surface distance, cross-section

area, and cross-section diameter) of plaques. Similarly, in the
calcification-based analysis, simple linear regression analysis
was performed on the geometric parameters measured from
each calcification (i.e., volume, surface area, length, and surface
distance). If any significant linear relationship was found
between two parameters of different dimensions (e.g., surface
area and volume), the non-linear regression analysis based
on power function was performed. The results of linear and
non-linear regressions were compared using their R-squared
values. Finally, to further investigate the relationship between
plaques and calcifications in volume, simple linear regression
analysis was performed in the plaque-based analysis between
the plaque volume and the total volume of calcifications in
the plaque.

Geometric Modelling
Based on the analysis of multidimensional parameters (see
Results), we proposed two models to describe the geometry
of small (patchy) and big (circular) coronary plaques. All the
plaques were simplified as a part of a cylindrical shell with
uniform thickness (Figure 6). To evaluate if the models can
accurately reflect the plaque geometry, the ratio between plaque
length, surface area, and volume was calculated and compared
with the obtained measurement results.
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FIGURE 2 | The extraction of an atherosclerotic plaque. (A) The 3D view. (B) The 2D views. The stenosed artery lumen, calcification, outer boundary that wraps

vessel lumen and non-calcified components, as well as the manually revised results were shown in purple, yellow, cyan, and magenta colours in the 3D and 2D views.

RESULTS

Summary
In the 19 subjects, in total, 49 atherosclerotic plaques and 56
calcifications were extracted from the left coronary arteries. In
each case, the numbers of plaques and calcifications were (mean
± SD) 2.579 ± 1.387 and 3.158 ± 1.803; the mean calcification
volume and mean whole plaque volume were 24.137 ± 24.156
mm3 and 151.084 ± 115.431 mm3, respectively. The plaques
located in all the major branches of left coronary artery tree:
LAD (in 18 subjects), LCX (in 7 subjects), LM (in 5 subjects), as
well as the diagonal (in 4 subjects), and marginal (in 3 subjects)
branches. The CA scores ranged from 1.2 to 856.4. Therefore, the
plaques in this study were diverse in location and composition.

Case-Based Analysis
The results of case-based analysis showed a strong relationship
between the plaques and calcifications in number and volume.
Significant linear relationships were observed between the
number of plaques and the number of calcifications (r = 0.650,
p = 0.003), between the number of plaques and the volume
of plaques (r = 0.538, p = 0.018), between the number of
calcifications and the volume of plaques (r = 0.703, p = 0.001),
and between the number of calcifications and the volume of
calcifications (r = 0.646, p = 0.003). The volume of plaques and

volume of calcifications showed a strong linear relationship (r =
0.872, r < 0.001) (Table 3).

Plaque-Based and Calcification-Based

Analysis: Linear and Non-linear

Regressions
For the plaques, a significant linear relationship was found
between the volume and the cross-section area (r = 0.506, p
< 0.001). Strong linear relationships were found between the
volume and the surface area (r = 0.944, p < 0.001), volume and
length (r = 0.861, p < 0.001), volume and surface distance (r =
0.843, p < 0.001), surface area and length (r = 0.925, p < 0.001),
surface area and surface distance (r = 0.908, p < 0.001), length
and surface distance (r = 0.997, p < 0.001), as well as cross-
section diameter and cross-section area (r = 0.866, p < 0.001).
There was a significant linear relationship between the plaque
volume and the total volume of calcifications in each plaque (r
= 0.754, p < 0.001).

In Figure 4, the non-linear regression shows a higher R-
squared value than linear regression in most relationships except
between the volume and the cross-section area where the
relationship is just above the significant threshold (R-squared:
0.256 and 0.236 for linear and non-linear regressions), as well
as between the length and the surface distance where the values
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FIGURE 3 | Measurement of geometric parameters. (A) Stenosed artery

lumen. The surface of plaque was indicated by polylines for better

comparison. (B) Measurement of the cross-section area of a plaque

(magenta). The cross-section with the maximal area (yellow) was derived

perpendicularly to the centerline of arterial segment (purple). (C) Measurement

of length and surface distance of a plaque. The red curve (24.26mm) and blue

segment (22.91mm) illustrate the shortest distance on the surface and in the

3D space, respectively.

are very approximate (R-squared: 0.993 and 0.990 for linear and
nonlinear regressions).

In the calcification-based analysis, strong linear relationships
were found between volume and length (r = 0.895, p < 0.001),
volume and surface distance (r = 0.850, p < 0.001), as well as
length and surface distance (r = 0.888, p < 0.001). In Figure 5,
the linear regression always shows a higher R-squared value than
the non-linear regression. All the relationships in Figure 5 are
weaker than the corresponding ones in Figure 4.

Geometric Modelling of Coronary Plaques:

Two Presumptions
Presumption 1: Cylindrical Ring Shape of Fully

Developed Plaques
It can be observed in Figure 6 that the fully developed plaques
are nearly symmetric circumferentially but asymmetric along
the artery wall. In a large-scale study of coronary plaque
geometry using intravascular ultrasound, 50.2% were concentric
in 1,441 cross-sections (Komiyama et al., 2016). Longitudinally,
atherosclerotic plaques often grow faster along one side of the
artery wall due to the difference in hemodynamic effect (Gnasso
et al., 1997; Samady et al., 2011). Therefore, we presume that a
fully developed plaque has a nearly cylindrical ring shape in the
middle segment and extends slantly toward the proximal and
distal arterial segments. Accordingly, we developed a model of
cylindrical ring shape with slanted cross-sections at both ends
(Model 1 in Figure 6). The ratio between the surface area (S) and

TABLE 3 | Linear regression results of case-based analysis.

Number of

plaques

Number of

calcifications

Total volume

of plaques

Total volume

of calcification

Number of

plaques

r = 0.650,

p = 0.003*

r = 0.538,

p = 0.018*

r = 0.411,

p = 0.080

Number of

calcifications

r = 0.703,

p = 0.001*

r = 0.646,

p = 0.003*

Total volume

of plaques

r = 0.872,

p<0.001**

*marks significant linear relationship (R-squared > 0.25 (i.e., r > 0.5) and p < 0.05).

**marks strong linear relationship (R-squared > 0.64 (i.e., r > 0.8) and p < 0.05).

the volume (V) can be derived as

S

V
=

2

R− r
+

1

h

(

1

cos θ1
+

1

cos θ2

)

(1)

where R, r, and h are the external radius, internal radius, and
height on the centerline. θ1 and θ2 describe the dihedral angles
between the surface planes and the perpendicular cross-section
plane at both ends.When the size of plaque increases, the value of
S
V decreases: S

V = 0, which is in accordance with the observation
in Figure 4A. The exponent in the power function relationship
between S and V can be derived as

lnS

lnV
=

lnπ + ln (R+ r) + ln
[

2h+ (R− r)
(

1
cos θ1

+ 1
cos θ2

)]

lnπ + lnh+ ln (R+ r) + ln (R− r)

(2)

which can be estimated based on the following two hypotheses
on plaque geometry evolution:

Hypothesis 1.1: during the growth of a plaque, the values of R,
r, and h are linearly related while θ1 and θ2 are independent.
Under this hypothesis, it can be derived that

lim
V→∞

lnS

lnV
=

2

3
(3)

Hypothesis 1.2: with the growth of plaque, the atherosclerosis
extends asymmetrically on the artery wall toward the proximal
and distal arterial segments, where the values of R, r, 1

cos θ1
,

1
cos θ2

, and h are linearly related. It can be derived that

lim
V→∞

lnS

lnV
= 1 (4)

In Figure 4A, the exponent in the power function fitting is 0.741,
which is between 2

3 and 1. Therefore, this geometric model
reflects the relationship between the surface area and the volume
in real coronary plaques.

To investigate the relationship between plaque length and
volume, the length was calculated under two hypotheses:

Hypothesis 1.3: the plaque length (L) locates along the
external wall

L = h + R (tanθ1 + tanθ2) (5)
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FIGURE 4 | Linear and non-linear regression fittings on the geometric parameters of plaques. The regression line and curve are shown in dotted lines. (A) The volume

and the surface area. (B) Volume and length. (C) Volume and surface distance. (D) Volume and the cross-section area. (E) The surface area and length. (F) The

surface area and surface distance. (G) Length and surface distance. (H) Cross-section diameter and the cross-section area.
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FIGURE 5 | Linear and non-linear regression fittings on the geometric parameters of calcifications. The regression line and curve are shown in dotted lines. (A) Volume

and length. (B) Volume and surface distance. (C) Length and surface distance.

FIGURE 6 | Two types of coronary atherosclerotic plaques and corresponding geometric models. In both models, R, r, and h are the external radius, internal radius,

and height on the centerline. In model 1, L1 describes the longest segment along the longitudinal direction on the surface. L2 describes the segment from one end of

L1 to the opposite side. L1 and L2 form a plane across the centerline of the cylinder. θ1 and θ2 describe the dihedral angles between slanted surface planes and the

perpendicular cross-section plane at both ends. In model 2, θ describes the circumferential range of the partial ring.

Hypothesis 1.4: the plaque length (L) goes across the geometry

L =
√

(2R)2 +
(

h+ R tan θ1 − R tan θ2
)2

(6)

In both cases, it can be derived that lnL
lnV

≈ 1
3 under hypothesis 1.1,

and lnL
lnV

≈ 2
3 under hypothesis 1.2. In Figure 4B, the exponent

in the power function fitting is 0.414, which is between 1
3 and

2
3 . Therefore, this model is in accordance with the geometric
properties of real coronary plaques.

Presumption 2: Partial Cylindrical Ring Shape of

Early-Stage Plaques
In the early stage of plaque formation, the vessel wall thickening
often emerges from one side of coronary artery and extends both
longitudinally and circumferentially. Therefore, we proposed a
model that describes the geometry of an early-stage plaque that
covers circumstantially a part of the artery wall (Model 2 in
Figure 6, in which θ describes the circular range of the plaque
and θ < π). The ratio between the surface area and the volume
can be derived as:

S

V
= 2

[

2

θ (R+ r)
+

1

h
+

1

R− r

]

(7)
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When the size of a plaque increases, the value of S
V decreases:

lim
V→∞

S
V = 0, which is in accordance with the observation in

Figure 4A. The exponent in the power function relationship
between S and V can be calculated as

lnS

lnV
=

ln
[

2h (R− r) + θ
(

R+ h
) (

R− r + h
)]

lnθ + lnh+ ln (R+ r) + ln (R− r) − ln2
(8)

We investigated the plaque geometry under the
following hypothesis:

Hypothesis 2.1: The growth of atherosclerotic plaque extends
in axial and circumferential directions, where h, R, and r are
linearly related, while θ increases toward 2π .

Thus, the following relationships could be derived:

lim
V→∞

lnS

lnV
=

2

3
(9)

L =

√

h2 +
(

2R sin
θ

2

)2

(10)

L

V
=

2

√

h2 +
(

2R sin θ
2

)2

θh
(

R2 − r2
) (11)

lnL

lnV
=

ln2+ 0.5ln
(

h2 +
(

2R sin θ
2

)2
)

lnθ + lnh+ ln (R+ r) + ln (R− r)
(12)

lim
V→∞

lnL

lnV
=

1

3
(13)

In Figure 4, the values of exponents for lim
V→∞

lnS
lnV

and lim
V→∞

lnL
lnV

are 0.741 and 0.414, which are in accordance with the
values derived from the model (difference < 0.08 and <

0.09 for S
V and L

V , respectively). Therefore, this model is
also in accordance with the geometric properties of real
coronary plaques.

DISCUSSION

The results disclosed the geometric consistency among coronary
atherosclerotic plaques of different sizes. Based on the results,
we proposed two simplified geometric models of coronary
plaques whose geometric properties were in accordance with
the measurement results. As far as we know, this is the
first study on the geometry properties of coronary plaques in
different dimensions.

In this pilot study, the coronary plaques were extracted
from CCTA images and manually revised. As aforementioned,
some invasive imaging methods, such as IVUS and optical
coherence tomography, can achieve a high accuracy in detecting
the geometry and morphology of atherosclerotic plaques while
CCTA is non-invasive and widely used in the diagnosis of CAD.
Additionally, CCTA has high reproducibility (Symons et al.,
2016) and reliability in evaluating coronary plaques (Dweck et al.,
2016). However, automatic extraction of coronary plaques from
CCTA images could cause under- or over-estimation of plaque
size, especially for calcified plaques where blooming artefact

could increase the attenuation value of adjacent tissues, leading
to the inaccurate estimation of plaque volume (Liu et al., 2021).
Additionally, the automatic separation of a non-calcified (lipid
or fibrotic) plaque from surrounding tissues could be difficult
due to the similarity in attenuation value (Liu et al., 2019).
Therefore, for CCTA images, the manual revision could reduce
the inaccuracy in plaque geometry. These results were also
assessed and corrected by experienced radiologists to provide a
basis for reliable geometric analysis.

In some studies on the computational simulation of CAD,
simplified 2D models of different atherosclerotic plaques have
been developed, including carotid plaque models (Yuan et al.,
2015; Shahidian and Hassankiadeh, 2017) and idealised plaque
models (Shimizu and Ohta, 2015). On the cross-section plane
perpendicular to the centerline of a local arterial segment,
the circular, elliptical, crescent, and irregular shapes have been
used to describe the plaque geometry where the internal and
external boundaries of the arterial wall were modelled using a
circle and an ellipse, respectively (Shahidian and Hassankiadeh,
2017). By changing the size of the crescent shape, Kumar and
Balakrishnan investigated the stress on coronary plaques with
different sizes (Krishna Kumar and Balakrishnan, 2005). On the
cross-section plane along the artery centerline, Konala et al.
used a simplified trapezoid model to describe the longitudinal
coronary plaque geometry along the local artery segment (Konala
et al., 2011). As a result, the 3D geometry of the plaque had
adjustable slopes of the proximal and distal segments (Karimi
et al., 2012, 2014c). Some smoother shapes were also developed
to describe the longitudinal plaque geometry. Yasutomoa and
Makotoa used a semicircle model to investigate the recirculation
area distal to the plaque (Shimizu and Ohta, 2015). To describe
the longitudinal change of radius along the stenotic artery
segment in a more accurate way, Moreno and Bhaganagar used
a cosine function to describe the boundary between coronary
plaque and the lumen in the longitudinal direction (Moreno
and Bhaganagar, 2013). With these smoother functions, saddle-
shaped 3D plaque geometry could be derived to describe the
geometry of eccentric plaques (Karimi et al., 2014a,b; Yuan
et al., 2015). However, the geometric models in existing studies
were highly simplified without validation using patient-specific
imaging data. Based on the patient-specific CCTA imaging data,
we found the consistency in geometry among different coronary
plaques and developed two geometric models whose geometry
properties were in accordance with the measured results. These
results provide an important reference for the pathophysiological
and computational studies on coronary plaques.

The power function relationship between multidimensional
geometric parameters (volume, surface area, and length) of
coronary plaques is a novel finding. As we observed, coronary
plaques often grow along the artery wall, forming curved shells,
rings, or more complicated shapes, which are quite different from
a sphere (Figure 6). Therefore, instead of using sphericity to
evaluate geometric consistency of coronary plaques, we directly
investigated the relationship between geometric parameters in
different dimensions. The consistency of plaque geometry is
related to plaque growth. With a certain degree of stenosis,
the plaque geometry has a direct effect on the turbulence flow
characteristics in the surrounding areas (Bhaganagar, 2009). As
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a result, an area with low values of wall shear stress (WSS),
which is a hemodynamic parameter directly related to endothelial
function and atherosclerosis, will appear in the distal segment
of the plaque, accelerating the plaque growth (Liu et al., 2018;
Arzani, 2020). In a study on 900 artery segments extracted from
94 patient-specific coronary arteries, Pleouras et al. found that the
plaque growth and degree of stenosis predicted using the baseline
WSS values derived from computational simulation were in
accordance with the follow-up clinical observation (Pleouras
et al., 2020b). Therefore, the plaque geometry can influence
the plaque growth by hemodynamic effects in pathological
mechanisms, which contributes to the geometric consistency of
different coronary plaques.

On the other hand, geometrical parameters of coronary
plaques can provide information about many CAD-related
clinical risks: the severity of ischemia, the risky areas of
plaque growth, and the stability of arteriosclerotic plaques (Choi
et al., 2015; Driessen Roel et al., 2018). Therefore, the accurate
evaluation of plaque geometry in different dimensions can help
to determine the pathological and morphological properties of
coronary plaques which will improve the diagnosis, treatment,
and management of CAD.

The calcifications and plaques showed different geometric
properties. Firstly, the case-based analysis disclosed that plaques
and calcifications were significantly correlated in number and
total volume (Table 3). This is in accordance with the fact
that calcification occurs in the mature plaques. The plaque-
based analysis showed a significant relationship between plaque
volume and total calcification volume in the plaque. In carotid
and coronary arteries, the volume of calcification is closely
related to the intima-media thickness (IMT) (Araki et al., 2015).
Pathologically, calcification often appears in the later stages of the
atherosclerotic lesion (Shioi and Ikari, 2017). Thus, in the case-
based analysis, the total calcification volume was not significantly
related to the total number of plaques (Table 3). Secondly,
compared with the plaques, the calcifications had less significant
relationships between multidimensional geometric parameters
(Figures 4, 5), which suggested that the geometry of calcification
is more irregular. In atherosclerotic plaques, the formation
of calcification is influenced by different pathophysiological
mechanisms, including the death of inflammatory cells, releasing
of matrix vesicles, reduced local expression of mineralisation
inhibitors, and induction of bone formation resulting from
differentiation of pericytes and/or vascular smooth muscle
cells (Nakahara et al., 2017). Therefore, the distribution of
calcifications is discontinuous with irregular geometry. It was
observed that calcification itself exists in a diverse range
of morphologies from spherical microcalcifications to large
irregular-shaped macrocalcifications (Cahalane and Walsh,
2021). Additionally, the calcification geometry extracted from
CCTA images is influenced by the image quality and the
blooming artefact (Liu et al., 2021). Due to the limited resolution
of imaging techniques, detailed shape features of calcifications
have not been analysed (Shi et al., 2020a). The shape of
calcification was found to be significantly related to the rupture of
carotid plaques where the calcifications in the ruptured plaques
displayed a remarkably lower ratio between the long axis and

the short axis (Shi et al., 2020b). Therefore, the 3D geometry
of coronary calcification may provide valuable information to
improve the diagnosis and prognosis of CAD, which deserves
further investigation.

This study has some limitations. Firstly, only 19 subjects
were included in this pilot study, in which there was no
plaque rupture. All the plaques were from the left coronary
arteries. The size and composition of plaques vary across
different epicardial coronary arteries (Bax et al., 2021) and
are influenced by some physiological factors, such as age and
gender (Khosa et al., 2013). The plaque diversity deserves further
consideration. Secondly, the plaques were manually extracted,
which is time-consuming, unstandardized, and difficult for large-
scale clinical application. Finally, we focused on the geometry
of the plaques. The relationship between plaque geometry
and other pathophysiological factors, including local coronary
artery geometry and medical history of CAD, deserves further
investigation. In future studies, the large-scale study based on
automatic extraction algorithms of plaque and calcification could
be considered to cover different types of coronary plaques
and subjects. The geometry of calcification could be further
investigated using more accurate imaging technologies (e.g.,
IVUS). Based on the large-scale data, the relationship between
the plaque geometry and the pathophysiological factors of CAD
could be investigated.

CONCLUSION

The coronary plaques with different sizes showed consistency in
geometry with power function relationships between geometric
parameters of different dimensions. The calcifications and
plaques are significantly related in terms of number and
total volume.
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Mitochondria fulfill the cell’s energy demand and affect the intracellular calcium (Ca2+)
dynamics via direct Ca2+ exchange, the redox effect of reactive oxygen species
(ROS) on Ca2+ handling proteins, and other signaling pathways. Recent experimental
evidence indicates that mitochondrial depolarization promotes arrhythmogenic delayed
afterdepolarizations (DADs) in cardiac myocytes. However, the nonlinear interactions
among the Ca2+ signaling pathways, ROS, and oxidized Ca2+/calmodulin-dependent
protein kinase II (CaMKII) pathways make it difficult to reveal the mechanisms. Here, we
use a recently developed spatiotemporal ventricular myocyte computer model, which
consists of a 3-dimensional network of Ca2+ release units (CRUs) intertwined with
mitochondria and integrates mitochondrial Ca2+ signaling and other complex signaling
pathways, to study the mitochondrial regulation of DADs. With a systematic investigation
of the synergistic or competing factors that affect the occurrence of Ca2+ waves and
DADs during mitochondrial depolarization, we find that the direct redox effect of ROS
on ryanodine receptors (RyRs) plays a critical role in promoting Ca2+ waves and DADs
under the acute effect of mitochondrial depolarization. Furthermore, the upregulation of
mitochondrial Ca2+ uniporter can promote DADs through Ca2+-dependent opening
of mitochondrial permeability transition pores (mPTPs). Also, due to much slower
dynamics than Ca2+ cycling and ROS, oxidized CaMKII activation and the cytosolic
ATP do not appear to significantly impact the genesis of DADs during the acute phase
of mitochondrial depolarization. However, under chronic conditions, ATP depletion
suppresses and enhanced CaMKII activation promotes Ca2+ waves and DADs.

Keywords: delayed afterdepolarization, Ca2+ wave, mitochondrion, cardiac cell, Ca2+ signaling

INTRODUCTION

Delayed afterdepolarizations (DADs) are abnormal depolarizations during the diastolic phase
following an action potential (AP) and could trigger cardiac arrhythmias (Rosen et al., 1984; January
and Fozzard, 1988; Katra and Laurita, 2005; Qu et al., 2014; Song et al., 2017). DADs are known to
be caused by spontaneous calcium (Ca2+) waves (Rosen et al., 1984; Marban et al., 1986; January
and Fozzard, 1988), occurring due to spontaneous Ca2+ release from the intracellular Ca2+ store,
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sarcoplasmic reticulum (SR), via the ryanodine receptors (RyRs).
Ca2+ waves are known to be promoted by Ca2+ overload under
normal (Cheng et al., 1996) and pathological conditions, such
as heart failure (Pogwizd and Bers, 2003; Hoeker et al., 2009),
long QT syndrome (Mohler et al., 2003), ischemia (Ross and
Howlett, 2009), and catecholaminergic polymorphic ventricular
tachycardia (CPVT) (Watanabe et al., 2009). During a cardiac
cycle, Ca2+ enters into the cytosol from the extracellular space
mainly via L-type Ca2+ channels (LCCs) during membrane
depolarization, which causes Ca2+ release from the SR, a
process called Ca2+-induced Ca2+ release (CICR; Bers, 2002).
Ca2+ is extruded from the cell mainly through the Na+-Ca2+

exchanger (NCX) and taken back to the SR through sarcoplasmic
reticulum Ca2+-ATPase (SERCA). Meanwhile, mitochondria,
as another Ca2+ store, are involved in intracellular Ca2+

cycling via mitochondrial Ca2+ uniporter (MCU; Baughman
et al., 2011; De Stefani et al., 2011), mitochondrial Na+-Ca2+

exchangers (mNCX; Palty et al., 2010), and the mitochondrial
permeability transition pore (mPTP; Hunter et al., 1976).
Besides the direct Ca2+ exchange, mitochondria may indirectly
alter the cytosolic Ca2+ dynamics through many different
ways under abnormal conditions (Yan et al., 2008; Florea
and Blatter, 2010; Zhao et al., 2013; Xie et al., 2018), thus
impacting Ca2+ waves and DADs. Under normal conditions,
the occurrence of mitochondrial depolarizations through the
mPTP opening is rare (Lu et al., 2016). However, the mPTP
open probability increases in abnormal conditions, resulting in
a higher degree of mitochondrial depolarization in the cell. The
critical consequences that affect intracellular Ca2+ dynamics
include an increased cytosolic reactive oxygen species (ROS)
level, enhanced Ca2+/calmodulin-dependent protein kinase II
(CaMKII) activation via oxidative stress, Ca2+ influx into
the cytosol from the mitochondria, and a decrease in the
cytosolic ATP level, etc.

Reactive oxygen species can directly affect the RyRs
hyperactivity and SERCA pump strength via its redox effect
(Zima and Blatter, 2006; Wagner et al., 2013) or indirectly
via oxidized CaMKII signaling (Xie et al., 2009; Foteinou
et al., 2015). CaMKII activation is known to increase SERCA
pump through phosphorylation of phospholamban (Hund
and Rudy, 2004; Mattiazzi and Kranias, 2014), make RyRs
leakier (Ai et al., 2005), and modulate LCCs and other
membrane ionic currents (Anderson et al., 1994; Xiao et al.,
1994; Yuan and Bers, 1994; Hund and Rudy, 2004; Hund
et al., 2008). Furthermore, ATP depletion impairs the SERCA
pump function (Sakamoto and Tonomura, 1980). Due to
their highly complex interactions, it is difficult to dissect
out the individual roles of mitochondrial Ca2+ exchange,
ROS, ATP, and CaMKII activation in the genesis of DADs
during mitochondrial depolarization by experiments. We
have recently developed a whole-cell ventricular myocyte
model consisting of a network of intermingled Ca2+

release units (CRUs) and mitochondria, which contains
physiological details of mitochondrial membrane potential,
mitochondrial Ca2+ cycling, mPTP stochastic opening and
closing, intracellular ROS, and oxidized CaMKII signaling.
Using this model, we have investigated the underlying

mechanisms of Ca2+ alternans and early afterdepolarizations
caused by mitochondrial depolarization and dissected each
of the components (Xie et al., 2018; Song et al., 2019;
Pandey et al., 2021).

We used this model to investigate the underlying
mechanisms of spontaneous Ca2+ release mediated DADs
under mitochondrial depolarization due to mPTP openings
in the present work. Specifically, we performed computer
simulations to reveal individual contributions of the components
mentioned earlier to the genesis of Ca2+ waves and DADs.
Our previous work provided mechanistic insights of generation
of Ca2+ alternans under mitochondrial depolarization, and
we have reported that the redox effect of ROS on RyRs and
SERCA pump synergistically promote alternans (Pandey et al.,
2021). Here, we show that the ROS redox regulation of RyRs
plays a significant role in the genesis of Ca2+ waves and
DADs during the acute phase of mitochondrial depolarization.
Also, upregulation of MCU can promote DADs through
Ca2+-dependent openings of mPTPs. However, the changes
of oxidized CaMKIIs activation and the cytosolic ATP level
are at much slower time scales than the redox effects of ROS,
and thereby, they do not significantly impact the genesis
of DADs in a relatively short duration after mitochondrial
depolarization. Whereas, under chronic conditions, ATP
depletion suppresses and enhanced CaMKII activation promotes
the Ca2+ waves and DADs.

MATERIALS AND METHODS

The details of the model, including the mathematical
formulations and control values of the parameters, can be
found in Song et al. (2019) and Pandey et al. (2021). Here,
we describe some of the essential aspects of the model for the
sake of this study.

The Overall Ventricular Myocyte Model
Structure
Our rabbit ventricular myocyte model consists of a 3-dimensional
coupled network of CRUs and mitochondria. This network
contains 21504 (64 28 12) CRUs and 5376 (64 14 6)
mitochondria. The membrane potential (V) of the cell is
described by

Cm
dV
dt
= INa + INa,L + ICa,L + INCX + IK1 + IKr + IKs + Ito,f

+Ito,s + INaK + IK,ATP + ICa,b − Isti (1)

where Cm = 1 mF/cm2 is the cell membrane capacitance, and Isti
is the stimulus pulse with the current density being−80 mA/cm2

and the duration being 0.5 ms.

Regulations of Reactive Oxygen Species
and CaMKII on Ryanodine Receptors
The oxidized CaMKII activation and the redox effect of ROS
both increase the open probability of RyRs (Wehrens et al., 2004;
Ai et al., 2005; Guo et al., 2006; Zima and Blatter, 2006;
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Wagner et al., 2013). To incorporate these effects, the close-to-
open rate (k12) of RyRs was modeled as follows:

k12 = kbaseku
(
1+4kCaMKII +4kROS

) ([
Ca2+]

p

)2
(2)

4kCaMKII =
1kCaMk,max

1+
(

1kCaMRyR
[CamKII]act

)hCaMKIIyR
(3)

4kROS =
1KROS,max

1+
(

1kmROSRyR
[ROS]cyt

)hROSRyR (4)

where 4kCaMKII and 4kROS are the CaMKII-dependent (Eq. 3)
and ROS-dependent components (Eq. 4), respectively. kbase and
ku are the rate constants.

[
Ca2+]

p is the Ca2+ concentration in
the dyadic space of a CRU. [CaMKII]act and [ROS]cyt are the
CaMKII activation level and the cytosolic ROS concentration
in each CRU, respectively. The increase in CaMKII activation
and ROS level increase k12, which in turn increases the open
probability of RyRs.

Regulations of Reactive Oxygen Species
and CaMKII on Sarcoplasmic Reticulum
Ca2+-ATPase Pump
The formulation of SERCA is

Jup = vupf up,ATP fup,ROS

[
Ca2+]2

i[
Ca2+

]2
i + (Ki − PLB ([CaMKII]act))2

(5)
where fup,ATP, and fup,ROS are ATP and ROS-dependent functions
(Song et al., 2019):

fup,ATP =
1

1+ [ADP]fk′i,up
+

(
1+ [ADP]fki,up

)
kmupATP
[ATP]

(6)

fup,ROS =
1

1+
( [ROS]cyt

kd,ros

)hros,SERCA + 0.75

1+
(

kd,ros
[ROS]cyt

)hros,SERCA
(7)

vup is the maximum SERCA strength and Ki the half-
maximum value. PLB ([CaMKII]act) is a CaMKII dependent
function. [CaMKII]act is CaMKII activation level in the
cytosolic space of a CRU.

The Mitochondrial Permeability
Transition Pore Model
We used a 3-state (two close states C0 and C1, and an open state
O) Markov model to simulate the stochastic opening and closing
of the mPTP. The transition rate from the C0 state to the C1 state,
kc0c1, is set as:

kc0c1 = α0

1+ 199 ∗

[
Ca2+]hmPTP

m[
Ca2+]hmPTP

m +
[
Ca2+]hmPTP

0

 (8)

where hmPTP is the Hill coefficient,
[
Ca2+]

m is the mitochondrial
free Ca2+ in the corresponding mitochondrion, and

[
Ca2+]

0
is the half-maximum value. We assume that other transition
rates are constants. To simulate different levels of mPTP open
probability, we multiplied a factor, αmPTP, to the transition rate
from C1 to O, k0

c10, i.e.,

kc1o = αmPTPk0
c1o (9)

RESULTS

Mitochondrial Depolarization Due to
Openings of Mitochondrial Permeability
Transition Pore Promotes Spontaneous
Ca2+ Release and Delayed
Afterdepolarizations
We investigated the impact of mitochondrial depolarizations on
the occurrence of Ca2+ waves and DADs via mPTP opening.
We performed simulations over a wide range of αmPTP values
at the PCL of 300 ms (Figure 1A). αmPTP is a factor multiplied
to transition rate of mPTP opening, and increasing its value
results in higher mPTP opening. For each simulation, the
cell was paced for 140 beats (42 s), following 3 s without
pacing in order to observe Ca2+ waves and DADs. As shown
in Figure 1A, the amplitude of DAD increases with αmPTP,
suggesting that mitochondrial depolarization due to openings
of mPTP promotes spontaneous Ca2+ release and DADs. Also,
when αmPTP is greater than∼50, the proarrhythmic effect appears
to saturate. Under the control condition (αmPTP = 1), there
is no occurrence of DADs (Figures 1A,B). The cytosolic ROS
is ∼2 µM, CaMKII activation is ∼0.2%, the cytosolic ATP
is ∼5 mM, and most of the mitochondria remain repolarized
(−1ψ = ∼180 mV, and the mPTP open probability ∼0.8%,
mitochondrial Ca2+ amplitude is ∼0.8 µM) (Figure 1B).
However, with the higher open probability of mPTP (∼42%,
for αmPTP = 60), we observed DADs. The corresponding line-
scan image clearly shows enhanced spontaneous Ca2+ release
as compared to a few scattered Ca2+ sparks under the control
condition (Figure 1C). In this case, we should note that the
mitochondrial Ca2+ amplitude increased to ∼1.2 M, and the
cytosolic ROS drastically increased to∼86 µM. Still, the CaMKII
activation and the cytosolic ATP level insignificantly changed
(∼0.6% and∼4.8 mM, respectively).

Role of Reactive Oxygen Species in the
Genesis of Delayed Afterdepolarizations
The concentration of the cytosolic ROS depends on the level
of mitochondrial depolarization, and thus, increasing αmPTP
increases the open probability of mPTP, which, in turn, elevates
the level of cytosolic ROS. To further identify the role of cytosolic
ROS in the genesis of DADs, we performed simulations for
a clamped ROS level at the PCL 300 ms. In the free-running
ROS case as shown in Figure 1, the ROS dynamics in the
model remains intact, while in the clamped ROS condition, the
cytosolic ROS is clamped to a constant regardless the level of
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FIGURE 1 | Mitochondrial depolarization via mPTP opening promotes DADs. (A) The amplitude of DADs vs. αmPTP. The resting potential is –86.0 mV. Note that for
the range of αmPTP in these simulations, we observed only one DAD after stopping pacing. (B) Time traces of V,

[
Ca2+

]
i ,
[
Ca2+

]
JSR,

[
Ca2+

]
m, PmPTP, −4ψ ,

[ROS]cyt, [CaMKII]act, [ATP]cyt for normal control (αmPTP = 1) in black and mitochondrial depolarization conditions (αmPTP = 60) in red, respectively. The pacing
cycle length is 300 ms, and we stopped pacing after 140 beats (i.e., 42 s). This pacing protocol was used throughout the whole study. (C) Linescan images of the
cytosolic Ca2+ for normal (top) and mitochondrial depolarization (bottom) conditions as in panel (B).

mitochondrial depolarization is. Here we clamped ROS to be
1.0 µM, which is close to the level under the normal control
condition. We then measured the amplitude of DAD with
different αmPTP values for the clamped ROS (Figure 2, red)
condition. We observed that when the ROS was clamped at the
control level (1.0 µM), no DADs occurred, suggesting that the
cytosolic ROS plays a critical role in inducing DADs during
mitochondrial depolarization.

Furthermore, the cytosolic ROS is known to alter the
characteristics of both SERCA and RyRs (Zima and Blatter, 2006;
Wagner et al., 2013). Therefore, we investigated the redox effect
of ROS on the RyRs and SERCA pump separately to dissect out
its individual role. We observed that DADs disappeared when
we removed the redox effect of ROS on the RyRs (Figure 2,
green). However, removing the redox effect on SERCA did not
significantly impact the amplitude of DADs (Figure 2, blue),
suggesting that the redox effect on SERCA may not play a critical
role in the genesis of DADs. In fact, the direct redox effect of ROS
inhibits the SERCA pump activity. Thus, removing the redox
effect on SERCA increased the SR Ca2+ load instead, causing
higher amplitudes of DADs. For instance, at αmPTP = 20, the

amplitude of DAD is 7.17 mV when the redox effect of ROS is
only exerted on RyRs (Figure 2, blue), but 6.84 mV under control
as shown in Figure 1A.

Role of the Mitochondrial Ca2+ in the
Genesis of the Delayed
Afterdepolarizations
Several studies have shown that under certain pathological
conditions, MCU activity is enhanced (Santulli et al., 2015;
Xie et al., 2018), which may elevate the mitochondrial free
Ca2+. Our previous study (Song et al., 2019) showed that the
increase of MCU up to 20-fold does not alter cytosolic Ca2+

markedly at the steady-state. However, we hypothesize that the
higher mitochondrial Ca2+ due to MCU overexpression could
increase the mPTP open probability and cause higher ROS
production in the cytosol (Korge et al., 2011). To test this
hypothesis, we performed simulations to examine the effect of
MCU overexpression on the genesis of DADs.

We multiplied a factor, denoted as αMCU , to the maximal
MCU conductance. αMCU = 1 represents the control case and
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FIGURE 2 | The Redox effect of cytosolic ROS on RyR facilitates the genesis
of DADs. The mean and standard deviation of the DAD amplitude vs. αmPTP

for three different conditions: clamped cytosolic ROS level at 1.0 µM (red
circles), the redox effect of ROS only exerted on RyRs (blue squares), and the
redox effect of ROS only exerted on SERCA (black triangles). The removal of
the redox effect of ROS on RyRs and SERCA was executed by setting
4kROS = 0 in Eq. 2, and fup,ROS = 1 in Eq. 5, respectively. Ten random
trials were performed for each given αmPTP value.

higher αMCU values are used to represent the different levels of
MCU activity. We plotted in Figure 3A the amplitude of DADs
for different αMCU and αmPTP. We observed that at αmPTP = 1,
increasing the MCU activity did not result in DADs even for
αMCU = 50. When αmPTP becomes greater, the effect of MCU
on promoting DADs appears to be more significant. Time traces
of membrane voltage, the whole-cell averaged cytosolic Ca2+

and the mitochondrial free Ca2+ for the three marked locations
in the phase map (Figure 3A) are shown in Figure 3B. These
results indicate that increasing MCU activity could promote
spontaneous Ca2+ release and DADs. The mechanism revealed
in the model is that increasing MCU activity elevates the
mitochondrial free Ca2+, which increases the open probability
of mPTP, resulting in the elevation of the cytosolic ROS, which in
turn promotes the spontaneous Ca2+ release and DADs.

Role of Oxidized CaMKII Activation and
ATP in the Genesis of Delayed
Afterdepolarizations
As seen in Figure 1B, the CaMKII activation and ATP appeared
to change slowly during the simulations due to the slow

kinetics in the governing equations of their dynamics. It is
computationally cumbersome to run long simulations (up to
several thousand beats) for these variables to reach their steady
states. Therefore, to evaluate the individual role of CaMKII
activation and ATP in the genesis of DADs, we clamped them to
different constant values, respectively.

Figure 4A shows the relationship between the amplitude of
DADs and the CaMKII activation level. Our results clearly show
that increasing CaMKII activation promotes DADs. However,
due to its slow kinetics, CaMKII activation insignificantly
changes during the acute phase of mitochondrial depolarization
(Figure 1B), suggesting that CaMKII activation may not play
a primary role in the genesis of DADs during the short period
immediately after mitochondrial depolarization. Still, it may
promote DADs chronically due to its regulation on SERCA, LCC,
and RyRs (Wang et al., 2020).

Since the SERCA pump requires ATP for its normal function,
a lower level of ATP directly impairs the SERCA pump activity
(Eq. 5). However, ATP depletion is a slow process, which is
evident from Figure 1B. Hence, we clamped ATP at different
levels for αmPTP = 30 from the beginning of the simulations.
Figure 4B plots the relationship between the amplitude of
DADs and the cytosolic ATP concentration, and it shows
that ATP depletion suppresses DADs during mitochondrial
depolarization (αmPTP = 30). Our results demonstrate that
the cytosolic ATP level has a significant impact on the
genesis of DADs. However, the depletion of the cytosolic
ATP concentration during mitochondrial depolarization is a
relatively slow process. Therefore, ATP depletion should not
play a central role in the genesis of DADs during the acute
phase of mitochondrial depolarization. Thus, similar to CaMKII
activation, ATP depletion may only suppress DADs in a much
longer time scale.

DISCUSSION

We used a physiological detailed ventricular myocyte model
consisting of a 3D network of coupled CRUs and mitochondria

A B

FIGURE 3 | Mitochondrial Ca2+ Uniporter upregulation enhances the genesis of DADs through Ca2+- dependent opening of mPTP. (A) Dependence of the DAD
amplitude on αMCU and αmPTP. (B) Time traces of V,

[
Ca2+

]
i , and

[
Ca2+

]
m for the (αmPTP, αMCU ) coordinates as marked in panel (A), following the same color

codes. The zoomed-in sections of DAD and spontaneous Ca2+ oscillation are shown in the corresponding insets.
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A B

FIGURE 4 | Effect of CaMKII activation and ATP depletion on the genesis of
DADs.The mean and standard deviation of the DAD amplitude under three
clamped CaMKII activation (A) and ATP (B) levels, respectively. αmPTP = 30.
Ten random trials were performed for each clamped CaMKII activation or ATP
level.

to investigate the roles of mitochondrial depolarization via mPTP
opening in the genesis of DADs. The systematic investigation
of individual roles, including the cytosolic ROS, mitochondrial
Ca2+, CaMKII activation, and the cytosolic ATP, reveals that
the redox effect of ROS on RyRs may play an essential
role in the occurrence of DADs during the acute phase of
mitochondrial depolarization. Furthermore, increasing the MCU
activity could promote DADs by increasing the mPTP open
probability through mitochondrial Ca2+ dependent kinetics of
mPTP. In addition, oxidized CaMKII activation promotes, and
ATP depletion suppresses DADs chronically in the condition of
mitochondrial depolarization.

Role of Reactive Oxygen Species,
CaMKII Activation and ATP Depletion on
the Genesis of Delayed
Afterdepolarizations
Experimental findings reported that the mitochondria
depolarization through the application of FCCP promotes Ca2+

waves (Zhao et al., 2013). Furthermore, the effects of FCCP were
counteracted by the application of mPTP blocker cyclosporine A
(Zhao et al., 2013). Also, our previous experimental observations
using cyclophilin D knockout mouse model showed attenuation
of Ca2+ waves (Gordan et al., 2016). Elevation of cytosolic
ROS during mPTP opening could be a significant factor, and
experimental evidence showed that oxidative stress during
mitochondrial depolarization slightly alters SR Ca2+ leaks (Ca2+

spark) amplitude but drastically increases its frequency (Yan
et al., 2008; Zhou et al., 2011; Williams et al., 2013). Furthermore,
ROS can oxidize CaMKII and enhance its activation. It has been
shown that ROS and CaMKII activation act on the major Ca2+

handling proteins, such as RyRs and SERCA (Hund and Rudy,
2004; Wehrens et al., 2004; Ai et al., 2005; Guo et al., 2006;
Zima and Blatter, 2006; Wagner et al., 2013). The direct redox
effect of ROS increases the leakiness of RyRs and decreases the
strength of SERCA (Zima and Blatter, 2006; Wagner et al., 2013),
whereas CaMKII activation increases both the leakiness of RyRs
and the strength of SERCA (Hund and Rudy, 2004; Ai et al.,
2005; Mattiazzi and Kranias, 2014). Thus, the observed Ca2+

waves in experiments during mitochondrial depolarization are
the consequences of the combined effects of the above factors.
However, what is the primary player remains unclear. Here,
by using our previously established physiologically detailed
computer model, we show that our simulation results agree with
the experimental observations that mitochondrial depolarization
could induce spontaneous Ca2+ release and DADs. Furthermore,
we found that it is the redox effect on RyRs that causes the DADs
under the acute effect of mitochondrial depolarization, and the
redox effect of ROS on reducing SERCA strength may not be
sufficient to suppress DADs (Figure 2).

In addition, we indeed observed an increase in CaMKII
activation due to the mPTP opening (Figure 1B), but the
dynamics of CaMKII activation appeared much slower than that
of the ROS. The CaMKII activation was increased from ∼0.2%
under control to∼0.6% during the mitochondrial depolarization
for a 45-sec long simulation (Figure 1B). A further simulation
showed that CaMKII activation could reach up to ∼40% for a
much more extended duration (1200 s). These results suggest
that CaMKII activation may be too slow to play an essential
role in inducing DADs under the acute effect of mitochondrial
depolarization. However, simulations with different clamped
CaMKII activation levels reveal that CaMKII activation may play
a vital role in causing spontaneous Ca2+ release and DADs
chronically, since a higher CaMKII activation level caused a
greater DAD amplitude (Figure 4A).

Similarly, we have observed a slight change in cytosolic ATP
under the acute effect of mitochondrial depolarizations in our
simulations (Figure 1B). Therefore, within a relatively short
duration after mitochondrial depolarization, ATP may not be
involved in the genesis of spontaneous Ca2+ release and DADs.
Clamped ATP simulations showed that a lower cytosolic ATP
level is linked to a smaller amplitude of DADs (Figure 4B). This
is because the reduction of ATP impaired SERCA activity and
suppress the DADs, which agree well with experimental evidence
that ATP synthase inhibitor, oligomycin, does not promote DADs
(Zhao et al., 2013). Although ATP reduction seems to suppress
Ca2+ waves and DADs, our simulations and other’s experimental
work suggest that ATP reduction could promote Ca2+ alternans,
which is still arrhythmogenic (Hüser et al., 2000; Kockskämper
et al., 2005; Zima and Blatter, 2006; Pandey et al., 2021).

Mitochondrial Ca2+ Uniporter
Overexpression and Delayed
Afterdepolarizations
Mitochondrial Ca2+ uptake has been reported to rise in heart
failure (Santulli et al., 2015; Xie et al., 2018) and can promote
EADs (Xie et al., 2018) and Ca2+ alternans (Pandey et al.,
2021). Our previous work demonstrated MCU upregulation
could promote EADs in heart failure conditions without mPTP
openings (Xie et al., 2018). And MCU upregulation promotes
Ca2+ alternans through the Ca2+ dependent opening of mPTPs
(Pandey et al., 2021). The previous experiment by Zhao et al.
(2013) reported that the mitochondrial Ca2+ efflux in the
proximity of the junctional SR played an essential role in the
regulation of Ca2+ waves. Furthermore, our previous study has
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shown that MCU overexpression can lead to Ca2+ overload in
mitochondria (Song et al., 2019). Also, there is evidence that
mitochondrial Ca2+ overload can cause the Ca2+-dependent
opening of mPTP (Kwong and Molkentin, 2015), resulting
in mitochondrial depolarization (Santulli et al., 2015). Here,
our simulation study shows that increasing MCU activity
promotes spontaneous Ca2+ release and DADs (Figure 3).
The underlying mechanism revealed in our simulations is that
increasing MCU activity enhanced mitochondrial depolarization
through the Ca2+-dependent openings of mPTP, which resulted
in spontaneous Ca2+ release primarily due to the direct redox
effect of ROS on RyRs.

Pathophysiological and Clinical
Relevance
Mitochondrial dysfunction has been associated with increased
arrhythmic risk (Santulli et al., 2015; Shimizu et al., 2015; Xie
et al., 2015, 2018; Gordan et al., 2016), which could account
for mortality in many cardiac diseases such as cardiomyopathy,
heart failure, and ischemia/reperfusion injury (IRI). We have
demonstrated that the direct redox effect of ROS on RyRs
plays a critical role in promoting Ca2+ waves and DADs under
the acute effect of mitochondrial depolarization. Furthermore,
the upregulation of MCU can promote DADs through Ca2+-
dependent opening of mPTPs. These findings suggest that
pharmacological interventions targeted at avoiding ROS buildup
and MCU upregulation may provide novel therapeutics to
prevent or treat cardiac arrhythmias.

Limitations
This detailed model coupled AP, CRUs, and mitochondria
to capture excitation-contraction-metabolism coupling in
ventricular myocytes. However, it has some limitations. For
instance, heterogeneities in T-tubule networks and distributions
of ion channels and Ca2+ handling proteins are a few
examples (Soeller and Cannell, 1999; Baddeley et al., 2009)
that should be considered in the future analysis. These

heterogeneities in T-tubule networks may alter the genesis of
DADs (Song et al., 2018).

We note that in Figure 3A, for αmPTP = 1, there was virtually
no DAD occurring even with αMCU = 50, suggesting that
the proposed mechanism of increasing MCU activity inducing
DADs in this study requires a certain basal level of mPTP
opening. In this model, we consider the mPTP gating kinetics
only mitochondrial Ca2+ dependent. However, the ROS-induced
ROS release mechanism also impacts the mPTP open probability
(Zorov et al., 2000, 2006), which is essential for modeling
mitochondrial depolarization waves (Yang et al., 2010; Zhou
et al., 2010; Nivala et al., 2011). Thus, this ROS-induced ROS
release mechanism may provide another critical positive feedback
loop between mitochondrial and cytosolic Ca2+ instability. In
the future, the ROS-induced ROS release will be added to
our model to study the role of mitochondrial depolarization
waves in the genesis of arrhythmias in diseased conditions, such
as heart failure.
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Remote ECG diagnosis has been widely used in the clinical ECG workflow. Especially for

patients with pacemaker, in the limited information of patient’s medical history, doctors

need to determine whether the patient is wearing a pacemaker and also diagnose

other abnormalities. An automatic detection pacing ECG method can help cardiologists

reduce the workload and the rates of misdiagnosis. In this paper, we propose a novel

autoencoder framework that can detect the pacing ECG from the remote ECG. First,

we design a memory module in the traditional autoencoder. The memory module is to

record and query the typical features of the training pacing ECG type. The framework

does not directly feed features of the encoder into the decoder but uses the features

to retrieve the most relevant items in the memory module. In the training process, the

memory items are updated to represent the latent features of the input pacing ECG. In

the detection process, the reconstruction data of the decoder is obtained by the fusion

features in the memory module. Therefore, the reconstructed data of the decoder tends

to be close to the pacing ECG. Meanwhile, we introduce an objective function based

on the idea of metric learning. In the context of pacing ECG detection, comparing the

error of objective function of the input data and reconstructed data can be used as an

indicator of detection. According to the objective function, if the input data does not

belong to pacing ECG, the objective function may get a large error. Furthermore, we

introduce a new database named the pacing ECG database including 800 patients with

a total of 8,000 heartbeats. Experimental results demonstrate that our method achieves

an average F1-score of 0.918. To further validate the generalization of the proposed

method, we also experiment on a widely used MIT-BIH arrhythmia database.

Keywords: electrocardiogram signals, autoencoder, heartbeat arrhythmias detection, metric learning, attention

mechanism

1. INTRODUCTION

The electrocardiogram (ECG) is an important tool in the everyday practice of clinical medicine
(Hannun et al., 2019), especially for patients who are fitted with a pacemaker. The application
of a pacemaker effectively alleviates the condition of patients with heart disease and extends the
survival period of patients. But these patients require regular in-hospital checks of the pacemaker
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and cardiac abnormalities. Therefore, remote cardiac monitoring
for pacemaker patients becomes increasingly important.
To find cardiac abnormalities in time, computer-aided
diagnosis provides real-time ECG analysis without any manual
intervention by physicians.

The pacing ECG detection still confronts many challenges.
First, the procedure of remote ECG diagnosis only contains
ECG signals from the patients, and doctors cannot check
the patient’s medical history in advance. Second, there are
different performances inmorphological features between pacing
ECG and routine ECG for the same disease. And in clinical
ECG data, the ECG morphology of the pacemaker patient is
interfered with by the pacemaker, which brings disturbance
to the ECG abnormality diagnosis. For example, ventricular
pacing is often confused with the left bundle branch block of
routine ECG. Suppose we do not inform the doctor that the
remote ECG data comes from a pacemaker patient. In that
case, the doctor may diagnose certain pacing heart rhythms
as other abnormalities of the routine ECG. To solve the
above problems, we constructed an extensive, novel ECG
database named Pacing ECG Database, which includes 800
samples of ECG data annotated by the clinician. To the
best of our knowledge, this is the first ECG signals database
faced with pacing ECG. The automatic recognition of the
pacemaker provides a solid guide to distinguish abnormal ECG
accurately, which can improve the performance of abnormal
ECG classification.

Motivated by the recent success of autoencoder as a time
series detection tool, several promising autoencoder for ECG
abnormality detection have been proposed. Specifically, it is
generally assumed that the reconstruction error trained by the
traditional autoencoder will be lower for the training data

FIGURE 1 | The ECG abnormality detection via the proposed MAE. A sample of training on the pacing ECG database, the memory module records the latent features

of the corresponding training ECG type. Given an input sample of other types, the MAE queries the most correlation latent features in the memory module for data

reconstruction, resulting in an output significantly different from the input data. But if the input sample belongs to the training type. The MAE can reconstruct very well

according to the memory module.

of the input type. In contrast, reconstruction error becomes
significant for other abnormalities. Therefore, the autoencoder
(AE) is trained by minimizing the reconstruction error in
each class and then utilizes an objective function based on
reconstruction error to classify ECG abnormalities. However,
many works have proved that autoencoder’s generalization
ability can sometimes well express other abnormal samples
that the inputs do not belong to the training type (Zong
et al., 2018; Gong et al., 2019). This is because the decoder is
powerful for decoding some abnormal encodings well, so the
AE sometimes also gets a lower reconstruction error for other
ECG abnormalities.

To improve the drawback of traditional AEs, we propose a
new model of memory-based autoencoder (MAE) for pacing
ECG detection, as illustrated in Figure 1. In the MAE model,
we first utilize a deep autoencoder to extract the typical features
of high-dimensional ECG data. But the decoder of MAE does
not directly reconstruct the data from the encoding. We added a
memory module between the encoder and decoder. The memory
module is to record and query the typical features of the training
pacing ECG type. MAE does not directly feed features of encoder
into the decoder but uses the features to retrieve the most
relevant items in memory module. Those features are aggregated
and delivered to the decoder. Meanwhile, we further utilize a
sparse coding strategy to induce sparsity for the memory module,
which can easily match the memory items to the query of the
feature space.

We are also inspired by metric learning. The goal of metric
learning is to learn a distance metric that puts the same positive
types close together and negative types far away. In this paper, the
MAE is trained by minimizing the error of objective function on
the pacing ECG and then uses the error of objective function as
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an indicator of pacing ECG detection. In the training process, the
features of the pacing ECG are learned and stored by the MAE
model. The purpose is to obtain a lower reconstruction error for
pacing ECG. In the detection process, the reconstruction data of
the decoder is fused with the features in the memory module.
Because the reconstruction data is obtained from the feature
of the pacing ECG in the memory module, the output of the
decoder tends to be close to the pacing ECG. In the results, if the
input data does not belong to pacing ECG, the objective function
may get a significant error. The proposed MAE is not only for
detecting the pacing ECG but also can be applied to solve other
ECG abnormality detection. We also apply the proposed MAE
on the MIT-BIH Arrhythmia Database. The experiments
prove the excellent generalization and effectiveness of
the model.

To summarize, the contributions of this paper are as follows.

(1) A novel autoencoder framework named MAE is proposed
to detect the pacing ECG. The memory module is added
between the encoder and decoder. The memory module is
used to record the features of the training data.

(2) We introduce a new objective function that is based on
metric learning, which can better represent the error among
the different types. Because of the memory module, the
reconstruction tends to be close to the training types. When
the input types are not similar to the training types, the
objective function has a significant score.

(3) We collect a new database named Pacing ECG Database for
evaluation of the MAE framework. The database includes
800 annotated samples and each ECG data is de-identified
according to the privacy policy.

(4) The experiments conducted on Pacing ECG Database,
demonstrate that the proposed MAE reliably improves
the performance of pacing ECG. To further validate the
generalization, the MAE framework is also applied on MIT-
BIHArrhythmiaDatabase and is superior to the state-of-the-
art detectors.

This reminder of the paper is organized as follows. Section 2
presents the related works. Section 3 introduces the proposed
memory-based autoencoder method. The experimental results
and analysis are given in section 4. Finally, section 5 concludes
this paper.

2. RELATED WORK

In recent years, many approaches have been proposed to
automatically process physiological signals in the field of artificial
intelligence (Gao et al., 2018; Wang et al., 2020; Yao et al.,
2020; Zhou and Tan, 2020). For abnormal ECG detection, the
performance is consistently improved in terms of accuracy on
major challenges and benchmarks, such asMIT-BIH (Moody and
Mark, 2001), CPSC_2018 (Liu et al., 2018a). Nevertheless, there
are few solutions for pacing ECG, which pacing ECG is only
regarded as a kind of ECG abnormality in the classification task.
In this paper, we focus on improving the accuracy detection of
pacing ECG.

2.1. ECG Abnormality Classification
Cardiovascular diseases can be divided into cardiomyopathy,
ischemic heart disease, myocardial infarction and so on (Hao
et al., 2021). Many clinicians focused on using computer-
aided diagnosis to detect one of the heart diseases (Baloglu
et al., 2019). For example, Adam et al. (2018) focused on
classifying hypertrophic heart disease, dilated cardiomyopathy,
hypertrophic cardiomyopathy. Many researchers are interested
in studying ECG bundle branch block, which is heart disease
with high mortality. It can be divided into the left bundle branch
block (LBBB) and the right bundle branch block (RBBB) (Zhang
et al., 2012). There is also a part of clinical research that focused
on the use of electrocardiograms to detect specific abnormalities
such as myocardial infarction (Liu et al., 2018b; Baloglu et al.,
2019).

Some approaches have been devoted to improving the
performance of ECG abnormality diagnosis in recent years
(Mondéjar-Guerra et al., 2019; Hao et al., 2021; Wang et al.,
2021). The signal processing is essential for clinical monitoring.
Typically, one kind of methods (Mondéjar-Guerra et al., 2019;
Wang et al., 2021) is to diagnose ECG on features of high-
dimensional space with rich fine features of ECG abnormalities.
In previous studies on ECG abnormality classification, which
focused on preprocessing to segment the raw ECG sequence
to heartbeats (Sodmann and Vollmer, 2020). And then, feature
descriptions of abnormal ECG are calculated the from the
heartbeats (Sangaiah et al., 2020), for example, RR interval
features extraction (Chen et al., 2017), wavelets (Mar et al.,
2011; He et al., 2018), higher-order statistics (HOS) (Osowski
and Tran, 2001). Other methods based on deep learning can
learn useful features from raw ECG data without requiring signal
preprocessing (Fan et al., 2018; Ma et al., 2020). A series of typical
strategies focus on designing network architecture to extract
multiple features to improve ECG abnormality classification
accuracy. However, in practice, these methods need a sufficient
amount of handcraft labels or features.

Recent studies of ECG abnormality classification have
concentrated on deep learning (Hannun et al., 2019; Saadatnejad
et al., 2020; Zhang et al., 2020). A convolutional neural network
(CNN) is an effective method for extracting features due to
its local connectivity and parameter sharing. Hannun et al.
(2019) developed a 34-layer CNN that classifies 12 types
of ECG signals and achieves cardiologist-level performance.
The RNN-based (Wang et al., 2018; Chen et al., 2020)
method, such as the Gated Recurrent Unit (Zhang et al.,
2019), the Long Short Term Memory (Tan et al., 2018;
Saadatnejad et al., 2020), is a type of neural network used
for processing ECG signal. The RNN is used to extract
global features and then classified the ECG abnormalities.
Saadatnejad et al. (2020) proposed a continuous and real-time
patient-specific ECG classification algorithm based on wavelet
transform and multiple LSTM. Other effective methods (Chen
et al., 2020; Wang et al., 2020; Yao et al., 2020) to develop
the architectures combining CNN with RNN for detecting
multi-class ECG abnormalities. But in these works of ECG
diagnosis, the pacing rhythm is only detected as a kind of
ECG abnormality.
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2.2. Autoencoder
The autoencoder belongs to unsupervised tasks of deep learning
and does not need data annotation for training samples. The
autoencoder is composed of three layers, in which the number
of neurons in the input layer is the same as the number of
neurons in the output layer, and the number of neurons in
the middle layer is less than that of the input and output
layer. During the training phase, for each training sample,
a new signal will be generated in the output layer through
the network. The purpose of training is to make the output
signal and the input signal as similar as possible. In the
testing phase of autoencoder, it can be composed of two
parts. The first part is the input layer and the middle layer,
which can use to compress the signal. The second part is
the middle layer and the output layer, which can restore the
compression signal.

With the development of artificial intelligence, it is already
widely applied to many areas such as bioinformatics (Oyetunde
et al., 2018), engineering technology (Samaniego et al., 2020)
and clinical medicine (Chen et al., 2018). Thinsungnoen
et al. (2018) proposed the deep autoencoder (AE) which is
a powerful tool to deal with the high-dimensional data in
the unsupervised task of processing ECG signals. They have
great success in some application domains as well, such as
denoising autoencoders (DAEs) (Dasan and Panneerselvam,
2021), ECG data dimension reduction (Wang et al., 2013).
And a series of work has been conducted in ECG data
classification using an autoencoder model. However, in practice,
the pacemaker can interfere with the ECG signal. It often
leads to the morphological difference between cases with
pacemaker and cases without pacemaker in the same ECG
abnormality. Lack of pacing ECG data has limited many
models design for abnormal ECG classification. Meanwhile, the
existing autoencoder for ECG classification algorithms still has
a misdiagnosis rate. Therefore, we collect a large pacing ECG
database and design a novel autoencoder model to detect the
pacing ECG.

Traditional autoencoders are mainly used for ECG signal

reconstruction. For example, Majumdar et al. (2016) design

a stacked autoencoder (SAE) model which mainly uses
semi-supervised deep learning approach for ECG signal
reconstruction. In the research of industrial anomaly detection,
Hasan et al. (2016) use the reconstruction error of a convolutional
AE to detect the anomalies in video sequences. However, these
methods neglect the generalization capability of the autoencoder
model and lack a mechanism to encourage the autoencoders to
produce larger reconstruction errors for abnormalities.

Recently, existing a novel method introduces the memory-
augmented networks to solve the anomaly detection by
reconstructing the input data (Kim et al., 2018). Gong et al.
(2019) detect the anomalies according to the reconstruction
error of a memory-augmented AE. The memory module can
record features stably. Santoro et al. (2016) use the idea to
handle the one-shot learning problem. These methods show
significant performance gain, especially for anomaly detection.
However, these algorithms only detect one class, which makes
them infeasible for ECG diagnosis.

The previous work focused on the autoencoder conduct to
deal with the issue of data imbalanced or noise reduction.
Inspired by these methods, we propose the MAE model
using an attention-based memory module to record latent
features of corresponding ECG abnormalities. We also propose
a quantitative assessment criterion to cluster each ECG
abnormality type. Then, we verify the performance of our model
on different databases. The proposed MAE model shows drastic
improvements for ECG abnormality diagnosis.

3. METHOD

Previous AE architectures for ECG signal processing focused
on data denoising and data dimensionality reduction. In this
paper, we propose a novel autoencoder architecture containing
a memory module that can record the latent features of the
training type, as shown in Figure 2. And we also introduce a new
objective function that can calculate a similarity score between
the output of the decoder and the input data. As a result, we
define the estimated score of the data as the clustering criteria.
This makes the proposedMAEmodel especially suitable for ECG
abnormality classification.

3.1. Encoder and Decoder
The encoder of MAE model can obtain the features from input
data, which is beneficial for data dimension reduction. The
features can be used as a key to match the relevant features in
the memory module. In our method, the output of the encoder
can be seen as a generator of a feature dictionary. The decoder
is trained to reconstruct the samples by taking the retrieved
memories as input.

In this paper, we consider multi-channel time-series
recordings of ECG. We first define X to represent the domain of
the ECG data samples. Each ECG is a multivariate time-series
where the rows define the channel dimension, and the columns
capture the time dimension. One ECG sample is represented
by the following matrix xi =

{

x1i , x
2
i , ..., x

C
i

}

∈ X
C×T where C

denotes the channels of ECG sequence and T is the number
of sample points per channel. Our MAE architecture is first
composed of an encoder, where Z represents the domain of the
encodings. Let fe(X) → Z denote the encoder. The encoder
aims to provide a low dimensional latent representation domain
Z from the input data domain X. Given a sample xi ∈ X, the
encoder converts it to an encoded representation as zi ∈ Z,
as follows:

zi = fe(xi; θe), (1)

where θe denotes the parameters of the encoder fe.
The second half of the MAE model architecture contains a

decoder, which aims to reconstruct the samples. Let fd(Z) →
X denote the decoder. And the decoder is trained to reversely
mapping a latent representation ẑi ∈ Z to the domainX. It should
be specially explained that the proposed MAE model is different
from the standard AE model. For tradition AE model, the ẑi
should be zi. But in this paper, the latent features zi in the training
phase are stored in the feature dictionary, and in the testing phase
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FIGURE 2 | Illustration of the proposed MAE model. The memory module records latent features and the memory query can obtain the weight of the degree of

similarity between the features of input data and the record features. Note that the output of the memory module is the input of the decoder.

FIGURE 3 | Illustration shows the details architectures of encoder fe and decoder fd in the MAE model.

are regarded as a keyword to query, and ẑi is obtained from the
memory unit, as follows:

x̂i = fd(ẑi; θd), (2)

where θd denotes the parameters of the decoder fd.
The architectures of encoder fe and decoder fd are shown

in Figure 3. The architecture of the encoder contains four
one-dimensional convolutional layers. And each convolutional
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layer is followed by a normalization layer and an activation
layer. The convolution layers with the kernel size of 1 × 15 are
applied to capture the latent features. The fractionally-strided
convolution is used in the decoder, which is often used to enlarge
the size of the image in image processing. The operation of
the fractionally-strided convolution and the normal convolution
is exactly the opposite. In this paper, we use the fractionally-
strided convolution to restore the input ECG signal type from
the low-dimensional latent features.

3.2. Attention-Based Memory Module
The purpose of the memory module is to record the most
representative features in the input pacing data during training.
The above section encoder converts the input data to the internal
feature representation. The memory module can be regarded
as a dictionary D with a querying scheme and is designed as
a matrix D ∈ RN×C containing N real-valued vectors of fixed
dimension and to record the prototypical correlation internal
feature of pacing ECG during training. The output feature map
ẑ of memory unit combines the new input z with the entry in
current memory state k, where k ∈ R1×N is a row vector with
non-negative entries that sum to one. The weight vector k is
computed according to z. The output of latent features ẑ will be
obtained via ẑ = k · D.

Let the row vectormi, ∀i ∈ {1, 2, . . . ,N} denote the i− th row
of D, where {N} denotes the set of integers from 1 to N. Each mi

denotes the item in the dictionary D. The parameter N defines
the maximum capacity of the memory unit. The typical memory
module is developed to query prototypical pacing ECG features,
as illustrated in Figure 2.

To be specific, we first introduce a query strategy that
computes attention weights ki based on the similarity of the
items of the dictionary and the input feature z. Each wight ki is
computed via a softmax operation:

ki =
exp(d(z,mi))

∑N
j=1 exp(d(z,mi))

, (3)

where d(z,mi) denotes a correlation measurement between z and
mi. Following the work, we define function of d(z,mi) as cosine
similarity:

d(z,mi) =
z ·mT

i

‖z‖ · ‖mi‖
, (4)

Then, considering that the low-level features are more cluttered,
some other group of ECG abnormalities may still have the chance
to be reconstructed into the pacing ECG. To alleviate this issue,
we apply a sparse coding strategy to promote the sparsity of
ki. Sparse coding strategy encourages the model to represent a
sample of pacing ECG using fewer but more relevant memory
items, leading to learning more features from the memory unit.
We define the sparse coding following the work Gong et al.
(2019). Considering that all entries in k are non-negative, the
sparse coding strategy is redefined via the continuous ReLU
activation function as

k̂i =
max(ki − α, 0) · ki

∣

∣ki − α
∣

∣ + ǫ
, (5)

where k̂i represents the i − th entry in current memory state k,
the max(ki − α, 0) is also obtained as Relu activation. The α is a
sparse threshold which is set the value in the interval [1/N, 3/N].
And ǫ is a very small positive scalar.

Finally, we normalize the weight vector k̂ by letting k̂i =
ki/

∥

∥

∥
k̂
∥

∥

∥
. Therefore, the output ẑi of memory unit is defined as.

ẑ = k̂ · D =
N

∑

i=1

k̂i ·mi, (6)

3.3. Training and Testing
Given a database X containing N samples, let x̂i denote the
reconstructed sample corresponding each input sample xi. In the
training phase, the L(x, x̂) is used to measure the reconstruction
error:

L(x, x̂) =
1

n

∑
∥

∥xi − x̂i
∥

∥

p
, (7)

where p is set to 1 or 2 in our paper. When p = 1, formula 7 is
the mean absolute error, which can also be regarded as the L1-
loss. When p = 2, formula 7 can be regarded as the mean square
error, which is L2-loss. Due to the ECG abnormality diagnosis
application scenario, we design ablation experiments to find the
optimum value of p.

Due to the memory module of the testing phase, the learned
memory content is fixed. Only the feature in the dictionary
of the training type in the memory module can be retrieved
for reconstruction. Thus the samples of one type can be
reconstructed well. Conversely, the encoding of another ECG
abnormality input will be replaced by the retrieved trained
features, resulting in significant reconstruction error on this
input data.

In the testing phase, we also need to define the rule to classify
ECG abnormalities according to the MAE model. For example,
given an input ECG data xi and the reconstruction error are
used to determine the classification. Pn denoted that the samples
are the class of target domain n. Therefore, we define the set of
samples in the target domain as:

T(xi) =
{

xi ∈ Pn,with
∥

∥xi − fdn (fen (xi; θe); θd)
∥

∥

p ≤ ‖xi

− fdq (feq (xi; θe); θd)
∥

∥

∥

p}

, (8)

where, the fen and fdn represent the operation of encoder and
decoder which the training phase records the latent features
of target class n in the memory module. The feq and the fdq
represent the operation of encoder and decoder in which the
training phase records the latent features of target class q in the
memory module. This equation essentially defines the distance
relationship between samples of the same classes and samples of
different classes.

4. EXPERIMENTS

In this section, we validate the proposed MAE framework for
pacing ECG detection. Meanwhile, to show the applicability
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FIGURE 4 | Examples ECG (from Lead II) in pacing ECG database. (A) An example shows the morphology of the pacing ECG. (B) An example shows that the

morphology of pacing ECG receives other abnormal interference. (C) An example shows that the ECG morphology of the complete left bundle branch block is similar

to pacing ECG. Note that sample (A) has no obvious pacemaker nail in lead II, but the proposed MAE method can distinguish the (C) and pacing type by other lead

information.

of the method, we also conduct experiments on the MIT-BIH
Arrhythmia Database. First, the evaluation metric used in the
experiments will be introduced. The quality and performance
of the proposed MAE framework are evaluated by utilizing
standard metrics: precision, recall, and f1-score. And then, the
experimental database will be described. Finally, we present the
experimental results and analysis. Additionally, the results are
compared with other methods of ECG abnormality detection.

4.1. Evaluation Metric
In this paper, typical classification metrics, including precision,
recall, and F1-score were used for each class. Precision is the
ratio of the number of correct positive predictions to the total
number of positive predictions. Recall is the ratio of the number
of correct positive predictions to the total number of true positive
and false negatives. F1-score is the weighted average of precision
and recall. They are defined as:

Precision(+p) =
TP

TP + FP
, (9)

Recall(Rec) =
TP

TP + FN
, (10)

F1− score =
2× Precision× Recall

Precision+ Recall
, (11)

where TP, TN, FP, and FN represent the numbers of
true positives, true negatives, false positives, and false
negatives, respectively.

4.2. Experiments on Pacing-ECG Detection
4.2.1. The Pacing-ECG Database
The professional database plays a more important role in
automatic ECG diagnosis than the algorithm and employed
techniques. One of the obstacles in the research on fully
automatic analysis in ECG is the insufficient quantity of available
databases (Shen et al., 2020).

In this paper, we collect an extensive, novel ECG database
named Pacing ECG Database. The pacing ECG database can be
used to evaluate the proposed MAE framework. It should be
noted that all extracted data were de-identified according to the
privacy policy. Fully de-identified patient data can be used for
research purposes. The main goal is to detect the morphology of
pacing ECG from various interferences. And some of the samples
may contain other abnormalities in the pacing ECG database.
We aim to distinguish between the sample with a pacemaker
and the sample without a pacemaker under the interference of
these abnormalities.

The pacing ECG database contains 800 recordings of data
annotated by the clinician lasting for 10 s, sampled at 500 Hz.
Each sample acquired by the device is all 12-lead (channel) ECGs,
digitized at 500 samples per second per channel and lasting for 10
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TABLE 1 | The specific data distribution in each database.

Database Number of patients Record Objective

MIT-BIH (Moody and Mark, 2001) 48 N:90595, S:2781,

V:7235, F:802,

Q:8041.

Heartbeat arrhythmia analysis.

CPSC_2018 (Liu et al., 2018a) 6877 Normal:918, AF:1098,

RBBB:1695, STD:825,

PAC:556, PVC:672,

LBBB:207, 1-VAB:704,

STE:202.

Automatic identification of the rhythm abnormalities.

Pacing ECG 800 Pacing ECG:400,

Routine ECG:400.

Pacing ECG detection.

s. The sample ECG sequences in the pacing ECG database are
illustrated in Figure 4. The specific data distribution is shown
in Table 1. We also evaluated the quality of ECG sequences.
According to the standard of work (Shen et al., 2020), as shown
in Table 2, each sample can be divided into good signal quality,
medium signal quality, and poor signal quality. Our pacing ECG
database only retains good quality signals.

4.2.2. Evaluation and Analysis
We carry out experiments on the pacing ECG database to further
evaluate the proposed method for pacing ECG detection. The
samples are split into training and test set with a rate of 3:1.
Following the experimental setting used in these works (Gong
et al., 2019; Hannun et al., 2019), the training set only consists
of samples of the target class. There is no overlap between the
training set and the testing set.

In this experiment, we mainly verify the effectiveness of
our memory module and the encoder and decoder based on
convolutional neural networks. First, we implement the encoder
using 1-D convolution and the decoder using 1-D fractionally-
strided convolution. Each convolutional layer is followed by
batch normalization and a ReLU activation function. The details
of the encoder and decoder are shown in Figure 3. We set the size
of the memory module at 300. We also conduct the comparisons
with some baseline variants of MAE to show the importance of
the significant components, including the autoencoder without
memory module (AE) and different reconstruction errors.

As shown in Table 3, we conduct several ablation studies
to investigate the effectiveness of the major components of the
proposed method, such as MAE and its backbone AE. And

TABLE 2 | Specification for signal quality division (Shen et al., 2020).

Category Symbol Definition

Good A Signal with apparent P-QRS-T morphologies

Signal with slightly baseline drift or transient artfacts

Medium B A good recording contaminated severely in a narrow window

A good recording with one or a few missing signals

A poor recording that may be interpretable with difficulty

Poor C Signal usefulness in clinical applications (maybe caused by

misplaced electrodes, poor skin-electrode contact)

the MAE model with P = 2 gets better diagnosis results. As
observed in Table 3, MAE with P = 2 achieve 91.8% F1-score,
outperforming AE with P = 1 (4.0%, F1-score), AE with P = 2
(3.4% F1-score), MAE with P = 1 (1.7% F1-score). It is also seen
that the proposed MAE achieves competitive results compared
to other state-of-the-art methods. These methods like the Resnet
backbone network architecture of Hannun et al. (2019) and a
combination of RNN+CNN architecture of Yao et al. (2020). The
MAEmodel outperforms themethods of theHannun et al. (2019)
by a margin, with a gain of 1.0% improvements in F1-score.

In Figure 5, we visualize the ECG data reconstruction process
under the memory module. Since the trained memory only
records the latent features of training type, given a routine ECG
sample as input, the MAE trained on pacing ECG type, resulting
in significant reconstruction error in the kind of input data. Note
that the reconstructed pacing ECG of MAE has a similar feature
to the input routine ECG type because the memory module
retrieves the most identical memory features. The ECG data has
periodicity, and the AE model without memory module records
some features that are more similar. Thus other types of samples
sometimes may also be reconstructed well. Figure 6 shows that
the objective function score obtained by MAE immediately
changes when different types of ECG abnormalities samples
appear in the dataset.

4.3. Experiments on MIT-BIH Arrhythmia
Database
The proposed MAE model also can be generally applied
to diagnose other ECG abnormalities. We carry out the

TABLE 3 | The performance of +P, Rec, F1− score of different methods on the

pacing ECG database.

Method
Pacing ECG database

+P Rec F1 − score

Hannun et al., 2019 0.913 0.905 0.908

Oh et al., 2018 0.881 0.921 0.899

AE_l1 0.882 0.874 0.878

AE_l2 0.889 0.880 0.884

MAE_l1 0.906 0.897 0.901

MAE_l2 0.912 0.925 0.918
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FIGURE 5 | Visualization of the reconstruction results of AE and MAE on Pacing ECG. (A) The example model is trained on a type of pacing ECG. The input data is a

routine ECG. Due to the periodicity of the ECG, the reconstruction data from the traditional AE model is also close to the input data. It is a failure case of ECG

reconstruction in terms of error. But the MAE retrieves the training types memory items for reconstruction data and obtains the results significantly different from the

input data types. The significant error between the reconstruction data and the input data means that the input data does not belong to pacing ECG. (B) The example

model is trained on a type of routine ECG. The input data is a pacing ECG. The traditional AE model gets a failure case on the input data. But the MAE model obtains

a higher significant error between reconstructions data and the input data. Therefore, it shows that the input data is a different type from the type of model.

FIGURE 6 | Scores of objective function obtain by MAE. The score changes immediately when some different types ECG samples in the test data.

experiments on the MIT-BIH Arrhythmia database to evaluate
the proposed method.

4.3.1. MIT-BIH Arrhythmia Database
The MIT-BIH Arrhythmia database (Moody and Mark, 2001)
contains 48 half-hour excerpts of two-channel ambulatory
ECG recordings. The recordings are digitized at 360 samples
per second per channel. Each record comprises two signals.
For all the records, the first one is the modified-lead II

(MLII), whereas the second one corresponds to V1, V2,
V4, or V5, depending on the records. Therefore, only
the MLII is provided by all the records. The database
contains two or more expert cardiologists independently
annotated approximately 110,000 beats, all of them, and
the disagreements were resolved. The MIT-BIH heartbeat
types are grouped into five heartbeat classes which are
recommended by the Association for the Advancement of
Medical Instruments (AAMI), as shown in Table 4. Example
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signals for the MIT-BIH Arrhythmia database are shown in
Figure 7.

4.3.2. Evaluation and Analysis
It should be noted that the MIT-BIH Arrhythmia database has
unbalanced distribution. Therefore, we abandon some samples,
which doesn’t affect the final performance. Following the works
(Kachuee et al., 2018;Wang et al., 2021), we balanced the number
of beats in each type before splitting the testing phase. This
paper selects and tests on 600 heartbeat samples. In this paper,
only lead II is considered to detect the ECG abnormalities.
This decision is motivated by the following works (Mondéjar-
Guerra et al., 2019), which proved that using only one lead
is sufficient for the arrhythmia classification task. And the 235
points are extracted as single heartbeat morphology features.
For experiment settings, the total number of iterations is 200,
and the batch size is set to 16. We apply an initial learning
rate of 10−5. The Figure 8 shows the classification results of the
MAE model with data splitting. In addition, among those works
shown in Table 5, these methods are designed for improving the
accuracy of ECG heartbeat abnormality detection. Nevertheless,
the MAE model can still exceed them with a large margin,
which can further demonstrate the effectiveness of the proposed

TABLE 4 | Mapping the heartbeat types to the AAMI heartbeat categories and

data distribution statistics (Moody and Mark, 2001).

AAMI MIT-BIH Heartbeat types Total

N

N Normal beat

90,462

L Left bundle branch block beat

R Right bundle branch block beat

e Atrial escape beat

j Nodal(Junctional) escape beat

S

A Atrial premature beat

2,777
a Aberrated atrial premature beat

J Nodal(Junctional) premature beat

S Supraventricular premature or ectopic beat

V
V Premature ventricular contraction

7,223
E Ventricular escape beat

F F Fusion of ventricular and normal beat 802

Q

/ Paced beat

8,027f Fusion of paced and normal beat

Q Unclassifiable beat

approach for ECG heartbeat abnormality detection. Meanwhile,
MAE produces the highest F1-score for most heartbeat types,
such as type of F performance has significant improvement. The
improvements are mainly attributed to the memory module.

Specifically, Table 5 shows the +p and Rec and F1 of the
proposed MAE model and other popular methods on the
database testing set. The experimental results show that the F1-
score of N category is 97.2%, the F1-score of S category is 90.0%,
the F1-score of V category is 88.3%, the F1-score of F category is
92.6%, and the F1-score of Q category is 98.3%.Table 6 shows the
overall results of the MAE model and compares it with the state-
of-the-art methods in other literature. Somemethod results show
that the classification performances for type F and type Q are not
satisfactory. It may be that these beats are harder to classify. On
the whole, our MAE model achieves better performance for type
N, S, V, F, and Q. Moreover, the MAE model can also outperform
these typical classifiers based on CNN, for example, the 9-layer
CNN proposed by Acharya et al. (2017) (92.5%, 2.4% higher F1-
score), the combination of CNNwith LSTMproposed by Shi et al.
(2019) (93.6%, 1.3% higher F1-score).

We also visualize data reconstruction in the MIT-BIH
Arrhythmia database, shown as Figure 9. The trained memory
module records the latent features of the input type. Given a
testing data ECG of “N” type, the memory module trained on
“N” type reconstructs the “N” type, resulting in a low error on
the input data. But the memory items trained on the “F” type
reconstruct the “N” type, given a testing data ECG “N” type,
resulting in a significant error on the input data “N” type. Note
that the reconstructed “F” type of MAE has a similar shape
to the input “N” since the memory module retrieves the most
similar latent features. By comparing the errors, we can easily
get the type of input test data. Despite some data having noise,
the MAE model can still detect the type of heartbeat, which
benefits from the memory module designed in MAE. Meanwhile,
the compelling performance also demonstrates the generalization
ability of the MAE model.

5. CONCLUSION AND FUTURE WORK

In this paper, a memory-based autoencoder was proposed to
construct the intelligent diagnosis model for ECG abnormality
detection. We designed a novel autoencoder using a memory
module to record the latent features from the training data of
corresponding types. The key features of MAE are to preserve
the latent features to obtain low average reconstruction error

FIGURE 7 | Example ECG signals from the MIT-BIH database. There are five heartbeat classes named N, S, V, F, and Q. The meaning of each letter is shown in

Table 4.
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FIGURE 8 | Confusion matrix of MAE model in the MIT-BIH Arrhythmia database. The row labels represent the true class records in each row and the column labels

represent the class records predicted by our method. Numbers in each grid show the number of records classified as column labels when its true class is indicated by

row label.

TABLE 5 | Comparisons of +P, Rec, and F1− score for each type on the MIT-BIH Arrhythmia database.

Methods
N S V F Q

+P Rec F1 +P Rec F1 +P Rec F1 +P Rec F1 +P Rec F1

Zhang et al., 2014 0.990 0.889 0.937 0.359 0.791 0.494 0.927 0.855 0.842 0.137 0.938 0.220 – – –

Ming et al., 2020 0.984 0.953 0.968 0.938 0.785 0.832 0.938 0.957 0.947 0.088 0.438 0.146 – – –

Li et al., 2019 0.975 0.910 0.941 0.780 0.638 0.702 0.865 0.884 0.874 0.907 0.873 0.890 0.994 0.966 0.994

Hannun et al., 2019 0.948 0.950 0.948 0.826 0.720 0.769 0.872 0.890 0.880 0.942 0.786 0.856 0.990 0.990 0.990

Mondéjar-Guerra et al., 2019 0.982 0.959 0.970 0.497 0.781 0.607 0.939 0.947 0.994 0.236 0.124 0.162 – – –

Memory-AE 0.960 0.992 0.972 0.936 0.867 0.900 0.807 0.975 0.883 0.964 0.892 0.926 0.991 0.975 0.983

TABLE 6 | Comparisons with the popular methods for overall types on the MIT-BIH Arrhythmia database.

Typical methods ECG beat types Classifier
Performance

+P Rec F1-score

Acharya et al., 2017 N S V F Q CNN 89.5% 95.9% 92.5%

Niu et al., 2020 N S V F Q Multi-Perspective CNN 96.4% – –

Shi et al., 2019 N S V F CNN-LSTM 94.2% 93.1% 93.6%

Mondéjar-Guerra et al., 2019 N S V F Ensemble SVMs 94.5% 70.3% 80.6%

Proposed MAE N S V F Q Memory-based Autoencoder 95.8% 94.0% 94.9%

in the training phase. And in the testing phase, the output
data of reconstruction will reference the memory items which
were selected as similar items of the encoding of the input
data. Furthermore, we also defined an objective function that
can compute the distance relationship between samples of the

same types and samples of different types. In brief, the proposed
MAE can well reconstruct the input data consistent with the
training types to get a low objective function error and enlarge
the objective function error of other abnormal ECG types, which
the objective function is the better criterion of abnormal ECG
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FIGURE 9 | Examples of the MIT-BIH Arrhythmia database. The “N” type and “Q” type are set to the input samples. And the different memory items mean that the

training phase records corresponding types of features. The MAE model can get a significant reconstruction error when the input data is different from the recorded

data type.

detection. The results demonstrate that the proposed model
achieves a significant performance gain with accuracy, sensitivity,
and F1-score through a series of experiments.

In future work, since the same types of ECG abnormality
has differences between different patients, we aim to record the
latent features in the same types of ECG abnormality of other
individuals. By analyzing these individual differences, we further
explore to improve the accuracy, sensitivity, and F1 score of the
model. Additionally, the diagnostic efficiency of the model is also
an important indicator of clinical ECG diagnosis. We also aim to
design a more lightweight and efficient diagnostic model which
can be better applied in clinical ECG diagnosis.
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Personalized cardiac modeling is widely used for studying the mechanisms of cardiac
arrythmias. Due to the high demanding of computational resource of modeling, the
arrhythmias induced in the models are usually simulated for just a few seconds. In clinic,
it is common that arrhythmias last for more than several minutes and the morphologies
of reentries are not always stable, so it is not clear that whether the simulation of
arrythmias for just a few seconds is long enough to match the arrhythmias detected
in patients. This study aimed to observe how long simulation of the induced arrhythmias
in the personalized cardiac models is sufficient to match the arrhythmias detected in
patients. A total of 5 contrast enhanced MRI datasets of patient hearts with myocardial
infarction were used in this study. Then, a classification method based on Gaussian
mixture model was used to detect the infarct tissue. For each reentry, 3 s and 10 s
were simulated. The characteristics of each reentry simulated for different duration were
studied. Reentries were induced in all 5 ventricular models and sustained reentries were
induced at 39 stimulation sites in the model. By analyzing the simulation results, we
found that 41% of the sustained reentries in the 3 s simulation group terminated in
the longer simulation groups (10 s). The second finding in our simulation was that only
23.1% of the sustained reentries in the 3 s simulation did not change location and
morphology in the extended 10 s simulation. The third finding was that 35.9% reentries
were stable in the 3 s simulation and should be extended for the simulation time. The
fourth finding was that the simulation results in 10 s simulation matched better with the
clinical measurements than the 3 s simulation. It was shown that 10 s simulation was
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sufficient to make simulation results stable. The findings of this study not only improve
the simulation accuracy, but also reduce the unnecessary simulation time to achieve the
optimal use of computer resources to improve the simulation efficiency and shorten the
simulation time to meet the time node requirements of clinical operation on patients.

Keywords: reentry, arrhythmias, computational modeling, simulation time, Gaussian mixture model method

INTRODUCTION

Ventricular tachycardia (VT) is a life-threatening heart disease
that occurs frequently in patients with myocardial infarction
(MI), and one of the most prominent causes of sudden cardiac
death (SCD) (Kusumoto et al., 2018). After acute MI, the
myocardium in the center of infarct area is replaced by electric
insulated fibrotic tissue, while some active myocardial cells
extend into the dense fibrosis to form a slow concoction area
which usually is called as gray zone (GZ). Thus, the heart tissue
in patients with MI can be divided into three categories: non-
infarct tissue, core scar, and GZ (Wu, 2017). The heterogeneity
in the GZ slows down the electrical conduction in this part of the
tissue, which in turn causes unidirectional conduction block and
predisposes to reentry, leading to arrhythmias and increasing the
risk of infarction in patients.

Clinical and experimental studies have shown that reentries
in patients with VT can be sustained by anatomic reentry or
functional reentry (Aguilar and Nattel, 2015; Martin et al., 2018).
The anatomical reentry is very stable and always rotates around a
fixed area (Fernández-Armenta et al., 2013; Josephson et al., 2014;
Soto-Iglesias et al., 2020). For the functional reentry, the electric
impulse proceeds as a single wavefront through a constrained
region known as the central common pathway or isthmus of
the reentrant circuit (Ciaccio et al., 2016; Martin et al., 2018;
Crinion et al., 2020). In clinic, the critical isthmuses which
sustain that the anatomical reentry can be measured by the
high-density electroanatomic multipolar mapping system, but
it is not easy to directly measure the critical isthmuses which
sustain functional reentry (Martin et al., 2018; Crinion et al.,
2020), especially for those unstable or non-sustained reentries
(Nishimura et al., 2020).

Computational modeling has been widely used for the non-
invasive investigation of lethal heart rhythm disorders and their
treatment, including not only risk stratification of patients with
MI (Behradfar et al., 2014; Deng et al., 2016; Lopez-Perez et al.,
2019), the prediction of reentry location (Deng et al., 2015), but
also guiding for VT ablation in clinic (Prakosa et al., 2018). Due
to the high demand of computational resource of modeling, the
reentries (both anatomic and functional) induced in the models
are usually simulated for just a few seconds which is usually less
than 5 s (Deng et al., 2015, 2016, 2019a,b; Arevalo et al., 2016;
Prakosa et al., 2018; Ukwatta et al., 2018). In our previous work,
we found that some reentries induced in the model were not
stable, and become non-sustained before the end of simulation.
In clinic, it is common that reentries last for more than several
minutes and the morphologies of reentries are not always stable
(Katritsis et al., 2012; Martin et al., 2018; Nishimura et al., 2020),
so it is not clear that whether the simulation of reentries for just

a few seconds is long enough to match the arrhythmias measured
in clinic. Furthermore, as far as we know, still no work has been
done to study whether the personalized cardiac modeling can
reproduce most of the VT categories which include sustained
stable reentry, sustained non-stable reentry, and non-sustained
reentry measured in clinic.

In this study, we used personalized virtual heart models to:
(1) find out an optimal dynamic stimulation protocol to save
computational resources and make the simulation results more
robust; and (2) study whether the personalized cardiac modeling
can reproduce most of the VT categories measured in clinic.

MATERIALS AND METHODS

Clinical Data
For this retrospective study, we used data from five patients
who suffered from ischemic cardiomyopathy between 2018
and 2019 at Beijing Anzhen Hospital, and this study was
approved by the Institutional Review Board of Beijing Anzhen
Hospital. Cardiovascular magnetic resonance-late gadolinium
enhancement (CMR-LGE) images of the five patients were
collected and used to build the heart models. Cardiac MRI
were acquired by 3.0 T scanner (Sonata, Siemens, Erlangen,
Germany) or GE scanner (DISCOVERY MR 750w; GE, Boston,
MA, United States). The detailed image acquisition protocol can
be found in the previous published literature (Woodard et al.,
2007; Klinke et al., 2013; Kramer et al., 2020). The scanning layer
thickness was 8–10 mm with image resolution between 1.36 and
1.64 mm (detailed information is listed in Table 1).

Image Processing Pipeline
All analyses and measurements were manipulated on custom
software developed in MATLAB (MathWorks Inc., MA,
United States). The epicardial and endocardial boundaries, for
each two-dimensional slice in the LGE images, were manually
segmented by two experienced specialists and excluded papillary

TABLE 1 | Detailed cardiovascular magnetic resonance-late gadolinium
enhancement (CMR-LGE) images information of each patient.

Size In-plane
resolution (mm)

Slice sickness
(mm)

Layer count

PAT01 256 × 208 1.52344 × 1.52344 9 14

PAT02 208 × 256 1.5625 × 1.5625 8 13

PAT03 256 × 192 1.36719 × 1.36719 8.4 10

PAT04 240 × 256 1.52344 × 1.52344 10 10

PAT05 208 × 256 1.48438 × 1.48438 8 11
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muscles from the endocardium. The part of pixels between
the boundaries were considered as the myocardium. Then, the
modified Gaussian mixture model (MGMM) method was used
for the subsequent processing of the segmented myocardium,
summarized as follows (Hennemuth et al., 2013; Pop et al., 2013).

Modified Gaussian Mixture Model Method
A classification method based on Gaussian mixture model
(GMM) was used to segment the tissue inside the epi- and
endocardium boundaries. GMM assumes that the image intensity
of each class of tissues obeys a Gaussian distribution, where each
class has its own mean intensity and variance, and classifies the
tissues into different classes by best fitting the image histogram
based on the expectation maximization method (Figure 1A). One
slice of the original CMR-LGE images was shown in Figure 1B.
Then, two different categories that included non-infarct and
infarct tissue were obtained (Figure 1C). Next, the maximal
component in each layer and the components with pixels more
than 50% of the maximal components were kept. Finally, the
regions in each image layer with more than 15 pixels were
retained to remove small clusters of pixels affected by noise or
blood vessels. The detailed process of the MGMM method can be
found in our previously published paper (Wu et al., 2021).

To further segment the infarct tissue detected by the MGMM-
based classification method and Threshold method into GZ and
core scar, the maximal (intensitymax) and minimal (intensitymin)
values of the pixels in the infarct tissue were calculated, then the
pixels > (intensitymax – intensitymin) × 50% were assigned as
core scar, and the rest pixels in the infarct area were assigned as
GZ (Figure 1D).

Model Construction and Simulation
Protocol
After image segmentation, CardioViz3D (Toussaint et al., 2008)
(INRIA, Sophia Antipolis, France) was used to interpolate
the segmented low-resolution images to high-resolution images
(about 0.4 mm). The 3D geometry of the infarct tissue
which includes core scar and GZ was reconstructed using
log odds method (Ukwatta et al., 2015), and merged with
the corresponding ventricular high-resolution images. For each
patient-specific bi-ventricular geometry, the commercial software
Mimics Innovation Suite (Materialise NV, Leuven, Belgium) was
used to generate the finite-element mesh (Figure 2A). The target
average edge lengths were about 400 mm. Fiber orientations
in the mesh were assigned using a previously validated rule-
based method (Bayer et al., 2012). It uses the Laplace–Dirichlet
method to define transmural and apicobasal directions at every
point in the ventricles, and then employs the bi-directional
spherical linear interpolation to assign fiber orientations based on
experimental measured angles (Eggen et al., 2012; Lombaert et al.,
2012) (−40 to+65◦ from epi- to endocardium) (Figure 2B).

Electrophysiology properties were assigned in the model as
previously described (Prakosa et al., 2018; Deng et al., 2019a).
Briefly, non-infarcted tissue was assigned with the human
ventricular myocyte action potential cell model of ten Tusscher
et al. (2004; Figure 2C). Action potential remodeling in the GZ
based on experimental recordings was implemented as follows

(Arevalo et al., 2013; Deng et al., 2016): peak sodium current,
peak L-type calcium current, peak potassium currents IKr, and
IKs were decreased to 38, 31, 30, and 20% of the original values
in the Ten Tusscher model, respectively. Core scar was modeled
as passive tissue. Conductivity values were assigned such that
resultant conduction velocities (0.60 m/s in non-infarct tissue and
0.30 m/s in the GZ) were approximate to that measured clinically
in the model, as illustrated in Anter et al. (2016).

The propagation of electrical activity in the heart model
was simulated by solving a reaction-diffusion partial differential
equation with finite-element method (Plank et al., 2008).
Simulations of electrical activity in the patient-specific heart
models with Neumann boundary conditions were executed in
a monodomain representation of the myocardium using the
openCARP simulation environment (Plank et al., 2021)1 on high
performance computers at Dalian University of Technology,
China. Programmed electrical stimulation used in the previously
published articles (Prakosa et al., 2018; Deng et al., 2019a) was
used to induce VTs in the models of five patients. In brief, the
protocol was consisted with 6 beats of 600 mm cycle length
(S1), followed by premature stimulus (S2) at 90% of the S1 cycle
length. The time between S1 and S2 was gradually shortened until
VT was induced. If VT was not induced, a second premature
stimulus was performed after S2. If VT was still not induced, a
third premature stimulus was performed after S3. Furthermore,
all models were paced from 19 ventricular sites, such as 17 sites
on the LV (left ventricular), 1 near the right ventricular outflow
tract, and 1 at the right ventricle apex, according to American
Heart Association Classification Standards (Cerqueira et al., 2002;
Figure 2D). After reentry was induced, 10 s of VT were simulated
to detect the presence of arrhythmia. The VT morphology and
location at the end of 3 and 10 s were analyzed and compared.

RESULTS

Table 2 summarized the volumes of normal myocardium, GZ,
and core scar in the reconstructed heart models from the
MRI images of 5 patients. The mean ventricular volume was
176.4 cm3. The percentage of volume in the non-infarcted
ventricular myocardium had a range from 86.4%∼96.4%, while
the percentage of GZ volume and core scar ranged from
2.8%∼7.6% and 0.8%∼7.1%, respectively.

Our simulation results showed that 59.0% (23/39) of VTs
induced in the 3 s simulation continued propagating to the end
of 10 s simulation, but some of the induced VT morphologies
had great difference before and after 3 s simulation. We divide
the VTs into four different types based on the stable time of the
final VT morphology (Tables 3, 4).

For type 1 VT, the VT location and morphology was not stable,
it changed location in 1–3 cycles, but in the last 2–3 cycles, the
VT location and morphology became stable. And in the extended
10 s simulation, the VT location and morphology was the same
as the VT at the end of 3 s simulation. About 25.6% (10/39)

1https://opencarp.org/
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FIGURE 1 | (A) Tissue classification example of cardiovascular magnetic resonance-late gadolinium enhancement (LGE-MRI) scanned from one human heart into
two categories which are non-infarct tissue (orange dotted line) and infarct tissue (red dotted line) by using the Gaussian mixture model (GMM) method. (B–D) Based
on the LGE-MRI of patient, the myocardial tissue was divided into non-infarct region (orange) and infarcted region (red) by GMM method, and the infarcted region
was further divided into gray zone (GZ) (green) and core scar (blue).

FIGURE 2 | Virtual-heart arrhythmia risk predictor methodology. (A) High-resolution ventricular structure model segmented into normal tissue, GZ, and core scar;
(B) visualization of myocardial fiber orientations; (C) action potential for non-infarcted tissue (orange) and GZ (green); (D) virtual-heart arrhythmia risk predictor pacing
sites.

TABLE 2 | Summary volume database of five patients.

Model Normal tissue
(cm3)

% of total
volume

GZ (cm3) % of total
volume

Core scar
(cm3)

% of total
volume

Total volume
of heart

PAT01 208.1 94.8 6.7 3.0 4.9 2.2 219.7

PAT02 175.2 86.4 13.2 6.5 14.3 7.1 202.7

PAT03 164.1 93.8 6.6 3.8 4.3 2.4 175.0

PAT04 230.6 96.4 6.6 2.8 1.9 0.8 239.1

PAT05 104.2 87.3 9.0 7.6 6.1 5.1 119.3

Mean ± SD 176.4 ± 48.2 91.7 ± 4.6 8.4 ± 2.9 4.7 ± 2.2 6.3 ± 4.7 3.5 ± 2.5 191.2 ± 46.6
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TABLE 3 | Ventricular tachycardias (VTs) induced in all 5 models with simulation time of 3 and 10 s.

3 s simulation Reentry morphology 10 s simulation Reentry morphology Total VTs Percentage

Type 1 Sustained reentry Not stable reentry Sustained reentry Stable reentry 10 25.6%

Type 2 Sustained reentry Not stable reentry Sustained reentry New stable reentry 4 10.3%

Type 3 Sustained reentry Stable reentry Sustained reentry Same stable reentry 9 23.1%

Type 4 Sustained reentry Stable reentry Non-sustained reentry No reentry 16 41.0%

TABLE 4 | Simulation time statistics when 39 stimulus sites induced reentry reached stability.

Patient number Type 1 Type 2 Type 3 Type 4

Number of
VTs

Time of VTs to
be stable

Number of
VTs

Time of VTs to
be stable

Number of
VTs

Time of VTs to
be stable

Number of
VTs

Time of VTs to
be

disappeared

PAT01 1 2.35 s \ \ \ \ 1 3.9 s

PAT02 3 2.6–2.9 s 3 4.1–7.3 s 5 1.46–2.3 s \ \

PAT03 1 2.5 s 1 3.3 s 4 1.4–2.3 s 6 3.09–8.9 s

PAT04 \ \ \ \ \ \ 4 3.06–5.3 s

PAT05 \ \ \ \ \ \ 5 3.02–8.31 s

Total 10 2.35–2.9 s 4 3.3–7.3 s 9 1.4–2.3 s 16 3.02–8.9 s

“\” indicates that no corresponding type of VT was induced in the model, and thus the “Time of VTs to be stable” was not applicable.

VTs were type 1 reentry, and the time of VTs to be stable varied
from 2.35 to 2.9 s.

Figure 3 showed one example of type 1 VT. The initial reentry
took place in the front of mid anterior cavity of endocardium
isthmus, and the breakthrough (Figure 3A) presented here was
transmitted from epicardium, where the reentrant loop was large
and lasted for 5 cycles. While the simulation reached the end
of 3 s, a stable “figure of eight” reentry propagated two cycles
at the middle part of anterior wall (Figure 3B). As shown in
Figure 3C, with the extended 10 s simulation, the reentry kept
rotating without any changes.

For type 2 VT, the VT location and morphology was not stable,
it changed locations during the entire 3 s simulation. But in the
extended 10 s simulation, the VT location stabilized to a fixed
location and the morphology did not change. About 10.3% (4/39)
VTs were type 2 reentry, and the time of VTs to be stable varied
from 3.3 to 7.3 s.

Figure 4 showed one example of type 2 VT. During the 3 s
simulation, several reentries were observed between myocardium
and epicardium. The electrical propagation progress began with 3
cycles of one reentry with breakthrough at the epicardial surface.
Then, the reentry changed to the anterior basal part of LV, and
followed by changing to a new location with 2 cycles (Figure 4A).
In the extended 10 s simulation, the chaotic reentry disappeared,
and a new stable reentry formed at the anterior wall which lasted
to the end of 10 s simulation (Figure 4B).

For type 3 VT, the VT location and morphology was stable in
the 3 s simulation, and it did not change location and morphology
in the extended 10 s simulation. Approximately, 23.1% (9/39)
VTs were type 3 reentry, and the time of VTs to be stable varied
from 1.4 to 2.3 s.

Figure 5 showed one example of type 3 VT. Figure 5A showed
one reentry induced in a model in the 3 s simulation. The reentry

located at the middle part of anterior wall, and it was a circulator.
When the simulation was extended, there were little changes of
morphology and position over time.

For type 4 VT, the VT location and morphology may change
or be stable at the end of 3 s simulation, but they disappeared
in the extended 10 s simulation. About 41.0% (9/39) VTs were
type 4 reentry, and the time of VTs to be disappeared varied
from 3.02 to 8.9 s.

Figure 6 showed one example of type 4 VT. The reentry
induced in the 3 s simulation disappeared in the extending 10 s
simulation. In the 3 s simulation, the reentry propagated from
epicardial surface into the interior wall and backed to the surface.
A total of six reentry cycles occurred, as shown in Figures 6A,B.
When the simulation time was extended, the reentry at middle
part of LV lateral wall in the 3 s simulation disappeared. A new
reentry emerged at the posterior basal wall, and it lasted for six
cycles and then disappeared (Figure 6C).

Table 5 summarized the clinical measurements and the 3
and 5 s simulation results of all five patients. For patient 1, the
clinical diagnosis showed that there was no VT event when the
patient was in hospital. Two sustained VTs were induced in the
corresponding model of patient 1 in the 3 s simulation. In the
10 s simulation, 1 VT was terminated and the other survived
to 10 s. Although 1 VT was induced in the 10 s simulation,
the VT inducing ratio (5.3%) was very low, suggesting that the
patient had a low probability to induce VT. Therefore, the result
of 10 s simulation matched better than the 3 s simulation with the
clinical diagnosis.

For patient 2, VT events were monitored four times and the
location of VT was at the middle lateral wall of the LV. There were
three different VTs induced in the 3 s simulation, one VT was
related to the clinical measured location. The rest 2 VTs were not
related to the clinical location. Two different VTs were induced in
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FIGURE 3 | Example of a reentry morphology for type 1 ventricular tachycardia (VT). (A) Showed breakthrough on the heart surface of a reentry induced in a model
before stable. (B) Showed the reentry morphology at the end of 3 s. (C) Reentry morphology induced in the same model at the end of 10 s. Red arrowhead
indicates the direction of VT propagation. Red star indicates the VT breakthrough on epicardium and the arrowheads indicate the direction of electrical propagation.
The color scales in (A,B) indicate activation times and the black areas represent core scar—there is no electrical propagation there.

FIGURE 4 | Example of a reentry morphology for type 2 VT. (A) Reentry morphology induced in a model at the end of 3 s. (B) Reentry morphology induced in the
same model at the end of 10 s. Red star indicates the VT breakthrough on epicardium and the arrowheads indicate the direction of electrical propagation. The color
scales in (A,B) indicate activation times and the black areas represent core scar—there is no electrical activation there.

the 10 s simulation, one VT induced by 10 of 19 pacing sites was
related to the clinical measured location. The rest one induced in
only 1 pacing site was in another location.

For patient 3, VT events were monitored and the VT was
epicardial reentry close to apex. Three sustained VTs were
induced in the corresponding model of patient 3 in the 3 s
simulation. One was related to the clinical measurement, and the
other two VTs induced in 6 pacing sites were not related to the
clinical location and terminated in the 10 s simulation. There
was only one sustained VT induced in 6 pacing sites in the 10 s
simulation which was related to the clinical measurement.

For patient 4, the clinical diagnosis showed that there was no
infarct related VT event when the patient was in hospital, and
this patient only had ventricular premature beat. There was one
sustained VT induced in 4 pacing sites in the 3 s simulation, but
the VT only lasted to maximum 5 s in the 10 s simulation. There
was no sustained reentry induced in the 10 s simulation, it was
corresponded to the clinical diagnosis.

For patient 5, the clinical diagnosis showed that there was
non-sustained VT event when the patient was in hospital,
and VT was not inducible in this patient during implantable
cardioverter defibrillator (ICD) implantation procedure. There
were 2 sustained VTs induced in 5 pacing sites in the 3 s
simulation, but all these VTs terminated in the 10 s simulation.
One VT lasted to 8.3 s in the 10 s simulation, this was
corresponding to the clinical diagnosis of non-sustained VT.

Based on the comparison of results in 3 and 10 s simulation
with clinical measurements (as shown in Table 5), the results
showed that sustained VTs induced in 16 pacing sites in 3 s
simulation were terminated in the 10 s simulation, this meant that
41% (16/39) of the sustained VTs in the 3 s simulation became
non-stained in the 10 s simulation. The clinical measurements
of patient 4 and 5 showed that the simulation results in 10 s
simulation were more accurate than the 3 s simulation. In the 3 s
simulation, more VTs were induced than the 10 s simulation, and
some of VTs were not corresponding to clinical measurements.
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FIGURE 5 | Example of a reentry morphology for type 3 VT. (A) Reentry morphology induced in a model at the end of 3 s. (B) Reentry morphology induced in the
same model at the end of 10 s. Red arrowhead indicates the direction of VT propagation.

FIGURE 6 | Example of a reentry morphology for type 4 VT. (A) Reentry morphology induced in a model at the end of 3 s, yellow arrow indicates the direction of
propagation. (B) The entire reentry conduction pathway as shown in the (A). (C) Electrical propagation of the reentry in 10 s simulation. Red arrows show direction of
propagation. The color bar shows the transmembrane potentials, and the instant time (t) of each map is shown below.

DISCUSSION

In this study, we used personalized computational MI models
which were reconstructed from LGE-MRI images to observe how
long simulation of the induced arrhythmias in the personalized
cardiac models is sufficient to get a stable location and
morphology, and whether these characteristics have difference
with varied simulation time. Based on the simulation results,
we found that 41% of the sustained reentries in the 3 s

simulation group terminated in the longer simulation groups
(10 s). The second finding in our simulation was that only
23.1% of the sustained reentries in the 3 s simulation did not
change location and morphology in the extended 10 s simulation.
The third finding is that 35.9% reentries were not stable when
using 3 s simulation, which means that an extended simulation
time is necessary.

For type 1 and 2 VT, because it is not stable when the
simulation time is over, we should extend the simulation to a
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TABLE 5 | Comparison of 3 and 10 s simulation results of modified Gaussian mixture model (MGMM) model with clinical data.

Clinical measurements Simulation results of MGMM method

VT in clinic VT location Results in 3 s simulation Results in 10 s simulation

Number of
VTs

Number of
VTs related to

clinic

Induction
ratio

Number of
VTs

Number of
VTs related to

clinic

Induction
ratio

PAT01 N – 2 – 10.5% (2/19) 1 – 5.3% (1/19)

PAT02 Y Middle lateral
wall of LV

3 1 57.9% (11/19) 2 1 57.9% (11/19)

PAT03 Y Close to apex 3 1 63.2% (12/19) 1 1 31.6% (6/19)

PAT04 N – 1 – 21.1% (4/19) 0 – 0% (0/19)

PAT05 N – 2 – 26.3% (5/19) 0 – 0% (0/19)

Number of VTs indicates the number of sustained VT morphology induced in the model. Induction ratio refers to the proportion of pacing sites induced sustained reentry
in the 19 pacing sites.

longer time to make sure the reentry become stable. But it is hard
to give a consistent value for the simulation time based on the
large variation of VT termination time. It should be possible to
use a dynamic simulation time for each induced reentry, that is,
3, or 5, or 7, until 10 s. This will not only save the simulation
resources, and make the simulation results more robust. These
two types of VT may be related to the clinical hemodynamically
unstable tachycardia (Nishimura et al., 2020). These kind of VTs
are more likely sustained by functional reentry, this means that
the involved VT is sustained by reentries through conduction
channels around an area of functional block (Aguilar and Nattel,
2015; Deng et al., 2019a). The morphology and location of this
kind of reentry were complex. The unstable characteristics of
functional reentry was due to the intrinsic nature of the cardiac
single cells (action potential duration adaptation, conductivity
adaptation, etc.) (Chang et al., 2009; Lawson et al., 2020).

For type 3 VT, because the reentry gets stable at very
early stage, and it does not change location and morphology
in the extended simulation, thus for these reentries 3 s
simulation is sufficient to get a robust result. This will save
a lot of simulation resources and analysis time. This kind of
VT is more likely sustained by anatomical reentry (Aguilar
and Nattel, 2015), this means that the VT is sustained by
reentries through conduction channels surrounded by scar
on all sides. This kind of reentry was reported in other
personalized heart modeling (Deng et al., 2019a; Kruithof
et al., 2021) and clinical measurements (Anter et al., 2016;
Nishimura et al., 2020). Our simulation results showed that
type 3 VT was very stable, its morphology and location
did not change during the entire 10 s simulation after
reentry was initiated.

For type 4 VT, because the reentry gets disappeared in the
extended simulation, this will not only spend more simulation
resources to get robust results, but also make the results analysis
more complex. It is very hard to recognize this kind of reentry
as sustained reentry or non-sustained reentry as compared with
the clinal definition (Katritsis et al., 2012). Besides, here rises a
question that should this reentry be treated as an ablation target?
These questions will be studied in the future when the clinical
data of these patients become available.

For type 1, 2, and 4 VTs, the simulation results showed
that simulation time must be extended to get the final stable
reentry. Furthermore, the sustained reentry in 3 s simulation may
become non-sustained reentry (or disappear in other word), this
is consistent with clinical measurements that some reentries were
unstable and may disappear in a few seconds (Ukwatta et al.,
2015). In addition, the simulation results showed similar findings
that no big morphological differences in circuit dimensions
between stable and unstable VTs with the clinical measurements
(Nishimura et al., 2020). We found that the CL of non-sustained
reentry (type 4 VT) is shorter than other type of reentry, and the
CL of type 1, 2, and 4 VTs did not have significant differences.

CONCLUSION

In the current work, we not only quantitatively analyzed the
commonly clinical measured phenomena which were some
arrhythmias lasted for more than several minutes but others
lasted only a couple of cycles or seconds, and some arrhythmias
had no stable morphology or location, and the morphologies of
reentries were not always stable, but also proposed a dynamic
stimulation protocol to save computational resources and make
simulation results more robust. We believe that the findings of
this study not only improve the simulation accuracy, but also
reduce unnecessary simulation time to achieve the optimal use of
computer resources, thus improve the simulation efficiency and
shorten the simulation time to meet the time node requirements
of clinical operation on patients.

LIMITATIONS

One limitation of the current study is the small sample size
of five patients, but it could demonstrate the findings in the
conclusion section. Another limitation is that we did not compare
the non-sustained reentry with the clinical definition, but we
have compared the simulation results with clinical diagnosis. We
define the sustained and non-sustained reentry only based on
the lasting time of reentry within 10 s. We will improve the
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comparison when we get available clinical data in the future.
The third limitation is that we have not done the quantitative
comparison of VT characteristics in the model with clinical data,
this is because that we do not have the corresponding patient
data. But our simulation results can reproduce a lot of clinical
measured phenomenon, this demonstrate that the personalized
virtual heart simulation approach may provide a useful tool to
help in understanding the underling mechanism of VT and assist
in clinical decisions to identify and ablate the reentrant circuit(s).
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