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Editorial on the Research Topic

Novel Applications of Chemometrics in Analytical Chemistry and Chemical Process Industry

Nowadays, thanks to many ground-breaking technological advances, old and new challenges in
chemistry and chemical industry can be constantly addressed by means of cutting-edge analytical
platforms, generating massive amounts of complex high-dimensional data. In this regard,
chemometric approaches, enabling the extraction of the maximum content of meaningful
information such data intrinsically encode, have been playing a key role. The present Research
Topic collects a series of articles that actually corroborate this aspect, i.e., how the utilisation of
chemometrics could aid practitioners and operators in solving real-world issues in the two
aforementioned domains, which, as for most scientific disciplines, are manifold and of rather
diverse nature.

Several of these contributions have coped with fundamental methodological problems in the field
of Multivariate Statistical Process Control (MSPC), that currently constitutes an undoubtedly hot
topic given its inherent economic and social implications: Offermans et al. have proposed the use of
conditional path modelling to infer the underlying intercorrelations linking different units of a
production plant, Rocha de Olivera and De Juan have introduced the application of local Principal
Component Analysis (PCA) for the assessment of non-synchronised batch process runs, Paris et al.
have explored two different strategies for defining specification regions for raw industrial materals,
while Strani et al. have fused near-infrared (NIR) and engineering sensors to construct MSPC control
charts for polymerisation reaction monitoring.

Wide attention has also been paid to the world of food manufacturing and quality evaluation. In
this sense, Ruiz et al. have developed a diagnostic tool resorting to the principles of Partial Least
Squares regression (PLS) for compliant/defective product classification. Nieuwoudt et al. have
exploited Analysis of variance-Simultaneous Component Analysis (ASCA) to determine the main
sources of variation influencing the performance of various Fourier Transform-InfraRed (FTIR)
spectrometers in a milk factory. Astolfi et al. have utilised dedicated chemometric techniques for the
authentication of extra-virgin olive oil samples by Inductively Coupled Plasma-Mass Spectrometry
(ICP-MS). Finally, Shao et al. have reviewed the state-of-the-art approaches for the electrochemical
and biochemical sensor-based characterisation of tea specimens.

New light has also been shed on subjects apparently not yet well-established in the scientific
community: Vitale et al., for instance, have addressed the problem of hyperspectral video processing
through a hybrid modelling procedure encompassing spatial, spectral and temporal parametrisations
of physico-chemical phenomena.
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More theoretical aspects behind the use of chemometrics have
been debated by Rutledge et al. who have compared several
strategies for the estimation of the optimal complexity of
multivariate statistical models.

Last but not least, Mancini and Rinnan as well as Alladio
et al. have reported studies bridging elegantly the gap between
theory and practice of multivariate statistics applications: the
former have designed a solution for estimating waste wood
heterogeneity coupling NIR spectroscopy, nested ANalysis Of
VAriance (ANOVA) and PCA, the latter have devised a real-
time predictive maintenance methodology (that combines
Sparse Logistic PCA—SLPCA—and Soft Independent
Modelling of Class Analogy—SIMCA) to prevent
breakdowns during the evolution of automotive industrial
processes.

Overall, as far as the editors are concerned, this Research Topic
has surely permitted to stress the importance and relevance that
data analysis and, more specifically, chemometrics can have in
both basic and applied research scenarios.
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Handling Variables, via Inversion of
Partial Least Squares Models for
Class-Modelling, to Bring Defective
Items to Non-Defective Ones
Santiago Ruiz1†, Luis Antonio Sarabia1*†, María Sagrario Sánchez1† and María Cruz Ortiz2†

1Department Matemáticas y Computación, Facultad de Ciencias, Universidad de Burgos, Burgos, Spain, 2Department Química,
Facultad de Ciencias, Universidad de Burgos, Burgos, Spain

In the context of binary class-modelling techniques, the paper presents the computation in
the input space of linear boundaries of a class-model constructed with given values of
sensitivity and specificity. This is done by inversion of a decision threshold, set with these
values of sensitivity and specificity, in the probabilistic class-models computed by means
of PLS-CM (Partial Least Squares for Class-Modelling). The characterization of the
boundary hyperplanes, in the latent space (space spanned by the selected latent
variables of the fitted PLS model) or in the input space, makes it possible to calculate
directions that can be followed to move objects toward the class-model of interest.
Different points computed along these directions will show how to modify the input
variables (provided they can be manipulated) so that, eventually, a computed ‘object’
would be inside the class-model, in terms of the prediction with the PLS model. When the
class of interest is that of “adequate” objects, as for example in some process control or
product formulation, the proposed procedure helps in answering the question about how
to modify the input variables so that a defective object would be inside the class-model of
the adequate (non-defective) ones. This is the situation illustrated with some examples,
taken from the literature when modelling the class of adequate objects.

Keywords: process analytical technology, partial least squares, class-modelling, sensitivity/specificity, latent
variables model inversion, authentication, attributes

INTRODUCTION

Class-modelling techniques (Forina et al., 2008) focus on the ability of the built class-models for
recognizing their own objects (sensitivity of the computed class-model) and rejecting all others
(specificity). The additional information that the class-models provide about the categories being
modelled, as against a pure discriminant rule, is relevant for authentication of products (Rodionova
et al., 2016a), for example, to characterize foods or beverages with recognized quality, such as
denomination of origin wines or oil (Barbaste et al., 2002; Marini et al., 2006; Forina et al., 2009;
Ruisánchez et al., 2021) combined with spectroscopic and chromatographic techniques to
characterize green tea (Casale et al., 2018) with near infrared spectroscopy to antibiotic
authentication (Chen et al., 2020) to identify bands for functional spectral data (Hermane et al.,
2021) for food-authenticity claims (Oliveri and Downey, 2012) for detection of cold chain breaks in
tuna (Reguera et al., 2019), or adulterations (Xu et al., 2013a), or nitro explosive vapors (Pablos et al.,
2015). Also, a procedure based on band limits are successfully used as probabilistic one-class classifier
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(Avohou et al., 2021), among several other applications that can
be found in a recent tutorial (Oliveri et al., 2021). In fact, the area
is very active: a search in Scopus with key terms “Classification
model” OR “Class-modelling” limited to the last five years
(2016–2021) and in Chemistry as subject area return 1,013
documents. By reducing the search to (“Classification model”
OR “Class-modelling”) AND “Chemometrics”, there were still
431 resulting documents.

The concept of pattern recognition has evolved since the birth
of chemometrics (Brereton, 2015) resulting, more than a decade
ago, in the classification of the techniques as either discriminant
or one-class classifiers (when modelling the categories
independently to one another) (Brereton, 2009). A more
flexible taxonomy (Rodionova et al., 2016b) distinguishes
between “rigorous” (equivalent to one-class classifiers) and
“compliant” class-modelling techniques. To build the class-
model only objects of the modelled class are considered in the
former case while in the latter, objects of different classes are also
used. Alternative denominations make distinction between hard
or soft models (Brereton, 2011), as those that do not allow or
allow overlap between classes, respectively. This division is also
used in ref. (Pomerantsev and Rodionova, 2018) for the particular
case of PLS-DA (Partial Least Squares Discriminant Analysis
(Ståhle and Wold, 1987; Barker and Rayens, 2003), making a
distinction between hard and soft PLS-DA models depending on
whether they use LDA or QDA (UNEQ) on the PCA-scores of the
PLS-predicted responses.

The assumption under the name “one-class classifier” is that
each class is modelled independently of any other class, context
that covers the situation where in fact there is a single class, e.g.,
for authentication purposes (Oliveri and Downey, 2012;
Rodionova et al., 2016a). In this case, the quality criterion
(figure of merit) of the class-model is only its sensitivity,
though it can be possible to estimate the specificity as against
other samples by using a different set of objects that do not belong
to the modelled class (a so-called specificity set in ref. (Forina
et al., 2008)). To obtain an unbiased estimate, the specificity set
should be representative of all possible “alternative” classes.

Partial Least Squares for Class-Modelling (PLS-CM), first
proposed in ref. (Ortiz et al., 1993), is one class-modelling
technique that works by implicitly defining probabilistic class-
models with predefined values of sensitivity and specificity or, at
least, the closest possible to the desired ones with the data at hand.
Unlike PLS-DA that also uses a PLS regression model with binary
response, PLS-CM first fits probability density functions to the
predicted values, separately in each class, which act as
probabilistic class-models. For given values of sensitivity or
specificity, a decision threshold can be defined as the critical
value computed with the fitted distributions. Since the two class-
models are fitted together to estimate both sensitivity and
specificity, with the distinction in ref. (Rodionova et al.,
2016b), the method would be a “compliant” class-modelling
method.

Under the same acronym PLSCM, Xu et al. (Xu et al., 2011)
build class-models for a single class. The class-model is a kind of
confidence interval of the form (1 − μ̂r) ± z1−α/2σ̂r where μ̂r , σ̂r ,
are estimates computed with Monte Carlo Crossvalidation, of the

mean and standard deviation of the residuals of a PLS model
with constant response (response matrix Y is a vector of
ones), assuming that they follow a normal distribution.
Accordingly, z1-α/2 is the critical value of the standard
normal distribution for 1—α confidence. A new sample is
inside the class-model if its predicted response ŷun belongs to
the interval. Two years later (Xu et al., 2013b), with the new
name OCPLS (one-class partial least squares) classifier, the
authors add bounds on the allowed variation of the T2

statistic as well as on a transformation of the residuals of
the regression (difference between one and the predicted
responses) to create an outlier identification plot.

Comparing OCPLS (Xu et al., 2013b) with PLSCM (Ortiz
et al., 1993), the differences are in the use of one-class (an interval
as class-model) or two-classes (probability density functions as
class-models) for modelling and that in PLSCM the bounds are
imposed as hard constraints in the values of T2 and Q-residual
statistics to reject objects from both class-models.

The membership of an object x to a given class-model can be
posed as a hypothesis test with null hypothesis H0: object x
belongs to the class-model as against H1: it does not. With the
usual notation, α is the significance level of the test, that is, the
probability of type I error (wrongly rejecting the null hypothesis),
and β is the probability of type II error (fail to reject the null
hypothesis). Then, sensitivity of the class-model is 1—α and
specificity is 1—β, the power of the test. The general notion of
type I and type II errors (with probabilities α and β, respectively)
is usually adapted to the context (Ortiz et al., 2010), and becomes
false non-compliance/compliance or false positive/negative,
whose meaning is clear once undoubtedly established the
hypothesis being tested (the meaning of the “class” we are
studying in the class-modelling framework). Speaking in
positive, the terms sensitivity, specificity, true positive/negative
rates, confidence level or power can also be used.

To avoid misunderstanding and facilitate the reading of the
paper, in what follows, we will always speak about sensitivity and
specificity, which will be estimated as the probabilities that
characterize the corresponding class-model, computed with the
fitted distributions.

In the illustrative examples in the present work, the class to be
modelled is the class of some adequate objects, again, understood
in a general sense. Besides authentication or fraud detection,
another particular situation that fits this framework could be the
modelling or monitoring of a process where the class-model of
interest is the one for non-defective objects and, clearly, the
probability of detecting a defective object (specificity) is
important. Furthermore, it can be assumed that the expected
failures are known, in other words, that there will be samples
representative of the usual defective objects acting as the
alternative class. Therefore, the training set for fitting the PLS
model has samples representative of both situations: usual
defective objects and non-defective ones.

It has been said that with PLSCM, the class-models are defined
in the space of the predicted responses. To backpropagate them
into the input domain requires the inversion of the prediction
model. Briefly, the inversion of a model refers to the situation
where we have the values of the characteristics we want to achieve
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(output space), and the aim is to find the values of the predictor
variables (input space) to attain them.

The inversion of PLSCM is a LVMI (Latent Variables Model
Inversion), term used more frequently in the field of process
industry after the seminal papers by Jaeckle and MacGregor
(Jaeckle and MacGregor, 1996; Jaeckle and MacGregor,
2000a). A general formulation for LVMI when the latent
variables are computed with PLS is in ref. (Tomba et al., 2012)
with a through discussion and also a revision of available
literature and applications at that time. There, 95% confidence
limits on T2 and Q statistics are already applied to the PLS model
fitted with historical data, so that the operating conditions
obtained with PLS model inversion must be interior to it. The
region defined with these hard constraints on the solutions was
later called PLSbox in ref. (Ruiz et al., 2020) where also the explicit
consideration of two existing null spaces (one due to the
projection into the latent space and the other from the
mapping of the scores onto the responses) in PLS model
inversion is described. Some more developments about LVMI
can be found in refs. (Tomba et al., 2013; Ottavian et al., 2016;
Palací-López et al., 2020), and (Zhao et al., 2019a; Zhao et al.,
2019b) where the authors propose a modification called the total
projection in latent structures of PLS model inversion to take into
account that latent variables of a PLS model may contain
information irrelevant to the response. Also, by imposing hard
constraints on the input domain further to the PLSbox, a different
approach to the inversion is in ref. (Ruiz et al., 2018), similar to
the one in Lakshminarayanan et al. (Lakshminarayanan et al.,
2000) but for inverting PLS2 models. The use of PLS model
inversion for product formulation is also noteworthy, especially
in the context of Process Analytical Technology with
pharmaceutical processes (Tomba et al., 2014; Bano et al.,
2017; Palací-López et al., 2019).

In the present work, with PLS-CM, given values of sensitivity
and specificity determine a decision threshold yd to be imposed in
the predicted responses, threshold that acts as the boundary of the
class-model. The inversion of the built PLS model for yd would
provide values of predictor variables xd (a vector in the input
domain) whose prediction is exactly yd.

In general, the solution xd is not unique, due to the null space
of the PLS model (Jaeckle andMacGregor, 2000b). The null space
contains the values of the predictor variables xnull (vectors in the
input space) that are mapped into zero by the linear model, so
that any point xd + xnull have the same predicted response yd.

Since there is a single response (dimension 1), the
consideration of the null space when inverting the PLS model
would define a (subset inside a) hyperplane in the input space.
The objects lying on that hyperplane are at the boundary of the
class-model but already in the input space. Moreover, the
characterization of this boundary would give indications on
how to manipulate or to modify the input variables so that a
rejected object can become an accepted one. The details on how to
do that are explained in section Materials and methods. The
computation and possible utility are illustrated in section Results
and discussion with some data sets taken from the literature. The
paper finishes with some conclusions.

MATERIALS AND METHODS

Partial Least Squares for Class-Modelling
Let X (n × p) be a data matrix with p variables measured on n
objects, which belong to two categories, class A and B. This set
would be the training set, so that it is assumed that it contains
representative samples of these two categories or classes.

The PLSCMmethod consists of fitting a PLS model to a binary
response that codifies the categories. If they are coded as −1 and
+1, respectively, the n-dimensional vector of responses, y, is made
up of as many “−1” as objects belonging to category A and as
many “+1” as objects of category B in the training set.

The selection of the proper number of latent variables for
the PLS model is based on crossvalidation estimates.
Throughout the fitting, objects that surpass the 95%
confidence limits on both Q and T2 statistics, if any, are
removed and the model is rebuilt.

During the application phase (i.e. when predicting with the
fitted model), the predictions are calculated only for the objects
with values in both statistics less than the limits stablished (hard
constraints, which are restrictions that determine the envelope of
the subspace of acceptable solutions (Palací-López et al., 2020).
Along the paper, to illustrate the methodology, the usual 95%
confidence levels are used. Reducing this level would probably
shrink the class-models, or the contrary if it is increased, yet in the
present work no sensitivity analysis of the results on the
confidence levels has been performed.

As PLS models are regression models for fitting quantitative
variables, the individual predicted responses ŷi are neither −1 nor
1 but different values spreading around −1 and 1. The method
then consists on separating these predicted values, according to
the class each object belongs to, and probability distributions are
fitted independently to each class. Thus, random variable XA

related to PLS prediction for class A follows a FA distribution and
XB, related to class B, follows a FB distribution.

Several normality tests are conducted to fit FA and FB. If the
normal distribution is not adequate, an alternative distribution
will be selected, based on the maximum likelihood.

Without loss of generality, let us suppose that we focus on the
class-model of class B (coded as ‘1’). This could be the situation
for the particular case of modelling defective/non-defective

TABLE 1 | Settings of the computed plastic pellets following the direction signaled
in Figure 6.

# Situation Size5 Size10 Size15 TGA DSC TMA

1 Rejected 14.24 10.07 34.43 622.00 18.73 52.08
2 Rejected 13.51 8.91 32.15 638.47 18.67 53.60
3 Rejected 13.03 8.13 30.63 649.45 18.63 54.61
4 Accepted 12.66 7.55 29.49 657.69 18.60 55.37
5 Accepted 12.29 6.96 28.35 665.92 18.56 56.13
6 Accepted 11.93 6.38 27.21 674.16 18.53 56.89
7 Accepted 11.56 5.80 26.07 682.39 18.50 57.65
8 Accepted 11.20 5.22 24.93 690.63 18.47 58.42
9 Accepted 10.83 4.64 23.79 698.87 18.44 59.18
10 Accepted 10.47 4.05 22.65 707.10 18.41 59.94
11 Accepted 10.10 3.47 21.51 715.34 18.38 60.70
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objects, for example, where class B would be the category of non-
defective objects.

In any case, for a given sensitivity s in [0, 1], we use the
cumulative distribution function of FB to compute the critical
value yc so that P(XB ≤ yc) � 1 − s � α. This critical value will act
as a decision threshold, that is, object i-th is assigned to the model
of class B when ŷi ≥ yc and to class A otherwise. Consequently, yc
defines the boundary of the class-model. It is worth remembering
that alien objects (outside both class-modes) are previously
removed with the hard constraints imposed on Q and T2

statistics.
Finally, the specificity sp of the class-model as against class A is

given by P(XA ≤ yc), which is computed with the cumulative
distribution function FA. In this way, as expressed in Table 1 of
(Rodionova et al., 2016a) for class-modelling techniques, PLSCM
gives a decision rule for a given α as a result of the modelling, and
sensitivity and specificity can be computed as the usual figures
of merit.

Inversion of a Partial Least Squares Model
Once fitted a PLS model, its typical use is to predict values of y
given x (p-dimensional vector of predictor variables). The
reverse situation, looking for the values of x whose
prediction is a predefined y requires the inversion of the
regression model.

In the context of process control or product formulation
with a PLS prediction model, its direct use means predicting
quality characteristics of the product manufactured with given
settings x of input variables (process variables, characteristics
of material including their amounts mixed, environmental
variables, etc.). Thus, the inversion of the PLS model would
refer to the situation where we have the desired characteristics
and need to find the settings of the input variables, if any, to
attain them.

In the following, we will introduce the inversion of the PLS
model for a single response, which is the only situation that
applies here. With the notation stablished in the previous section,
X (n × p) is the matrix of predictor variables and y is the response
vector with the n binary values. In the class-modelling situation,
the PLS model fitted to X-y leads to defining different threshold
values yd, each one related to a pair (sensitivity, specificity) that
qualifies the corresponding class-model.

Consequently, by defining yd as the target value, the inversion
of a PLS-CMmodel would provide values of the predictor (input)
variables that are mapped exactly into yd via the PLS model,
i.e., the characteristics of the objects that are directly projected
into the class-model boundary. Therefore, setting aside the
uncertainty in the prediction of any data-driven model, these
objects would represent the boundary of the class-model already
in the input space. Since PLS is a linear model, the boundary thus
constructed is also linear. These ideas are developed in a more
precise way in the following lines.

With a single response in the response space, like in this case,
the inversion of the PLS model with a latent variables can be
computed algebraically because it consists on solving Eq. 1 in x.

ŷ � TQT � xTWQT (1)

where T (n × a) is the matrix of common scores,W (p × a) is the
weights matrix and Q (1 × a) is the y-loadings matrix (which is a
row vector in this case). As usual, superscript T means
transposing.

The input space of predictor variables has dimension p and the
dimension of the output (response) space is one. Therefore (Lay
et al., 2016), the kernel of the PLS model (null space of QWT),
which is the set of points with null response, has dimension
p—1 > 0 unless p � 1, which would be a very unrealistic
situation. Therefore, the null space is a hyperplane in the input
space passing through zero (p-dimensional vector of null
coordinates), that is, a linear subspace.

Because of their own definition, any vector in the null space
adds variability in the input space without modifying the
predicted value. That means that, given a desired yd, for any
p-dimensional solution of the inversion, that is, any vector xd with
xTdWQT � yd , all the remaining solutions of Eq. 1 can be
written as

{xd + x0 : xT0WQT � 0} (2)

Hence, the inversion has infinitely many solutions for yd,
although it suffices to consider one of them and characterize
the null space.

A sequential alternative for the inversion starts by finding the
vector of scores td (a-dimensional) such that

yd � tTdQ
T (3)

In this sequential approach, the dimension of the latent space
spanned by T is a so the null space inside the latent space has
dimension a—1 (which is positive for more than one latent
variable), i.e., for a > 1 the null space is also a hyperplane, but
inside the latent space.

Because of this null space, the solution of Eq. 3 is not unique
either, there are infinitely many solutions described from any
particular one, td, in the set in Eq. 4.

{td + t0 : tT0Q
T � 0} (4)

All a-dimensional vectors belonging to the set in Eq. 4,
solutions of Eq. 3, lie on a hyperplane in the a-dimensional
latent space that, contrary to the null space, does not contain the
null vector (unless, of course, yd � 0).

This property about null spaces of linear models has been
already used in ref. (Largoni et al., 2015). to divide the latent
space into two subspaces, one for on-spec batches and the
other for off-spec batches, depending on an end-point product
quality.

In the present context with PLSCM, given the threshold value
yd, the hyperplane in Eq. 4 is in fact the decision boundary of the
class-model in the latent space. Moreover, via the X-loadings
matrix P (p×a), Eq. 5 gives the objects in the input space whose
projection are the scores in Eq. 4.

x̂d � (td + t0)PT with tTdQ
T � yd , and tT0Q

T � 0 (5)

Because all the scores in Eq. 4 lie on the same hyperplane, the
corresponding input objects computed with Eq. 5 also belong to

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 6819584

Ruiz et al. PLS Model Inversion in Class-Modelling

9

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


a subspace of dimension a−1 inside the p-dimensional input
space.

However, once in the input space and if p > a (which is usually
the case), there are still some more solutions of the inversion,
additional to the ones computed with Eq. 5. They correspond to a
(p—a)-dimensional subspace obtained when adding points
(p-dimensional vectors) that belong to what we have called the
W-null space (Ruiz et al., 2020), spanned by the loadings of the
latent variables discarded when building the PLS model.

Consequently, the solutions in x of Eq. 1 for ŷ � yd , described
in Eq. 2, are also described as in Eq. 6, where x̂d is defined in
Eq. 5.

{x̂d + xw0 : xTw0W � 0} (6)

A final consideration is worth mentioning. Although the PLS
prediction for all the points in either Eq. 2 or Eq. 6 will be yd, not
all of them define a feasible object or, in general, a valid solution of
the inversion. The valid solutions are those that belong to the
PLSbox (Ruiz et al., 2020), which is the region of applicability of
the model, characterized by the limits imposed on both theQ and
T2statistics when fitting the PLS model; and that also belong to a
given domain D inside the input space, that accounts for the
characteristics of the input variables in each particular
application. This domain should be explicitly defined since it
imposes additional hard constraints for the valid solutions of the
inversion.

For the present work, the PLSbox is defined with the limits at
95% confidence level. The domainD on its part is defined with the
range of the variables in the training set, which at least describes
the physical bounds on the predictor input variables (Tomba
et al., 2012).

In what follows, we will only consider valid (feasible) solutions
of the inversion, that is, points whose prediction is yd and that
belong to both D and the PLSbox.

If the situation were one that fits any form of process control,
or product formulation, the general principle in model inversion
problems is to manipulate the variables that can be manipulated
(in a process control sense or compositional variables) to obtain a
product as close as possible to the required specification (Dunn,
2020).

The specification in the situation being discussed is related to
sensitivity and specificity of the class-model, and the solutions of
the inversion give the boundary of the class-model. Thus,
different directions of manipulation (of scores inside the latent
space or of variables in the input space) can be defined, any of
them crossing the boundary at some point so that following the
direction allows moving in or out of the class-model.

In the latent space, the most easily computable direction is the
one defined by the normal vector of the boundary hyperplane
(i.e., the vector perpendicular to the hyperplane) which isQT. This
direction does not depend on the inversion of the model but the
precise position of the hyperplane does, that is, at least one solution
of the inversion is needed to have the boundary that allows
decidingwhether a given object is inside or outside the class-model.

The same idea can be applied directly in the domain D to
define a direction of movement/manipulation of the input
variables. In this case, it would be the straight line whose

director vector is QWT, orthogonal to the global null space of
the fitted PLS model and, thus, to any hyperplane computed as in
Eq. 2 or Eq. 6, that positions the boundary of the class-model in
the input space.

Data Sets
Two different data sets are considered to illustrate the proposed
method. The first one does not come from a process with
attributes data but illustrate other situations, provide some of
the variables can bemanipulated. The second one will emulate the
use of historical data to fit a model that helps in process control
and/or product formulation.

The first data seta contains samples of 128 red young wines
from Spanish DOC (Denominación de Origen Calificada) Rioja
(Ortiz et al., 1995). The wines are characterized by six variables
related to physical-chemical measures of color, namely red/green
chromaticity (a), yellow/blue chromaticity (b), lightness (L),
chroma (C), hue (H), and saturation (S). Expert tasters
visually assess the color of each wine and divide the objects
into two categories, acceptable or non-acceptable wines because
of their color.

The second data setb contains six characterizing
measurements for batches of plastic pellets, which will be the
predictor input variables, with 24 rows. The first three
characteristics, coded for confidentiality, are related to the
percentage material in the mixture with different size range
(size5, size10 and size15). The last three characteristics are
measurements from TGA (thermal gravimetric analysis), DSC
(differential scanning calorimetry) and TMA (thermomechanical
analysis) devices. The outcome when using this material is either
Poor or Adequate.

RESULTS AND DISCUSSION

Rioja Red Wines
Predictor matrix X is 128 × 6 and response y is a vector with
binary values, namely −1 for non-acceptable wines and one for
the acceptable ones. With autoscaled X and y and leave-one-out
crossvalidation, a three latent variables PLS-model is fitted that
explains 91.01% of variance in X with 72.86% in y (70.88% in
crossvalidation).

The predicted responses corresponding to non-acceptable
wines are fitted to a normal distribution with mean -0.95 and
standard deviation 0.45 (the smallest p-value among the tests
performed was greater than or equal to 0.10, thus, the idea that
the values come from a normal distribution cannot be rejected with
90% or greater confidence). On the contrary, the responses
corresponding to acceptable wines are not compatible with a
normal distribution. The minimum log likelihood was similar for a
beta distribution with four parameters and to a highly asymmetric
triangular distributionwith three. This was the one selectedwith lower
limit −0.57, center point 1.16 and upper limit 1.17.

aAvailable in RIUBU, at http://hdl.handle.net/10259/5753
bAvailable at http://openmv.net/info/raw-material-characterization
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Without loss of generality, let us focus in the class of acceptable
wines, codified as 1. The fitted probability distributions allow
setting different decision thresholds yd which, in turn, are related
to different values of sensitivity and specificity for the class-model
of the acceptable wines.

These values are depicted in Figure 1 (green continuous line
for sensitivity, brown dashed line for specificity) as a function of
the decision threshold. It is clear how larger threshold values
results in an increase of specificity (dashed line), linked to a
decrease of sensitivity (continuous line).

From the set of possible class-models computed with PLS-CM,
the more balanced one is the one indicated with the vertical red
dotted line, with little squares in Figure 1, for which we expect the
same values of sensitivity and specificity, 0.954 in this case, that
corresponds to yd � −0.196.

By using this yd as target value, the inversion of the PLS
model would provide points in the input space (where the
objects vary) whose predicted response will be exactly the
decision threshold yd, according to Eq. 1 with ŷ � yd � −0.196.
Working sequentially, the solutions of Eq. 3 are scores in the
latent space, some of them depicted in Figure 2A as red
squares.

By using the loadings as in Eq. 5, the corresponding points in
the input space are in six dimensions. Therefore, the usual
Cartesian representation is not available. Extensions to
visualize data in greater dimension includes the so-called
matrix plot, which consists of a set of two-by-two Cartesian
plots for any two variables. This matrix plot is usually more
informative when representing the scores of a PCA (Principal

Component Analysis) that better describe the internal correlation
structure of data.

Another alternative, whatever we are visualizing, the Parallel
Coordinates Plot also helps in describing the joint behavior of the
variables (the “coordinates” of the points). The value of each
coordinate is plotted as height above the ordinate axis, against its
position in the vector. Then, the values are linked together by a
broken line to follow each point. Therefore, rather than its usual
meaning, the abscissa axis only accommodates as many slots as
coordinates in the point. Although with this disposition there is
no limit to the dimension of the points depicted as Parallel
Coordinates Plot, it becomes messier when increasing the
number of coordinates.

In any case, the points in the input space that correspond to
the red squares in Figure 2A are depicted also in red in Figure 2C
in the form of a parallel coordinates plot. In both cases, we are
seeing points falling on the boundary of the class-model, whether
scores in Figure 2A or raw variables in Figure 2C.

If the requirements on the class-model change, the decision
threshold yd also changes. To illustrate this property, the
inversion procedure is repeated for another two different
threshold values, in blue and cyan vertical lines in Figure 1,
that correspond to the class-models with the usual 0.99 and 0.90
sensitivity, respectively.

Figure 2 also shows some new valid solutions predicting every
threshold in both the input and latent spaces. Figure 2B and
Figure 2D depict the raw variables in the input space (in the
domain D defined by the range in X) in the form of a parallel
coordinates plot. Figure 2A is the plot of their projection (scores)

FIGURE 1 | Sensitivity (green thick line) and specificity (brown dashed line) of the class-model of ‘acceptable’ wines as a function of the decision threshold. The
dotted vertical lines mark the decision thresholds for obtaining different class-models in terms of their sensitivity and specificity.
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in the 3D-latent space. In both cases, the solutions in blue (lines
and rhombuses) are for the class-model with sensitivity 0.99 (with
0.894 of specificity, see Figure 1); cyan lines and triangles are for
the class-model with sensitivity 0.90 (specificity 0.981).

As we have a single response, the null space in the latent space
is a plane because we have three latent variables. Consequently,
the projection of the computed solutions into the latent space will
be in the corresponding 2-dimensional subspace. The dotted lines
in Figure 2A are meant to help observing how the points of the
same color lie on the same plane, and different colors and symbols
define different parallel planes in the latent space.

It is less clear but the corresponding objects in the X-space in
Figures 2B–D are in a two-dimensional subspace inside the
boundary of the different class-models, and thus they
correspond to some kind of prototype discriminating objects.

To make graphs clearer, only around fifty points were calculated
for each threshold. However, any convex combination of any pair
of points in Figure 2 is also a valid solution and therefore belongs
to the boundary of the class-model at hand.

In any case, the solutions depicted have different values for the
variables, in particular, we see how the boundary objects for the
balanced class-model in red, that clearly occupy an intermediate
position among scores in Figure 2A, have not so clear differences
in Figure 2C, when comparing with Figures 2B,D.

Finally, there are some more possibilities that do not come
from the latent space or, in other words, that predict the same
threshold value but are projected into the origin of the latent
space. All points together, added to a particular solution as in Eq. 6,
define the boundary of the class-model (a hyperplane) in the
domain D of the input variables.

FIGURE 2 | Rioja wines. Boundary objects for different class-models (A) latent space (B–D) input space. Blue lines and rhombuses are for the class-model with
sensitivity 0.99 and 0.89 of specificity; red lines and squares are for the balanced class-model with both sensitivity and specificity equal to 0.954; cyan lines and triangles
are for the class-model with sensitivity 0.90 and 0.98 of specificity.
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From the practical point of view, it is probably more
interesting to notice that the probability of being inside the
class-model of accepted wines increases when moving in the
latent space, graphically in Figure 2A, from scores near the blue
rhombuses (which, in fact, define a plane), traversing the red
squares toward scores ‘above’ the cyan triangles which define
another plane.

Obviously, each wine is projected into a unique position in the
latent space and its acceptance or rejection depends on the
sensitivity and specificity selected to make the decision.
However, for a given class-model, we can compute scores
(ideal scores not necessarily corresponding to any of the wines
in the training set) moving in the direction of improving the color
toward the acceptance of the wine.

For example, let us consider the balanced class-model (in red
lines or squares in Figure 2 with sensitivity and specificity both
equal to 0.954) and let us take one of the wines rejected with the
class-model, xd, which is outside the class-model of the acceptable
wines, with a 0.046 probability (4.6%) of being wrongly rejected.

Its projection into the latent space is the filled red square in
Figure 3, where the boundary plane is depicted in grey extending
the convex hull of the red squares in Figure 2A to better illustrate

the indeterminacy due to the null space. For reference, the scores
of the training set are also depicted, red crosses for the non-
acceptable wines, green points for the acceptable ones.

Filled black arrows in the black line in Figure 3) mark an
ideal direction of improving the color, discretized by taking 10
points equally spaced along the line segment orthogonal to the
plane and starting in xd. Graphically, it is clear that, at some
point, the computed score crosses the plane and then, the
corresponding object would be inside the class-model of
acceptable wines.

The objects in the input space whose projections are the ten
scores along the black line in Figure 3 are the colored lines in the
Parallel Coordinates Plot in Figure 4, from the continuous red
line (that corresponds to the non-acceptable wine xd) to the dash-
dotted and dashed red lines, both still for rejected objects.

Following further the same direction pointed in Figure 3, we
have the continuous green line, already inside the class-model
and the remaining green lines (dot dashed, dashed, dotted and
thinner continuous, dot-dashed and dashed green lines) depicting
objects that would be “more and more clearly” inside the defined
class-model and, hence, accepted. For reference, the light grey
lines in Figure 4 are the wines of the training set accepted with the

FIGURE 3 | Latent space for the Rioja wines. Green points are for acceptable wines, red crosses and the red filled square for non-acceptable ones. The grey plane
is the boundary plane for the class-model when sensitivity and specificity both equal to 0.954. The black triangles are along the direction of improving the color of
the wine.
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class-model. It is clear that the green lines are, more and more,
among the real values of the acceptable wines.

We have already said that, except for the red continuous line,
the remaining colored lines in Figure 4 are computed points.
Nevertheless, they show how the movement along the line in
Figure 3 is related to a systematic variation of the input variables.
Following the different lines in Figure 4, we see that to improve
the color of the wine toward its acceptance, it is necessary to
increase a and (to a lesser extent) b, decrease L, increase also C,
decrease H and slightly increase S, but always maintaining the
exact relation (relative systematic variation) shown in Figure 4.

Although there is more than one direction to exert the same
effect, with the one selected, it is clear that moving the
colorimetric parameters in the adequate range and relation,
which is viable for an expert oenologist by mixing different
wines, it is possible to get closer to and eventually inside the
class-model of acceptable wines, based on their color.

Plastic Pellets
In this case, matrixX of predictor variables is 24 x 6. The outcome
when using the corresponding material, either poor or adequate,
is coded into −1 and 1, respectively, to form the matrix of binary
responses to be predicted.

With autoscaled predictors inX and binary responses in y, also
autoscaled, a PLS model is fitted with two latent variables that
explain 73.64% of the variance in X and 66.17% of the variance in
y, with R2

cv � 56.65% (obtained with venetian blinds, ten data
splits, one sample per blind).

The low predictive ability of the model could be due to the
small number of samples at our disposal. This implies that the
conclusions obtained can carry great uncertainty, which is one
the reasons why the results should be experimentally validated,
whenever possible. However, the example is still valid to show
how to proceed.

The PLS-predictions for the class adequate are fitted to a
N(0.42, 0.48), with the smallest p-value for several normality
hypothesis tests being greater than 0.10. The small number of
samples in the class poor prevent testing the normality, though

FIGURE 4 | Rioja wines. Parallel Coordinates Plot for objects in the input
space. In grey the wines inside the class-model with sensitivity and specificity
0.954. The red continuous line is xd, the remaining colored lines are for the
points computed, rejected in red, and accepted in green.

FIGURE 5 | Plastic pellets. Probability density functions of the normal
distributions fitted to the PLS predictions, red and dashed for the poor
category, green for the adequate one. The vertical dotted line marks the
decision threshold for equal sensitivity and specificity.

FIGURE 6 | Plastic pellets. Second vs. first latent variables. Green points
for adequate objects, red crosses, and the square, for the poor ones. The
thicker grey line is the decision line with 93% sensitivity and specificity and the
black dotted line is the direction of ‘repairing’ the poor object to become
adequate. Red filled downward-pointing triangles for poor, black filled right-
pointing triangles for adequate. Empty rhombuses are outside the domain.
The blue dashed line is the 95% confidence limit of the PLSbox inside the
latent space.
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the points are well aligned in the ‘normal probability plot’.
Therefore, for the computation of sensitivity and specificity
the N (−1.01, 0.49) is used for the poor class.

The corresponding probability density functions of the fitted
distributions are depicted in Figure 5, red dashed line for the poor
category, green continuous line for the adequate one. Again, we
focus on the class of adequate pellets, coded as 1, that mimics the
situation of a process control with attributes data: one minus the
sensitivity of the class-model would be the probability of false
alarm and the specificity would be the power to detect a true
defective (poor) object.

Choosing a threshold value for PLS predictions, for instance
the one marked with the vertical dotted line in Figure 5, means
defining a class-model whose sensitivity is the probability under
the green curve to the right of the line, whereas the specificity
would be the probability under the red dashed curve to the left of
the black vertical dotted line.

In fact, usually, first the sensitivity and specificity required for
the decision are set, and then, taking into account the fitted
distributions, the decision limit yd is computed. In the illustration
of Figure 5, the value yd � -0.2913 corresponds to the class-model
with the same sensitivity as specificity, namely 92.9%.

As we have already pointed out, the inversion of yd up to the latent
variables space has infinitelymany solutions, all obtainedwhen adding
points belonging to the null space (Jaeckle and MacGregor, 2000b),
precisely, in what we have called the Q-null space (Ruiz et al., 2020).
Therefore, the set of solutions defined in Eq. 4 is a subspace (a
hyperplane) in the latent space, the grey straight line in Figure 6,
representing the boundary line for the chosen class-model.

Graphically, all the objects whose scores are “to the right” of
the grey line will be inside the class-model of adequate objects.
On the contrary, those whose projections are “to the left” of the
grey line will be predicted as poor (or, more precisely, they are
predicted to be outside the class-model of adequate pellets).

However, it is clear that if the scores move along, for example, the
black dotted line (orthogonal to the decision line), eventually, they will
fall inside the class-model of the adequate objects. This is the situation
illustrated with the different symbols superimposed on the line that
starts at one of the poor pellets, the empty square, followed by
(computed) scores, red filled downward-pointing triangles, still
rejected by the class-model, up to the black filled right-pointing
triangles corresponding to points inside the class-model.

Undoubtedly, we can go on moving along the line in the
mentioned direction. However, only the valid solutions should
be considered, that is, those scores corresponding to objects inside
the PLSbox (whose boundary in terms of the 95% confidence level
for the T2 statistic is depicted as the blue dashed line in Figure 6)
and inside the input domain. For example, the three empty
rhombuses in Figure 6 follow the right direction, but their
corresponding points in the input space, though inside the
PLSbox, are outside the domain defined with the range of the
variables in the training set, and they should be discarded.

By multiplying by the loading on P, as in Eq. 5, the valid scores
can be seen in the domain inside the space of the input variables
where some of them can be manipulated. The computed solutions
are written in Table 1, whose rows follow the order along the
direction of improvement in Figure 6. Accordingly, the first three

computed objects are rejected by the class-model, the remaining
objects are accepted, i.e., inside the class-model of the adequate pellets.

In general, when seeing the computed values in the order of
Table 1, in each individual variable, it is shown that to improve
the characteristics of the poor object to become adequate the
percentage material of all sizes should be reduced as well as the
DSC measurements and, at the same time, the TGA and TMA
measurements should increase.

Table 1 shows that, following the selected direction from a
poor pellet (rejected by the class-model) to an accepted
object (inside the class-model) by theoretically modifying
its formulation, there is also bounds for these six variables
for adequate pellets, namely, Size5 must be less than 12.66,
the upper bound of Size10 is 7.55 and 29.49 for Size15,
whereas the DSC measurements slowly decrease from 18.60.
Similarly, from row four inTable 1, TGAmeasurements should be
greater than 657.69 and TMA measurements start from 55.37.
Taking into account the actual domain, defined with the data at
hand, the restriction of being in both the PLSbox and the domain
also imposes upper bounds for TGA and TMAmeasurements and
lower bounds for the other four variables.

In any case, the variables cannot be varied in the sense of
Table 1 independently of each other, they should follow the
relation shown in the different rows of Table 1, or any convex
combination of any of those rows.

A principal component analysis (PCA) onX (autoscaled) shows
that the first two principal components, depicted in Figure 7A, also
contain information to reasonably distinguish the two classes, in
green the adequate pellets and in red crosses the poor ones. It is
seen that, qualitatively, to improve the characteristics of the poor
objects to become adequate ones is to move in this plane to the left
and up, that is, decrease the scores on the first principal component
and increase the ones on the second principal component.

Figure 7B shows the loadings on the two principal components,
blue for the first, orange for the second. Similar to the previous
analysis with Table 1, with the loadings in the first three variables
(percentage in the three different size ranges), the manipulation
should be done clearly decreasing the values of the three variables.
The loadings on the last three variables (measurements in different
devices) is less clear, but, as the loadings on the second principal
component are larger (in absolute value), TGA and TMA should be
increased, and DSC decreased.

Nevertheless, questions still remain, such as how much of any
one, in which proportion, whether any given relation must be
maintained among variables, etc. These questions are answered in
the solutions inTable 1, which define the joint combination among
all input variables that guarantee a given property.

CONCLUSION

PLS-CM models are computed by setting a threshold decision limit
in the space of predictions obtained when fitting a binary response
that codifies the categories. This limit is selected based on the
sensitivity and specificity that are needed in each specific application.

For one of such threshold values, the inversion of the fitted
PLS model with a single response defines hyperplanes in both the
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latent and input spaces that, when observed in the input space,
correspond to a kind of prototype of the object belonging to the
boundary of the class-model being computed.

For cases where the classes are ‘fail/no fail’, (‘defective/non-
defective’) a vector normal to the boundary hyperplane in the
latent space defines one direction to move the scores along,
exiting the ‘fail’ class to enter the other. In that case, the
computed points in the domain corresponding to these scores
provide information on how to modify the input variables to
improve defective objects. Alternatively, if there is no need of
working in the latent space, a direction with the same properties
can be obtained directly in the domain by using the boundary
hyperplane in the input space.

In that sense, the proposed procedure can be used as a
diagnostic tool since it gives the characteristics of the predictor
variables (input space) that allow the valid objects to be separated
from the invalid ones. The characteristics are precisely those of
the objects on the boundary hyperplane of the corresponding
class-model. With PLS, contribution plots are common
descriptive tools, that allow identification of the variables with
the greatest relative influence to discriminate objects of a class in
relation to the other. With respect to them, the boundary
computed in the latent space with the proposed procedure
provides, additionally, estimations of sensitivity and specificity.
Furthermore, by “moving” this boundary to the input space, the
information about the predictor variables is direct, for example,
about how to modify them together pursuing a given goal.

The paper shows some possibilities of acting in specific situations,
based on theoretical properties of both the fitted model and its

inversion. The theoretical solutions developed in the present work
apply in class-modelling contexts, where at least one ‘alternative’
class is adequately represented in the training set together with the
target class, and the input variables (at least some of them) can be
manipulated. In addition, good predictive PLS models need to be
fitted and validated and, whenever possible, the predicted solutions
should be experimentally validated.
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Waste wood is becoming an appealing alternative material to virgin wood, and the main
drivers are the increased demand for waste wood by the panel industry, the introduction of
renewable energy policies, and the waste framework directive. In fact, the use of waste
wood as a secondary resource is favored over both landfills and combustion. The best
reuse and cascading use of the material are linked to its characteristics. That is why it is
important to know the chemical composition and the variation in the properties of such a
heterogeneous material. In this article, a sampling study was carried out in a panel board
company located in the northern part of Italy. In order to investigate the heterogeneity of
waste wood, all samples have been analyzed by near-infrared spectroscopy. Nested
analysis of variance and principal component analysis have been used to evaluate the
heterogeneity and the variation in sample properties. The approach gives information
about how to ensure representative measurements and efficiently describe the variability of
the material. The results suggest that it is important to have replicates or at least two
subsamples for each lot and then measure each of these with at least 100 scans, in order
to get representative measurements and describe the variability of the material. The
determination of waste wood composition and variability is the focal point for improving the
sorting process and increasing the reuse of waste wood, avoiding expensive landfills and
risks for human health and the environment.

Keywords: sampling, variability, NIR spectroscopy, nested analysis of variance, heterogeneity, PCA

INTRODUCTION

Wood is one of the oldest and highly exploited resources in several sectors (e.g., pulp, construction,
and energy), but it is also a limited resource (Rettenmaier et al., 2008). Since the 1970s, wood
consumption has increased continuously, and it is expected to do so in the future (FAO/ECE,
2012). At the end of the life cycle, wood utilization produces waste wood (WW). The term indicates
wood or wood-containing post-consumer and post-use products from different sectors
(packaging, furniture, construction and demolition, and industrial and commercial sectors)
(Edo et al., 2016). A study has estimated that the European Union generates 50 million cubic
meters of wood waste each year (Mantau, 2012), and nowadays, a large amount remains unused
(Hakala, 2012).

The most relevant drivers of the growth of the waste wood trade are related to the increased
demand for waste wood by the panel board industry (Mazzanti and Zoboli, 2013) (Bergeron, 2016).
The European Union is promoting the reuse and recycling of the materials over the landfill (Waste
Framework Directive, 2008/98/EC, European Parliament 2008) (Commission of the European
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Communities, 2008) and has introduced European renewable
energy policies for mitigating greenhouse gas emissions (Röder
and Thornley, 2018).

Because of the various sources of origin, WW composition
presents high heterogeneity (Huron et al., 2017). In addition, it
should be taken into account that its chemical composition,
quality classes definition, and degree of contamination also
change according to the countries and their different laws
(Edo et al., 2016). Consequently, identifying the best-suited
application and possible end-users is related to the assessment
of the WW composition and quality characteristics.

Some studies have already examined the characterization of
waste wood materials. Edo et al. have investigated the waste wood
variability across time (Edo et al., 2016). They collected five
hundred samples from an industrial heating plant during nine
years and performed lab analysis to assess the material
heterogeneity. The concentrations of the examined
contaminants varied according to the sampling method,
demonstrating the variability of the material. In another study,
Moreno and Font have carried out a complete characterization of
furniture waste wood and studied the differences in
thermochemical conversion by performing pyrolysis tests
(Moreno and Font, 2015). Huron et al. have performed an
extensive characterization of various treated waste wood to
evaluate their heterogeneity and assessment of suitability with
combustion processes. Different samples were collected,
including waste wood mixtures, specific waste wood classes,
and untreated wood for comparison. Some parameters, such
as heating value and composition in C, H, and O, did not
vary significantly compared to those of untreated wood, while
minor elements showed differences in relation to the chemical
treatments of waste wood (Huron et al., 2017). Faraca et al. have
investigated the quality of wood waste and pointed out the
importance of physical and chemical impurities in waste wood
to improve recyclability (Faraca et al., 2019). In some other
studies, waste wood has been extensively characterized for
properties relevant to combustion, and the suitability of waste
wood as feedstock in combustion units has also been tested
(Tatàno et al., 2009) (Gehrmann et al., 2020). It was
demonstrated that waste wood contained higher ash content
and metals than natural virgin wood and that the chemical
and physical characteristics of the different types of waste
wood play a role in choosing the best use of the material as a
feedstock for energy recovery. To the best of our knowledge, there
are no studies examining the variability of waste wood samples
using fast analytical technologies, such as Near-Infrared
Spectroscopy (NIRS). In fact, Vrancken et al. have listed and
reviewed different studies where sensors and modern sorting
technologies were developed for recycling plants to improve/
optimize the material sorting and/or measure critical waste
characteristics (Vrancken et al., 2017). The optical sensors
could be used to obtain real-time information about waste
characteristics, which helps in selecting the best waste
processes, proving to be a useful tool for stakeholders.

As it can be seen by the references cited above regarding the
heterogeneity of WW, the assessment of waste wood variability is
of utter importance for improving the waste management in

terms of sorting and related best reuse of the material and
avoiding health and environmental issues at the end of the life
cycle of wood utilization. Consequently, in the current study,
WW samples have been collected during a sampling in a panel
board industry located in the northern part of Italy. All of the
samples have been analyzed using NIRS following strict sampling
protocols. Our aim is to show how the variability of WW can be
characterized, both within and between each sample.
Furthermore, we will show how this information can directly
be implemented and used for the increased reuse of WW.
Throughout the manuscript, we have decided to include
information about the bound water content. This is a very
important quality attribute for waste wood and is one of the
most important parameters influencing the NIR analysis.

To address this issue, the following data analyses have been
carried out: 1) nested analysis of variance for investigating the
variability at each sampling level; 2) Principal Component
Analysis (PCA) as a rapid tool for the assessment of the
material variability; 3) repeated nested analysis of variance
considering a subset of the original data. The first two give a
good overview of the variability in and between the lots, while the
latter is a good procedure for finding the most suitable sampling
procedure. Obtaining information about the number of samples
and replicates to be performed during sampling is fundamental to
guarantee an accurate and successful application of a NIR sensor
classification tool, especially when dealing with heterogeneous
material. In fact, efficient quality control with a high degree of
accuracy is imperative for its use in the industry. In order to meet
these requirements, it is essential to have detailed information on
how to perform the sampling procedure in practice, out in
the field.

MATERIALS AND METHODS

Collection of Waste Wood Samples
Waste wood samples were collected in a large panel board
company located in the northern part of Italy (Lombardy
region) over two days of sampling (February 18–19, 2020).
The material was collected in the earliest phases of the
production stream, precisely after the first step of cleaning
(removal of stone, iron, and other heavy materials by washing)
and grinding (reducing the particle size of the material to
around 5 cm).

In order to get representative samples, a sampling plan has
been defined based on the EN-15442:2011 standard (CEN, 2011).
The sampling was carried out from a static lot. The material was
taken every hour from the production stream in an external
unloading tank for a total of 16 lots. As the incomingmaterial is of
variable quality, it is also assumed that the quality and variability
within the 16 lots are different. For each lot, four representative
samples were randomly taken from different locations in the lot
(Mancini and Rinnan, 2021). The samples were collected using a
sampling scoop for a total volume of 10 L; afterward, they were
sent to the lab for the next lab and near-infrared analyses. In
short, a total of 64 samples (16 lots x 4 samples from each lot)
were obtained.
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The hierarchical sampling procedure from lot level down the
individual NIR scans is presented in Figure 1A.

Sample Preparation
The samples have been prepared for the successive lab analysis
using the technical standard UNI 15443. The sample preparation
consists of a combination of sample division and particle size
reduction, carefully avoiding loss in representativeness and
sample composition during each step of the preparation.

Firstly, the sample has been stabilized by drying for at
least 24 h not exceeding 40°C. The dried samples have been
divided using a quartering process. The quartering process
means that the sample is piled, divided into four, and the two
opposite fractions are combined. The process of piling,
dividing, and combining is repeated until the wanted
sample size is achieved. Subsequently, the sample particle
size has been reduced to below 5 mm using a cutting mill
(mod. SM 2000; RETSCH). This material has been used for the
near-infrared analysis. Finally, part of the material was further
reduced to under 1 mm for the bound water content analysis.
Before the NIR and lab analyses, the samples have been stored
in hermetically closed plastic bags in a room with controlled
temperature and humidity.

Bound Water Content
The analytical methodology adopted for the determination of
bound water content (BWC) follows the standard ISO 18122:
2015. The parameter has been determined using a thermo-
gravimetric analyzer (mod. 701 Leco). In detail, the sample
has been air-dried to a controlled temperature (105 ± 10°C)
using a muffle furnace and has been weighted until constant mass
is achieved. The loss in mass has been used to calculate BWC.

Each BWC value was estimated twice per sample, and the average
of these estimates was used in the subsequent data analysis.

The BWC parameter has been chosen because it is easy to
determine and it is important for investigating the influence of
moisture in the variability of waste wood material.

Near-Infrared Data
All waste wood samples were analyzed using a Quant FT-NIR
spectrophotometer (Q-Interline A/S, Tølløse, Denmark)
provided with the patented spiral sampler (Spiral Sampler,
Q-Interline A/S, Tølløse, Denmark). The spiral sampler scans
a total of 375 cm2 surface, improving the representativeness of
heterogeneous samples.

The instrument is equipped with a quartz halogen lamp as a
light source and an InGaAs detector. The samples were acquired
in diffuse reflectance mode and were kept in rotation during the
acquisition by means of the spiral sampler. Near-infrared spectra
were recorded in the range from 14,885 to 3,700 cm−1 (equals to
670–2,700 nm) with a maximum of 210 scans per sample/tube
and a spectral resolution of 8 cm−1. Instead of averaging all scans,
each scan was stored individually, meaning that we get a good
estimate of the heterogeneous nature of each sample. It is
important to note that the start of each measurement had to
be performed manually for each sample. Thus, some of the scans
at the beginning of one series had air/plastic lids instead of the
wood sample, which needed to be removed before data analysis.
Random effects associated with the instrument or environment
were removed by acquiring a blank spectrum, by measuring
Spectralon, at the beginning of the analysis session. (However,
we later realized that we should have measured this Spectralon
sample several times during the measurement session, despite the
whole process only taking approximately 6 h; see Nested Analysis

FIGURE 1 | A) Schematic representation of the hierarchical sampling procedure. Please note that there “only” are 126 samples at level 3 due to some unfortunate
problems during the NIR analysis. (B) Schematic representation of the data analysis procedure (n is the number of random scans selected). Level A, each subsample and
replicate are represented equally; level B, each subsample is represented equally; level C, groups of two subsamples are represented equally; level D, groups of three
subsamples are represented equally; level E scans are selected freely among all subsamples and replicates.
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of Variance.) Spectra were collected at room temperature and in
duplicate for each sample in random order. The resulting dataset
consists of 26,192 observations at 1,091 wavenumbers, as two
tubes were only measured once due to an unfortunate computer
error1 only realized after arriving back at the University.
Consequently, level 3 of the replicate consists of 126 objects
instead of 128 (see Figure 1A). The measurements were
completed on the same day, taking a total of approximately 6 h.

Nested Analysis of Variance
Considering the multi-stage approach of the sampling procedure,
a nested analysis of variance (ANOVA) was computed in order to
investigate the statistical differences between 1) the different lots
(level 1); 2) the subsamples within each lot (level 2); 3) the two
replicates within each subsample (level 3); 4) the scans within
each subsample replicate (level 4).

For each sampling level, the sum of squares (SSQ) and the
average of the sum of squares (MSQ) were computed (Sahai and
Ageel, 2000). In detail, SSQ was computed as follows:

SSQlvl � ∑
Nlvl

n�1
(xn,lvl − xlvl−1)

2.

Moreover, MSQ was computed as follows:

MSQlvl � SSQlvl/(Nlvl − Nlvl−1),
where lvl is the current level, xn,lvl corresponds to the
observations/average at the current level, and Nlvl is the
number of unique measurement points at each level (e.g.,
number of lots for the uppermost level). The term (Nlvl–Nlvl-1)
thus corresponds to the degrees of freedom within each level,
where lvl-1 refers to the previous sampling level. In this way, both
SSQ and MSQ are calculated to represent the individual
contributions from each level of the sampling. Table 1
summarizes the computation of the degrees of freedom at
each level. The MSQ was calculated for each wavenumber
independently in order to investigate which wavenumbers are
causing the variability at each level.

Before any variance analysis, the NIR spectra have been
preprocessed by Multiplicative Scatter Correction (MSC)
(Martens et al., 1983) in order to reduce the light scattering
effects (Rinnan et al., 2009).

Deciding the Best Sampling Procedure
In order to find the best sampling procedure to describe the
variability of waste wood material, the nested analysis of
variance was computed again considering the setup
reported in Table 2. Based on the total number of scans for
each of the tested levels, the nested analysis of variance was
computed again, taking n random selected scans, and the
procedure was repeated one hundred times for each of the
new levels.

This is important, as how to perform the sampling procedure
in the real world is of utter importance for the usefulness of
applying advanced sensors to the system of WW reuse. Here, we
investigated how the variability of the lot is described by
increasing the number of subsamples and/or scans. We have
decided to perform this at different levels of constraints,
efficiently showing the effect of each of these constraints on
the subsequent sampling conclusion. In detail, at level A, each
subsample and replicate are represented with the same number
of scans; at level B, each subsample is represented with the same
number of scans; at level C, two subsamples are grouped
together; at level D, three subsamples are grouped, while
level E picks scans at random across all subsamples and
replicates. Differences and similarities between these different
approaches will aid in finding the optimal sampling procedure,
with regard to both the number of subsamples and replicates
and number of scans necessary to cover the variability. A
schematic representation of the data analysis procedure is
displayed in Figure 1B.

Multivariate Data Analysis
Principal Component Analysis (PCA) (Wold et al., 1987) has
been computed using two different datasets: the mean-centered
MSQ values of the nested analysis of variance and the
preprocessed NIR absorbance values of the waste wood samples.

The former was performed in order to investigate similarities
in the variability among the lots at the different sampling levels.
We are well aware that this is an untraditional use of PCA, but it
gives a nice and quick overview of how the variability varies
between the lots. The latter was performed in order to explore
the variability of waste wood and search for differences/
groupings among the lots at each sampling level. In this
latter case, the computation was carried out on the MSC
pretreated and mean-centered data. In order to search for
differences among the lots and investigate the variability
within each lot, a confidence ellipse is drawn around each
lot. This ellipse is calculated based on a local PCA on the
scores, indicating the direction and extent of variability for
each lot individually. Each ellipse was calculated using the mean
score values as the center, and the standard error of each
variability direction as the radius of the ellipse. The loading
plot of the two first PCs was investigated to identify the
compounds associated with the variability of the waste wood
samples and the variability within the lots.

Both the multivariate data analysis and the nested analysis of
variance have been computed using Matlab software (ver.
MATLAB R2019b, The MathWorks) with in-house functions
based on existing algorithms.

TABLE 1 | The degree of freedom computation for the nested ANOVA. N4 is the
total number of scans.

Levels Degrees
of freedom (D)

Computed
degrees of freedom

Lot D1 � N1−N0 D1 � 16−1
Subsample D2 � N2−N1 D2 � 64−16
Replicate D3 � N3−N2 D3 � 126−64
Scan D4 � N4−N3 D4 � 26,192−126
Total DTot � N4−N0 DTot � 26,192−1

1For two sample replicates, the computer froze without saving the collected data.
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RESULTS AND DISCUSSION

Spectra
A total of 55 spectra was detected as either being due to the plastic
lid or air, and was deleted before any further data analysis.

Furthermore, wavenumbers lower than 3,880 cm−1 and greater
than 9,000 cm−1 were removed as the data were either deemed
noisy or containing very limited information. The new dataset thus
consists of 26,192 scans measured at 664 wavenumbers.
Figure 2 illustrates the plot of all the spectra of waste
wood samples and their mean spectrum highlighted with a
solid black line. Because of the light scattering, all the spectra
have been preprocessed with MSC before any further data
analysis. In addition, in order to investigate the differences
between waste wood and virgin wood, the mean spectrum of
virgin wood samples was added to Figure 2 as a dotted black
line. The virgin wood samples have been acquired during a
previous study (Toscano et al., 2017). The most relevant
wavenumbers in the two spectra are marked with vertical
dotted lines and reported in Table 3. As it can be noted, the
same spectral wavenumbers selected for the mean spectrum
of waste wood samples can also be found in the mean
spectrum of virgin wood samples, demonstrating similar
chemical composition. By inspecting the waste wood
spectra, we can clearly see that some spectral areas include
observations with deviating trends: 6,070–5,640 cm−1,
4,730–4,560 cm−1, and 4,370–4,160 cm−1, strongly
indicating that it will be possible later to classify the
samples between virgin wood and treated wood. These
spectral areas are probably associated with glue
compounds related to the composite wood materials or
plastic materials contained in the waste wood.

As reported by Lian et al., the band at 5,911 cm−1 corresponds
to the characteristic absorption peak of C-H in methyl glycol,

TABLE 2 | Setup for the computation of the nested analysis of variance for deciding the best sampling procedure.

Setup Total n. of scans n. of randomly
selected scans (n)

Level A A single subsample with replicates as two different subsamples 210 25, 50, 75, 100, 125, 150
Level B A single subsamples with replicates together 420 25, 50, 75, 100, 150, 200, 250, 300
Level C Two subsamples 840 25, 50, 100, 150, 200, 300, 400, 600
Level D Three subsamples 1,260 25, 50, 100, 150, 250, 400, 600, 900
Level E All 4 subsamples 1,680 25, 50, 100, 150, 250, 500, 750, 1,000

FIGURE 2 | All the spectra of waste wood samples with the mean
spectrum of all the waste wood samples highlighted with a solid black line, and
the mean spectrum of virgin wood samples highlighted with a dotted black
line. Vertical dotted lines refer to the most relevant wavenumbers and are
also reported in Table 3. The grey areas highlight the spectral areas mostly
associated with glue compounds.

TABLE 3 | Near-infrared absorption band assignment associated with the most important wavenumbers (str.: stretching; def.: deformation; OT: overtone; L: lignin; H:
hemicellulose; C: cellulose).

Measured wavenumber (cm−1) Bibliography
wavenumber (cm−1)

Compound Assignment

6,797 6,790 C 1st OT O-H str. Schwanninger et al. (2011)
6,800 H 1st OT O-H str. Schwanninger et al. (2011)

5,189 5,220–5,150 Water O-H asymmetric str. + O-H def. Of H2O Schwanninger et al. (2011)
4,760 4,762 C O-H and C-H def. + O-H str. Sandak et al. (2010)

4,780–4,760 C O-H and C-H def. + O-H str. Schwanninger et al. (2011)
4,890–4,620 C O-H str. + C-H def. Schwanninger et al. (2011)

4,397 4,392 C O-H str. + C-C str. and/or C-H str. + C-H def. Schwanninger et al. (2011)
4,281 4,288 H C-H str. + C-H def. Schwanninger et al. (2011)

4,280 C C-H str. + C-H def. Schwanninger et al. (2011)
4,280 L C-H str. + C-H2 def. Schwanninger et al. (2011)
4,282 C C-H str. + C-H2 def. combination band (and 2nd OT of C-H2 str.) Hein et al. (2011)

4,004 4,014 L C-H str. + C-C str. Schwanninger et al. (2011)
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while the peak at 5,996 cm−1 corresponds to C-H on the benzene
ring (Lian et al., 2020). In general, the spectral range between
6,700 and 6,330 cm−1 corresponds to the characteristic
absorption of methyl glycol, indicating that it is related to
glue/plastic compounds. Furthermore, these results were
confirmed in a study by Workman and Weyer, where the
assigned peaks at 5,847 and 5,975 cm−1 are attributed to C-H
frommethyl of glue, while the band at 5,624 cm−1 was assigned as
the second overtone of CH methylene of glue (Workman and
Weyer, 2007). The band at 5,805 cm−1 was assigned to the 1st
overtone of C–H stretching of methyl andmethylene structures of
glue (Tomlinson et al., 2006). Regarding the second spectral area,
the absorption band at 4,440 cm−1 is related to the CH2

combination of methylol group (Dessipri et al., 2003). In
another study, Hein et al. have investigated the physical and
mechanical properties of agro-based particleboards by NIR
spectroscopy and assigned the peak at 4,587 cm−1 to
symmetric NH stretching and NH2 rocking and/or 2nd
overtone of amide I and amide III (Hein et al., 2011).
Moreover, the relationship between this spectral region and
wood composite materials is confirmed by the peak at
4,617 cm−1, associated with NH2 species from urea (Dessipri
et al., 2003), and 4,550 cm−1 assigned to NH symmetrical
stretching and NH bending combination bands (Henriques
et al., 2012). Lastly, the region from 4,370 to 4,160 cm−1 is
assigned to the combination band of NH2 and CH bonds.

The knowledge of the chemical composition of the waste wood
and the inspection of the spectra are important steps for defining
the waste wood quality and, accordingly, the best reuse of the
material. The difference between the mean spectra of virgin wood
and waste wood indicates that some absorption bands of the two
materials are not exactly the same, suggesting that a classification
model for separating the material according to its best reuse
would perform well.

Bound Water Content Analysis
A descriptive statistic of the BWC has been carried out. The 64
waste wood samples analyzed have a mean � 8.0%, standard
deviation � 0.7%, max value � 11.1%, and min value � 7.0%.
Thus, the parameter has a range of 4.1%. An outlier sample in
BWC values has been detected using Tukey’s test. The test
identifies the possible outliers of the samples falling outside the
Q1 - 1.5 · IQR (interquartile range) or the Q3 + 1.5 · IQR limits;
Q1 and Q3 are first and third quartiles, respectively. For this
study, limits that are more conservative have been used: Q1 - 3.0
· IQR or Q3 + 3.0 · IQR. The lot with the highest variability in
BWC was lot 12 (range of 2.92%), and the one with the lowest
was lot 15 (range of 0.24%). The average lot variability in BWC
was 0.79%. The reported results are useful for the discussion of
the successive outcomes (see Nested Analysis of Variance
and PCA).

A nested analysis of variance was also computed. The MSQ
value is higher at lot level (MSQ � 3.20), decreases considerably at
subsample level (MSQ � 0.39), and drops even further at the
replicate level (MSQ � 7.11 e-4). The results confirm that by
increasing the number of samples, the variability in their moisture
content also decreases.

Nested Analysis of Variance
The nested ANOVA was computed on the dataset consisting of
26,192 observations and 664 wavenumbers. The analysis of
variance has been computed on the spectra preprocessed with
MSC on all the sampling levels. Figure 3 (A, B, and C) shows the
plot of the MSQ values plotted against the wavenumbers at the
different sampling levels. As expected, the variability is higher at
the lot level (Figure 3A) and lowest at the scan level (Figure 3C).
Unexpectedly, the variability at the subsample level is lower than
at the replicate level (Figure 3B) and will therefore be investigated
further. The subsample and lot lines have a similar trend
indicating that the variability is affected by the same
wavenumbers. To better investigate this, Figure 3D shows the
normalized MSQ values at the lot and subsample levels. The two
lines differ for some wavenumbers. In detail, the lot level has two
higher and sharper peaks at 5,609 cm−1 and 4,791 cm−1. The
former is assigned to 1st overtone of CH2 stretching of cellulose,
while the latter is related to OH stretching + OH and CH
deformation of cellulose and hemicellulose (Schwanninger
et al., 2011). Both lines have a high absorption band at
5,177 cm−1 (O-H stretching and O-H deformation of H2O)
and 6,943 cm−1 (first overtone O-H stretching of water),
indicating that the bound water content plays a role in the
variability of the waste wood material, as also confirmed by
the results reported in Bound Water Content. The subsample
level has two noisy areas: between 7,400 and 7,050 cm−1 and
between 5,500 and 5,200 cm−1. Finally, we can observe small
“vibrations” in the areas 6,070–5,640 cm−1 and 4,370–4,160 cm−1,
confirming our previous conclusions (see Figure 2).

Figure 4 shows the plot of the MSQ values for each of the 16
lots at the subsample and replicate levels, respectively. Basically,
the nested ANOVA has been computed again for each of the 16
lots individually, and the MSQ values have been estimated at both
the subsample and replicate levels of sampling. This gives an
indication about the variability among the different lots. In
Figure 4A, it can be noted that the lots with higher variability
are lots 12, 14, and 11. In detail, lot 12 has a higher variability at
wavenumber 5146 cm−1, while MSQ values of lots 14 and 11 are
higher on all the other wavenumbers. The band at 5,146 cm−1 is
assigned to O-H asymmetric stretching and O-H deformation of
H2O (Schwanninger et al., 2011), indicating that the higher
variability of the lot is probably related to a higher BWC in
some samples. In fact, lot 12 contains the sample with the highest
BWC value (11.1%) (see Bound Water Content).

Figure 4B reports the variability between the two replicates of
the subsamples within each lot. Lots 16, 10, and 7 (in descending
order) have higher MSQ values. The MSQ values of lot 11 are
quite different, resulting in a particular shape/trend of the
variance line, more similar to a spectrum. All the other lots
show higher variability in the wavenumbers between 7,400 and
7,050 cm−1 and between 5,500 and 5,200 cm−1. The two spectral
regions are quite noisy and the peaks do not probably contain
relevant information. However, they could be related to the
detector drift since, unfortunately, only one reference
spectrum at the very beginning of the analysis was acquired
(see Bound Water Content). The differences in the variability
among the lots could be explained by calculating the distance in
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the PCA score plot (see PCA section) between the two replicates
at the subsample level. Figure 4C shows the lots colored
according to the replicates distance and we can conclude that
the longer the distance between the two replicates in the PCA
score plot, the higher the MSQ values and, consequently, the
variability at the replicate level.

PCA
In order to get a quick overview of how the variability changes
between the different lots, a PCA was carried out using the MSQ
values of the nested analysis of variance, computed individually
for each lot, at both subsample and replicate levels of sampling.
The score plot confirms the results of the nested ANOVA, but
with increased clarity. At the subsample level (Figure 5A), the lots
with the most deviating scores are 11, 12, and 14, while at the
replicate level (Figure 5B), lots 7, 10, 11, and 16 deviate the most
compared to the remaining lots.

The loadings were investigated to understand what variables
are responsible for the separation of the lots in the PCA scores
plots. At the subsample level (Figure 5C), both the first and

second PCA loadings show twomain bands at around 6,950 cm−1

and 5,150 cm−1. Both bands are related to the overtone of O-H
stretching bonds (Schwanninger et al., 2011), confirming the
results of the nested analysis of variance and what already was
stated during the discussion of Figure 4. At the replicate level
(Figure 5D), the first loading shows the same noisy areas
(i.e., between 7,400 and 7,050 cm−1 and between 5,500 and
5,200 cm−1), as shown in Figure 4. The second loading
contains information related to the variability of lot 11. It is
important to note that the PCA analysis on MSQ values
confirmed the outcomes of the nested analysis of variance and
is an efficient alternative, giving a nice and quick overview of how
the variability varies among the different lots.

To explain why some replicates/subsamples present a higher
variability than others, the average spectra at the subsample level,
after preprocessing with MSC, have been taken into account. A
PCA was computed based on these 16 x 8 spectra, and as it can be
noted in the PCA score plot (Figure 6A), the samples seem to be
spread across the whole score space without any clear groupings
between them. However, by closer inspection, there is some trend

FIGURE 3 | The MSQ values of the nested ANOVA: (A) all sampling levels, (B) only subsample and replicate levels, (C) only scan level, and (D) the normalized MSQ
values at the lot and subsample sampling levels (the grey areas highlight the spectral areas mostly associated with glue compounds).
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in the distribution of the samples according to the lot; i.e., the
samples with higher BWC are located in the bottom right part of
the score plot (i.e., lots 4 and 5 and some samples of lot 12).

In order to get a clearer picture of the differences among the
lots, confidence ellipses were computed using the standard error

for each lot. The score plot of the two first PCs clearly shows some
groupings among the lots (Figure 6B, please note that this is the
same plot as Figure 6A, but now with confidence ellipses instead
of each individual subsample being plotted). Lot 15 is clearly
different from the others (lower range in BWC). Lots 7, 13, 14,

FIGURE 4 | The MSQ values of the nested analysis of variance computed within each lot (A) at subsample level and (B) replicate sampling level. MSQ values at the
replicate sampling level are also colored according to the distance in the PCA score plot between the two replicates of a sample (C).

FIGURE 5 | PCA score plot of MSQ values of the nested analysis of variance at (A) subsample level and (B) replicate level. PCA loading plot of MSQ values of the
analysis of variance (C) at subsample level and (D) replicate level.
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and 16 are located at the bottom left part of the PCA score plot.
All the other lots are close to each other and located in the central
part of the score plot, indicating that their composition/variability

is very similar. The size of the ellipses confirms that the lots with
the highest variability are lots 8, 11, and 12, and 14. Lots 4 and 9
have the lowest variability, confirming once again the results of
the nested ANOVA.

Deciding the Best Sampling Procedure
For the practical implementation of a NIR sensor classification
tool in the WW industry, it is imperative to know how to actually
perform the NIR measurements in order to ensure representative
and reliable measurements of the heterogeneousWWmaterial. In
this section, we will give strong indications in this regard by
describing the variability of waste wood material with a nested
ANOVA with resampling. The analysis was performed on all the
16 lots and all showed similar results. However, in order to
simplify the discussions, we will focus our analysis on one lot
only. We have decided to report lot 12 as an example because our
earlier results indicated that this is the one with the highest
variability. Figure 7 shows the variability in the MSQ values of
nested ANOVA at each of the aforementioned levels (see
Deciding the Best Sampling Procedure). As noted, the variation
decreases with increasing number of scans, as expected. This
trend is the same in all five levels.

These results provide good indications regarding the optimal
sampling procedure to carry out in terms of the number of
subsamples and scans to be performed to describe the
variability in the waste wood materials. In fact, the variability
in theMSQ values reached almost constant values at 125 scans for

FIGURE 6 | PCA on the average spectra at the subsample level. Each lot has been colored in shades of blue, red, and green. The color scheme is based on the
position of the lots in the score space. (A) The first two scores colored according to the lot number and (B) PCA score plot of the waste wood sample with standard error
ellipses for each lot.

FIGURE 7 | Variability in the MSQ values of nested analysis of variance
changing the number of randomly selected scans and the number of subsamples.
The dotted horizontal black line represents the estimated overall variability of lot 12.
Level A, each subsample and replicate are represented equally; level B, each
subsample is represented equally; level C, groups of two subsamples are
represented equally; level D, groups of three subsamples are represented equally;
level E scans are selected freely among all subsamples and replicates. For a
detailed description of the different levels, please refer to Figure 1B.
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level A; 250 scans for level B; 400 scans for level C; 600 scans for
level D; around 500 for level E. It means that the same
variability can be obtained by increasing the number of
subsamples and decreasing the number of scans or by
decreasing the number of subsamples and increasing the
number of scans.

As seen from Figure 7, levels A and B give lower variability
than the remaining sampling procedures, clearly indicating
that it is insufficient to investigate one subsample only. This
is confirmed by the MSQ values located slightly below the
horizontal black line, which is the estimated overall
variability of lot 12 and is deemed to be the true estimated
variability of the lot. The three other sampling schemes are all
very similar, giving indications that taking out two
subsamples, splitting them into two replicates, and then
measuring each of them with at least 100 scans seem to
provide reliable and representative variability estimates of
the lots (around 10 m3 of fairly heterogeneous waste wood
material).

CONCLUSION

Waste wood samples were collected in a panel board industry
located in the northern part of Italy. All samples were
analyzed using FT-NIR provided with a spiral sampler to
investigate their variability and heterogeneity. A nested
analysis of variance was computed to investigate the
statistical differences for each level of the sampling
procedure, i.e., lot, subsample, replicate, and scan levels.
According to the results, waste wood has the highest
variability at the lot level and lowest at the scan level.

PCA analysis on the MSQ values of the nested analysis of
variance confirms the results of the nested ANOVA with
increased clarity and shows how some lots deviate more from
the others. The score plot clearly shows groupings among the lots
and the loading plot displays that the main bands responsible for
such separation are related to the overtone of O-H stretching
bonds, which we also were able to confirm through reference
analysis.

The knowledge of waste wood variability and composition is
a key point for enhancing the sorting and related best reuse of
the material with related positive effects in terms of economic,
health, and environmental issues. NIRS proves to be a useful
technique for rapidly obtaining this information. The definition
of the most appropriate sampling procedure is essential for
improving waste wood management and moving NIRS into real
industrial applications. In fact, having a number of samples,
replicates, and scans able to describe the variability of the
material translates into reliable analytical results and
accurate classification models for sorting the material
based on the best reuse, especially when dealing with
heterogeneous material. This study has proved that by
taking at least two subsamples, splitting them into two
replicates, and measuring each of them with at least 100

NIR scans, it is possible to describe the variability of around
10 m3 of waste wood material. In future studies, this result
can be used as the starting point for developing classification
models, essential for more accurate and sustainable waste
wood management.

These results have a large potential impact on the waste
management sector, representing the first steps for
moving NIR sensors to industrial waste management
applications. In fact, the methodology used in this study
can be applied not only to any other NIR
spectrophotometers but also to other waste sources.
When working with waste in general, the big challenge is
the heterogeneity of the material. Thus, having a protocol
that ensures efficient and reliable sampling will lead to the
success of the subsequent classification of the waste
according to waste categories, which will improve the
sorting and, as a consequence, the reuse of the material.
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Improved Understanding of Industrial
Process Relationships Through
Conditional Path Modelling With
Process PLS
Tim Offermans1, Lynn Hendriks1, Geert H. van Kollenburg1, Ewa Szymańska2,
Lutgarde M. C. Buydens1 and Jeroen J. Jansen1*

1Institute for Molecules and Materials, Radboud University, Heyendaalseweg, Netherlands, 2FrieslandCampina, Amersfoort,
Netherlands

Understanding how different units of an industrial production plant are operationally related
is key to improving production quality and sustainability. Data science has proven
indispensable in obtaining such understanding from vast amounts of historical process
data. Path modelling is a valuable statistical tool to obtain such information from historical
production data. Investigating how relationships within a process are affected by multiple
production conditions and their interactions can however provide an even deeper
understanding of the plant’s daily operation. We therefore propose conditional path
modelling as an approach to obtain such improved understanding, demonstrated for a
milk protein powder production plant. For this plant we studied how the relationships
between different production units and steps are dependent on factors like production line,
different seasons and product quality range. We show how the interaction of such factors
can be quantified and interpreted in context of daily plant operation. This analysis revealed
an augmented insight into the process that can be readily placed in the context of the
plant’s structure and behavior. Such insights can be vital to identify and improve upon
shortcomings in current plant-wide monitoring and control routines.

Keywords: path modelling, process PLS, industry, relationships, experimental design

INTRODUCTION

Industrial (bio)chemical processes need to be monitored and controlled well to guarantee sustainable
and high-quality production despite variations in external factors such as raw materials, weather,
plant operators, equipment maintenance and customer wishes. A deep understanding of how the
production plant operates under and responds to these conditions is crucial for the development of
accurate process monitoring and control strategies. To considerable extent, such understanding
follows from first-principle knowledge. In practice, however, influences of external factors on the
production, daily operation of the plant cannot be described completely by these first principles.
Multivariate statistical analysis of historical production data can therefore reveal an augmented
insight into the process, as this data does reflect the daily and real operation rather than the
engineered operation.

Examples of statistical modelling methods that are widely used for this purpose are Principal
Component Analysis (PCA), Partial Least Squares (PLS), Support Vector Machines (SVM) and
Artificial Neural Networks (ANN) (MacGregor & Kourti, 1995; Qin, 1997; Kourti, 2005; Cuentas
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et al., 2017). These methods are often employed for process fault
diagnosis through multivariate control (Shewhart) charts and for
predicting difficult-to-measure production indicators, such as
product quality, from easy-to-measure process variables (soft-
sensoring) (Bersimis et al., 2007; Kadlec et al., 2009). Though
these methods can be used to quantify the relationships between
individual process parameters and variables, they provide limited
higher-level insight into the relationships between different
production units, as limited higher-level structural knowledge
about the plant is employed.

The use of path analysis or structural equation modelling
methods to industrial data analysis is therefore becoming
increasingly popular, as these methods explicitly model the
valuable information about relationships and can be
considered explainable artificial intelligence (Höskuldsson
et al., 2007; Gade et al., 2019). In general, path analysis
methods estimate the directional statistical relationship
between groups of measured variables. For industrial data,
grouping process variables by the production unit in which
they are measured thus allows for the estimation of how much
operations of different production units are mutually related.
This incorporates the physical structure of the production plant
in the analysis of the data, of which the results in turn can be
interpreted in the context of that structure (van Kollenburg G. H.
et al., 2020).

Different methods for path analysis exist, including PLS-path
modeling (Hair et al., 2011), sequential and orthogonalized PLS-
path modeling (Romano et al., 2019), sequential multi-block PLS
(Lauzon-Gauthier et al., 2018), multiblock kernel PLS (Zhang
et al., 2010) and network PCA (Codesido et al., 2020). PLS-PM in
particular is a well-established method in social sciences, but its
high value for modelling industrial production data is also already
demonstrated (van Kollenburg G. H. et al., 2020). Another path
analysis method that has been developed very recently, is Process
PLS (van Kollenburg et al., 2021). This method improves upon
the mathematical limitations of PLS-PM and is better suited to
model the complexity and heterogeneity of industrial production
data as a network.

Process PLS is more appropriate for path modelling industrial
data than alternative methods for three main reasons. Firstly, it
canmodel multiple latent variables per group of process variables,
in contrast to for instance PLS-path modeling. It can thus
describe multiple sub-processes per production step, which are
present for most industrial processes. Secondly, it can cope with
the multicollinearity that the process variables of production
steps often show (Guo et al., 2019). This gives rise to a more
accurate estimation and better interpretability of the relationships
between the production steps. Lastly, Process PLS (like PLS-path
modeling but unlike for instance sequential and orthogonalized
PLS-path modeling) does not require any a priori (importance)
ranking to be imposed on the production steps, which in practice
is difficult to do even for process experts (van Kollenburg et al.,
2021a).

The relationships estimated with path modeling give much
insight into the structure of the plant. Their sizes may even be
related to an external production factor that is not directly
included in the model, such as production cost (van

Kollenburg G. H. et al., 2020). An even more exhaustive
understanding of a plant’s behavior can however be obtained
by quantifying how the process relationships are affected by
multiple, possibly interacting operating conditions, such as
production season, year, parallel lines or product quality
ranges. Such an analysis yields an elaborate insight into how
the plant’s operation is different under different combinations of
production conditions. This allows process operators and
engineers to even better steer the plant to cope with
production variations caused by those multilevel conditions.

This paper presents a systematic approach for performing
such a conditional path analysis on historical production data,
using Process PLS. The work focuses on the use of Process PLS for
suchmodelling, and a comparison to conditional modelling using
alternative path modelling methods is out of scope for the current
work. A large dataset from an industrial-scaled milk protein
powder production plant is separated based on one or more
operating conditions, after which each data subset is modelled
and quantitatively compared. A thorough discussion of how the
results of the analysis can be visualized, interpreted and
communicated with and among process operators and
engineers is provided.

METHODS AND DATA

Process PLS
A Process PLS model comprises two user-defined parts: the inner
(structural) and outer (measurement) model. A production
plant’s structure can be modelled by grouping of the process
variables (X) in the outer model according to the production units
(or production steps). A group of variables is then called a block.
The inner model defines which directional relationships are
estimated between which production steps. For each unit, one
or more latent variables (LV) are constructed to represent the
major sources of covariance between the process variables of
blocks which are connected in the inner model. The contribution
of a process variable to specific latent variables for that unit are
called weights (R, in some literature also referred to asW). Effects
of the latent variable on other latent variable in the inner model
are represented as explained variances (Ρ2, i.e. ‘rho-squared’). The
design of a Process PLS model is similar to that of a PLS-PM
model, and is visualized in Figure 1 for an example process. The
relationships in the inner model may represent for instance a
direct physical connection (piping), indirect connection between
similar variables being measured at different locations), or
feedforward control loops. As only recursive (non-cyclic)
pathways can be modelled, feedbacks of either (intermediate)
product or operation control actions cannot be directly modelled,
but the process set points of a control scheme and/or the level of
(intermediate) product feedback may for instance be used as a
variable in the Process PLS outer model.

Estimation of a Process PLS model is done by iteratively
optimizing a network of PLS-models using the SIMPLS-
algorithm (de Jong, 1993). First, the dimensionality of the
blocks is reduced to obtain estimates for the latent variables
which maximize the covariance between interconnected blocks
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through a set of PLS2 regressions, one for each block of variables.
To estimate the latent variables of a given step with PLS2, the
process variables of that step are used as predictors and the
process variables of all steps that step has a relationship to are
used as responses. Only when a step has only incoming
relationships, the process variables of the steps that have a
relationship to that step are used as predictors and the process
variables of the step itself are used as responses. The number of
latent variables per block can be manually fixed if desired or
optimized by internal cross-validation (which is the default in the
software implementation used for the results in this paper, see
Software). The process variable weights (R) are effectively the
contributions of the variables to the relationships modelled by
these PLS models. After the latent variables are estimated, a
second set of PLS regressions is performed to estimate the

relations in the inner model. The strengths of these
relationships (P2) are calculated from the PLS2 regression
coefficients and represent the fraction of variance that the
latent variables in a predictor block can explain in the
response block. As Process PLS does not take into account
process dynamics like mechanistic modelling approaches,
knowledge about the kinetics of the process are not required
for modelling. More details on the Process PLS method may be
found in (van Kollenburg et al., 2021a).

Demonstrator Process
The industrial production facility investigated is a well-controlled
plant that produces milk protein powder from skim milk. The
skimmilk is heated, after which it is subjected to two precipitation
steps. The resulting curd is washed, dissolved in an alkali solution,
and finally dried to a powder. The critical product quality
indicator for the protein powder is the mineral content, which
should be as low as possible. More details on milk powder
production can be found in the dairy processing handbook
(Bylund, 1995).

Data Collection
The data used in this study corresponds to three parallel
production lines and three consecutive production years, and
was not originally collected for other purposes than the current
study. The data comprises 51 process variables, which are the
same for the different production lines and are distributed
across the processing steps as given in Table 1. All variables
represent physical measurements, and not setpoints or
production status values. Only data from effective production
time was used in the current analysis. The variable representing

FIGURE 1 | The design of a Process PLS model for an example two-step production process. The input and product are also modelled as steps in order to
estimate their relationships to the two production steps.

TABLE 1 | Number of samples and variables of the data collected for each of the
three production lines, after synchronization and cleaning as explained in Data
preparation.

Dimensions Line A Line B Line C

Samples 1,569 560 924

Variables 51
Milk 1
Heating 2
Precipitation 1 5
Precipitation 2 4
Washing 21
MeltMaking 7
Drying 10
Product 1
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the product quality is the mineral content mentioned earlier,
which is measured at-line at a relatively low frequency (hourly
basis). The variable on incoming milk is also measured at similar
frequency. All other variables are process variables such as
temperatures, pressures and flow rates, and are measured in-
or on-line at high frequency. The specific identities of these
variables will not be disclosed as they are not relevant for the
conclusions in this paper.

Data Preparation
Because the process variables are measured at separate locations
and at different time intervals, the collected data had to be
synchronized to obtain a multivariate dataset that can readily
be analyzed. The high-frequency process variables were
synchronized to the low-frequency product quality variable
using median-filtering with a 3 h wide window, systematically
selected as optimal synchronization (Offermans et al., 2020). This
method also allows for a small degree of process dynamics to be
included in the modelling procedure, as each synchronized
sample represents the measurements done in the 3 hours
before its sampling time. Time-lags between individual process
variables are not taken into account. For the relative low-
frequency measurements on incoming milk, the most recent
measured value was matched to each mineral content sample.
Missing values can be and were present after the synchronization
procedure, and were imputed by replacing them by the median of
the values that were present (Souza et al., 2016). This was done
per production line and per production variable. Outlying
samples were detected per production line using the
multivariate Hotelling’s T2- and Q-statistics calculated from
PCA models explaining at least 70% variance of the autoscaled
data. Samples for which at least one statistic was over three
standard deviations removed from the median were removed
(Varmuza and Filzmoser, 2016). The number of samples obtained
after the data collection, synchronization and cleaning are given
in Table 1.

Path Modelling Conditional to Single
Operation Conditions
The first part of the study focused on investigating the effects of
the individual production conditions separately on the process
relationships. The three (multilevel) conditions that were
explored are production line, production season and product
quality. All data was for instance only separated according to the
three production lines. For separating the data into seasons,
meteorological seasons were used as these are identical for
each year. The mineral content values were used to separate
the data into three relative product quality ranges. The
boundaries of these ranges were set at the 1st and 2nd tertiles
to ensure comparable sample sizes for all models, as is illustrated
in Figure 2. As mentioned before, a low mineral content value
indicates a high-quality production.

Each data subset was individually modelled with Process PLS,
using the same inner and outer model specification for each
model. The directional relationships between the production
steps that were estimated using Process PLS are illustrated in
Figure 3. The inner model, shown in Figure 3, was specified
according to two criteria introduced by van Kollenburg et al. (van
Kollenburg G. H. et al., 2020). Firstly, relationships of each step
on the subsequent step are included (counter-clockwise, starting
from the top, in Figure 3). These represent the physical
architecture of the plant and the flow of the process (piping).
Secondly, direct relationships of each production step on the
product-variables and thus the product quality are included. The
outer model, which relates the process variables to the different
production steps, was specified based on the physical location of
each process variables. The number of variables per step thus are
reported in Table 1.

The number of latent variables considered for each block/step
was optimized using the default cross-validation procedure in the
Process PLS implementation used (‘pathmodelr’). Before
modelling, all individual process variables were autoscaled to

FIGURE 2 |Ranges for the product mineral content measurements used
to separate the data based on product quality.

FIGURE 3 | Inner model specification used for path modelling of the milk
protein powder production process.
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have zero mean and unit standard deviation, after which the
process variables are collectively but per step rescaled so that each
step has a sum of squares of 1. This is the default procedure by
pathmodelr. All remaining modelling settings were also kept at
their default values. To estimate the precision of the modelled
process relationships, each Process PLS model was subjected to a
non-parametric bootstrap with 200 replicates (Johnson, 2001).

Path Modelling on Multiple Production
Conditions
For the second part of the study, the full data was separated on all
production conditions at once, following a full factorial design.
Each data subset was modelled using Process PLS, to calculate the
process relationships for each possible combination of
production conditions. Three-way ANOVA analyses were used
to estimate the main and interaction effects of the production
conditions on each separate process relationship and process
variable weight (Huitson et al., 1976). This allows for the
investigation of interactions between the production
conditions on the process relationships, for instance between
production season and line. The boundaries for the quality ranges
were, as before, set relatively at the 1st and 2nd tertiles. They were
set per combination of line and season, to ensure sufficient
samples in each experiment for reliable modelling. The design
matrices for the experimental design and the sample sizes for each
experiment (and thus Process PLS model) are shown in
Supplementary Table S1 in the supplemental material.

The modelling and bootstrapping procedure for each data
subset (full factorial design experiment) was identical to that used

before while investigating the separate production conditions.
The three-way ANOVA analyses were performed on the mean
results found after bootstrapping. A False Discovery Rate (FDR)
correction was applied to the p-values obtained with ANOVA
using the method proposed by Benjamini and Hochberg to adjust
for multiple testing errors (Benjamini and Hochberg, 1995). This
because the relationships and dependencies identified with the
proposed analysis may require further investigation by plant
personnel, which is time and cost intensive. As such, false
positives (type I) errors are more harmful and less desirable
than false negatives (type II) errors.

A schematic overview of the different data preparation,
separation, modelling and interpretation steps performed as
part of the presented study on conditional path modelling is
shown in Figure 4.

Software
Data preparation was done using MATLAB R2017a (MATLAB,
2017). Modelling data with Process PLS was done in R, using the
pathmodelr package version 0.1.2 (Team R Development Core,
2018; van Kollenburg G. H. et al., 2020).

RESULTS AND DISCUSSION

Path Modelling Conditional to Single
Operation Conditions
Figures 5A–C show the primary modelling results found after
partitioning the complete data only on either production line,
production season or product quality range (respectively). Shown

FIGURE 4 | Schematic overview of the conditional path modelling analyses presented.
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are the proportions of variance explained (P2) for each
relationship in the inner model (as shown in Figure 3). These
values quantify the directional relationship between the
production steps. Shown per relationship are the mean values
over the 200 bootstrapping replicates. The 99% confidence
intervals are plotted as error whiskers but are for many results
too small to discern. This indicates that the results have high
precision and attests that Process PLS is a robust method for
statistical modelling of industrial data.

The results in Figures 5A,B give insights into the relationships
within the process, and how they differ under various production
conditions. Firstly, they show which relationships are overall
strongest. For this process, the relationship from Prec1 to Prec2 is
in general the strongest, irrespective of production line, season, or
product quality range. These steps are likely strongly related because
they have a similar function in the process. From all the production
steps, Washing relates strongest to Product under most conditions.
This indicates thatWashingmay be the most influential step for the
product quality, and future optimization efforts should be directed to
this step. Importantly, Milk in general only relates to Product.
Though this may sound counter-intuitive, it indicates that
variations in Milk do not influence the production quality. In
turn, this supports the notion that the process is well-controlled
and that stable production quality is achieved despite raw material
variations.

Results from the conditionalmodelling show that the relationship
between Prec1 and Prec2 is weaker for production line B than for the
other production lines (Figure 5A). This indicates that the operation
of Prec2 is less related to that of Prec1 in line B than in the other lines.
Additionally, the relationship between Prec2 and Product is stronger
for line B than for the other lines, indicating that variations in Prec2

are related to variations in Product. In a production process with a
focus on constant quality, this results may be an important focus for
follow-up investigations.

Separating the data only on production season (Figure 5B)
reveals that the Prec1 relates stronger to Product in the winter,
while Prec2 relates stronger to Product in the summer. This
indicates that the focus of process control is different for the
seasons, for instance because seasonal variation manifested in the
raw material or weather influences the Prec1 and Prec2 steps
differently. This is supported by Prec1 → Prec2 being lower in
summer and higher in winter.

When looking at the different product quality ranges
(Figure 5C), it is interesting that Washing → MeltMaking
increases and MeltMaking → Drying decreases with decreasing
product quality. This suggests that higher quality product is
obtained when the operation of MeltMaking is more aligned with
that of Drying (the step after it) than with that ofWashing (the step
before it). This should be further investigated, as it could indicate that
aligning the MeltMaking settings with that of Drying instead of
Washing leads to structurally higher production quality.

The results in Figures 5A–C give already much insight into
the process but understanding of the process can be augmented
by evaluating the weights (R) of the process variables in the
Process PLS models. As an example, Figure 6 shows the weights
for the variables corresponding to Prec1 and Prec2 in the models
obtained after separating the data on production line alone. These
weights represent the contributions of the process variables on the
latent variables of their respective block. As previously discussed,
the relationship between Prec1 to Prec2 is weaker for line B than
for lines A and C (Figure 5A). Because Prec2 V2 has a particular
high weight in the model of line B, plant operators and engineers

FIGURE 5 | (A–C): Size of process relationships in terms of fractions of explained variance (P2), as found when using Process PLS modelling on either separate
production lines (A), or production season (B), or product quality range (C). The bars represent the means and the whiskers represent the 99% confidence intervals over
200 bootstrap replicates.
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could be advised to investigate the operation of this variable
further. It likely has a characteristic behavior unique in line B that
causes the operation of Prec2 to be less related to Prec1 which, as
discussed earlier, may influence the product quality.

This example illustrates how variable weights should be
interpreted, and how investigating these may aid process
operators and engineers in optimizing monitoring and control
of a production plant. The variable weights can provide much
more information, but discussing all of them for the process in
this paper is of limited value, as their identities are disclosed. The
weights of all variables for all models are given in the
supplementary materials in Supplementary Figures S1A–C
for the interested reader but are not discussed further here.

Path Modelling Conditional to Multiple
Operation Conditions
Figure 7 displays the results of analyzing each combination of the
three production conditions according to a full-factorial

experimental design with the same Process PLS model and
analyzing variations in the model parameters using an
ANOVA. Note that this experimental design is applied to data
that is already measured, and that is no further measurements are
collected according to that design. As many PLS regressions are
calculated during this experiment, 936.000 to be exact (36
production condition combinations, 13 inner relationships,
10 cross-validation repeats and 200 bootstrap repeats), it
should be noted that the computation time for obtaining the
results as presented in this manuscript is around 18 min when
using a desktop computer with an Intel Core i7-7900 K processor.
Although significant, this computation time should not be
limiting for the use of the proposed methodology as a tool for
off-line exploration of historical data. The number of cross-
validation repeats and/or bootstrap repeats could be reduced
to save computation time on slower systems, but the robustness of
the models should be checked with additional care.

Shown in Figure 7 are the FDR-corrected p-values of each
three-way ANOVA that was performed per modelled process
relationship size (in terms of mean explained variance, P2, over
bootstrap replicates). These results thus represent the inner path
model. The p-values quantify the probability of the relationships
sizes being identical regardless of a certain condition (e.g. ‘Line’)
or interaction of conditions (e.g. ‘Line*Season’). Thus, a very low
p-value indicates that relationship is significantly different for at
least one (combination of) production conditions. This
visualization offers a comprehensive view of the conditional
path modelling results, while also quantifying statistical
significance as it is not subjective to visual interpretation.

The results of the first part of the study (discussed above)
showed that the individual production conditions do effect the
process relationships. The results in Figure 7 confirm such
primary effects. All but three process relationships are, for
instance, different for at least one production line. The
ANOVA results however also show that there are many
interactions of these production conditions. The relationship
size of MeltMaking to Drying is for instance dependent on
both the production season and line individually (p-values <
0.01), but there is also a significant interaction of these two
operation conditions for that relationship. This indicates that the
relationship size betweenMeltMaking andDrying not only differs

FIGURE 6 |Weights (R) of the process variables of Prec1 and Prec2 in the different Process PLSmodels trained per production line. The bars represent the means
and the whiskers represent the 99% confidence intervals over 200 bootstrap replicates.

FIGURE 7 | FDR-corrected p-values obtained by performing three-way
ANOVA on the fractions of explained variance (P2) found with Process PLS
according to the full factorial conditional path modelling approach. A low
p-value signifies a low probability that the process relationship size is
comparable under different (combinations of) production conditions.
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for the seasons, but that the way in which they differ for the
seasons in turn also differs for the production lines.

The results found for Prec1→ Prec2 when separating the data
on single conditions, which were elaborately discussed in Path
modelling conditional to single operation conditions, seem to
contradict the main effects for the single conditions found
with ANOVA when separating the data on all conditions.
Prec1 → Prec2 was concluded to be different for the
production lines and seasons (Figures 5A,B), but these

conditions show relative high p-values for Prec1 → Prec2 in
Figure 7 (0.13 and 0.7, respectively). The results in Figure 7 thus
suggest that Prec1 → Prec2 is not likely different for at least
production line or for at least one production season. Such
apparent contradictions are caused by the interactions of the
production conditions: the ANOVA results do suggest a large
interaction between production line and season, signified by a
relative low p-value (<0.01). This means that the production line
and season are affecting this relationship, but that they are not
doing so independently. Such information is highly valuable, as
future efforts to make this step more robust against seasonal
variations should thus be done per production line. Being able to
quantify such interactions underlines the value of conditional
path modelling while separating the data on all combinations of
production conditions.

Figure 8 gives the results of the three-way ANOVAs performed
on the individual process variable weights (R, averaged over
bootstrap replicates), when modelling the data while separated
on all production conditions simultaneously (full-factorial). These
p-values are also FDR-corrected. The results represent the outer
path model and can be similarly interpreted as the results in
Figure 7, and supplement those results to extract more process-
specific information. For instance, the relationship size ofWashing
to Product was found to be relatively strong in general (Figures
5A–C), and was found to be highly dependent on the production
line (Figure 7). This makes Washing an interesting step to
investigate further, or even experiment with. That analysis could
then be advised to focus on variable Washing V1, of which the
operation is dependent on the production line alone, but also on
the interactions of both the production season and quality range
with the production line. This variable is thus likely largely
responsible for the dependencies of Washing → Product on the
production conditions. This observation and the ones discussed
above exemplify the insight that conditional path modelling gives
into the relationships within a production process. Much more
process-specific information can however still be extracted from
these results, especially by or while consulting with process
operators and engineers that are experienced in controlling the
process on a daily basis.

For this demonstration, data was available for each
combination of production conditions, but this may not be the
necessarily hold for other production facilities. One parallel line
may for instance never be used during winter, leading to amissing
experiment in the design. In such cases, ANOVAmay still be used
to analyze the path modelling results, but Type I sums of squares
should be used rather than Type III sums of squares.
Alternatively, if including one operation condition causes too
many missing experiments, it may be better to remove it
altogether from the analysis. A parallel line that is only used
during winter is for instance less insightful to include, and could
be excluded from the analysis. Another solution could be to adapt
the Process PLS model specification and include the operation
condition as a process variable. It should furthermore be ensured
that enough samples are present for each of the experiments to
enable a reliable estimation of the process relationships with
Process PLS for the corresponding combination of production
conditions. A minimum of 30 samples is used for the

FIGURE 8 | FDR-corrected p-values obtained by performing three-way
ANOVA on the process variable weights (R) found with Process PLS
according to the full factorial conditional path modelling approach. A low
p-value signifies a low probability that the process variable weight is
comparable under different (combinations of) production conditions.
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demonstration given and is advisable, but the robustness of the
fitted process relationships should in any case be assessed by
analyzing the bootstrapping results as the minimum number of
samples required will be process-specific.

CONCLUSION

This study presented a systematic approach for conditional path
modelling of industrial production data using Process PLS, and
demonstrated its value for a milk powder production facility. The
approach consists of separating historical data based on one or more
operation conditions, and modelling and comparing each of those
datasets. This can be used to investigate how the statistical
relationships between the production steps of a plant vary for, for
instance, different production lines, seasons and quality ranges, and
which of the measured process variables in those steps are most
correlated to this behavior. An unprecedented high level of process
expert knowledge on the structure and operation of the plant can
thus be incorporated in the analysis of large historical datasets.
Results for conditionalmodelling on a single production condition at
a time and on all production conditions simultaneously were
presented. The latter requires more data for stable modelling, was
shown to be preferred as it allows for the quantification of interaction
effects of the production conditions on the process relationships.
Such interactions were present for the demonstrator process, and
interpreting them gave a very detailed insight into the plant
operation. These insights can both confirm and expand the
current understanding of the process. This is of high value to
process operators and engineers, who can use this improved
understanding to pinpoint shortcomings in the current process
monitoring and control strategy. Although only demonstrated on
a continuous process in the current work, conditional path
modelling may also be of great value for (batch-like) process with
multiple production stages by considering those stages as a
production condition. Ultimately, conditional path modelling can
help in making production plants less prone to variations in external
operating conditions, and in increasing product quality even for
production plants that are already considered well-controlled.
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The “DOLPHINS” Project: A Low-Cost
Real-Time Multivariate Process
Control From Large Sensor Arrays
Providing Sparse Binary Data
Eugenio Alladio1*, Marcello Baricco1, Vincenzo Leogrande2, Renato Pagliari 2, Fabio Pozzi 3,
Paolo Foglio3 and Marco Vincenti 1

1Dipartimento di Chimica, Università Degli Studi di Torino, Torino, Italy, 2RADA Snc–Soluzioni Informatiche, Rivoli, Italy, 3CNH
Industrial–Lungo Stura Lazio, Torino, Italy

The “DOLPHINS” project started in 2018 under a collaboration between three partners:
CNH Industrial Iveco (CHNi), RADA (an informatics company), and the Chemistry
Department of the University of Turin. The project’s main aim was to establish a
predictive maintenance method in real-time at a pilot plant (CNHi Iveco, Brescia, Italy).
This project currently allows maintenance technicians to intervene on machinery
preventively, avoiding breakdowns or stops in the production process. For this
purpose, several predictive maintenance models were tested starting from databases
on programmable logic controllers (PLCs) already available, thus taking advantage of
Machine Learning techniques without investing additional resources in purchasing or
installing new sensors. The instrumentation and PLCs related to the truck sides’ paneling
phase were considered at the beginning of the project. The instrumentation under
evaluation was equipped with sensors already connected to PLCs (only on/off
switches, i.e., neither analog sensors nor continuous measurements are available, and
the data are in sparse binary format) so that the data provided by PLCs were acquired in a
binary way before being processed by multivariate data analysis (MDA) models. Several
MDA approaches were tested (e.g., PCA, PLS-DA, SVM, XGBoost, and SIMCA) and
validated in the plant (in terms of repeated double cross-validation strategies). The optimal
approach currently used involves combining PCA and SIMCA models, whose
performances are continuously monitored, and the various models are updated and
tested weekly. Tuning the time range predictions enabled the shop floor and the
maintenance operators to achieve sensitivity and specificity values higher than 90%,
but the performance results are constantly improved since new data are collected daily.
Furthermore, the information on where to carry out intervention is provided to the
maintenance technicians between 30min and 3 h before the breakdown.

Keywords: predictive maintenance, machine learning, sparse binary data, multivariate data analysis, principal
component analysis, soft independent modeling by class analogy

Edited by:
Angelo Antonio D’Archivio,
University of L’Aquila, Italy

Reviewed by:
Gianpiero Adami,

University of Trieste, Italy
Mohammad Sharif Khan,

Wake Forest Baptist Medical Center,
United States

*Correspondence:
Eugenio Alladio

eugenio.alladio@unito.it

Specialty section:
This article was submitted to

Analytical Chemistry,
a section of the journal
Frontiers in Chemistry

Received: 30 June 2021
Accepted: 06 August 2021

Published: 03 September 2021

Citation:
Alladio E, Baricco M, Leogrande V,

Pagliari R, Pozzi F, Foglio P and
Vincenti M (2021) The “DOLPHINS”

Project: A Low-Cost Real-Time
Multivariate Process Control From

Large Sensor Arrays Providing Sparse
Binary Data.

Front. Chem. 9:734132.
doi: 10.3389/fchem.2021.734132

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 7341321

ORIGINAL RESEARCH
published: 03 September 2021

doi: 10.3389/fchem.2021.734132

40

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2021.734132&domain=pdf&date_stamp=2021-09-03
https://www.frontiersin.org/articles/10.3389/fchem.2021.734132/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.734132/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.734132/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.734132/full
http://creativecommons.org/licenses/by/4.0/
mailto:eugenio.alladio@unito.it
https://doi.org/10.3389/fchem.2021.734132
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2021.734132


INTRODUCTION

The current and future sustainable economic growth of companies
worldwide are today, more than ever, increasingly based on the value
and the information created by data. In the field of industry, the
features of Industry 4.0 are showing a growing impact on the
productive processes, since the companies are financially
encouraged to move towards industrial automation that
integrates some new production technologies aimed at improving
working conditions, creating new business models, and increasing
the productivity and product quality of their plants. Furthermore,
the governments of several countries are promoting business plans
and strategies focused on Industry 4.0 to offer the companies the
tools aimed at seizing the opportunities of innovation and digital
instruments related to the current fourth industrial revolution
(Gentner, 2016; Enyoghasi and Badurdeen, 2021; Gallo et al.,
2021; Ghobakhloo et al., 2021). In this context, Big Data and
Data Analytics themes play a strategic role since data are indeed
considered the lifeblood of economic development of the industrial
(but not only) companies nowadays. Data are the basis for evaluating
the quality of the products and generating gains in productivity and
resource efficiency, making it possible to optimize the production
process and enhance the whole plant’s efficiency. Consequently,
many companies face the necessity of implementing strategies
capable of collecting and interpreting the data robustly and
systematically alongside their productive process (Cugno et al.,
2021; Goldman et al., 2021; Jeske et al., 2021; Lee and Lim,
2021). Various Multivariate Data Analysis (MDA) models and
Machine Learning (ML) approaches have been gradually
introduced within the production plants to develop competitive
strategies, such as process control, quality control, and predictive
maintenance (Elsisi et al., 2021; Jamwal et al., 2021; Lee and Lim,
2021; Wankhede and Vinodh, 2021). The last topic is fascinating for
the companies since, if historical data have been already stored in
databases, predictive maintenance substantially requires the
computation of ML algorithms to predict the necessity of a
repair or, eventually, a replacement, which can be therefore
programmed and performed the way it turns to be most
effective. Predictive maintenance was originally performed using
user-defined alerts or expert-defined thresholds involving
Supervisory Control And Data Acquisition (SCADA) systems.
However, this approach does not consider the presence of
correlations, patterns, and similarities among the collected
features and the available signals detected from the sensors on
the machinery. On the other hand, MDA and ML tools perform
a multivariate interpretation of the stored data, which can belong to
even different kinds of databases (e.g., sensors, SCADA, and history
data) and origins (e.g., IT data, shop floor information, and
manufacturing processes) (Ghobakhloo et al., 2021; Lee and Lim,
2021). The current work focuses on developing and testing several
Machine Learning approaches at a pilot automotive plant (CNHi
Iveco, Brescia, Italy) for predictive maintenance purposes. In
particular, the goal of the “DOLPHINS” project was to build a
low-cost edge digital twin capable of performing real-time predictive
maintenance starting from data already collected and available at the
plant level. This project was settled in 2018 under a collaboration
among CNH Industrial Iveco (CHNi), RADA (an informatics

company), and the Department of Chemistry of the University of
Turin. In more detail, the goal of the DOLPHINS project was to
develop a software application—in the tangible form of a dashboard
working in real-time as a statistical digital twin of a shopfloor
asset—by implementing a twin statistical model of the equipment
under examination to deliver behavioral predictive warnings to the
maintenance technicians in order to intervene on the investigated
machinery preventively. Fundamental targets of the DOLPHINS
project were as follows: 1) to provide the technicians an approach
showing robust predictive capabilities of performing real-time
maintenance; 2) to diminish as much as possible the occurrences
of breakdowns, stops, and micro-stops, aspiring to a near-zero
downtime goal; 3) to develop a low-cost implementation of this
approach since training data for ML and MDA approaches were
already collected and stored in programmable logic controller (PLC)
devices. By referring to the last DOLPHINS target, a relevant
advantage of this project is that ML models were built on data
already available by the PLC equipment itself from large sensor
arrays. Hence, no additional sensors were needed since the
multivariate models were trained on the historical data and then
tested on those acquired recently, reducing the impact on the
company in terms of implementation costs and time. Since data
are stored by the PLCs in the form of sparse binary matrices, several
ML algorithms were tested during the development stage of
DOLPHINS. Therefore, various MDA classification models were
evaluated to predict the occurrence of failures within a given time
window and their performancewasmonitored to choose the optimal
model to perform constant and real-time processing of the data.
Finally, once new data and signals are collected, they are interpreted
by the developed ML model to monitor the performance of the
machinery under examination and predict its evolution by detecting
any significant drift and variation over time. The real-time results are
expressed in terms of the probability of malfunctions and severity of
the signals recorded by the PLCs to allow the maintenance
technicians to work promptly on specific machinery sections.
This approach diminishes the occurrences of stops and
breakdowns sensitively and provides further knowledge on the
behavior of the machinery itself. The final goal of the
DOLPHINS project is to extend this approach to other shopfloor
systems by raising the amount of cost savings, diminishing the
periods of downtime, and improving the efficiency and the
predictability of the productive process.

MATERIALS AND METHODS

Framework and Project Development
The development of the DOLPHINS project started as a proof-of-
concept study on evaluating the data acquired at the CNH Industrial
Iveco (CHNi) Plant of Brescia (Italy). The working area selected for
the project consisted of theWeldingOperative Unit and two types of
machinery were monitored [namely, 0P10–External Door
Compartment Ring (AVPE) and 0P10–Internal Door
Compartment Ring (AVPI)]. Signals registered from AVPE and
AVPI machinery (Figure 1) were historically stored into PLCs but
not interpreted in ML modeling for predictive maintenance. In
detail, the data of AVPE and AVPI consisted of 176 and 153 sensors
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connected to the PLCs, respectively. The signals were registered into
the database in the form of sparse binary output (i.e., ON/OFF, with
a prevalence of OFF results), indicating if the specific threshold
values for each sensor are exceeding (i.e., ON) or not (i.e., OFF).
Then, a pre-treatment step involving the binarization of the collected
data (i.e., 0 means that the signal of a specific collected variable is
OFF, whereas 1 means that the signal of the variable is ON) was
performed. Furthermore, a categorical binary output indicating the
status of the machinery (i.e., “Working” or “Stop”) for each
collection record was available, too.

In the present proof-of-concept study, the records collected
from September 1, 2020, up to November 15, 2020, are shown as
an example of two matrices of dimensions 210,307 × 177 and

199,077 × 154 for AVPE and AVPI machinery, respectively.
Records are collected on the PLCs with a frequency of one
second per record during the different work shifts. The whole
study was composed of two developmental steps: the first step
assessed the feasibility of the study, involving the acquisition of
the data, their pre-pretreatment, the evaluation of several ML
models, and the comparison of their performances, while the
second step focused on the real-time implementation of the
developed model within the plant, by testing the elected ML
model on newly acquired data, updating the model with a
scheduled frequency (approx. one month), and programming
dashboards and platform-ready applications to be employed by
the maintenance technicians during their everyday work. A

FIGURE 1 |Graphical representation of the External Door Compartment Ring (AVPE) and Inner Door Compartment Ring (AVPI) machinery under examination of the
CNH Industrial Iveco (CHNi) Plant of Brescia (Italy).

FIGURE 2 | Working steps of the DOLPHINS project.
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graphical representation of the developmental steps of the
DOLPHINS project is reported in Figure 2.

Machine Learning Strategies
Several classification MLmodels were tested on the collected data
to decide which algorithm best discriminates the records labeled
as “Working” conditions from those labeled as “Stop” conditions
of both the AVPE and the AVPI machinery. For this purpose, a
benchmark analysis was performed by involving the following
classification algorithms: k-Nearest Neighbors (kNN) (Massart
et al., 1997), Logistic Regression (LogReg) (Cruyff et al., 2016),
Linear Discriminant Analysis (LDA) (Massart et al., 1997;
Martinez and Kak, 2001), Quadratic Discriminant Analysis
(QDA) (Srivastava et al., 2007), Partial Least
Squares–Discriminant Analysis (PLS-DA) (Ballabio and
Consonni, 2013), Soft Independent Modelling of Class
Analogies (SIMCA) (Wold and Sjostrom, 1977; Vanden
Branden and Hubert, 2005), Naive Bayes (NB) (Cassidy,
2020), Support Vector Machine (SVM) (Hearst et al., 1998;
Vapnik, 2000), Decision Trees (DT), Random Forest (RF)
(Fratello and Tagliaferri, 2019), and Extreme Gradient
Boosting (XGBoost) (Chen and Guestrin, 2016; Guang et al.,
2020). Since the acquired data are in the form of sparse binary
matrices, the Sparse Logistic Principal Components Analysis (SL-
PCA) approach was performed on the datasets before computing
different ML approaches such as kNN, LogReg, LDA, QDA, and
SIMCA. Since these algorithms can not evaluate sparse binary
data properly, they were calculated on the Principal Components
(PCs) provided by SL-PCA modeling. The SL-PCA algorithm
introduced by Lee et al. (2010) involves an iterative weighted least
squares algorithm and the calculated PCs were then used as new
variables for the cited ML algorithms.

Both external validation and cross-validation were performed
in the study. All the MDA models were tuned and trained on the
data from September 1, 2020, up to October 31, 2020, using a
repeated k-fold cross-validation strategy. For benchmark and
tuning purposes, each tested algorithm got the same training
set since the data had the same partitioning for every model and
every cross-validation step. This data partitioning strategy was
employed to compare the performance of the various models
properly.

Grid search analysis was made to tune the number of
components and the values of the hyperparameters of all the
algorithms effectively. The use of an exhaustive grid search
analysis (involving cross-validation, too) was performed to
find the combination of hyperparameters that performed best
for each ML model. Grid search analysis (rather than random
search or sequential search) allowed us to monitor many values
within the hyperparameters’ space when looking for the best-
performing values. Despite grid search being time-consuming
and expensive, we decided to exploit it to achieve the best tuned
and cross-validated ML models. SL-PCA tuning grid search
involved evaluating the optimal number of k components
(from 1 up to 30) and λ penalty parameter (from 0 up to
0.01). The best compromise for the goodness-of-fit and the
model complexity was achieved by minimizing the Bayesian
Information Criterion (BIC) (Lan et al., 2012). Grid search

was performed for PLS-DA and SIMCA to find the optimal
number of k components and latent variables in terms of Root
Mean Square Error in Cross-Validation (RMSECV) (Massart
et al., 1997). The optimal value of k-nearest neighbors for the
kNN algorithm was varied from 1 up to 10. No tuning grid search
was required for LDA, QDA, LogReg, and NB algorithms. In
contrast, SVM tuning involved the grid search evaluation of four
hyperparameters: kernel (involving the use of polynomial, radial,
or sigmoid kernels), degree (related to the shape of the SVM
decision boundaries for polynomial kernels, from 1 up to 3),
gamma (describing the influence of the records on the location of
the SVM decision boundaries, from 0.1 up to 10), and C
(influencing the penalization of the records arranged within
the margin of SVM boundary, from 0.1 up to 10) (Vapnik,
1995). DT tuning involved the grid search approach on four
hyperparameters: minsplit (describing the minimum amount of
records to be included into a node before splitting, from 1 up to
20), minbucket (defining the maximum depth of the calculated
decision tree, from 1 up to 10), cp (indicating the minimum
improvement in the performance of a node to allow a further
split, from 0.01 up to 0.1), and maxdepth (describing the
minimum amount of records that can be included into a leaf,
from 1 up to 10). RF algorithm also involved the grid search
tuning evaluation of four hyperparameters: ntree (expressing the
number of trees in the forest model, from 10 up to 300), mtry
(representing the number of variables to be randomly sampled at
each node, from 5 up to 40), nodesize (defining the minimum
number of records to be included into a node, 1 up to 10), and
maxnodes (establishing the maximum number of leaves allowed
in the model, from 2 up to 30) (Bischl et al., 2016; Fratello and
Tagliaferri, 2019). XGBoost tuning grid search evaluated seven
hyperparameters: eta (indicating the learning rate to avoid
overfitting, from 0 up to 1), gamma (describing the minimum
amount of splitting for a node, from 0 up to 20), max_depth
(indicating how deeply each evaluated tree can grow, from 1 up to
5), min_child_weight (defining the level of impurity that is
maintainable for a node, from 1 up to 10), subsample
(describing the proportion of samples to be randomly selected
when evaluating each tree, from 0 up to 1), colsample_bytree
(evaluating the proportion of variables selected by each tree, from
0.1 up to 1), and nrounds (defining the number of trees that can be
sequentially calculated within the model, from 10 up to 100)
(Bischl et al., 2016; Guang et al., 2020). The tuning of the kNN,
SVM, DT, RF, and XGBoost methods was evaluated in terms of
mean misclassification error (MMCE), which represents the ratio
between the number of records classified as belonging to a specific
class different from their actual class (i.e., “Stop” or “Working”)
(Bischl et al., 2016; Probst et al., 2017). This parameter was
calculated for all the ML algorithms and, therefore, the best
tuning scenarios selected turned to be those providing the
lowest MMCE value. A repeated k-fold cross-validation
strategy involving a 10-fold CV approach repeated five times
was performed when performing the grid search analysis. As a
result, in summary, the best models were selected in average
terms of Bayesian Information Criterion (BIC) for SL-PCA, Root
Mean Square Error in Cross-Validation (RMSECV) for SIMCA
and PLS-DA, and mean misclassification error (MMCE) for
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kNN, SVM, DT, RF, and XGBoost. This approach, in our
opinion, validates our entire model-building procedure,
including the hyperparameter-tuning step.

The external validation was made by removing the records
from November 1, 2020, up to November 15, 2020 from AVPE
and AVPI original datasets. These data, consisting of matrices of
dimensions 42,062 × 177 for AVPE and 33,180 × 154 for AVPI,
were employed as a test set. Therefore, the results and the
performance of the ML algorithms on the external validation
test set were expressed using several metrics such as precision,
recall, specificity, and Fscore. In the present studio, the records
classified as “Working” were considered positive samples
(i.e., indicating proper functioning of the tested machinery). In
contrast, the records classified as “Stop” were considered negative
samples (i.e., indicating a malfunction or a breakdown of the
machinery under examination). The “models” performance
metrics were calculated as follows:

Precision � TP
TP + FP

,

Recall � TP
TP + FN

,

Specificity � TN
TN + FP

,

Fscore � 2 × Recall × Precision
Recall + Precision

,

where TP and FP represent the number of true positive and
false positive records, whereas TN and FN indicate the number
of true negative and false-negative records (Bischl et al., 2016).
Finally, the model showing the best compromise among the
different performance metrics was employed to develop the
dashboards for predictive maintenance and the real-time

evaluation of the new data collected in the plant.
Nevertheless, an update of the ML models was scheduled
with a frequency of 1 month (in parallel with the real-time
analysis of the new data) to monitor the performance of the
ML models on a larger amount of data.

Software
R statistical environment (version 4.0.2) (R Core Team, 2020) and
R Studio Desktop IDE (version 1.4.1717) (RStudio Team, 2020)
were used in this study. In addition, the following R packages
were employed: caret (Kuhn, 2020), dplyr (Wickham et al., 2020),
ggplot2 (Wickham, 2016), mdatools (Kucheryavskiy, 2020),
mixOmics (Rohart et al., 2017), mlr (Bischl et al., 2016),
parallel (R Core Team, 2020), parallelMap (Bischl et al., 2020),
plotly (Sievert, 2018), and tidyverse (Wickham et al., 2019). PLS-
DA modeling was performed using the R codes available at
(Github, 2013).

RESULTS AND DISCUSSION

Tuning and Benchmark Analysis
SL-PCA modeling indicated, as optimum, a tuning of 6 PCs with
a λ value of the penalty parameter equal to 0.0025 for the AVPE
data 5 PCs and λ equal to 0.0020 for the AVPI data. Examples of
the scores plots of the SL-PCA models on the AVPE and AVPI
machinery training datasets are reported in Figure 3. As it can be
seen, a distinct separation is observed between the “Working” and
the “Stop” samples in the space modeled by the new PCs. Since
PCA is an exploratory data analysis algorithm, these results
suggest that the classification task focused on predicting the
operative conditions and the behaviors of the machinery

FIGURE 3 | SL-PCA scores plot for AVPE (A) and AVPI (B) machinery. The blue circles represent the records labeled as “Working” on the PLCs, while the red
circles are the records acquired as “Stop.”
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under examination might be feasible. Therefore, the calculated
PCs were used as new features for the following ML classification
algorithms: kNN, LogReg, LDA, QDA, and SIMCA.

The results for all the evaluated ML algorithms are expressed
in MMCE for AVPE and AVPI machinery in Table 1. Further
details about the tuning results for all the models are reported in
the Supplementary Material (Supplementary Table S1). As
shown in Table 1, SIMCA modeling (preceded by SL-PCA
processing) provided the lowest results in MMCE. Therefore,
this approach was selected for further testing with the external
validation data and the implementation within an on-purpose
developed dashboard to be used at the shopfloor level by the
maintenance technicians of the plant.

SIMCA Model
The external validation dataset involving the AVPE and the
AVPI data from November 1, 2020, up to November 15, 2020,
were predicted by the developed SIMCA model. Hotellings T2

vs. Q residuals plots for AVPE and AVPI test sets can be

observed in Figure 4. Again, a satisfactory separation is
observed between the “Working” and the “Stop” records
collected by the PLCs during the period under examination.
Although some records are still misclassified (mainly false
negatives, i.e., false “Stop” predictions), the performance of the
SIMCA model appears robust for both AVPE and AVPI
machinery, thus suggesting the use of this approach for
predictive maintenance purposes.

SIMCA prediction results are expressed in precision, recall,
specificity, and Fscore for both the types of machinery under
examination, as reported in Table 2. These evaluations were
made for all the ML algorithms, but the results turned to be lower
than those obtained by the SIMCA model (results not reported
here). SIMCA model provided optimal results for all the metrics
under examination. However, specificity turned to be the metric
with the lowest value; this result may be due to the lower number
of “Stop” occurrences collected by the PLCs. The machinery
under examination does not stop frequently, and several recorded
“Stop” instances can be defined as micro-stops since they show a
downtime lower than 1 minute. Moreover, the number of “Stop”
records collected by the PLCs is only around 5% of the data. Our
opinion is that the model’s performance might be improved
further by updating the training sets in a scheduled way
(approx. one month) and collecting new data, especially those
related to “Stop” records. Since the approach involving SL-PCA
and SIMCA algorithms provided optimal and robust

TABLE 1 | MMCE values of all the tested ML algorithms for AVPE and AVPI
machinery training datasets.

ML models AVPE (MMCE) AVPI (MMCE)

KNN 0.073 0.075
LogReg 0.114 0.093
LDA 0.099 0.127
QDA 0.085 0.106
PLS-DA 0.171 0.216
SIMCA 0.034 0.052
NB 0.210 0.194
SVM 0.052 0.081
DT 0.226 0.102
RF 0.083 0.135
XGBoost 0.097 0.143

FIGURE 4 |Hotelling’s T2 vs. Q residuals plot for AVPE (A) and AVPI (B)machinery. The blue circles represent the records labeled as “Working” on the PLCs, while
the red circles are the records acquired as “Stop.” The dotted line indicates the 95% Hotelling’s T2 limit, while the dashed line represents the 95% Q residuals limit.

TABLE 2 | SIMCA performance metrics for AVPE and AVPI machinery test
datasets.

Machinery Precision Recall Specificity FSCORE

AVPE 0.977 0.944 0.844 0.960
AVPI 0.985 0.962 0.899 0.973
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classification performance, this method was implemented into a
dashboard to perform real-time predictive maintenance in
the plant.

Dashboard Implementation
SIMCA algorithm provides several advantages for the
development of a real-time predictive maintenance approach.
Firstly, no assumptions are made on the probability distributions
of the features under examination, which allows analyzing the
new PCs from the SL-PCA model reliably. Secondly, since each
class (i.e., “Working” and “Stop” records) is modeled
independently, it is possible to obtain and predict the
information about the classification probability of a certain
record when introduced into the trained model. Thirdly, the
SIMCA approach allows the maintenance technicians to identify
the sensor or the single component of the machinery to consider
for intervention before the occurrence of an incoming fault.
Thanks to the evaluation of Hotelling’s T2 and Q residuals
contribution plots provided by the combined SL-PCA and
SIMCA algorithms, it is possible to recognize the critical
signals recorded on the PLCs. An indication of the severity of
the recorded signals was also implemented by calculating the
logarithm (base 10) of the maximum Hotelling’s T2 and Q
residuals contribution (in absolute value) and normalizing it
on a scale from 0 up to 100%. However, this approach is still
under evaluation since the amount of recorded breakdown events
is relatively low.

Finally, the probability of classifying a new record as
“Working” (Probworking) is inferred for all the new records
collected on the PLCs. Figure 5 displays the transient of
Probworking over time. The example reported in Figure 5
shows the fluctuation of such probability before a specific

breakdown occurred (on the right part of the plot). The x-axis
represents the time before the occurrence of the stop of the
machinery (in this case, AVPE), while the y-axis shows a binary
output related to Probworking. As a rule of thumb, it was
established that if Probworking turns higher (or equal) than 0.5,
the record is classified as “Working” and the transient is set to 0.
On the other hand, if Probworking turns to be lower than 0.5, the
record is classified as “Stop” and the transient is set to 1. The
indication of a probable malfunction of the AVPEmachinery was
observed, in this case, 10 h before the breakdown. Other alerts
were predicted 5, 2 h, and 30 min before the adverse event.
However, the number of false “Stop” occurrences (i.e., false-
negative records) might be rather high, as also remarked by
the specificity values reported in Table 2. Again, this might be
ascribed to the necessity of collecting new data and updating the
SIMCA models (or the other tested ML algorithms).
Nevertheless, further tuning of the employed decoding was
tested. As it can be seen in Figure 5, different thresholds of
Probworking were evaluated (e.g., 0.4, 0.3, 0.2, and 0.1 thresholds)
to diminish the number of false “Stop” occurrences and improved
sensitivity values (approx. 0.89 and 0.94 for AVPE and AVPI,
respectively) were found using a Probworking threshold of 0.1. This
further refining of the algorithms is still under examination and
will be monitored over time. Furthermore, this approach allows
providing the maintenance technician a tool capable of
predicting a breakdown event before its occurrence. In fact,
by analyzing the transients of Probworking monitored over time,
it was observed that reliable alerts occurred in the range
between 30 min and 3 h before the breakdown. At the
current stage, it is still not trustworthy to provide
Probworking with a confidence interval in terms of time
before the occurrence of the stop event since the number of

FIGURE 5 | Transient of SIMCA Probworking monitored over the time for the AVPE machinery before a breakdown. The x-axis represents the time before a
breakdown event (occurring on the right side of the plot), while the blue lines represent the coded transient at different Probworking thresholds (i.e., 0.5, 0.4, 0.3, 0.2
and 0.1).
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“Stop” records is still limited. However, further analyses will be
made on Probworking over time to estimate such a parameter
reliably. An example of the developed dashboard is shown in
Supplementary Figure S2.

CONCLUSION

DOLPHINS project represents a proof-of-concept and low-cost
tool to perform reliable real-time predictive maintenance. It
combines ML technology-driven algorithms with the
evaluation of historical datasets that have never been
interpreted using a multivariate data analysis approach. The
algorithm involving SL-PCA and SIMCA has now been
implemented by the automotive plant of CNHi Iveco (Brescia,
Italy) at the shop floor level efficiently, and the number of failures
and breakdown events has significantly diminished since the
commissioning of the project.

This project allowed the development of an automated
dashboard that shows the operator, in real-time, and the
current instrumentation’s operating conditions and, if signals
arrive at the PLC, indicates the severity and probability that these
lead to a stop. This predictive maintenance approach has
numerous advantages, including 1) a meager impact in terms
of costs (data already available are used); 2) the possibility of
physically interpreting the information; 3) the possibility of not
having to stop the production process; 4) the transversality of the
application of Machine Learning also to other components and
instrumentation within the plant.

At the current stage, the DOLPHINS algorithm can run on
edge and cloud systems and conventional plant infrastructure.
For this reason, the future perspectives of this project will focus
on converting the DOLPHINS algorithm into a multiplatform
application to raise its scalability on other types of machinery and
plants. However, DOLPHINS is now equipment-oriented, and all

the steps involving the tuning, training, and testing of the ML
algorithms are required to develop a robust real-time predictive
maintenance strategy. Therefore, a constant and frequent update
of the databases and the ML models have to be scheduled to
obtain reliable results and reach the goal of near-zero
downtime.

.
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Routine Monitoring of Instrument
Stability in a Milk Testing Laboratory
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Mid-infrared spectroscopy has been developed as a reliable and rapid tool for routine
analysis of fat, protein, lactose and other components in liquid milk. However, variations
within and between FTIR instruments, even within the samemilk testing laboratory, present
a challenge to the accuracy of measurement of particularly minor components in the milk,
such as individual fatty acids or proteins. In this study we have used Analysis of
variance–Simultaneous Component Analysis (ASCA), to monitor the spectral variation
between and within each of four different FOSS FTIR spectrometers over each week in an
independent milk testing laboratory over 4 years, between August 2017 and March 2021
(223 weeks). On everyday of each week, spectra of the same pilot milk sample were
recorded approximately every hour on each of the four instruments. Overall, variations
between instruments had the largest effect on spectral variation over each week, making a
significant contribution every week. Within each instrument, day-to-day variations over the
week were also significant for all but two of the weeks measured, however it contributed
less to the variance overall. At certain times other factors not explained by weekday
variation or inter-instrument variation dominated the variance in the spectra. Examination of
the scores and loadings of the weekly ASCA analysis allowed identification of changes in
the spectral regions affected by drifts in each instrument over time. This was found to
particularly affect some of the fatty acid predictions.

Keywords: ASCA, quality control, milk testing, instrument stability, standardization, FTIR spectroscopy, analysis of
variance with simultaneous component analysis

INTRODUCTION

The goal of quantitative mid-infrared (MIR) analysis is to reproduce the analytical results achieved
with accepted standard reference methods. The quantitative analysis of milk components from MIR
spectra is based on the direct proportionality between the intensities of the absorbance bands for each
component and their concentrations and the path length through the sample. The accuracy of this
measurement requires routine calibration of the spectrometers with pre-analysed milk (with
chemical reference tests). Signal variations in the interferometer within an instrument over time,
between different instruments and between different types of instruments can alter the shapes,
intensities and relative intensities of the vibrational mode bands (Pelletier, 2003) which can affect the
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prediction accuracy, particularly of minor milk components such
as individual fatty acids. The accuracy of a predictive calibration
is affected both by instrumental factors (Smith et al., 1993) and by
the characteristics of the materials used to calibrate the
instruments (Kaylegian et al., 2006). Already in the early use
of MIR spectral techniques, inherent issues in the stability of
predictions between instruments and over time were shown
(Biggs, 1978). However, differences in results obtained from
different laboratories can also occur because of differences
between the reference methods used, and because of failure to
achieve good calibrations (Biggs, 1978). In a report on
performance of the older generation of milk analysers, it was
found that the main problems affecting calibration and accuracy
of predictions were inaccurate reference tests, air incorporation,
homogenizer inefficiency, mechanical wear, sample cell and filter
system, electronics and mechanical maintenance and operator
errors (Young, 1978). The newer milk analysers have been
engineered with improved designs to minimize these factors;
however, some still persist. The small variations in spectra caused
by variations in spectrometer parameters such as light source
intensity, detector sensitivity and laser stability, and in laboratory
environment such as temperature, vibrations, humidity, are
minimized by a procedure called Zero-setting (Foss Electric,
Hillerød, Denmark) (Hansen, 2020), and by weekly calibration
adjustment for fat, protein, lactose and total solids.
Manufacturers of other MIR spectrometers used for routine
milk analysis similarly incorporate one or more methods to
reduce variations within and between instruments.

Differences between the spectrometers, even from the same
manufacturer andmodel in the same laboratory are minimized by
routine calibration adjustments. Weekly adjustments on the
calibration models are performed to correct or adjust the
prediction models used on the different instruments in the
laboratory. These adjustments compensate for any week-to-
week changes in path length, temperature and humidity
variations, mechanical wear, sample handling and minor
changes in detector, source and the mechanical and electronic
performance. (Young, 1978). Such changes can result in changes
in peak intensity or band shape which would render the
prediction results inaccurate.

Standardization of MIR spectrometers is particularly
necessary for exchange of MIR spectral databases across
laboratories and countries. The standardization procedure
corrects for systematic variations in intensity due to random
variations in linearity of the detectors, or in the relative intensity
across the wavelength range from different instrument
manufacturers and models. Within the same instrument, the
standardization procedure also corrects for path length changes
with time, due to erosion of sample cell windows made of CaF2
and due to window contamination in the case of diamond sample
cell windows. It also corrects for shifts in frequency (or
wavenumber), however these are random and if present,
would occur on a very minor scale as this is an effect of laser
fluctuation, source variation and detector instability, all of which
are usually minor compared to other instrument variations.

For the FOSS MilkoScan™ FT1, FT2, FT120, FT + ,
MilkoScan™ 7 and FT6000 milk analysers, a patented

standardization procedure has been developed for regular use
which applies a slope and intercept adjustment to the spectra
recorded on an instrument to correct for wavenumber
(frequency) shift, changes in intensity and changes in linearity
due to instrument variations over time. The procedure involves
recording a spectrum of a standardization liquid and comparing
the intensities and wavenumber positions at two selected
wavelengths with those in a standard spectrum (“Master or
Gold equalizer spectrum”) stored on the instrument. Any
differences between the spectrum of the standardization liquid
and gold equalizer spectrum are corrected for by applying four
correction factors: A and B for intensity variation, and α and β for
wavenumber shifts (Hansen, 2014).

An alternative and non-instrumental standardization method
called Piecewise Direct Standardization (PDS) (Wang et al., 1991)
was recently used to standardize spectra of samples measured
with different makes of instruments (Delta, Bentley, and FOSS)
inside a European dairy network. (Grelet et al., 2015a; Grelet et al.,
2015b). This standardization aimed to allow spectra from
different sources to be pooled and matched to physiological
data in a common database to create calibrations predicting
cow fertility, health and environmental and feeding indicators.
The application of PDS on spectra recorded on 21 different
instruments in ten laboratories was found to significantly
reduce the RMSE (Grelet et al., 2015b). However, this
procedure requires a large amount of post-processing of the
spectra and provides retrospective rather than time-based
monitoring of instrument performance.

In this paper we describe an innovative approach that covers a
different aspect of instrument standardization, namely the
routine monitoring of faults or discrepancies in the MIR
spectrometers in a single milk testing laboratory over time.
This would have a complementary function to the calibration
transfer and instrument standardization approaches by
monitoring with time the instrument performance. The
method relies on measuring spectral variations over time of a
pilot sample of milk that is recorded on all the instruments in the
laboratory at the same time. A spectrum of the same pilot milk
sample is recorded approximately every hour on all instruments
in the same laboratory over a period of a week; this is repeated
every week using a fresh pilot sample. The effects of day-to-day
variation within the individual spectrometers over the week and
the variations between the individual laboratory spectrometers,
are measured using ASCA (Analysis of variance - simultaneous
component analysis) of the spectra (Jansen et al., 2005; Smilde
et al., 2005). ASCA is a method used to determine which factors
within a fixed effects experimental design are significant relative
to the residual error and permits an ANOVA-like analysis even
when there are many more variables than samples, as in the case
of spectra (Smilde et al., 2005). In this study, the contributors to
variation in the spectral intensities over the week were assumed to
be instrument and weekday as the main factors, and the
interaction between them. The purpose of the study was to
explore whether ASCA could provide a useful tool for
monitoring and comparing the performance of four MIR milk
analysers in a single milk test laboratory in New Zealand. The
ability of ASCA to measure changes or differences in the actual
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spectral output from each instrument allows identification of the
source of variation on a weekly basis and thus enable timeous and
appropriate intervention.

MATERIALS AND METHODS

Pilot Milk Samples
The pilot milk sample was prepared by combining randomly
selected milk samples from three or more different farms from
different regions. Every week a new pilot sample was made up as a
fresh sample. The aim of sourcing milk samples from different
suppliers was to provide the most representative pilot sample, by
averaging out milk compositions from different regions of NZ.
The pilot sample was then preserved with bronopol and stored in
a refrigerator to be used as the single pilot sample for all
instruments over that week. For each subsequent week a new
pilot sample was prepared. Approximately every hour, a sample
of milk from the same pilot sample was introduced to each of the
instruments in use, in between measurement of the routine milk
samples. This occurred on each MIR analyzer in the laboratory
over a period of 1 week from aliquots of the same pilot milk
sample. Every week, a fresh pilot sample was prepared for the
following week’s measurements.

MIR Spectra
The MIR spectra of aliquots of the same pilot sample were
recorded on between two and four FOSS milk spectrometers
at any one time, named in this study as MS1, MS2 (FT6000
models with diamond sample cuvette windows), MS3, MS4 (FT +
models with CaF2 sampling windows), and MS7 and MS8
(MilkoScanTM 7 with CaF2 sampling windows). Although
MS1 and MS2 are the same FT6000 model type, MS3 and
MS4 are of the same FT+ model type, and similarly MS7 and
MS8 are both MilkoScanTM 7, each are individual instruments
and will show differences in variations arising from their optical
components. For example, the globar light source intensity,
detector sensitivity/noise, homogenizer function or
interferometer function. Even slight variations in these
components of the optical bench will affect the spectral
intensities to different extents. These differences are
minimized by regular (approximately 6-weekly) instrument
standardization procedures (Hansen, 2014). Variations in the
predicted milk components are minimized by weekly calibration
adjustments by the milk test laboratory of the slope and bias of fat
and protein calibration models for a calibration set.

All spectra were recorded between 929 cm−1 and 5,000 cm−1 at
spectral resolution 16 cm−1, and ratioed against a water
background. The spectra were transformed by an inverse log
from transmittance to absorbance. Although the spectrum is
measured over 929 to 5,000 cm−1, many of these regions were
not usable for measurement of milk components. This is mainly
because of the intense absorption by water at specific frequencies,
although subtracted out, results in random noise between
3,600–3,000 cm−1 and between 1,693–1723 cm−1. These regions
were exluded from the ASCA analysis. In addition, the region
between 1785 cm and 1 to 2,600 cm−1 was also excluded weak

inteference fringes are visible in the region, arising from internal
reflection between the inside windows of the samplng cuvette.
This region also includes absorption bands by atmospheric CO2.
These regions were therefore excluded in order to be able to
identify variations as being due to changes in instrument
parameters within or between instruments or due to other
factors such as laboratory environment conditions.

Fat, Protein, C16:0 and C18:0 MIR
Measurements in Pilot Milk Samples
In order to assess the influence of spectral variation on the MIR
predictions of the components in the pilot milk MIR
predictions, fat measurements (ranging between 3.13–6.54 g/
100 ml) and true protein (3.17–4.61 g/100 ml) were selected as
examples of major milk components. Also, two fatty acids were
selected as minor milk components: the more abundant C16:0
(ranging from 0.94 to 2.04 g/ g milk) and C18:0 (ranging from
0.33 to 0.75 g/100 ml).

Data Analysis
The first step in ASCA is a decomposition of the variation for
every variable (wavenumber) through ANOVA (Jansen et al.,
2005; Zwanenburg et al., 2011). We set up a data matrix, X, for
each week that contains the spectra of each instrument, and a
design matrix that defines the instrument and weekday for each
spectrum. An ANOVA is performed for every wavenumber in the
FTIR spectra of each pilot sample (week) to determine whether
the variation in the spectral data matrix is due to a weekday effect
(milk changing or instrument varying over the week), instrument
effect (difference between instruments), interactions between
instrument and weekday, or other reasons such as noise not
described by any of these effects (residual variation). So, for every
variable (wavenumber) we define a main effect (the mean), factor
effects (instrument and weekday), interaction effects (between
instrument and weekday) and a noise or residual term. This
results in the definition of different effect matrices:

X � Xmean + Xw + Xi + Xwi + Xres (1)

where w � weekday, i � instrument, wi � interaction between
instrument and weekday and res � residuals.

These matrices are made of identical copies of the mean
profiles calculated by averaging all the replicates at the
different levels of each factor or interaction. For instance, if a
factor has two levels, half of the rows of the corresponding effect
matrix will contain identical copies of the mean profile of the
experiments in which the factor was at level 1; the other half will
be made of the average of the remaining signals (i.e., those
corresponding to level 2).

Once this decomposition has been done, the effect of the
individual design terms is calculated as the sum of squares (SSQj)
of the corresponding effect matrix, Xj:

SSQj � ‖X 2
j‖ j � i, w, wi (2)

Accordingly, the portion of the total variance in X, after
centering, accounted for by any of the design terms can be
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calculated by dividing SSQj by the sum of squares of the mean-
centered data (X − Xmean). The contributions of a factor in the
ASCA model can be summarized by dividing the sum of squares
of a factor effect matrix by the sum of squares of the mean-
centered data.

If a factor/interaction is found to have a significant effect (e.g.,
by means of permutation tests), PCA is then performed on the
corresponding matrix Xj to correlate the effect to the variations
observed in the spectroscopic profiles.

Xj � TjP
T
j + Ej j � i, w, wi (3)

where Tj, Pj and Ej are the matrices of PCA scores, loadings and
residuals, respectively, while the superscript T indicates matrix
transposition. Additionally, to carry out multiple comparisons,
when the number of levels for a factor is higher than two or, in
general, to graphically visualize the significance of the effect of a
design term, it is customary to calculate a new set of scores
Tj+res by projecting the residual matrix onto the PC subspace of
the factor/interaction of interest:

Tj+res � (Xj + Xres)Pj j � i, w, wi (4)

For all the models, to evaluate the statistical significance of the
effects, the calculated values of the sum of squares of the
corresponding effect matrices were compared to their null
distributions, non-parametrically estimated by means of
permutation tests (Zwanenburg et al., 2011). Permutation tests
were run on the spectra from each week to evaluate the
significance of the effect of the different instruments and days in
the week, and of their interaction, with 1,000 randomization per
model; effects with p < 0.05 were deemed significant. The PCA
scores and loadings of the corresponding effectmatrices were used to
highlight differences in the spectra, or changes over time, as
influenced by instrument differences or weekday. Box plots were
used to monitor differences in values predicted by the calibration
models with time.

For each week’s worth of data, outlier removal was
performed prior to ASCA calculation, as there were often a
small number of spectra with highly anomalous behavior. After
calculating PCA models, outliers were identified based on the
values of Hotelling T2 and Q residuals using the R package
“mdatools” (Kucheryavskiy, 2020; Kucheryavskiy, 2021). A
square cutoff option was used in which samples with T2 >
T2
lim or Q > Qlim (Pomerantsev, 2008), with T2

lim were calculated
using the Hotelling T2-distribution and Qlim being calculated at
a 99% confidence level based on the corresponding null
distributions. These thresholds were chosen so as to include
enough spectra to enable comparison of the number of outliers
from each instrument, while excluding extreme values to avoid
unduly influencing the results of ASCA modeling and sum of
squares of the effects.

All computations were performed using the R programming
language version 4.0.5 (R Foundation for Statistical Computing,
Vienna) and the RStudio integrated development environment
(RStudio Team, Boston). The “MetStaT” package was used for
ASCA calculations and the package “ggplot2” was used for
generating figures.

RESULTS

ASCA
A total of 223 weeks’ worth of data comprised the full dataset
which spanned from December 2016 to March 2021. Particularly
in the winter season (June-August) when fewer milk samples
were analysed, and in other periods when one or more
instruments were under maintenance, there were not enough
instruments active or not enough days in the week with sufficient
measurements to perform ASCA. These were excluded from the
analysis so that ASCA was performed on the remaining 177 of the
223 weeks.

The total sum of squares (TSSQ) for each of the 177 weeks,
obtained from the ANOVA calculation of the ASCA algorithm
are plotted in Figure 1 over the time period December 2016 to
March 2021. The TSSQ was adjusted for sample size to TSSQ
(adj), as the number of samples over the measurement period
varied each week between 202 and 1,324, depending on time of
year (fewer samples in winter season) or whether instruments
were undergoing maintenance. The plot of TSSQ (adj) in
Figure 1 shows the overall variance for every week for all
the instruments in the laboratory and serves as a useful
monitor of instrument performance and/or laboratory
stability.

The shaded regions in the plot indicate changes in which
laboratory instruments were used. Between weeks 1 and 83, the
four instruments MS1, MS2, MS3, and MS4 were active, while
over weeks 84–142 only instruments MS3, MS4 and MS7 were
active. From weeks 143–223, the four instruments MS3, MS4,
MS7, and MS8 were active. The dashed lines indicate the
thresholds for one (0.0022), two (0.0044) and three (0.0066)
standard deviations of all 177 weeks’ TSSQ (adj) values. These
thresholds can be selected to flag when the overall spectral
variance deviates from the norm. The mean TSSQ (adj)
(0.0015) is also indicated on Figure 1 as a green dotted line.

For 130 of the 177 weeks (74%) the TSSQ (adj) was below the
mean. In 28 of the 177 weeks (15%) the TSSQ (adj) was above one
SD (σ) of the 177 weeks’ TSSQ (adj) values. Of these 28 weeks,
seven exceeded two SD’s (4% of the 177 weeks) and six exceeded
three SD’s (3% of the 177 weeks), with 15 exceeding only one SD
(8% of the 177 weeks). The weeks with TSSQ (adj) exceeding one,
two or three SD’s are labelled according to the major contribution
from one or more of weekday effect (W), instrument effect (I), or
residual effect (R). There was no correlation between the TSSQ
(adj) exceeding one, two or three times the SD of the 177-weeks
TSSQ (adj) values with time of year or with season.

Figure 2 shows the percentage contribution to the total SSQ
(representing the total variance) for each week, by the instrument
effect (black trace), weekday effect (green trace), weekday/
instrument interaction (blue trace) and residual factors/noise
(grey trace). Evident from the graph is that weekday changes
originating from the sample itself or within each instrument, and
weekday/instrument interactive effects contribute very little to
the overall variance. Differences between instruments and
residual variations form the major contributions; only three of
the 177 weeks showed greater contribution from weekday
variation than instrument effects. 53 of the weeks have
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residual effects contributing more than either instrument or
weekday effects to the TSSQ (adj).

In all 177 weeks measured with ASCA the contribution of the
instrument effects to the TSSQ (adj) was significant, having p <
0.05. The weekday effects were also significant except for two of
the weeks: with only weeks 137 and 188 having p > 0.05.

Interaction effects between weekday and instrument were
significant for all weeks except for 43 and 177. Those weeks
exceeding one, two and three standard deviations of the
177 weeks’ TSSQ (adj) values are listed in Table 1, with the
number of SD’s indicated in the fifth column from the right. Also
listed are the total number of samples (N) for each week and the

FIGURE 1 | Total sum of squares adjusted for sample size (TSSQadj), for instruments MS1, MS2, MS3, and MS4 from weeks 1–83 (green shaded region), for
instrumentsMS3,MS4, andMS7 over weeks 84–142 (orange shaded region) and for instrumentsMS3, MS4,MS7, andMS8 over weeks 143–223 (blue shaded region).
Weeks in which the TSSQ (adj) exceeded thresholds of one, two and three times the SD (σ) of the 177 weeks TSSQ (adj) values are labelled with the main contributing
effects. The mean TSSQ (adj), labelled as µ, is represented by a green horizontal dotted line.

FIGURE 2 | Weekly percentage contribution of instruments (black trace), weekdays (green trace) and weekday/instrument interactions (blue trace), to the total
variance (TSSQ, adjusted for sample numbers) in the pilot sample spectra. Also plotted is the residual effect (grey).
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ASCA output of percentage contribution from each of the effects:
weekday (SSQ day), instrument (SSQ instr), weekday/instrument
interaction (SSQ inter), and the residual variance due to other
factors and noise (SSQ resid).

Of interest is how the TSSQ (adj) affects the accuracy of the
milk component MIR predictions of fat, true protein, C16:0 and
C18:0. The columns on the right-hand side of Table 1 give the
number of SD’s by which each of the MIR predicted values of fat,
protein, C16:0 and C18:0 exceed the average 177-weeks SD of
each component: i.e., by one, two or three SD’s. Of the 25 weeks
shown in Table 1 having TSSQ (adj)>1SD, the number of weeks
in which the SDs of the fat predictions overall exceed one or more
SDs is 10. For true protein, 24 of the 25 weeks have predicted
values with SD’s exceeding the average SD by one or more, while
for C16:0 and C18:0 this occurs in all 25 weeks. This is not
unexpected, as predictions of more minor components would be
expected to be more sensitive to variations between instruments
or within each instrument through the week, whether this is due
to changes in the pilot sample, other effects such as laboratory
environment or instrument variations.

PCA of Weeks Exceeding Three Standard
Deviations
The instrument scores and loadings plots from the ASCA can
provide more information about the spectral variations over

the weeks with TSSQ (adj) exceeding one or more standard
deviations (SD). Of particular interest are the weeks showing
TSSQ (adj) exceeding the three SD threshold. The scores and
loadings of three of these weeks with such TSSQ (adj):
weeks 50, 86, and 217, are shown as examples in Figure 3
(week 50), Figure 4 (week 86), and Figure 5 (week 217). Also
plotted are the spectra after mean centering and boxplots for
the MIR-predicted components fat, true protein, C16:0 and
C18:0. The mean and standard deviations are indicated in the
boxplots for each component for that week, with a number of
asterisks that indicate the number of SDs by which each
predicted component exceeds the SD of the 177 weeks TSSQ
(adj) values (* for 1 SD, ** for 2 SDs and *** for 3SDs). Breaks
in the plots of the spectra and loadings show the spectral
regions excluded from the ASCA analysis. The scales of the
intensity axis of the box plots have been expanded over
reduced regions to exclude extreme outliers, in order to
more clearly compare the medians inter quartile ranges
(IQR) and whiskers.

According to Table 1, the instrument effect in week 50
contributed 72.6% of the TSSQ (adj). The mean centered
spectra in Figure 3A show clear differences in the spectral
intensities, particularly between the MS3, MS4 instruments
and MS1, MS2 instruments, and particularly in the spectral
region 930–1,200 cm−1. The PCA scores in Figure 3C show
clear separation along PC1 for the two sets of instruments.

TABLE 1 | List of weeks in which the TSSQ adjusted for sample number [TSSQ (adj)] exceeded one, two or three times the standard deviation of the 177 weeks, given in the column
fifth before the last. N is the total number of samples in eachweek. The percentage that each of the factors contribute to eachweekly total SSQ [TSSQ (adj)] are given as SSQ (day),
SSQ (instr) and SSQ (inter) (weekday/instrument interaction). The residual variance due to other factors is SSQ (resid). The number of standard deviations (SDs) by which the SD’s in
each of MIR predicted values of fat, protein, C16:0 and C18:0 exceed the SD’s of the 177 weeks by 1, 2, or 3 SD’s are given on the four rightmost columns of the table.

Week No No.
samp

SSQ (day) SSQ (instr) SSQ (inter) SSQ (resid) TSSQ TSSQ
(adj)

No of
SDs

SDsa

(fat)
SDsa

(prot)
SDsa

(C16:
0)

SDsa

(C18:
0)

4 853 0.8 87.2 1.35 11.46 1.92 0.0023 1 1 3 3 3
5 712 0.88 90.65 1.17 8.17 1.57 0.0022 1 − 1 2 3
6 765 1.39 86.65 2.53 11.1 1.82 0.0024 1 − 1 3 3
8 907 0.71 88.44 0.82 10.61 2.12 0.0023 1 1 1 2 3
17 578 6.67 63.58 4.5 30.9 1.69 0.0029 1 1 1 2 3
18 725 3.36 67.46 2.7 28.01 9.48 0.0131 3 − 3 3 3
22 252 5.46 29.55 4.81 60.75 0.71 0.0028 1 3 1 3 3
43 1125 4.89 58.81 9.67 27.24 3.63 0.0032 1 − 2 2 3
48 1164 2.87 72.83 4.93 19.81 4.06 0.0035 1 − 2 3 3
50 1306 3.03 72.61 8.24 16.91 24.18 0.0185 3 − 3 3 3
61 469 6.86 36.08 4.57 52.6 2.42 0.0052 2 1 3 1 2
86 514 76.04 0.37 0.39 23.3 8.69 0.0169 3 3 1 3 3
99 1122 1.72 56.96 2.63 40.03 3.75 0.0033 1 1 1 1 3
100 1002 3.41 40.05 2.7 55.25 3.95 0.0040 1 1 1 2 3
116 848 2.21 40.25 2.96 55.26 2.87 0.0034 1 3 1 3 3
141 671 3.76 63.54 10.86 23.3 1.77 0.0026 1 − 1 1 3
164 747 2.24 35.11 4.03 58.76 2.22 0.0023 1 1 2 2 3
174 512 18.28 10.49 9.51 61.35 2.6 0.0051 2 − 1 2 3
176 504 5.16 42.66 6.79 49.39 1.94 0.0039 1 − 1 2 3
177 372 22.71 15.09 2.85 61.74 1.11 0.0030 1 − − 2 3
178 334 24.32 1.35 0.75 73.85 0.94 0.0028 1 − 1 1 3
204 1144 3.12 79.21 5.77 13.06 3.34 0.0029 1 − 1 3 3
217 793 1.32 83.94 1.07 13.74 6.13 0.0077 3 − 2 3 2
220 749 9.16 11.72 8.14 71.66 2.13 0.0028 1 − 1 2 3
221 578 17.37 21.05 7.97 54.69 1.89 0.0033 1 − 1 2 3

aNumber of standard deviations exceeding the average SD of 177 weeks, by theMIR-predicted values of fat, protein, C16:0 andC18:0 in each of the 25 weeks having TSSQ (adj) > 1 SDof
the 177 weeks.
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This can be explained by differences in FOSS instrument
models; MS3 and four are FT6000 models with CaF2
windows while MS1 and MS2 are FT + models with
diamond windows. Additionally, along PC2, MS1 and MS2
are more separated than MS3 and MS4. Ideally all four scores
should overlap as the six-weekly standardization procedure
adjusts the slave spectra of each instrument to match a master
spectrum. The PC1 loading in Figure 3B shows that the main
difference between the two spectrometer models are overall
intensity, possibly due to pathlength differences, with the
CaF2 windows in MS3 and MS4 possibly eroded at this point
to a slightly wider pathlength. The regular wavelike features
in the loadings may be due to interference patterns from
internal reflectance in the cell windows. These interference
patterns were also seen in the spectral regions between 1730
and 2,650 cm−1 which were excluded from the analysis for
this reason (besides this region displaying atmospheric CO2

bands).
The boxplots of the MIR predicted components in Figure 3D,

however, do not correspond with the PCA observations of higher
fat for MS3 and MS4 compared with MS1 and MS2. This may be
because the weekly calibration adjustments for fat have
compensated for the spectral differences. The instrument

differences for week 50 do, however, result in the true protein,
C16:0 and C18:0 values for this week showing SDs three times
higher than the 177-weeks average SD, while the fat predictions
were not affected.

The results for week 86 are given in Figure 4. In week 86, the
weekday effect contributed 76% to the TSSQ (adj). Being the
winter season, only two spectrometers, MS3 and MS4 were active
in this week.

The mean-centered spectra clearly show a subset of spectra
from three of the weekdays that markedly differ from the
others. This is also seen in the weekday scores plot. PC
loading 1 is mostly represented by fat bands (C-H
stretching of lipids 2,550–2,962 cm−1, C�O stretching of
fatty acids at 1745 cm−1 and C-O-C stretching of fatty acid
esters at 1,160 cm−1) (Grelet et al., 2015b). The separation of
the scores according to these differentiates some of spectra in
weekdays 1, 2, and three from the rest of the spectra in days 1,
2, and 3, and all the spectra in days 4–7. The weekday effect
accounted for 76% of the variance compared to around 0.4%
from instrument effects and weekday/instrument
interactions. This implies that all both instruments, MS3
and MS4 underwent changes in weekdays one to three that
resulted in a bigger effect than any differences between the

FIGURE 3 | Mean centered spectra (A), instrument loading plots (B) and scores (C) for pilot spectra from week 50, in which the TSSQ (adj) exceeded 3 standard
deviations. Boxplots (D) show the predicted fat, protein, C16:0 and C18:0 values from each instrument and their mean values and standard deviations (SDs), marked *
for 1SD, ** for 2SDs and *** for 3SDs greater than the SD of the 177 weeks TSSQadj values.
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instruments. These weekday differences result in the MIR-
predictions of fat, C16:0 and C18:0 having SD’s more than
three times the SD of the 177-weeks TSSQ (adj). The protein
was less affected, exceeding only one SD this week; this is also
evident in the loadings which represent mainly fat and
fatty acids.

The results for week 217 are shown in Figure 5. During
week 217 three instruments were active and the instrument
variation contributed 83.9% to the TSSQ (adj). The separation
of instrument scores in the scores plot in Figure 5C shows that
the spectra of instrument MS3 are consistently different from
those of the MS4 and MS7 instruments. All three instruments
are the same model, however, the higher negative PC1 spectral
loadings appear to show that MS3 has generally higher spectral
intensities than the other two (Figure 5A). This difference
translates into higher predicted values for fat and C16:0 as
shown in the boxplots (Figure 5D), but the MS3 C18:0 values
are lower. The differences in the spectra have likely been
compensated for by the weekly fat and protein calibration
adjustments, given that the SDs for fat and protein are below
one SD of the 177-weeks average. The MS3 spectral differences
do affect the variation in measurement for true protein,
however, and also affect the C16:0 and C18:0

measurements, with the SD at three times and twice the
177-weeks average, respectively.

PCA of a Series of Four Successive Weeks:
193 to 196
Of interest for routine monitoring of instrument performance are
changes in contribution from instrument effect on TSSQ (adj)
over successive weeks. An example of such a change is seen in the
sharp increase in instrument effect (black trace) on the TSSQ
(adj) in Figure 2 between weeks 193 and 196. These weeks were
selected as an example because over this period, the same four
instruments were in use and the TSSQ (adj) was well below the
mean. A PCA could show useful insight into the observed
increase in instrument effect, while the corresponding boxplots
would show how this affects the MIR-predicted component
values. The PCA scores and loadings are plotted for
weeks 193–196 in Figure 6, and the corresponding boxplots
for the four MIR-predicted components are given in Figure 7.

The scores can be seen to drift slightly over the first 3 weeks,
with the biggest change between instrument scores and loadings
occurring between weeks 194 and 195, while those for weeks 195
and 196 are similar. Differences in scores between week 193 and

FIGURE 4 |Mean cenered spectra (A), instrument loading plots (B) and scores (C) for pilot spectra from week 86, in which the TSSQ (adj) exceeded 3 standard
deviations. Boxplots (D) show the predicted fat, protein, C16:0 and C18:0 values from each instrument and their mean values and standard deviations (SDs), marked *
for 1SD, ** for 2SDs and *** for 3SDs greater than the SD of the 177 weeks TSSQ (adj) values.
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194 are mainly along PC1 and mainly for MS3 (Figures 6A,C),
with the main difference in the PC1 loadings between weeks 193
and 194 being in the relative intensities of the lipid C-H stretch
modes at 2,856 and 2,926 cm−1 (Figures 6B,D), and the protein
amide II band intensity around 1,550 cm−1. This is consistent
with an increase in the instrument effect from 31.5% in week 193
to 53.7% in week 194, and an increase the weekday effect from
3.1% in week 193 to 8.5% in week 194. The difference observed in
the loadings affect the protein prediction by MS3 (Figure 7B),
however, it does not result in a SD above the 177-weeks average.

Between weeks 194 and 195 there is a noticable drift in the
scores for MS4 away from those of the other instruments, and
further up PC2 (Figures 6E,G). The loadings show that these
differences are due to clear changes in relative intensities between
the C-H stretching region at higher wavenumbers
2800–3,000 cm−1 typical for fat and the C-O stretching and
C-H deformations at lower wavenumbers between
1,000–1,100 cm−1, representing mostly lactose (Figures 6F,H).
These changes result in a slight increase in fat prediction for MS3
relative to the other instruments (Figures 7K,L), and an increase
in SD from one to two SD’s above the 177-weeks mean in
predicted values for C16:0, indicated by single asterisks in the
boxplots in Figures 7K,L for weeks 195 and 196. These changes

also correspond with a small increase in instrument effect, from
53.6% in week 194 to 56.1% in week 195 (Figure 2). At the same
time the weekday effects decrease from 8.5% in week 194 to 6.3%
in week 195, corresponding with reduced spread of scores for
MS3 along PC1 (Figures 6C,E). The changes in scores plots and
loadings from weeks 195–196 are small, however, the
contribution of instrument effects increases from 56.1 to
66.1% between weeks 195 and 196, while the weekday effects
decrease from 6.3 to 2.3%. The change in relative contribution of
these effects can be seen in a small decrease in spread over PC1 of
the scores in Figure 6G for week 196.

DISCUSSION

Plotting the TSSQ (adj) for each week with time (Figure 1)
presents an overview of the overall variance of the active
instruments in the laboratory over the time period December
2016 to March 2021. This 4 year time record enables a robust
measure of the SD expected over all seasons, and can be used to
monitor instrument performance and/or laboratory
environment stability with time. When the TSSQ (adj) is
flagged as exceeding one, two or three times the SD of the

FIGURE 5 |Mean centered spectra (A), instrument loading plots (B) and scores (C) for pilot spectra from week 217, in which the TSSQ (adj) exceeded 3 standard
deviations. Boxplots (D) show the predicted fat, protein, C16:0 and C18:0 values from each instrument and their mean values and standard deviations (SDs), marked *
for 1SD, ** for 2SDs and *** for 3SDs greater than the SD of the 177 weeks TSSQ (adj values.
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FIGURE 6 | Instrument scores and loading plots, respectively, for pilot spectra from four successive weeks: (A) and (B) week 193, (C) and (D) week 194, (E) and
(F) week 195 and (G) and (H) week 196.
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177 week period, the contribution of instrument, weekday,
interaction between these or residual effects can be examined
to identify the source of variation. The plot showing the
contribution from these effects in Figure 2 shows that over
the 4 years, the major contributions to the TSSQ (adj) of each
week are differences between instruments and residual effects.

Factors contributing to residual effects include ground
vibrations, electronic gain settings, cell temperature,

instrument temperatures and operator changes (Young, 1978).
Controlling the lab temperature and humidity aims to minimize
variations in these. Instrument effects have multiple sources of
variations. The detectors used in the MIR milk instruments are
DTGS (deuterium triglyceride sulphate) thermal detectors that
convert thermal energy to electrical signal; they respond to
temperature by changing their capacitance which is measured
as a voltage change. Again, controlling the lab temperature and

FIGURE 7 | Boxplots for fat, true protein, C16:0 and C18:0 predicted from pilot spectra using instruments MS3, MS4, MS7, and MS8, over successive weeks that
had low TSSQ: week 193: (A) Fat, (E) True protein, (I) C16:0, (M) C18:0; week 194: (B) Fat, (F) True protein, (J) C16:0, (N) C18:0; week 195: (C) Fat, (G) True protein,
(K) C16:0, (O) C18:0 and week 196: (D) Fat, (H) True Protein, (L) C16:0, (P) C18:0. The plots for each week show the median, IQR and variability outside the upper and
lower quartiles for each component. Asterisks represent the number of SD’s, marked * for 1SD, ** for 2SDs and *** for 3SDs, by which the predicted component
exceeds the average of all 177-weeks average SD.
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humidity minimizes variations in these detectors, however, noise
from the IR source due to random photons and thermodynamic
noise in interaction with these photons can also affect both the
intensity of, and noise in the signal (King et al., 2004) and so
contribute to residual variation. In addition, pathlength changes
are commonly caused by build-up of protein and foreign material
on the windows of diamond sample cells, or gradual erosion of
sample cell windows made of CaF2. This results in changes in path
length, which also greatly affect the IR signal/noise ratio in aqueous
systems, (Jensen and Bak, 2002), and can cause a calibration shift.

The homogenizers on each individual instrument wear at
different rates, depending on the number of samples through
each instrument. The effects of variations in these instrument
components on the spectra are minimized by routine
standardization procedures, typically every 6 weeks, and by
monitoring a homogenizer index which measures the
efficiency as an approximate prediction of one of the fat
globule distribution parameters (FOSS, private communication).

Considering these possible sources of variation, instrument
differences would therefore be expected to have the greatest effect
on variations in the pilot milk spectra over the week, with residual
effects also contributing to a large extent. The p-values>0.05
confirming significance of the instrument effects throughout all
177 weeks confirms this, while the weekday variations within
each instrument were significant for only two of the 177 weeks.
Recent work on minor milk components such as milk urea has
also shown the impact of inter instrument differences on IR
predicted results (Wood et al., 2020; Portenoy et al., 2021).

Of the 25 weeks in Table 1 with TSSQ (adj) exceeding one or
more of the 177-weeks average SD, only two of the 177 weeks (1% of
the time) hadTSSQ (adj) values above 2SD’s and in only four (2%) of
the time) the TSSQ (adj) exceeded 3SD’s (Table 1). The TSSQ (adj)
in the other 19 weeks the exceeded only one SD above the 177-weeks
mean (11% of the time). This is a relatively low rate which shows that
the weekly calibration adjustments and regular instrument
standardization procedures are effective in adjusting for
instrument drift and maintaining the inter-instrument and intra-
instrument variances below one SD of the 177-weeks mean, during
152 of the 177 weeks (86% of the time). Of the 25 weeks in Table 1,
the instrument effect dominated the TSSQ (adj) in 13 weeks (52%),
while the weekday effect dominated once (4% of the time) while
residual effects dominated in 11 weeks (44% of the time).

The 25 week period in which the TSSQ (adj) > 1SD of the 177-
weeks average was found to affect the mean and SD of the four
components fat, protein, C16:0 and C18:0 to different extents. In
this period, the predicted fat SD exceeded the 177-weeks average by
one or more in only 10 of the 25 weeks, while for the true protein
this occurred in 24 of the 25 weeks. The prediction of the less
abundant fatty acids, C16:0 and C18:0, was affected in all 25 weeks,
with C18:0, the least abundant consistently showing SD’s three
times higher than the 177-weeks average. Predictions of other fatty
acids, not discussed here, were also found to show differing extents
of SD’s over this period, and greater than those shown by the major
milk components fat, protein, lactose and total solids.We thus note
the relevance of this more sensitive monitoring approach
considering the recent trend towards deployment of predictive
models focused on greater use of IR data of milk (Grelet et al.,

2017). Recent work on minor milk components such as milk urea
has also shown the impact of inter instrument differences on IR
predicted results. (Wood et al., 2020; Portenoy et al., 2021).

The PCA scores and loadings obtained from the ASCA analysis
of the spectra are useful for monitoring instrument drift with time.
This was shown in the example of four successive weeks 193–196,
during which a marked increase in instrument effect from 31 to 66%
was observed, while at the same time the residual variation
contribution decreased from 53 to 29%, while weekday or within-
week variations showed no trend, instead signaling spread of
weekday scores along PC1. The scores and loadings can be
monitored to signal drifts beginning to occur in individual
instruments week by week. Weekly calibration adjustments of the
instruments allow adjustment of bias and slope of the fat, protein,
total solids and lactose calibrations in the laboratory and thus
compensate for differences in all the milk component predictions
that may arise through weekly changes in instrument performance.
The ASCA scores are especially sensitive to differences in spectral
intensities of the different instruments on different weekdays, and to
changes with time in relative intensities over the spectral region.
Monitoring the ASCA scores and loading plots could provide a
useful indicator of the extent of instrument drift, and signal when
standardization of the instruments would be necessary rather than
adjusting the calibration to compensate for these changes. We
suggest such an approach could be used in conjunction with
recent advances in instrument standardization that have allowed
calibrations to be deployed across networks of instruments from
different manufacturers (Grelet et al., 2021).

Monitoring the boxplots of predicted components could be useful
for testing the effectiveness of the calibration adjustments of the
major components andwhether these improve the predictions of less
abundant components such as individual fatty acids or indirectly-
measured traits. Comparison of the boxplots with the score plots and
loadings are also useful for evaluating when calibration adjustments
are compensating for instrument differences to an extent that
instrument signal standardization is necessary.

CONCLUSION

We have described the novel use of ASCA on the spectra of pilot test
milk samples over time as a new approach for routine monitoring of
instrument performance in a milk testing laboratory. Plotting of the
scores and loadings derived from the ASCA effect models, the mean
centered spectra and boxplots of the MIR-predicted components
provides a useful overview of the weekly performance of the
spectrometers in the laboratory, in terms of day-to-day variations
in spectral intensities, differences arising between spectrometers and
to what extent the spectral variance shows residual effects, not
explained by these two effects, such as changes in laboratory
environment or unexplained noise. This can be particularly useful
to flag unexpected laboratory environment changes or weekly
instrument changes that may affect the accuracy of the MIR-
predicted milk components. Weekly monitoring of these plots
can also serve as an indicator for when instrument
standardization of one or more instruments is necessary, and can
evaluate when the weekly calibration adjustments may be
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compensating for instrument differences. Comparison of the
boxplots with the score plots and loadings is also useful to signal
the effectiveness of instrument standardization and the weekly
calibration adjustments, especially with the trend towards greater
use of IR data for predicting milk components and other relevant
traits present in lower levels.
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A tricky aspect in the use of all multivariate analysis methods is the choice of the number of
Latent Variables to use in the model, whether in the case of exploratory methods such as
Principal Components Analysis (PCA) or predictive methods such as Principal
Components Regression (PCR), Partial Least Squares regression (PLS). For
exploratory methods, we want to know which Latent Variables deserve to be selected
for interpretation and which contain only noise. For predictive methods, we want to ensure
that we include all the variability of interest for the prediction, without introducing variability
that would lead to a reduction in the quality of the predictions for samples other than those
used to create the multivariate model.

Keywords: multivariate models, dimensionality, latent variables, regression, cross validation (min5-max 8)

In the case of predictive methods such as PLS, the most common procedure to determine the number
of Latent Variables for use in the model is Cross Validation which is based on the difference between
the vector of observed values, y, and the vector of predicted values, ŷ.

In this article, we will first present this procedure and its extensions, and then other methods
based on entirely different principles. Many of these methods may also apply to exploratory methods.

These alternatives to Cross Validation include methods based on the characteristics of the
regression coefficients vectors, such as the Durbin-Watson Criterion, the Morphological Factor, the
Variance or Norm and the repeatability of the vectors calculated on random subsets of the
individuals. Another group of methods is based on characterizing the structure of the X
matrices after each successive deflation.

The user is often baffled by the multitude of indicators that are available, since no single criterion
(even the classical Cross-Validation) works perfectly in all cases. We propose an empirical method to
facilitate the final choice of the number of Latent Variables. A set of indicators is chosen and their
evolution as a function of the number of Latent Variables extracted is synthesized by a Principal
Components Analysis. The set of criteria chosen here is not exhaustive, and the efficacy of the
method could be improved by including others.

INTRODUCTION

A tricky aspect in the use of all multivariate analysis methods is the determination of the number of
Latent Variables, both for exploratory methods such as Principal Components Analysis (PCA) and
Independent Components Analysis (ICA), and predictive methods such as Principal Components
Regression (PCR), Partial Least Squares regression (PLS) or PLS Discriminant Analysis (PLS-DA).
For exploratory methods, we want to know which Latent Variables deserve to be selected for
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interpretation and which contain only noise. For predictive
methods, we want to ensure that we include all the variability
of interest for the prediction, without introducing variability that
would lead to a reduction in the quality of the predictions for
samples other than those used to create the multivariate model.

Whatever the type of method (exploratory or predictive), the
most common procedure consists in examining the evolution of a
criterion, as a function of the number of Latent Variables
calculated. In the case of predictive methods such as PLS, the
most common criterion is the Cross Validation error, which is
based on the difference between the vector of observed values, y,
and the vector of predicted values, ŷ. But many other criteria can
be used. In this article, we will first present the cross-validation
procedure and its extensions, and then other methods based on
entirely different principles. The objective of this article is not to
make an exhaustive review of these criteria, but to present some of
those of most interest for chemometrics.

Principal Components Analysis is based on the mathematical
transformation of the original variables in the matrix X into a
smaller number of uncorrelated variables, T.

X � TPT + R (1)

where the matrices T and P represent, respectively, the vectors of
factorial coordinates (“scores”) and factorial contributions
(“loadings”) derived from X.

This method is interesting because, by construction, the PCs are
uncorrelated and it is not possible to have more PCs than the rank
ofX, i.e., min (Nindividuals, Nvariables) if the data are not centered and
min (Nindividuals-1, Nvariables) otherwise. In addition, since the first
PCs correspond to the directions of greatest dispersion of the
individuals, it is possible to retain only a small number of PCs, T*,
in the calculation of the coefficients of a PCR regression model.

B � (T*TT*)
−1
T*TY (2)

The values of new objects are then be predicted by the classical
equation:

Y
�� TB � XPB (3)

PLS regression (Partial Least Squares regression) also allows to
link a set of dependent variables, Y, to a set of independent
variables, X, when the number of variables (independent and
dependent) is high.

The independent variables, X, and dependent variables, Y, are
decomposed as follows:

X � TPT + E (4)

y � URT + F (5)

where the P and R represent the vectors of the factorial
contributions (“loadings”) and T and U are the factorial
coordinates (“scores”) of X and Y, respectively.

PLS is based on two principles:
1) the X factor coordinates, T, are good predictors of Y;

2) there is a linear relationship between the scores T and U.

In the case of PLS, the model’s regression coefficient matrix is
given by:

B � XTU*(T*TXXTU*)
−1
T*TY (6)

In the case of PCR and PLS, successive scores and loadings are
calculated after removing the contribution of each vector of
scores from the X matrix, a process called deflation.

To present the different methods of determining the number
of Latent Variables to use in the regression models, we use a
dataset consisting of the near-infrared (NIR) spectra of 106
different olive oils (Supplementary Figure S1A) and the
variable to be predicted is the concentration of oleic acid
(Supplementary Figure S1B) determined by the classical
method (gas chromatography) (Galtier et al., 2007).

It should be stressed that this article is not an exhaustive
review of the possible methods that can be used to determine the
dimensionality of multivariate models, as was for example the
article by Meloun et al. (2000). Here, a limited number of criteria
have been chosen, but based on very different criteria that
characterize the multivariate models. Since these criteria may
not always indicate the same dimensionality, rather than just
examining them all and deciding on a value somewhat
subjectively, we propose here the idea of applying a Principal
Components Analysis (PCA) to the various criteria so as to have a
consensus value.

DIMENSIONALITY

The problem of optimizing model dimensionality comes down to
introducing as many as possible of the Latent Variables
containing variability of interest, and none that contain
“detrimental variability”, which is often due to contributions
from outliers or just different types of noise (gaussian, spike, . . .).

Already a PCA on the spectra shows that the loadings of the
later components are noisier than those of the earlier ones
(Supplementary Figure S2). It is clear that when including
more than a certain number of Latent Variables into a PLS
regression model there is a risk of including more noise than
information.

When establishing a prediction model based on Latent
Variables extracted from a multivariate data table, we must
ensure that we have extracted neither too many nor too few.

Determining the number of Latent Variables can be done
using a number of criteria that could be classified into two
categories: prediction error or model characteristics.

CRITERIA BASED ON PREDICTION ERROR

The methods most often used are based on the quality of the
predictions for individuals which were not used to create the
model - either an independent dataset (test-set validation) or for
individuals temporarily removed from the dataset (cross validation).
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The term “validation” as it is used in “cross validation” is
incorrect, because the objective here is not to validate the model,
but to adjust its parameters optimally. In Figure 1, the
“Calibration” branch contains the “Cross Validation” step that
does this model tuning, while the “Test” branch is for the true
validation of the final model.

The model is adjusted by creating models with an increasing
number of Latent Variables extracted from one set of individuals
and observing the evolution of the differences between observed and
predicted values for another set of individuals. This evolution can be
followed by plotting the sum of squared residuals (RESS Residual Error
Sumof Squares) or the square root of themean sumof squares (RMSE).
When this tuning is done with another single set of individuals (test-set
validation), we have the SEVandRMSEV;when it is done by removing,
with replacement, a few individuals from the data set (cross validation),
we have the SECV and the RMSECV.

RESS � ∑
n

1

(ŷi − yi)
2

(7a)

RMSEVorRMSECV �

�����������

∑n
1 (ŷi − yi)

2

n

√√

(7b)

Calculating the model and applying it on the entire dataset
provides an estimation of Y (Ŷ), which is used to calculate the
RMSEC:

RMSEC �

�������������

∑n
1 (ŷi − yi)

2

n − (nLVs + 1)

√√

(7c)

The RMSEC is intended to estimate the standard deviation of
the fitting error, σ. The division by [n-(k+1)] instead of n (the

number of individuals) is intended to take into account the fact
that the number of degrees of freedom for the estimate of σ is
decreased by the inclusion of k Latent Variables plus the intercept.
The use of this correction is valid in PCR regression, but subject to
much criticism in the case of PLS where the Y matrix influences
the calculation of the Latent Variables (Krämer and Sugiyama,
2011; Lesnoff et al., 2021). It is nevertheless sometimes used as a
“naïve estimate of the RMSEC”.

The principle of cross-validation is presented in Figure 2.
Blocks of individuals are removed from the dataset and are used
as a test set while the remaining individuals form the calibration
dataset to create models which are used to predict the values (Ŷ)
for the test set individuals. The differences between the observed
values (Y) and predicted values (Ŷ) are calculated for the different
models. The test set individuals are then put back in the
calibration dataset and another block of individuals is moved
to be the test set. This process is repeated until all individuals have
been used in the test set. If the size of the blocks is small (large
number of blocks), the number of individuals tested each time is
low and the number used to create the models is high. The
limiting case is called Leave-One-Out Cross Validation (LOO-
CV), where the number of blocks is equal to the total number of
individuals. In this case, the result tends to be optimistic (small
RMSECV) but simulates well the final model, because each
prediction is made using a model calculated with a collection
of samples close to that in the final model.

On the other hand, using large blocks allows us to better assess
the predictive power of the model. In all cases, in order not to
distort the results, it is necessary to ensure that repetitions of
samples (e.g., triplicates) are kept together in the same block.

A fundamental hypothesis of theories on machine learning
from empirical data assumes that the training and future datasets
are generated from the same probability distribution (e.g., Faber,

FIGURE 1 | –The process of calibration (creating and adjusting the model) by cross validation, followed by its validation with a separate test set. “b” is the model
calculated on the calibration set.
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1999; Denham, 2000; Vapnik, 2006; Lesnoff et al., 2021). Under
this hypothesis, it is known that leave-one-out cross-validation
has low bias but can have high variance for the prediction
errors (i.e., variable prediction if the training set would be
replicated) (Hastie et al., 2009). On the other hand, when K is
smaller, cross-validation has lower variance but higher bias.
Overall, five-or tenfold cross-validations are recommended as
a good compromise between bias and variance (Hastie et al.,
p. 284).

There are many ways to build blocks, the choice being based
on the organization of individuals in the matrix.

Consecutive Blocks: (1, 2, . . ., 10) (11, 12, . . ., 20) (21,
22, . . ., 30).

Venitian Blind: (1, 4, 7, . . ., 28) (2, 5, 8, . . ., 29) (3, 6, 9, . . ., 30).
Random Blocks
Predefined Blocks: for example, to manage measurement

repetitions.
Figure 3 presents the evolution of the RMSECV (red circles)

and the “naïve” RMSEC (blue squares) based on the number of
Latent Variables used to create the prediction model. The “naïve”
RMSEC, which quantifies the residual errors for the samples used
to create the models, tends to zero. On the other hand, the
RMSECV often has a minimum, more or less marked depending
on the amount of noise in the data, which corresponds to the
balance between information and noise, indicating the optimal
number of Latent Variables.

Although the minimum in the RMSECV curve is for 6 LVs, this
value is not much lower than that for 3 LVs. Parsimony could
imply retaining only 3 LVs. To visualize more clearly the point
corresponding to the minimum of RMSECV, one can use a rule
that says that, on the one hand, the prediction error (here estimated
by RMSECV) should be close to the fitting error (here estimated by
RMSEC) and on the other hand, the RMSEC curve may present a
break. A way of implementing that rule is to plot the RMSECV
against the RMSEC (Bissett, 2015).

In Figure 3 and many subsequent figures, a vertical line
indicates the number of LVs resulting from a consensus found
by the procedure we propose, i.e., by applying a PCA to the
various very different criteria presented here.

To get a better indication of variability in the estimation of the
optimal number of Latent Variables, repeated cross-validation is
often used. In this case, several cross-validations are made with
few blocks (here 2 blocks) containing randomly selected
individuals each time. It is thus possible to calculate an
average RMSECV and its variability (Figure 4).

Another related procedure is to plot the proportions of variability
extracted from theY vectors, R2, for the calibration samples, and Q2,
for the samples removed during the cross validation, as a function of
the number of Latent Variables. In Figure 5 one can see that the
difference between R2 and Q2 is close to zero for from 4 to 6 LVs.

Other criteria can be calculated based on the values predicted
by cross-validation.

Wold’s R criterion (Wold, 1978; Li et al., 2002) is given by:

PRESS(k) � ∑
n

1

(ŷi − yi)
2

(8a)

Wold’s R � PRESS(2: k)
PRESS(1: k − 1) (8b)

where PRESS(k) is the predicted residual sum of squares for k
LVs; and Wold’s R is a vector of the ratios of successive PRESS
values. The usual cutoff forWold’s R criterion is when R is greater
than unity. In Figure 6 it can be seen that the maximum R is at 6
LVs but the value is already greater than 1 for 3 LVs.

More recently,Osten proposed the criterion (Osten, 1988), given by:

Osten’s F(k) � PRESS(1: k − 1) − PRESS(2: k)
PRESS(2: k)/(N − (k + 1)) (9)

Figure 6 also shows that Osten’s F confirms the results for
Wold’s R: F is less than 0 at 3 LVs but reaches a minimum at 6 LVs.

When doing a PCA, Cattell’s Residual Percent Variance (RPV)
criterion (Cattell, 1966) assumes that the residual variance should
level off, as in Figure 6, after a suitable number of factors have
been extracted. RPV for the model with k LVs is given by:

RPV(k) � ∑K
i�k+1 λi
∑K

i�1 λi
(10)

where λi is the eigenvalue for the ith PC. Here, in the case of PLS,
we have replaced the eigenvalues by the variances of the scores for
each LV.

There are other methods, such as Mallow’s Cp (Mallows, 1973)
and Akaike’s Information Criterion (AIC) (Akaike, 1969), that are

FIGURE 2 | The principle of cross-validation. Blocks of individuals are
removed from the dataset to be used as tests to measure the differences
between their observed values and values predicted by the models created
using the remaining individuals.
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commonly used to select the dimensionality of regression models,
as an alternative to cross-validation (CV). However, the calculation
of Cp andAIC requires the determination of the effective number of

degrees of freedom of the model, which as mentioned above, is not
straightforward in the case of PLS (Lesnoff et al., 2021). For that
reason, these criteria will not be considered here.

FIGURE 3 | Evolution of the RMSECV (red circles) and the naïve RMSEC (blue squares) based on the number of Latent Variables used to create the prediction
model. The minimum for 6 Latent Variables is clearly visible.

FIGURE 4 | Evolution of the RMSECV (red circles) and naïve RMSEC (blue crosses) as a function of the number of Latent Variables in the model for 25 repetitions of
a 2 random blocks cross validation.
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FIGURE 5 | Evolution of R2 (blue squares) and Q2 (red circles), for “calibration” samples and “test” samples, respectively, as a function of the number of Latent
Variables in the model; Evolution of the difference between R2 and Q2.

FIGURE 6 | Evolution of Wold’s R; Osten’s criterion and Cattell’s Residual Percent Variance (RPV) criterion, as a function of the number of Latent Variables in
the model.
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CRITERIA BASED ON OTHER PROPERTIES
OF THE MODELS

Cross-validation is sometimes difficult to perform, for example
when there are many individuals and/or variables, so the
calculation time can be excessive. And even when the
calculation is feasible, one does not always observe a clear
minimum in the RMSECV curve (as in Figure 3) or
maximum in the Q2 curve (as in Figure 5), which makes it
difficult to choose the number of LVs.

As well, as indicated by Wiklund et al. (2007) CV handles “the
available data economically, but like any data-based statistical test
gives an interval of results and hence sometimes gives either an
under-fit or an over-fit, that is they reach the minimum RMSEV
for a lower or higher model rank than would be achieved using an
infinitely large independent validation set”. They also stressed the
fact that “One area where CVworks poorly both for PLS and PCR
is design of experiments, where exclusion of data has large
consequences for modeling”. To solve these problems, they
proposed carrying out permutation tests on the Y vector and
then comparing the correlations between the scores of each latent
variable and the true Y vector with the correlations between the
scores obtained for the permuted Ys and the corresponding
true Ys.

It should be noted that all these criteria are based on
comparing the observed and predicted Y vectors. It could

therefore be helpful to use other criteria based on entirely
different characteristics of the models to facilitate the choice of
the number of latent variables.

We will now see a set of such complementary methods, based
on the characteristics of the regression coefficients vectors, b, and
on the characteristics of the X matrix after each deflation.

Characteristics of the Regression
Coefficients Vectors, b
As the number of Latent Variables used to calculate the regression
coefficients vector, b, increases, more and more noise is included.
When the X matrix contains structured signals, such as the near
infrared spectra in Supplementary Figure S1, b coefficients are
initially structured and gradually become random, as can be seen
in Figure 7.

In the case of b-vectors calculated from structured signals in
the rows of the X matrix, a “signal-to-noise ratio” can be
calculated using the Durbin-Watson (DW) criterion (Durbin
and Watson, 1971; Rutledge and Barros, 2002). This criterion
is given by:

DW � ∑n
i�2 (bi − bi−1)2

∑n
i�1 b

2
i

(11)

where bi and b(i-1) are the values for successive points in a series of
b-coefficients values. DW is close to zero if there is a strong

FIGURE 7 | PLS regression coefficient vectors, b, based on 1, 3, 6 and 9 Latent Variables plotted with a constant ordinate scale (abscissa: variable numbers).
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correlation between successive values. On the other hand, if there is a
low correlation (i.e., a random distribution), the value of DW tends
to 2.0. DW can therefore be used to characterize the degree of
correlation between successive points, and thus give an objective
measure of the non-random behavior of the b coefficients vectors.
However, if the noise in the data has been reduced by smoothing, the
transition will not be as clear and DW will not increase as much.

Figure 8 shows the evolution of DW calculated for a
succession of regression coefficients vectors, as a function of
the increasing number of LVs used in the PLS model. It is clear
that there is a very sudden increase in DW after 6 LVs.

The Morphological Factor (MF) (Wang et al., 1996) is based
on the same phenomenon as the DW criterion, noisy vectors are
less structured than non-noisy vectors. On the other hand, the
mathematical principle is different:

MF(b) � ‖b‖/(‖MO(b)‖.ZCP(MO(b))) (12a)

MO(b) � bi+1 − bi(for i � 1, 2, . . . n − 1) (12b)

where b is a vector of regression coefficients;MO(b) the vector of
differences in intensity between successive points in b; ZCP
(MO(b)) the number of times MO(b) changes signs, and the
operator ||o|| is the Euclidian norm.

In the case of a noisy vector,MO(b) will contain bigger values
and there will be more sign changes than in the case of a smooth
vector, resulting in lowerMF values. Figure 8 shows the evolution

of MF as a function of the number of Latent Variables extracted.
The log of MF evolves in a similar way to the DW criterion with a
decrease after 6 Latent Variables.

In the case of an X matrix that does not contain structured
signals (e.g., physical-chemical data or mass spectra) DW or MF
should not be used. But other characteristics of the regression
vectors can be used instead.

It can be seen that the range of b vector values initially remains
relatively stable, but beyond a certain number of LVs, the
b-coefficient values increase enormously (Figure 7). By
plotting the variance of the regression vectors it is possible to
see the point at which this phenomenon appears (Figure 8) for
both structured and non-structured data matrices. This is also
true for the standard deviation or the norm of the vectors.

The Variance Inflation Factor of a variable i in a matrix X
(VIFi) (Marquardt, 1970; Ferré, 2009) is equal to the inverse of (1-
Ri2), where Ri2 is the coefficient of determination of the
regression between all the other predictor variables in the
matrix and the variable i. VIFi quantifies the degree to which
that variable can be predicted by all the others. The closer the Ri2

value to 1, the higher the multicollinearity with independent
variable i and the higher the value of VIFi.

As the number of LVs included in a regression model
increases, the structure of the b-coefficients vectors changes
due to the inclusion of more sources of variability, initially

FIGURE 8 | Evolution of the Durbin-Watson (DW) criterion; the log of the Morphological Factor; the Variance; the Variance Inflation Factor (VIF) calculated on the
regression vectors, b, as a function of the number of Latent Variables in the PLS models.
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corresponding to information, and later to noise. There are
initially significant changes in the b coefficient vectors, due to
the fact that the loadings are very different, reflecting different
sources of information. Subsequent loadings correspond more
and more to noise and change less the shape of the b-vectors.

It can therefore be interesting to quantify the correlations
between the columns of a matrix B containing vectors of
b-coefficients calculated with increasing numbers of LVs.

To detect the number of LVs at which point the multi-
collinearities increase, we can plot the VIF values of the
b-coefficient vectors as a function of the number of LVs. In
Figure 8, we see that the VIF values remain low up to 6 LVs, and
then increase.

In a way similar to the Random_ICA method (Kassouf
et al., 2018), one can study whether similar b-coefficients
vectors are extracted from two random subsets of the X
and Y matrices. PLS regressions are performed with
increasing numbers of LVs on the two subsets. Too many
LVs have been extracted when there is no longer a strong
correlation between the pair of b-coefficients vectors. To avoid
the possibility of a bias being introduced by a particular
distribution of the rows into the two blocks, the whole
procedure is repeated k times resulting in different sets of
blocks, producing a broader perspective for the selection of
the number of LVs (Figure 9).

Structure of the X Matrix After Each
Deflation Step.
Most multivariate analysis methods contain a deflation step
where the contribution of each Latent Variables is removed
from the matrix before extracting the next Latent Variables.
This is true for PCA, PCR and PLS. This process of deflation
means that the rows in the deflated matrices contain less and less
information and more and more noise. As well, since the
remaining variability corresponds more and more to Gaussian
noise, the distribution of individuals in the space of the variables
gradually approaches that of a hypersphere.

Several criteria can be used to characterize the evolution of the
signal/noise ratios in the rows and the sphericity of the deflated
matrices so as to determine when all the interesting information
has been removed.

Again, the DW criterion can be used, this time to measure the
signal-to-noise ratio in each row of the matrix following the
successive deflations. Figure 10 shows the evolution of the
distribution of DW values calculated as in Equation 13, for
each row of the X matrix, as a function of the number of
Latent Variables extracted.

DW � ∑n
i�2 (xi − xi−1)2

∑n
i�1 x

2
i

(13)

FIGURE 9 | Evolution of the correlations between b-coefficients calculated for 25 randomly selected pairs of subsets of samples for increasing numbers of Latent
Variables.
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There is a sharp increase in the median value and interquartile
interval when 5 latent variables are extracted. The heatmap and
boxplot show that not all rows (samples) evolve in the same way,
some becoming noisy later than most. This is reflected in the size
of the boxplots of the DW values and also in the standard
deviation of the values.

As with the DW criterion, the Morphological Factor can be
calculated for each row of the matrix after deflation. Figure 10
also shows the evolution of the distribution of the MF values, as a
function of the number of Latent Variables extracted. The values
stabilize with the elimination of 6 Latent Variables.

For non-structured data, the variance (or the standard deviation
or the Norm) of the matrix rows can be used (Figure 10).

As the X-matrix is deflated, the sources of variability
corresponding to information are eliminated, leaving behind
only random noise, so that there are less and less correlations
between the variables in the deflated X-matrix. To detect the
moment when there are no more multi-collinearities between the
variables, we can do linear regressions between each variable and
all the others and then examine the corresponding R2 for all
successive models. If the R2 of a variable is close to 1, there is still a
linear relationship between this variable and the others.

The VIF is equal to the inverse of (1-R2). If the VIF of a
variable is greater than 4, there may be multi-collinearities; if
the VIF is greater than 10, there are significant multi-
collinearities.

To determine whether all information has been eliminated
from the X-matrix, the VIFs of all the variables can be plotted as
a function of the number of LVs extracted, as in Figure 10,
where only a few variables still have high VIFs after eliminating
6 LVs.

As the X-matrix is deflated, the dispersion of the samples in
the reduced multivariate space tends to become spherical, as all
the directions of non-random dispersion are progressively
removed. Sphericity tests can therefore be applied to the
deflated matrices to determine how many LVs are required to
remove all interesting dispersions.

Bartlett’s test for Sphericity (Bartlett, 1951) compares a matrix
of Pearson correlations with the identity matrix. The null
hypothesis is that the variables are not correlated. If there is
redundancy between variables, it can be interesting to proceed
with the multivariate analysis. The formula is given by:

χ2 � −[(n − 1) − (2k + 5)6]*log∣∣∣∣R∣∣∣∣ (14)

where:
n is the number of observations, k the number of variables, and

R the correlation matrix of the data in X. |R| is the
determinant of R.

Bartlett’s test in Figure 11 shows that the deflated matrices are
very non-spherical until after 6 LVs have been removed.

Similarly, Hartley and Cochran proposed F-tests based on the
ratio of the maximum variance/minimum variance (Hartley, 1950)

FIGURE 10 | Evolution of the Durbin-Watson (DW) criterion; the Morphological Factor; the Variance calculated for each row of the X matrix during deflation and the
log of the VIF for all X-matrix variables after each deflation.
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and the maximum variance/mean variance (Cochran, 1941),
respectively. The Hartley criterion in Figure 11 shows that the
deflated matrices are very spherical once 5 LVs are removed.

Exner proposed theΨ criterion (Exner, 1966; Kindsvater et al.,
1974) as a measure of fit of a set of predicted data to a set of
experimental data, given by the equation:

ψ �

���������������������

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑nc
i�1 (Xi − X̂i)

2

∑nc
i�1 (Xi − �X)

2

nc
nc − k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

√√
√
√
√

(15)

where Xi is a data point in the matrix, X̂i is that data point
reproduced using k LVs, n and c are the number of rows and
columns in the data matrix and �X is the grand mean of X.

Here Exner’s criterion (Figure 11) is calculated between the
original X matrix and each successive deflated matrix to
determine at what point there is no longer any similarity
between them.

The KMO (Kaiser-Meyer-Olkin Measure of Sampling
Adequacy) criterion (Kaiser, 1970; Kaiser, 1974) was
developed to determine whether it was useful to conduct a
multivariate analysis of a data matrix. For example, if the
variables are uncorrelated, it is no use to do a PCA.

The KMO index is given by:

KMO �
∑
i
∑
j≠ i

r2ij

∑
i
∑
j≠ i

r2ij +∑
i
∑
j≠ i

a2ij
(16a)

where rij is the correlation between variables i and j, and aij is the
partial correlation, defined as:

aij � vij
������
vij + vij

√ (16b)

νij being an element of the inverse of the correlation matrix (νij
� rij

−1).

The value of the KMO index varies between 0 (no correlation
between variables, thus useless to do amultivariate analysis) and 1
(correlated variables, thus useful to do a multivariate analysis). A
KMO value of 0.5 is usually considered the cutoff point below
which there is no interest in doing a multivariate analysis. Here
this index was calculated for the variables (columns) and for the
individuals (rows) in each matrix. We can see (Figure 11) that the
values are close to 1 until 6 LVs are removed from the matrix and
that there is a second decrease after removing 11 LVs. This means
that much of the information shared by the original variables and
individuals has been removed by 6 LVs, but there is still some
present to a lesser extent up to 11 LVs.

FIGURE 11 | Evolution of Bartlett’s test for Sphericity; Hartley’s F-test; the Log of Exner’s Phi criterion and the KMO criterion for X-matrix rows and columns, as a
function of the number of Latent Variables in the model.
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In 1977, Malinowski (1977a) developed the idea that there
were two types of Factors (or Latent Variables) “a primary set
which contains the true factors together with a mixture of error
and a secondary set which consists of pure error”. He also showed
that there were three types of errors: RE, real error; XE, extracted
error; and IE, Imbedded error, which can be calculated “from a
knowledge of the secondary eigenvalues, the size of the data
matrix, and the number of factors involved”, the secondary
eigenvalues being those associated with pure noise.

He considered that if k, the number of LVs associated with the
“pure data” is known, the real error is the difference between the
pure data and the raw data, that is the Residual Standard
Deviation (RSD) given by:

RE � RSD �
����������

[
∑c

i�k+1 λi
n(c − k)]

√

(17)

where, n and c are the respective number of rows and columns in
the data matrix; k the number of factors used to reproduce the
data; and λi is the ith eigenvalue.

He stressed that “it was assumed that n > c. If the reverse is true,
i.e., n < c, then n and c must be interchanged in these equations”.

He also proposed that the imbedded error (IE) is the difference
between the pure data and the data approximated by the
multivariate decomposition:

IE �
��
k
c

√

RSD (18)

and that the extracted error (XE) is the difference between the data
approximated by the multivariate decomposition and the raw data:

XE �
�����
c − k
c

√

RSD (19)

Malinowski then proposed another empirical criterion to
determine the number of Latent Variables in a data matrix
(Malinowski, 1977b). This indicator function (IND) is closely
related to the error functions described above:

IND � RSD

(c − k)2 (20)

As can be seen in Figure 12, a plot of these criteria as a function of k,
the number of LVs, canhelp to distinguish “pure data” from “error data”.

Several criteria have been proposed to estimate the correlation
between matrices. Here 3 of them (Dray, 2008) will be used to
compare the original X matrix with each deflated matrix, the
assumption being that these correlations will decrease as the
information is being removed.

The RV coefficient (Escoufier, 1973; Robert and Escoufier
1976) is a measurement of the closeness between two matrices
and is defined by:

FIGURE 12 | Evolution of the 4 criteria proposed by Malinowski after each deflation.
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RV � trace(X1XT
1XkXT

k )������������������������������
trace(XT

1X1XT
1X1)trace(XT

k XkXT
k Xk)

√ (21)

In our case, X1 is the original matrix, Xk is the deflated matrix
after removing k LVs.

The numerator of the RV coefficient is the co-inertia criterion
(COI) (Dray et al., 2003) which is also a measurement of the link
between the two matrices:

COI � trace(X1X
T
1XkX

T
k ) (22)

According to Ramsay et al. (1984) and Kiers et al. (1994), the
most commonmatrix correlation coefficient is the ‘inner product’
matrix correlation coefficient, which we will call RIP, defined as:

RIP �
trace

�������
(XT

1Xk)
√

���������������������
trace(XT

1X1)trace(XT
k Xk)

√ (23)

Figure 13 shows the evolution of these 3measures of the correlation
between the original X matrix and the matrices after deflation.

CONSENSUS NUMBER OF LATENT
VALUES

Given all the criteria that can be calculated, one needs to find a
consensus value for the number of LVs to retain in the PLS regression

model. Some criteria (RMSEC andRMSECV inFigure 3;R2 andQ2 in
Figure 5; Wold’s R, Osten’s F and Cattell’s RPV in Figure 6)
characterize the proximity of the predicted values to the observed
values, but they can be subject to errors due to the particular choice of
the calibration and test sets. Others characterize the regression
coefficients (B-DW, B_Morph, B_VIF in Figure 8) which should
not be excessively noisy or of too high a magnitude (B_Var in
Figure 8). As well, similar B-coefficients vectors should be extracted
from subsets of the data matrix (mean of the correlations between
regression coefficients vectors in Figure 9). Still others characterize the
noisy structure of the residual variability in the deflatedmatrices (mean
and standard deviations of DW_X, Morph_X, Var_X and VIF_X in
Figure 10 as well as Malinowski’s RE, IE, XE and IND in Figure 12).

These deflated matrices should also tend towards a spherical
structure (Bartlett_X, Hartley_X, Exner_X, KMO_X_rows,
KMO_X_columns in Figure 11). As well, as successive
components are removed, the correlations between the original
matrix and the deflated matrices should decrease (RV, COI and
RIP in Figure 13).

To create a consensus of all these different types of
information, we propose to apply a Principal Components
Analysis to the various criteria.

All the criteria were concatenated so that each row
corresponded to a number of Latent Values and the columns
contained the criteria. Criteria such as DW were used as is while
for criteria like RMSECV the inverse was used, so that in all cases,
earlier LVs are associated with lower values.

FIGURE 13 | Evolution of RV, COI and RIP of the X-matrix after each deflation.
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The matrix was then z-transformed by subtracting the column
means and dividing by the column standard deviations.

The resulting PC1-PC2 Scores plot and Loadings plot are
presented in Figure 14.

The scores plot shows a clear evolution from low
dimensionality models to high dimensionality along PC1,
reflecting the increase in all values as the number of LVs
increases. The evolution along PC2 corresponds to another
phenomenon since the scores are highly positive for both
small and large numbers of LVs, with a very clear negative
minimum for a model at 6 LVs. The loadings plots shows an
opposition between RMSEC, COI, std_Var_X, std_Morph_X and
most of the criteria based on the B-coefficients vectors on the
positive side; while mean_VIF_X, IE, RMSECV, Wold’s R,
Cattell’s RPV, R2-Q2 and most of the criteria based on the
deflated X matrices are on the negative side. This contrast
between the criteria based on the B-coefficients vectors and
those based on the deflated X matrices shows their
complementary nature.

Only the first 2 PCs are presented as the following scores
(corresponding to models with increasing numbers of LVs) did
not have any interpretable structure.

CONCLUSION

PLS regression is a high-performance calibration and prediction
method to link predictive X-variables to the Y-variables to be

predicted, even when variables are highly correlated and in very
large numbers.

However, adjusting the number of latent variables in the model is
crucial. This adjustment should be done on the basis of several criteria.

To do this, various methods can be used:
The most common method is to observe the evolution of

calibration errors (RMSEC) and validation or cross validation errors
(RMSEV or RMSECV); One can also examine the evolution of the
vectors of regression coefficients. This also provides information on the
role of the variables or spectral components in the model; Finally, the
evolution in the structure of the rows and columns as well as the
sphericity of the X-matrix after each deflation step, can be examined.

To do this we have proposed applying a Principal Components
Analysis to a collection of criteria characterizing the different aspects of
models obtainedwith increasingnumbers of LatentVariables. The set of
criteria used in the present study is far from exhaustive, and the efficacy
of the method may even be improved by including others.

Matlab function to calculate most of the non-trivial criteria are
to be found at: https://github.com/DNRutledge/LV_Criteria.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
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FIGURE 14 | Plot of PC1-PC2 scores and loadings after applying a PCA to the standardized criteria.
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Fusing NIR and Process Sensors Data
for Polymer Production Monitoring
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Process analytical technology and multivariate process monitoring are nowadays the most
effective approaches to achieve real-time quality monitoring/control in production.
However, their use is not yet a common practice, and industries benefit much less
than they could from the outcome of the hundreds of sensors that constantly monitor
production in industrial plants. The huge amount of sensor data collected are still mostly
used to produce univariate control charts, monitoring one compartment at a time, and the
product quality variables are generally used to monitor production, despite their low
frequency (offline measurements at analytical laboratory), which is not suitable for real-time
monitoring. On the contrary, it would be extremely advantageous to benefit from predictive
models that, based on online sensors, will be able to return quality parameters in real time.
As a matter of fact, the plant setup influences the product quality, and process sensors
(flow meters, thermocouples, etc.) implicitly register process variability, correlation trends,
drift, etc. When the available spectroscopic sensors, reflecting chemical composition and
structure, consent to monitor the intermediate products, coupling process, and
spectroscopic sensor and extracting/fusing information by multivariate analysis from
this data would enhance the evaluation of the produced material features allowing
production quality to be estimated at a very early stage. The present work, at a pilot
plant scale, appliedmultivariate statistical process control (MSPC) charts, obtained by data
fusion of process sensor data and near-infrared (NIR) probes, on a continuous styrene-
acrylonitrile (SAN) production process. Furthermore, PLS regression was used for real-
time prediction of the Melt Flow Index and percentage of bounded acrylonitrile (%AN). The
results show that the MSPC model was able to detect deviations from normal operative
conditions, indicating the variables responsible for the deviation, be they spectral or
process. Moreover, predictive regression models obtained using the fused data showed
better results than models computed using single datasets in terms of both errors of
prediction and R2. Thus, the fusion of spectra and process data improved the real-time
monitoring, allowing an easier visualization of the process ongoing, a faster understanding
of possible faults, and real-time assessment of the final product quality.
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INTRODUCTION

A large number of sensors, such as thermocouples, pressure
gauges, and flow indicators, which generate an enormous
amount of data, are normally installed in petrochemical
production plants. The plant operators use these process
sensors to control production and monitor operating
conditions (Kourti and MacGregor, 1995). The aim is to
reduce production faults and defects resulting from accidental
plant malfunctions, changes in product characteristics (molecular
weight, particle size, etc.), and nonoptimal conditions, caused by
the complexity of the process or by its tendency to get
contaminated that generates frequent maintenance needs. The
collected data are used for the control and optimization of
processes and also for extracting significant information to
predict the properties that define the quality of the final
product in real time. Furthermore, in all industrial processes,
energy saving, efficient use of raw materials, and optimal
production planning are essential. The measurements made by
the sensors in the plants can be used for these needs. The
production control in the petrochemical industry, as well as in
many others, is based on the knowledge and experience of the
technical operators and is mainly supported by single univariate
control charts developed for a few selected sensors and
monitoring points (Chaudhry and Higbie, 1989). The control
is carried out by verifying that the values of the selected
parameters fall within a predetermined and carefully chosen
confidence interval. As a process always presents variability, it
is fundamental to define the standard operating conditions,
according to which the process can be considered stable
around its natural variability and therefore within the
confidence limits of the monitored process parameters (Ferrer-
Riquelme, 2009). The plant operators are perfectly aware of the
optimal values of the parameters and their confidence intervals,
but since more than one variable is used to monitor the entire
process, it results in a large number of control charts to pay
attention to. When the process encounters an anomaly and goes
out of the range of standard operating conditions, it is very likely
that several parameters would change simultaneously, due to the
correlation that exists between the variables, and it would be very
difficult for operators to identify the source of the problem. The
sources of variability during production can be related to
impurities, defective sensors, plant aging, leaks, and many
other possible causes.

Multivariate statistical process control, instead of focusing on
individual variables, focuses on the entire group of process
variables and their correlation (Kourti, 2006). In this way, the
plant operators can identify anomalies, reset the plant
parameters, change the raw material, and, in general, properly
fix all the other possible events that cause a change in the
conditions of the process. This method allows for monitoring
the production through few multivariate control charts. It is
based on the concept of benefiting from the correlation
structure of the process variables, which allows the
compression of the responses of a large number of sensors
into a few components (the latent variables). In this way, it
will be possible to parsimoniously describe the sources of

variability in the process (Kourti, 2009) and its time evolution
by a few selected trajectories and establishing confidence limits in
order to show how far the current condition is from the desired or
normal operating situation.

Process sensors that typically measure temperature, pressure,
flow, etc., provide information of the process ongoing, but they do
not allow the operators to directly know the status of the product.
In order to obtain chemical and physical information of the
product in real time, near-infrared (NIR) spectroscopic probes
are often installed in crucial steps of the process. NIR
spectroscopy performs fast, and it is nondestructive and low-
invasive on/inline measurements, making it perfectly suitable for
being used as a process analyzer. The fusion of NIR data with
process sensors data to build multivariate statistical process
control (MSPC) charts provided successful results in the three
different examples proposed by de Oliveira et al., 2020, in the
pharmaceutical and petrochemical fields. In general, some studies
conducted in collaboration with petrochemical companies
reported the use of multivariate statistical control methods,
showing numerous successes (Skagerberg et al., 1992; Macho
and Larrechi, 2002; Kourti, 2005; Ferrer, 2007; Bonacini et al.,
2013; de Oliveira et al., 2017), suggesting that in recent years,
industries have opened up to the use of multivariate techniques,
taking advantage of them.

In this context, the present work aimed at building PCA-based
MSPC charts from the data fusion of spectroscopic data collected
by two NIR probes (located at an early reaction step and close to
the final stage, respectively) with process sensors data on a
continuous styrenic polymers production process.
Furthermore, PLS regression was used for the real-time
prediction of selected quality parameters.

MATERIALS AND METHODS

Plant Description
The monitoring of the styreneacrylonitrile (SAN) production has
been carried out in the Versalis (ENI) company industrial pilot
plant, operating continuously. A schematic representation of the
plant is shown in Figure 1. The most relevant plant sectors for the
present study are the two reactors (R1 and R2), where the
polymer formation occurs, and the cutting zone (CZ), a final
section where the finished product, i.e., the polymer, is reduced by
cutting in small pieces. A total of 52 process sensors are installed
throughout the process lines, of which 32 are for measuring the
temperature, 11 for the pressure, 7 for the flow, and 2 for the
motor speed. Furthermore, two NIR probes were installed in
crucial steps of the process: one between R1 and R2 (NIR1) and
the other right before the CZ (NIR2).

The monitoring of the SAN production occurred from
February 4 to February 23, 2016, and the data were collected
every 5 min. In this period, there was a deliberate variation of
settings for some of the process sensors at the end of February 11,
a pause and restart of the production during the morning on
February 12, and a change in the formulation of the product on
February 15 (i.e., an increase of the chain transfer amount). The
settings variation was carried out in order to test how the plant
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would react to this kind of modification in view of the chain
transfer amount increase.

Reference Analysis
With the aim of assessing the quality of SAN polymer, two
different parameters were evaluated: Melt Flow Index (MFI)
and percentage of bound acrylonitrile. SAN samples were
immediately collected after being cut and brought to the
laboratory for the offline analyses.

MFI is an analysis that indicates the fluidity of a molten
polymer, providing information about the fluid dynamic
behavior of the material. The analysis is carried out by
measuring the quantity of matter in grams that passes through
a capillary (with a known and standard section) at a temperature
of 220°C under the pressure of a weight of 10 kg in 10 min. The
results generally range from 4 g, which denotes a very hard
product, to 30 g, indicating a highly fluid product, and depend
on the molecular weight and on the possible presence of
fluidifying agents (Shenoy and Saini, 1986). In this study, 196
MFI analyses were carried out, ranging from 3.1 to 18 g and
covering homogeneously the considered time range.

The amount of bonded acrylonitrile (%AN) in SAN samples
is measured in order to define how much chemical and thermal
resistance the material has. To determine %AN amount in the
SAN copolymer, an NIR analysis is performed offline with a
Matrix FT-NIR spectrometer (Bruker Optics, Milan, Italy).
The sample, in the form of a granule, is analyzed with an
integrating sphere, and two NIR spectra are recorded for each
of them. A Vario El Elementar (Waltham, MA, United States)
CHNS elemental analyzer, used as a reference method,
calibrated the NIR spectrometer (the multivariate
calibration curve was previously established by PLS
regression). In total, 218 %AN analyses were performed
ranging from 13.37 to 16.6%, covering homogeneously the
considered time range.

NIR Spectroscopy
The on-line monitoring of SAN production was carried out with a
Matrix FT-NIR spectrometer (Bruker Optics, Milan, Italy),
connected with a probe (HT immersion probe, Drawing-no.
661.2350_1, Hellma GmbH and Co. KG, Müllheim, Germany)
via optical fibers (length: 50 m, diameter: 600 μm). These special
polymer fibers are directly coupled to the process pipe in high
temperature and stress conditions. Spectra were collected in
transmission mode (path length: 5 mm) every 5 min in the
whole NIR spectral range (12,500–4,000 cm−1) for a total of
5,434 acquisitions, with a resolution of 4 cm−1 and 64 scans
for both background and spectra.

Data Analysis
Datasets
Data were arranged in three different datasets: two containing the
spectra collected by NIR1 and NIR2, and a third one containing
the process sensor data (PS). These datasets were analyzed both
singularly and merged together, applying low- and mid-level data
fusion techniques. A schematic representation of data
arrangement is shown in Figure 2. The low-level data fusion
was achieved simply concatenating NIR1 and NIR2 datasets row-
wise, obtaining a single dataset with the same number of rows
(data points) as the previous ones, but with twice the number of
columns (wavenumbers). For the mid-level data fusion, two steps
were required: first, the information contained in NIR1 and NIR2
datasets was extracted via PCA, selecting the proper number of
PCs with the aim of retaining just the relevant information
contained in the data. Then, the features (scores) obtained in
this way were concatenated with the PS dataset, creating a single
dataset containing the information of both NIR probes and
process sensors data (NPS). The datasets assembly was
performed taking into account the residence time according to
the position of each sensor and NIR probe along the process line
and the process itself. In this way, each data point present in the

FIGURE 1 | Schematic representation of the SAN production plant. R1 � first reactor; R2 � second reactor; NIR1 � first NIR probe; NIR2 � second NIR probe; CZ �
cutting zone; AN � acrylonitrile; T � temperature sensors; P � pressure sensors; F � flow sensors; RPM �motor speed sensors. A percentage symbol after the sensor
name indicates the opening extent of a valve linked to the specific sensor.
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datasets, which contains information collected at different times,
was referred to the same material.

The spectral range considered for the data analysis was
6,200–4,700 cm−1, as other regions were characterized by high
noise and baseline regions, i.e., no bands linked to either reactant
or product are present. Spectra were pretreated in order to
improve the quality of the analysis. In particular, automatic
weighted least square method has been used for the baseline
correction, followed bymean centering. Furthermore, only for the
spectra acquired by NIR 2, prior to baseline correction,
smoothing (SavitzkyGolay method, filter width seven points,
polynomial order 1) was applied with the purpose of reducing
noise. Autoscaling followed by block scaling was applied on the
NPS dataset in order to avoid that a single block of data (NIR1
and NIR2 features and PS) could contribute more than the others
just for containing a greater number of variables.

PCA and MSPC Charts
PCA, described by Eq. 1, was used both to perform the initial
exploratory data analysis and to build MSPC charts.

X � TPT + E. (1)

Here, X is a data matrix composed of m rows (samples) and n
columns (variables). The scores matrix T describes how each
sample relates to each other, whereas the loading matrix P
contains information about the influence of the measured
variables on the model and their correlation structure. E is the
residual matrix, which contains the unmodeled variation, has the
same dimensions of X, and it is obtained by subtraction of the
reconstructed (by the PCA model) data (TPT) from X. Thus, the
original data is compressed into a fewer number of independent

variables, i.e., principal components (PCs), orthogonal to each
other. Therefore, a new projection space is created, smaller in size,
whose coordinates are represented by the PCs.

The PCA-based MSPC chart models were built using the data
from February 4 to February 10, before the variation of some of
the process settings, whereas data from February 11 to February
15 were used to validate the model. Data points acquired after
February 15, corresponding to the formulation change, were not
used in this part of the work. The cross-validation scheme used
for the internal validation of the models was contiguous blocks
with ten cancelation groups, in order to mimic the routine
situation in which the monitoring MSPC model is going to be
applied.

MSPC is based on two distinct monitoring charts reporting as
function of time the distance in PCA scores space (T2) and the
squared residuals (Q), respectively:

T2
i � ∑

A

a�1

t2ia
λa

(2)

Qi � ∑
M

m�1
e2im (3)

where tia is the score value for the ath component of a given
sample (time point observation i), λa the corresponding
eigenvalue, and eim its residual value for a given variable m.

The T2 and Q acceptance limits are calculated based on
Hotelling-T2 (Nomikos and Mac Gregor 1995) and χ2
statistics, calculated with the Jackson and Mudholkar
approximation, respectively.

The T2 parameter indicates the distance of a sample in the
model space, which means that a sample with a high T2 value has
a distance from the center of the model larger than what is usually

FIGURE 2 | Schematic representation of data sets assembly.
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expected but is still described properly by the model. On the other
hand, the Q parameter describes the distance of a sample from the
model space, indicating an anomalous condition with respect to
the optimal operating conditions, i.e., the conditions under which
the model was built.

Once an anomalous sample is detected to assess the sensors
responsible for the deviation, the T2 or Q contribution plots,
depending on which chart detected it, can be displayed. The
contributions to T2 for the ith sample, tcon,i, are a vector calculated
from:

tcon,i � tiλ
−1/2pT. (4)

Here, P is the loading matrix (n° of variables x n° of
components) and PT its transpose.

While the Qi contribution is simply a vector holding the ith
sample squared residuals for each sensor multiplied by its sign,
the contribution plots can aid fault diagnosis. In a T2

contribution, a high absolute value of the contribution of a
given variable denotes a problem with that specific variable
which assumes an extreme value, higher or lower depending
on the sign of the contribution, with respect to the other ones. The
interpretation of Q contribution is less straightforward because it
signals that the correlation structure of the variables (with a high
absolute value of the contribution) has changed. Thus, if, e.g., two
variables have a high positive and negative contribution value,
respectively, it could be that for the corresponding out-of-control
observations, these variables are inversely correlated, while for the
normal operative conditions observation, they were directly
correlated. Inspection of scatter plot of one variable vs. the
other may be used to have a confirmation (Westerhuis et al.,
2000).

Predictive Models
PLS regression was used with the aim of developing predictive
models of SAN quality in real time. Venetian blinds cross-
validation with ten cancelation groups was used to establish
the number of PLS components. The external validation of the
PLS models was performed using a test set whose sample was not
used for the model computation. Since MFI and %AN reference
analyses were not always performed on the same samples and the
number of the two kinds of analyses was not the same, PLS
models and predictions were carried out as follows: the models
were calculated using the 130 samples on which both analyses
were made, whereas the predictions were performed using
samples on which only one of the two determinations was
carried out, i.e., 66 for MFI and 88 for %AN. To evaluate the
reliability of the models both RMSECV and RMSEP, i.e., the root
mean square error in cross-validation and in prediction,
respectively, and the corresponding values of the coefficient of
determination (R2) were taken into account. A total of 4 PLS
models were computed, three using as X block each of the three
datasets NIR1, NIR2, and PS individually, and the last one using
the fused NPS dataset. Besides, the Y block contains the results of
the MFI and %AN analysis together (PLS2 models); even if, for
the reasons mentioned above, predictions on the validation
samples were evaluated separately. Autoscaling was applied on

Y block, since it contains values obtained with different
techniques, having different ranges and scales.

Software
Data elaboration has been carried out by using PLS Toolbox
(version 8.9, Eigenvector Research Inc. WA, United States)
(MathWorks, MA, United States).

RESULTS AND DISCUSSION

Exploratory Data Analysis
Each different data block was analyzed with PCA in order to
visualize and extract features and relevant information on the
process. The first PCA analysis was carried out on the NIR1
dataset, choosing five PCs for the model computation that explain
95% of the total variance. Figure 3A represents the scores on the
first PC as a function of time. It is possible to observe a slow but
constant decrease of the scores over time, until the temporary
stop of the production, highlighted by the red bar. During the last
2 days of production, samples start to increase their score values,
behaving differently from the previous ones. The spectral bands
responsible for the data variation are shown in the loadings plot
(Figure 3B). Bands at 6,130, 6,000, and 4,720 cm−1 can be
ascribed to the styrene monomer, whereas the band at
5,900 cm−1 is related to the forming SAN polymer (Takeuchi
et al., 1968). These bands present higher intensity in samples with
positive scores and lower intensity in samples with negative
scores, suggesting a slow decrease overtime of their intensity
until the production stops. Figure 3C shows the scores of the first
PC as a function of time related to the PCA performed on the
NIR2 dataset. Also, in this case, five PCs were selected for the
model computation, explaining 99.8% of the total variance. At
this final stage, a general more stable trend over time is observed,
with the exception of three distinct moments: 20 h before and 4 h
after the production stops, and at the very end of the period taken
into account. Looking at the corresponding loadings plot
(Figure 3D), it can be observed how these extreme samples
have negative scores, meaning that with respect to the other
time points, they are characterized by a less intense band at
5,900 cm−1, suggesting a lower extent of polymer formation.
Finally, PCA was also carried out on the PS dataset
(Figure 4). In this respect, the model was computed
considering three PCs explaining 84.9% of the total variance.
The scores of PC1 as a function of time (Figure 4A) provide a
different trend than those of the PCA performed on spectral data,
as in this case, the measurements made after the production stop,
with positive scores, resulted clearly different from the others
without returning to the stable range of values before the
stopping. The loadings plot (Figure 4B) explains how samples
collected after the production pause show, among others, high
values for temperature sensors linked to the two reactors
(T1–T8).

MSPC Charts
From these PCA models, it is clear how each data block provides
different information about the processes; therefore, two different
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data fusion approaches were applied. The low-level data fusion
approach was performed merging NIR1 and NIR2 datasets, in
order to gather the spectral information collected in the two key
steps of the process, namely between the two reactors and before
the CZ. The PCA carried out on this dataset (data not shown for
the sake of brevity) confirmed what already showed by PCA
performed on NIR1 and NIR2 datasets separately. Scores and
loadings profiles related to PC1 and PC2 are almost identical to
the ones obtained by NIR2 and NIR1 PCA models, respectively.
Furthermore, MSPC charts based on T2 and Q were built with the
modality described in chapter 2.4.2. The results obtained were
good, but it would be difficult for the plant operators to
understand the nature of an occurring problem, being the
spectral interpretation above their expertise. For this reason, a
mid-level data fusion approach was applied, considering also the
information contained in the process sensors data, i.e., PS dataset.
Hence, NPS dataset was created merging the scores obtained from

PCA performed on NIR1 and NIR2 datasets together with PS
data. A further PCA was carried out, using three PCs to build the
model. Also, in this case, MSPC charts were computed as
described in chapter 2.4.2.

Figure 5A shows the MSPC chart related to the T2 parameter,
which describes the distance of each sample from the origin
within the model space. Figure 5B is a zoom of Figure 5A close to
the confidence interval area. Black circles represent the
calibration samples used to build the model, as they can
efficiently represent optimal operative conditions according to
plant experts, whereas red diamonds indicate the validation
samples projected on the model. The calibration samples are
almost all inside the 95% confidence interval, with some isolated
exceptions of samples falling just outside the interval. Since
neither consecutive set of calibration samples outside the
confidence interval nor samples falling too far away from it
were present, these isolated samples were kept in the model.

FIGURE 3 | Results of the Exploratory Data Analysis performed on spectral data. Scores as a function of time (A) and loadings (B) on PC1 for NIR1 dataset; scores
as a function of time (C) and loadings (D) on PC1 for NIR2 dataset. Red bar indicates the moment of the production pause.

FIGURE 4 | Results of the Exploratory Data Analysis performed on process sensors data. Scores as a function of time (A) and loadings (B) on PC1 for PS dataset.
Red bar indicates the moment of the production pause.

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 7487236

Strani et al. Fusing NIR and Process Data

82

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


There are three different clusters of validation samples that are
outside the confidence interval: a first group corresponds to time
observations taken 20 h before the production stop, and a second
group corresponds to time observations taken 4 h after it, as
described by the first PC of NIR2 PCA. The third group is
observed at the end of the monitored time. The T2

contribution plot of the samples of the first two clusters

reveals that the PC1 scores linked to the second NIR probe
are the variable mostly responsible for this behavior. As an
example, the contribution plot of the four circled samples in
Figure 5B is shown in Figure 5C. Since the loadings related to
this PC can be ascribed to the SAN band at 5,900 cm−1

(Figure 5D), it follows that the anomalous samples present a
lower polymer conversion. However, also PC1 scores related to

FIGURE 5 | T2-based MSPC chart (A); zoom on the confidence limit area (B); contribution plot of the four circled samples of Panel B (C); loadings plot on PC1 of
PCA performed on NIR2 dataset (D).

FIGURE 6 |Q-basedMSPC chart (A); contribution plot of the first group of circled samples ofPanel A (B); contribution plot of the second group of circled samples
of Panel A (C); loadings plots on PC2 (D) and PC4 (E) of PCA performed on NIR2 dataset.
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the first NIR probe were found relevant to explain this difference,
proving that a probe that collects spectra of an intermediate
product is useful, as it could provide information on possible
faults well in advance with respect to the second one.
Furthermore, it is possible to detect the process sensors linked
to the sample’s abnormality which can suggest possible reasons
for the deviations. In this case, among others, sensors T10a, T10b,
and T11 in the zone between R2 and CZ registered values higher
than the ones registered for calibration samples, indicating a
possible problem in that specific zone.

The zoom on the confidence limit area of the Q residuals
MSPC chart, which describes the distance of each sample from
the model space, accordingly providing information on the
samples not described properly by the model, is reported in
Figure 6A. It is observed that the changes in process settings,
performed on February 11, caused the samples to initially fall
outside the confidence interval. The contribution plot linked to
these initial samples, reported in Figure 6B, shows that the
PC1 scores related to the first NIR probe are the variable that
mainly causes the difference with the calibration samples. In
this case, it is clear and visually immediate that the process
sensors concurring to explain this difference are many,
suggesting plant operators to take action. The presence of
the cluster of samples that present a very high Q values
(Figure 6C), occurring just before the production pause,
confirms the plant production problem, as highlighted by
PC2-4 scores related to the second NIR probe (Figures
6D,E, respectively); thus, at this time, variations in the final
product also occurred. The related loadings can be ascribed to
the SAN and AN bands, suggesting, also in this case, a lower
conversion of the polymer and a lower presence of AN in the
final product. These observations highlight that changes in the
process settings first are reflected on the intermediate product,
as depicted by the NIR1 probe, and later on, the final product
quality started to be nonoptimal and an intervention was
operated (stop/restart), if an MSPC monitoring, like the one
we analyzed retrospectively, would have been in place and a
much earlier warning would have been given to the plant
operators.

After the stop and the restart of the production, during which
the operators worked to fix the problems, it is possible to observe
a last little cluster of samples with high Q values that finally drop
below the confidence limits after few hours. After that, samples
remain inside the confidence interval until the moment of the

formulation changes, observable by the last huge cluster of
samples with high Q values.

Predictive Models
PLS regression was used to create models capable of predicting in
real time the selected quality parameters for the SAN polymer,
i.e., MFI and %AN. In this part of the work, the data collected
from February 15th to February 23rd, corresponding to a
different formulation, was also used aiming at general
predictive models. The results obtained by the four different
PLS models computed as described in Data analysis are reported
in Table 1.

For the models computed using NIR1, NIR2, and PS datasets,
five latent variables (LV) were selected, whereas only three LVwere
considered to build the PLS model with NPS dataset. Considering
the first three models, it is observable how better MFI prediction
was obtained considering PS dataset, providing a prediction error
of 1.4 vs. 1.6 and 1.92 g obtained using data from the first and the
second NIR probes, respectively. On the other hand, %AN is
slightly better predicted using the NIR1 dataset (RMSEP �
0.36%, R2p � 0.82) rather than the other two. However, further
considering the model computed using the NPS dataset, which
contains both NIR and process sensors data, it is clear how it
presents the best predictions for bothMFI and %AN. Both internal
and external validation errors, i.e., RSMECV and RMSEP,
respectively, were lower than the corresponding values obtained
using any of the individual datasets, whereas the related R2 values
are higher. In detail, MFI was predicted with an error of prediction
equal to 1.2 g, with an R2p � 0.96, a better prediction accuracy
compared to the one obtained using the process sensors data only.
This result suggests that the information NIR probes provide is
important for the prediction of this quality parameter, even if the
data block most significant is the one related to the process sensors.
Regarding %AN, the obtainedmodel provided an RMSEP of 0.25%
and a R2p equal to 0.92, significantly better than prediction errors
and determination coefficients obtained with the other models.

CONCLUSION

The current work demonstrated that the mid-level data fusion
strategy, performed on the SAN polymer production process,
using both NIR spectra and process sensors data, improved the
quality of process control as well as the prediction ability of PLS

TABLE 1 | Results of PLS regression.

X block LVs Analysis Calibration Cross-validation Prediction

R2c RMSEC R2cv RMSECV R2p RMSEP

NIR1 5 MFI (g) 0.94 1.27 0.86 1.99 0.89 1.6
%AN 0.88 0.31 0.83 0.37 0.82 0.36

NIR2 5 MFI (g) 0.94 1.23 0.84 2.12 0.86 1.92
%AN 0.87 0.32 0.81 0.39 0.75 0.45

PS 5 MFI (g) 0.97 0.83 0.93 1.4 0.92 1.4
%AN 0.88 0.3 0.8 0.39 0.76 0.42

NPS 3 MFI (g) 0.96 1.05 0.95 1.14 0.96 1.2
%AN 0.95 0.18 0.94 0.21 0.92 0.25

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 7487238

Strani et al. Fusing NIR and Process Data

84

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


regression models. In fact, the extraction of the features from
PCA models performed on NIR data allowed to add a different
and valuable kind of information to the one provided by process
sensor data. T2- and Q-based MSPC charts computed with the
NPS dataset were able to correctly detect the moments in which
the process deviates from the normal operative conditions,
providing at the same time information on which the sensors
and/or the spectral features are linked to the problem.
Furthermore, better PLS prediction of MFI and %AN
parameters were obtained, in terms of RMSEP and R2p, using
the NPS dataset rather than the ones obtained using single blocks
of data.
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EstablishingMultivariate Specification
Regions for Incoming Raw Materials
Using Projection to Latent Structure
Models: Comparison Between Direct
Mapping and Model Inversion
Adéline Paris1, Carl Duchesne1* and Éric Poulin2

1Department of Chemical Engineering, Université Laval, Québec, QC, Canada, 2Department of Electrical and Computer
Engineering, Université Laval, Québec, QC, Canada

Increasing raw material variability is challenging for many industries since it adversely
impacts final product quality. Establishing multivariate specification regions for selecting
incoming lot of raw materials is a key solution to mitigate this issue. Two data-driven
approaches emerge from the literature for defining these specifications in the latent space
of Projection to Latent Structure (PLS) models. The first is based on a direct mapping of
good quality final product and associated lots of raw materials in the latent space, followed
by selection of boundaries that minimize or best balance type I and II errors. The second
rather defines specification regions by inverting the PLS model for each point lying on final
product acceptance limits. The objective of this paper is to compare both methods to
determine their advantages and drawbacks, and to assess their classification performance
in presence of different levels of correlation between the quality attributes. The comparative
analysis is performed using simulated raw materials and product quality data generated
under multiple scenarios where product quality attributes have different degrees of
collinearity. First, a simple case is proposed using one quality attribute to illustrate the
methods. Then, the impact of collinearity is studied. It is shown that in most cases,
correlation between the quality variable does not seem to influence classification
performance except when the variables are highly correlated. A summary of the main
advantages and disadvantages of both approaches is provided to guide the selection of
the most appropriate approach for establishing multivariate specification regions for a
given application.

Keywords: multivariate specifications, direct mapping, PLS-model inversion, projection to latent structures, quality
control

1 INTRODUCTION

For many manufacturing industries, reaching market standards in terms of product quality is a
priority to ensure sales. Product quality is influenced by different factors, but one of the most
important is the variability in raw material properties. If no corrective action is applied, these
fluctuations propagate directly to final product quality. This is a real problem for many industries
especially those processing bio-based materials using raw materials extracted from natural resources.
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Ensuring good quality control may attenuate the impact of raw
material variability. This can be performed in three ways: defining
specifications for raw material properties, choosing adequate
operating conditions, and characterizing final products for
quality (Amsbary, 2013). A particular attention should be paid
to the first as it deals directly with the source of the problem.
Defining specifications and acceptance criteria for incoming lots
of raw materials is key to achieve high and consistent quality final
product. This is a useful tool to determine whether a lot of raw
materials is processable, and indicates the risk of not reaching
desired quality.

The main approach commonly used in the industry is to
determine the acceptability of lots of raw materials based on a set
of univariate specifications, past experiments, and/or the
properties of the best suppliers (Duchesne and MacGregor,
2004). As the properties of any material are often highly
correlated, univariate limits may lead to misclassification (De
Smet, 1993; Duchesne and MacGregor, 2004). If the multiple
univariate specifications are set large enough to accept all past
good lots of raw materials, the risk of accepting bad quality lots
increases. To mitigate this, univariate specification limits can be
tightened to minimize acceptance of poor quality raw materials.
However, this increases the rejection rate of good lots of
materials, which typically leads to higher purchasing costs.
Thus, the correlation structure between the raw material
properties needs to be considered to minimize the risk of
inadequate decisions. Establishing multivariate specification
regions to select incoming lots of raw materials is a solution
to this problem. The concept was first introduced by De Smet
(1993). It consists of building a Projection to Latent Structures
model first to relate the rawmaterial properties to the final quality
attributes. Then, each lot of rawmaterials is projected in the latent
space of the PLS model. Its class assignment (e.g., good or bad
quality) is inherited from the corresponding final product quality
assessment, hence the name Direct Mapping (DM) approach.
Finally, a boundary is established to discriminate the two classes
by balancing type I and II errors or by minimizing one. The
resulting region is then used to decide whether a new incoming
lot of raw materials should be accepted or rejected.

As the impact of process control actions, changes in process
operating conditions and disturbances on final product quality
were not considered by De Smet (1993), Duchesne and
MacGregor (2004) extended the previous approach. They
proposed a framework for different scenarios based on how
process variability affects final product quality, and its level of
collinearity with raw material properties. The methods are
illustrated using simulated and industrial data from a film
blowing process (Duchesne and MacGregor, 2004). Tessier
and Tarcy (2010) have also applied the technique in the
context of the aluminum production.

Further improvements were then proposed. To increase the
size of the dataset and to include more variations in the context of
pharmaceutical process scale-up, García-Muñoz (2009)
introduced a new step prior to the Duchesne and MacGregor
technique to take into account data collected frommultiple scales.
Later, Azari et al. (2015) suggested using the Sequential Multi-
Block PLS algorithm (SMB-PLS) instead of PLS as a more

efficient method to establish multivariate specifications when
raw material properties and process operating conditions are
correlated. This approach allows to clearly identify the variation
in raw material properties uncompensated by control actions.
Finally, to establish specifications in situations where several
different types of raw materials are used, MacGregor et al.
(2016) have proposed a new approach based on Monte Carlo
simulations to calculate the risk of accepting a new lot.

A similar concept to multivariate specifications called Design
Space (DS) was introduced by the Internal Conference of
Harmonization (2009) mainly for the pharmaceutical industry.
The goal is to determine: “the multidimensional combination and
interaction of input variables (e.g., material attributes and process
parameters) that have been demonstrated to provided assurance
of quality.” Essentially, the general objective of establishing a
design space is to reduce product quality variability by design
rather than by inspection techniques aiming at characterizing
final product properties (MacGregor and Bruwer, 2008; Godoy
et al., 2017). One main advantage of this approach is that
modifications applied to the process or raw material variability
within the DS are not considered as a change for the regulatory
agencies as Food and Drug Administration (FDA) (ICH, 2009;
Lawrence et al., 2014).

Even if the two concepts (raw material specifications and DS)
aim at improving product quality control, differences exist
between them. The DS is typically defined during the product
development stage using raw material properties and process
conditions simultaneously. Multivariate specifications, however,
are built using larger sets of industrial historical data, and require
that variability introduced by process variables be removed prior
to defining the specification region. In addition, even if both
concepts are based on PLS models, they use different
mathematical approaches to determine the acceptance region.
Defining a DS in latent space is mostly performed using PLS
model inversion of a single desired quality attribute (Facco et al.,
2015; Bano et al., 2017; Palací-López et al., 2019) while, in the
past, multivariate specification regions were obtained using direct
mapping of final product quality based on several correlated
attributes. As suggest by Garcia-Muñoz et al. (2010), the
inversion technique could be an alternative to DM for
developing raw material multivariate specifications. Applying
PLS model inversion using multivariate product quality
attributes was demonstrated by Jaeckle and MacGregor (1998)
and Jaeckle and MacGregor (2000) in the context of product
development problems.

The objective of this paper is to compare the two approaches
for establishing multivariate specification regions, namely PLS
model inversion and direct mapping, in terms of classification
performance for a given application, and to determine their
advantages and drawbacks. It also shows how to establish
multivariate specification regions by PLS inversion for a
multivariate set of quality attributes, and assess the influence
of different levels of correlation between them for both
techniques. Such a comparison for one or multiple quality
attributes has not been attempted in the past, to the best
knowledge of the authors. The proposed paper should be
considered as a guide to support the development of
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multivariate specifications using the most appropriate technique
for a given application.

This work is quite ambitious since many scenarios need to be
considered and several decisions had to be made to ensure a fair
comparison. First, simulated data is used to allow multiple
scenarios to be generated. A simple model involving four raw
material properties and two final product quality attributes was
developed to facilitate the comparisons and interpretations. The
shape of the final product quality acceptance region was selected
to be elliptical to reflect the correlation structure between the
quality attributes. When building the PLS models between final
product quality attributes and raw material properties, the
number of components retained in both approaches is chosen
as that maximizing classification performance for the PLS
inversion approach. This choice was made to avoid
introducing biases in the comparison since the direct mapping
approach has more flexibility. For each combination of final
product quality attributes, a single PLS model is built and
used to define the specification regions with both approaches.
Finally, the classification performance is assessed without
considering the uncertainty back propagation (Bano et al., 2017).

The paper is organized as follows. First, the simulator used to
generate the datasets is presented. Then, the proposed
methodology is exposed. The section includes a brief
description of PLS regression, how to establish multivariate
specifications using direct mapping and PLS inversion, as well
as the classification metrics used to calculate classification
performance. The results are then presented and discussed.
Thereafter, the main conclusions are drawn.

2 DATASET GENERATION

Within the scope of the study, to simplify the comparison
between the two techniques, multivariate specifications are
developed under the hypothesis that process variables do not
influence the quality of the product (i.e., the process is under
control). However, how to cope with process variations in
establishing multivariate specifications and design spaces was
already extensively studied (Duchesne and MacGregor, 2004;
Azari et al., 2015; Facco et al., 2015; MacGregor et al., 2016).
The comparative analysis proposed in this study is generic, and is
applicable in scenarios where process variations significantly
affect product quality. Hence, in this study, only two blocks of
data X (N×M) and Y (N×K) are involved when building PLS
models. The first containsM raw material properties characterized
in the laboratory or on-line using spectroscopy techniques, for
instance, and the second K quality attributes of the final product
collected for N observations or lots of raw materials. The data
contained in these matrices are generated by simulations using
analytical equations as described in the following subsection to
facilitate the generation of combinations of y-variables spanning
the full range of correlation. In addition, for the N observations
included in the dataset, the quality of the final product is assigned
to a class using a binary variable (i.e., good/bad quality) which is
used to assess classification performance. The methods used to
establish multivariate specification regions are then presented.

2.1 Simulated Process
The X-dataset is inspired from the model proposed by De Smet
(1993). A total of four equations are used to generate variations in
raw material properties:

x1 � 22 + h1 (1)

x2 �
�������������
0.1 + 2h2 + 3x1

√
(2)

x3 � 1.5 + 0.3x1 + 0.5x2 + h3 (3)

x4 � 12 + 0.5h4 (4)

where hi are random numbers following a standard normal
distribution N(0,1). Correlation exists between properties 1–3
while the fourth is independent of the others.

For each lot of raw materials, i.e. an observation in X, two
quality attributes are calculated using the following equation:

yj � ∑
4

i�1
ki,jgi,jxi (5)

and the values are stored in the Ymatrix. The binary variables ki,j
determine if the ith raw material property affects the jth quality
attribute while gi,j consists of random integers between −5 and 5.
These were used to generate different magnitude for the effect of
each x-variable on the y-variables. As the objective of this article is
to compare the performance of two approaches for defining
specification regions under different levels of correlation
between both y-variables, the same X dataset is used
throughout the analysis to generate different combinations of
y-variables by changing parameters ki,j and gi,j. When the
product of these two parameters results in similar values for
both y-variables, a high level of correlation is obtained.
Conversely, very different values for this product leads to a
low correlation. The span of different levels of correlations is
owing to the random values generated for gi,j. It should be noted
that each combination is obtained randomly and not by smoothly
increasing the correlation level between the y-variables.

Noise is added to all variables. The measured values ym,j and
xm,i are obtained using the following equations:

ym,j � yj + (εy,jyj)ey,j (6)

xm,i � xi + (εx,ixi)ex,i (7)

where ey,j and ex,i represent the errors added to the y- and x-data.
These random errors also follow a standard normal distribution
N(0,1). Their magnitude is characterized by the error standard
deviation set as a percentage ε of the mean x or y for each
variable. In all simulations, noise was generated in the same way.
The values of ε and x are presented in Table 1 while y are not
shown since they vary from one dataset to another. The mean
values are obtained using the calibration dataset which contained
500 observations.

TABLE 1 | Noise percentage and nominal signal values.

x1 x2 x3 x4 y1 y2

ε [%] 1 0.5 2 3 1 0.5
xi 22.01 8.13 12.18 11.99 N/A N/A
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In addition to the calibration set, two other datasets are
generated. The first is used to determine the number of PLS
components needed while the classification performance of
the specification regions is assessed using the second. Each of
these datasets contains 10,000 observations. This number was
selected in such a way that stable classification performance
for each metric is obtained. Note that a large number of data
points were generated as a mean to compare the direct
mapping and inversion methods using a fair and sound
statistical approach. However, both methods have already
been demonstrated as effective on smaller datasets collected
on simulated and industrial processes (Duchesne and
MacGregor, 2004; Facco et al., 2015).

2.2 Definition of Product Acceptance
Establishing multivariate specification regions using a data-
driven approach begins with identifying past lots of products
of good and poor quality. This involves a product acceptance
region in the Y-space. As the data used in this work are obtained
from simulations, an indicator associated with the final quality of
the product needs to be defined to identify good and bad
products. The acceptance limit used in this study has an
elliptical shape:

(y − y)Σy(y − y)′≤ ζ (8)

where y (1 × K) is the vector containing the means of each
y-variable, and Σy(K × K) is the y-covariance matrix.
Parameter ζ is adjusted to specify the size of the region
and to control the proportion of data assigned to good and
bad quality. Once this parameter is selected, a binary variable
was used to assign each observation to good and bad classes.
In this work, ζ was chosen to ensure a proportion of good/bad
products of 4:1. Even if the ratio of bad product is quite high
compared to what is usually observed in industry, this choice
was made to reduce the impact of class imbalance. There is no
specific rule stating that a dataset should not be used as it is
too imbalanced. However, in practice, ratios ranging from 2:1
to 10:1 are considered to be between marginally and modestly
imbalanced (Weiss, 2013). Therefore, a choice was made to
find a compromise between a realistic situation and balanced
classes. When using industrial data, the ratio should be adjusted
to obtain a more balanced dataset by oversampling the smallest
class or under-sampling the most populated one (He and Garcia,
2009).

3 METHODS

This section presents the direct mapping and PLS inversion-
based approaches used to define multivariate specifications
regions. As both techniques are based on PLS regression, a
brief overview of this latent variable method is provided.
Finally, the classification metrics used to quantify the
performance are described.

3.1 Projection to Latent Structure
Regression
Before building PLS models between X and Y, the data are mean-
centered and scaled to unit variance. As the X and Y matrices
contained collinear data, latent variable modelling techniques are
suitable approaches. PLS regression is retained as it builds the best
linear relationships between the X and Y while modelling the
variability contained in both spaces.

Variability is extracted using a group of A orthogonal latent
variables known as scores T (N × A). PLS regression is defined
mathematically by the following set of equations:

X � X̂ + E � TP′ + E (9)

Y � Ŷ + F � TC′ + F (10)

T � XWp � XW(P′W)
−1

(11)

where E (N ×M) and F (N ×M) are the model residuals.
C (K × A) and P (M × A) are the loadings of the Y and X
spaces, respectively. The loadings and the score values are
computed using the NIPALS algorithm (Wold et al., 2001). It
also provides the weight matrices W(M × A) and Wp (M × A)
allowing to make predictions of Y based on X.

Prior applying PLS to new X-data, it is important to ensure
that they are consistent with historical data used to build the
model. This is achieved by computing the squared prediction
error SPEX and the Hotelling’s T2, and verifying that they fall
below their respective statistical limits. The SPEX is used to check
consistency of the correlation structure of new data. It is defined
as follows:

SPEXi � eiei′ (12)

where ei (1 × K) is the X-residual vector for the ith observation:
ei � xi − tiP (13)

As the SPEX values follow approximately a χ2 distribution
with 2m2

v degrees of freedom (Nomikos and MacGregor, 1995), a
(1- α) upper control limit (UCL) can be obtained:

SPEUCL � v

2m
χ22m2

v
, α

(14)

where v and m are respectively the variance and the SPE mean
calculated during the model calibration.

The Hotelling’s T2 is used to measure the distance of projected
new observations from the origin of the latent variable space. It is
typically used to confirm whether a new observation falls within
the so-called knowledge space (KS). The KS represents the space
spanned by historical data in the latent variable space of the PLS
model. The T2 value for the ith observation is obtained as follows:

T2
i � ∑

A

a�1
(
ta,i
sa
)

2

(15)

where ta,i is the score values obtained for the ath component and
sa its standard deviation calculated in calibration.
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The T2 values are known to follow a Fischer distribution
approximately (Jackson and Edward, 1991). A (1-α) upper
control limits as proposed by Weirda (Wierda, 1994) can be
calculated using the number of points in the calibration dataset N
and the number of components retained A using the following
equation:

T2
UCL �

A(N2 − 1)
N(N − A)FA,N−A,α (16)

where FA,N−A,α is the value of the Fischer distribution for A and
(N-A) degrees of freedom. This elliptical-shaped limit is typically
drawn in the scores space. The length of each axis ra is equal to:

ra �
�����������������
A(N2 − 1)
N(N − A)s

2
aFA,N−A,α

√

(17)

which is deduced from Eq. 15 and Eq. 16.
One important step in the model development is to select the

optimal number of components. The appropriate method
depends on how the model will be used. If the objective is to
build PLS models for making predictions, criteria such as
cumulative predicted variance Q2Y or the root mean squared
errors of prediction (RMSEP) in cross-validation or calculated on
an external dataset should be used. For a classification problem,
such as defining multivariate specification regions, the optimal
number of components should be the one that maximizes the
classification performance on an external dataset. Classification
performance is obtained by using the accuracy as defined in a
following section.

The same PLS model is used to establish multivariate
specification regions using both DM and inversion techniques.
The number of components maximizing classification
performance may be different for both approaches, but a
single value of A needs to be selected for the comparative
study. As the direct mapping is based on a compromise
between type I and type II errors, which is an additional
degree of freedom compared to inversion, using direct
mapping might introduce a bias when choosing the number of
components. To overcome this issue, the number of components
is determined by maximizing classification performance obtained
with the inversion approach, and this number of components is
also used for DM.

3.2 Direct Mapping Approach
Defining multivariate specifications using direct mapping is
performed in two steps. First, a PLS model is built using the
quantitative y-data. Second, the specification limit in the latent
space is defined by mapping product quality in the scores space.
In other words, the class assigned to the score values (i.e., good/
bad) corresponds to that of the final product obtained for the
same lot of rawmaterials. The goal is to define a region that allows
the separation of the two classes. Note that the quality classes are
only used to assess classification performance in the latent space
and not for building discriminant PLS models (i.e., PLS-DA). The
shape of the region is defined by the user. In this study, a similar
shape as that of the product quality acceptance region is chosen
for both methods. Since the limit in the Y-space is elliptical and

the PLS model is linear, the region obtained in the score space by
inversion is also elliptical. For this reason, the following elliptical-
shaped specification region was selected for the DM approach:

tΛt′≤ η (18)

where Λ (A × A) is the score covariance matrix. The value of η is
used to adjust the size of the elliptical region. The strategy used to
select η depends on the context in which the specification will be
used, and the consequence of each type of misclassification. One
may prefer minimizing type I or type II error while another could
seek a compromise between both. By definition, type I error
represents a sample predicted as bad quality when it is good while
a type II error is a sample of truly bad quality predicted as good.
For this work, as there is no specific context or limitation, the
value of η is chosen to be the one leading to the same percentage
of type I and type II errors.

Prior to using the specified region for incoming new lots of raw
materials, the correlation structure of each observation needs to
be assessed to ensure the model validity for this lot. This is done
by defining an upper control limit on SPEX during the PLS model
calibration as discussed in the previous section. If a given lot
violates the limit, it should be flagged as having an inconsistent
correlation structure compared with historical data, and should
be rejected unless it is desired to process it, and used it to update
the model and/or improve the specification region definition.

3.3 Projection to Latent Structure Model
Inversion
Alternatively, multivariate specification regions in the score space
can be established by inverting the PLS model for each point lying
on the final product quality acceptance limit. In other words,
instead of adjusting a limit within the score space using product
quality class assignments, the limit is propagated from the
Y-space acceptance region using the model structure.

As the limit in the Y-space is elliptical in this study, its
parametric equation is used to generate combinations of
quality attributes (y1, y2) lying on the ellipse to use for the
inversion. The transformation for the matrix to the parametric
equation is the following:

[y1, y2] � V
��
D

√ [cos(θ), sin(θ)] (19)

where D (K ×K) is a diagonal matrix containing the eigenvalues
of ζΣy and V (K × K) the corresponding eigenvectors while θ
contains value between 0 and 2π.

For each combination (y1, y2) which is named ydes (1 ×K),
the PLS inversion method proposed by Jaeckle and MacGregor
(1998) and Jaeckle and MacGregor (2000) allows calculating the
corresponding score vector tdes (1 × A). Computations begin
with the PLS model equation for the Y-space:

ydes � tdesC′ (20)

where the dimensions of the loading matrix C yields three
possible cases depending upon the number of PLS
components A and the number of y-variables K, as described
in the following subsections.
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3.3.1 Case 1: A � K
This case is the simplest one since there is a unique solution
(i.e., number of equations equal to number of unknown
parameters). As C is a square matrix, solving for tdes from Eq. 20
yields the following result:

tdes � ydes(C′C)
−1 � ydes(C′)

−1
(21)

which directly provides the score vector associated with a
combination of y-variables lying on the product acceptance
region. The two terms are equivalent since C is a square matrix.

3.3.2 Case 2: A < K
In this case, since the number of unknown parameters is lower
than the number of equations, there is no solution. As the matrix
C is not square, to obtain tdes from Eq. 20 a right inverse is used.
The resulting equation is the following:

tdes � yC(C′C)−1 (22)

In fact, the solution is the result of an ordinary least squares
prediction between y and C where the prediction error of y is
minimized (Jaeckle, 1998).

3.3.3 Case 3: A > K
For DS estimation, this case is the one that happens the most
frequently (Facco et al., 2015; Palací-López et al., 2019). Since
there are more unknown parameters than equations, the number
of solutions is infinite. To obtain all of the possible solutions,
Jaeckle and MacGregor (1998), Jaeckle and MacGregor (2000)
proposed the following approach. As C′C is singular, solving for
tdes requires using the Moore-Penrose inverse. Prior to the
inversion, Jaeckle and MacGregor (2000) suggested to
transform the score vector t into two new matrices to facilitate
proper scaling:

ydes � tC′ � uSC′ (23)

where u (1 × A) is an orthonormal vector and S (A × A) is a
diagonal matrix where the diagonal values are equal to

����
T′T

√
.

Then, using the Moore-Penrose inverse for a combination of
y-variables stored in ydes, the predicted value tpred is obtained:

tpred � ydes(CS′SC′)
−1
CS′S (24)

which is the solution that is the closest to the origin of the PLS
model plane. The other possible solutions tdes are distributed
along the null space:

tdes � tpred + tnull (25)

where tnull spans an orthogonal subspace of A −K dimensions.
To obtain tnull values, singular value decomposition is applied on
SC′ to extract the left singular vectors. Only the (A-K) vectors
associated with null singular values are kept in matrix
G2 (A × (A − K)). The tnull vector is then calculated as follows:

tnull � λG2′S (26)

by specifying a (A-K) vector of constants λ(1 × (A − K)) that
represents a position along the null space.

As the specification region is defined using an infinite number
of equations (i.e. one for each point of the ellipse in the y-space),
determining whether an observation falls within the specification
limits or not is not simple. Geometrical approaches such as
triangularization or visual inspection of score plots when A < 4
are needed to determine the position of one observation towards
the region. When A > 3, more complex manipulations and
calculations are necessary to determine the position of the
scores with respect to the specification limits. Hence, in this
study, it was decided to limit the number of PLS components to
A ≤ 3. Also, before projecting a new lot into the specification
region, the same approach using the SPEX limit needs to be
performed to ensure that the model is valid for new
observations.

3.4 Classification Metrics
As the main objective of this study is to compare two methods for
developingmultivariate specification regions, metrics are needed to
compare their classification performance. Five different metrics are
considered. They are based on the elements of the confusion table,
which is schematically represented in Figure 1A.

The figure shows the relationship between the ground truth for
good (G) and bad (B) final product, and the predicted class labels Ĝ
and B̂. In summary, a true positive TP is a good product well
classified while false negative FN is a good product predicted as bad.
On the other hand, a bad product which is misclassified is
considered a false positive FP, and a true negative TN when it is
well classified. It should be noted that FN and FP correspond to type
I and II errors, respectively.

The first performance metric used is accuracy (ACC), which
consists of the ratio of well-classified samples over the whole
population:

ACC � TP + TN
TP + TN + FP + FN

(27)

The next four metrics are shown in (Figure 1B) illustrated as
the element of the confusion matrix. This allows a better
visualization of the calculated ratios. Precision, also known as
positive predictive value (PPV), is defined as:

PPV � TP
TP + FP

(28)

which is the ratio of predicted good products to all the good
observations. Recall, or true positive rate (TPR), is defined as
follows:

TPR � TP
TP + FN

(29)

It is the proportion of the well classified good product. False
positive rate (FPR):

FPR � FP
FP + TN

(30)

is used to quantify the percentage of misclassified bad products.
The last metric is the false omission rate (FOR) which represents
the percentage of errors made in assigning bad quality products to
the right class:
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FOR � FN
TN + FN

(31)

4 RESULTS AND DISCUSSION

The results are presented in three parts. First, a simple example
considering a single quality attribute is shown to illustrate the
methodologies, and to explain the main criteria used for
comparing both techniques. Then, the impact of collinearity
between the two quality attributes on the shape and size of the
specification regions is presented. Finally, the main advantages
and disadvantages of both techniques are highlighted based on
the observations made during the analysis.

For ease of presentation,Table 2 summarizes all the information
used to generate the different scenarios. The table is divided in three
parts. First, the columns identified as Y-space definition show the
values of the simulation model parameters selected for generating
the datasets. This includes the coefficients (ki × gi) needed to define
the y-variables, and the level of correlation between them, as well as
the quality constant ζ that allows obtaining a 4:1 good/bad class
ratio. The second part provides an overview of the PLS model
performance in validation. The accuracy (ACC) obtained when

inverting themodel, which was used to choose the number of Latent
Variables (LV) retained A, as well as the cumulative predicted
explained variance Q2Y are shown in the table. The last part
provides the values of the DM constant adjusting the size of the
specification region, and the resulting percentage of type I and
II error.

4.1 Scenario 1–Illustration Using a Simple
Example
The first scenario proposed is obtained by using one quality
attribute. The output is simulated with all raw material properties
affecting the quality attribute (i.e., ki ≠ 0) with a different value of
gi for each x-variable as shown in Table 2. Then, the product
quality acceptance zone is defined. Since the Y-space is univariate,
the product acceptance region consists of lower and upper
bounds using Eq. 8 where ζ � 1.75.

After mean-centering and scaling the data using the calibration
dataset, the PLS model is built, and the number of components is
selected to maximize classification accuracy for PLS inversion.
Table 2 shows that an optimal accuracy of 88.3% is obtained
using 2 components. The resulting model predicts 84% of the
y-variance (Q2Y) based on the validation set. This model is then

FIGURE 1 | Schematic representation of the classification metrics: (A) confusion matrix (B) classification metrics.

TABLE 2 | Summary of the parameters involved in establishing specification regions with DM and PLS inversion, as well as some performance statistics for the different
scenarios investigated.

Scenario Y-Space definition Validation performance DM constant η

Coefficients
in eq. 5 (ki × gi)

|r| [%] Quality constant ζ ACC inversion [%] Q2Y [%] A Value Error type I and
II [%]

1 [3, -2, -1, 1] − 1.75 88.3 84 2 3.51 8.8

2A)
[-5, 0, 3, -3]

30 3.35 90.3 89 2 3.54 4.4
[0, 0, 2, -1]

2B)
[-1, 0, -1, -4]

−66 3.25 86.5 79 2 3.34 5.8
[0, 0, 0, 2]

2C)
[0, 0, 2, 1]

95 3.25 86.2 92 2 3.23 10
[-1, 0, 5, 0]

4
[0–1 0 1]

−40 3.29 88.9 87.5 3 4.78 7.8
[3 0 0 0]
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used to define the DM specification region by finding the value of η
that gives the same percentage of type I and type II errors. The
obtained value of 3.51 leads to 8.8% of both types of errors.

At this point, both specification regions are defined and drawn
in the latent space. For ease of visualization, Figure 2 shows a
subsampling of the testing dataset where the proportion of each
class is preserved. The solid black line represents the DM region
obtained previously.

Since the number of components is higher than the
number of quality attributes (A>K), the specification
region was determined using the inversion case 3 which
considers the presence of a null space. The lower and
upper y-limits are inverted to obtain the corresponding
tpred values represented by red stars. The null-space (NS)
is calculated and shown by the solid red line. Thus, all score
values falling between these two lines are associated with good
quality final product as per the inversion approach. However,
this region is opened which may lead to misclassification as
the predicted score values outside the knowledge space (KS)
extrapolate. Therefore, the solution is constrained by the 95%
upper Hotelling’s T2 limit as advocated in some papers
(Tomba et al., 2012; Facco et al., 2015; Bano et al., 2017).
The gray dash line represents the KS.

It is observed in Figure 2 that the DM is already included inside
the KS. This was expected because, the DM ellipse is designed to
discriminate the classes using the calibration dataset which is the
same used to define the KS. In addition, the inversion seems slightly
better compared to direct mapping. Better performancemight have

been obtained if another shape was chosen for DM regions (i.e., the
shape is an additional degree of freedom for DM).

Based on these observations, the performance in classification
is analyzed using the classification metrics described in section
Classification Metrics. Three different specification regions are
considered. The first is the region obtained with the inversion
alone (NS). The second is the NS region constrained by the KS
(NS ∩ KS). The third is the DM region.

For all the metrics, the performance obtained with PLS
inversion approaches are quite similar except for the false
omission rate that is higher when considering the KS limit.
Constraining the region within the KS generates more good
samples predicted as bad, which increase the number of FN as
shown in Figure 2.

When comparing direct mapping and inversion coupled with
KS, Figure 3 shows that the performance are better for inversion
for all the metrics. A particular attention should be paid to FPR
and FOR for the DM as the difference is higher compared to other
metrics. For the FPR, it can be seen in Figure 2 that the edge of the
ellipse allows accepting more lots of bad quality which is not the
case for the inversion. The higher FOR metric is caused by the
bounding of the region with the KS limit.

Globally, Scenario 1 allowed to illustrate the methodology with
a simple example using a univariate quality attribute. The basis is
set to analyze more complex cases with multiple quality
attributes. For the proposed example, the inversion is slightly
better compared to direct mapping based on the five metrics.
Also, the acceptance region is more restrictive for the direct
mapping since its area is smaller compared to inversion. The
performance might have been better if the shape of the DM

FIGURE 2 | Score plot showing the multivariate specification regions
obtained using both Direct Mapping and PLS Inversion for Scenario 1.

FIGURE 3 | Classification performance metrics for Scenario 1.
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regions would have been modified to exploit this additional
degree of freedom.

4.2 Scenarios 2, 3 and 4: Impact of
Collinearity Between Quality Attributes on
the Specification Regions
The impact of collinearity between the two quality attributes is
studied with respect to the three inversion cases (i.e., A<K,
A>K and A � K). Initially, 400 combinations of two quality
attributes were generated using the simulator (Eq. 5). For each
of them, the number of components was chosen based on
maximizing classification accuracy for PLS inversion.
Figure 4 shows the number of y-combinations for the
different levels of correlation, and the number of
components retained when building the PLS model. Note
that both negative and positive correlations were obtained,
but the absolute value is shown in the figure.

As it can be observed in Figure 4, 58.5% of the combinations
require three components and they cover the full range of
correlations. The samples associated with two components also
spanned the entire range. This is not the case for the datasets
where a single component is selected. Less than 5% of the
combinations fall in this category and they concentrate in the
zone of high levels of correlation i.e., with a value of |ry1−y2|
greater than 80%. This was expected as when correlation
coefficient tends toward unity, fewer components are needed
since both y-variables are almost the same, and so is X.

It should be noted that the number of components retained
depends strongly on the selected performance criteria. If another
metric would have been selected or if the performance had been
calculated using the direct mapping, the number of combinations

associated with each inversion cases and their distribution relative
to the level of correlation between both y-variables might have
been different.

4.2.1 Scenario 2: Impact of Collinearity When A � K
In this scenario (involving inversion Case 1), the 148
combinations associated with A � 2 in Figure 4 are
considered to analyze the impact of correlation between
both y-variables. For each of them, the specification regions
were defined with both techniques. Figure 5 shows the
performance calculated with the test dataset for the different
metrics. It should be noted that the FOR metric was not shown
as in previous analysis, because it provides redundant
information with TPR. To facilitate interpretation of the
figure, the data were filtered using a moving average and a
window of five samples to minimize the stochastic variations
introduced by random generation of the model parameters
in Eq. 5.

First, the accuracy is analyzed as it gives an overview of
classification performance since it measures the proportion
of well-classified samples. Classification performance is
judged against the so-called no-skill line (NSL). The latter
represents the accuracy that would be obtained if the samples
were randomly assigned to a class. The performance of a
useful classifier needs to be above the NSL. As the ratio of
good to bad samples is 4:1 in this study, the NSL is set at 80%.
Except for a few regions obtained from direct mapping with
combination of highly-correlated quality attributes, the
accuracy is above the no-skill line. This shows that both
methods performed better than making random decisions.
Also, for low to moderate levels of correlation (i.e., up to 60%)
accuracy is almost the same for both methods. To
discriminate both methods in this zone, other metrics need
to be analyzed.

It is possible to observe that a distinction exists between both
methods at all correlation levels. The PPV is greater for direct
mapping which means the classifier has a better precision.
However, the TPR rate is lower because the predictions for
the positive class is better with the inversion. Usually, a
compromise between TPR and PPV needs to be achieved to
identify the best classifier. Also, it can be observed that the FPR
is lower for direct mapping. This is considered an advantage for
DM when the goal is to minimize the risk of producing bad
quality products, since the probability of accepting a bad lot
is lower.

For levels of correlation higher than 60%, the gap between the
two methods widens especially for the TPR metric. The DM
technique becomes more restrictive and generate more rejection
of good lots of raw materials whereas the region obtained with
inversion leads to accepting all the good lot as it tends toward
100%. For the FPR, a large increase is observed for both methods.
However, even if the rate doubles and seems more drastic
compared to the other metrics, it is normal to have higher
values since there are fewer bad lots than good ones. Based on
the ratio of bad and good samples, an increase of one FP leads to
an increase of 4% of the FPR, while an increase of one FN causes a
decrease of 1% of the TPR.

FIGURE 4 | Distribution of the combinations of y-variables and the
corresponding number of PLS components as a function of level of
collinearity.
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To better understand what happens when the level of correlation
increases, three examples were drawn from the set of 148 combinations
to compare the acceptance regions obtained with both techniques as
collinearity between quality attributes increase. The simulator’s
parameters used for these examples and their respective level of
correlation is presented in Table 2 (Scenarios 2A–C). The
classification metrics for all three examples are shown in Figure 5
usingmarkers. Themarker shape discriminates the level of collinearity,
and its color is associated with the methods (DM or inversion).

As shown in Figure 6A, at low levels of correlation (here 30%),
the two regions are almost the same. This explains why the
accuracy was quite identical for DM and inversion. When
collinearity increases to 66% (Figure 6B), a slight difference
between the regions is observed. The largest region obtained
by inversion increases acceptance of good lots at the expense of
bad lots. The same observation can be made from Figure 6C
when the correlation level is very high, i.e., 95%.

The three examples need to be compared together to explain the
cause of increasing FPR with collinearity. As the level of correlation
increases, good and bad products in the score space overlap to a
greater extent which increases the difficulty to obtain distinct
classes. This can also be observed in Table 2 through the
compromise between type I and II errors used for choosing the
η constant in direct mapping. The percentage of classification
errors increases with collinearity to achieve the desired balance
between the two types of errors. This does not seem to be caused by
the model performance in prediction since at high levels of
correlation the model has a Q2Y value of 90% as shown in
Table 2, which is the case at low levels of correlation. The most
likely cause for this behavior is that bad lots projecting near the
origin of the scores space (i.e., generating a FP) are associated with

observations in the y-space located in close to the edge of the
product acceptance limit, but near the origin.

A particular attention should be paid to changes in the trends
of TPR for both methods at high levels of correlation, which differ
from those of other metrics. For DM, the TPR decreases and this
may be explained similarly as for the increase in FPR. As the
overlapping of the two product classes in score space is more
important, the specification region needs to be more restrictive
for good lots which generates more FN to obtain the same
performance in terms of type I and II errors.

For PLS inversion, however, the trend is very different. The
TPR increases to 100%, which means accepting all good lots of raw
materials. Scenario 2C) in Figure 6C illustrates this situation. The
ellipse obtained by inversion is stretched over the latent space
which results in an acceptance region that includes a larger area
where there are no or very few points (i.e., there is a risk of model
extrapolation). The reason behind this behavior originates from the
inversion of the C’ matrix. When the correlation increases between
the two y-variables, this is reflected in the y-loading matrix C,
which eventually becomes ill-conditioned. Inverting this loading
matrix increases of the norm of the scores and results in a larger
ellipse. This is just like what happens to ordinary least squares
regression parameters when highly correlated predictors are used.

Globally, Scenario 2 allowed showing that high correlation levels
between both y-variables (i.e., higher than 80%) influences the
classification performance of both methods. This may be caused
by the proximity of observations to the product quality attribute
acceptance limit in the y-space, the increasing overlap between both
product classes in score space and model extrapolation for inversion.
Concerning the classification performance itself, a distinction between
bothmethods is observed for all themetrics. Directmapping obtains a

FIGURE 5 |Classification performance for Scenario 2: (A) Accuracy, (B) Positive Predictive Value, (C) True Positive Rate, and (D) False Positive Rate. The symbols
mark the specific combinations investigated further, and their color indicate the method (DM or inversion).
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better FPR at the expense of TPR compared to the inversionwhere the
relationship is opposite. Which one is best depends on the specific
context and the relative cost of FPR vs. TPR.

4.2.2 Scenario 3: Impact of Collinearity when A < K
The third scenario illustrates the inversion Case 2 in which the
number of PLS components is smaller than the number of
y-variables. As the model investigated further in this section has
only one component, the multivariate specification region in the
latent space boils down to univariate limits (i.e., lower and upper
bounds). Applying PLS inversion to several points on the product
acceptance ellipse results in scores evolving between aminimum and
a maximum value. These are used to define the univariate limits.

The simulations used to generate data in this study only led to
a few combinations where A < K, and in all of those cases, A � 1
(see Figure 4). The 18 occurrences generated concentrate in the
high correlation levels (i.e., mostly above 0.9). The classification
performance is presented in Figure 7. Compared to Figure 5, the

classification metrics are noisier due to the fact that the moving
average was not apply due to the low number of samples.

Determining the impact of correlation is more difficult for this
scenario since no information are available for the level of
correlation ranging between 0 and 0.75. For the available data,
a distinction between both methods can be observed in Figure 7
for each metric, and is comparable to Scenario 2. For the same
range of correlation, the direct mapping provides similar
performance for both scenarios. For the inversion, using one
component leads to PPV and FPR that are slightly worse
compared to what is obtained with two components. For the
TPR, the same behavior is observed where the values tend toward
100%. This was expected since the inversion cases 1 and 2 are
obtained by minimization of prediction errors (e.g., for case 1, the
resulting objective function value is 0).

For the same range of levels of correlation, the conclusions
drawn for Scenario 3 are similar to those of Scenario 2. However,
if FPR in inversion had been chosen as the criteria to determine
the number of components it might be expected that some of
these samples would have been moved to Scenario 2 (A � K) since
for the same range of correlation level, the FPR is lower when
using A � K. This shows that the criteria used for determining the
number of components influence the distribution of the sample
between the three inversion cases.

4.2.3 Scenario 4: Impact of Collinearity When A > K
The last scenario considers the situations where A > K. In the
context of this study, this means that three PLS components leads
to the best accuracy in inversion. In contrast with Scenario 2, the
specification regions obtained by inversion are not bounded due to
the existence of a null space. For this reason, the specification regions
were established in three ways and compared: inversion alone (NS),
inversion constrained by the KS (NS ∩ KS), and DM. For the
different levels of correlation, the performance of the methods is
presented in Figure 8. As for Scenario 2, a moving average window
was applied to remove noise and make the interpretation clearer.

For accuracy and TPR, a large gap exists in the inversion
results when constraining the region to be within the KS or not.
This makes sense since adding a limit on the knowledge space
tightens the specification region, and makes it more restrictive.
The chance of rejecting a good lot is increased, which leads to a
reduced number of well-classified good lots. Considering these
two metrics, when bounded, the inversion technique gives similar
performance compared to the direct mapping.

However, for PPV and FPR, the performance of PLS inversion
using both approaches are very similar. The KS bounding does not
seem to have an impact or only a slight one on themisclassification
of bad lots. The difference observed in ACC is then mainly caused
by misclassification of good lots. By comparing the inversion and
direct mapping, the PPV in Figure 8 shows that inversion is
slightly better mainly because of lower FPR for this technique.
However, the gap between the two techniques is smaller compared
to Scenario 2. For the FPR in direct mapping for low to moderate
correlation levels, adding one PLS component seems to double the
rate when Figure 8 and Figure 5 are compared. This suggests that
if the number of components had been selected using the FPR
obtained by direct mapping, the partition of combinations might

FIGURE 6 | Score plot showing the specification regions obtained with
DM and inversion for different levels of correlation between the quality
attributes (Scenario 2): (A) 30%, (B) 66%, and (C) 95%.
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have been different. When testing this hypothesis, for almost all
combinations, the number of components minimizing FPR is
achieved using two components (i.e., A � K).

Figure 8 also allows interpreting the impact of the collinearity
between the y-variables. Compared with Scenario 2, the correlation
does not seem to have an impact on performance. Even when some

fluctuations are present, the performance are relatively stable, and
no systematic trend is observed in the different classification
metrics. In addition, the performance at high levels of
correlation does not degrade as observed in Scenario 2. In the
latter, a unique solution exists for all combinations. For Scenario 4,
the system of equations to solve is under-determined because the

FIGURE 7 | Classification performance for Scenario 3: (A) Accuracy, (B) Positive Predictive Value, (C) True Positive Rate, and (D) False Positive Rate.

FIGURE 8 |Classification performance for Scenario 4: (A) Accuracy, (B) Positive Predictive Value, (C) True Positive Rate, and (D) False Positive Rate. The symbols
mark a specific combination investigated further, and their color is used to identify the method (DM or inversion).
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number of components (i.e. scores) is greater than the number of
equations. The solution provided by Eq. 24 results from the
minimization of the Euclidian norm of the score vector under
the hard constraint imposed by Eq. 20. This forces the solution to
be close to the origin of the latent space and results in a tighter and
bounded specification region. The impact of collinearity between
y-loading (i.e., c’s) seems less important, and the TPR tend to be
more stable (i.e., no increase as for Scenario 2).

In addition, Scenario 4 allows showing that specifications in
three dimensions are more difficult to use compared with Scenario
2. To illustrate the situation, an example named Scenario 4, is
drawn from the different combinations of y-variables requiring
three PLS components.Table 2 shows the parameters used to build
the specification region while Figure 8 shows the performance
metrics of the selected combination using a makers (dots). This
example is representative of the average performance across all
levels of correlation. Figure 9 shows the difference between
inversion and DM in terms of the size of the specification
regions. For ease of interpretation, the direct mapping and
inversion are presented in different plots but using the same scale.

As in Scenario 2, the DM technique shown in Figure 9A)
leads to a smaller region included in the knowledge space
compared to inversion. Figure 9B) presents the predicted
score vector tpred , the one that minimises the distance to the
origin of the latent space for all the combination of y-variables.
The null space representation is shown using a light color to
provide a clearer image. In fact, the real representation is an
elliptical cylinder where the periphery is modelled by an infinity
of NS lines. If the region is unbounded, the new prediction needs
to fall within the cylinder. When bounded, the point should fall
at the intersection of the KS ellipsoid and the cylinder to be
classified as a good lot. Thus, it is necessary to test the limit of the
Hotelling T2

first, and then to determine if the observation falls
within the cylinder. Since the equation representing the
specification region is unknown, it is more difficult to assess
the position of a new observation using an automatic approach
compared to DM.

4.3 Advantages and Drawbacks of the
Methods
The various scenarios investigated allowed to identify the main
advantages, and drawbacks of the two methods used for defining
multivariate specification regions. This section wraps-up all the
observations made through previous analyses and highlights the
most important points to consider when choosing the method
used to define the regions in Table 3.

Globally, the direct mapping approach is more restrictive in
terms of volume/area compared with the inversion as the selected
region is always included within the knowledge space. This can
also be seen as an advantage since the user does not need to define
a second limit to be within the KS. Furthermore, the DM allows a
higher level of flexibility regarding the choice of the specification
region shape. The inversion technique forces a similar shape to
the product acceptance region in the y-space.

The type of classifier resulting from both approaches is
different. Direct mapping provides a soft classifier since a
choice is made by the user to set the limit. The limits can be
adjusted by using the most relevant or important classification
metric based on the specific objective of the case considered, for
example to minimize acceptance of bad lots (i.e., FP). On the other
hand, with inversion, no degree of freedom is available to adjust the
position of the region based on the classification performance. The
only exception is when choosing the number of components to use
in the model. However, if the region is restricted to lie within the
KS, the classifier becomes soft since the user needs to specify the
confidence level of the T2 limit.

The previous results have shown that it is easier to calculate the
performance in classification and the location of a new sample
against the specification region with direct mapping since it involves
solving a simple inequality. To calculate performance using
inversion, the equation of the resulting region is difficult to
obtain, at the least. For example, the elliptical cylinder shown in
Figure 9 is constructed with a series of points. The current technique
to determine whether a point falls within the specification region

FIGURE 9 | Example of an acceptance region for the case A > K using a 3 components PLS model obtained by (A) direct mapping, and (B) inversion.
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obtained by inversion requires performing triangularization of the
area. This leads to more complex calculation compared to direct
mapping where it is straightforward to use the ellipsoid equations to
determine if a new prediction is included or not in the acceptance
region. For 2-dimensional cases, an easier way would be to use a
graphical tool to check where the point fall compared with the
region. The same approach could be used for 3 dimensions, but it
would be more difficult to determine if the predicted point is within
the specification region volume. For more than 4 components,
further research is needed to find the best way to calculate the
positioning of a new lot automatically.

Based on these analyses, identifying the best approach for
defining specification regions is not straightforward and depends
on the user’s objective. As classification performance is not
superior for all the metrics for either method, one of them
cannot be discarded. A compromise needs to be made during
the development stage. PLS model inversion should be used when
the cost of false negatives (FN) is higher than that of false positives
(FP), and maximizing recall (or TPR) should be prioritized, and/
or when the user prefers defining the shape of the specification
regions using the PLS model structure. Otherwise, the direct
mapping approach should be considered. Also, a careful attention
should be paid when the y-variable are very correlated. This may
lead to degradation of the classification performance. As a solution,
using fewer y-variables to reduce redundancy or performing PCA
on the y-space and using the scores to define the specifications
could provide simple alternatives (Jaeckle, 1998).

5 CONCLUSION

The variability of raw materials is increasing, and affects the
quality of the final product in many industries. To mitigate the

situation, efforts are made to improve quality control. A key
solution is to establish specifications regions for the properties of
incoming lots of raw materials to detect unsuitable materials
before processing it. In this work, a comparative analysis of two
data-driven approaches for establishing multivariate specification
regions using PLSmodels is proposed, namely the direct mapping
and PLS inversion. Their classification performance is compared
using multiple metrics. A focus was made on assessing the impact
of collinearity in the y-space on the region classification
performance.

It was shown that classification performance of bad quality lots
of raw materials are poorer when quality attributes are highly
correlated, when the number of PLS components is less than or
equal to the number of y-variables. At low to moderate levels of
correlation, the performance is slightly better for direct mapping
when minimizing the false positive rate (TPR) or, alternatively
Type II errors, is prioritized (i.e., reducing the risk of accepting
poor quality rawmaterials). For the case where the PLSmodel has
more components than the number of quality attributes, the
performance is quite stable across the range of correlation levels.
Both methods give similar classification performance when the
specification region obtained by inversion is included within the
knowledge space.

This study has shown that the decision of choosing a method
for defining multivariate specification regions for raw materials
depends on different factors. None of the method is superior in all
possible cases. Direct mapping offers a higher degree of flexibility
in the definition of the multivariate specification compared to
inversion since the user can choose the shape of the region, and
adjust its size/volume based on the most relevant criteria for a
given industrial application. This technique is also advantageous
in terms of computing resources as it requires solving an
inequality to determine whether a new observation falls inside

TABLE 3 | Summary of the main features of direct mapping and inversion techniques.

Direct mapping Inversion (A = K) Inversion (A > K)

Specification region shape No restriction
Same as the y-space acceptance region Same as the y-space acceptance region

extending along the null space

Multivariate
specification equation

Inequation
Area based on points in space.

No direct equation to determine the position
of a new point

Ease of use on
new data

Results obtained directly from the equation Requires the use of triangularization or graphical
tools if A is lower than 4 dimensions. Otherwise,

calculation becomes more complicated

Classifier Type Soft Hard Soft/Hard

Permissiveness More restrictive
More permissive

Better classification of good sample

Position of the MVspecs and KS Always inside Might be partially outside When unbounded, always partially
outside

Impact of correlation and performance
(A � K)

PPV and FPR performance decrease at high levels of correlation —

Higher precision and lower FPR Higher recall

Impact of correlation and performance
(A > K)

No impact of correlation — No impact of correlation
Worst or equal performance for all metrics Unbounded specifications give

better performance
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the region or not instead of the more complex approaches
required with inversion. All in all, the work presented should
be considered as a guide for establishing multivariate
specifications regions for incoming raw materials. Knowing the
main advantages/drawbacks, and selecting the most relevant
classification metric for their application will help users
choosing the most appropriate approach for defining their
specification regions.
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Food product safety and quality are closely related to the elemental composition of food.
This study combined multielement analysis and chemometric tools to characterize
237 extra-virgin olive oil (EVOO) samples from 15 regions of Italy, and to verify the
possibility of discriminating them according to different quality factors, such as varietal
or geographical origin or whether they were organically or traditionally produced. Some
elements have antioxidant properties, while others are toxic to humans or can promote
oxidative degradation of EVOO samples. In particular, the antioxidant activity of oils’
hydrophilic fraction was estimated and the concentrations of 45 elements were determined
by inductively coupled plasma mass spectrometry (ICP-MS). At first, univariate and
multivariate analyses of variance were used to compare the element concentrations,
and statistically significant differences were found among samples from different regions.
Successively, discriminant classification approaches were used to build a model for EVOO
authentication, considering, in turn, various possible categorizations. The results have
indicated that chemometric methods coupled with ICP-MS have the potential to
discriminate and characterize the different types of EVOO, and to provide “typical”
elemental fingerprints of the various categories of samples.

Keywords: authenticity, chemometrics, inductively coupled plasmamass spectrometry, olive oil, statistical analysis,
trace elements, traceability

1 INTRODUCTION

The elemental composition of foods is of toxicological and nutritional interest and can be considered
an important quality parameter (Astolfi et al., 2021a; 2020a; 2020b). In particular, the concentrations
of trace elements in extra-virgin olive oil (EVOO) are also one of the criteria for the assessment of the
quality regarding storable period and freshness (Choe andMin, 2006). In fact, some elements, such as
Ca, Co, Cu, Fe, Mg, Mn, Ni, and Sn, can promote the oxidative degradation of this important
component of the Mediterranean diet appreciated among consumers for its nutritional properties
and specific flavor (Choe and Min, 2006). Other elements (such as As, Cd, Cr, Cu, Hg, and Pb)
present in EVOO are of great concern because they are toxic and potentially carcinogenic to humans
even at low concentration (Tchounwou et al., 2012). The International Olive Council has established,
as a quality criterion, a maximum residue level (MRL) for the content of As, Cu, Pb (0.1 mg kg−1),
and Fe (3 mg kg−1) in olive oils and olive–pomace oils (International Olive Council, 2019), and the
maximum levels of Cu and Fe in other vegetable oils have been also legislated (Codex Stan 33-1981,
2021), varying from 0.1 up to 5.0 mg kg−1. Recently, element determination in EVOO samples has
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gained importance for oil geographical traceability and
authentication (Cordella et al., 2002; Dugo et al., 2004;
Benincasa et al., 2007; Cabrera Vique et al., 2012; Camin et al.,
2010; Beltran et al., 2015; Bajoub et al., 2018; Aceto et al., 2019;
Damak et al., 2019; Zaroual et al., 2021). In particular, elements
are useful in the characterization of protected designations of
origin (PDOs) or protected geographical indications (PGIs)
(European Union (EU), 2012), and they can also contribute to
determine EVOO geographical provenance of non-PDO oils
(Beltran et al., 2015; Aceto et al., 2019). In fact, the presence
of metals in EVOO varies according to their origin and can be due
to natural contamination from the soil, environment, fertilizers,
and genotype of the plant or to the production process and
contact with storage materials (Zeiner et al., 2005; Chatzistathis
et al., 2009; Kabata-Pendias, 2010; Lepri et al., 2011; Yaşar et al.,
2012; Bakircioglu et al., 2013). A suitable statistical treatment of
trace element data could allow a geographical characterization of
different EVOO samples. Principal component analysis (PCA)
and hierarchical cluster analysis (HCA) (Gumus et al., 2017; Luka
and Akun, 2019; Russo et al., 2020; Savio et al., 2014), linear
discriminant analysis (LDA) (Benincasa et al., 2007; Cabrera-
Vique et al., 2012; Beltran et al., 2015; Damak et al., 2019),
classification trees (CTs) (Gumus et al., 2017), and artificial
neural networks (ANNs) (Farmaki et al., 2012; Gonzalez-
Fernandez et al., 2019) have been used most.

Several beneficial implications of EVOO are derived from its
antioxidant content (Dugo et al., 2020; Hannachi and Elfalleh,
2020). Intake of antioxidant compounds from oil, such as
phenols, phenolic acids, and flavonoids (Capriotti et al., 2014),
is usually related to health well-being. As well known, natural
antioxidants play a key role in contrasting reactive species activity
in living organisms, thus preventing oxidative stress-related
diseases, such as cardiovascular and neurodegenerative illness
and many other chronic disorders (Pérez-Jiménez et al., 2008;
Cioffi et al., 2010; Šarolić et al., 2014). Moreover, antioxidants
prevent lipid oxidations that cause quality degradation and
unpleasant taste formation in edible oils (Christodouleas et al.,
2015). Therefore, estimation of antioxidant capacity is crucial for
evaluating oil’s healthy and organoleptic properties. One of the
most widely used in vitro procedures to routinely and globally
estimate oil antioxidant power is the 2,2-diphenyl-1-
picrylhydrazyl spectrophotometric assay (DPPH) that has the
possibility of being easily applied to a high number of samples,
allowing a great level of reliability (Kedare and Singh, 2011;
Frezzini et al., 2019). The assay is based on the quantitative
measurement of the decrease of absorbance due to the scavenging
capacity of antioxidants present in the sample toward DPPH free
radicals (Christodouleas et al., 2015).

All the described aspects making trace element determination,
as well as the antioxidant activity of EVOO samples, are very
important for both economic and health contexts (Zaroual et al.,
2021; Bajoub et al., 2018). In particular, the European Union is
the first producer, consumer, and exporter of olive oil in the world
(Eurostat, 2019; IOC, 2018a,b). Italy follows Spain, the first world
producer with an average of 20% of the total European olive oil
production. About two-thirds of total Italian production is
represented by EVOO (Carbone et al., 2018). Therefore, the

use of a rapid and accurate analytical method for trace
element analysis in EVOO has a great importance in quality
control and food analysis (Llorent-Martínez et al., 2011; Shah and
Soylak, 2021). Unfortunately, the determination of trace elements
in EVOO samples is particularly difficult to perform, as some of
them are present at very low concentrations and due to high
complexity of the matrix (Shah and Soylak, 2021; Trindade et al.,
2015). Sample preparation of EVOO samples is a critical step, and
the determination of trace elements in EVOO requires very
sensitive instrumental techniques such as inductively coupled
plasma–mass spectrometry (ICP-MS) (Astolfi et al., 2021b).

The main purpose of this study is to evaluate the most
significant relationships between element levels in EVOO and
different categorizations, mostly related to the geographical
origin using chemometric tools coupled with the ICP-MS
method. For this purpose, 45 elements from a total of 237
EVOO samples from 15 Italian regions were analyzed. Also,
the antioxidant activity of oils’ hydrophilic fraction (HF) was
estimated by the DPPH assay. The corresponding data set
constituted the basis for building and validating classification
models for the discrimination of the samples according to specific
categorizations, which reflect possible quality attributes of the oils
(and for which there could be a statistically significant number of
individuals available). In particular, discriminant classification
models were built using partial least square discriminant analysis
(PLS-DA) to account for the possibility of dealing with correlated
variables and low samples to variable ratios; moreover, to evaluate
model stability and, at the same time, their reliability in an
unbiased way, also in cases where the available number of
samples per category was not too large, a repeated double
cross-validation strategy (rDCV) was adopted.

2 MATERIALS AND METHODS

Sample collection
EVOO samples (N � 237) were collected between 2017 and 2018
from 15 production regions of Italy and different cultivars. In
particular, a total of 64 EVOO samples were with PDOs and 21
with PGIs (European Union (EU), 2012). Table 1 summarizes the
number of EVOO samples according to their geographical
provenances in terms of the regions. All samples (∼100 mg)
were kept in screw-capped glass vials in the dark at room
temperature until analysis.

Chemicals
All the solutions were prepared with deionized water (18.3
MΩ cm resistivity) obtained from an Arioso (Human
Corporation, Seoul, Korea) Power I RO-UP Scholar UV
deionizer system. HNO3 at 67% (suprapure; Carlo Erba
Reagents, Milan, Italy), H2O2 at 30% (suprapure; Merck KgaA,
Darmstadt, Germany), and Ar, He, and H2 gases at 99.9995%
(SOL Spa, Monza, Italy) were used.

For ICP-MS analysis, all calibration standard solutions were
prepared from a 1,000-mg l−1 multielement standard solution
(VWR International, Milan, Italy) by dilution with 10% (v/v)
HNO3 and H2O2 (2:1 v/v). Single standard solutions of In, Rh, Sc,
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and Th (at 0.010 mg l−1 from 1,000 ± 5 mg l−1; Merck KGaA,
Darmstadt, Germany) and Y (at 0.005 from 1,000 ± 2 mg l−1;
Panreac Química, Barcelona, Spain) were used as internal
standards. A multielemental solution containing Ba, Be, Ce,
Co, In, Pb, Mg, Tl, and Th (at 0.005 mg l−1 from 10.00 ±
0.05 mg l−1; Spectro Pure, Ricca Chemical Company,
Arlington, TX, USA) was used to check the instrument
performance.

For the estimation of the antioxidant activity of EVOO
samples, DPPH was purchased from Sigma Aldrich Co. (St.
Louis, MO, USA).

Sample preparation and analysis
2.1.1 Analysis of elements
Duplicate samples (∼0.5 g) of each EVOO variety were accurately
weighed in 10-ml disposable graduated tubes (Artiglass, Due
Carrare, PD, Italy). Then, 5 ml reagent mixture of 10% (v/v)
HNO3 and H2O2 (2:1 v/v) was added to each tube and heated in a
water bath (WB12, Argo Lab, Modena, Italy) at 95°C for 40 min
(Astolfi et al., 2021b). The lower aqueous phase was transferred
into a clean tube and subjected to the ICP-MS (820-MS; Bruker,
Bremen, Germany) analysis without further dilutions. The
elements were monitored in standard and collision–reaction
interface (CRI) modes to check and reduce possible
polyatomic interference, and the following isotopes were used:
7Li, 9Be, 11B, 23Na, 24Mg, 27Al, 28Si, 31P, 39K, 44Ca, 49Ti, 51V, 52Cr,
55Mn, 57Fe, 59Co, 60Ni, 65Cu, 66Zn, 71Ga, 75As, 78Se, 85Rb, 88Sr,
90Zr, 93Nb, 98Mo, 107Ag, 112Cd, 118Sn, 121Sb, 125Te, 133Cs, 137Ba,
139La, 140Ce, 141Pr, 146Nd, 159Tb, 163Dy, 182W, 205Tl, 208Pb, 209Bi,
and 238U. CRI was used with He (30 ml min−1) and H2 (70 ml
min−1) as cell gases. The ICP-MS operating conditions and
parameters were as follows: radiofrequency power 1,400W;

plasma Ar flow rate 18 l min−1; auxiliary Ar flow rate 1.8 l
min−1; nebulizer gas flow rate 0.9 l min−1; peak hopping
scanning mode; steady-state analysis mode; dwell time
between 50 and 100 ms, pump rate 3 rpm; five scans/replicate;
and three replicates/sample. For the quantitative analysis of
EVOO samples, calibration curves were built on seven
different concentrations between 0.00025 and 0.05 mg l−1 and
0.0125 and 5 mg l−1 for all trace and major elements, respectively.

2.1.2 Estimation of antioxidant activity
DPPH assay was performed according to the procedure
described by Šarolić et al. (2014) with slight modifications.
In detail, ∼0.5 g of each EVOO sample was mixed with 1 ml of
80:20 (v/v) CH3OH:H2O, and the mixture was blended in an
ultrasonic bath (PROCLEAN 10.0 ultrasonic cleaner;
Ulsonix, Berlin, Germany) for 15 min at 30°C. When the
two phases appeared, the hydrophilic phase was collected,
and the extraction was repeated another two times. Then, the
hydrophilic extracts were combined to get a homogeneous
sample. To perform DPPH assay, 50 µl of the HF sample was
added to 2 ml of methanolic DPPH (0.04 mM), then the
mixture was shaken for 30 min by rotating agitation
(60 rpm; rotator; Glas-Col, Terre Haute, IN, USA) at room
temperature in the dark and analyzed by UV-Vis
spectrophotometry (Varian Cary 50 Bio UV-Vis; Varian
Inc., Palo Alto, CA, USA) set at 517 nm, by measuring the
sample absorbance decrease against the control (blank
solution). Solutions were prepared daily and used fresh,
and three replicates of each type of oil were performed.
The DPPH radical scavenging activity was calculated in
terms of percentage reduction of DPPH according to the
following equation:

TABLE 1 | Number of samples of extra virgin olive oil for each considered category.

Region All
samples

Oil production Cultivar
(number of samples)Organically Non-

organically
Not

reported

Northern
Italy

Trentino Alto
Adige

7 2 4 1 Blend (3); Casaliva (1); Coratina (2)

Liguria 6 0 4 2 Lavagnina (1); Taggiasca (4)
Lombardy 3 0 2 1 Blend (1); Casaliva (1); Leccino (1)
Veneto 3 1 2 0 Blend (2); Grignano (1)
Emilia
Romagna

1 0 1 0 Careggiolo (1)

Central Italy Abruzzo 14 3 11 0 Blend (8); Dritta (3); Intosso (3)
Lazio 24 6 8 10 Blend (5); Canino (3); Frantoio (1); Itrana (2); Leccino (2); Rosciola (1)
Marche 7 2 5 0 Ascolana (2); Blend (1); Leccino (1); Orbetana (1); Raggiola (2)
Toscany 79 33 42 4 Blend (38); Arancino (1); Coratina (1); Frantoio (10); Leccino (4); Moraiolo (7);

Nocellara (1); Olivastra Seggianese (1); Pendolino (1); Raggiolo (1)
Umbria 8 0 8 0 Blend (8)

Southern
Italy

Apulia 33 6 18 9 Blend (3); Coratina (18); Frantoio (1); Leccino (1); Ogliarola (2); Olivastra (1);
Peranzana (4); Pichioline (2)

Calabria 12 5 6 1 Blend (3); Carolea (2); Nocellara (1); Ottobratica (4)
Campania 7 0 7 0 Blend (2); Cammarotana (1); Ortice (1); Ravece (1); Salella (1)
Sardinia 12 1 11 0 Bosana (3); Blend (6); Semidana (1)
Sicily 21 4 14 3 Blend (4); Biancolilla (2); Cerasuola (1); Leccio del Corno (1); Nocellara (9);

Tonda Iblea (3)
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DPPH [%] � (A0 − AS)
A0

× 100

where A0 represents the absorbance of the blank solution and AS

is the absorbance of the sample.

Quality assurance
The method accuracy for element determination was checked by
recovery assays in the EVOO samples adding element at the low
(0.005 and 0.02 mg l−1) and high (0.2 and 1 mg l−1) spike
concentrations for all trace and major elements (B, Ca, K, Mg,
Na, P, Si, and Sr) and always in the linear calibration range. In
addition, accuracy was tested by a certified reference material
(Conostan S-21; lot number: 21550100) obtained from SCP
SCIENCE (Baie D’Urfé, Canada). The recoveries fell within
20% of the expected value and reproducibility lower than 20%
(Astolfi et al., 2021b). The method detection and quantification
limits (MDL and MQL, respectively) were in the range 0.004–510
and 2.5–5,000 μg kg−1, respectively. Only the Ca, Cr, Mg, Mn, Ni,
P, Rb, Ti, and Zn levels in the EVOO samples were 100% greater
than the MDL. The possible instrumental drift for the ICP-MS
analysis was checked and corrected using an internal standard
solution of In, Rh, Sc, Th, and Y (Astolfi et al., 2021b; 2020c).
Blank samples and control standards were tested every 20
samples in each run, and recalibration was performed every
100 samples.

Statistical analysis
The data were statistically evaluated according to the procedures
of the software SPSS Statistics 25 (IBMCorp., Armonk, NY, USA)
for univariate analysis. Analytical replicates were averaged prior
to the successive elaboration. Non-parametric tests
(Kruskal–Wallis and pairwise post-hoc) were applied because
of the unequal numbers of samples per group and the not
normal distribution (Soliani, 2003). The element
concentrations measured below MDL were substituted by its
half value (MDL/2) for the statistical elaboration (Farmaki
et al., 2012). A p-value lower than 0.05 was considered
statistically significant.

Partial least square discriminant analysis (PLS-DA; Ståhle and
Wold, 1987; Barker and Rayens, 2003) implemented through in-
house written functions running under the Matlab environment
(R2015b, v.8.6, TheMathWorks Inc., Natick, MA, USA) was used
to build multivariate classification models. PLS-DA is a
regression-based classification model which operates by coding
class belonging by means of a dummy binary response matrix (or
vector, when the problems involve only pairs of classes, as in the
present study). In particular, if discrimination is sought between
two categories, class belonging of the training samples is
described by the vector y, having 1 in correspondence of all
the individuals from the first class and 0 in all the remaining
positions (i.e., those corresponding to the second group). A PLS
model (Wold et al., 1983) is then built between the experimental
data X and the dummy vector y, and the predicted value of the
response (ŷ) constitutes the basis for the classification of the
samples: since the predicted responses are real-valued, an optimal
threshold ythres has to be calculated so that, if the predicted

response is greater than ythres, the sample is predicted as class 1,
otherwise as class 2. In the present study, the threshold was
calculated by applying LDA on the predicted responses calculated
on the training samples (Perez et al., 2009).

The reliability of the classification models was evaluated by
means of a repeated double-cross-validation (rDCV) procedure
(Filzmoser et al., 2009). Double cross-validation (DCV) is a
validation strategy which involves two nested loops of cross-
validation: an inner loop for model selection (i.e., for choosing the
optimal number of latent variables) and an outer loop which
mimics an external (i.e., not involved in any model building and/

TABLE 2 | Method detection limits (MDL; μg kg−1) and element levels [median,
minimum (min) and maximum (max); μg kg−1] in extra-virgin olive oils (EVOO;
n � 237) from all over Italy.

Element MDL Italian EVOO samples

%N > MDL Median Min Max

Ag 0.06 27 <0.06 <0.06 0.86
Al 9 85 34 <9 1,300
As 0.3 28 <0.3 <0.3 4.0
B 20 16 <20 <20 770
Ba 0.7 49 <0.7 <0.7 175
Be 0.004 43 <0.004 <0.004 0.431
Bi 0.1 23 <0.1 <0.1 1.0
Ca 510 100 4,090 1,230 35,700
Cd 0.07 67 0.09 <0.07 0.97
Ce 0.1 65 0.2 0.1 3.5
Co 0.05 70 0.12 <0.05 2.16
Cr 0.3 100 5 0.4 839
Cs 0.007 55 0.008 <0.007 0.101
Cu 0.6 99 3.2 <0.6 41.6
Dy 0.005 19 <0.005 <0.005 0.055
Fe 12 99 77 <12 582
Ga 0.06 15 <0.06 <0.06 0.69
K 40 24 <40 <40 939
La 0.05 70 0.10 <0.05 0.79
Li 0.06 32 <0.06 <0.06 6.07
Mg 10 100 91 21 723
Mn 0.5 100 2.4 1.1 43.5
Mo 0.3 20 <0.3 <0.3 2.0
Na 25 98 110 <25 585
Nb 0.04 7 <0.04 <0.04 0.11
Nd 0.03 52 0.03 <0.03 13.8
Ni 0.5 100 5.6 2.1 49.7
P 60 100 272 127 650
Pb 0.3 99 0.9 <0.3 22.1
Pr 0.008 40 <0.008 <0.008 1.65
Rb 0.06 99 0.24 <0.06 1.77
Sb 0.02 16 <0.02 <0.02 0.37
Se 0.6 48 <0.6 <0.6 7.8
Si 270 1 <270 <270 3,340
Sn 0.06 63 0.08 <0.06 1.94
Sr 1 65 3 1 58
Tb 0.006 19 <0.006 <0.006 1.28
Te 0.03 3 <0.03 <0.03 0.06
Ti 0.4 100 1.9 0.8 10.7
Tl 0.06 0 <0.06 <0.06 <0.06
U 0.005 30 <0.005 <0.005 0.050
V 0.08 98 0.53 <0.08 1.40
W 0.3 38 <0.3 <0.3 5.1
Zn 20 100 111 54 749
Zr 0.1 57 <0.1 <0.1 2.3
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or optimization stage) test set, to be used for estimating the
prediction and generalization ability. In order to avoid that the
performances of the model depend on a particular sample
splitting scheme, the procedure is repeated a sufficient number
of times, changing the distribution of the individuals across the
different cancelation groups, hence the name “repeated” DCV.
Repeating the double-cross-validation procedure allows also
having multiple predictions for the same samples, which
translates to the possibility of estimating confidence intervals
for all the classification figures of merit and model parameters.

3 RESULTS AND DISCUSSION

Levels of elements
Table 2 shows the concentration of the elements in EVOO from
all over Italy. The content of Tl was below the respective MDL
(0.06 µg kg−1) in all the samples. Si, Te, and Nb were found above
the MDL (270, 0.03, and 0.04 µg kg−1, respectively) only in 1%,
3%, and 7% of all samples. Only the Ca, Cr, Mg, Mn, Ni, P, Ti, and
Zn levels in the EVOO samples were 100% greater than the MDL.
The maximum concentrations for As (4.0 μg kg−1), Cu (41.6 μg
kg−1), Fe (582 μg kg−1), and Pb (22.1 μg kg−1) were lower than the
MRLs established by the IOC for olive and pomace-olive oils,
which are 100 μg kg−1 for As, Cu, and Pb and 3,000 μg kg−1 for Fe
(International Olive Council, 2009). Calcium showed the highest
concentration ranging from 1,230 to 35,700 μg kg−1, whereas
from 10- to 50-fold lower levels were found for Fe, Mg, Na, P, and
Zn (median � 77, 91, 110, 272, and 111 μg kg−1, respectively).

Concentrations of elements obtained in this study were
compared to levels measured in EVOO from several other
Mediterranean countries (Supplementary Tables S1–S4).
Levels of many elements showed wide variability even within
the same country. The Ag, Ba, P, and Sn data were not considered
because these elements are not completely extracted with the
method used. As regards the content of B, Be, Dy, Nd, Pr, Si, Tb,
and Te, we could not find other data for EVOO in the literature.
Our results were similar to those reported by another study on
Italian EVOO (Benincasa et al., 2007); on the contrary, they
differed significantly from other data concerning most of the
elements investigated in the EVOOs of Spain (Beltran et al., 2015;
Llorent-Martínez et al., 2014), Croatia (Pošćić et al., 2019),
Tunisia (Damak et al., 2019), and Turkey (Gumus et al.,
2017). The concentrations of Ca (1,230–35,700 μg kg−1), Cr
(0.4–839 μg kg−1), Mg (21–723 μg kg−1), and Ni (2.1–49.7 μg
kg−1) found in this study were in the same range to that found in
other Italian EVOO (Ca � 1850–26,900 μg kg−1; Cr � 116–437 μg
kg−1; Mg � 56–1,030 μg kg−1; and Ni � nd-46.9 μg kg−1) as
reported by Benincasa et al. (2007), but from 10 to 100 times
higher than the levels reported in Croatian (Pošćić et al., 2019)
and Turkish EVOO (Gumus et al., 2017). Fe concentrations
(<12–582 μg kg−1) varied from 100 times lower to 100 times
higher than the level of Fe quantified in EVOO from Turkey
(1–14,670 μg kg−1) by Gumus et al. (2017) and Croatia
(0.19–2.57 μg kg−1) by Pošćić et al. (2019) or Spain (0.5–1.2 μg
kg−1) by Beltran et al. (2015), respectively. This variability in the
concentrations of the elements present in EVOO samples may

depend on various factors related to the geochemistry of the
provenance soil but also to physiological aspects typical of the
species from which a particular EVOO derives (Giaccio and
Vicentini, 2008).

Grouping the data according to geographic origin as north
(Emilia Romagna, Liguria, Lombardy, Trentino Alto Adige, and
Veneto), center (Abruzzo, Lazio, Marche, Tuscany and Umbria),
and south (Apulia, Calabria, Campania, Sardinia and Sicily) of
Italy, it is possible to identify elements that differ significantly
from one group to another (Table 3). In particular, the EVOO
samples from northern Italy had significantly higher levels of Cs,
Fe, Na, P, and Pr than those from central Italy and Fe, Pr, and U
than those from southern Italy. Both Fe and Pr appear to provide
a good tool for tracing the EVOO production chain in accord
with other authors (Aceto et al., 2019; Damak et al., 2019). Iron is
common in silicates and carbonates present in soil (Pohl, 2011);
however, some authors reported that Fe may be present in edible
oils as a result of storage and processing contaminations (Mendil
et al., 2009; Zeiner et al., 2010). Praseodymium and the other
lanthanides do not have a defined role in the metabolism of
plants; therefore, their distribution remains almost unchanged in
the passage from the soil to the fruits (Aceto et al., 2019). For this
reason, these elements can be used as fingerprints to discriminate
the geographic origin of the EVOO samples (Farmaki et al., 2012;
Aceto et al., 2019). In addition, the analysis of some elements in
EVOO, such as Cs and Rb, which can be easily mobilized in the
soil, can be linked to a geogenic source rather than an
anthropogenic origin (such as extraction process or cultivation
practices) and can help in the geographical traceability of EVOO
samples (Kelly, Heaton, & Hoogewerff, 2005).

By comparing the concentrations of the elements in the EVOO
samples from each region (Supplementary Tables S5–S7), the
number of elements that differ significantly increases. Table 4
shows a summary of all the elements that differ significantly
according to the region. Emilia Romagna was not considered for
the comparison because there was only one EVOO sample to
consider. EVOOs from Lombardy did not have levels of elements
that are significantly different from those of oils from all other
regions. Considering the other oils of northern Italy, the EVOOs
from Trentino and Liguria differed significantly from the EVOOs
from Marche only for the content of Na, which in the EVOOs
from Marche (median � 38 μg kg−1) was about four times lower,
while the EVOOs from Veneto had a higher content of Fe
(median � 218 μg kg−1) than the oils from Abruzzo (median �
15 μg kg−1) and a higher content of Fe and Na (median � 218 and
174 μg kg−1, respectively) compared to the Marche. The EVOO
samples from Lazio differed significantly for a large number of
elements (Ba, Ca, Cd, Ce, Cs, Dy, Ga, La, Mg, Na, Nd, Pr, Pb, Rb,
Sb, Sr, Tb, Ti, U) compared to Tuscany, Abruzzo, Campania, and
Marche. In all cases, levels of Cd (median � 0.14 μg kg−1), La
(median � 0.20 μg kg−1), and Rb (median � 0.48 μg kg−1) were
higher than those of oils from other regions mentioned above.

Antioxidant activity
Following the extraction and storage of EVOO, it is inevitable that
an oxidation process occurs, which leads to a deterioration of the
oil (Bendini et al., 2007). Some factors such as temperature, light,
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oxygen and other chemical elements, unsaturated fatty acid
composition, and the presence of antioxidants can affect the
oxidation process differently (Frankel 1985). Phenolic compounds
have antioxidant capacities in EVOO since they can eliminate
peroxyl and alkoxy radicals and chelate transition metal ions
present in traces (Visioli et al., 1998). Several elements are
known for their antioxidant properties (Perna et al., 2012;
Thiruvengadam et al., 2020). Indeed, in the present study
(Supplementary Table S8), significant correlations were
observed between the antioxidant activity and elements. A

positive and significant moderate correlation (r � 0.500–0.768,
p � 0.05) was observed between Al, Ca, Fe, V, and Zr in EVOOs
fromAbruzzo, Ba in EVOOs from Apulia, and B, Mn, Se, and V in
EVOOs from Sardinia and the DPPH%data. Conversely, a low and
positive correlation (r < 0.4) was recorded between Ba and Ni and
the antioxidant activity of all samples. Other elements (Ag, Cr, Cu,
Li, Sb, Si, and Tl) might not affect the antioxidant properties as
non-significant correlations were observed between them.

Supplementary Tables S5–S7 show the antioxidant activity
measured by the DPPH assay (DPPH%) in the EVOO samples

TABLE 3 | Element levels [median, minimum (min) and maximum (max); μg kg−1] in extra-virgin olive oils from north (n � 20), central (n � 132) and south (n � 85) Italy.

Element North Italya Central Italyb South Italyc

%N > MDL Median Min Max %N > MDL Median Min Max %N > MDL Median Min Max

Ag 25 <0.06 <0.06 0.26 30 <0.06 <0.06 0.86 25 <0.06 <0.06 0.22
Al 75 32 <9 615 86 34 <9 1,291 86 34 <9 1,298
As 25 <0.3 <0.3 2.8 28 <0.3 <0.3 4.0 28 <0.3 <0.3 2.2
B 20 <20 <20 85 15 <20 <20 734 16 <20 <20 770
Ba 50 0.6 0.4 99.5 49 2.9 <0.7 175 48 <0.7 <0.7 147
Be 40 <0.004 <0.004 0.431 37 <0.004 <0.004 0.272 49 0.004 <0.004 0.061
Bi 40 <0.1 <0.1 0.2 23 <0.1 <0.1 0.4 19 <0.1 <0.1 1.0
Ca 100 4,590 1,480 9,170 100 3,648 1,229 35,709 99 4,278 1,432 24,122
Cd 70 0.12 <0.07 0.33 66 0.09 <0.07 0.97 67 0.09 <0.07 0.61
Ce 70 0.2 <0.1 0.7 69 0.2 0.1 3.5 60 0.2 0.1 1.0
Co 90 0.11 <0.05 0.59 68 0.13 <0.05 1.23 69 0.08 <0.05 2.16
Cr 100 3.7 0.5 839 99 5.0 0.4 123 100 4.1 0.5 533
Cs 80 0.013a <0.007 0.080 52 0.007a <0.007 0.084 55 0.008 <0.007 0.101
Cu 100 4.6 <0.6 20.7 99 3.0 <0.6 40.9 100 3.3 <0.6 41.6
Dy 20 <0.005 <0.005 0.010 20 <0.005 <0.005 0.026 17 <0.005 <0.005 0.055
Fe 100 158a,b <12 495 99 70a <12 403 100 86b 14 582
Ga 35 <0.06 <0.06 0.33 11 <0.06 <0.06 0.69 16 <0.06 <0.06 0.59
K 40 <40 <40 293 20 <40 <40 673 26 <40 <40 939
La 80 0.13 <0.05 0.41 70 0.08 <0.05 0.79 67 0.11 <0.05 0.71
Li 40 <0.06 <0.06 1.67 29 <0.06 <0.06 6.07 35 <0.06 <0.06 4.42
Mg 100 97 37 262 100 90 21 723 99 96 28 613
Mn 100 2.7 1.5 7.1 99 2.3 1.1 18.6 100 2.6 1.4 43.5
Mo 30 <0.3 <0.3 1.3 19 <0.3 <0.3 1.7 20 <0.3 <0.3 2.0
Na 100 131a 87 331 99 102a <25 585 100 114 <25 513
Nb 15 <0.04 <0.04 0.05 5 <0.04 <0.04 0.06 8 <0.04 <0.04 0.11
Nd 80 0.06 <0.03 1.39 47 <0.03 <0.03 6.43 53 0.03 <0.03 13.8
Ni 100 5.2 2.5 29.5 100 6.0 2.1 40.6 100 5.4 2.4 49.7
P 100 309a 220 650 99 269a 127 522 100 272 189 548
Pb 100 1.2 <0.3 4.3 100 0.8 <0.3 22.1 100 1.1 <0.3 8.7
Pr 70 0.012a,b <0.008 0.359 38 <0.008a <0.008 1.58 35 <0.008b <0.008 1.65
Rb 95 0.29 <0.06 1.10 100 0.24 0.06 1.77 100 0.26 <0.06 1.36
Sb 10 <0.02 <0.02 0.04 17 <0.02 <0.02 0.37 16 <0.02 <0.02 0.14
Se 55 0.6 <0.6 6.8 49 <0.6 <0.6 6.9 44 0.6 <0.6 7.8
Si 0 <270 <270 <270 1 <270 <270 3,344 1 <270 <270 442
Sn 80 0.10 <0.06 0.45 59 0.06 <0.06 0.60 65 0.09 <0.06 1.94
Sr 80 3 1 7 64 3 1 34 63 3 1 58
Tb 25 <0.006 <0.006 0.112 20 <0.006 <0.006 1.13 16 <0.006 <0.006 1.28
Te 5 <0.03 <0.03 0.05 1 <0.03 <0.03 0.05 6 <0.03 <0.03 0.06
Ti 100 2.2 1.2 8.1 99 1.8 0.8 5.6 100 2.1 1.1 10.7
Tl 0 <0.06 <0.06 <0.06 1 <0.06 <0.06 0.08 0 <0.06 <0.06 0.03
U 55 0.006a <0.005 0.044 31 <0.005 <0.005 0.044 24 <0.005a <0.005 0.050
V 100 0.50 <0.08 1.04 99 0.52 <0.08 1.21 100 0.55 <0.08 1.40
W 40 <0.3 <0.3 2.0 37 <0.3 <0.3 2.3 39 <0.3 <0.3 5.1
Zn 100 145 55 283 99 98 54 749 99 143 57 672
Zr 55 0.1 0.1 0.6 53 0.1 0.1 1.8 63 0.1 0.1 2.3

aNorth Italy groups the following regions: Emilia Romagna, Liguria, Lombardy, Trentino Alto Adige, and Veneto.
bCentral Italy groups the following regions: Abruzzo, Lazio, Marche, Tuscany, and Umbria.
cSouth Italy groups the following regions: Apulia, Calabria, Campania, Sardinia, and Sicily. For each element, numbers in bold with the same superscript indicate significant differences
(p < 0.05).
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from each region. EVOOs from central and southern Italy
showed higher antioxidant activity than oils from northern
Italy. In particular, Table 4 shows that EVOOs from Sicily had
a significantly lower DPPH% (median � 18.2%) than oils from
Abruzzo (median � 47%), Apulia (median � 37.6%), and
Tuscany (median � 36.2%), while the EVOOs from Liguria
had significantly lower DPPH% (median � 15.7%) compared
to Tuscany. The highest data of DPPH% (67.3%) was found in
the oils of Campania. Cioffi et al. (2010) demonstrated that oils
from Campania have antioxidant properties, which are very
likely due to the presence of high contents of phenolic
compounds.

Classification of EVOOs according to
geographical origin
At first, the possibility of discriminating the different EVOOs
according to their geographical origin was considered. In
particular, due to the unavailability of the information about
the origin of all the samples and to the unbalancedness in the
distribution of samples per class, when considering the oils of
known origin, several two-class models (i.e., comparing two

regions at a time) were built and validated. Here it must be
further stressed that all the regions for which the available
number of certified individuals was too low to be considered
representative have not been included in the comparison.

In all cases, PLS-DA analysis was carried out on the matrix
made up of the concentrations of the elements presenting at least
70% of the values above the limit of detection (so to avoid possible
artifacts related to data imputation) and including also TEAC and
DPPH. Models were built after autoscaling and validated by
means of an rDCV procedure with 50 runs, 10 cancelation
groups in the outer loop (the one mimicking the external test
set) and 5 in the inner loop (the one used for model selection,
i.e., definition of the optimal number of latent variables). The
results obtained are summarized in Table 5, where the accuracy,
the mean correct classification rate, and the sensitivities for the
two compared classes are reported. Since two-class discriminant
models were calculated, due to symmetry the sensitivity of a class
(true positive rate) is the specificity (true negative rate) of the
other category; this is why sensitivities only have been reported.
Moreover, since the number of samples per class was, in some
cases, highly unbalanced (Table 1), we have decided to report
both classification accuracy (percentage of correctly classified

TABLE 4 | Summary of significant differences within medians of the 45 selected elements and antioxidant activity (DPPH%) among all samples from Italian regions by
Kruskall–Wallis and pairwise post-hoc tests. A p-value lower than 0.05 was considered statistically significant.

Trentino Liguria Veneto Lazio Tuscany Umbria Calabria Apulia Sardinia Sicily

Toscany DPPH% Cd, Cs, Dy, Ga, La, Na, Nd,
Pr, Rb, Sb, Tb, Ti, U

-

Umbria Dy, U -
Apulia Ti,Zr -
Sardinia La, Tb, U Al -
Sicily U Be,DPPH% DPPH% Be -
Abruzzo DPPH% Fe Ba, Ca, Cd, Ce, Dy, La, Mg,

Nd, Rb, Sr, Tb
Ni Fe,Se Fe Ce,La,Ni,Zn,Zr As,Ba,Ca,Ce,Fe,La

Ni, Zn, DPPH%

Campania Ba, Cd, La, Mg, Na, Rb, U Na La Na Ba,La
Marche Na Na Fe,Na Ba, Cd, Ce, Cs, La, Na, Nd,

Mg, Pb, Pr, Rb, Ti, U
Fe Cd,Fe,Na Na,Rb,Ti Na Ba,Be,Rb

TABLE 5 | PLS-DA discrimination between pairs of geographical origin. Figures of merit estimated on the outer loop of the rDCV procedure (expressed as mean ± standard
deviation).

Class1 Class2 % accuracy Mean %
correct classification

rate

% sensitivity
(Class1)

% sensitivity
(Class2)

Lazio Abruzzo 76.2 ± 3.9 77.1 ± 4.2 73.1 ± 3.9 81.0 ± 7.7
Lazio Sicily 79.4 ± 3.1 79.0 ± 2.9 81.9 ± 4.9 76.1 ± 2.8
Lazio Apulia 68.8 ± 5.2 68.9 ± 5.2 64.6 ± 6.2 73.2 ± 7.6
Lazio Tuscany 75.2 ± 1.8 69.2 ± 2.3 57.8 ± 4.2 80.6 ± 2.1
Lazio Calabria 61.7 ± 5.1 54.4 ± 5.5 71.9 ± 5.9 36.9 ± 8.5
Abruzzo Calabria 81.4 ± 6.1 81.0 ± 7.1 82.9 ± 4.3 79.1 ± 12.2
Abruzzo Sicily 75.0 ± 4.3 75.5 ± 4.4 81.2 ± 7.6 69.7 ± 5.9
Abruzzo Tuscany 58.2 ± 3.4 54.6 ± 5.6 49.3 ± 11.6 59.9 ± 4.0
Abruzzo Apulia 54.3 ± 6.6 54.2 ± 6.8 53.6 ± 9.6 54.8 ± 7.5
Sicily Tuscany 69.5 ± 2.7 65.8 ± 4.1 59.9 ± 7.6 71.8 ± 2.8
Sicily Apulia 70.7 ± 4.3 70.2 ± 4.2 65.4 ± 4.9 74.9 ± 6.5
Tuscany Apulia 64.6 ± 3.1 55.1 ± 4.9 72.5 ± 2.9 37.7 ± 9.3
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samples irrespectively of the category over the total number of
samples) and the mean correct classification rate, which is the
average of the specificities of the two classes.

As anticipated in the materials and methods section, the use of
repeated double cross-validation allows obtaining not only a
point estimate of the figures of merit on the validation (outer
loop) samples but also their confidence intervals, so as to be able
to evaluate the consistency of the results.

By looking at Table 5, it is evident how the different models
result in different reliabilities, with some presenting rather low
classification performances. On the other hand, there are some
models which result in an overall accuracy higher than 75%, with
a comparable mean correct classification rate (suggesting that the
classification performances are not affected by the numerosity of
the samples; Table 1). Additionally, the standard deviation of the
figures of merit for these models is relatively low (corresponding
roughly to one more sample being correctly or wrongly classified
with respect to the reported averages), confirming the consistency
of the obtained classification. Based on these considerations, only
the best models will be discussed in detail in the remainder of this
section, namely, Lazio vs. Abruzzo, Lazio vs. Sicily, Abruzzo vs.
Calabria and Abruzzo vs. Sicily.

The first model to be examined is the one discriminating
Lazio samples from the oils from Abruzzo, for which an overall
76.2 ± 3.9% classification accuracy on the outer loop samples
was registered. By looking at the individual sensitivities
together with their confidence intervals (73.1 ± 3.9% for
Lazio and 81.0 ± 7.7% for Abruzzo), it can be stated that
the two categories are predicted comparably well. These results
can also be graphically appreciated in Figure 1, where the

mean scores of the outer loop samples along the only canonical
variate of the model together with their 95% confidence
intervals are displayed. It is evident from Figure 1 how
almost all the Abruzzo samples have positive scores, while
the large majority of Lazio samples are characterized by
negative coordinates on the component, indicating a good
separation between the categories.

For the sake of interpretation, another advantage of the rDCV
procedure is that confidence intervals can also be calculated for
model parameters, so as to be able to identify which are the
variables that contribute significantly to the discrimination (e.g.,
by inspecting the values of the associated regression coefficients
or of the VIP scores). Moreover, investigating the sign of the
regression coefficients also allows postulating whether the
associated predictor is more or less concentrated in a category
with respect to the other. In particular, the variables found to
significantly contribute to the discriminant model were V, Fe, Zn,
Rb, antioxidant capacity (all higher in Lazio samples), and Ni and
antioxidant activity in the DPPH assay (higher in the oils from
Abruzzo).

As far as the Lazio vs. Sicily model is concerned, a slightly
higher accuracy was obtained (79.4 ± 3.1%), the individual
sensitivities being 81.9 ± 4.9% for Lazio and 76.1 ± 2.8% for
Sicily. Analogously to that described above, the discrimination
between the two classes can also be visually appreciated in
Figure 2, where the mean scores of the outer loop samples
along the only canonical variate of the model together with
their 95% confidence intervals are displayed.

In this case, based on the values of the PLS-DA regression
coefficients, all the variables found to significantly contribute

FIGURE 1 | –PLS-DA model for the discrimination between Lazio and Abruzzo samples: mean scores of the rDCV outer loop samples along the only canonical
variate of the model together with their 95% confidence intervals. Legend: red bars–Lazio; blue bars–Abruzzo.
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to the discriminant model (Na, Mg, P, Ti, Rb, antioxidant
activity in the DPPH assay) should be, on average, higher in the
oils from Lazio. When considering the model discriminating
Abruzzo oils from the Calabrian ones, an overall 81.4 ± 6.1%
accuracy on the outer loop samples was obtained, the mean
correct classification rate (81.0 ± 7.1%) and the individual
sensitivities for the two categories (82.9 ± 4.35% for Abruzzo
and 79.1 ± 12.2% for Calabria) being almost equal. In
particular, the higher standard deviation of the sensitivity
for Calabria is due to the very limited number of samples in
that class. When looking at the significant predictors, only five
variables (P, V, Fe, Zn, and antioxidant activity) were
identified, and the coefficients indicate that they all should
be, on average, higher for the Abruzzo samples.

Lastly, the Abruzzo vs. Sicily model resulted in an accuracy of
75.0 ± 4.3%, the sensitivities being 81.2 ± 7.6% for Abruzzo and
69.7 ± 5.9% for Sicily. Inspection of the model parameters led to
identifying as significant the contribution of Na, Ni, and
antioxidant activity (in the DPPH assay with higher data in
the oils from Abruzzo) and of V and Fe, more concentrated in
the samples from Sicily.

Classification of EVOOs according to cultivar and to
whether it was organically produced.

In a second stage of the study, the possibility of discriminating
oil samples according to their cultivar was explored. In this case,
given the available information about the samples and the fact
that only a relatively small fraction of the analyzed oils was
monovarietal, the investigation was restricted to the comparison

of Coratina (21 samples) and Frantoio (12 samples) (Table 1).
The PLS-DA classification approach was validated through an
rDCV strategy as described in the previous section and resulted in
an overall accuracy of 68.9 ± 6.2%, and 80.7 ± 8.8% and 61.9 ±
7.6% sensitivities for Frantoio and Coratina, respectively,
corresponding to a mean correct classification rate of 71.3 ±
6.2%. Investigation of the model parameters suggested that
five variables only, namely, P, Ti, Zn (higher in Coratina), Fe,
and Ni (more concentrated in Frantoio), significantly contributed
to the discriminant model.

Lastly, the possibility of discriminating whether the oil was
organically produced or not was also attempted, but the
classification model resulted in a very poor accuracy (close
to 50%) suggesting that, at least for the investigated samples,
organic cultivation has little impact on the elemental
composition with respect to non-organic production.

4 CONCLUSION

This study showed that the As, Cu, Fe, and Pb levels in the
analyzed samples were far below the MRLs, which certifies the
high quality of Italian EVOO.

The element concentrations allow to distinguish well some
geographical origins of the EVOO samples and also, although
slightly less well, the two cultivars Coratina and Frantoio. On the
other hand, given the high heterogeneity of the data set, it is not
possible to distinguish organic oils from non-organic ones. This is

FIGURE 2 | –PLS-DAmodel for the discrimination between Lazio and Sicily samples: mean scores of the rDCV outer loop samples along the only canonical variate
of the model together with their 95% confidence intervals. Legend: red bars–Lazio; blue bars–Sicily.
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probably due to the fact that within the two classes the variability
related to geographical origin and cultivar is added.

This study can be used to create datasets for element levels in
EVOOs for each production region to support geographic origin
authentication. In the future, other information will have to be
considered together with the elemental profile of EVOO such as
climatic factors and bioavailable fraction of the total content of
elements to further corroborate the use of the elements as a
marker of provenance.
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Electrochemical Sensors and
Biosensors for the Analysis of Tea
Components: A Bibliometric Review
Jinhua Shao*, Chao Wang, Yiling Shen, Jinlei Shi and Dongqing Ding

School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China

Tea is a popular beverage all around the world. Tea composition, quality monitoring, and
tea identification have all been the subject of extensive research due to concerns about the
nutritional value and safety of tea intake. In the last 2 decades, research into tea employing
electrochemical biosensing technologies has received a lot of interest. Despite the fact that
electrochemical biosensing is not yet the most widely utilized approach for tea analysis, it
has emerged as a promising technology due to its high sensitivity, speed, and low cost.
Through bibliometric analysis, we give a systematic survey of the literature on
electrochemical analysis of tea from 1994 to 2021 in this study. Electrochemical
analysis in the study of tea can be split into three distinct stages, according to the
bibliometric analysis. After chromatographic separation of materials, electrochemical
techniques were initially used only as a detection tool. Many key components of tea,
including as tea polyphenols, gallic acid, caffeic acid, and others, have electrochemical
activity, and their electrochemical behavior is being investigated. High-performance
electrochemical sensors have steadily become a hot research issue as materials
science, particularly nanomaterials, and has progressed. This review not only highlights
these processes, but also analyzes and contrasts the relevant literature. This evaluation
also provides future views in this area based on the bibliometric findings.

Keywords: electrochemical sensor, tea, antioxidant, caffeic acid, gallic acid, tea polyphenols, analytical chemistry

INTRODUCTION

Tea is one of the most popular natural health drinks and is deeply ingrained in people’s lives. Tea
trees are grown in around 30 nations throughout the world, yielding roughly 2.5 million tons of tea
every year. The introduction of tea trees, on the other hand, can be easily influenced by soil and
climate conditions (Feng et al., 2010; Wambu et al., 2017; Kottawa-Arachchi et al., 2019; Beringer
et al., 2020). Furthermore, the nutritional composition and taste of tea fluctuate significantly due to
variances in processing processes. Tea leaves are classified in a variety of ways based on various
factors (Liu et al., 2015). Green tea, yellow tea, white tea, oolong tea, black tea, and dark tea are the
most often used criterion for categorizing tea based on the degree of fermentation (de Carvalho
Couto et al., 2021). Green tea is produced without the use of fermentation. Yellow tea is fermented to
a degree of 10–20 percent. White tea is fermented to a percentage of 10–30%. Oolong tea is fermented
to a degree of 20–60%. Black tea is fermented to a degree of 80–90 percent. Dark tea is a post-
fermented tea, meaning it has undergone the most fermentation. The material components in tea
leaves are changed into diverse forms as a result of varying degrees of fermentation (Zheng et al.,
2016; Marx et al., 2017; Seth et al., 2019). Unfermented green tea, for example, preserves more of the
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natural components of the fresh leaves. These nutrients offer
unique therapeutic properties in the human body, including anti-
aging, anti-cancer, anti-inflammatory, and antiseptic properties
(Kochman et al., 2021). Oolong tea processing, on the other hand,
employs alternating mechanical force and stacking (Ng et al.,
2018). The external force damages the cellular tissue of the leaf
edge, while the polyphenols are oxidized and undergo other
chemical changes as a result of the mechanical activity.

Tea leaves contain about 700 chemicals that have been
extracted and identified. The secondary metabolic components
of tea, such as tea polyphenols, amino acids, alkaloids, aromatic
chemicals, pigment molecules, and so on, are primarily
responsible for its distinctive flavor (Chapagain and Hoekstra,
2007; McCants, 2008; Tanui et al., 2012; Mzembe et al., 2016;
Wang et al., 2020; Ying et al., 2020; Zhang et al., 2020; Zhou et al.,
2020). They have a close association with specific
pharmacological effects and impact the quality and flavor of
tea (Koch et al., 2018; Wei et al., 2018). Based on the
characteristics of the components, tea component analysis may
be separated into two primary types: flavor component and
quality component (Xu et al., 2019a). The flavor component is
linked to the color, aroma, and taste of tea, and its detection
focuses on determining the flavor qualities of tea quality (Xu et al.,
2019b). The detection of the quality component is primarily for
quality control and inspection purposes (Wang et al., 2019). The
most often utilized techniques are colorimetric and spectroscopic
approaches (Zhi et al., 2017). However, in the recent decade, the
rapid development of electrochemical sensing techniques has
enticed many scientists to experiment with electrochemical
biosensing approaches to assess tea components. High
sensitivity, wide linear response, outstanding stability, and
reproducibility are all advantages of electrochemical sensors.
Furthermore, the low cost of electrochemical measurements is
a significant advantage. Electrochemical sensors consist of an
electrochemical cell with at least two electrodes to form a closed

electrical circuit and a transducer where charge transport (always
electronic) takes place, whereas charge transport in the analyte
sample can be electronic, ionic, or mixed (Power et al., 2018;
Karimi-Maleh et al., 2021a). Electroanalytical methods are a class
of analytical chemistry techniques that measure the potential
(volts) and/or current (amperes) in an electrochemical cell
containing the analyte to investigate it (Naveen et al., 2017;
Karimi-Maleh et al., 2021b; Karimi-Maleh et al., 2021c;
Karimi-Maleh et al., 2021d; Mani et al., 2021; Karimi-Maleh
et al., 2022). Two important electrochemical methods used in the
parameter evaluation of tea products are voltammetry, which
measures current as potential varies, and electronic sensing,
which includes the electronic nose (E-nose), electronic tongue
(E-tongue), and electronic eye (E-eye). ASV, CV, SWV, and
staircase voltammetry, in particular, use various types of
electrodes, such as inert carbon electrodes, glassy carbon
electrodes, and paraffin-impregnated graphite electrodes, to
help determine the quality of tea products. We searched the
WOS core database using the keywords electrochemistry and tea
and discovered a total of 865 papers dedicated to the study of tea
using electrochemistry from 1994 to 2021, as shown in Figure 1.
It’s worth noting that similar research has gotten a lot of attention
in the recent decade.

We conducted a bibliometric analysis of these 865 studies to
see if electrochemical biosensing may replace existing analytical
approaches in tea quality control. For the bibliometric analysis
and visual presentation, CiteSpace was employed (Chen, 2004;
Chen, 2006; Chen and Song, 2019). The analysis report compares
electrochemical techniques for tea analysis in terms of procedural
and thematic changes. We also kept an eye on the cutting-edge of
electrochemical sensing technologies in the field of tea analysis.
We included both the analysis and data comparison of specific
publications in traditional review writing, in addition to the
overall pulse of bibliometric analysis. The use of a mix of
electrochemical biosensing techniques and nanomaterial
technologies was highlighted in particular. The most
representative of these pieces was also thoroughly examined.

LITERATURE INFORMATION ANALYSIS

Changes in the Literature Category of
Electrochemical Sensing Technology for
Tea Analysis
Changes in electrical signals are the basis for signal production in
electrochemical biosensing systems. Changes in current and
resistance can be used as signals. Electrochemical oxidation-
reduction is present in the bulk of these signal alterations.
Under a result, the vast majority of tea research using
electrochemical sensing technologies is classified as chemistry,
electrochemistry, or analytical chemistry (Figure 2A). It’s
important to note that each published paper does not fall into
a single category. As a result, understanding other categories can
assist in determining the target themes and areas to cross. What
was unexpected, as indicated in Figure 2A, was the importance of
materials science in this area. This is because the production of

FIGURE 1 | Statistical histogram of research on tea using
electrochemistry from 1994 to 2021.
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very sensitive electrochemical biosensors frequently necessitates
the use of novel materials, according to a later study for the
literature (Guth et al., 2009; Wang et al., 2015a; Alqarni et al.,
2020; Ranga et al., 2021). This also helps to explain why
instruments and instrumentation account for 4.6 percent of all
category statistics. Similarly, nanotechnology and
nanotechnologies accounted for 2.8 percent of the total.
Traditional fields of tea research include food science and
technology, biochemistry and molecular biology, and nutrition
and dietetics. The development of electrochemical sensing
technology has clearly been employed for tea research in
various areas, as evidenced by this pie chart.

Figure 2B depicts a history of when these categories first
appeared on this subject and how they interacted. The
most significant categories arrived between 2003 and 2008,
with the exception of chemistry, which debuted in 1994.
This shows that the electrochemical sensing analysis
approaches for tea research surge began in 2003, which is
consistent with the results in Figure 1. The illustration also

highlights the current multidisciplinary interaction of
electrochemical analytical tools for tea research with ecology,
geology, and agronomy. This indicates that the technology
discussed in this article is well-established and has application
potential, allowing it to be expanded into other areas for research.
Abhradip and Chandan (Pal and Das, 2020a), for example,
used electrochemical sensors to assess the solid tea waste
extract’s ability to inhibit boiler quality steel under acidic
circumstances.

Author Country Distribution and
Cooperation
Despite the fact that the tea tree is a widely produced plant, tea
consumption in various countries has been influenced by cultural
factors. As a result, in the scientific study of tea, there is relative
independence between countries. Although many nations have
actively investigated the development of electrochemical sensing
technology in tea, as illustrated in Figure 3A, international

FIGURE 2 | (A) The amount of contribution of electrochemical sensing techniques for tea research in different categories. (B) Variation of category with year in the
literature of electrochemical sensing techniques for tea analysis.

FIGURE 3 | (A) Author’s country collaboration network map. (B) Time of involvement of different countries in electrochemical sensing research on tea.
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cooperation is rare. Only a small percentage of articles have
authors who are from different nations. The United States and the
United Kingdom play a significant role in international
cooperation on this issue. China and India, on the other hand,
the two countries with the highest number of publications on this
subject, have focused their research mostly on their own
countries. Despite the fact that certain countries are
geographically close, such as France and Germany, they
continue to perform independent studies on this topic.
Surprisingly, despite tea’s reputation as an Eastern beverage,
the most influential publications in early studies were from the
United States. The radical chemistry of epigallocatechin gallate
and epigallocatechin was reported by Hagerman et al. (Hagerman
et al., 2003). To validate the generation of hydroxyl radicals, the
electrochemical redox potentials of both molecules were
measured. For phenolic component identification, Luo et al.
(Luo et al., 2003) employed liquid chromatography with
coulometric electrochemical detection. In this investigation, tea
blends were employed as a true sample. Figure 3B depicts the
timelines of the various countries participated in this research.
Many countries got actively involved in research on this topic
between 2008 and 2010. Until recently, this topic continues to
draw scholars from a variety of countries, who began to
participate in the research. Cameroon, the Netherlands, and
Finland, for example, have all published studies on this topic
in the last 2 years. Dongmo et al. (Dongmo et al., 2020) from the
University of Dschang developed an electrochemical biosensor
for catechol detection in tea samples utilizing amino-grafting of
montmorillonite. University of Yaoundé researchers Deutchoua
et al. (Djitieu Deutchoua et al., 2019) devised two electrochemical
techniques for determining antioxidant properties. As authentic
samples, tea extracts were employed in this study. Overall,
research on electrochemical sensing technology in tea is
dominated by China, the United States, India, Brazil, Iran, and

Japan. They were responsible for more than 70% of the academic
papers.

RESEARCH CONTENT ANALYSIS

Cluster Analysis of Research Content
Cluster analysis of the content reveals some of themost important
study avenues for this subject. Electrochemical detection,
electrophoretic deposition, electrochemical investigation,
hierarchical pore structure, caffeic acid, electrochemical
analysis, techo-economic analysis, spent tea, carbon paste
electrode, oxidative DNA damage, and mixed monolayers
structure were among the 11 top themes identified by
bibliometric clustering of research on electrochemical sensing
for tea (Figure 4). The results show that the information on
electrochemical procedures, which includes analytical techniques
and sensor preparation techniques, is the most important aspect
of this topic. Malakootian et al. (Malakootian et al., 2020) used a
carbon paste electrode modified with Eu3+-doped NiO to detect
Pb (II) and Cd (II) in black tea.

The clustering analysis results included caffeic acid, which is
particularly important in tea, in addition to the development of
electrochemical techniques and sensors. For the detection of
caffeic acid in tea leaves, many of these studies propose an
electrochemical sensing device. Chang and colleagues, for
example, suggested a ratiometric electrochemical sensor for the
detection of caffeic acid (Yin et al., 2021). Caffeic acid is electro-
oxidized with two electrons in a diffusion-controlled method.
Caffeic acid’s hydroxyl groups undergo two-electron transfer and
release two protons, resulting in the quick production of the
matching quinone. The surface modification presented in this
paper can help improve caffeic acid diffusion at the electrode. For
caffeic acid detection, Arajo et al. (Araújo et al., 2020a) developed
a screen-printed electrode modified with carbon nanotubes
(Figure 5). However, limited research has been done to assess
the antioxidant effects of caffeic acid in tea (Lima et al., 2020).
Furthermore, because caffeic acid has substantial electrochemical
activity, it has been utilized as a signal in various experiments to
demonstrate successful caffeic acid production (Li et al., 2020).

Tea extracts are frequently utilized to examine the
consequences of oxidative DNA damage due to their high
antioxidant activity. Yury et al. (Kuzin et al., 2016), for
example, described a GCE that had been electropolymerized
with methylene blue. For analysis, the DNA solution was first
combined with an oxidant before being immobilized on the
modified GCE. By interrupting the DNA-methylene blue
interactions, the voltammetric signal can be utilized to assess
the degree of DNA damage (Kuzin et al., 2016). The presence of
an antioxidant can help to slow down this process. They put this
methodology to the test to see if it could determine the
antioxidant capabilities of green tea extract. In addition to
voltammetry, impedimetric technology (Kuzin et al., 2015).
can be used for a similar purpose. Uliana and colleagues
looked into whether tea may preserve DNA from dye-induced
damage (Uliana et al., 2014). They proved that the tea solution
could prevent adenine and guanine from reacting with the dye

FIGURE 4 | Cluster analysis of research content of electrochemical
sensing for tea.
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using electrochemical analysis. The current intensity of the
adenine molecule had fallen by 60% of its initial value after an
interaction duration of 180 s. Green tea appears to be able to

minimize DNA molecule damage, according to the findings.
Sumkova and Labuda (Šimková and Labuda, 2009) also
suggested an electrochemical biosensor for detecting DNA

FIGURE 5 | (A) Schematic representation, (B,C) images of SPE based caffeic acid biosensor (Araújo et al., 2020a). Copyright: Elsevier B.V.

FIGURE 6 | Top 27 keywords with the strongest bursts of electrochemical sensing techniques for tea analysis.
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damage and integrated the sensor into a commercial flow-
through cell. This apparatus has been used to evaluate the
antioxidative effects of ta extracts with great effectiveness.

Tea that has been discarded can be recycled as a valuable
biological resource. High-temperature carbonization of wasted
tea has been used to make electrodes or electrocatalysts in several
investigations (Choi et al., 2016; Deng et al., 2016; Ahsan et al.,
2020; Gao et al., 2021). In these investigations, electrochemical
techniques were utilized as a characterisation tool to assess the
performance of biochar. Gao et al. (Gao et al., 2021), for example,
produced a biomorphic carbon electrode from discarded black tea
and then used it to store potassium ions. Ahsan and colleagues
constructed a cobalt-based electrocatalyst using discarded tea
leaves as a template and then employed it for hydrogen and
oxygen evolution and oxygen reduction (Ahsan et al., 2020).

Keywords Analysis
Keyword analysis can also reveal which research hotspots are
being followed. The use of citation burst to analyze keywords
might reveal how the study topic’s focus has shifted over time.
The top 27 keywords with the greatest bursts of electrochemical
sensing techniques for tea analysis are shown in Figure 6. The
term bursts began in 2003, which was the year that additional
research findings were published. Catechin, HPLC, performance
liquid chromatography, green tea electrochemical detection, and
flavonoid are some of the terms used in the beginning. The
identification of catechin and flavonoids in tea using liquid
chromatography is the main focus here. Electrochemical
analysis was used as a technique for identifying samples after
chromatographic separation of mixed samples at this point,
rather than as a stand-alone sensing technique for tea
detection. Long et al. (Hong et al., 2003), for example,
suggested a method for detecting natural phenolic compounds
in tea using liquid chromatography and multi-channel
electrochemical detection. Similarly, Kotani et al. (Kotani
et al., 2003) used an HPLC with electrochemical detection to
identify catechins. Coulometric detection is frequently the most
widely used electrochemical technology when paired with liquid
chromatography (Chu et al., 2004; Kotani et al., 2007; Novak
et al., 2010a; Shao et al., 2010; Narumi et al., 2014).
Electrophoretic (Kartsova and Ganzha, 2006; Kartsova and
Alekseeva, 2008) and voltammetric (Novak et al., 2010b;
Hocker et al., 2017) approaches had previously been employed
in conjunction with chromatographic methods to examine tea.

Around 2010, due to the development of electrochemical
analysis techniques, a lot of work started to focus on the study
of electrochemical behavior and antioxidant capacity
measurement. It is worth noting that the studies of
electrochemical behavior are not primarily an investigation of
the electrochemical properties of tea components. According to
the specific literature revealed, these works mainly focused on the
use of extracts of tea leaves as inhibitors for the corrosion
protection of metals. Changes in the electrochemical behavior
of metals can be used as a characterization of the degree of
corrosion. For example, Rauf et al. (Rauf and Mahdi, 2012)
evaluated the effects of green tea on corrosion. Electrochemical
frequency modulation and cyclic polarization scans were used for

characterization. Unfortunately, the results showed that green tea
did not show particularly excellent corrosion resistance.
However, in a report by Tang et al. (Tang et al., 2018) green
tea extract had good anti-corrosion efficacy on carbon steel. Pal
and Das (Pal and Das, 2020b) also claimed that solid waste extract
from tea factories is an excellent inhibitor.

The preparation of electrochemical sensors for tea detection
has been the hottest topic since 2016. GCE has been chosen as the
most commonly used commercial electrode. Different
nanomaterials have been synthesized for the modification of
GCE. Among them, graphene and its derivatives and gold
nanoparticles have been studied the most.

Electrochemical Biosensor Performance
Comparison
According to the results of the preceding two sub-sections’
analyses, the most essential aspect of electrochemical
biosensing in the research of tea is the detection of tea
components. We used bibliometrics to summarize these
specific works. The major characteristics (linear detection
range, LDR, and limit of detection, LOD) of various
electrochemical sensors for tea composition detection are
summarized in Table 1.

From Table 1, it can be seen that catechol, catechin, caffeine,
rutin, gallic acid, quercetin, and tea polyphenols were the most
detected tea components by electrochemical sensing technique.
Acetamiprid, theophylline, Pb (II) and Cd (II) are the most
frequently detected hazardous substances. This is due to the
fact that excessive levels of pesticides and heavy metals in tea
can lead to food safety problems. Overall, with the development
of electrochemical sensing analysis technology, the detection
range of different analytes has been enhanced while the
detection limits have been reduced. For example, catechol had
a detection limit of 0.1 M in the report in 2009 (Lin et al., 2009),
which was reduced to 7.34 nM in 2018 (Manavalan et al., 2018).
Among these, the widespread use of carbon nanomaterials has
proven to be a game-changer. Due to the synergistic role of matrix
or composite, carbonaceous materials (Graphene, CNTs, Carbon
Nanofibres, and Mesoporous carbon, etc.) and conducting
polymer materials act as reliable catalysts with metal oxide
nanoparticles for the production of nonenzymatic sensors. It is
worth noting that electrochemical sensors are a very sensitive
detection technology. The sensors described above already meet
the needs of detection, so the pursuit of high sensitivity does not
necessarily have practical value. The focus of future
electrochemical sensor research should be on how to improve
stability and repeatability. Also, miniaturization of
electrochemical sensors to fit field detection is an important
direction.

KEY AUTHORS AND PAPERS ANALYSIS

Author Co-citation Analysis
Figure 7 shows the relationship network of authors’ co-cited
information. From this figure, it can be seen that the research
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TABLE 1 | Comparison of the performance of electrochemical biosensors for the detection of different tea components.

Biosensor Analyte LDR LOD Year Reference

Al/SiO2/CPE Catechol 0.5–50 μM 0.1 μM 2009 Lin et al. (2009)
AgNPs/TiO2/ITO Catechol 0.1–500 μM 0.05 μM 2012 Wang et al. (2012a)
CNT/carbon paper Catechol 1–100 μM 0.29 μM 2013 Yue et al. (2013)
Ag doped TiO2/GCE Catechol 1–15 μM 0.0249 μM 2016 Ravishankar et al. (2016)
Au@NG-PPy Catechol 0.1–0.9 μM 0.0016 μM 2017 Vellaichamy et al. (2017)
Gr/GNRs/AgNPs/PPO Catechol 2–2,300 μM — 2018 Sandeep et al. (2018)
rGOSs@SrWO4 Catechol 0.034–672.64 μM 7.34 nM 2018 Manavalan et al. (2018)
Banana tissue/CPE Catechol 1.4–15.7 mg/L 0.1 mg/L 2019 Broli et al. (2019)
Biomimetic oxidase/GO Catechol 50–1,600 μM 0.09 μM 2021 Jiaojiao et al. (2021)
f-SWCNTs/PEDOTM/GCE Catechin 0.039–40.84 μM 0.013 μM 2015 Yao et al. (2015)
Pt/MnO2/f-MWCNT/GCE Catechin 2–950 μM 0.02 μM 2015 Ezhil Vilian et al. (2015)
(fMWCNT)/YHCF/GCE Catechin 5–200 μM 0.28 μM 2015 Devadas and Chen, (2015)
N-doped carbon/GCE Catechin 1–30 μM 0.088 μM 2017 Pang et al. (2017)
MIP Catechin 5–100 μM 37 nM 2018 Chatterjee et al. (2018)
Cu@g-C3N4 Catechin 100–900 μM 15.12 μM 2021 Sanjay et al. (2021)
3DG/MWCNTs-Nc Caffeic acid 0.2–174 μM 17.8 nM 2017 Sakthinathan et al. (2017)
Pt-PEDOT/rGO Caffeic acid 5 nM–0.5 μM 2 nM 2018 Gao et al. (2018)
MWCNTs/SPE Caffeic acid 2–50 μM 0.66 μM 2020 Araújo et al. (2020a)
MWCNT/SPEs Caffeic acid 2–50 μM 0.2 μM 2020 Araújo et al. (2020b)
PMB@Ni–TPA/GCE Caffeic acid 0.25–15.0 μM 0.2 μM 2021 Yin et al. (2021)
Poly-aspartic acid Caffeine 0.25–30 μM 72 nM 2010 Wang et al. (2010)
Nafion/poly (safranine T)/GCE Caffeine 0.3–100 μM 0.1 μM 2011 Guo et al. (2011)
MIPs/GNPs/MWNTs/GCE Caffeine 0.5 nM-0.16 μM 90 pM 2012 Kan et al. (2012)
DNA-SWCNT/Nafion/GCE Caffeine 0.02–1.5 μM 8 nM 2014 Wang et al. (2014)
PDDA-MWCNT Caffeine 0.3–80 μM 0.05 μM 2017 Zhang et al. (2017a)
Polydopamine-gold Caffeine — — 2017 Zhang et al. (2017b)
ZMWCNTMCPE/SDS/CPE Caffeine 10–100 μM 75 nM 2019 Azab et al. (2019)
Nafion-NCNTs Caffeine 0.08–6 μM 20 nM 2019 Wu et al. (2019)
SWCNT-SubPc Caffeine 0.1–1.5 μM 13 nM 2019 Şenocak et al. (2019)
TiO2/MIP Caffeine 5–120 μM 0.6 μM 2020 Das et al. (2020)
Cu-MOF/graphene Caffeine 5–450 mM 1.38 mM 2021 Venkadesh et al. (2021)
Plasma-triggered
polydimethylsiloxane/ITO

Caffeine 50 nM-700 μM 20 nM 2021 Li et al. (2021)

MoO3-GCNS Caffeine 0.5–359 μM and 410–810 μM 21.24 nM 2021 Boopathy et al. (2021)
GC/Gr/SiC-NPs/[Cu(pydc) (apym)](2) Caffeine — 0.313 μM 2021 Hallaj et al. (2021)
Co3O4/GCE-Nafion Caffeine — 97 nM 2021 Kumar et al. (2021)
MIP(poly (o-phenylenediamine)) Epigallocatechin-3-

gallate
0.5–10 μM 0.16 μM 2013 Duan et al. (2013)

MIP/GO/GC Epigallocatechin-3-
gallate

30 nM-10 μM 8.78 nM 2017 Liu et al. (2017)

Ni(OH)2 NPs Epigallocatechin-3-
gallate

10–100 mM 7 nM 2019 Nandy Chatterjee et al. (2019)

SWCNTs/poly-EB/GCE Rutin 0.16–20 μM 82 nM 2012 Wang et al. (2012b)
SMWCNT-PEDOT-IL Rutin — 77 nM 2016 Nagles and García-Beltrán, (2016)
G-MWCNTs/GCE Rutin 0.01–1 μM 5 nM 2016 Yang et al. (2016)
PEDOT/M-EDTA Rutin — 1.67 nM 2018 Lu et al. (2018)
NiCo2S4/rGO@PANI Rutin 0.01–200 μM 0.007 μM 2018 Wang et al. (2018)
Polyphenol oxidase-AuNPs-mesoporous
carbon

Rutin 1.6–28 mM 0.51 mM 2019 Zhong et al. (2019)

Poly (safranine/nano NiO)CPE Rutin 16.1–230 nM 5.4 nM 2019 Saritha et al. (2019)
GQDs/PEDOT/GCE Rutin 0.05–10 μM 11 nM 2019 Meng et al. (2019)
Fe3O4@TAPB-DMTP-COFs Luteolin 0.01–70 μM 7.2 nM 2020 Xie et al. (2020)
MoO3-PPy NWs/MWCNTs Luteolin 0.1 nM-10 μM 0.03 nM 2021 Zeng et al. (2021)
MIP Morin 0.05–1.7 μM 0.01 μM 2016 Liu et al. (2016)
SiO2/CPE Pyrogallol 2–300 μM 0.7 μM 2014 Tashkhourian and Ghaderizadeh,

(2014)
PEI-rGO/GCE Gallic acid 0.1–10 mg/L 0.07 mg/L 2013 Luo et al. (2013)
Polyepinephrine/GCE Gallic acid 1–20 μM 0.663 μM 2013 Abdel-Hamid and Newair, (2013)
SPCE/PME Gallic acid — 0.076 μM 2015 Su and Cheng, (2015)
APTS@GO/PPAH-SDS/GCE Gallic acid 0.006–2000 μM 1.7 nM 2018 Baghayeri et al. (2018)
PLM/MWCNT/GCE Gallic acid 0.004–1.1 μM and 1.7–20 μM 3.1 nM 2019 Koçak et al. (2019)
Graphene/GCE Gallic acid 80 nM–2 μM 1.2 nM 2019 Chen et al. (2019)
3D IPCNT/CNS/GCE Gallic acid 0.05–20 μM 53 nM 2020 Zhao et al. (2020)
NG-Au@Ag NPs Gallic acid 1–16.2 μM 3.17 nM 2020 Feng et al. (2020)

(Continued on following page)
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work of those authors has had an impact on the field. It is worth
noting that the work here is not necessarily limited to the study of
electrochemical biosensing for tea, but rather exemplifies the type
of work that has had a greater impact on the topic. Lee et al.’s (Lee
et al., 2002) work on the pharmacokinetics of catechins and
epigal-locatechin-3-gallate in human-consumed tea gave early
insights into electrochemical studies on tea. Yang et al. (Yang
et al., 2001) explored the antioxidant activity of catechins in
microsomal lipid peroxidation at an early stage and also
influenced the study of electrochemical techniques for tea
detection. Studies on antioxidants in tea have also been mainly
influenced by Kilmartin et al. (Kilmartin et al., 2001) because
their work suggested for the first time that cyclic voltammetry is
an excellent technique for the evaluation of antioxidant activity.

In the design and fabrication of electrochemical biosensors,
the electrochemical methodology established by Bard and
Faulkner (Bard and Faulkner, 2002) is the most important
foundation. Wang’s textbook on analytical chemistry is also
the basis for electrochemical sensor design (Wang, 2000). The

study of the electron transfer process of glucose oxi-dase in
glucose biosensors has laid the foundation for many
subsequent mechanistic studies of biosensors (Liu et al.,
2005). Meanwhile, the technique for rutin and quercetin
detection in plants proposed by Chen et al. (Chen et al.,
2000) was applied to the operation of a biosensor for tea
analysis. Similarly, the technique for gallic acid detection
proposed by Abdel-Hamid and Newair (Abdel-Hamid and
Newair, 2013) also affects many of the later tests for substances
in tea. The work conducted by Ziyatdinova et al. (Ziyatdinova
et al., 2012) is also instructive for the detection of flavonoids.
The discovery of graphene has become a very important
material in the assembly of electrochemical sensors. The
graphene-based bioenzyme sensors proposed by Yang et al.
(Yang et al., 2011) have influenced the study of sensors
targeting the detection of tea components. Electrochemical
techniques are used in this work not only for the detection of
analytes, but also as a method for the synthesis of
nanomaterials.

TABLE 1 | (Continued) Comparison of the performance of electrochemical biosensors for the detection of different tea components.

Biosensor Analyte LDR LOD Year Reference

Silica gel/CPE Quercetin 5–100 μg/L 3.53 μg/L 2012 Chen et al. (2012)
Porous alumina microfibers/CPE Quercetin 0.025–1.5 μM 10 nM 2015 Li and Huang, (2015)
Platinum (II)-porphyrin/GCE Quercetin 0.002–50 mg/L 0.8 μg/L 2015 Tian et al. (2015)
SWCNT/GCE Quercetin 0.01–100 mM 7 mM 2019 Kuyumcu Savan, (2020)
GCE Quercetin 7.9 nM-3.96 μM and

3.96–14.86 μM
2.2 nM 2020 Karaboduk andHASDEMİR, (2020)

Co3O4/GCE Quercetin 0.01–3 mM 70 nM 2021 Khand et al. (2021)
MWCNTs-CS Tea polyphenols 100–1,000 mg/L 10 mg/L 2009 Guo et al. (2009)
Diazonium-tyrosinase Tea polyphenols — 0.1 mM 2010 Cortina-Puig et al. (2010)
Pt NPs-rGO-laccase Tea polyphenols 0.2–2 μM 2.75 μM 2013 Eremia et al. (2013)
Ferric chloride/GCE Tea polyphenols 0.192–0.318 mg/L — 2014 Chattopadhyay and Sarkar, (2014)
Iron phthalocyanine Tea polyphenols — 0.176 μM 2016 Maximino et al. (2016)
Chloramine-T/GCE Tea polyphenols — 0.674 mg/L 2016 Sen et al. (2015)
Tyrosinase- (Co-1.57 Al(OH) (x)SO4 Tea polyphenols Up to 10 μg/ml 0.33 pg/ml 2017 Soussou et al. (2017)
Cassava fiber-iron nanoparticles/spE Tea polyphenols 3.5–31.5 μM 0.1 μM 2021 Shi et al. (2021)
Cetyltrimethyl ammonium bromide/CPE Theophylline 0.8–200 μM 0.185 μM 2009 Hegde et al. (2009)
CdSe/GCE Theophylline 1.0–40 μM and 40–700 μM 0.4 μM 2012 Yin et al. (2012)
ED-GO/GCE Theophylline 0.8–60 μM 0.01 μM 2013 Cui and Zhang, (2013)
SWCNT-LMC/Nafion/GCE Theophylline 0.3–38 μM 0.08 μM 2013 Gao and Guo, (2013)
MWNT|MnO2/GCE Theophylline 0.1–20 μM 0.01 μM 2015 Yang and Li, (2015)
WS2/AgNP/GCE Theophylline 0.05–150 μM 3 nM 2015 Wang et al. (2015b)
AuNP/MWCNT/GCE Theophylline 0.5–20 μM 90 nM 2018 da Silva et al. (2018)
AFW/Nf/GCE Theophylline 0.1–160 μM 0.0028 μM 2019 Karthika et al. (2019)
MIP/SL-MoS2-BOMC/GCE Theophylline 0.01–50 μM and 50–250 μM 5 nM 2019 Hu et al. (2019)
beta-NiS/Ppy Theophylline 10 nM-900 μM 1 nM 2019 Muthukumaran et al. (2019)
DMN-AuNPs/GCE Theophylline 0.05–2.0 μM 9.6 nM 2021 Zhang et al. (2021)
MoS2/MWCNTs Carbendazim 0.04–100 μM 7.4 nM 2020 Zhu et al. (2020)
V2O5/G-C3N4/PVA/GCE Folic acid 0.01–60 μM 1.74 nM 2020 Karthika et al. (2020)
Polyacrylamide (MIP)/graphite Flavins 20–100 μM 14 μM 2017 Nandy Chatterjee et al. (2017)
MWNT/GCE Tannins 0.4–200 μM 0.1 μM 2004 Lü, (2004)
3D-CS/rGO/GCE Acetamiprid 0.1 pM-0.1 μM 71.2 fM 2020 Yi et al. (2020)
Ag/His-GQD/G Acetamiprid 0.1 fM-5 pM 0.04 fM 2020 Dan et al. (2020)
SPE-Gr Sibutramine 2–120 μM 0.3 μM 2019 Lima et al. (2019)
Diamond paste electrode Pb (II) 10–100 pM — 2004 (Raluca-Ioana Stefan (2004, 2004)
BioExt/MWCNTs/GCE Cd (II) 0.05–5 μM 1.01 nM 2020 Incebay et al. (2020)
rGO/Sb/GCE Pb (II); Cd (II) 0.1–3 μM; 0.1–3 μM 45.5 nM; 70 nM 2020 Nunes et al. (2020)
Eu3+ doped NiO/CPE Pb (II); Cd (II) 0.8–165 μg/L; 0.8–165 μg/L 0.1 μg/L;

0.4 μg/L
2020 Malakootian et al. (2020)

Mn-TiO2 NTAs Cd (II) — 0.01 μM 2020 Jiang et al. (2020)
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Reference Co-citation Analysis
Figure 8 illustrates the literature co-citation analysis relationship
graph for electrochemical biosensors in tea analysis. As can be
seen from the figure, the relationship between all the literature

can be divided into five clusters, one of which contains a very
large number of co-cited articles.

Cluster A has a dense network of pairs, representing work that
is largely within a broad theme and is very closely linked.

FIGURE 7 | Author co-citation analysis with different research content clusters.

FIGURE 8 | Reference co-citation analysis with five clusters.
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Important papers in this cluster include the work on gallic acid by
Abdel-Hamind and Newair (Abdel-Hamid and Newair, 2013),
previously mentioned in the authors’ co-citation analysis. Luo
et al. (Luo et al., 2013) also proposed a method for gallic acid
detection. Novak et al. (Novak et al., 2009) reported the
electrochemical determination of epicatechin gallate using
GCE. Masoum et al. (Masoum et al., 2014), Moccelini et al.
(Moccelini et al., 2009) and Wang et al. (Wang et al., 2010)
proposed electrochemical methods for catechin detection. Amare
and Admassie (Amare and Admassie, 2012) proposed an
electrochemical method for caffeine detection. Šeruga et al.
(Šeruga et al., 2011) reported the method for polyphenols
detection. All these techniques mentioned above are for the
analysis of important components in tea.

Behind the detection of these substances is the passion
of scientists for antioxidant substances. The explanation of
the principle for antioxidant substances reported by
Huang et al. (Huang et al., 2005) links cluster A and cluster
B. In cluster B, the evaluation of the capacity of antioxidants
using cyclic voltammetry reported by Kilmartin et al.
(Kilmartin et al., 2001) is one of the most important works.
A review of tea and tea polyphenols for cancer
chemoprevention (Lambert and Yang, 2003) connects
Cluster B and Cluster C. This links electrochemical sensing
analysis to the specific health uses of tea components. Cluster
C focuses on studies on the electrochemical behavior of tea
components and human health, such as the relationship
between the electrochemical oxidation of catechins and
their antioxidant activity in microsomal lipid peroxidation
(Yang et al., 2001).

Clusters D and E are two relatively independent groups.
Cluster D focuses on tea as a source of carbon materials and
has been used for energy storage. This cluster was accidentally
included in the scope of this review because of the many
electrochemical characterizations required in energy storage
studies. This is a frequent occurrence in bibliometrics in
sample statistics due to the sharing of similar keywords across
different research directions. Cluster E is about the kinetic study
of the electrochemistry of the tetraethylammonium/water
interface. Since the abbreviation for tetraethylammonium is
TEA, this literature was also accidentally included in the
sample for this review.

CONCLUSION AND PERSPECTIVES

This bibliometrics-based review summarizes the progress of
electrochemical analysis for tea component sensing. The

following conclusions can be drawn based on the focus of
research in different time periods:

1) Between 1994 and 2010, electrochemical techniques were
often used as a detection step after the separation of
samples by chromatographic techniques.

2) After the study of tea components gradually came to our
attention, the electrochemical behavior of those components
that have electrochemical activity began to be investigated.

3) Since some important components in tea have very
pronounced electrochemical redox behavior, electro-
chemical sensors are starting to become a technique to
detect the concentration of these components.

4) As materials science, especially nanomaterials, has become a
hot topic, the use of nanomaterials to improve the
performance of electrochemical sensors has become the
focus of this field. A large number of papers have been
published from 2010 onwards.

5) Electrochemical techniques allow not only the detection of
specific components in tea but also the evaluation of their
antioxidant properties. Therefore, different methodologies
based on electrochemical biosensing have been established
for measuring the antioxidant properties of tea.

Based on the bibliometric survey of trends in this area, we
believe that future direction is likely to focus on the following
areas:

1) The use of novel nanomaterial composites, particularly carbon
materials and noble metal nanoparticles, will continue to be
popular in the design and fabrication of biosensors.

2) Antioxidant property detection biosensors based on DNA
ligand technology may become the norm for evaluating tea’s
antioxidant properties.

3) Because electrochemical sensors allow for rapid assessment of
antioxidant properties, this technique can be applied to a wide
range of in vitro biological experiments.

4) Miniaturization of electrochemical biosensors is an important
step toward applying this technology in the field for food
detection and quality control.
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Synchronization-Free Multivariate
Statistical Process Control for Online
Monitoring of Batch Process Evolution
Rodrigo Rocha de Oliveira* and Anna de Juan*

Chemometrics Group, Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Barcelona, Spain

Synchronization of variable trajectories from batch process data is a delicate operation that
can induce artifacts in the definition of multivariate statistical process control (MSPC)
models for real-time monitoring of batch processes. The current paper introduces a new
synchronization-free approach for online batch MSPC. This approach is based on the use
of local MSPC models that cover a normal operating conditions (NOC) trajectory defined
from principal component analysis (PCA) modeling of non-synchronized historical batches.
The rationale behind is that, although non-synchronized NOC batches are used, an overall
NOC trajectory with a consistent evolution pattern can be described, even if batch-to-
batch natural delays and differences between process starting and end points exist.
Afterwards, the local MSPC models are used to monitor the evolution of new batches and
derive the relatedMSPC chart. During the real-timemonitoring of a new batch, this strategy
allows testing whether every new observation is following or not the NOC trajectory. For a
NOC observation, an additional indication of the batch process progress is provided based
on the identification of the local MSPC model that provides the lowest residuals. When an
observation deviates from the NOC behavior, contribution plots based on the projection of
the observation to the best local MSPC model identified in the last NOC observation are
used to diagnose the variables related to the fault. This methodology is illustrated using two
real examples of NIR-monitored batch processes: a fluidized bed drying process and a
batch distillation of gasoline blends with ethanol.

Keywords: batch process, online process monitoring, statistical process control, synchronization-free MSPC, local
MSPC modeling

INTRODUCTION

Industrial sectors often rely on batch processes to produce their intermediate or final products. Batch
processes consist of cyclic repetitions of an established recipe aiming at the production of products
meeting specific quality specifications. They are also characterized by complex, dynamic and
nonstationary behavior. Thus, monitoring a batch evolution in real-time is a challenging, but
essential action to obtain end products with desired quality, reducing costs and increasing process
understanding. (van Sprang et al., 2002; Rendall et al., 2019; Rato and Reis, 2020).
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Nowadays, with the emergence of Industry 4.0, batch
processes are monitored not only with typical process sensors,
e.g., temperature, pressure, flow, etc, but also with advanced
sensors probes based on spectroscopic techniques such as
near-infrared (NIR), mid-infrared, and Raman (Cimander and
Mandenius, 2004; Pöllänen et al., 2006; Ávila et al., 2012;
Besenhard et al., 2018; Grassi et al., 2019; Avila et al., 2021).
The collection and use of process sensor measurements from
historical batches that followed the normal operating conditions
(NOC) and reached the targeted product specifications is the
basis for the development of multivariate statistical process
control (MSPC) models and related charts, ready to be used to
test the evolution of new batches (Kourti, 2005; Ferrer-Riquelme,
2009; Wold et al., 2009; Colucci et al., 2019; Vidal-Puig et al.,
2019; França et al., 2021). Offline MSPC charts can be used to
diagnose the root cause of a disturbance from a finished faulty
batch. However, it is even more important the online use of
MSPC charts for real-time monitoring of batch evolution to
enable taking quick action in case of detection of process
disturbances.

Process data measurements from a single batch consist of the
collection of several variables, J, (process data and/or
spectroscopic measurements) at different process points
throughout the batch, Ki. These measurements are usually
organized in a data matrix, Xi, with dimension (Ki × J) to be
used for process monitoring and/or control purposes. Most
data-driven modeling strategies aiming at building online
MSPC charts to monitor process evolution require that data
from several NOC batches, I, that have the same batch length,
i.e. batch data matrices with the same numbers of rows K, and
follow the same and synchronized process dynamics. When this
happens, the data can be arranged in a three-dimensional data
array, X, with dimensions I × K × J. Most of the MSPC models
are built based on data-driven multivariate analysis methods,
such as principal component analysis (PCA) and partial least
squares (PLS); for this purpose, different unfolding strategies of
the X array can be used according to the modeling approach
used as originally introduced elsewhere (Nomikos and
MacGregor, 1995; Wold et al., 1998). However, because of
the inherent batch process complexity and nonstationary
behavior, the batch duration, Ki, is not always the same and
equally relevant, key process events do not occur at the same
time point when comparing different NOC batch runs of the
same process. This uneven and not synchronized batch data
cannot be represented in this perfect three-dimensional data
array, X, unless adjusted using different batch synchronization
tools to cope with this problem (González-Martínez et al.,
2014b).

Great progress has been made to develop strategies for batch
alignment based on a maturity index or indicator variable coming
directly from a process variable or estimated by PLS models or
using more advanced algorithms, such as correlation optimized
warping or dynamic time warping (Kassidas et al., 1998; Ramaker
et al., 2004; González-Martínez et al., 2014a; Liu et al., 2017;
Spooner and Kulahci, 2018; Zhao et al., 2020). Most of these
methods were designed for the monitoring of finished batches
using offline MSPC models and only an attempt proposed by

(González-Martínez et al., 2011) described a method based on
time warping that allows batch alignment for online MSPC.

Despite the methodologies mentioned above, having naturally
non-synchronized batches is the most common situation in
practice and batch alignment is a delicate operation that can
induce artifacts in the definition of MSPC models when scarce
information is available or when is not properly applied. Hence,
the need for MSPC approaches that can circumvent the
synchronization step for online process monitoring and
control. Very few attempts have been carried out in this
direction. (Rato et al., 2017) used the translation-invariant
wavelet decomposition and PCA for the monitoring of the
semiconductor manufacturing process. Another method based
on a search grid capturing the batch trajectory in the PCA score
space was proposed by (Westad et al., 2015) and was used for the
monitoring of two industrial processes.

In this paper, a new synchronization-free approach of
multivariate statistical process control (MSPC) for online
monitoring and diagnostics of batch processes is introduced. It
is based on the modeling of an overall NOC historical batch
trajectory, defined by individual non-synchronized NOC batches,
and the subsequent construction of derived PCA-based local
MSPC models covering the complete process, i.e., the
complete overall NOC batch trajectory. These local models are
used to identify whether new batch observations are inside the
NOC trajectory and, when this is the case, to provide an estimate
of the process progress. The approach is illustrated using two real
examples of NIR-monitored batch processes but is readily
applicable for the online monitoring of batch processes of
different typologies monitored by one or more diverse sensors.

PROCESS CASE STUDIES AND DATA SETS

Two case studies from previous works are used to illustrate and
test the online batch MSPC models for tracking process
trajectories. A brief experimental description of these NIR-
monitored processes with the related spectral preprocessing
implemented is presented below.

Process 1: Fluidized Bed Drying of
Pharmaceutical Granules
Batches of 500-g pharmaceutical wet granules (dry mass
fraction of mannitol > 50% and excipients) were dried in a
4-L fluidized bed (4M8-Trix Formatrix, ProCepT, Belgium).
The fluidized bed air inlet flow was controlled at 0.6 or 0.85 m3/
min and a temperature range from 22 to 30°C. In-line NIR
measurements were collected approximately every second using
a spectrophotometer with a MEMS Fabry-Perot interferometer
(N-Series 2.2, Spectral Engines, Finland) coupled to a diffuse
reflectance immersion probe (OFS-6S- 100HO/080704/1,
Solvias, Switzerland). The spectra covered a wavelength range
from 1750 to 2150 nm at 1-nm intervals. For each batch, off-line
reference moisture content analysis was carried out using a
thermogravimetric moisture analyzer (MB120, Ohaus,
Germany) from samples retrieved at 6-min intervals to detect
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drying endpoint (moisture < 2%). Because of different process
conditions at the beginning and during each batch run, such as
inlet air temperature and flow, different batch durations were
required for each trial to reach the defined <2% moisture level,
therefore, providing data matrices with uneven lengths. Faulty
batches used in the testing of the proposed approach did not
reach this moisture level. Suitable preprocessing was employed
to filter out noise and baseline fluctuations on the NIR raw data
observations before data analysis. The preprocessing steps
included the application of a moving average of consecutive
NIR observations followed by standard normal variate (SNV)
normalization. For a detailed description of the experimental
procedure and the visualization of the spectral data, the reader is
referred to (Avila et al., 2020; de Oliveira et al., 2020). Some
batches were selected from the previous work and additional
faulty batches were used for model validation. Ten NOC
batches, NOC1 to NOC10, were used for MSPC model
building, and three for validation (one NOC, Batch NOC1,
and two faulty batches, Batch Fault1 and Batch Fault2). This is
an example of a batch process where the evolution of drying in
time is not synchronized among batches since the initial and
final material in every batch does not necessarily have the same
moisture level.

Process 2: Automated Benchtop Batch
Gasoline Distillation
Batches of 100-ml gasoline blends (mixture of pure gasoline and
ethanol) were distilled in an automated batch distillation device
designed for the in-line monitoring of distilled product with NIR
spectroscopy. For every batch, vapor temperature readings and in-
line NIR absorption spectra (900–2600 nm with 4 cm−1 resolution;
Rocket, ARCoptix ANIR, Switzerland) were recorded for every unit
of percentage distilled mass fraction of initial sample weight, in the
5–90% range. Therefore, the data matrices obtained had the same
number of NIR observations per batch (86 NIR spectra) and every
observation was related to the same distillation process stage, as
defined by the percentage (w/w) of distilled sample mass. The
gasoline batches were prepared bymixing ethanol AR (99% Sigma-
Aldrich) and pure gasoline (from Petrobras refinery, Brazil) at
different volume ratios from 10 to 40%. Distillation batches of
gasoline blends with 27% ethanol were defined as NOC batches
and all batches with a different ratio as faulty, or out of specification
according to Brazilian legislation. The preprocessing steps used in
this data set were Savitzky-Golay derivative (1st-order derivative,
2nd-order polynomial function and 9-point window) for baseline
correction followed by spectral normalization to mitigate signal
intensity fluctuations of the NIR spectra. More detailed
information related to the experiments and spectra
preprocessing can be found elsewhere (de Oliveira et al., 2017).
In this work, nine NOC distillation batches were used to build the
MSPC control charts for tracking process trajectory (B1 to B3, B5
to B9 and B11), and three for validation, where one was NOC (B4)
and two were faulty batches (B13, B19). In this case, batch process
trajectories were synchronized because the percentage of
distillation weight gives a direct reference for batch progress
evolution.

DATA TREATMENT

The online batch MSPC model building procedure for tracking
process evolution in synchronized or non-synchronized batch
processes is described below. The complete methodology involves
the following steps:

a) Modeling of NOC batch process trajectories.
b) Construction of local MSPC models based on NOC batch

process trajectories.
c) Use of an MSPC chart based on local MSPC models to track

the evolution of new batches.

The first two steps are involved in the generation of the MSPC
models, whereas the last step involves the use of the local MSPC
models on new batches to test whether they follow the NOC
trajectory or to detect faults. A detailed description of each step is
presented below together with a visual description of the
approach in Figure 1.

Modeling of NOC Batch Process
Trajectories
The evolution of NOC batches, a.k.a “golden batches”, can be
defined using different multivariate analysis modeling strategies,
such as PCA, independent component analysis, multivariate
curve resolution, parallel factor analysis, etc. (Haack et al.,
2004; Mortensen and Bro, 2006; Skibsted et al., 2006;
Bogomolov, 2011; de Oliveira et al., 2017; Gomes et al., 2019).
In this work, we use PCA as the basis to define the general NOC
batch process trajectory.

The NIR spectra obtained in a NOC batch i are structured in a
data matrix Xi(Ki × J), where Ki are the number of spectra
collected (related to time points for Process 1 and to % of
distillation for Process 2) and J are the NIR channels per
spectrum.

When several NOC batches are used to define the general
process trajectory, the data matrices from the different NOC
batches, Xi(Ki × J), are placed one on top of each other to build
an augmented multiset structure X(N × J), where N is the
number of rows related to the total number of observations
from the I NOC batches, that is, N � ∑

I

i
Ki. Note that this

strategy does not require resizing or synchronization of
uneven batch lengths, since the only requirement is that all
batches share a common spectral dimension, J (Wold et al.,
1998). The next step is to column mean-center this multi-batch
structure and analyze it with PCA. This centering operation is not
oriented to remove the mean trajectory of the batches in time, just
to center the data and remove the average spectral shape in order
to see the spectral process variation already from the first PC.

Principal component analysis (PCA) is used to obtain a global
model of batch trajectories explaining the overall NOC process
evolution. PCA is used to reduce the dimensionality of the
preprocessed spectral data into a low-dimensional subspace of
principal components (PC’s), orthogonal among them, that
preserve the relevant information of the original data and
explain the maximum non-random variance (Jolliffe, 2002).
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The PCAmodel for the augmented process data matrixX(N × J)
is expressed as in Eq. 1,

X � TPT + E (1)

where T(N × A) is formed by the scores matrix, related to the
observations of the batch process data, PT(A × J) is the loadings
matrix, related to the importance of the NIR variables in the
description of theA PC’s and E(N × J) is the residual matrix after
modeling. The number of principal components of the model, A,
can be found using a suitable cross-validation method. The
loading matrix, PT, is common to all batches and the
augmented score matrix, T, accommodates Ti blocks, related
to every batch, that can be formed by a different number of
observations, Ki. The multiset structure for three NOC batches
and the related PCA model is illustrated in Figure 1A (top left),
where λ represents the J spectral channels of the NIR spectra.

Construction of Local MSPC Models Based
on NOC Batch Process Trajectories
From the augmented score matrix of all NOC batches, individual
batch score trajectories can be overlapped on a scatter score plot,
as shown in Figure 1A (bottom left). The dots represent the
scores for each observation and are colored according to the NOC
batches used in the PCA model. Note that the overall trajectory
evolution is the same for all NOC batches, but in a general non-
synchronized case, the starting and endpoint of every batch do
not need to coincide. The overlapped individual batch process
trajectories define a global description of the variability of the
NOC process evolution, helpful to observe whether a new batch
process evolves as NOC batches or not, independently from the
batch length and dynamics.

The evolution described by the overlapped NOC trajectories
can be divided into a sufficient number of C local regions using a
cluster analysis methodology, such as k-means and fuzzy c-means
clustering algorithms. In general, any algorithm allowing an even
distribution of observations in the different clusters would be
potentially valid in this step. The number of clusters used to set
the local MSPC models will be closely related to the process
progress resolution desired to study the batch evolution and will
be limited by the number of available NOC observations. Hence,
the higher the number of clusters, the higher process progress
resolution will be obtained; however, care must be taken to avoid
building local MSPC models with an insufficient number of
observations that could lead to a non-representative
description of the process stage to be controlled. Figure 1A
(bottom right) illustrates these local regions for C � 11, as
indicated by the outer circle color of the neighbor
observations inside each cluster. The seeding information for
the local MSPC models is formed by the observations in two
consecutive clusters. Therefore, the first local MSPC model
contains the observations in the first two clusters of the
process trajectory, the second local MSPC model uses the
observations in clusters two and three and so forth until all
the NOC process trajectory is covered. The observations used in
consecutive local MSPCmodels overlap with each other so that all
process trajectory regions are covered. As can be seen in

Figure 1A, for a k-means analysis providing 11 clusters, 10
local MSPC models with overlapping information as defined
by the red ellipses can be built.

The local MSPC models are built based on PCA and control
chart limits are defined using the suitable local model statistics.
The operational procedure to build each local MSPC model can
be described as follows. First, the original observations, i.e. NIR
spectra, for each local model are placed into a data matrix
Xm(Km × J), where m indicates the index of the local model
(from 1 toM) andKm is the number of observations used to build
the model. Then, this matrix is mean-centered and modeled with
PCA, as in Eq. 1, generating the matrices of scores Tm(Km × Am),
loadings PT

m(Am × J), and residuals Em(Km × J). Note that the
mean-center is performed using the mean of the matrix Xm not
the global mean of themulti-bach structure. By doing so, since the
local observations inside the matrix Xm should have similar
spectral shape, the mean trajectory of the batch at that
particular process stage is removed. Enough PC’s, Am, are
included in each local model to provide the best fit using
cross-validation (Wold, 1978). Finally, the control limits of the
local control charts can be derived using the residuals and the

FIGURE 1 | Illustrative description of the different steps involved in the
implementation of the local MSPC models for online monitoring of batch
evolution. (A) PCA modeling of original batch process data for several NOC
batches, visualization of process trajectories in the scatter score plot and
definition of local regions in the NOC trajectory using k-means. (B)Monitoring
of the evolution of a new batch using the projection of each observation onto
the local MSPC models. The related reduced Q-statistics control chart is
obtained plotting the minimum Qr value obtained in all M model projections
per each observation.
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scores from the local PCAmodel (Rännar et al., 1998; Wold et al.,
1998; Aguado et al., 2007). In this work, the controls charts are
based only on the residual matrix, Em, deriving the Q-statistic
control chart limit,Qlim; however, other statistical parameters can
readily be used to track the process evolution. The Qlim is
calculated according to the equation proposed by (Jackson and
Mudholkar, 1979). Thus, once the local MSPC models and their
related multivariate control charts limits are set, the online
process evolution of new batches can be tracked based on the
local models defined.

Use of an MSPC Chart Based on Local
MSPC Models to Track New Batch
Evolution
Calculation of squared residuals statistics (Q)
For online batch monitoring of new batch observations (XNEW in
Figure 1B), every new observation is projected onto all local
MSPC models and a set of the related sum of squared residuals
statistics, , are obtained as shown in Figure 1B. Thus, for every
new online observation, xk (a NIR spectrum in XNEW), its scores
values, tk,m, are obtained for each local MSPC model using its
related PCA loadings, Pm, as follows,

tk,m � xkPm (2)

Then, the residuals for the new observation in each local model
are obtained as,

ek,m � xk − tk,mP
T
m (3)

And the related Qk,m as:

Qk,m � ek,me
T
k,m (4)

For an easier interpretation of the global multivariate control
chart obtained from the outputs of the local MSPC models,
reduced Q-statistics, Qrk,m, are calculated by dividing the
obtained Qk,m values by the related local model Qlim. Thus,
the control limits for all local MSPC models become equal to
one, Qrlim � 1. The reduced Q values for every new observation,
Qrk,m, are checked to see whether they are above or below the
Qrlim. If all Qrk,m values for the observation k are large and above
one, this observation is diagnosed as faulty, and it is an indicator
that the process is deviating from the NOC trajectory. Conversely,
if one or more Qrk,m values are below the control limit, the
observation follows the NOC trajectory. An easy way to visualize
the diagnostic of every new observation by using a single Q chart
is shown in Figure 1B (bottom right), where only the minimum
Qr parameter after the projection in all local models is displayed
for every new observation. Observations that follow the NOC
trajectory are depicted by the green dots below the Qrlim � 1, and
the eventual deviations from it, with min(Qrk,m)> 1, in red. To
assess the spectral variables making the greatest contributions to
the deviation in Q we can display the Q-statistics contribution
plots for the sought observation by plotting the elements of the
residual vector, ek,m. The residuals used for the contribution plots
are calculated using the best local MSPC model related to the last
NOC observation.

For NOC observations, it is also possible to estimate the
process stage of every observation by identifying the local
MSPC model providing the lowest Qrk,m value. This
visualization approach will be provided for the real process
applications studied in this work in the next section.

RESULTS AND DISCUSSION

In this section, the results related to the construction of NOC
trajectories and local MSPC models for each process case study
are shown. Afterwards, the resulting MSPC charts for the
online monitoring of new NOC and faulty batches are
shown for each process. Complementary visualization of
MSPC charts and fault diagnostics based on contribution
plots are also presented.

Construction of NOC Trajectories and Local
MSPC Models
The construction of PCA-based NOC trajectories for each
process was calculated as explained in step a of the Data
Treatment section using the training dataset, i.e. all NIR
observations from selected complete NOC batches. This step
was followed by k-means analysis on the overlapped individual
NOC batch trajectories to define the clusters used to build the
local MSPC models covering the overall NOC process trajectory

FIGURE 2 | PCA score plot for the online NIR observations showing the
NOC batch process trajectories and local clusters found by k-means for (A)
Process 1, fluidized bed drying, and (B) Process 2, gasoline blend distillation.
The inner part of the circles is colored according to the related NOC
batch, whereas the outer part reflects the observations included in every
cluster and, hence, in the related local MSPC model.
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(Data Treatment section step b). Figure 2 shows the PCA score
scatter plot and the k-means clusters used to build the local
MSPC models describing the overall NOC batch process
trajectories for the drying (Process 1) and the distillation
processes (Process 2).

Principal Component Analysis of the NOC batches from
Process 1 (Fluidized bed drying) allowed description of the
process evolution using only two PC’s explaining a total of
97.61% of the data variance, as shown in the score plot of
Figure 2A. The score plot described mostly the variation of
the moisture content with the drying evolution from
beginning to end of every NOC batch. Note that, because
each batch had different initial and final moisture conditions,
they started and finished at different points of the overall
NOC trajectory; however, all individual batch trajectories
followed the same evolution pattern, as shown in the PCA
score plot. Once the overall NOC trajectory was defined, 30
clusters were defined using the k-means analysis along this
trajectory, as displayed by the different outer circle colors
associated with the observations inside each cluster in
Figure 2A. For this example, 30 clusters and, hence, 29
local MSPC models, were considered sufficient to track in
detail the process evolution. After that, a number indicating
the process stage evolution was automatically assigned to each
cluster according to the position in the overall NOC
trajectory.

For Process 2 (Distillation), three components were required
by PCA to explain 98.99% of NOC batches variance because of
the complex gasoline sample and the continuous variation of the
distilled material composition. The complex overall NOC
trajectory associated with the distillation process is shown in
the 3 PC score scatter plot in Figure 2B. Despite the higher
complexity of the overall NOC trajectory linked to the distillation
process, all individual batches trajectories followed the same
evolution pattern with good reproducibility. In contrast to the
drying process, the NIR observations of the distillation process
were acquired at specific percentages of distillation weight;
therefore, the observations were naturally synchronized
according to the process evolution. Note that all batches
started and finished at the same point of the overall NOC
batch trajectory in the score plot. The k-means algorithm
applied on the PCA scores of Figure 2B was used to set 20
clusters along the overall NOC batch trajectory, as displayed in
Figure 2B. The number of clusters is lower than in the previous
example because of the limited number of available observations
per batch run (only 86) and the need to avoid having clusters with
a very low number of observations to build the local MSPC
models.

Once the overall NOC batch process trajectories were defined
for each process case, the original NIR observations inside the
suitable two consecutive k-means clusters were used as seeding
information to build local MSPCmodels for each step of the batch
trajectory, as described in the Data Treatment section (step b).
Thus, a total of 29 and 19 local PCA-based MSPC models were
built for Processes 1 and 2, respectively. Local MSPC control chart
limits based on the Q-statistics with a 99% confidence interval
were calculated for each local MSPC model to be used for the

online tracking of new batches evolution, as shown in the next
subsection.

Online Tracking of New Batch Evolution
with Local MSPC Models
The results of the use of local MSPC models for the online
tracking of new batch evolution are described separately for each
process case, as shown below. The new batches used were
identified in previous studies as NOC or faulty; therefore, they
will be useful to demonstrate and validate the proposed
methodology.

Application to Process 1 (Fluidized Bed Drying)
The tracking of every observation in new fluidized bed drying
batches was performed as described in the Data treatment section
(step c), using the 29 local MSPC models built as explained above
(Supplementary Figure S1 and a related animation
Supplementary Figure S2 of the help to display how the Qr
values issued from everyMSPC local model are obtained for every
observation in a batch).

The Qr-based MSPC control charts for the online tracking of
observations in two drying batches are shown in Figure 3.
Figure 3A; Figure 3C are contour plots related to validation
Batch NOC1 and Batch Fault1, respectively, that show all the Qr
values calculated after the projection of each online NIR
observation of the batch onto all local MSPC models. A log-
scale colormap has been used to highlight the differences at low
Qr values. The horizontal axis of the contour plot represents the
batch time at which every observation was collected and the right
vertical axis the indices related to the local MSPC model used to
describe the Process 1 NOC batch trajectory, i.e. from 1 to 29.
Additionally, in the left vertical axis, each local MSPC model
index is associated with a percentage of the process progress from
0–100%, defined making a linear scaling that links the initial local
model to 0% process progress and the final local model to 100%
process progress. The process progress in this approach plays the
same role as the process maturity concept proposed by other
authors (Wold et al., 1998; Westad et al., 2015).

Thus, to track the behavior of an observation of a new batch,
their relatedQr values (associated with a specific process time) are
examined. In the contour plots in Figure 3A; Figure 3C, the Qr
values below the control limit, i.e.Qr < 1, are depicted as blue dots
and the min (Qr < 1) for every observation in green. If an
observation shows a NOC behavior (as all do in Figure 3A
related to Batch NOC1), there will always be one or more Qr
values below 1; i.e., all observations will show one or more blue
dots and a green dot. Instead, when an observation deviates from
the NOC trajectory, as in Batch Fault1 (Figure 3C), all Qr values
related to that observation are above the control limit of 1 and
neither blue nor green dots are observed.

To facilitate the interpretation and summarize the relevant
information of the results in the contour plots, graphics
displaying the min (Qr) value and the related process progress
for every batch observation are proposed (see Figure 3B and
Figure 3D for batches NOC1 and Fault1, respectively). Figure 3B
shows that all observations for batch NOC1 followed the NOC

Frontiers in Analytical Science | www.frontiersin.org January 2022 | Volume 1 | Article 7728446

Rocha de Oliveira and de Juan Synchronization-Free Online Batch MSPC

133

https://www.frontiersin.org/journals/analytical-science
www.frontiersin.org
https://www.frontiersin.org/journals/analytical-science#articles


batch trajectory, seen because all min (Qr) values were below the
control limit of 1 (bottom panel) and that the process progress
covered the complete range (0–100%) (top panel). Figure 3D
shows that batch Fault1 deviated from the NOC trajectory after
approximately 40 min of batch time as flagged by the Qr above
the local MSPC control limits (min (Qr) > 1) (bottom plot).
When a fault happens, the related observations are displayed in
red in the process progress plot to indicate that the evolution of
the process is abnormal (top plot).

Detailed results and interpretation of the abnormal behavior
for the online tracking of two faulty batches, Fault1 and Fault2,
are shown in the Supplementary Figure S3; Figure 4 (left plots),
respectively. Supplementary Figure S3A; Figure 4A show the
deviations of the two batches by displaying the score plot
projections of NIR observations of these new batches onto the
global PCAmodel used to describe the NOC batch trajectory. The
score plot shows all training NOC batch trajectories as gray dots
whereas the NOC observations from the new batches are
overlayed as green dots when identified as NOC and as red
dots when faulty. Supplementary Figures S3B, S3C; Figure 4B
show the batch process progress andmin (Qr)MSPC chart for the
tracking of the online observations, where the abnormal
observations are associated with min (Qr) values higher than 1
and flagged in red color in the process progress plot. Moreover, Q

contribution plots from two faulty observations selected from
each batch are shown in Supplementary Figure S3D; Figure 4C.
The contribution plots were used to understand the reasons for
the deviations from the NOC batch trajectory, as described below
for each batch.

The deviation of drying batch Fault1 from the NOC trajectory
was detected after approximately 40 min of batch time, see
Supplementary Figures S3B, S3C. Although in
Supplementary Figure S3A the faulty observations (red dots)
right after 40 min were still close to the NOC trajectory, the
related min (Qr) after projection onto local MSPC models was
above the control limit indicating a deviation, which became even
larger after ca. 65 min of batch time, see Supplementary Figure
S3C. To help to diagnose this deviation, contribution plots are
shown in Supplementary Figure S3D for two faulty observations
selected at 64 and 69 min of batch time. These observations are
marked in blue and orange squares in the score plot and MSPC
charts. The Q contribution plots show that the absorption bands
that gave higher contributions to Q were around 1750 and
1900 nm related to the 1st overtone of CH and OH bonds. No
clear trend was observed when comparing the contribution plots
of the two observations suggesting that this deviation may have
been caused by changes of heterogeneity or particle comminution
of the pharmaceutical granules.

FIGURE 3 | Qr-based MSPC charts for fluidized bed drying (Process 1) batch NOC1 (A and B) and batch Fault1(C and D). (A and C) Contour plots of the Qr
values calculated after the projection of each NIR observation onto the local MSPCmodels. Blue dots show values ofQr < 1 (control limit), green squares the min (Qr < 1).
(B and D) Charts show the min (Qr) value (bottom panel) and the related process progress associated with it (top panel) for every batch observation. In the process
progress plot, NOC observations are displayed in green and faulty observations in red.
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During the tracking of the additional batch, Fault2, three
clusters of faulty observations were detected, see Figure 4B.
The first faulty observations were detected during the first few
minutes of the batch process. This deviation was related to the
initial moisture content higher than the common starting point
for the NOC batches used to build the MSPC models at the
beginning of the process trajectory. However, after a few minutes
of drying, the online observations fell inside the confidence
interval. The second faulty situation occurred after ca. 18 min
of batch time during just four consecutive observations, but it
quickly returned inside the control limit. This probably was

related to a fast change of moisture content sensed by the NIR
probe due to granule heterogeneity. This can be noticed by the
fast change in process progress just before minute 20 in Figure 4B
(top panel). From this point until approximately 60 min of batch
time, the batch followed the NOC trajectory reaching 100% of
batch progress, that is, reaching the minimum moisture level of
the NOC batches used to train the local MSPC models at the end
of the process trajectory, see Figure 4 (top panel). However, this
batch was left to overdry reaching moisture levels lower than the
endpoint of the historical NOC batches used for model training.
The consequence of this action was successfully detected after

FIGURE 4 |Online tracking of new batch evolution using the local MSPCmodels for process 1 (fluidized bed drying) left plots (A to C) and process2 (gasoline blend
distillation) right plots (D to F). (A) Process 1 PCA score plot showing the training NOC batches trajectories (gray dots) and validation batch Fault2 trajectory in green
(NOC observations) and red dots (faulty observations). (B) MSPC chart showing the process progress (top panel) and min (Qr)-based MSPC chart. (C) Q contribution
(Qcont.) plots for two faulty observations at 95 and 105 min of batch Fault2 drying time represented by the blue and orange squares in the MSPC control chart. (D)
Process 2 PCA score plot showing the training NOC batches trajectories (gray dots) and three validation batches (B4 circles, B13 triangles and B19 squares) trajectories
in green (NOC observations) and red dots (faulty observations). (E)MSPC chart showing faulty batch B13 process progress (top panel) and min (Qr)-based MSPC chart.
(F) Q contribution (Qcont.) plots for two faulty observations at 42 and 46% of distillation represented by the blue and orange squares in the MSPC control chart. Green
and red marker face color in process progress chart indicate that the observation is inside or outside the trajectory confidence limits, respectively.
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approximately 70 min of the batch time by the MSPC chart,
Figure 4 (bottom panel), where almost all consecutive
observations were above the control limit. Looking at the
bottom left of Figure 4A it can be observed how the PCA
projections of these faulty observations were outside the NOC
trajectory, but still following the drying process trend. Finally, two
faulty observations at the end of this validation batch (at 100 and
105 min) were selected to check the contribution plots. These
observations are marked in blue and orange squares in the score
plot and MSPC charts. The Q contribution plots in Figure 4C
show that the absorption bands that contributed more to Q were
around 1750 and 1950 nm related to the 1st overtone of CH and
OH bonds, respectively, being the band at 1950 nm identified
generally as the most dominant water band. The Q contribution
positive and negative sign for the bands at 1750 and 1950 nm,
respectively, indicates that the moisture level for these two
observations was lower than the endpoint of the historical
batches used in the model building. Also, when comparing the
two faulty contribution plots, the systematic growth of the Q
contributions at 1750 and 1950 nm bands, indicates the
continuing moisture content decrease. It is important to note
that this overdrying batch was used in this work to demonstrate
the ability of the local MSPC models to detect such situations. In
real-time monitoring, this batch would have been terminated
once reached 100% of process progress, thus, avoiding energy
waste and possible detrimental effects due to the excessive
granules processing time.

Application to Process 2 (Gasoline Distillation)
The local MSPC models built to track the batch gasoline
distillation were tested. Three validation batches were used:
one batch of on-specification gasoline blend with 27% of
ethanol (batch B4) and two off-specification gasoline
distillation batches, B13 and B19, with 15 and 30% ethanol
blends, respectively. The results for all testing batches are
shown in Figure 4 (right plots) and Supplementary Figure S4.

The scatter score plot projections of the NIR observations for
all three validation batches in the global PCAmodel used to build
the Process 2 NOC batch trajectory are represented in Figure 4D
(same as Supplementary Figure S4A). In the score plot, gray dots
identify the observations from the training batches describing the
NOC batch trajectory, while the circles, triangles and squares are
the projected observations from testing batches B4, B13 and B19,
respectively. For the testing batches, the symbol face color
indicates whether the observation was detected by the MSPC
charts as faulty (red) or not (green). Process progress and min
(Qr) MSPC charts for the testing batches are shown in Figure 4E
for batch B13 and Supplementary Figures S4B, S4C for batches
B4 and B19, respectively. Additionally, Q contribution plots for
two selected faulty observations are shown in Figure 4F;
Supplementary Figure S4D for batches B13 and B19,
respectively.

The projections of the validation batch B4 in the global PCA
model (Supplementary Figure S4A) followed the NOC batch
trajectory described by the cloud of gray dots. Indeed, when
looking at the MSPC charts in Supplementary Figure S4B, all
observations are below the Qr control limit and the batch process

progressed accordingly to the on-specification gasoline batches.
On the other hand, when looking at the projections of batch B13
observations to the global PCAmodel, an obvious deviation of the
NOC batch trajectory was observed, see the red triangles in
Figure 4D. This deviation was detected by the min (Qr) local
MSPC charts (Figure 4E bottom panel) after 40% of the initial
batch weight was distilled. Note the interruption of the process
progress after this point and all consecutive observations. The off-
specification batch B19 deviation from the NOC batch trajectory
was lightly noticed by the PCA score plot projections in
Supplementary Figure S4A (red squares). However, this batch
deviation was still detected by the local MSPC charts in
Supplementary Figure S4C (bottom panel). Note that this
sensitivity is important since batch B19 contains 30% alcohol
(v/v), only a 3% more than the NOC batches. Similarly, the fault
was first detected after ca. 40% of the distillation batch and all
consecutive observations since then were detected outside the
confidence interval for all local MSPC models.

The contribution plots (Figure 4F) for the selected fault
observations at 42% (in blue) and 46% (in orange) fraction of
distilled material of the B13 batch show that the two bands
covering the 1650–1700 nm and 2100–2200 nm NIR contributed
the most to the Q. The absolute increase of Q contributions at
1665, 2130 and 2180 nm indicated a possible increment of mid
and high-density hydrocarbon fractions at these distillation
points. Additionally, the negative contribution at 1685 nm
indicated a lower content of ethanol and light hydrocarbon
compounds. This agrees with the expected distillation behavior
for off-specification gasoline blends with low ethanol content.
This is confirmed when looking at the distillation profiles
obtained by Multivariate Curve Resolution-Alternating Least
Squares (MCR-ALS) for these compounds presented in our
previous work for this specific batch (de Oliveira et al., 2017).
For batch B19, Supplementary Figure S4D shows the
contribution plots for the faulty observation at 44% (in blue)
and 50% (in orange) of the batch distillation. The high negative
contribution between 1680 and 1700 nm suggested the presence
of a lower content of mid and heavy hydrocarbons fraction than
expected for NOC batches at this point of distillation. These
ethanol-rich fractions were related to the fact that this off-
specification gasoline batch had a slightly higher ethanol
content (30%) than NOC gasolines (27%).

CONCLUSION

The present work introduces a new approach for online
monitoring of spectroscopic-monitored batch process
evolution through the design of local MSPC models covering
an overall NOC batch process trajectory, defined from the PCA
modeling of non-synchronized NOC batches. The key element in
this approach is that the different NOC batches follow a similar
NOC trajectory in the PCA score map and this fact is clearly
visible and can be used to build derivedMSPCmodels without the
need of batch synchronization. The tracking of the evolution of
new batches does not require synchronization either. The
methodology has been demonstrated with the building and
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validation of online MSPC charts for the monitoring of two real
batch process data of different nature using in-situ NIR
measurements. In both process examples, the implementation
of local MSPC charts has been successfully validated for the
tracking of well-known new batches that followed or deviated
from the overall NOC batch trajectory. The use of Q contribution
plots was helpful to identify the sources of process abnormalities
based on the chemical information provided by the NIR signal.

The fact that the proposed methodology does not require
batch synchronization makes the data analysis pipeline simpler
and flexible and offers many advantages for real-time process
monitoring, from the building of the reference MSPC models to
the test of new batches. Thus, the designed methodology allows
the model building with historical NOC process data acquired
with different online sampling rates and spanning evolution in
different time (or process variable) ranges. The monitoring of
new batches is also independent of the sampling rate used in the
model building, which allows for changes in the sampling interval
if required. Furthermore, the fact that the exam of the quality of
new batch observations provides additionally a good indication of
the process progress enables the potential use of this online
tracking methodology for end-point detection, providing a
single tool to control both the evolution and the end of the
process. The presented methodology has been applied to NIR
monitored processes but could be readily adapted to deal
simultaneously with the output from several sensor outputs in
a sensor fusion scenario, since a common trajectory for NOC
batches would be seen. That would allow an integral control of the
process evolution by combining the output from advanced
sensors with other process data (temperature, flow, pressure, etc.).
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Hyperspectral imaging has recently gained increasing attention from academic and
industrial world due to its capability of providing both spatial and physico-chemical
information about the investigated objects. While this analytical approach is
experiencing a substantial success and diffusion in very disparate scenarios, far less
exploited is the possibility of collecting sequences of hyperspectral images over time for
monitoring dynamic scenes. This trend is mainly justified by the fact that these so-called
hyperspectral videos usually result in BIG DATA sets, requiring TBs of computer memory
to be both stored and processed. Clearly, standard chemometric techniques do need to
be somehow adapted or expanded to be capable of dealing with suchmassive amounts of
information. In addition, hyperspectral video data are often affected by many different
sources of variations in sample chemistry (for example, light absorption effects) and sample
physics (light scattering effects) as well as by systematic errors (associated, e.g., to
fluctuations in the behaviour of the light source and/or of the camera). Therefore,
identifying, disentangling and interpreting all these distinct sources of information
represents undoubtedly a challenging task. In view of all these aspects, the present
work describes a multivariate hybrid modelling framework for the analysis of hyperspectral
videos, which involves spatial, spectral and temporal parametrisations of both known and
unknown chemical and physical phenomena underlying complex real-world systems.
Such a framework encompasses three different computational steps: 1) motions ongoing
within the inspected scene are estimated by optical flow analysis and compensated
through IDLE modelling; 2) chemical variations are quantified and separated from physical
variations by means of Extended Multiplicative Signal Correction (EMSC); 3) the resulting
light scattering and light absorption data are subjected to the On-The-Fly Processing and
summarised spectrally, spatially and over time. The developed methodology was here
tested on a near-infrared hyperspectral video of a piece of wood undergoing drying. It led
to a significant reduction of the size of the original measurements recorded and, at the
same time, provided valuable information about systematic variations generated by the
phenomena behind the monitored process.

Keywords: hyperspectral videos, motion compensation, IDLE modelling, light scattering, light absorption, extended
multiplicative signal correction, on-the-fly processing, BIG measurement DATA
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1 INTRODUCTION

1.1 Hyperspectral Videos
In the last decade, hyperspectral imaging has experienced a
significant diffusion mainly because of its capability of
providing spatial and physico-chemical information about the
systems under study - Hugelier et al. (2020). By returning whole
spectra for all scanned pixels, in fact, a hyperspectral image
permits to map the distribution of the constituents of the
investigated samples all over the inspected field of view. For
this reason, the applications of this analytical approach have lately
dramatically increased in many domains of interest, like
medicine, forensics, geoscience, urban and environmental
surveillance and fire detection—Fischer and Kakoulli (2006);
Chuvieco and Kasischke (2007); Hay et al. (2011); Matikainen
and Karila (2011); Elmasry et al. (2012); Lu and Fei (2014); Silva
et al. (2017); Khan et al. (2018); Vitale et al. (2020a).

Nonetheless, although hyperspectral imaging devices have
become rather common tools in both academic and industrial
chemistry laboratories, they are rarely configured so as to collect
series of hyperspectral images over time for dynamic scene
monitoring. There are two reasons behind this tendency: first
of all, finding a reasonable compromise between spatial and
spectral resolution and recording rate is not an easy and
straightforward task; second, these so-called hyperspectral
videos often translate into BIG DATA sets that can hardly be
coped with by methodologies commonly resorted to for the
analysis of individual hyperspectral images—for instance,
Principal Component Analysis (PCA), Pearson (1901);
Hotelling (1933), Partial Least Squares regression (PLS), Wold
et al. (1983); Martens and Næs (1989), Multivariate Curve
Resolution-Alternating Least Squares (MCR-ALS), Tauler et al.
(1995), and Non-NegativeMatrix Factorisation (NNMF), Lawton
and Sylvestre (1971); Martens (1979). As an example, one can
consider that, when storing hundreds of hyperspectral data
arrays, the computer memory load is likely to increase up to
the order of magnitude of the TBs. Modern workstations cannot
readily handle such massive amounts of information and,
therefore, standard chemometric techniques do need to be
somehow adapted or extended to be possibly utilised in
similar scenarios. Furthermore, hyperspectral video data
typically account for various phenomena related to sample
physics (e.g., light scattering) and sample chemistry (light
absorbance) and can be significantly affected by many
different types of systematic errors (like those associated to
nuisance fluctuations of the light source and/or the camera).
Thus, identifying, disentangling, modelling and interpreting all
these distinct sources of variations remains undoubtedly a
challenging task.

1.2 Hyperspectral Video Analysis
Many known causal phenomena influence how light interacts
with matter. The most important ones—light absorbance and
light scattering—can even be approximated by relatively simple
models, e.g., the Beer-Lambert’s law or the Kubelka-Munck
theory—Bouguer, (1729); Lambert, (1760); Beer (1852);
Kubelka and Munk (1931). Yet, albeit some of the

aforementioned error factors affecting spectroscopic
measurements—like illumination changes—can also be easily
foreseen, a detailed mathematical characterisation of the
spectral effects they might generate would be prohibitive from
a computational point of view. For this reason, modelling and
analysing hyperspectral videos constitutes a problematic
challenge. Hyperspectral video data, in fact, yield information
about the four main ontological aspects of reality: space, time,
properties/attributes (for instance, a light intensity profile in the
near-infrared—NIR—spectral range) and their interactions.
Thus, a comprehensive description of a hyperspectral video
would require the identification and the quantification of
factors or components (both known and unknown) accounting
for spatial, temporal and spectral variation patterns in such data.
This would allow practitioners and users to gain new insights into
complex systems of high relevance and into the interplay between
the known and unknown phenomena driving their behaviour and
evolution. As an immediate example of such an interplay,
consider wood drying, a process exhibiting a deep economic
and technical impact—McMillen (1964): water absorption
properties allow, in principle, the moisture content of wood
samples to be accurately determined. However, these
properties may substantially change along with the
thermodynamic state of water molecules (i.e., free or bound)
and might even mimic spectral contributions from other wood
constituents, like cellulose, hemicellulose and lignin. In this as
well as in numerous other real-world scenarios, disentangling and
characterising the two aforementioned types of phenomena
becomes, therefore, crucial from the perspective of
understanding. In this article, a novel hybrid approach to
achieve this objective is presented. It combines three
multivariate approximation strategies for the compression and
rational handling of hyperspectral videos: IDLE
modelling—Westad and Martens (1999); Martens (2015) —
Extended Multiplicative Signal Correction (EMSC)—Martens
and Stark (1991); Martens et al. (2003)—and the On-The-Fly
Processing (OTFP)—Vitale et al. (2017b). If, on the one hand,
EMSC is a well-established tool in the chemometric community,
on the other hand IDLE modelling and the OTFP have only
recently been conceived, although they have already
demonstrated their potential for fast processing of BIG DATA
streams—Martens (2015); Vitale et al. (2017b); Stefansson et al.
(2020); Vitale et al. (2020b). For the joint analysis of spatial and
intensity changes in video recordings, IDLE splits the data
variation into two domains as expressed in the following
mathematical relation:

I � D L( ) + E (1)
by which a generic measured image (I) can be described as a
function of the displacement (D) of a local intensity image (L)
plus error (E). Imagine, for instance, that two different objects
(i.e., a black triangle and a black square—see Figure 1A) were
photographed on a white table. After 1 minute, someone moves
the first object along y, rotates it 90° and collects another picture
(see Figure 1B). After 2 minutes, a third picture is taken after the
square was painted grey (see Figure 1C). Assume now that D and
L explain simultaneously vertical displacements and clockwise
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rotations of the black triangle and variations in the black square
pixel intensities, respectively. In this simple illustration, D would
encode the triangle movement as an individual coefficient (say,
a), proportional to the dissimilarity from the object’s original
location and positioning and exhibiting a sign that depends on
the sense of its motion. Analogously, L would quantify the change
in the intensity of the pixels of the square as a positive parameter
(say, b), since the transition from black to light grey implies an
increase of the image lightness. Unexpected motions and colours
as well as the appearance of unexpected items, like the dark grey
spiral-like structure in Figure 1D, would be accounted for by the
residuals E.

Conversely, the OTFP gradually constructs reduced-rank bilinear
models that summarise virtually ever-lasting streams of multivariate
responses and capture the evolving covariation patterns among their
(spectral) variables in space and time. In other words, it represents an
extension of classical PCA designed for processing such multivariate
responses as soon as they are collected and, most importantly,
without requiring entire raw datasets to be kept in memory.
More specifically, the OTFP rests on a flexible bilinear subspace
model structure which is automatically expanded when a new
variation pattern is discovered—as for classical moving-window
PCA implementations, Makeig et al. (2000); Wang et al. (2005),
even if, here, relevance for old or past observations is never lost—or
refined when the same variation patterns are repeatedly observed,
while statistical redundancies are filtered out guaranteeing high rates
of information compression. In contrast to black-box deep learning
solutions, this PCA-like model-based approximation is graphically
interpretable in its compressed state and allows at any time the
original input to be reconstructed with a better signal-to-noise ratio
(as measurement noise is eliminated).

Here, the sequential utilisation of IDLE, EMSC and the OTFP for
the investigation of hyperspectral videos will be tested in a context
similar to that envisioned before: the monitoring of the drying
process of a wood specimen. The results of this study will highlight
how this combination can enable an accurate estimation of the
dynamic evolution of wood properties and how relatively simple
quantitative spatial and temporal information can be extracted from
a seemingly overwhelming stream of hyperspectral video data by
coupling different mathematical modelling techniques.

1.3 Hyperspectral Video Data Structure
Hyperspectral videos can be regarded as time series of three-
dimensional data arrays (hyperspectral frames or snapshots) with
dimensions Nx × Ny × J, where Nx and Ny denote the number of
pixels scanned along the horizontal and vertical direction,
respectively, and J the number of wavelength channels
sampled by the equipment employed. More broadly speaking,
they can be thought of as the product of the concatenation of
these arrays along a fourth time-related measurement mode. In
spite of their multidimensional structure, hyperspectral video
data are usually analysed in their unfolded form, i.e. as matrices of
size NxNyK × J with K representing the amount of time points at
which the aforementioned frames are collected. Each row of such
matrices carries a single spectral profile recorded for an individual
pixel at a given time point.

2 METHODS

In this article, EMSC and the OTFP are applied in a sequential
fashion to assess/discover and quantify known and unknown

FIGURE 1 | Schematic representation of the basic principles of IDLEmodelling. (A)Reference image, (B) Test image n.1, (C) Test image n.2 and (D) Test image n.3.
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sources of data variability in hyperspectral videos. This strategy
combines mechanistic and empirical multivariate modelling for
describing all physical, chemical and instrumental variation
patterns behind hyperspectral video recordings. In order to
account for and compensate possible motions and pixel
intensity changes which could originate complex non-
linearities distorting the measured spatiospectral response,
optical flow analysis—Horn and Schunck (1981, 1993)—and
IDLE are applied in a preliminary preprocessing step.

The next sections will describe in detail the basics of the three
different methodologies exploited here.

2.1 IDLE Modelling
Broadly speaking, the IDLE model is a mathematical description
of real-world objects or scenes (characterised by spatiotemporal
measurements like videos) in terms of their intensity and spatial
variations. Here, IDLE is utilised as an empirical compression
approach for sets of consecutive video frames, yielding high
compression rates and, at the same time, enabling qualitative
and quantitative data interpretation. IDLE is based on a three-
step methodological procedure:

1. first of all, it segments out each of the relevant, independent
objects (so-called holons) within a particular scene;

2. then, for each holon it estimates both D (accounting for
motions and shape changes) and L, relative to a fixed, user-
defined reference frame;

3. finally, it morphs back the holons in the investigated image to
their spatial shape and location in the reference image. This
facilitates a compact subspace modelling of both
displacements and intensity changes.

2.1.1 Motion Estimation and Motion Compensation
IDLE modelling concerns how to reduce the complexities that arise
when modelling objects that both move and change intensity (or
spectral profile) at the same time. Imagine, for instance, a video
composed of K grey-scale images (I1, I2, . . . , Ik, . . . , IK) of size Nx ×
Ny depicting certain objects whose shape and brightness varies over
time. Let Iref be one of these images, chosen to define a common
reference for all the other ones. Analogously, let O ref (Nx × Ny × 2)
define the horizontal and vertical pixel coordinates (or pixel
addresses) at which these objects are visible in Iref. The reference
intensity image at pixel adressesO ref is then Iref ,O ref

. At this point, the
objects in the scene setting captured by each video frame, Ik, can be
described with respect to how they look in Iref. Neglectingmotions, at
time k, the local intensity-corrected version of Iref ,O ref

can be
expressed as:

Lk,O ref
� Iref ,O ref

+ ΔIk,O ref
(2)

with ΔIk,O ref
(Nx × Ny) carrying the image intensity deviations

from Iref ,O ref
.

Likewise, the pixel adresses where the objects from Iref are
observable in Ik become:

O k � O ref + ΔO k (3)

where ΔO k (Nx × Ny × 2) contain the so-called horizontal and
vertical motion fields indicating how every pixel in Ik should be
displaced so that the objects in Ik mimic their shape and location
in Iref. Hence, merging Eqs (2), (3), the IDLE model for the kth
frame can be written compactly as a function of how its intensity
has changed (ΔIk,O ref

) and how it has moved (ΔO k) compared to
the reference one:

Ik,O k
� Ik,O ref+ΔO k

� Iref ,O ref
+ ΔIk,O ref

� Lk,O ref
(4)

According to this notation, the terms I, D and L in Eq. (1)
would correspond to Ik,O k

, ΔO k and Lk,O ref
, respectively.

From a practical perspective, ΔO k can be obtained by motion
estimation—Horn and Schunck (1981, 1993)—comparing Ik and
Iref. This allows one to morph the objects from where they were
located in Ik back to their pixel addresses in O ref and to their
intensity at time k relative to Iref (Lk,O ref

). The intensity changes,
ΔIk,O ref

, as well as the motion fields ΔO k are all given in the
coordinate system of Iref, i.e., O ref .

2.1.2 Dual-Domain Bilinear Modelling of a
Hyperspectral Video
Even when a hyperspectral video is handled, all the
wavelength channels must follow the same spatial
displacement at each time k. For this purpose, the unfolded
vertical and horizontal motion fields, ΔoTk (1 × 2NxNy), can be
estimated from an optimised combination of such channels,
gathered column-wise into the matrix ΔO (K × 2NxNy),
modelled bilinearly as

ΔO � TΔOP
T
ΔO + ET

ΔO (5)
and applied to each entire hyperspectral frame. Here, TΔO (K ×
AIDLE) contains the projection coordinates of ΔO on the
directions defined by the columns of PΔO (2NxNy × AIDLE)
and EΔO (K × 2NxNy) carries the corresponding residuals not
explained at the chosen rank, AIDLE < 2NxNy.

Compact, low-dimensional bilinear models often summarize
quite well the motions in ΔO when they are defined in the same
reference coordinate system. Also the unfolded intensity images
ΔiTk,O ref

(1 × NxNy) may be well approximated in a similar fashion
if expressed in a common coordinate system:

ΔIO ref
� TΔIO ref

PT
ΔIO ref

+ EΔIO ref
(6)

with ΔIO ref
(K × NxNy) being the 2D array resulting from the

column-wise concatenation of each ΔiTk,O ref
vector.

Rewriting Eq. (4) in vectorial form, the aforementioned
morphing operation can be therefore expressed for the kth
video frame as:

iTk,O k
� iTk,O ref+ΔO k

� iTk,oT
ref
+ΔoT

k
� iT

k,oT
ref
+ tT

k,ΔOP
T
ΔO+eTk,ΔO( )

� iTref ,O ref
+ tTk,ΔIO ref

PT
ΔIO ref

+ eTk,ΔIO ref
(7)

where tTk,ΔO, e
T
k,ΔO, t

T
k,ΔIO ref

and eTk,ΔIO ref
denote the kth row vectors

of TΔO, ET
ΔO, TΔIO ref

and EΔIO ref
, respectively. Refolding is finally

required for the sake of representation.
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2.2 Extended Multiplicative Signal
Correction
EMSC is a bilinear modelling approach that permits to separate,
quantify and correct for distinct types of known chemical and
physical data variation sources in the acquired signal profiles. As
applied in this article, EMSC assumes that a generic spectrum, x
(of dimensions J × 1) can be mathematically described as:

x � b r +∑
i

Δcisi⎛⎝ ⎞⎠ + a1 + df + gf2 + e (8)

where b is the effective relative pathlength; r (J × 1) is a
predetermined reference spectrum; Δci and si (J × 1) denote
the presumed concentration/abundance contribution and the
spectral fingerprint of the ith main constituent of the system
under study, respectively; 1 (J × 1) is a column vector of ones; f
(J × 1) contains values monotonically increasing from −1 to 1; a, d
and g constitute a set of coefficients; and e (J × 1) carries the
unmodelled residuals (i.e., unmodelled chemical and/or physical
variations as well as random measurement noise) resulting from
this approximation.

Altogether, 1, f and f2 connote polynomial model dimensions
accounting for smoothly wavelength-dependent phenomena
(baseline level, slope and curvature, respectively).

Given hi � bΔci(∀i), the unknowns in Eq. (8) can be retrieved
by Ordinary or Weighted Least Squares (OLS/WLS) as:

b h1 . . . hI a d g[ ] � xTWEMSCWEMSCM MTWEMSCWEMSCM( )
−1

(9)
where M � [r s1 . . . sI 1 f f2] and WEMSC (J × J) is a diagonal
matrix of weights associated to the different sampled spectral
channels1.

Since the constituent profiles, si, are a required input for EMSC
processing, this methodology has been chosen for describing
expected variation patterns evolving all over the duration of a
hyperspectral video.

Once the EMSC coefficients have been calculated as in Eq. (9),
they can be exploited for pretreating the input spectrum, x, in
order to filter varying light scattering effects as:

xp � x − a1 − df − gf2( )

b
(10)

with p standing for preprocessed. In the present application of EMSC,
the estimated chemical variations will also be subtracted from x as:

xp � x − a1 − df − gf2 −∑ihisi( )

b

� x − a1 − df − gf2( )

b
−∑

i

Δcisi (11)

Finally, if EMSC residuals are deemed to be affected by the
effective optical pathlength of the sample, they can be
computed as:

e � x − br −∑
i

hisi − a1 − df − gf2

� x − b r −∑
i

Δcisi⎛⎝ ⎞⎠ − a1 − df − gf2 (12)

Pathlength-corrected residuals are subsequently
estimated as:

~e � b−1e (13)

2.3 The On-The-Fly Processing
After the IDLE-based motion estimation-compensation and
the quantification-correction of known physical and chemical
variations by EMSC preprocessing, the resulting unmodelled
residuals are analysed by the OTFP in the attempt of looking
for unknown, yet systematic variability patterns in data. The
OTFP relies on a self-learning adaptive modelling principle
which allows massive amounts of measurement recordings
collected over time to be compressed with a minimal loss of
meaningful information according to a PCA-like bilinear
decomposition. Its global computational procedure
encompasses five different steps:

1. the raw data stream, X (of dimensions, e.g., NxNyK × J),
divided into a sequence of blocks, say Xg (Ng × J, g = 1, 2,
. . . , G), is submitted to an optional lossless knowledge-based
preprocessing stage including a linearisation—which can be
conducted by means of approaches like Standard Normal
Variate (SNV), Barnes et al. (1989), Multiplicative Scatter
Correction (MSC), Martens et al. (1983), Fast Fourier
Transform (FFT), Cooley and Tukey (1965), and wavelet
decomposition, Walczak (2000)—and a signal-conditioning
step;

2. the preprocessed data are projected onto a bilinear
subspace already established at the previous point in
time as:

Xp
g � Tp

gP
T + Ep

g (14)

with Tp
g (Ng × AOTFP) defining the projection coordinates or

scores of all the Ng observations on the basis vectors or
components defined by the columns of P (J × AOTFP) and Ep

g
(Ng × J) carrying unmodelled residuals, i.e., the fraction of Xp

g
not explained by the model at the chosen rank, AOTFP < J;

3. the projection residuals are thereafter input to a second
bilinear modelling stage aimed at detecting new
components and isolating outliers. New components are
encoded as additional subspace dimensions, whose final
number is usually selected based on the total amount of the
original data variance that is to be explained, although
alternative criteria may also be exploited—Endrizzi et al.
(2014); Vitale et al. (2017a); Vitale and Saccenti (2018). In
other words, the OTFP algorithm learns to identify and
quantify all the systematic types of covariation in the data
as they stream, while filtering out random measurement1If diag(WEMSC) � 1, the parameter estimation is carried out by OLS.
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FIGURE 2 | (A) False Red Green Blue (RGB) representation of the first hyperspectral video frame. (B) False RGB representation of the last hyperspectral video
frame. (C)Raw frame-averaged intensity data. (D) Frame-averaged absorbance-transformed data. The colour gradient (from light to dark grey) follows the time evolution
of the hyperspectral video. Notice that the absorbance values measured at 980, 1,138 and 1,302 nm were used to generate (A) and (B).

FIGURE 3 | Schematic flowchart of the hyperspectral video processing and analysis framework proposed in this article.
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errors and irrelevant outliers (if they do not contribute to
the definition of a new pattern of variation);

4. at regular intervals, the OTFP model is refined and updated;

5. pretreatment as well as model parameters (i.e., OTFP scores
and loadings) are stored as output. At any time, they can be
either used to reconstruct the original data, e.g., for

FIGURE 4 | IDLE modelling: (A) displays the reference video frame; (B-F) contain (from left to right) the representation of five different snapshots collected over the
entire duration of the monitoring experiment (n. 2—sample weight: 6.10 g; n. 6—sample weight: 5.88 g; n. 21—sample weight: 5.06 g; n. 29—sample weight: 4.62 g; n.
40—sample weight: 4.01 g), of the motion fields yielded by their optical flow analysis highlighting how individual pixels shifted compared to the reference image, of the
motion-compensated frames morphed in order to mimic the target one and of the intensity deviations between the motion-compensated and the reference
snapshots. Notice that IDLE was applied to grey-scale images, obtained by averaging the preprocessed absorbance values (see Section 4.1) at 1,024, 1,195 and
1,309 nm, respectively.
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visualisation, or exploited in their compressed form for
efficient storage and transmission, human graphical
interpretation and quantification.

A survey of the operational principles of the OTFP is provided
in Vitale et al. (2017b).

3 DATASET

As model system, a piece of wood of the species Norway Spruce
(Pincea abies) was submerged in water and soaked for
approximately 24 h. Thereafter, it was placed on a digital
scale for tracking in real time the variation of its weight and
its drying process was monitored by means of a hyperspectral
line scan camera (Specim, Oulu, Finland) automatically
capturing reflectance images between 930 and 2,200 nm.
More specifically, the sample was scanned at regular time
intervals, i.e., each time a decrease of around 0.05 g was
observed (initial weight: 6.16 g—see Figure 2A; final weight:
3.90 g—see Figure 2B; total number of hyperspectral images:
42). The sample was illuminated by two halogen lamps
positioned on the two sides of the hyperspectral device and
never moved during the whole duration of the experiment. A
region of interest of 150 × 225 pixels was segmented within each
frame, which finally resulted in the generation of a four-
dimensional dataset of size 150 × 225 × 42 × 200 (see also
Section 1.3) and in a memory load of roughly 2.3 GB (double-
precision floating-point format).

Although these data were already investigated before—Vitale
et al. (2020b)—here, the key role of the linearisation of the
instrumental response across space provided by the IDLE
approach and its fundamental impact on the assessment and
interpretation of the temporal variations of the water signal
contributions will be explored.

4 RESULTS AND DISCUSSION

A flowchart schematising the general hyperspectral video analysis
framework proposed in this work is provided in Figure 3.

4.1 Spectral Response Linearisation and
Frame Greyscale Conversion
In order to compensate the wavelength-dependent variations
associated to the light source, the intensity values registered at
each jth wavelength and at each nx × ny-th pixel of the kth video
frame, Inx,ny,k,j, were first converted into reflectance units as in :

Rnx,ny,k,j �
Inx,ny,k,j − Inx,ny,j,d( )

Inx,ny,j,w − Inx,ny,j,d( )
(15)

with Inx,ny,j,d and Inx,ny,j,w the intensity recorded at the jth
wavelength and at nx × ny-th pixel for a dark reference and a
white reference (a Spectralon sample), respectively. Thereafter, theywere
transformed into apparent absorbance (that is to say, linearised with
respect to the chemical response) according to the following relation:

Anx,ny,k,j � log
1

Rnx,ny,k,j
( ) � xnx,ny,k,j (16)

An example of raw and absorbance-converted spectral
profiles is provided in Figure 2C,D, which highlight the
presence of strong baseline variations probably caused by
fluctuations in the illumination conditions or in the angular
distribution of the reflected light. In order to minimise the bias
that such fluctuations (unrelated to sample motions2) may induce in
the IDLE-based quantification and compensation, an additional

FIGURE 5 | First and second principal component scores and loadings resulting from a bilinear decomposition of the (A-C) horizontal and (D-F) vertical motions
quantified for the 42 hyperspectral video frames at hand. The black solid line follows the temporal evolution of the experiment. The reference snapshot (n. 42—the last
one of the sequence) is easily recognisable as it exhibits scores coordinates equal to [0, 0] (i.e., no motions were estimated for it). The black areas around the loadings
images contain pixels excluded from the computational procedure as they underwent an excessively large displacement with respect to frame n. 42. EV stands for
Explained Variance.

2For example, those due to water diffusion.
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two-step pretreatment procedure was executed prior to the
successive data processing stage:

1. the spectra associated to the pixels of each video frame were
pretreated according to an EMSC model similar to the one
in Eq. 8 and encompassing the profiles of two known
components: dry wood3 (reference) and pure water4.
WEMSC was set equal to the identity matrix. More
specifically, the correction performed for the nx × ny-th
pixel of the kth video frame can be expressed as:

xpnx,ny,k �
xnx,ny,k − ak1 − dkf − gkf

2( )

bk
− hk,waterswater (17)

with ak, dk, gk, bk and hk,water being estimated as in Eq. (9) from
the kth frame mean spectrum;

2. at each time point, a grey-scale image, Ik, was then obtained by
averaging, for every pixel, the resulting absorbance values at

1,024, 1,195 and 1,309 nm (at these wavelengths, the frame-
averaged spectra in Figure 2D exhibited the lowest standard
deviation). In order to compensate dissimilarities among the
intensity cumulative histograms of the various snapshots, these
final estimates were ultimately level- and range-adjusted as:

Ipk � Ik − ~Ik( )
RMSref
RMSk

+ ~Iref (18)

where ~Ik and ~Iref are the median intensity values within the kth
and the reference frame (n. 42—sample weight: 3.90 g),
respectively, while RMSref and RMSk represent the root-
median-squared deviation of the pixel intensities in Iref and Ik
from their corresponding median values.

4.2 IDLE Modelling
The level- and range-corrected grey-scale images output by the
algorithmic procedure outlined in Section 4.1 were then
subjected to IDLE modelling. Figure 4 summarises the
outcomes of the motion estimation-compensation step:
Figure 4A displays the reference video frame, while, for the
sake of illustration, Figure 4B–F contain (from left to right) the
representation of five other snapshots collected over the entire
duration of the monitoring experiment, of the motion fields

FIGURE 6 | Schematic representation of the EMSC-OTFP analysis pipeline. (A) Example of hyperspectral video data structure. (B) EMSC modelling. (C) OTFP
modelling.

3Calculated as the average profile of the last video frame.
4Measured in reflectance mode by a Nicolet 6700 FT-NIR instrument (Thermo
Scientific Inc., Madison, WI, United States) at the same nominal resolution and
within the same spectral range as for the hyperspectral video data dealt with in this
study and, then, converted into absorbance units.
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FIGURE 7 | (A-E) Characteristic (absolute max-normalised) spectral profiles submitted to the EMSC computational procedure. The first three represent a typical
choice for EMSC modelling as they allow baseline offset, slope and quadratic curvature to be estimated for all the spectra or pixels of the hyperspectral video and
compensated before the subsequent On-The-Fly Processing. The last two correspond to the spectra of dry wood and pure water, the two main constituents underlying
the specific scene at hand. (F-J) Time evolution of the frame-averaged EMSC coefficients (rescaled to compensate the aforementioned absolute max-
normalisation) associated to the sources of variation explained by the spectral profiles in (A-E).
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yielded by their optical flow analysis highlighting how individual
pixels shifted compared to the reference image, of the motion-
compensated frames morphed in order to mimic the target one
and of the intensity deviations between the motion-compensated
and the reference snapshots. As one can clearly see, except for
minor edge artefacts, the aforementioned motion fields show how the
wood sample horizontally squeezed as it dried and how such
horizontal movements significantly decreased at the latest stage of
the video recording (i.e., when low amounts of water were present in
the pores between wood fibres and compression finally slowed down
or stopped). This is also corroborated by the gradual reduction of the
number of pixels whose motions could not be properly estimated by
IDLE (see the black areas surrounding the motion-compensated
frames) because of their relatively large displacement with respect
to snapshot n. 425. Notice that these pixels did not undergo EMSC-
OTFP processing. Moreover, minimal intensity-deviation-from-target
valueswere observed after image compensation, confirming thatwood
spatial variations were successfully corrected for.

In order to get additional insights into the nature of such
spatial variations along time, the quantified horizontal and
vertical motions—retrieved from all the calculated motion
fields and concatenated as detailed in Martens (2015)—were
analysed by PCA. The resulting temporal scores and spatial
loadings are graphed in Figure 5.

While vertical shifts appear to follow a random trend (see
Figure 5D) and might be looked at as mainly due to sideways
camera or measurement stage bumps (loadings values are also
more or less homogeneously distributed all over the inspected field
of view—see Figures 5A,E,F) a smoother and more structured
evolution was found for the horizontal ones, which further
substantiates what stated before about wood squeezing. Horizontal
motion scores (see Figure 5A) seem to point out the occurrence of a
two-phase process during which compression initially proceeds
faster and finally decelerates. Horizontal motion loadings along
the first principal component (see Figure 5B) emphasise the
differences between the movements of the pixels of the left and

the right side of the image, while those along the second
principal component (see Figure 5C) permit to distinguish
the distinct behaviour of lateral and central pixels.

4.3 EMSC Modelling
If on the one hand the IDLE approach is capable of quantifying and
compensating the movements of a sample observed throughout a
hyperspectral video (thus, enhancing the spatial linearity of the
instrumental response), on the other hand the combined use of
EMSC and the OTFP can enable the identification and retrieval of
the most meaningful sources of information from the time series of
resulting motion-free hyperspectral images.

The EMSC-OTFP analysis pipeline is schematically outlined
in Figure 6.

Both EMSC and the OTFP are bilinear modelling techniques that
can be utilised in an adaptive- or recursive-like way without requiring
entire raw datasets to be kept in memory. The main difference
between them regards their respective subspace definition. The
matrix M (see Eq. 9 and Figure 6B), in fact, is manually
constructed by the user based on a priori knowledge about the
system or the sample under study, which renders EMSC an ideal
methodology for extracting and describing expected variation patterns
evolving during the progression of a hyperspectral video. On the other
hand, P (see Eq. 14 and Figure 6C) is automatically learnt by the
OTFP algorithm which gradually discovers (in real time) all the
sources of systematic variation underlying the data at hand.
Consequently, applying sequentially 1) EMSC to the (unfolded)
motion-corrected data and 2) the OTFP to the resulting EMSC
residuals yields two additive models accounting for both known
and unknown phenomena driving the generation mechanism of
hyperspectral videos and providing a detailed global overview of
the captured dynamic scene.

Here, in a first step, the five profiles in Figure 7A–E were input to
the EMSC algorithmic procedure: as also briefly outlined before, the
first three constitute a standard choice for EMSC modelling as they
permit to estimate and compensate baseline offset, slope and quadratic
curvature for all the pixels of the hyperspectral video before the
subsequent application of the OTFP. The last two profiles, instead,
correspond to the spectra of dry wood (reference) and pure water, the
two major constituents of the specific scene at hand. Representing the

FIGURE 8 | (A) Frame-averaged EMSC-corrected absorbance data. (B) Frame-averaged EMSC residual profiles. The colour gradient (from light to dark grey)
follows the time evolution of the hyperspectral video.

5In fact, the higher the time difference between frames, the larger the distance that
the pixels at the borders of these frames covered due to wood squeezing.
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time trend of the coefficients yielded for each one of these expected
sources of data variability (averaged across all the pixels within every
original video frame after motions were compensated, see Figures
7F–J) is a simple and immediate way to visualise and assess the

information returned by EMSC and somehow characterise the
dynamic evolution of known variability patterns during wood
drying. From such graphs, one can easily observe that most of the
modelled wood features change quite rapidly within the first stage of

FIGURE 9 | (A-D) Pseudo-spectral (absolute max-normalised) loadings profiles retrieved by the OTFP computational procedure. (E-H) Time evolution of the frame-
averagedOTFP scores (rescaled to compensate the aforementioned absolutemax-normalisation) associated to the sources of variation explained by the loadings profiles in (A-D).
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the drying process. This may be due to the residual presence of a thin
liquidwater film on the surface of thewood sample at the beginning of
the hyperspectral monitoring, which could have cloaked its spectral
properties. Figure 7J also highlights that moisture loss was still
proceeding when the experiment was interrupted. Conversely,
regarding the wood contribution itself, an approximately constant
increasing trend over time was observed. This behaviour accurately
reflects the chemical nature of the sample drying which might have
been clearly unveiled here because its continuous physical contractions
were directly and explicitly accounted for, significantly reducing the
spatial complexity of the considered video data. It goes without saying,
then, that exploiting simultaneously both spectral and spatial
information encoded in hyperspectral videos can significantly
enhance the comprehension and understanding of the physico-
chemical phenomena behind complex real-world systems.

4.4 OTFP Modelling
After the EMSC compensation (see Figure 8A), the resulting
residual profiles (see Figure 8B) were submitted to the OTFP for
automatically retrieving all the systematic sources of variation left
unmodelled by the first data analysis steps6.

Even if the interpretation of the OTFP output may seem more
complicated due to the fact that the OTFP subspace features PCA-
like orthogonal bases, smooth and rather well-defined time trends
were found for the frame-averaged OTFP coefficients or scores (see
Figure 9E–H). Such time trends highlight the existence of at least
two structured phases in the process of wood drying. Consider, for
example, Figure 9F: an initial fast transition from negative to
positive scores values can be observed followed by a smoother
descendant evolution approximately plateauing at around 0. Given
also that most of the OTFP loadings profiles in Figure 9A–D show
large contributions associated to the main water absorption
regions, one can reasonably envision the occurrence of more
complex phenomena directly related to the thermodynamic
state of water itself (i.e., free or bound).

4.5 Data Reconstruction and
Postprocessing
For a tentative exploration of the thermodynamic phenomena
mentioned in Section 4.4, the pathlength-corrected absorbance
spectra, obtained by reconstructing and averaging the 42 motion-
compensated hyperspectral video frames after EMSC and OTFP
processing (see Figure 10A), were decomposed by standard PCA
and graphed in the scores plot in Figure 10B. This plot clearly
highlights the occurrence of a two-phase transition process

FIGURE 10 | (A) Representation of the frame-averaged motion-compensated data, frame-averaged data reconstructed after the IDLE, EMSC and OTFP analysis
and reconstruction residuals. (B) Two-dimensional scores plot resulting from a PCA decomposition of the (pathlength-corrected) frame-averaged reconstructed data.
Archetypal frames are highlighted in light grey and connected by a dashed-dotted grey line. The evolution of the scores from right to left follows the hyperspectral video
progression from its beginning to its end. (C) First and (D) second component loadings yielded by the aforementioned PCA decomposition. PC and EV stand for
Principal Component and Explained Variance, respectively.

64 OTFP components were required to explain around 80% of the EMSC residual
variance.
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during wood drying affecting mainly the water bands of such NIR
spectra (see the loadings in Figures 10C,D) and characterised by
10 archetypal time instants (see the grey dots in Figure 10B)—
Ruckebusch et al. (2020). Figures 11, 12 provide an illustration of
the distribution of the EMSC coefficients and the OTFP scores
over the surface of the wood sample at three of these time instants.
This representation allows assessing the aforementioned

transition process at a spatial level: overall, the coefficient
spatial distribution seems to get smoother as the experiment
evolves, which might be explained in the light of the continuous
migration/diffusion of water molecules through the pores of the
wood specimen (see, e.g., Figure 12D–F). However, all these
aspects will be investigated in future research also by means of
more rational subspace axis rotations—performed, for instance,

FIGURE 11 | Spatial representation of the EMSC coefficients related to the EMSC components n. 1—(A-C)—n. 2—(D-F)—n. 3—(G-I)—n. 4—(J-L)—and
n. 5—(M-O)—for three of the 10 archetypal frames highlighted in Figure 10B. The black areas around the loadings images contain pixels excluded from the
computational procedure.
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by varimax, Kaiser (1958), Independent Component Analysis
(ICA), Comon (1994); Hyvärinen et al. (2001), or MCR-
ALS—aimed at optimising the meaningfulness of the OTFP
factors from a physico-chemical perspective.

5 CONCLUSION

Hyperspectral videos generate a lot of informative data.
However, these data require efficient mathematical
modelling for being reliable, understandable and
quantitatively interpretable. Here, a general framework by
which hyperspectral videos can be analysed was proposed.
The three computational steps of this framework result in a
compact multi-domain hybrid subspace modelling approach,
involving spatial, spectral and temporal parametrisation of

both known and unknown chemical and physical phenomena
underlying the studied systems. IDLE permits to characterise
and compensate the complex motions that the investigated
objects may undergo over the measurement time. EMSC is
capable of providing a simple mathematical description of a
range of phenomena (and of their temporal evolution) that
operators expect or presume a priori to be occurring over the
duration of the hyperspectral video recording. Finally, the
OTFP compresses and summarises all the information related
to unknown or unexpected events which may happen during
the progression of the data collection. In other words, one can
look at the combination of these three different
methodologies as an algorithmic extension of how human
beings observe reality: the eyes capture spatial changes in the
external environment and submit particular signals to the
brain that afterwards processes them distinguishing between

FIGURE 12 | Spatial representation of the OTFP scores related to the OTFP factors n. 1—(A-C)—n. 2—(D-F)—n. 3—(G-I)—n. 4—(J-L)—for three of the 10
archetypal frames highlighted in Figure 10B. The black areas around the loadings images contain pixels excluded from the computational procedure.
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what was somehow forecastable in advance (based on past
experiences) and what is completely new and unforeseen. In
this regard, rather than the individual application of the
aforementioned techniques (some of which are already
well-established in the field of chemometrics), it is their
fusion into a comprehensive algorithmic architecture for
the global assessment and interpretation of time-series of
high-dimensional hyperspectral images to be innovative and
unprecedented.

The sequential IDLE-EMSC-OTFP hybrid framework
presented here rests on a combination of targeted and
non-targeted data modelling of both known and unknown
variation sources. In contrast to classical subspace
decomposition strategies (e.g., PCA, PLS, MCR-ALS,
NNMF and ICA), it enables the description not only of
additive spectral response variations, but also of
multiplicative ones (like physical structure effects on the
optical pathlength) and hard and soft shape changes (due,
for example, to sample repositioning and/or shrinkage).

Moreover, differently from machine learning methods based
on Artificial Neural Networks (ANN)—Gasteiger and Zupan
(1993)—and Convolutional Neural Networks (CNN)—Gu
et al. (2018)—the IDLE-EMSC-OTFP modelling approach
yields a strong dimensionality reduction of torrents of input
data and results graphically interpretable in their compressed
state, revealing how spectral properties, spatial patterns and
temporal dynamics are strictly intertwined into unified
variation components, whose assessment and interpretation
might provide fundamental insights into underlying chemical,
physical and instrumental causalities. In the future, relying on a
trilinear rather than bilinear OTFP model structure—exploiting,
for instance, the principles of Parallel Factor Analysis
(PARAFAC), Harshman (1970); Carroll and Chang (1970);
Bro (1997)—may enhance this process further.

These conclusions are substantiated and thoroughly
corroborated by the outcomes reported in this article. In fact:

1. motion estimation-compensation by spatiotemporal IDLE
modelling allowed shrinkage induced by wood drying to be
modelled and corrected for, reducing the spatial complexity of
the hyperspectral imaging data;

2. EMSC preprocessing permitted a simpler spectral modelling
by detecting and disentangling light absorption/light
scattering-related variation patterns and their respective
evolution over time;

3. the continuous data-driven bilinear subspace decomposition
returned by the OTFP enabled the study of the dynamics of the
various physical and chemical variations left unmodelled in
the stream of hyperspectral residuals after the previous
two steps.

In the light of all this and considering its computational
efficiency when massive (potentially ever-lasting) flows of
multi-channel measurements are handled, the developed
approach could have an enormous impact also within the
more general context of BIG DATA.
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