Branded foods databases are becoming very valuable not only in nutrition research but also for clinical practice, policymakers, businesses, and general population. In contrast to generic foods, branded foods are marked by rapid changes in the food supply because of reformulations, the introduction of new foods, and the removal of existing ones from the market. Also, different branded foods are available in different countries. This not only complicates the compilation of branded foods datasets but also causes such datasets to become out of date quickly. In this review, we present different approaches to the compilation of branded foods datasets, describe the history and progress of building and updating such datasets in Slovenia, and present data to support nutrition research and monitoring of the food supply. Manufacturers are key sources of information for the compilation of branded foods databases, most commonly through food labels. In Slovenia, the branded food dataset is compiled using standard food monitoring studies conducted at all major retailers. Cross-sectional studies are conducted every few years, in which the food labels of all available branded foods are photographed. Studies are conducted using the Composition and Labeling Information System (CLAS) infrastructure, composed of a smartphone application for data collection and online data extraction and management tool. We reviewed various uses of branded foods datasets. Datasets can be used to assess the nutritional composition of food in the food supply (i.e., salt, sugar content), the use of specific ingredients, for example, food additives, for nutrient profiling, and assessment of marketing techniques on food labels. Such datasets are also valuable for other studies, for example, assessing nutrient intakes in dietary surveys. Additional approaches are also being tested to keep datasets updated between food monitoring studies. A promising approach is the exploitation of crowdsourcing through the mobile application VešKajJeš, which was launched in Slovenia to support consumers in making healthier dietary choices.
Background: Given their high nutrient requirements and limited gastric capacity, young children during the complementary feeding period (6–23 months) should be fed nutrient-dense foods. However, complementary feeding diets in low- and middle-income countries are often inadequate in one or more essential micronutrients. In South and Southeast Asia infants' and young children's diets are commonly lacking in iron, zinc, vitamin A, folate, vitamin B12, and calcium, hereafter referred to as priority micronutrients.
Objective: This study aimed to identify the top food sources of priority micronutrients among minimally processed foods for complementary feeding of children (6–23 months) in South and Southeast Asia.
Methods: An aggregated regional food composition database for South and Southeast Asia was built, and recommended nutrient intakes (RNIs) from complementary foods were calculated for children aged 6–23 months. An approach was developed to classify foods into one of four levels of priority micronutrient density based on the calories and grams required to provide one-third (for individual micronutrients) or an average of one-third (for the aggregate score) of RNIs from complementary foods.
Results: We found that the top food sources of multiple priority micronutrients are organs, bivalves, crustaceans, fresh fish, goat, canned fish with bones, and eggs, closely followed by beef, lamb/mutton, dark green leafy vegetables, cow milk, yogurt, and cheese, and to a lesser extent, canned fish without bones.
Conclusions: This analysis provided insights into which foods to prioritize to fill common micronutrient gaps and reduce undernutrition in children aged 6–23 months in South and Southeast Asia.
Vitamin K content of foods is known to vary substantially by geographical location. In Australia, no Vitamin K database of food exists, thereby creating ambiguity when trying to develop national dietary intake guidelines. This investigation aimed to develop a Vitamin K database for commonly consumed foods that are commercially available in Australian supermarkets. The Vitamin K1 (phylloquinone; PK) and K2 (menaquinone; MK4, MK7) content of 60 foods known to contain Vitamin K were assessed (e.g., vegetables fruits, oils, animal products, dairy and fermented foods). A liquid chromatography with tandem mass spectrometry (LCMS/MS) method was developed and used to measure PK and MKs in different foods with an improved chromatographic separation and detection of Vitamin K's and their analogs. The LOD and LOQ for PK and MK4 was 0.1, 0.5 ng/ml and 0.5, 1.0 ng/ml, respectively. The majority foods contained detectable PK (53/60), about half contained MK4 (31/60), and few contained MK7 (3/60). PK was highest in green leafy vegetables, with moderate amounts in oils. Highest MK4 content was in chicken eggs and meat products such as ham and chicken. This database enables nutritional epidemiologist to estimate dietary Vitamin K intake, especially in Australian cohorts, for a range of health outcomes.
Background: Previous studies had revealed that Body Mass Index (BMI) positively affected Bone Mineral Density (BMD). However, an excessively high BMI was detrimental to health, especially for the elderly. Moreover, it was elusive how much BMI was most beneficial for BMD in older adults to maintain.
Objective: To investigate whether there was a BMI saturation effect value that existed to maintain optimal BMD.
Methods: A cross-sectional study was conducted using the datasets of the National Health and Nutrition Examination Survey (NHANES) 2005–2006, 2007–2008, 2009–2010, 2013–2014, and 2017–2018. After adjusting for covariates, an analysis of the association between BMI and BMD in different femoral regions (Total femur, Femoral neck, Trochanter, Intertrochanter, and Ward's triangle) and lumbar spine regions (Total spine, L1, L2, L3, and L4) in the whole population was performed using the multivariate linear regression models, smoothing curve fitting, and saturation effects analysis models. Then, subgroup analyses were performed according to gender, age, and race.
Results: A total of 10,910 participants (5,654 males and 5,256 females) over 50 years were enrolled in this population-based study. Multivariate linear regression analyses in the population older than 50 years showed that BMI was positively associated with femoral BMD and lumbar spine BMD (P < 0.001, respectively). Smoothing curve fitting showed that the relationship between BMI and BMD was not simply linear and that a saturation value existed. The saturation effect analysis showed that the BMI saturation value was 26.13 (kg/m2) in the total femur, 26.82 (kg/m2) in the total spine, and showed site-specificity in L1 (31.90 kg/m2) and L2 (30.89 kg/m2). The saturation values were consistent with the whole participants in males, while there was high variability in the females. BMI saturation values remained present in subgroup analyses by age and race, showing specificity in some age (60–70 years old) groups and in some races.
Conclusions: Our study showed a saturation value association between BMI and BMD for people over 50 years old. Keeping the BMI in the slightly overweight value (around 26 kg/m2) might reduce other adverse effects while obtaining optimal BMD.
Background: The past few years have witnessed an increase in the availability of food products containing one or more low- and no-calorie sweeteners (LNCS) in the Spanish market, mostly due to the new massive reformulation plan. However, these are not included in food composition tables or databases, and, therefore, assessment of their intake among the population is complex. This study aims to update a database including commercialized foods and beverages.
Method: A systematic search of ingredients information from the different food and beverage categories was undertaken during 2019 by recording the availability and type of LNCS declared in the information of the product from labels and online shopping platforms of retailers from Spain to update a previous food composition database compiled in 2017.
Results: A total of 1,238 products were identified. The major groups were sugar and sweets (24%), non-alcoholic beverages (21%), cereals and grains (19%), and milk and dairy products (14%) accounting for >70% of total products. The mainly declared LNCS were sorbitol (19.5%), sucralose (19.5%), and acesulfame K (19.2%).
Conclusion: There is a wide variety of products that include LNCS as a main ingredient with higher availability than when compared with the results of database of 2017, consequently, it might be expected that LNCS are commonly consumed at present in the Spanish diet.