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Editorial on the Research Topic

Computational Predictions, Dynamic Tracking, and Evolutionary Analysis of Antibiotic

Resistance Through the Mining of Microbial Genomes and Metagenomic Data

Due to the continuous misuse of antibiotics globally, antibiotic resistant arises from antibiotic
resistance genes (ARGs) that are now widely detectable from a variety of environmental water and
soil resources and variousmicrobial species such as Escherichia coli andKlebsiella pneumoniae (Von
Wintersdorff et al., 2016). As a result, fast and efficient molecular tools are very important to aid
the identification, determination, and profiling of antibiotic resistance in environmental samples.
In addition, bioinformatics analysis of the microbial genomes and metagenomic data would
greatly facilitate our understanding of the molecular mechanisms, environmental transmissions,
and dynamic changes of antibiotic resistance (De Abreu et al., 2021). Recently, many advanced
bioinformatic methods, including the use of metagenomic next-generation sequencing (Berglund
et al., 2019; De Abreu et al., 2021), machine learning (Liu et al., 2020; Anahtar et al., 2021), and
Raman spectroscopy (RS) (Tang et al., 2021; Liu et al., 2022), have been proposed to predict
ARGs and their mode of action. However, with steady accumulation of massively sequenced
data and continuous antibiotic resistance emergence, novel and effective methodologies and tools
for ARG prediction and antibiotic resistance profiling analysis and visualization are constantly
needed. In order to gain advantage in winning the antibiotic resistance battle, efficient and accurate
computational tools are required to determine novel ARGs (Maryam et al., 2021). Under this
Research Topic, we sought to highlight an exciting set of groundbreaking efforts proposed by
frontline investigators, which mainly focused on implementing computational methodologies to
get an in-depth understanding of microbial antibiotic resistance. Articles can be fitted into either of
the four categories: (i) novel computational methods, (ii) development of computational tools, (iii)
metagenomic data mining, and (iv) microbial genomic analysis. It is expected for some submissions
to overlap between categories due to the comprehensive nature of the Research Topic.
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In this special issue, majority of the submitted articles were
focusing on the novel methods for the rapid and accurate
analyses of antibiotic resistance. For example, Wei et al.
compared the methods for selecting operational taxonomic
units from 16s amplicon sequences. Such research could help
biological researchers best select the reasonable clustering
method for metagenomic analysis, and facilitate algorithm
developers to design more efficient sequence clustering methods.
For the discovery and identification of ARGs from fragmented
metagenomic assemblies, Shafranskaya et al. presented a novel
computational pipeline, termed GraphAMR, to improve read
mapping technology. Moreover, Ivanova et al. established a
novel bioinformatic pipeline to assist the High-throughput
Chromosome Conformation Capture metagenomic analysis,
including the identification of bacterial ARGs (or resistomes).
Finally, there was a few studies that explored the antibiotic
resistance issues from a non-genome-centric angle. For
example, Wang et al. summarized recent applications of Raman
spectroscopy technique in the antibiotic resistance profiling.
They indicated that although there is still a gap between
laboratory research and clinical applications for RS, rapid and
reliable automatic measurement of the Raman spectra for
antibiotic resistance profiling is promising, and eagerly and
urgently in need. In another example, Ma et al. developed the
Inductive Logistic Matrix Factorization, a novel drug-metabolite
association prediction tool that can combine multiple-source
interactions between drugs and metabolites and improve
prediction performance of drug-metabolite associations, leading
to potential applications in the development of novel antibiotics.

Apart from the novel computational methods, two powerful
computational pipelines for general analysis of genomes
and metagenomes were also presented in this special issue.
In brief, Hierarchical Clustering with Kraken (HCK) and
Abundance-Base Alternative Approach (ABAA), both developed
by Mlaga et al., were designed to classify TS1 amplicons
and to detect and filter non-specific amplicons in fungi
metabarcoding sequencing datasets, respectively. These two
novel pipelines, named HCK-ABAA, had improved the fungi
community structures identification and stabilized methodology
for metabarcoding analysis. In addition, Hua et al. developed a
new web-based server to aid in annotation of AGRs, integrons,
and transposable elements. This server could significantly
accelerate the bioinformatics analysis of ARG-related sequences.

Two research papers were included in the Research Topic to
directly investigate the computational analysis of metagenomic
data from clinical perspectives. It is well-known that early,
fast, and precise detection of antibiotic resistance is the
key to an infection therapy. However, the determination of
minimal inhibitory concentrations (MICs) in clinical settings
via the conventional agar culturing methods can be very

time consuming. To attack this problem, Tan et al., based
on the analysis of metagenomic data via XGBoost algorithm
and deep neural network (DNN) algorithm, combined single-
nucleotide polymorphism (SNP) information and nucleotide
k-mers count, and predicted MICs of meropenem against
Klebsiella pneumoniae. This study significantly improved the
ARG detection efficiency. In another study, Han et al. predicted
several functional pathways via the computational analysis of
fecal microflora composition of acute myocardial infarction
(AMI) patients. This could enhance the comprehension of
AMI pathogenesis.

Interestingly, a few articles had focused on the geographic
distributions and identifications of multi-drug-resistant strains
via computational analysis of bacterial genomes. For example,
Chung et al. developed a mode-based web tool via Matrix-
Assisted Laser Desorption Ionization-Time of Flight Mass
Spectrometry to identify multi-drug resistant Staphylococcus
aureus. In addition, Jiang et al. developed a SNP profiling
technique based on whole genome sequencing to facilitate
genomic population analyses of Helicobacter pylori. This
approach holds the potential in understanding the global
dissemination of antibiotic resistance genes.

In summary, the findings of the studies collected in this
special issue could greatly help mankind in fighting antibiotic
resistant in microbial pathogens, from a long-term perspective,
and strengthen the faith in finally winning the invisible war all
over the world. In addition, we want to thank all the authors
who contribute their original work to our special issue and
the reviewers for their valuable comments. We would like to
express our sincere gratitude to the Specialty Chief Editor, Dr.
Matthias Hess and Dr. George Tsiamis, and also the editorial
office of Frontier in Microbiology, for their excellent support
and providing us with this opportunity to hold this hot topic
issue successfully.
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With the advent of next-generation sequencing technology, it has become convenient
and cost efficient to thoroughly characterize the microbial diversity and taxonomic
composition in various environmental samples. Millions of sequencing data can be
generated, and how to utilize this enormous sequence resource has become a critical
concern for microbial ecologists. One particular challenge is the OTUs (operational
taxonomic units) picking in 16S rRNA sequence analysis. Lucky, this challenge can be
directly addressed by sequence clustering that attempts to group similar sequences.
Therefore, numerous clustering methods have been proposed to help to cluster 16S
rRNA sequences into OTUs. However, each method has its clustering mechanism, and
different methods produce diverse outputs. Even a slight parameter change for the same
method can also generate distinct results, and how to choose an appropriate method
has become a challenge for inexperienced users. A lot of time and resources can be
wasted in selecting clustering tools and analyzing the clustering results. In this study, we
introduced the recent advance of clustering methods for OTUs picking, which mainly
focus on three aspects: (i) the principles of existing clustering algorithms, (ii) benchmark
dataset construction for OTU picking and evaluation metrics, and (iii) the performance
of different methods with various distance thresholds on benchmark datasets. This
paper aims to assist biological researchers to select the reasonable clustering methods
for analyzing their collected sequences and help algorithm developers to design more
efficient sequences clustering methods.

Keywords: operational taxonomic units, 16S rRNA, metagenomics, sequence clustering, high-throughput
sequencing

INTRODUCTION

Bacteria constitute an overwhelming majority of domain in the life tree on our planet, occurring
in every habitat on earth from natural environments (e.g., oceans, soils, and lakes) to the human
body (Sanli et al., 2015; Fuks et al., 2018; Gentile and Weir, 2018). They perform critical functions
that range from the regulation of various biogeochemical activities to that of our health and

Abbreviations: AMI, adjusted mutual information; ARI, adjusted rand index (ARI); AL, average linkage; CL, complete
linkage; GIS, greedy incremental strategy; MCC, Matthews correlation coefficient; OTUs, operational taxonomic units; rRNA,
ribosomal RNA; SL, single linkage; SD,standard deviation.
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disease (Shah et al., 2018; Thaiss, 2018; Almeida et al., 2019;
Qu et al., 2019a). Describing the taxonomic structure of the
communities is vital for studying the bacterial composition and
diversity in an environmental or clinical sample (Wei et al.,
2016; Lapierre et al., 2019; Zhu et al., 2019). Until recently,
most of the bacteria were studied with traditional culture-
dependent methods. Because only a small fraction (less than
1%) of all microbial organisms can be isolated, cultivated,
and identified in the laboratory, culture-dependent microbial
methods are inadequate for exploring the hidden world of many
microbial communities (Kellenberger, 2001). On the contrary,
metagenomics study is a rapidly growing field that aims to
understand all organisms via their nucleic acid sequences to
characterize the composition, structure, diversity, and function of
microbial communities in a specific habitat (Jo, 2004; Riesenfeld
et al., 2004; Laudadio et al., 2019; Wemheuer et al., 2020).
Bypassing the needs for isolation and lab cultivation of individual
species in traditional microbial studies (Streit and Schmitz, 2004;
Meyer et al., 2019), metagenomics allows microbiologists to
study the entire genetic materials taken directly from relevant
environments and provides a new opportunity to probe the
microbial community composition and structure (Koslicki et al.,
2013; Zhang et al., 2013; Gao, 2018; Wei and Zhang, 2018;
Chong et al., 2020; Qian et al., 2020). Thus, several large-scale
metagenomics projects, such as the Human Microbiome Project
(Turnbaugh et al., 2007; Integrative HMP (iHMP) Research
Network Consortium, 2014), the International Census of Marine
Microbes1, and the Earth Microbiome Project (Gilbert et al.,
2014), have been proposed.

In metagenomics, the 16S rRNA (ribosomal RNA) exists
in most bacterial species and contains hypervariable regions
that allow them to be used as species-specific signatures
for identifying taxa (Ward et al., 1990; Stackebrandt and
Goebel, 1994; Peterson et al., 2019). Therefore, the 16S
rRNA is an ideal proxy for profiling of complex microbial
communities and inferring the phylogenetic and evolutionary
relations among organisms (Woloszynek et al., 2019). Recently,
the rapid advancements in next-generation sequencing (NGS)
technologies have dramatically promoted metagenomics studies
by offering low-cost and ultra-high-throughput sequencing (Wu
et al., 2011). This enormous progress in NGS has resulted in
an explosive accumulation of 16S rRNA sequence data (Zhu
et al., 2019). How to deal with this massive quantities and
high complexity of sequencing data has become a tremendous
challenge for microbial researchers (Li et al., 2012; Kim et al.,
2013; Qian et al., 2019). As a result, it is needed to develop
efficient and accurate computational methods for analyzing these
enormous sequence data generated from different habitats and
health conditions (Huang et al., 2010; Liu et al., 2014).

Generally, analysis of the 16S rRNA sequencing data typically
begins by grouping them into operational taxonomic units
(OTUs) (Turnbaugh et al., 2007; Peterson et al., 2009; Větrovský
et al., 2018) that contain similar 16S rRNA sequences with high
sequence similarity (Seguritan and Rohwer, 2001; Enright et al.,
2002; Yooseph et al., 2007; Niu et al., 2010; Westcott and Schloss,

1http://icomm.mbl.edu

2017). OTUs can represent the microbial taxa and facilitate the
downstream analysis for the calculation and visualization of
diversity and composition of the microbes (Niu et al., 2011; Zorita
et al., 2015; Zou et al., 2018). Thus, picking OTUs has become
the backbone in the established workflows, such as QIIME2
(Caporaso et al., 2010; Bolyen et al., 2019), mothur (Schloss et al.,
2009), and RDP tools (Wang et al., 2007; Cole et al., 2009, 2013),
which are used to analyze the microbial community structures.

In the last decade, a growing number of clustering methods
have been proposed to cluster the 16S rRNA sequences
into OTUs. However, different methods produce quite diverse
outputs, even though a slight parameter change for the same
method can also generate distinct results. A more general
problem faced by microbial researchers is how to select one
suitable method to obtain better clustering results. Therefore,
understanding the principle and performance of different
clustering algorithms is crucial for users to employ one suitable
method for analyzing their sequence data. In this review,
we summarized existing state-of-the-art clustering algorithms,
explained their clustering mechanisms, analyzed their characters,
compared their clustering performance on several benchmark
datasets, and recommended some directions for developing
new clustering algorithms. We hope this review can assist the
biological researchers to select a reasonable clustering method
for analyzing their collected sequences and help algorithm
developers to design more efficient sequence clustering methods.

METHODS OF OPERATIONAL
TAXONOMIC UNIT PICKING

Numerous OTU picking methods have been developed, which
can be categorized as closed-reference clustering, de novo
clustering (also called taxonomy independent), and open-
reference clustering (Lawley and Tannock, 2017; Whelan and
Surette, 2017; De Filippis et al., 2018). The closed-reference
clustering involves comparing each query sequence to an
annotated reference taxonomy database by utilizing the sequence
classification or searching methods (Liu et al., 2017, 2018; Matias
Rodrigues et al., 2017; Wei et al., 2020), then sequences matched
to the same reference sequence are grouped into the same
OTU. However, if a large portion of microbes in a sample has
not yet been well defined, that is, not recorded in databases
(i.e., unknown taxa), then they cannot be assigned to an OTU.
Thus, closed-reference clustering methods are largely dependent
on the completeness of the reference database, hence, have a
poor performance on the condition that many novel organisms
exist in the sequencing data (Schloss and Westcott, 2011; Chen
et al., 2016). Furthermore, two query sequences matched to the
same reference sequence may have a lower similarity to each
other (Westcott and Schloss, 2015). As a result, closed-reference
methods are often applied for the purpose of sequence annotation
(Sun et al., 2011). For de novo clustering, all sequences are
clustered into OTUs based on the pairwise sequence distances
rather than comparing against a reference database (Forster
et al., 2016). That is, de novo clustering methods compare each
sequence against each other, followed by implementing different
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clustering algorithms at a specified threshold to group sequences
into OTUs. For the open-reference clustering, it is a combination
of the closed-reference and de novo methods. Here, a closed-
reference clustering approach is first used to assign OTUs, and
the unassigned sequences outputted by the closed-reference
approach are then grouped by a de novo clustering method.
Open-reference clustering blends the strengths and weaknesses
of the other method and adds the complication that closed-
reference and de novo clustering use different OTU definitions
(Westcott and Schloss, 2017). As a result, de novo clustering does
not depend on any reference database and, hence, can assign all
sequences into OTUs, including both sequences that have been
deposited in annotated databases as well as novel unknown ones
(Zou et al., 2018). Additionally, several studies (Jackson et al.,
2016; Schloss, 2016) also show that de novo clustering methods
significantly outperform the other two approaches for picking
OTUs. Therefore, de novo clustering attracts more attention
and has become the preferred choice for researchers (Schloss,
2010; Cai et al., 2017). In the following, we mainly focus on de
novo clustering.

Many different de novo clustering methods have been
proposed to pick OTUs in the past decade, which can be
further classified into four general categories: hierarchical
clustering, heuristic clustering, model-based, and network-based
clustering methods.

Hierarchical Clustering Methods
Hierarchical clustering methods generally require a full distance
matrix between all sequences based on pairwise sequence
alignment or multiple sequence alignment, then construct a
hierarchical tree on the distance matrix. By applying a predefined
clustering threshold to the hierarchical tree, sequences within
the threshold are grouped into one OTU, as shown in Figure 1.
Actually, most hierarchical methods implement the complete-
linkage (CL), average-linkage (AL), or single-linkage (SL)
algorithms (Zhang and Wei, 2015). CL, SL, and AL belong to the
agglomerative methods, that is, in the beginning, each sequence
is one cluster, then compute the similarity (i.e., distance) between
each of the clusters and merge the two most similar clusters.
Repeat the previous step until there is only a single cluster left, or
the merging distance meets the given threshold (Figure 1C). The
main differences among CL, SL, and AL are the distance criteria
defined between two clusters (Figure 2), which can reflect the
degree of clustering. For SL, the distance between two clusters
is the minimum distance between two sequences in each cluster
(Figure 2A). For CL, the distance between two clusters is defined
as the maximum distance between two sequences in each cluster
(Figure 2B). For AL, the distance between two clusters is defined
as the average distance between each sequence in one cluster to
every sequence in the other cluster (Figure 2C). We can see that
SL is a loose clustering strategy, CL is the most stringent, and AL
is the middle ground between SL and CL.

DOTUR (Schloss and Handelsman, 2005) is probably the
first published tool for hierarchically clustering sequences into
OTUs by using CL, AL, and SL. mothur (Schloss et al., 2009),
the improved version of DOTUR, has become the representative
hierarchical clustering method for picking OTUs. As with

DOTUR, mothur needs to load the distance matrix into computer
memory before performing clustering. In order to alleviate
the computational complexity and memory usage, Sun et al.
(2009) proposed a novel algorithm (namely, ESPRIT), which
adopts the k-mer (substrings of length k) distance to rapidly
identify the sequence pairs with high similarity and stores the
reduced distance by using a sparse matrix. In the procedure of
picking OTUs, the Hcluster algorithm was devised to perform
CL clustering, which can avoid loading the whole matrix into
memory. Huse et al. (2010) observed that the CL algorithm is
sensitive to sequencing artifacts, then they proposed a single-
linkage preclustering (SLP) to overcome the effect of sequencing
errors and decrease the inflation of OTUs. Cole et al. (2013)
proposed the mcClust algorithm to achieve the CL strategy
that allows the distance matrix computation to be parallelized,
which can lower the time complexity. Matias Rodrigues and von
Mering (2013) presented the HPC-CLUST pipeline, a distributed
implementation of two hierarchical clustering algorithms (CL
and AL) with high optimization. HPC-CLUST takes as input
a set of pre-aligned sequences and efficiently allocates both
memory usage and computing complexity, which can handle
large numbers of sequences on a computer cluster. Franzén
et al. (2015) developed the oclust method in which the distance
matrix and CL clustering are performed with an R package
based on the pre-aligned sequences. Similar to the HPC-CLUST,
the oclust also needs to pre-align sequences, which is usually
computation intensive.

Generally, the computational complexity of hierarchical
algorithms both in time and space is O(N2), where N is the
number of sequences. Thus, the computational cost of most
hierarchical methods quadratically scales with the number of
sequence increases. As a result, hierarchical clustering methods
are not suitable for handling huge numbers of sequences because
of their intrinsic computing complexity (Barriuso et al., 2011).

Heuristic Clustering Methods
Heuristic clustering processes input sequences one by one,
avoiding the expensive step of computing distances of all
pairwise sequences. Most classical heuristic clustering methods
use pairwise sequence alignment and generate clusters in a greedy
incremental strategy (GIS), which is shown in Figure 3. These
methods use one sequence (called seed) to represent its cluster,
and each query sequence is compared with all seeds of existing
clusters (Chen et al., 2016). One query sequence is assigned to a
cluster if the distance between the sequence and one seed meets
the clustering threshold (Figure 3A). Otherwise, a new cluster
is created, and the query sequence becomes the seed sequence
(Figure 3B). Due to the comparison of all sequences just with the
seeds of clusters, greedy heuristic clustering is computationally
much more efficient than hierarchical clustering methods. As a
result, many different heuristic clustering algorithms have been
developed, and the main differences are the seed selection and
distance calculation.

CD-HIT (Li and Godzik, 2006; Huang et al., 2010; Fu et al.,
2012) and USEARCH (Edgar, 2010) are the two best-known
heuristic methods for picking OTUs. The main discrepancy
between these two methods is the sequence sorting before
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FIGURE 1 | Schematic diagram of hierarchical clustering algorithms. (A) Input reads set, (B) distance matrix, (C) hierarchical Tree, and (D) OTUs formation.

FIGURE 2 | The distance between two clusters defined in single-linkage (SL) (A), complete-linkage (CL) (B), and average-linkage (AL) (C) clustering algorithms.
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FIGURE 3 | Schematic diagram of classical heuristic clustering methods. (A) sequence assignment, (B) new seed generation, and (C) OTUs results.

clustering. CD-HIT sorts by the length of sequences while
USEARCH by sequence abundance. UPARSE (Edgar, 2013) is
an improved version of USEARCH, which adds the chimera
detection for seed sequences. Different from sequence distance
calculation in CD-HIT and USEARCH, GramClust (Russell
et al., 2010) designs a distance metric based on the inherent
grammar of each pairwise sequences for clustering a set of
sequences. DNACLUST (Ghodsi et al., 2011) also follows the
GIS way, but it uses a novel k-mer-based filtering algorithm
to accelerate the clustering procedure. Similar to DNACLUST,
LST-HIT (Namiki et al., 2013) introduces a new filtering
scheme to remove dissimilar sequence pairs on the basis of
the longest common subsequence before performing pairwise
sequence alignment, which can speed up the computation.
SUMACLUST (Mercier et al., 2013) and OTUCLUST (Albanese
et al., 2015) are another two greedy clustering methods that
are designed to perform exact sequence alignment, rather than
semiglobal alignments implemented in CD-HIT and USEARCH.
Additionally, OTUCLUST performs sequence de-duplication
and chimera removal. LSH (Rasheed et al., 2013) is also another
greedy clustering algorithm that utilizes the locality-sensitive
hashing to accelerate the pairwise sequence comparisons and
incorporates a matching criterion to improve the quality of
sequence comparisons. Considering that using a single global
clustering threshold is too relaxed for slow-evolving lineages,
Mahé et al. (2014) designed Swarm, which first generates an
initial set of OTUs by iteratively agglomerating similar sequences,
then breaks them into sub-OTUs to refine the clustering results
by using abundance information and OTUs’ internal structures.
VSEARSH (Rognes et al., 2016) is a free 64-bit and open-
source versatile program and is designed as an alternative to the
USEARCH tool for which the source code is not publicly available
and only a memory-confined 32-bit version is freely available
for academic users.

The above heuristic methods just select one sequence as the
seed to represent the cluster. Once the seed is selected, it will
not be changed anymore, resulting in the outcomes sensitive
to the selected seeds. Therefore, how to select a “good” seed
that includes more cluster information is significantly important.
Some methods have been proposed to achieve this target. Zheng
et al. (2012) introduced a dynamic seed-based clustering method
(namely, DySC) to reselect seed sequences. DySC first uses the
traditional GIS to form the pending clusters. Once a pending
cluster reaches a threshold size, it is converted into a fixed
cluster, and a new fixed seed is reselected, which is defined
as the sequence that maximizes the sum of k-mers shared
between the fixed read and other reads in one cluster. Chen
et al. (2013a) proposed MSClust, a multiseed-based heuristic
clustering method. The multiseeds for one cluster are generated
based on an adaptive strategy, that is, one query sequence is
assigned to one cluster if the average distance between the
sequence and seeds is smaller than the user-defined threshold;
otherwise, the sequence is marked as unassigned. In order to
reduce the sensitivity of seeds to sequencing errors, we developed
DBH (Wei and Zhang, 2017), a de Bruijn (DB) graph-based
heuristic clustering method. It first forms temporary clusters
using the traditional GIS. When the size of a temporary cluster
reaches the predefined minimum sequence number, DBH builds
a DB graph for this cluster and generates a new seed to represent
this cluster. Finally, the remaining sequences are assigned to
the corresponding OTUs. Later, We designed DMSC (Wei and
Zhang, 2019), a dynamic multiseed clustering method for OTU
picking. DMSC first generates a series of clusters based on the
GIS strategy. When the sequence number in a cluster is larger
than the value of a predefined size, the multicore sequence (MCS)
selection procedure is triggered, and the MCS is applied as
the seeds of the cluster. The MCS is determined as the n-core
sequences (n≥ 3) that the distance between any two sequences in
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the MCS is less than the clustering threshold. If a new sequence
is added to one cluster according to the average distance to MCS
and the distance standard deviation in MCS, DMSC will update
the MCS. By reselecting seed sequences, these four methods can
achieve higher clustering accuracy than the traditional heuristic
methods such as CD-HIT and USEARCH. Recently, Bazin et al.
(2018) proposed a fuzzy OTU-picking algorithm that adds the
uncertainty information to the clustering based on fuzzy sets,
which can also improve the clustering quality.

Different from most existing clustering methods that
use the seed sequences to represent clusters, Cai and Sun
(2011) developed the ESPRIT-Tree method, which initially
constructs a PBP (pseudometric-based partition) tree that
provides a coarse representation of the entire sequences,
then iteratively finds the closest pairs of sequences or clusters
and merges them into a new cluster. Later, they proposed
an improved method of ESPRIT-Forest (Cai et al., 2017),
which can cluster massive sequence data in a subquadratic
computational complexity. Pagni et al. (2013) introduced
DBC454 for clustering ITS1 (fungal internal transcribed
spacer 1) sequences using a density-based hierarchical
clustering procedure. Recently, Westcott and Schloss (2017)
designed OptiClust that maximizes the value of Matthews
correlation coefficient (MCC) by iteratively reassigning
sequences to new OTUs.

Broadly speaking, heuristic clustering methods have a
lower computational complexity of O(KN), where K is
the final number of clusters. Usually K ≤ N, and hence,
heuristic clustering methods are computationally much more
efficient than hierarchical clustering methods and are more
widely employed to deal with hundreds of thousands of
16S rRNA sequences.

Model-Based Clustering Methods
One of the critical problems with most existing hierarchical and
heuristic clustering methods is the need to select a constant
and optimal distance threshold to define OTUs at a distinct
taxonomic level (e.g., species). A slight change in threshold can
result in very different OTUs. Model-based clustering methods,
such as CROP (Hao et al., 2011), BEBaC (Cheng et al., 2012),
and BC (Jääskinen et al., 2014), were developed to address this
issue. CROP (Hao et al., 2011) builds a Bayesian model to cluster
sequences, which utilizes a Gaussian mixture model and a birth–
death process to characterize a specific cluster. BEBaC (Cheng
et al., 2012) first uses the heuristic trick to assign the highly
similar sequences to form a pregroup, then similar 3-mer count
vectors are assigned into crude clusters by searching for the
best partitions that achieve the maximum posterior possibility
for given sequence data. In the fine clustering phase, BEBaC
applies a minimum description length criterion to determine
the number of OTUs, generating the final partitioning. BC
(Jääskinen et al., 2014) first models the sequences using Markov
chains, then uses a Bayesian partition model with the Dirichlet
process to split and merge clusters. Although these methods
partition sequences into OTUs without additional information
besides the sequence data itself, it is not suitable for large-scale
sequence datasets.

Network-Based Clustering Methods
Several network-based clustering methods such as M-pick (Wang
et al., 2013), MtHc (Wei and Zhang, 2015), and DMclust (Wei
et al., 2017) were also proposed to solve the problem of requiring
a given clustering distance to pick OTUs. Figure 4 shows the
schematic diagram of the main processing steps in network-based
clustering methods. M-pick (Wang et al., 2013) first compute
the distances across all pairs of sequences to construct a fully
connected graph, then prunes the complete graph to generate
a neighborhood graph; finally, a modularity-based community
detection approach is recursively performed to form OTUs. Based
on the concept of network motif, we proposed MtHc (Wei and
Zhang, 2015). MtHc first searches for sequence motifs using a
heuristic strategy then uses these sequence motifs as seeds to
generate candidate clusters, which are hierarchically merged into
OTUs based on the distances of motifs between two clusters.
Later, we developed DMclust (Wei et al., 2017); it first searches for
the sequence dense groups, which are viewed as nods to construct
a weighted graph, then a modularity-based clustering method is
applied to capture the community structures in sequence data to
generate clusters.

Network-based methods require a full distance matrix of all
pairwise sequences to construct a graph and, hence, has a high
computational complexity in terms of run time and memory
usage. They cannot handle large numbers of sequences.

Based on the above analysis, Figure 5 describes the
development history of clustering methods according to their
published years. It can be summarized that hierarchical clustering
(either based on AL, SL, or CL) and network-based clustering
methods need to compute and store a full distance matrix of
all pairwise sequences, adding the computational complexity
and memory space usage. Although the model-based clustering
method could produce better clustering results, their run time
would render them unusable on massive quantities of sequences.
Due to the comparison of each sequence just with the seed
sequences, heuristic clustering methods are capable of handling
millions of sequences and are more widely employed to analyze
massive 16S rRNA datasets (Cai and Sun, 2011). With the
sequencing technology development, the volume of sequences
increases drastically, and heuristic clustering methods continue
to attract more attention in picking OTUs.

MATERIALS OF BENCHMARK
DATASETS AND EVALUATION METRICS

Benchmark Datasets
Three benchmark studies, including one simulated and two
real-world sequence datasets, were conducted to assess the
performance of 12 existing OTU-picking algorithms. The
simulated dataset was directly produced by Seq-Gen (Rambaut
and Grass, 1997) sequence simulator. It can be directly
downloaded from BEBaC (Cheng et al., 2012). Two real-life
sequence datasets are the V4 hypervariable region dataset from
the murine gut and the global 16S bacterial rRNA gene sequence
dataset, respectively. These sequence datasets have been widely
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FIGURE 4 | Schematic diagram of network-based methods.

FIGURE 5 | Published years of operational taxonomic unit (OTU) picking methods (mentioned in this paper).

used to validate the performance of clustering results (Cheng
et al., 2012; Wei and Zhang, 2017, 2019).

For the simulated dataset, the ground truths (labels of
sequences) are directly taken from simulated data, in which we
exactly know the species of each sequence. However, for real-
life datasets, we need to construct the ground-truth information
by searching a reference database. The processing procedures
of obtaining ground truth information for real-life datasets are
described in Supplementary Figure S1. First, the V4 pair-end
sequencing data are merged by the FLASH (Magoè and Salzberg,
2011) assembly tool. Then, the merged sequences are cleaned
to remove sequences with low quality and short length by
quality USEARCH (Edgar, 2010) filtering software. The Python
executive command (assign_taxonomy.py) in QIIME (Caporaso
et al., 2010) is applied to align the cleaned sequences to the
default reference database (Greengenes DeSantis et al., 2006)
to obtain the species information. Last, aligned sequences with
high alignment quality (i.e., >97% identity over an aligned
region >90% of the length of the sequences) are retained, and
the remaining annotated sequences are adopted to construct
the final ground-truth. These procedures of constructing the
ground-truth information are based on previous studies (Cai
and Sun, 2011; Wei and Zhang, 2019). Some detailed features

(such as taxon number, sequences number, and average sequence
length) of three benchmark datasets are listed in the following
Table 1.

Evaluation Metrics
The number of OTUs, normalized mutual information (NMI),
Matthews correlation coefficient (MCC), adjusted rand index
(ARI), and adjusted mutual information (AMI) metrics are
used to evaluate the clustering performance. OTU number is
the cluster number that directly inflects the count of species
(or genera). NMI value is commonly applied to estimate the
clustering accuracy, that is, how the outcome of one clustering
algorithm agrees with the ground truth (Chen et al., 2013b).
ARI (Nguyen et al., 2015; Jin and Bi, 2018) represents the
number of pairwise sequences that are either in the same
cluster or in different clusters in both partitions. AMI is similar
to ARI. Different from NMI, AMI, and ARI that rely on
an external reference, the metric of MCC can be calculated
according to the clustering threshold and distances between
sequences (Schloss and Westcott, 2011); thus, MCC is regarded
as an objective criterion to evaluate the clustering quality of
different algorithms for OTU picking (Westcott and Schloss,
2015; Schloss, 2016; Liu et al., 2019). AMI, ARI, and MCC vary
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TABLE 1 | Statistics of three benchmark datasets for operational taxonomic unit (OTU) picking.

Sequence data Taxon number Total sequences Average length Variable regions References

Simulated dataset 9 22 K 500 - Cheng et al., 2012

V4 dataset 68 ∼511 K 253 V4 Westcott and Schloss, 2015

Global 16S rRNA 1,498 ∼887 K ∼1,400 V1-V9 Matias Rodrigues and von Mering, 2013

between -1 and 1, and a larger value represents better clustering
quality. How to calculate these metrics are provided in the
Supplementary File.

COMPARISON RESULTS

We evaluate 12 state-of-the-art OTU picking methods, that is,
CD-HIT (v.4.6.8) (Li and Godzik, 2006), USEARCH (v.11.0.667)
(Edgar, 2010), DNACLUST (Ghodsi et al., 2011), Swarm
(v.1.2.19) (Mahé et al., 2014), VSEARCH (v.2.3.4) (Rognes et al.,
2016), DBH (Wei and Zhang, 2017), DMSC (Wei and Zhang,
2019), DySC (v.06-1-2012) (Zheng et al., 2012), ESPRIT-Forest
(Cai et al., 2017), GramClust (v.1.3) (Russell et al., 2010),
average linkage (AL) clustering method employed in mothur
software (v.1.44.3) (Schloss et al., 2009), and CROP (Hao et al.,
2011). Among these methods, CD-HIT, USEARCH, DNACLUST,
Swarm, VSEARCH, DySC, ESPRIT-Forest, DBH, GramClust,
and DMSC are the typical heuristic clustering methods; mothur
is a comprehensive software package for sequence clustering,
and it is demonstrated that the AL clustering implemented
in mothur (mothur-AL) is a reliable method to represent the
actual distances between sequences (Westcott and Schloss, 2015);
CROP is a model-based method. All methods were executed
on the same Linux server for OTU picking. The running
parameters and command lines of each algorithm are given in
Supplementary Table S1.

Benchmarking on the Simulated Dataset
Figure 6 shows the NMI values of 12 clustering methods as
a function of distance thresholds ranging from 0.01 to 0.1.
Because Swarm does not apply the distance threshold to cluster,
and just uses the parameter d (d nucleotide differences) to
generate OTUs, the setting of d is calculated by d = dth × Lave,
where Lave is the average length (i.e., 500) of this simulated
data, dth is the distance threshold ranging from 0.01 to 0.1.
From Figure 6, we can see that all methods, except VSEARCH
and GramClust, show a similar trend, that is, they achieved
higher NMI values near 0.04 distance but lower NMI when
the distance threshold increases. The NMI peak values of
the different methods occur at different distance thresholds.
This is mainly due to the discrepancies of distance calculation
and clustering strategy in each method. VSEARCH shows a
different trend from other methods. It obtained the NMI peak
at 0.07 distance, while the other methods achieved their NMI
peak value near 0.04 distance. The NMI values of GramClust
is always between 0.85 and 0.90 even in lower distances.
The peak NMI scores of 11 methods and the corresponding
inferred OTU number at different distance thresholds are

reported in Table 2. It can be found that DMSC, CROP,
DBH, CD-HIT, VSEARCH, DNACLUST, Swarm, GramClust,
and mothur-AL successfully generated nine OTUs at their
maximum NMI values, while USEARCH, DySC, and ESPRIT-
Forest overestimated OTUs.

Figure 7 illustrates the MCC values of 12 OTU picking
methods at different clustering thresholds. Similar to the NMI
curve, all methods achieved the highest MCC value near 0.04
distance threshold, while USEARCH and VSEARCH obtained
their MCC peak values at 0.01 distance. Table 3 reports
the average, standard deviation (SD), and maximum of MCC
scores with the inferred OTUs number. It can be observed
that DMSC, CROP, Swarm, GramClust, DBH, and mothur-AL
methods also can produce the exact OTU number at their best
MCC values, while USEARCH, DySC, ESPRIT-Forest, CD-HIT,
VSEARCH, and DNACLUST overestimated the OTU number.
Based on the MCC values listed in Table 3, we can see that
DMSC, ESPRIT-Forest, CD-HIT, and mothur-AL have a better
clustering quality (ave. MCC > 0.9) than other methods, and
mothur-AL has the best average MCC value. The NMI values,
OTUs number, and MCC values of the different methods
in the range of 0.01–0.1 distance thresholds can be seen in
Supplementary Table S2.

Supplementary Figures S2, S3 depict the ARI and AMI curves
of 12 OTU picking methods at different clustering thresholds. On
the whole, the curves of ARI and AMI are similar to those of NMI.
That is, most methods, e.g., CD-HIT, DBH, DySC ESPRIT-Forest,
DNACLUST, Swarm, DMSC, and mothur-AL obtained higher
ARI and AMI values near 0.04 distance but lower ARI when
the distance threshold increases, while VSEARCH and UCLUST
show a different trend from other methods where they obtained
the ARI peak at 0.07 distance. The ARI values of GramClust are
always between 0.65 and 0.67 even in lower distances, and AMI
values are between 0.79 and 0.81. Although CROP achieved the
highest ARI (at 0.01 distance threshold) among all methods, it
generated 158 OTUs, 17 times larger than the true number. The
maximum ARI and AMI values of the 11 methods at different
clustering thresholds are listed in Supplementary Tables S3, S4.
It can be found that some clustering methods (such as DMSC,
VSEARCH, DNACLUST, Swarm, GramClust, DBH, and mothur-
AL) can exactly infer the true number of OTUs at their best ARI
and AMI values for the simulated dataset.

Benchmarking on V4 Dataset
For the V4 dataset, just eight methods of USEARCH, CD-HIT,
DBH, GramClust, DNACLUST, VSEARCH, DMSC, and mothur-
AL can generate the clustering results at each distance threshold,
while ESPRIST-Forest, DySC, CROP, and Swarm cannot handle
this dataset. Figure 8 shows the NMI curves of each clustering
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FIGURE 6 | Normalized mutual information (NMI) values of different clustering methods on the simulated dataset.

TABLE 2 | Maximum normalized mutual information (NMI) values for different OTU picking methods on the simulated dataset.

DMSC (0.02) USEARCH (0.05) DySC (0.03) ESPRIT-Forest (0.05) CD-HIT (0.05) CROP (0.03)

Max. NMI 0.9503 0.9107 0.9252 0.8979 0.9334 0.9334

OTUs number 9 10 17 13 9 9

VSEARCH (0.07) DNACLUST (0.05) Swarm (d = 15) GramClust (0.07) DBH (0.03) Mothur-AL (0.04)

Max. NMI 0.9334 0.9333 0.9334 0.8795 0.9293 0.9333

OTUs number 9 9 9 9 9 9

The value in the parentheses is the clustering threshold where each method achieves its peak NMI. For the Swarm method, it is the value of parameter d.

method, and Supplementary Figure S4 presents the inferred
OTU number at different clustering thresholds. We can see
that GramClust has higher NMI scores than other approaches
when the distance increases from 0.01 to 0.06. DMSC and
mothur-AL have higher NMI values than the other methods
at distance thresholds from 0.09 and 0.11, and mothur-AL
achieved the highest NMI score at 0.12 threshold. For the
OTU number in Supplementary Figure S4, all methods show
a similar descending trend from 0.01 to 0.15, generating close
OTU number to the ground truth near 0.1 distance except
GramClust and mothur-AL. mothur-AL obtained close OTU
number at 0.08 distance threshold. GramClust produces more
OTUs than the ground truth even in low distance thresholds. The
ARI and AMI curves of each clustering method are described in
Supplementary Figures S5, S6, which show a similar result to
the curve of NMI.

Figure 9 describes the MCC values at different distance
thresholds, and Table 4 reports the maximum, average, and SD

of MCC values for each method. Obviously, from Table 4, we
can find that DMSC, DNACLUST, and mothur-AL achieve higher
average MCC values than other clustering methods, indicating
that these three methods can produce higher clustering quality on
the V4 dataset. The NMI values, OTU number, MCC, ARI, and
AMI values of each method with different distance thresholds can
be found in Supplementary Tables S5, S6.

Benchmarking on Global 16S rRNA
Sequence Dataset
The global 16S rRNA dataset was often employed to test the
scalability of dealing with longer sequences. For this near full-
length 16S dataset, only USEARCH, CD-HIT, VSEARCH, and
DBH can get the clustering results. Other methods fail to hand
with this large-scale dataset.

The NMI values of USEARCH, CD-HIT, VSEARCH,
and DBH with different clustering thresholds are shown in
Supplementary Figure S7. We can observe that CD-HIT
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FIGURE 7 | The Matthews correlation coefficient (MCC) values of 12 OTU picking methods on the simulated dataset.

TABLE 3 | The average, SD, and maximum MCC values of 11 OTU picking methods on the simulated dataset.

DMSC (0.04) USEARCH (0.01) DySC (0.03) ESPRIT-Forest (0.04) CD-HIT (0.03) CROP (0.03)

Max. MCC 0.9980 0.9369 0.9838 0.9947 0.9840 0.9980

OTUs number 9 528 17 16 27 9

Ave. MCC 0.9363 0.8198 0.7929 0.9286 0.9120 0.8347

SD of MCC 0.0343 0.0737 0.1750 0.0366 0.0451 0.1585

VSEARCH (0.01) DNACLUST (0.04) Swarm (d = 15) GramClust (0.05) DBH (0.03) Mothur-AL (0.04)

Max. MCC 0.9349 0.9921 0.9868 0.9106 0.9868 0.9980

OTUs number 1,291 15 9 9 9 9

Ave. MCC 0.8204 0.8891 0.5474 0.7832 0.8879 0.9564

SD of MCC 0.0578 0.0567 0.1385 0.1436 0.0781 0.0270

The value in the parentheses is the clustering threshold where each method achieves its peak MCC. For the Swarm method, it is the value of parameter d.

achieves higher NMI scores than other approaches at distance
thresholds from 0.01 to 0.07, while USEARCH and VSEARCH
obtain higher NMI scores than DBH and CD-HIT with distance
increases from 0.11 to 0.15. The AMI values of USEARCH,
CD-HIT, VSEARCH, and DBH are described in Supplementary
Figure S8, which shows a similar result to the NMI values in
Supplementary Figure S7. Supplementary Figure S9 represents
the OTU number inferred by these four methods. It can be seen
that four OTU picking methods present a similar trend, that is,
the OTU number exponentially decreases when the clustering
distance increases. Four OTU picking methods of USEARCH,
CD-HIT, VSEARCH, and DBH overestimate OTUs in the
distance range from 0.01 to 0.13. Supplementary Figure S10

shows the ARI values of USEARCH, CD-HIT, VSEARCH, and
DBH. We can see that CD-HIT achieves higher ARI values than
other methods at distance thresholds from 0.01 to 0.07, DBH
obtains the highest ARI at distance thresholds from 0.08 to 0.10,
while USEARCH and VSEARCH obtain higher NMI scores than
DBH and CD-HIT with distance ranging from 0.12 to 0.15.
Supplementary Figure S11 describes the MCC values of four
OTU picking methods. Obviously, DBH achieves higher MCC
values than CD-HIT, USEARCH, and VSEARCH at any distance
threshold, indicating that DBH can produce better clustering
quality for this full-length 16S rRNA dataset. The NMI, MCC,
ARI, AMI values, and OTU number of each method are provided
in Supplementary Table S7.
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FIGURE 8 | NMI values of eight OTU picking methods at different clustering thresholds on the V4 dataset.

FIGURE 9 | MCC values of eight OTU picking methods with different clustering thresholds on the V4 dataset.

TABLE 4 | The average, SD, and maximum MCC values of seven OTU picking methods on V4 dataset.

DMSC (0.05) USEARCH (0.04) VSEARCH (0.06) DNACLUST (0.05) DBH (0.05) GramClust (0.08) CD-HIT (0.05) mothur-AL (0.06)

Max. 0.9913 0.9797 0.9746 0.9884 0.9875 0.9083 0.9876 0.9904

Ave. 0.9480 0.8481 0.8444 0.9478 0.8938 0.7671 0.8697 0.9246

SD 0.0330 0.1438 0.0933 0.0283 0.1409 0.1593 0.1382 0.1175

The values in the parentheses are the clustering thresholds where each method achieves its peak MCC.

Computational Complexity Analysis
Finally, in order to evaluate the computational complexity
(including running time and memory usage) of different OTU
picking methods, we used one large volume sequence dataset

(V35) processed by QIIME from the HMP official website2,
which covers V3–V5 hypervariable regions and contains ∼30.3

2https://www.hmpdacc.org/hmp/HMQCP/
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million sequences with an average length of 528 bp. It is
reported that with sequencing coverage or sequences increase,
the probability of duplicate sequences will be observed (Schloss
and Westcott, 2011). Thus, for relatively fair comparisons
across different OTU picking algorithms, the unique sequences
(∼19.8 million) of V35 were used to evaluate the computational
complexity of the OTU picking methods. We only report the
computational complexity of nine heuristic methods of CD-
HIT, DBH, DMSC, DNACLUST, DySC, GramClust, Swarm,
USEARCH, and VESARCH because mothur-AL and CROP
are time consuming for large-scale datasets, and ESPRIT-Forest
always returns a core dumped information. Supplementary
Figure S12A depicts the execution time (wall time) of nine
OTU picking algorithms with different sequence sizes ranging
from 104 to 106. It can be seen that the speed of DMSC
is lower than that of other clustering methods. The speed of
DBH, USEARCH, DNACLUST, and CD-HIT is faster than other
methods when the sequence number increases. Supplementary
Figure S12B graphically describes the memory usage for each
method. We can obverse that DMSC and VESARCH consume
more memory than other clustering methods, while Swarm,
DySC, GramClust, and CD-HIT need less memory usage
than other methods.

CONCLUSION AND PERSPECTIVES

With the development of high-throughput sequencing
technologies, it has become convenient and cost efficient to
thoroughly profile the microbial community composition and
diversity in various environmental habitats (Deshpande et al.,
2018; Escalona et al., 2018; Rodriguez-R et al., 2018; Fritz
et al., 2019; Huang et al., 2021). Millions of sequencing data
can be generated, and how to utilize this enormous sequence
resource has become a critical concern for microbial ecologists
(Szalkai and Grolmusz, 2018; Qu et al., 2019b). One particular
challenge is the OTU picking in amplicon sequence analysis.
Luckily, this challenge can be directly addressed by sequence
clustering that attempts to group similar sequences (De Vrieze
et al., 2018; Edgar, 2018). Therefore, numerous clustering
methods have been proposed to help to unlock the great wealth
contained in sequence datasets, but none of the methods notably
outperforms all the others, and how to choose an appropriate
method has become a challenge for inexperienced users. A lot
of time and resources can be wasted in selecting clustering
tools and analyzing the clustering results. In this review, we
introduced the recent advance of clustering methods, which
mainly focuses on three aspects: (i) the principles of existing
clustering algorithms, (ii) benchmark dataset construction for
OTU picking and evaluation metrics, and (iii) the performance of
different methods with various similarity/distance thresholds on
benchmark datasets. From the scope of clustering algorithms, we
introduced the key clustering procedures for each category, such
as hierarchical clustering methods, heuristic clustering methods,
model-based methods, and network-based methods. From the
scope of benchmark dataset construction and evaluation metrics,
we introduced how to construct the ground-truth information

for real-life 16S rRNA sequence datasets, presenting different
criteria to evaluate clustering methods.

We compared the performance of the existing 12 state-of-art
OTU picking methods of CD-HIT, USEARCH, DNACLUST,
Swarm, VSEARCH, DBH, DMSC, DySC, ESPRIT-Forest,
GramClust, mothur-AL, and CROP. It is found that the
performance of most methods with different distance thresholds
shows similar clustering results in terms of NMI. DMSC,
DNACLUST, and USEARCH achieved the NMI peak values on
the simulated dataset, V4 dataset, and full-length 16S rRNA
dataset, respectively. In terms of MCC, mothur-AL achieved
better clustering results on simulated dataset, DMSC had
better clustering results for V4 datasets, and DBH obtained
better clustering results on the full-length 16S rRNA dataset.
Although numerous OTU picking methods have been proposed,
mothur still is a competitive tool for amplicon sequence analysis.
Concomitant with the large number of sequences produced by
high-throughput technologies, four future directions to design
the OTU picking algorithms should be paid attention to. One
direction is to design the powerful clustering methods for huge
sequences with longer sequence length. A striking challenge
brought by the advent of sequencing technology is the rapid
growth of sequence length. Several third-generation sequencing
technologies (e.g., PacBio, Nanopore) (Rhoads and Au, 2015;
Han et al., 2018; Ono et al., 2020) claim to have a long read
length of 10∼100 kbp, which can cover the whole region of
16S rRNA gen (Wagner et al., 2016; Pootakham et al., 2017;
Earl et al., 2018). Therefore, OTU picking methods for longer
sequences will be in high demand. Another is clustering stability.
From the comparison results in terms of MCC, we can see that
the MCC curve of each method varies a lot with the distance
threshold changes. The MCC curve should be a straight line
for a stable clustering method, that is, given different distance
thresholds, the OTU picking method should cluster sequences
within the distance threshold into one group and the sequences
beyond the distance threshold into different groups. The third
is the integration of new clustering algorithms to the popular
sequence analysis platforms or pipelines, such as mothur and
QIIME2. When an excellent clustering algorithm was developed,
developers should let their algorithm be expandable or easy
to be applied into the platforms, so that the clustering results
or outputs of a new method can be directly used as the input
of relative commands in platforms, or the outputs from the
platforms can be directly fed into the new method. This will be
very convenient for users to adopt new clustering algorithms
in the platform. The last direction is how to handle sequencing
errors (Ma et al., 2019). Most existing OTU picking methods
are just designed for sequence clustering, while the sequences
generated by the sequencing platform will inevitably contain
sequencing errors (Gaspar, 2018). Removing or reducing the
sequencing errors will improve the accuracy of describing
the microbial community. Although some error-correction
(denoising) methods, such as DATA2 (Callahan et al., 2016),
UNOISE (Edgar, 2016), Deblur (Amir et al., 2017), and SeekDeep
(Hathaway et al., 2017), have been developed, how to combine
these error-correction methods with OTU picking methods
needs attention.
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Metabolites are closely related to human disease. The interaction between metabolites
and drugs has drawn increasing attention in the field of pharmacomicrobiomics.
However, only a small portion of the drug-metabolite interactions were experimentally
observed due to the fact that experimental validation is labor-intensive, costly, and time-
consuming. Although a few computational approaches have been proposed to predict
latent associations for various bipartite networks, such as miRNA-disease, drug-target
interaction networks, and so on, to our best knowledge the associations between
drugs and metabolites have not been reported on a large scale. In this study, we
propose a novel algorithm, namely inductive logistic matrix factorization (ILMF) to predict
the latent associations between drugs and metabolites. Specifically, the proposed
ILMF integrates drug–drug interaction, metabolite–metabolite interaction, and drug-
metabolite interaction into this framework, to model the probability that a drug would
interact with a metabolite. Moreover, we exploit inductive matrix completion to guide the
learning of projection matrices U and V that depend on the low-dimensional feature
representation matrices of drugs and metabolites: Fm and Fd. These two matrices
can be obtained by fusing multiple data sources. Thus, FdU and FmV can be viewed
as drug-specific and metabolite-specific latent representations, different from classical
LMF. Furthermore, we utilize the Vicus spectral matrix that reveals the refined local
geometrical structure inherent in the original data to encode the relationships between
drugs and metabolites. Extensive experiments are conducted on a manually curated
“DrugMetaboliteAtlas” dataset. The experimental results show that ILMF can achieve
competitive performance compared with other state-of-the-art approaches, which
demonstrates its effectiveness in predicting potential drug-metabolite associations.

Keywords: logistic matrix factorization, drug-metabolite association, Vicus matrix, human metabolites, graph
regularization
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INTRODUCTION

With the development of metabolomics technology, more
and more metabolites have been identified. This progress
provides unprecedented opportunities to obtain new insights
into the effects of drugs on metabolites. Recently, Liu et al.
(2020) integrated epidemiologic, pharmacologic, genetic, and
gut microbiome data to analyze the relationships between
drugs and metabolites, which provided a trail for targeted
experimental pharmaceutical research to improve drug safety
and efficacy. Exploring the potential drug-metabolite associations
is also a novel route towards pharmacomicrobiomics and
precision medicine. Doestzada et al. (2018) reviewed the complex
interactions between host, intestinal microorganisms and drugs,
and thought that pharmacomicrobiomics would provide an
important foundation for personalized medicine and precision
medicine. The earliest report about interactions between drugs
and metabolites can be dated back to the 1930s with the discovery
of sulphanilamide (Fuller, 1937). The activity of prontosil is
due to the transformation of microbial azoreductases and the
liberation of sulphanilamide. In addition, microbial metabolites
can also inactivate drugs, such as digoxin. A study on Eggerthella
lenta strains in 2013 (Haiser et al., 2013) found that these strains
carried a two-gene cardiac glycoside reductase (cgr) operon
that was transcriptionally activated by digoxin (Doestzada et al.,
2018), and thus resulted in the inactivation of the drug in
cardiovascular treatment.

Identifying drug-metabolite associations not only provides
deep insights into understanding complex interaction
mechanisms among them, but it can also benefit the screening
of chemical compounds for drug development and improve
microbe related therapy. The complex relationship between
drugs, metabolites, and microbes has attracted extensive
attention. However, conventional wet-lab research for verifying
drug-metabolite interactions is generally labor-intensive, costly,
and time-consuming. Computational approaches are a viable
alternative. Shang et al. (2014) found that metabolites in the same
pathway were usually associated with the similar or same disease.
Based on this fact, they proposed a metabolite pathway-based
random walk algorithm to prioritize the candidate disease
metabolites (Shang et al., 2014). Yao et al. (2015) presented an
approach based on global distance similarity to predict and
prioritize disease related metabolites. Ma et al. (2020b) integrated
multiple diseases and metabolite similarity networks to predict
the potential associations between metabolites and diseases.
Long and Luo (2020) used multi-source biomedical data to
construct a three-level heterogeneous network and designed a
novel network embedding representation framework to identify
microbe-drug associations. Specifically, Long et al. (2020)
exploited the conditional random field, graph convolutional
network and a random walk with restart (RWR) to learn the
latent feature representations of drugs and microbes, identifying
some potential drug-microbe associations.

Although these studies have obtained some valuable results,
there are two main limitations to the existing drug-microbe or
metabolite-disease association mining approaches. Firstly, the
accuracy of these methods is still unsatisfactory due to a lack of

sufficient prior information for drugs, microbes, and diseases.
Secondly, the local geometrical structure of nodes is important
in the task of dimensionality deduction and data representation,
which decides the effectiveness and efficiency of algorithms to a
large extent. The algorithms mentioned above did not consider
the local spectral information that resides in the original data,
meaning their performances are not ideal.

In this study, we propose a novel computational approach,
named inductive logistic matrix factorization (ILMF), to
analyze latent drug-metabolite associations. ILMF integrates the
advantages of logistic matrix factorization (LMF; Johnson, 2014;
Liu et al., 2016) and inductive matrix completion (Natarajan
and Dhillon, 2014; Chen et al., 2018) to learn low-dimensional
embedding of drugs and metabolites, and predict the final
interaction probabilities based on the two low-dimensional
representation of drugs and metabolites. Specifically, ILMF first
learns the latent representation of drugs and metabolites via
clusDCA (Cho et al., 2015; Wang et al., 2015), which runs RWR
on each node in each interaction network (e.g., metabolite–
metabolite interaction network or similarity network) to
compute “the diffusion state” of each point, and then utilizes
a singular value decomposition (SVD)-based approach to
obtain the consensus low-dimensional matrix representation for
metabolites and drugs Zm and Zd, respectively. Secondly, based
on Zm and Zd, ILMF exploits LMF to learn two projection
matrices U and V, respectively, so that ZmV and ZdU have
the same semantic space. Finally, a logistic function is used
to predict the probability that a drug would interact with a
metabolite in the same way that LMF does. Nevertheless, in
contrast to LMF, ILMF captures the topological properties of
nodes (i.e., drugs or metabolites) and takes advantage of the idea
of inductive matrix completion (Luo et al., 2017) to generate
the optimal projection of drugs and metabolites. In addition,
ILMF also exploits the local spectral Vicus matrices (Wang B.
et al., 2017) of drugs and metabolites to reveal the refined local
geometrical structure inherent in drug–drug interaction network
and metabolite–metabolite interaction network. An illustrative
example of this pipeline is given in Figure 1, followed by a more
detailed description of ILMF in section “Materials and Methods.”

The contributions of this article are summarized as follows:

1. We propose a novel LMF-based framework, named ILMF,
to predict drug-metabolite associations by integrating
multiple biological networks. To the best of our knowledge,
this is the first work to predict the latent drug-
metabolite associations.

2. ILMF combines the advantages of inductive matrix
completion and the local spectral Vicus matrix of each
interaction network into this framework, and captures
the optimal low-dimensional representation of drugs
and metabolites.

3. We have manually curated a drug-metabolite association
dataset (“DrugMetaboliteAtlas”) by retrieving relevant
literature. This benchmark dataset can be used to
evaluate the performance of various association prediction
algorithms, which facilitates future research in drug-
metabolite association prediction tasks.
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The comprehensive experiments show that the proposed
ILMF algorithm outperforms several state-of-the-art methods
on the curated “DrugMetaboliteAtlas” dataset. In addition, the
prediction ability of ILMF has also been confirmed by retrieving
the latest published literature or information from databases.

MATERIALS AND METHODS

Materials
The “DrugMetaboliteAtlas” dataset was downloaded from the
BBRMI-NL website1 (Liu et al., 2020). It contains 1071
interactions from 87 commonly prescribed drugs and 150
clinically relevant metabolites. After removing drugs lacking
significantly relevant metabolite associations, 42 drugs were
reserved. In addition, we also manually curated the correlations
between drug categories and the correlations between metabolites
in the Rotterdam study (Liu et al., 2020).

Metabolite-microbe associations and metabolite-pathway
associations were also downloaded from literature (Kurilshikov
et al., 2019). The metabolite similarities from each type of
association were computed based on the Gaussian interaction
profile kernel (He et al., 2018; Ma et al., 2020b). After that,
clusDCA (Wang et al., 2015) was used to fuse multiple
drug–drug interaction networks and multiple metabolite–
metabolite interaction networks. Simultaneously, the optimal
low-dimensional matrix representations of metabolites and drugs
Fm, Fd can also be obtained from this fusing process. Then,
the local Vicus spectral matrices of metabolites and drugs V irm,
V ird were computed based on the optimal low-dimensional
matrix representations of metabolites and drugs Fm and Fd,
respectively. Finally, the low-dimensional feature matrices of
drugs and metabolites Fm and Fd, the local spectral matrices Virm

and Vird were used as input of the proposed ILMF algorithm.

Problem Formalization
In this article, the set of drugs is denoted by D = {di}

n
i=1, and the

set of metabolites is denoted by M = {mj}
m
j=1, where, n and m are

the number of drugs and metabolites, respectively. The known
drug-metabolite interactions are represented as a n×m binary
matrix Y ∈ Rn×m, where yij = 1 if a drug di has been observed to
interact with a metabolite mj; otherwise yij = 0.

This study aimed to solve the problem of predicting the
interaction probability of a drug-metabolite interaction pair, and
subsequently rank the candidate drug-metabolite pairs based on
these probabilities in descending order. Thus, the top-ranked
pairs can be viewed as the most relevant interactions.

Metabolite–Metabolite Similarity
There are four metabolite related data sources: metabolite–
metabolite correlation matrix Corm, metabolite-microbial species
association matrix MM, metabolite-pathway association matrix
MP, and drug-metabolite interaction matrix Y. Corm is obtained
from literature (Liu et al., 2020); MM and MP are collected from
literature (Kurilshikov et al., 2019).

1http://bbmri.researchlumc.nl/atlas/

For drug-metabolite association matrix Y, we use the Gaussian
interaction profile kernel (He et al., 2018) to compute the
similarity between any two metabolites. Let the j-th column y.j
of Y denote the interaction profile between metabolite mj and all
drugs. For any two metabolites mi and mj, the similarity between
them can be measured as:

Kmd = exp
(
−γm||y·i − y·j||2

)
. (1)

Where γm is a bandwidth parameter that needs to be normalized
based on a new bandwidth parameter γ′m :

γm = γ
′
m

/(
1
m

m∑
l=1

|y·l|2
)
. (2)

Here, m is the number of metabolites. | · | denotes Frobenius
norm. γ′m is set to be 1 according to the previous study (Wang
F. et al., 2017; He et al., 2018).

The Gaussian profile kernel similarity matrices Kmm and Kmp
can also be computed based on metabolite-microbial species
association matrix MM and metabolite-pathway association
matrix MP, respectively.

Drug–Drug Similarity
There are two drug related data sources: drug–drug correlation
matrix Cord and drug-metabolite interaction matrix Y.
Cord, which were obtained from literature (Liu et al.,
2020). Analogously, the Gaussian interaction profile kernel
similarity matrix Kd between any two drugs can be computed
in the same way.

After obtaining four metabolite–metabolite similarity
matrices and two drug–drug similarity matrices derived
from multiple data sources, we used clusDCA (Cho et al.,
2015; Wang et al., 2015) to fuse these similarity matrices
and finally acquire the optimal low-dimensional matrix
representations of metabolite and drug features Fm and
Fd, respectively.

Inductive Logistic Matrix Factorization
Logistic matrix factorization has been demonstrated to be
effective in the prediction of drug-target interactions (Liu
et al., 2016), metabolite-disease (Ma et al., 2020a), and
personalized recommendations (Hu et al., 2008; Johnson, 2014;
Liu et al., 2014). The main advantage of LMF is that it
assigns higher levels of importance to the observed interaction
pairs than unknown ones. In this study, we apply LMF for
drug-metabolite interaction prediction. LMF maps drugs and
metabolites into a shared low-dimensionality latent semantic
space r � min (m, n). The interaction probability pij of a
drug-metabolite pair

(
di,mj

)
can be modeled as follows:

pij =
exp

(
wih′j

)
1+ exp

(
wih′j

) . (3)

Where wi ∈ R1×r , hj ∈ R1×r are latent representations
of drug di and metabolite mj, respectively. For
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FIGURE 1 | Illustrative example of ILMF for predicting potential drug-metabolite associations. (A) Metabolite–metabolite, metabolite-drug, metabolite-microbe,
metabolite-pathway association matrices, or correlation matrices; (B) Drug-metabolite, drug–drug association, or correlation matrices; (C,D) Based on Gaussian
interaction profile kernel function, metabolite–metabolite similarity matrices, and drug–drug similarity matrices obtained from four metabolite association data and two
drug association data, respectively; (E) The fused metabolite–metabolite similarity matrix by integrating four metabolite-related data with clusDCA; (F) The fused
drug–drug similarity matrix by integrating two drug association data with clusDCA. Then, the local spectral matrix of metabolites (G) And the local spectral matrix of
drugs (H) Can be obtained based on these two fused similarity matrices with Vicus; (I) The drug-metabolite association matrix; (J) The proposed ILMF model. Finally,
ILMF outputs the predicted drug-metabolite interaction probability scores (K). Here, a solid line indicates known associations, a dotted line indicates predicted
drug-metabolite associations obtained from ILMF.

convenience, we further represent the latent vectors of
all drugs and metabolites as matrix form W ∈ Rn×r and
H ∈ Rm×r , respectively.

The observed drug-metabolite interaction pairs are generally
more reliable and important than the unknown interaction
pairs. A higher level of importance was thus assigned to known
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TABLE 1 | The pseudocode of the ILMF algorithm.

Input: The known association matrix Y ; parameters λ, φ, c, K

Output: The projection matrices, U and V

1. Compute metabolite–metabolite similarity matrices Kmd , Kmm, Kmp according
to Eqs 1 and 2, respectively; similarly, compute drug–drug similarity matrices
Kd ;

2. Compute the low-dimensional feature representational matrices of
metabolites and drugs, Fm and Fd using clusDCA (Cho et al., 2015); computing
Vicus spectral matrices of metabolites and drugs, Virm and Vird ;

3. Initialize U and V randomly;

4. For t = 1,. . .. . ., max_iter do

5. Update U and V according to AdaGrad algorithm

6. Until convergence conditions are satisfied

7. End for

8. Return U, V

TABLE 2 | The best performance of all methods on the
“DrugMetaboliteAtlas” dataset.

AUC AUPR F1

DTInet 0.7430 0.2176 0.2951

IMCMDA 0.7913 0.3655 0.4345

GRNMF 0.9272 0.5847 0.5767

ILMF− 0.9223 0.5429 0.5662

ILMF 0.9402 0.6303 0.6052

To ensure a fair comparison, the optimal parameters are selected from the ranges
provided by these corresponding studies. For ILMF− and ILMF, the above results
are obtained when c = 2, φ =1, λ = 8, and r=12.

interaction pairs than unknown ones. According to a previous
study, we set the importance level to be c (c ≥ 1). Eq. 3 can be
written as follows:

p (Y |U,V ) =
∏

1≤i≤n, 1≤j≤m, yij=1

[
p

yij
ij
(
1− pij

)(1−yij)
]c

×

∏
1≤i≤n, 1≤j≤m, yij=0

[
p

yij
ij
(
1− pij

)(1−yij)
]
. (4)

Here, c is the important level parameter used to control the
weight assigned to the observed drug-metabolite pairs. In the next
experiments, we empirically set it to two.

Inspired by the ideas of inductive matrix completion (Jain
and Dhillon, 2013; Zeng et al., 2020) and generalized matrix
factorization (GMF) (Zhang et al., 2020), we designed a
novel ILMF framework, ILMF, to predict the latent interaction
probabilities between drugs and metabolites. In particular, we
used Fd

∈ Rn×k1 and Fm
∈ Rm×k2 derived from clusDCA (see

section “Drug–Drug Similarity”) to guide the learning process of
projection matrices U ∈ Rk1×r and V ∈ Rk2×r , so that the latent
representations of metabolites and drugs W = FdU ∈ Rn×r and
H = FmV ∈ Rm×r can carry compatible and complementary
information from multiple data sources. Thus, in the ILMF
model, Eq. 3 can be rewritten as follows:

pij =
exp

(
Fd

i.UV ′Fm
.j

)
1+ exp

(
Fd

i.UV ′Fm
.j

) . (5)

Where Fd
i. denotes the i-th row of Fd, Fm

.j denotes the j-th column
of Fm. By substituting Eq. 5 into Eq. 4, we estimate the projection
matrices U and V by maximizing the above likelihood function
(Eq. 3), which is equivalent to minimizing the negative logarithm
of Eq. 3. Thus, the objective function of the proposed ILMF
framework can be defined as:

minU,V

n∑
i=1

m∑
m=1

(
1+ cyijyij − yij

)
log

[
1+ exp

(
Fd

i.UV ′Fm
.j

)]
−cyij

(
Fd

i.UV ′Fm
.j

)
. (6)

To avoid overfitting, the L2 regularization is generally imposed
on U and V. Thus, Eq. 6 becomes:

minU,V

n∑
i=1

m∑
m=1

{(
1+ cyij − yij

)
log

[
1+ exp

(
Fd

i.UV ′Fm
.j

)]
−cyij

(
Fd

i.UV ′Fm
.j

)}
+

λ

2
(
|U|2F + |V|

2
F
)
, (7)

Where λ is a regularization parameter used to tradeoff the
balance between reconstruction errors and smooth solutions.

Note that, for new drugs (metabolites) that do not have
any known connections with metabolites (drugs), ILMF can
still predict their potential associations, once we get their
similarity network from other data sources. This is different
from GMF (Zhang et al., 2020). In GMF, the neighborhood
information of nodes was used to generate two feature
matrices, and then they were adaptively updated at each
iteration. In contrast, ILMF fuses multiple similarity networks
to produce the low-dimensional matrix representations of
metabolites and drugs.

Vicus Matrix
As demonstrated in literature (Wang B. et al., 2017), Vicus
has many of the same properties as Laplacian. However,
compared with Laplacian, Vicus can capture the local geometrical
structure that resides within the original data well. The
reason for using Vicus instead of Laplacian is that the local
connection information from neighboring nodes makes the
learned graph more robust to noise and helps to alleviate the
influence of outliers.

Let {x1, x2, . . . , xn} be the set of data points. Corresponding
to xi, vi denotes the i-th vertex in a weighted network P, and
N (i) represents xi ’s neighborhood, not including xi. Here, the
neighborhood size of all nodes is consistent (|Ni|=k, i=1,2,...,n).

Based on the assumption that the cluster label of the i-th data
point can be inferred from its nearest neighborhood N (i), we
first extract a subnetwork Pi = (ViEi) such that Vi=N (i)

⋃
xi. Ei

represents the edges connecting all points in Vi. Using the label
diffusion algorithm (Zhou et al., 2004), a virtual label indicator
vector ck

Vi
can be reconstructed as:

ck
vi
= (1− α) (I − αSi)

−1qk
vi
, 1 ≤ k ≤ C. (8)
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FIGURE 2 | Performance of ILMF on “DrugMetaboliteAtlas” dataset with different values of λ and φ. (A) AUC versus λ and φ; (B) AUPR versus λ and φ.

FIGURE 3 | Performance of ILMF on “DrugMetaboliteAtlas” dataset with different values of c and r. (A) AUC versus c and r; (B) AUPR versus c and r.

Where α ∈ (0, 1) is a constant, C is the number of clusters, qk
Vi

is the scaled cluster indicator of Pi. Si denotes the normalized
transition matrix, i.e., Si (u, t) = Pi (u, t)

/∑K+1
l=1 Pi

(
u, l
)
. cK

Vi
is

a vector including K + 1 elements. Here, q̄k
i=ck

Vi
[K + 1] is the

estimate of how likely it is that node i belongs to the k-th cluster.
The goal is to maximize the concordance between q̄k

i and qk
i .

Let βi ∈ RK+1 be the i-th row of the matrix (1− α) (I − αSi)
−1,

representing label propagation at its terminal state. We set
q̄k

i = βiqk
Vi

. Thus, q̄k
i can be approximated to:

q̄k
i ≈

βi [1 : K] qk
N(i)

1− βi [K + 1]
. (9)

Where βi [1 : K] denotes the first K elements of βi and
βi [K + 1]denotes the (K + 1)-th element in βi.

Next, we used matrix B to represent the linear relationship:
q̄k
≈ Bqk, k = 1, 2, . . . ,C:

Bij =

{
βi[j]

1−βi[K+1] if xj ∈ N (i) and xj is the j−th element in N (i) ;
0 otherwise

(10)

To minimize the difference between q̄k and qk, an objective
function can be defined as follows:

n∑
i=1

C∑
k=1

(
q̄k

i − qk
i

)2
=

C∑
k=1

|q̄k
− qk
|
2
≈

C∑
k=1

|qk
− Bqk

|
2

= Tr
(

QT(I − B)T (I − B)Q
)
. (11)

Here, Tr (•) denotes the trace of a matrix. Setting
Vir = (I − B)T (I − B), we thus obtain the Vicus matrix.
In this study, we propose to exploit the Vicus matrix
as a graph regularization term to enhance the prediction
performance of ILMF.
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Note that each item in the Vicus matrix obtained from
Eq. 11 represents the probability of vertex i having the same
label as vertex j. Encoding the local neighborhood of each
vertex in this way does not only preserve the geometric
attributes of the Laplacian matrix but also improves the
quality of clustering (Nelson et al., 2019). Wang B. et al.
(2017) indicated the Vicus-based spectral clustering approach
outperformed Laplacian-based methods on many biological
tasks, such as single-cell RNA data clustering, recognition of
rare cell populations, the ranking of genes related to cancer
subtypes and so on. Therefore, in this manuscript, we use Vicus
spectral matrix to model fine-grained connections between drugs
and metabolites.

Vicus Regularization Based Inductive
Logistic Matrix Factorization
The final drug-metabolite association prediction model
can be constructed by considering the existing drug-
metabolite links and the local geometrical structure of
drugs and metabolites. By introducing Vicus regularization
into Eq. 7, the proposed ILMF method is formulated as
follows:

minU,V

n∑
i=1

m∑
m=1

{(
1+ cyij − yij

)
log

[
1+ exp

(
Fd

i.UV ′Fm
.j

)]
−cyij

(
Fd

i.UV ′Fm
.j

)}
+

λ

2
(
|U|2F + |V|

2
F
)
+

φ

2

[
tr
((

FmU
)′ Virm (FmU

))
+tr

((
FdV

)′
Vird

(
FdV

))]
. (12)

Where φ is a graph regularization parameter. Virm is the
Vicus matrix of metabolites, and Vird is the Vicus matrix
of drugs. Note that, in this study, we exploit the cosine
similarity of the low-dimensional feature matrix of metabolites
Fm (or drugsFd ) to compute the Vicus matrix Virm or
Vird, respectively.

The optimization problem in Eq. 12 can be solved by
an alternating gradient ascent scheme. In particular, we
adopt the AdaGrad algorithm (Duchi et al., 2011) to
update U and V. Further details can be found in the
study by Liu et al. (2016). Once the projection matrices
U and V have been obtained, the association probability
of any drug-metabolite pair can be predicted by Eq. 5.
However, for many unobserved interaction pairs, the
learned latent representation of drugs and metabolites may
not be accurate since they are only based on unknown
drug-metabolite pairs.

To address this problem, we adopted the practices outlined
in other literature (Ma et al., 2020a). Let N+d ={mi

∣∣∣∑j yij > 0 }

and N+m={mj
∣∣∑

i yij > 0 } denote the sets of observed drugs and
metabolites, respectively. N+d

(
di
)

denotes the set of K nearest
neighbors of di in N+d . Similarly, N+m

(
mj
)

denotes the set of K
nearest neighbors of mj in N+m . We can replace the latent vector

representation of a drug or metabolite with the representations of
its neighbors. Then, for each drug di, the revised w̄i is defined as:

w̄i =

{
wi, if di ∈ N+d

1
Qd

i

∑K
l=1 µ

d
l wl, if di /∈ N+d

. (13)

Where Qd
i =

∑K
l=1 αl−1Sd (di, dldl

)
is a normalized term,

Sd
= cosine

(
Fd, Fd

)
denotes the consensus drug–drug similarity

matrix derived from multiple similarity networks. dl indicates the
l-th neighbor in N+d

(
di
)

sorted in descending order according
to the similarity with di. α ∈ [0, 1] is a decay factor, and
µd

l = αl−1Sd(di, dl) is a weight factor. Similarly, we can also
obtain the optimal latent representation m̄j for each metabolite
mj :

h̄j =

{
hj, if mj ∈ N+m

1
Qm

i

∑K
l=1 µm

l hl, if mj /∈ N+m
. (14)

Where Qm
j =

∑K
l=1 αl−1Sm (mj,ml

)
, Sm

= cosine (Fm, Fm)

indicates the consensus metabolite–metabolite similarity matrix.
ml is the l-th neighbor in N+m

(
mj
)
, which is sorted in descending

order according to similarity with mj. µm
l = αl−1Sm (mj,ml

)
is

a weight factor.
Finally, the interaction probability of a drug-metabolite pair is

redefined as follows:

p̄ij =
exp

(
w̄ih̄′j

)
1+ exp

(
w̄ih̄′j

) . (15)

To demonstrate the flowchart of ILMF, the pseudocode of ILMF
is given in Table 1.

RESULTS AND DISCUSSION

Experimental Settings
Following the previous studies (Zheng et al., 2013; Ding et al.,
2014; Liu et al., 2016; Zhang et al., 2018a,b, 2019, 2020; Ma
et al., 2020a), the performance of various association prediction
methods can be evaluated by performing fivefold cross-validation
(CV). For each method, we perform fivefold CV five times. Then,
we calculate the area under the receiver operating characteristic
curve (AUC), the area under the precision-recall curve (AUPR)
scores in each repetition of CV, and the final AUC and
AUPR scores are obtained by calculating the average over the
five repetitions.

The object of this study is to predict the latent drug-metabolite
associations. For the known drug-metabolite interaction matrix
Y ∈ Rn×m with n drugs and m metabolites, we conduct CV
on randomly selected drug-metabolite pairs. Specifically, we
randomly divide the observed and unobserved interaction pairs
into five equal parts. Then, in each round, one is used as test data,
the remaining entries in Y are used for training. Thus, each of the
five test datasets (or training data) includes the same number of
observed and unobserved interaction pairs.
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TABLE 3 | Top 20 novel associations predicted by ILMF on the “DrugMetaboliteAtlas” dataset.

Rank Drug category Metabolite Score Evidence (ATC/drug name)

1 C_HMG CoA reductase inhibitors-hydrophilic statin TotPG 0.9915 C10AA03 (pravastatin)

2 M_Preparations inhibiting uric acid production L.VLDL.FC 0.9891 M04AA01 (allopurinol)

3 M_Preparations inhibiting uric acid production L.VLDL.P 0.9881 Unconfirmed

4 N_Benzodiazepine derivatives UnsatDeg 0.9755 N03AE01 (clonazepam)

5 C_Angiotensin II antagonists-plain XS.VLDL.FC 0.9687 Unconfirmed

6 C_Low-ceiling diuretics XL.HDL.FC 0.9625 C03AA04 (chlorothiazide)

7 C_Low-ceiling diuretics L.HDL.P 0.9588 C03AA03 (hydrochlorothiazide)

8 C_Low-ceiling diuretics L.HDL.PL 0.9553 Unconfirmed

9 A_Insulins and analogs-fast-acting FALen 0.9525 A10AB019 (insulin)

10 C_Low-ceiling diuretics HDL.C 0.9493 Unconfirmed

11 B_Carbasalate calcium ApoB 0.9419 Unconfirmed

12 C_Low-ceiling diuretics HDL2.C 0.9346 Unconfirmed

13 C_Low-ceiling diuretics UnsatDeg 0.9334 C03AA03 (hydrochlorothiazide)

14 C_Digoxin S.VLDL.PL 0.9247 Unconfirmed

15 C_ACE inhibitors-plain M.HDL.C 0.9240 C09AA01 (captopril)

16 C_HMG CoA reductase inhibitors-hydrophilic statin S.HDL.CE 0.9219 C10AA03 (pravastatin)

17 C_Angiotensin II antagonists-plain L.HDL.TG 0.9212 Unconfirmed

18 C_Fibrates VLDL.D 0.9192 Unconfirmed

19 C_Angiotensin II antagonists-plain PUFA 0.9188 C09CA01-08

20 M_Preparations inhibiting uric acid production XL.VLDL.PL 0.9158 Unconfirmed

TotPG, total phosphoglycerides; L.VLDL.P, concentration of large VLDL particles; L.VLDL.FC, free cholesterol in very large VLDL; UnsatDeg, estimated degree of
unsaturation; XS.VLDL.FC, free cholesterol in very small VLDL; XL.HDL.FC, free cholesterol in very large HDL; L.HDL.P, concentration of large HDL particles; L.HDL.PL,
phospholipids in large HDL; FALen, estimated description of fatty acid chain length- not actual carbon number; HDL.C, total cholesterol in HDL; ApoB, apolipoprotein
B; HDL2.C, total cholesterol in HDL2; S.VLDL.PL, phospholipids in small VLDL; M.HDL.C, total cholesterol in medium HDL; S.HDL.CE, cholesterol esters in small HDL;
L.HDL.TG, triglycerides in large HDL; VLDL.D, mean diameter for VLDL particles; PUFA, polyunsaturated fatty acids; XL.VLDL.PL, phospholipids in very large VLDL; VLDL,
very-low-density lipoprotein; HDL, high-density lipoprotein.

FIGURE 4 | Global view of the predicted drug-metabolite associations. Hierarchical clustering of the ILMF scores between 42 drugs and 150 metabolites. The color
of each cell represents the ILMF score of a drug (row) and a metabolite (column), where red/blue indicates high/low ILMF scores.

Note that we do not consider the other two scenarios for
CV experiments: random rows or columns selected for testing.
It is mainly because the drug-metabolite association matrix is

commonly sparse, and the drug–drug or metabolite–metabolite
similarity information from external sources cannot provide
enough aid for prediction.
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Evaluation Metrics and Competing
Approaches
In this study, the AUC, AUPR, and F1 value are used as
the evaluation metrics. These metrics have been widely used
in various association prediction tasks. To demonstrate the
effectiveness and efficiency of our proposed ILMF algorithm
in predicting drug-metabolite interaction, we compare the
proposed ILMF method with the following several state-of-the-
art approaches, namely, DTInet (Luo et al., 2017), IMCMDA
(Chen et al., 2018) and GRNMF (Xiao et al., 2018). These
approaches were originally designed for DTI prediction or
miRNA-disease association prediction. Furthermore, we can
obtain a variant of ILMF, which learns U and V with the
consensus similarity matrices of drugs and metabolites instead
of their Vicus matrices. Here, we denote this variant as ILMF−,
which has a similar objective function to MNLMF (Ma et al.,
2020a) and NRLMF (Liu et al., 2016).

For all the compared methods above, their performance is
reported with best-tuned parameters.

Experimental Results
In this subsection, we conduct extensive experiments on the
“DrugMetaboliteAtlas” dataset. Table 2 shows the performance
of various algorithms in terms of AUC, AUPR, and F1. In Table 2,
the highest score in each column is shown in bold typeface.

As shown in Table 2, ILMF achieves the best performance
in terms of AUC, AUPR, and F1 on the “DrugMetaboliteAtlas”
dataset. Specifically, compared with the second-best GRNMF
algorithm, the performance of ILMF increases by 1.40, 7.80, and
4.94% in terms of AUC, AUPR, and F1, respectively. Additionally,
the prediction performance of DTInet and IMCMDA is not
satisfactory. We can observe from Table 2 that ILMF outperforms
IMCMDA 18.82, 72.45, and 39.29% in AUC, AUPR, and F1,
respectively. One possible reason is that IMCMDA does not
take advantage of the local geometrical structure that resided
within the original data. For GRNMF, it does not consider the
important level parameter c, for simplicity, it views the known
drug-metabolite pairs and the unobserved drug-metabolite pairs
as equally important in predicting the latent associations between
drugs and metabolites.

By comparing ILMF and ILMF−, we can also further verify
the benefits of using the Vicus matrices of drugs and metabolites,
indicating that exploiting the local structure information of
drugs and metabolites could improve the performance for drug-
metabolite association prediction.

Parameter Analysis
There are several parameters in ILMF that need to be tuned:
the important level parameter c, the dimensionality k1, k2
and r of projection matrices W and H, the regularization
parameters λ and φ. For simplicity, we set k1 = 12 and k2 = 45
empirically. We adopted a grid search strategy to select the
optimal combination from fixed ranges of λ and φ. In this study,
we let λ and φ vary in the range {2−3, 2−2, 2−1, 20, 21, 22, 23

},
r varies in the range {5, 6, 7, 8, 9, 10, 11, 12} and c varies in
the range {2, 3, 4, 5, 6, 7, 8}. We then conducted fivefold CV to

evaluate the performance of ILMF under the combination of
different parameters.

To demonstrate how λ and φ affect the performance of the
proposed ILMF, we fix other parameters and change the values of
λ and φ, respectively. The AUC and AUPR scores are shown in
Figures 2A,B with respect to different combinations of λ and φ .

λ and φ are the parameters controlling the influence of feature
regularization and graph regularization. As Figure 2 shows,
when we fix the values of λ and increase the values of φ, the
AUC scores increase initially and decrease after achieving the
highest performance. These results demonstrate the advantages
of introducing two kinds of regularization terms.

In this study, we also conducted extensive experiments to
demonstrate how c and r affect the performance of ILMF. We
changed the values of c and r in the corresponding ranges with
other parameters fixed. The AUC and AUPR scores are shown
in Figures 3A,B with respect to different combinations of c and
r. We can observe from Figure 3 that for a fixed value of c, the
AUC scores increase as the values of r increase. However, when
we fix the values of r and increase the values of c, the AUC scores
decrease. Similar properties can be seen in terms of AUPR. This
illustrates the importance and necessity of introducing levels of
importance, which are assigned to the observed drug-metabolite
interaction pairs.

PREDICTING NOVEL
DRUG-METABOLITE ASSOCIATIONS

In this section, we evaluate the prediction ability of ILMF
in identifying novel drug-metabolite associations. In our
experiments, the entire dataset is used to train the ILMF model,
and the optimal parameters are used to make a prediction. The
unknown drug-metabolite interaction pairs are ranked based on
the predicted association scores.

Table 3 shows the top 20 novel associations predicted by ILMF
on the “DrugMetaboliteAtlas” dataset. In this table, the fourth
column shows the predicted interaction probabilities of novel
drug-metabolite pairs. For each pair, we retrieval the possible
interaction from HMDB, DrugBank and other databases that
may contain it, and list the corresponding ATC/drug names in
the last column of Table 3. Since only a few databases include
drug-metabolite association information, the fraction of new
drug-metabolite interactions correctly predicted by ILMF may
increase in the future. These promising results, which indicate
that ILMF can successfully identify many novel associations,
demonstrates that it is effective in predicting latent drug-
metabolite associations from a sparse binary matrix.

Note that the proposed ILMF is also effective when a new drug
(or metabolite) without any known related metabolites (or drugs)
is given. Once we have obtained the low-dimensional matrix
representation Fd

new(i) of a new drug or Fd
new(j) of a metabolite,

the interaction scores with known drugs or metabolites can be
calculated by Eq. 15.

We further apply ILMF to detect the relationships between
drugs and metabolites from a global view. ILMF is used
to infer the metabolic potential of 42 drugs and chart the
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FIGURE 5 | The sub-network consists of three drugs and six metabolites.

FIGURE 6 | The sub-network consists of two drugs and seven metabolites.
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metabolic landscape of common drugs. First, we obtain a score
matrix by applying ILMF on the whole “DrugMetaboliteAtlas”
dataset. Then, hierarchical clustering is performed to explore
the unknown relationships between drugs and metabolites
(Figure 4). The scores indicate the interaction relationships
between drugs and metabolites based on metabolic mechanisms.
Therefore, the drugs and metabolites that are grouped may share
metabolic overlaps in terms of pathways or microbial metabolites
association profiles.

In Figure 4 the black circled region shows a module
that consists of three categories of drugs (Antiarrhythmics-
class III, ACE inhibitors-plain, and High-ceiling diuretics) and
six kinds of metabolites (Total cholesterol in HDL2, Total
cholesterol in HDL, Free cholesterol in medium HDL, Total
cholesterol in medium HDL, Total lipids in medium HDL,
and Apolipoprotein A-I). These drugs and metabolites, which
have no associations in the original drug-metabolite association
matrix are identified by the proposed ILMF. The relationships
between these drugs and metabolites have been reported in
some literature. Figure 5 shows the connectivity of this module
by extracting the corresponding rows and columns from the
predicted drug-metabolite scoring matrix. The green circle
denotes the three drugs mentioned above. The pink diamond
denotes six metabolites. Solid lines indicate the true associations
between drugs and metabolites. Dot lines indicate the predicted
associations by ILMF. The values on the lines are the predicted
scores. The bigger the score, the more trustworthy the predicted
drug-metabolite interaction pair. This setting is also applied to
Figure 6.

As shown in Figure 5, Total cholesterol in medium
HDL is highly related to Antiarrhythmics-class III and
ACE inhibitors-plain and the predicted interaction scores
between them are 0.90 and 0.92, respectively. This is
consistent with the fact that high Total cholesterol level
usually leads to other complications, including diabetes,
hyperlipidemia, hypertension, hypothyroidism, choledochus
obstruction, coronary heart disease, atherosclerosis, and
so on (Nelson, 2013). Miyazaki et al. (1999) also reported
that ACE activity was significantly increased in the aorta of
cholesterol-fed monkeys.

Another example is the purple circled region, which contains
two kinds of drugs (Antithrombotic agents-Acetylsalicylic
acid: B01AC06 and Benzothiazepine derivatives: C08DB01)
and seven metabolites (Sphingomyelins, Serum total
cholesterol, Total phosphoglycerides, Esterified cholesterol,
Free cholesterol, 18:2-linoleic acid, and Phospholipids
in very small VLDL). The drugs and metabolites in this
module are also clinically relevant. Figure 6 describes the
heterogeneous interaction network of this module. As Figure 6
indicates, Acetylsalicylic acid is related to Sphingomyelins
(interaction probability is 0.7531). This finding is also
consistent with another previous report by Suwalsky et al.
(2013).

There have also been other biologically meaningful modules
detected by ILMF. In short, the two examples mentioned above
show the potential of the proposed ILMF algorithm in identifying
the unknown associations between drugs and metabolites, which
further demonstrates its effectiveness and efficiency.

CONCLUSION

In this article, we propose a novel drug-metabolite association
prediction method, named ILMF. ILMF could not only combine
multiple-source drug–drug interaction, metabolite–metabolite
interaction, and drug-metabolite association information into
this framework but also take full advantage of the local
geometrical structure inherent in the original data to improve
prediction performance. In addition, we also exploited inductive
matrix completion to guide the learning of projection matrices
U, V based on the low-dimensional feature matrix of drugs
(or metabolites) obtained from external data sources. The
experimental results for the “DrugMetaboliteAtlas” dataset
demonstrate the effectiveness of the proposed ILMF in predicting
potential drug-metabolite associations. Moreover, in the last
section of this study, we examine case studies on predicting novel
drug-metabolite associations, the results of which may provide
some valuable clues to biologists or clinicians.

Despite these promising findings, there are still some
limitations to this proposed ILMF model. While fusing
multiple types of biological data, the chemical structure
information of drugs or metabolites is missing due to
the fact that the initial “DrugMetaboliteAtlas” dataset only
contains vague categories, particularly for metabolites. The low-
dimension feature representation learning algorithm (clusDCA)
is replaceable. More effective graph representation learning
frameworks, such as graph convolution network (GCN), are
expected to be combined with the ILMF framework to
more accurately predict drug-metabolite associations. Lastly,
the predicted drug-metabolite interactions need to be further
validated in practice.

In the future, we will focus on developing new methods to
explore the complex relationships between drugs and microbes,
including the influence of microbes on drug activity or
toxicity and so on.
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Introduction: The fungi ITS sequence length dissimilarity, non-specific amplicons,
including chimaera formed during Polymerase Chain Reaction (PCR), added to
sequencing errors, create bias during similarity clustering and abundance estimation in
the downstream analysis. To overcome these challenges, we present a novel approach,
Hierarchical Clustering with Kraken (HCK), to classify ITS1 amplicons and Abundance-
Base Alternative Approach (ABAA) pipeline to detect and filter non-specific amplicons in
fungi metabarcoding sequencing datasets.

Materials and Methods: We compared the performances of both pipelines against
QIIME, KRAKEN, and DADA2 using publicly available fungi ITS mock community
datasets and using BLASTn as a reference. We calculated the Precision, Recall,
F-score using the True-Positive, False-positive, and False-negative estimation. Alpha
diversity (Chao1 and Shannon metrics) was also used to evaluate the diversity
estimation of our method.

Results: The analysis shows that ABAA reduced the number of false-positive with all
metabarcoding methods tested, and HCK increases precision and recall. HCK, coupled
with ABAA, improves the F-score and bring alpha diversity metric value close to that of
the BLASTn alpha diversity values when compared to QIIME, KRAKEN, and DADA2.

Conclusion: The developed HCK-ABAA approach allows better identification of the
fungi community structures while avoiding use of a reference database for non-specific
amplicons filtration. It results in a more robust and stable methodology over time. The
software can be downloaded on the following link: https://bitbucket.org/GottySG36/
hck/src/master/.

Keywords: ABAA, benchmarking, F-score, fungi, HCK, hierarchical clustering, ITS amplicons

INTRODUCTION

The mycobiome concept was first introduced in 2010 to designate the fungal community of
the human oral cavity (Tang et al., 2015) before being extended to other micro-environments.
Three genomic markers are widely used to identify fungal species in a microbial environment:
18S ribosomal gene (Wu et al., 2015), 28S ribosomal gene (Ninet et al., 2003), and the Internal

Frontiers in Microbiology | www.frontiersin.org 1 May 2021 | Volume 12 | Article 64069335

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.640693
http://creativecommons.org/licenses/by/4.0/
mailto:Arnaud.Droit@crchudequebec.ulaval.ca
mailto:Arnaud.Droit@crchudequebec.ulaval.ca
https://doi.org/10.3389/fmicb.2021.640693
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.640693&domain=pdf&date_stamp=2021-05-05
https://www.frontiersin.org/articles/10.3389/fmicb.2021.640693/full
https://bitbucket.org/GottySG36/hck/src/master/
https://bitbucket.org/GottySG36/hck/src/master/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-640693 May 5, 2021 Time: 13:12 # 2

Mlaga et al. Dealing With ITS Amplicon Datasets

Transcribed Spacers (ITS) (Martin and Rygiewicz, 2005;
Bellemain et al., 2010). The most commonly used is the ITS
amplicon (Fujita et al., 2001) which targets two loci: ITS1, located
between the 18S and 5.8S genes, and ITS2, between 5.8S and
28S (Bellemain et al., 2010). ITS1 has been demonstrated to
yield the best performance (Bazzicalupo et al., 2013; Wang et al.,
2015). Several packages have been developed to automate the
process, and most of them are OTU (Operational Taxonomic
Unit) sequence similarity-based pipeline (Schloss et al., 2009;
Gweon et al., 2015; Rognes et al., 2016; Mysara et al., 2017; Bolyen
et al., 2018). To date, the research communities are gradually
moving to the new concept of ASVs (Amplicons sequence
Variants) or Exact Sequences Variants (ESVs) (Callahan et al.,
2017). With these pipelines, the taxonomy delineates based on the
single nucleotides’ variant of amplicons, assuming that amplicons
sequences have a similar length which is not the case with fungi
ITS sequences. To date, several pipelines have been developed
to classify fungal species using ITS sequencing. These include
Plutof (Abarenkov et al., 2010b), Clotu (Kumar et al., 2011),
PIPITS (Gweon et al., 2015), CloVR-ITS (White et al., 2013), and
BioMaS (Fosso et al., 2015) specially designed to analyse fungi ITS
datasets, Kraken (Wood and Salzberg, 2014), Mothur (Schloss
et al., 2009) Qiime (Caporaso et al., 2010; Bolyen et al., 2018),
Vsearch (Rognes et al., 2016), and DADA2 (Callahan et al., 2016)
among many others, to examine both bacterial 16S rRNA and
fungal ITS amplicons.

The size of fungal ITS sequences is highly variable, and
species can differ widely by the number of loci (Tang et al.,
2015; Khodadadi et al., 2017). The sequence length dissimilarity
creates bias during clustering and affects OTUs abundance
estimation. Moreover, besides biologically valid amplicons, PCR
generates many non-specific fragments resulting from elongation
interruption or two or more incomplete amplicons joining
(chimaeras) (Lahr and Katz, 2009; Edgar, 2016; Bjørnsgaard
Aas et al., 2017). These non-specific amplicons are hybrid
products between multiple parent sequences that can be falsely
interpreted as existing or novel species, thus significantly affect
the diversities, including the alpha and beta diversity metrics
(Zajec et al., 2012). Hence, non-specific amplicons formed
during amplification with two incomplete segments (bimeras)
are generally at a lower proportion. However, chimaeras with
more than two fragments (multimers) may form at comparable
rates and account for a significant fraction in an amplified
sample (Lahr and Katz, 2009). The most commonly used
pipeline to detect chimaeras is UCHIME, composed of reference-
based and de novo approaches (Edgar, 2016). The reference-
based approach detects non-specific amplicons in a dataset by
making a model from a concatenated pair of sub-sequences
in a reference database. Chimaeras are detected if the query
alignment sequence score of the model exceeds a threshold.
UCHIME depends on a reference database, and ITS sequence size
variation can be a significant source of false-positive detection,
throwing away biologically valid sequences. DADA2 implements
isBimeraDenovo() function that identifies exact bimeras or
multimeras sequences. Child sequences that differ by a single
mismatch from the chimeric model are flagged if the left parent
and right parent are at least four nucleotides away from the child

sequence (Callahan et al., 2016). The challenge is that databases
are rarely updated, and the similarity search can be time-
consuming, especially when databases are large. Computational
resources are one of the critical limitations. Maintaining specific
databases up to date is a real challenge, and a broad range of
databases suffer from contamination and unannotated sequences.
The available databases, such as UNITE, which is commonly
used, presents 26% of entries that cannot be consistently assigned
to a taxonomic family (Nilsson et al., 2008; Kõljalg et al., 2013).
These tools are mainly developed for 16S/18S markers but
widely applied to fungal ITS amplicons. Besides, these tools have
been optimised using simulated datasets and not real datasets
(Bjørnsgaard Aas et al., 2017).

To overcome the above limitations, we present a novel
classification approach for ITS amplicon’s taxonomy assignment.
This approach consists of two steps: The amplicons Abundance-
Base Alternative Approach (ABAA), a de novo method to
filter non-specific amplicons from sequence datasets and a
Hierarchical Clustering with Kraken (HCK) to classify ITS
amplicons. We built HCK on a hierarchical clustering approach
with multiple-step iterating runs. Each cluster’s representative
sequences are taxonomically assigned usingKrakenwith the exact
alignment of k-mers using fungal ITS loci sequence database
(ITSdb). In this study, we use comparative analysis approach
to assess the performance of ABAA and HCK. We calculated
the Precision, the Recall, and the F-score using the True-
Positive, False-positive, and False-negative estimation. Alpha
diversity (Chao1 and Shannon) was also used to evaluate the
methods’ diversity estimation. Chao1 is based on the concept
that rare species allow inferring the number of missing species.
As the Chao1 richness estimator gives more weight to the
low abundance species while the Shannon index measures the
richness and the evenness (Kim et al., 2017), making the Chao1
metric more sensitive to abundance estimation than Shannon’s.
Henceforth, to simplify the manuscript, chimaeras and non-
specific amplicons will interchangeably be used to designate
all non-specific amplicons, including chimaeras, incomplete
amplicons and sequencing errors.

MATERIALS AND METHODS

The methodology in this study is organised in two parts. In
the first part, we will describe ABAA and HCK workflow using
publicly available ITS mock community datasets. We will then, in
a second part, compare the performance of HCK-ABAA to that of
QIIME, DADA2 and KRAKEN using BLASTn search abundance
estimation as a reference.

Fungi ITS Mock Communities’ Datasets
We downloaded Biological mock community datasets of three
different projects from the SRA NCBI database. The three
projects were conducted using the Illumina Miseq sequencing
technology. The first project, available under accession number
PRJNA516455 (McTaggart et al., 2019), contains six different
samples (SRR8473974, SRR8473977, SRR8473978, SRR8473979,
SRR8473980, SRR8473984), which were prepared from subsets of
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53 species of fungi with an emphasis on human lung pathogens.
The second project, available under accession number SRP132544
(Hoggard et al., 2018), contains three samples (SRR6702280,
SRR6702281, SRR6702283), including specific fungal species
from different human body location or organs (lung, oral
cavity, gastrointestinal tract, and skin). The third project,
available under accession number PRJNA382746, contains two
samples (SRR5439721, SRR5439722) that include 16 species of
fungi. Overall, the mock communities contain 36 fungi genera
which are: Alternaria, Apophysomyces, Aspergillus, Blastomyces,
Candida, Cladosporium, Clavispora, Coccidioides, Cryptococcus,
Cunninghamella, Exophiala, Fusarium, Histoplasma, Lichtheimia,
Malassezia, Meyerozyma, Mucor, Paecilomyces, Penicillium,
Phanerochaete, Pichia, Purpureocillium, Rasamsonia,
Rhizopus, Saccharomyces, Sarocladium, Scedosporium,
Schizosaccharomyces, Sporidiobolus, Sporothrix, Talaromyces,
Trichoderma, Trichosporon, Wickerhamomyces, Sclerotina,
Rhyzomucor, Trichophyton detailed in Table 1.

Fungi ITS Analysis Workflow With
HCK-ABAA
Data Pre-processing and Quality Check
The sequence reads are trimmed with paired-end mode using
Trimmomatic (Bolger et al., 2014) to remove residual adapters.
The default parameters are used, including “phred33” to encode
the quality part of the Fastq file to base 33, the low-quality
bases from the sequence beginning and the end is set to 3
bases, respectively. The sliding window size was set to 4 with a
minimum length of 50 bases. The paired reads generated from the
trimming are then joined into contigs to produce the final fasta
file using Pandaseq (Masella et al., 2012) with default parameters.
Sequences with ambiguous bases are removed.

Non-specific Amplicons Filtering: ABAA
We empirically consider that amplicons with length-frequency
below the standard deviation overall distribution to originate
from non-specific amplification. Technically, after determining
the amplicons’ length distribution and their frequency within
each sample, an amplicon is considered to be non-specific if
its length-frequency is below a certain threshold. This threshold
corresponds to the standard deviation of the frequency of the
amplicon lengths. ABAA filtering corresponds to step 1 of
the whole pipeline.

Hierarchical Clustering With Kraken Assignment
(HCK)

Amplicons Hierarchical Clustering
Amplicon hierarchical clustering corresponds to step 2 of
the whole pipeline. HCK clusters amplicons sequences using
multiple-step iterated runs of sequence alignments with a
neighbour-joining algorithm implemented in CD-HIT version
4.5.4 (Fu et al., 2012). A segment sliding window in this context or
“word” is defined as the consecutive position of a certain number
of nucleotides in a sequence fragment. We implemented three
iterative runs in the clustering and set the sequence identities
(c) to 0.99, 0.98, and 0.97, as well as the “word” size (n) to 10,

8, and 7 bps, respectively. It is possible to control the sequence
length difference cut-off(s), the alignment coverage of the more
extended sequence (aL), and the alignment coverage for the
shorter sequence (aS). The most crucial parameter is the length
difference cut-off(s) depending on the overall distribution of the
amplicon’s size. It can be empirically estimated by dividing the
average size by the size of the most extended amplicon. This value
was set to 90% in the study. The iterated clusters generated are
then merged into one single, no redundant cluster file and sorted
by size to remove singleton amplicons. An intermediary step 3
is essential to retrieve representative sequences from each cluster
and be classified using Kraken (Figure 1A).

ITS Loci RefSeq
We downloaded the fungal Internal Transcribed Spacer RNA

(ITS) RefSeq Targeted Loci (ITSdb) containing 11,252 entries.
We retrieved the corresponding taxonomy profile from the NCBI
taxonomy database1 and created a Qiime-compatible taxonomy
file. Both files (fasta and taxonomy file) were sorted and cleaned
to have similar entries, using the following utilities2. ITSdb was
used to generate a kraken database following the procedure
available at this web address: http://ccb.jhu.edu/software/kraken/
MANUAL.html.

Taxonomical Classification
Each cluster’s representative sequences are classified using

the Lowest Common Ancestor (LCA) algorithm with Kraken
version 1 (Wood and Salzberg, 2014). The taxonomy assignment
is then extended to other amplicons of the respective clusters
for a complete classification. This step corresponds to step 4 of
the HCK workflow. The command uses the sample metadata
information to generate a BIOM file. The final stage, step 5, uses
the BIOM file to estimate the diversity abundance and further
metric calculation analysis (Figure 1B).
Benchmark Analysis and Performances
Evaluation
BLASTn (Reference)
We determined the actual reference diversity and abundance
with BLASTn sequence similarity search against the NCBI
NT database. Consensus classification was determined for
coverage ≥98%, identity ≥97%, and e-value ≤ 0.00001 with
a maximum of 100 hits retained per entry. The BLASTn
output was then filtered for the best hits successively by the
e-value, coverage percentage, and identity percentage. The final
consensual taxonomy classification for each amplicon is kept
based on a minimum number of 80 identical taxid out of 100 for
each query (80% of the total hits) to generate an abundance table
following a procedure described by other authors (Blaalid et al.,
2013; McTaggart et al., 2019).

Comparative Analysis
To evaluate the efficacy of the newly developed tools, we
compared the absolute count diversity of HCK to Qiime v1.9

1ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/Fungi/
2https://github.com/bakerccm/entrez_qiime
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FIGURE 1 | HCK workflow diagram. (A) Hierarchical clustering with three iterations. Chimaeras free sequences are results of pipeline step 1, including raw reads
trimming, merging (forward and reverse reads) and ABAA filtering. Sequences are combined into one single fasta file and clustered using a hierarchical clustering
approach in step 2. All clusters are then merged into one single non-redundant clusters and got rid of singletons sequences. HCK retrieves representative
sequences from each cluster for amplicons’ classification, the second part of the pipeline (step 3). (B) Classification uses Lowest Common Ancestor (LCA)
taxonomical assignment implemented in Kraken to classify representative sequences and taxonomy reported to each cluster, and a final BIOM file can be generated
for downstream analysis (Steps 4 and 5).

(Caporaso et al., 2010), Kraken (Wood and Salzberg, 2014),
and DADA2 (version 1.8) (Callahan et al., 2016) with and
without non-specific sequences/chimaera removal using BLASTn
abundance estimation as reference. We test HCK, Kraken, Qiime
with ITSdb, Qiime with UNITE (Abarenkov et al., 2010a) and
ITSdb database. DADA2 is tested only with the native UNITE
database. The performance of each method is determined by
its ability to assign the suitable taxa to the right sequence and
to be able to assign the maximum of good sequences using
sensitivity (recall), the positive predictive value (precision), and
the f-score metric calculation (Figure 2). We determined True
positive (TP) as following: For xi, the abundance estimated
by the BLAST (reference) and yi, the abundance estimated by
the tested methods for given sample i, we determined true
positives by TPi = min(xi,yi). The overestimated abundance
classified by the tested method is considered false positive,
and the underestimation differences are included in the false
negatives. The false negatives (FN) are determined by the
sum of counts of amplicon only detected by BLAST but
are not correctly assigned by the assessed method. For Tri,
the total abundance estimated by BLAST for given sample
i, FNi = Tri − TPi. The false positive (FP) corresponds to
the sum of counts of amplicons wrongly assigned by the
tested method but not detected by BLAST or not included in

the initial mock community composition. For Tmi, the total
number of amplicons classified for given taxa by the tested
method, FPi = Tmi – TPi. We determined the precision (Pi)
and the recall (Ri) and calculated the F- score using the
following formula. Pi = TPi/(TPi+FPi), Ri = TPi/(TPi+FNi),
F-scorei = 2∗Pi∗Ri/(Pi +Ri) (Gardner et al., 2019). We also
calculated alpha diversity using Shannon and chao1 indices
to assess the association of chimaera removal methods and
taxonomy classification in downstream diversity analysis. We
compared it to the diversity of BLAST abundance estimation.
We estimate the difference between the alpha diversity of
the assessed methods and that of the BLASTn estimation.
The lower the difference, the best is the method. All scripts
and command lines are details in Supplementary Material:
scripts_and_command_lines.

RESULTS

Fungi ITS Amplicons Length: A Vast
Diversity Among Species
All 11 samples from the three projects were combined into one
single dataset during the pre-processing treatment. The average
read length is 200.9 bp (SD = 65.6), the maximum read size is
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FIGURE 2 | Benchmarking workflow: the workflow is organised in pre-processing, including Illumina sequencing reads trimming and forward and reverse reads
merging. To determine the best non-specific amplicons filtering method, ABAA was tested with UCHIME (UCHIME_Ref, UCHIME_DENOVO, and isBimeraDenovo()
implemented in DADA2. The classifier tested also includes HCK with ITSdb, the newly designed pipeline, QIIME with ITSdb and UNITE, Kraken with ITSdb, DADA2
with UNITE and compared to BLASTn search using NCBI NT database, as reference. The pipelines performances are evaluated using precision, recall and F-score.

251 bp, and the minimum is 35 bp (Figure 3A). Fragments with a
read length below 150 bp have fewer duplicated percentages than
those between 240 and 250. After joining the paired reads, the
average size is 233.3 bp (SD = 94.45) with a maximum of 472 bp
and a minimum of 35 bp. The predominant amplicons size is
251 bps. We observed low-frequency fragments below 250 bp and
above 400 bp (Figure 3B).

Taxonomic Assignment Using BLAST:
Mock Communities Real Abundance
Estimation as a Reference
We conducted a BLASTn search against the NCBI NT database
to re-estimate the absolute abundance of the expected
genus. We observed discrepancies between theoretical data
and BLAST results. Even though samples SRR5439721
and SRR5439722 were from the same mock preparation,
Aspergillus amplicons could not be detected in SRR5439721,
and Cryptococcus was undermined in sample SRR5439721.
Malassezia was also undermined in SRR6702280, SRR6702281,

SRR6702283. The details of the abundance table are shown
in Table 1.

Benchmark and Comparative Analysis:
Performance of HCK and ABAA
ABAA: Amplicons Filtering
For our analysis, amplicons length below 250 bp and above
400 bp have shown low frequency compared to those comprised
between 251 and 400 bp (Figure 3D). Each peak in Figure 3C
is composed of amplicons of a similar size. The enlargement
of the base of the curve may correspond to the variation of
the amplicon’s size. The frequency of these amplicons indicates
that they could also be derived from non-specific amplification.
Here we hypothesise this amplicon to be a chimaera and
attempt to filter them out. The minimum sequence length
detected by ABAA is 35 bp, with an average of 308 bp, higher
than the overall average length (233 bp) and a maximum
of 472 bp. It indicates that most chimaeras formed in this
dataset may result from bimera and or multimera forming than
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FIGURE 3 | Chimaera detection flow using ABAA: (A) distribution of reads from all datasets; The average read length is 200.9 bp (SD = 65.6, a median of 250), the
maximum reads size is 251 bp, and the minimum is 35 bp. (B) Distribution of the frequency of contigs length (assembly of forward and reverse reads), the average
size is 233.3 bp (SD = 94.45) with a maximum of 472 bp and a minimum of 35 bp. The predominant amplicons size is 251 bps. (C) Distribution of contigs
length-frequency by length: determination of non-specific amplicons filtering cut-off: cut-off was tested for means (blue line), standard deviation (green line), and
mean + standard deviation (red line). The standard deviation was kept for better performance. (D) Distribution of sequences by the length in all datasets. Blackline
represents the distribution of all sequences). Moreover, the red line represents the distribution of filtered sequences with ABAA (standard deviation).

incomplete amplification. Filtered amplicons by ABAA include
amplicons below 250 bp, above 400 bp, and low amplification
between 250 and 400 bp (Figure 3D). In total ABAA has
detected 252,567 sequences accounting for 10.86% of overall
sequences as non-specific amplicons while 528,544 (22.72%) with
uchime_ref and 1,165,031 (50.08%) by DADA2 and 32 (0.0013%)
detected by uchime_denovo. isBimeraDenovo() in DADA2 has
filtered out up to 75.43% of sequences in sample SRR5439722.
However, 24.76% were detected with UCHIME_REF, and
17.02% by ABAA on the other hand. Also, 51.74% were
detected in sample SRR5439721, while 24.67% detected with
UCHIME_REF and 17.23% by ABAA and UCHIME_REF seem
to be more consistent than isBimeraDenovo() in DADA2 as
samples SRR5439721 and SRR5439722 were from the same mock
preparation (Table 2).

HCK-ABAA: Taxonomic Assignment Performances
The second step of the HCK pipeline handles the chimaeras-
free sequences. Samples sequences pre-processed and filtered
by ABAA in the first step are then combined into a single

fasta for the clustering process. With our datasets, we cluster
a total of 2,326,239 amplicons with HCK using multiple-step
iterated runs of cd-hit-est to perform hierarchical clustering. The
first iteration performed with 99% sequence similarity generates
88,428 clusters, the second iteration with 98% creates 32,200
clusters (3/8 of the initial clusters), and the final iteration at 97%
produces 18,831 clusters. The final iteration reduces the total
clusters by 1/5 of the initial clusters, a crucial benefit of the
hierarchical clustering that will be detailed in the discussion. All
clusters generated by different iterations are merged into 18,770
non-redundant clusters, including 14,431 singletons, for which
2,545 have fragments size ≤ 149 bp and 11,886 with sequence
size ≥150 bp (150 bp, widely considered as the minimum
standard of ITS length). The singletons are removed from further
analysis based on the assumption that a unique sequence might
derive from sequencing errors or non-specific amplification. As
a result, only 4,339 clusters are composed of biologically valid
amplicons corresponding to 4,339 representative sequences. The
performance of HCK with and without ABAA is assessed using
the precision (positive predictive value), the recall (sensitivity),
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TABLE 1 | Absolute count of reads affiliated of each genus among the different datasets of the mock community (determined by BLASTn against NT database).

Taxa SRR
5439721

SRR
5439722

SRR
6702280

SRR
6702281

SRR
6702283

SRR
8473974

SRR
8473977

SRR
8473978

SRR
8473979

SRR
8473980

SRR
8473984

Alternaria 0 0 3,941 3,334 5,462 39,009 0 0 0 0 0

Apophysomyces 0 0 0 0 0 0 0 0 0 0 191

Aspergillus 0 1,381 924 1,029 1,120 315,986 5,991 5,096 5,657 3,613 2,362

Blastomyces 0 0 0 0 0 0 379 230 256 183 0

Candida 150,704 108,934 33,556 28,123 39,320 125,949 0 0 0 0 0

Cladosporium 0 0 51 66 76 22,476 0 0 0 0 0

Clavispora 0 0 0 0 0 1,645 0 0 0 0 0

Coccidioides 0 0 0 0 0 0 502 649 698 515 0

Cryptococcus 1,087 33,983 12 9 16 16 555 568 825 665 131

Cunninghamella 0 0 0 0 0 0 0 0 0 0 13

Exophiala 0 0 3,340 2,791 4,140 0 299 271 319 221 2

Fusarium 0 0 52 54 76 39,505 0 0 0 0 138

Histoplasma 0 0 0 0 0 0 152 112 138 87 0

Lichtheimia 0 0 0 0 0 0 0 0 0 0 45

Malassezia 0 0 50 67 67 0 0 0 0 0 0

Meyerozyma 0 0 0 0 0 15,220 0 0 0 0 0

Mucor 0 0 0 0 0 11,935 109 96 109 80 438

Paecilomyces 0 0 0 0 0 0 0 0 0 0 80

Penicillium 0 0 32,037 29,551 39,368 27,888 1,645 1,461 1,593 854 0

Phanerochaete 32,650 20,763 0 0 0 0 0 0 0 0 0

Pichia 22,965 69,159 0 0 0 95,622 0 0 0 0 0

Purpureocillium 0 0 0 0 0 0 120 120 128 96 0

Rasamsonia 0 0 2 0 0 292 0 0 0 0 128

Rhizopus 0 0 0 0 0 57 2,283 2,354 3,447 2,584 109

Saccharomyces 57,107 46,582 1,737 1,863 1,942 12,654 0 0 0 0 0

Sarocladium 0 0 0 0 0 0 257 269 336 221 0

Scedosporium 0 0 0 0 0 3 62 75 86 54 36

Schizosaccharomyces 36,413 23,880 0 2 0 7 0 0 0 0 0

Sporidiobolus 0 0 0 0 0 17,476 0 0 0 0 0

Sporothrix 0 0 0 0 0 2 0 0 0 0 1

Talaromyces 0 0 0 0 0 1,336 435 382 403 160 6

Trichoderma 29,027 18,431 0 0 0 0 0 0 0 0 0

Trichosporon 0 0 122 77 185 88,790 2,305 2,080 2,221 1,642 0

Wickerhamomyces 2,208 1,235 0 0 0 10 0 0 0 0 0

Sclerotina 25,545 12,058 0 0 0 0 0 0 0 0 0

Rhyzomucor 0 0 0 0 0 0 0 0 0 0 0

Trichophyton 0 0 7,142 6,084 9,087 0 0 0 0 0 0

and the F-score based on the true-positive, false-positive, and
false-negative rates as described in material and method. This
performance is compared to other pipelines, e.g., QIIME version
1 with both databases ITSdb and UNITE, Kraken version1 with
ITSdb, and DADA2 with UNITE database. All classification
methods are tested with and without the chimaera removal step.
The analysis shows that HCK without non-specific amplicons
removal is slightly better than Kraken (precision: 0.685 and
0.682, recall: 0.986 and 0.983 and F-score: 0.80 and 0.79,
respectively) and HCK decreases by 13.22% the false-positive
detection and by 45.36% of false negatives compared to Kraken.
The chimaera removal step with UCHIME_REF reduces the
false positives by 32.05% and the false-negative by 10.44%
compared to raw sequence processing. However, adding a step

of chimaera filtering affects the sensitivity (recall), regardless of
the method (Table 3).

HCK yields better classification performance when ABAA
is added upstream (precision 0.83 and the second best is
HCK/UCHIME_REF with 0.8), and consequently, the F-score is
also improved (0.89, Figure 4). Besides, the association of HCK
and ABAA reduces the proportion of false-positive by 35.52%
compared to HCK with UCHIME_REF and 97.01% without non-
specific sequences removal. QIIME used with UCHIME_REF,
and ITSdb performs better (F-score = 0.716) than similar
approach with UNITE database (f-score = 0.648). DADA2 was
also tested with its filtering method includes in the pipeline.
The true-positive sequence classified was shallow compared to
others, and this might be due to the high number of chimaeras
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TABLE 2 | Level of detection of chimaera removal methods.

Samples Total
sequences

Chimaera
ABaa

Chimaera free
Abaa*

Chimaera
uchime_ref

Chimaera free
uchime_ref*

Chimaera
uchime_denovo

Chimaera free
uchime_denovo*

Chimaera
dada2

Chimaera free
dada2*

SRR5439721 426,354 73,482
(17.23%)

352,872 105,167
(24.67%)

321,187 03 (00007%) 426,351 220,607
(51.74%)

205,747

SRR5439722 397,268 68,091
(17.02%)

329,177 98,367
(24.76%)

298,901 00 (0%) 397,268 299,665
(75.43%)

97,603

SRR6702280 174,185 19,187
(11.02%)

154,998 61,937
(35.56%)

112,248 11 (0.0063%) 174,174 71,129
(40.84%)

103,056

SRR6702281 148,397 17,980
(12.12%)

130,417 55,059 (37.10) 93,338 09 (0%) 148,388 63,247
(42.62%)

85,150

SRR6702283 246,368 31,616
(12.83%)

214,752 90,865
(36.88%)

155,503 08 (0.0032%) 246,360 93,543
(37.97%)

152,825

SRR8473974 865,248 40,730 (4.71%) 824,518 112,068
(12.95%)

753,180 01 (00001%) 865,247 388,352
(44.88%)

476,896

SRR8473977 17,181 379 (2.21%) 16,802 1,566 (9.11%) 15,615 00 (0%) 17,181 7,044 (41.00%) 10,137

SRR8473978 15,694 121 (0.77%) 15,573 1,363 (8.68%) 14,331 00 (0%) 15,694 6,510 (41.48%) 9,184

SRR8473979 18,394 295 (1.60%) 18,099 1,336 (7.26%) 17,058 00 (0%) 18,394 7,421 (40.34%) 10,973

SRR8473980 12,730 676 (5.31%) 12,054 387 (3.04%) 12,343 00 (0%) 12,730 4,898 (38.48%) 7,832

SRR8473984 4,420 10 (0.23%) 4,410 429 (9.71%) 3,991 00 (0%) 4,420 2,615 (59.16%) 1,805

Total 2,326,239 252,567
(10.86%)

2,073,672 528,544
(22.72%)

1,797,695 32 (0.0013%) 2,326,207 1,165,031
(50.08%)

1,161,208

*Sequence filtered with the corresponding method and cleaned.

TABLE 3 | Precision, recall, accuracy, and F-score performance of HCK and ABAA version other tested combination of chimaera detection and taxonomy
assignment methods.

Taxa. assign. Chimaera remov. Database Total
sequences

Unclassified
sequences

True positive False positive False
negative

Precision Recall F-score

hck ABaa ITSdb 2,073,672 378046 1,528,646 166,980 27,314 0.834998 0.97222 0.89594

hck Uchime_ref ITSdb 1,797,695 231779 1,306,938 258,978 249,022 0.803725 0.84344 0.81431

hck Uchime_denovo ITSdb 2,326,207 102360 1,547,646 676,201 8,314 0.670532 0.98645 0.79213

hck – ITSdb 2,326,239 220025 1,547,649 558,565 8,311 0.685258 0.98645 0.8013

kraken ABaa ITSdb 2,073,672 73480 1,497,681 502,511 58,279 0.713001 0.9651 0.81431

kraken Uchime_ref ITSdb 1797695 138673 1,277,882 381,140 278,078 0.725327 0.83483 0.77351

kraken Uchime_denovo ITSdb 2,326,207 141772 1,540,747 643,688 15,213 0.682455 0.98295 0.7977

kraken – ITSdb 2,326,239 141804 1,540,747 643,688 15,213 0.682455 0.98295 0.7977

qiime ABaa ITSdb 2,073,672 407960 1,369,677 296,035 186,283 0.782386 0.83022 0.78878

qiime Uchime_ref ITSdb 1,797,695 389342 1,175,806 232,547 380,154 0.765336 0.72615 0.71648

qiime Uchime_denovo ITSdb 2,326,207 515687 1,391,958 418,562 164,002 0.734174 0.83587 0.76968

qiime – ITSdb 2,326,239 525891 1,391,597 408,751 164,363 0.735705 0.83605 0.77068

qiime ABaa Unite 2,073,672 455026 1,208,721 409,925 347,239 0.529577 0.76841 0.62466

qiime Uchime_ref Unite 1,797,695 43024 1,050,365 704,306 505,595 0.510642 0.64894 0.56654

qiime Uchime_denovo Unite 2,326,207 347217 1,310,235 668,755 245,725 0.527798 0.79978 0.63181

qiime – Unite 2,326,239 52075 1,307,126 967,038 248,834 0.539557 0.79841 0.6396

Dada2 Unite 1,161,208 0 750,588 410,620 805,372 0.717852 0.5755 0.62471

These values were highlighted in bold to show they are the top values.

sequences filtered (50.08%). Its F-score performance is 0.62, with
411 775 false-positive and 805 372 false negatives. The Kraken
based classification implemented with chimaera methods yields
comparable sensitivity results (recall) to that of HCK, but the
higher number of false-positive impacts the precision and the
overall performance (F-score: 0.79) (Table 3).

Diversity Metrics Analysis
One of the most significant endpoints of ITS sequencing is
the comparison of alpha diversity; thus, we compare the alpha

diversity of all tested classification methods to that of BLASTn
using Chao1 and Shannon indexes, assuming that diversity
with BLAST search is closer to reality. With the Chao1 index,
HCK diversity is closed to BLASTn estimation compared to
Kraken, QIIME, and DADA2 estimation. With chao1, HCK in
association with ABAA held the lowest difference with BLASTn
(54.02), followed by HCK with UCHIME_DENOVO. With
the Shannon index, HCK, used with UCHIME_REF, held the
best rank(0.76), followed by HCK with ABAA (Supplementary
Table 1). The data show that the BLASTn search estimates the
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chao1 index between 8 and 14 for all the samples. HCK with
ABAA chaos1estimates is between 20 and 80, and kraken with
and without chimaera removal’s estimation between 176 and
856. DADA2’s chao1 estimation is also close to the BLASTn
search’s; however, there is an overestimation for some samples
(15−650, Figure 5). The average Shannon index diversity
of BLASTn search is 2 for all samples. It varies between
2 and 3 with HCK and ABAA, 2−7 for DADA2, 3 for
Kraken with or without chimaera removal, and up to 6 for

QIIME, depending on the database and the chimaera removal
method (Figure 5).

Computing Specification and Speed
ABAA and HCK computing resources were tested and timed
on ubuntu-based system 20.04, WSL2; Processor: Intel R© CoreTM

i7-8650U CPU @ 1.90GHz 2.11 GHz; RAM 16.0 GB; System
type 64-bit Operating System, x64-based processor. The running
speed for each method tested is listed in Supplementary Table 2.

FIGURE 4 | F-score performance of HCK (light green), Kraken (mauve), Qiime with ITSdb (blue), Qiime with Unite database (red), and DADA2 (green).

FIGURE 5 | Estimation of Alpha diversity metric with Chao1 (left) and Shannon (right) indexes calculated with the estimated abundance of different methods and
association with various chimaera removal methods
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ABaa filtered 2,326,239 sequences (623 MiB) in less than
2 min (1 min 18 s), while this requires almost 50 min for
UCHIME_REF. isBimeraDenovo() function of DADA2 could
not be tested separately as this step depends on many other
steps. HCK and Qiime v1 process 23,700 sequences per min on
average, while DADA2 processes 65,300 sequences per min. This
speed does not include sequence truncation as it is not required
for ITS processing.

DISCUSSION

In this work, we present full fungi ITS based classification
workflow using two newly developed tools, ABAA and HCK,
to filter non-specific amplicons and taxonomically classify them.
We compare the performance of ABAA to UCHIME and
isBimeraDenovo() in DADA2 and the performance of HCK to
that of Kraken, QIIME, and DADA2 using publicly available
mock community Illumina sequencing datasets. The analysis
revealed that HCK-ABAA yields the best performance. The
F-score is systematically improved when ABAA is used to filter
amplicons regardless of the classifier. This work also shows the
impact of filtering methods on the ecological diversity metrics
and how they can dramatically change the estimation of a
sample’s diversity.

The efficiency of sequence amplification and the quality of
sequencing reads are critical and determinants for the outcome
of the metabarcoding analysis and especially for fungi ITS locus
(Schloss et al., 2011). Non-specific amplicons present a serious
threat to the classification and taxa abundance estimation. The
size and the number of ITS loci are highly variable, unlike
the 16S rRNA gene in bacteria and sufficiently polymorphic
to delineate fungi at the genus and or species level (Tang
et al., 2015; Khodadadi et al., 2017). This variation can be
biological or can derive from high rates of insertions and
deletions in the evolution of this less conserved genetic region.
It can also derive from non-specific amplification. ABAA has
this advantage of considering the real distribution of amplicons
size from real datasets. It does not need database maintenance
and only requires minimum computing resources. It filters
sequences based on the distribution of their size-frequency
and mainly targets amplicons with low length-frequency. The
performance of the majority of chimaera filtering methods are
usually assessed on simulated chimaera sequences (Nilsson et al.,
2010; Harris et al., 2012), but when applied to the real dataset,
it is challenging to determine whether sequences that have
been filtered are real chimaeras. The fragment size dissimilarity
also creates bias during conventional clustering. Consequently,
this affects OTUs picking and abundance estimation, including
overestimating or underestimating community abundance (De
Filippis et al., 2017). Except for Kraken, the majority of
metabarcoding methods include a clustering process. Clustering
consists of reducing the amplicons similarity redundancy
of data diversity. The most commonly used in amplicon
metabarcoding analysis are uclust in the usearch algorithm
(Edgar, 2010), vsearch (Rognes et al., 2016), and CD-HIT
(Fu et al., 2012). usearch and vsearch can cluster nucleotide
sequences based on their similarity, length, and abundance,

assuming that the same species’ amplicons will probably be
identical in size with a minimal coverage dissimilarity. As a
result, with fungi ITS, clustering may create multiple OTUs
from the same species amplicons and increase the alpha and the
beta diversities.

CD-HIT implements a more realistic clustering approach,
hierarchical clustering, which consists of a multiple-step, iterated
runs with a neighbour-joining approach and generates a
hierarchical structure. In HCK, with the datasets that we
analyse, the second iteration with 98% identity reduces the
first number of clusters by 3/8 and the final iteration with
97% identity by 1/5. In addition to filtering out the singleton,
HCK drastically reduces the number of false-positive and
normalises the diversity abundance. It is essential to highlight
that databases also play an important role in the performance
of the classifier. Qiime version 1 performs better with the ITSdb
database than its native database UNITE, regardless of the
filtering method. The inappropriate estimation of the abundance
(overestimation, underestimation of population or sequence
wrongly classified) can also influence metrics of diversity. The
high diversity found with the UNITE database might be due
to the higher number of incorrect classification sequences in
the UNITE database.

CONCLUSION

The classification of fungi using ITS marker is very challenging. It
is owed to the high diversity of the kingdom. Moreover, targeting
an intergenic section as ITS1 leads to diversified amplicon sizes
and sequences that are not taken into account with the classical
approaches developed for 16S analysis. Combining HCK and
ABAA increases the number of true-positive and decreases the
proportion of false-positive, as shown with the datasets we have
evaluated. Consequently, HCK maintained the alpha diversity
metric with the Chao1 index close to that of the BLASTn,
compared to QIIME, Kraken, and DADA2. As demonstrated in
this analysis, the use of HCK in association with ABAA allows a
more realistic estimation of fungal diversity. So far, it is the best
option to perform fungi ITS1 metabarcoding analysis on clinical
and non-clinical samples.
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Acute myocardial infarction (AMI) continues as the main cause of morbidity and
mortality worldwide. Interestingly, emerging evidence highlights the role of gut microbiota
in regulating the pathogenesis of coronary heart disease, but few studies have
systematically assessed the alterations and influence of gut microbiota in AMI patients.
As one approach to address this deficiency, in this study the composition of fecal
microflora was determined from Chinese AMI patients and links between gut microflora
and clinical features and functional pathways of AMI were assessed. Fecal samples
from 30 AMI patients and 30 healthy controls were collected to identify the gut
microbiota composition and the alterations using bacterial 16S rRNA gene sequencing.
We found that gut microflora in AMI patients contained a lower abundance of the phylum
Firmicutes and a slightly higher abundance of the phylum Bacteroidetes compared to
the healthy controls. Chao1 (P = 0.0472) and PD-whole-tree (P = 0.0426) indices were
significantly lower in the AMI versus control group. The AMI group was characterized
by higher levels of the genera Megasphaera, Butyricimonas, Acidaminococcus, and
Desulfovibrio, and lower levels of Tyzzerella 3, Dialister, [Eubacterium] ventriosum group,
Pseudobutyrivibrio, and Lachnospiraceae ND3007 group as compared to that in the
healthy controls (P < 0.05). The common metabolites of these genera are mostly short-
chain fatty acids, which reveals that the gut flora is most likely to affect the occurrence
and development of AMI through the short-chain fatty acid pathway. In addition, our
results provide the first evidence revealing remarkable differences in fecal microflora
among subgroups of AMI patients, including the STEMI vs. NSTEMI, IRA-LAD vs. IRA-
Non-LAD and Multiple (≥2 coronary stenosis) vs. Single coronary stenosis groups.
Several gut microflora were also correlated with clinically significant characteristics of
AMI patients, including LVEDD, LVEF, serum TnI and NT-proBNP, Syntax score, counts
of leukocytes, neutrophils and monocytes, and fasting serum glucose levels. Taken
together, the data generated enables the prediction of several functional pathways
as based on the fecal microfloral composition of AMI patients. Such information may
enhance our comprehension of AMI pathogenesis.
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INTRODUCTION

Despite timely reperfusion through primary percutaneous
coronary intervention, acute myocardial infarction (AMI) is
still the leading cause of morbidity and mortality worldwide
(Nwokocha et al., 2017; Khan et al., 2020; Qi et al., 2021). It
is really important to further reduce myocardial infarct size
and preserve cardiac function, in order to reduce risk of death
and prevent onset of heart failure. Therefore, it is necessary
to thoroughly understand its pathogenic mechanism and find
new therapeutic targets. Accumulating evidence reveals the role
of gut microbiota in regulating the pathogenesis of coronary
heart disease (CHD) (Cui et al., 2017; Liu et al., 2019, 2020;
Moraru et al., 2019; Heianza et al., 2020; Marzullo et al., 2020),
including the obvious association between the gut microbiota
and the severity of AMI in rats (Lam et al., 2012, 2016;
McCafferty et al., 2012).

There are a vast array of microbes in human gut, collectively
referred to as the microbiota, which is a complex community.
The metabolic activities and interactions with the immune system
of gut microbiota are not limited the gut itself (Sonnenburg
and Backhed, 2016), but also involve a variety of immune-
mediated diseases and metabolic diseases such as diabetes,
obesity, digestive system diseases, asthma, arthritis, cancers,
and cardiovascular disease (Vieira et al., 2014; Sonnenburg and
Backhed, 2016; Grigoryan et al., 2019; Ingham et al., 2019;
Kolodziejczyk et al., 2019; Alemao et al., 2020; Morel et al.,
2020; Yang et al., 2021). The abundance of Enterobacteriaceae and
Streptococcus spp. were reported to be higher in patients with
atherosclerotic cardiovascular disease compared to the healthy
controls in a metagenome-wide association study (Jie et al., 2017).
Koren et al. (2011) revealed that Chryseomonas, Veillonella, and
Streptococcus exsited in AS plaque samples, and several bacterial
flora in the intestine are the same as atherosclerotic plaques.
Furthermore, they were related to the cholesterol levels (Koren
et al., 2011). Trimethylamine-N-oxide (TMAO), a metabolite
of gut microbiota, can partially promote the formation of
atherosclerosis by promoting the formation of macrophage foam
cells (Koeth et al., 2013; Tang et al., 2013). According to the study
of Emoto et al. (2016) the alterations of gut microbiota were
linked to the incidence of coronary artery disease.

Published studies on the role of the microbiome in coronary
heart disease have investigated most patients with stable coronary
heart disease using a cross-sectional design. However, there are
few clinically meaningful prospective studies of the microbiome
in patients with AMI. Therefore, in this study, fecal samples
from AMI patients and healthy controls were collected, variable
regions of gut bacterial 16S rRNA were amplified, and DNA
library was constructed. The data of this study may provide
detailed information on variations of gut microbial composition
and its impacts on AMI.

MATERIALS AND METHODS

Study Participants
Between April and August of 2020, we recruited 30 AMI
in-hospital patients and 30 asymptomatic controls receiving

routine physical examinations for this study. AMI patients were
recruited from the First and Fourth Affiliated Hospitals of Harbin
Medical University while the healthy controls were recruited
from the Fourth Affiliated Hospital of Harbin Medical University.
AMI diagnosis was based on the World Health Organization
definition and the third universal definition of myocardial
infarction and consisted of patients with symptoms of ischemia,
cardiac laboratory biomarker data, electrocardiogram results
and invasive coronary angiograms or coronary CT angiography
(Mendis et al., 2011; Thygesen et al., 2012). The criteria for
the healthy controls included no ischemic symptoms, normal
electrocardiogram and coronary stenosis of <25% as assessed
by invasive coronary angiograms or coronary CT angiography.
The exclusion criteria consisted of subjects that: (i) received
antacids, probiotics, antibiotics, or antimicrobial agents within
30 days before sample collection, (ii) had an organic disease of
the digestive system, and (iii) had gastrointestinal surgery. All
participants experienced a normal lifestyle prior to admission,
including typical Chinese diets based on carbohydrates versus
high-fat diets and participated in routine levels of general
physical activity (e.g., housework and walking). However,
activities of AMI patients were restricted following admission.
All participants (or their direct relatives) gave written informed
consent, and the First Affiliated Hospital of Harbin Medical
University and the Fourth Affiliated Hospital of Harbin Medical
University approved all study protocols.

Sample Collection and DNA Extraction
Fresh fecal samples (each 2–5 g) were collected from all the
participants under the hospital diet, then transferred into sterile
collecting pipes and frozen at –80◦C immediately. The associated
clinical data were collected simultaneously. The bacterial DNA
was extracted from the fecal samples using the TIANamp
Bacteria DNA kit (Tiangen, Beijing, China) according to the
manufacturer’s instructions.

16S rRNA Gene V3–V4 Region
Sequencing
DNA extracted from each sample was used as a template, and the
V3–V4 region of the 16S rRNA gene was amplified using PCR.
PCR amplification, sequencing of the PCR amplicons and quality
control of raw data were performed. The purified products were
mixed in equal proportions for sequencing.

Sequencing Data Analysis
First, we evaluated the quality of sequencing data using the Fast-
QC software1. Second, clean Data were obtained for subsequent
analysis after removing the Chimera Sequence using QIIME22.
Third, Operational taxonomic units (OTUs) were delineated at
the cutoff of 97% also using QIIME2, and then the sequencing
results were compared and analyzed to obtain the family and
genus annotations of OTUs based on the Silva database3.
Fourth, α- and β-diversity analyses were performed using

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2http://qiime.org/
3https://www.arb-silva.de/
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QIIME2. Shannon–Wiener diversity index, Simpson diversity
index, the observed OTUs, PD (phylogenetic diversity)-whole-
tree and Chao1 index were evaluated. A normalized OTU
abundance table was used for the β-diversity analysis, including
principal coordinate analysis (PCoA) based on weighted UniFrac,
and unweighted UniFrac distances. Next, Lefse analysis was
performed to clarify the dominant bacteria. LEfSe is a software
for discovering high-dimensional biomarkers and revealing
genome characteristics. LEfSe uses linear discriminant analysis
(LDA) (Yang et al., 2020) to estimate the impact of the
abundance of each component (species) on the difference effect.
Finally, the gene function of the sample was inferred based
on the species composition obtained by sequencing, and the
functional difference between different groups was analyzed
using PICRUSt4. Subsequently, the Welch’s t-test method of
two groups was performed using the STAMP software to filter
the parts with P-value > 0.05, and Heatmap Plot, PCA plot,
and Extended error bar graphs were drawn to reveal significant
differences in species abundance between different samples.
Based on the data obtained by sequencing, we performed
the differential taxonomy expression analysis using limma
algorithm for screening, and the differential screening criteria are:
LogFC > 0.585 or <–0.585, P-value < 0.05.

RESULTS

Baseline Characteristics
A summary of the baseline characteristics of all the participants
is presented in Table 1. AMI patients were characterized as
consisting of a greater number of males, worsened cardiac
functions, larger left ventricular end diastolic diameter (LVEDD),
increased serum Troponin I (TnI) and NT-pro B-type natriuretic
peptide (NT-proBNP) levels, increased numbers of leukocytes,
neutrophils, and monocytes, increased fasting blood glucose
levels and an increased prevalence of comorbidity with
hypertension. In addition, among the patients enrolled in this
study, including 15 ST-elevation myocardiol infarction (STEMI)
and 15 non-ST elevation myocardiol infarction (NSTEMI), 19
experienced left anterior descending coronary (LAD) stenosis
as the infarction related artery (IRA) and 21 had two or more
coronary artery stenosis.

Species Classification
Figure 1 contains a summary of the overall distribution of
relative abundance of the top 20 phyla in each fecal sample
(Figure 1A), as well as those found within each of the two
groups (Figure 1B). Sequencing analysis revealed that the
gut microbiota of the two groups were mainly contained
within four phyla, Bacteroidetes, Firmicutes, Proteobacteria, and
Verrucomicrobia (Figure 1B). The phylum with the highest
abundance of reads in AMI patients was Firmicutes, accounting
for 63.8% in total, versus that of an abundance of 72.4%
in the controls (Figure 1B). The second greatest abundance
in AMI patients was the phylum Bacteroidetes, accounting

4https://picrust.github.io/picrust/index.html

TABLE 1 | Baseline characteristics of the study participants.

Variables AMI
patients(n = 30)

Healthy
controls(n = 30)

P-value

Age, years 62.6(9.02) 60.0(9.64) 0.2915

Sex, male 18(60%) 10(33%) 0.0390

BMI(kg/m2) 25.4(3.33) 24.9(3.08) 0.5685

STEMI(%) 15(50%) — —

IRA (LAD) 19(63%) — —

≥2 coronary stenosis 21(70%) — —

Syntax score 18.1(5.95) — —

NYHA class (I/II/III/IV) 13/7/5/5 — —

Hypertension 22(73%) 11(37%) 0.0038

Diabetes 9(30%) 5(16.7%) 0.2291

Atrial fibrillation 2(6.7%) 0(0) 0.1555

Smoking 13(43.3%) 6(20%) 0.0533

Echocardiogaraphic parameters

LVEDD, mm 48.6(5.09) 43.7(3.99) <0.0001

LVEF, % 51.7(8.78) 63.2(4.65) <0.0001

SV, ml 52.2(12.06) 58.9(11.94) 0.0383

E/e’ 64(60-68) 60(58–65) <0.0001

Laboratory parameters

TnI, ng/dL 27.6(0.10–226.9) 0.012(0–0.048) 0.0120

NT-proBNP, pg/mL 2652.1(113–26259) 124.0(25–258) <0.0001

Leukocyte, 109/L 8.6(2.73) 6.7(1.74) 0.0019

Neutrophils, 109/L 6.0(2.62) 4.0(1.30) 0.0006

Lymphocytes, 109/L 2.1(1.17) 2.1(0.65) 0.9859

Monocyte, 109/L 0.7(0.31) 0.4(0.14) <0.0001

Hemoglobin, g/L 133.6(34.77) 140.8(17.04) 0.3140

BUN, mg/dl 6.2(2.42) 5.5(1.81) 0.1714

Serum creatinine, mg/dl 76.1(35.38) 67.4(18.35) 0.2415

Fast glucose 6.6(2.21) 5.2(1.30) 0.0061

Cholesterol 4.6(1.33) 5.0(0.90) 0.1339

Triglycerides 1.8(0.76) 1.9(1.66) 0.5977

HDL-C 1.0(0.59) 43(58.11) 0.3584

LDL-C 2.6(0.87) 2.9(0.80) 0.1643

Uric acid 340.5(95.17) 316.9(73.03) 0.2853

Results are presented as median (with standard error or upper and lower quartiles)
or % where appropriate.
BMI, body mass index; STEMI, ST-elevation myocardiol infarction; IRA, Infarction
related artery; LAD, left anterior descending coronary; NYHA, New York Heart
Association; LVEDD, left ventricular end diastolic diameter; LVEF, Left ventricular
ejection fraction; TnI, Troponin I; NT-proBNP, NT-pro B-type natriuretic peptide;
HDL-C, high density lipoprotein-cholesterol; LDL-C, low density lipoprotein-
cholesterol.

for 19.5% in total as compared with 17.7% in the controls
(Figure 1B). Compared with the healthy control group, there
was a rising trend but no significance of Firmicutes to
Bactericides ratio in the patients with AMI (Figure 1C). Overall,
there was a greater abundance in AMI versus controls for
bacteria belonging to the phyla Actinobacteria (1.5 vs. 0.9%),
Cyanobacteria (0.4 vs. 0.0%), Proteobacteria (9.6 vs. 6.8%), and
Verrucomicrobia (5.0 vs. 1.5%). While a greater abundance was
observed in controls versus AMI patients for bacteria belonging
to the phyla Fusobacteria (0.55 vs. 0.1%) and Tenericutes
(0.1 vs. 0.0%).

At the genus level, the microflora of AMI patients
was characterized by lower levels of Faecalibacterium,
Roseburia, Tyzzerella 3, [Eubacterium] ventriosum group,
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FIGURE 1 | The distribution of relative abundance of top 20 at the phylum level. (A) Shows the distribution of relative abundance of top 20 in each fecal sample.
(B) Shows the distribution of relative abundance of top 20 in AMI group and the healthy control group. MI, AMI group; CON, the healthy control group. (C) Shows
the Firmicutes to Bactericides ratio in AMI group and the healthy control group.

[Eubacterium] rectale group, Ruminococcaceae NK4A214
group, Ruminococcaceae UCG-013, Ruminococcaceae UCG-014,
Ruminococcus 1, Ruminococcus 2, Ruminococcaceae uncultured,
Erysipelotrichaceae UCG-003, Megamonas, Fusobacterium,
and Parasutterella, and higher levels of Bifidobacterium,
Butyricimonas, Parabacteroides, Chloroplast; Other; Other;
Other, Lysinibacillus, Lactobacillus, Christensenellaceae R-7
group, Subdoligranulum, [Eubacterium] coprostanoligenes group,
Phascolarctobacterium, Megasphaera, Veillonella, Klebsiella, and
Akkermansia (Supplementary Figure 1).

Analysis of α and β Diversity Index
An α diversity analysis was performed and the resultant chao1,
observed-outs, PD-whole-tree, Shannon–Wiener, and Simpson
curves as based on the species annotation information obtained
by sequencing analysis are presented in Supplementary Figure 2.
The chao1 (P = 0.0472) and PD-whole-tree (P = 0.0426) indices
were significantly decreased in the AMI versus control group
(Figure 2). However, no statistically significant differences were
obtained in the Shannon and Simpson indices. Taxonomic

compositions of the metagenomic populations of gut microflora
samples from AMI patients were compared with those from the
healthy control group using the Principal Coordinate Analysis
(PCoA). Differences in β-diversity as based on unweighted and
weighted UniFrac values between the AMI and control group are
shown in Supplementary Figure 2. The results of this analysis
indicates that the fecal microbial structure of the AMI group
differs from that of the healthy control group with regard to the
presence of OTU.

Difference Expression Analysis Between
the AMI and Control Groups
A differential taxonomy expression analysis was performed
using limma algorithms. When focusing on differences at
the genus level, our results revealed a remarkable difference
with 50 generus in fecal microflora between the AMI
and healthy control group. Among these changes, the
increases in Megasphaera, Butyricimonas, Acidaminococcus,
and Desulfovibrio, and decreases in Tyzzerella 3, Dialister,
[Eubacterium] ventriosum group, Pseudobutyrivibrio, and
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FIGURE 2 | The level of α-diversity indices of the gut microflora between the AMI group and the healthy control group. MI, AMI group; CON, the healthy control
group.

Lachnospiraceae ND3007 group were the most notable
features (Figure 3).

We also searched in the gutMDisoeder database (Cheng et al.,
2020) whether the above gut microbes associated with AMI have
the same pattern of changes as other diseases, or the opposite
pattern of change with intervention measures, and the results
were showed in Tables 2, 3. The increase of genera Megasphaera
were reported to be related to Parkinson’s disease and metabolic
syndrome, and the reduced abundance was observed by giving
Vitamin D intervention. The increase of genera Desulfovibrio
were reported to be associated with multiple sclerosis and
gestational diabetes, and the reduced abundance was observed by
giving N-acetylcysteine or dextran sulfate sodium intervention.
The decrease of genera Dialister were reported to be related
to asthma, thyroiditis, and type 1 diabetes mellitus, and the
increased abundance was observed by giving polydextrose or
soluble corn fiber intervention.

Differences Between the Subgroups in
Patients With AMI
An analysis of the differences in the composition were
performed among subgroups of AMI patients including,
STEMI vs. NSTEMI, IRA-LAD vs. IRA-Non-LAD and Multiple
(≥2 coronary stenosis) vs. Single coronary stenosis groups.

Remarkable differences in fecal microflora were found among
these subgroups.

Mean abundances of the genera Pseudomonadales,
Eubacterium-coprostanoligenes group, and Porphyromonadaceae
were greater in the STEMI vs. NSTEMI group,
while a significantly greater abundance of the genera
Streptococcaceae, Lachnospiraceae NK4A136 group, Lactobacillus,
Intestinibacter, Veillonella, Streptococcus, Peptostreptococcaceae,
Erysipelatoclostridium, Veillonellaceae, Megasphaera,
Lactobacillaceae, Peptoclostridium, and [Clostridium]innocuum
group were found in the NSTEMI vs. STEMI group
(Figures 4A,B).

With regard to the IRA-LAD vs. IRA-Non-LAD subgroup,
our results suggested a significantly greater abundance of the
genera [Eubacterium]ruminantium group, Comamonadaceae,
Comamonas, and the bacteria belonging to the order
MollicutesRF9, as well as the bacteria belonging to the Tenericutes
phyla in patients with LAD as the IRA vs. the IRA-Non-LAD
subgroup. Whereas mean abundances of the genera Veillonella,
Bifidobacteriaceae, Bifidobacterium, Phocaeicola, and others
belonging to the Lachnospiraceae family, bacteria belonging to
the BacteroidalesIncertaeSedis family and bacteria belonging to
the Actinobacteria class were greater in the IRA-Non-LAD vs.
IRA-LAD group (Figures 4C,D).

When comparing the Multiple (≥2 coronary stenosis)
vs. Single coronary stenosis groups, a significantly greater
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FIGURE 3 | The remarkable results of differential taxonomy expression analysis using limma algorithm between the AMI and healthy control group. MI, AMI group;
CON, the healthy control group.

abundance of the genera [Eubacterium]ruminantium group,
Christensenellaceae, Christensenellaceae R-7 group, Collinsella,
and Anaerotruncus, as well as the bacteria belonging to
FamilyXI were observed in the Single coronary stenosis group
(Figures 4E,F).

Correlations Between the Clinical
Characteristics and the AMI Microflora
Correlations were performed between the composition of gut
microflora and significant clinical characteristics within AMI
patients. Results of these analyses revealed that the genera Bromus
tectorum, Sphingomonas, and Candidatus Saccharimonas were
positively correlated with LVEDD, while the genera Eisenbergiella
and Ruminococcaceae NK4A214 group were negatively correlated
with LVEDD. The genera Prevotellaceae UCG-001, Weissella,
[Bacteroides] pectinophilus group, Veillonella, Rhizobium,
Cronobacter, Lelliottia, Pseudocitrobacter, and Raoultella were
positively correlated with left ventricular ejection fraction
(LVEF), while the genera Parabacteroides and Sutterella were
negatively correlated with LVEF. The genus Eubacterium
was positively correlated with levels of TnI, while the genus
Veillonella was negatively correlated with TnI levels. The genus
[Clostridium] innocuum group was positively correlated with
levels of NT-pro-BNP, while the genera Weissella and Veillonella
were negatively correlated with NT-pro-BNP levels. The genera
Alloprevotella, Prevotalla9, Chryseobacterium, Peptococcus,
Romboutsia, Acidaminococcus, Phascolarctobacterium, and
Achromobacter were positively correlated with Syntax scores.
The genera Anaerofilum and Fastidiosipila were positively
correlated with leukocyte and neutrophil counts, Olsenella
and Cloacibacillus were positively correlated with counts of

neutrophils and the genera Bacteroides, Phascolarctobacterium,
and Bilophila were negatively correlated with counts of
monocytes. The genera Eisenbergiella, Lolium perenne,
Anaeroglobus, and Akkermansia were positively correlated
with fasting serum glucose levels, while Lachnospiraceae
NK4A136 group, Prevotella 2, Lachnospira, Tyzzerella 4, and
Ruminococcaceae UCG-003 were negatively correlated with these
fasting glucose levels (Figure 5).

Predictive Functional Analysis
PICRUst, as based on closed-reference OTU, was applied to
predict abundances of the functional category COG orthologs
(COs) and KEGG orthologs (KOs). Some of these COs and
KOs demonstrated significantly different abundances in fecal
microbiomes between the AMI and healthy control group
(P < 0.05; Figure 6). Results from the COG database indicated
that, inorganic ion transport and metabolism functioning,
intracellular trafficking, secretion/vesicular transport, secondary
metabolite biosynthesis, transport/catabolism and RNA
processing/modification were all significantly increased in
the AMI group. In contrast, defense mechanisms and cell cycle
control functions, cell division and chromosome partitioning
were significantly increased in the healthy control group
(P < 0.05 for both groups; Figures 6A,B). However, at the
level of KEGG pathways, we found significant increases in
the AMI versus control group for the following processes:
functioning of lipopolysaccharide biosynthesis proteins,
membrane and intracellular structural molecules, biosynthesis of
ubiquinone and other terpenoid-quinones, bacterial secretion,
inorganic ion transport/metabolism, ionic pore channels,
lipoic acid metabolism, tyrosine metabolism, the ubiquitin
system, drug metabolism of cytochrome P450, aminobenzoate
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TABLE 2 | The gut microbes associated with AMI have the same pattern of
change as other diseases searched in the gutMDisoeder database.

Gut microbe Alteration Disorder

Megasphaera Up Parkinson’s disease

Megasphaera Up Metabolic syndrome

Butyricimonas Up Infectious diarrhea

Acidaminococcus Up Parkinson’s disease

Acidaminococcus Up Idiopathic calcium stone

Acidaminococcus Up Colorectal cancer

Acidaminococcus Up Inflammatory bowel disease

Desulfovibrio Up Microscopic colitis

Desulfovibrio Up Multiple sclerosis

Desulfovibrio Up Gestational diabetes

Desulfovibrio Up Familial adenomatous
polyposis

Desulfovibrio Up Inflammatory bowel disease

Desulfovibrio Up Hepatic encephalopathy

Desulfovibrio Up Infectious diarrhea

Desulfovibrio Up Human immunodeficiency
virus infectious disease

Dialister Down Asthma

Dialister Down Thyroiditis

Dialister Down Familial Mediterranean fever

Dialister Down Type 1 diabetes mellitus

Dialister Down Henoch-Schoenlein
purpura

Dialister Down Spinal cord injury

Pseudobutyrivibrio Down Acute myeloid leukemia

Pseudobutyrivibrio Down Spinal cord injury

Lachnospiraceae ND3007 group Down Idiopathic calcium stone

TABLE 3 | The gut microbes associated with AMI have the opposite pattern of
change with interventions searched in the gutMDisoeder database.

Intervention Alteration Gut microbe

Vitamin D Down Megasphaera

Bifico Down Desulfovibrio

JinQi Jiangtang Down Desulfovibrio

Perilla oil Down Desulfovibrio

N-acetylcysteine Down Desulfovibrio

Dextran sulfate sodium Down Desulfovibrio

Polydextrose Up Dialister

Soluble corn fiber Up Dialister

degradation, the citrate (TCA) cycle, tryptophan metabolism,
geraniol degradation, protein folding and associated processing,
amino acid metabolism, inositol phosphate metabolism,
glutathione metabolism, limonene and pinene degradation,
lipopolysaccharide biosynthesis, unsaturated fatty acid
biosynthesis, valine, leucine and isoleucine degradation,
biosynthesis/biodegradation of secondary metabolites, and fatty
acid metabolism (P < 0.05; Figures 6C,D).

DISCUSSION

In the current study, fecal samples from 30 AMI patients and
30 healthy controls were collected to identify the composition

and alterations in gut microbiota between these two groups
as determined using bacterial 16S rRNA gene sequencing. Our
results demonstrated a number of notable differences in gut
microbial composition between these AMI patients and healthy
controls. The composition of gut microflora was significantly
correlated with clinical characteristics in AMI patients for such
parameters as LVEDD, LVEF, serum TnI and NT-proBNP,
Syntax scores, counts of leukocytes, neutrophils and monocytes,
and fasting glucose levels. Moreover, significant differences
in abundances of fecal microbiomes between the AMI and
control group were obtained for some COs and KOs. We also
analyzed differences in expressions among various subgroups of
AMI patients. From this analysis we provide the first evidence
indicating that remarkable differences in fecal microflora are
present between the STEMI vs. NSTEMI, IRA-LAD vs. IRA-Non-
LAD, and the Multiple (≥2 coronary stenosis) vs. Single coronary
stenosis subgroups.

The gut microbiota, as the "second genome" of humans,
is affected by a host of genes. Although the host genotype
plays a decisive role in the composition and structure of
the gut microbiota, the effect of diet cannot be ignored.
Mounting evidence suggests that diet represents one of the most
important factors influencing the composition and structure
of gut microbiota (Cotillard et al., 2013), with changes in
diet having the capacity to exert beneficial or harmful effects
upon the composition of gut microbiota of the host. For
example, it has been reported that a high-fat diet can damage
the intestinal microbial environment and lead to microbiome
dysregulation by reducing the amount of available carbohydrates
in the colon, as well as increasing the level of intestinal oxygen
stress and its own secondary metabolites (Ge et al., 2020;
Li et al., 2020). In our study, all participants were from the
same region, experienced a normal/routine lifestyle and had
similar nutritional patterns, including typical Chinese diets based
on carbohydrates versus high-fat diets. Furthermore, all the
participants, including the healthy controls, were subjected to
the hospital diet to minimize potential confounding effects of
dietary differences on the microflora. We found that significant
differences were present between AMI patients and healthy
controls with regard to the fecal microbiome, suggesting the
existence of a link between gut microflora dysbacteriosis and
AMI. At the phylum level, Firmicutes and Bacteroidetes, the
two most abundant phyla inhabiting the intestinal tract, are
closely associated with environmental conditions and can be
either beneficial or problematic to human and animal health.
In addition, Bacteroidetes were reported to be implicated in
immune regulation including activation of inflammation and
autoimmune diseases (Carr et al., 2002; Gibiino et al., 2018;
Nadia and Ramana, 2020). Our results suggest that the abundance
of Firmicutes is decreased, while Bacteroidetes are slightly
elevated in AMI patients. These findings are consistent with
results obtained in an animal model of isoproterenol-induced
AMI (Sun et al., 2019), but differ from results as obtained
from fecal samples of patients with coronary heart disease
(Kelly et al., 2016; Cui et al., 2017; Wang et al., 2018). One
possible explanation for these results is that AMI, as a type
of coronary heart disease with abrupt exacerbation and high
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FIGURE 4 | The difference expression of gut microflora between the subgroups in patients with AMI. (A,B) Shows the different abundances of gut microflora
between the STEMI group and the NSTEMI group; (C,D) shows the different abundances of gut microflora in the patients with LAD as the IRA compared to the
IRA-Non-LADs; (E,F) shows the different abundances of gut microflora in the Single coronary stenosis group than in the Multiple (≥2 coronary stenosis) group.
STEMI, ST-elevation myocardiol infarction; NSTEMI, Non ST-elevation myocardiol infarction; IRA, Infarction related artery; LAD, left anterior descending coronary.

mortality, has a unique pathophysiological process, including
acute thrombosis, myocardial necrosis, inflammation, activation
of the neuroendocrine system, and ventricular remodeling, may
produce changes in gut microbiota. In addition, differences in
gut environments may affect the abundance and composition
of gut microbiota.

Microbiota diversity has emerged as a new biomarker of health
(Shanahan, 2010; Cheng, 2019; Aponte et al., 2020; Ma et al.,
2020). Loss of gut flora biodiversity is associated with various
diseases, including active inflammatory bowel disease, childhood
autism and recurrent Clostridium difficile associated diarrhea
(Ott et al., 2004; Chang et al., 2008). In contrast, increased
microbiota diversity is associated with enhanced health in the

elderly (Claesson et al., 2012). Our current results show that the
chao1 and PD-whole-tree indices of α-diversity were significantly
decreased in the AMI group, revealing that the community
richness of gut microbiota significantly decreased in the AMI
patients. However, no statistically significant differences were
obtained in other indices, including the Shannon index, results
which may be attributable to the relatively small sample size.

Further differential taxonomy expression analyses using
limma algorithms enabled us to focus on differences at the
genus level. The AMI group was characterized by higher
levels of Megasphaera, Butyricimonas, Acidaminococcus, and
Desulfovibrio, and lower levels of Tyzzerella 3, Dialister,
[Eubacterium] ventriosum group, Pseudobutyrivibrio, and
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FIGURE 5 | The correlation between the gut microflora and the clinical characteristics with different significance in AMI patients. LVEDD, left ventricular end diastolic
diameter; LVEF, left ventricular ejection fraction; TnI, Troponin I; NT-proBNP, NT-pro B-type natriuretic peptide; WBC, white blood cell; NEUT, neutrophils; LYMPH,
lymphocytes; MONO, Monocyte.

Lachnospiraceae ND3007 group as compared with that observed
in the healthy controls. Megasphaera belongs to the strictly
anaerobic gram-negative cocci, which is involved in fermenting
fructose and lactic acid with some short-chain fatty acids (SCFA)
such as acetic acid and propionic acid main products as the main
metabolites. Butyricimonas, which converts glucose into butyric
and isobutyric acid, can also generate other types of SCFA such as
acetic, propionic and succinic acid. These SCFA are an important

source of energy for intestinal mucosal cells, contribute to the
construction/repair of the intestinal mucosal barrier and resist
oxidative stress (Sakamoto et al., 2014). Desulfovibrio can convert
sulfates in food into sulfides, with hydrogen sulfide exerting a
dual effect on gastrointestinal function through its capacity to
either protect the gastrointestinal tract or participate in intestinal
injury (Zhang-Sun et al., 2015). These bacterial genera have
specific metabolic functions, and in individuals rich in these
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FIGURE 6 | The results of PICRUst based on closed-reference OTU to predict the abundances of functional categories COG orthologs (COs) and KEGG orthologs
(KOs). (A,B) Shows the COs with significantly different abundances in the fecal microbiome between the AMI group and healthy control group; (C,D) shows the KOs
with significantly different abundances in the fecal microbiome between the AMI group and healthy control group. MI, AMI group; CON, the healthy control group.

Frontiers in Microbiology | www.frontiersin.org 10 July 2021 | Volume 12 | Article 68010156

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-680101 July 5, 2021 Time: 11:28 # 11

Han et al. Dysbiosis of Gut Microbiota in AMI

bacteria, lower levels of trimethylamine N-oxide (TMAO) are
present, which is a major factor influencing cardiovascular
diseases. Acidaminococcus is an anaerobic diplococcus that can
use amino acids as their only source of energy for growth, which
also belongs to the strictly anaerobic gram-negative cocci and
produce acetic acid and butyric acid as metabolites. Dialister is
one of the most representative types of intestinal flora associated
with irritable bowel syndrome, and is believed to be correlated
with dialister enrichment (Lopetuso et al., 2018). The main
products are lactic acid, acetic acid and formic acid. Tyzzerella
has been reported to be richly abundant in the patients with a
high risk for cardiovascular diseases (Kelly et al., 2016; Xu et al.,
2019), with the products of glucose fermentation include formic
acid, lactic acid, acetic acid, ethanol, CO2, and H2. Only a few
studies are available on the bacteria [Eubacterium] ventriosum
group and Lachnospiraceae ND3007 group, accordingly, the
physiological and pathological effects of most of these bacteria
remain unclear. But it is certain that the main metabolites of
these two genus are also SCFA. Even though the OTUs were
assigned to the same genus, their functions may be distinct, as
functions of bacteria are strain specific (Zhao, 2013). However,
the common metabolites of the above-mentioned significantly
different bacterial genera are mostly SCFA, which reveals that
according to our results, the gut flora is most likely to affect
the occurrence and development of AMI through the SCFA
pathway. We also searched in the gutMDisoeder database
and found that the pattern of changes in the gut microbes
associated with AMI were the same as that of some other diseases
such as Parkinson’s disease, metabolic syndrome, multiple
sclerosis, gestational diabetes and type 1 diabetes mellitus,
or opposite to the pattern of changes in some interventions
such as Vitamin D, N-acetylcysteine, dextran sulfate sodium,
polydextrose, and soluble corn fiber. Most of these diseases are
related to metabolism, obesity, immunity, and inflammation,
and these factors also play an important role in the occurrence
and development of AMI. Therefore, to a certain extent, it
supports the hypothesis that change of gut flora participates
in the pathophysiological process of AMI. Furthermore, some
interventions such as Vitamin D and N-acetylcysteine might be
useful for the treatment of AMI. These results will provide new
direction for the role of intestinal flora in the pathophysiological
process of AMI, as well as new targets for the treatment of AMI.

Our data also suggest that the composition of the
gut microflora was significantly correlated with clinical
characteristics of AMI patients, including LVEDD, LVEF,
serum TnI and NT-proBNP, Syntax scores, WBC counts
(neutrophils and monocytes), and fasting glucose levels. In
specific, the correlations obtained indicated that gut microflora
were associated with a greater incidence of LVEDD and lower
incidence of LVEF suggesting that the gut microflora was
involved with impaired cardiac function and left ventricular
remodeling in AMI patients. And, the severity of AMI was
characterized by serum levels of TnI and NT-proBNP.
Furthermore, these indicators were significantly related to
the prognosis of AMI patients, insinuating a role for gut
microflora in the outcome of AMI patients. Among all gut
microflora, the genera Weissella and Veillonella were positively

correlated with LVEF and negatively correlated with levels of
NT-pro-BNP indicating their role in cardiac functions. Similar to
Lactobacillus, the genus Weissella was found to have a probiotic
potential as a type of lactic acid bacteria (Anandharaj et al., 2015)
with lactic acid and short-chain fatty acids as the metabolites,
while the genus Veillonella has been reported to decompose
lactic acid to produce propionic acid and promote metabolism
(Scheiman et al., 2019), which also suggests that short-chain fatty
acids play an important role in AMI. A sterile inflammatory
environment is considered to be of paramount importance for
AMI and ischemia/reperfusion injury development (Braunwald,
2015; Han et al., 2020), and is accompanied with elevated counts
of leukocytes, neutrophils and monocytes. Like that as reported
in other studies (Tang and Hazen, 2014; Yamashita et al., 2015;
Amoroso et al., 2020; Wang et al., 2020), we found that gut
microflora was related to immunity. The genera Anaerofilum
and Fastidiosipila are both positively correlated with leukocyte
and neutrophil counts, suggesting that they might be closely
related to the sterile inflammatory conditions required for the
pathophysiological process of AMI. In addition, gut microflora
have been widely reported to be related with glucose and lipid
metabolism (Qin et al., 2012; Karlsson et al., 2013; Fu et al.,
2015), which is similar to our current results showing that gut
microflora was related to fasting glucose levels.

To our knowledge, this is the first study that has examined
differences in gut microflora among subgroups of AMI patients,
especially the IRA-LAD vs. IRA-Non-LAD and Multiple (≥2
coronary stenosis) vs. Single coronary stenosis groups. Our
results revealed that remarkable differences in fecal microflora
were present between the STEMI vs. NSTEMI, IRA-LAD vs.
IRA-Non-LAD and Multiple (≥2 coronary stenosis) vs. Single
coronary stenosis groups. These findings not only indicate that
gut microflora play an important role in the severity of AMI,
but are also related to LAD occlusion and multiple coronary
stenosis. Among the remarkable differences observed in fecal
microflora of the subgroups, we found that nearly all of the
bacterial genera belonged to the Firmicutes phyla in the NSTEMI
and Single coronary stenosis groups, while most of the bacterial
genera belonged to the Proteobacteria phyla in the STEMI and
IRA-LAD groups. We were not able to further identify any
direct correlations or mechanisms. In this way, the abundance of
specific fecal microflora may possess the potential for prediction
of pathophysiological and clinical characteristics of AMI.

Based on closed-reference OUT, PICRUst was applied for
predictive functional analysis. Several functional pathways,
including inorganic ion transport and metabolism, secondary
metabolite biosynthesis, transport, catabolism, protein folding
and associated processing, amino acid metabolism, inositol
phosphate metabolism and the Citrate (TCA) cycle have been
identified. These functional pathways play an important role in
such pathophysiological processes of AMI including myocardial
necrosis, activation of acute inflammation, reperfusion injury and
myocardial post-infarction repair. Therefore, these pathways can
serve as a means to further predict the gut microflora that may
contribute to AMI development, and it is probable due to its
metabolite SCFA according to our results. SCFAs not only have
the function of oxidative energy supply, but also have important
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functions such as maintaining water and electrolyte balance, anti-
inflammatory, regulating immunity, regulating oxidative stress,
anti-tumor and regulating gene expression. As the gut microbial
ecosystem, which is considered as the largest endocrine organ of
the body, can produce a variety of biologically active compounds
that can be transported through the circulation and distributed
to the distant parts of the host body, a plethora of basic biological
and pathophysiological processes can impact the host (Tremaroli
and Backhed, 2012). Therefore, long-term follow-up functional
studies are urgently needed to reveal the specific bacteria that may
contribute to the processes of AMI progression.

There are limitations with this current study. The relatively
small sample sizes and lack of age/sex matched subjects for the
AMI and control groups is a factor warranting consideration.
The samples were only collected at a single time point, which
precludes any assessments as to whether microbiota may
fluctuate in patients with AMI during their treatment. Finally,
multiple omics data will be required to further clarify the
correlations between gut microbiota and AMI, as well as to
establish the mechanisms through which gut microbiota affect
the pathophysiological processes of AMI. In fact, it may be that
multi-factorial processes are involved, which remains a subject
for further investigation. Such determinations will likely need to
be performed in animal models.

CONCLUSION

In conclusion, the present study suggested that the composition
and the diversity of gut microflora were different between the
AMI patients and healthy controls. Some fecal microflora were
also found to be closely related to AMI clinical characteristics, as
well as the alterations in the gut microbial community in different
subgroups of AMI patients. Moreover, our results predicted
several functional pathways based on the fecal microfloral
information from AMI patients, which may enhance our
comprehension of AMI pathogenesis. Overall, the process of
AMI progression is dynamic and complicated, and modulation
of the gut microbiota composition may represent a promising
diagnostic biomarker or therapeutic target. In conclusion, the
present results reveal that the composition and the diversity of
gut microflora markedly differ between AMI patients and healthy
controls. Since the common metabolites of the significantly
different bacterial genera are mostly short-chain fatty acids, the
gut flora is most likely to affect the occurrence and development
of AMI through the short-chain fatty acid pathway. Some
fecal microflora were found to be positively correlated with
AMI clinical characteristics and distinct alterations in the gut
microbial community were present within different subgroups
of AMI patients. Moreover, our results show that predictions of

several functional pathways can be generated as based on the
fecal microfloral data from AMI patients. Such information may
enhance our comprehension of AMI pathogenesis. Overall, the
process of AMI progression is dynamic and complicated, and
modulation of the gut microbiota composition may represent a
promising diagnostic biomarker or therapeutic target.
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Infectious diseases caused by bacterial pathogens are important public issues. In
addition, due to the overuse of antibiotics, many multidrug-resistant bacterial pathogens
have been widely encountered in clinical settings. Thus, the fast identification of bacteria
pathogens and profiling of antibiotic resistance could greatly facilitate the precise
treatment strategy of infectious diseases. So far, many conventional and molecular
methods, both manual or automatized, have been developed for in vitro diagnostics,
which have been proven to be accurate, reliable, and time efficient. Although Raman
spectroscopy (RS) is an established technique in various fields such as geochemistry
and material science, it is still considered as an emerging tool in research and diagnosis
of infectious diseases. Based on current studies, it is too early to claim that RS may
provide practical guidelines for microbiologists and clinicians because there is still a gap
between basic research and clinical implementation. However, due to the promising
prospects of label-free detection and noninvasive identification of bacterial infections
and antibiotic resistance in several single steps, it is necessary to have an overview
of the technique in terms of its strong points and shortcomings. Thus, in this review,
we went through recent studies of RS in the field of infectious diseases, highlighting
the application potentials of the technique and also current challenges that prevent its
real-world applications.

Keywords: Raman spectroscopy, bacterial pathogen, machine learning, infectious disease, antibiotic resistance

INTRODUCTION

Infections caused by bacterial pathogens in clinical settings are commonly encountered, which is
considered as the top 10 most common causes of death globally (Abayasekara et al., 2017). Acute
bacterial infections could be serious or even deadly, especially when bacteria enter into bloodstream
or cross the blood–brain barrier (van Sorge and Doran, 2012). In addition, antibiotic resistance

Frontiers in Microbiology | www.frontiersin.org 1 July 2021 | Volume 12 | Article 68358061

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.683580
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.683580
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.683580&domain=pdf&date_stamp=2021-07-19
https://www.frontiersin.org/articles/10.3389/fmicb.2021.683580/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-683580 July 16, 2021 Time: 13:31 # 2

Wang et al. Raman Spectroscopy in Bacterial Infections

plays important roles in bacterial pathogenicity during host
infection. Thus, rapid detection of bacterial infection and
profiling of drug resistance are crucial in guiding effective
treatments of infectious diseases (Burnham et al., 2017).
Conventional methods for bacterial diagnosis, such as medium
culture, biochemical reactions, and serological tests are well-
established techniques with high reliability and accuracy.
However, some of these techniques are laborious, costly, and
time consuming, which also have comparatively steep learning
curves for real-world use (Franco-Duarte et al., 2019). Thus, new
diagnostic methods have been developed for rapid and minimally
invasive detection of bacterial pathogens in order to meet
clinical requirements or investigate infectious disease outbreaks
(Fournier et al., 2014), such as polymerase chain reaction
(PCR), enzyme-linked immunosorbent assay (ELISA), high-
throughput next-generation sequencing (NGS), and chemical
analysis methods like mass spectrometry (MS). In recent years,
Raman spectroscopy (RS) is gaining more and more attentions
in research fields and in clinical settings due to advancements
in instrumentation and data-handling techniques (Wang et al.,
2016). As an easy-to-learn, low-cost, and label-free chemical
analysis technique, RS has both great potentials and huge
challenges in clinical pathogen analysis (Sil et al., 2020), which
drives researchers to work hard in the field to bridge the
gap between experimental setup and clinical implementation.
In this review, we focus on the principles, advantages, and
shortcomings of the RS technology in a concise manner,
highlighting the application potentials of the technique and also
current challenges that prevent its real-world applications.

CONVENTIONAL AND MOLECULAR
METHODS

Conventionally, the detection of bacterial pathogens in clinical
infection relies on methods like medium culture (e.g., colony size,
color, and shape), microscopy (e.g., Gram stain), biochemical
analysis (catalase activity, oxidase activity, and urease activity,
etc.), and serological tests (e.g., latex agglutination tests; Váradi
et al., 2017). The presence of antibiotic resistance adds more
complexity during the identification of bacterial infections.
Classical methods for antibiotic susceptibility testing (AST)
include but not limited to disk diffusion, Epsilometer test (E-
test), and microdilution, which also require medium culture
(Khan et al., 2019). However, only a small number of bacteria
could be successfully cultured due to the fastidious growth
requirement, which makes accurate diagnosis of bacterial
infection a challenge.

The development of molecular diagnostic methods greatly
improves bacterial identification and antibiotics profiling, which
mainly relies on the analysis of genomic markers corresponding
to nucleic acid sequences (Váradi et al., 2017). For example, PCR
is a fast and reliable molecular method for the identification of
bacterial infections, which directly detects bacterial pathogens
by genetic materials and requires primers for the amplification
process (Barghouthi, 2011). One of the advantages of PCR is its
capacity in recognizing bacterial infection at early stage when

no sufficient antibodies against the pathogens are produced
(Kubina and Dziedzic, 2020). However, once the pathogens
are cleared from the immune system or become dormant, no
genetic materials could be detected. Thus, PCR is better to
be used during the acute infection stage and cannot be used
for retrospective analysis. In recent years, universal primers
with the capacity of identifying highly conservative regions
of genes like 16s rDNA have also been widely used to
find previously unrecognized or uncultured organisms from
infected host tissues, leading to the characterization of microbial
diversity within a sample, which is also known as metagenomics
(Abayasekara et al., 2017).

Enzyme-linked immunosorbent assay is a type of
immunosorbent assay that can be used for bacterial identification
through detecting the presence of antigens or antibodies in blood
sera. In the food industry, ELISA is one of the most commonly
used immunological methods for foodborne pathogen detections
(Law et al., 2015). Recently, some comparative studies indicated
that ELISA had great potential in clinical applications due to its
superiority to conventional methods in the diagnosis of bacterial
infections (Xu et al., 2020). However, antibody levels in the early
stage of post-infection may not be reliably detectable. Currently,
ELISA has not been used in routine bacterial diagnostics,
which may be due to its limitations such as high costs, poor
reproducibility, high false-positive rates, and antibody instability
(Sakamoto et al., 2017). One advantage of the serological testing
via ELISA method, when compared with other methods based
on genetic materials, is that it is able to study the epidemiology
of diseases in different populations retrospectively due to the
persistence of antibodies in the bloodstream after microbial
infections (Lai et al., 2020).

As for the sequencing technology, it used to be difficult
to access but is now affordable in microbial studies due to
the fast development of instruments (Kwong et al., 2015). For
example, NGS and long-read sequencing could provide high-
resolution discrimination of bacterial pathogens at nucleic acids
level, which could reliably distinguish closely related bacterial
lineages and accurately track the outbreaks (Balloux et al., 2018;
Logsdon et al., 2020). In addition, through comparative genome
analysis, gain or loss of particular genes could be used to predict
specific phenotypes such as stress resistance and pathogenicity
(Stratakos et al., 2019), while genome-wide association study
could reveal antibiotic resistance (Lees et al., 2020). As for
microbial composition in a clinical sample from mouth, skin,
or gut, metagenomic next-generation sequencing plays a pivotal
role, which greatly facilitates the understanding of antimicrobial
resistance, microbiome, human host gene expression, and
oncology (Chiu and Miller, 2019). Although NGS provides an
overview of bacterial species at genomic level with high accuracy,
sequencing is still far away to be a routine method because of the
high costs, labor intensity, complex sample preparation steps, and
sophisticated data analysis procedures (Deurenberg et al., 2017).
Currently, the application of NGS methods is mainly limited
to laboratory experiments and epidemiological investigations
while being rarely used for routine microbial identification or
susceptibility testing in clinical laboratories (Deurenberg et al.,
2017; Rossen et al., 2018).
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CHEMICAL ANALYSIS METHODS

Mass Spectroscopy
In recent years, chemical analysis via precision instruments
is getting more and more attention from both industrial,
clinical, and academic fields, among which MS is an important
analytical tool due to its high-throughput capacity, sensitivity,
and specificity (Sauer and Kliem, 2010). Although several MS
methods, together with software tools, have been developed,
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) is one of the most popular MS
instruments used in clinical microbiology due to the rapid and
accurate identification of an extensive range of bacteria (Hou
et al., 2019). In specificity, MALDI-TOF MS is an inexpensive
and straightforward method for bacterial classification and
identification on genus, species, and, sometimes, subspecies level
(Sauer and Kliem, 2010). In addition, databases containing MS
spectra of known organisms provide much more convenience in
the identification of species with similar phenotypic, genotypic,
and biochemical properties (Singhal et al., 2015). However,
there are also some limitations for MALDI-TOF MS. For
example, it is difficult for MALDI-TOF MS to discriminate
closely related bacterial species such as Escherichia coli and
Shigella. It is also hard for MALDI-TOF MS to differentiate some
antibiotic resistance phenotypes, such as methicillin-resistant and
methicillin-sensitive Staphylococcus aureus (Florio et al., 2018).

Raman Spectroscopy
Raman spectroscopy is an emerging method for the identification
of bacterial infections because it can act as a rapid, efficient, and
minimally invasive tool to identify bacterial cells and antibiotic
resistance, which also has the potentials in high-throughput and
real-time applications in the field of clinical diagnostics (Strola
et al., 2014). The basic principle of the Raman effect is that when
the smallest unit of light passes through any medium, the light
scattered by other molecules affects the frequency change, which
means the Raman effect is caused by the vibration of molecules
and thus can be explained by energy levels (Jones et al., 2019).
From the perspective of quantum mechanics, the Raman effect
is the inelastic collision that occurs when photons collide with
molecules. If the molecule is at the ground state level at the
beginning, and then when the excited light interacts with the
molecule, the molecule will be excited to a high energy level or
virtual state, and then, the molecules and electrons in the virtual
state will transition to the excited state, generating scattered light.
In this process, energy will be transferred to the molecule by
the excited photon, while the photon loses its energy in this
process. At this time, the molecule that transitions to the excited
state gains energy.

There are some positions where the incident light frequency
is at low level, and at these positions, the accepted scattered
light is called Stokes Line, while, on the contrary, it is called
anti-Stokes Line (Jones et al., 2019). When photons collide
with molecules, the energy between them does not change
after the collision, but the direction is changed, which is called
Rayleigh scattering (Bumbrah and Sharma, 2016). Normally,

RS has a strong fluorescence background that could disturb
the original spectrum, which leads to compromised quality
of bacterial identification, although it could be removed by
techniques like polynomial baseline fitting (Wei et al., 2015).
As for the application, RS produces a series of spectral signal
lines when measuring a particular sample, in which Raman shift
is the frequency difference between the Raman scattered light
and the aforementioned Rayleigh scattered light (Cialla-May
et al., 2019). Some specific molecules in biological samples will
have characteristic peaks, and the concentration or amount of
a certain molecule in the sample will affect the intensity of the
molecule (Figure 1).

BACTERIAL IDENTIFICATION

Raman spectral features are generated by molecular vibrations in
the sample, which makes RS a convenient tool for characterizing
biological systems (Ashton et al., 2011). Due to its low-cost,
label-free, and nondestructive features, RS has been widely
investigated in terms of its potential applications in clinical
studies. In addition, the sample preparation steps are simple,
and the spectroscopic procedures can be completed within
seconds, which makes it a promising method for detecting
bacterial infection (Boardman et al., 2016). Through searching
keywords RS and bacteria identification on the biomedical
literature database, PubMed1, it has been observed that there is a
continuously growing number of RS-assisted bacterial detection
studies. However, there is still a hug gap between basic research
and practical application, which prevents RS from becoming the
routine laboratory technique. For example, Raman effect is very
weak, which leads to long measurement times; moreover, sample
fluorescence introduces noisy signals into the spectrum, which
makes the downstream analysis rather difficult (Wei et al., 2015).
In addition, intense laser radiation can cause sample heating,
leading to sample destruction and disrupted Raman spectrum.
Thus, biological samples should be investigated via low-energy
near-infrared wavelength for excitation, e.g., 785 or 830 nm, or in
water solutions (Eberhardt et al., 2015).

During bacterial sample analysis, RS provides information on
both chemical compositions and biomolecular structures, such as
DNA, RNA, proteins, lipids, and carbohydrates, which is often
referred as whole-organism fingerprint (Ashton et al., 2011).
For example, Raman signal for C–H stretching vibration is at
approximately 2,930 cm−1 and C–H deformation vibration at
approximately 1,440 cm−1, while the main signal for proteins
is the amide I vibration at 1,665 cm−1 (Lorenz et al., 2017). In
addition, RS has also been applied in single bacterial analysis
and live bacterial studies, which could not only minimize the
bacterial metabolic variability at the different phases but also
facilitate the understanding of cellular dynamics (Strola et al.,
2014; Smith et al., 2016). In terms of the differentiation of Gram-
positive bacteria from Gram-negative bacteria, it was showed that
some peaks at 540 and 1,380 cm−1 had significant differences

1https://pubmed.ncbi.nlm.nih.gov/
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FIGURE 1 | Schematic illustration of the basic principles of Raman effects and the brief architecture of Raman spectroscopy. (A) Raman spectrum energy level
diagram, which shows the transition process of infrared light irradiation, Stokes rays, anti-Stokes rays, Rayleigh scattering, and Raman scattering. hvk , initial
irradiation energy; E0 , ground state; E1 , vibration excited state; E0+hv0 and E1+hv0 , excited virtual state. (B) Schematic diagram of Raman spectroscopy. After the
incident light is irradiated, the molecules reach an excited state. The light of different frequencies during the scattering process is Raman scattering, which is
reflected on the grating and captured by the detector.

for Gram-positive bacteria when compared with the Gram-
negative bacteria, which was mainly attributed to the glycosidic
bonds in N-acetyl glucosamine and N-acetyl muramic acid of
peptidoglycan (de Siqueira E Oliveira et al., 2020).

So far, studies performing RS on clinical bacterial pathogens
require culture in agar plates because of the low concentration of
bacteria in clinical samples (Rebrošová et al., 2017; de Siqueira
E Oliveira et al., 2020). Although culture-based RS could provide
sufficient biomass during testing, hence higher signal–noise ratio,
it is rather time consuming. There are also some attempts of RS
applications on tissues in terms of infectious disease diagnosis
in situ. Kloß et al. (2014) used RS and chemo-metrical evaluation
to study the ascitic fluid directly for pathogen identification,
which showed that 97.7% of the spectra from Gram-positive
bacteria were correctly assigned on the genus level and 83.6% on
the species level. In another study, Maquelin et al. (2003) used
Raman spectra for rapidly identification of bacterial and fungal
pathogens recovered from 115 blood cultures after 6- to 8-h
culture in an automated blood culture system, according to which

109 samples contained bacteria while 6 contained yeasts (92.2%
identification accuracy). Thus, RS possesses the potential in the
identification of bacterial infections directly for clinical samples.

In some situations, clinical samples only contain trace
amounts of bacterial cells. In order to improve the weak Raman
signals in clinical samples such as blood and urine when bacterial
amount is rather low, surface-enhanced Raman spectroscopy
(SERS) can be applied, which could facilitate the development of
culture-free identification of bacterial pathogens. In specificity,
SERS is an enhanced RS through sample molecules interacting
with surface plasmons of nanoscale structured metal surfaces,
which often uses spherical nanoparticles made of silver or gold
with diameters ranging from 20 to 100 nm (Krafft and Popp,
2014). For example, Tien et al. (2018) investigated bacterial
pathogens in 108 urine samples sourced from of urinary tract
infection patients; according to the study, 93 samples were
detected with single bacterial species via SERS, while 97 samples
were confirmed pathogen positive through medium culture,
which makes the detection 95.87% accurate. Currently, although
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FIGURE 2 | Schematic illustration of the workflow of Raman spectroscopy
and surface-enhanced Raman spectroscopy (SERS). (A) Workflow of Raman
spectroscopy obtaining information on molecular structure via molecular
vibrations and rotations for bacterial classification and antibiotic resistance
profiling. (B) Procedures of the surface-enhanced Raman spectroscopy.
Samples were measured while being adsorbed on the surface of colloidal
metal nanoparticles such as silver (AgNPs), gold, or copper in order to
improve signal intensity.

SERS is a highly promising analytical technique, it has not been
used as a routine diagnostic method in the clinical laboratory
yet, and there are many problems preventing its real-world
application. One of the major limitations is the fabrication
of suitable substrates with unique features in SERS-related
detections, although tremendous effort has been invested into
this area (Ouyang et al., 2017). Thus, developing new cost-
effective and reproducible substrates for SERS would also greatly
increase its sensitivity and accuracy, hence wider applications
of the technique. Many studies have reported a variety of
preparation procedures of nanoparticles for SERS (Solís et al.,
2017; Demirtaş et al., 2020). However, this topic is rather large
and is not a focus of the current review. For details, please refer
to the recent review by Lane et al. (2015).

Except for bacterial infections, RS has also been applied for
the identification of other microbial species, which shows great
promise for the accurate diagnosis of parasites and viruses (Chen
et al., 2016; Yeh et al., 2020; Donald et al., 2021). In particular,
since the global outbreak of coronavirus 2019 (COVID-19), a
variety of studies focus on the rapid detection of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) via RS. For
example, Carlomagno et al. (2021) reported a Raman-based

method for saliva analysis, which is able to differentiate healthy
individuals from infected patients with accuracy, precision,
sensitivity, and specificity of more than 95%. In addition, Yin
et al. (2021) analyzed 177 serum samples (63 confirmed COVID-
19 patients, 59 suspected cases, and 55 healthy individuals) via RS,
together with 20 independent individuals for external validation.
According to the study, accuracy between the COVID-19 and the
healthy controls is 0.90, which also indicated that RS held the
promise of being a safe and efficient technique for COVID-19
screening (Yin et al., 2021). For a schematic illustration of the
workflow of Raman spectroscopy and surface-enhanced Raman
spectroscopy (SERS), please refer to Figure 2.

ANTIBIOTIC RESISTANCE PROFILING

As for AST, it is an essential procedure in the clinical diagnosis of
serious bacterial infection, while accurate and effective diagnosis
of bacterial antibiotic resistance is a key for the treatment of
bacterial infections (Wang et al., 2018). Although the typical
procedure normally takes 3–4 days or even longer for fastidious
bacteria on average to obtain the final AST results (Han et al.,
2020), with MALDI-TOF MS-based approaches, i.e., for positive
blood culture bottles, a result can be obtained after <24 h, in
some cases also the same day (Verroken et al., 2014). Due to its
simple operations, RS, especially SERS, has been used for testing
antibiotic resistance phenotypes in many bacterial species, such
as E. coli (Chang et al., 2019), S. aureus (Uysal Ciloglu et al.,
2020), and Pseudomonas aeruginosa (Li et al., 2019). A variety
of signatures have been observed in terms of bacterial antibiotic
resistance and susceptibility, which could be used for rapidly
identifying resistance to sublethal concentrations of antibiotics
(Galvan and Yu, 2018; Han et al., 2020). In addition, a single study
also reported that a portable Raman spectrometer with paper-
based SERS could be used for screening tetracycline residues in
milk with peak intensity ratios at 455 cm−1/1,280 cm−1 and
874 cm−1/1,397 cm−1. Thus, RS could function as a potential
tool for on-site monitoring of antibiotics (Marques et al., 2019).
However, despite that SERS was investigated to detect antibiotic-
resistant phenotypes in some studies, current datasets are small,
limited, and often involving environmental settings. In addition,
the ability of RS to detect resistance phenotypes is something
different from antibiotic resistance testing, which does not rely
on the presence of resistance markers but on the determination
of minimum inhibitory concentration (Galvan and Yu, 2018).
Thus, the generalization of these Raman signatures, biomarkers,
or metabolites in predicting antibiotic resistance profiles should
be further examined before applied in clinical settings.

COMPUTATIONAL ANALYSIS OF RAMAN
SPECTRA

Due to the complexity of Raman spectra, statistics and machine
learning algorithms, rather than traditional linear analysis, are
normally involved in data processing procedures. So far, many
machine learning methods have been introduced into Raman
spectra analysis, such as artificial neural network, deep learning,
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and Monte Carlo estimation (Lu et al., 2012; Moawad et al.,
2019; Lussier et al., 2020; Uysal Ciloglu et al., 2020). In
the rapid characterization of Staphylococcus, Rebrošová et al.
(2017) compared three machine learning methods, namely, linear
discriminant analysis, one nearest neighbor, and support vector
machine (SVM), all of which showed efficient identification of
staphylococci using RS with high accuracy. Although machine
learning often gives promising results during the analysis of
Raman spectra, there are some particular pitfalls that should be
avoided. The Raman spectra dataset should be large enough for
the training and validating steps in order to make sure that the
learning process is sufficient. In addition, collection of Raman
spectral data is more important than models and algorithms
themselves since over- or underrepresented data will lead to
biased predictions. Moreover, what machine learning algorithms
to choose and how the mode parameters are determined are also
crucial for Raman spectral analysis.

RAMAN SPECTRAL DATABASE OF
BACTERIAL PATHOGENS

A precondition for using machine learning to analyze Raman
spectral data is a database with validated reference spectra of
bacterial species and phenotypes (Moawad et al., 2019). It is
convenient to measure single bacterial spectra from cultures in
the lab, which is normally crucial to build a preliminary Raman
spectral database. However, in order for the database to be
functional in real-life environment, a database of Raman spectra
from environmental or patient samples is required (Pahlow et al.,
2015). Raman spectral databases have been constructed in a
variety of fields, such as minerals, organics, inorganics, essential
oils, pigments, and carbohydrates, which greatly facilitates the
detection of these materials and further increases the applications
of RS in corresponding fields (Strola et al., 2014; Kumar et al.,
2015; El Mendili et al., 2019). Thus, a standard database of
Raman spectra for bacterial pathogens would be very convenient
and highly demanded in species identification and antibiotic
resistance profiling.

Lorenz et al. (2017) emphasized the importance of Raman
microscopic databases in the identification of leading pathogens
in environmental and patient samples. Strola et al. (2014)
constructed a reference database including a total of 1,200
spectra over seven bacterial species, based on which the success
rate of bacterial species identification approaches 87% via SVM
classification. Kloß et al. (2014) built up a Raman database
containing 10,000 single-cell spectra for 34 bacterial strains
belonging to 13 different species in ascitic fluids. In addition,
Novelli-Rousseau et al. (2018) tried to distinguish antibiotic-
resistant and antibiotic-susceptible E. coli based on a database
with 3,668 Raman spectra. Some other studies also implement
several small bacterial Raman databases that greatly promote the
application of RS in bacterial analysis (Muhtar et al., 2016).

Unfortunately, at current stage, there is very little effort
dedicating to the integration of small database into a large
and standard Raman spectral database in bacterial field that
may be widely used in different microbiological and clinical

labs. A particular reason for such a deficiency is that Raman
spectra from different studies are tailor-made and group specific,
which greatly hinders data standardization (Lorenz et al.,
2017). In order to facilitate the standardization of RS data,
metadata annotation with minimal sample preparation and
acquisition of Raman spectra is indispensable, which could
not only alleviate technical noisy signals but also improve
reproducibility in RS experiments (García-Timermans et al.,
2018). Furthermore, sample preparation recommendations and
data-processing guidelines should be introduced for future work,
which shall greatly promote the application of RS and translate it
into a routine diagnostic method in clinical laboratory.

SUMMARY

Raman spectroscopy can provide bacterial phenotypic
information in details and vast amounts. Although numerous
studies focus on rapid identification of bacterial species and
antibiotic resistance profiles by RS, the real situation is that
the technique has not been fully explored in clinical settings
yet. Currently, most Raman spectra of bacterial pathogens are
based on pure bacterial isolates, which heavily relies on medium
culture, while Raman spectra from actual clinical samples are
still rare. Recently, with the development of nanoparticles and
nanostructured surfaces, SERS greatly improved the signal
intensity of Raman spectra, which greatly contributes to a better
differentiation of bacterial infections. In addition, Raman spectra
consist of the spectra of a large set of complex chemical mixtures,
requiring machine learning methods for data processing, such
as artificial intelligence and deep learning, rather than classical
linear methods. However, problems encountered during machine
learning-assisted analysis involve overfitting or underfitting
of the models due to the large dimension and small sample
size problem of Raman spectra, although there are different
dimension reduction methods like principal component analysis
in use to address the issue. In addition, standard database of
RS for bacterial pathogens is also a guarantee of the accurate
and timely laboratory diagnosis when recruiting machine
learning methods. In sum, the techniques of rapid and reliable
automatic measurement of the Raman spectra of clinical samples
from the real word are eagerly and urgently needed for the
applicability of bacterial typing and antibiotic resistance profiling
in clinical settings, which shall be achieved in foreseeable
future with the fast development of novel Raman spectroscopic
techniques, nanostructural materials, computational methods,
and standardized databases.
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Whole genome sequencing (WGS) of bacteria has become a routine method in
diagnostic laboratories. One of the clinically most useful advantages of WGS is the ability
to predict antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in
bacterial sequences. This allows comprehensive investigations of such genetic features
but can also be used for epidemiological studies. A plethora of software programs
have been developed for the detailed annotation of bacterial DNA sequences, such as
rapid annotation using subsystem technology (RAST), Resfinder, ISfinder, INTEGRALL
and The Transposon Registry. Unfortunately, to this day, a reliable annotation tool of
the combination of ARGs and MGEs is not available, and the generation of genbank
files requires much manual input. Here, we present a new webserver which allows
the annotation of ARGs, integrons and transposable elements at the same time. The
pipeline generates genbank files automatically, which are compatible with Easyfig for
comparative genomic analysis. Our BacAnt code and standalone software package are
available at https://github.com/xthua/bacant with an accompanying web application at
http://bacant.net.

Keywords: BacAnt, annotation, antibiotic resistance gene, integron, transposable element

INTRODUCTION

The era of next-generation sequencing (NGS) took off in 2005 with the commercial release of
massively parallel pyrosequencing (Margulies et al., 2005). The NGS technology developed rapidly
in the past years and has made substantial improvements in terms of quality and yield. With
the rapid decrease of sequencing costs, falling by as much as 80% year over year, whole genome
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GRAPHICAL ABSTRACT | Overall BacAnt’s service workflow. The figure is adapted with permissions from IntegronFinder (Cury et al., 2016).

sequencing (WGS) of bacteria has become a routine method in
diagnostic laboratories (Didelot et al., 2012). NGS applications
include WGS, targeted NGS and metagenomic NGS. Among
them, the most common use of WGS is for simultaneous
identification, typing, and/or antimicrobial susceptibility
prediction of pathogens (Mitchell and Simner, 2019). One of
the most exciting advantages of NGS is the ability to predict
antimicrobial resistance genes (ARGs) and mobile genetic
elements (MGEs) in bacteria, which allows the investigation of
both, the organization and structure of such genetic features,
and the epidemiology for the distribution of bacterial strains
or virulence genes, including the spread and distribution of
antibiotic-resistant bacteria as part of surveillance programs
(Zhou et al., 2015; Mitchell and Simner, 2019). Every day, a
massive number of bacterial genomes is being sequenced using
NGS technology in laboratories across the globe, with genomes
released at remarkable rates. With this huge amount of data
available, it is important to extract project-relevant information
easily. However, in publicly available databases, most of bacterial
genomes are available as contigs which have been constructed
employing auto-annotation algorithms. Over the years, highly
efficient methods for bacterial genome annotation have been
developed that do not require much user input.

Rapid Annotation using Subsystem Technology (RAST) is
a widely used webserver for genome annotations of microbial
species (Aziz et al., 2008). Although the performance using
RAST-based annotation is very useful, several important
limitations remain. For example, RAST will label many Open
Reading Frames (ORFs) as “hypothetical proteins,” and the
performance to identify ARGs and label them as such, is
fairly limited as the algorithm is not tailored toward this
purpose. Based on the RAST system, the Pathosystems Resource
Integration Center (PATRIC) improved the data collection of
ARGs, and provided users a more powerful analysis for both
genomes and individual genes (Wattam et al., 2018). Another
available annotation server is Resfinder which is managed by
the Center for Genomic Epidemiology; it provides a convenient
way of identifying acquired ARGs in sequenced bacterial isolates
(Zankari et al., 2012). In addition to annotations of ARGs,
some databases specifically designed to annotate MGEs such
as insertion sequences (ISfinder), integrons (INTEGRALL) and
transposable elements (The Transposon Registry) have been
created (Siguier et al., 2006; Moura et al., 2009; Tansirichaiya
et al., 2019). ISs are abundant mobile elements in bacteria,
which are responsible for the mobilization of many genes,
including those mediating ARG (Razavi et al., 2020). Such
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ARGs are often found in the genetic context of specific
ISs, while ISs flanking regions are diverse (Razavi et al.,
2020). For example, a clear association of ARGs with class
1 integrons can be observed (Partridge et al., 2018). The
analysis of which ISs are associated with ARG genes would
help to discover novel AMGs (Razavi et al., 2020). In addition,
there is a major interest to explore how ARGs spread via
MGEs (Che et al., 2021). The early identification of ARGs in
bacteria would facilitate surveillance and molecular diagnostics
(Razavi et al., 2020). Also, inter/intra-species genetic transfer
events of MGEs are responsible for the emergence and rapid
spread of resistance (Subedi et al., 2018). Therefore, the
knowledge of MGE-associated drug resistance is crucial for the
monitoring of resistance in microbial species. Unfortunately,
up to now, a rapid annotation tool of the combination of
ARGs and MGEs is not available, and the generation of
genbank files has to be done manually. Therefore, we created
a new program/pipeline called BacAnt, which rapidly and

efficiently annotates ARGs, integrons, and transposable elements
in a single step and generates a genbank file automatically
which is compatible with the Easyfig program for comparative
genomic analysis.

MATERIALS AND METHODS

Reference Sequences
Three curated databases for BacAnt tool are used, including
ResDB (resistance gene sequence database), IntegronDB
(integron sequence database) and TransposonDB (transposon
sequence database). We collected 5029 sequences from
NCBI Bacterial Antimicrobial Resistance Reference Gene
Database (PRJNA3130471, version: 2019-09-06.1) into ResDB
at 2019-12-01. In addition, we collected 1094 sequences from

1https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047

FIGURE 1 | Screenshots of the BacAnt web interface. Users upload an assembled file from their local personal computer and select the desired annotation
database. “Framework” lists the public database and tools integrated in BacAnt; “Tools” functions for whole genome sequence annotation based on user uploaded
sequence(s); “Visualization” allows to visualize the annotation results for uploaded sequence(s).
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INTEGRALL (version: 2017-11-30)2 to be included into
IntegronDB by 2019-12-01. We also collected 234 sequences
from THE TRANSPOSON REGISTRY (version: 2019-07-23)3

into the TransposonDB by 2019-12-01.

Program for Identifying Antibiotic
Resistance Genes and Mobile Elements
We created a python program (BacAnt) to identify ARGs and
MEGs for bacteria nucleotide sequences with BLAST analysis.
We first used the BLASTN program comparing input sequences
with the reference database with an e-value 10−5. For the
detection of integrons, we used Integron_Finder to predict
possible integrons and used the BLASTN program comparing the
integron sequence with integronDB database for the best match
sequence (Cury et al., 2016). We then filtered the raw results by
identities and coverage (blast align match length/subject length).
All results that pass the identity and coverage filter are retained
for further analysis. The default threshold was set to 90% for

2http://integrall.bio.ua.pt
3https://transposon.lstmed.ac.uk

identities and to 60% for coverage. Finally, we display the
filtered results in text and genbank format, while also providing
a visual output. Three types of annotations for the sequences
are displayed in the same figure to guide the analysis of the
genomic sequence.

BacAnt has six parameters. The user has two choices regarding
the input sequence file: –nucleotide (–n), fasta format or –
genbank (–g), genbank format. The required output path: –
resultdir (–o). –databases (–d), reference databases, select all by
default. –coverages (–c), coverage threshold, 60% by default. –
identities (–i), identities threshold, 90% by default. In average,
it takes about 2 min for each run (number of available cores: 6;
threads: 24; memory 64G).

Website for BacAnt
For the analysis to be performed online, we developed a website
which we call http://bacant.net. The pipeline running on the
server is based on Python/Django, which allows the user to
upload sequence files for the rapid identification of ARGs
and MGEs. The output format allows the display of graphic

FIGURE 2 | The relationship between the number of drug-resistance genes (ARGs) and insertion sequences (IS) from four species: (A) A. baumannii, (B) E. coli,
(C) S. enterica, and (D) S. aureus. The number of ARGs and ISs of each sample were extracted from the results of the BacAnt analysis, and the number was plotted
as the horizontal and vertical coordinates, respectively. The scatter plot was created using the ggplot2 package in R (V3.6.2), and a trend line generated.
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representations of the results. A demo report can be seen here:
http://bacant.net/BacAnt/demo.

Datasets for Validation of BacAnt
BacAnt was validated with 1100 genomes
(Supplementary Table 1) from eight species (Acinetobacter
baumannii, Bacillus cereus, Clostridioides difficile, Escherichia
coli, Listeria monocytogenes, Salmonella enterica, Staphylococcus
aureus, and Vibrio parahaemolyticus). The BacAnt output was
analyzed and compared with the results of NCBI AMRFinder.
The parameters of BacAnt used in the study were: identity
0.9, coverage 0.6.

Examples Analysis Using BacAnt
The genome sequences of four species downloaded from NCBI,
including A. baumannii (2019.11.17), E. coli (2019.5.7), S.
enterica (2019.6.4), and S. aureus (2019.6.4) were used to illustrate
the capabilities of our program. The accession number of the
genomes used in this study were listed in Supplementary

Tables 2,3. The raw sequence data were downloaded from the
European Nucleotide Archive4. Sequence quality was assessed via
FastQC v0.11.55, and low-quality sequence data and the adapter
sequences were removed with Trimmomatic v0.36 (Bolger et al.,
2014). The SPAdes software tool v3.11.0 was used to generate
assembled genome with default parameter (Bankevich et al.,
2012). The number of ARGs and MGEs of each sample were
identified in the BacAnt analysis and plotted as horizontal and
vertical coordinates, respectively. Scatter plots were created using
the ggplot2 package in R (V3.6.2), together with the trend line
(Wickham, 2016).

We created a network diagram by Cytoscape (v3.7.2) using the
analysis results of BacAnt from four species genome sequences
from NCBI (Shannon et al., 2003). Only ARG pairs with a
distance of less than 10 kb and frequency of occurrence no less
than 10 are extracted from the data to construct the network
map. In addition, we also created a map from ARGs and insertion

4http://www.ebi.ac.uk/ena
5https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FIGURE 3 | Genomic proximity of antibiotic resistance genes (ARGs) in four species: (A) A. baumannii, (B) E. coli, (C) S. enterica, (D) S. aureus. ARG pairs with a
distance of less than 10 kb and frequency of occurrence no less than 10 were screened to construct the network. Diamonds are used to represent ARGs, solid lines
are used to represent gene pairs whose frequency is not less than 80% of the total number and labeled as pink, dotted lines represent gene pairs with frequency less
than 80% of the total number and are marked as gray, and the width of the line indicates the frequency. Different antibiotics are displayed in different colors,
corresponding to the ARGs.
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sequence pairs with a distance of less than 10 kb and the
frequency of occurrence no less than 10.

RESULTS AND DISCUSSION

BacAnt is a browser-based platform to annotate DNA sequences,
and to visualize the annotation results. When using the web
interface, the user first has the choice to upload DNA sequences
as Fasta, Seq or GenBank files (Figure 1). The user then
has the option to select one or multiple databases, which
include ResDB, IntegronDB or TransponsonDB for sequence
annotation. After the DNA sequence is submitted, the python-
based program BacAnt will identify ARGs and MGEs in the
bacterial nucleotide sequence.

The output of BacAnt commences with a summary of
the annotation, followed by up to three tables including the
annotation result from each database; should they have been
selected in the first step. The final part of the BacAnt output
visualizes an annotation result which is combined from all three
databases. All annotation results obtained by running BacAnt,
including figures and genbank files, can then be downloaded. The
genebank files generated by BacAnt are compatible with Easyfig
(Sullivan et al., 2011). As an example we used A. baumannii
MDR-ZJ06 (NC_017171.2) to display the result of the annotation

by BacAnt (Figure 1). The annotation output of the MDR-ZJ06
strain shows that the isolate harbors 19 ARGs, 124 integrons
and 17 transposons.

BacAnt was validated with NCBI AMRFinder using 1,100
selected genomes. The file output “AMR.possible.tsv” in the
BacAnt result was used for analysis in NCBI AMRFinder to
test which of the programs is able to identify a larger number
of ARGs with high accuracy. Both programs reported similar
results regarding the number of resistance genes (Supplementary
Table 4). However, the number of ARGS in BacAnt is slightly
larger than that of NCBI AMRFinder. Some resistance genes
were absent in the output of NCBI AMRFinder: aac(6′)-Iaa
(NC_003197, aminoglycoside N-acetyltransferase) in S. enterica,
blaEC−15 (NG_049081,class C extended-spectrum beta-lactamase
EC-15) in E. coli, BcII (NG_056058, BcII family subclass B1
metallo-beta-lactamase in B. cereus.

To investigate whether a relationship between ARGs and
ISs exists, we extracted the number of ARGs and ISs from
the results of the BacAnt analysis of four species genome
sequences from NCBI. The results show that the number of
ARGs does not correlate with the number of ISs in the four
species (Pearson’s R2 < 0.8, Figure 2). Previously, it was reported
that at least eight MGEs were detected together with ARGs in
A. baumannii (Leal et al., 2020). The plasmids were grouped
into three categories based on the DNA transfer machinery:

FIGURE 4 | Genomic proximity of antibiotic resistance genes (ARGs) and Insertion sequences (ISs) in four species: (A) A. baumannii, (B) E. coli, (C) S. enterica, and
(D) S. aureus. ARGs and ISs pairs with a distance of less than 10 kb and frequency of occurrence no less than 10 were screened to construct the network. Diamond
symbols are used to represent ARGs, circles for ISs. The solid line is the gene pair whose frequency is not less than 80% of the total number and labeled as orange,
the dotted line represents the gene pair whose frequency is less than 80% of the total number and labeled as sky blue, and the width of the line indicates the
frequency. Different colors are assigned to the antibiotics corresponding to the drug-resistant genes, the insertion sequences are displayed in gray.
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conjugative, mobilizable and non-mobilizable (Smillie et al.,
2010). Che et al. (2021) showed that most ARG genes are
located in conjugative plasmids, which -together with ISs- play
the most important role in mediating the horizontal transfer
of ARGs. When the relationship between ARG and ISs were
investigated, we did not analyze the location of ARGs which
might explain why no significant correlation between the two was
observed in our study.

We also calculated the pairwise association between ISs and
ARGs. The results were subjected to a permutation test to
differentiate between statistically significant associations and
random chance (Razavi et al., 2020). Only statistically significant
associations (P < 0.001) of ISs and ARGs were analyzed
(Supplementary Table 5). We identified commonly found ARG
pairs that were in close proximity to ISs (<10 kb apart),
which allows the detection of gene cassettes that may play an

important role in evolution, regulation and ARG exchange. ARG
cassettes are generally small (2–7) and specific to the species we
investigated (Figure 3). The ARG cassettes for A. baumannii
and E. coli were larger and more stable than the cassettes
in S. aureus, which is consistent with a previously published
observation (Chng et al., 2020). In the case of A. baumannii,
we identified two ARG cassettes, with one containing the
genes mph(E), msr(E), armA, aadA1, sul1, aac(6′)-Ib, and catB8.
The ARG cassette which contained mph(E), msr(E), and armA
was described previously (Chng et al., 2020). For E. coli, the
program identified a stable small cassette that shows overlap with
that of A. baumannii, including sul2, aph(3′′)-Ib and aph(6)-
Id. When genomes of S. aureus were analyzed, the program
BacAnt found two ARG cassettes; the first one contained the
genes blaPC1 and blaR1, while the second one encoded for
mecR1 and erm(A).

FIGURE 5 | Distribution of Insertion sequences (ISs) with statistically significant association with different types of antibiotic resistance genes (ARGs) within a 10 kb
distance. Different colors show various IS, and the size of the circles indicate the presence of their associations with ARGs in (A) A. baumannii, (B) E. coli,
(C) S. enterica, and (D) S. aureus.
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We also identified commonly found ARG-IS pairs that
were in close proximity to ISs (<10 kb apart). For the
ARG-IS pairs, ISVsa3 containing the genes aph(6)-Id,
aph(3′′)-Ib and tet(B) comprised the top three ARG-IS
pairs in A. baumannii (Figure 4A). For ARGs number,
IS26, ISAba1, and ISVsa3 were the top three active ISs
(Figure 5A). IS26 was the most abundant IS in E. coli and
S. enterica (Figures 4B,C, 5B,C). In S. aureus, mecA with
diverse IS (including IS257-3, IS431mec, IS257R1, IS257-1,
IS257R2, IS431L, and IS431R) are the top seven ARG-IS pairs
(Figures 4D, 5D). The result of this study confirmed that IS6
family elements IS26 and IS257 play an important role in the
dissemination of ARGs in A. baumannii, E. coli, S. enterica,
and S. aureus (Partridge et al., 2018). As previously reported,
we also observed notable differences between important
MGEs in A. baumannii, E. coli, S. enterica, and S. aureus
(Partridge et al., 2018).

We also analyzed the physical organization of the ARGs-IS
pairs. Although the ARGs are not part of the IS, we observed

a correlation of the distances between both elements in the
analyzed bacterial genomes. ARGs-IS pairs occupied specific
distances in A. baumannii, with the exception of sul1 in IS26
which displayed several, and more broader distance distributions
(Figure 6A). In contrast, the sul1 gene embedded in ISEc29
displayed distances that were more specific. In E. coli, only
mph(A) showed a narrow distance distribution, while the other
ARG-IS pairs show less correlation as the distances between
the elements are less defined (Figure 6B). In S. enterica, only
aph(3′′)-Ib and ISVsa3| floR exhibited clear positions with narrow
distributions. Interestingly, the distances between IS26 and folR
were more widely distributed (Figure 6C). In S. aureus, mecA,
mecR1 and mecI_of_mecA exhibit specific distance distributions
(Figure 6D). Our observations appear to indicate that the
distances of ARG-IS pairs appear to often be specific, and this
correlation does not appear to be defined by either the IS
or the ARG alone.

Using BacAnt, we also explored the relationship between
ARGs and transposons. Tn6292 was the most commonly

FIGURE 6 | Violin plots showing distribution of the physical distance of top 20 ARG-IS pairs in (A) A. baumannii, (B) E. coli, (C) S. enterica, and (D) S. aureus.
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FIGURE 7 | Distribution of transposons with statistically significant association with different types of ARGs within a 10 kb distance. Different colors show various
transposons, the size of the circles indicate the presence of their associated ARGs in (A) A. baumannii, (B) E. coli, (C) S. enterica, and (D) S. aureus.

observed transposon containing ARGs in A. baumannii,
E. coli and S. enterica (Figures 7A–C). In S. aureus the
most prevalent transposon with ARGs was identified to
be Tn552 (Figure 7D). Tn6292 belongs to the Tn3-family
and harbored an IS26 at the right end (Chen et al., 2020).
Tn6292 also contained a quinolone resistance region qnrS1
(Feng et al., 2016). Multidrug-resistance bacteria containing
Tn6292 are commonly observed in China (Li et al., 2018),
and possibly accelerate the emergence and spread of
multidrug-resistant pathogens. Tn552 belonged to Tn7 family,
comprised of BlaZ, BlaR1, and BlaI proteins. BlaR1 is the
sensor protein for the extracellular β-lactam antibiotics. The
overproduction of the beta-lactamase BlaZ were responsible
of β-lactam resistance. Tn552-like element was thought
as the origin of the all β-lactamase genes in staphylococci
(Gregory et al., 1997).

In order to be able to extract the maximum amount of
information from whole genome sequence data, we need the
improve annotation and analysis methods for MGEs (Partridge
et al., 2018). In this work, we created a webserver that is
easy to use and allows the annotation of ARGs, integron, and
transposable elements at the same time. The pipeline generates
genbank files automatically, which are compatible with easyfig
for comparative genomic analysis,which will accelerate the
bioinformatics analysis of ARG-related sequences.
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Helicobacter pylori exhibit specific geographic distributions that are related to clinical
outcomes. Despite the high infection rate of H. pylori throughout the world, the genetic
epidemiology surveillance of H. pylori still needs to be improved. This study used the
single nucleotide polymorphisms (SNPs) profiling approach based on whole genome
sequencing (WGS) to facilitate genomic population analyses of H. pylori and encourage
the dissemination of microbial genotyping strategies worldwide. A total number of 1,211
public H. pylori genomes were downloaded and used to construct the typing tool,
named HpTT (H. pylori Typing Tool). Combined with the metadata, we developed two
levels of genomic typing, including a continent-scale and a country scale that nested
in the continent scale. Results showed that Asia was the largest isolate source in our
dataset, while isolates from Europe and Oceania were comparatively more widespread.
More specifically, Switzerland and Australia are the main sources of widespread isolates
in their corresponding continents. To integrate all the typing information and enable
researchers to compare their dataset against the existing global database easily and
rapidly, a user-friendly website (https://db.cngb.org/HPTT/) was developed with both
genomic typing tools and visualization tools. To further confirm the validity of the website,
ten newly assembled genomes were downloaded and tested precisely located on
the branch as we expected. In summary, the H. pylori typing tool (HpTT) is a novel
genomic epidemiological tool that can achieve high-resolution analysis of genomic
typing and visualizing simultaneously, providing insights into the genetic population
structure, evolution analysis, and epidemiological surveillance of H. pylori.

Keywords: Helicobacter pylori, genomic, antibiotic-resistant, phylogenetic, webtool, whole-genome sequencing,
genotyping

INTRODUCTION

Helicobacter pylori are one of the most sophisticated colonizers in the world that infects more
than half of the world’s population, ranging from infants to the elderly (Suerbaum and Michetti,
2002). It is a Gram-negative bacterium that normally colonizes the gastric mucosa of humans with
about 10–20% infection result in diseases (Pohl et al., 2019; Attila et al., 2020). The typical diseases
that have been reported include gastritis, peptic ulcer, mucosa-associated lymphoid tissue (MALT)
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lymphoma, and gastric cancer (Ernst and Gold, 2000).
Globally speaking, the risks of disease and the incidence
and mortality of gastric cancer were geographically different
(Kodaman et al., 2014).

H. pylori display a distinguished mutation rate among
bacterial pathogens due to the lack of genes that initiate classical
methyl-directed mismatch repair (MMR) (Alm et al., 1999).
The high mutation and recombination rate made H. pylori
genomes have enormous plasticity, facilitating this pathogen
and enabling it to perfectly adapt to its host (Kang and Blaser,
2006; Didelot et al., 2013). It has been reported that H. pylori
in chronic infection could take place through vertical and
familial transmission (Schwarz et al., 2008; Ailloud et al., 2019).
In within-host evolution, the mutation rate could reach ∼30
single nucleotide polymorphisms (SNPs) per genome per year
(Kennemann et al., 2011), compared to Escherichia coli at ∼1 SNP
per genome per year (Reeves et al., 2011). Taking into account this
occurrence and large recombination events, a simple and efficient
way to define the geographical pattern and epidemiological
surveillance of H. pylori is needed (Yamaoka, 2009; Jolley et al.,
2018).

The transmission of H. pylori transmission is slow, taking
place mostly within a household it does not tend to spread
like a rapid epidemic (Didelot et al., 2013). Their phylogeny
was based on MLST genes and later whole genomes revealed a
population structure primarily reflecting early human migration
events especially out of Africa 60,000 years ago but not recent
spreading (Falush et al., 2003). The global population was split
into hp groups, each of which is split into hsp subgroups in
the agreed convention. The hpEastAsia includes hspEastAsia,
hspMaori, and hspAmerind (Kawai et al., 2011; Montano et al.,
2015; Thorell et al., 2017).

To describe the population structure of H. pylori, genetic
typing methods such as single gene typing (e.g., cagA, vacA)
were recorded in previous studies (Salama et al., 2007; Yamaoka,
2009), while seven-gene multi-locus sequence typing (MLST)
became the dominant tool in the later stage due to its simple
and rapid typing strategy, which covers genes including atpA,
efp, mutY, ppa, trpC, urel, yphC that categorize H. pylori into
different sequence types (STs) (Achtman et al., 1999). However,
the resolution of seven-gene MLST was still low, which limited us
to tracing the epidemiological origins of H. pylori strains (Banerji
et al., 2020). Comparatively, SNP typing covers comprehensive
core genes that can generate a matrix comprising concatenated
SNPs and location information in the genome, which facilitated
the newly sequenced genomes to be comparable by mapping and
increase the typing resolution.

It has been found that 7-gene MLST are also linked to
regional epidemics across the world. The 7-gene MLST typing
method enables the regional specific recognition based on the
defined STs, in which geographical pattern is linked with the
different risks of clinical disease. For example, non-African and
African lineage could be associated with different risks of gastric
disease (Campbell et al., 2001). Thus, geographic patterns can
somehow link to the possibility of clinical disease. However, the
seven-gene genotypes of H. pylori are diverse due to the high
variability of H. pylori genomes, which hinders the recognition of

patterns directly from the sequence types (STs) in 7-gene MLST.
In addition, there is no information on geographical patterns
or visualization tools for seven-gene MLST, thus such related
geographic patterns were hard to find when a new ST was found.

This study describes a H. pylori genomic typing tool, HpTT
(H. pylori Typing Tool) that uses the SNP profiling based on
whole-genome sequencing data. In addition to genomic typing,
HpTT also provides a phylogenetic and geographic visualization
tool based on the Nextstrain framework (Hadfield et al., 2018).
This tool allows users to upload H. pylori WGS data for genomic
typing and uncover possible transmission events of H. pylori. It
is believed that this tool can not only improve genome typing
resolutions but may also predict the possible origin of the
epidemic H. pylori isolates, enabling the global surveillance of
H. pylori.

MATERIALS AND METHODS

Helicobacter pylori Genomes
Downloaded and Filtered in This Study
A total number of 1,654 assembled H. pylori genomes were
downloaded from the NCBI RefSeq database (genomes available
as of May 4, 2020) using the ncbi-genome-download tool (version
0.2.12). The corresponding metadata of assembled genomes was
searched by function using Entrez Direct (version 10.9) (Kans,
2020). By metadata filtering, 1,211 genomes were selected with
sample collection location available (Table 1). All genomes were
scanned by mlst (version 2.11) with the library of MLST updated
on December 31, 2020 (Jolley and Maiden, 2010).

SNP Analysis
The 1,211 assembled genomes were mapped to the reference
genome H. pylori 26695 (GenBank: AE000511.1) (Tomb et al.,
1997) using MUMmer (version 3.23) (Kurtz et al., 2004). SNPs
were filtered with a minimum mapping quality cutoff at 0.90
across 1,211 assembled H. pylori genomes. 6,129 SNPs were
found, and an SNP profile of H. pylori is established for the
corresponding isolates.

Phylogenetic Analysis
The maximum likelihood (ML) phylogenetic tree was
constructed by iqtree (version 2.0.3) (Nguyen et al., 2015)
based on 6,129 SNPs alignments of all 1,211 isolates. The
reference genome H. pylori 26695 was used as an outgroup.
The tree was generalized by the Gamma distribution to model
site-specific rate variation (the GTR model). Bootstrap pseudo-
analyses of the alignment were set at > = 1000. All ML trees
were visualized and annotated using Figtree (version 1.4.4).
The minimum spanning tree was constructed by the GrapeTree
(v1.5.0) (Zhou et al., 2018). The mutation rate of the cagA gene
was calculated by BEAST v1.8.4 (Suchard et al., 2018).

Geographic Typing System
Based on the phylogenetic tree, two levels of the geographic group
were defined, including the first level defined at the continent
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TABLE 1 | Summary of 1,211 H. pylori genomes.

Continent Country (region) of origin Number of isolates

Asia 312 (25.76%)

Cambodia 53

China 74

China (Taiwan) 8

India 47

Indonesia 1

Japan 31

Kuwait 2

Malaysia 79

North Korea 1

Singapore 14

South Korea 1

Vietnam 1

Africa 10 (0.82%)

Morocco 6

Nigeria 1

South Africa 3

Europe 294 (24.28%)

Belarus 2

Belgium 6

France 37

Germany 31

Ireland 1

Poland 2

Portugal 1

Russia 3

Spain 54

Sweden 19

Switzerland 130

United Kingdom 8

Oceania 178 (14.70%)

Australia 177

Papua New Guinea 1

North America 233 (19.24%)

Canada 2

El Salvador 1

Mexico 118

Nicaragua 24

United States of America 88

South America 184 (15.19%)

Angola 1

Colombia 172

Peru 11

scale and the second level defined as a country-specific scale. In
the first level of genotyping, lineages carrying more than seven
isolates and >75% isolates sourced from one major continent
were defined as a continent-specific group or clade. A mixed
continent group was defined when there was no major continent
identified with isolates at >75%. In the second level, lineages
carrying more than one isolate and >75% isolates sourced from
one major country were defined as a country-specific group or
subclade. In addition, a mixed group was also defined at level

two when there were more than two isolates and not a major
country identified with isolates at >75%. The association of the
genomic lineage of H. pylori with the geographic information
of isolates provided a map that allows us to trace both the
possible transmission and evolution of a detected or sequenced
H. pylori genome.

Establishment of Helicobacter pylori
Database
The HpTT website was established based on two modules: (1) The
genomic-geographical typing tool of H. pylori isolates and (2)
a visualization tool of both the genomic and geographic typing
results. The online typing tool was written in PHP, Javascript,
css, and HTML. The online visualization service was performed
based on the CodeIgniter framework1, tree visualization was
analyzed by the augur2 bioinformatics tool and the auspice3

visualization tool imbedded in the Nextstrain (Hadfield et al.,
2018) open source project. The H. pylori database was stored in
a Mysql database.

RESULTS

Definition of Two Levels of Geographic
Genotypes for Helicobacter pylori
A total of 1,211 assembled genomes with available geographic
information from the NCBI RefSeq database were downloaded
and analyzed for establishing the H. pylori genotyping database
(Supplementary Table 1). All assembly genomes were mapped
to the reference genome H. pylori 26695. Based on the maximum
likelihood tree, 6,129 SNPs extracted from 1,135 genes on the
reference genome were defined for further genomic typing. In
terms of geographic information, 1,112 isolates were grouped at
two levels, including 37 continent-level groups (Figures 1A,B)
and/or 236 country-level groups (Figures 1C,D). The median
pairwise distances (the median number of SNPs shared by the
branches) between isolates were found as follows: 319 SNPs
within continent clades and 1,493 SNPs within country subclades.
We labeled these continent clades and country subclades using
a structured hierarchical nomenclature system similar to that
used for M. tuberculosis (Coll et al., 2014). For instance, region
1 clade (G1) is subdivided into country subclades G1.C1 and
G1.C2. The mutation rate of cagA was 2.413 × 10−2 (95% CI:
1.600 × 10−2–3.900 × 10−2), which was 1.739 × 10−2/site/year
(95% CI: 1.153 × 10−2–2.811 × 10−2).

A Continent Level Genomic Typing for
Helicobacter pylori
A total number of 37 continent level groups (n = 1,112) were
defined, including 25 continent-specific groups and 12 mixed-
continent groups (Figures 1A,B). Isolates across the tree did not
fall into the continent group but can be defined as a country group

1https://www.codeigniter.com/
2https://github.com/nextstrain/augur
3https://github.com/nextstrain/auspice
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FIGURE 1 | Two clades of geographic typing based on the WGS. The HpTT enrolled 1,211 H. pylori genomes downloaded from NCBI. The clade nodes in each
figure correspond to (A) G groups for continent level of typing, (B) the continent that isolates collected from, (C) C groups for country-level typing, (D) the country
that isolates were collected from. (E) the hp Class and hsp Class, (F) G groups for continent level of typing with group names. Numbers in parenthesis refer to the
number of isolates in each genogroup.

that was named G0 (n = 74). Isolates across the tree that fell into
neither fall into the country group nor the continent group were
defined as non-grouped (n = 25). Because the genome data of
H. pylori were downloaded from the NCBI database, and these
genomes came from various regions of the world. Compared
with their ancestors, these strains have different genomes, which
has led to the formation of independent evolutionary branches.

After they formed independent evolutionary branches, (1) they
may not have spread. (2) After the spread, it was not collected.
These two reasons could account for an insufficient number of
strains in the branch, which cannot form a group with regional
characteristics under our typing method.

Five continent-specific groups contain more than 75% Asian
isolates, supporting Asia to be the continent with the largest
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isolate source (n = 319, 26.34%) (Figure 2). North America
was found to be the second-largest group of isolate pool
which consisted of six continent-specific groups (n = 132,
10.90%). Although fewer isolates were found to be sourced
from Europe (n = 109, 9.00%), these isolates were distributed
in nine continent-specific groups. Two groups (G16 & G29)
of isolates were found to be part of the Oceania specific
group (n = 39, 3.22%) and three groups (G1 & G26 & G35)
were found to be from the South America specific groups
(n = 109, 9.00%). In addition, the 12 mixed groups of isolates
contained 226 isolates (18.66%). Among all G level groups,
G2 was the largest continent specific group (n = 223) that
mainly contained isolates from Asia (193/223, 82.83%), while
G35 was the second largest continent specific group (n = 109)
that mainly contained isolates from South America (99/109,
87.61%). Apart from all the continent groups above, there was
no Africa-specific group found, but only with isolates collected
from Africa defined in G28 (n = 2), G37 (n = 7), and G29
(n = 1) (Figure 2).

Although the continent-specific groups did not 100% stick
to one continent in our typing system, the transmission events
were still possible to predict. While most of the Asian isolates
fell into the Asia groups, a small proportion of the Asian isolates
belonged to the mixed groups. Similarly, most of the isolates
sourced from North America and South America fell in their own
region groups, while a minority of the isolates were in the mixed
groups. Interestingly, isolates from Oceania and Europe could be
found across all 12 mixed continent groups, reflecting the fact
that H. pylori isolates from these two continents were relatively
widespread across the globe.

The Nested Country Level Genomic
Typing for Helicobacter pylori
A total number of 859 isolates were grouped into 216 geographic
patterns at a country level, which were predominant in 29
countries across six continents (Figure 3). Among these 29
countries encompassing 216 groups, 20 countries found in
168 groups were defined as country-specific groups, while the
remaining 9 countries were scattered over the 48 country-level
mixed groups that were left.

G35.C07 was the largest country-specific group that contained
49 isolates from Colombia, followed by the G35.C05 (n = 35)
dominated in Colombia as well. These isolates from Colombia
were mainly collected from the NCBI Bioproject PRJNA352848,
which study contained the population structure of H. pylori in
regional evolution in South America (Muñoz-Ramírez et al.,
2017). The isolates from groups G35.C07 and G35.C05 were
mainly found in Colombia, Mexico, and Spain (Figure 3). This
result provided evidence that the H. pylori isolates were possibly
transmitted from Spain and spread locally in South America and
North America. In comparison, Australia and Switzerland were
the largest countries of isolate sources with isolates scattered
across more than half of the country-specific groups.

When comparing the percentage of isolates from different
countries, those isolates from France, Germany, Malaysia,
Nicaragua, Sweden, and the United Kingdom were found to be

scattered in more than one continent group, while isolates from
Cambodia, Colombia, India, Peru, Spain, and the United States
were focused in one continent group when they were also found
in other continent groups. More importantly, Australia and
Switzerland were two countries that were mostly found to have
scattered isolates in different regional specific groups.

Three clusters were observed in the percentage of different
isolate sources at continent scale (G32 to G25 with red branches
in Figure 3), consisting of groups from Europe and mixed
continents. Specifically, those isolates from mixed groups were
mainly sourced from European and Oceania countries, making
this cluster dominated by Europe-Oceania. The second cluster
was the mixed by Asian, Oceanian, European, and mixed groups
(G4 to G2 with green branches in Figure 3) but dominated by
isolates from Australia and Asian countries. Therefore, cluster
two was specified as the Asian-Pacific cluster. The third cluster
was formed by North American groups (G31 to G37 with purple
branches in Figure 3), while South American branches were next
to the North American cluster.

Comparing With hp and hsp Class
hp and hsp class were designed for the geographic-genetic typing
of H. pylori (Kawai et al., 2011; Montano et al., 2015; Thorell et al.,
2017; Lamichhane et al., 2020). Of 1,211 H. pylori genomes, 231
were found to have been typed by hp and hsp class, which were
well fit to our typing groups. Specifically, hpEastAsia, hpAsia2,
and hspEAsia were included in the three Asia continent groups
G2, G3, and G4 (Figures 1E,F), while hspEuropeColombia fell in
two south America groups, G26 and G35. Similarly, hpAfrica1,
hspMiscAmerica, and hspAfrica1NAmerica were mapped to a
mixed group G37. The comparison with hp and hsp clusters
enhanced the validity of our typing method.

Comparing With Seven-Gene MLST
Seven-gene MLST was implied to get the sequence types (STs)
for all 1,211 isolates. Unfortunately, due to the high mutation
rate of the H. pylori strains, most of the seven-gene allele
were only found to have high similarity instead of an accurate
type, as a result, a large number of isolates (n = 876, 72.3%)
were untyped in our dataset (Supplementary Table 1 and
Figure 1). Among all the countries, Australia and Switzerland
were the two countries with a higher number of untyped isolates,
which is probably due to the isolates being collected by those
two countries having not been submitted to the pubMLST
website to be typed.

A User-Friendly Typing Website
To support our H. pylori geographic typing tool, a user-
friendly typing website was established and made available at
https://db.cngb.org/HPTT/. Our HpTT approach is compatible
with any whole-genome sequencing (WGS) data with metadata
(Figure 4). For the sequencing data from pure-cultured isolates,
the assembled genomes can be directly submitted to our website.
However, it is worth noting that sequences or assembled
genomes needed to be extracted from metagenome samples
before submission (Parks et al., 2017; Olekhnovich et al., 2019).
Except for the sequenced genome data, the available assembled
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FIGURE 2 | Geographical clustering of H. pylori continent clades. The number in each cube represents the percentage of unique isolates sourced from each of the
continents. A total number of 37 continent-level groups were defined. The deeper the color, the higher the percentage of the isolates in that continent level of clade
groups. A phylogenetic tree is also shown on the left side of the table. Background information on the isolates is provided in Supplementary Table 1.

contigs from NCBI Sequence Read Archive (SRA) or assembly
database (RefSeq), or other genome databases (e.g., European
Nucleotide Achieve) can also be directly uploaded to our website.
By using MUMmer alignment and blast process, the uploaded
genome can be located to the closest matching genomes, further
facilitating the possible transmission route analysis across the
globe. In addition, our database can be also linked to the NCBI
genome database, helping the user easily locate the metadata
information from the available database (see Supplementary
Material).

Except for the typing tool, the Nextstrain framework was
also embedded in our website. By clicking the uploaded genome
number, information can be linked to the phylogenetic tree with
the corresponding continent and country. Possible evolution

relationships and interactive located functions have made our
typing tools easy to be applied and understood.

The Validation of Our Genomic Typing
Method
For validating the accuracy of the genomic typing method and
the efficiency of the web tool, ten new genomes from NCBI
were downloaded and tested (Supplementary Table 2). Except
for one genome (GCF_002206465.1), which failed due to being
sequenced by Pacbio, the remaining nine genomes were typed
successfully [Our typing tool was established based on the
MPS (Massive Parallel Sequencing) data, Pacbio sequencing may
generate many SNPs in the gap region in MPS sequencing].

Frontiers in Microbiology | www.frontiersin.org 6 August 2021 | Volume 12 | Article 68725985

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-687259 August 2, 2021 Time: 12:8 # 7

Jiang et al. Whole-Genome-Based Helicobacter pylori Typing Tool

FIGURE 3 | Geographical clustering of H. pylori country subclades. The number in each cube represents the percentage of unique isolates sourced from each of the
countries in that continent group. A total number of 216 country-level groups were defined. The deeper the color, the higher the percentage of the isolates sourced
from that country in continent-level groups. Background information on isolates is provided in Supplementary Table 1.

DISCUSSION

The epidemiological patterns of H. pylori isolates have been
reported with specific geographic characteristics. In this study,
the new typing webtool HpTT not only illustrated the population
structure of H. pylori but also made genomic typing easy
to approach. In the continent level of typing, 1,112 isolates
were grouped into 37 continent-specific patterns. Except for 12
continent mixed groups, the rest could be defined as continent-
specific groups across the five continents. Isolates from Europe
and Oceania were universally found in most of the continent-
level groups (Europe 33/37, 89.19% and Oceania 26/37, 70.27%),
illustrating that isolates from these two continents were widely
spread across the world.

In the country level of typing, 1,045 isolates were grouped
into 216 country-level groups. Most of the isolates were defined
as country-specific groups (168/216, 77.77%), while the rest of
the isolates were grouped as country mixed groups (48/216,
22.22%). Australian and Swiss isolates were found to be
widespread around the world, while isolates from Columbia were
more regionally specific. It has been reported that H. pylori
in South America were originally transmitted from Spain

(Muñoz-Ramírez et al., 2017), this data perfectly aligned with our
results in G35.C05 and G35.C07, giving support to the accuracy
of our genomic typing method.

The phylogenetic tree in this study was built by the collection
of H. pylori genomes downloaded from the NCBI Refseq
database. Ideally, all the isolates would be able to be grouped
into different geographic groups, but there are still a few isolates
that cannot be grouped by our typing tool due to the following
reasons: (1) They have not spread after forming independent
evolutionary branches, (2) After spreading, their offspring have
not been collected and sequenced.

H. pylori show high and fine (∼40 bp patch) intergenic
recombination (Bubendorfer et al., 2016), which leads to sharing
patches of genome sequences and makes the phylogenetic
relationship obscure. Special methods have been developed to
infer a population structure based on this sharing (Yahara
et al., 2013). Although such typing methods are built based
on core SNPs that cannot accurately trace the origin of
the isolates comparing to a recent comprehensive study of
H. pylori (Muñoz-Ramírez et al., 2021), we established a
simple, rapid, and user-friendly genetic-geographic typing tool
in the population structure description. The core SNPs of
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FIGURE 4 | The HpTT workflow. The SNP-based genotyping approach can be used with the Whole Genome Sequencing (WGS) data, which can be acquired in the
following ways: DNA can be extracted from a pure cultured bacterial cell with WGS data or a community sample with metagenomic sequencing data. After being
sequenced by an appropriate platform, the assembled genomes can be directly submitted to our database. In addition, the public assembled data can also be
directly submitted to our database. The downstream analyses of the aligned sequence data can be linked to the phylogenetic and geographic page.
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1,211 H. pylori genomes were filtered with a minimum mapping
quality cut off at 0.90, which means the individual indels for
isolates were not kept. Our typing method has been further
validated by testing genomes, suggesting that the typing tool was
successfully established.

The addition of 7-gene MLST to our database intended to
offer an easy way for users to visualize both results from our
typing method and 7-gene MLST with comparisons. The large
set of untyped isolates in 7-gene MLST might be related to
the insufficient submission of genomes to pubMLST. In our
typing database, isolates collected from Australia and Switzerland
were scattered across different regional groups, which might be
due to the frequent transmission event that occurred between
Australia/Switzerland and other countries.

In this study, except for the novel typing tool, a user-friendly
website was also established. By using this typing tool, users
can achieve fast and precise genomic typing, easily locating the
possible origins and transmission events across the world. When
located in the actual geographic group, it is easy for users to check
the details of the corresponding components of the branches in
our database. The genome with the highest identity can be easily
linked to the NCBI database as well as the visualization tool
where the dynamic evolution of H. pylori was shown. At the same
time, seven-gene MLST results were displayed for each genome
in the database, as well as the hp groups and hsp subgroup results
studied previously (Kawai et al., 2011; Yahara et al., 2013).

The most interesting part of the HpTT tool and methodology
allows us to perform genome typing with assembled genomes
from the metagenomics samples, as illustrated in Figure 4. Due
to the rapid mutation of H. pylori, it is most likely that the sample
from one’s gut is heterogeneous. Whole-genome sequencing by
combining sequencing libraries labeled with different barcodes
on a meta sample, and a cultured pure isolate could yield
enough data from one single run to perform the epidemiological
surveillance of H. pylori on a global level to find the possible
transmission event in evolution profile. An open-source assay
protocol will be developed and shared in the future to combine
with this HpTT tool to enable the epidemiological surveillance of
H. pylori.

Although our typing tool filled a gap in the genetic
epidemiological surveillance of H. pylori, some functions still
need to be improved. For example, cytotoxin-associated gene A
(cagA) and vacA were two crucial genes that were reported to
be correlated with geographic patterns of H. pylori (Yamaoka,
2009; Breurec et al., 2011). The cagA gene is one of the most
important virulence genes in H. pylori, located at the end
of a cag pathogenicity island (cag PAI) that encodes 120–
145 kDa CagA protein (Šterbenc et al., 2019). Another virulence
factor was vacuolating cytotoxin encoded by the gene vacA
(Šterbenc et al., 2019). The variation of these two genes was
widely reported by the H. pylori groups that can reflect the
genomic difference for different geographic patterns. However,
such a rapid typing method on a website for these two genes
is still lacking, which could be considered in the further
HpTT version 2.

H. pylori are normally treated by antibiotics without
antimicrobial susceptibility testing (Pohl et al., 2019).

Antibiotics-resistant H. pylori has been reported related
to several mutations within the genes pbp1A, 23S rRNA,
gyrA, rdxA, frxA, and rpoB (Domanovich-Asor et al., 2021).
These antibiotics-resistant genes will be included in the
second version despite there already being an antibiotics-
specific resource available (Yusibova et al., 2020). As more
strains or isolates are being deposited into our database
along with geographic information, HpTT could be more
powerfully associate genomic typing with geographic
information and phenotypes.

In summary, this work illustrates efforts in a global
epidemiological study of H. pylori isolates. Two functions were
designed for the web typing tool, one for genomic typing and
the other for phylogenetic and geographic visualization. The
accuracy of our genomic typing system was proved by ten unused
genomes as well as in another published study (Muñoz-Ramírez
et al., 2017). Together with the visualization tool, the genomic
population structure of H. pylori with geographic documents
were described. Future studies will be expanded by the crucial
virulence gene and antibiotic-related genes. This tool is beneficial
for the surveillance of H. pylori for public health and the
monitoring of its epidemic development.
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Minimal inhibitory concentration (MIC) is defined as the lowest concentration of an
antimicrobial agent that can inhibit the visible growth of a particular microorganism after
overnight incubation. Clinically, antibiotic doses for specific infections are determined
according to the fraction of MIC. Therefore, credible assessment of MICs will provide a
physician valuable information on the choice of therapeutic strategy. Early and precise
usage of antibiotics is the key to an infection therapy. Compared with the traditional
culture-based method, the approach of whole genome sequencing to identify MICs can
shorten the experimental time, thereby improving clinical efficacy. Klebsiella pneumoniae
is one of the most significant members of the genus Klebsiella in the Enterobacteriaceae
family and also a common non-social pathogen. Meropenem is a broad-spectrum
antibacterial agent of the carbapenem family, which can produce antibacterial effects
of most Gram-positive and -negative bacteria. In this study, we used single-nucleotide
polymorphism (SNP) information and nucleotide k-mers count based on metagenomic
data to predict MICs of meropenem against K. pneumoniae. Then, features of 110
sequenced K. pneumoniae genome data were combined and modeled with XGBoost
algorithm and deep neural network (DNN) algorithm to predict MICs. We first use the
XGBoost classification model and the XGBoost regression model. After five runs, the
average accuracy of the test set was calculated. The accuracy of using nucleotide
k-mers to predict MICs of the XGBoost classification model and XGBoost regression
model was 84.5 and 89.1%. The accuracy of SNP in predicting MIC was 80 and
81.8%, respectively. The results show that XGBoost regression is better than XGBoost
classification in both nucleotide k-mers and SNPs to predict MICs. We further selected
40 nucleotide k-mers and 40 SNPs with the highest correlation with MIC values as
features to retrain the XGBoost regression model and DNN regression model. After 100
and 1,000 runs, the results show that the accuracy of the two models was improved.
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The accuracy of the XGBoost regression model for k-mers, SNPs, and k-mers & SNPs
was 91.1, 85.2, and 91.3%, respectively. The accuracy of the DNN regression model
was 91.9, 87.1, and 91.8%, respectively. Through external verification, some of the
selected features were found to be related to drug resistance.

Keywords: Klebsiella pneumoniae, minimum inhibitory concentration, meropenem, XGBoost, deep neural
network

INTRODUCTION

Klebsiella pneumoniae is a member of thew enterobacter
Klebsiella; it is a Gram-negative bacterium that causes one-
third of all Gram-negative infections (Navon-Venezia et al.,
2017). Over the past two decades, K. pneumoniae has undergone
complex evolution, with the emergence of many high-risk, highly
infectious sequence types, resulting in the sustained global spread
of K. pneumoniae (Navon-Venezia et al., 2017). In addition
to widespread transmission, the increase in drug resistance in
K. pneumoniae is also an important issue. Many studies and
reports indicate that antimicrobial resistance (AMR) strains of
K. pneumoniae have increased at an alarming rate in recent years
(Long et al., 2017; Navon-Venezia et al., 2017).

Carbapenem antibiotics play an important role in
the treatment of severe infections of drug-resistant
Enterobacteriaceae, and the increase of drug resistance of
K. pneumoniae and the emergence and spread of drug-resistant
strains pose a serious threat to public health (Spagnolo et al.,
2014). In fact, carbapenem antibiotic resistance in K. pneumoniae
has emerged many years ago and has spread widely around the
world (Spagnolo et al., 2014). Recent studies have shown
that the resistance rates of K. pneumoniae to aztreonam,
ceftazidime, ciprofloxacin, cefotaxime, cefepime and imipenem
are more than 50% (Effah et al., 2020). Meropenem has good
in vitro anti-K. pneumoniae properties and is likely to have
optimal bactericidal efficacy for the treatment of K. pneumoniae
(Baldwin et al., 2008).

Meropenem belongs to the carbapenem class of antibiotics
and is one of the widely used antibiotics for the treatment
of K. pneumoniae infections, with broad-spectrum in vitro
resistance to both Gram-positive and Gram-negative pathogens
(Navon-Venezia et al., 2017). It readily penetrates the cell
walls of most Gram-negative and -positive bacteria to reach its
target penicillin-binding protein (PBPS) and exhibits stability
to hydrolysis by most β-lactamases, including penicillinases
and cephalosporinases produced by Gram-positive and Gram-
negative bacteria (Navon-Venezia et al., 2017).

In addition to the selection of antimicrobial agents, the
timing and dosage of effective antimicrobial agents are also
very important. In general, treatment is most effective when
effective antibiotics are administered early. In a study of patients
with infectious shock, there was a strong relationship between
time to effective antimicrobial drug onset and in-hospital
mortality (corrected ratio 1.119 per hour delay) (Pesesky et al.,
2016). Neither too high nor too low a dose of antibiotics
is the optimal treatment regimen: too high may result in
increased resistance to K. pneumoniae, and too low will

not achieve the desired effect of treatment with antibiotics.
The minimum inhibitory concentration (MIC) indicates the
appropriate dosage of antibiotics. MIC is an important index
to measure both the effectiveness of antimicrobial agents and
bacterial resistance to drugs.

Treatment with the optimal dose of effective antibiotics
as soon as possible after the infection is the key to curing
K. pneumoniae infection. Therefore, the time required to
determine the MIC is an important factor to determine whether
antibiotics can be used in the early stage of infection. There
are many traditional methods of MIC determination, such
as spatial gas chromatography methods for antimicrobial
screening, electronic testing methods, and traditional petri
dish measurement methods. However, traditional methods
often take 18 to 24 h or even more. In order to meet the
demand for antibiotic therapy, we need to find newer,
faster, and more accurate techniques for detecting the
MIC of antibiotics.

In recent years, many researchers used machine learning
methods to build models that can predict MIC value more
quickly and accurately (Li et al., 2016, 2017; Eyre et al.,
2017; Nguyen et al., 2018; Pataki et al., 2020). These papers
presented the methods and models that were used to
predict the MICs of K. pneumoniae (Nguyen et al., 2018),
antibiotic moldus of Neisseria gonorrhoeae (Eyre et al.,
2017), Streptococcus pneumoniae (Li et al., 2016), non-
typhoid Salmonella (Nguyen et al., 2019), and Escherichia
coli (Pataki et al., 2020).

A previous study has built XGBoost machine learning
models to predict MICs for a comprehensive population-
based collection of clinical isolates of K. pneumoniae,
which was able to rapidly predict MICs for 20 antibiotics
with an average accuracy of 92% (Nguyen et al., 2018).
According to this, our study is dedicated to constructing
models that can predict MICs for Meropenem treatment of
K. pneumoniae more accurately and analyzing features that
are highly correlated with MIC prediction and externally
validating these features.

In this study, we first obtained single-nucleotide
polymorphism (SNP) information and nucleotide k-mers
(k = 6, 8, 10) counting information based on metagenomic data
of K. pneumoniae sequence analysis and then trained the dataset
with three machine learning and deep learning methods –
XGBoost classification method, XGBoost regression method,
and deep neural network (DNN) regression method – and finally
compare the prediction results of the three methods and select
the features that are highly related to MIC to construct a new
prediction model to achieve higher prediction accuracy.
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MATERIALS AND METHODS

Data Collection
Two types of data were included in our study: K. pneumoniae
metagenomic sequences, and the related MIC values of the
antibiotic meropenem. The metagenomic data were pre-
processed as tables of k-mers and SNPs for further model
construction and prediction. Sequenced K. pneumoniae genome
data used in this study can be downloaded via BioProject
with access numbers PRJNA376414, PRJNA386693, and
PRJNA396774. We collected data related to the antibiotic
meropenem with complete sequence information and correct
scaffold assembly, and finally, the 110 genome was involved in
the study. The SRA access number for each genome is shown in
the supplementary table.

HS112861 was selected to be our reference genome for
SNP calling. The table file with SRA ID and MIC values for
meropenem was downloaded from the supplementary materials
attached from Nguyen et al. (2018).

For sequence data, the fastq-dump tool SRA Toolkit was used
(with -I –split-files parameters). SPAdes (Bankevich et al., 2012)
was then used to (with −1, −2 and -o parameters) assemble the
pair the end sequence for each sample. Finally, the assembled
scaffold.fasta files were mapped to the reference genome to obtain
k-mers and SNP information.

Data Pre-processing
Nucleotide k-mers
In the study, 110 assembled genome scaffold files were processed
to produce matrices of k-mers features. For each genome, we
cut the scaffold sequences starting from the first nucleotide with
6-, 8-, and 10-nucleotide window lengths, respectively. For the
following cuts, starting points of the windows move forward
with one nucleotide each time until the sequence ends. Finally, a
matrix with 110 rows and 559,494 columns of 6, 8, and 10 length
nucleotide fragments were created for model training.

Calling SNPs
According to studies by Yang et al. (2018, 2019), SNPs resistant to
Mycobacterium tuberculosis were used as features for prediction.

We extracted SNPs from the whole gene to find the resistant
SNPs. For SNP calling, the raw 110 K. pneumoniae metagenomic
samples were mapped to the HS11286 (“see text footnote 1”)
reference genome with single end reads mode, and then reads of
the 110 genome samples were mapped to the reference genome
using samtoolsv1.9 (Bonfield et al., 2021) and resulting in 110.vcf
files. Further filtering was conducted using bcftools v1.10 (Li,
2011) (with parameters %QUAL ≥ 50 & DP ≥ 20). Finally,
a combined matrix of the combined SNPs with 110 rows and
164,138 columns was obtained. The columns of the matrix
represent the concatenation of the SNP positions compared
to the reference genome, where a sample with a mutation at
that position was marked as 1 and those without mutations
were marked as 0.

1https://www.ncbi.nlm.nih.gov/assembly/GCF_000240185.1

EXtreme Gradient Boosting (XGBoost)
Model Development
XGBoost
EXtreme Gradient Boosting (XGBoost) algorithm is an optimized
distributed implementation of gradient boosted decision trees,
designed for computational speed and higher performance. Since
its initial release in 2014 (Chen and Guestrin, 2016), in the
past few years, XGBoost has been applied to a number of
biomedical problems.

As an implement machine learning algorithm under the
gradient boosting framework, the starting point of XGBoost is
decision trees. However, here, each tree is fitted to the residuals
(prediction errors) of the previous tree in order to gradually
minimize the deviations between the model and the observed
target data. This is done by giving more weight to the poorly
modeled cases. In contrast to the Random Forest model, the trees
are thus not independent of each other. Besides the different
random samples, this is additionally achieved by the fact that
not all predictors are available for selection at each branching,
but only a randomly chosen subset, and get exceptionally
high performance for regression as well as classification tasks.
Classification trees are used to identify the class/category within
which the input variables would most likely fall, while regression
algorithms are suitable for continuous variables, and the tree is
used to predict the value.

XGBoost algorithm has gradient boosting at its core. However,
unlike simple gradient boosting algorithms, the XGboost model
takes a parallelization approach in the process of sequential
addition of the weak learners, whereby proper utilization of the
CPU core of the machine is utilized, leading to greater speed and
performance (Santhanam, 2016). Moreover, it is a distributed and
scalable computing method that is available for large datasets.

Moreover, one benefit of the gradient boosting model is that
for different loss functions, new algorithms are not required to be
derived; it is enough that a suitable loss function be chosen and
then incorporated with the gradient boosting framework.

Model Training
We used XGBoost to train both classification and regression
models, respectively; several predict models were built
depending on data type.

For k-mers data, the occurrence times of each k-mer in each
sample were counted, and we used all possible segments as
features and mapped the number of k-mers to [0, 1] with Min–
Max normalization. For SNPs data, features were characterized by
binary number as zeros and ones of all mutation sites. The data
were divided into training and test set as 8:2.

Our XGBoost models were set as tree-based structure
(with booster = “gbtree”), and GridsearchCV was applied for
hyperparameter tuning. In order to prevent the XGBoost training
process from generating too many trees, which causes the
machine learning model to eventually overfit, we use fivefold
cross-validation to select the most appropriate number of
iterations; the value of booster_round is used as the num of
XGBoost booster_round parameter, which is brought into the
model training. Also, considering that our dataset is on the small
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side, using cross-validation also allows training with as much
data as possible.

We first trained the XGboost multi-classification model, with
the objective parameter Multi: Softmax. Input samples are fed
into the generated XGBoost tree, and the leaf to which the sample
belongs is found in each tree; the belonging weight is then added
to obtain the predictions. As it is a multiclass classification model,
we set 17 categories as classification labels to train the model,
with a minimum MIC value of 0 and a maximum MIC value of
16, equally divided into 17 intervals. The prediction results are
obtained by the softmax function, as probabilities of belonging to
a certain MIC interval. For the regression model, the objective
parameter of XGboost is Reg: Gamma, as MIC values can be
regarded as gamma-distributed. The MICs of each sample were
used as label of model training.

To prevent the XGBoost training process from generating
too many trees and causing the machine learning model
to be overfitted, we use fivefold cross-validation to
find the most appropriate number of iterations (num
_booster_round = “2000”) to the model training. In addition,
using cross-validation also allows us to use as much data as
possible for training, considering our small dataset. Also, the
maximum depth of the tree, max_depth, was set to 6, and the
proportion of random sampling, subsample, is 0.6.

The accuracy of the model was determined by the absolute
value of the difference between the log2-transform of the
predicted values and the true values.

DNN Model Development
DNN
Deep learning is a concept for an approach to artificial
intelligence called neural networks, and the DNN model is a basic
deep learning framework. As a particular class of artificial neural
networks with fully connected architecture, between the input
and the output layer, there is an arbitrary number of hidden layers
(Zador, 2019).

In principle, neural networks usually consist of four
components: The input layer, the hidden layer(s), the output
layer, and edges that connect the individual layers. More
precisely, the edges connect individual nodes within the layers,
whereby each transfer functions as a kind of container for a
numerical value. The edges between the nodes have weights that
define how the input is calculated across the edge to the next
node. The arrangement of these components depends on the type
and purpose of the network. Thus, the main difference between
DNN and classical machine learning methods is the ability to
process unstructured data through artificial neural networks
(Dargan et al., 2019).

Model Training
To further improve the performance of MIC prediction, we
assessed the importance of k-mers and SNPs, respectively, based
on the previous XGBoost model. We ranked all k-mers and SNP
features using f-score as standard, and we found that the f-score
values of k-mers and SNP features that were ranked in top 40
were greater than 1, while the others were not that significant.
Thus, for the DNN method, the top 40 most important k-mers

and SNPs were selected as features for the deep learning-based
modeling. We established the following three models to predict
MIC value: k-mers model, SNPs model, and k-mers & SNPs
model. Our overall work flow of MIC prediction modeling is
shown in Figure 1.

The DNN model with k-mers and SNP inputs uses a Dense
neural network framework, where the top 40 most important
features for predicting MIC values are fed into a 128-unit Dense
layer with a relu activation function to train the DNN model.
Similarly, on the test set, the absolute value of the difference
between the log2 transform of the predicted value and the true
value is used as the basis for assessing the accuracy of the model.

In particular, for the k-mers & SNPs input, we use a combined
Dense + LSTM model frame. More specifically, for the top
40 characteristic k-mers data selected by the previous model,
input the Dense layer and then input the selected top 40
feature data from the SNP site into the LSTM layer. The Dense
layer and the LSTM layer are combined as the model input to
train the DNN model.

RESULTS

We first used the XGBoost classification model and made five
predictions using KMER (110 samples ∗ 559,494 k-mers features)
and SNPs (110 samples ∗ 164,138 SNPs features) data. For each
experiment, we set different random states from 1 to 5. Similarly,
the XGBoost regression model was used to make five times
predictions for both k-mers and SNPs data. The random states
parameter was taken from 1 to 5 in order to maintain consistency

FIGURE 1 | Work flow of MIC prediction modeling.
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FIGURE 2 | Boxplots with jittered data points of XGBoost prediction accuracies for all features. It can be seen that the results of XGBoost regression are better than
the classification and that XGBoost performed better with the k-mers characteristics than it with SNPs.

in the splitting of the dataset for comparative analysis of the
results. A comparison of the prediction accuracies of the models
was then performed. The Boxplot grouping in Figure 2 shows
the accuracy values for each of the five predictions, and Table 1
shows their mean accuracy. From these results, it is clear that the
XGBoost regression model predicts better than the classification
model, for both k-mers and SNPs data. In addition, in terms
of the input feature type, XGBoost predicted k-mers data with
better accuracy than SNPs, possibly related to the fact that SNPs
is a binary input of 0 and 1. The mean predictive accuracy of
the XGBoost classification model for SNPs was 0.8, while the
mean accuracy of the XGBoost regression model for k-mers
reached 0.8909091.

The top 10 important features of the classification and
regression models with k-mers and SNPs data were statistically
analyzed, respectively, and presented in the bar chart in Figure 3.
As can be seen from the figure, the top 10 features of the five
attempts did not completely coincide, but some common features
can be found. For example, for k-mers’ classification model,
CGACAGTCTC appears in all five runs, GACTCCTAGC appears
four times in k-mers’ regression model, and A2872728 and
G17357 also appear four times each in SNPs’ regression model.

To further optimize the model, the k-mers and SNPs top
40 feature datasets were taken for modeling and prediction by
XGBoost regression and DNN regression, respectively. In order

TABLE 1 | Mean prediction accuracies of the XGBoost algorithm using all features
of k-mers or SNPs (five times).

XGBoost k-mers SNPs

Classification 0.845 0.800

Regression 0.891 0.818

to enhance the reliability of the results, we used the XGBoost
regression algorithm to model and predict all the features of
k-mers and SNPs for another five times (the random_state
parameter of the train_test_split function was taken from 6 to 10),
and we also took their top 40 feature datasets for the XGBoost
regression and DNN regression modeling. The top 40 feature
datasets were also taken for the XGBoost regression and DNN
regression modeling predictions.

Next, we ran the XGBoost regression model 10 times, and
for the top 40 feature dataset for each experiment, we ran the
XGBoost regression prediction 10 times (random states from 1 to
10). The Boxplot grouping in Figure 4 shows the accuracy values
for each of the 100 predictions, and Table 2 tallies their mean
values. The XGBoost regressions for k-mers, SNPs, and k-mers &
SNPs data had prediction accuracies of 0.9113636, 0.8522727, and
0.9127273, with the lowest predictive accuracy for SNPs and the
best for k-mers & SNPs. Overall, the XGBoost regression model
predicted the top 40 feature dataset better than the predictions
for all feature datasets, for both k-mers and SNPs (Tables 1, 2).
We show the y-test and y predicted values for all 100 predictions
and see that the predicted values largely fluctuate around the true
values (Figure 5).

Similarly, for the DNN model, the top 10 important features
selected by XGBoost were trained for a total of 100 times
of random resolution, respectively. The Boxplot grouping in
Figure 6 shows the accuracy values of 1,000 times of prediction,
and their average values are calculated in Table 3, and the test and
predicted values for all 1,000 predictions are shown in Figure 7.
Regressions for k-mers, SNPs, and k-mers & SNPs had prediction
accuracies of 0.9189091, 0.8705455, and 0.9177273, respectively,
with the lowest prediction accuracy for SNPs and very similar
prediction accuracies for k-mers and k-mers & SNPs, all of which
were relatively high.

Frontiers in Microbiology | www.frontiersin.org 5 August 2021 | Volume 12 | Article 71288695

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-712886 August 23, 2021 Time: 11:29 # 6

Tan et al. AI Methods to Predict MICs

FIGURE 3 | Horizontal barplots for the top 10 important features of XGBoost classification and regression models.

FIGURE 4 | Boxplots with jittered data points of XGBoost prediction accuracies for top 40 features. Since 10 × 10 = 100 modeling predictions were made, the
results of 100 predictions in each box could be seen in XGBoost’s comparison with k-mers, SNPs, and k-mers & SNPs.

For regression models, the mean square root of the error
between the predicted and true values (RMSE) is usually used as
a model evaluation metric, and the coefficient of determination
(R2) is used to indicate how well the model predicts the true
value compared to the mean value model. We calculated the
RMSE and R2 values of our XGBoost and DNN models. For

our XGBoost models, the RMSE values were 1.734, 2.781, and
1.717, and R2 values were 0.860, 0.640, and 0.863, respectively
(Figure 5). The RMSEs of the DNN models were 1.955, 2.179,
and 2.045 and the R2 values of the DNN model were 0.836, 0.796,
and 0.820 (Figure 7). R2 is an indicator used in regression models
to evaluate the degree of agreement between the predicted value
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TABLE 2 | Mean prediction accuracies of the XGBoost algorithm using top 40
features of k-mers or/and SNPs (10 × 10 times).

XGBoost (Top 40) k-mers SNPs k-mers & SNPs

Regression 0.911 0.852 0.913

and the actual value, with a maximum value of 1. It can be seen
that, overall, our models fit well.

In summary, our analysis showed that the XGBoost
classification model reached over 80% prediction accuracy, and
the model with k-mers data gave better results than SNPs inputs.

Compared with the XGBoost classification model, the overall
performance of the XGBoost regression model is improved
(89.1 and 81.8% for k-mers and SNPs data, respectively). The
MIC value is continuously distributed, and the effect of the
regression model may be more realistic. DNN neural network

TABLE 3 | Mean prediction accuracies of the DNN algorithm using top 40 features
of k-mers or/and SNPs (100 × 10 times training).

DNN (Top 40) k-mers SNPs k-mers & SNPs

Regression 0.919 0.871 0.918

FIGURE 5 | Scatter plots of true test values and predicted values of MIC using XGBoost algorithm for top 40 features (left for k-mers, middle for SNPs, and right for
k-mers & SNPs). As the original y-value was discrete, several horizontal lines were presented in the figure. The predicted values were clustered around these lines’;
RMSE and R2 values were also calculated and shown at the top of the figure.

FIGURE 6 | Boxplots with jittered data points of DNN prediction accuracies for top 40 features (100 × 10 times training).
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FIGURE 7 | Scatter plots of true test y-values and predicted y-values using DNN algorithm for top 40 features (100 × 10 times training). The predicted values were
clustered around these lines; RMSE and R2 values were also calculated and shown at the top of the figure.

models perform better in predicting MIC values with improved
overall accuracy compared to XGBoost models. On the other
hand, the k-mers and SNPs top 40 feature dataset was sufficient
to obtain good prediction results (above 85% accuracy), with
k-mers and mixed k-mers & SNPs features performing well and
the DNN regression model performing better than the XGBoost
regression approach.

DISCUSSION

Based on metagenomic data, in this study, sequence analysis was
used to obtain SNPs information and nucleotide k-mers count
information queue data; machine learning and deep learning
methods were then applied to establish a prediction model for the
MIC value of K. pneumoniae. By feature selection, we proposed
a top 40 feature-based regression model, which had the best
predictive performance of 91%.

First, according to Naha et al. (2021) and Okanda et al.
(2020), we found that gene mutations may affect drug resistance
of Klebsiella; thus, we tried to find the relevant sites affecting
resistance by calling SNPs. After pre-processing the raw data
by using biogenetics tools BWA, BCFTools, and SamTools, we
obtained a matrix of mutation site and sample list. We took the
mutated gene site as the features and built the machine learning
model of classification and regression, respectively. We used 110
samples for prediction, and the prediction results above show that
the mean accuracy of the SNPs classification model was 80% and
the mean accuracy of the SNPs regression model was 81.81%,
which shows that the performance of the regression model is
better than the multi-classification model. Then, based on the
method previously described by Nguyen et al. (2019), we created
both XGBoost classification and regression models using k-mers
counts as input features, respectively, and made MIC predictions
for 110 samples. As described above, after five runs, we obtained
a mean accuracy of 84.54% for the k-mers classification model

and 89.09% accuracy for the k-mers regression model. This result
again shows that the multi-classification model does not perform
as well as the regression model. In addition, the prediction
of MIC values using SNPs loci was less effective than that of
k-mers prediction, which may be due to the fact that the input
to the SNPs is binary data with only mutated (labeled as 1)
and unmutated (labeled as 0) features, while the input to the
k-mers counting model are continuous variables, making it more
effective for regression model training.

To evaluate our model, we compared MIC prediction models
built by related studies. In the study by ValizadehAslani et al.
(2020), the authors used the XGBoost model with k-mers
features, and the result shows an accuracy of around 91% in
predicting the MIC value of meropenem against K. pneumoniae,
which was close to our results. Another study by Nguyen
et al. (2019) also used the XGBoost model to predict MICs for
non-typhoidal Salmonella, resulting in an average accuracy of
90% without a large number of samples. We decided to try
more advanced deep learning approach for prediction. As the
K-mers and SNPs had too many feature values, and the neural
network could not accept features with too high dimensions,
we selected some of important features as the training data to
avoid overfitting.

The XGBoost regression model gives a score of importance
for each feature during the training process. We selected
the top 40 highest scores from the k-mers and the SNPs
regression model, respectively, and then we used these total
80 important features as a new dataset, to predict MIC values
using both XGBoost and DNN algorithms. In consideration
of training time and server capacity, we only use regression
models for prediction.

Comparing the results in Tables 2, 3, the DNN model
performs better than the classical XGboost machine learning
approach in predicting MIC values, with a slight improvement
in both accuracy rates. However, the reason for the small
improvement may be due to the fact that only important features
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were selected for training and the overall amount of sample size
was relatively small. In addition, the prediction accuracy of the
model improved by combining the significant features of k-mers
and SNPs to produce a new dataset than training with a single
type of feature.

We found the annotated.gff file of the reference genome
from NCBI and the paper on the whole gene analysis of the
reference genome HS11286 by the team of Liu (Liu et al.,
2012); the K. pneumoniae resistance genes were found from
this paper and we identified loci belonging to these gene
fragments from important features in the SNPs model. The
pKPHS3 was mentioned in the study (Liu et al., 2012) as
possessing 13 important resistance determinants, such as tetG,
cat, sul1, dfra12, aac(3)-Ia, and aph. Genes were found among
the important features of our SNPs, such as site T37808,
which belongs to the tetG gene family, an important gene
family that influences tetracycline resistance. This demonstrates
that the important feature values obtained from our model
training may help us to understand the reasons for the
development of resistance, and why there are anti-tetracycline
resistance genes present due to the presence of tra isoconjugate
transfer genes in pKPHS2 and pKPHS3, which is the type
of gene that causes resistance to spread between genera (Liu
et al., 2012). Moreover, meropenem belongs to the class of
beta-lactam antibiotics, which are classified as carbapenems.
According to Reyes et al. (2019), the most common resistance
mechanism of K. pneumoniae to carbapenem antibiotics is
the production of enzymes with carbapenemase activity, which
hydrolyze beta-lactam antibiotics, while we also identified
mutations in the beta-lactamase gene from important features
in SNPs models, such as C1114518 and G1114674; i.e.,
mutations in the beta-lactamase gene may be responsible for the
high MIC values.

In summary, we found that there are still a lot of genes
in Klebsiella that belong to hypothetical proteins, and the
loci we derived from this study can help to annotate and
study these hypothetical proteins. Furthermore, in clinical
practice, deep learning-based modeling and prediction by
selecting important feature values can significantly improve
detection efficiency compared to experimental methods of
measuring MIC values, providing doctors with a faster access
to information on patient resistance for drug administration
and improving the effectiveness of antibiotic use, enabling
patients to receive medication promptly. It also reduces the cost
of the experiment.
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The lack of control over the usage of antibiotics leads to propagation of the microbial

strains that are resistant to many antimicrobial substances. This situation is an emerging

threat to public health and therefore the development of approaches to infer the presence

of resistant strains is a topic of high importance. The resistome construction of an

isolate microbial species could be considered a solved task with many state-of-the-art

tools available. However, when it comes to the analysis of the resistome of a microbial

community (metagenome), then there exist many challenges that influence the accuracy

and precision of the predictions. For example, the prediction sensitivity of the existing

tools suffer from the fragmented metagenomic assemblies due to interspecies repeats:

usually it is impossible to recover conservative parts of antibiotic resistance genes that

belong to different species that occur due to e.g., horizontal gene transfer or residing on a

plasmid. The recent advances in development of new graph-based methods open a way

to recover gene sequences of interest directly from the assembly graph without relying

on cumbersome and incomplete metagenomic assembly. We present GraphAMR—a

novel computational pipeline for recovery and identification of antibiotic resistance genes

from fragmented metagenomic assemblies. The pipeline involves the alignment of profile

hidden Markov models of target genes directly to the assembly graph of a metagenome

with further dereplication and annotation of the results using state-of-the art tools. We

show significant improvement of the quality of the results obtained (both in terms of

accuracy and completeness) as compared to the analysis of an output of ordinary

metagenomic assembly as well as different read mapping approaches. The pipeline is

freely available from https://github.com/ablab/graphamr.

Keywords: antibiotic resistance, assembly graphs, metagenome, profile hidden Markov model, computational

pipeline

INTRODUCTION

Antimicrobial resistance (AMR) is a global health crisis resulting from widespread and
uncontrolled use of antibiotics (Brown andWright, 2016). Therefore, the use of genome sequencing
as a surveillance tool for AMR molecular epidemiology is growing, and the development of new
computational approaches is an important task (McArthur and Wright, 2015).
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Certainly, there are many tools developed recently for
AMR prediction and analysis from WGS data (Boolchandani
et al., 2019). In general, all these tools could be splitted into
two groups: ones that use raw sequencing reads as input,
such as SRST2 (Inouye et al., 2014) that use paired-end-
aware short read aligner to align reads to reference databases
or first splitting reads into k-mers and then aligning them
to databases such as KmerResistance (Clausen et al., 2016).
Another group of tools that use assembled genome fragments
includes Abricate (https://github.com/tseemann/abricate), RGI
(Jia et al., 2017), Resfinder (Bortolaia et al., 2020) among
the others. ARIBA (Hunt et al., 2017) and RGI (Jia et al.,
2017) could utilize both reads and assembled fragments,
however, this does not change in general their approach for
AMR prediction.

The natural limitation of any read-based approach is the input
read length and therefore the precision of such approach might
suffer from the truncated read-gene mappings (depending on
the target AMR gene length). Figure 1 shows the distribution
of AMR gene lengths in the NCBI AMR database (Feldgarden
et al., 2019) with themajority of genes, namely 93%, that are more
than 300 base pairs long. Given that typically the reads produced
by short reads technologies are within 100–300 bp length,
the read-based methods would need to cope with incomplete
alignments of reads to AMR databases or additional techniques
(e.g., overlapping paired-end reads) would be required in order
to correctly cover the genes of interest.

Another approach involves the use of sequences obtained
from raw reads after the genome assembly process. Genome
assembly may overcome the difficulties connected with the
lengths of short reads and allows for reconstruction of fuller
gene sequences, however it still has some limitations on its
own. Possible issues include possible assembly artifacts, increased
computational processing time, etc. Nonetheless, all these issues
could certainly be detected, most of them solved in automatic
fashion and therefore AMR prediction on top of microbial isolate
assembly could be considered a mostly solved problem.

FIGURE 1 | Distribution of AMR gene lengths in the NCBI AMR database.

However, the overall situation is much worse when one would
need to analyse a resistome from an environmental sample,
such as water metagenome, or human-associated sample, e.g.,
gut metagenome. Such assemblies are often very fragmented
due to vastly different species abundance, presence of multiple
strains, interspecies repeats that arise from conservative genes
or genes that underwent horizontal transfer, etc. (Lapidus
and Korobeynikov, 2021). Even more, metagenomic assemblers
typically yield a consensus assembly (Nurk et al., 2017) with
collapsed strain variations complicating the necessary prediction.

As a result, AMR prediction from metagenomic assembly can
show quite low specificity with many important AMR genes
unnoticed (Maguire et al., 2020).

To support this claim we analyzed wastewater and urban
surface metagenomes in Singapore from Ng et al. (2017)
that originally used a read-based approach to construct a
resistome. First example deals with blaIMP beta-lactamase gene
that according to Ng et al. (2017) was absent in the sample.
This is not unexpected given the length of blaIMP gene
cassette of 741 bp (encoding 246 amino acid polypeptide)
(Silva et al., 2002) that certainly could escape from read-
based analysis. Furthermore, additional analysis shows that
the complete sequence of blaIMP is absent in assembled
scaffolds as well, however the blaIMP gene sequence is definitely
present in the sample. This phenomenon could be easily
explained by examining the assembly graph. Figure 2 shows
that the gene sequence of blaIMP is contained in 10 edges
of the assembly graph and 2 scaffolds, hindering assembly-
based analysis.

Sometimes, the gene of interest could be found in contigs,
however, when multiple variants are present, not all of them
could be easily identified from the contigs alone. Figure 3 shows
different variants of the blaCTX−M gene in the assembly graph of
the same sample from Ng et al. (2017). We note that CTX-M-15
variant of the gene is residing on the single contig and therefore
could be easily identified. However, CTX-M-9 and CTX-M-14
variants differ only by 2 amino acids and therefore assembler
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FIGURE 2 | blaIMP sequence in the assembly graph. (A) Gene sequence scattered over 10 edges, (B) Gene sequence is splitted across two scaffolds.

is unable to separate them: CTX-M-14 is scattered across 3
contigs that are joined into single scaffold with gaps and CTX-
M-9 is completely unassembled as its variation with respect to
CTX-M-14 is reported as separate short contigs.

The examples shown above suggest the use of the assembly
graph for AMR prediction from complex metagenome sequences
since it is the assembly graph rather than set of contigs that
represents the “complete” metagenomic assembly result. Even
more, metagenomic assemblers provide both so-called strain
assembly graph with strain variants preserved and consensus
assembly graph with strain variants collapsed (Lapidus and
Korobeynikov, 2021), so one could control the tradeoff between
specificity and complexity of the task.

Finally, to show the possible performance gains from
assembly graph-based approaches we used PathRacer (Shlemov
and Korobeynikov, 2019), a tool that performs profile HMM
alignment to assembly graphs, to align NCBI-AMR (Feldgarden
et al., 2019) set of AMR profile HMMs to the assembly graphs of
samples from Ng et al. (2017) and counted the fraction of HMM
hits that are not residing on the single scaffold. Figure 4 shows
the results obtained. Overall, more than 30% of all HMM hits are
not contained in the single scaffold supporting the idea of using
graph-based tools for AMR prediction.

Motivated by the data shown above we are presenting
GraphAMR—a novel computational pipeline that utilizes
assembly graph of a metagenome for AMR prediction.
GraphAMR uses state-of-art tools to align profile HMMs
representing AMR gene families, extract the sequences
of graph edges that contain HMM hits and uses well-
known AMR-prediction tools to further annotate the
obtained sequences.

PIPELINE ARCHITECTURE

GraphAMR is a pipeline specifically designed for recovery and
identification of antibiotic resistance genes from fragmented
metagenomic assemblies. Briefly, it uses state-of-the-art assembly
graph analysis methods to extract putative AMR gene sequences
from the graph, dereplicates them and delegates the task of actual
prediction to the well-known AMR analysis tools in the field.

The pipeline is implemented using the Nextflow framework
(Di Tommaso et al., 2017; Ewels et al., 2020) that enables scalable,

FIGURE 3 | blaCTX−M paths and their neighborhood. Green path corresponds

to CTX-M-15 variant; blue and red corresponds to CTX-M-9 and CTX-M-14,

respectively.

reproducible and efficient computational workflow. As a result,
the pipeline supports e.g., job submissions on computational
clusters and cloud systems, resume, and notification straight out
of the box.

The pipeline has four steps: (optional) metagenomic de novo
assembly, alignment of AMR profile HMM to the resulting
assembly graph, detection, and clustering of putative AMR ORFs
and annotation of representative AMR sequences (Figure 5). The
first step (assembly) can be skipped, should the assembly graph
in the GFA (https://github.com/GFA-spec/GFA-spec) format
be provided as an input. Such assembly graphs are readily
produced by genome and metagenome assemblers including
SPAdes (Prjibelski et al., 2020), metaSPAdes, and MEGAHIT (Li
et al., 2015).

De novo Assembly
If reads are provided as input, the first step will be quality control
and metagenomic assembly. Sequences QC is performed via
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). The resulting HTML report shows summary graphs
with main characteristics for quality assessment. Metagenome
assembly is done via metaSPAdes (Nurk et al., 2017) and the
resulting assembly graph is used for further analysis.

Profile HMM or AA Sequence Alignment to
Assembly Graph
This is the key step of the pipeline as putative AMR gene
sequences are extracted directly from the assembly graph. For
this the pipeline utilizes Pathracer (Shlemov and Korobeynikov,
2019), a state-of-the-art tool for alignment of HMMs and
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FIGURE 4 | Number of total HMM alignments to graph. The orange section

shows the number of HMM hits residing on the scaffolds, and the green

section shows the number of HMM hits possibly scattered over multiple

scaffolds.

FIGURE 5 | General GraphAMR pipeline scheme.

AA sequences to assembly graph. By default, the NCBI AMR
(Feldgarden et al., 2019) profile HMMs are used, but they could
be replaced by the custom HMMs or gene AA sequences if
necessary. Pathracer produces the set of most probable paths
traversed by a HMM through the whole assembly graph (by
default, up to top 100 by score non-redundant paths, e.g.,
those that are not proper suffixes or prefixes of each other,
are reported). This effectively solves the problem of fragmented

metagenome assemblies as all possible HMM paths (spanned
over multiple contigs) are reported including possible variations
due to multiple strains present, interspecies repeats, etc.

The major caveat here is that HMM alignment does not yield
the complete gene sequence, since, for example, HMM could
be built from the truncated seed alignment, or the alignment
itself could be clipped on the ends. To solve this problem,
instead of alignment itself, we extract the sequence of graph edges
that contain the alignment of interest, effectively extending the
alignment until the edge boundaries.

The output of this stage is the set of unique edge sequences of
the assembly graph containing the alignments of profile HMMs
of AMR genes.

In addition to HMMs, the pipeline also allows alignment of
amino-acid sequences to the graph enabling the use of such AMR
databases as CARD (Jia et al., 2017) or ResFinder (Bortolaia et al.,
2020) directly. To enable the use of such databases, PathRacer
internally builds a “proxy” HMM, so that the alignment of this
HMM would be equivalent to the alignment of the original
sequence using BLOSUM62 scoring matrix.

Dereplication
The output of the previous step might be redundant due to strain
variations, but more because different edge sequences through
the assembly graph might yield the same set of genes in the
case when alignment ends in the node of the graph (recall
that assembly graph is a de Bruijn graph, where subsequent
edges overlap by a k-mer) or if there are multiple paths due
to synonymous substitutions. To dereplicate the results, the
complete ORFs are extracted and further clustered at 90% AA
IDY using MMseqs2 (Steinegger and Söding, 2017). The output
of this step is the set of representative sequences of the resulting
clusters. The dereplication and clustering could be skipped via
setting the IDY clustering threshold as 100%.

Annotation
There is no need to design a completely new AMR prediction
approach given that the major challenges of obtaining putative
AMR sequences from fragmented metagenome assemblies are
solved via the proper utilization of the assembly graph. Therefore,
this step delegates the task of final AMR prediction, annotation,
and result generation to state of the art tools that are well-
known and respected by the bioinformatics community. The
pipeline passes the output of the dereplication stage to abricate
(https://github.com/tseemann/abricate), sraX (Panunzi, 2020),
and rgi (Jia et al., 2017). The results are further combined and
summarized by hAMRonize tools (https://github.com/pha4ge/
hAMRonization).

RESULTS

Usage
The pipeline is implemented in Nextflow and therefore requires
Nextflow to be installed in order to be used. For the full
reproducibility, the use of Nextflow-supported package manager
such as Conda is advised. GraphAMR will automatically pull the
necessary versions of the tools used in the pipeline when using
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TABLE 1 | Abricate predicted AMR gene sequence counts in the URBAN dataset.

Sample ID 40 41 42 43 44 45 46 47 48 49 50 51 52

Contigs 92 93 2 0 4 9 57 0 91 3 11 78 66

HMM Paths 169 163 2 0 4 8 100 0 131 3 22 122 142

Clustered ORFs (90%) 103 98 2 0 4 8 60 0 96 3 11 91 80

Clustered ORFs (95%) 105 105 2 0 4 8 61 0 100 3 11 92 81

Clustered ORFs (100%) 135 126 2 0 4 8 75 0 112 3 14 107 116

Compared are assembled contigs, unclustered HMM paths, and clustered ORFs at different levels of IDY’s. Columns are named by the last two digits of SRA accession number.

one of the supported container engines. The typical steps to run
the pipeline for the first time are as follows:

1. Install nextflow (https://nf-co.re/usage/installation)
2. Install any Nextflow-supported container engines, such as

conda (https://conda.io/miniconda.html)
3. Download the pipeline and test it on a minimal dataset

with a single command: nextflow run ablab/graphamr -profile
test, conda

4. Start running your own analysis:

a. Typical command for analysis starting from reads (NCBI
AMR database is used by default):
nextflow run ablab/graphamr -profile conda
--reads ‘∗_R{1,2}.fastq.gz’

b. Typical command for analysis starting from assembly
graph (NCBI AMR database is used by default):
nextflow run ablab/graphamr -profile
conda --graph ‘assembly_graph_with_
scaffolds.gfa’

c. Typical command for analysis starting from assembly graph
with one of pre-defined AMR databases:
nextflow run ablab/graphamr -profile
conda --graph ‘assembly_graph_with_
scaffolds.gfa’ --db [‘ncbi_AMR_HMM’,
‘card_AA’]

More examples, description of other command line options and
produced results are available from the “Usage/Results” section of
documentation in GraphAMR github repository.

Example Results
To demonstrate the performance of graph-based approach for
AMR discovery we benchmarked GraphAMR pipeline on two
different environmental datasets using two different databases:
NCBI AMR HMMs and amino acid sequences from CARD.

URBAN is a collection of urban wastewater datasets from
Ng et al. (2017). Raw sequence reads were downloaded from
the NCBI short read archive (SRA) under accession numbers
SRR5997540–SRR5997552 and analyzed using the pipeline. For
the sake of simplicity only AMR predictions by Abricate
are shown. Table 1 contains the predicted AMR gene counts
predicted from metagenomic assembly scaffolds, unclustered
HMM paths and HMM paths dereplicated, and clustered at
different IDY’s %. The results of the pipeline using amino acids
are presented in Table 2.

TABLE 2 | Abricate predicted unique AMR gene sequence counts in the URBAN

dataset using amino-acid sequences from CARD v3.1.2 or HMMs from NCBI

AMR to align to a graph.

Sample ID 40 41 42 43 44 45 46 47 48 49 50 51 52

AA 96 89 2 0 4 8 59 0 89 3 11 84 74

HMM 94 89 2 0 4 8 59 0 89 3 10 82 74

Columns are named by the last two digits of SRA accession number.

The resulting AMR presence heatmap as produced by
RGI is available as Supplementary Figure 1. The running
time, physical memory usage and CPU usage and graph
size information presented in the Supplementary Figure 1 and
Table 1, respectively.

We note that HMM paths represent unique path sequences
over the assembly graph and might be redundant: two different
paths in the graph may yield the same amino acid gene sequence,
for example, due to synonymous mutations or if the alignment
ends in the node of the graph since edges have overlapping
k-mers. This explains the higher number of predicted AMR
gene sequences obtained from bare HMM paths as compared to
dereplicated or clustered ORFs.

The sample SRR5997545 looks like an outlier in Table 1, as
the number of predicted AMR genes out of contigs is higher
than from the assembly graph. The difference is caused by the
short hit that resides on the isolated edge of the assembly graph.
The hit itself covers only 73% of the HMM. By default Pathracer
uses the strict threshold and does not report hits that are shorter
than 90% of HMM length (we expect fuller HMM matches from
the assembly graph as compared to contig sequences). To allow
inclusion of such sequences should they be necessary we added a
special flag to the pipeline that allows a user to choose the desired
HMM coverage threshold.

To further compare the assembly graph-based approach with
the read-based one we run SRST2 on the same collection of
datasets.Table 3 contains the predicted unique AMR gene counts
from raw reads as detected by SRST2 and clustered HMM paths
from GraphAMR. SRST2 uses a custom AMR database that was
derived from CARD v3.0.8. To ensure fair comparison we run
GraphAMR pipeline and Abricate using the database that was
used by SRST2.

Table 3 clearly shows the advantage of the graph-based
approach since more AMR gene sequences were predicted in
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TABLE 3 | Predicted unique AMR gene sequence counts in raw reads of URBAN as detected by SRST2 vs. GraphAMR predictions from the assembly graph.

Sample ID 40 41 42 43 44 45 46 47 48 49 50 51 52

SRST2 59 55 6 0 2 6 36 0 59 2 8 54 44

GraphAMR 90 83 1 0 3 7 52 0 82 3 10 79 68

AMR annotation was done via Abricate. All tools used the CARD_v3.0.8_SRST2 database. Columns are named by the last two digits of SRA accession number.

almost all samples as compared to the read-based approach.
Still, there is one notable outlier: in SRR5997542 sample SRST2
predicted 5 more AMR genes. Further detailed analysis revealed
that these hits are likely spurious: the sequences themselves are
fragmented on the assembled graph and the graph edges are
isolated (see Supplementary Figure 2).

SOIL is groundwater metagenome sample SRR8931193 from
Smith et al. (2019). Abricate predicted 12 AMR genes from
clustered HMM paths and 13 from assembled scaffolds. Two
gene sequences [vanR-O and ant(6)-Ib] genes were found only on
scaffolds and tet(X) was detected by GraphAMR only. Assembly
graph analysis revealed that ant(6)-Ib gene sequence is split into
two parts located on two isolated edges. vanR-O hit covered only
30% of the corresponding sequence and is likely spurious.

DISCUSSION

As Tables 1–3 and Figure 4 show, the results of AMR gene
prediction even on moderately-complex metagenomes could
be significantly affected by fragmented assemblies. The use of
assembly graph-based approaches is far superior in terms of
recovery of fuller AMR gene sequences even from fragmented
metagenomes. Not only could it result in more putative
AMR sequences detected, but as comparison with read-based
approaches shows, the results are more reliable. Graph-based
approach allows to filter out the spurious alignments using both
hit length (the fraction of the gene sequence length covered by
a hit) and graph topology (short hits located on isolated edges
are likely spurious) that results in AMR gene sequences that
are both longer (hit could span multiple edges and interspecies
repeats) and trustworthy (located on the edges of the graph that
are connected to the rest of the assembly).

Another important task that could be solved using the
assembly-graph based approach is AMR host association:
sometimes it is not enough simply to detect the gene sequences,
but also associate them with the particular species. This task
is quite complex in case of metagenomic assemblies as a
dedicated procedure called “binning” is required. However,
typically binners ignore short contigs (shorter than 2–5 kbp)

and therefore further detection of AMR gene sequences
from MAGs could be quite limited (Maguire et al., 2020).
Graph-based approach allows to circumvent this problem as
one could trace the detected AMR sequences back to the
edges of the assembly graph and then to the corresponding
MAGs performing the required species identification. The
challenge here certainly is dealing with interspecies repeats
and/or plasmids or otherwise transferred genes, however,
the assembly graph provides a solid foundation for such
downstream analysis.

GraphAMR could be used to improve the present results of
AMR prediction of a metagenomic assembly if the assembly
graph output was preserved, otherwise the pipeline allows for
seamless reassembly and AMR prediction starting from the input
sequencing reads.
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As antibiotics resistance on superbugs has risen, more and more studies have focused
on developing rapid antibiotics susceptibility tests (AST). Meanwhile, identification of
multiple antibiotics resistance on Staphylococcus aureus provides instant information
which can assist clinicians in administrating the appropriate prescriptions. In recent
years, matrix-assisted laser desorption ionization-time of flight mass spectrometry
(MALDI-TOF MS) has emerged as a powerful tool in clinical microbiology laboratories
for the rapid identification of bacterial species. Yet, lack of study devoted on providing
efficient methods to deal with the MS shifting problem, not to mention to providing
tools incorporating the MALDI-TOF MS for the clinical use which deliver the instant
administration of antibiotics to the clinicians. In this study, we developed a web tool,
MDRSA, for the rapid identification of oxacillin-, clindamycin-, and erythromycin-resistant
Staphylococcus aureus. Specifically, the kernel density estimation (KDE) was adopted
to deal with the peak shifting problem, which is critical to analyze mass spectra data,
and machine learning methods, including decision trees, random forests, and support
vector machines, which were used to construct the classifiers to identify the antibiotic
resistance. The areas under the receiver operating the characteristic curve attained 0.8
on the internal (10-fold cross validation) and external (independent testing) validation.
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The promising results can provide more confidence to apply these prediction models in
the real world. Briefly, this study provides a web-based tool to provide rapid predictions
for the resistance of antibiotics on Staphylococcus aureus based on the MALDI-TOF
MS data. The web tool is available at: http://fdblab.csie.ncu.edu.tw/mdrsa/.

Keywords: antibiotics susceptibility test, multidrug resistance, MALDI-TOF MS, machine learning, AST (antibiotic
susceptibility testing)

INTRODUCTION

Over the past few decades, inappropriate use of antibiotics has
brought out the growth of antibiotic resistance (ABR). More
specifically, ABR is the ability of a bacterium to resist the effects
of a treated drug and leads to the drug’s ineffectiveness. Using
alternative drugs or higher doses of antibiotics to defeat ABR is
one of the solutions. However, overusing, underusing, or even
misusing the drugs accelerates the growth of ABR. Additionally,
it could lead to a bacterium being resistant to a variety of
antibiotics, which is knowns as multidrug resistance (MDR),
or even called “superbugs.” Meanwhile, superbugs are a huge
threat to global health today. One of the well-known superbugs
is methicillin-resistant Staphylococcus aureus (MRSA), which has
become a severe issue all over the world (Wolters et al., 2011;
Clerc et al., 2014; Mather et al., 2016).

Staphylococcus aureus, a Gram-positive bacterium, is a
microorganism commonly found on the skin. These carriers
are not symptomatic. However, the pathogen occasionally
causes severe diseases including skin, wounds, urinary tract,
lung infections, bacteremia, and food poisoning (Naber, 2009).
Antibiotics can effectively cure most Staphylococcus aureus
infections, but MRSA is a bacterium that can resist methicillin
and other antibiotics such as oxacillin (OX), penicillin,
amoxicillin, and cephalosporin, which are improperly used and
produce resistance. It is widely believed that the incorrect
use of antibiotics is one of the causes of drug resistance.
MRSA has a variety of antibiotic resistance and is generally
considered a nosocomial pathogen which causes high mortality
(Noskin et al., 2005). Therefore, it is very important to rapidly
distinguish between methicillin-sensitive Staphylococcus aureus
(MSSA) and MRSA.

There are several steps in the current process for determining
the treatment of infectious diseases in clinical microbiology.
When the doctor suspects that the patient is suffering from a
certain infectious disease, the specimens of the infected site are
collected for testing. After the specimen collection is completed,
the bacterial culture is adopted to provide further bacterial
identification. While confirming the bacteria, several antibiotic
susceptibility tests (AST) are performed to decide the treatment.
In general, it takes about 2–3 days to culture the bacteria and
obtain the AST results (Lowy, 2003). Although the standard
experiments are highly accurate, the time cost is also high.
Before obtaining the AST reports, it is highly dependent on the
physicians’ experience to treat patients. Yet, empirical treatments
might inadvertently cause more serious drug resistance. In short,
the rapid information of AST can reduce ineffective use of drugs.

With the rapid development of antibiotic resistance, several
methods for rapid identification of antibiotic resistance have been
proposed, such as polymerase chain reaction (PCR) assays and,
more recently, the matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-
TOF MS is a proteomic tool that measures the molecules
including proteins or peptides in the sample. The peptides
that are associated with antibiotic resistance might be detected
through MALDI-TOF mass spectra. Although qPCR, RT-
qPCR, ddPCR, and modified 16S sequencing which obtain AST
information in only a few hours could attain high performance,
MALDI-TOF MS has more potential to become a convenient
and efficient method for identification of antibiotic resistance.
The primary reason is that MALDI-TOF MS has already been
routinely used in many clinical microbiology laboratories, and
there is no additional cost for those that have a MALDI-TOF MS.
The mass spectra, generated by MALDI-TOF MS, are composed
of peaks of specific mass−to−charge ratios (M/Z) with different
intensities, which correspond to a reproducible fingerprint of
a certain microorganism (Wang et al., 1998). Consequently, a
number of studies have investigated the performance of MALDI-
TOF MS on identification of bacterial strains (Ryzhov and
Fenselau, 2001; Bizzini et al., 2010; Wang et al., 2018, 2019), and
further explored the antibiotics resistance to bacteria (Singhal
et al., 2015; Vrioni et al., 2018). Meanwhile, several studies
have reported the significant effect on clinical microbiology
(Psaroulaki and Chochlakis, 2018; Vrioni et al., 2018; Angeletti
and Ciccozzi, 2019; Rodríguez-Sánchez et al., 2019; Welker et al.,
2019). In brief, recognizing the pattern of the peptides would
serve as a fingerprint for identifying antibiotic resistance in the
study, and hence using MALDI-TOF MS to realize the rapid AST
in clinical microbiology is promising.

According to the large amount of AST reports collected by
Chang Gung Memorial Hospital, the percentages of resistant
to erythromycin (E) and clindamycin (CC) were about 50%,
which can be seen in Supplementary Figure 1. This implies
that providing instant information about the use of them
is as critical as the identification of MRSA. However, none
of the studies used substantial data or provided a web-
based prediction tool for the rapid identifications of oxacillin-,
clindamycin-, and erythromycin-resistant Staphylococcus aureus.
Therefore, the major purpose of this study is to develop a web-
based prediction tool, MDRSA, for the rapid identification of
multiple drugs resistant to Staphylococcus aureus based on a
significant amount of MALDI-TOF MS data. Clinicians would
obtain instant guidelines about the use of antibiotics for the
Staphylococcus aureus infection. Additionally, the analysis for
the informative peaks would provide more indications for the
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resistance. In short, development of rapid identification models
does contribute an impact on the clinical management of patients
with infectious diseases.

MATERIALS AND METHODS

Bacterial Isolates
A total of 20,212 and 5,005 clinical isolates were collected
from two medical centers (CGMH Linkou branch and CGMH
Kaohsiung branch). These two centers are around 330 km apart.
Both centers serve as the referral centers in the regions. It
should be noted that these data were collected from the current
routine process for determining the treatment of infectious
diseases in clinical microbiology. All clinical specimens were
collected from all the wards continuously. The specimen types
included blood, respiratory tract specimen (sputum, bronchial
wash, and bronchoalveolar lavage), sterile cavity fluid (ascites,
pleural effusion, pericardial effusion, cerebrospinal fluid, and
synovial fluid), urine, and wound. Note that the data collected
from Linkou and Kaohsiung branches were regarded as a training
set and an independent set, respectively. All the processes
of identifying Staphylococcus aureus and its resistance strictly
followed the Clinical and Laboratory Standard Institute (CLSI)
guidelines. Table 1 shows the amount of data in training and
independent testing sets. More than 81% of the isolates were
recovered from the patient’s sputum, pus, wounds, and blood
specimens as shown in Supplementary Table 1.

Matrix-Assisted Laser Desorption
Ionization Time-of-Flight Mass
Spectrometry Data Acquisition
MALDI-TOF MS was used to identify the bacterial species
and was conducted on Microflex LT (Bruker Daltonik GmbH,
Bremen, Germany) benchtop instrument. All isolates were
identified as Staphylococcus aureus by Bruker MALDI-TOF
MS, and the measurement procedures were following the
manufacturer’s instructions (Bruker Daltonik GmbH, Bremen,
Germany). Mass spectra were acquired in a linear positive mode
within a range of +2 kV to +20 Kv and the nitrogen laser
frequency was set as 60 Hz.

The species of Staphylococcus aureus was analyzed and
reported on Biotyper 3.1 software (Bruker Daltonics). Biotyper
provided the intensity and the signal quality of the peaks. For
each isolate, the maximum number of peaks was set up to 200
and the acceptable quality is larger 2.0 which is the benchmark
from the instruction of Biotyper 3.1. Furthermore, by using

TABLE 1 | Number of data in training and independent testing sets.

Training set Independent testing set

Antibiotics Resistant (%) Susceptible (%) Resistant (%) Susceptible (%)

Oxacillin 10,735 (53.11) 9,477 (46.89) 2,399 (47.93) 2,606 (52.07)

Clindamycin 9,297 (46.00) 10,915 (54.00) 1,880 (37.56) 3,125 (62.44)

Erythromycin 11,304 (55.93) 8,908 (44.07) 2,584 (51.63) 2,421 (48.37)

Flexanalysis 3.4 (Bruker Daltonik GmbH, Bremen, Germany) we
could get a mass list, the parameters were set as follows: centroid
peak detection algorithm for peak finding; Top Hat method for
baseline subtraction; signal-to-noise threshold was set as 2; the
minimum peak width expected in the spectrum was set as 6 M/Z;
the maximal number of peaks was set as 200; relative intensity
threshold was set as 0%; minimum intensity threshold was set as
0, and height was set as 80%. In this investigation, spectra ranging
from 2,000 to 20,000 M/Z were acquired for further analysis.

Spectral Data Processing
Even in the same experimental steps and environment, the
MALDI-TOF mass spectra of the same isolates may still be
different. Specifically, the strong peaks on different MALDI-TOF
mass spectra of the same strain may not be located at the same
M/Z (Lin et al., 2005; AlMasoud et al., 2014), and we called
this problem a shifting problem. Consequently, preprocessing
for each single mass spectrum before constructing the models is
an essential step, especially for large-scale data derived from the
clinical medicine.

In order to deal with the peak shifting problem that appears in
MALDI-TOF MS data, the kernel density estimation (KDE) was
adopted to estimate the actual location of the peaks. Specifically,
KDE is a non-parametric method to estimate the probability
density function (PDF) of a random variable (Sheather and Jones,
1991). The M/Z values were regarded as the random variable. We
then applied the KDE with Gaussian kernel to estimate the PDF
of the M/Z values, which can be represented as

f (x) =
1

nh

n∑
i=1

K(
x− xi

h
) =

1
√

2πnh

n∑
i=1

exp{−
1
2
(

x− xi

h
)2
}

(1)
where x1, x2, . . ., xn are all M/Z values derived from all spectra, h
is the bandwidth, which is also the smoothing parameter, n is the
number of M/Z values, and K is the kernel function.

To obtain M/Z patterns for resistant and susceptible spectra,
we used the function “stats.gaussian_kde,” provided by SciPy
(Virtanen et al., 2020), to estimate their PDFs in this study.
It should be noted that the bandwidth is a critical parameter
for employing KDE. The parameter “bw_method” provided
in “stats.gaussian_kde” can be used to determine it. More
specifically, if “bw_method” is a scalar, the bandwidth will be
the scalar multiplied by the standard deviation of the sample.
After the PDFs of M/Z patterns for resistant and susceptible
spectra were obtained, the local modes derived from two PDFs
were retrieved and concatenated to be a one spectrum with
several peaks. Then we removed the duplicate values to construct
a reference spectrum template. In addition to removing the
duplicate values, the distance between two adjacent local modes
less than three were also removed. The minimum width of
two adjacent peaks expected in a spectrum was set as 6 M/Z
in Flexanalysis 3.4. Finally, these M/Z values formed the final
reference spectrum template. Figure 1 demonstrates the flow
chart of constructing a reference spectrum template. Note that
0.0006, 0.0008, 0.001, 0.0012, and 0.0014 were the values of
“bw_method” in this study and used to generate different
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reference spectra. Their corresponding bandwidths were 2.08,
2.77, 3.46, 4.15, and 4.84. The peaks in every spectrum were
then aligned to the nearest ones in the reference spectrum
accordingly. Supplementary Figure 2 illustrates the alignment
for mass spectrum of Isolate A. More specifically, the purple
line is the PDF of the population, so all the peaks of a mass
spectrum should be shifted to the nearest benchmark which is
the local maximum of PDF. Supplementary Table 2 all features
(peaks) used for developing oxacillin (OX), clindamycin (CC),
and erythromycin (E) models.

The amount of the intensity may be influenced by various
factors like temperature, instrument set-up, storage, and manual
operation (Baumann et al., 2005), so we need to process the raw
spectra data first. In this study, we scaled each intensity by its
spectrum’s maximum intensity. The definition of the formula is
given below:

y
∗

ij =
yij

max{yij|i = 1, 2, ..., nj}
(2)

where y
∗

ij and yij are the scaled and original intensities for the jth
spectrum at the ith peak, respectively, and max (yij| i = 1, 2, . . .,
nj) is the maximum intensity for the jth spectrum which contains
nj peaks.

Model Construction
After preprocessing the MS data, we adopted three machine
learning (ML) algorithms, including decision tree (DT), random
forest (RF), and support vector machine (SVM), to build up the
classification models to predict the antibiotic resistance. Further
information about the algorithms was then given in the next
paragraph. The grid search with 10-fold cross validation was
implemented on the training set for each bandwidth. When the
optimal parameters were obtained, the independent testing set
was used to evaluate the performance based on the model trained
by the whole training set.

DT is a commonly used method for building the classification
models. DT is formed in a tree-like structure which is constructed
by nodes and leaves. Each node represents a test on a feature
and each branch stands for an outcome of the test. Lastly, each
leaf represents the class resulting from all tests. The criterion
for yielding the best classification is important. Classification
and regression trees (CART) algorithm is one of the commonly
used algorithms to produce the best classification. The CART
algorithm is a greedy approach that allows each step to select an
optimal feature to get the most information gain when selecting
attributes (Breiman et al., 1984). The measurement for selecting
the optimal feature is finding the minimum impurity. In this
study, we used the Gini index as the approach for calculating the
impurity, which is the most common assessment approach. For
each selection, the sum of the Gini impurity for all branches will
be calculated, and the minimum one will be the best selection.
The function “sklearn.tree.DecisionTreeClassifier” in scikit-learn
package was used to build the DT model (Pedregosa et al., 2011).

RF is another common machine learning classifier, composed
of multiple optimized version of CARTs to build the prediction
model. RF uses bootstrap aggregating (bagging), one of the
ensemble learning methods, to make sure each tree randomly

gets training sets and attributes. As illustrated in Supplementary
Figure 3, the ensemble learning method trains multiple models
and votes the result finally, and the data used in each model
was randomly determined in reusable. The classification outcome
of RF is determined by the mode of every individual tree
output. Most of the time, compared to DT, RF performs
well when dealing with many features. Other reasons we
use RF are that the learning time is short, and it can
assess the importance of features easily. In this research, the
tool we used to build the RF classification model is the
function “sklearn.ensemble.RandomForestClassifier” in scikit-
learn package (Pedregosa et al., 2011).

Support vector machine (SVM) is another common
supervised learning classification. SVM finds a hyperplane
that can minimize the risk of misclassification. The method
used to minimize the risk is to find a decision boundary that
can maximize the boundaries between the two classes. As
shown in Supplementary Figure 4, there are two classes on
a plane. We can find many possible hyperplanes that can
separate two classes, and the algorithm for SVM is to find
the hyperplane that can “maximum” the distance (the largest
margin) between two classes. In this study, we use the function
“sklearn.linear_model.SGDClassifier” in scikit-learn package
(Pedregosa et al., 2011).

Statistical Analysis
Chi-squared test and t-test were employed in this study to
evaluate the capability of discriminating the resistance for
an individual peak based on their presence and intensities,
respectively. Specifically, the chi-squared test of independence
was mainly conducted to test the correlations between two
categorical variables. In short, the small p-values concluded that
the presence of a specific peak was correlated to the resistance. On
the other hand, t-test was used to compare the intensities between
two groups. Similarly, the small p-value would refer to that the
intensity of a specific peak was different between two groups.

Evaluation Metrics
In this study, we used accuracy (ACC), the area under the receiver
operating characteristic curve (AUC), sensitivity (SN), very major
error (VME), specificity (SP), major error (ME), and Matthew’s
correlation coefficient (MCC) as the performance measurements
for our models. The definitions of these measurements are given
below.

ACC =
TP + TN

TP + TN+FP + FN
(3)

SN =
TP

TP + FN
(4)

VME =
FN

TP + FN
(5)

SP =
TN

FP + TN
(6)

ME =
FP

FP + TN
(7)
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FIGURE 1 | Flow chart of constructing a reference spectrum template.

MCC =
TP × TN − FP × FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (8)

where TP is true positive which means the number of antibiotic-
resistant isolates are correctly predicted by the classifier, TN is
true negative which means the number of antibiotic-sensitive
isolates are correctly predicted by the classifier, FP is false positive
which means the number of antibiotic-sensitive isolates are
wrongly predicted as antibiotic-resistant isolates by the classifier,
and TN is false negative which means the number of antibiotic-
resistant isolates are wrongly predicted as antibiotic-sensitive
isolates by the classifier. Accuracy is the rate of the difference
between the prediction results and the real results. MCC is the
measurement to measure the quality of the binary classification.
It returns a value between −1 and +1. If MCC returns +1, it
means the prediction is perfect; if MCC is 0, if MCC returns −1,
it represents the prediction is totally wrong. MCC considers the
case that the sizes of the classes are very different and gives a
balanced measurement.

In medicine, it is often determined by some thresholds
whether the prediction result is true or false, and this threshold
will affect the sensitivity and the specificity. In short, different
threshold sets will lead to different prediction results. The
distribution of the different threshold sensitivity and specificity
can be plotted as the ROC curve, and the area under the ROC
curve is called AUC. The most ideal case is AUC = 1, which is
the case that the point locates on the upper left corner of the
plot; when the AUC is 0.5, it represents a random selection of
conditions, which means random guess. Most cases are within
these two values. Through ROC and AUC, we can choose a more
robust and stable model.

Development of a Web-Based Prediction
Tool
We used hypertext markup language (HTML) and hypertext
preprocessor (PHP) with python code to implement a web-based
prediction tool in the backend upon submission of MALDI-TOF
MS data. Each MS data should start with “BEGIN IONS” and end
with “END IONS.” This web-based prediction tool could predict
one or more MS data for a submission. This web-prediction tool
would list the prediction probabilities for the submitted MS data
show the submitted MS figure with the important features.

RESULTS

MS Data Overview
Figure 2 shows the number of peaks in each spectrum according
to different antibiotics resistance. Most of spectra preserved 50–
150 peaks. Since most of the data were overlapped, there is
no significant difference between the number of peaks between
resistant and susceptible strains.

Figure 3 demonstrates the distribution of the number of
spectra that were derived from oxacillin-, clindamycin-, and
erythromycin-resistant/susceptible Staphylococcus aureus isolates
at M/Z = 2,000–20,000. Since the range of M/Z is too large to
obtain detailed information, we then further zoomed in to the
M/Z range 2,000–3,000 to find some information (Figure 4).
Peaks at M/Z = 2,360–2,500 are different between resistant
and susceptible strains for all three antibiotics. We summed all
intensities of resistant and susceptible isolates to observe the
difference between them. It was still difficult to compare the
difference between resistance and susceptibility (Supplementary
Figure 5), so we zoomed in on these figures to find the differences.
We found that it still has the difference of resistance and
susceptibility at the range from 2,360 to 2,500 M/Z for oxacillin,
clindamycin, and erythromycin (Supplementary Figure 6).
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FIGURE 2 | Distribution of number of peaks retrieved from each spectrum in (A) oxacillin-resistant, (B) oxacillin-susceptible, (C) clindamycin-resistant, (D)
clindamycin-susceptible, (E) erythromycin-resistant, and (F) erythromycin-susceptible Staphylococcus aureus.

Performance of Prediction Models
To build up a stable model, the parameters of the model are
critical, especially the bandwidth. The bandwidth of Gaussian
KDE is crucial. If the bandwidth is too large, the PDF will
be too smooth; if the bandwidth is too small, it will be too
harsh. We adopted 10-fold cross-validation models with different
“bw_method” parameters and different ML algorithms to find
the optimal bandwidth parameter. We tried the “bw_method”
parameters from larger to smaller, and we found that when
the “bw_method” parameter approaches 0.001, the accuracy
tends to be stable. Supplementary Table 3 shows the results
of 10-fold cross-validation with the optimal parameters based
on the grid search with different “bw_method” parameters of
Gaussian KDE on the training set of oxacillin, clindamycin,
and erythromycin, respectively. We could find that when
the “bw_method” parameter was set to 0.0008, the standard
deviations of oxacillin and clindamycin models were small and
retained high accuracy Similarly, E model would reach the
optimal when the bw_method is 0.001. Moreover, the highest
accuracies are all built by the RF algorithm.

We adopted the optimal parameters to construct the RF-based
models for the three antibiotics based on the whole training set.
These models were then tested by the independent testing set and
compared with those that did not use the KDE preprocessing.

When the KDE preprocessing was adopted, the accuracies
were 81.42, 82.20, and 74.63% for oxacillin, clindamycin, and
erythromycin, respectively (Table 2). Comparing to the models
that used data without KDE preprocessing, the accuracies derived
from KDE were higher (6.04, 5.78, and 6.58%) for oxacillin,
clindamycin, and erythromycin, respectively.

Forward Feature Selection
To obtain a more informative feature set, the feature importance
scores calculated by RF was determined in this study. More
specifically, we used the 70% training set to build up the
classification models and calculated the features’ importance
scores based on the RF algorithm. The features were then ranked
by their importance scores. After that, the feature was added
in the model sequentially until the accuracy of the remaining
30% training set reached a plateau. Supplementary Figure 7A
shows the trend of accuracy as the feature was added sequentially
for the oxacillin model. When the number of features is 36, the
model reaches a plateau and accuracy is 84.13%. The clindamycin
model, demonstrated in Supplementary Figure 7B, attained a
plateau at 37 features with an accuracy of 80.22%. Thirty-seven
features were used to reach a plateau for the erythromycin
model as shown in Supplementary Figure 7C. Table 3 shows
the performance of the selected features on the independent
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FIGURE 3 | Distribution of number of spectra that were derived from oxacillin- (upper), clindamycin- (middle), and erythromycin-resistant/susceptible (bottom)
Staphylococcus aureus isolates at each M/Z.

testing set. When the number of features reduced to about
40, the accuracy was still around 80%. Furthermore, 589, 600,
and 824 data were incorrectly called as sensitive for oxacillin,

clindamycin, and erythromycin models, respectively. Meanwhile,
384, 280, and 442 data were incorrectly called as resistant for
oxacillin, clindamycin, and erythromycin model, respectively.
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FIGURE 4 | Distribution of number of spectra that were derived from oxacillin- (upper), clindamycin- (middle), and erythromycin-resistant/susceptible (bottom)
Staphylococcus aureus isolates at M/Z = 2,000–3,000.

Supplementary Table 4 lists all selected features for each
model. We found most of the selected peaks were duplicated,
but some peaks were selected uniquely for a certain model.

More specifically, the peaks at 11,539, 4,526, and 3,297 M/Z
were only selected by the oxacillin model. While the peaks at
2,910, 3,045, 2,966, and 7,568 M/Z were only included by the
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TABLE 2 | Results of with or without kernel density estimation (KDE)
preprocessing on independent testing set.

Antibiotics Metrics Without KDE
preprocessing

Using KDE
preprocessing

OX SN 0.7962 0.7524

VME 0.2038 0.2476

SP 0.7149 0.8711

ME 0.2851 0.1289

ACC 0.7538 0.8142

AUC 0.7555 0.8117

CC SN 0.7282 0.6489

VME 0.2718 0.3511

SP 0.7859 0.9261

ME 0.2141 0.0739

ACC 0.7642 0.8220

AUC 0.7571 0.7875

E SN 0.7693 0.6908

VME 0.2307 0.3092

SP 0.5857 0.8055

ME 0.4143 0.1945

ACC 0.6805 0.7463

AUC 0.6775 0.7481

OX, oxacillin; CC, clindamycin; E, erythromycin; SN, sensitivity; VME, very major
error; SP, specificity; ME, major error; ACC, accuracy; AUC, area under the receiver
operating characteristic curve.

TABLE 3 | Performance of features selection on independent test set.

Model

Oxacillin Clindamycin Erythromycin

Number of features 36 38 37

Sensitivity 0.7545 0.6809 0.6811

Very major error 0.2455 0.3191 0.3189

Specificity 0.8526 0.9104 0.8174

Major error 0.1474 0.0896 0.1826

Accuracy 0.8706 0.8242 0.7471

AUC 0.8036 0.7956 0.7493

AUC, Area under the receiver operating characteristic curve.

clindamycin model after the feature selection. The erythromycin
model incorporated peaks at 6,524, 4,514, 5,004, and 2,652 M/Z,
which were not selected by other models. In addition, the peak at
6,593 M/Z ranked first for the oxacillin and erythromycin models.
But the clindamycin model ranked it at a 14th place. This implies
that the characteristics of resistance to clindamycin would be
different from oxacillin and erythromycin.

In order to further investigate the selected peaks, we used the
chi-square test for comparing two proportions of the resistant
and susceptible data. Additionally, we also employed the t-test
for comparing the intensities for these two groups. The results of
these two statistical tests are shown in Supplementary Tables 5–7
for the oxacillin model, the clindamycin model, and the
erythromycin model, respectively. In this study, the p-value
less than 0.001 was claimed as statistically significant. Most
p-values of chi-square tests for the selected peaks were shown the

significant difference between resistant and susceptible data. Yet,
some selected peaks did not indicate the statistical significance
such as peaks at 6,553, 5,526, and 3,277 M/Z for the clindamycin
model when the chi-square test was adopted (Supplementary
Table 5). While the t-test was employed to compare two
intensities, several peaks did not show the significant difference
such as the peaks at 3,008, 3,045, 2,200, 6,424, 6,890, and 2,966
M/Z for the clindamycin model and the peaks at 6,553, 2,306,
3,056, 2,287, and 7,021 M/Z for the erythromycin model.

Figure 5 and Supplementary Figures 8, 9 demonstrate
the top 9 selected peak distributions of the M/Z values
without peak alignment for three models to further investigate
the difference on oxacillin-, clindamycin-, and erythromycin-
resistant/susceptible data, respectively. These figures also indicate
that the resistant isolates have more chance to appear at some
specific peaks than the susceptible ones such as peaks at 6,593,
2,414, 2,432, and 2,456 M/Z on oxacillin data; peaks at 2,414,
2,432, 2,456, and 7,595 M/Z on clindamycin data; and peaks at
6,593, 2,413, 2,432, and 2,456 M/Z on erythromycin data.

Investigation of Multidrug Resistance
A Venn diagram was used to demonstrate the multiple antibiotics
resistance, which is shown in Supplementary Figure 10. About
41% (8,234/20,212) of isolates were resistant to three antibiotics,
and 37% (7,455/20,212) of isolates were susceptible to three
antibiotics. This implies that most of the isolates were either
resistant to three antibiotics or susceptible to them. Due to
the few numbers of only resistant to a specific antibiotic or
two antibiotics, we constructed a binary classification model to
discriminate that the isolate is resistant or susceptible to three
antibiotics simultaneously. Supplementary Table 8 shows the
amount of data for this classification. Similarly, we used 10-
fold cross validation to find the best parameters and models.
The performance is shown in Supplementary Table 9. The
best AUC obtained from the RF model had a bandwidth of
0.0006. According to the optimal parameters derived from the
training set, the performances on the independent testing set were
0.7918 (sensitivity), 0.9053 (specificity), 0.8545 (accuracy), 0.7057
(MCC), and 0.8486 (AUC).

RDMDRSA Web Interface
Based on our method, an online prediction server—MDRSA—
was developed to predict the possibility that an MS derived
from a Staphylococcus aureus isolate might be resistant to
a particular antibiotic. The best prediction models developed
for identifying the oxacillin-, clindamycin-, and erythromycin-
resistant were applied here. Screenshots of the website are shown
in Supplementary Figure 11.

DISCUSSION AND CONCLUSION

In this study, we used the MALDI-TOF MS data from Chang
Gung Memorial Hospital Linkou branch to build different
ML models to identify the resistance of the Staphylococcus
aureus, and the data from Chang Gung Memorial Hospital
Kaohsiung branch were further adopted to evaluate these models.
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FIGURE 5 | The top 9 selected peaks distributions of the M/Z values without peaks alignment for oxacillin-resistant (red)/susceptible (blue) data.

Additionally, we adopted the Gaussian KDE method to deal
with the shifting problem in MS data. Note that the bandwidth
selection was based on the mean accuracy of the 10-fold cross
validation. The accuracies of the 10-fold cross validation models
were 86.28, 85.66, and 80.93% for oxacillin, clindamycin, and
erythromycin models, respectively. Meanwhile, the accuracies
of the independent testing were attained to 81.42, 82.20, and
74.63% for oxacillin, clindamycin, and erythromycin models,
respectively. The forward feature selection was further used to
reduce the dimension of features according to the order of
importance derived from the RF. We then selected 36, 38, and
37 features for oxacillin, clindamycin, and erythromycin models,
respectively. The accuracies of the models used selected features
on the independent testing set were 80.56, 82.42, and 74.71% for
oxacillin, clindamycin, and erythromycin models, respectively.
The investigation of multiple drug resistance demonstrated
that most isolates were either resistant to three antibiotics or
susceptible to them. The accuracy of independent testing was
85.46% which was higher than the models that were used for
identifying a specific resistance.

Previous studies were mainly devoted to identifying
methicillin-resistant Staphylococcus aureus (MRSA), and
figuring out their informative peaks (Wang et al., 2013, 2020;

Josten et al., 2014; Østergaard et al., 2015; Camoez et al., 2016;
Rhoads et al., 2016; Bai et al., 2017; Sogawa et al., 2017; Kim
et al., 2019; Tang et al., 2019; Liu et al., 2021). Bai et al. (2017)
proposed a genetic algorithm with a t-test based population
seeding for wrapper feature selection on 727 Staphylococcus
aureus clinical isolates’ mass spectra derived from Vitek MS, and
their accuracy based on support vector machine classifier was
0.72. Sogawa et al. (2017) utilized support vector machine to
discriminate MRSA from methicillin-susceptible Staphylococcus
aureus (MSSA) based on features derived from MALDI-TOF
mass spectra. Their model reached prediction accuracies of over
85% and significantly reduced the time to initiation of targeted
antibiotic treatment in comparison with phenotypic resistance
profiling. Yet, they only considered 160 clinical isolates. Kim et al.
(2019) developed discrimination models based on 320 clinical
Staphylococcus aureus clinical isolates’ mass spectra and 181 new
ones were tested, and the DT had a sensitivity of 87.6%. Tang
et al. (2019) applied different supervised ML models which are
capable of distinguishing MRSA from MSSA. Even though their
prediction accuracy was over 90%, only 20 isolates were used. Liu
et al. (2021) used R to analyze 452 Staphylococcus aureus clinical
isolates’ mass spectra derived from Vitek MS, and the best area
under the receiver operating characteristic curve was 0.89 by
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support vector machine. Compared with previous studies,
our study used much clinical data and considered
three antibiotics.

The limitation for analyzing antibiotic resistance through
MALDI-TOF MS is that some antibiotic resistance-related
peptides might not be detectable through mass spectra derived
from MALDI-TOF MS when using the routine sample
preparation protocol. This would limit the prediction for the
antibiotic resistance. Yet, we incorporated data from two medical
centers which are around 330 km apart. Given the spatial
distribution of the two medical centers, we would detect the
spectral pattern that is associated with antibiotic resistance.
However, the possibility of detecting specific clones could not
be fully excluded now without molecular strain typing data.
Moreover, some factors including culture medium, bacteria
lysis condition, and matrix crystallization condition, would have
impact on the MALDI-TOF mass spectra and the subsequent
identification of antibiotic resistance. Meanwhile, bacterial
strains in different regions are quite diverse. Although it would be
unsuitable to apply our models in other regions, we proposed a
valid method to deal with the peak-shifting problem of MALDI-
TOF MS. Specifically, the local MS data needed to be collected
and our methods employed to develop the proper prediction
models. On the other hand, our MALDI-TOF MS data were
obtained from Bruker Daltonics GmbH. We did not compare
with different MS data which was derived from different systems
in the study. In addition, we did not further identify the proteins
for the informative peaks. Even so, the results did show that
the proportions of resistant were higher than the non-resistant
ones for the selected peaks. The further identification of the
informative peaks could provide a more comprehensive view
on the mechanism of antibiotic resistance and would be valuable
for the development of potential new treatments.

In this study, both accuracy and AUC for the internal (10-fold
cross validation) and external (independent testing) validation
attained 0.8. The promising results can provide more confidence
to apply these prediction models in the real world. Briefly, this
study provides a web-based tool to provide rapid predictions for
the resistance of antibiotics on Staphylococcus aureus based on

the MALDI-TOF MS data. In the future, a cross-national study
is required. Given the high diversity of microorganisms across
countries, it is not possible that the current prediction models can
be used in other areas/countries without adjustment. Training
and validating machine learning models based on locally relevant
MALDI-TOF MS data are favorable.
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Gut microbiome in critically ill patients shows profound dysbiosis. The most vulnerable
is the subgroup of chronically critically ill (CCI) patients – those suffering from long-term
dependence on support systems in intensive care units. It is important to investigate
their microbiome as a potential reservoir of opportunistic taxa causing co-infections and
a morbidity factor. We explored dynamics of microbiome composition in the CCI patients
by combining “shotgun” metagenomics with chromosome conformation capture (Hi-C).
Stool samples were collected at 2 time points from 2 patients with severe brain
injury with different outcomes within a 1–2-week interval. The metagenome-assembled
genomes (MAGs) were reconstructed based on the Hi-C data using a novel hicSPAdes
method (along with the bin3c method for comparison), as well as independently of
the Hi-C using MetaBAT2. The resistomes of the samples were derived using a novel
assembly graph-based approach. Links of bacteria to antibiotic resistance genes,
plasmids and viruses were analyzed using Hi-C-based networks. The gut community
structure was enriched in opportunistic microorganisms. The binning using hicSPAdes
was superior to the conventional WGS-based binning as well as to the bin3c in terms
of the number, completeness and contamination of the reconstructed MAGs. Using
Klebsiella pneumoniae as an example, we showed how chromosome conformation
capture can aid comparative genomic analysis of clinically important pathogens. Diverse
associations of resistome with antimicrobial therapy from the level of assembly graphs
to gene content were discovered. Analysis of Hi-C networks suggested multiple
“host-plasmid” and “host-phage” links. Hi-C metagenomics is a promising technique
for investigating clinical microbiome samples. It provides a community composition
profile with increased details on bacterial gene content and mobile genetic elements
compared to conventional metagenomics. The ability of Hi-C binning to encompass
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the MAG’s plasmid content facilitates metagenomic evaluation of virulence and drug
resistance dynamics in clinically relevant opportunistic pathogens. These findings will
help to identify the targets for developing cost-effective and rapid tests for assessing
microbiome-related health risks.

Keywords: Hi-C metagenomics, critical care, antibiotic resistance, plasmids, Klebsiella, metagenome-assembled
genome, binning, gut microbiome

INTRODUCTION

The number of patients with long-term dependence on support
systems in the ICU is growing with the improvement in
the quality of medical care. Chronically critically ill (CCI)
patients are a heterogeneous group of patients after long
stay in ICU characterized by the unique physiology including
hormonal and metabolic changes with hypermetabolic and
hypercatabolic state (Nelson et al., 2010; Parfenov et al.,
2020), cognitive impairment, myopathy, inflammation (Cox,
2012) and increased susceptibility to infection (Nierman and
Nelson, 2002). Gastrointestinal tract diseases can be observed
in most such patients due to impaired swallowing, insufficient
physical activity, horizontal position, feeding through a gastric
tube or stoma, fluid and electrolyte disorders. The profound
dysbiosis of the gut microbiome has a great influence on the
gastrointestinal tract (Foster, 2016), leading to inflammation
and tissue injury. These changes form a vicious pathological
circle that prevents recovery. In addition, these patients receive
multiple classes of antibiotics during hospitalization to treat
ventilator-associated pneumonia, bloodstream infections caused
by use of a central venous catheter, as well as the urinary
tract infections, thus contributing toward the evolution of
their microbiome into a reservoir of virulent multidrug-
resistant nosocomial pathogens. Previously, we characterized
the taxonomic composition of microbiome in CCI patients
using 16S rRNA sequencing (Chernevskaya et al., 2020). The
observed dysbiosis was linked to prognosis and reflected in the
altered spectrum of microbially produced phenolic metabolites
in blood and stool (Chernevskaya et al., 2021). It suggested
the necessity of further investigation of the genetic potential
of the microbial species abundant in CCI – including mobile
genetic elements – using more powerful approaches like
“shotgun” metagenomics.

Recently, conventional metagenomics have been combined
with chromosome conformation capture techniques like Hi-C
and 3C-seq to enable a deeper exploration of complex microbial
communities. Besides the environmental microbiome (Baudry
et al., 2019; Stalder et al., 2019), such techniques have been
applied to mammal host-associated communities (Marbouty
et al., 2017; Stewart et al., 2018; Bickhart et al., 2022). In
the human microbiome field, all but one Hi-C metagenomic
survey (Kent et al., 2020) performed to date investigated
the gut community of healthy subjects (Press et al., 2017;

Abbreviations: ARG, antibiotic resistance gene; CCI, chronically critically ill;
HGT, horizontal gene transfer; ICU, intensive care unit; MAG, metagenome-
assembled genome; SCG, single-copy core genes; UTIs, urogenital tract infections;
VF, virulence factors.

DeMaere et al., 2020; Marbouty et al., 2021). In these studies,
the overimposement of the paired Hi-C reads reflecting the
information about chromosome spatial proximity onto the
metagenomic assembly allowed better binning of the contigs into
metagenome-assembled genomes (MAGs). Few software tools
developed for Hi-C genome deconvolution have been published
(Baudry et al., 2019; DeMaere and Darling, 2019).

By exploiting the fact that the chromosome interaction signal
is higher across the genomic sequences present in the same
microbial cell, it was possible to suggest specific “phage-microbe”
and “plasmid-microbe” links. The mobile genetic elements are
responsible for the horizontal gene transfer (HGT) that is of
high biomedical relevance due to the transmission of antibiotic
resistance and virulence factors genes. Therefore, application of
Hi-C metagenomics to the human microbiome in the clinical
context is promising for assessing microbiome-associated health
risks in patients, especially in the immunocompromised ones.
The only study of the alterations of gut microbiome in disease
focused on the neutropenic patients undergoing hematopoietic
stem cell transplantation (Kent et al., 2020).

In our study, we established an experimental and
bioinformatic pipeline for Hi-C metagenomic analysis involving
novel algorithms and applied it to explore the functional
dynamics of gut dysbiosis in a pilot set of samples from CCI
patients, with particular focus on evaluating such essential
advantages of the technique compared to the conventional
WGS as improved reconstruction of microbial genomes and
a possibility to link antibiotic resistance genes, plasmids and
viruses to their hosts.

MATERIALS AND METHODS

Study Design
This prospective observational study was performed in the
Department of Intensive Care at the Federal Research and
Clinical Center of Intensive Care Medicine and Rehabilitology,
Moscow, Russian Federation. The stool samples were collected
from two CCI patients: patient A – a 75 year old female
after an intracerebral hemorrhage and patient B – a 74 year
old male after an ischemic stroke. Both patients were on
prolonged mechanical ventilation and enteral tube feeding (high
calorie, low-residue) and received antibiotics (Figure 1). At
the first time point, each had a suspected bacterial infection
(pathogens were isolated from trachea, chest CT scans showed
pneumonia). The second time point at which the stool was
collected was day 7 for patient A (with negative clinical dynamics)
and day 14 – for patient B (positive clinical dynamics). The
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FIGURE 1 | Antimicrobial therapy timelines for the patients. The time courses of the two patients (A,B) included in the study are shown along with the periods (days)
of antimicrobial drug administration (colored lines). Vertical lines indicate the key time points for the patients.

detailed clinical data is provided in the Additional File 1:
Supplementary Table 1.

Sample Preparation and Sequencing
The WGS (metagenomic) libraries were prepared using the
NEBNext Ultra II FS DNA Library Prep Kit for Illumina exactly
according to the manufacturer’s instructions. Total genomic
DNA was isolated as follows. Cell material was incubated in a
1× TE buffer at 65◦C for 14–16 h in the presence of proteinase
K (1 µg/µl) and 0.5% of SDS. DNA was then purified by single
phenol-chloroform extraction followed by ethanol precipitation
with 20 µg/ml glycogen (Thermo Fisher Scientific) as the co-
precipitator. After precipitation, the pellets were dissolved in 50
µl 10 mM Tris–HCl pH 8.0. To remove residual RNA, samples
were treated with 25 µg of RNase A (Thermo Fisher Scientific)
for 45 min at 37◦C. To remove residual salts and DTT, the DNA
was additionally purified using Agencourt AMPure XP beads
(Beckman Coulter). Then 20–100 ng of the purified DNA was
used for WGS library preparation.

The Hi-C libraries were prepared as described below, in two
replicates per sample. The sample was resuspended in saline
solution (NaCl 0.9%), homogenized and centrifuged at 200 × g
for 5 min, to precipitate the debris. Supernatant was removed
in a separate tube and centrifuged at 10,000 × g for 5 min.
The pellet was homogenized for 40 s in tubes containing Lysing
Matrix A (MP Biomedicals) and a 6 mm ceramic sphere using
an MP Biomedicals FastPrep-24 instrument at 6 m/s, then
was resuspended in 1 ml of saline solution and centrifuged
at 10,000 × g for 5 min 3 more times. Then the pellet was
resuspended in 1 ml of fixing solution (NaCl 0.9%, formaldehyde
3%) and incubated for 20 min at 22◦C with tube inversion every
2 min. The reaction was stopped by the addition of 2 M glycine
to give a final concentration of 125 mM. Cells were centrifuged
(17,000 × g, 10 min, 4◦C), resuspended in 50 µl of 1 × PBS,
snap-frozen in liquid nitrogen and stored at −80◦C. Defrozen

cells were mechanically disrupted using a Dounce homogenizer
and additionally lysed in 1 ml isotonic buffer [50 mM Tris–
HCl pH 8.0, 150 mM NaCl, 0.5% (v/v) NP-40 substitute (Fluka),
1% (v/v) Triton-X100 (Sigma), 1 × Halt Protease Inhibitor
Cocktail (Thermo Fisher Scientific)] on ice for 15 min. Cells
were centrifuged at 20,000 × g for 5 min at 4◦C, resuspended
in 200 µl of 1 × NEBuffer 2 (NEB), and pelleted again. The
pellet was resuspended in 200 µl of 0.3% SDS in 1 × NEBuffer
2 and incubated at 37◦C for 1 h. Then, cells were centrifuged at
20,000× g for 5 min at 4◦C, washed with 200 µl of 1×NEBuffer
2 and resuspended in 1 × CutSmart buffer (NEB) supplemented
with 1% of Triton X-100 (Sigma). 100 U of HpaII enzyme (NEB)
were added, and the DNA was digested overnight (14–16 h) at
37◦C with shaking (1,400 rpm). On the following day, additional
100 U of HpaII enzyme were added, and the cells were incubated
for an additional 2 h. HpaII was then inactivated by incubation
at 65◦C for 20 min. After HpaII inactivation, the cells were
harvested for 10 min at 20,000× g, washed with 300 µl of 1× T4
DNA ligase buffer (Fermentas), and resuspended in 300 µl of
1× T4 DNA ligase buffer. Cohesive DNA ends were ligated in the
presence of 75 U of T4 DNA ligase (Fermentas) at 16◦C for 4 h.
The cross-links were reversed by overnight incubation at 65◦C
in the presence of proteinase K (1 µg/µl) (Sigma) and 0.5% of
SDS. After cross-link reversal, the DNA was purified by single
phenol-chloroform extraction followed by ethanol precipitation
with 20 µg/ml glycogen (Thermo Fisher Scientific) as the co-
precipitator. After precipitation, the pellets were dissolved in 100
µl 10 mM Tris–HCl pH 8.0. To remove residual RNA, samples
were treated with 50 µg of RNase A (Thermo Fisher Scientific)
for 45 min at 37◦C. To remove residual salts and DTT, the DNA
was additionally purified using Agencourt AMPure XP beads
(Beckman Coulter). The DNA was then dissolved in 500 µl of
sonication buffer [50 mM Tris–HCl (pH 8.0), 10 mM EDTA,
0.1% SDS] and sheared to a size of approximately 100–1,000 bp
using a VirSonic 100 (VerTis). The samples were concentrated
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(and simultaneously purified) using AMICON Ultra Centrifugal
Filter Units to a total volume of approximately 50 µl. The
DNA ends were repaired by adding 62.5 µl MQ water, 14 µl
of 10 × T4 DNA ligase reaction buffer (Fermentas), 3.5 µl
of 10 mM dNTP mix (Fermentas), 5 µl of 3 U/µl T4 DNA
polymerase (NEB), 5 µl of 10 U/µl T4 polynucleotide kinase
(NEB), 1 µl of 5 U/µl Klenow DNA polymerase (NEB), and
then incubating at 20◦C for 30 min. The DNA was purified
with Agencourt AMPure XP beads and eluted with 127 µl of
10 mM Tris–HCl (pH 8.0). To perform an A-tailing reaction,
the DNA samples were supplemented with 15 µl 10 × NEBuffer
2, 3 µl of 10 mM dATP, and 4.5 µl of 5 U/µl Klenow (exo-
) (NEB). The reactions were carried out for 30 min at 37◦C in
a PCR machine, and the enzyme was then heat-inactivated by
incubation at 65◦C for 20 min. The DNA was purified using
Agencourt AMPure XP beads and eluted with 100 µl of 10 mM
Tris–HCl (pH 8.0). Illumina TruSeq adapters were ligated by
adding 12 µl 10 × T4 DNA ligase reaction buffer (Fermentas), 6
µl of Illumina TruSeq adapters and 2 µl of 5 U/µl T4 DNA ligase
(Fermentas). Adapter ligation was performed at 22◦C overnight.
DNA was then purified with Agencourt AMPure XP beads and
eluted with 30 µl of 10 mM Tris–HCl (pH 8.0). Test PCR
reactions containing 5 µl of the samples were performed to
determine the optimal number of PCR cycles required to generate
sufficient PCR products for sequencing. The PCR reactions were
performed using KAPA High Fidelity DNA Polymerase (KAPA)
and Illumina PE1.0 and PE2.0 PCR primers (10 pmol each). The
temperature profile was 5 min at 98◦C, followed by 6, 9, 12,
15, and 18 cycles of 20 s at 98◦C, 15 s at 65◦C, and 20 s at
72◦C. The PCR reactions were separated on a 2% agarose gel
containing ethidium bromide, and the number of PCR cycles
necessary to obtain a sufficient amount of DNA was determined
based on the visual inspection of gels (typically 10–12 cycles).
Four preparative PCR reactions were performed for each sample.
The PCR mixtures were combined, and the DNA was purified
using Agencourt AMPure XP beads and eluted with 50 µl of
10 mM Tris–HCl (pH 8.0).

The sequencing of the WGS and Hi-C libraries was performed
on the Illumina HiSeq platform in 2× 150 bp reads format.

Additionally, the abundance of selected gut taxa was measured
using multiplex real-time PCR with fluorescent detection with
the Colonoflor-16 kit (Alfalab, Russia).

Analysis of the WGS and Hi-C Data
We established the analytical pipeline for combined analysis
of the “shotgun” readsets and their chromosome conformation
capture counterparts; the workflow diagram is outlined in
Additional File 1: Supplementary Figure 1. At the WGS
prefiltering step, read merging and adapter removal was
performed by bbmerge v.37.62 (with default parameters and
k= 61, adapter= default). The WGS reads were assembled using
SPADES v.3.15 (Prjibelski et al., 2020) in “meta” mode. Replicates
of Hi-C libraries were pooled before processing and then filtered
with BBMap (bbduk). For each sample, the binning of contigs
was performed without the Hi-C data – into WGS-MAGs, via
MetaBat 2 (Kang et al., 2019) – and using Hi-C data – into Hi-C

MAGs, via the novel hicSPAdes algorithm.1 As an additional
option, the Hi-C MAGs have been produced using the previously
published bin3c algorithm (DeMaere and Darling, 2019).

Taxonomic profiling of metagenomic reads was performed
using MetaPhlAn2 (Truong et al., 2015) and MiCoP (LaPierre
et al., 2019). The MAG quality was evaluated using CheckM
(Parks et al., 2015). The taxonomy of each MAG was inferred
using GTDB-Tk (Chaumeil et al., 2019). Circular packing plots
of MAGs were generated using packcircles R package.2 The
quality of Hi-C libraries was evaluated with qc3C (DeMaere and
Darling, 2021). Comparative genome analysis and visualization
of the MAGs and published reference genomes was performed
using anvi’o pipeline (Eren et al., 2015) in the pangenomic
workflow including: ‘anvi-script-FASTA-to-contigs-db’ script –
for contigs database construction for each MAG, ‘anvi-run-
ncbi-cogs’ – for annotating the genes according to the NCBI
Clusters of Orthologous Groups database, ‘anvi-gen-genomes-
storage’ – for creating genome storage, ‘anvi-pan-genome’ – for
generating pan database (particularly, search for amino acid
sequence similarity with blastp and gene clusters identification),
‘anvi-display-pan’ – for visualization in the interactive interface,
and ‘anvi-summarize’ – for generating static summary; the genes
were predicted using Prodigal (Hyatt et al., 2010). Tree was
constructed based on SCGs by FastTree and MAFFT, using ‘anvi-
gen-phylogenomic-tree’ script. Genes encoding virulence factors
were identified using the VFanalyzer tool with the VFDB database
(Liu et al., 2019). UpSet plots were generated using the UpsetR
package (Conway et al., 2017).

For evaluating the number of plasmid-like contigs in the
assembly and the MAGs, PlasFlow (Krawczyk et al., 2018)
was used (followed by blastn to the NCBI plasmid database
for taxonomic validation). Prophage sequences in contigs
were identified using PHASTER (Arndt et al., 2019). Search
and annotation of antibiotic resistance genes (ARGs) in the
MAGs and contigs were conducted with RGI (Resistance Gene
Identifier)3 using the CARD database (Alcock et al., 2020). The
whole-metagenome resistome was assessed using the GraphAMR
pipeline (Shafranskaya et al., 2021). GraphAMR overcomes the
limitations of fragmented contigs in metagenomic assemblies
(due to interspecies repeats, horizontal gene transfer and other
mechanisms) via aligning the ARG profile Hidden Markov Model
directly to the assembly graph with subsequent dereplication
and identification. This approach allows for accurate and
comprehensive recovery of ARGs without the necessity of their
assembly into a complete contig. The method is able to detect an
ARG even if it is not assembled (and thus spans multiple contigs).

For the construction of Hi-C contig networks, the
contigs > 1,000 bp were selected as vertices. The Hi-C reads
were mapped to the contigs using bwa. For each contig pair, the
number of Hi-C read pairs connecting them was normalized
using HiCzin4 based on contigs’ coverage and length as well as
intra-species contacts. Intra-species contacts were estimated as

1https://cab.spbu.ru/software/hicspades/
2https://CRAN.R-project.org/package=packcircles
3https://card.mcmaster.ca/analyze/rgi
4https://github.com/dyxstat/HiCzin
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the contacts between contigs within high-quality MAGs (with
completeness > 80% and contamination < 5%). Using the
normalized weights, we constructed distributions of intra-MAG
and inter-MAG contacts intensity for the high-quality MAGs,
for each sample (Additional File 1: Supplementary Figure 2A).
Based on these histograms, we visually determined a threshold
value of 0.6 – as it fits well across the samples to remove most
inter-MAG contacts while retaining most intra-MAG contacts.
Only the Hi-C links with normalized weight above this threshold
were used to construct the network edges. During the analysis
of “microbe-phage” links, we considered a viral contig to be
connected to a bacterial MAG if it had a link to at least one of
the MAG’s contigs in the normalized interaction network with a
weight above the threshold (0.6).

The classification of contigs as chromosomal/viral/plasmid
was conducted using ViralVerify (Antipov et al., 2020) (with the
-p flag used for the plasmid search). Draft taxonomic annotation
of contigs was obtained using Kraken (Wood and Salzberg, 2014).
The networks were visualized in Cytoscape (Su et al., 2014).

Taxonomic classification of the predicted viral contigs from
assemblies was performed using DemoVir5 to the levels of order
and family. In an analysis complementary to the Hi-C-based
approach, prediction of associations between viral contigs and
bacterial MAGs was performed using VirMatcher – based on viral
sequence matches to host CRISPR-spacers, integrated prophages
in host genomes, host tRNA genes, and host k-mer signatures
calculated by WisH (Gregory et al., 2020). Only the matches
with final score ≥ 3 (according to the guidelines provided in the
software repository)6 were considered. Simulation of WGS reads
(10 mln read pairs per sample) was performed using InSilicoSeq
(Gourlé et al., 2019). For simulating Hi-C reads, the Sim3C tool
(DeMaere and Darling, 2018) was used (5 mln read pairs per
sample, read length 150 bp, HpaII enzyme).

RESULTS

Basic Analysis of Gut Community
Structure: Pronounced Dysbiosis
The WGS sequencing of 2 pairs of stool samples produced
109–131 mln read pairs per sample. A preliminary taxonomic
profiling of the patients’ gut metagenomes was performed
using unique clade-specific gene markers (see section “Materials
and Methods”). It revealed pronounced dysbiosis, particularly,
with the levels of Proteobacteria 1–2 orders higher than
observed from NGS microbiome surveys for the general Russian
population (Tyakht et al., 2013; Klimenko et al., 2018; Volokh
et al., 2019). The disruption of gut community structures has
been confirmed via a complementary analysis using taxon-
specific qPCR (Additional File 2: Supplementary Table 2). The
decreased diversity was driven by Bacteroidaceae and various
opportunist genera (Klebsiella, Escherichia, Proteus, Bilophila;
see Additional File 1: Supplementary Figure 3). Besides the
prokaryotes, there were fungal sequences normally not observed

5https://github.com/feargalr/Demovir
6https://bitbucket.org/MAVERICLab/virmatcher

in healthy populations: the intracellular parasite Enterocytozoon
bieneusi was omnipresent, with other detections including
Aspergillus niger and Candida glabrata (Additional File 3:
Supplementary Table 3).

Hi-C Allows to Obtain Higher Quality
Metagenome-Assembled Genomes
Compared to WGS
Next we investigated the microbiome composition of the patients
at a deeper level via the reconstruction of MAGs (Figure 2). For
each sample, the assembly was of relatively good quality including
91,381–139,339 contigs > 200 bp long, with a maximum length
of 523,891–783,225 bp and the N50 value of 4,196–9,150 bp.
According to the qc3c analysis, the estimated fraction of Hi-C
reads was 18.28 – 47.55%, suggesting overall proper ligation.

Two types of MAGs were reconstructed for each sample – one
being Hi-C-agnostic (WGS-MAGs) and another one exploiting
the Hi-C linkage information (Hi-C MAGs). The conventional
WGS binning was conducted using MetaBat2 as a state-of-art
WGS binning algorithm. The Hi-C binning was performed in
2 versions. The first one used hicSPAdes – a novel binning
and binning improvement tool that simultaneously exploits
the information from Hi-C-derived links and topology of the
assembly graph to improve the completeness and purity of
MAG bins; the second – performed for comparison purposes –
was the existing bin3c algorithm (see Additional File 4:
Supplementary Table 4 for summary statistics of libraries,
assemblies and binnings).

Even when the Hi-C binning was performed using bin3c
(Additional File 5: Supplementary Tables 5A–D), the number
of produced high-quality MAGs (completeness > 80%,
contamination < 5%) was higher than for the WGS (bin3c:
16–25 vs. MetaBAT2: 11–20) (Additional File 6: Supplementary
Table 6). The contamination across the high-quality MAGs did
not exceed 11% for Hi-C, while some WGS-MAGs had levels up
to 300% or higher (Figure 3).

The superiority of the Hi-C approach was even more
pronounced when the novel hicSPAdes was used for obtaining the
Hi-C MAGs (23–27 high-quality MAGs and contamination < 7%
for all MAGs) (Additional File 7: Supplementary Table 7).
Compared to the WGS, the completeness was significantly
higher for the Hi-C MAGs produced by hicSPAdes (while
no significance was achieved in the case of bin3c; t-test
for MAGs pooled across the 4 samples, p = 0 and 0.58,
respectively).

High contamination levels close to multiples of 100%
sporadically manifested by some WGS-MAGs were due to
erroneous conglomeration of 2 or more genomes. The Hi-
C approach allowed to resolve such cases. As an illustrative
example of this effect, a Dysgonomonas WGS-MAG from the
sample IC6 had a 88.5% contamination. It corresponded to
two high-quality Hi-C MAGs (via hicSPAdes) – each classified
at genus level as Dysgonomonas with contamination < 1%
and completeness of 98.01–99.93% (Additional Files 6, 7:
Supplementary Tables 6, 7). The two Hi-C counterparts of
a Bacteroides dorei WGS-MAG (contamination: 92.2%, strain
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FIGURE 2 | Taxonomic composition of gut microbiome in CCI patients. For each sample, its set of recovered Hi-C MAGs (via hicSPAdes) is visualized as circle
packing. Each circle represents a MAG labeled with genus-level taxonomy; MAG relative abundance (normalized by the total length of its contigs) is shown as its
diameter, completeness – as color, and contamination – as fill pattern. Sample IDs from left to right, top to bottom: IC4, IC5, IC6 and IC9.

heterogeneity: 50.0%) were a B. dorei and B. xylanisolvens—with
0.38 and 0% contamination, respectively.

We analyzed the proportions of the assembly that were not
binned into the MAGs. In terms of assembly length proportion,
the Hi-C MAGs included 55.6–64.3% of the total contig length,
while for the WGS, the sum was 54.9–63.4%. Considering a lower
contamination in Hi-C MAGs, it suggests that they are generally
more encompassing and provide more complete gene content for
each member of the microbiome community, while balancing it
with detailedness of species-level disentanglement.

As the set of abundant species was considerably overlapping
between the timepoints, we also performed per-patient cross-
assembly to assess how it improves the completeness of the
reconstructed Hi-C MAGs (here we chose bin3c as an established
binning algorithm to serve as a baseline). The results of the cross-
assembly and comparison with the sample-wise Hi-C MAGs

are shown in Additional File 5: Supplementary Tables 5E,F.
In this analysis, we excluded the MAGs of low completeness
(<10%) unclassified according to GTDBtk. The effect on MAG
quality was ambiguous. For patient B, there were 16 (32.7%)
cross-assembled MAGs that improved in quality (for some –
dramatically) and 4 MAGs with novel taxonomy were obtained.
For 20 MAGs, their completeness did not improve by remaining
close to the maximum across the two time points; nine MAGs
had their completeness decreased. For patient A, the respective
numbers of Hi-C MAGs were: 25 (43.9%) – were improved,
10 novel, 11 – had similar completeness and 11 – decreased
in completeness.

Noteworthy, the cross-assembly did not promote
contamination for most Hi-C MAGs. Such an increase was
observed for both patients: for patient A, only 4 of her
MAGs with contamination < 5% received values > 5% in the
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FIGURE 3 | Quality metrics for the Hi-C- and WGS-MAGs. The line plots show the values of MAGs’ completeness (top row) and contamination (bottom row) for
each sample (column-wise) according to the WGS binning and two versions of Hi-C binnings (shown in three colors). For each sample, the MAGs are sorted in the
order of decreasing completeness.

cross-assembly (but remained below 15.2%); for patient B, there
were two such cases (for them, contamination was < 11.5%).

Comparative Genome Analysis for Major
Opportunist Taxa Facilitated by Hi-C
We evaluated the advantages of Hi-C MAGs to explore the
virulence and drug resistance potential of the opportunist taxa
enriched in the CCI microbiome. For the proof-of-principle, we
selected the Klebsiella pneumoniae (Kp) – the species abundant
in all 4 samples and represented by a single Hi-C MAG in each
of them. (The hicSPAdes version of Hi-C MAGs were used in all
samples but IC4 – in the latter, hicSPAdes did not produce a Kp
MAG during the binning so we used the bin3c version instead).

After the gene prediction, the four MAGs were subject to
clustering by their shared single-copy core genes (SCG) content
similarity together with the reference genomes representative of
the 3 known K. pneumoniae phylotypes (Figure 4). The results
suggested that the CCI patients hosted K. pneumoniae sensu
stricto (KpI phylotype), the one most commonly associated with
human infection (Holt et al., 2015). The Kp MAGs clustered by
subject; while the gene count was considerably lower for patient A
than for B (5,547–5,262 vs. 5,759–6,403, according to anvi’o), the
number of subject-wise genes persisting between the time points
was, on the contrary, higher for A (2,097 vs. 1,407; Figure 5).

Evaluation of the Kp virulence potential from its Hi-C MAGs
yielded 89–112 genes encoding virulence factors (VF; Additional
File 8: Supplementary Table 8) suggesting these microbiomes
host virulent Kp types. The VF lists included pili, fimbriae,

efflux pumps, colibactin, capsule genes along with the RcsAB and
RmpA systems regulating its production, the iron-scavenging
siderophores salmochelin, aerobactin and yersiniabactin (the
latter being the most common virulence factor associated
with human K. pneumoniae infections); type VI secretion
systems and the rfb locus responsible for lipopolysaccharide
(LPS) biosynthesis. Allantoin utilization genes associated with
liver hypervirulent strains were not detected in any of the
MAGs. While the number of VF genes was close across all 4
samples, their proportion among all genes was higher for the
samples from patient A (due to shorter Kp MAGs in both
of them). Interestingly, only a few VF genes were subject-
specific. For patient A, it was a type VI secretion system tle1
phospholipase effector gene involved in bacterial competition.
Another difference between the patients was in the set of fimbrial
adherence determinants (likely acquired from Salmonella; all
belonging to chaperone/usher fimbriae): in patient A, these were
the genes of stb from γ4 clade, while in patient B – of ste and stf
from π clade (Dufresne et al., 2018).

Noteworthy, the WGS-MAGs contained fewer VF genes than
the Hi-C MAGs (WGS: 66–101; Hi-C: 89–112); their proportion
was also lower – for all samples but IC6.

Plasmid Completeness of
Metagenome-Assembled Genomes
Specifically in the case of K. pneumoniae, the conventional
completeness and contamination metrics of its MAGs (as
assessed via CheckM) were not considerably different between
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FIGURE 4 | Comparison of K. pneumoniae MAGs across the patients and time points. The genomes of K. pneumoniae strain HS11286, K. variicola BM374-1 and
K. quasipneumoniae BM404-3-1 were included as external references. The circular hierarchical clustering diagram was constructed using the anvi’o pipeline (see
section “Materials and Methods”). Each concentric circle represents a genome, while each radial ray corresponds to a gene (gene orthology cluster). The outermost
circle shows the SCG genes (in black). The genomes/circles were hierarchically clustered based on their SCG sequence similarity, while the genes – on their
prevalence pattern across the genomes. For the circles, the Kp MAGs of patient A and B are shown in blue and red, respectively; the reference genomes – in green.
Saturated colors correspond to present genes, while pale ones – to the absent ones. In the upper right part, the total number of gene clusters, the gene density
(number of genes per Kbp of genome), GC content (%) and total length are provided for each genome/MAG.

the WGS and Hi-C versions. The completeness was > 91%
and contamination – < 3% in most cases. However, these
metrics are not particularly focused on accounting for the
accessory genes and plasmids. Plasmids are an important HGT
channel responsible for dissemination of AR genes in microbial
communities, particularly, within the human gut (McInnes et al.,
2020). We evaluated whether the Hi-C MAGs portrayed a more
complete gene and plasmid content of the species than the
WGS (Figure 6).

Noteworthy, while only a handful of genes were unique to
the WGS-MAGs (n = 35–76), the sets of Hi-C-unique genes

were as large as n = 752–1,095. Decomposition of the latter
showed that, although the Hi-C MAGs’ contamination was
low (<2.5%), their total length was higher than of their WGS
counterparts not just due to a higher chromosomal completeness,
but also due to the inclusion of plasmid-like contigs – that
were underrepresented in the WGS-MAGs (n ≤ 7 per each).
The fact that such plasmid content is not mostly a false-
positive inclusion from unrelated taxa is supported by the
BLAST search against nr database showing that all classified
contigs belonged to Klebsiella or related taxa (Enterobacter,
Salmonella, Escherichia, Raoultella, Pseudomonas, Citrobacter or
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FIGURE 5 | Intersection of the K. pneumoniae gene sets across the samples
and patients using UpSet plots. Each vertical bar shows the number of genes
common across the samples highlighted by dots below the bar.
Subject-specific sets are shown in blue and red for patient A and B,
respectively. On the left, a light vertical line denotes n = 5,000 genes.

FIGURE 6 | Comparison of the K. pneumoniae gene set between the WGS
and Hi-C MAGs. The numbers for the plasmid-like contigs of Hi-C MAGs are
particularly shown. The Venn diagrams are based on COG annotation.

Acinetobacter – the Gammaproteobacteria order, mostly from
Enterobacteriaceae family).

We evaluated how Hi-C data can help establish the links
of plasmids to their bacterial hosts at the community level.
Firstly, identification of potential plasmid-related contigs in the 4
metagenomes suggested an extensive presence of plasmids, with
the Proteobacteria and Enterococci showing disproportionately
high contribution to the plasmid pool compared to the
commensal taxa (Additional File 1: Supplementary Figure 4).
Although the WGS allows the identification of plasmid-like
contigs, linking them to bacterial species/MAGs is impaired due
to separation from the chromosome and differences in genomic

features used for binning like oligonucleotide spectrum. One
essential advantage of Hi-C metagenomics compared to the WGS
is an ability to link the extrachromosomal content to a MAG via a
chromosome linking signal. Having assessed the plasmid content
of Hi-C MAGs (Additional File 9: Supplementary Table 9), we
found that the Hi-C MAGs contained a higher number of plasmid
contigs than their WGS counterparts (8.8 ± 17.4 vs. 0.94 ± 2.15
across all samples; the cases of highly contaminated WGS-MAGs
were not considered here; p = 0.005761, Wilcoxon signed rank
test with continuity correction, N = 18). As a bright example, the
Klebsiella MAG in the sample IC9 included a plasmid contig of
109,640 bp – representing an almost complete plasmid [according
to NCBI nr search, almost perfectly matching a K. pneumoniae
plasmid previously described for an isolate obtained in Saint
Petersburg, Russia (GenBank ID: CP066857.1)] – that was absent
in the corresponding WGS-MAG. We further confirmed the
circularity of the plasmid by analyzing the assembly graph:
the contig ends were overlapping by 55 bp (Additional File 1:
Supplementary Figure 5).

Antibiotic Resistance Analysis
Using an assembly graph based approach implemented in the
GraphAMR pipeline, we evaluated the total resistome of each
sample (Additional File 10: Supplementary Figure 6). Contrarily
to patient A whose semiquantitative AR profiles were remarkably
similar between the two time points, the resistome of patient B
manifested profound changes in the presence of AR genes (most
remarkable were the obtained potential resistance to vancomycin,
as shown by occurrence of genes from van family, as well as to the
tetracyclines suggested by the presence of genes from tet family).

We evaluated how Hi-C metagenomics can improve
profiling of AR genetic determinants via the improved MAG
reconstruction. For this analysis, along with the K. pneumoniae
MAGs, we selected the most abundant Hi-C MAGs (>5%)
from each sample (yielding 4–6 MAGs per sample) and
identified ARGs in them via CARD RGI (see section “Materials
and Methods”). Up to 32 AR genes per MAG were detected
(including “perfect” and “strict” hits; see Additional File 11:
Supplementary Table 10). For patient A, most MAGs carried the
adeF gene; genes conferring resistance to fluoroquinolones and
tetracycline were detected. The Bacteroides and Parabacteroides
additionally showed potential resistance to cephamycin.

For patient B, most MAGs included ARGs related to
fluoroquinolones and tetracyclines. The Bacteroides MAG at
the second time point had genes conferring resistance to
cephalosporins (via CblA-1 gene specific to B. uniformis) – but
they were not detected in the Bacteroides MAG at the first time
point. We checked if it was in fact present at the first point, but
in a contig that failed to become binned to a MAG. However, it
was not found among the unbinned contigs (Additional File 11:
Supplementary Table 10) – likely having failed to be assembled.
Possibly, the observation reflects the cefoperazone/sulbactam
treatment of the patient (Figure 1).

Following the findings about the higher gene and plasmid
contigs counts observed in the Hi-C MAGs compared to their
WGS counterparts, we explored the additional value of Hi-C
metagenomics in terms of AR. In the example of Klebsiella,
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compared to the WGS-MAGs, the respective Hi-C MAGs
included more ARGs – 24–32 vs. 21–22 hits (5–13 vs. 3–4
perfect hits). The Hi-C-specific best ARO (Antibiotic Resistance
Ontology) hits (genes, in this context) included, for the patient
A, the QnrB1, dfrA14, H-NS, QnrS1, OmpA, msrE (as opposed
to the few WGS-specific ones – QepA2 and TEM-1). For the
patient B, the following genes were detected only in the Hi-
C MAGs – mphA, dfrA5, qacEdelta1, sul1, sul2, APH(3′)-VI,
NDM-1, QnrS1, msrE, mphE, BRP(MBL), TEM-1 – while none
of the genes were WGS-specific.

Using the Hi-C graph image of resistome, we compared the
temporal dynamics of Klebsiella resistance potential with the
antibiotic regime (see Figure 1). For patient A, the QnrB1
and FosA3 genes were unique to the 1st time point, while the
QnrS1 and msrE – to the second one. At the level of antibiotic
classes, unlike the 1st point, the 2nd time point was characterized
by the presence of genes conferring resistance to lincosamide,
streptogramin, oxazolidinone and pleuromutilin. Noteworthy,
both points were characterized by resistance to carbapenems
and aminoglycosides – which is in line with the administered
meropenem and amikacin, respectively.

Similar analysis for the Klebsiella in patient B microbiome
showed that 4 ARGs were baseline-unique (dfrA5, qacEdelta1,
sul1 and FosA5) and 3 (FosA6, TEM-1 and catI) – specific
for the 2nd point. No differences between the timepoints were
observed at the level of antibiotic classes. Interestingly, while
the patient was treated with trimethoprim/sulfamethoxazole, no
genes conferring resistance to the drug was identified in the
Klebsiella MAGs – it is in line with the observation that its relative
abundance strongly decreased (from 5.5 to 0.6%) suggesting
therapy effectiveness.

We assessed how the Hi-C-mediated linking of plasmids
to bacterial chromosomes improved capturing of bacterial
resistance profiles. To do it, we calculated the proportion of
ARGs located on chromosomal contigs for the Klebsiella MAGs
(Additional File 12: Supplementary Table 11). For patient A,
most ARGs were located on the chromosome (extrachromosomal
8.3 – 12.5% of all hits and 2–3 out of 5 perfect hit genes). On
the contrary, for patient B the extrachromosomal proportion
of ARGs was considerably higher (34.4–38.7% of all hits
and 10/12–13 of perfect hit genes). Considering the fact that
WGS-MAGs almost lacked plasmid-like contigs, for patient B,
the resistome would have been considerably underestimated
without application of the Hi-C data (and inclusion of plasmid
contigs to MAG).

Comparative GraphAMR analysis of the resistome of patient
B between the two time points suggested the acquired resistance
to vancomycin at the second point (sample IC9) (Additional
File 10: Supplementary Figure 6) with many ARGs present
(vanA, vanH, vanX, vanR, vanS, vanZ, vanY). To date, several
different types of glycopeptide resistance have been characterized
(Arthur et al., 1993); these correspond to specific operons present
in the species (Leclercq and Courvalin, 1997). The presence of
vanA gene suggests the VanA-type resistance, which was the
first among the characterized ones and is the most common.
This kind of resistance is mediated by transposon Tn1546 or
closely related elements. The complete sequence of this ∼10.8

Kbp mobile element was absent in the assembled contigs, and
therefore we analyzed the assembly graph neighborhood of ARG
matches as reported by GraphAMR to reconstruct the putative
structure of VanA operon.

The sequences of genes of interest were located in a
tangled (repeat-rich) region on a plasmid and were scattered
across 3 edges of the assembly graph (see Additional File 1:
Supplementary Figure 7). All 7 genes were found in the correct
order, however, the topology of the assembly graph and the
observed read coverage of the edges suggest that two different
variants of Tn1546 transposon are actually present in the sample:
one containing the IS1251 mobile element and another one –
without this element (‘C’ and ‘A’ types of Tn1546 transposons as
defined in Wardal et al., 2017). Given the short lengths of the
corresponding graph edges (2,122, 2,837 and 1,951 bp), it is not
surprising that the assembler was unable to resolve these long
repeats and join them into a single contig/scaffold. Exploration
of the Hi-C contacts between contigs and MAGs showed that
the discovered mobile element in the sample IC9 likely belongs
to the Enterococcus faecium (normalized link weight between
these contigs and E. faecium MAG was 0.87 ± 0.84; see section
“Materials and Methods” for details on normalization).

Finally, in a complementary MAG-independent network
analysis, we evaluated how Hi-C data can be used to detect the
bacterial hosts of the ARGs by linking ARG-containing plasmid-
like contigs to chromosomal ones. As examples, we used the
Bacteroides cfxA gene along with the Klebsiella OXA and TEM
genes – each abundant in sample IC6 and located on plasmid
contigs. For each gene, we constructed a network of IC6 contigs
linked with Hi-C read pairs around the contig containing the
gene (only the contigs > 1,000 bp; the links were normalized
as described in section “Materials and Methods”). The obtained
environment of the selected ARGs is shown in Figure 7. The cfxA
gene appeared to be linked with the cluster of contigs classified
as Bacteroidetes phylum, specifically as Bacteroides, in agreement
with the existing knowledge. The OXA and TEM genes were
both located on the same contig and linked to Proteobacteria
chromosomal contigs classified (using Kraken) as belonging to
the Klebsiella or Shigella genera. Interestingly, this contig was not
included into any of the MAGs – showing how information about
antibiotic resistance undetected under MAG-based approaches
can be identified only by using the contig-level network analysis.

Linking Prophages to Bacterial Hosts
Using Hi-C
Phages are considered to play important roles in microbial
ecology. Previous reports showed that Hi-C data can aid in
linking them to their bacterial hosts (Marbouty et al., 2017, 2021;
Kent et al., 2020). We investigated this approach on our clinical
metagenomes. It started with an observation that the Hi-C MAGs
list included the items with very low completeness (according to
CheckM) but listed among the most abundant MAGs; this effect
was observed for both samples of the patient B (IC6 and IC9).
A closer examination of IC9 showed that one of such MAGs is
composed of 3 contigs classified as crAssphage; their cumulative
length was close to the typical genome length for this phage
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FIGURE 7 | Graph environment of selected antibiotic resistance genes in a Hi-C-based contig network (sample IC6). In each network, vertices correspond to contigs
close to a contig containing an AR gene, while the edges – to Hi-C links between the contigs. The layout was constructed using the edge-weighted
spring-embedded algorithm. Contig type is shown in shape and bacterial contigs’ taxonomy – in color; edge color denotes intensity of normalized Hi-C link. (A) The
first graph region of interest: a plasmid-like contig carrying cfxA gene is linked to a cluster of contigs classified as belonging to Bacteroides genus. (B) The second
region of interest: a plasmid-like contig carrying OXA and TEM genes linked to a cluster of contigs mostly classified as Klebsiella.

(98 Kbp) suggesting its high completeness. This finding was in
agreement with the results of MiCoP showing crAssphage among
the most abundant viral sequences (72 and 88% of total viral
abundance for IC6 and IC9, respectively). However, investigation
of Hi-C links of the crAssphage MAGs did not show link above
the established threshold of 0.6 in normalized Hi-C networks for
both samples; noteworthy, in the sample IC6, the only suggestive
link (0.4) of crAssphage was with the Bacteroides dorei MAG.
Considering that relative abundance of B. dorei did not change
much between the two timepoints, one could speculate that at
the first point the crAssphage could be presented as a prophage
only in a part of the B. dorei population, while at the second
point – as free phages.

To get a wider perspective on the phages’ hosts, we
analyzed viral composition of our samples and evaluated possible
“bacteria-virus” associations in each sample, as well as between
two time points for each patient. For each sample assembly,
viral contigs were identified and annotated (at order or family
level). From 1,156 to 1,612 contigs per sample initially defined
as viral, the numbers remaining after taxonomic assignment
and verification were 333–505; their median length was 3,092–
3,233 bp. A network of viral contigs and bacterial MAGs
was constructed by considering all Hi-C links between them
with normalized weights > 0.6 (Figure 8 and Additional
File 1: Supplementary Figure 8). Some viral contigs formed
dense clusters with one MAG, while others had strong Hi-
C links with several MAGs, thus forming entangled networks.
Interestingly, while we detected 107–159 viral contigs per sample
each associated with just one MAG, there were many (12–167)
contigs per sample that had strong connections to multiple

MAGs (Additional File 1: Supplementary Figure 9). Binning
algorithms conservatively assigned such viral contigs to at most
one MAG, while direct assessment of Hi-C links provided the way
to discover all possible hosts of a virus.

Furthermore, some viral contigs have a great number of Hi-
C links between each other, possibly reflecting low assembly
quality, when the algorithm failed to assemble a single viral
sequence and left multiple contigs. Patient B has a sparse
network at the first time point characterized by a number of
distinct clusters – in contrast to the 2nd time point when
the number of links increased considerably to form a dense
network. This might reflect changes in microbial ecology linked
to intensive therapy.

We additionally explored the taxonomic patterns of “bacteria-
virus” associations by estimating the Hi-C links between bacterial
MAGs and viral contigs across the samples (Additional File 1:
Supplementary Figure 10). Overall, there were 8 viral families
associated with bacteria in at least one of the samples; the number
of bacterial families detected as being involved in these links
was 25. Among the viruses, the most prevalent connections were
represented by Siphoviridae and Myoviridae families (along with
the unclassified families from the Caudovirales order). In each
sample, each of these three viral groups had links with bacterial
hosts – most frequently with the members of Enterobacteriaceae,
Oscillospiraceae andDesulfovibrionaceae families. On average, the
Siphoviridae viruses manifested the highest number of links – in
agreement with the fact that it was the most abundant family
among the viral contigs. These results show how Hi-C signals
help to reveal the taxonomic complexity of interactions between
phages and their hosts in the human gut.
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FIGURE 8 | Hi-C-based “virus-bacterial host” networks. The network for the sample IC9 is shown (see Additional File 1: Supplementary Figure 6 for the other
samples). Edge-weighted Spring-Embedded algorithm was applied to generate the layout. Vertex shape corresponds to type (MAG or viral contig). The contigs
forming each large microbial MAG were combined and shown as a square labeled with MAG ID. Each contig classified as viral was shown as a circle (particularly, if a
viral contig had been assigned to a MAG, here it was extracted and drawn as a circle). Vertex color corresponds to viral taxonomy annotation obtained via DemoVir.
The intensity of edge colors corresponds to the maximum of weight (normalized Hi-C linkage signal) between the contig and all contigs of the MAG. The MAG IDs
are as listed in Additional File 3: Supplementary Table 3.

To compare these findings with a complementary approach,
we looked for links between viral contigs and high-quality
MAGs using the VirMatcher tool based on multiple criteria
(see section “Materials and Methods”). Overall, the number of
the discovered associations was 22–76 per sample (Additional
File 13: Supplementary Table 12). When compared with
the results of our Hi-C analysis, the overlap was 8–30
links confirmed by both methods (in this way, 3.0–6.1% of
the Hi-C findings were supported via VirMatcher). There
could be various reasons for incomplete confirmation. Besides
methodological ones like possible false-positive detections of
Hi-C network approach and insufficiently complete assembly,
the bacteria might lack CRISPR corresponding to a virus but

still have alternative methods of defense against it, to name
a few – chemical defense, preventing adsorption, restriction–
modification and related defenses, and Argonaute proteins
(Hampton et al., 2020).

DISCUSSION

In one of the first Hi-C-aided clinical metagenomic studies
presented here, we applied Hi-C metagenomics for deeper
exploration of the gut microbiome in chronically critically ill
patients. On the example of most abundant opportunists we show
how this approach can be beneficial in the clinical context.
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Augmentation of WGS sequences with the microbiome-wide
chromosome conformation capture data (Hi-C) during binning
of contigs resulted in better bacterial genome reconstructions –
higher proportion of binned contigs, higher number of quality
MAGs and contamination lower by 1–2 orders of magnitude.
Furthermore, the novel hicSPAdes algorithm proved to perform
better than bin3c, a representative state-of-art Hi-C-based
binner. The key difference between hicSPAdes and bin3c is
that the latter operates on assembled contigs, while the former
uses both contigs and assembly graph. The additional use of
topology of the assembly graph improves the binning results
as it circumvents the Hi-C data coverage gaps, allows better
resolution of repetitive contigs, etc. As a result, the bins obtained
by hicSPAdes are more complete and pure. The hicSPAdes is
supplemented by the BinSPreader stage that further refines the
binning as it allows for assignment of contigs to multiple bins
at the same time and splitting the input reads for subsequent
reassembly of individual MAGs (this procedure may further
improve the contiguity of MAGs due to lesser influence of
interspecies repeats).

Comparison of the community structures across the analyzed
samples highlighted Klebsiella pneumoniae as an omnipresent
opportunist which can be used as an example to explore
the opportunities of Hi-C metagenomics. This species is a
major cause of hospital-acquired infections world-wide including
pneumonia, urogenital tract infections (UTIs) and bloodstream
infections, especially in immunocompromised individuals, and
represents a substantial healthcare burden (Martin and Bachman,
2018). Its morbidity potential is amplified by extensive virulence
potential and multi-drug resistance encoded in its open accessory
genome, much of which is carried on plasmids. We demonstrated
how the consideration of Hi-C data during MAG reconstruction
improves the capture of K. pneumoniae plasmid content,
particularly, the antibiotic resistance genes. It allowed us to detect
important virulence factor genes absent in the WGS profiles
and, moreover, to identify the inter-individual differences in VF
content which was not revealed by conventional metagenomics.
Hi-C metagenomics looks especially promising for improving the
reconstruction of the mobile genetic elements within genomes
that represent problematic regions for assembly and binning.
Better reconstruction of MAG improved the accuracy of the
downstream comparative genomic analysis; besides the steps
described in the manuscripts, it has implications for SNP/indels
analysis, phylogenetics and so on. The approach can be applied
to other opportunist taxa actively involved in HGT and
notorious for their virulent and multidrug-resistant members like
Enterococcus and Escherichia.

There were interesting observations among the taxonomic
compositions that might have clinical significance for the
critically ill patients. In 3 of 4 samples, we detected a high
abundance of Cloacibacillus – C. porcorum or related – an
amino acid degrading microorganism capable of using mucin
as a sole carbon source (Looft et al., 2013). The species is
a potential gut beneficiary of chronic critical illness linked
to muscle loss (cachexia) and malabsorption. Particularly, in
patient B, at the 2nd time point it might have replaced
another – commensal – mucose-dwelling species Akkermansia

muciniphila abundant at 1st point. Three of the 4 samples
included an abundant MAG classified as OEMR01, a member
of the Erysipelotrichaceae family. The links of Erysipelotrichaceae
members to host health are yet to be elucidated; they appear
to be highly immunogenic and can thrive after treatment with
broad-spectrum antibiotics (Zhao et al., 2013; Kaakoush, 2015).
According to our previous 16S rRNA sequencing study, the
Erysipelotrichaceae was enriched in the gut microbiome of
CCI patients compared to the patients in acute critical state
(Chernevskaya et al., 2020).

In a clade-specific marker analysis, we identified fungal
sequences in each sample. Fungi can represent significant health
risks for critically ill patients. As the coverage was low, we
did not recover fungal MAGs, not to mention the sufficient
Hi-C signal (additional experimental enrichment of the fungal
fraction would be required). We anticipate that in such cases,
involvement of Hi-C metagenomics to bin fungal genomes
consisting of multiple chromosomes will be indispensable. One
of the interesting results of the study is the dominance of
Enterocytozoon bieneusi in the composition of fungiome, an
obligate intracellular parasite infecting intestinal cells agent of
intestinal microsporidiosis that can manifest as diarrhea (Weiss
and Becnel, 2014). The condition can be life-threatening in
immunocompromised patients, particularly in the chronically
critically ill group.

Overall, the Hi-C-assisted MAG reconstruction performed
well for the sufficiently covered microbial genomes. Recovery
of low-abundant microorganisms would require higher targeted
sequencing coverage. Noteworthy, as the ICU patients often
manifest low alpha-diversity (intestinal domination of a single
species as an extreme case), the chance of obtaining good-quality
genome reconstructions is higher than for healthy subjects
hosting more diverse communities. We found that not all high-
covered taxa produced good-quality MAGs. This might be related
to the variability of GC content. One of the possible experimental
solutions would be to use multiple restriction enzymes during the
Hi-C library preparation based on the sequence analysis of major
expected genomes (Magnitov et al., 2020).

Completeness, the central measure of prokaryotic MAG
quality, is commonly based on evaluation of chromosomal
single-copy core genes and thus does not take plasmids into
account (Parks et al., 2015). Meanwhile, their gene content can
drastically affect the bacterial host phenotype, which is especially
important for the clinically relevant gut microorganisms. Hi-C
metagenomics renders the plasmid content of species detectable
and allows to come up with a concept of “plasmid completeness”
of microbial genomes reconstructed from metagenomes.

A crucial domain of microbial phenotypes in the clinical
context is their drug resistance. The Hi-C data allowed improving
resistome profiling – as seen even at the level of MAGs. Although
chronic critical illness following severe non-traumatic brain
damage was common in these patients, they showed different
clinical – as well as microbiome – trajectories. The non-survived
patient A had been given antibiotics for a long time prior
to the first time point and her therapy was quite constant
between the timepoints. At the level of her microbiome, it
was reflected by similar species-level composition at the two
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points and resistome – the latter being comparable by both
total ARG relative abundance and presence patterns. On the
other hand, the microbiome of patient B (ultimately recovered)
who started antibiotic administration at the 1st time point was
characterized by strong changes in taxonomic composition with
quantitative and qualitative alterations of the resistome. As the
pilot sample size was small and the set of prescribed antibiotics
varied between the patients, we cannot claim significant effects
of the therapy on gut resistome. Various administered drugs
showed diverse patterns. For example, for patient A, at baseline,
potential resistance to some discontinued drugs increased
(possibly reflecting the recovery of a low-abundant resistant
population), while for some it decreased (might be removed by
negative selection).

The results of ARG prediction even in average-complexity
metagenomes (such as the human gut) could be significantly
affected by fragmented assemblies. We demonstrated that the
use of assembly graph-based approaches is far superior in
terms of recovery of more complete ARG sequences even from
fragmented metagenome assemblies. Specialized pipelines such
as GraphAMR could be used to improve the current approaches
of ARG prediction of metagenomic assemblies. Hi-C data could
be used to further validate and confirm the results obtained.
One essential problem here is that during the assembly, an ARG
sequence present in multiple species is likely to be included –
flattened into a part of a single contig – into a single MAG. Our
results suggest that for deeper resistome profiling using Hi-C, it
is promising to operate directly on assembly graphs – prior to
formation of contigs and binning of them into MAGs.

Another entity in the gut microbiome that is highlighted
by the Hi-C metagenomics are phages. Phages are considered
to contribute considerably to the regulation of gut microbial
communities (Sutton and Hill, 2019). Identification of their
bacterial hosts can help elucidate the precise mechanisms of
their contribution. One of the most studied phage families are
crAss-like phages; crAssphage’s host has been identified to be
Bacteroides intestinalis (Shkoporov et al., 2018). Previously, it was
shown for the same population as the present study (Russian)
that the crAssphage reads can represent as much as 24% of
the stool metagenome (Yarygin et al., 2017). Recent study in
healthy subjects showed using the Hi-C metagenomics how
phages of this group can be linked to various species within
the Bacteroides genus (Marbouty et al., 2021). In our study,
although we discovered high levels of crAssphage persisting in
one of the patients between the time points, there were no
strong links to any bacterial MAGs. The fact that there was a
slight contact to Bacteroides dorei at the first point only suggests
underlying dynamics of proportions between prophages and
free phages. After expanding our analysis from this providential
occurrence to a global analysis of “virus-bacterial host” network
using Hi-C, we discovered the presence of viral contig hubs
linked to multiple hosts. Although this could partially be due
to misassemblies, such results may hint at possible promiscuity
of phages. This can have implications for transmission of ARGs
and virulence factors determinants across diverse gut species in
immunocompromised patients (however, we have not detected
ARGs in viral contigs in our data).

One of the challenges in the present study was to discern
signal from noise in Hi-C metagenomic data. It is possible to
determine a proper threshold via additional experiments on
defined bacterial consortia with plasmids, preferably those of
high diversity comparable to human gut. In the absence of such
opportunities, we determined the threshold by assessing the
inter-intra-MAG links distributions. In our case, the separation
of distributions choice was visually similar between the 4 samples
and the false discovery rate of detecting an inter-MAG was
quite low (from 0.0082 for IC6 sample to 0.0351 for IC5,
see Supplementary Figure 2B). The specific threshold value is
likely to vary for new datasets or under experimental protocol
modifications. Therefore, it is recommended to evaluate such
distributions for each particular dataset.

Another limitation is a small sample size – that did not
provide an opportunity to assess statistical significance in some
analyses. However, our study did not set an objective of
comparing the two patients with each other, but we had rather
initially selected the most interesting representative examples
of CCI patients in order to illustrate the broad possibilities of
the clinical Hi-C metagenomics as a method. In connection
to the specific clinical group (the critically ill patients), the
analysis of statistical power and sufficient sample size face a
heterogeneity challenge: in the ICU, the treatment (including
the choice of antibiotics) based on individual clinical status
and dynamics strongly varies across the subjects. Therefore, the
inter-subject variability of clinical factors is much higher than
for typical major diseases linked to microbiome composition
in metagenome-wide association studies (like inflammatory
bowel disease or type 2 diabetes). It follows that for a strict
statistical analysis – with proper adjustment for the confounding
factors – and considering the inherent high dimensionality
and multimodality of microbiome data, the required sample
size might be very large. In our previous survey of CCI
patients’ gut microbiome (Chernevskaya et al., 2021), even
among 44 patients at the group level we did not observe a
prevalent antibiotic therapy pattern – the individual treatments
were highly variable. Nevertheless, despite different diagnoses,
the chronically critically ill patients convergently acquire the
same features of the clinical course, with profound changes
in the gut microbiome. Thereby, the dataset in this study
allowed us to demonstrate how Hi-C metagenomics can be
expedient in the context of clinical metagenomics. The technique
is yet to become affordable for wide application. However,
further analysis of larger cohorts might provide the basis for
developing simpler targeted and cost-effective methods like 3-C
for specific clinical aims.

In the ICU microbiome research, the technique can be
readily applicable to analysis of other body sites, as well as
for hospital surfaces – that can serve as media of pathogens
transmission. It is also relevant to the COVID-19 pandemics: it is
estimated that not less than ∼7% of COVID-19 patients develop
bacterial co-infection and most lethal outcomes in the ICU are
ultimately determined by this factor. As the gut microbiome is
an important reservoir of opportunistic infectious agents causing
such invasions, its virulence and drug resistance potential should
be explored in detail.
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CONCLUSION

Hi-C metagenomics is a promising tool for analyzing clinical
microbiome samples. Compared to conventional metagenomics,
it provides reconstructed microbial genomes of higher
completeness and lower contamination. In the context of
critical care, the method coupled with specialized algorithms
improves the precision of profiling antibiotic resistance and
virulence potential of opportunist gut taxa, as well as the tracking
of mobile genetic elements dynamics. The findings can help
optimize the treatment schemes and understand mechanisms
of pathogenesis in the ICU.
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