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Editorial on the Research Topic

Integration of Ethical and Social Aspects Into Precision Livestock Farming—Achieving

Real-World Impact Responsibly

Precision Livestock Farming (PLF) uses technology to monitor and manage animals—often in
real-time and at the individual animal level (Berckmans, 2014). Such technology can range from
wearable sensors providing data related to animal activity and/or location to computer vision
solutions using cameras that can provide relevant animal data in a less intrusive way.

The challenges of developing PLF solutions capable of monitoring individual animals who
often live in large groups with other animals of nearly identical appearance and in a tough farm
environment, where equipment and data transmission are often affected by dirt, moisture and by
the animals themselves, are considerable (to say the least). However, solving technical problems
alone is not enough. The developed PLF solutions will be implemented in real-world scenarios,
in farming systems where humans and animals interact, and in societies where there may be
ethical or cultural ramifications to replacing human labor and decision-making with machines and
artificial intelligence.

Research underlying the development of the PLF solutions is often presented as benefiting both
humans and animals (Guarino et al., 2017; Werkheiser, 2020). For humans, using PLF is proposed
as a way to use limited human resources to better effect by giving farmers tools to keep track of
more animals and to intervene earlier when problems arise. For animals, it is touted as a way to
give them more individualized care, tailored to their unique needs, which should improve their
quality of life. Yet, as with all technology, there can be unintended consequences or alternative uses
that should be considered, before the technology is developed too far or widely adopted (Russell
et al., 2015; Werkheiser, 2020). For example, will use of technology to directly monitor and manage
animals result in objectification of the animal and destroy the human-animal relationships farmers
care so much about (Bos et al., 2018; Werkheiser, 2018).

Schillings et al. examined the likely impacts of PLF on animal welfare through the lens of the
Five Domains Model. They concluded that while current PLF technologies broadly have abilities to
reduce obvious negative welfare issues, such as injuries or illness, they are not yet able to promote
positive welfare. However, such limitations may not be entirely the fault of technology, as there is
an active scientific inquiry into what parameters are reliable indicators of positive welfare states,
regardless of what approach is used to detect such indicators in an animal.

Dawkins posits that whether PLF will improve the welfare of livestock on commercial farms will
depend on exactly how welfare is defined and agreed upon by the various human actors developing
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and using the technology as well as the wider public. Only by
having a common definition, and one that truly considers quality
of life from the perspective of the animal, Dawkins argues, can
the impact of PLF on animal welfare truly be assessed. Where
animal welfare was once a term to be avoided by mainstream
animal scientists, it has now become adopted so widely that it is
often used or defined incorrectly, whether deliberately or not, by
those that hope to benefit from including the term in their papers
and presentations. Thus, the importance of a common, robust
and meaningful definition remains as critical for animal welfare
as we strive tomonitor it with technology as it did at the inception
of the scientific study of the subject. Dawkins also argues that
high standards of animal welfare must be an explicit priority
when developing PLF so that systems are trained to recognize
and promote welfare to the satisfaction of animal caretakers and
also the public (which circles back to the importance of that
common definition).

Analysis of manuscript topics and text using both Natural
Language Processing and manual examination of articles by
Guzhva et al., reveals that relatively few technical papers related to
development of PLF technologiesmake even a general mention of
social or ethical implications of their work. When outcomes with
social or ethical implications are stated, they are often presented
as sweeping generalizations of “improving welfare” or “helping
farmers.” Few concrete or explicit links are made between the
data generated by the technology and how this information will
translate into a tangible benefit for either the human user or
the animal recipient. In the few papers found to acknowledge
downsides to the adoption of PLF, the most common pitfalls
described were farmer frustration with technology failures or
limitations, need for farmers to learn new skills and the potential
for PLF to increase intensification and size of farms.

In addition, there may be unintended societal or ethical
consequences to the widespread use of technology and
algorithms that the technical experts have not yet considered. For
example, computer scientists working on designing algorithms

that can recognize sick or diseased animals should explicitly
consider that this technology could be used to automate decisions
related to veterinary treatment or euthanasia. Developers should
be trained to look beyond the immediate technical challenge they
are solving to anticipating practical applications of their work
and the ethical consequences. Howmight farmer personality and
interaction with technology affect whether humans care more
or less for their animals (Kling-Eveillard et al., 2020). Finally,
what is the potential for a particular technology or algorithm
to have crossover applications related to monitoring humans
or automating important decisions about human health or life
(Werkheiser, 2020).

Solving a technical problem in a vacuum ignores the fact
that the technology will be used in the real world and may
lead far down a path unacceptable to society before this
disconnect is acknowledged. The articles in this special topic
are intended to encourage thoughtful development of PLF and
to create awareness in PLF developers of the social and ethical
ramifications that they may not have considered previously.
While it is not reasonable to expect all PLF developers to be
philosophers or social scientists, it is possible to consult with
colleagues who are or to work on interdisciplinary teams when
developing PLF.
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Exploring the Potential of Precision
Livestock Farming Technologies to
Help Address Farm Animal Welfare
Juliette Schillings*, Richard Bennett and David Christian Rose

School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom

The rise in the demand for animal products due to demographic and dietary changes

has exacerbated difficulties in addressing societal concerns related to the environment,

human health, and animal welfare. As a response to this challenge, Precision Livestock

Farming (PLF) technologies are being developed to monitor animal health and welfare

parameters in a continuous and automated way, offering the opportunity to improve

productivity and detect health issues at an early stage. However, ethical concerns have

been raised regarding their potential to facilitate the management of production systems

that are potentially harmful to animal welfare, or to impact the human-animal relationship

and farmers’ duty of care. Using the Five Domains Model (FDM) as a framework, the aim

is to explore the potential of PLF to help address animal welfare and to discuss potential

welfare benefits and risks of using such technology. A variety of technologies are identified

and classified according to their type [sensors, bolus, image or sound based, Radio

Frequency Identification (RFID)], their development stage, the species they apply to, and

their potential impact on welfare. While PLF technologies have promising potential to

reduce the occurrence of diseases and injuries in livestock farming systems, their current

ability to help promote positive welfare states remains limited, as technologies with such

potential generally remain at earlier development stages. This is likely due to the lack

of evidence related to the validity of positive welfare indicators as well as challenges

in technology adoption and development. Finally, the extent to which welfare can be

improved will also strongly depend on whether management practices will be adapted

to minimize negative consequences and maximize benefits to welfare.

Keywords: affective states, human-animal relationship, livestock production, sensors, smart farming, precision

livestock farming, animal welfare

INTRODUCTION

One of the biggest challenges our society is facing is the ability to feed a growing population,
which is expected to reach around 9.7 billion people by 2050, while minimizing environmental
impacts, ensuring human health (FAO, 2018), and addressing the public’s rising concern over
animal welfare (European Commission, 2016). In the UK, animal welfare standards have been a
key subject of public concern, particularly with proposed changes to trade and agricultural policies
in light of Brexit (Main and Mullan, 2017). In addition, there have been government commitments
to achieving net zero and other environmental improvements in the Agriculture Act, Environment
Bill and 25-years Environment Plan. The National Farmers’ Union, e.g., has set a 2040 target for
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net zero emissions in the agriculture sector, and the Agriculture
Act and associated plan to improve farm productivity indicates
that English farmers can receive financial support to produce
“public goods” such as environmental or animal welfare
improvements (DEFRA, 2021).

However, meeting these commitments is challenging, not
least because global meat production is expected to double
by 20501. This increase in production may be achieved by a
combination of expansion in animal numbers and increased
productivity, which will be particularly important in the poultry
and pig sector (Gilbert et al., 2015). While it is not possible to
predict precisely what agriculture will look like in 2050 (factors
such as income distribution, dietary choices and technological
innovations will have an important influence), the FAO suggests
that in a “business-as-usual” scenario, animal herds are likely
to increase by 46% globally compared to 2012, with poultry
numbers increasing over five-fold, three-fold for pigs, and
two-fold for small and large ruminants (FAO, 2018). This
increase in animal numbers could make their management
more challenging, especially if, as was observed in the EU, the
number of farmers continues to decrease (Eurostat, 2020). In
the UK, while livestock numbers remained stable between 2018
and 2019, the labor force on commercial holdings decreased by
0.3% (DEFRA, 2019). Having fewer farmers to look after larger
numbers of animals may make it more difficult to address animal
health and welfare challenges.

As a response to these challenges, the development of new
technologies has gained momentum. Among these developments
are Precision Livestock Farming (PLF) technologies, which
are designed to support farmers in livestock management by
monitoring and controlling animal productivity, environmental
impacts, as well as health and welfare parameters in a continuous,
real-time and automated manner (Berckmans, 2014). A variety
of systems using technologies such as sensors, cameras or
microphones can directly alert farmers via connected devices
(e.g., phones, computers, or tablets) about detected anomalies,
thus allowing farmers to intervene at an early stage. Research is
pointing toward the great potential for these “smart technologies”
to help livestock farmers in monitoring the welfare of their
animals and several countries are already investing in their
development, reflecting their potential to be part of strategies to
move toward sustainable agriculture (Rose and Chilvers, 2018;
Norton et al., 2019).

While their potential is promising, the use of these new
technologies also raises ethical concerns, such as their potential
impact on the human-animal relationship, the objectification
of animals, the notion of care and farmers’ identity as animal
keepers (Bos et al., 2018; Werkheiser, 2018, 2020). The human-
animal relationship is an important aspect which can influence
both animal welfare and productivity. The behavior of stock
people, which is influenced by their attitudes toward farm
animals, has an influence on animals’ fearfulness toward humans,
with positive behaviors leading to decreased levels of avoidance

1Food and Agriculture Organization. (2019). Meat & Meat Products. Available

online at: http://www.fao.org/ag/againfo/themes/en/meat/home.html (accessed

December 7, 2020).

and negative handling increasing fearfulness toward humans
(Hemsworth and Barnett, 1991; Waiblinger et al., 2002; Probst
et al., 2012). In addition, it also influences productivity. For
example, reduced milk yields were found on dairy farms where
farmers had more negative attitudes toward interactions with
cows during milking (Waiblinger et al., 2002). Aversive handling
was also shown to impact the growth performance of pigs and
negative relationships were found between level of fearfulness
toward humans and egg production (Hemsworth and Barnett,
1991; Cransberg et al., 2000). On the other hand, habituation,
early positive contact and genetic dispositions can be important
factors to influence the quality of the HAR (Mota-Rojas et al.,
2020). For example, studies found that young broiler chickens
exposed to positive human contact had greater growth rates, and
that positive attitudes were associated with more use of positive
behaviors (Gross and Siegel, 1979; Lensink et al., 2000). If PLF
technologies are used to facilitate and/or replace certain tasks
involving human-animal interactions and to reduce time spent
on observing individual animals by ‘replacing farmers eyes and
ears’ (Berckmans, 2014), it could be questioned whether PLF
could impact the HAR by reducing the frequency of human-
animal interactions and impacting farmers’ attitudes toward
their animals and hence their behavior. Animals may have less
opportunity to become habituated to people and farmers if the
frequency of neutral or positive interactions is reduced (this
may be particularly true on larger farms where opportunities
for human-animal contacts are usually reduced) (Rushen et al.,
1999; Cornou, 2009; Mota-Rojas et al., 2020). Similarly, concerns
were also raised in regards to the extent to which PLF could
redefine the notion of care, and whether farmers attitudes may
shift further toward reducing animals to “tracking devices” and
focus primarily on productivity (e.g., disease prevalence or costs
of medical treatments) while overlooking the animal’s qualitative
experiences (Bos et al., 2018).

Taking these benefits and ethical challenges into
consideration, it seems important to evaluate the extent to
which these technologies can actually address the issue of animal
welfare. The notion of animal welfare is complex to define
and, while the focus has long revolved around minimizing
negative experiences such as pain and suffering, studies in
animal behavior and neuroscience have led scientists to highlight
the importance of positive affects in animal welfare (Boissy
et al., 2007; Yeates and Main, 2008). Affective states relate to
feelings or emotions which can vary in intensity, duration,
level of arousal and how pleasant or unpleasant they are. While
survival-related affects reflect the animal’s internal physiological
state (e.g., thirst or hunger), situation-related affects reflect the
animal’s perception of its external circumstances (e.g., comfort,
playfulness, depression, loneliness) (Mellor, 2015a). Positive
animal welfare cannot be achieved with a sole emphasis on
minimizing negative experiences; opportunities to experience
positive affects (e.g., by allowing animals to engage in rewarding
goal-directed behaviors such as through affiliative interactions,
exploring, or play) must also be provided (Mellor and Beausoleil,
2015). Taking these aspects into account, the “Five Domains
Model” (FDM) has been developed to facilitate the assessment of
animal welfare and considers both negative and positive affective
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states (Mellor and Beausoleil, 2015). The first three domains
(labeled “nutrition,” “physical environment,” and “health”)
include survival-related factors, while the fourth (labeled
“behavioral interactions”) includes situation-related factors.
Based on these four domains it is then possible to evaluate the
associated affective consequences within a fifth domain, “mental
state” (Mellor et al., 2020). The method can be updated using the
latest scientific evidence in animal welfare and can be used in
different animal-related sectors (Mellor, 2017).

Using the FDM as a framework, this study thus aims to
understand better the potential of PLF technologies to help
address the notion of animal welfare by looking at a non-
exhaustive, yet wide range of technologies. To this end, PLF
developments in a variety of farmed species were identified
along with their development stages to distinguish better between
commercially available technologies and technologies that are
further away from being fully developed. Secondly, the potential
welfare benefits and risks of PLF are explored along with their
potential ability to promote/address affective states.

METHODS

Identification of PLF Technologies
A combination of methods was used to identify PLF technologies.
These include searches on scientific papers databases, visiting
technology exhibitions, input from colleagues as well as during
a workshop organized by the author. These methods are further
described below.

Research Papers

Search Criteria
The databases Scopus (Elsevier) and Web of Science were used
to search for papers relevant to this study. The search was
conducted between February and April 2020. Only research
articles were selected, with no limits on date of publication.
Each search included: a keyword related to Precision Livestock
Farming, a species, and either the words “welfare,” “health,” or
“behavior” (see Table 1). Considering the variety of methods
that could relate to PLF technologies, the selection of PLF-
related keywords was based on categories that were commonly
being referred to in related literature reviews (Benjamin and
Yik, 2019; Halachmi et al., 2019; Li et al., 2019; Norton et al.,
2019; Astill et al., 2020). These include the use of image-based
technology (e.g., using 2D or 3D cameras, computer vision,
optical flow, thermal cameras), sound (e.g., using microphones
or sonars), sensors [e.g., using accelerometers, pressure or
infrared sensors (IR)], Radio-Frequency Identification (RFID)
and wireless technologies. It is acknowledged that by using these
specific keywords and databases, other types of technologies may
have been omitted. It was not the goal of this paper to review
all possible PLF technologies for all species, but rather to obtain
a general view of current developments and discuss how these
apply to animal health and welfare monitoring. The species were
selected on the basis of being the main species farmed in the
UK. To complete our search, relevant papers referenced in review
articles and not present in the databases were also considered.

TABLE 1 | List of the keywords used in the search.

Technology Species Parameter

Precision livestock farming Cattle, cow, beef, calf Welfare

PLF Pig, swine, sow Health

Smart farming Poultry, laying hen, chick*, broiler Behavi*r

Automat* AND sound Fish, salmon, trout

Automat* AND image Goat, turkey, sheep

Automat* AND sensor

Automat* AND vision

Automat* AND wireless

Automat* AND RFID

Precision fish farming

Each search consisted of one “technology”, one “species,” and one “parameter,” except

for “Precision Fish Farming” which was only associated with fish, salmon and trout. An

example of search in Web of Science was: “TS = [‘Precision Livestock Farming’ AND

(cattle OR cow OR beef OR calf) AND (welfare OR health OR behav*r)]”. The asterisk (*)

is a wildcard: it represents any group of characters, including no character.

Selection of Papers
Only accessible papers written in English were considered.
From the author’s understanding based on the literature and
the workshop organized by the author (of which more details
can be found in Section Workshop), the definition of PLF
technologies can be understood differently by different people.
In this study, PLF refers to technologies that are, or have the
potential to be, automated, and allowing to monitor animal
health, welfare, and environmental parameters continuously
and in real-time. Technologies such as virtual fencing or
milking robots were, e.g., not considered in our study. Papers
were selected when the aim of the study was to present a
method to automatically monitor farm animal health, welfare, or
behavior parameters. These included, e.g., monitoring lameness,
respiratory diseases, heat, body temperature, or environmental
conditions. Methods at various stages of development were
considered, from proof-of-concepts to validated, fully automated
systems. Papers were not selected when the purpose was mainly
to refine existing models or algorithms such as to improve image
resolution or the detection of certain parts of the body (as they
were not about PLF systems in themselves). Papers were also
not selected when they addressed transport or post-slaughter
issues, when they applied to other contexts than farming
(e.g., monitoring of wild animals or applications for laboratory
studies), or when authors concluded that the proposed methods
did not present satisfying enough results for the purpose of
their study.

Commercialized Technologies
Commercially available PLF technologies were found in several
ways, including visiting technology exhibitions, findingmentions
in research or news articles, getting recommendations from
colleagues, as well as during a workshop organized by the author
of this paper (see next section). When mentions of particular
technologies were found, the websites of the relevant companies
were visited, and technologies were selected when they allowed
to automatically monitor health and welfare parameters of
farm animals.

Frontiers in Animal Science | www.frontiersin.org 3 May 2021 | Volume 2 | Article 6396788

https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/animal-science#articles


Schillings et al. PLF and Farm Animal Welfare

Workshop
The workshop, called “Current developments in Precision
Livestock Farming (PLF) technologies: What can we measure and
what are the welfare benefits and challenges’ was funded by the
Animal Welfare Research Network (AWRN) and organized by
the first author. Over 150 international participants registered
to the online workshop, however, places were limited to 100
participants due to the video conferencing software used (Zoom
5.4). Participants were selected on a “first come, first served”
basis with the condition of participants having to be members
of the AWRN (or currently applying to become a member).
Approximately 90 participants logged in at the start of the
workshop, which included researchers and students (59 and
15%, respectively), industry workers (8%), NGOs (4%), vets
(4%), civil servants (4%), assurance schemes workers (4%),
and farmers (2%). Most attended the workshop activities,
and ∼70 participants remained until the end. Four 30min
keynote presentations (including questions and answers) and
two, 1-h activities (including presentations of the outcomes by
the participants) allowed the participants to discuss current
developments in PLF for several species (from proof-of-concepts
to commercially available technologies), their benefits, potential
challenges (to animal welfare and beyond) and solutions. An
outline of the workshop is presented in Annex 1. Participants
were split into eight different groups during the activities, each
focusing on one or two livestock sectors. During the first activity,
participants were asked to discuss up to five commercially
available and up to five “promising” PLF technologies that have
the most potential to improve animal welfare for their selected
species, and to qualitatively discuss the chosen technologies’
potential benefits to welfare. Volunteers in each group presented
the outcomes of their discussion to the rest of the participants
in 3min each, sometimes using visual support showing notes
taken during the discussions (e.g., whiteboard from the Zoom
software or via a Microsoft PowerPoint slide). In a second
activity, participants (divided into the same groups) were asked
to qualitatively discuss the risks and challenges of using PLF
technologies (to their species and beyond), and how these
could be minimized. Results were presented in the same way
as for the first activity. The first author took notes during
these presentations and collected copies of the whiteboards
or PowerPoint slides where available. The outputs of these
discussions, as well as technologies and welfare benefits and
risks mentioned during the keynote presentations, were used to
complement the findings of this study (e.g., if the author had
omitted specific technologies or benefits and risks that were not
initially identified). As the outcomes of the workshop related
to animal welfare, but also to aspects beyond the scope of this
study (since they are closely related with other aspects such as
impacts on farmers, consumers and other stakeholders), only the
outcomes directly related to animal welfare (PLF technologies,
benefits and risks to welfare) were used to complement the
findings of this review.

Classification
The different technologies found using the above methods
were classified by the first author of this paper with the help

of the co-authors and a colleague (expert in the fields of
agricultural technologies and animal welfare) in tables according
to their type (e.g., image, sensors, sound, RFID, bolus), their
application (e.g., detection of lameness or estrus) and their
development stage categories. Each table was associated to
a Physical/Functional Domain of the Five Domains Model
(“nutrition,” “physical environment,” “health,” or “behavioral
interactions”). The technologies’ potential welfare benefits and
risks and their potential to address affective experiences based on
the fifth domain (“mental state”) were also discussed.

Technology Types and Applications
To simplify the tables, the “technology type” category was
kept broad. For example, although technically different,
accelerometers and infrared sensors were both classified into
a broader “sensor” category. Similarly, some applications were
grouped within categories. For example, the applications related
to “feed intake,” “grazing,” “jaw movements,” “rumination,” or
“bites” were all grouped into the “feeding behavior” category.
Similarly, “ammonia concentrations” or “particle matter
concentrations” were classified into the “air/water quality”
category. The category “disease/parasites monitoring” includes
technologies aiming to detect ill animals with diseases/parasites
such as Bovine Respiratory Disease (BRD) or sea lice in salmon.
“Activity” included behavior monitoring such as walking,
standing, lying or swimming. The technologies were classified
according to the specific aims of the papers. For example, when
the aim was to determine whether a technology could accurately
detect walking and lying patterns, the technology was placed
into the “activity” category within the “behavioral interactions”
domain. Similarly, when the specific aim was to accurately detect
estrus in cattle, the technology was placed into the “estrus”
category within the “health” domain, even if the technology was
based on activity data.

Development Stages
The development stage categories were inspired by the
Technology Readiness Levels (TRLs) developed by the
National Aeronautics and Space Administration (NASA).
The technologies were assigned within three categories which
are broadly comparable with TRLs: “proof-of-concept phase”
(P1), “validation phase” (P2) and “commercialization phase”
(P3). Technologies were assigned into the P3 category when the
systems were commercially available. Papers which included
steps to validate specific technologies or where further papers
were published to validate the method were assigned into the
P2 category, while those which did not were classified into
the P1 category. When several papers addressed a similar
application with a similar type of technology, only the highest
category was shown. It is acknowledged that the grouping into
wider categories may not allow to precisely reflect the state of
development of each different type of technologies, especially as
developments and further validation may have occurred between
the initial search and the writing of the paper or may have been
omitted due to the restricted number of keywords. Instead, it
allows to obtain an overview of current developments and to
discuss their potential to address animal welfare.
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Welfare Implications
The classification into the different domains was based on the
updated Five Domains Model (FDM) table developed by Mellor
et al. (2020). Classification under the first four physical domains
was based on the parameters monitored by the technologies
(e.g., technologies monitoring feeding behaviors were classified
into the “nutrition” domain, while technologies monitoring
lameness were classified under the “health” domain). Discussions
on affective states were based on the FDM table which provides
examples of positive and negative factors with their associated
inferred negative or positive affective experiences from the
fifth domain. For example, under the “physical environmental
conditions” section of the table, “air pollutants: NH3, CO2,
dust, smoke” is associated with the negative affects “respiratory
discomfort” (e.g., breathlessness, air passage irritation/pain). For
this reason, if a technology was designed to help farmers monitor
air pollutants such as NH3, the author suggested that the use of
such technology could have an impact on respiratory discomfort.
Similarly, a technology monitoring water intake would have
been suggested to have a possible impact on the associated
negative affect “thirst.” Where there were many affects associated
with specific factors, only a few examples were suggested to
avoid lengthy paragraphs. For example, the FDM indicates that
the presence of injuries or diseases may be associated to the
following negative affects: pain (many types), breathlessness,
debility, weakness, sickness, malaise, nausea, and dizziness. To
avoid listing all possible affects, the authors selected either those
related to a specific condition (such as breathlessness related
to respiratory diseases) or those that were most likely to be
understood by a wider audience (such as feelings of sickness
resulting from diseases). Finally, welfare benefits and risks were
discussed both in relation to the specific domains and across
domains in a separate section (SectionWelfare Benefits and Risks
Across Domains). These were identified in the research papers
found in this study, technology company websites, within the
wider PLF literature and during the workshop.

RESULTS

Research Paper Selection
The search revealed 793 research articles in total. After manual
selection of papers which we considered relevant to our study, we
retained 247 papers. Excluded papers included those that did not
focus on specific PLF technologies, papers related to technologies
other than PLF, papers that were not accessible or that were in
a language other than English. Excluded papers also included
duplicates, papers that did not relate to farming or to the species
of interest (such as wild or laboratory animals) or that addressed
stages of production which we did not consider in this review
(e.g., slaughter). A number of excluded papers also included those
that were not related to animals (e.g., human medicine). Selected
papers included 101 papers related to cattle, 68 to pigs, 37 to
poultry, 15 to fish, and 26 to other species (including turkeys,
goats, and sheep).

In the following sections, technologies relating to the
physical/functional domains of the Five Domains Model

are described along with a discussion on their domain-
specific welfare implications based on the fifth domain.
These are followed by a section (Welfare Benefits and
Risks Across Domains) on welfare benefits and risks
across domains.

Nutrition
The monitoring of drinking and feeding behaviors (which
includes grazing, ruminating, jaw movements, chewing, or feed
intake), and gastrointestinal health were the main applications
related to the “nutrition” domain (Table 2). The cattle sector
appears to benefit from a wider variety of PLF technologies
at later development stages in comparison to other species,
although commercially available technologies can also be found
for pigs, poultry and fish. For small ruminants, technologies
mainly range from the proof-of-concept phase “P1” to the
validation phase “P2.”

Commercially Available Technologies
In cattle, smart camera systems using computer vision
combined with deep learning can monitor eating time and
feed availability at group level, while neck collars equipped
with 3D accelerometers continuously monitor rumination and
eating time in individual animals. Gastrointestinal health can
also be monitored using boluses sitting in cattle reticulum which
measure pH and temperature. In pigs, RFID ear tags are used
as part of electronic feeding systems, while in the aquaculture
sector, hydroacoustic-based technologies and cameras combined
with machine learning allow to monitor fish pellet consumption
and appetite. Finally, water consumption can be monitored with
commercially available boluses in cattle and with sensors in
cattle, pigs, and poultry.

Technologies in Development
Other systems which are currently in the development stages
(categories P1 to P2) can monitor ingestive behaviors in free-
ranging cattle, goats and sheep using acoustic monitoring (Navon
et al., 2013; Chelotti et al., 2016). In poultry, Aydin (2016)
developed a sound-based monitoring system to detect short-
term feeding behaviors of broiler chickens by recording pecking
sounds. RFID systems have been used to monitor feeding
patterns in pigs (Maselyne et al., 2016b; Adrion et al., 2018),
turkeys (Tu et al., 2011) and laying hens (Li et al., 2017). Image
analysis and binocular vision techniques have been developed
to monitor feeding in pigs (Yang et al., 2020) and poultry (Xiao
et al., 2019), while sensor-based systems can monitor feed intake
in goats (Campos et al., 2019) and turkeys (Chagneau et al.,
2006). Technologies at phase P2 also introduced the possibility to
use 3D-vision to automatically assess reticulo-ruminal motility
in cattle (Song et al., 2019). Finally, drinking behavior can be
monitored using RFID in pigs (Maselyne et al., 2016a) and
a combination of sensors and RFID have been used in cattle
(Williams et al., 2020). Accelerometers have been used tomonitor
drinking in calves (Roland et al., 2018), while camera-based
systems have been developed to monitor drinking behavior in
pigs (Kashiha et al., 2013a) and chickens (Xiao et al., 2019).
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TABLE 2 | Development stages of PLF technologies related to the “nutrition” domain of the Five Domains Model for different species (expressed in phases—P1, proof-of

concept stages; P2, validation stages; P3, commercialization phases).

Application Species Technology developments

Bolus Image RFID Sensors Sound

Drinking behavior Cattle P3 - P2 P3 -

Pigs - P1 P2 P3 -

Poultry - P1 - P3 -

Turkeys - - - P3

Feeding behavior Cattle - P3 - P3 P2

Fish - P3 - - P3

Goats - - - P2 P1

Pigs - P2 P3 - -

Poultry - P1 P2 - P2

Sheep - - - P2 P1

Turkeys - - P1 P1 -

Gastrointestinal health Cattle P3 P2 - - -

Welfare Implications
Using PLF to monitor drinking and feeding behaviors and
gastrointestinal health could help provide additional support to
minimize the experience of survival-related negative affects such
as thirst, hunger or gastrointestinal pain. As changes in drinking
or feeding patterns can be indicative of health compromises such
as diseases (Nicol, 2011), we suggest that feelings of sickness
could be minimized provided that farmers are taking adequate
management decisions based on the data (e.g., providing animals
with appropriate resources or treatment). In parallel, positive
affects such as comfort of good health, gastrointestinal comfort
and pleasures associated with drinking and eating could be
promoted. However, studies suggest that positive affective states
relating to most survival-related factors are usually short-lived
(Mellor and Beausoleil, 2015), hence these technologies may
mainly have an impact on the negative-to-neutral valence range.

Physical Environment
Table 3 shows that air or water quality, animal crowding and
distribution and heating/ventilation are the main applications
related to the “physical environment” domain. The monitoring
of environmental factors is generally based on image and sensor
technologies in the fish, poultry and pig sectors, most of them
being commercially available.

Technology Developments
The monitoring of air/water quality includes the detection of a
variety of parameters such as toxic molecules concentrations, pH,
CO2, temperature, or oxygen levels which can have important
impacts on animal health and welfare. Sensors are commercially
available to measure these environmental variables in the
aquaculture, poultry and pig sectors. They are also available to
monitor heating and ventilation in pig and poultry barns, while
image-based systems using animal postures or distribution are
still in early development stages (P1 to P2) (Shao et al., 1997; Xin,
1999; Kashiha et al., 2013b). Finally, animal distribution can be

detected with commercially available cameras in the aquaculture
and poultry sector.

Welfare Implications
Monitoring environmental parameters could help address
negative affective experiences by minimizing thermal, physical,
respiratory and olfactory discomfort due to inappropriate
temperatures or, e.g., inappropriate levels of ammonia. Ensuring
optimal environmental conditions could benefit welfare by
minimizing risks of infectious and respiratory diseases and
heat stress, as well as promoting feelings of comfort. In
addition, monitoring animal distribution can also indicate
welfare compromises or equipment malfunctions (e.g., heating
or ventilation systems) (Kashiha et al., 2013b). The potential
impacts on survival-related affective experiences remain within
the negative-to-neutral valence range.

Health
A variety of technologies at different development stages monitor
parameters related to the “health” domain, from specific diseases
to foot health and stress, as well as physiological parameters
such as heart rate or temperature. Most commercially available
technologies appear to apply to cattle, but they can also be found
for pigs, poultry, as well as for sheep and fish (Table 4).

Commercially Available Technologies
In cattle, body-mounted accelerometers can be used to detect
calving, estrus and lameness based on activity data, while cameras
combined with machine learning can help determine standing
heat, body condition scores (BCS), assess lameness, and estimate
weight. Boluses placed in the reticulum can also be used to
monitor estrus, calving and physiological factors such as body
temperature or pH, and ear sensors can monitor temperature.
In the pig sector, camera-based systems can determine BCS,
estrus and weight, while microphones placed in barns can detect
coughing sounds and monitor respiratory health. In aquaculture,
image-based systems can allow the detection of sea lice, and
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TABLE 3 | Development stages of PLF technologies related to the “physical environment” domain of the Five Domains Model for different species (expressed in

phases—P1, proof-of concept stages; P2, validation stages; P3, commercialization phases).

Application Species Technology developments

Bolus Image RFID Sensors Sound

Air/Water quality Fish - - - P3 -

Pigs - - - P3 -

Poultry - - - P3 -

Crowding/Distribution Fish - P3 - - -

Poultry - P3 - - -

Heating/Ventilation Pigs - P1 - P3 -

Poultry - P2 - P3 -

TABLE 4 | Development stages of PLF technologies related to the “health” domain of the Five Domains Model for different species (expressed in phases—P1, proof-of

concept stages; P2, validation stages; P3, commercialization phases).

Application Species Technology developments

Bolus Image RFID Sensors Sound

Birth (farrowing, calving) Cattle P3 - - P3 -

Pigs - - - P2 -

Body condition Cattle - P3 - - -

Pigs - P3 - - -

Disease/parasites monitoring Cattle - P1 - P2 P1

Fish - P3 - - -

Poultry - P2 - P2 P1

Estrus Cattle P3 P3 P1 P3 P2

Pig - P3 - P1 -

Sheep - - P2 - -

Feather damage Poultry - P1 - - -

Foot health Cattle - P3 - P3 P1

Pigs - P2 - P1 -

Poultry - P2 - P1 -

Sheep - - - P2 P2

Physiology Cattle P3 P1 - P3 -

Fish - - - P1 -

Pig - - P1 - -

Poultry - P1 - P1 -

Sheep - - - P2 -

Sneezing/Coughing Cattle - - - - P1

Pigs - - - - P3

Poultry - - - - P1

Stress/Pain Fish - P1 - - -

Pigs - P1 - - P1

Poultry - - - - P1

Sheep - P1 - - -

Weight Cattle - P3 - - -

Fish - P3 - P3 -

Pigs - P3 - P3 -

Poultry - P1 - P3 P1

sensors and cameras can estimate fish growth. Finally, automatic
weighing systems are available to detect the average weight of
poultry flocks.

Technologies in Development
Growth rate can be measured in broiler chickens using
technologies at development stages ranging from P1 to P2,
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using sound analysis (Fontana et al., 2015, 2017) or 3D cameras
(Mortensen et al., 2016).

Estrus in cattle can be monitored based on individual
vocalizations and caller identification (Röttgen et al., 2020) or
with proximity loggers (Corbet et al., 2018). This can also be
monitored using RFID technology in sheep (Alhamada et al.,
2016), while sensor-based systems can detect pig farrowing
(Manteuffel et al., 2015; Pastell et al., 2016; Liu et al., 2018).

Diseases such as mastitis in cattle or campylobacter infection
in chickens can be monitored using sensor, sound and image-
based technologies at phases P1 and P2 both in poultry (Okada
et al., 2014; Banakar et al., 2016; Colles et al., 2016; Grilli et al.,
2018) and cattle (Steensels et al., 2016; Vandermeulen et al., 2016;
Yazdanbakhsh et al., 2017; Zaninelli et al., 2018;Watz et al., 2019).

Physiological parameters such as respiration rate, temperature
or heart rate can be monitored in cattle using image or sensor-
based technologies at development stages P1 to P2 (Nogami et al.,
2013; Stewart et al., 2017; Strutzke et al., 2019) as well as in poultry
(Hyun et al., 2007; Xiong et al., 2019), fish (Martos-Sitcha et al.,
2019), and sheep (Dos et al., 2018; Fuchs et al., 2019).

Lameness can be detected in pigs using images and sensors
(Pluym et al., 2013; Stavrakakis et al., 2015), while gait scores
can be evaluated in poultry using optical flow and sensors
(De Alencar Nääs et al., 2010; Dawkins et al., 2017; Van
Hertem et al., 2018). Sensors can be used to detect lameness
in sheep (Shrestha et al., 2018; Kaler et al., 2020) and sound-
based systems to monitor lameness and foot lesions in cattle
(Volkmann et al., 2019).

Technologies in the P1 and P2 phases can monitor coughs
in cattle (Carpentier et al., 2018) and sneezing in poultry using
sound-based technologies (Carpentier et al., 2019). Similarly,
stress or signs of pain can be monitored in pigs (Schön et al.,
2004) and poultry (Lee et al., 2015), as well as by using camera-
based technologies in fish (Israeli, 1996), pigs (da Fonseca
et al., 2020) or sheep using facial recognition (McLennan and
Mahmoud, 2019). Finally, image processing can be used to detect
asphyxia in sows during parturition (Okinda et al., 2018) or to
predict feather damage in poultry (Lee et al., 2011).

Welfare Implications
The identified technologies could help address animal affective
experiences such as pain, weakness or sickness emanating from
diseases or physical injuries. For example, the early detection
of coughing can indicate the onset of respiratory diseases
which, if treated adequately, have the potential to prevent
the experience of breathlessness which can cause significant
threats to welfare (Beausoleil and Mellor, 2015). Similarly,
monitoring foot health or predicting feather pecking outbreaks
in poultry could help minimize painful experiences provided
that appropriate management decisions are taken. This in turn
could promote feelings of comfort linked to good health and
functional capacity. In some cases, the automatic detection of
estrus, whilst mostly beneficial for productivity, could reduce
the need for stressful handling (e.g., in pigs), hence potentially
addressing negative affective states such as anxiety or fearfulness.
As for the “nutrition” and “physical environment” domains, the

impacts on affective experiences remain within the negative-
to-neutral valence range. As highlighted during the workshop,
the early detection of diseases could help reduce their spread
and support management decisions such as early interventions,
better colostrum management, reducing the use of antibiotics,
reducing stressful handling or preventing injurious events such
as feather pecking.

Behavioral Interactions
Many PLF technologies are based on animal activity patterns,
such as lying, walking/swimming or standing. As shown in
Table 5, commercially available systems to monitor activity
have been developed for most farmed species, particularly
using image- and sensor-based technologies. Other technologies
have been developed to detect agonistic behaviors, as well as
social interactions and maternal behaviors in pigs, cattle and
poultry. However, those generally remain at earlier development
stages (P1 to P2).

Commercially Available Technologies
Accelerometers are mostly available for ruminants and are
usually attached to the animals’ bodies and allow to monitor
behavior, location, or postures of individual animals such as
lying, standing or walking. Image-based systems can be found in
the aquaculture, pig and poultry sectors, whilst hydroacoustic-
based systems allow to monitor fish movements. In sheep,
pedigree match makers using RFID tags can be used to identify
the maternal pedigree of lambs and to monitor behavior traits
of lambs and ewes in extensive systems, which could provide
information on potential changes in relationships (Brown et al.,
2011; Morris et al., 2012).

Technologies in Development
Other technologies at earlier development stages can help
monitor activity, such as drones in goats (Vayssade et al.,
2019), RFID in poultry (Zhang et al., 2016) and sensors in
fish (Martos-Sitcha et al., 2019), pigs (Mainau et al., 2009;
Thompson et al., 2016), and poultry (Quwaider et al., 2010;
Van Der Sluis et al., 2019). In pigs, tail biting or fighting
can be monitored using depth sensors (Lee et al., 2016;
Chen et al., 2019), 3D cameras and computer vision (Viazzi
et al., 2014; D’eath et al., 2018). Excessive mounting can
be detected using image analysis (Nasirahmadi et al., 2016),
while nest building can be detected using accelerometer data
(Oczak et al., 2015). Nursing behavior can also be monitored
using video analysis (Yang et al., 2019). In cattle, systems
have been developed to monitor agonistic behaviors based on
sensors (Foris et al., 2019), while image-based technologies
can monitor mounting behaviors (Chung et al., 2015; Guo
et al., 2019) and social interactions (Guzhva et al., 2016),
and accelerometers can estimate locomotor play in calves
(Luu et al., 2013). Proximity interactions of individual dairy
cows within large herds can also be monitored using local
positioning sensor network (Chopra et al., 2020). Image-
and RFID-based technologies in the poultry sector allow
to monitor human-animal interactions (HAI) (Lian et al.,
2019), nesting (Li et al., 2017), and perching behaviors
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TABLE 5 | Development stages of PLF technologies related to the “behavioral interactions” domain of the Five Domains Model for different species (expressed in

phases—P1, proof-of concept stages; P2, validation stages; P3, commercialization phases).

Application Species Technology developments

Bolus Image RFID Sensors Sound

Activity Cattle - P2 - P3 -

Fish - P3 - P1 P3

Goat - P1 - P3 -

Pigs - P3 - P2 -

Poultry - P3 P2 P2 -

Sheep - - - P3 -

Agonistic behavior Cattle - - - P2 -

Pigs - P1 - P2 -

HAI Poultry - P1 - - -

Excessive mounting Pigs - P2 - - -

Nest building Pigs - - - P1 -

Nesting Poultry - - P2 - -

Nursing Pigs - P1 - - -

Social interactions/ Cattle - P1 P2 P1 -

relationship Sheep - - P3 - -

Perching Poultry - - P2 - -

(Nakarmi et al., 2014; Wang et al., 2019). Finally, RFID can used
to explore social behavior in cattle such as cow-calf affiliations
(Swain and Bishop-Hurley, 2007; Boyland et al., 2013).

Welfare Implications
Themonitoring of specific behaviors and situation-related factors
could help to obtain a better understanding of levels of welfare
and help evaluate animals’ responses to their environment as
well as supporting management decisions that may promote the
experience of positive affects and minimize negative ones, hence
having an impact on the negative-to-positive valence range.
Ensuring that animals can engage in natural and rewarding
behaviors which are important for their welfare such as nest
building or nursing in pigs, social interactions in cows and
sheep or nesting and perching in poultry, could indeed help
minimize feelings of frustration and promote affects such as
feeling maternally rewarded, protected or socially engaged.
In pigs e.g., monitoring nest building behaviors can help
decrease the time sows are kept in farrowing crates without
increasing piglet mortality, while monitoring nesting or perching
behaviors in poultry can help in housing system design and
management. In addition, being able to monitor agonistic
behaviors can provide a better understanding of how social
relationships (e.g., dominance) are influenced by the animals’
environment and to encourage measures that will help minimize
fearfulness or anxiety by reducing risks of aggression and
injuries, while promoting feelings of security. Finally, monitoring
the HAR could have important impacts on animal welfare if
adequate measures are put in place to reduce the occurrence
of negative interactions and promote positive ones (e.g., gentle
as opposed to rough handling, or talking softly as opposed
to shouting).

Welfare Benefits and Risks Across
Domains
In addition to the domain-specific welfare impacts suggested
above, more general welfare benefits of the identified
technologies include the potential to help support management
decisions such as early intervention to ensure good health,
reduce the use of antibiotics and prevent disease outbreaks,
sometimes in systems where monitoring can be difficult (e.g., in
extensive systems or where large numbers of animals are kept
together). In addition, monitoring animals at individual level
(e.g., using body-mounted devices or boluses) could help better
understand the animals’ specific needs.

During the workshop, questions were raised as to whether
the use of wearable sensors (or those placed inside the animals)
could cause discomfort or potential injuries to the animals.
Ear tags e.g., which are often required for identification and
traceability purposes can be a potential source of damage to
the animals’ ears, with severity depending on the type of tag
(Edwards and Johnston, 1999). Although sensors in the form
of neck collars do not require the same type of interventions,
their potential impacts on animal behavior and welfare should
be further studied. In addition, some of the technologies do not
yet allow the monitoring of individuals, but do so at group level
(in particular on farms with high number of animals e.g., poultry
or fish). While these technologies could be beneficial for the
detection of welfare compromises, the interpretation of the data
must be done carefully, as management decisions made at group
level could be detrimental for the welfare of those individuals
whose needs differ from others (e.g., different nutrition or
treatment requirements). For example, group monitoring of
feed or water intake may not reflect social competition, which
may hence be overlooked. Although studies have looked at
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possibilities to identify competitive interactions at the feedbunk,
those were considered not practical due to high costs and labor
(Huzzey et al., 2014).

Other concerns relate to the potential to reduce the
frequency of visual or physical examination which could
impact stockpeople’s attitudes and behavior toward their
animals, hence having a potential effect on the human-
animal relationship (HAR) and animal welfare. This could
be particularly problematic on systems with larger numbers
of animals (e.g., poultry or aquaculture), where opportunities
to become habituated to people are already limited. Finally,
over-reliance on PLF technologies, which was also a concern
raised during the workshop, could increase risks of harm if
system failures were to occur, in particular where systems are
fully automated.

DISCUSSION

The results from this study indicate that while PLF technologies
can have a variety of benefits and may have a good potential
to help minimize negative experiences, their current ability
to contribute to promoting positive welfare remains limited.
In addition, there are welfare risks associated with their use
which must be considered, such as their potential impact on
the human-animal relationship or to animal management. As
Buller et al. (2020, p. 5) argue, “If it is to make a substantive
contribution to addressing genuine animal welfare concerns, PLF
technology must therefore address [. . . ] the effective monitoring
and identification of systemic welfare failures and the active
enhancement of opportunities for positive welfare experiences.”

A wide range of commercially available technologies aim to
reduce the occurrence and impact of health issues, such as sensors
detecting lameness in cattle, microphonesmonitoring respiratory
health in pigs, or cameras monitoring the presence of parasites
in fish. They are also widely available to monitor and improve
productivity such as growth in poultry or estrus in dairy cattle
to increase pregnancy rate and optimize insemination. Most
technologies monitoring parameters related to the “nutrition,”
“physical environment,” and “behavioral interactions” domains
such as feeding or drinking behavior, air/water quality or activity
are also designed with the aim to optimize productivity and to
minimize the impacts of diseases. Indeed, changes in feeding
or drinking behaviors can indicate signs of illnesses (Nicol,
2011), while inappropriate environmental conditions can be
detrimental to animal health and lead to increased mortality
(Zhang et al., 2011; Segner et al., 2012). Finally, a variety of
technologies that are still in early development stages have
focused on preventing the occurrence of undesired behaviors
which can cause significant injuries such as tail biting in pigs
or feather pecking in poultry (Bilcik and Keeling, 1999; Di
Giminiani et al., 2017).

The use of these technologies could have important benefits
for welfare if the data are used to support farmers in making
effective management decisions. Indeed, PLF could allow the
early detection of health issues and reduce the occurrence
of negative affective experiences, such as pain resulting from

lameness or breathlessness caused by respiratory diseases. In
their study e.g., Taneja et al. (2020) developed a system which
allowed to detect lameness 3 days before it was visually captured
by farmers, with an accuracy of 87%. Berckmans et al. (2015)
showed that respiratory problems in pigs were detected up to
2 weeks earlier compared to farmers’ and veterinarians’ routine
observations, thanks to a sound based PLF system. In addition,
Kashiha et al. (2013b) developed a system which allowed to
detect issues in broiler houses based on animal distribution index,
which enables early intervention to minimize impacts on bird
welfare. Timely detection of diseases could help reduce the need
for antibiotics hence responding to the major global issue which
is antimicrobial resistance resulting from the excessive use of
antibiotics affecting both animals and humans (Trevisi et al.,
2014; McEwen and Collignon, 2018). In addition, PLF could also
allow monitoring larger numbers of animals more easily (e.g.,
using wearable sensors to monitor health status or smart cameras
to monitor larger groups), including on extensive systems where
the detection of sick or injured animals is often difficult (Rutter,
2014), as well as reducing potential stress resulting from repeated
handling and moving of animals (e.g., manual weight detection
in pigs) (Kashiha et al., 2014). Furthermore, the use of PLF
technologies could also help other actors (e.g., veterinarians
or farm advisors) support more efficient and farm-specific
management decisions based on the data collected, although this
may require improvements in relation to the sharing of data
(Rojo-Gimeno et al., 2019).

While health is undeniably an integral part of animal
welfare, it does not in itself guarantee “good” welfare. Studies
in neuroscience indicate that negative affective states relating
to most survival-related factors, such as thirst or hunger,
can at best be neutralized and do not necessarily lead to
anything more than short-lived positive welfare states (Mellor
and Beausoleil, 2015). Minimizing these negative experiences
can therefore shift a negative welfare state toward a more
neutral one. However, moving toward a positive welfare state
requires opportunities to live positive experiences. These include,
e.g., affiliative interactions, play, or autogrooming, which are
believed to have rewarding properties, and have the potential
to indicate positive affective states (Boissy et al., 2007). Mellor
(2015b, p.21) hence suggested that “welfare reference standards
should now be chosen to more strongly reflect a need for such
[welfare-enhancing exploratory, foraging and affiliative behaviors]
opportunities to be provided.” Some of the technologies identified
in this studymonitor these types of behaviors (e.g., play and social
interactions in cattle, nest building behaviors in pigs or perching
in poultry), however, at present, they appear to be mostly at early
development stages.

The use of such technologies could help getting a better
understanding of aspects of welfare that have often received less
attention and help support management decisions that could
improve animal welfare by promoting positive affects such as
feeling engaged, confident or being maternally rewarded, and
by minimizing negative ones such as fearfulness or frustration
from not being able to express natural behaviors. In pig
production e.g., sows are often kept in farrowing crates during
parturition to restrain their movements and avoid piglets from
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being crushed. In those conditions, pre-partum sows are not
able to perform nest-building behaviors, which they are highly
motivated to perform to provide shelter and comfort to their
young (Wischner et al., 2009). Predicting the onset of farrowing
using automated monitoring systems could therefore help in
management decisions such as restricting the time sows are kept
in farrowing crates only to the critical period where piglets are
most vulnerable, hence providing the sows with opportunities
to perform those highly motivated behaviors (Oczak et al.,
2015), and potentially having an effect on the negative-to-positive
valence range.

It could be argued that, while positive animal welfare has
gained increased attention in animal welfare science, further
research is still required regarding the feasibility, validity and
reliability of positive welfare indicators, making their current
applicability within welfare assessment protocols difficult. For
example, while play behavior appears to be a valid indicator
of positive welfare as it only occurs when all other needs
are met (Held and Špinka, 2011), the low incidence of this
behavior in farming conditions makes it difficult to use as
part of current welfare assessments (Jensen and Kyhn, 2000;
Napolitano et al., 2016). Similarly, while social licking can have
positive effects on individual cows, the behavior might also reflect
social tension within a herd (Napolitano et al., 2016). As raised
by participants of the workshop, one particular challenge to
technology development and implementation in the aquaculture
sector may also be related to the existing debate around whether
fish can feel pain or experience particular emotions despite
growing evidence suggesting that they do (Sneddon, 2019). This
limitation in terms of validity and feasibility could explain why
technologies with a potential to monitor and promote positive
welfare are still in early development stages. Progress is however
made in this area: a recent study reviewed promising valid and
reliable positive welfare indicators that could be used in welfare
assessments of ruminants (Mattiello et al., 2019). These indicators
were mostly related to the physical environment, behavioral
interactions and mental state domains of the FDM and included,
e.g., ear or tail posture, half-closed eyes, low-frequency calls or
ruminating. From a technical point of view, it would appear that
developing technologies monitoring these types of indicators is
possible, as a variety of systems identified in the present study
have been developed to monitor specific postures, vocalizations
or behaviors such as rumination.

Another important aspect to consider in addition to technical
feasibility is whether these particular types of technologies would
likely be adopted by farmers since the widespread uptake of
precision technologies thus far has been rather slow, including in
dairy farming as a result of “innovation uncertainty” (Eastwood
and Renwick, 2020). In their study, Vigors and Lawrence (2019)
interviewed farmers on their perception of positive animal
welfare and found that as a whole, farmers prioritized the
reduction of negative experiences, and mostly considered that
by doing so, positive welfare would arise as a result. Most of
the interviewed farmers considered that different positive welfare
indicators such as social interaction or play did not require
farmers’ direct input or management (except from preventing
negative interactions to occur, for example) but that those would

happen as a result of other management-based inputs. For
this reason, the adoption potential of technologies aimed at
monitoring such indicators could be challenging, as they may
not be perceived as being a priority. Highlighting the benefits
of promoting positive welfare such as the effect on productivity
and also on farmers’ well-being [see Vigors and Lawrence
(2019)], could help enhance the acceptability of those indicators
and therefore the technology adoption potential. Indeed, Lima
et al. (2018) found that farmers’ beliefs (including usefulness
and practicality) played an important role in the adoption of
Electronic Identification (EID) technology. They suggested that
communicating the positive effects of such tools, including on
performance, was likely to help enhance technology adoption.

More generally and as raised during the workshop, another
potential limitation to PLF technologies adoption may relate to
a lack of validation of some technologies which could result in
a lack of trust by farmers but also the possibility for welfare-
compromising issues to be missed by the technologies. The
validation of technologies is usually required to predict how a
system would perform under realistic operating conditions, and
in the case of PLF, developments must take into account the
complexity of living organisms, which are “individually different,
time-varying and dynamic” (Norton and Berckmans, 2017). This
complexity may explain why a wide range of PLF technologies
still require further validation. In their study, Larsen et al. (2021)
found that only 23% of publications related to PLF in pigs were
properly validated, and a recent review indicated that only 14%
of commercially available sensors in dairy cattle were externally
validated (Stygar et al., 2021).

Technology adoption does not, however, guarantee that the
technologies will be used in an optimal way in relation to
welfare. Firstly, covering the many different ways welfare can
be affected would require farmers to invest in multiple systems,
as most technologies can only monitor a few parameters at a
time and systems are often not connected to each other, adding
a difficulty to data interpretation (Knight, 2020). Indeed, there
is still a lack of integration of PLF technologies making it more
challenging to determine effective mechanisms for intervention
(Buller et al., 2020). It is also important to stress that most PLF
technologies are monitoring systems, meaning that while they
can alert farmers to detected issues, the decision to act on the
data provided ultimately lies in the farmers’ hands. The extent
to which welfare can be improved therefore depends on how the
technologies and resulting data are used, and especially whether
management decisions are restricted to “curing” symptoms once
they have appeared or whether those decisions would be adapted
to prevent issues arising in the first place. Indeed, participants at
the workshop believed that there could be a risk thatmanagement
would be adapted to fit the use of technologies rather than
focusing on welfare improvements, such as adapting light hours
and levels to fit cameras or having more barren environments to
minimize background noises.

In addition, there could be a risk that a greater recognition of
issues among livestock keepers would result in greater acceptance
of those issues rather than act as a call to action. In the case of
lameness in dairy herds e.g., which is considered one of the most
important welfare issue in dairy farming, a study found that a
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majority of farmers (90%) did not perceive lameness as being
a major issue on their farm, even though the average lameness
prevalence was high (36%) (Leach et al., 2010). According to
Horseman et al. (2014), this may not necessarily be exclusively
attributed to farmers not being able to detect lame cows, but
could rather be linked to how farmers perceive lameness, as
well as their understanding of the benefits of promptly treating
lame cows. Indeed, it appears that farmers are more likely to
treat severely lame cows more rapidly, leaving simply impaired
cows untreated for longer, even though research suggests that
it may be more beneficial to treat cows that are less severely
lame early (Leach et al., 2010 as cited in Horseman et al.,
2014). The extent to which welfare can be improved using PLF
thus depends on whether the day-to-day management of animal
health and welfare will be adapted with the implementation of
those technologies.

It is also noted that most technologies monitoring at the
individual level appear to be available for dairy cattle, while
technologies monitoring smaller animals often kept in highly
populated units such as poultry or fishmostly do so at group level
(e.g., using cameras) hence ensuring that the “average” animal
receives adequate food, water and environmental conditions
(Smaldon, 2020). This is explained by higher numbers of animals
with lower financial value per farm, making individual body-
mounted devices costly and difficult to implement. On farms
where welfare would be assessed automatically at group level,
there is a risk that the individual nature of animal welfare might
not be sufficiently taken into account if the interpretation of the
data is not done carefully. Indeed, assessing welfare parameters
at group level does not allow evaluation of whether the measure
applies equally to the whole group or to some individuals only,
potentially neglecting animals in much lower welfare states
(Winckler, 2019). In addition, concerns raised at the workshop
related to the design of the technologies which could have an
impact on welfare if it is not “wearer-driven” (e.g., such as taking
into account genetic variability or rearing environment). It was
also questioned whether facilitatingmanagement of larger groups
could lead to further intensification.

Another important welfare risk, which was also mentioned
at the workshop, relate to the potential impact on the human-
animal relationship (HAR). Indeed, most of the technologies
identified in this study can be used to replace the need for visual
but also physical examination, such as monitoring lameness,
environmental conditions or feeding behaviors. Depending on
how the time saved in performing these tasks is used by
farmers, the potential decrease in human presence and human-
animal interactions could have an effect on the HAR. Research
indeed suggests that the frequency, intensity and intimacy of
human-animal interactions influence the level of attachment
or detachment of farmers toward their animals (Bock et al.,
2007). This loss of interactions and therefore further detached
relationship with animals (which may be more and more
perceived as production tools) could result in a decrease in
empathy and reduced concerns toward animal suffering. In
addition, while some potentially stressful tasks could be avoided
using PLF, others which have the potential to strengthen the

HAR and that allow animals to be habituated to the presence
of humans to some extent may also be decreased. This could
reduce human-animal interactions to tasks which cannot be
replaced by PLF such as mutilations, hence impacting the HAR
negatively (Boivin et al., 1994; Hemsworth and Boivin, 2011).
Indeed, Tallet et al. (2019) showed that piglets which were tail
docked with a cautery iron interacted with unfamiliar humans
later than piglets that were not tail docked, and Lürzel et al.
(2015) observed that calves avoidance distances were higher
after disbudding. In their study, Kling-Eveillard et al. (2020)
found that following the implementation of PLF, some farmers
perceived the HAR as having improved, while others believed
it deteriorated. They also mentioned concerns that having to
manage an increased amount of datamay reduce the time farmers
spend with animals and impact farmers’ observational skills.
Concerns relating to the de-skilling of farm staff were also raised
during the workshop.While the social impacts of PLF on farmer’s
work are not detailed here, it is ultimately closely linked to animal
welfare, since knowledge and husbandry skills and the ability to
identify deviations in behaviors and health compromises are key
characteristics of animal care (Hemsworth et al., 2009). Farm
management supported by the use of PLF should therefore take
these potential impacts into consideration, as a negative HAR can
be detrimental to animal welfare, but also to farm productivity
and job satisfaction (Waiblinger et al., 2006).

While the study aimed at exploring the potential of PLF to
help improve animal welfare and the potential risks associated
with their use, there are limitations in this study which must
be taken into account. As mentioned in the methods section,
the identification of PLF technologies was limited to a restricted
number of keywords, making it possible to have omitted a
variety of technologies. In addition, the different technologies
and applications were classified into wider categories with only
the latest development stages of all technologies within those
categories shown. For this reason, the classification may not
reflect the stage of development of all the different types of
technologies (although as emphasized in the methods, it was not
the goal of the study to determine each existing technology).
Finally, it must be re-emphasized that animal welfare is complex,
with many variables having a potential impact, whether positive
or negative. Using the FDM as a framework helped to capture
both positive and negative aspects of welfare, however it remains
challenging to predict how the use of technologies will impact
on welfare. In addition, the affective states and welfare benefits
and risks mentioned in this paper were based on qualitative
discussions and evaluation by the authors. Thus, further research
aimed at evaluating those positive and negative impacts using
quantitative and qualitative methods would be useful to help in
technology design, both to maximize potential welfare benefits
and minimize the risks. As mentioned by participants of the
workshop, further validation of PLF technologies and research
on positive welfare indicators as well as a better collaboration
between industry, researchers and farmers should also be
encouraged, as well as increasing awareness and training of all
relevant stakeholders (including training to improve attitudes
and behavior of stock people toward animals).
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CONCLUSION

The potential of PLF to help reduce the duration and/or severity
of diseases and injuries in livestock farming systems is promising:
technologies can detect health issues at an early stage and help
ensure optimal environmental conditions. However, the extent
to which current PLF systems can help improve welfare appears
to be limited to reducing the occurrence of negative affective
states. Some technology developments related to the “behavioral
interactions” domain of the FDM have the potential to help
in promoting positive affective states, however, these generally
remain at early development stages. This is potentially explained
by a lack of evidence regarding the validity of potential positive
welfare indicators and the difficulties in measuring them, as well
as doubts regarding the adoption potential of such technologies.
In addition, the extent to which welfare could be improved
depends on whether the data obtained using PLF would be
used to adapt management practices while minimizing negative
consequences (such as the impact on the HAR), and whether
actions would be taken to address the root cause of the issues
rather than solely focusing on treating the symptoms.
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While fully automated livestock production may be considered the ultimate goal for

optimising productivity at the farm level, the benefits and costs of such a development

at the scale at which it needs to be implemented must also be considered from social

and ethical perspectives. Automation resulting from Precision Livestock Farming (PLF)

could alter fundamental views of human-animal interactions on farm and, even further,

potentially compromise human and animal welfare and health if PLF development does

not include a flexible, holistic strategy for integration. To investigate topic segregation,

inclusion of socio-ethical aspects, and consideration of human-animal interactions within

the PLF research field, the abstracts from 644 peer-reviewed publications were analysed

using the recent advances in the Natural Language Processing (NLP). Two Latent Dirichlet

Allocation (LDA) probabilistic models with varying number of topics (13 and 3 for Model

1 and Model 2, respectively) were implemented to create a generalised research topic

overview. The visual representation of topics produced by LDA Model 1 and Model 2

revealed prominent similarities in the terms contributing to each topic, with only weight for

each term being different. The majority of terms for both models were process-oriented,

obscuring the inclusion of social and ethical angles in PLF publications. A subset of

articles (5%, n = 32) was randomly selected for manual examination of the full text

to evaluate whether abstract text and focus reflected that of the article as a whole.

Few of these articles (12.5%, n = 4) focused specifically on broader ethical or societal

considerations of PLF or (9.4%, n = 3) discussed PLF with respect to human-animal

interactions. While there was consideration of the impact of PLF on animal welfare and

farmers in nearly half of the full texts examined (46.9%, n = 15), this was often limited

to a few statements in passing. Further, these statements were typically general rather

than specific and presented PLF as beneficial to human users and animal recipients. To

develop PLF that is in keeping with the ethical values and societal concerns of the public

and consumers, projects, and publications that deliberately combine social context with

technological processes and results are needed.

Keywords: human-animal interactions, natural language processing, ethics, social impact, responsible innovation
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INTRODUCTION

Precision Livestock Farming (PLF) technologies are being
proposed as solutions that allow farmers to balance producing
animal products to meet growing human demands while creating
conditions for good animal welfare, health, and environmental
sustainability (Guarino et al., 2017; Tullo et al., 2019). The use of
PLF is intended to help farmers better understand their animals
as individuals, allowing them to monitor and manage animals
in real time based on data from the animals themselves (Smith
et al., 2015; Guarino et al., 2017). The use of PLF may also lead to
fewer humans working on the farm, which may be beneficial in
terms of risks related to physical, chemical, and biological injury
and exposure. Limiting exposure to zoonotic diseases that may
have pandemic implications could be another relevant reason
to reduce numbers of human workers on farms (Dawood et al.,
2011).

Historically, jobs in the livestock sector were physically
demanding, repetitive, and conducted in harsh and adverse
environments (Kolstrup and Jakob, 2016; Kumaraveloo and
Lunner Kolstrup, 2018). Though there has been increased use of
machinery on farms, particularly since the 1950s, manual labour
is still extensively used in livestock production, providing jobs
for workers across different generations, countries, and socio-
economic conditions (Kolstrup, 2008, 2012; Lunner-Kolstrup
and Ssali, 2016; Martin, 2016). However, farmers are increasingly
using different sensors and digital decision-supporting tools to
improve their daily workflow andmaximise the economic output
of their production systems while optimising labour-intensive
tasks and management related to them (Karttunen et al., 2016;
Hartung et al., 2017; Lunner-Kolstrup et al., 2018; Klerkx et al.,
2019). A shift to relying on automation for monitoring animals
as well as for performing physically demanding and repetitive
work related to caregiving could lead to a radical paradigm
shift in livestock sector priorities, drifting away human-animal
interactions as a dominant feature at the core of farming. Using
fully-automated technology to complete more husbandry tasks
on livestock and poultry farms will change the nature of work
on farms and could have impacts on how and how often
farmers interact with their animals (Hartung et al., 2017; Kling-
Eveillard et al., 2020). Research will be needed tomore completely
understand the questions that will arise in response to such
changes in human-animal interactions, including:

1. Does reliance on technology change farmer satisfaction with
their jobs?

2. Will the need for technology force some farmers out of work
due to the monetary cost or need for re-learning how to farm
with the technology?

3. Will automation lead to an improved ability to monitor and
manage animals as individuals on farms of increasing size?

4. Will animals on fully-automated farms live lives worth
living? Particularly if increased technology drives further
intensification and increases in farm size?

5. Will automation lead to ethical conundrums related to
farming if animals are cared for solely by technology and
not humans?

For PLF to really address these questions, there must be explicit
consideration of the ethical issues surrounding the use of
technology with sentient beings, as mammals, birds, and even
fish are widely considered to be capable of feeling by the public
and demonstrated to be so by science (Duncan, 2006; Proctor
et al., 2013; Russell et al., 2015; Rossi andMattei, 2019; Rotz et al.,
2019). To maintain farmers’ and consumers’ trust and ensure
that processes that potentially could become automated and
adapted for “minimised human involvement” remain ethically
and socially acceptable, research addressing such consequences
and challenges of digitalisation and AI in livestock production
is needed before such technologies are fully integrated in animal
agriculture (Stilgoe et al., 2013; Torresen, 2018).

Compared to the plant agriculture section, the animal
agriculture sector has been relatively slow to adopt smart farming
technologies (Kamphuis et al., 2015). Possible reasons include
lack of clear financial benefit relative to existing practises, outputs
that do not provide clear management advice, privacy concerns,
and reluctance to use technology perceived as complex or not
long lived (Daberkow and McBride, 2003; Kamphuis et al., 2015;
Shepherd et al., 2018; Eastwood and Renwick, 2020). Increased
automation of specific tasks in livestock production is postulated
to contribute to more reliable and efficient outcomes in terms
of consistently meeting standards of performance and product
quality (Kamphuis et al., 2015; Bekara et al., 2017). However,
the extensive use of automated solutions will significantly affect
the daily work routine for farmers (Hansen, 2015; Marinoudi
et al., 2019; Kling-Eveillard et al., 2020) and, potentially, shift
the focus away from the animals (Rowe et al., 2019). Therefore,
while there is a significant opportunity for improved logistics and
automation as a result of using PLF solutions and AI, there are
also barriers from a human adoption perspective that must be
considered (Busse et al., 2015; Hartung et al., 2017).

The complexity of the cultural and legal frameworks around
modern livestock production means that incorporating PLF, AI,
and digitalisation into animal agriculture will also affect multiple
aspects of the food sector and society at large (Millar and
Mepham, 2001), such as:

1. Impact on the job market resulting from a shift from manual
to automated labour;

2. The image of automated livestock production and its effects on
individual animal welfare and health in the eyes of consumers;

3. Changes in the required competencies for working in the
livestock sector;

4. Acceptance of PLF, AI and digitalisation by farmers and other
end users;

5. Integration of PLF, AI, and digitalisation in different
ethical, legal, and regulatory frameworks surrounding
livestock production.

At present, PLF has been most well developed in the dairy
industry, particularly the monitoring technologies that are linked
to detecting oestrus and to robotic milking systems and their
accompanying feeders (Mottram, 2016). However, for other
species such as pigs and poultry, most of the solutions in PLF
field are still in the research and development stage (Bailey
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et al., 2018; Benjamin and Yik, 2019; Li et al., 2020). At present,
ethical frameworks, and consideration of societal consequences
of automation in PLF do not appear to have developed in ways
that constrain unintended or undesirable uses of such systems.
To address this gap, we need to better integrate socio-ethical
aspects into the assessment of innovative PLF solutions (Brey,
2012; Klerkx and Rose, 2020). However, such an assessment
requires a deep understanding of the PLF research field’s topics
in a standardised, consistent way where initial experience-based
bias is minimised.

This research aims to use recent advances in the Natural
Language Processing (NLP) sub-branch of AI to examine
abstracts from peer-reviewed publications to create and visualise
a generalised topic overview of literature in the PLF research
field and investigate the extent to which broader socio-ethical
aspects are included in this work. This was followed by a manual
examination of the full text of a randomly selected subset of
articles to evaluate whether the topical representation from
abstracts aligned with complete article content.

MATERIALS AND METHODS

Method Description
There are several commonly used methods for text data analysis
and visualisation of meaningful information patterns. Natural
Language Processing (NLP) is one of the sub-branches of AI that
deals with effective interpretation between computer systems and
humans using natural language.

One of the popular techniques in NLP is Topic Modelling
(Hoffman et al., 2010; Sievert and Shirley, 2014)—an
unsupervised technique used for clustering the information
found in text data and performing dimensionality reduction
for better representation of semantic structures (trends) within
the text. Simply put, topic models look for hidden patterns
within the text such as specific word occurrence in terms of
context and similarities between words as well as their overall
contribution to the text structure. Topic modelling helps reduce
vast amounts of textual information to their core attributes
for more straightforward interpretation, further analysis,
and visualisation.

There are several approaches that could be used for topic
modelling, one of which is Latent Dirichlet Allocation (LDA),
which was used in the present study. The LDA is a generative
probabilistic model that assumes that each and every topic
is a mixture (or a “bag”) of words with their own “weights”
contributing to the overall meaning/importance of the topic and
that each text is a mixture of different topics tied together with
their distribution probabilities.

At its core, the LDA is a Bayesian network, a statistical model
representing the set of variables (topics) and their conditional
dependencies (weights) via a directed acyclic graph. The plate
notation of LDA model can be visualised as shown in Figure 1.

There are a number of topics (K), which consist of “bags”
of words described by the Dirichlet distribution φ (phi) and
controlled by the hyperparameter β (beta). Additionally, there
are a number of documents (M), each containing words (N),
contributing to the overall text complexity. The W is an example

of a word whose weight contributes to topic Z’s importance,
with θ (theta) being the Dirichlet distribution of all topics across
all documents, and this distribution is controlled by another
hyperparameter α (alpha).

These two hyperparameters, alpha, and beta, affect the output
of the LDA model and could be adjusted depending on text
complexity and the number of documents in need of analysis:

• alpha is responsible for document-topic density (and the
higher this parameter is, the broader the description of the
document becomes);

• beta is responsible for topic-word density (and the higher this
parameter is, the more words will be assumed to contribute to
the overall topic importance);

While alpha and beta hyperparameters are mostly used for fine-
tuning the LDA model, there is also a third hyperparameter
potentially adding the bias to the LDA model’s output. This
parameter is the number of topics (n) that the model will produce
when provided with a certain number of documents as input.
Potentially, the larger the number of topics (n) is, the more
nuanced the representation of text can be achieved. However, it
could also lead to an obscured picture due to the LDA model
producing topics that are nearly identical. Thus, the n number
is often set manually since the model cannot decide upon this
variable itself. The usual approach is to initially use default model
values and then adjust the n value after the first model run to
achieve a broader or denser output as desired.

However, since the aim of this research was to perform an
overview of words and trends present in abstracts with minimal
human bias potentially affecting model output, a decision to
automate the selection and evaluation of the optimal value for
the n parameter was made. The iterative script written in the
Python programming language was used to estimate LDA model
coherence scores based on a different number of topics being
applied to the target dataset. The iterative script operated with the
following parameters: num_passes (number of times the model
trains on all the words present in the target dataset) set to 50 and
250 to investigate the tendency for the overfitting of the model
and n (number of topics potentially produced by LDA model)
ranged from 1 to 25. The results of the evaluation can be seen in
Figures 2, 3 (LDAModel 1) and (LDAModel 2), and the n-values
leading to the highest coherence score (here, 13 and 3 for LDA
Model 1 and 2, respectively) were used in the implementation of
two final models. The decision to keep two different models with
13 and 3 topics, respectively was alsomotivated by the explorative
nature of this study as an additional hypothesis was to evaluate
how the interpretability of the PLF research field changes with a
different number of topics produced by the LDA model and how
those topics blend.

Dataset Preparation
One way to obtain correctly formatted text files of sufficient
lengths is to use an official application programming interface
(API) from scientific search engines (e.g., Web of Knowledge,
ScienceDirect, Scopus). For the present study, Scopus was chosen
as the primary engine for dataset compilation as Scopus allows
output to several standard file formats (text, CSV, XML), making
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FIGURE 1 | Plane notation of the LDA Topic Model.

it easy to import data into the Python libraries used for pre-
processing. Scopus also provides a specific structure to the output
file, containing not only relevant text data but also links to full
articles as well as indexed and author-defined keywords.

The following keywords were used (with and without word
derivatives produced by the ∗ operator) for building the search
query in Scopus to identify articles for further analysis with LDA:
precision livestock farming, PLF, ethic, social, value, impact,
human-animal, relationship, technology, monitor, automation,
welfare, farm, animal, and sensor. The decision of which search
terms to initially use to identify articles for further analysis is
the point at which the most human bias could be introduced.
Terms were deliberately selected with the goal of discovering
research articles focused on the development of technologies used
within animal, not plant-based, agriculture for the automated
monitoring and management of animals. Specific terms related
to human-animal interactions as well as social and ethical aspects
were also included to ensure that such research was identified
rather than obscured by the plethora of technical studies that have
been done.

To ensure that all the potentially relevant articles were
found, several separate search queries with precision livestock
farming/PLF keywords being the main ones and other keywords
being added one at a time, and in different combinations,
were conducted through the Scopus API. The search resulted
in a joint Microsoft Excel file with 774 entries with separate
columns containing each of the following variables: publication
title, publication year, authors, abstract text, author keywords,
indexed keywords, and publisher. These 774 entries were
manually examined to remove articles not related (e.g., strictly

animal/veterinary science with no mentioning of the PLF or
technology, or with focus on plant production) to the search or
with corrupted text data resulting in 644 articles falling within
the defined search query. The abstract texts from each of the
remaining 644 articles were then used for the NLP analysis to
represent prominent trends within the PLF research domain.

The abstract text data were turned into a pandas (library
for the Python programming language) dataframe to allow
for higher computational efficiency during pre-processing and
analysis stages.

Model Implementation
The LDA model was implemented in the Python programming
language using the Gensim version of LDA. Gensim is a
robust, resource-efficient library used for unsupervised semantic
modelling from plain text.

To minimise subjectivity in the initial selection and
interpretation of the terms present in the dataset, the following
procedure was followed during pre-processing of data:

• all abstracts forming the target dataset were tokenised
(split into smaller input units like words/terms for further
processing via decapitalisation, removal of punctuation or
other special characters);

• tokenised words/terms were lemmatised (reduction of the
inflectional forms, e.g., prefix, suffix or infix, and sometimes
derivationally related forms of a word to a common base
form), using spacy and NLTK Python programming language
packages for NLP;
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FIGURE 2 | The evaluation results showing the optimal number of topics for highest coherence score for the LDA Model after 50 passes.

• stopwords (common words/terms that do not contribute to
the coherence of the text) were removed using NLTK package;

After selecting and evaluating the optimal model parameters, and
the desired number of topics for output, the final LDA models
yielded a coherence scores of 0.41 (LDA Model 1) and 0.43
(LDA Model 2). The coherence score (c_v) measures the relative
distance betweenwords within a topic. It is rare to see a coherence

of 1 or 0.9 unless the words being measured are either identical
words or bi-trigrams. The overall coherence score of a topic is

the average of the semantic distances between words and could

be used as a relative measure of “text interpretability.” Each topic

produced by the LDA model is a vector that contains the words

and their weights contributing to the final topic weight within the

processed text/document.

The visual output of LDA models, with pyLDAvis library

as a backend (Sievert and Shirley, 2014), is an interactive plot

in HTML (webpage) format. For each model, the interactive
plot consists of two panels. The left panel depicts circles

representing a topic (cluster) of information, grouped based

on Jensen-Shannon divergence, and the right panel presents
horizontal bars visualising terms appearing within the selected
topic. Each circle in the left panel represents one topic/cluster of
information from the dataset, with the size of the circle being
directly related to topic significance within the dataset. The
distance between the centre points of different circles indicates
topic similarity/difference based on the occurrence of words
forming the particular topic. The bar chart in the right panel
displays the 30 most relevant terms for the selected topic,
where the uniqueness of a displayed term within a topic can
be adjusted using a slider at the top of the panel, given a
relevance parameter, λ. The length of the red bars represents
the frequency of a term within the selected topic, and the length
of the blue bars represents a term’s frequency across the entire
dataset. Setting the relevance (λ-value) closer to 0 highlights
potentially rare, exclusive terms within the topic, while larger λ

values highlightmore common terms in the selected topic. Due to
the non-supervised nature of the LDA algorithm, low relevance
or λ-values and high term specificity do not contribute to the
explorative nature of the study. By having the relevancemetric set
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FIGURE 3 | The evaluation results showing the optimal number of topics for highest coherence score for the LDA Model after 250 passes.

to 0.6, a general overview of each topic is made possible (Sievert
and Shirley, 2014).

Manual Analysis of Full Text of Subset of
Articles
To more deeply examine the selected articles with respect
to coverage of ethical and social issues, we performed a
manual content analysis of the full text of a subset of the
articles. We used a random number generator to select
5% of the 644 articles subjected to the LDA (n = 32). To
determine whether these articles did explicitly address ethical,
societal, and human-animal implications of PLF technology,
the following keywords and their derivatives were used to
search the full text, including figures and tables: ethics, social,
society, human, relationships, interactions, farmer, producer,
manager, stockperson/stockpeople/stockman/stockmen, person,
public, consumer, customer, welfare, well being (also well-
being, wellbeing), concern, moral, value, impact, risk,
challenge, care/caring. The following rules were applied to
exclude use of search terms when used in a mathematical
or analytical sense (e.g., human observer/decoder), technical

sense (e.g., challenge) in an economic sense (e.g., value),
study approval sense (e.g., ethics), or in a descriptive
sense [e.g., concern(ing)], which were not relevant to
the analysis.

RESULTS

When comparing the initial terms produced by the two LDA
models that were run with different parameters (13 vs. 3 topics
and 50 vs. 250 passes for Model 1 and Model 2, respectively),
the similarities of terms contributing to each model output are
prominent, with only term order being different (Table 1).

The terms composing the initial output in both models are
nearly identicaland require the broader context to support the
initial hypothesis of the study: socio-ethical trends or those more
focused on animal/farmer welfare are less dominant compared to
more technical, process-oriented ones.

Figure 4 shows the visual output of LDA Model 1 (50 passes)
with 13 topics identified and grouped based on their similarity
and dominating trend.
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Figure 5 shows the visual output of LDAModel 2 (250 passes)
with 3 topics identified and grouped based on their similarity and
dominating trend.

An overview of the terms from each topic produced by LDA
Models 1 and 2 is presented in Table 2. For better segregation of

TABLE 1 | Terms from the initial output produced by LDA models generated with

the different number of passes.

Model Terms LDA Model 1 (13

topics, 50

passes)

LDA Model 2 (3

topics, 250

passes)

“farm” “farm”

“technology” “technology”

“production” “system”

“welfare” “production”

“management” “animal”

“farmer” “welfare”

“animal” “management”

“system” “livestock”

“dairy” “farmer”

“livestock” “sensor”

the terms contributing to each topic, only the 5 highest ranked
and 5 lowest ranked terms were selected from the 30 most
relevant terms shown by pyLDAvis tool. In case of the term being
a highly niched abbreviation, country name or PLF (or a direct
derivative), the next term was chosen instead for better topic
interpretability. The relevance metric (λ) was also set to 0.6 to
provide a generalistic overview used and to align with the visual
outputs of Figures 4 and 5.

Manual analysis of a subset of 32 articles (5% of the total
dataset) identified three general types of articles: (1) those that
made no mention of ethics, societal context, human-animal
interactions, or human or animal welfare implications of PLF;
(2) those that linked PLF to improved welfare of animals or to
changed work (usually beneficial) of farmers; and (3) those that
addressed ethical or social context surrounding PLF. In the first
category, 15 of the 32 articles (46.9%) focused on development
of PLF technology or data analysis and did not explicitly mention
ethical or social issues related to using their PLF on farms, refer to
how their PLF would impact farmers’ work or interactions with
animals, or consider implications of PLF on animal welfare. In
the final category, four of the articles (12.5%) spent considerable
(e.g., detailed discussion on a subject matter through the whole
text) attention on ethical or societal implications of using PLF on

FIGURE 4 | Overview of the results produced by LDA Model 1 (50 passes, 13 topics) with the relevance metric (λ) set to 0.6 and no specific topic cluster selected.

Topics 1 and 2 depict broader generalistic PLF clusters, Topics 3 and 4 are oriented mainly toward dairy cattle, and the remaining topics are more focused and

represent pig and poultry production as well as highly specific areas such as feeding, emission control, and so forth.
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FIGURE 5 | Overview of the results produced by LDA Model 2 (250 passes, 3 topics) with the relevance metric (λ) set to 0.6 and no specific topic cluster selected.

Topics 1 and 2 depict broader generalistic PLF clusters with a predominant focus on dairy cattle. Topic 3 is more specifically oriented toward pig and poultry

production and aspects such as feeding, housing, and management.

farm. However, in one of these articles, PLF was only mentioned
as a specific means of monitoring and assessing animal welfare to
meet societal expectations rather than being themain focus of the
paper (i.e., Hocquette and Chatellier, 2011).

DISCUSSION

Due to the unsupervised nature of the method which potentially
could remove the human bias from the review process, and
capacity to process a large number of documents at a relatively
low computational cost, the use of NLP and Topic Modelling
is becoming more popular in academia for explorative literature
studies (Valle et al., 2014; Liu et al., 2016; Asmussen and Møller,
2019;Muchene and Safari, 2021). The interpretation of the results
produced by LDA models, however, might pose a challenge
if the initial hypothesis is not supported by manual overview
of the text material or if the number of topics produced by
the model is not cross-fold validated against the initial dataset.
There are several evaluation metrics (e.g., coherence, perplexity
of the text material) that can be used for the assessment of the
results produced by LDA models (Wallach et al., 2009; Mimno
et al., 2011). However these metrics are highly contextual when
applied for descriptive studies and not text classification, and also

depend on the initial broadness of the analysed material. Higher
coherence scores, achieved after the extensive hyperparameter
tuning of the LDA model do not always guarantee human
interpretability, thus producing diffuse word vectors that do not
add to a comprehensible understanding of how the text data
are clustered (Roberts et al., 2016).

The relatively low coherence scores produced during model
evaluation and selection of the optimal number of topics (0.41
and 0.43 for LDA Model 1 and Model 2, respectively) for visual
representation in pyLDAvis tool can potentially be explained by
the broadness of PLF as a research field (Greene et al., 2014).
Such broadness leads to interconnectability among the research
trends and makes it difficult to locate and quantify specific
areas of interest, in this case the ethical or societal aspects of
innovative development within the livestock technology sector.
The majority of terms produced by LDA Models 1 and 2, as
seen in Table 2, are process-oriented with terms like “welfare,”
“farmer,” “result” being used in exclusively descriptive context
aiming at the direction of PLF development which was supported
by the manual analysis of the full-text of selected articles.

As also indicated in Table 2, the ranking of terms contributing
to each produced topic could lead to false assumptions of certain
trends being over/underrepresented if the conclusion is based on
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TABLE 2 | Per-topic term overview of LDA Model 1 and LDA Model 2 with only 5 highest and 5 lowest ranked terms from each topic displayed.

LDA model 1, λ = 0.6 LDA model 2, λ = 0.6

Topic # High-rank terms Low-rank terms High-rank terms Low-rank terms

1 System, sensor,

precision, analysis,

device

Control, parameter,

measure, Management,

software

Cow, time, model,

activity, study

Performance, analysis,

pig, show, video

2 Technology, farm,

production, welfare,

farmer

Benefit, issue, process,

cost, help

Technology, farm,

system, Production,

Animal

Practise, productivity,

approach, tool, challenge

3 Image, accuracy,

detection, method,

camera

Show, depth, dataset,

specificity, estimation

Group, pig, piglet,

control, feed

Feeding, right_reserve,

vocalisation, respiratory,

drug

4 Cow, time, milk, day,

piglet

Accurate, activity,

variability. estimate,

compare

5 Pig, body, tail. head,

point

Distance, label, direction,

side, husbandry

6 Activity, sow, broiler,

flock, tag

Vocalisation, link, age,

level, week

7 Feed, water, heat_stress,

Volume, climate

Drinker, swine,

occupation, correlate,

water_point

8 Model, simulation,

equation, input, classify

Motion, intelligent,

construct, growth,

computer

9 Calf, sensor, framework,

grass, hen

Material, warning,

supervision, distribute,

farrowing

10 Output, Air, identification,

compute, recognition

Machinery, indication,

network, history,

template

11 Determination, signal,

feeder, ventilation, call

Identify, intelligence,

format, distress_call,

sample

12 Drive, Drug, cover,

space,

improve_animal_welfare

Coverage, relapse,

hierarchy, early_sign,

something

13 Eastrus_detection,

estrus, smartbow,

meat_pigeon, localisation

Economic_benefit, HAR,

dairy_goat, radius,

ovulation

the term ranking within the dataset corpus only. Since the LDA
approach is unsupervised and operates based on term counts
and approximation of distances to other terms contributing to
the text structure, an additional qualitative approach to increase
the interpretability of the results from the human perspective
is highly advised when used for generating the research field
overview (Asmussen and Møller, 2019).

In the present case, manual analysis of the full text of a subset
of articles similarly revealed that the process of PLF development
was the central focus of most articles. However, over half of
the articles examined manually made at least passing mention
of how the technology would affect farmers or animals in their
care. Many of the articles that mentioned the impact of PLF on
farmers described it as beneficial in terms of reduced physical or
repetitive work and increased ability to monitor or make timely
decisions (e.g., Kwong et al., 2009). A few articles didmention the

need for farmers to gain new skills relative to using technology or
managing data (e.g., Bánkuti et al., 2020) and one (i.e., Benaissa
et al., 2020) mentioned frustration of farmers when technology
does not work well or fails to integrate with other systems.
Often the information to be gained by monitoring or aspect to
be improved for the animal was related to animal welfare (e.g.,
Nóbrega et al., 2020), though in some cases increased production
or reduced workload was the focus (e.g., Bekara et al., 2017; Abeni
et al., 2019).

Improving animal welfare was often mentioned as a general
reason for using PLF, as automated, continuous monitoring of
animals was proposed as a way to improve focus on individual
animals, particularly on farms of increasingly large size or with
fewer stockpersons per animal (e.g., Morris et al., 2012; Norton
and Berckmans, 2017). However, there were not often concrete
examples as to how exactly a farmer could use the information to
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intervene effectively in a way that would address or prevent the
welfare problem. Thus, most articles we examined were focused
on developing the ability to detect a particular feature of interest,
not on how the technology could be integrated usefully into
management (Lunner-Kolstrup et al., 2018). Similarly, though
the term ‘welfare’ was often used with respect to benefits of PLF
to animals, the entirety of the concept was not typically captured
(Van Erp-van der Kooij, 2020). Animal welfare is a complex,
multidimensional concept that embodies more than simply good
health or physical functioning, approaching a wholistic notion
of quality of life from physical, emotional, and evolutionary
perspectives (Fraser et al., 1997). Thus, most PLF only typically
detects one attribute, either health or behaviour, that could
influence welfare, not actually welfare itself (Buller et al., 2020).

Three articles (9.4%) specifically mentioned human-animal
interactions related to development or use of PLF. In one case
the authors (i.e., Benaissa et al., 2020) stated that human-animal
interactions were ignored when dairy cattle monitoring systems
were being developed. In another article (i.e., Berckmans, 2014),
PLF was proposed as a way of replacing farmers’ eyes and
ears, but rather than reducing human-animal interactions, this
continuous monitoring by PLF was proposed to help compensate
for the increasing disconnect between the modern farmer and
their animals. The final article in this set (i.e., Mancini and
Zamansky, 2014) focused on using technology of all types
to improve animal welfare, including providing insight into
human-animal interactions, and proposed developing a field of
animal welfare informatics for this specific purpose. However, the
psychological aspect of farmers losing daily and physical contact
with their animals due to automation of tasks was not mentioned
in the subset of articles that were manually analysed. Taking daily
care of animals and knowing the animals as individuals have
both been found to increase farmer job satisfaction and be strong
motivating factors for choosing to work with animals, such as
dairy cows, among farmers, employed workers, and students at
agricultural schools (Kolstrup, 2012). Animal caretakers often
have a strong sense of empathy for their animals, and may
suffer when technology takes over the role of the caretaker and
reduces their physical contact with the animals. In a study on
possible associations between health of farm staff and dairy cows,
it was found that farmers experiencedmore physical symptoms of
health problems in dairy herds with lower cow disease incidence
rates (Lunner K. C. Hultgren J., 2011). Conversely, the same study
found that a high incidence rate of health problems in a herd was
associated with more frequent or intense exposures to negative
psychosocial environmental factors among the employed dairy
workers. A possible explanation to this could be that keeping
a dairy herd in good health requires a lot of physical manual
work and enthusiasm, while when dairy cow health and well-
being is poor it is mentally stressful. Thus, when introducing
comprehensive AI into animal production, it is important to
consider both impacts on animal welfare as well as on human
health and welfare.

Some developers of PLF, as well as social scientists, economists
and ethicists interested in agricultural technology or artificial
intelligence have written specifically about the implications of
PLF related to farmer satisfaction, job security, or privacy

concerns; the welfare of animals living in systems where
technology replaces humans; the value of PLF data in the food
system; and to broader issues of agricultural sustainability (e.g.,
Adams-Progar et al., 2017; Wathes et al., 2008; Rojo-Gimeno
et al., 2019; Tullo et al., 2019; Kling-Eveillard et al., 2020;
Lovarelli et al., 2020; Werkheiser, 2020; Schillings et al., 2021).
While there appear to be an increase in the number of these
publications, as of yet, social and ethical questions do not appear
to be fully integrated into the PLF research and development
paradigm. This could be due to both the rapid speed at which
PLF development is currently occurring, as well as prioritisation
of solving technical problems over considering ethical ones.

However, though not every article presenting the use of
computer vision or a body worn sensor can or should equally
cover the ethical or social ramifications of such technology,
more explicit consideration of consequences to both immediate
and distant end users should be made (Werkheiser, 2020).
Formation of stronger collaborative teams that include tech
developers, scientist with animal knowledge, farmers with
practical experience, and ethicists or social scientists would
lead to more robust solutions. Such teams will become
particularly important as we move beyond the steps of initially
developing technology for detection types of tasks and move
into automating this technology and develop commercial
management applications. For example, ethical and legal
boundaries that frame AI must be developed, and consequences
to animals, farmers and rural communities fully considered
before rather than after PLF is deployed (Stilgoe et al., 2013;
Torresen, 2018). Data ownership issues and privacy concerns
must be balanced with demands for traceability and transparency
in the food system (Adams-Progar et al., 2017). Improvements
from earlier detection of problems and targeted treatment of
individual animals must be balanced with whether these animals
will have lives worth living if PLF leads to further intensification
and increases in farm size (Schillings et al., 2021).

CONCLUSIONS

Examination of peer-reviewed scientific literature related to
PLF using an automated Natural-Language Processing approach
indicates that most articles on PLF are process-oriented and
do not address the social or ethical context in which this
technological development occurs. Subsequent analysis of full
text of a subset of the identified articles found that connexions
between PLF technology and applications that could minimise
human labour or improve animal welfare were the most common
considerations of how PLF technology could impact humans
and animals. Though articles devoted explicitly to ethical uses of
PLF technology, economic implications of PLF or considerations
of social consequences exist, and consideration of such societal
topics does appear in some technology-oriented articles, the
topics and terms associated with ethics and society were not
well represented among the common topic themes or terms
identified in this study. Research efforts and resulting articles
that engage diverse perspectives to bridge the divide between
technology developers and social scientists are needed to keep
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PLF development grounded by the needs, uses and consideration
of those it will effect, both human and animal, on and off
the farm.
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“Smart” or “precision” farming has revolutionized crop agriculture but its application to

livestock farming has raised ethical concerns because of its possible adverse effects

on animal welfare. With rising public concern for animal welfare across the world, some

people see the efficiency gains offered by the new technology as a direct threat to the

animals themselves, allowing producers to get “more for less” in the interests of profit.

Others see major welfare advantages through life-long health monitoring, delivery of

individual care and optimization of environmental conditions. The answer to the question

of whether smart farming improves or damages animal welfare is likely to depend on

three main factors. Firstly, much will depend on how welfare is defined and the extent

to which politicians, scientists, farmers and members of the public can agree on what

welfare means and so come to a common view on how to judge how it is impacted

by technology. Defining welfare as a combination of good health and what the animals

themselves want provides a unifying and animal-centered way forward. It can also be

directly adapted for computer recognition of welfare. A second critical factor will be

whether high welfare standards are made a priority within smart farming systems. To

achieve this, it will be necessary both to develop computer algorithms that can recognize

welfare to the satisfaction of both the public and farmers and also to build good welfare

into the control and decision-making of smart systems. What will matter most in the

end, however, is a third factor, which is whether smart farming can actually deliver its

promised improvements in animal welfare when applied in the real world. An ethical

evaluation will only be possible when the new technologies are more widely deployed on

commercial farms and their full social, environmental, financial and welfare implications

become apparent.

Keywords: welfare, computer recognition, smart farming, precision, welfare algorithm

INTRODUCTION

Smart or precision farming involves the use of technology to monitor and manage the keeping
of farm animals (Banhazi et al., 2012; Berckmans, 2017). It therefore includes sensors to measure
a range of environmental and animal-based variables as well as the control mechanisms to make
management decisions, either with or without human intervention. The ability to monitor animals
continuously in real-time throughout their lives and to control their environments means that both
productivity and welfare can potentially be improved through early detection of health problems
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(Wathes et al., 2008; Banhazi et al., 2012; Berckmans, 2017;
Veissier et al., 2019), leading to targeted (and therefore reduced)
use of medication, lower mortality and improved health. These
outcomes in turn have other social benefits such as less waste,
greater efficiency and lower environmental impact (Clark and
Tilman, 2017; Perakis et al., 2020).

Furthermore, the smart data that can be collected from
thousands of farms can be interrogated to find solutions
to management, disease, welfare, productivity and even
environmental issues that have previously been based only on
the experience of one company or small-scale research projects.
Intelligent use of the large data sets that smart farming makes
possible can be used to further improve the results of smart
farming itself.

On the other hand, however, precision farming also raises
ethical concerns primarily because of its possible adverse effects
on animal welfare (Wathes et al., 2008; Werkheiser, 2020).
The concern is that gains in production and efficiency will
lead to a deterioration in animal welfare through promotion
of more intensive farming (Stevenson, 2017), an emphasis on
group rather than individual welfare (Winckler, 2019) and the
replacement of trained stock people by anonymous algorithms.

Although improved animal welfare is often one of the stated
aims of smart farming (Rowe et al., 2019), it is far from clear that
this is achieved in practice. One reason for this uncertainty is that
much of the technology is still being developed and has not yet
been widely enough applied in practice for its full implications to
be clear. Precision agriculture as applied to livestock is therefore
at a crucial stage where its impact on animal welfare could
become either positive or negative. In this article, I shall argue
that there are three factors that will largely determine the ultimate
ethical verdict on smart farming. These are (i) whether smart
farming adopts a definition of “animal welfare” that is acceptable
to the public and in particular whether that definition includes
the animals’ point of view (ii) whether computer recognition of
animal welfare is successful enough and is given high enough
priority to satisfy the ethical standards that people demand and
to genuinely improve welfare (iii) whether smart farming can
actually deliver its promised improvements in animal welfare
when applied in practice.

AN AGREED DEFINITION OF ANIMAL
WELFARE

The first factor that will determine whether smart farming is seen
as improving or damaging animal welfare is whether it will be
possible to arrive at a definition of “welfare” that everyone—
including scientists, farmers, animal charities andmembers of the
public—can all agree on. This may sound like a trivial problem
but in fact it is a serious stumbling block to a consensus view
on the ethics of smart farming because there is currently no
agreed definition of “welfare” in any context (Green and Mellor,
2011; Thompson, 2017; Ede et al., 2019; Weary and Robbins,
2019). For some people, “good welfare” must include making the
animal’s environment as “natural” as possible (Nussbaum, 2004;
Yeates, 2018), while for others a natural life does not guarantee

good welfare (Bracke and Hopster, 2006) and what animals need
can be better met in a controlled, if artificial, environment in
which technology plays a significant part (Gygax and Hillmann,
2018). The list of proposed measures of welfare now includes
longevity (Hurnik, 1993), reproductive success (Broom, 1991),
behavioral diversity (Rabin, 2003; Cronin and Ross, 2019), heart
rate variability (von Borell et al., 2007; Kovacs et al., 2015), eye
temperature (Gomez et al., 2018), skin temperature (Herborn
et al., 2015) and hormone levels (Ralph and Tilbrook, 2016;
Palme, 2019), along with many others. Such a plethora of
different welfare “measures” means that what is an ethical way of
keeping animals for one person is unethical for another. Without
a definition of animal welfare that everyone can subscribe to
and that genuinely improves animal welfare, precision farming
could run into considerable opposition on the grounds that it
does not meet the standards of a particular definition and does
not live up to its promise of improving the lives of animals.
For all the potential that Machine Learning has for determining
the conditions that give rise to the best welfare outcomes, we
still need a specification of what a “good” or desirable welfare
outcome is (Morota et al., 2018).

A possible unifying definition of good welfare is that an
animal is (i) in a state of good physical health and (ii) has what
it wants (Dawkins, 2008, 2012, 2021). This is a distillation of
many other widely used approaches such as the Ten General
principles (OIE, 2012; Fraser et al., 2013), Five Freedoms (FAWC,
2009), the Five Provisions or Domains (Mellor, 2016), the Four
Principles put forward by the Welfare Quality R© project (Welfare
Quality R©, 2018) and the Three Circles of Welfare (Fraser, 2008)
and so captures what many people from different perspectives
mean by welfare (Dawkins, 2021). All of these schemes stress the
fundamental importance of physical health to good welfare and
“what animals want” gives a prominent place to the animals’ own
view of their environments (Welfare Quality R©, 2018; Franks,
2019). It is also in line with the recent trends to move away from
defining welfare negatively as absence of suffering to defining it
more positively so that animals have a Life Worth Living (LWL)
or, even better, a positively Good Life (Broom, 2007; FAWC, 2009;
Wathes, 2010; Green andMellor, 2011; Webb et al., 2019). “What
animals want” has been discussed in the scientific literature as
animals having “positive emotions” (Boissy et al., 2007) or being
in a “positive affective state” (Mendl et al., 2010; Gygax, 2017)
but the simpler wording is more understandable to non-scientists
andmore directly indicative of the data that needs to be collected.

COMPUTER RECOGNITION OF ANIMAL
WELFARE

Defining welfare explicitly in terms of health and what animals
want has the further advantage that it lends itself directly
to computer recognition of animal welfare. This is important
because the ethical credentials of smart farming will depend to
a very large extent on people being convinced that computers
are capable of recognizing and assessing animal welfare and
then that the computers are programmed to make sure that
good welfare is a high priority. The definition of welfare used in
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smart farming must therefore be directly translatable into terms a
computer can be programmed to recognize and apply in practice.
The technology now available for smart farming includes “smart
sensors” that collect real time information from animals and/or
their environment (Neethirajan, 2017; Fogarty et al., 2018), the
integration of different sorts of information into big data sets that
can be used for Machine Learning to give the best production
and welfare outcomes (Liakos et al., 2018; Bahlo et al., 2019)
and systems that deliver fine control of an animal’s environment
and diet (Astill et al., 2020). Translating all of this data into
practical improvements in welfare, however, depends crucially on
how good computers are at interpreting the data they collect in
welfare terms. How well are computers able to recognize the two
elements of good welfare?

Computer Recognition of Health and
Disease
Veterinary medicine has so far made much more limited use
of computers to measure health than human medicine but
there is now increasing use of automated methods for detecting
signs of disease or injury in farm animals (Fournel et al., 2017;
Awaysheh et al., 2019). This is most advanced in the dairy
sector, where changes in the health status of each individual
cow have an appreciable economic impact and so farmers find
investment in the technology that gives detailed information on
each animal to be important to their entire business (Lovarelli
et al., 2020). For example, lameness in dairy cows can now
be automatically detected in a variety of ways including visual
images, accelerometer data from devices fitted to the cows’ legs,
pressure sensitive pads that record the way cows distribute
their weight and even from the sound of their footfall (Alsaaod
et al., 2019; Eckelkamp, 2019; Volkmann et al., 2019; Pilette
et al., 2020). Changes in behavior such as longer bouts of lying,
shorter bouts of feeding or ruminating can be automatically
derived from visual images and accelerometers and serve as early
warnings of both lameness and other health problems (Beer
et al., 2016; Alsaaod et al., 2019; Eckelkamp, 2019; Grinter et al.,
2019). In pigs, changes in tail position can be automatically
detected by cameras and used as warnings for outbreaks of tail-
biting, a serious source of injury (D’Eath et al., 2018). Digital
imaging technology can also be used to analyze different postures
indicating sick or injured birds (Zhuang et al., 2018) or to pick
out lame broilers by abnormalities of their body oscillations, step
frequency and step length (Aydin, 2017).

Large animals such as cows or sows can be individually
monitored either by placing tags, trackers or measuring devices
on or even inside each animal or by visually recognizing
individual animals from camera data (Jorquera-Chavez et al.,
2019; Sun et al., 2019; Baxter and O’Connell, 2020). Such devices
can contribute to animal welfare by enabling each animal to
have its own individualized diet and medical treatment (Caja
et al., 2016). Computer vision and machine learning can now
identify facial expressions of pain in sheep, giving early warning
of diseases such as foot rot and mastitis and enabling an affected
individual to be treated before the disease spreads to the rest of
the flock (McLennan and Mahmoud, 2019).

However, where thousands of smaller animals are kept
together, individual recognition is currently difficult and the
entire group is assessed and treated as a whole. Commercially
reared poultry, for example, do not have feed, vaccination,
medication, drinker height, lighting and other factors adjusted
for single individuals but, rather, set for the average needs of
the entire flock. Welfare assessment is similarly based on group
outcomes such as % of a flock with gait defects, % mortality,
sounds or movements of whole flocks (Dawkins et al., 2012,
2017). This is one area where precision farming is currently
limited but could in future make a real contribution to the
welfare of group-housed animals. The “precision” in precision
crop agriculture refers to the measurement of soil properties,
moisture levels, weeds and diseases in specific parts of a field and
the application of treatments such as fertilizers and herbicides
precisely where these are really needed rather than to the field
as a whole (Yufeng et al., 2011; Yost et al., 2017). The welfare of
chickens could, similarly, benefit from technology that allowed
farmers to identify injured birds and treat them individually or
to be alerted to a particular areas of a house where a potential
problem such smothering or over-crowding was beginning to
occur. Houses containing many thousands of birds would no
longer be treated as a single unit but as flocks ofmany individuals,
experiencing different conditions and having different welfare
outcomes. This would enable greater focus on the welfare of
individual animals than either farmers or machines are able to
do at the moment.

Even with current technology, however, valuable health
information can be gained from monitoring the whole group
without distinguishing individuals. For example, the sound
of coughing has been used to automatically detect early
signs of Bovine Respiratory Disease, despite the difficulties of
distinguishing the sound of a cough from other background
noises (Vandermeulen et al., 2016; Carpentier et al., 2018). The
sounds of coughing in pigs (Silva et al., 2008) and sneezing in
chickens (Carpentier et al., 2019) have also been used to detect
respiratory diseases. Using visual images, broiler chicken flocks
with high levels of leg damage and lameness can be automatically
detected from anomalies in flock movement (Fernandez et al.,
2018), even before these become apparent to the human eye
(Dawkins et al., 2012, 2017, 2021; Zhuang et al., 2018).

It is thus clear that technology already has the ability to
measure at least one element of good welfare—animal health—
at both individual and group level. New automated ways of doing
this are rapidly being developed and their use is likely to increase
markedly in the near future as diagnostic tools become better
able to focus on individual animals and to give early warning of
incipient health problems (Eckelkamp, 2019; Wurtz et al., 2019;
Li et al., 2020; Rios et al., 2020).

Computer Recognition of What Animals
Want (the Animal’s Point of View)
While signs of ill-health are comparatively easy for computers
to recognize, there is more to good welfare than just absence of
injury and disease and so a key question is whether computers
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are also capable of delivering on the second component of animal
welfare—what animals want.

Specifying Welfare Algorithms
The success of an algorithm to detect when animals have what
they want will depend on a computer being able to discriminate
between the behavior or physiological state of animals that have
what they want and the behavior or physiological state of animals
that do not have what they want. Animal welfare scientists have
already made great progress in drawing up these “body language”
lists for different species and indeed they are often used as
measures of either positive or negative welfare. Many can now be
detected automatically with sensors, including hormone levels,
activity levels, vocalizations, skin temperature, eye temperature,
pupil size, heart rate variability and many more.

With such a large number of measures now available, there
would appear to be a strong empirical base fromwhich to develop
welfare algorithms suitable for inclusion in smart farming
systems. Unfortunately, it turns out that many of these measures
are problematic because they fail to discriminate between animals
having what they want and the complete opposite—animals not
having what they want or being forced to remain in conditions
they want to avoid or escape from. For example, cows showed
a decrease in eye temperature when confined in a cattle crush
to have their feet trimmed but also when given highly palatable
food (Gomez et al., 2018). Large increases in glucocorticoid
levels (often called “stress” hormones) are shown by animals
that have what they want (such as food, voluntary exercise or
a sexual partner) as well as by animals that want to escape or
avoid something (Rushen, 1986; Koolhaas et al., 2011; Ralph and
Tilbrook, 2016).

This ambiguity of many currently used measures of welfare—
the fact that many can be interpreted as much as expressions
of an excited animal having what it wants as an aroused animal
attempting to avoid what is not wanted—means that an extra test
needs to be applied before any should used in a welfare algorithm.
That test is empirical evidence that the measure used is a genuine
diagnostic of whether the animals themselves regard a given
situation as something they want to continue/repeat (that is, they
find it positive or rewarding) or as something they want to avoid
(negative or punishing) (Dawkins, 1990, 2021; Guesgen and
Bench, 2017; Gygax, 2017; Franks, 2019). This positive/negative
classification is also called valence (Mendl et al., 2010).

Determining Valence
There are now a number of well-tried and tested ways of
finding out what animals want including operant conditioning
(Kilgour et al., 1991; Patterson-Kane et al., 2008), various sorts
of choice tests, spatial distribution and other more indirect
methods (Dawkins, 2021). The simplest of these include offering
animals choices between various options and seeing which
one they choose initially or where they go over a longer
period. For example, when broiler chickens are offered a choice
between traditional bar perches and platform perches, they
spend considerably more time on the platforms than the bars,
particularly as they get older, heavier and find it more difficult

to balance on bars (Baxter et al., 2020). Their point of view is
expressed in where they choose to spend their time.

Evidence of what animals want becomes even more
convincing if animals can be shown to actually “work” to
get what they want or pay a cost to obtain their reward. For
example, dairy cows will learn to operate a switch to activate the
motors of rotating brushes, which they then rub up against to
groom themselves (Westerath et al., 2014). Furthermore, they
will make great efforts to get to these brushes if it is made more
difficult for them, for example if they have to push open a heavy
gate (McConnachie et al., 2018). Cows clearly want the physical
grooming provided by the brushes.

Traditionally, studies of animal choices and resource use are
conducted by direct human observation or tedious analysis of
video, which greatly limits their scope. Long-term computer
analysis of where animals spend their time and how often and
how much they will work for different resources provides much
more quantitative data. It shows how choices change on a diurnal
basis and as the animals age (Kashiha et al., 2014). It thus
helps to overcome objections that have been raised to the use
of choice tests in welfare assessment (Fraser and Nicol, 2011)
such as animals not being familiar with the options available, the
choices changing with experience or animals initially “wanting”
something but then not “liking” it when they obtain it (Berridge
et al., 2009).

The Expression of Valence
Although establishing what animals want is an essential first
stage in the development of welfare algorithms, it is knowing
how animals express themselves when they have (or do not have)
what they want that enables the often ambiguous data from
sensors to be correctly interpreted in welfare terms (Guesgen
and Bench, 2017). Once it is known what animals want, then
it is possible to observe them in the presence both of things or
environments they have shown they want and in the presence
of situations they have shown they want to avoid. If there are
diagnostic differences between their behavior and physiology in
these two situations—that is, reliable indicators of valence—then
these are the ones that can be used with confidence as part
of a welfare algorithm. These might be characteristic sounds,
patterns of behavior or hormone profiles that enable a machine
(or stockperson) to make a welfare assessment and any necessary
management changes. For example, growing chicks give loud
high high-pitched “distress” calls when they are cold, hungry,
thirsty or isolated (i.e., do not have what they want) and soft,
“twitter” calls when they are with the mother or other chicks, at
the right temperature and otherwise have what they want (Collias
and Joos, 1953; Wood-Gush, 1971). The calls are distinct and
easy for both humans and computers to distinguish. The current
welfare of chicks can therefore be assessed by monitoring these
calls (Herborn et al., 2020), since their value as diagnostic valence
indicators has already been established.

Computers, with their immense power to learn from large data
sets could greatly increase the accuracy of welfare recognition
algorithms and their ability to distinguish behavior of different
valence. For example, the grunts emitted by pigs are different
depending on whether the pigs are in situations they find

Frontiers in Animal Science | www.frontiersin.org 4 August 2021 | Volume 2 | Article 73653638

https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/animal-science#articles


Dawkins Smart Farming and Animal Welfare

rewarding or punishing (Leliveld et al., 2016), but there is a great
deal overlap between the two categories of grunts, making them,
at present, unreliable indicators of whether pigs have what they
want (Friel et al., 2019). However, what we now see as unreliable
signs of what the pigs want, could, with the power of machine
learning to interpret them, become much more reliable, either
because computers detect distinctions that escape us, or because
they are able combine them with other behaviors and interpret
them in context. Machine Learning, using very large data sets for
training and testing deep learning models, will almost certainly
detect as yet unknown correlations and insights into how to
achieve better welfare outcomes than we currently have available
(Liakos et al., 2018; Morota et al., 2018; Li et al., 2020).

There are, however, particular challenges posed by the
automated analysis of behavior due to its variety. An animal that
wants food will behave differently from the same animal when
it wants a mate or wants warmth. Even wanting one thing such
as food may sometimes take the form of searching a large area,
at other times vocalizing and at yet other times sitting still to
conserve energy. “Searching” in turn may consist of running,
stalking, digging, turning over stones or any number of other
behaviors that may themselves vary on different occasions even
within the same individual. An added complication is that when
the animal has found food, it will switch from “wanting” food to
“liking” it (Berridge et al., 2009; Gygax, 2017) and show a whole
new set of behavior associated with eating and post-prandial
digestion. The body language list for recognizing when animals
have what they want will therefore have to be extensive for each
species and include this variety of different behaviors.

The list is likely to be even longer for how animals express
themselves when they do not have what they want because there
are so many different situations that animals may want to avoid
or escape from, each giving rise to different behavior. An animal
that does not have but can see what it wants (is “thwarted”
or “frustrated”) will behave differently from one in a barren
environment (is “deprived” or “bored”). An animal that wants to
avoid danger (is “fearful”) will show a range of behaviors from
vigilance to full-scale flight depending on the degree of danger.
Aggression can take many forms and real fighting can actually
look very similar to play fighting. The only thing that could unite
these diverse behaviors and put them on the same negative list
is that, from the animal’s point of view, they are all indication of
something that is not wanted nor liked.

Note that these animal-centered lists may not be the same as
the lists that well-meaning humans, without the benefit of this
background research, might come up with. For example, not
all “natural” behaviors will make it to the positive list of what
animals want. Some behaviors that occur naturally in the wild,
such as being chased by a predator, may be the opposite of what
an animal wants and be seen as indicative of poor welfare (Bracke
and Hopster, 2006; Dawkins, 2021).

Once these lists have been compiled, however, they can be
used to develop the validated welfare algorithms that smart
farming needs if it is to be of practical use to farmers. Consumers
can be assured that the welfare algorithms being used are based
on what keeps animals healthy and also on the animals’ own
verdicts on what they do or do not want.

Computers Can Provide What Animals
Want
More actively, computers can be used not just to measure what
animals want but to actually give themwhat they want. Voluntary
milking for cows (Munksgaard et al., 2011; Rodenberg, 2017)
for example, or systems in which animals can control their
own level of illumination (Taylor et al., 1996) show how smart
farming could even lead to animal-centered environments in
which animals adjust their environments to their own liking. The
full welfare implications of this have yet to be understood.

Some Remaining Problems With Machine
Analysis of Welfare
Having emphasized the role that computers could play in the
recognition and assessment of animal welfare, it is important also
to identify the problems that still remain. With sound, it may be
difficult to distinguish vocalizations from background noise or
there may be genuine overlap between vocalizations indicating
positive or negative welfare.

With machine vision technology, there is an even greater
range of technical problems still to be overcome (Dominiak
and Kristensen, 2017; Liakos et al., 2018; Wurtz et al., 2019).
The human brain is so good at recognizing people, subtle facial
expressions, letters of the alphabet written in different scripts and
objects that are only partially visible that it sometimes comes as
a surprise that we still out-perform any computer on many of
these visual tasks (Rolls, 2021). We excel at view-invariance—
that is, at being able to recognize the same object even though
its appearance may be very different depending on the angle,
distance or orientation at which we see it. A pen looks long
and thin when held one way but like a small round coin when
looked at end-on but we still know it is a pen. A bus is still a
bus to us even though half hidden by a wall so that it no longer
has a typical bus shape. Such tasks are difficult for computers
even with static objects presented in a uniform way (which is
why tests of whether you are a robot on a website work). When
confronted by active behavior sequences of moving animals
seen from different angles, different distances from the camera,
in different lighting conditions and often obscured by other
animals, the task becomes even more difficult. If these problems
are not solved satisfactorily, computer recognition will give false
positive or false negative results, both of which detract from its
usefulness in practice (Dominiak and Kristensen, 2017; Liakos
et al., 2018).

Consequently, there is still a long way to go before welfare
algorithms will do what is required of them as a reliable part of
smart farming systems operating in commercial farm conditions
(Wurtz et al., 2019). Progress is, however, beingmade all the time.
The widespread use of video surveillance has driven the need for
view-invariant computer recognition of different kinds of human
activity that can operate independently of light level, camera
angle background or other variables encountered in real life
(Ramanathan et al., 2019; Singh et al., 2019). Such developments
are of direct relevance to the problems of machine recognition of
animal behavior in farm conditions (Li et al., 2021).
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CAN SMART FARMING DELIVER ON ITS
PROMISED BENEFITS TO ANIMAL
WELFARE?

Smart or precision livestock farming promises both greater
efficiency to farmers and higher welfare standards for animals,
but to quote a landmark paper by Wathes et al. (2008) it is still
not clear whether smart farming is the animals “friend or foe” or
the farmers “panacea or pitfall”. Despite the major progress that
has been made since this paper was published, precision livestock
farming still lags behind plant crop production in its application
of precision technology in many sectors (dairy farming being
an exception). Many of its most ambitious features—such as
automated welfare assessment—are still in the development
phase (Rowe et al., 2019) and have yet to prove their value
when applied to real farming conditions. As a result, many
farmers particularly those in the poultry sector, are yet to be
convinced that smart farming techniques are right for them or
that they give any better results than be achieved without the
help of expensive technology. Only when there is widespread
commercial application and evidence of the results of smart
farming in practice will we be able to judge its true outcomes.
These outcomes will need to include whether it results in a
reduction of waste, whether it reduces the incidence of disease
and consequently reduces or increases the use of medication,
what effects it has on the environment and the people working
with animals and on whether it allows farmers to make a living.

Economic factors will be crucial. Only if farmers can see
commercial benefits will they make the necessary investment
in smart farming equipment and it is this emphasis on
profit and efficiency that causes the most concern for animal
welfare. There is a common belief that animal welfare is
in conflict with efficient farming because its benefits are
intangible and derive from ethics and moral values or what
the public see as a “good” (Christensen et al., 2012). However,
animal welfare also has direct financial benefits too and
once these are appreciated animal welfare is less likely to
be seen as in conflict with efficient farming (Guy et al.,
2012; Dawkins, 2016). It is therefore worth considering the
possible effects of smart farming on the two components of
animal welfare discussed in this article in the light of their
financial implications.

The impact of precision farming on the first component of
animal welfare—good health—is likely to be positive and also
to be financially beneficial. By having the greater control over
environmental conditions that smart farming offers, animals
can be kept in conditions that are optimal for their health,
which makes them less likely to die or need medication or to
be a source of disease to each other or to humans. Keeping
broiler chickens within recommended limits of temperature
and humidity, particularly during the first week of life, reduces
not only mortality but other key health indicators as well
such as hockburn, foot pad dermatitis and lameness (Dawkins
et al., 2004; Jones et al., 2005). A broiler farm with 10
houses could be producing as many as 3 million birds a year
so that even a 1% saving in mortality could be financially

crucial for poultry producers. If the controlled environment
achievable with precision farming also reduced downgrades due
to leg and foot lesions, breast blisters and other signs of ill-
health this could be an additional financial gain. Making sure
that birds all grow at an even rate is another consideration
with economic implications since supermarkets often demand
birds all of the same weight. This is also important for
bird welfare since underweight birds may find difficulty in
accessing food and water. If precision farming results a higher
percentage of saleable, healthy birds of even weight, farmers
will gain financially and bird welfare will be improved at the
same time.

With the second component of good welfare—animals having
what they want—precision farming also has the potential to
deliver efficiency and profit alongside better welfare. There is
growing evidence that links “stress” to an impaired immune
system (Hoerr, 2010; Inbaraj et al., 2019; Pratelli et al., 2021).
In humans, good immune function is closely related to peoples’
subjective reports of being happy and satisfied with their lives
(Nakata et al., 2010; Takao et al., 2018), which is a promising
model for relating immunity to non-human animals having
what they want (Dawkins, 2019). This is an area where research
is urgently needed, specifically to test the hypothesis that
keeping animals in high welfare conditions (where they are
both healthy and have what they want) boosts their immune
systems, makes them more resistance to disease and leads to
healthier more contented animals. If precision farming can
provide the conditions that animals show by their behavior

they want and like and they are also healthier, then this
will provide a direct and immediate commercial advantage. If

monitoring the animals’ behavior can be shown to be useful

in indicating when conditions are less than optimal from the
animal’s point of view, then the extra technology will have its own

financial justification.
In addition to the direct financial benefits of giving priority to

animal welfare, there are also indirect benefits, such as the public
viewing farmers favorably and choosing to buy the products of

precision farming because they are seen as “welfare friendly.”
This is likely to become increasingly important as new trade deals
lead to greater competition and animal welfare becomes a key
selling point for producers who can achieve it. A retailer or food
outlet that is able reassure its customers that there is constant
welfare monitoring on the farms it buys from and is able to
explain what this means and even how the welfare is measured
will be at a (commercial) advantage.

We do not yet knowwhether these promises of smart livestock
farming will be fulfilled in practice. That will only become clear
as systems become more widely used and as the smart systems
themselves becomemore fully developed. Large data sets that can
be interrogated by deep learning techniques will be crucial both
to evaluating the effects of smart farming and to improving what
it can achieve. Of these effects, animal welfare will be key to the
future of smart farming, both as a major factor in its financial
success or failure but more importantly as its ethical judge. Smart
farming may stand or fall by whether it really can improve the
lives of animals.
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CONCLUSIONS

Smart or precision farming is a collection of relatively new
technologies whose effects on animal welfare have yet to become
clear. The ethical verdict on smart farming is likely to depend on
how the technology is developed over the next few years and how
much priority is given to animal welfare. Three developments
will be crucial to the ethical evaluation of smart farming in
its treatment of animals: the definition of “welfare” it adopts,

computer recognition of welfare and crucially, whether the
welfare of farmed animals is actually improved by the application
smart farming technology.
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